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Preface

This volume contains the papers accepted for presentation at the 9th Interna-
tional Conference on Rough Sets and Current Trends in Computing (RSCTC
2014), which, along with the Second International Conference on Rough Sets
and Emerging Intelligent Systems Paradigms (RSEISP 2014), was held as a ma-
jor part of the 2014 Joint Rough Set Symposium (JRS 2014), during July 9–13,
2014, in Granada and Madrid, Spain. In addition, JRS 2014 also hosted the
workshop on Rough Sets: Theory and Applications (RST&A), held in Granada
on July 9, 2014.

JRS was organized for the first time in 2007 and was re-established in 2012
as the major flagship IRSS-sponsored event gathering different rough-set-related
conferences and workshops every year. This year, it provided a forum for re-
searchers and practitioners interested in rough sets, fuzzy sets, intelligent sys-
tems, and complex data analysis.

RSCTC is a biannual international conference that showcases the state of the
art in rough set theory, current computing methods and their applications. It
provides researchers and practitioners interested in emerging information tech-
nologies an opportunity to highlight innovative research directions, novel appli-
cations, and to emphasize relationships between rough sets and related areas.
RSCTC is an outcome of a series of annual International Workshops devoted to
the subject of rough sets, started in Poznań, Poland, in 1992.

JRS 2014 received 120 submissions that were carefully reviewed by three or
more Program Committee members or external reviewers. Papers submitted to
special sessions were subject to the same reviewing procedure as those submit-
ted to regular sessions. After the rigorous reviewing process, 40 regular papers
(acceptance rate 33.3%) and 37 short papers were accepted for presentation at
the symposium and publication in two volumes of the JRS proceedings. This
volume contains the papers accepted for the conference RSCTC 2014.

It is truly a pleasure to thank all those people who helped this volume to
come into being and to turn JRS 2014 into a successful and exciting event. In
particular, we would like to express our appreciation for the work of the JRS
2014 Program Committee members who helped assure the high standards of ac-
cepted papers. Also, we are grateful to the organizers of special sessions: Enrique
Herrera-Viedma, Francisco Javier Cabrerizo, Ignacio Javier Pérez, Lluis Godo,
Thomas Vetterlein, Manuel Ojeda-Aciego, Sergei O. Kuznetsov, Pablo Cordero,
Isaac Triguero, Salvador Garćıa, Robert Bembenik, Dariusz Gotlib, Grzegorz
Protaziuk, Bing Zhou, Hong Yu, and Huaxiong Li. Furthermore, we want to
thank the RST&A 2014 workshop chairs (Piotr Artiemjew and Nele Verbiest),
and we also gratefully acknowledge the generous help of the remaining JRS 2014
chairs- Hiroshi Motoda, Zbigniew W. Raś, Davide Ciucci, Jesús Medina-Moreno,
Consuelo Gonzalo, and Salvador Garćıa, as well as of the Steering Committee
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members Henryk Rybiński, Roman S�lowiński, Guoyin Wang, and Yiyu Yao, for
their hard work and valuable suggestions with respect to preparation of the
proceedings and conference organization. Also, we want to pay tribute to our
honorary chairs, Lotfi Zadeh and Andrzej Skowron, whom we deeply respect for
their countless contributions to the field. We also wish to express our thanks to
Bernard De Baets, Francisco Herrera, and Jerzy Stefanowski for accepting to
be plenary speakers of JRS 2014. Last but not least, we would like to thank all
the authors of JRS 2014, without whose high-quality contributions it would not
have been possible to organize the symposium.

We also want to take this opportunity to thank our sponsors, in particular,
Infobright Inc. for being the industry sponsor of the entire event, and Springer
for contributing the best paper award.

We are very thankful to Alfred Hofmann and the excellent LNCS team at
Springer for their help and co-operation. We would also like to acknowledge the
use of EasyChair, a great conference management system.

Finally, it is our sincere hope that the papers in the proceedings may be of
interest to the readers and inspire them in their scientific activities.

July 2014 Chris Cornelis
Marzena Kryszkiewicz

Dominik Ślȩzak
Ernestina Menasalvas Ruiz

Rafael Bello
Lin Shang
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Peter Vojtáš
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Aristotle’s Syllogisms in Logical Semantics Relying on Optimistic,
Average and Pessimistic Membership Functions . . . . . . . . . . . . . . . . . . . . . . 59

Tamás Mihálydeák
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Orthopairs in the 1960s:

Historical Remarks and New Ideas

Davide Ciucci

Dipartimento di Informatica, Sistemistica e Comunicazione
Università di Milano – Bicocca

Viale Sarca 336 – U14, I–20126 Milano, Italia
ciucci@disco.unimib.it

Abstract. Before the advent of fuzzy and rough sets, some authors in
the 1960s studied three-valued logics and pairs of sets with a meaning
similar to those we can encounter nowadays in modern theories such as
rough sets, decision theory and granular computing. We revise these stud-
ies using the modern terminology and making reference to the present
literature. Finally, we put forward some future directions of investigation.

1 Introduction

An orthopair on a universe U is a pair of subsets A,B ⊆ U such that A∩B = ∅.
From a purely set-theoretical standpoint an orthopair is equivalent to a pair
of nested sets A ⊆ C once defined C := Bc (·c denoting the set complement
with respect to the universe U). Clearly, an orthopair partitions the universe
in three sets: A,B and (A ∪B)c. So, a bijection between orthopairs and three-
valued sets can be established. Given an orthopair (A,B), a three-valued set
f : U �→ {0, 12 , 1} can be defined as f(x) = 1 if x ∈ A, f(x) = 0 if x ∈ B and
f(x) = 1

2 otherwise1. Vice versa, from a three-valued set f , an orthopair can be
defined as the inverse of the previous mapping. It follows that we can equivalently
study orthopairs, nested pairs or three-valued sets and in the following we will
mix these three approaches keeping in mind their syntactical equivalence. Let
us also notice that this tri-partition directly points to three-way decision [33]
whose aim is to partition in three a universe and to the theory of opposition,
in particular to a hexagon of oppositions, that can be naturally defined from a
tri-partition [12,17].

Several interpretations can be attached to the two sets A,B, here is some
example:

– They can be a set of true and false propositional variables;
– They can be a set of examples and counterexamples;
– A can represent the elements surely belonging to a given concept and B

those surely not belonging;

1 This translation reflects somehow the semantics usually assigned to orthopairs. With-
out giving any semantics to the two sets A, B and to the three-valued sets, any
permutation in the assigned values defines a bijection.

C. Cornelis et al. (eds.): RSCTC 2014, LNAI 8536, pp. 1–12, 2014.
c© Springer International Publishing Switzerland 2014



2 D. Ciucci

– A can represent the elements surely belonging to a given concept and B can
represent a region of uncertainty: the elements about which either we cannot
decide on their (Boolean) belongingness or that belong to a certain extent.

The last point emphasize a difference in the interpretation of the no-certainty
zone: unknown, an epistemic notion, and borderline, an ontic notion. This dif-
ference is reflected to a greater extent by the third truth value (12 ) meaning:
under the epistemic view it can stand for unknown, possible, inconsistent, etc.
and under the ontic one, it can be interpreted as borderline (or half-true), un-
defined (in the sense of Kleene [23], that is outside the definition domain of a
given function), irrelevant, etc. For reasoning purposes, it can be argued that
three-valued truth-functional logics are suited in the ontic case whereas in the
epistemic one non-truth functional, such as modal logic or possibility theory, are
better placed [15].

Orthopairs (and nested pairs) appear in different contexts such as rough sets
and ill-known sets, three-way decision, three-valued logic, shadowed sets, etc...
They have been studied from a logical-algebraic standpoint by several authors
and also in general contexts where the underlying structure is weaker than a
Boolean algebra (for an overview see [8] and further historical remarks can be
found in [28, Frame 10.11]). In Section 2, we will revise some of the operations
that can be defined on these structures. For a more complete study on operations
we refer to [8,24,11] for orthopairs, an overview on three values is given in [10]
and about the relationship between orthopairs and three-valued operations see
[13].

The aim of the paper is two-fold, as the title suggests. From one side, it
presents an overview of some papers published before the coming of fuzzy sets
and rough sets, which contain several ideas about concepts that will be developed
in the following years. Then, we show that some ideas contained in those papers
are still innovative and can give some insight to the paradigms connected with
orthopairs. In particular, we will take into account the works by Fadini [19,18],
Andreoli [1,2,3] and the work by Gentilhomme [21]. Only the last one is to some
extent known in the fuzzy logic community and cited by some authors2, the
first two are almost unknown. On the other hand, we remark that it is out of
the scope of the present work to survey all the operations existing in rough set
theory, for this aspect we refer the interested reader to [4,5,13].

2 Preliminary Notions

As said in the introduction, several interpretations to three-valued sets can be
given and this reflects also on the different operations that we are entitled to
introduce. The same situation applies to orthopairs and nested pairs. As we will
see in Section 4, according to which interpretation or representation we use,
different operations naturally arise.

2 The paper [21] has 95 citations on Google Scholar at 23 April 2014.
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Indeed, let us consider a concept A that we want to describe and a pair of
sets (A1, A2) that we use to effectively represent it. Usually, A1 represents the
elements that surely belong to A. This corresponds in rough set theory to the
lower approximation and so, from now on, we will denote it as Al. The second
set can have three (mutually definable) interpretations that we are going to use
through the paper:

– A2 contains the objects possibly belonging to A, that is, it correponds to the
upper approximation and we denote it as Au.

– A2 contains the objects surely not belonging to conceptA, that is, the exterior
region. Thus, we are going to denote it as Ae.

– A2 represents the objects on which we are undecided about their belonging-
ness to A, this is the boundary region and it will be named Abnd.

Needless to stress (Al, Au) is a nested pair, whereas (Al, Ae) and (Al, Abnd) are
orthopairs. We are not going to consider here the case where the first element A1

is different from Al, which will generate other orthopairs, such as (Au, Ae) and
(Ae, ABnd). From now on, A and B will stand for orthopairs (Al, Ae), (Bl, Be)
or nested pairs (Al, Au), (Bl, Bu).

We now introduce some operations and order relations that have been intro-
duced on ortho (nested) pairs. This is not an exhaustive list, but a presentation
of some operations already known in literature that are helpful for the following
discussion. Other operations can be found in [8,25,24,11,10,14].

Let us first consider unary operations, usually meant to model a negation.
We have on three values the involutive, the intuitionistic and the paraconsistent
negations which extend the Boolean negation and thus differ only on the negation
of the third-truth value, respectively defined as 1

2

′
= 1

2 , ∼
1
2 = 0 and − 1

2 = 1.
Once translated to orthopairs and nested pairs these negations are defined as
follows:

(Al, Ae)
′ := (Ae, Al) (Al, Au)

′ := (Ac
u, A

c
l ) (1)

∼ (Al, Ae) := (Ae, A
c
e) ∼ (Al, Au) := (Ac

u, A
c
u) (2)

−(Al, Ae) := (Ac
l , Al) −(Al, Au) := (Ac

l , A
c
l ) (3)

As far as binary operations are concerned, we are mainly interested in conjunc-
tion and disjunction, as well as related order relations. So, the basic meet and
join on three-values are the min and max (Kleene conjunction and disjunction
[23]) corresponding to the usual ordering on numbers: 0 ≤ 1

2 ≤ 1. On orthopairs
A and B, this ordering is known as the truth ordering [6] and it reads Al ⊆ Bl

and Be ⊆ Ae or equivalently Au ⊆ Bu on nested pairs. The meet and join
operations are respectively defined on orthopairs as

(Al, Ae) � (Bl, Be) := (Al ∩Bl, Ae ∪Be) (4)

(Al, Ae) � (Bl, Be) := (Al ∪Bl, Ae ∩Be) (5)

The other usually considered order relation on orthopairs is the knowledge
ordering [6,32], also known as semantic precision [24]: A k B if Al ⊆ Bl and
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Ae ⊆ Be (equiv., Bu ⊆ Au). As its name reflects, this ordering means that A
is less informative than B. It is a just a partial order which corresponds on
three values to 1

2 ≤ {0, 1}. Thus, it does not generate a join operator but only
a meet one, that is the min with respect to this ordering, and it corresponds on
orthopairs to the optimistic combination operator [24].

However, by transforming this order relation into a total one, two different
orderings and two different conjunctions and disjunctions are generated. These
orderings read on orthopairs as:

(Al, Ae) e (Bl, Be) iff Ae ⊆ Be and Al ∪Ae ⊆ Bl ∪Be, (6)

(Al, Ae) l (Bl, Be) iff Al ⊆ Bl, and Al ∪ Ae ⊆ Bl ∪Be, (7)

So, in both cases A is less informative than B. Let us notice, indeed, that Al ∪
Ae = Ac

Bnd and so the second condition of both relations can be equivalently
stated asBbnd ⊆ ABnd. In the first caseA is at least as negative asB, whereas the
second ordering means that A is at least as positive as B. From an information
point of view these two orderings are, thus, less demanding than the information
ordering and we have that A k B iff A e B and A l B.

Other orders on three values are respectively 1
2 ≤e 1 ≤e 0 and 1

2 ≤l 0 ≤l 1
(we are using the symbol ≤ on numbers and  on pairs). The interpretation of
these orderings on three values is not interesting per se, but they generate two
important pairs of conjunction and disjunction:

– the Sobociński operations [31], corresponding to uninorms with neutral el-
ement 1

2 [22]. The conjunction corresponds to the max with respect to the
order ≤e and the disjunction is the max with respect to ≤l. They are used
in conditional events to fuse conditionals [16]. Their definition on orthopairs
is given in equations 8.

(Al, Ae) �S (Bl, Be) := (Al, Ae) �e (Bl, Be) = (Al\Be ∪Bl\Ae, Ae ∪Be)
(8a)

(Al, Ae) �S (Bl, Be) := (Al, Ae) �l (Bl, Be) = (Al ∪Bl, Ae\Bl ∪Be\Al)
(8b)

– the weak Kleene meet and join [23], respectively corresponding to the min
with respect to ≤l and ≤e. In this case, the third value is interpreted as
undefined. On orthopairs they generate the operations in equations 9.

(Al, Ae) �K (Bl, Be) := (Al, Ae) �e (Bl, Be) (9a)

:= ((Al ∩Bl) ∪ [(Al ∩Be) ∪ (Bl ∩ Ae)], Ae ∩Be))

(Al, Ae) �K (Bl, Be) := (Al, Ae) �l (Bl, Be) (9b)

:= (Al ∩Bl, (Ae ∩Be) ∪ [(Ae ∩Bl) ∪ (Be ∩ Al)])

Finally, we can introduce six different negations by using these two order-
ings similarly as was done in equations (1)–(3). Some of these negations will be
discussed in Section 4.2.
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3 Interpretation

We start now to analyze how the three authors under investigation approach
orthopairs. Here, we consider the interpretation attached to a pair of sets and
in the following section, we see which operations are defined on them.

Orthopairs are introduced by Fadini [18,19] under the name complex classes.
They are defined as pairs of the kind (Al, ABnd), so with the meaning lower-
boundary. Using Fadini’s terminology: Al is the extension of a class and ABnd

contains “all the elements whose belonging to the class has the third truth
value”3 [18]. The union Al ⊕ ABnd is the complex extension of a class, and
to distinguish between the two different parts of the extension a new unity i
is introduced as in complex numbers and a complex class C is thus denoted as
C = Al ∪ iABnd.

Fadini is aware that different meanings can be attached to the third truth
value and that operations have to be chosen accordingly to the interpretation.
He gives the interpretation of indeterminate whose meaning is “clearly differ-
ent from unknown”, and for which the tertium non datur principle should not
hold (contrary to the unknown case). The term “indeterminate” is taken from
Reichenbach [29], that is, from quantum mechanics. So, it seems that the third
value has an ontic nature and it is not a knowledge flaw. This point of view is
clarified by Fadini himself in his later book on fuzzy sets, where he says that
indeterminate stands for a third truth value which is neither true nor false and
it is different from unknown or unknowable [20]. Moreover, in this book he also
studies the case of unknown which represents “the indecision between true and
false and so it is not a real third truth value”. In order to manage this case he
refers to a doxastic logic [26].

Andreoli [2,3] studies the generalizations of Boolean algebras and Boolean
sets in two directions. The first one, is by extending the set of truth values
(the membership function in case of sets). So, in the case of three values, he
classifies objects as “interior”, “exterior”, “boundary” or also as “accepted”,
“rejected”, “undecided”. So, we can see that the former terminology coincide
with the standard rough-set theory one whereas the second interpretation echoes
the terminology of three-way decision theory [33]. The second direction is what
he calls “levels”, whose motivations arise from genetics. Indeed, he gives the
example of a gene with a dominant allele A and a recessive one a. Then, we
can have three different kinds of pair: AA, Aa ≡ aA and aa with the order
AA > Aa > aa or if we want to distinguish between Aa and aA with a Boolean
lattice structure (see Figure 1). We notice, however, that an operation of Boolean
operators in this context is not provided. Perhaps, we could hazard that the
min/max can give the combination with the minor/major number of recessive
alleles possible.

This idea of levels reminds the granular computing approach to represent
knowledge. This similarity is also supported by Andreoli’s idea that two oper-

3 All translations from Italian (and in case of Gentilhomme, from French) are under
our complete responsibility.
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AA

Aa aA

aa Level 1

Level 2

Level 3

Fig. 1. Three levels of a Boolean algebra

ations named “refinement” and “attenuation” can be introduced on levels [3].
The first operation introduces a new level, that is, we can move from two to
three by splitting one level into other two. The second operation acts in the
opposite direction by fusing together two different levels. These operations can
be encountered nowadays in granular computing acting on levels or on concepts,
for instance in [7] we defined a refinement operation and an elimination one on
an ontology’s concepts. He also gives some hints on the fact that these two op-
erations can be generalized to more generic structures, not only to three values.
We postpone the investigation of this idea to a future work. We also notice that
in [1] a general study on the algebraic structure of pairs from a Boolean algebra
is given. These pairs, however, are not necessarily disjoint and an interpretation
is not provided.

Finally, Gentilhomme pairs are in the form lower-upper (Al, Au) and they are
named fuzzy (“flou”) sets. The lower set is the “certainty zone”, the upper the
“maximal extension” and the boundary, the fuzzy zone. He also notices that a
flou set can be equivalently expressed as the orthopair lower-exterior.

The interpretation of the boundary (equivalently, the third value) has an
ontic nature (the value 1

2 is named “maybe”). Indeed, it refers to linguistic
problems where we are unable to correctly classify some linguistic object and this
“hesitation” is a “matter of the language” [21]. So, the problem is intrinsic to the
object under study, not to the observer. However, in some passages Gentilhomme
also comments on the causes of this “partial failure” in classifying objects with
certainty, opening the door to some problems also in the observers. Indeed, in
the list of causes given by Gentilhomme, we have:

– the fact that different agents have different opinions. This could lead to an
interpretation of the third truth value as inconsistent and thus to paracon-
sistent logic where two (or more) agents can be in accordance or not on the
Boolean truth value to assign.

– the fact that data cannot be analyzed in a certain way or that we cannot
apply some given criteria to the data.

Finally, we notice that he also uses the terminology of complex numbers when
generalizing to not nested pairs (A,B). Analogously to the numerical case, the
sense is that “all the symbols do not have an immediate interpretation [...] but
they obey to similar formal rules”. He also notices that such pairs can be de-
fined by a set “completely” fuzzy (∅, B) and a set “totally imaginary” (A, ∅) as
(A,B) = (A, ∅) � (∅, B).
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4 Operations

In this section, we look at the operations introduced by the three authors in
their works making reference, when possible, to those introduced in Section 2
and pointing out which operations are new and the relations with other theories.
Of course, these operations are defined in an abstract setting and they should be
adapted to the context where they are used. For instance, in rough set theory, not
all orthopairs are representable as rough sets, due to the partition generated by
the equivalence relation; this entails a non truth-functional behaviour of rough
sets [13].

4.1 Intersection, Union and Difference

Andreoli is interested in a general study on orthopairs (sometimes only pairs as
in [1]) and he considers as plausible all the binary operations that are associative,
commutative and idempotent. There are six operations of this kind and they are
pairwise linked by a de Morgan property (using the standard involutive negation
(1)). They are the Kleene min and max, Sobocinski conjunction and disjunction
(equations 8) and weak Kleene conjunction and disjunction (equations 9). He
also notices that they correspond to the min or max with respect to different
orderings on the three values. So, for instance Sobocinski conjunction is the max
with respect to the order ≤e (equiv., the min with respect to the opposite order
0 ≤ 1 ≤ 1

2 ).
On the other hand, both Fadini and Gentilhomme consider as intersection and

union the standard Kleene operations (min and max on three values). This is
coherent with respect to the ontic interpretation they have in mind as explained
in the previous sections.

Besides conjunction and disjunction, Gentilhomme also devotes some efforts
to define a difference between two nested pairs. He considers as the correct
definition of a difference the following one (·′ is the involutive negation on pairs
as defined in equation (1)):

A \B := A �B′ = (Al \Bu, Au \Bl) (10)

that corresponds to an “experimental reality” where the certainty zone is exactly
Al \ Bu. However, he also introduces two other differences: the greatest, that
consists in accepting the maximum of the risk, and the smallest, that is accepting
no risk. They are respectively defined as

A \g B := (Al \Bl, Au \Bl) (11)

A \l B := (Al \Bu, Au \Bu) (12)

It is interesting to notice that these difference operators can be obtained as
in equation (10) but using the intuitionistic and paraconsistent negations of
equations (2) and (3), that is, we have A \g B = A�−B and A \l B = A� ∼ B.

Of course, this reference to the risk occurring to using one operation instead
of another points to decision theory and so to the possibility to introduce these
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(and other) operations on three-way decision theory. This aspect deserves a
further investigation in the future.

All these differences are not equal to the difference on orthopairs defined in [25]
as (Al \Be, Ae \Bl). This last corresponds to making the orthopair “consistent”,
that is removing from the positive/negative part of A the negative/positive part
of B so as to avoid conflict between A and B. The corresponding operation on
nested pairs reads (Al ∩Bu, Au ∪Bc

u) whose interpretation is not so clear. Thus,
in the difference case, it is evident that even though mathematically equivalent,
nested and orthopairs give birth to different operations which make sense more
in one case than in the other.

4.2 Negations

All the three authors consider the involutive negation as one possibility. Gentil-
homme just considers this one, whereas Andreoli and Fadini give more solutions.

Indeed, in order to obtain a negation, Fadini considers what happens in
negating the Boolean part, the complex part or both. As a result, not all these
operations are an extension of the Boolean negation on two values. By the nega-
tion of the Boolean part we get the standard involutive negation. By negat-
ing the complex part, we obtain a swapping of 0 with 1

2 : on nested pairs,
(Al, Au)

∗ := (Al, Al ∪ Ae) and on orthopairs, (Al, Ae)
∗ := (Al, ABnd). That

is, in the case of orthopairs the negation consists in a switch of the interpre-
tation from necessity-impossibility to necessity-unknown. Let us notice that it
corresponds to an involutive negation based on the order ≤e (i.e., the “middle”
value is 1).

Finally, by negating both the Boolean and the complex part we get two nega-
tions: (Al, Au) := (Ac

l , U) and (Al, Au) := (ABnd, U). On three values, the first

negation is such that 1 = 1
2 , 0 = 1

2 = 1, which is the complete negation in-
troduced by Reichenbach and has its reasons4 in quantum mechanics [29]. We
remark that it can be obtained by a paraconsistent-like negation based on the
order ≤l. On the same ordering, the intuitionistic-like negation corresponds to

the second negation by Fadini, and it is defined as 1 = 0 = 1
2 ,

1
2 = 1. In both

cases, nothing is false, the difference lies in what is true: in the first case it cor-
responds to what was not true (that is, false or unknown), in the second to what
was not known (i.e., in the boundary).

Moreover, he also considers the possibility that a negation of a Boolean or
complex part is allowed to contain only elements outside the class itself instead
of all and only the elements. In this way, a further negation is introduced by
swapping the Boolean and complex part. In terms of nested pairs: (Al, Au)

◦ =
(Au\Al, Au) and of three-values 0o = 0, 1

2

o
= 1 and 1o = 1

2 . This corresponds
to an involutive negation based on the order ≤l (

1
2 ≤l 0 ≤l 1).

Andreoli, apart from the standard involutive negation, introduces on three
values an interesting approach, which is different from what we have seen until

4 Reichenbach justifies the name complete by the fact that a ∨ a is a tautology and
this form of excluded middle is required by quantum mechanics.
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now. In a certain sense, it can be seen as a Boolean negation on the set of truth
values. Indeed, if t ∈ {0, 12 , 1}, then the negation of {t} is {t}c. This is justified by
the interpretation of three values as chosen, rejected, undecided. So, for instance,
the negation of undecided is decided which can mean either chosen or refused.
With respect to decision theory he then suggests that one can arrive at a final
decision with a two steps “Boolean” procedure. That is, at a first step there is
the division of the world in decided and undecided and in the second step decided
is further classified as rejected or chosen. This is a sort of sequential reasoning
which however works in the opposite direction with respect to the three-way
sequential decision theory [34] (see Figure 2).

Decided
Choosen

Rejected
Undecided

Choosen

Rejected

Undecided
Choosen

Rejected

Undecided

Fig. 2. Sequential decision making (Andreoli left, Yao right)

Indeed, this last consists in developing at the second step what is left unde-
cided in the first one. In this way, through a sequence of three-way decision it
is possible to arrive at a Boolean decision, classifying all objects as accepted or
rejected. This strategy is pointed out (but not developed) by Gentilhomme with
respect to classification: “we classify what we are able to classify and we devote
a “cesspool” to the rebel elements” [21].
Going back to the negation, when applied to orthopairs we get that the negation
of (Al, Ae) is ((Al)

c, Ac
e) = ((Ac)u, Au) which is no more an orthopair and the

intersection of Ac
l and Au is the boundary ABnd. Pairs of this kind make sense

when we want to model conflicting information, such as in Belnap or paracon-
sistent logics, so that an object can be in both sets of the pair [11,14]. The role
of this negation in decision theory and conflicting information should be better
investigated.

Finally, let us notice that the fact that at a first step we do not take a definite
position but just exclude one possibility among three, that is we wonder if a
proposition is false (either true) or unknown has been also discussed in terms of
orthopairs arising from formal contexts in [27]. Similarly, in the translation from
three-valued to epistemic logics [9] we admit the possibility to represent that a
valuation of a formula is ≤ 1

2 (false or unknown) or ≥ 1
2 (unknown or true).

4.3 Inclusion

According to Fadini [19], the main property to define an inclusion is based on the
two parts (the Boolean and boundary ones) of his complex-class notion. Indeed,
the inclusion between two complex classes Al ⊕ iABnd and Bl ⊕ iBBnd holds if
it holds for the union of the two parts Al ∪ ABnd ⊆ Bl ∪BBnd. This, on nested
pairs, reduces to Au ⊆ Bu. Fadini outlined five ways to fulfill this condition,
namely
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(sub1) Al ⊆ Bl, Au ⊆ Bu it is named proper inclusion since it is the only one
to be an order relation. We can see that it is the standard inclusion
relation on nested pairs, corresponding to the standard order relation on
three-values;

(sub2) Au ⊆ Bl named total inclusion for the intuitive reason that the concept
A it totally contained in B, both in its certainty and possibility parts;

(sub3) Abnd ⊆ Bl, Al ⊆ Bbnd it is called improper or inverted inclusion;
(sub4) Au ⊆ BBnd, the total improper inclusion;
(sub5) Abnd and Al are both contained in Bu and they have a non-empty inter-

section with both Bl and Bbnd, this is the mixed inclusion.

As can be seen his notions of inclusion are greatly influenced by his interpretation
of the orthopair as lower-boundary. This view generates original (pseudo) order
relations that not always can find an easy interpretation outside this framework.

Gentilhomme presents six different inclusion relations, defined according to
different mutual behaviours of lower and upper sets. These six relations form
a lattice where the order relation is given by “implies”, that is an inclusion is
smaller than another if the second one implies the first5. Only three of these re-
lations are considered meaningful, named normal, since “it is best suited for cal-
culations”: Al ⊆ Bl and Au ⊆ Bu (again the standard inclusion on orthopairs);
strong and weak defined, respectively, as Au ⊆ Bl and Al ⊆ Bu, the justification
of the name being intuitive.

Finally, Andreoli does not study directly the inclusion relations on three val-
ues/orthopairs but just on four values in [2]. On three values, they are indirectly
considered when studying the join and meet operations (see section 4.1). As can
be seen no one considered the knowledge ordering but they have defined order
relations never encountered before.

With respect to the relationship with implications, the only reference is by
Fadini in [18]. He does not consider his inclusion operations to be the corre-
sponding of an inference but of a conditional if a, then b since they hold only
when a is true. Oddly, no further discussion on implication is present in other
Fadini’s works nor in Andreoli and Gentilhomme.

5 Conclusion

In the present paper, we reviewed some (old) works on orthopairs, related them
to modern theories such as rough sets, decision theory and granular computing.
We saw how different interpretations of an orthopair can influence the definition
of operations. Some new operations (with respect to what is usually considered
nowadays) have been found: the difference operations in Gentilhomme and the
negations in Fadini and Andreoli. In particular these operations are often given
an interpretation in decision theory. So, as a future work, it is worth considering
the possibility to study orthopair operations in three-way decision. More gen-
erally, the role of the negation in orthopairs and conflicting information needs

5 The relation of this lattice with implication lattices in rough sets [30] should be
studied in the future.
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a thorough understanding. Further, the role of levels in generalized structures
outlined by Andreoli could be of some interest in granular computing. Finally,
an algebraic study of these new operations deserves some attention and an ad
hoc study.
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théorique et appliquée. Bucarest 47, 47–65 (1968)

22. Grabisch, M., Marichal, J.L., Mesiar, R., Pap, E.: Aggregation Functions. Cam-
bridge University Press (2009)

23. Kleene, S.C.: Introduction to metamathematics. North–Holland Pub. Co., Ams-
terdam (1952)

24. Lawry, J., Dubois, D.: A bipolar framework for combining beliefs about vague
propositions. In: Brewka, G., Eiter, T., McIlraith, S.A. (eds.) Principles of Knowl-
edge Representation and Reasoning: Proceedings of the Thirteenth International
Conference, pp. 530–540. AAAI Press (2012)

25. Lawry, J., Tang, Y.: On truth-gaps, bipolar belief and the assertability of vague
propositions. Artif. Intell. 191-192, 20–41 (2012)

26. Nola, A.D., Gerla, G.: A three-valued doxastic logic. La Ricerca XXXII, 19–33
(1981)

27. Pagliani, P.: Information gaps as communication needs: A new semantic foundation
for some non-classical logics. Journal of Logic, Language and Information 6(1), 63–
99 (1997)

28. Pagliani, P., Chakraborty, M.: A Geometry of Approximation. Springer (2008)
29. Reichenbach, H.: Philosophic Foundations of Quantum Mechanics. University of

California Press, Berkeley (1954)
30. Samanta, P., Chakraborty, M.K.: Generalized rough sets and implication lattices.

In: Peters, J.F., Skowron, A., Sakai, H., Chakraborty, M.K., Slezak, D., Hassanien,
A.E., Zhu, W. (eds.) Transactions on Rough Sets XIV. LNCS, vol. 6600, pp. 183–
201. Springer, Heidelberg (2011)
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Abstract. Involutive residuated negations are usually considered in resi-
duated fuzzy logics and they are also based on continuous triangular
norms. This paper introduces a generalization of these negations using
flexible conjunctors, several properties of them and the corresponding
disjunctive dual operators associated with the conjunctor.
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1 Introduction

Adjoint triples were firstly used considering the adjoint conjunctor and only one
implication in Logic Programming [16,20]. Later they were assumed in Logic
Programming [19] and in other frameworks, such as in general substructural
logics [1], Fuzzy Formal Concept Analysis [18], Fuzzy Relation Equations [9]
and Rough Set Theory [7], with the goal of providing flexible settings in order to
increase the range of possible applications of these frameworks. Moreover, several
properties of them and comparisons have been given in several papers [4,5].

On the other hand, negation operators are widely studied [8,11,22,23] and
they are usually considered in fuzzy logics [3,12,14] to simulate the ability of a
human brain in order to make decisions. For instance, the use of negations in logic
programming allows the definition of nonmonotonic logic programs, but require
an extra effort to obtain (stable) models [17]. To the best of our knowledge, the
most general negations were introduced by Georgescu and Popescu in [15] and
are called pairs of weak negations.

One class of useful negations are the residuated negations, which are defined
from residuated implications of a t-norm [2,13,21]. This paper considers adjoint
triples in order to present a generalization of residuated negations. Moreover,
a comparison with the pairs of weak negations is introduced, which shows that
adjoint negations are more general. Indeed, we have proven that every pair of
weak negations can be obtained from an adjoint triple. As a consequence, a very
interesting result is obtained, that is, every pair of weak negation can be derived
from the implications of an adjoint triple.
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The disjunction dual to an adjoint conjunctor is also defined and several
properties are presented. In the case of strong adjoint negations, two implications
associated with the disjunction are defined and they satisfy, together with the
adjoint conjunctor, the dual adjoint property.

2 Preliminaries

In this section, we will set the basic notions used in the paper. Firstly, we recall
the definition of adjoint triple and some interesting properties obtained from this
notion.

Adjoint triples are general operators which have been developed to increase
the flexibility of the framework in which they are used, since, for example, the
conjunctors in adjoint triples are neither required to be commutative nor asso-
ciative.

As the commutativity is not assumed, we have two different ways of gener-
alizing the well-known adjoint property between a t-norm and its residuated
implications, depending on which argument is fixed.

Definition 1. Let (P1,≤1), (P2,≤2), (P3,≤3) be posets and &: P1 × P2 → P3,
↙ : P3×P2 → P1, ↖ : P3×P1 → P2 be mappings, then (&,↙,↖) is an adjoint
triple with respect to P1, P2, P3 if &, ↙,↖ satisfy the adjoint property:

x ≤1 z ↙ y iff x& y ≤3 z iff y ≤2 z ↖ x

where x ∈ P1, y ∈ P2 and z ∈ P3.

From the adjoint property we obtain the following results.

Proposition 1. If (&,↙,↖) is an adjoint triple w.r.t. the posets (P1,≤1),
(P2,≤2) and (P3,≤3), then

1. & is order-preserving on both arguments.
2. ↙, ↖ are order-preserving on the first argument and order-reversing on the

second argument.

Proposition 2. Given an adjoint triple (&,↙,↖) with respect to the bounded
partially ordered sets (P1,≤1,⊥1,�1), (P2,≤2,⊥2,�2) and (P3,≤3,⊥3,�3), the
following boundary conditions hold

1. ⊥1 & y = ⊥3 and x&⊥2 = ⊥3, for all x ∈ P1, y ∈ P2.
2. z ↖ ⊥1 = �2 and z ↙ ⊥2 = �1, for all z ∈ P3.

The result below shows that given a conjunctor, if there exist its residuated
implications, they are unique.

Proposition 3. Given the conjunctor & of an adjoint triple, its residuated im-
plications ↙ and ↖ are unique.
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Proof. For the implication ↙, let us suppose there are ↙1 and ↙2 satisfying
the adjoint property with respect to the same conjunctor &. From inequalities
z ↙1 y ≤1 z ↙1 y and z ↙2 y ≤1 z ↙2 y and applying the adjoint property we
obtain the result.

Similarly for the implication ↖. ��

Example of adjoint triples are the Gödel, product and �Lukasiewicz t-norms to-
gether with their residuated implications. Note that, these t-norms are commu-
tative and so, the residuated implications satisfy that ↙G=↖G, ↙P=↖P and
↙L=↖L. These adjoint triples are defined on [0, 1] as:

&G(x, y) = min(x, y) z ↖G x =

{
1 if x ≤ z

z otherwise

&P(x, y) = x · y z ↖P x = min(1, z/x)

&L(x, y) = max(0, x+ y − 1) z ↖L x = min(1, 1− x+ z)

Example 1. Given m ∈ N, the set [0, 1]m is a regular partition of [0, 1] in m
pieces, for example [0, 1]2 = {0, 0.5, 1} divide the unit interval in two pieces.

A discretization of the product t-norm is the operator &∗
P : [0, 1]20× [0, 1]8 →

[0, 1]100 defined, for each x ∈ [0, 1]20 and y ∈ [0, 1]8 as:

x&
∗
P y =

�100 · x · y�
100

whose residuated implications ↙∗
P : [0, 1]100 × [0, 1]8 → [0, 1]20, ↖∗

P : [0, 1]100 ×
[0, 1]20 → [0, 1]8 are defined as:

b↙∗
P a =

�20 ·min{1, b/a}�
20

b↖∗
P c =

�8 ·min{1, b/c}�
8

where � � and � � are the ceiling and the floor functions, respectively.
Hence, the triple (&∗

P,↙∗
P,↖∗

P) is an adjoint triple and the operator &∗
P is

neither commutative nor associative. Similar adjoint triples can be obtained from
the Gödel and �Lukasiewicz t-norms.

In order to make this contribution self-contained, the formal definition of
closure operator and Galois connection are recalled.

Definition 2. Let (P,≤) be poset. A mapping c : P ×P → P is called a closure
operator on P if, for all x, y ∈ P :

1. x ≤ c(x),
2. If x ≤ y then c(x) ≤ c(y),
3. c(c(x)) = c(x).
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Definition 3. Let (P1,≤1) and (P2,≤2) be posets, and ↓ : P1 → P2,
↑ : P2 → P1

mappings, the pair (↑, ↓) forms a Galois connection between P1 and P2 if, for all
x ∈ P1 and y ∈ P2, the following equivalence holds:

x ≤ y↑ if and only if y ≤ x↓

Regarding the residuated implications ↙,↖ of a conjunctor, it is easy to
check that the operators z ↙ : P2 → P1 and z ↖ : P1 → P2 defined as z ↙ (y) =
z ↙ y,z ↖ (x) = z ↖ x, for all x ∈ P1, y ∈ P2, respectively, form a Galois
connection [10].

3 Adjoint Negations

In the following, the notion of adjoint negations is introduced. These operators
are defined from an adjoint triple and are a generalization of the residuated
negations [2,13,21]. Moreover, the relation between adjoint negations and pairs
of weak negations, introduced by Georgescu and Popescu in [15], is studied. The
most important result of this section shows that every pair of weak negations
may be obtained from an adjoint triple, which leads us to conclude that pairs of
weak negations are a particular case of adjoint negations.

First of all, the notion of adjoint negations is presented.

Definition 4. Given an adjoint triple (&,↙,↖) with respect to a lower bounded
poset (P,≤,⊥), the mappings ns, nn : P → P defined, for all x, y ∈ P , as

ns(y) = ⊥ ↙ y nn(x) = ⊥ ↖ x

are called adjoint negations on P .
The operators ns and nn satisfying that x = nn(ns(x)) = ns(nn(x)), for all

x ∈ P , are called strong adjoint negations on P .

Since (z↙,z ↖) is a Galois connection, the following properties are straight-
forwardly obtained.

Proposition 4. Let (P,≤,⊥,�) be a bounded poset and ns, nn adjoint negations
on P . The following statements hold:

1. ns(⊥) = nn(⊥) = �;
2. nsnnns = ns and nnnsnn = nn;
3. nsnn and nnns are closure operators;
4. x ≤ ns(y) iff y ≤ nn(x), for all x, y ∈ P ;
5. When the supremum and the infimum exist, for any X,Y ⊆ P ,

(a) ns(
∨
y∈Y

y) =
∧
y∈Y

ns(y),

(b) nn(
∨
x∈X

x) =
∧
x∈X

nn(x).
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Now, we will prove that these negations generalize pairs of weak negations
introduced in [15]. First of all, the definition of pair of weak negations will be
recalled.

Definition 5 ([15]). Let (P,≤,⊥,�) be a bounded partially ordered set and two
functions n1 : P → P , n2 : P → P , the pair (n1, n2) is said to be a pair of weak
negations on P , if the following conditions hold, for all x ∈ P :

1. n1(�) = n2(�) = ⊥;
2. n1 and n2 are antitone;
3. x ≤ n2n1(x) and x ≤ n1n2(x).

Theorem 1. Given a pair of weak negations (n1, n2) on P , there exists an ad-
joint triple (&,↙,↖) with respect to P such that n1 = ns and n2 = nn.

As a consequence of the theorem above, the definition of adjoint negations is
more general than pairs of weak negations.

The next example shows an idea in order to prove the previous theorem.

Example 2. Regarding a pair of weak negations (n1, n2) on P , the operators

&1,↙ and ↖ defined as:

x&1 y =

{
� if x � n1(y)

⊥ if x ≤ n1(y)

z ↙ y =

{
n1(y) if z �= �
� if z = �

z ↖ x =

{
n2(x) if z �= �
� if z = �

form an adjoint triple (&1,↙,↖) with respect to P satisfying that n1 = ns and
n2 = nn.

Note that the adjoint conjunctor may be defined as:

x&2 y =

{
� if y � n2(x)

⊥ if y ≤ n2(x)

and both definitions are equivalent applying Proposition 4(4), since (n1, n2) is
a Galois connection. Therefore, &1 = &2. It is easily verified that last equality
does not mean that n1 = n2.

However, the converse is not true since, for instance, the boundary conditions
of pair of weak negations ns(�) = nn(�) = ⊥ need not be satisfied.

Let (L,) be a complete lattice, where L = {⊥, x1, t, x2,�} and ⊥ ≤ x1 ≤ t ≤
x2 ≤ �, the conjunctor &: L×L→ L, defined from Table 1, and the residuated
implications ↙,↖ : L× L→ L of the operator &, defined from Table 2.
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Table 1. Definition of &

& ⊥ x1 t x2 �
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
x1 ⊥ ⊥ ⊥ ⊥ ⊥
t ⊥ ⊥ t t t
x2 ⊥ x1 t t x2

� ⊥ x1 t x2 �

Table 2. Definition of ↙ and ↖

↙ ⊥ x1 t x2 �
⊥ � t x1 x1 x1

x1 � � x1 x1 x1

t � � � x2 t
x2 � � � � x2

� � � � � �

↖ ⊥ x1 t x2 �
⊥ � � x1 ⊥ ⊥
x1 � � x1 x1 x1

t � � � x2 t
x2 � � � � x2

� � � � � �

Taking into account Definition 1, the triple (&,↙,↖) is an adjoint triple
w.r.t. the complete lattice L. Therefore, the adjoint negations ns and nn can be
defined from this adjoint triple.

Straightforwardly, by definition, the operators ns and nn are order-reversing
and, by Proposition 4, we obtain that nsnn and nnns are closure operators.
Hence, ns and nn satisfy Conditions (2) and (3) in Definition 5.

However, it is easy to check that ns(�) = ⊥ ↙ � = x1 �= ⊥. Therefore,
the boundary condition assumed in the definition of pair of weak negations
ns(�) = ⊥ is not satisfied by this adjoint negation.

Therefore, adjoint negations generalize pairs of weak negations and so, these
operators can be considered in more flexible frameworks. Moreover, the proper-
ties introduced in [15] can be applied to the adjoint negations.

Furthermore, we need to note that, although pairs of weak negations are
defined in a general poset (P,≤), the properties presented in [15] are given for
a bounded chain, which reduces the applicability of these negations. Indeed, the
property n1(x∧ y) = n1(x)∨n1(y), for all x, y ∈ P , is considered in Proposition
3.1 of [15], nevertheless this is not true in a general lattice, as the following
example shows.

Example 3. Let (L,) be the lattice showed in Figure 1 and (&G,↙G,↖G) be
an adjoint triple with respect to L, which is obtained from the Gödel conjunctor
together with its residuated implications, which satisfy that ↙G=↖G, defined
as:

x&G y = inf{x, y} z ↙G y =

{
� if y ≤ z

z otherwise
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In the following, we will check that there exist two elements in L such that
ns(x ∧ y) �= ns(x) ∨ ns(y):

ns(x ∧ y) = ns(⊥) = �
ns(x) ∨ ns(y) = (⊥ ↙G x) ∨ (⊥ ↙G y) = ⊥

�

⊥
•�

��
•x

�
��

•y�
��

•

�
��

Fig. 1. (L,�)

4 Disjunction Dual to the Conjunctor

In this section, the definition of disjunction dual to an adjoint conjunctor of an
adjoint triple is presented. This definition is given from two adjoint negations
obtained by an adjoint triple with respect to a lower bounded lattice.

Several properties will be shown with the purpose of proving that, given a
disjunction dual to an adjoint conjunctor, there exist two residuated implications
associated with the disjunction which satisfy a dual equivalence to the adjoint
property. First of all, the disjunction dual to the conjunctor is introduced.

Definition 6. Given an adjoint triple (&,↙,↖) with respect to a lower bounded
poset (P,≤,⊥), a disjunction dual to the conjunctor ⊕ : P ×P → P , is defined,
using the negation operators ns : P → P and nn : P → P , as follows:

x⊕ y = nn(ns(x)&ns(y))

Note that, the disjunction dual to the conjunctor may be defined using any
combination of negations in each place of the previous expression.

The following proposition shows interesting results satisfied by ⊕, which are
obtained straightforwardly from definitions and properties of the operators &,
ns and nn. For,

Proposition 5. Let (&,↙,↖) be an adjoint triple with respect to a lower
bounded poset (P,≤,⊥), the disjunction dual to the conjunctor ⊕ satisfies the
following properties:

1. ⊕ is order-preserving on both arguments, i.e. if x1, x2, x, y1, y2, y ∈ P such
that x1 ≤ x2, y1 ≤ y2, then (x1 ⊕ y) ≤ (x2 ⊕ y) and (x⊕ y1) ≤ (x⊕ y2).

2. If (P,≤,⊥,�) is a bounded poset, then � ⊕ y = � and x ⊕ � = �, for
all x, y ∈ P .
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Since it is interesting that the disjunction satisfies the previous boundary
conditions, from now on, we will assume a bounded poset (P,≤,⊥,�).

The following technical result states the conditions that two adjoint negations
ns, nn and the conjunctor of an adjoint triple (&,↙,↖) must satisfy, in order
to ensure that ⊥ is the left identity element for ⊕.

Proposition 6. Let (&,↙,↖) be an adjoint triple with respect to P such that
their corresponding ns and nn are strong adjoint negations on P . If � is the
left identity element for &, that is �& y = y, for all y ∈ P , then the equality
⊥⊕ y = y holds, for all y ∈ P .

A similar result is obtained if the boundary condition x&� = x, for all x ∈ P ,
is considered.

Since the disjunction dual ⊕ is defined from a non commutative conjunctor

&, two different residuated implications can be defined.

Definition 7. Given an adjoint triple (&,↙,↖) with respect to P such that
their induced negations ns and nn are strong adjoint negations on P , the follow-
ing two operators are defined on P .

z ↙⊕ y = nn(ns(z) ↙ ns(y))

z ↖⊕ x = nn(ns(z) ↖ ns(x))

for all x, y ∈ P .
The next proposition shows that the previous operators are indeed the resid-

uated implications associated with the disjunction dual to the conjunctor of an
adjoint triple.

Proposition 7. Given an adjoint triple (&,↙,↖) with respect to P such that
their induced negations ns and nn are strong adjoint negations on P .

Then, there exist two mappings ↙⊕,↖⊕ : P × P → P satisfying the equiva-
lence

z ↙⊕ y ≤ x iff z ≤ x⊕ y iff z ↖⊕ x ≤ y (1)

for all x, y, z ∈ P .

Similarly to Proposition 3 referring to adjoint triples, the following result
shows that the implications ↙⊕ and ↖⊕ of the triple (⊕,↙⊕,↖⊕), are unique,
considering Equivalence (1).

Proposition 8. Given the disjunction dual to an adjoint conjunctor &, and a
triple (⊕,↙⊕,↖⊕) satisfying Equivalence (1), the operators ↙⊕ and ↖⊕ are
unique.

5 Conclusions and Future Work

The use of residuated negations is very useful in fuzzy logic. This paper has
considered the general setting of adjoint triples in order to introduce a gener-
alization of residuated negations. Indeed, we have proven that the introduced
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operators are more general than pairs of weak negations presented by Georgescu
and Popescu in [15]. Although the former are defined in a poset, the properties
are proven in a boundary chain and, therefore, the spectrum of possible logics in
which they can be considered is reduced, as we have shown in the paper. More-
over, we have proven that every pair of weak negations can be obtained from an
adjoint triple. Therefore, since every classical residuated negation is a particular
case of a pair of weak negations, they can be derived from the implications of
an adjoint triple.

Furthermore, the disjunction dual to an adjoint conjunctor is defined and
several properties are presented. For instance, when strong adjoint negations are
considered, two dual adjoint implications are obtained satisfying the dual adjoint
property.

In the future, the definition of adjoint negations will be generalized considering
an adjoint triple defined in three differents posets and the proposed negations will
be compared with other ones, such as the negations introduced in the framework
of the extended-order algebras [8]. In addition, it would be interesting to see if
the representation theorems of negations given in [6] can be extended to our
framework.
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22. Trillas, E.: Sobre negaciones en la teoŕıa de conjuntos difusos. Stochastica III, 47–60
(1979)

23. Vetterlein, T., Ciabattoni, A.: On the (fuzzy) logical content of cadiag-2. Fuzzy Sets
and Systems 161(14), 1941–1958 (2010), Theme: Fuzzy and Uncertainty Logics



Improving the β-Precision and OWA Based

Fuzzy Rough Set Models:
Definitions, Properties and Robustness Analysis

Lynn D’eer and Nele Verbiest

Department of Applied Mathematics, Computer Science and Statistics,
Ghent University, Krijgslaan 281 (S9), B-9000 Gent, Belgium

{Lynn.Deer,Nele.Verbiest}@UGent.be

Abstract. Since the early 1990s, many authors have studied fuzzy rough
set models and their application in machine learning and data reduction.
In this work, we adjust the β-precision and the ordered weighted average
based fuzzy rough set models in such a way that the number of theoretical
properties increases. Furthermore, we evaluate the robustness of the new
models a-β-PREC and a-OWA to noisy data and compare them to a
general implicator-conjunctor-based fuzzy rough set model.
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1 Introduction

Rough set theory (Pawlak [1], 1982) characterizes uncertainty due to incomplete
information, by dividing a set of objects according to their indiscernibility to-
wards each other, modeled by an equivalence relation. In particular, the lower
and upper approximation of a set are constructed. The former includes the ob-
jects certainly belonging to the set, while the latter excludes the objects certainly
not belonging to the set.

Furthermore, fuzzy set theory (Zadeh [2], 1965) extends classical or crisp sets
in the sense that intermediary membership degrees, mostly between 0 and 1,
can be obtained. This theory is used when dealing with gradual information or
vague concepts.

Hybridization of both theories has its origin in the early 1990s, when Dubois
and Prade [3] presented the first fuzzy rough set model. From then on, research
on fuzzy rough set models grows, mainly due to its proven application in machine
learning and, in particular, in feature selection.

Many fuzzy rough set models are intuitively constructed by substituting the
Boolean implication and conjunction in Pawlak’s model by fuzzy implicators and
conjunctors, as well as the universal and existential quantifier by the infimum
and supremum operator. In addition, approximations by general fuzzy relations
are studied, instead of considering fuzzy equivalence relations. All these studies
can be covered by a general implicator-conjunctor-based fuzzy rough set model
(IC-model), discussed in [4].
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However, the main disadvantage of this model is its use of the infimum and
supremum operator. Both operators are very sensitive to noise in the data and/or
outlying samples. To overcome this problem, authors have studied robust fuzzy
rough set models. We focus on the following two models: the β-precision fuzzy
rough set model introduced by Fernández-Salido and Murakami in 2003 [5,6] and
the ordered weighted average (OWA) based fuzzy rough set model introduced by
Cornelis et al. in 2010 [7]. Both models use aggregation operators instead of the
inf- and sup-operator and preliminary work showed that they have interesting
theoretical and practical assets. Unfortunately, they do not satisfy the inclusion
property, which is required if we want the approximations to be on both sides
of the set to be approximated, and is important for feature selection [8].

In this work, we overcome this drawback by adjusting the two models. Inspi-
ration for this adjustment was given by Inuiguchi [9]. We present the adapted
β-precision and OWA based fuzzy rough set models, shortly called the a-β-
PREC- and a-OWA-model. Moreover, we discuss their properties and analyze
their robustness in comparison with the IC-model and the original robust
models.

The remainder of this paper is as follows: in Section 2, we briefly recall the
IC-model. In Section 3, we recall the β-precision and OWA based fuzzy rough
set models and propose adaptations. Furthermore, we discuss which properties
of the IC-model are maintained by the new models. In Section 4, we compare the
five models with respect to their robustness to noisy data. Finally, we conclude
and state future work in Section 5.

2 The IC-Model

Consider a fuzzy approximation space, i.e., a couple (U,R) consisting of a non-
empty set U and a binary fuzzy relation R in U , and a general format for
approximation operators using implicators1 and conjunctors2:

Definition 1. [4] Let (U,R) be a fuzzy approximation space, A a fuzzy set in
U , I an implicator and C a conjunctor. The (I, C)-fuzzy rough approximation
of A by R is the pair of fuzzy sets (R↓IA,R↑CA) defined by, for x ∈ U ,

(R↓IA)(x) = inf
y∈U

I(R(y, x), A(y)),

(R↑CA)(x) = sup
y∈U

C(R(y, x), A(y)).

A pair (A1, A2) of fuzzy sets in U is called a fuzzy rough set in (U,R) if there
exists a fuzzy set A in U such that A1 = R↓IA and A2 = R↑CA.
1 An implicator I is a mapping I : [0, 1]2 → [0, 1] satisfying I(1, 0) = 0, I(1, 1) =
I(0, 1) = I(0, 0) = 1 which is decreasing in the first and increasing in the second
argument.

2 A conjunctor C is a mapping C : [0, 1]2 → [0, 1] which is increasing in both arguments
and which satisfies C(0, 0) = C(0, 1) = C(1, 0) = 0 and C(1, 1) = 1. It is called a border
conjunctor if it satisfies C(1, x) = x for all x in [0, 1]. A commutative and associative
border conjunctor T is called a t-norm.
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In Table 1, the extensions of the classical rough set properties to a fuzzy
approximation space are shown; (U,R), (U,R1) and (U,R2) are fuzzy approxi-
mation spaces, A, B and α̂3 are fuzzy sets in U , I is an implicator, C a conjunc-
tor, N an involutive negator4 and R′ the inverse relation of R, defined by, for
x, y ∈ U , R′(y, x) = R(x, y).

The following proposition summarizes under which conditions all properties
in Table 1 hold.

Proposition 1. [4] Let C be a left-continuous t-norm T and I its R-implicator,
i.e., for x, y in [0, 1], IT (x, y) = sup{γ ∈ [0, 1] | T (x, γ) ≤ y}. If the fuzzy
relation R is reflexive, i.e., for x in U , R(x, x) = 1, and T -transitive, i.e., for
x, y, z in U , T (R(x, y), R(y, z)) ≤ R(x, z), then all properties in Table 1 hold.

Table 1. Properties in a fuzzy approximation space

(D) Duality R↓IA = (R↑C(AN ))N

(A) Adjointness A ⊆ R↑CB ⇔ R′↓IA ⊆ B

(INC) Inclusion R↓IA ⊆ A ⊆ R↑CA

(SM) Set monotonicity A ⊆ B ⇒
{
R↓IA ⊆ R↓IB
R↑CA ⊆ R↑CB

(RM) Relation monotonicity R1 ⊆ R2 ⇒
{
R2↓IA ⊆ R1↓IA
R1↑CA ⊆ R2↑CA

(IU) Intersection R↓I(A ∩ B) = R↓IA ∩R↓IB
and Union R↑C(A ∪B) = R↑CA ∪ R↑CB

(ID) Idempotence R↓I(R↓IA) = R↓IA
R↑C(R↑CA) = R↑CA

(CS) Constant sets R↓I α̂ = α̂
R↑Cα̂ = α̂

3 Robust Fuzzy Rough Set Models

A disadvantage of the IC-model is that the infimum and supremum operator are
very sensitive to noise in the data: a small error in the data set can change the
outcome of the model drastically. To overcome this problem, robust fuzzy rough
set models are studied.

In literature, many robust fuzzy rough set models are defined. A first group
of robust models is based on frequency: these models only take a subset of U
into account when computing the lower and upper approximation [10,11,12].
Furthermore, there are robust models that use vague quantifiers to compute the

3 ∀α ∈ [0, 1], we denote with α̂ the constant α-set in U , i.e., ∀x ∈ U : α̂(x) = α.
4 A negator N is a decreasing mapping N : [0, 1] → [0, 1] which satisfies N (0) = 1 and
N (1) = 0. It is involutive if for all x ∈ [0, 1], N (N (x)) = x. The standard negator
NS is defined by, for x in [0, 1], NS(x) = 1− x.
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approximation operators [13] or that modify the fuzzy set A which is approxi-
mated [14].

In this work, we focus on robust models that replace the inf- and sup-operator
by aggregation operators. It is known that they are highly robust against noise
and that they satisfy the properties (SM) and (RM), which are important in
feature selection where the goal is to find a minimal subset of features [15]. More
specifically, we concentrate on the β-precision (β-PREC, [5,6]) and OWA based
(OWA, [7]) fuzzy rough set models. We adapt both models in such a way that
the inclusion property is guaranteed, and hence the original idea of Pawlak. In
addition, we compare the original and adapted models to the IC-model from
both theoretical and practical view.

In the remainder of this article, we assume the universe U to be finite. This
is not a limitation for practical purposes, since data sets in real applications are
always finite.

3.1 The Original β-Precision and OWA Based Fuzzy Rough Set
Models

First, we recall the fuzzy rough set model based on β-precision quasi-t-norms
and quasi-t-conorms:

Definition 2. [5,6] Given a t-norm T , a t-conorm5 S, β ∈ [0, 1] and n ∈
N \ {0, 1}, the corresponding β-precision quasi-t-norm Tβ and β-precision quasi-
t-conorm Sβ of order n are [0, 1]n → [0, 1] mappings such that for all x =
(x1, . . . , xn) in [0, 1]n,

Tβ(x) = T (y1, . . . , yn−m),

Sβ(x) = S(z1, . . . , zn−p),

where yi is the ith greatest element of x and zi is the ith smallest element of x,
and

m = max

⎧⎨⎩i ∈ {0, . . . , n} | i ≤ (1− β)
n∑

j=1

xj

⎫⎬⎭ ,
p = max

⎧⎨⎩i ∈ {0, . . . , n} | i ≤ (1− β)

n∑
j=1

(1− xj)

⎫⎬⎭ .
Note that for β = 1 the original t-norm T and t-conorm S are retrieved.

The β-precision fuzzy rough set model (shortly, β-PREC-model) is defined as
follows:

5 A t-conorm S is a mapping S : [0, 1]2 → [0, 1] that is increasing in both arguments,
commutative, associative and satisfies for x in [0, 1], S(x,0) = x.
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Definition 3. [6] Let T be a t-norm, S a t-conorm and β ∈ [0, 1]. Given an
implicator I and a conjunctor C, the β-precision fuzzy rough approximation of
A by R is the pair of fuzzy sets (R↓I,Tβ

A,R↑C,Sβ
A), defined by, for x ∈ U :

(R↓I,Tβ
A)(x) = Tβ

y∈U

〈I(R(y, x), A(y))〉,

(R↑C,Sβ
A)(x) = Sβ

y∈U

〈C(R(y, x), A(y))〉.

For T = min and S = max the following hold: if β = 1, the IC-model is
obtained, and if β < 1, the approximation operators of the β-PREC-model
satisfy R↓IA ⊆ R↓I,Tβ

A and R↑T ,Sβ
A ⊆ R↑T A.

The following properties hold for the β-PREC-model:

Proposition 2. Let T be a t-norm and S its NS-dual t-conorm, i.e., for x, y in
[0, 1], S(x, y) = 1 − T (1 − x, 1 − y). Let β ∈ [0, 1]. If the pair (I, C) consists of
an implicator I and the conjunctor induced by I and NS, i.e., for x, y in [0, 1],
C(x, y) = 1− I(x, 1 − y), then (D) w.r.t. NS holds for the β-PREC-model.

Proposition 3. The β-PREC-model satisfies (SM) and (RM).

Secondly, we recall the fuzzy rough set model based on OWA operators:

Definition 4. [16] Given a sequence D of n scalar values and a weight vector
W = 〈w1, . . . , wn〉 of length n, such that for all i ∈ {1, . . . , n}, wi ∈ [0, 1], and
n∑

i=1

wi = 1 (an OWA weight vector of length n). Let σ be the permutation on

{1, . . . , n} such that dσ(i) is the i
th largest value of D. The OWA operator acting

on D yields the value OWAW (D) =
n∑

i=1

widσ(i).

The OWA operator allows to consider a wide variety of aggregation strategies.
For instance, the maximum and minimum are represented by the weight vectors
Wmax = 〈1, 0, . . . , 0〉 and Wmin = 〈0, . . . , 0, 1〉, respectively. To measure how
similar an OWA operator is to the maximum and minimum, the orness and
andness degree are used. Let W be an OWA weight vector of length n, the
orness and andness degree of W are defined by

orness(W ) =
1

n− 1

n∑
i=1

((n− i) · wi),

andness(W ) = 1− orness(W ).

The OWA based fuzzy rough set model (shortly OWA-model) is defined as
follows:

Definition 5. [7] Given an implicator I, a conjunctor C and OWA weight vec-
tors W1 and W2 of length n, with n = |U |, and such that andness(W1) > 0.5



28 L. D’eer and N. Verbiest

and orness(W2) > 0.5. The (W1,W2)-fuzzy rough approximation of A by R is
the pair of fuzzy sets (R↓I,W1

A,R↑C,W2
A) defined by, for x ∈ U :

(R↓I,W1
A)(x) = OWAW1

y∈U

〈I(R(y, x), A(y))〉,

(R↑C,W2
A)(x) = OWAW2

y∈U

〈C(R(y, x), A(y))〉.

By varying the OWA weight vectors, different fuzzy rough set models can be
obtained. For the weight vectors W1 = Wmin and W2 = Wmax, we obtain the
IC-model. If other OWA weight vectors are used, more weight will be given
to higher, resp. lower values, so it always holds that R↓IA ⊆ R↓I,W1

A and
R↑C,W2

A ⊆ R↑CA.
The following properties hold for the OWA-model:

Proposition 4. Let W1 be a weight vector such that andness(W1) > 0.5 and let
W2 be of the same length n such that (W2)i = (W1)n−i+1 for i ∈ {1, . . . , n}. Let
(I, C) be a pair consisting of an implicator I and the conjunctor induced by I
and NS, then (D) w.r.t. NS holds for the OWA-model.

Proposition 5. The OWA-model satisfies (SM) and (RM).

3.2 The Adapted β-Precision and OWA Based Fuzzy Rough Set
Models

A drawback of both models is that they do not satisfy the inclusion property. It
means that the lower approximation is not necessarily contained in the approx-
imated set. This is something we want to avoid in feature selection, where the
goal is to find a smaller set of features. However, by adjusting the models, we
can force the inclusion property to hold.

We begin with adapting the β-precision fuzzy rough set model:

Definition 6. Let T be a t-norm, S a t-conorm and β ∈ [0, 1]. Given an impli-
cator I and a conjunctor C, the adapted β-precision fuzzy rough approximation
of A by R is the pair of fuzzy sets (R↓aI,Tβ

A,R↑aC,Sβ
A), defined by, for x ∈ U :

(R↓aI,Tβ
A)(x) = min{A(x), Tβ

y∈U

〈I(R(y, x), A(y))〉},

(R↑aC,Sβ
A)(x) = max{A(x), Sβ

y∈U

〈C(R(y, x), A(y))〉}.

We refer to this model as the a-β-PREC-model.
In the a-β-PREC-model, (D), (SM) and (RM) still hold and moreover, the

properties (INC) and (CS) for α = 0 and α = 1 hold.

Proposition 6. Let T be a t-norm and S its NS-dual t-conorm. Let β ∈ [0, 1].
If the pair (I, C) consists of an implicator I and the conjunctor induced by I
and NS, then (D) w.r.t. NS holds for the a-β-PREC-model.



Improving the β-Precision and OWA Based Fuzzy Rough Set Models 29

Proposition 7. The a-β-PREC-model satisfies (INC), (SM), (RM) and (CS)
for α = 0 and α = 1.

The a-β-PREC-model does not satisfy (A), (IU), (ID) and (CS) for α ∈]0, 1[.
In a similar way, we adjust the OWA based model:

Definition 7. Given an implicator I, a conjunctor C and OWA weight vectors
W1 and W2 of length n, with n = |U |, and such that andness(W1) > 0.5 and
orness(W2) > 0.5. The adapted (W1,W2)-fuzzy rough approximation of A by R
is the pair of fuzzy sets (R↓aI,W1

A,R↑aC,W2
A) defined by, for x ∈ U :

(R↓aI,W1
A)(x) = min{A(x),OWAW1

y∈U

〈I(R(y, x), A(y))〉},

(R↑aC,W2
A)(x) = max{A(x),OWAW2

y∈U

〈C(R(y, x), A(y))〉}.

We refer to this model as the a-OWA-model.
The a-OWA-model still satisfies (D), (SM) and (RM) and additionally, it

satisfies (INC) and (CS) for all α in [0, 1].

Proposition 8. Let W1 be a weight vector such that andness(W1) > 0.5 and let
W2 be of the same length n such that (W2)i = (W1)n−i+1 for i ∈ {1, . . . , n}. Let
(I, C) be a pair consisting of an implicator I and the conjunctor induced by I
and NS, then (D) w.r.t. NS holds for the a-OWA-model.

Proposition 9. The a-OWA-model satisfies (INC), (SM), (RM) and (CS) for
α = 0 and α = 1. If the implicator I and the conjunctor C satisfy I(1, x) = x
and C(1, x) = x for all x in [0, 1], then the a-OWA-model satisfies (CS) for all
α in [0, 1].

The a-OWA-model does not satisfy (A), (IU) and (ID).
To end, we compare the two adapted models to the IC-model in Table 2. If a

property holds, we denote this with �; if a property does not hold, we indicate
this by ✗ and if a property holds under certain conditions, we write ✰. Note
that the property (UE) stands for the (CS)-property with α ∈ {0, 1}. In both
cases we see that the adapted models satisfy more properties than the original
ones, but the IC-model remains the best model from theoretical point of view.

4 Analysis of Robustness

Besides a theoretical comparison of the five models, we evaluate their robustness
to noisy data. For this, we use five real-valued data sets from the KEEL data
set repository6: ‘Diabetes’ (|U | = 43, |A| = 2), ‘Ele-1’ (|U | = 495, |A| = 2),
‘AutoMPG6’ (|U | = 392, |A| = 5), ‘MachineCPU’ (|U | = 209, |A| = 6) and
‘Baseball’ (|U | = 337, |A| = 16). Each data set can be considered as a deci-
sion system (U,A ∪ {d}), where U is the finite set of instances, A is the set

6 www.keel.es

www.keel.es
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Table 2. Overview of properties for the different fuzzy rough set models

Property IC β-PREC a-β-PREC OWA a-OWA

(D) ✰ ✰ ✰ ✰ ✰

(A) ✰ ✗ ✗ ✗ ✗

(INC) ✰ ✗ � ✗ �
(SM) � � � � �
(RM) � � � � �
(IU) � ✗ ✗ ✗ ✗

(ID) ✰ ✗ ✗ ✗ ✗

(CS) ✰ ✗ ✗ ✗ ✰

(UE) ✰ ✗ � ✗ �

of features (conditional attributes) and d /∈ A the decision attribute. We only
consider regression problems, so the decision attributes in the five data sets are
continuous.

In many data mining tasks based on fuzzy rough set theory [17,18], the positive
region is used, defined by, for x in U , POS(x) = sup

y∈U
(R↓Rdy)(x). In this paper,

↓ is as in one of the definitions in Section 3, R is the indiscernibilitiy relation
defined by

∀x, y ∈ U : R(x, y) =
1

|A| ·
(∑

a∈A
1− |a(x) − a(y)|

range(a)

)

and Rdy is the indiscernibility class of y by Rd defined by

∀x ∈ U : Rdy(x) = 1− |d(x)− d(y)|
range(d)

.

Here, the range of an attribute a ∈ A ∪ {d} is given by the difference between
the maximum and the minimum value of a.

If the positive region based on a certain fuzzy rough model does not change
drastically when small errors in the data occur, we call the model robust. These
errors can occur both in the features values (attribute noise) and in the decision
attribute values (class noise). To evaluate the robustness of the fuzzy rough set
models discussed in this paper, we compare the values of the fuzzy rough positive
region calculated based on the original dataset and based on the same dataset
with artificial noise added.

Given a decision system (U,A∪{d}) and a certain noise level n, we define the
altered decision system (U,An∪{d}) with artificial attribute noise as the decision
system where each attribute value a(x) has an n% chance of being altered to an
attribute value in the range of a. For instance, if a takes values in the interval
[0, 10] and if the noise level is 10%, for each instance x ∈ U there is a 10 percent
chance that the value of a(x) in the altered decision system is not equal to a(x)
but is a random value in the interval [0, 10]. We add artificial class noise in a
similar manner. The altered decision system (U,A∪{dn}) is the decision system
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where each decision value d(x) has an n% chance of being altered to a random
value in the range of d.

We denote by POSan(x) the fuzzy rough positive region of x ∈ U based on the
decision system (U,An∪{d}), where n percent artificial attribute noise is added.
The value POSdn(x) refers to the fuzzy rough positive region of x ∈ U based on
the decision system (U,A∪{dn}), where n percent artificial class noise is added.

As we are interested in how much the value of the fuzzy rough positive region
based on the altered decision systems with artificial noise deviates from the
original values, we define the following error measures:

erroran =

∑
x∈U

|POS(x)− POSan(x)|

|U | ,

errordn =

∑
x∈U

|POS(x)− POSdn(x)|

|U | .

These measures reflect the average deviation of the fuzzy rough positive region
when the decision system has n% attribute or class noise.

In Algorithm 1 we outline the experiment that we carry out for each dataset,
represented by a decision system, and each fuzzy rough set model. We consider
30 noise levels, and calculate the average errors over 10 runs associated with this
noise level and dataset in lines 3 to 10. Note that the processes in line 6 and
7 are stochastic, and therefore this procedure is repeated 10 times. As a result,
for each dataset and fuzzy rough model, we have 60 error values, namely the
average error related to attribute noise and the average error related to class
noise for each noise level n in 1, . . . , 30.

Algorithm 1. Procedure carried out in our experimental evaluation to assess
the robustness of a given fuzzy rough set model on a dataset

1: Input: Dataset represented by a decision system (U,A ∪ {d}),
fuzzy rough set model

2: for n = 1, . . . , 30 do
3: av-erroran ← 0
4: av-errordn ← 0
5: for i = 1, . . . , 10 do
6: av-erroran ← av-erroran + erroran
7: av-errordn ← av-errordn + errordn
8: end for
9: av-erroran ← av-erroran/10
10: av-errordn ← av-errordn/10
11: Output: av-erroran and av-errordn
12: end for

The parameters used in the different fuzzy rough set models are as follows: in
all the models we use the �Lukasiewicz implicator I(a, b) = min(1, 1− a+ b) for
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a, b ∈ [0, 1]. In the β-PREC- and a-β-PREC-model, T = min and β = 0.96 are
used. In the OWA- and a-OWA-model we use the weight vector W defined by

wi =
1

n∑
i=1

wi

· 1

n− i+ 1
.

The results are shown in Figures 1 and 2. For both attribute and class noise, we
see that the IC-model is the most sensitive model. We observe that the adapted
models are more or less equally robust as their respective original models. The
practical benefits of the β-PREC- and OWA-model are not lost due to the adap-
tations: both the a-β-PREC- and a-OWA-model perform well in the robustness
analysis. However, it is not possible to decide which robust model performs best.
We note that the robustness of the β-PREC- and OWA-models come with an
extra computational cost. Assuming that the values of the similarity relation
are known, the complexity of the IC-model is O(|U |), whereas the complexity of
the β-PREC- and OWA-models is O(|U | log(|U |)) due to the sorting operations
required by these models. The adapted β-PREC- and OWA-models have the
same complexity as their respective original models, which means that the extra
theoretical properties do not come with a higher complexity.
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Fig. 1. Average error over the five data sets for attribute noise
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Fig. 2. Average error over the five data sets for class noise

5 Conclusion and Future Work

In this work, we adapted two state-of-the-art robust fuzzy rough set models
such that the inclusion property is guaranteed, in order to obtain the required
theoretical properties for using the models in feature selection. Furthermore,
we compared the robust models to a general implicator-conjunctor-based fuzzy
rough set model from a practical point of view. The benefits of the original
models are not lost due to the proposed adaptation.

Future work consists of studying a formal framework for data reduction tech-
niques based on fuzzy rough set models, and in particular, for the implicator-
conjunctor-based model and the two adapted robust fuzzy rough set models.
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Abstract. Research in the area of fuzzy-rough set theory and its appli-
cation to various areas of learning have generated great interest in recent
years. In particular, there has been much work in the area of feature or
attribute selection. Indeed, as the number of dimensions increases, the
number of data objects required in order to generate accurate models
increases exponentially. Thus, feature selection (FS) has become an in-
creasingly necessary step in model learning. The use of fuzzy-rough sets
as dataset pre-processors offers much in the way of flexibility, however
the underlying complexity of the subset evaluation metric often presents
a problem and can result in a great deal of potentially unnecessary com-
putational effort. This paper proposes two different novel ways to ad-
dress this problem using a neighbourhood approximation step in order
to alleviate the processing overhead and reduce the complexity of the
evaluation metric. The experimental evaluation demonstrates that much
computational effort can be avoided, and as a result the efficiency of the
FS process can be improved considerably.

Keywords: fuzzy-rough sets, feature selection, nearest neighbours.

1 Introduction

In rough sets, the concepts of the lower and upper approximations are central
to the theory [11] and many of its applications. They are constructed using the
indiscernibility of data objects and determine those objects that certainly and
possibly belong to any given concept. A data object is said to belong to the
lower approximation of a concept if all of the data objects indiscernible from it
also belong to the lower approximation. Furthermore, it also is said to belong to
its upper approximation if at least one data object that is indiscernible from it
belongs to the concept.

Fuzzy-rough set theory extends the rough set approximation operators by
fuzzifying the indiscernibility relation as well as the concept itself. This gener-
alisation provides much greater flexibility, however, the most commonly utilised
definitions of fuzzy-rough approximations ignore some important aspects. In
particular, the process which determines the membership to each of the approx-
imations still depends upon the contribution of a single data object, as governed
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by the sup and inf operators. In traditional fuzzy-rough sets, all data objects in
the dataset must be considered in generating the approximations. This means
that considerable computational effort is expended each time the lower approx-
imation memberships are calculated. For feature selection, this occurs with the
consideration of each candidate subset meaning that a large number of member-
ship calculations are made needlessly. In addition, when considering all objects
in the dataset even small changes in the data distribution can often mean that
the generated approximations can vary greatly. This can also have a negative
impact on the stability of any technique based upon such definitions.

In this paper, an alternative nearest-neighbour fuzzy-rough set approach is
proposed, in which membership degrees to the approximations are computed by
including only those data objects which are k-nearest neighbours and are also not
of the same decision class as the data object under consideration. As such, the
technique offers an important benefit: it reduces computational complexity by
allowing only those close neighbours which affect the outcome of the fuzzy-rough
approximations to be considered. In addition, a further extension to the nearest
neighbours approach which employs fuzzy discernibility matrices allows it to
avoid the situation of existing definitions where only 1-NN is used in determining
lower approximation membership.

The remainder of the paper is structured as follows: the preliminaries for
fuzzy-rough set theory and feature selection are covered in Section 2, while in
Section 3 nearest neighbour-based fuzzy-rough sets are presented and two dif-
ferent approaches to implementing the ideas are introduced. In Section 4, an
experimental evaluation is carried out. Finally, in Section 5, the paper is con-
cluded and topics for future work are discussed.

2 Theoretical Background

In the original work of [11], the lower approximation of a set X using a subset
of the conditional attributes P ⊆ C w.r.t. a crisp equivalence relation is defined
as PX = {x : [x]P ⊆ X}. The positive region can then be constructed, which
contains those data objects in the universe U for which the values of P allow
to predict the decision classes in D unequivocally: POSP (D) =

⋃
X∈U/D PX .

Based on the positive region, the rough set degree of dependency of the decision

attribute(s) D on a set of attributes P can be calculated: γP (D) = |POSP (D)|
|U| .

This measure can then be used to gauge subset quality for rough set-based FS.

Fuzzy-Rough Sets. A fuzzy-rough set [4] is defined by two fuzzy sets, fuzzy
lower and upper approximations, obtained by extending the corresponding crisp
rough set notions. In the crisp case, elements that belong to the lower approxi-
mation (i.e. have a membership of 1.0) are said to belong to the approximated set
with absolute certainty. In the fuzzy-rough case, elements may have a member-
ship in the range [0,1], thus allowing greater flexibility in modelling uncertainty.
Definitions for the fuzzy lower and upper approximations can be found in [13].
Here, only the fuzzy lower approximation is used, where a fuzzy indiscernibility
relation is used to approximate a fuzzy concept X :
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μRPX(x) = inf
y∈U

I(μRP (x, y), μX(y)) (1)

where I is a fuzzy implicator. A fuzzy implicator is any [0, 1]2 → [0, 1] mapping
which satisfies I(0, 0) = 1, I(1, x) = x (for border implicators) for all x in [0, 1].
RP is the fuzzy similarity relation induced by the subset of features P :

μRP (x, y) = Ta∈P {μRa(x, y)} (2)

where μRa(x, y) is the degree to which objects x and y are similar for feature a,
and may be defined in many ways [13], and T is a t-norm, a function T : [0, 1]×
[0, 1] → [0, 1] which satisfies the commutativity, associativity and monotonicity
properties [10]. In a similar way to the original crisp rough set approach, the
fuzzy positive region [8] can be defined as:

μPOSP (D)(x) = sup
X∈U/D

μRPX(x) (3)

An important issue in data analysis is discovering dependencies between fea-
tures. The fuzzy-rough degree of dependency of D on the attribute subset P can
be defined in the following way:

γ′P (D) =

∑
x∈U

μPOSP (D)(x)

|U| (4)

A fuzzy-rough reduct Red is a minimal subset of features (i.e. there is no
redundancy) that preserves the dependency degree of the entire dataset, i.e.
γ′Red(D) = γ′

C
(D). Based on this, a fuzzy-rough greedy hill-climbing algorithm

can be constructed that uses equation (4) to gauge subset quality.

Fuzzy Discernibility. Crisp discernibility matrices, often used in rough set
feature selection, may also be extended to fuzzy-rough feature selection (FRFS)
[8]. Entries in a fuzzy discernibility matrix (FDM) are a fuzzy set, to which every
feature belongs to a certain degree. The extent to which a feature a belongs to
the fuzzy clause Cij is determined by the following:

μCij (a) = N(μRa(i, j)) (5)

where N denotes fuzzy negation and μRa(i, j) is the fuzzy similarity of objects
i and j, and hence μCij (a) is a measure of the fuzzy discernibility. For the crisp
case, if μCij (a) = 1 then the two objects are distinct for this feature; if μCij (a)
= 0, the two objects are identical. For fuzzy cases where μCij (a) ∈ (0, 1), the
objects are partly discernible. Each entry (or clause) in the fuzzy indiscernibility
matrix is a set of attributes and their memberships:

Cij = {ax|a ∈ C, x = N(μRa(i, j))} i, j = 1, ..., |U| (6)

For example, an entry Cij in the fuzzy discernibility matrix may be:
{a0.4, b0.8, c0.2, d0.0}. This denotes that μCij (a) = 0.4, μCij (b) = 0.8, etc. In crisp
discernibility matrices, these values are either 0 or 1 as the underlying relation
is an equivalence relation. The example clause can be viewed as indicating the
significance value of each feature - the extent to which the feature discriminates
between the two instances i and j.
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Fuzzy Discernibility Function. As with the crisp approach, the entries in
the matrix can be used to construct the fuzzy discernibility function:

fD(a∗1, ..., a
∗
m) = ∧{∨ C∗

ij |1 ≤ j < i ≤ |U|} (7)

where C∗
ij = {a∗x|ax ∈ Cij}. The function returns values in [0, 1], which can

be seen to be a measure of the extent to which the function is satisfied for a
given assignment of truth values to variables. To discover reducts from the fuzzy
discernibility function, the task is to find the minimal assignment of the value
true to the variables such that the formula is maximally satisfied. By setting
all variables to true, the maximal value for the function can be obtained as this
provides the greatest discernibility between objects.

Decision-Relative Fuzzy Discernibility Matrix. For a decision system, the
decision feature must be taken into account for achieving reductions; only those
clauses with different decision values are included. For the fuzzy version, this is
encoded as:

fD(a∗1, ..., a
∗
m) = {∧{{∨ C∗

ij} ← qN(μRq (i,j))
}|1 ≤ j < i ≤ |U|} (8)

where C∗
ij = {a∗x|ax ∈ Cij}, for decision feature q, where ← denotes fuzzy impli-

cation. If μCij (q) = 1 then this clause provides maximum discernibility (i.e., the
two objects are maximally different according to the fuzzy similarity measure).
When the decision is crisp and crisp equivalence is used, μCij (q) becomes either
0 or 1. The degree of satisfaction for a clause Cij for a given subset of features
P is defined as:

SATP (Cij) = Sa∈P {μCij (a)} (9)

for a t-conorm S. In traditional (crisp) propositional satisfiability, a clause is
fully satisfied if at least one variable in the clause has been set to true. For
the fuzzy case, clauses may be satisfied to a certain degree depending on which
variables have been assigned the value true. By setting P = C, the maximum
satisfiability degree of a clause can be obtained:

maxSATij = SATC(Cij) = Sa∈C{μCij(a)} (10)

In this setting, a fuzzy-rough reduct corresponds to a (minimal) truth assignment
to variables such that each clause has been satisfied to its maximum extent.

3 Nearest Neighbour-Based Fuzzy-Rough Sets

It was noted in [6] and [12] that the standard approach to fuzzy-rough sets uses
only the nearest data object of a different class when considering the membership
of a data object to the lower approximation. This is due to a natural property
of fuzzy implicators and their use for calculating membership degrees; when the
second component is 1.0 (i.e. true) then the implication result will evaluate to
1.0. The second component here corresponds to the degree to which an object
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belongs to a given decision class; a value of 1.0 indicates that the object is of the
same decision class. Therefore, the only data objects to have an impact on the
result of the implications are those of classes other than that of the object under
consideration. Of these, the nearest object of a different class will produce the
smallest value for the implication operation, and therefore, it is this value only
that is used, due to the fact that eqn. (1) results in the minimum of all implica-
tions. This process (as mentioned previously), is quite time-consuming, as it re-
quires the calculation of the nearest neighbours for each feature subset candidate
that is considered. Hence, there is very little saving in time when employing such
a nearest neighbour approach. The approach presented here, however, seeks to
approximate these calculations by computing the nearest neighbour(s) for each
object beforehand, and only using these in the lower approximation calculations.
Although the final subsets produced may not be true reducts (in the fuzzy-rough
sense), their computation will be much less intensive and thus methods based
on this framework should be applicable to larger data.

3.1 nnFRFS

Using the approach described above, the original FRFS method can be altered
to only consider the nearest neighbours, termed nnFRFS hereafter. The lower
approximation is thus defined, for fuzzy concept X , feature subset P and fuzzy
implicator I:

μRk
PX(x) = inf

y∈NNk
x

I(μRP (x, y), 0) (11)

Each neighbour in NNk
x has been determined beforehand using RC to measure

similarity and only considering those k nearest objects that belong to a different
class than x. Those features present in the subset P are used for determining
the similarity RP . For standard nnFRFS, only the closest neighbour is required,
so |NN1

x | = 1 for all x, reducing the number of calculations drastically. This
framework can be used for other extensions (such as VQRS and OWA-based
fuzzy-rough feature selectors); for these, all neighbours will have some impact
on the final calculation and so parameter k needs to be set appropriately.

In oredr to demonstrate that the parameter k has no impact on nnFRFS:
assume that an object x has k neighbours. The fuzzy lower approximation using
these is inf

y∈NNk
x

I(μRP (x, y), 0), and hence the smallest implication evaluation will

be the resultant membership of x to the lower approximation. This will always
be the result of using the largest value for μRP (x, y) due to the property of
implicators, which is generated by considering the closest neighbour to x. Using
the nearest neighbour-based fuzzy lower approximation, the fuzzy positive region
can be redefined as:

μPOSk
P (D)(x) = sup

X∈U/D

μRk
PX(x) (12)
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The fuzzy-rough degree of dependency of D on the attribute subset P can
then be redefined:

γkP (D) =

∑
x∈U

μPOSk
P (D)(x)

|U| (13)

or, the normalised version (as the data may be inconsistent):

γkP (D) =
1

U

∑
x∈U

μPOSk
P (D)(x)

μPOSk
C
(D)(x)

(14)

This measure of dependency can be used in the same way as the original
definition as a basis for guiding search toward optimal subsets. In this paper, a
greedy hill-climbing search method is used.

nnFRFS(C,D,k).
C, the set of all conditional attributes;
D, the set of decision attributes;
k, the number of nearest neighbours to consider.

(1) R← {}; γkbest = 0;
(2) foreach x ∈ U, calculate NNk

x

(3) do
(4) T ← R
(5) foreach x ∈ (C−R)
(6) if γkR∪{x}(D) > γkT (D)

(7) T ← R ∪ {x}
(8) γkbest = γkT (D)
(9) R← T
(10) until γkbest == γk

C
(D)

(11) return R

Fig. 1. The nnFRFS algorithm

3.2 nnFDM

The fuzzy discernibility matrix-based approach described earlier can also be
altered to form a more computationally-efficient process. Recall that the dis-
cernibility matrix is constructed by the pairwise comparison of all objects in
a dataset, and for the decision-relative discernibility matrix, clauses are only
generated when pairs of objects belong to different decision classes. Conditional
features that differ in value between object pairs are recorded in the clauses; a
subset of features then is required such that all clauses are satisfied, meaning
that all objects can be discerned. For the fuzzy-rough approach, the importance
of features for a pair of objects is determined by the negation of the fuzzy sim-
ilarity. Pairs of objects which are very similar but belong to different decision
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classes are therefore problematic, and the features that differ the most in value
between them are very important.

The most important clauses for an object are those that are generated by the
nearest neighbours of a different class. As more dissimilar objects are considered,
the more features will appear in the clauses (or will belong to a higher degree),
meaning that the clause is more easily satisfiable. Hence, the most useful in-
formation is contained in the nearest few neighbours for each object, as these
are the most difficult to discern. The modified FDM approach presented here
attempts to approximate the full set of clauses by only considering the most im-
portant clauses, generated by nearest neighbours of objects of different classes.
The parameter k determines how many of the nearest objects are used to gen-
erate such clauses. Setting k to |U| − 1 will produce all possible clauses, and the
algorithm will collapse to the original FDM approach.

Each entry in the fuzzy discernibility matrix is generated by comparing pairs
of objects. Here, only the k nearest objects of a different class are considered.
Clauses are generated in the same way as for the fuzzy discernibility matrix
approach described previously. Based on this, the full set of clauses can be gen-
erated as follows:

Clausesk = {Cij | j ∈ NNk
i ∨ i ∈ NNk

j } (15)

where NNk
i is the set of k nearest neighbours for object i, generated in the same

way as for nnFRFS previously. Therefore, a clause is generated from object pair
i, j if at least one of the objects appears in the other’s nearest neighbour list.

The degree of satisfaction of a clause C for a subset of features P is defined
as:

SATP (C) = Sa∈P {μC(a)} (16)

for t-conorm S. By setting P = C, the maximum satisfiability degree of a clause
C can be obtained:

maxSATC = SATC(C) = Sa∈C{μC(a)} (17)

Finally, the following subset evaluation measure can be used to gauge the
worth of a subset of features P :

τk(P ) =
1

|Clausesk|
∑

C∈Clausesk

SATP (C)

maxSATC
(18)

This measure checks the extent to which each clause is satisfied by P compared to
the total satisfiability for all generated clauses. When this reaches 1, all clauses
have been satisfied maximally, and the underlying search can stop; the set of
features in P discern all considered object pairs.

Using this framework, a search amongst feature subsets can be conducted that
aims to maximise the satisfiability of all generated clauses. In this work, a hill-
climbing approach is adopted (see Figure 2). Initially, the k nearest neighbours
are computed for each object x and stored in the list NNk

x . The clauses are
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generated from these lists via generateClauses(NNk
x ,k). The process then follows

the typical hill-climbing algorithm, where the addition of individual features to
the current subset candidate is evaluated using the measure τk.

nnFDM (C,D,k).
C, the set of all conditional attributes;
D, the set of decision attributes;
k, the number of nearest neighbours to consider.

(1) R← {}; τkbest = 0;
(2) foreach x ∈ U, calculate NNk

x

(3) generateClauses(NNk
x ,k);

(4) do
(5) T ← R
(6) foreach x ∈ (C−R)
(7) if τk(R ∪ {x}) > τk(T )
(8) T ← R ∪ {x}
(9) τkbest = τk(T )
(10) R← T
(11) until τkbest == 1
(12) return R

Fig. 2. The nnFDM algorithm

The nnFRFS and nnFDM algorithms are just two of the possible ways in
which nearest neighbour approaches to fuzzy-rough set feature selection can
be implemented, employing the two main concepts of dependency degree and
the discernibility matrices of rough set theory. However, there are many other
potential extensions and applications for the proposed work and these are briefly
outlined in the conclusion.

4 Experimental Evaluation

The experiments detailed here employed a total of 10 different datasets, described
in Table 1. Eight of these datasets are drawn from [5], whilst the remaining two
are real-world mammographic risk-assessment tasks which are related to data
derived from [7].

For comparison, three other fuzzy-rough approaches for feature selection [8]
are included along with three different reduct search methods: greedy hill-
climbing (GHC), genetic algorithm-based search (GA), and particle swarm
optimisation-based search (PSO). For the fuzzy-rough subset evaluation metric,
the �Lukasiewicz t-norm (max(x + y − 1, 0)) and the �Lukasiewicz fuzzy impli-
cator (min(1 − x + y, 1)) are adopted to implement the fuzzy connectives and
the similarity relation. The similarity measure of eqn. (26) in [8] is also used
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Table 1. Benchmark data

Dataset Features Objects

MIAS 281 322
DDSM 281 832

web 2557 149
cleveland 13 297

glass 9 214
heart 13 270
olitos 25 120

water2 39 390
water3 39 390
wine 13 178

Table 2. Classification results (%) using the JRip classifier learner

Dataset Unred. GHC nnFRFS nnFDM (k =) GA PSO
1 3 5

MIAS 63.74 60.94 58.02 58.02 61.96 60.66 64.41 53.34
DDSM 52.78 49.22 50.71 50.71 52.30 52.40 51.79 50.69

web 54.74 49.68 46.71 46.71 45.35 46.46 61.45 50.70
cleveland 54.23 54.48 54.55 54.55 54.28 54.34 54.02 54.09

glass 67.17 67.17 66.06 66.06 67.17 67.17 65.25 65.25
heart 72.96 74.15 74.22 74.44 74.67 75.41 72.30 73.85
olitos 68.50 62.83 63.33 64.00 65.67 66.83 59.33 61.17

water2 82.15 83.28 82.87 82.87 82.97 82.36 82.00 81.90
water3 82.72 81.23 81.23 81.23 81.28 82.15 78.82 78.00
wine 93.54 91.46 89.56 89.69 91.35 91.69 86.60 90.41

here. Also, for the novel nnFDM approaches, values of 1, 3, and 5 are used for
k respectively. Note that nnFRFS is not affected by the choice of value for k, as
it always relies upon the closest neighbour. For the generation of classification
results, two different classifier learners have been employed: JRip, a rule-based
classifier [2]; and IBk [1], a nearest-neighbour classifier (with k = 3). Five strat-
ified randomisations of 10-fold cross-validation were employed in generating the
classification results. It is important to note that feature selection is performed
as part of the cross-validation and each fold results in a new selection of features.

The GA search has an initial population size of 200, a maximum number of
generations/iterations of 40, crossover probability: 0.6 and mutation probabil-
ity: 0.033. The number of generations/iterations for PSO search was set to 40,
whilst the number of particles was set to 200, with acceleration constants c1 = 1
and c2 = 2. These parameters may not be ideal for all of the datasets employed
here and an optimisation phase may well result in an improvement in perfor-
mance. However, such an optimisation step would need to be performed on a
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Table 3. Classification results (%) using the IBk (kNN) classifier learner (k=3)

Dataset Unred. GHC nnFRFS nnFDM (k =) GA PSO
1 3 5

MIAS 69.57 63.29 64.10 64.10 62.54 63.83 65.40 53.48
DDSM 51.55 45.85 51.07 51.07 51.56 50.69 52.13 46.71

web 37.98 44.11 42.66 42.66 37.10 36.98 46.72 36.65
cleveland 56.98 52.96 68.77 68.77 55.97 56.10 53.89 53.83

glass 69.24 69.24 68.77 68.77 69.24 69.24 68.51 68.51
heart 80.96 78.15 80.89 80.96 80.96 80.96 78.15 76.96
olitos 81.00 65.67 71.00 70.67 72.17 71.83 66.50 72.33

water2 85.33 84.56 83.28 83.28 82.26 82.26 78.26 80.10
water3 82.97 81.23 82.00 82.00 81.08 82.05 77.44 77.23
wine 95.97 96.42 95.92 95.97 95.61 95.41 91.82 94.71

Table 4. Average subset sizes

Dataset GHC nnFRFS nnFDM (k =) GA PSO
1 3 5

MIAS 6.08 13.70 13.70 17.18 19.86 9.0 7.70
DDSM 7.12 33.48 33.48 41.40 44.60 10.96 9.56

web 19.02 4.08 4.08 8.22 10.52 186.00 141.20
cleveland 7.64 11.08 11.10 11.80 11.82 9.0 7.70

glass 9.00 9.00 8.78 8.78 9.00 8.36 8.36
heart 7.06 10.44 10.48 10.32 10.60 7.00 7.38
olitos 5.00 7.52 7.64 8.78 9.34 5.24 5.00

water2 6.00 12.82 12.82 15.04 16.54 6.96 6.44
water3 6.08 11.42 11.42 13.40 14.70 7.00 6.50
wine 5.00 7.26 7.26 8.40 9.40 4.70 4.92

dataset-by-dataset basis which would involve a significant investment of effort
and time and would form part of a more comprehensive future investigation.

Tables 2 and 3 detail the classification results for the JRip and IBk classifier
learners respectively. Examining the classification results, it is clear that nnFRFS
and nnFDM return very similar results to GHC. Indeed, when a paired t-test is
employed to examine the statistical significance of the results generated for the
proposed approaches, even though the absolute figures are slightly lower in some
cases, statistically there are no inferior results. It is worth noting from Table
4, however, that the average subset sizes for nnFRFS and nnFDM are greater
than GHC and the GA and PSO methods. One notable exception to this are the
results for the web dataset, where the novel methods all return average subset
sizes which are much smaller than those of all of the standard approaches.

It is in terms of execution times that both nnFRFS and nnFDM have the
most to offer in terms of improvement in performance. The speed-up in perfor-
mance is considerable and demonstrates that the NN methods show potential
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Table 5. Average execution times per fold (sec.)

Dataset GHC nnFRFS nnFDM (k =) GA PSO
1 3 5

MIAS 12.04 1.05 1.07 1.67 2.99 3.11 22.60
DDSM 110.44 7.12 6.97 15.58 26.13 23.94 173.93

web 98.42 1.635 2.33 3.70 5.72 3.51 24.07
cleveland 0.39 0.037 0.048 0.059 0.070 16.20 3.83

glass 0.14 0.0202 0.030 0.038 0.045 1.55 1.08
heart 0.30 0.0257 0.0359 0.046 0.0552 14.48 3.46
olitos 0.11 0.018 0.030 0.037 0.049 2.36 1.26

water2 2.16 0.125 0.134 0.195 0.269 20.14 19.71
water3 2.17 0.141 0.153 0.206 0.276 19.57 17.25
wine 0.11 0.017 0.0325 0.043 0.055 7.55 1.29

for application to very large data. Again, the web dataset seems to be the ex-
ception for nnFDM at least for k=3 and k=5. (It should be noted however that
the corresponding subsets discovered by GA and PSO are at least 14 times the
size of those discovered by nnFDM.) This behaviour may arise as a result of
the characteristics of the data itself, however, which has a large number of fea-
tures and a very small number of data objects. Such datasets always present a
challenge to learning algorithms regardless of the approach applied.

One of the primary motivations behind the development of the nearest neigh-
bour fuzzy-rough approaches detailed here was that of a reduction in compu-
tational overhead. Many of the fuzzy-rough metrics suffer in this regard when
applied to larger datasets. It is clear from Table 5, that the proposed methods
offer much potential in addressing this problem.

5 Conclusion

Two new approaches for reducing computational effort for feature selection based
on nearest neighbour fuzzy-rough sets have been presented. These approaches
are based upon the idea of calculating the nearest neighbours prior to the search
and then only using these neighbours for the calculations. The time complexity
therefore is essentially an order of magnitude smaller for the number of data
objects. The results detailed in the previous section show that whilst the subset
sizes are larger than those of existing approaches, the speed-up in terms of perfor-
mance offers much potential for further development. Indeed there are a number
of possible avenues of exploration which may be able to offer improvements in
the performance in terms of subset size, whilst retaining the saving in computa-
tional effort that is clear from the results shown previously. For example, using
SAT techniques to find the smallest reducts in the clauses generated from the
nnFDM approach, applying the approaches to unsupervised FS, and improving
the efficiency of recent fuzzy-rough object/instance selection methods, etc. In
addition, an approach which considers not only the nearest neighbours but the
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neighbourhood structure/distribution of the objects which form the fuzzy-rough
lower and upper approximation membership values offer much potential for a
series of topics for future work. Although the experimental evaluation in this
paper features at least three large datasets, it would be interesting to apply nn-
FRFS/nnFDM to larger data, in the order of thousands of features and objects.
This would also form the basis for a more comprehensive investigation.

References

1. Aha, D., Kibler, D.: Instance-based learning algorithms. Machine Learning 6, 37–66
(1991)

2. Cohen, W.W.: Fast effective rule induction. In: Proceedings of the 12th Interna-
tional Conference on Machine Learning, pp. 115–123 (1995)

3. Cornelis, C., Jensen, R., Hurtado Mart́ın, G., Ślȩzak, D.: Attribute Selection with
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Abstract. The authors show that a very general framework of set ap-
proximation can be the set-theoretical base of semantics of a partial
first-order logic. The most general problem is what happens if in the
semantics of first-order logic one uses the approximations of sets as se-
mantic values of predicate parameters instead of sets given by their total
interpretation in order to determine the truth values of formulas? The au-
thors show some unexpected properties connected with logical constants
directly. The goal of the investigation is to show the possible connections
between the result of different approximative and exact evaluation of for-
mulas – or the lack of them. At the end, the authors present the practical
example, in which we can see the discussed behavior of approximation.

Keywords: Approximation of sets, rough set, partial logic, partial
semantics.

1 Introduction

Rough set theory (proposed by Pawlak (see in [1], [2]))and its different gener-
alizations (see, e.g. in [3]) provide a powerful foundation to reveal and discover
important structures and patterns in data, and to classify complex objects.1

In most cases, we have a family of base sets — as subsets of a universe of
discourse. In philosophy these sets represent our available knowledge, we consider
them as the extensions of our available concepts/properties.

Rough set theory can be considered as the foundation of various kinds of de-
ductive reasoning (see in [5], [6]). In this paper the authors go on their logical
investigations about the possibility of using different systems of set approxima-
tion in first-order logical semantics (see for example in [8]).

The main question of the present paper is the following: What can be said
about the consequence relations connected with logical functors directly in a
partial first-order logic relying on approximations of sets.

Initially, the authors introduce a syntax of a partial first-order logic, includ-
ing approximative sentence functors, which give us a possibility to declare the

1 An overview of some research trends on rough set foundations and rough set–based
methods can be found in [5].
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need of approximative evaluation. Based on the extended first-order language,
the semantical definitions show a way how rough sets can be used for first-order
formula evaluation. After presenting the semantics, including the consequence
relations, the goal of the investigation is to show the possible connections be-
tween the evaluation results of formulas including different sentence functors, or
in other words, the relation between the lower and upper approximation and the
traditional evaluation. The theorems discussed later focus mostly on the weak-
nesses of the approximation, and the proofs try to discover the causes. Finally,
the authors describe a practical example of how we can implement the seman-
tics and use the approximative evaluation on an existing database. The working
sample is made to show the possible benefits (like faster evaluation based on the
approximation) and the lack of connections between the real and approximative
evaluation.

2 General Systems of Tool-Based Partial Approximation
of Sets

In the following definition a most fundamental (and very general) notion of
an approximation space is given. This core notion serves as the set-theoretical
background of semantics of partial first-order logic with approximative operators.

Definition 1. The ordered 5–tuple 〈U,B,DB, l, u〉 is a general partial approxi-
mation space if

1. U is a nonempty set;
2. B ⊆ 2U \ ∅, B �= ∅;
3. DB is an extension of B, i.e. B ⊆ DB, such that ∅ ∈ DB;
4. the functions l, u forms an approximation pair 〈l, u〉, i.e.

(a) l, u : 2U → 2U ;
(b) l(2U ), u(2U ) ⊆ DB (definability of l, u);
(c) the functions l and u are monotone, i.e. for all S1, S2 ∈ 2U if S1 ⊆ S2

then l(S1) ⊆ l(S2) and u(S1) ⊆ u(S2);
(d) u(∅) = ∅ (normality of u)
(e) if S ∈ DB, then l(S) = S (granularity of DB, i.e. l is standard);
(f) if S ∈ 2U , then l(S) ⊆ u(S) (weak approximation property).

Informally, the set U is the universe of approximation; B is a nonempty set of
base sets, it represents our knowledge used in the whole approximation process;
DB (i.e. the set of definable sets) contains not only the base sets, but those which
we want to use to approximate any subset of U ; the functions l, u determine the
lower and upper approximation of any set with the help of representations of
our primitive or available concepts/properties. The nature of an approximation
pair2 depends on how to relate the lower and upper approximations of a set to

2 One of the most general notion of weak and strong approximation pairs can be found
in Düntsch and Gediga [4].
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the set itself. The condition 4. (e) in the definition is not typical: if we look at
the sets belonging to DB as our tools to approximate any set, then it can be a
requirement that a tool should be approximated by itself from the lower side. If
we give it up, we decrease the roles of our tools/base sets (members of DB).

3 Tool-Based Partial First-Order Logic (TbPFoL) with
Approximative Functors

3.1 Language of TbPFoL with Approximative Functors

At first we need a given language of first-order logic, and a finite nonempty set
T of predicate parameters. Its members are called tools.

Definition 2. L = 〈LC, V ar, Con,T, P red, Form〉 is a language of TbPFoL
with approximative functors, if it is an extension of standard first-order language:

1. LC = {¬,⊃,+, ∀, ∃, ↓, ↑, (, )}, LC is the set of logical constants.
2. Con (for simplicity) the set of 1–argument predicate parameters.
3. T ⊆ Con, T �= ∅ and the set T (the set of tools) is finite.
4. Pred is the set of predicates, and it is given by the following inductive defi-

nition: Con ⊆ Pred, and if P ∈ Pred, then P ↓, P ↑,∈ Pred.
5. The set Form (the set of formulae) is given by usual inductive definition.

Definition 3. Approximative sentence functors ↓, ↑ can be introduced in the
following inductive contextual way:

1. It P ∈ Pred, and x ∈ V ar, then ↓ P (x) =def P
↓(x), ↑ P (x) =def P

↑(x).
2. If A ∈ Form, then

(a) ↑ ¬A =def ¬ ↑ A, and ↓ ¬A =def ¬ ↓ A
(b) ↑ +A =def + ↑ A, and ↓ +A =def + ↓ A.

3. If A,B ∈ Form, then ↑ (A ⊃ B) =def (↑ A ⊃↑ B) and
↓ (A ⊃ B) =def (↓ A ⊃↓ B).

4. If A ∈ Form and x ∈ V ar then ↑ ∀xA =def ∀x ↑ A and ↑ ∃xA =def ∃x ↑ A.

3.2 Interpretations of TbPFol with Approximative Functors

Definition 4. Let L = 〈LC, V ar, Con,T, P red, Form〉 be a language of TbP-
FoL with approximative functors. The ordered pair 〈U, �〉 is an interpretation of
L, if U is a nonempty set, � is a function such that � : Con→ {0, 1}U .

In order to give semantic rules we only need the notions of assignment and
modified assignment:

Definition 5. Function v is an assignment relying on the interpretation 〈U, �〉
if v : V ar→ U .

Definition 6. Let v be an assignment relying on the interpretation 〈U, �〉, x ∈
V ar and u ∈ U . v[x : u] is a modified assignment of v, if
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v[x : u](y) =

{
u if x = y
v(y) otherwise

Tools (the members of set T ) determine a logically relevant general partial
approximation space with respect to a given interpretation:

Definition 7. Let Ip = 〈U, �〉 be an interpretation of L such that if T ∈ T ,
then �(T ) �= ∅. The 5–tuple PAS(T ) = 〈U,B,DB, l, u〉 is a logically relevant
general partial approximation space generated by set T of tools with respect to
the interpretation 〈U, �〉 if B = {�(P ) : P ∈ T }, DB ⊆ 2U and if S ⊆ U , then
l(S), u(S) ∈ DB.

3.3 Semantic Rules of TbPFoL with Approximative Functors

In the semantics of TbPFol the semantic value of an expression depends on
a given interpretation Ip = 〈U, �〉, a given logically relevant general partial
approximation space PAS(T) = 〈U,B,DB, l, u〉 generated by set T of tools with
respect to the interpretation 〈U, �〉 and a given assignment v. Relying on these
tree components one can give the following partial semantic rules. For the sake
of simplicity we use a null entity to represent partiality of semantic rules. We
use number 0 for falsity, number 1 for truth and number 2 for null entity. The
semantic value of an expression A with respect to Ip = 〈U, �〉, PAS(T) and

the assignment v is denoted by [[A]] Ip,PAS(T)
v . For the sake of simplicity the

superscripts are omitted.

Definition 8. The semantic rules of TbPFoL with approximative functors are
the following:

1. If x ∈ V ar, then [[x]] v = v(x).
2. If T ∈ T is a predicate parameter, then [[T ]] v = s, where

s : U → {0, 1, 2} is a function such that

s(u) =

⎧⎪⎨⎪⎩
1 if u ∈ �(T )
0 if u ∈ l(U \ �(T ))
2 otherwise

3. If P ∈ Con \ T , then [[P ]] v = �(P ).
4. If P ∈ Pred, then [[P ↓]] v = s, where s : U → {0, 1, 2} is a function such

that

s(u) =

⎧⎪⎨⎪⎩
1 if u ∈ l( [[P ]] v)

0 if u ∈ l(U \ u( [[P ]] v))
2 otherwise

5. If P ∈ Pred, then [[P ↑]] v = s, where s : U → {0, 1, 2} is a function such
that

s(u) =

⎧⎪⎨⎪⎩
1 if u ∈ u( [[P ]] v)

0 if u ∈ l(U \ u( [[P ]] v))
2 otherwise

6. If P ∈ Con, x ∈ V ar, then [[P (x)]] v = [[P ]] v ( [[x]] v)
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7. If A ∈ Form, then [[+A]] v =

{
1 if [[A]] v = 1

0 otherwise

8. If A ∈ Form, then [[¬A]] v =

{
2 if [[A]] v = 2

1− [[A]] v otherwise

9. If A,B ∈ Form, then

[[(A ⊃ B)]] v =

⎧⎪⎨⎪⎩
0 if [[A]] v = 1, and [[B]] v = 0

2 if [[A]] v = 2, or [[B]] v = 2

1 otherwise
10. If A ∈ Form, x ∈ V ar, then

[[∀xA]] v =

⎧⎪⎨⎪⎩
0 if there is an u ∈ U : [[A]] v[x:u] = 0

2 if for all u ∈ U : [[A]] v[x:u] = 2

1 otherwise

[[∃xA]] v =

⎧⎪⎨⎪⎩
1 if there is an u ∈ U : [[A]] v[x:u] = 1

2 if for all u ∈ U : [[A]] v[x:u] = 2

0 otherwise

The semantic rules of classical logical constants as negation and implication
are the conservative extensions of classical two-value ones. Conjunction and
disjunction can be introduced by contextual definition: If A,B ∈ Form, then
(A ∧B) =def ¬(A ⊃ ¬B), (A ∨B) =def (¬A ⊃ B).

For example if P is a one-argument predicate parameter which is not a tool
and u ∈ U , then

– the functor ↓ gives the following results:
1. P ↓ is true at u if u belongs to the lower approximation of semantic value

of P (i.e. our tools evaluate P as certainly true at u);
2. P ↓ is false at u if u belongs to the lower approximation of the complement

of upper approximation of semantic value of P (i.e. our tools evaluate P
as certainly false at u);

3. otherwise P ↓ is undefined u (i.e. our tools are not enough to decide
whether P is certainly true or certainly false at u);

– the functors ↑ gives the following results:
1. P ↑ is true at u if u belongs to the upper approximation of semantic value

of P (i.e. our tools evaluate P as maybe true at u);
2. P ↑ is false at u if u belongs to the lower approximation of the complement

of upper approximation of semantic value of P (i.e. our tools evaluate P
as certainly false at u);

3. otherwise P ↑ is undefined at u (i.e. our tools are not enough to decide
whether P is maybe true or certainly false at u).

3.4 Central Semantic Notions

The notion of models plays a fundamental role in the semantic definition of
consequence relation. 〈U, �,PAS(T), v〉 is a possible representation of a set Γ (⊆
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Form) if 〈U, �〉 is an interpretation, PAS(T) is a logically relevant general par-
tial approximation space generated by the set of tools T with respect to the
interpretation 〈U, �〉 and v is an assignment. 〈U, �,PAS(T), v〉 is a representa-
tion of Γ if it is a possible representation such that for all A ∈ Γ , [[A]] v �= 2.
〈U, �,PAS(T), v〉 is a model of Γ if it is a representation of Γ such that for all
A ∈ Γ , [[A]] v = 1.

Definition 9
Let PR be a set of possible representations of language L.

1. Γ is satisfiable with respect to the set PR if it has a model in PR.
2. A is a strong semantic consequence of Γ with respect to the set PR (in

notation Γ �PR
s A) if

(a) Γ has a representation in PR;
(b) every PR–representation of Γ is a representation of {A};
(c) every PR–model of Γ is a model of {A}.

3. A is valid with respect to the set PR (in notation �PR
s A) if ∅ �PR

s A.
4. A is a weak semantic consequence of Γ with respect to the set PR (in no-

tation Γ �PR
w A) if 〈U, �,PAS(T), v〉 is a PR–modell of Γ , then [[A]] v �= 0

(i.e. A is not false in any PR–model of Γ ).
5. A is irrefutable with respect to the set PR (in notation �PR

w A) if ∅ �PR
w A

(i.e. A is never false in PR).

More details and further definitions about central semantic notions can be
found in [8].

4 Logical Properties Connected Logical Constants
Directly

Suppose, that we have a P ∈ Con one-argument predicate parameter. We are
able to construct an interpretation 〈U, �〉 and an assignment v where we suppose,
there exists an u ∈ U such that u /∈ l([[P ]]), u ∈ u([[P ]]). The evaluation results
of the formulas ↑ P (x) and ↓ P (x) (with respect to 〈U, �〉 and v) are different:

[[↑ P (x)]]v[x:u] = [[P ↑(x)]]v[x:u] = 1, [[↓ P (x)]]v[x:u] = [[P ↓(x)]]v[x:u] = 2.

This could change the usual behavior of logical constants. For example, the
well known low of modus-ponens still exists,

If we establish that A and A ⊃ B hold, then B holds.

but, when different sentence functors apperas, the above sentence may sound
like

If we establish that the lower approximation of A and A ⊃ B hold,
is it true, that the upper approximation B holds?

The theorems below show some unexpected behavior in the case when we use
different sentence functors.
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Theorem 1. The set {↓ (A ⊃ B), ↓ A, ↑ ¬B} is satisfiable and so

{↓ (A ⊃ B), ↓ A} �w↑ B

It means that in the general case, the use of the lower approximation has no
consequence on the result of upper approximation. Even if the lower approxima-
tion of B is a logical consequence of the set {↓ (A ⊃ B), ↓ A}, we can’t say the
same about the upper approximation of B.

Proof. By the definition of approximative sentence functors, [[↓ (A ⊃ B)]] =
1 ⇒ [[(↓ A ⊃↓ B)]] = 1. Because [[(↓ A ⊃↓ B)]] = 1 and [[↓ A]] = 1 following the
semantic rules [[↓ B]] = 1 and because of [[↑ ¬B]] = 1 then [[↑ B]] = 0. To fulfill
the requirements above, now we construct an A and a B formula, based on the
previously introduced P (x):

A =def +P (x) ⊃ +P (x) B =def ¬+P (x)

Therefore (with respect to the interpretation 〈U, �〉 and assignment v):

[[↓ A]]v[x:u] = [[↓ (+P (x) ⊃ +P (x))]]v[x:u] = [[+ ↓ P (x) ⊃ + ↓ P (x)]]v[x:u] = 1.

For simplicity we can say, the formula A is defined to be valid in any case.

[[↓ B]]v[x:u] = [[↓ ¬+P (x)]]v[x:u] = [[¬+ ↓ P (x)]]v[x:u] = 1,
[[↓ (A ⊃ B)]]v[x:u] = [[(↓ A ⊃↓ B)]]v = 1,
[[↑ ¬B]]v[x:u] = [[↑ ¬¬+P (x)]]v[x:u] = [[¬¬+ ↑ P (x)]]v[x:u] = 1.

Remark 1. Note, that the law of non-contradiction is still valid, therefore the
same formula B cannot be both true and not true at the same time, and so
{B,¬B} is unsatisfiable. Even so, the set

{↓ B, ↑ ¬B}

is satisfiable. It is caused by the approximative sentence functors.

Using the same idea as above, in the next two theorem, we want to prove the
lack of connection between the lower and upper approximation.

Theorem 2. The set {↓ (A ⊃ C), ↓ ¬C, ↑ A} is satisfiable and so

{↓ (A ⊃ C), ↓ ¬C} �w↑ ¬A

Proof. As a consequence of the above fact, that the set {↓ B, ↑ ¬B} is satisfiable,
we are able to define A =def ¬B such that {↓ ¬A, ↑ A} satisfiable. Using the
C =def ¬(+P (x) ⊃ +P (x)) formula, and the interpretation which satisfies
{↓ ¬A, ↑ A}: [[↓ (A ⊃ C)]]v[x:u] = 1, [[↓ ¬C]]v[x:u] = 1, [[↑ A]]v[x:u] = 1.

Theorem 3. The set {↑ (A ⊃ B), ↑ A, ↓ ¬B} is satisfiable and so

{↑ (A ⊃ B), ↑ A} �w↓ B
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Proof. Now we also construct an A and a B formula, based on the previously
introduced P (x):

A =def +P (x) ⊃ +P (x) B =def +P (x)

Therefore (with respect to the interpretation 〈U, �〉 and assignment v):

[[↑ A]]v[x:u] = [[↑ (+P (x) ⊃ +P (x))]]v[x:u] = [[+ ↑ P (x) ⊃ + ↑ P (x)]]v[x:u] = 1,
[[↑ B]]v[x:u] = [[↑ +P (x)]]v[x:u] = [[+ ↑ P (x)]]v[x:u] = 1,
[[↑ (A ⊃ B)]]v[x:u] = [[↑ A ⊃↑ B)]]v = 1,
[[↓ ¬B]]v[x:u] = [[↓ ¬+P (x)]]v[x:u] = [[¬ + ↓ P (x)]]v[x:u] = 1.

Theorem 4. The set {↑ (A ⊃ C), ↑ ¬C, ↓ A} is satisfiable and so

{↑ (A ⊃ C), ↑ ¬C} �w↓ ¬A

Proof. As a consequence of the {↓ B, ↑ ¬B} satisfiability, we are able to define
A =def B such that {↓ A, ↑ ¬A} satisfiable. Using the C =def ¬(+P (x) ⊃
+P (x)) formula, and the interpretation which satifies {↓ A, ↑ ¬A}:
[[↑ (A ⊃ C)]]v[x:u] = 1, [[↑ ¬C]]v[x:u] = 1, [[↓ A]]v[x:u] = 1.

Remark 2. Note, the set {↑ B, ↓ ¬B} is also satisfiable, even if the language
does not contain the + logical constant. The background of the proofs before
was the fact, that the + logical connective doesn’t keep the truth value gap. It is
also true for the quantifiers. As a result, the same behavior appers in first-order,
even if the language doesn’t contain the + logical connective.

Proof. Let us suppose, that we have a Q ∈ P(1) one-argument predicate param-
eter and u1 ∈ U and u2 ∈ U objects, such that

[[Q↑(x)]]v[x:u] = 1 and [[Q↓(x)]]v[x:u] = 2 if v(x) = u1,

[[Q↑(x)]]v[x:u] = 0 and [[Q↓(x)]]v[x:u] = 0 if v(x) = u2 and

in any other cases [[Q↑(x)]]v[x:u] = 2 and [[Q↓(x)]]v[x:u] = 2.

Therefore:

[[↑ ∃xQ(x)]]v[x:u] = [[∃x ↑ Q(x)]]v[x:u] = [[∃xQ↑(x)]]v[x:u] = 1,

[[↓ ¬∃xQ(x)]]v[x:u] = [[¬∃x ↓ Q(x)]]v[x:u] = [[¬∃xQ↓(x)]]v[x:u] = 1.

So, if we choose B =def ∃xQ(x) then {↑ B, ↓ ¬B} satisfiable.

Theorem 5. {↑ ∀x(A(x) ⊃ B(x)), ↑ A(y), ↓ ¬B(y)} satisfiable and so

{↑ ∀x(A(x) ⊃ B(x)), ↑ A(y)} �w↓ B(y)

Proof. Now we construct again an A and a B formula, based on the previously
introduced P (x), supposing, that U has only just one member. In that case,
[[x]]v[x:u] = [[x]]v = [[y]]v.

A =def +P (x) ⊃ +P (x) B =def +P (x)

Therefore:
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[[↑ B(x)]]v = 1 and [[↓ B(x)]]v = 0,
[[↑ (A(x) ⊃ B(x))]]v = 1, so [[↑ ∀x(A(x) ⊃ B(x))]]v = 1,
[[↓ B(y)]]v = [[↓ +P (y)]]v = [[↓ +P (x)]]v = 0, so [[↓ ¬B(y)]]v = 1.

Theorem 6. The set {↓ ∀x(A(x) ⊃ B(x)), ↓ A(y), ↑ ¬B(y)} is satisfiable and
so

{↓ ∀x(A(x) ⊃ B(x)), ↓ A(y)} �w↑ B(y)

Proof. It is enough to change the definition of B during the previous proof:

B(x) =def ¬+P (x)

In this case:

[[↑ B(x)]]v = 0 and [[↓ B(x)]]v = 1,
[[↓ (A(x) ⊃ B(x))]]v = 1, so [[↓ ∀x(A(x) ⊃ B(x))]]v = 1,
[[↑ B(y)]]v = [[↑ ¬+P (y)]]v = [[↑ ¬+P (x)]]v = 0, so [[↓ ¬B(y)]]v = 1.

Theorem 7
�s +¬A ⊃ ¬+A but �w ¬+A ⊃ +¬A.

Proof. First note that [[+¬A ⊃ ¬+A]]v[x:u] ∈ {0, 1}.
Indirectly, we assume that [[+¬A ⊃ ¬+A]]v[x:u] = 0, therefore

[[+¬A]]v[x:u] = 1 ⇒ [[¬A]]v[x:u] = 1 ⇒ [[A]]v[x:u] = 0, and
[[¬+A]]v[x:u] = 0 ⇒ [[+A]]v[x:u] = 1 ⇒ [[A]]v[x:u] = 1.

This contradiction yields that our assumption was wrong, hence the first half of
the theorem is proved. To prove the second half of statement, we suppose, that
[[A]]v[x:u] = 2, therefore:

[[A]]v[x:u] = 2 ⇒ [[+A]]v[x:u] = 0 ⇒ [[¬+A]]v[x:u] = 1, and
[[A]]v[x:u] = 2 ⇒ [[¬A]]v[x:u] = 2 ⇒ [[+¬A]]v[x:u] = 0.

Finally, [[¬+A ⊃ +¬A]]v[x:u] = 0.

Theorem 8. The set {∀x(P (x) ⊃ Q(x)), ∃xP (x),¬∃xQ(x)} is satisfiable and
so

∀x(P (x) ⊃ Q(x)), ∃xP (x) �w ∃xQ(x).

Proof. Let us use an interpretation where U = {u1, u2}, and which is defined so
that

[[P (x)]]v[x:u1 ] = 1 and [[Q(x)]]v[x:u1] = 2, and
[[P (x)]]v[x:u2 ] = 0 and [[Q(x)]]v[x:u2] = 0.

By this, [[∀x(P (x) ⊃ Q(x))]]v = 1, [[∃xP (x)]]v = 1 furthermore [[∃xQ(x)]]v = 0.

Theorem 9
∀x(P (x) ⊃ Q(x)), ∀xP (x) �w ∃xQ(x).
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Proof. Indirectly, we assume that [[∀x(P (x) ⊃ Q(x))]]v = 1 and [[∀xP (x)]]v = 1,
but [[∃xQ(x)]]v = 0. Therefore:

[[∀x(P (x) ⊃ Q(x))]]v = 1 ⇒ [[P (x) ⊃ Q(x)]]v[x:u] = 1 for at least one u ∈ U ,
[[P (x)]]v[x:u] �= 2, because [[P (x) ⊃ Q(x)]]v[x:u] �= 2,
[[P (x)]]v[x:u] �= 0, because [[∀xP (x)]]v �= 0.

As the consequence of the previous results, [[P (x)]]v[x:u] = 1. Furthermore

[[P (x) ⊃ Q(x)]]v[x:u] = 1 and [[P (x)]]v[x:u] = 1 ⇒ [[Q(x)]]v[x:u] = 1,
[[Q(x)]]v[x:u] = 1 ⇒ [[∃xQ(x)]]v = 1.

Because [[∃xQ(x)]]v = 0 was our assumption, hence the theorem is proved.

Theorem 10
∃x(P (x) ∨Q(x)) �w ∃xP (x) ∨ ∃xQ(x).

Proof. If we assume, that [[∃x(P (x)∨Q(x))]]v = 1, it causes [[P (x)∨Q(x)]]v[x:u] =
1 for at least one u ∈ U . So both [[P (x)]]v[x:u] �= 2 and [[Q(x)]]v[x:u] �= 2, and at
least one of them evaluated to 1.

– if [[P (x)]]v[x:u] = 1 then [[∃xP (x)]]v = 1 and [[∃xQ(x)]]v �= 2, or
– if [[Q(x)]]v[x:u] = 1 then [[∃xQ(x)]]v = 1 and [[∃xP (x)]]v �= 2.

In both of the previous cases, [[∃xP (x) ∨ ∃xQ(x)]]v = 1.

Theorem 11. The set {∀x(P (x) ∧Q(x)),¬∀xP (x),¬∀xQ(x)} is satisfiable and
so

∀x(P (x) ∧Q(x)) �w ∀xP (x) ∨ ∀xQ(x).

Proof. Let us use an interpretation where U = {u1, u2, u3}, and which is defined
so that [[P (x)]]v[x:u1] = 1, [[Q(x)]]v[x:u1 ] = 1, [[P (x)]]v[x:u2 ] = 2, [[Q(x)]]v[x:u2 ] = 0,
[[P (x)]]v[x:u3] = 0 and [[Q(x)]]v[x:u3] = 2.

By this, [[∀xP (x)]]v = 0 and [[∀xQ(x)]]v = 0, so [[∀xP (x) ∨ ∀xQ(x)]]v = 0.
Furthermore [[∀x(P (x) ∧ Q(x))]]v = 1, because [[P (x) ∧ Q(x)]]v[x:u1] = 1,
[[P (x) ∧Q(x)]]v[x:u2] = 2 and [[P (x) ∧Q(x)]]v[x:u3] = 2.

The conclusion we have reached may not be the one that may we had hoped
for. The theorems shows the lack of connection between the lower or upper
approximative evaluation.

5 Practical Use of TbPFoL Semantics

As a demonstration to show some practical benefits and weaknesses of the TbP-
FoL semantics, now we introduce an interpretation based on an existing rela-
tional database.

In the following example, we suppose that the data we are interested in is
aggregated into one data table. We also suppose that the aggregated table is
relatively huge in both dimensions, so we have not only numerous records but
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also several attributes. Based on the attribute values, we are able to define
interpetations for the one-argument predicates3. That kind of interpretation can
combine several attribute values being connected to one database record to form
semantic values of predicates in the form:

f : U → {0, 1} or f : U → {0, 1, 2}.
The predicates are assigned to Boolean functions defined over the table record
type. (This approach use the table records as members of the set U .) Partiality
may appear when we allow null result for the Boolean functions, which behavior
is usually acceptable in relational database systems but not necessary to take
the advantages of the TbPFoL semantics.

Tools (the members of set T ) are collected from the Pred set. They determine
a logically relevant general partial approximation space. We want to use only the
tools during the evaluation of expressions with approximate sentence functors.
For this purpose, database records pertaining to the truth set of a tool should be
collected into a temporary table, and the connection between the tools and the
common predicates must also be discovered. We store the number of members
in Pi ∩ Tj and the number of members in Tj \ Pi, where Pi is the truth set of
the ith predicate, and Tj is the truth set of the jth tool.

When Pi ∩ Tj �= ∅, the Tj tool

– belongs to the lower approximation of Pi, if Tj \ Pi = ∅,
– belongs to the upper approximation of Pi, if Tj \ Pi �= ∅.

The pre-evaluation of tools gives us the ability to omit the evaluation of the
fi functions during the evaluation of the formulae starting with approximate
sentence functors.

The following example shows a matrix, which describes the connection be-
tween the truth set of P and the truth set of tools T11 and T12. The matrix
generated from the working example.

⎛⎝ |T11 ∩ P |, |T11 \ P |, |T12 ∩ P |, |T12 \ P |
|T11 ∩ T11|, |T11 \ T11|, |T12 ∩ T11|, |T12 \ T11|
|T11 ∩ T12|, |T11 \ T12|, |T12 ∩ T12|, |T12 \ T12|

⎞⎠ =

⎛⎝101, 231, 126, 308332, 0, 0, 434
0, 332, 434, 0

⎞⎠
As the first line shows, both tools belong to the upper approximation of P . If
there is no another tool selected, the following evaluation results occure:

[[↑ ∃xP (x)]] = 1, [[↓ ∃xP (x)]] = 2, [[↑ ∀xP (x)]] = 1, [[↓ ∀xP (x)]] = 2

Obviously the pre-evaluation process is required, but it is enough to do it
once for each different interpretation. Here the partial semantics is necessary in
a case of object which doesn’t belongs to any tool. Note, that 2 as a null entity
which represents truth value gap can appear during the evaluation process. The

3 A working example can be found on the website
http://www.inf.unideb.hu/progcont/tbpfol/
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truth value gap e.g. as a result of the lower approximation, like above, can also
indicate that on object belongs to the upper, but does not belogs to the lower
approximation. It gives the idea most of the proofs earlier.
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Abstract. After giving the precise partial first-order logical semantics
relying on different membership functions, the notion of decision driven
consequence relations with parameters is introduced. Aristotle’s valid
syllogisms of the first figure are investigated. The author shows what
kind of decisions is necessary and how parameters have to be chosen in
order that a consequence relation remains valid.

Keywords: Approximation of sets, rough set, partial logic, Aristotle’s
syllogisms.

1 Introduction

Decision-theoretic rough set models can be considered as the probabilistic ex-
tensions of algebraic rough set models. Many papers deal with DTRS based on
different systems of theory of rough sets (see, for example, [14]). Three differ-
ent types of membership functions are introduced: optimistic, pessimistic and
average. The main objective of this paper is to show how Aristotle’s syllogisms
of the first figure can be used when one wants to rely on different membership
functions. In order to achieve the goals one has

1. to show that a decision-theoretic rough set model can be based on a very
general version of partial approximation spaces by introducing optimistic,
average and pessimistic partial membership functions relying on partial ap-
proximations of sets;

2. to present a partial first-order logic with precise semantics relying on different
partial membership functions;

3. to introduce different notions of logical consequence relations which can be
used in order to make clear the consequences of our decisions.

After introducing the general partial approximation space as a generalization
of different systems appeared in the theory of rough sets, three different types of
partial membership functions are defined. They can be embedded in the seman-
tics of partial first-order logic. At the end different notions of logical consequence
are produced in order to investigate Aristotle’s syllogisms.
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2 Theoretical Background

In the paper [8] a partial first-order logic relying on optimistic, pessimistic and
average membership functions was introduced. Some characteristic features of
the logical system are the following:

– General approximation spaces (see in [1], [2]) are in the center of its logical
semantics. The system of base sets plays a crucial role in the whole process of
approximation, because it represents background (or available) knowledge.
In many practical cases background knowledge is not total: maybe we have
no any (useful) information or knowledge about some objects of universe. In
general the system of base sets is not a partition of a given universe and it
does not fulfill covering property.

– Relying on standard Pawlakian approximation pair three different partial
fuzzy membership function are introduced: optimistic, pessimistic and aver-
age ones. The possibilities show different ways of fuzzyfication and the usage
of background knowledge can be controlled by membership functions.

– In the definition of semantic rules optimistic, pessimistic and average mem-
bership functions are used in order to evaluate formulas. The type of applied
membership function is determined on meta level and so its role appears in
central semantic notions (as consequence relation, irrefutability, validity).

2.1 General Systems of Tool-Based Approximation of Sets

In the following definition a most fundamental (and very general) notion of
an approximation space is given. This core notion serves as the set-theoretical
background of semantics of partial first-order logic relying on different partial
membership functions.

Definition 1. The ordered 5-tuple 〈U,B,DB, l, u〉 is a general partial approxi-
mation space with a Pawlakian approximation pair if

1. U is a nonempty set;

2. B ⊆ 2U , B �= ∅ and if B ∈ B, then B �= ∅;
3. DB is an extension of B, and it is given by the following inductive definition:

(a) B ⊆ DB;
(b) ∅ ∈ DB;

(c) if D1, D2 ∈ DB, then D1 ∪D2 ∈ DB.

4. the functions l, u form a Pawlakian approximation pair 〈l, u〉, i.e.
(a) l(S) =

⋃
C l(S), where C l(S) = {B | B ∈ B and B ⊆ S};

(b) u(S) =
⋃
Cu(S), where Cu(S) = {B | B ∈ B and B ∩ S �= ∅}.

Definition 2. If 〈U,B,DB, l, u〉 is a general partial approximation space with a
Pawlakian approximation pair and S ⊆ U , then b(S) =

⋃
(Cu(S) \ C l(S)) is the

border set of S.
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Informally, the set U is the universe of approximation; B is a nonempty set of
base sets, it represents our knowledge used in the whole approximation process;
DB (i.e. the set of definable sets) contains not only the base sets, but those
which we want to use to approximate any subset of U ; the functions l, u (and b)
determine the lower and upper approximation (and the border) of any set with
the help of representations of our primitive or available concepts/properties. The
nature of an approximation pair1 depends on how to relate the lower and upper
approximations of a set to the set itself. A general partial approximation space
can be specified by giving some requirements for the base sets.

2.2 Optimistic, Average and Pessimistic Partial Membership
Functions

Relying on a given general approximation space GAS = 〈U,B,DB, l, u〉 three
different partial membership functions (μo

s for optimistic, μa
s for average and

μp
s for pessimistic) can be introduced. For the sake of simplicity we use a null

entity (the number 2) to show that a function is undefined for an object u, i.e. to
represent partiality of membership functions. Three different functions (of finite
sets of numbers) are used in the definition:

– the function min gives the minimum value of a finite set of numbers;
– the function avg gives the average value of a finite set of numbers, i.e.

avg({n1, . . . , nk}) = Σk
i=1ni

k ;
– the function max gives the maximum value of a finite set of numbers.

Definition 3. Let U be a finite nonempty set, S ⊆ U , u ∈ U , C(u) = {B | u ∈
B,B ∈ B} and V(u) =

{
|B∩S|
|B| | B ∈ C(u)

}
.

μo
S(u) =

⎧⎪⎪⎨⎪⎪⎩
1 if u ∈ l(S)
max(V(u)) if u ∈ b(S) \ l(S)
0 if u ∈

⋃
B \ u(S)

2 otherwise

μa
S(u) =

⎧⎪⎪⎨⎪⎪⎩
1 if u ∈ l(S)
avg(V(u)) if u ∈ b(S) \ l(S)
0 if u ∈

⋃
B \ u(S)

2 otherwise

μp
S(u) =

⎧⎪⎪⎨⎪⎪⎩
1 if u ∈ l(S)
min(V(u)) if u ∈ b(S) \ l(S)
0 if u ∈

⋃
B \ u(S)

2 otherwise

For the sake of simplicity it is useful to introduce the crisp membership func-
tion (μc

S) for any set and any object.

1 One of the most general notion of weak and strong approximation pairs can be found
in Düntsch and Gediga [3].
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Definition 4. If S (S ⊆ U) and u ∈ U , then

μc
S(u) =

⎧⎨⎩
1 if u ∈ S
0 if u ∈

⋃
B \ S

2 otherwise

2.3 Partial First-Order Logic (PFoL) Relying on Different
Membership Functions

At first we need a given language of first-order logic, and a finite nonempty set
T of one-argument predicate parameters. Its members are called tools.

Definition 5. L is a language of PFoL with the set T of tools, if

1. L = 〈LC, V ar, Con, T erm, T , Form〉
2. L(1) = 〈LC, V ar, Con, T erm, Form〉 is a language of classical first-order

logic;
3. T ⊆ P(1), where P(1) is the set of one-argument predicate parameters;
4. T is finite and T �= ∅.

The members of set T are called tools, and their semantic values play a crucial
role in giving different types of rough membership functions because they serve
as the base of generated approximation space.

Definition 6. Let L be a language of PFoL with the set T of tools. The ordered
pair 〈U, �〉 is a tool-based interpretation of L, if

1. U is a finite nonempty set;
2. � is a function such that Dom(�) = Con and

(a) if a ∈ N (N is the set of name parameters), then �(a) ∈ U ;
(b) if p ∈ P(0) (P(0) is the set of proposition parameters), then �(p) ∈

{0, 1};
(c) if P ∈ P(n) (n = 1, 2, . . . ) (P(n) is the set of n-argument predicate

parameters), then �(P ) ⊆ U (n);
(d) if T ∈ T , then �(T ) �= ∅.
In order to give semantic rules we only need the notions of assignment and

modified assignment:

Definition 7. Function v is an assignment relying on the interpretation 〈U, �〉
if v : V ar→ U .

Definition 8. Let v be an assignment relying on the interpretation 〈U, �〉, x ∈
V ar and u ∈ U . v[x : u] is a modified assignment of v, if v[x : u] is an assign-
ment, v[x : u](y) = v(y) if x �= y, and v[x : u](x) = u.

The semantic values of tools (the members of set T ) determine a general
(maybe partial) approximation space with respect to the given interpretation.
The generated approximation space is logically relevant in the sense, that it
gives the lower and upper approximations (what is more, the different partial
membership functions) of any predicate P to be taken into consideration in the
definition of semantic rules.
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Definition 9. Let L be a language of PFoL with the set T of tools and 〈U, �〉
be a tool-based interpretation of L.

The ordered 5-tuple

GAS(T ) = 〈PR(U),B(T ),DB(T ), l, u〉

is a logically relevant general partial approximation space generated by set T of
tools with respect to the interpretation 〈U, �〉 if

1. PR(U) =
⋃∞

n=1 U
(n), where U (1) = U, U (n) = U × U × · · · × U ;

2. B(T ) =
⋃∞

n=1 Bn(T ) where Bn(T ) = {�(T1)× · · · × �(Tn) | Ti ∈ T };

The semantic values of tools (given by the interpretation) generate the set
B(T ). It contains those sets by which the semantic value of any predicate pa-
rameter is approximated.

In the semantics of PFol the semantic value of an expression depends on a
given interpretation, and a given logically relevant general partial approximation
space generated by set of tools with respect to the interpretation. For the sake of
simplicity we use a null entity to represent partiality of semantic rules. We use
number 0 for falsity, number 1 for truth, numbers greater than 0 and less than 1
for true degree and number 2 for null entity. In many cases, four possibly different
semantic values can be given: optimistic, average, pessimistic and crisp ones.
The forms of semantic rules are similar in different cases and so the superscript
� can be used to denote one of them (� ∈ {o, a, p, c}). The semantic value of an
expression A is denoted by [[A]]�v .

The most important semantic rules are the following:

1. If P ∈ P (n) (n �= 0), i.e. P is an n-argument predicate parameter and
t1, t2, . . . , tn ∈ Term, then
[[P (t1, . . . , tn)]]

�
v = μ�

�(P )(〈[[t1]]�v, . . . , [[tn]]�v〉).
2. If A ∈ Form, then

[[¬A]]�v =

{
2 if [[A]]�v = 2
1− [[A]]�v otherwise

3. If A,B ∈ Form, then

[[(A ∧B)]]�v =

{
2 if [[A]]�v = 2, or [[B]]�v = 2;
min{[[A]]�v, [[B]]�v} otherwise

[[(A ∨B)]]�v =

{
2 if [[A]]�v = 2, or [[B]]�v = 2;
max{[[A]]�v, [[B]]�v} otherwise

[[(A ⊃ B)]]�v =

{
2 if [[A]]�v = 2, or [[B]]�v = 2;
max{[[¬A]]�v, [[B]]�v} otherwise

4. If A ∈ Form, x ∈ V ar and V(A) =
{
[[A]]�v[x:u] | u ∈ U, [[A]]�v[x:u] �= 2

}
, then

[[∀xA]]�v =

{
2 if V(A) = ∅,
min{V(A)} otherwise

[[∃xA]]�v =

{
2 if V(A) = ∅,
max{V(A)} otherwise
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From the logical point of view, flexibility is the main advantage of defined
logical framework: the different membership functions can be used for differ-
ent formulae. So the consequence relation can rely on possibly different semantic
values determined by total, optimistic, average and pessimistic membership func-
tions and so the investigations of different decisions (represented by on different
membership functions) are possible.

The notion of models plays a fundamental role in the semantic definition of
consequence relation:

Definition 10. Let L be a language of PFoL with the set T of tools, and Γ =
〈A1, A2, . . . , An〉 be an ordered n-tuple of formulae (A1, A2, . . . , An ∈ Form).

1. The ordered n-tuple Δ = 〈δ1, . . . , δn〉 is a decision type of Γ if δ1, . . . , δn ∈
{o, a, p, c}.

2. Let Δ = 〈δ1, . . . , δn〉 be a decision type Γ . Then

(a) 〈U, �, v〉 is a Δ-type model of Γ with parameter α (0 < α ≤ 1), if

i. 〈U, �〉 is an interpretation of L; v is an assignment relying on 〈U, �〉;
ii. [[Ai]]

δi
v �= 2 for all i (i = 1, 2, . . . , n)

iii. [[Ai]]
δi
v ≥ α for all i (i = 1, 2, . . . , n).

(b) 〈U, �, v〉 is a Δ-type partial model of Γ with parameter α (0 < α ≤ 1) if
i. 〈U, �〉 is an interpretation of L; v is an assignment relying on 〈U, �〉;
ii. [[Ai]]

δi
v ≥ α for all i (i = 1, 2, . . . , n).

Definition 11. Let L be a language of PFoL with the set T of tools, Γ =
〈A1, A2, . . . , An〉 be an ordered n-tuple of formulae (A1, A2, . . . , An ∈ Form)
and B ∈ Form be a formula.

1. Δ→ δ is a decision driven consequence type from Γ to B if

(a) Δ is a decision type of Γ ;
(b) δ is a decision type of {B}.

2. Let Δ→ δ is a decision driven consequence type from Γ to B.

(a) B is a parametrized consequence of Γ driven by Δ→ δ with the parame-
ter pair 〈α, β〉 if all Δ-type models of Γ with the parameter α are δ-type

models of B with the parameter β (Γ �〈α,β〉
Δ→δ B)

(b) B is a partial parametrized consequence of Γ driven by Δ→ δ with the
parameter pair 〈α, β〉 if all Δ-type partial models of Γ with the parameter

α are δ-type partial models of B with the parameter β (Γ �p,〈α,β〉
Δ→δ B).

The introduced notion of decision driven consequence relations may be useful
in many practical cases: we can say with respect to available knowledge that we
want

– to use the ’core’ of a premiss, i.e. the corresponding formula may be evaluated
by pessimistic membership function;

– to take a premiss by and large, i.e. the corresponding formula may be eval-
uated by average membership function;
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– to consider a premiss as a possibility, i.e. the corresponding formula may be
evaluated by optimistic membership function.

What is more, the expected level of truth of premisses can be determined. In
these flexible situations the main question is the following: how premisses and
conclusions may be evaluated in order that consequence relations hold. In the
next section Aristotle’s syllogisms of first figure are investigated.

3 Aristotle’s Syllogisms of the First Figure

It is obvious that [[P (x)]]o ≥ [[P (x)]]a ≥ [[P (x)]]p with respect to any interpreta-
tion and assignment, and so

1. [[∀xP (x)]]o ≥ [[∀xP (x)]]a ≥ [[∀xP (x)]]p,
2. [[∃xP (x)]]o ≥ [[∃xP (x)]]a ≥ [[∃xP (x)]]p.

There is no a determined place of the crisp value of predicate P (i.e. [[P (x)]]c)
in the chain. The pessimistic membership function is the strongest, and the op-
timistic membership function is the weakest. The average membership function
is in middle. The following notation is used: p ≥ a ≥ o. The first theorem shows
what happens with two standard rules in the logical system relying on different
membership functions.

Theorem 1. Let P be a one-argument predicate parameter, x be a variable, b
be a name-parameter, δ1, δ2 ∈ {o, a, p} and 0 < β ≤ α ≤ 1. Then

1. ∀xP (x) �〈α,β〉
δ1→δ2

∃xP (x)
2. ∀xP (x) �par,〈α,β〉

δ1→δ2
P (a)

Proof. Let 〈U, �, v〉 be δ1-type model of ∀xP (x) with parameter α. In this case
V(P (x)) �= ∅. The task is to prove that 〈U, �, v〉 is a δ2-type model of ∃xP (x)
with parameter β.

If [[∀xP (x)]]δ1 �= 2 and [[∀xP (x)]]δ1 ≥ α, then

min
u∈V(P (x))

{[[P (x)]]δ1v[x:u]} ≥ α

It means that if δ1 ≥ δ2 (and so [[P (x)]]δ2v[x:u] ≥ [[P (x)]]δ1v[x:u] )

max
u∈V(P (x))

{[[P (x)]]δ2v[x:u]} ≥ α ≥ β

The second proposition of the theorem is obvious from the first one (maybe
that [[P (b)]]δ2v = 2). ��

Aristotle’s syllogisms represent many typical cases of consequence relations con-
taining classical existential and universal quantifiers and monadic predicates.
There is no enough place to investigate all valid syllogisms, Barbara, Darii,
Celarent and Ferio syllogisms of the first figure are analyzed in order to show
possible answers for the question appeared at the end of previous section.
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Theorem 2. Barbara syllogism
Let δ ∈ {o, a, p}, α > 1/2, α ≥ β > 0 and P,Q,R be predicate parameters. Then

〈∀x(P (x) ⊃ Q(x)), ∀x(R(x) ⊃ P (x))〉 �〈α,β〉
〈δ,δ〉→δ ∀x(R(x) ⊃ Q(x))

Proof. Let 〈U, �, v〉 be 〈δ, δ〉-type model of 〈∀x(P (x) ⊃ Q(x)), ∀x(R(x) ⊃ P (x))〉
with parameter α and V (U) = V(P (x))∩V(Q(x))∩V(R(x)). In this case V (U) �=
∅. The task is to prove that 〈U, �, v〉 is a δ-type model of ∀x(R(x) ⊃ Q(x)) with
parameter β.

If [[∀x(P (x) ⊃ Q(x))]]δ �= 2 and [[∀x(P (x) ⊃ Q(x))]]δ ≥ α, then

min
u∈V (U)

{
max{[[¬P (x)]]δv[x:u], [[Q(x)]]δv[x:u]}

}
≥ α

If [[∀x(R(x) ⊃ P (x))]]δ �= 2 and [[∀x(R(x) ⊃ P (x))]]δ ≥ α, then

min
u∈V (U)

{
max{[[¬R(x)]]δv[x:u], [[P (x)]]δv[x:u]}

}
≥ α

1. For all u ∈ V (U): 1− [[P (x)]]δv[x:u] ≥ α or [[Q(x)]]δv[x:u] ≥ α.

2. For all u ∈ V (U): 1− [[R(x)]]δv[x:u] ≥ α or [[P (x)]]δv[x:u] ≥ α.

Four cases appear for all u ∈ V (U):

1. 1− [[P (x)]]δv[x:u] ≥ α and 1− [[R(x)]]δv[x:u] ≥ α and so

max{[[¬R(x)]]δv[x:u], [[Q(x)]]δv[x:u]} ≥ α i.e. [[∀x(R(x) ⊃ Q(x))]]δ ≥ α ≥ β;

2. 1− [[P (x)]]δv[x:u] ≥ α and [[P (x)]]δv[x:u] ≥ α: if α > 1/2, then it is impossible;

3. [[Q(x)]]δv[x:u] ≥ α and 1− [[R(x)]]δv[x:u] ≥ α and so

max{[[¬R(x)]]δv[x:u], [[Q(x)]]δv[x:u]} ≥ α i.e. [[∀x(R(x) ⊃ Q(x))]]δ ≥ α ≥ β;

4. [[Q(x)]]δv[x:u] ≥ α and [[P (x)]]δv[x:u] ≥ α and so

max{[[¬R(x)]]δv[x:u], [[Q(x)]]δv[x:u]} ≥ α i.e. [[∀x(R(x) ⊃ Q(x))]]δ ≥ α ≥ β. ��

Remark 1. It is obvious from the proof that in the case of Barbara syllogism the
same membership function has to be used for premisses and conclusion.

Theorem 3. Celarent syllogism
Let δ ∈ {o, a, p}, α > 1/2, α ≥ β > 0 and P,Q,R be predicate parameters. Then

〈∀x(P (x) ⊃ ¬Q(x)), ∀x(R(x) ⊃ P (x))〉 �〈α,β〉
〈δ,δ〉→δ ∀x(R(x) ⊃ ¬Q(x))

Proof. Let 〈U, �, v〉 be 〈δ, δ〉-type model of
〈∀x(P (x) ⊃ ¬Q(x)), ∀x(R(x) ⊃ P (x))〉

with parameter α and V (U) = V(P (x))∩V(Q(x))∩V(R(x)). In this case V (U) �=
∅. The task is to prove that 〈U, �, v〉 is a δ-type model of ∀x(R(x) ⊃ ¬Q(x)) with
parameter β.

If [[∀x(P (x) ⊃ ¬Q(x))]]δ �= 2 and [[∀x(P (x) ⊃ ¬Q(x))]]δ ≥ α, then

min
u∈V (U)

{
max{[[¬P (x)]]δv[x:u], [[¬Q(x)]]δv[x:u]}

}
≥ α



Aristotle’s Syllogisms 67

If [[∀x(R(x) ⊃ P (x))]]δ �= 2 and [[∀x(R(x) ⊃ P (x))]]δ ≥ α, then

min
u∈V (U)

{
max{[[¬R(x)]]δv[x:u], [[P (x)]]δv[x:u]}

}
≥ α

1. For all u ∈ V (U): 1− [[P (x)]]δv[x:u] ≥ α or 1− [[Q(x)]]δv[x:u] ≥ α.

2. For all u ∈ V (U): 1− [[R(x)]]δv[x:u] ≥ α or [[P (x)]]δv[x:u] ≥ α.

Four cases appear for all u ∈ V (U):

1. 1− [[P (x)]]δv[x:u] ≥ α and 1− [[R(x)]]δv[x:u] ≥ α and so

max{[[¬R(x)]]δv[x:u], [[¬Q(x)]]δv[x:u]} ≥ α i.e. [[∀x(R(x) ⊃ Q(x))]]δ ≥ α ≥ β;

2. 1− [[P (x)]]δv[x:u] ≥ α and [[P (x)]]δv[x:u] ≥ α: if α > 1/2, then it is impossible;

3. 1− [[Q(x)]]δv[x:u] ≥ α and 1− [[R(x)]]δv[x:u] ≥ α and so

max{[[¬R(x)]]δv[x:u], [[¬Q(x)]]δv[x:u]} ≥ α i.e. [[∀x(R(x) ⊃ ¬Q(x))]]δ ≥ α ≥ β;

4. 1− [[Q(x)]]δv[x:u] ≥ α and [[P (x)]]δv[x:u] ≥ α and so

max{[[¬R(x)]]δv[x:u], [[¬Q(x)]]δv[x:u]} ≥ α i.e. [[∀x(R(x) ⊃ ¬Q(x))]]δ ≥ α ≥ β.
��

Theorems concerning Barbara and Celarent syllogisms and their proofs show
that in order to get valid consequence relations one has to

1. evaluate premisses and conclusion by using the same (optimistic, average or
pessimistic) membership function and so there is no real freedom for making
different decisions concerning two premisses and the conclusion;

2. suppose that the level of truth of premisses is greater than 1/2, i.e. the
premisses have to be closer to truth then falsity.

Theorem 4. Darii syllogism
Let δ1, δ2 ∈ {o, a, p}, δ1 ≥ δ2 α > 1/2, α ≥ β > 0 and P,Q,R be predicate
parameters. Then

〈∀x(P (x) ⊃ Q(x)), ∃x(R(x) ∧ P (x))〉 �〈α,β〉
〈δ2,δ1〉→δ2

∃x(R(x) ∧Q(x))

Proof. Let 〈U, �, v〉 be 〈δ2, δ1〉-type model of 〈∀x(P (x) ⊃ Q(x)), ∃x(R(x)∧P (x))〉
with parameter α and V (U) = V(P (x))∩V(Q(x))∩V(R(x)). In this case V (U) �=
∅. The task is to prove that 〈U, �, v〉 is a δ2-type model of ∃x(R(x)∧Q(x)) with
parameter β.

If [[∀x(P (x) ⊃ Q(x))]]δ2 �= 2 and [[∀x(P (x) ⊃ Q(x))]]δ2 ≥ α, then

min
u∈V (U)

{
max{[[¬P (x)]]δ2v[x:u], [[Q(x)]]δ2v[x:u]}

}
≥ α

If [[∃x(R(x) ∧ P (x))]]δ1 �= 2 and [[∃x(R(x) ∧ P (x))]]δ1 ≥ α, then

max
u∈V (U)

{
min{[[R(x)]]δ1v[x:u], [[P (x)]]

δ1
v[x:u]}

}
≥ α
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1. For all u ∈ V (U): 1− [[P (x)]]δ2v[x:u] ≥ α or [[Q(x)]]δ2v[x:u] ≥ α.

2. There is a u ∈ V (U): [[R(x)]]δ1v[x:u] ≥ α and [[P (x)]]δ1v[x:u] ≥ α.

Two cases appear for the fixed u ∈ V (U) given by the second premiss:

1. 1− [[P (x)]]δ2v[x:u] ≥ α, [[R(x)]]δ1v[x:u] ≥ α and [[P (x)]]δ1v[x:u] ≥ α. If α > 1/2, then

it is impossible because [[P (x)]]δ2v[x:u] ≥ [[P (x)]]δ1v[x:u].

2. [[Q(x)]]δ2v[x:u] ≥ α, [[R(x)]]δ1v[x:u] ≥ α and [[P (x)]]δ1v[x:u] ≥ α. δ1 ≥ δ2, and so

[[R(x)]]δ2v[x:u] ≥ α.

min{[[R(x)]]δ2v[x:u], [[Q(x)]]δ2v[x:u]} ≥ α i.e. [[∃x(R(x) ∧Q(x))]]δ2 ≥ α ≥ β. ��

The theorem concerning Darii syllogisms and its proof show that the validity
of the consequence relation requires that

1. the decision for the first premiss can not be stronger than the decision for
the second one;

2. the decisions for the first premiss and the conclusion have to be the same;
3. the first premiss plays a more important role than the second one.

Theorem 5. Ferio syllogism
Let δ1, δ2 ∈ {o, a, p}, δ2 ≥ δ1 α > 1/2, α ≥ β > 0 and P,Q,R be predicate
parameters. Then

〈∀x(P (x) ⊃ ¬Q(x)), ∃x(R(x) ∧ P (x))〉 �〈α,β〉
〈δ1,δ2〉→δ2

∃x(R(x) ∧ ¬Q(x))

Proof. Let 〈U, �, v〉 be 〈δ1, δ2〉-type model of 〈∀x(P (x) ⊃ ¬Q(x)), ∃x(R(x) ∧
P (x))〉 with parameter α and V (U) = V(P (x))∩V(Q(x))∩V(R(x)). In this case
V (U) �= ∅. The task is to prove that 〈U, �, v〉 is a δ2-type model of ∃x(R(x) ∧
¬Q(x)) with parameter β.

If [[∀x(P (x) ⊃ ¬Q(x))]]δ1 �= 2 and [[∀x(P (x) ⊃ ¬Q(x))]]δ1 ≥ α, then

min
u∈V (U)

{
max{[[¬P (x)]]δ1v[x:u], [[¬Q(x)]]δ1v[x:u]}

}
≥ α

If [[∃x(R(x) ∧ P (x))]]δ2 �= 2 and [[∃x(R(x) ∧ P (x))]]δ2 ≥ α, then

max
u∈V (U)

{
min{[[R(x)]]δ2v[x:u], [[P (x)]]

δ2
v[x:u]}

}
≥ α

1. For all u ∈ V (U): 1− [[P (x)]]δ1v[x:u] ≥ α or 1− [[Q(x)]]δ1v[x:u] ≥ α.

2. There is a u ∈ V (U): [[R(x)]]δ2v[x:u] ≥ α and [[P (x)]]δ2v[x:u] ≥ α.

Two cases appear at the fixed u ∈ V (U) given by the second premiss:

1. 1− [[P (x)]]δ1v[x:u] ≥ α, [[R(x)]]δ2v[x:u] ≥ α and [[P (x)]]δ2v[x:u] ≥ α. If α > 1/2, then

it is impossible because [[P (x)]]δ1v[x:u] ≥ [[P (x)]]δ2v[x:u].
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2. 1− [[Q(x)]]δ1v[x:u] ≥ α, [[R(x)]]δ2v[x:u] ≥ α and [[P (x)]]δ2v[x:u] ≥ α.

δ2 ≥ δ1, and so [[Q(x)]]δ1v[x:u] ≥ [[Q(x)]]δ2v[x:u]. Therefore 1− [[Q(x)]]δ2v[x:u] ≥ α.

min{[[R(x)]]δ2v[x:u], [[¬Q(x)]]δ2v[x:u]} ≥ α i.e. [[∃x(R(x)∧¬Q(x))]]δ2 ≥ α ≥ β. ��

The theorem concerning Ferio syllogisms and its proof show that the validity
of the consequence relation requires that

1. the decision for the first premiss can not be stronger than the decision for
the second one;

2. the decisions for the second premiss and the conclusion have to be the same;
3. the second premiss plays a more important role than the first one.

4 Conclusion

After giving the precise first-order logical semantics relying on different mem-
bership function, the notion of decision driven consequence relations was in-
troduced. Aristotle’s valid syllogisms of the first figure were investigated. The
author showed what kind of decisions is necessary and how parameters can be
chosen in order that a consequence relation remains valid. A general observation:
in any decision driven consequence of Aristotle’s syllogisms of the first figure the
parameters which give the level of truth of premisses have to be greater than
1/2, therefore there is no valid consequence relation with parameters less than or
equal to 1/2. It means that in order to say something about the conclusion the
premisses have to be closer to truth than to falsity. Some results are unexpected,
and indicate the necessity of further research dealing with other syllogisms. The
other direction is to investigate intermediate quantifiers (most, many, etc.) ex-
amined in fuzzy logical systems.
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Abstract. A powerful research line in the design of declarative lan-
guages consists in the introduction of expressive resources with a fuzzy
taste on their cores, in order to provide comfortable computational con-
structs for easily solving real-world scientific/engineering problems. Into
the fuzzy logic programming arena, the so-called multi-adjoint approach
(MALP in brief) has emerged as an interesting paradigm for which our
research group has developed during the last years the FLOPER pro-
gramming environment and the FuzzyXPath application in the field of the
semantic web. Since the practicality of declarative languages is strongly
dependent of their theoretical foundations, here we focus on topics re-
lated with the declarative semantics of the MALP framework. So, under
an innovative point of view relying on fuzzy sets theory, in this paper we
re-formulate in a very simple and elegant way our original model theory-
based notions of least fuzzy Herbrand model and (fuzzy) correct answer.
Apart for simplifying the proofs relating these concepts, our results are
nicely strengthened with homologous ones in the field of pure logic pro-
gramming, but largely surpassing them thanks to the fuzzy dimension of
the MALP language.

Keywords: Fuzzy sets and fuzzy logic, Fuzzy logic programming, Fuzzy
Herbrand model, Fuzzy correct answers, Soundness, Fuzzy information
systems.

1 Introduction

There exist a lot of contributions in the specialized literature related to fuzzy
logic programming which pay attention to declarative (fix-point, model-theore-
tic, etc.) semantics which surprisingly make not explicit use of fuzzy sets. In
this paper we provide a declarative description, based on fuzzy sets, of the least
Herbrand model and correct answer for MALP programs.

In what follows, we present a short summary of the main features of our
language (we refer the reader to [8,9,10] for a complete formulation, including
completeness and other correctness properties). We work with a first order lan-
guage, L, containing variables, function symbols, predicate symbols, constants,
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quantifiers and several (arbitrary) connectives to increase language expressive-
ness. In our fuzzy setting, we use implication connectives (←1,←2, . . . ,←m) and
also other connectives: conjunctions (denoted by ∧1,∧2, . . . ,∧k), disjunctions
(∨1,∨2, . . . ,∨l)

1 and aggregators (usually denoted by @1,@2, . . . ,@n) which are
used to combine/propagate truth values through the rules. The general definition
of an n-ary aggregator connective @ (that extends conjunctions, disjunctions)
states for its truth function @̇, that @̇ : Ln → L is required to be monotone
and fulfills @̇(�, . . . ,�) = �, @̇(⊥, . . . ,⊥) = ⊥2. Although the connectives ∧i,
∨i and @i are binary operators, we usually generalize them as functions with an
arbitrary number of arguments.

Additionally, our language L contains the elements of a multi-adjoint lattice,
(L,≤,←1,&1, . . . ,←n,&n) (see Definition 3), equipped with a collection of ad-
joint pairs (←i,&i), where each &i is a conjunctor intended to the evaluation of
modus ponens.

A rule is a logic formula H ←i B, where H is an atomic formula (called the
head) and B (which is called the body) is a formula built from atomic formulas
B1, . . . , Bn (n ≥ 0), truth values of L and conjunctions, disjunctions and aggre-
gators. Rules with an empty body are called facts. A goal is a body submitted
as a query to the system. Variables in a rule are assumed to be governed by uni-
versal quantifier and in a goal by existential quantifier. A multi-adjoint formula
is a rule or a goal. A multi-adjoint logic program P is a set of pairs R : 〈R; v〉,
where R is a (logic) rule and v is a truth degree (a value of L) expressing the
confidence which the user of the system has in the truth of the R.

In order to describe the procedural semantics of the multi-adjoint logic lan-
guage, in the following we denote by C[A] a formula where A is a sub-expression
(usually an atom) which occurs in the –possibly empty– context C[] whereas
C[A/A′] means the replacement of A by A′ in context C[]. Moreover, Var(s) de-
notes the set of distinct variables occurring in the syntactic object s, θ[Var(s)]
refers to the substitution obtained from θ by restricting its domain to Var(s)
and mgu(E) denotes the most general unifier of an equation set E. In the next
definition, we always consider that A is the selected atom in goal Q and L is the
multi-adjoint lattice associated to P .

Definition 1 (Admissible Steps). Let Q be a goal and let σ be a substitution.
The pair 〈Q;σ〉 is a state. Given a program P, an admissible computation is
formalized as a state transition system, whose transition relation →AS is the
smallest relation satisfying the following admissible rules:

1) 〈Q[A];σ〉→AS〈(Q[A/v&iB])θ;σθ〉 if θ = mgu({H = A}), 〈H←iB; v〉 in P
and B is not empty.

2) 〈Q[A];σ〉→AS〈(Q[A/v])θ;σθ〉 if θ = mgu({H = A}), 〈H←i; v〉 in P.

3) 〈Q[A];σ〉→AS〈(Q[A/⊥]);σ〉 if there is no rule in P whose head unifies with
A (this case copes with possible unsuccessful branches).

1 We assume that ∧i is a t-norm, ∨i is a t-conorm, ←i is a implication, as conceived
in [15].

2 L is a lattice according to the later Definition 3 and � = sup(L),⊥ = inf(L).



Fuzzy Sets for a Declarative Description 73

Definition 2 (Admissible Derivation). Let P be a program with an associ-
ated multi-adjoint lattice (L,≤) and let Q be a goal. An admissible derivation
〈Q; id〉 →∗

AS 〈Q′; θ〉 is an arbitrary sequence of admissible steps.
When Q′ is a formula not containing atoms and r ∈ L is the result of in-

terpreting Q′ in (L,≤), the pairs 〈Q′;σ〉 and 〈r;σ〉, where σ = θ[Var(Q)], are
called admissible computed answer (a.c.a.) and fuzzy computed answer (f.c.a.),
respectively (see [4] for details).

Moreover, in the MALP framework [10,8,9,7], each program has its own asso-
ciated multi-adjoint lattice, that we define in the following, and each program
rule is “weighted” with an element of this one.

Definition 3. A multi-adjoint lattice is a tuple (L,≤,←1,&1, . . . ,←n,&n) such
that:

i) (L,≤) is a complete lattice, i.e., for all S ⊂ L, exist inf(S) and sup(S)3.
ii) (←i,&i) is an adjoint pair in (L,≤), namely:

1) &i is increasing in both arguments, for all i, i ∈ {1, . . . , n}.
2) ←i is increasing in the first argument and decreasing in the second, for

all i.
3) x ≤ (y ←i z) iff (x&iz) ≤ y, for any x, y, z ∈ L (adjoint property).

iii) �&iv = v&i� = v, for all v ∈ L, i ∈ {1, . . . , n}, where � = sup(L).

We refer the reader to [13] where we focus on two relevant mathematical concepts
for this kind of domains useful for evaluating multi-adjoint logic programs, and,
on the one side, we adapt the classical notion of Dedekind-MacNeille completion
in order to relax some usual hypothesis on such kind of ordered sets.

The structure of this paper is as follows. The notion of least fuzzy Herbrand
model by using fuzzy sets is presented in Section 2. Next, in Section 3 we focus
on fuzzy correct answers expressed again in terms of fuzzy sets and moreover, we
then prove the soundness property of the framework. Section 4 summarizes some
preliminary results of logical consequences after being reformulated by means of
fuzzy sets. Finally, Section 5 concludes with our on-going work.

2 Fuzzy Sets and Least Fuzzy Herbrand Model

The concept of fuzzy set, due to [21], frequently occurs when we tend to organize,
summarize and generalize knowledge about objects [16]. On this concept is based
the theory of uncertainty with classic references on fuzzy logic programming
[14,17,18,19,20].

In this section, we use the theory of fuzzy sets in order to define, for the first
time in literature, the notion of least fuzzy Herbrand model as a certain fuzzy
subset of the Herbrand base. We start the development of contents with two
basic notions, namely, the concept of fuzzy set and the one of L-fuzzy set.

3 Then, it is a bounded lattice, that is, it has bottom and top elements, denoted by
⊥ and �, respectively.
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Definition 4. [16] A fuzzy set A of a (crisp or ordinary) set U , may be repre-
sented as a set of ordered pairs with first component x ∈ U and second component
its degree of membership μA(x)

4, that is, A = {x|μA(x) : μA(x) �= 0, x ∈ U},
where the map μA : U → [0, 1] is called the membership function of A.

Thus, the fuzzy set A is characterized by function μA. For every x ∈ U , μA(x) ∈
[0, 1] is a real number that describes the degree of membership of x in A. Also,
if we observe that a ordinary set A ⊂ U is determined by the indicator function
or characteristic function χA,

χA : U → {0, 1}, χA(x) =

{
1, if x ∈ A
0, if x /∈ A

and, since the function μA is a generalization of the function χA, a fuzzy set is
a generalization of the concept of an ordinary set or the notion of crisp set is
extended by the corresponding notion of fuzzy set.

Given A,B fuzzy sets of an universe U , A is said included in B (A is a subset
of B) if, and only if, the membership function of A is less than that of B, that
is, A ⊂ B ⇔ μA(x) ≤ μB(x), ∀x ∈ U .

If, in the above definition, we use a complete lattice L instead of interval [0, 1],
then it arises the following concept of L-fuzzy set.

Definition 5. [15] Let (L,≤) be a complete lattice. An L-fuzzy set A of an
universe U , is defined by the membership function μA : U → L.

In particular, we are interested in expressing the Herbrand base also as a L-
fuzzy set, that is, if BP = {A1, . . . , An, . . .} is the (crisp) Herbrand base of
P , we denote by BL

P = {A1|�, . . . , An|�, . . .} the fuzzy Herbrand base and we
have μBL

P
: F → L is such that μBL

P
(A) = � = sup(L), if A = Ai, for any i,

and μBL
P
(A) = ⊥, otherwise. Here, and thereafter, F denotes the set of all the

formulae of the multi-adjoint language, namely, the set of all formulae generated
by the set of symbols of a given multi-adjoint logic program P .

In what follows we formulate, in an original way, the notion of fuzzy Her-
brand model conceived as L-fuzzy set of the Herbrand base of the multi-adjoint
program.

Definition 6. A fuzzy Herbrand interpretation5 I is a L-fuzzy set of the uni-
verse BP or, equivalently, a map μI : BP → L (in fact, μI is the membership
function of L-fuzzy set), where BP is the Herbrand base of P and (L,≤) is the
multi-adjoint lattice associated to P.

Indeed, the above function μI can be extended in a natural way to the set
of all formulas F . In particular, for every (closed) formula A ∈ F , μI(A) =
infξ{μI(Aξ) : Aξ is a ground instance of A}.
4 We follow the notation due to [21] expressing this pair by x|μA(x). It is customary
to confuse the predicate A(x) with the degree of membership μA(x), we prefer to
explicitly distinguish these two concepts.

5 We will also say Herbrand interpretation.
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Definition 7. A fuzzy Herbrand interpretation I satisfies (or is Herbrand mo-
del of) a rule Ri : 〈Ri;αi〉 if, and only if, αi ≤ μI(Ri). An Herbrand interpre-
tation I is Herbrand model of P iff all rules in P are satisfied by I.

Obviously, if I is a Herbrand model of P , we have μI(A) ≤ �, for all A ∈ BL
P .

Then, using Definition 6, I is a fuzzy subset of the Herbrand base BL
P .

Let HL be the set of Herbrand interpretations whose order, induced from the
order of L, is given by Ij ⊂ Ik ⇐⇒ μIj (F ) ≤ μIk

(F ), for all formula F ∈ F .
It is easy to check that (HL,⊂) inherits the structure of complete lattice from
the multi-adjoint lattice (L,≤). Also, note that HL is a set of L-fuzzy sets of
universe F .

It is important to observe that, using L-fuzzy sets, the least fuzzy Herbrand
model for multi-adjoint logic programing, can be characterized by the following
definition, that is, exactly the same terms as expressed in [6] for pure logic
programming.

Definition 8. Let P be a multi-adjoint logic program with associated lattice
(L,≤). The L-fuzzy set IL

P =
⋂
Ij, where Ij is a Herbrand model of P, is called

least fuzzy Herbrand model of P.

The previous interpretation IL
P can be thought indeed as the least fuzzy Her-

brand model, by virtue of the following result.

Theorem 1. Let P be a multi-adjoint program with associated lattice (L,≤).
Then, IL

P =
⋂
Ij, where Ij is a Herbrand model of P, is the least Herbrand

model of P.

Proof. Let K be the set of Herbrand model of P , that is, the set K = {Ij :
Ij is a Herbrand model of P}. IL

P is a Herbrand interpretation by construction.
Since (HL,⊂) is a complete lattice, there exist the infimum of the set K, it is a
member of HL and is given by the intersection of all Herbrand models Ij .

Moreover, IL
P is also a Herbrand model of P . By definition of intersection,

IL
P ⊂ Ij for each Herbrand model Ij of P . Therefore, μIL

P
(A) ≤ μIj(A) for

each atom A. On the other hand, since each Ij is a model of P , by definition
of Herbrand model, each rule R : 〈A←iB; v〉 in P is satisfied by Ij , that is,
v ≤ μIj (A←iB). Now, by definition of Herbrand interpretation, the monotonic
properties of adjoint pairs in a multi-adjoint lattice, and because μIL

P
(A) ≤

μIj (A):

v ≤ μIj (A←iB) = μIj (A)←̇iμIj (B) ≤ μIL
P
(A)←̇iμIj (B),

where ←̇i denote the truth function of the connective ←i. By the adjoint prop-
erty, v ≤ μIL

P
(A)←̇i μIj (B) iff v&̇i μIj(B) ≤ μIL

P
(A). Also, since the opera-

tion &̇i is increasing in both arguments and μIL
P
(B) ≤ μIj (B), v&̇i μIL

P
(B) ≤

μIL
P
(A). Also, applying the adjoint property once again, v&̇iμIL

P(B) ≤ μIL
P
(A) iff

v ≤ μIL
P
(A)←̇i μIL

P
(B) = μIL

P
(A←iB). Therefore, IL

P satisfies each rule R in P ,
being a Herbrand model of P .
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Trivially, since IL
P is the infimum of complete lattice (K,⊂) (indeed, inf{Ij :

Ij is a Herbrand model}=
⋂
Ij), it is the least Herbrand model of P , which con-

cludes the proof. ��

Example 1. Consider the following multi-adjoint logic program P composed by
facts (rules whose bodies are implicitly assumed to be �) and an associate lattice
(L,≤) described by the Hasse’s diagram of the figure:

R1 : 〈p(a) ← ; α〉

R2 : 〈p(a) ← ; β〉

R3 : 〈q(a) ← ; β〉

�

γ

α β

⊥

I1 I2 I3 I4 I5 I6

p(a) γ γ γ � � �

q(a) β γ � β γ �

Here, (&G,←G) is the pair of connectives following the Gödel ’s intuitionistic
logic, whose truth functions are defined as:

&̇G(x, y) = inf{x, y} and ←̇G(y, x) =

{
�, if x ≤ y
y, otherwise

It is important to note that with these definitions, the pair (←G,&G) verifies the
condition for conforming an adjoint pair regarding lattice (L,≤) of the figure
above.

There exist six different Herbrand models (see I1, . . . , I6 in the previous table)
being IL

P = I1 the least fuzzy Herbrand model. It is easy to see that IL
P is the

L-fuzzy

IL
P = {p(a)|γ, q(a)|β} ⊂ BL

P = {p(a)|�, q(a)|�}

3 Correct Answers by Using Fuzzy Sets

In this section we study the characterization of the notion of correct answer
based on L-fuzzy sets. Moreover, we see also for the new formulation of least
Herbrand model, that this L-fuzzy set is (like in pure logic programming, see [6])
the set of formulas in the Herbrand base which follow logically from the formulas
of the MALP program6. The following theorem shows this characterization for
correct answer 〈λ; θ〉.

6 It is not difficult to prove that the fuzzy least Herbrand model coincides with the
set of logical consequences, similarly to pure logic programming.
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Theorem 2. Let P be a multi-adjoint logic program and G a goal. The pair
〈λ; θ〉 is a correct answer for P and G if, and only if, λ ≤ μIL

P
(Gθ), where IL

P
is the least fuzzy Herbrand model of P, λ ∈ L and θ is a substitution.

Proof. Since μIL
P

is the membership function of IL
P , it is enough to use the

definitions of least fuzzy Herbrand model and correct answer. ��

The following example adequately suggests how correct answers can be obtained
from least fuzzy Herbrand model, the L-fuzzy set IL

P .

Example 2. Consider the following programP = {R1,R2,R3}, whose associated
lattice (L,≤) is given by its depicted Hasse diagram:

R1 : 〈p(a) ← ; α〉

R2 : 〈p(b) ← ; β〉

R3 : 〈q(a) ←G p(a); γ〉

�

γ

α β

⊥

FollowingGödel ’s logic, the truth functions of connectives (←G,&G) are defined in
Example 1, thus verifying the conditions for conforming an adjoint pair regarding
lattice (L,≤) of the above figure.

The Herbrand base of the program P is BP = {p(a), p(b), q(a), q(b)}, hence
BL
P = {p(a)|�, p(b)|�, q(a)|�, q(b)|�}. All Herbrand model of P is a fuzzy subset

of BL
P , in particular IL

P ⊂ BL
P . It is easy to check that the least Herbrand model

IL
P can be given by the L-fuzzy set IL

P = {p(a)|α, p(b)|β, q(a)|α, q(b)|⊥}. Then:

i) For goal p(a) the set of correct answers is {〈λ; id〉 : λ ∈ L, λ ≤ α}.

ii) For goal p(b) the set of correct answers is {〈λ; id〉 : λ ∈ L, λ ≤ β}.

iii) For goal q(a) the set of correct answers is {〈λ; id〉 : λ ∈ L, λ ≤ α}.

iv) For goal p(x), the set of correct answers is {〈λ; θ〉 : λ ∈ L, λ ≤ μIL
P
(p(x)θ)} =

{〈⊥; {x/a}〉, 〈α; {x/a}〉, 〈⊥; {x/b}〉, 〈β, {x/b}〉}.
Note that the membership of p(x) to fuzzy set IL

P is

μIL
P
(p(x)) = inf{μIL

P
(p(x)σ) : p(x)σ is ground}=7 inf{μIL

P
(p(a)), μIL

P
(p(b))}

= inf{α, β} = ⊥.

v) For goal q(x), the set of correct answers is {〈λ; θ〉 : λ ∈ L, λ ≤ μIL
P
(q(x)θ)} =

{〈α; {x/a}〉, 〈⊥; {x/b}〉}.
We have now that μIL

P
(q(x)) = inf{μIL

P
(q(a)), μIL

P
(q(b))} = inf{α,⊥} = ⊥

(it is easy justify that the least Herbrand model has to be defined this way
from q(a), q(b) formulae).

7 Substitutions will only consider terms from the Herbrand universe of the program
instead of variables.
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In the following theorem we provide an original demonstration for the soundness
of the procedural semantics of multi-adjoint programming. Therein we observe
a certain analogy with the one included in [6] for the pure logic programming
case, despite that the non refutational feature of our language and its fuzzy
nature determine very significative differences between both ones. Before tackling
the mentioned result, we state the following lemma, that has an instrumental
character.

Lemma 1. Let (L,≤) be a complete lattice. For all A,B subsets of L, A ⊂ B,
implies inf(B) ≤ inf(A).

Proof. It suffices to consider the definition of the infimum and the complete
character of lattice (L,≤). ��

Observe that, thanks to the previous lemma, we have μI(A) ≤ μI(Aθ)
8, for all

substitution θ and for all Herbrand interpretation I, whenever the set of ground
instances of formula Aθ is a subset of the set of ground instances of A.

Theorem 3 (Soundness). Let P be a multi-adjoint logic program, A an atomic
goal and 〈λ; θ〉 a fuzzy computed answer for A in P. Then, 〈λ; θ〉 is a correct
answer for P and A.

Proof. Let D : [G1, . . . , Gn] be a derivation where G1 = 〈A; id〉 →n
AS/IS 〈λ; θ〉 =

Gn. We prove the claim by induction on n, being n length of D.
We see that, in first place, the result holds for n = 1. Indeed, if for goal

A exists the derivation 〈A; id〉 →AS 〈λ; θ〉, then rule R : 〈H←i;λ〉 ∈ P and
Aθ = Hθ. In that case, every Herbrand model I of P satisfies rule R and, then,
λ ≤ μI(H←i), namely, λ ≤ μI(H). Furthermore, from the equality Aθ = Hθ it
follows that μI(Aθ) = μI(Hθ) and by Lemma 1, we obtain μI(H) ≤ μI(Hθ).
Consequently, we have λ ≤ μI(Aθ) and 〈λ; θ〉 is a correct answer for P and A,
as wanted.

Next suppose that the result is true for all derivation with length k and
let us see that it is verified for an arbitrary derivation of length k + 1, D :
[G1, . . . , Gk+1]. Noting the first step of derivation D, we have G1 = 〈A; id〉 →AS

〈v&iBσ;σ〉 = G2. That is, the admissible step has been executed using the
program rule R : 〈H←i B; v〉, where atom A unifies with the head of rule R
through the mgu σ. For each atom Biσ

9 , i = 1, . . . , n, of Bσ exists a derivation
whose length is less or equal to k, which gives the computed answer 〈bi; τi〉.

More precisely, taking into account that Dom(σ) ∩ Ran(Bi) = ∅, D includes
the following admisible/interpretive derivation steps10:

8 See, for instance, paragraphs iv), v) of Example 2.
9 Without lost of generality, we can suppose that in the considered derivation all
admissible steps are executed before applying interpretive steps.

10 If Q is a goal and σ is a substitution, an interpretive computation is a state transition
system, whose transition relation →IS⊆ (E × E) is defined as 〈Q[@(r1, r2)];σ〉→IS

〈Q[@(r1,r2)/@̇(r1,r2)];σ〉 where @̇ is the truth function of connective @. If Q is a goal
not containing atoms, an interpretive derivation is a sequence 〈Q;σ〉 →∗

IS 〈Q′;σ〉 of
arbitrary interpretive steps.
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D : [〈A; id〉 →AS

〈v&iBσ;σ〉 =

〈v&i@(B1σ, . . . , Bnσ);σ〉 →l1
AS/IS

〈v&i@(b1, . . . , Bnσ);σ ◦ τ1〉 →ln
AS/IS

〈v&̇i@̇(b1, . . . , bn);σ ◦ τ1 ◦ · · · ◦ τn〉 →IS

〈v&̇ib;σ ◦ τ〉 →IS

〈λ; θ〉]

where τ = τ1 ◦ τ2 ◦ · · · ◦ τn, θ = σ ◦ τ , λ = v&̇ib, l1 + l2 + . . . + ln = k − 2 y
b = @̇(b1, . . . , bn), being @ the combination of all conjunctions, disjunctions and
aggregators that links the elements bi ∈ L in order to obtain the correct answer
〈b; τ〉 for program P and goal Bσ.

By the induction hypothesis, for each Biσ, 〈bi; τi〉 is a correct answer and,
then, bi ≤ μI(Biστi), for all Herbrand interpretation I that is model of P . In
that case, from bi ≤ μI(Biστi) it follows that b ≤ μI(Bσ) since μI(Bσ) is ob-
tained from μI(Biτi) as a result of applying the truth functions of conjunctions,
disjunctions or aggregators, being all them monotone in each component.

Then, the equality Aσ = Hσ entails Aθ = Hθ and, therefore, μI(Aθ) =
μI(Hθ). Besides, by firstly using Lemma 1 having into account later that (←i,&i)
is an adjoint pair, it results λ = v&̇ib ≤ v&̇iμI(Bσ) ≤ μI(H) ≤ μI(Hθ).

Consequently, λ ≤ μI(Aθ) and 〈λ; θ〉 is a correct answer for program P and
atom A, as claimed. ��

4 Logical Consequences by Using Fuzzy Sets

Now, we present a concept strongly related with the developments seen in the
core of the paper. We include our approach of fuzzy logical consequences via
fuzzy sets in this appendix due to lack of space in the body of the work.

We formalize the concept of logical consequence in terms of the fuzzy set IL
P

and we relate it with the notion of correct answer. Moreover, we prove that the
least Herbrand model IL

P coincides with the set of formulae from the Herbrand
base BL

P that are a logical consequence of the set of rules of a multi-adjoint
program. This result allows to extend, for multi-adjoint framework, the classical
and well-known formulation of least Herbrand model to logic programming.

In what follows, we propose to state a characterization of the concept of logical
consequence through the least Herbrand model IL

P . Moreover, from a conceptual
standpoint, this characterization will be formulated in a completely similar to
the classical case.
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Given the multi-adjoint logic program P = {R1, . . . ,Rn} with Ri : 〈Ri;αi〉,
i = 1, . . . , n, we have that A = 〈A;α〉 is a logical consequence of P if, and
only if, αi ≤ Ij(Ri) ⇒ α ≤ Ij(A), ∀i, j. Now, the following theorem gives a
characterization of this concept in terms of fuzzy set IL

P .

Theorem 4. Let P be a multi-adjoint logic program and A = 〈A;α〉 a multi-
adjoint formula. A is a logical consequence of P if, and only if, IL

P is a Herbrand
model of A.

Proof. It is enough to consider the definition of (least fuzzy Herbrand model)
IL
P in order to obtain the equivalence: A is a logical consequence of P if, and

only if, α ≤ μIL
P
(A). ��

In the following results we relate the concepts of logical consequence and correct
answer.

Theorem 5. Let P be a multi-adjoint logic program and G a goal. If 〈λ; θ〉 is a
correct answer for P and G then 〈Gθ;λ〉 is a logical consequence of P.

Proof. Let IL
P be the least Herbrand model of P and see that IL

P is Herbrand
model of 〈Gθ;λ〉. However, by definition of correct answer is verified that λ ≤
μIL

P
(Gθ), as wanted. ��

Theorem 6. Let P be a multi-adjoint logic program and A = 〈A;α〉 a multi-
adjoint formula such that A is a goal. If A is a logical consequence of P, then
the pair 〈α; id〉 is a correct answer for P and A.

Proof. By the Theorem 4, IL
P is Herbrand model of A, so that α ≤ μIL

P
(A) and

therefore 〈α; id〉 is a correct answer for P and A as claimed. ��

Theorem 7. Let P be a multi-adjoint logic program and A = 〈Aθ;α〉 a multi--
adjoint formula such that Aθ is a goal. If A is a logical consequence of P, then
the pair 〈α; θ〉 is a correct answer for P and A.

Proof. Analogous to the above theorem. ��

The next result is a natural adaptation, to multi-adjoint logic programing, of the
corresponding theorem of pure logic programming, (see [6]), which characterizes
the least Herbrand model as the set of formulae from the Herbrand base that are
logical consequences of the multi-adjoint program. In this theorem we express a
formula multi-adjoint A = 〈A;α〉 as the pair A|α (α is degree of membership
of A in fuzzy set {A|α}). Observe that this syntax is also allowed for rules in
multi-adjoint program.

Theorem 8. Let IL
P be the least fuzzy Herbrand model of a multi-adjoint pro-

gram P with associated lattice L. If we choose formulae A = A|α with α =
μIj (A), for some Herbrand model Ij , then IL

P = {A ∈ BL
P : A is a logical

consequence of P}.
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Proof. If A ∈ IL
P ⊂ BL

P , then α ≤ μIL
P
(A) so A is logical consequence of P and

this shows that IL
P ⊂ {A ∈ BL

P : A is a logical consequence of P}. For the reverse
inclusion, let A = A|α be a formulae, with α = μIj(A), for some Herbrand model
Ij ; then, μIL

P
(A) ≤ μIj (A) = α, because IL

P ⊂ Ij . Moreover, since A is a logical

consequence of P , α ≤ μIL
P
(A) and, consequently, α = μIL

P
(A), as required. ��

5 Conclusions and Future Work

This paper has focused on the MALP framework, for which during the last years
we have produced a wide range of results regarding both theoretical [2,3,4,13],
and practical [11,12,1] developments. After recalling from [5] our concept of least
Herbrand model forMALP, we have characterized, through the concept of fuzzy
set, notions of Herbrand model, least Herbrand model and correct answer, thus
extending the classic concepts of pure logic programming to this kind of fuzzy
logic programs. The main goals of this work have been both the re-formulation
of all these concepts as well as their strong relationships (by also including
an original proof of the soundness for the procedural semantics of MALP) by
means of the well-known fuzzy sets theory, thus providing more natural and
clearer results which directly resemble the properties of pure logic programming
described in [6], but lifted now to the modern case of fuzzy logic programming.
We are nowadays implementing most notions defined in this paper inside our
“Fuzzy LOgic Programming Environment for Research” FLOPER (visit http:
//dectau.uclm.es/floper/ where some real-world examples are available too).
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Abstract. Prototype Selection (PS) is the preprocessing technique for
K nearest neighbor classification that selects a subset of instances before
classification takes place. The most accurate state-of-the-art PS method
is Fuzzy Rough Prototype Selection (FRPS), which assesses the quality
of the instances by means of the fuzzy rough positive region and automat-
ically selects a good threshold to decide if instances should be retained
in the prototype subset. In this paper we introduce a new PS method
based on FRPS, called Multi Threshold FRPS (MT-FRPS) . Instead of
determining one threshold against which the quality of every instance is
compared, we consider one threshold for each class.

We evaluate MT-FRPS on 40 standard classification datasets and
compare it against MT-FRPS and the state-of-the-art PS methods and
show that MT-FRPS improves the accuracy of the state-of-the-art PS
methods.

Keywords: fuzzy rough set theory, classification, prototype selection.

1 Introduction

Classification, the process where unlabeled data described by conditional at-
tributes is classified using labeled training data, is an important task in data
mining. One of the most intuitive and most widely used classifiers is the K Near-
est Neighbor (KNN, [1]) classifier, which classifies a target instance by looking up
its K nearest neighbors in the training data and labeling it as the most frequently
occurring class among these nearest neighbors.

There are two main drawbacks associated with KNN classification. The first
is that noisy or mislabeled data directly influences the classification of new in-
stances. The second is that KNN is time consuming as the distances between
the target instances and all instances in the training data need to be calculated.
Prototype Selection (PS, [2]) is an answer to both problems. It removes noisy
and/or superfluous instances from the data and provides the KNN classifier with
an improved training dataset, called the prototype subset.

Many PS methods have been proposed in the literature, a good overview
is given in [2]. The most accurate PS techniques are evolutionary algorithms
[3,4,5,6] and Fuzzy Rough Prototype Selection (FRPS, [7,8]). The advantage of
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evolutionary algorithms over FRPS is that they reduce the data more, most of
these evolutionary algorithms remove up to 90 percent of the data. On the other
hand, FRPS is more accurate and faster than the evolutionary algorithms.

As our interest lies in improving the accuracy of the classification process,
we focus on improving FRPS here. The FRPS algorithm assesses the quality of
the instances by means of fuzzy rough set theory [9,10,11] and automatically
determines a good threshold to decide if instances should be removed or not.

Instead of using one threshold to decide if instances should be included in the
prototype subset, our proposal, called Multi Threshold Fuzzy Rough Prototype
Selection (MT-FRPS), considers one threshold for each class, motivated by the
idea that not every class in the dataset looks the same and that the threshold
should be relaxed or rigidified for particular classes.

The remainder of this paper is organized as follows: in Section 2 we first recall
FRPS and then explain in detail how MT-FRPS improves FRPS. In Section 3
we experimentally evaluate MT-FRPS and we conclude in Section 4.

2 Multi Threshold Fuzzy Rough Prototype Selection

In this section we introduce our proposal MT-FRPS. We first recall the FRPS
algorithm in Section 2.1 and explain how we improve FRPS in Section 2.2.

2.1 Fuzzy Rough Prototype Selection

From now on we assume that we are given a decision system (U,A∪{d}) where
U is the universe of instances described by the conditional attributes A and the
decision attribute d. The value of an instance x for an attribute b ∈ A ∪ {d} is
denoted by b(x).

The FRPS algorithm consists of two main components. First, for each instance
x ∈ U its quality is assessed using fuzzy rough set theory, and secondly, a good
threshold is determined to decide if instances should be removed from the data
or not.

Assessing The Quality Of Instances Using Fuzzy Rough Set Theory.
Recall that, for classification problems, the membership degree of an instance
x ∈ U to the fuzzy rough positive region is given as follows:

∀x ∈ U : POS(x) = min
y∈U

I(R(x, y), [x]d(y)), (1)

with I a fuzzy implicator, R an indiscernibility relation and [x]d the decision
class of x. As for all x and y in U [x]d(y) only takes values in {0, 1}, we can
rewrite this membership degree as follows1 [12]:

∀x ∈ U : POS(x) = min
y∈U\[x]d

(1−R(x, y)), (2)

1 We assume that ∀a ∈ [0, 1]I(a, 0) = 1− a which is the case for the customary fuzzy
implicators like the Kleene-Dienes and �Lukasiewicz implicator
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that is, only the instances in a class different from the class of x need to be
considered. The fuzzy rough positive region expresses for each instance x ∈ U to
what extent instances belonging to a different class from x are discernible from
it, and can be used to assess the quality of instances.

Unfortunately the traditional fuzzy rough positive region is based on the strict
minimum operator. As a result, small changes in the decision system can result
in drastic changes in the fuzzy rough positive region membership values, which
is not desirable when working with real-world datasets.

To overcome this problem, the traditional fuzzy rough sets on which the fuzzy
rough positive region is based can be replaced by Ordered Weighted Average
(OWA, [13]) fuzzy rough sets [14]. They replace the strict minimum and maxi-
mum operators in the fuzzy rough lower and upper approximation by their soft
OWA analogues. Given a weight vectorW = 〈w1, . . . , wp〉 such that each weight
is in [0, 1] and such that all weights sum to 1, the OWAW aggregation of p values
v1, . . . , vp is given by

OWA

p∑
i=1

witi (3)

where ti is the ith largest value in v1, . . . , vp. That is, the OWAW aggregation
orders the values decreasingly and then assigns the weights in W to these values
in that order.

The OWA aggregation can be used to soften the minimum and maximum
operator. Note that, if 〈0, . . . , 0, 1〉 is used as weight vector, the minimum is
retrieved. This strict operator can be softened by using a vector with increasing
weights. As a result, high values are associated with a low weight, while low
values are associated with a high weight. The resulting operator behaves like the
minimum but takes into account more values. The same strategy can be applied
to obtain an OWA operator that softens the maximum operator.

After replacing the minimum and maximum operator in the traditional fuzzy
rough sets by their OWA analogues, the fuzzy rough positive region is given by:

∀x ∈ U : POS(x) = OWAW
y∈U

I(R(x, y), [x]d(y)), (4)

where OWAW is a soft analogue of the minimum operator. As for all x, y ∈ U the
value of I(R(x, y), [x]d(y)) is one if y and x are in the same class, the instances
y in the same class as x are omitted:

∀x ∈ U : POS(x) = OWAW
y∈U\[x]d

(1−R(x, y)). (5)

This OWA fuzzy rough positive region is used to assess the quality of instances.
An instance x ∈ U for which the instances y of other classes are highly discernible
from it (i. e. the indiscernibility values R(x, y) are low) will have a high quality
value. These are instances that are typical for their class. Instances on the borders
between classes and mislabeled instances will get a low quality value as there
exist many instances from a different class highly indiscernible from them.
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Determining a Good Threshold. Once the quality of the instances is deter-
mined, the question raises which threshold to use to decide if instances should
be retained or not. The FRPS algorithm proceeds as follows:

1. First all candidate thresholds are determined, these are all the quality values
of the instances without duplicates:

T = {POS(x)|x ∈ U} (6)

2. Next, for each threshold τ ∈ T the corresponding prototype subset contain-
ing all instances for which the quality is at least τ is calculated:

∀τ ∈ T : Sτ = {x|x ∈ U and POS(x) ≥ τ} (7)

3. The training accuracy corresponding to each subset S is calculated. In order
to classify an instance x in U the 1NN classification rule is applied using S
as pool of candidate nearest neighbors if x /∈ S and using S \ {x} as pool of
candidate nearest neighbors otherwise.

4. The prototype subset Sτ with the highest training accuracy is returned. If
multiple subsets have the same training accuracy, the largest one is returned.

Summarized, all possible thresholds are considered and the threshold correspond-
ing to the highest training accuracy is used to decide if instances should be
removed or not.

2.2 Improving FRPS Using Multiple Thresholds

FRPS determines one threshold and compares the quality of each instance in U
against it to decide if it should be included in the final prototype subset or not.
As a single threshold is used for all instances, some information and properties of
the dataset might get lost. Classes within a dataset can be different, for instance,
some classes consist of one solid block of instances close to each other, while other
classes consist of smaller groups of instances spread out over the feature space.
The quality of the first group of instances will in general be higher, while the
last class contains low quality instances. If the same threshold is used for both
classes, this information gets lost.

MT-FRPS deals with this problem by determining a separate threshold for
each class. Assume that there areC classes and denote these classes by c1, . . . , cC .
Instead of using one threshold τ like FRPS does, C thresholds (τ1, . . . , τC) are
used. An instance x in class ci is included in the prototype subset if the quality
of x is at least τi.

One option to determine the C thresholds could be to consider all possible
combinations of thresholds, but the computational cost related to this strategy
is too high. For instance, if the universe consists of 1000 instances divided in two
classes of each size 500, the number of threshold combinations that needs to be
evaluated is 250 000, which is much more than the 1000 evaluations that FRPS
needs. Moreover, this strategy would very likely lead to over-fitting.

Instead, MT-FRPS uses a search strategy that aims to optimize the threshold
combination (τ1, . . . , τC). The outline of MT-FRPS is given below:
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– The starting point of the search algorithm is based on the threshold τ that is
returned by FRPS. That is, FRPS is applied to U and the optimal threshold
τ is retrieved. The threshold combination τbest = (τ1, . . . , τC) is initialized
as (τ, . . . , τ) and the training accuracy corresponding to this threshold com-
bination is denoted by accbest.

– This threshold combination is now optimized iteratively. The following steps
are carried out N times, where N is a parameter:
1. Determine a random class ci in c1, . . . , cC .
2. Determine a random value between −0.01 and 0.01, call it r
3. Consider the new threshold combination τnew = (τ1, . . . , τi + r, . . . , τC),

where one threshold in the combination is slightly changed.
4. Consider the subset S corresponding to this threshold combination:

S = {x ∈ U |POS(x) ≥ τd(x)} (8)

5. Determine the training accuracy acc of S by classifying each instance
x ∈ U using S as pool of candidate nearest neighbors if x /∈ S and using
S \ {x} as pool of candidate nearest neighbors otherwise.

6. If acc ≥ accbest, the new threshold combination is stored in the old one
τcomb = τnew and the best accuracy is updated: accbest = acc.

– The prototype subset S = {x ∈ U |POS(x) ≥ τd(x)} corresponding to τbest
is returned.

Summarized, the threshold that is returned by FRPS is fine-tuned for every class
by introducing small random changes and evaluating the resulting subsets.

3 Experimental Evaluation

In this section we verify if MT-FRPS improves FRPS. We discuss the experi-
mental set-up of our evaluation in Section 3.1 and discuss the results in Section
3.2.

3.1 Experimental Set-Up

We consider 40 datasets from the UCI [15] and KEEL [16] repository. Their
properties are listed in Table 1. We follow a 10 fold cross validation scheme,
that is, the data is divided into 10 folds of equal size, and the instances in each
(test) fold are classified using the 1NN rule on the remaining 9 folds preprocessed
by the PS algorithm. We report the average accuracy, Cohen’s kappa2 [17] and
the running time covering the PS algorithm, not the 1NN classification applied
afterwards.

The quality measure used in the FRPS and MT-FRPS algorithm depends on
the indiscernibility relation R. A preliminary study has shown that the following

2 Cohen’s kappa is an evaluation measure that compensates for correct classifications
due to chance
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measure performs well for FRPS (we assume that the values of the continuous
attributes are normalized such that they are in [0, 1]):

∀x, y ∈ U : R(x, y) =

∑
a∈A

Ra(x, y)

|A| , (9)

where Ra(x, y) = 1 − |a(x) − a(y)| for continuous attributes, and Ra(x, y) is 1
if x and y have the same values for a and 0 otherwise for a discrete attribute a.
We use this indiscernibility relation for both FRPS and MT-FRPS.

The quality measure also depends on the weights used for the OWA aggrega-
tion, we use:

W = 〈 1

p
p∑

i=1

1
i

,
1

(p− 1)
p∑

i=1

1
i

, . . . ,
1

2
p∑

i=1

1
i

,
1

1
p∑

i=1

1
i

〉, (10)

as FRPS performed well with these weights in a preliminary study.
In order to limit the extra computional time of MT-FRPS over FRPS we set

the parameter N that determines how many evaluations are carried out to 100.

Table 1. Data used in the experimental evaluation

# inst. # feat. # class. # inst. # feat. # class.

appendicitis 106 7 2 housevotes 232 16 2
australian 690 14 2 iris 150 4 3
automobile 150 25 6 led7digit 500 7 10
balance 625 4 3 lymphography 148 18 4
bands 365 19 2 mammographic 830 5 2
breast 277 9 2 monk-2 432 6 2
bupa 345 6 2 movement libras 360 90 15
car 1728 6 4 newthyroid 215 5 3
cleveland 297 13 5 pima 768 8 2
contraceptive 1473 9 3 saheart 462 9 2
crx 653 15 2 sonar 208 60 2
dermatology 358 34 6 spectfheart 267 44 2
ecoli 336 7 8 tae 151 5 3
flare 1066 11 6 tic-tac-toe 958 9 2
german 1000 20 2 vehicle 846 18 4
glass 214 9 7 vowel 990 13 11
haberman 306 3 2 wine 178 13 3
hayes-roth 160 4 3 wisconsin 683 9 2
heart 2270 13 2 yeast 1484 8 10
hepatitis 80 19 2 zoo 101 16 7
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Table 2. Results obtained by FRPS and MT-FRPS

FRPS MT-FRPS
Acc. Cohen’s κ Time (s) Acc. Cohen’s κ Time (s)

appendicitis 0.8509 0.5283 0.44 0.8609 0.5523 4.56
australian 0.8565 0.7098 9.85 0.8522 0.7015 58.56
automobile 0.7755 0.7066 1.50 0.7755 0.7066 15.00
balance 0.8913 0.7992 2.00 0.8897 0.7965 16.78
bands 0.7029 0.3348 9.59 0.7147 0.3670 27.11
breast 0.7684 0.3389 0.73 0.7650 0.3289 11.67
bupa 0.6017 0.1763 2.26 0.5988 0.1710 18.67
car 0.8686 0.6985 10.71 0.8640 0.6939 120.89
cleveland 0.5897 0.2881 0.33 0.5897 0.2881 3.00
contraceptive 0.4366 0.1337 7.32 0.4284 0.1041 75.89
crx 0.8554 0.7092 6.03 0.8538 0.7069 36.00
dermatology 0.9634 0.9538 4.84 0.9607 0.9504 36.56
ecoli 0.8248 0.7558 2.93 0.8217 0.7534 18.00
flare 0.6436 0.5442 7.91 0.6548 0.5575 100.93
german 0.7280 0.2459 6.71 0.7290 0.2236 30.56
glass 0.7176 0.6128 0.92 0.7176 0.6128 17.78
haberman 0.6959 0.0929 0.81 0.7091 0.1085 6.56
hayes-roth 0.5188 0.2580 0.36 0.5250 0.2633 3.11
heart 0.8074 0.6083 2.41 0.8148 0.6214 8.44
hepatitis 0.8160 0.2451 0.83 0.8160 0.2451 6.44
housevotes 0.9218 0.8424 1.87 0.9218 0.8424 13.22
iris 0.9400 0.9100 1.63 0.9400 0.9100 14.56
led7digit 0.5820 0.5343 2.54 0.5820 0.5344 19.33
lymphography 0.8415 0.6966 0.80 0.8554 0.7228 0.33
mammographic 0.8047 0.6108 4.65 0.8023 0.6056 42.22
monk-2 0.8228 0.6419 2.81 0.8135 0.6237 0.78
movement libras 0.8028 0.7882 3.94 0.8111 0.7972 34.00
newthyroid 0.9675 0.9278 0.71 0.9675 0.9278 5.78
pima 0.7371 0.4026 5.46 0.7396 0.4102 35.33
saheart 0.7165 0.3649 2.57 0.7252 0.3560 25.11
sonar 0.8362 0.6686 3.12 0.8457 0.6880 19.44
spectfheart 0.7906 0.1155 7.73 0.7832 0.1233 9.33
tae 0.5313 0.2974 0.41 0.5313 0.2974 3.22
tic-tac-toe 0.7985 0.4885 7.12 0.8497 0.6657 41.89
vehicle 0.6962 0.5948 8.31 0.6891 0.5855 69.44
vowel 0.9949 0.9944 7.66 0.9949 0.9944 88.89
wine 0.9552 0.9326 1.98 0.9608 0.9409 11.22
wisconsin 0.9680 0.9297 9.23 0.9680 0.9297 55.33
yeast 0.5277 0.3896 6.01 0.5439 0.4056 92.11
zoo 0.9347 0.9122 0.48 0.9347 0.9122 8.00
AVERAGE: 0.7771 0.5696 3.93 0.7800 0.5756 30.15
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3.2 Results

The results are listed in Table 2. On average, MT-FRPS improves FRPS both
with respect to accuracy and Cohen’s kappa. The difference is larger for Cohen’s
kappa, which may be due to the fact that Cohen’s kappa takes into account the
classification accuracy per class, which is in favor of MT-FRPS as it considers
the classes separately to determine good thresholds. The improved performance
comes with a higher computational cost, due to the fact that extra evaluations
need to be carried out.

4 Conclusion

In this paper we proposed a new PS method called MT-FRPS that improves
FRPS. MT-FRPS assesses the quality of the instances using fuzzy rough set
theory and then determines for each class a threshold to decide if the instances
in that class should be removed or not. An experimental evaluation shows that
MT-FRPS improves FRPS.
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Abstract. In this paper, dual fuzzy rough approximation operators de-
termined by a fuzzy implication operator I in infinite universes of dis-
course are first introduced. Measurable structures of I-fuzzy rough sets
are then discussed. It is shown that the family of all definable sets in an
I-fuzzy rough set algebra derived from a reflexive fuzzy space forms a σ-
fuzzy algebra. In a finite universe of discourse, the family of all definable
sets in a serial I-fuzzy rough set algebra is a fuzzy algebra, and conversely
if a σ-fuzzy algebra is generated by a crisp algebra, then there must exist
an I-fuzzy rough set algebra such that the family of all definable sets is
exactly the given σ-fuzzy algebra.

Keywords: Approximation spaces, Fuzzy rough sets, Measurable spaces,
Rough sets, σ-algebras.

1 Introduction

The concept of σ-algebra is of importance in mathematical analysis as the foun-
dation for Lebesgue integration, and in probability or measure theory, where
it is interpreted as the collection of events which can be assigned probabilities.
The study of relationship between approximation spaces in rough set theory and
measurable spaces in probability theory is an interesting issue. In [9], Pawlak
proved that the family of all definable sets in a Pawlak approximation space
forms a σ-algebra. In [12,15], it was shown that the family of all definable sets
in a serial crisp approximation space forms a σ-algebra, and, conversely, for any
crisp measurable space in a finite universe of discourse there must exist a crisp
approximation space such that the family of all definable sets is the given crisp
algebra. As for the fuzzy environment, Wu examined that the family of all defin-
able sets in a T -fuzzy rough algebra derived from a reflexive fuzzy approximation
space is a σ-fuzzy algebra [11].

In [13], Wu et al. presented a general framework for the study of dual pair of
lower and upper fuzzy rough approximation operators determined by a general
fuzzy implicator I in infinite universes of discourse. In this paper, we will in-
vestigate the measurable structures of I-fuzzy rough sets. We will establish the
relationship between fuzzy approximation spaces and fuzzy measurable spaces.
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2 Fuzzy Logical Operators

Throughout this paper, U will be a nonempty set called the universe of discourse.
The class of all subsets (respectively, fuzzy subsets) of U will be denoted by P(U)
(respectively, by F(U)). For α ∈ I (where I = [0, 1] is the unit interval), α̂ will
denote the constant fuzzy set: α̂(x) = α, for all x ∈ U . Zadeh’s fuzzy union and
fuzzy intersection will be denoted by ∪ and ∩ respectively.

A triangular norm [4], or t-norm in short, is an increasing, associative and
commutative mapping T : I2 → I that satisfies the boundary condition: for all
α ∈ I, T (α, 1) = α.

A triangular conorm (t-conorm in short) is an increasing, associative and
commutative mapping S : I2 → I that satisfies the boundary condition: for all
α ∈ I,S(α, 0) = α.

A negator N is a decreasing I → I mapping satisfying N (0) = 1 and N (1) =
0. The negator Ns(α) = 1 − α is usually referred to as the standard negator. A
negator N is called involutive iff N (N (α)) = α for all α ∈ [0, 1]. It is well-known
that every involutive negator is continuous [5].

Given a negator N , a t-norm T and a t-conorm S are called dual w.r.t. N iff
the De Morgan’s laws are satisfied, i.e.

S(N (α),N (β)) = N (T (α, β)), ∀α, β ∈ I,
T (N (α),N (β)) = N (S(α, β)), ∀α, β ∈ I. (1)

It is well known [5] that for an involutive negator N and a t-conorm S, the
function TS(α, β) = N (S(N (α),N (β))), α, β ∈ I, is a t-norm such that T and
S are dual w.r.t. N . It will be referred to as a t-norm dual to S w.r.t. N .

In what follows, ∼N will be used to denote fuzzy complement determined by
a negator N , i.e. for every A ∈ F(U) and every x ∈ U , (∼N A)(x) = N (A(x)).
If N = Ns, then we will write ∼ A instead of ∼N A.

By an implicator (fuzzy implication operator) we mean a function I : I2 → I
satisfying I(1, 0) = 0 and I(1, 1) = I(0, 1) = I(0, 0) = 1. An implicator I is
called left monotonic (respectively, right monotonic) iff for every α ∈ I, I(·, α)
is decreasing (respectively, I(α, ·) is increasing). If I is both left monotonic and
right monotonic, then it is called hybrid monotonic.

Remark 1. It is easy to verify that I(α, 1) = 1 for all α ∈ I when I is a left
monotonic implicator, and if I is right monotonic then I(0, α) = 1 for all α ∈ I.

An implicator I is said to be a border implicator (or it satisfies the neutrality
principle [1]) if I(1, x) = x for all x ∈ I.

An implicator I is said to be an EP implicator (EP stands for exchange
principle [10]) if it satisfies for all α, β, γ ∈ I

I(α, I(β, γ)) = I(β, I(α, γ)). (2)

An implicator I is said to be a CP implicator (CP stands for confinement
principle [1]) if it satisfies for all α, β ∈ I

α ≤ β ⇐⇒ I(α, β) = 1. (3)
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Several classes of implicators have been studied in the literature. We recall
here the definitions of two main classes of operators [5].

Let T ,S and N be a t-norm, a t-conorm and a negator respectively. An
implicator I is called

• an S-implicator based on S and N iff

I(x, y) = S(N (x), y) for all x, y ∈ I. (4)

• an R-implicator (residual implicator) based on a left-continuous t-norm T
iff for every x, y ∈ [0, 1],

I(x, y) = sup{λ ∈ [0, 1] : T (x, λ) ≤ y}. (5)

Given a negator N and a border implicator I, one can define an N -dual
operator of I, θI,N : I2 → I as follows [8]:

θI,N (x, y) = N (I(N (x),N (y))), x, y ∈ I. (6)

Proposition 1. [13] For a border implicator I and a negator N , the following
properties hold:

(1) θI,N (1, 0) = θI,N (1, 1) = θI,N (0, 0) = 0.
(2) θI,N (0, 1) = 1.
(3) If N is involutive, then θI,N (0, x) = x for all x ∈ I.
(4) θI,N is left monotonic (resp. right monotonic) whenever I is left mono-

tonic (resp. right monotonic).
(5) If I is left monotonic, then θI,N (x, 0) = 0 for all x ∈ I; and if I is right

monotonic, then θI,N (1, x) = 0 for all x ∈ I.
(6) If I is an EP implicator, then θI,N satisfies the exchange principle, i.e.

θI,N (x, θI,N (y, z)) = θI,N (y, θI,N (x, z)), ∀x, y, z ∈ I. (7)

(7) If I is a CP implicator, then y ≤ x iff θI,N (x, y) = 0.

3 I-Fuzzy Rough Sets

Definition 1. Let U be a nonempty universe of discourse and T a t-norm on
I. A fuzzy subset R ∈ F(U × U) is referred to as a fuzzy binary relation on U ,
R(x, y) is the degree of relation between x and y, where (x, y) ∈ U × U . If for
each x ∈ U ,

∨
y∈U R(x, y) = 1, then R is a serial fuzzy relation on U . R is a

reflexive fuzzy relation if R(x, x) = 1 for all x ∈ U .

Definition 2. Let I be an implicator and N an involutive negator on I. For
a fuzzy approximation space (U,R), i.e. R is a fuzzy binary relation on U , and
any fuzzy set A ∈ F(U), the lower and upper I-fuzzy rough approximations of A
w.r.t. the approximation space (U,R), denoted as RI(A) and RI(A) respectively,
are fuzzy sets of U whose membership functions are defined respectively by

RI(A)(x) =
∧
y∈U

I(R(x, y), A(y)), x ∈ U. (8)
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RI(A)(x) =
∨
y∈U

θI,N (N (R(x, y)), A(y)), x ∈ U. (9)

The operators RI and RI from F(U) to F(U) are referred to as lower and
upper I-fuzzy rough approximation operators of (U,R) respectively, and the pair
(RI(A), RI(A)) is called the I-fuzzy rough set of A w.r.t. (U,R). We will call the
system (F(U),∪,∩,∼N , RI , RI) an I-fuzzy rough set algebra. When RI(A) =
A = RI(A), A is said to be definable w.r.t. (U,R).

The following theorem shows that the lower and upper I-fuzzy rough approxi-
mation operators determined by a border implicator I and an involutive negator
N are dual with each other.

Theorem 1. [13] Let (U,R) be a fuzzy approximation space, I a border impli-
cator and N an involutive negator, then

(DFL) RI(A) =∼N RI(∼N A), ∀A ∈ F(U),

(DFU) RI(A) =∼N RI(∼N A), ∀A ∈ F(U).
(10)

Remark 2. (1) When N = Ns, I is an R-implicator determined by a t-norm
T , and S is the t-conorm dual to T , then it can be verified that the lower
and upper approximation operators in Definition 2 degenerate to the dual fuzzy
rough approximation operators defined by Mi and Zhang in [7], i.e.

RI(A)(x) =
∧

y∈U

θ(R(x, y), A(y)), A ∈ F(U), x ∈ U,

RI(A)(x) =
∨

y∈U

σ(1 −R(x, y), A(y)), A ∈ F(U), x ∈ U, (11)

where
θ(a, b) = sup{c ∈ I : T (a, c) ≤ b}, a, b ∈ I.
σ(a, b) = inf{c ∈ I : S(a, c) ≥ b}, a, b ∈ I. (12)

In [17], the lower and upper fuzzy rough approximation operators defined in
Eq. (11) are called θ-lower and σ-upper approximation operators respectively.

(2) When N = Ns, T is a t-norm, S is the t-conorm dual to T , and I is
the S-implicator determined by the t-norm T , i.e. I(a, b) = S(1 − a, b), then it
can be verified that the lower and upper approximation operators in Definition
2 degenerate to the dual fuzzy rough approximation operators defined by Mi et
al. [6] and Wu [11], i.e.

RI(A)(x) =
∧

y∈U

S(1 −R(x, y), A(y)), A ∈ F(U), x ∈ U,

RI(A)(x) =
∨

y∈U

T (R(x, y), A(y)), A ∈ F(U), x ∈ U, (13)

In literature, the lower and upper approximation operators defined by Eq. (13)
are called the S-lower and T -upper approximation operators respectively [17].

More specifically, when U is a finite set, if T = min and S = max, then the
lower and upper approximation operators in Definition 2 are no other than the
dual fuzzy rough approximation operators defined by Wu and Zhang [14], i.e.
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RI(A)(x) =
∧

y∈U

((1−R(x, y)) ∨ A(y)), A ∈ F(U), x ∈ U,

RI(A)(x) =
∨

y∈U

(R(x, y) ∧A(y)), A ∈ F(U), x ∈ U. (14)

By Definition 2, the following Proposition 2 can be derived.

Proposition 2. Let I be a continuous border and CP implicator, and N an
involutive negator. If R is a crisp binary relation on U , then

RI(A)(x) =
∧

y∈Rs(x)

A(y), A ∈ F(U), x ∈ U,

RI(A)(x) =
∨

y∈Rs(x)

A(y), A ∈ F(U), x ∈ U. (15)

where Rs(x) = {y ∈ U : (x, y) ∈ R} is the successor neighborhood of x w.r.t. R
[16].

The I-fuzzy rough approximation operators satisfy following properties [13]:
(FL1) RI(

⋂
j∈J

Aj) =
⋂
j∈J

RI(Aj), Aj ∈ F(U)(∀j ∈ J, J is an index set).

(FU1) RI(
⋃
j∈J

Aj) =
⋃
j∈J

RI(Aj), Aj ∈ F(U)(∀j ∈ J, J is an index set).

(FL2) A ⊆ B =⇒ RI(A) ⊆ RI(B), A,B ∈ F(U).

(FU2) A ⊆ B =⇒ RI(A) ⊆ RI(B), A,B ∈ F(U).

(FL3) RI(
⋃
j∈J

Aj) ⊇
⋃
j∈J

RI(Aj), Aj ∈ F(U)(∀j ∈ J, J is an index set).

(FU3) RI(
⋂
j∈J

Aj) ⊆
⋂
j∈J

RI(Aj), Aj ∈ F(U)(∀j ∈ J, J is an index set).

Theorem 2. [13] Let (U,R) be a fuzzy approximation space, I a continuous
border and CP implicator, and N an involutive negator. Then

R is serial ⇐⇒ (FL0) RI(α̂) = α̂, ∀α ∈ I.
⇐⇒ (FU0) RI(α̂) = α̂, ∀α ∈ I.

According to Definition 2, Theorem 3 below can be induced.

Theorem 3. Let I be a continuous border and CP implicator, and N an invo-
lutive negator. If U is a finite universe of discourse, and R a serial fuzzy relation
on U , Then

(FLU0) RI(A) ⊆ RI(A), ∀A ∈ F(U).

Theorem 4. [13] Let (U,R) be a fuzzy approximation space (i.e. R is a fuzzy
relation on U), I a border and CP implicator, and N an involutive negator.
Then

R is reflexive ⇐⇒ (FLR) RI(A) ⊆ A, ∀A ∈ F(U).

⇐⇒ (FUR) A ⊆ RI(A), ∀A ∈ F(U).
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4 Measurable Structures of I-Fuzzy Rough Sets

In this section, we investigate the measurable structures of I-fuzzy rough sets.
We will establish the relationship between fuzzy approximation spaces and fuzzy
measurable spaces.

Definition 3. [2] Let U be a nonempty set. A subset A of P(U) is called a
σ-algebra on U iff

(A1) U ∈ A,
(A2) {Xn : n ∈ N} ⊂ A (where N is the set of positive integer numbers)

=⇒
⋃

n∈NXn ∈ A,
(A3) X ∈ A =⇒∼ X ∈ A.

The sets in A are called measurable sets and the pair (U,A) is referred to as a
measurable space.

With the definition we can see that ∅ ∈ A and
(A2)′ {Xn : n ∈ N} ⊂ A =⇒

⋂
n∈NXn ∈ A.

If U is a finite universe of discourse, then condition (A2) in Definition 3 can
be replaced by

(A2)′′ X,Y ∈ A =⇒ X ∪ Y ∈ A.
In such a case, A is also called an algebra. If we denote

A(x) = ∩{X ∈ A : x ∈ X}, x ∈ U, (16)

then A(x) ∈ A, it can be checked that {A(x) : x ∈ U} ⊆ A forms a partition of
U and A(x) is called the atom of A containing x.

Definition 4. [3] Let U be a nonempty set. A subset F of F(U) is called a fuzzy
σ-algebra on U iff

(FA1) α̂ ∈ F for all α ∈ I,
(FA2) {An : n ∈ N} ⊂ F =⇒

⋃
n∈NAn ∈ F ,

(FA3) A ∈ F =⇒∼ A ∈ F .
The sets in F are called fuzzy measurable sets and the pair (U,F) is referred to
as a fuzzy measurable space.

Clearly, condition (FA1) in Definition 4 implies that ∅, U ∈ F . And similar to
Definition 3, in terms of (FA3), condition (FA2) can be replaced by the following
condition (FA2)′:

(FA2)′ {An : n ∈ N} ⊂ F =⇒
⋂

n∈NAn ∈ F .
If U is a finite universe of discourse, then condition (FA2) in Definition 4 can

be replaced by
(FA2)′′ A,B ∈ F =⇒ A ∪B ∈ F .

In such a case, F is also called a fuzzy algebra.

Definition 5. Let U be a finite universe of discourse. A fuzzy algebra F on
U is said to be generated by a crisp algebra A iff for each A ∈ F there exist
ai ∈ [0, 1], i = 1, 2, . . . , k, such that

A(x) =

k∑
i=1

ai1Ci(x), x ∈ U, (17)



98 W.-Z. Wu et al.

where {C1, C2, . . . , Ck} = {A(x) : x ∈ U} is the atoms of A and 1Ci is the
characteristic function of the set Ci, i.e., 1Ci(x) = 1 for x ∈ Ci and 0 otherwise.

Remark 3. If a fuzzy algebra F on U is generated by a crisp algebra A, we can
see that, for each A ∈ F , A : U → [0, 1] is measurable w.r.t. A-B([0, 1]), where
B([0, 1]) is the Borel subsets of [0, 1], alternatively, A is measurable in sense of
Zadeh [18].

By employing Theorems 3 and 4, we can conclude following Theorems 5 and
6 respectively.

Theorem 5. Assume that I is a continuous border and CP implicator, and N
an involutive negator. If U is a finite universe of discourse, and R is a serial
fuzzy relation on U , denote

F = {A ∈ F(U) : RI(A) = A = RI(A)}. (18)

Then F is a fuzzy algebra on U .

Theorem 6. Assume that I is a continuous border and CP implicator, and N
an involutive negator. If (U,R) is a reflexive fuzzy approximation space, denote

F = {A ∈ F(U) : RI(A) = A = RI(A)}. (19)

Then F is a σ-fuzzy algebra on U .

By employing Proposition 2 we can obtain following Theorem 7 which presents
the conditions that a fuzzy measurable space can be associated with a fuzzy
approximation space such that the family of all definable sets induced from the
fuzzy approximation space is exactly the class of all measurable sets in the given
fuzzy measurable space.

Theorem 7. Assume that I is a continuous border and CP implicator, and N
an involutive negator. If U is a finite universe of discourse and (U,F) a fuzzy
measurable space which is generated by a crisp algebra A, then there exists a
reflexive fuzzy binary relation R on U such that

F = {A ∈ F(U) : RI(A) = A = RI(A)}. (20)

5 Conclusion

We have introduced a general type of relation-based I-fuzzy rough sets by using
constructive approach. By employing fuzzy logical operators on [0, 1], we have
introduced I-lower and I-upper approximations of fuzzy sets with respect to
a generalized fuzzy approximation space. We have further discussed the rela-
tionships between I-fuzzy rough set algebras derived from fuzzy approximation
spaces and fuzzy σ-algebras in fuzzy measurable spaces. We have shown that the
family of all definable sets in a reflexive fuzzy approximation space forms a fuzzy
σ-algebra. On the other hand, for a fuzzy algebra generated by a crisp algebra
in a finite universe of discourse there must exist a fuzzy approximation space
such that the family of all I-definable sets is exactly the class of all measurable
sets in the given fuzzy measurable space.
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Abstract. In multi-label learning task, each sample may be assigned with one 
or more labels. Moreover multi-label classification tasks are often characterized 
by high-dimensional and inconsistent attributes. Fuzzy rough sets are an 
effective mathematic tool for dealing with inconsistency and attribute reduction. 
In this work, we discuss multi-label attribute reduction within the frame of 
fuzzy rough sets. We analyze the definitions of fuzzy lower approximation in 
multi-label classification and give several improvements of the traditional 
algorithms. Furthermore, the attribute dependency function is defined to 
evaluate condition attributes. A multi-label attribute reduction algorithm is 
constructed based on the dependency function. Numerical experiments show 
the effectiveness of the proposed technique. 

Keywords: Multi-label learning, attribute evaluation, fuzzy rough set, attribute 
dependency. 

1 Introduction 

There are many multi-label learning tasks in practice, such as web page classification, 
text categorization and image annotation. In these tasks, each sample may have  
one or multiple labels. For instance, a web page about technology may belong to 
computer and internet in web page classification [1-2, 14]; an image may be described 
not only the desert, but also the sunset in natural scene image annotation [3,16]. 
Moreover, multi-label learning tasks are usually described with high-dimensional, 
heterogeneous, and inconsistent features, which make the task more difficult. 

Attribute reduction is of great significance for improving the performance of a 
multi-label learning task. The curse of dimensionality, caused by high-dimensionality, 
may not only require expensive cost to acquire and store, but also deteriorate the 
classification performance. The rough set theory, proposed by Pawlak in 1982 [4], is a 
powerful mathematical tool for modeling the imprecise and inconsistent information 
in knowledge acquisition, and has been successfully used in attribute reduction, 
dependency analysis and rule extraction. However, this model cannot directly deal 
with numerical and fuzzy attributes.  

Fuzzy rough set model, introduced by Dubois and Prade [5], is developed to  
deal with numerical and fuzzy data, where fuzzy equivalence relations satisfying 
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reflexivity, symmetry, and max-min transitivity, were considered. In addition, t-norms 
and s-conorms were used in defining fuzzy lower and upper approximation operators 
[6]. Fuzzy rough sets have been widely discussed in fuzzy attribute reduction [7-10]. 

In this work, we extend the fuzzy rough sets to learn multi-label tasks. We discuss 
the algorithm for computing fuzzy lower approximations in the context of multi-label 
classification. We study how to find a sample coming from a different class in multi-
label datasets. Furthermore, the novel attribute dependency function is defined and an 
algorithm for multi-label attribute reduction is constructed. The performance our 
method is tested on the Web page classification and scene image annotation task. 

2 Multi-label Attribute Reduction Based on Fuzzy Rough Sets 

In this section, we discuss the definition of fuzzy lower approximation of multi-labels. 

2.1 Fuzzy Rough Sets 

In traditional two-class or multi-class classification, a decision table is formulated as 
DT=<U, C, D >,  where U is a finite nonempty set of objects, C is a set of condition 
attributes, and D is a decision attribute. U is divided D into several subsets Ai. R(x,y)  
is the fuzzy similar relation between sample x and y. The s-norm fuzzy lower 
approximation operator was defined as [11]: 

 
R ( ) inf ( ( ( , )), ( ))S i y U iA x S N R x y A y∈= .                       (1) 

 
There are some commonly encountered operators used in fuzzy reasoning, where 
( , ) max( , )MS a b a b=  is called the standard max operator; ( , )PS a b a b a b= + − ∗  is 

probabilistic sum operator; ( , ) min( ,1)LS a b a b= +  is Lukasiewicz norm; while 

2 2
cos ( , ) min( 2 2 ,0)S a b a b a b a a b b= + − ∗ + − −  is cosine norm.  

2.2 Attribute Dependency in Multi-label Classification 

Multi-label classification is a special task, which sample is associated with one or 
more class labels. An intuitive approach to solving multi-label learning problem is to 
convert it into multiple independent binary class [13] or into a multi-class single-label 
task [14]. 

MDT=<U, C, D > is a multi-label decision table. D={d1,d2,…,dL} contains L labels. 
The proper labels associated with sample x constitute an L-dimensional decision 
vector. If x has label dk,  the k-th dimension of x’s decision vector is 1; and 0 
otherwise. A decision label  dk ∈ D divides U into two subsets Pk and Nk, If the k-th 
dimension of xi’s decision vector is 1, then xi belongs to Pk ; otherwise,  xi belongs  
to Nk . 

Take sample xi as an example. The Near Miss of xi, a subset of samples with 
different class label with xi, denoted by NM(xi), is defined as: 
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   1 ( ) ,  where { | }i k i k
k

NM x N k x p= ∈   or 

2 ( ) { | , }i i k kNM x x k x P x N= ∃ ∈ ∧ ∈ ,                          (2) 

 
where 1( )iNM x  is the subset of  samples without any label in xi; 2 ( )iNM x  is the 

subset of samples which have different class labels with  xi. 

Table 1. An artificial multi-label table, and the Near Miss of xi 

U C 
D 

1 ( )iNM x  2 ( )iNM x  
Desert Sunset Tree 

x1 … 0 1 0 {x3, x4, x5} { x2, x3, x4,x5, x6} 

x2 … 1 1 0 {x4} { x1, x3, x4,x5, x6, x7} 

x3 … 1 0 1 { x1, x7} { x1, x2, x4,x5, x6, x7} 

x4 … 0 0 1 {x1, x2, x5, x7} { x1, x2, x3, x5, x6, x7} 

x5 … 1 0 0 { x1, x4, x7} { x1, x2, x3, x4, x6, x7} 

x6 … 1 1 1 ∅  { x1, x2, x3, x4, x5, x7} 

x7 … 0 1 0 {x3, x4, x5} { x2, x3, x4, x5, x6} 

 
An example is showed in Table 1 and Table 2. There are desert and sunset in an 

image x, and there is not a tree. If we want to pick out the images with different labels 
of x, you will first find the images which have not desert and sunset. However, if there 
is only sunset, you may first find the image without sunset, just like 1( )NM x . In 

extreme case, every label combination can be regarded as one class. The subset of 
samples which has different class labels with x is 2 ( )NM x .  

In formula (1), U is divided D into two subsets A1and A2. If x ∈ A1,  
y ∈ A1, i.e. A1(y) =1, we get 1R ( ) 1S A x = ; If x ∈ A1, y ∉  A1, i.e.  

A1(y)=0, we get 
11R ( ) inf (1 ( , ))S y AA x R x y∉= − . As x ∉ A2, 2R ( ) 0S A x = . We get 

R ( ) inf (1 ( , )) inf (1 ( , ))
i i iS A y A y AD x R x y R x y∉ ∉= − = −  

   
Definition 2. Given a MDT=<U, C, D >, R is fuzzy similar relation on U with the 
conditional attribute set. The fuzzy lower approximation operators are defined as: 

 

( )( ) inf (1 ( , ))S y NM xR D x R x y∈= − .                          (3) 

Formula (3) shows that the membership of x to the lower approximation of x’s 
decision is determined by the closest sample with different class labels, while the 
membership of x to the lower approximation of the other decision is zero. 

 
Definition 3. Given MDT=<U, C, D >, R is T-equivalence relation on U with the 
conditional attribute set B C⊆ . The attribute dependency of B is defined as:  
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 1
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| |

n

S iS i
B

R D x
D

U
γ ==  .                               (4) 

The dependency between the decision and condition attributes reflects the 
approximation ability of the condition attributes.  

2.3 Multi-label Attribution Reduction Algorithm Based on KFRS 

There are two key problems in constructing an algorithm for attribute reduction: 
attribute evaluation and search strategies. The first one is used to evaluate the quality 
of condition attributes, and the second one is to search the optimal features with 
respect to the given evaluation function. We develop a ranking based algorithm for 
feature selection according to attribute dependency. It is easy to extend it to forward 
or backward greedy search.  

 

Algorithm: Feature selection for Multi-label task 
Input: U, C, D 
Output: Attribute Reduct R 
Begin 

for each condition attribute c∈C do 
for each sample x∈C  do 
choose different class sample set H of x 
Computing fuzzy low approximation ( )SR D x  

if H is empty set 
  ( ) 1SR D x =  

end 
end 

Computing attribute dependency degree ( )S
c Dγ  

end 

    attribute c∈C is ranked by ( )S
c Dγ  

end 

3 Experiments 

In this section, we evaluate the performance of the proposed method by comparing 
with other multi-label attribute reduction methods on web page categorization and 
scene image annotation. 

3.1 Experimental Dataset and Setting 

Two multi-label datasets are used in this work. The web page data set consist of 14 
top-level categories and each category is classified into a number of second-level 
subcategories. We use 11 out of the 14 web page datasets. Each set is divided into a 
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training set with 2000 documents and a test set with 3000 documents. The scene image 
annotation dataset contains 2407 natural scene images with 294 attributes and 6 labels. 

The multi-label k-nearest neighbor method (ML-kNN) [15] is used for 
classification after attribute reduction. The parameter of ML-kNN controlling the 
strength of uniform prior is set 1, which yields the Laplace smoothing, and k=10. Five 
criteria are computed to evaluate the performance of the compared methods, including 
hamming loss (HL), ranking loss (RL), one-error (OE), coverage (CV) and average 
precision (AP).  

3.2 Experimental Results  

Table 2. The details of 11 web page classification datasets, their classification results(%) in the 
original attribute spaces and attribute reduction spaces, and the dimension present of attribute 
when average precision reached the maximum. ”↓” indicates the smaller the better. ”↑” 
indicates the larger the better. 

 Label Attribute HL(*10)↓ RL↓ OE↓ CV(*0.01)↓ AP↑ 

1 26 
462 60.69±0.94 15.02±0.45 62.13±3.15 54.04±0.95 51.64±1.66 

43% 59.83±0.37 14.87±0.20 61.16±0.86 53.84±0.61 51.99±0.36 

2 30 
438 26.76±0.65 3.74±0.21 11.79±0.62 21.81±0.71 88.23±0.41 

100% 26.71±0.56 3.72±0.19 11.73±0.56 21.65±0.70 88.26±0.41 

3 33 
681 40.85±0.42 8.99±0.10 44.06±0.54 42.86±0.76 63.37±0.28 

39% 39.32±0.48 8.88±0.22 43.26±0.65 42.59±0.98 64.14±0.40 

4 33 
550 39.24±0.33 8.16±0.17 52.42±0.49 36.02±0.67 59.73±0.34 

100% 41.43±0.31 8.12±0.19 52.76±0.83 36.13±0.82 59.54±0.49 

5 21 
640 62.81±1.82 12.49±0.73 59.18±6.46 33.68±1.46 56.50±3.50 

100% 61.89±2.06 12.26±0.72 58.33±6.68 33.09±1.48 57.21±3.80 

6 32 
612 39.40±1.75 5.29±0.23 33.24±1.40 29.92±0.94 73.24±1.06 

37% 42.76±0.48 6.08±0.25 40.08±1.36 32.73±1.07 68.89±1.03 

7 22 
606 61.61±0.56 19.18±0.41 69.75±1.01 50.67±0.82 46.12±0.67 

28% 59.70±0.57 18.09±0.26 64.52±0.78 48.40±0.72 49.66±0.49 

8 33 
793 32.14±0.44 9.31±0.17 48.86±0.77 35.51±0.62 61.13±0.51 

34% 30.32±0.31 8.61±0.18 46.35±0.68 33.10±0.62 63.20±0.46 

9 40 
743 33.48±0.43 11.82±0.20 58.18±0.73 61.20±1.02 53.00±0.43 

100% 33.62±0.49 11.83±0.29 57.90±0.97 61.67±1.20 53.24±0.69 

10 39 
1047 21.85±0.33 5.66±0.19 32.78±0.61 30.17±0.99 74.71±0.49 

90% 21.75±0.32 5.66±0.17 32.74±0.82 30.37±0.78 74.69±0.51 

11 27 
636 54.48±0.51 13.33±0.18 43.98±0.74 53.80±0.63 60.86±0.43 

100% 54.56±0.48 13.44±0.24 43.95±0.81 54.28±0.75 60.63±0.59 
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The results on the web page categorization are summarized in Table 3, where ML-
kNN is used as the classifier. We can see that the classification performance is 
improved in most of the cases. Therefore, the candidate attributes are reduced. This 
result shows the effectiveness of our methods. 

 

0 100 200 300 400

100100 100010 100001

100000 010000 001110

001100 001010 001000

000110 000101 000100

000011 000010 000001
 

Fig. 1. Number of images associated with different label sets 

Fig. 1 describes the number of samples associated with different label sets. The 
candidate labels are desert, mountains, sea, sunset and trees. The x axis is the number 
of samples. The y axis is the different combinations of labels. The corresponding 
position is 1 if the sample has this label; 0 otherwise.  

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 
 

Fig. 2. The scatter chart of samples in two-attribute space 

 
Fig. 2 gives the sample distribution in three kinds of label combination, which are 

“000001”, “000010”, and “000011”. The sample marked with  “.” and “+”  has one 
label, and class “O” have two labels including the label of “.” and “+”. Both of two 
condition attributes of Fig. 1. (a) and (b) cannot distinguish class ”O” with other 
classes. However, our method showed in Fig. 1 (b) is better than the simple multi-
label attribute reduction method (SEI) [15]. 
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Fig. 3. Results of five evaluation metrics of M1 and M2 on the first web page dataset (left 
plots) and scene image dataset (right plots) (M1 and M2 are NM1 and NM2) 
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Fig. 3 shows that the five evaluation metrics of the proposed algorithms on the web 
page dataset and scene image dataset. We compute the classification performance 
with 1% to 100% of the features after the attributes have been sorted according to 
their attribute dependency NM1 and NM2. We can see the classification performance 
almost doesn't change when the attributes dimension present reached 20%. We find that 
the performance curve on image annotation is not as smooth as that on web page 
categorization and the sharp fluctuation weakened gradually with increase of attribute. 
In addition, the experimental result shows that the performances of classification used 
different features selected by NM1 and NM2 are almost the same. 

4 Conclusion 

This paper extends the fuzzy rough sets model to deal with multi-label attribute 
evaluation based on attribute dependency. The results show that the proposed method 
produces a higher performance in reduction attribute spaces on five multi-label 
classification evaluation criteria than original attribute space. In addition, both of the 
proposed methods are effective. The multi-label attribute reduction based on the fuzzy 
rough sets model and extended fuzzy rough sets models will be discussed in the 
future.  
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Abstract. A probabilistic approximation is a generalization of the
standard idea of lower and upper approximations, defined for equiva-
lence relations. Recently probabilistic approximations were additionally
generalized to an arbitrary binary relation so that probabilistic approx-
imations may be applied for incomplete data. We discuss two ways to
induce rules from incomplete data using probabilistic approximations, by
applying true MLEM2 algorithm and an emulated MLEM2 algorithm. In
this paper we report novel research on a comparison of both approaches:
new results of experiments on incomplete data with three interpretations
of missing attribute values. Our results show that both approaches do
not differ much.

Keywords: Probabilistic approximations, generalization of probabilis-
tic approximations, concept probabilistic approximations, true MLEM2
algorithm, emulated MLEM2 algorithm.

1 Introduction

Probabilistic approximations were studied in a number of papers, mostly for
completely specified data sets, in areas such as Bayesian rough sets, decision-
theoretic rough sets, variable precision rough sets [11,13,14,15,16,17,18,19,20].
The indiscernibility relation, describing complete data, is an equivalence relation.
Recently probabilistic approximations were extended to an arbitrary relation so
that probabilistic approximations may be applied to incomplete data [8]. The
first papers reporting experimental results on probabilistic approximations were
[1,2].

In this paper we discuss two ways to induce rules from incomplete data using
probabilistic approximations. The obvious way is to develop the rule induction
system from scratch. For any concept X and given parameter α we compute
its probabilistic approximation apprα(X) and then induce rules from apprα(X)
using MLEM2 strategy. This approach will be called true MLEM2.

C. Cornelis et al. (eds.): RSCTC 2014, LNAI 8536, pp. 109–119, 2014.
c© Springer International Publishing Switzerland 2014
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On the other hand, we may use existing data mining system LERS (Learn-
ing from Examples using Rough Set theory) with the incorporated MLEM2
algorithm. LERS computes standard lower and upper approximations for any
concept. Using this approach it is necessary to compute the probabilistic ap-
proximation, for given α, of the concept first, like in the former approach, and
then pass it to LERS. The approximations are computed twice (the second time
it is computed internally by the LERS system), so it is necessary to adjust the
strength of all induced rules according to the original probabilistic approxima-
tion apprα(X). This approach will be called emulated MLEM2. It is much easier
to use the emulated approach than the true MLEM2 approach since while the
set apprα(X) is computed, the entire rule set is induced by the existing system,
strength adjustment of rules is simple.

The open problem was how good such an emulated MLEM2 algorithm is.
Our objective was to compare the true and emulated versions of the MLEM2
algorithm on the basis of an error rate, computed by ten-fold cross validation
for eight incomplete data sets, all with 35% of missing attribute values. We
used three interpretations of missing attribute values: a lost value, denoted by ?;
attribute-concept value, denoted by −, and “do not care” condition, denoted by
*. Incomplete data sets were obtained by random replacement of actual, specified
attribute values by signs of ? for lost values, − for attribute-concept values, and *
for “do not care” conditions. Therefore we used 24 data sets for our experiments.

In the lost value interpretation of missing attribute values we assume that
the original attribute value is lost, e.g., was erased, and that we should induce
rules form existing, specified attribute values. The second interpretation of miss-
ing attribute values, the attribute-concept value, is based on the idea that such
missing attribute values may be replaced by any actual attribute value restricted
to the concept to which the case belongs. For example, if our concept is a spe-
cific disease, an attribute is a diastolic pressure, and all patients affected by the
disease have high or very high diastolic pressure, a missing attribute value of the
diastolic pressure for a sick patient will be high or very-high. The third interpre-
tation of missing attribute values, the “do not care” condition, is interpreted as
a situation in which it does not matter what is the attribute value. Such value
may be replaced by any value from the set of all possible attribute values.

In our experiments we compared true and emulated versions of the MLEM2
algorithm using the error rate, a result of ten-fold cross validation, as the quality
criterion. Among 24 data sets used for experiments, for six data sets, for all eleven
values of the parameter α, results were identical; for other 14 data sets results
did not differ significantly (we used the Wilcoxon matched-pairs signed rank
test, 5% significance level, two-tailed test). For three other data sets, the true
MLEM2 algorithm was better than emulated, for remaining one data set the
emulated MLEM2 algorithm was better than the true one.

2 Incomplete Data Sets

An example of incomplete data set is presented in Table 1. In Table 1, the set A
of all attributes consists of three variables Temperature, Headache and Cough.
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A concept is a set of all cases with the same decision value. There are two concepts
in Table 1, the first one contains cases 1, 2, 3 and 4 and is characterized by the
decision value no of decision Flu. The other concept contains cases 5, 6, 7 and 8
and is characterized by the decision value yes.

Table 1. An incomplete data set

Attributes Decision

Case Temperature Headache Cough Flu

1 normal no no no

2 * yes no no

3 normal − yes no

4 high * ? no

5 high yes * yes

6 very-high * no yes

7 * no yes yes

8 very-high no yes yes

The fact that an attribute a has the value v for the case x will be de-
noted by a(x) = v. The set of all cases will be denoted by U . In Table 1,
U = {1, 2, 3, 4, 5, 6, 7, 8}.

For complete data sets, an attribute-value pair (a, v) = t, a block of t, denoted
by [t], is a set of all cases from U such that for attribute a have value v. An
indiscernibility relation R on U is defined for all x, y ∈ U by

xRy if and only if a(x) = a(y) for all a ∈ A.

For incomplete decision tables the definition of a block of an attribute-value
pair must be modified in the following way [5,7]:

– If for an attribute a there exists a case x such that a(x) =?, i.e., the corre-
sponding value is lost, then the case x should not be included in any blocks
[(a, v)] for all values v of attribute a,

– If for an attribute a there exists a case x such that the corresponding value
is an attribute-concept value, i.e., a(x) = −, then the corresponding case x
should be included in blocks [(a, v)] for all specified values v ∈ V (x, a) of
attribute a, where

V (x, a) = {a(y) | a(y) is specified , y ∈ U, d(y) = d(x)},

and d is the decision.
– If for an attribute a there exists a case x such that the corresponding value is

a “do not care” condition, i.e., a(x) = ∗, then the case x should be included
in blocks [(a, v)] for all specified values v of attribute a.
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For a case x ∈ U the characteristic set KB(x) is defined as the intersection of
the sets K(x, a), for all a ∈ B, where B is a subset of the set A of all attributes
and the set K(x, a) is defined in the following way:

– If a(x) is specified, then K(x, a) is the block [(a, a(x))] of attribute a and its
value a(x),

– If a(x) =? or a(x) = ∗ then the set K(x, a) = U ,
– If a(x) = −, then the corresponding set K(x, a) is equal to the union of

all blocks of attribute-value pairs (a, v), where v ∈ V (x, a) if V (x, a) is
nonempty. If V (x, a) is empty, K(x, a) = U .

The characteristic set KB(x) may be interpreted as the set of cases that are
indistinguishable from x using all attributes from B and using a given interpre-
tation of missing attribute values.

For the data set from Table 1, the set of blocks of attribute-value pairs is

[(Temperature, normal)] = {1, 2, 3, 7},
[(Temperature, high)] = {2, 4, 5, 7},
[(Temperature, very − high)] = {2, 6, 7, 8},
[(Headache, no)] = {1, 3, 4, 6, 7, 8},
[(Headache, yes)] = {2, 3, 4, 5, 6},
[(Cough, no)] = {1, 2, 5, 6},
[(Cough, yes)] = {3, 5, 7, 8}.

The corresponding characteristic sets are
KA(1) = {1},
KA(2) = {2, 5, 6},
KA(3) = {3, 7},
KA(4) = {2, 4, 5, 7},
KA(5) = {2, 4, 5},
KA(6) = {2, 6},
KA(7) = {3, 7, 8},
KA(8) = {7, 8}.

3 Probabilistic Approximations

For incomplete data set there exists a number of different definitions of approxi-
mations, in this paper we will use only concept approximations, we will skip the
word concept.

The B-lower approximation of X , denoted by appr(X), is defined as follows

∪ {KB(x) | x ∈ X,KB(x) ⊆ X}.

Such lower approximations were introduced in [5,6].
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The B-upper approximation of X , denoted by appr(X), is defined as follows

∪ {KB(x) | x ∈ X,KB(x) ∩X �= ∅} = ∪ {KB(x) | x ∈ X}.

These approximations were studied in [5,6,12].
For incomplete data sets there exist a few definitions of probabilistic approx-

imations, we will use only concept probabilistic approximations, again, we will
skip the word concept.

A B-probabilistic approximation of the set X with the threshold α, 0 < α ≤ 1,
denoted by B-apprα(X), is defined as follows

∪{KB(x) | x ∈ X, Pr(X |KB(x)) ≥ α},

where Pr(X |KB(x)) = |X∩KB(x)|
|KB(x)| is the conditional probability of X given

KB(x). A-probabilistic approximations of X with the threshold α will be de-
noted by apprα(X).

For Table 1 and the concept X = [(Flu, no)] = {1, 2, 3, 4}, for any character-
istic set KA(x), x ∈ U , all conditional probabilities P (X |KA(x)) are presented
in Table 2.

Table 2. Conditional probabilities

KA(x) {1} {2, 4, 5} {2, 4, 5, 7} {2, 6} {3, 7} {2, 5, 6} {3, 7, 8} {7, 8}

P ({1, 2, 3, 4} | KA(x)) 1.0 0.667 0.5 0.5 0.5 0.333 0.333 0

There are four distinct conditional probabilities P ({1, 2, 3, 4} |KA(x)), x ∈ U :
1.0, 0.667, 0.5, and 0.333. Therefore, there exist at most four distinct prob-
abilistic approximations of {1, 2, 3, 4} (in our example, there are only three
distinct probabilistic approximations of {1, 2, 3, 4}). A probabilistic approxi-
mation apprβ({1, 2, 3, 4}) not listed below is equal to the closest probabilistic
approximation apprα({1, 2, 3, 4}) with α larger than or equal to α. For example,
appr0.2({1, 2, 3, 4}) = appr0.333({1, 2, 3, 4}). For Table 1, all distinct probabilistic
approximations are

appr0.333({1, 2, 3, 4}) = {1, 2, 3, 4, 5, 6, 7},

appr0.5({1, 2, 3, 4}) = {1, 2, 3, 4, 5, 7},

appr1({1, 2, 3, 4}) = appr0.667({1, 2, 3, 4}) = {1},

appr0.333({5, 6, 7, 8}) = {2, 3, 4, 5, 6, 7, 8},

appr0.5({5, 6, 7, 8}) = {2, 3, 6, 7, 8},
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appr0.667({5, 6, 7, 8}) = {3, 7, 8},

appr1({5, 6, 7, 8}) = {7, 8}.

4 Rule Induction

In this section we will discuss two different ways to induce rule sets using prob-
abilistic approximations: true MLEM2 and emulated MLEM2.

4.1 True MLEM2

In the true MLEM2 approach, for a given concept X and parameter α, first we
compute the probabilistic approximation Aα(X). The set Aα(X) is a union of
characteristic sets, so it is globally definable [10]. Thus, we may use the MLEM2
strategy to induce rule sets [3,4] by inducing rules directly from the set Aα(X).
For example, for Table 1, for the concept [(Flu, yes)] = {5, 6, 7, 8} and for the
probabilistic approximation appr1({5, 6, 7, 8}) = {7, 8}, using the true MLEM2
approach, the following single rule is induced

2, 2, 2
(Temperature, very-high) & (Cough, yes) -> (Flu, yes).

Rules are presented in the LERS format, every rule is associated with three
numbers: the total number of attribute-value pairs on the left-hand side of the
rule, the total number of cases correctly classified by the rule during training,
and the total number of training cases matching the left-hand side of the rule,
i.e., the rule domain size.

4.2 Emulated MLEM2

We will discuss how the existing rough set based data mining systems, such as
LERS (Learning from Examples based on Rough Sets), may be used to induce
rules using probabilistic approximations. All what we need to do, for every con-
cept, is to modify the input data set, run LERS, and then edit the induced rule
set [9]. We will illustrate this procedure by inducing a rule set for Table 1 and
the concept [(Flu, yes)] = {5, 6, 7, 8} using the probabilistic approximation
appr1({5, 6, 7, 8}) = {7, 8}. First, a new data set should be created in which for
all cases that are members of the set appr1({5, 6, 7, 8}) the decision values are
copied from the original data set (Table 1). For all remaining cases, those not
being in the set appr1({5, 6, 7, 8}), a new decision value is introduced. In our
experiments the new decision value was named SPECIAL. Thus a new data set
is created, see Table 3.

This data set is input into the LERS data mining system. The LERS system
computes the upper concept approximation of the set {7, 8}to be {3, 7, 8}, and
using this approximation, computes the corresponding final modified data set.
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Table 3. A preliminary modified data set

Attributes Decision

Case Temperature Headache Cough Flu

1 normal no no SPECIAL

2 * yes no SPECIAL

3 normal − yes SPECIAL

4 high * ? SPECIAL

5 high yes * SPECIAL

6 very-high * no SPECIAL

7 * no yes yes

8 very-high no yes yes

The MLEM2 algorithm induces the following preliminary rule set from the final
modified data sets

1, 5, 5
(Headache, yes) -> (Flu, SPECIAL)
1, 3, 4
(Temperature, normal) -> (Flu, SPECIAL)
2, 2, 3
(Cough, yes) & (Headache, no) -> (Flu, yes)

where the three numbers that precede every rule are computed from Table 3.
Obviously, only the last rule

2, 2, 3
(Cough, yes) & (Headache, no) -> (Flu, yes)

should be saved and the remaining two rules should be deleted in computing the
final rule set.

In the preliminary rule set the three numbers that precede every rule are
adjusted taking into account the preliminary modified data set. Thus during
classification of unseen cases by the LERS classification system rules describe
the original concept probabilistic approximation of the concept X .

5 Experiments

In our experiments we used eight real-life data sets taken from the University of
California at Irvine Machine Learning Repository, see Table 4. These data sets
were enhanced by replacing 35% of existing attribute values by symbols of lost
values, i.e., question marks. All data sets with lost values were edited, symbols of
lost values were replaced by symbols of attribute-concept values (hyphens), and
then by “do not care” conditions (stars). Thus, for any data sets from Table 4,
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Fig. 1. Error rates for the Bankruptcy
data set
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Fig. 2. Error rates for the Breast cancer
data set
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Fig. 3. Error rate for the Echocardiogram
data set
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Fig. 4. Error rate for the Hepatitis data
set
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Fig. 5. Rule set size for the Image segmen-
tation data set
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Fig. 6. Error rate for the Iris data set
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Fig. 7. Error rate for the Lymphography
data set
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Fig. 8. Error rate for the Wine recognition
data set

three data sets were used for experiments, so that the total number of data sets
was 24.

Our main objective was to compare both approaches to rule induction, true
MLEM2 and emulated MLEM2, in terms of an error rate. Results of our exper-
iments are presented in Figures 1–8, with lost values denoted by ?, attribute-
concept values denoted by −, and “do not care” conditions denoted by *.

Table 4. Data sets used for experiments

Data set Number of

cases attributes concepts

Bankruptcy 66 5 2

Breast cancer 277 9 2

Echocardiogram 74 7 2

Hepatitis 155 19 2

Image segmentation 210 19 7

Iris 150 4 3

Lymphography 148 18 4

Wine recognition 178 13 3

6 Conclusions

In our experiments we compared true and emulated versions of the MLEM2 al-
gorithm using the error rate, a result of ten-fold cross validation, as the quality
criterion. Among the 24 data sets used for experiments, for six data sets and
for all eleven values of the parameter α, error rates were identical between the
two methods. For the other 14 data sets results did not differ significantly when
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using the Wilcoxon matched-pairs signed rank test, 5% significance level, two-
tailed test. For three other data sets, the true MLEM2 algorithm was better
than emulated, for remaining one data set the emulated MLEM2 algorithm was
better than the true one. Our results show that both approaches do not differ
much.
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15. Ślȩzak, D., Ziarko, W.: The investigation of the bayesian rough set model. Inter-
national Journal of Approximate Reasoning 40, 81–91 (2005)

16. Wong, S.K.M., Ziarko, W.: INFER—an adaptive decision support system based
on the probabilistic approximate classification. In: Proceedings of the 6-th Inter-
national Workshop on Expert Systems and their Applications, pp. 713–726 (1986)

17. Yao, Y.Y.: Probabilistic rough set approximations. International Journal of Ap-
proximate Reasoning 49, 255–271 (2008)

18. Yao, Y.Y., Wong, S.K.M.: A decision theoretic framework for approximate con-
cepts. International Journal of Man-Machine Studies 37, 793–809 (1992)

19. Ziarko, W.: Variable precision rough set model. Journal of Computer and System
Sciences 46(1), 39–59 (1993)

20. Ziarko, W.: Probabilistic approach to rough sets. International Journal of Approx-
imate Reasoning 49, 272–284 (2008)



Mining Significant Granular Association Rules

for Diverse Recommendation

Fan Min1 and William Zhu2

1 Department of Computer Science, Southwest Petroleum University,
Chengdu 610500, China

2 Lab of Granular Computing, Minnan Normal University, Zhangzhou 363000, China
minfanphd@163.com

Abstract. Granular association rule is a new technique to build
recommender systems. The quality of a rule is often evaluated by the
confidence measure, namely the probability that users purchase or rate
certain items. Unfortunately, the confidence-based approach tends to
suggest popular items to users, and novel patterns are often ignored.
In this paper, we propose to mine significant granular association rules
for diverse and novel recommendation. Generally, a rule is significant if
the recommended items favor respective users more than others; while
a recommender is diverse if it recommends different items to different
users. We define two sets of measures to evaluate the quality of a rule as
well as a recommender. Then we propose a significance-based approach
seeking top-k significant rules for each user. Results on the MovieLens
dataset show that the new approach provides more significant and diverse
recommendations than the confidence-based one.

Keywords: Recommender system, granule association rule, confidence,
significance, entropy.

1 Introduction

Granular association rule [1,2] is a new relational data mining technique [3,4]
to build recommender systems [5] that suggest item of interest to users. From
the MovieLens dataset [6], we obtain a granular association rule “〈Gender = F〉∧
〈Occupation = student〉 ⇒ 〈Release-decade = 1990s〉

∧
〈Action = 1〉 (0.28).”

The rule is read as “female students rate action movies released in 1990s with a
probability of 0.28.” Here “female students,” “action movies released in 1990s,”
and “0.28” are the source granule, the target granule, and the confidence, re-
spectively of the rule. Since this type of rules are user and item independent,
they are especially appropriate for cold-start recommendation [7].

The confidence measure [2] is natural to evaluate the strength of the rule.
Rules with high confidence are desired to build recommender systems with high
accuracy. Unfortunately, a confidence-based recommender often suggests popular
items which are rather obvious, and there is a need to define novelty measures
for practical purposes [8].

C. Cornelis et al. (eds.): RSCTC 2014, LNAI 8536, pp. 120–127, 2014.
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In this paper, we propose to mine significant granular association rules for
diverse and novel recommendation. For this purpose, we define two sets of mea-
sures, namely significance measures and diversity measures. First, the signifi-
cance of a rule is its confidence divided by the popularity of respective items. In
other words, a rule is significant if the recommended items favor respective users
more than others. Therefore significant rules are often interesting and novel.
Second, based on the item recommendation times, three diversity measures are
defined. These are the fraction of recommended items, the maximal recommen-
dation ratio, and the recommendation entropy. Generally, a recommender is
diverse if it recommends different items to different users.

We develop a significance-based approach which employs top-k significant
rules for each user. The approach is composed of two stages. In the first stages,
the rule set is constructed from the training set given the source and the target
coverage thresholds. Similar to the threshold employed in frequent itemset min-
ing [4,9], these two thresholds filter out small granules to avoid overfitting. In
the second stage, each user in the testing set is matched to the rule set, and the
top-k significant rules are employed for recommendation.

Experiments are undertaken on the MovieLens dataset [6] using our open
source software Grale [10]. The technique proposed in [11] is employed to deal
with multi-valued data. Compared with the confidence-based approach, the
significance-based approach provides more significant and diverse, however less
accurate recommendations. Therefore we should choose appropriate approaches
for different objectives.

2 Preliminaries

In this section, we review some preliminary knowledge such as many-to-many
entity-relationship systems and information granules [1,2]. We also review gran-
ular association rules with three measures [2].

Definition 1. [1] A many-to-many entity-relationship system (MMER) is a 5-
tuple ES = (U,A, V,B,R), where (U,A) and (V,B) are two information systems,
and R ⊆ U × V is a binary relation from U to V .

In this context, U is the set of all users, A is the set of all user attributes, V is
the set of all items, and B is the set of all item attributes. Users and items can be
described by information granules [2,12]. In an information system, any A′ ⊆ A
induces an equivalence relation EA′ = {(x, y) ∈ U × U |∀a ∈ A′, a(x) = a(y)},
and partitions U into a number of disjoint subsets called blocks or granules. The
granule containing x ∈ U is EA′(x) = {y ∈ U |∀a ∈ A′, a(y) = a(x)}.

Definition 2. [12] A granule is a triple

G = (g, i(g), e(g)), (1)

where g is the name assigned to the granule, i(g) is a representation of the
granule, and e(g) is a set of objects that are instances of the granule.
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(A′, x) determines a granule in an information system. Hence g = g(A′, x)
is a natural name to the granule. i(g) can be formalized as the conjunction of
respective attribute-value pairs, i.e., i(g(A′, x)) =

∧
a∈A′〈a : a(x)〉. e(g(A′, x)) =

EA′(x).
Now we discuss the means for connecting users and items. A granular associ-

ation rule [1,2] is an implication of the form

(GR) :
∧

a∈A′
〈a : a(x)〉 ⇒

∧
b∈B′

〈b : b(y)〉, (2)

where A′ ⊆ A and B′ ⊆ B.
The set of objects meeting the left-hand side of the granular association rule

is LH(GR) = EA′(x); while the set of objects meeting the right-hand side of the
granular association rule is RH(GR) = EB′(y).

Let us look at an example granular association rule “female students rate
action movies released in 1990s with a probability of 0.28, 6% users are female
students and 24% movies are action ones released in 1990s.” Here 6%, 24%, and
0.28 are the source coverage, the target coverage, and the confidence, respec-
tively. Formally, the source coverage of GR is scov(GR) = |LH(GR)|/|U |; while
the target coverage of GR is tcov(GR) = |RH(GR)|/|V |. The confidence of GR
is the probability that a user chooses an item, namely

conf(GR) =
|(LH(GR)×RH(GR)) ∩R|
|LH(GR)| × |RH(GR)| . (3)

A recommender can be viewed a function RC : U → 2V . RC(x) is the set of
items recommended to user x ∈ U . We propose the following definition.

Definition 3. The accuracy of RC on X ⊆ U is

acc(X,RC) =

∑
x∈X |({x} ×RC(x)) ∩R|∑

x∈X |RC(x)| . (4)

Although not formally defined in [2], acc(U,RC) is essentially employed to
evaluate the quality of the recommender. To build a recommender with high
accuracy, a set of granular association rules are first generated. Then for each
user, all rules matching her are ranked according to the confidence measure, and
the top-k rules are employed for recommendation. This approach is called top-k
confident rules recommendation. We will compare our new approach with this
one through experiments.

3 Two Sets of New Measures

In this section we define two sets of new measures. The significance measures
specify the degree a set of items favor one group of users over others. The diver-
sity measures specify how different the recommender makes for different users.
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3.1 Significance Measures

In many applications there are popular items. For example, many people buy
bread in a food store, or watch movies that won an Oscar award. However, recom-
mending those items to people is uninteresting due to common sense knowledge.
For this reason, we would like to recommend special items to special people. We
propose the following definitions.

Definition 4. Let ES = (U,A, V,B,R) be an MMER, ∅ ⊂ X ⊆ U and ∅ ⊂
Y ⊆ V . The significance of recommending Y to X is

sig(X,Y ) =

{
1 Y = ∅;
acc(X,Y )/acc(U, Y ) otherwise.

(5)

Here acc(U, Y ) indicate the popularity of item set Y . In other words, there is a
penalty on popular items such that they are not recommended to everyone. The
consideration of emptyset is for the new item case.

The same term can be employed to evaluate the quality of a rule.

Definition 5. The significance of a granular association rule GR is

sig(GR) = sig(LH(GR), RH(GR)). (6)

The quality of the recommender RC can be evaluated as follows.

Definition 6. The significance of recommender RC on x ∈ U is

sig(x,RC) = sig({x}, RC(x)) = acc({x}, RC(x))/acc(U,RC(x)); (7)

while the significance of RC over U is

sig(U,RC) =
∑
x∈U

sig(x,RC)/|U |. (8)

We will employ sig(GR) to build the rule set, and sig(U,RC) to evaluate the
performance of the recommender.

3.2 Diversity Measures

In this subsection, we propose three measures to evaluate the diversity of the
recommender RC on an MMER ES = (U,A, V,B,R). First, we calculate how
many items are recommended at least once. The fraction of recommended items
is given by

fri(ES,RC) = | ∪x∈U RC(x)|/|V |. (9)

Naturally, higher fri(ES,RC) indicates diverse recommendation since more
items are recommended.

Second, we look at most frequently recommended items. Any v ∈ V is recom-
mended |{x ∈ U |v ∈ RC(x)}| times. |{x ∈ U |v ∈ RC(x)}| = 1 indicates that the
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Algorithm 1. Rule set construction

Input: The training set ES = (U,A, V,B,R), ms, mt.
Output: Source granules, target granules, and the rule set, all stored in the memory.
Method: training

1: SG(ms) = {(A′, x) ∈ 2A × U | |EA′ (x)|
|U| ≥ ms};

2: TG(mt) = {(B′, y) ∈ 2B × V | |EB′ (y)|
|V | ≥ mt};

3: for each g ∈ SG(ms) do
4: for each g′ ∈ TG(mt) do
5: GR = (i(g) ⇒ i(g′));
6: compute sig(GR);
7: end for
8: end for

item is recommended to all users. The maximal recommendation ratio is given
by

rmax(ES,RC) = max
v∈V

|{x ∈ U |v ∈ RC(x)}|/|U |. (10)

Higher rmax(ES,RC) indicates less diverse recommendation since other items
have fewer chances to be recommended.

Third, we study the recommendation distribution in terms of information
entropy. There are |V | items. Let the ith item be recommended ri times. The

recommendation vector is r = [r1, r2, . . . , r|V |]. Let r
′
i = ri/

∑|V |
j=1 rj and r′ =

[r′1, r
′
2, . . . , r

′
|V |] for normalization. The recommendation entropy is

H(r) = H(r′) = −
|V |∑
i=1

r′i log r
′
i, (11)

where r′i log r
′
i = 0 if r′i = 0.

These measures are based on the distribution of recommended items from
different perspectives. fr(ES,RC) and rmax(ES,RC) give us intuitive under-
standing, while H(r) is convincing from a statistical viewpoint.

4 Top-k Significant Rules Based Recommendation

Our approach is composed of two stages, as listed in Algorithms 1 and 2. Al-
gorithm 1 shows the rule set construction stage. The input include the training
set and two user-specified thresholds ms and mt. With the Apriori [13] or the
FP-growth algorithm [14] SG(ms) can be obtained quickly.

Algorithm 2 shows the recommendation stage. The input is the testing set,
which might be equal to or different from the training set. Another hidden input
is the rule set which is already stored in the memory. In this stage, top-k signif-
icant rules are mined for each user. Respective item granules are recommended
to the user.
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Algorithm 2. Top-k rules based recommendation

Input: The testing set ES′ = (U ′, A, V ′, B,R′).
Output: Recommendation for each object in U ′.
Method: recommending

1: for each x ∈ U ′ do
2: for each g ∈ SG(ms) do
3: if x matches g then
4: for each g′ ∈ TG(mt) do
5: if g′ is already among the top-k recommended granules then
6: reserve the higher confidence value;
7: continue;
8: end if
9: GR = (i(g) ⇒ i(g′));
10: compare GR with other rules matching x, and reserve top-k recom-

mended granules according to the significance;
11: end for
12: end if
13: end for
14: recommend the top-k granules to x;
15: end for

5 Experiments

In this section, we try to answer two questions through experimentation. First,
does the significance-based approach outperform the confidence-based one in
terms of accuracy, significance, and diversity? Second, how does the performance
change for different threshold settings?

We tested both approaches on MovieLens [6]. The genre is a multi-valued
attribute. Therefore we deal with it using the approach proposed in [11]. We
randomly select 60% data (566 users and 1009 movies) as the training set, and
the remaining data (377 users and 673 movies) as the testing set. The value of
k is set to 1.

Fig. 1(a) compares the accuracy of these two algorithms. We observe that
confidence-based approach always outperforms the significance-based one. Fig.
1(b) compares the significance. We observe that the significance-based approach
is always better than the confidence-based one. This indicates that the new
approach satisfies our requirement well. Fig. 1(b) also helps answering the second
question. We observe that the significance-based approach performs best with
ms = mt = 0.008. If the granular size decreases, the recommender experiences
overfitting. That is, it performs well on the training set, however poor on the
testing set.

Fig. 2(a) compares the fraction of recommended items fri(ES,RC). It is shown
that with the significance-based approach, more items have a chance to be recom-
mended. Fig. 2(b) compares the maximal recommendation ratio tmax(ES,RC).
With the confidence-based approach, some items are recommended to almost all
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(a) (b)

Fig. 1. Accuracy and significance comparison: (a) accuracy, (b) significance

(a) (b)

(c)

Fig. 2. Diversity comparison: (a) fraction of recommended items, (b) maximal recom-
mendation ratio, (c) recommendation entropy

users. With the significance-based approach, the popularity of items is not over-
whelming. Fig. 2(c) compares the recommendation entropyH(r). The entropy of
the new recommender system is always much higher than the existing one. To sum
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up, from Fig. 2 we know that the significance-based approach provides diverse rec-
ommendation than the confidence-based one.

6 Conclusions

The paper introduces significance measures and diversity measures for granu-
lar association rules and recommender systems. The confidence-based approach
provides more accurate recommendations, while the significance-based approach
provides more significant and diverse ones. In applications, one may select an
appropriate approach, or employ both for better recommendation.
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Abstract. The theory of rough sets proposed a framework for approxi-
mating concepts by three pair-wise disjoint regions, namely, the positive,
boundary and negative regions. Rules generated by the three regions form
three-way decision rules, which are acceptance, deferment and rejection
decisions. The periodic updating of decision rules is required due to the
dynamic nature of decision systems. Incremental learning technique is an
effective way to solve the problem of dynamic data, which is capable of
updating the learning results incrementally without recalculation in the
total data set from scratch. In this paper, we present a methodology for
incremental updating three-way decisions with incomplete information
when the object set varies through the time.

Keywords: three-way decisions, incremental updating, incomplete
decision system.

1 Introduction

Probabilistic rough set models are generalizations of classical rough sets which
are proposed to solve probabilistic decision problems by allowing certain accept-
able level errors [10]. By considering a pair of thresholds (α,β) on probabilities for
defining probabilistic approximations, Yao et al. proposed a generalized proba-
bilistic model, called a decision-theoretic rough set (DTRS) [11]. Various existing
rough set models can be derived through setting different thresholds in DTRS.
According α and β, a concept is approximated by three pair-wise disjoint regions
that are definable by logic formulas, namely, the positive, the boundary and the
negative regions of the concept. Decision rules derived from these three regions
are associated with different actions and decisions, which immediately leads to
the theory of three-way decisions. Instead of making an immediate acceptance
or rejection decision in two-way decision strategy, a third option of making a de-
ferred or non-committed decision is considered in the three-way decisions which
is more similar to the human decision strategy in the practical decision problems
[12].

C. Cornelis et al. (eds.): RSCTC 2014, LNAI 8536, pp. 128–135, 2014.
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In practical applications, decision behaviors need to be reinforced continuously
under the dynamic decision environment. Incremental learning technique are de-
signed for mining dynamic databases in which data values are continually being
changed, which use previously acquired mining results to facilitate knowledge
maintenance in the changed database instead of mining the the whole database
from scratch [1]. There exist much research to deal with dynamic information
systems based on rough set theory. Li et al. discussed an attribute generalization
and its relation to feature selection and feature extraction [9]. They proposed
an incremental approach for updating approximations under the characteristic
relation-based rough sets. Chen et al. discussed incremental updating properties
of information granulation and approximations under the dynamic environment
based on variable precision rough set model [2]. Luo et al. proposed incremental
algorithms for computing rough approximations in the set-valued information
systems [4,5]. Fan et al. proposed an incremental rule-extraction algorithm to
deal with the new added data set when the database increased dynamically [3].
Liang et al. developed a group incremental rough feature selection algorithm
based on information entropy [8].

In the context of multiple levels of granularity, Yao proposed a framework for
sequential three-way decisions based on granular computing [13]. A definite de-
cision of acceptance or rejection for some objects are made with coarse-grained
granules and a non-commitment decision for some other objects may be further
investigated by using fine-grained granules. Li et al. proposed a sequential strat-
egy for cost-sensitive three-way decisions [7]. Considering the dynamic change
of loss functions under dynamic decision environment, Liu et al proposed a dy-
namic DTRS [6]. An incomplete decision system, which indicates a system with
unknown values, is much more common in data and knowledge engineering than
the complete decision system. In this paper, we mainly focus on investigating the
dynamic change of three-way decisions in the incomplete decision system when
the object set varies with time, and present an incremental method for updating
three-way decisions.

The remainder of the paper is organized as follows. In Section 2, some basic
concepts of the incomplete decision system and three-way decisions based on
rough set theory are briefly reviewed. In Section 3, the principles of incremental
updating three-way decisions in the incomplete decision system when the object
set varies with time are presented. The paper ends with conclusions and further
research topics in Section 4.

2 Three-Way Decisions in an Incomplete Information
System

In rough set based data analysis, data represented in a tabular form, called
an information system. The rows of the system are labelled by objects, whereas
columns are labelled by attributes and entries of the system are attribute values.
Formally, an information system is a 4-tuple S = (U,AT, V, f), where U is
a non-empty finite set of objects, AT is a non-empty finite set of attributes,
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V =
⋃

a∈AT Va and Va is a domain of attribute a, f : U × AT → V is an
information function such that f(x, a) ∈ Va for every a ∈ AT , x ∈ U .

It may happen that some of attribute values for an object are missing, a
so-called null value, denoted by “∗” is usually assigned to those attributes. An
information system is called an incomplete information system if Va contains
null value for at least one attribute a ∈ AT .

Definition 1. Let S = (U,AT, V, f) be an incomplete information system, ∀A ⊆
AT , a similarity relation SIM(A) on U is defined as follows:

SIM(A) = {(x, y) ∈ U × U |∀a ∈ A, f(x, a) = f(y, a) (1)

or f(x, a) = ∗ or f(y, a) = ∗}

SIM(A) is a tolerance relation on U . Let SA(x) denote the set {y ∈ U |(x, y) ∈
SIM(A)}, called a tolerance class or an information granule. SA(x) is the max-
imal set of objects which are possibly indistinguishable by A with respect to x.
U/SIM(A) denotes the classification, which is the family set {SA(x)|x ∈ U}.
SIM(A) degenerates into an equivalence relation in a complete information
system.

Definition 2. Let S = (U,AT, V, f) be an incomplete information system, ∀x ∈
U , X ⊆ U and A ⊆ AT , a conditional probability is used to state the degree of
overlap between the tolerance class SA(x) and a set X can be defined as follows

Pr(X |SA(x)) =
|X ∩ SA(x)|
|SA(x)|

(2)

where |·| denotes the cardinality of a set. The conditional probability Pr(X |SA(x))
represents the probability that an object belongs to X given that the object is de-
scribed by SA(x).

Yao introduced DTRS, a general probabilistic rough set model, in which a pair
of thresholds α and β with α > β probability is used to define three probabilistic
regions [14].

Definition 3. Let S = (U,AT, V, f) be an incomplete information system, ∀X ⊆
U , A ⊆ AT , The (α, β)-probabilistic positive, boundary and negative regions are
defined as follows

POSα,β(X) = {x ∈ U |Pr(X |SA(x)) ≥ α}
BNDα,β(X) = {x ∈ U |β < Pr(X |SA(x)) < α} (3)

NEGα,β(X) = {x ∈ U |Pr(X |SA(x)) ≤ β}

With insufficient information as provided by a set of attributes A ⊆ AT ,
DTRS promotes a methodology for three-way decision making. The three regions
POSα,β(Xi), BNDα,β(Xi) and NEGα,β(Xi) are semantically interpreted as the
following three-way decisions. We accept an object x to be a member of Xi if
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the conditional probability is greater than or equal to α, with an understanding
that it comes with an (1 − α)-level acceptance error and associated cost. We
reject x to be a member of Xi if the conditional probability is less than or equal
to β, with an understanding that it comes with an β-level of rejection error and
associated cost. We neither accept nor reject x to be a member of Xi if the
conditional probability is between of α and β, instead, we make a decision of
deferment.

3 Incremental Three-Way Decisions in an Incomplete
Decision System

In this section, we introduce the incremental mechanisms for the three-way deci-
sions when the universe varies in the incomplete decision system. To describe a
dynamic incomplete decision system, we assume the incremental updating pro-
cess of the system lasts two periods from time t to time t+ 1.

3.1 Insertion of an Object

Given an incomplete decision system S(t) = (U (t), C ∪{d}, V, f) at time t, where
U (t) = {x1, x2, . . . , xn}. Suppose that a new object xn+1 is added to S(t) at time
t+ 1, we have U (t+1) = U (t) ∪ {xn+1}.

Proposition 1. Let A ⊆ C, U (t)/SIM(A) = {S(t)
A (x1), S

(t)
A (x2), . . . , S

(t)
A (xn)}.

∀1 ≤ q ≤ n+ 1, we have

S
(t+1)
A (xq) =

⎧⎪⎨⎪⎩
S
(t)
A (xq), 1 ≤ q ≤ n and (xq, xn+1) �∈ SIM(A);

S
(t)
A (xq) ∪ {xn+1}, 1 ≤ q ≤ n and (xq , xn+1) ∈ SIM(A);

{y ∈ U (t+1)|(xq, y) ∈ SIM(A)}, q = n+ 1.

With the addition of a new object xn+1, There are two distinguishing situa-
tions about the decision classes.

(1) xn+1 belongs to an existing decision class;
(2) xn+1 does not belong to any existing decision classes.

For the first situation, let π(t) = {X(t)
1 , X

(t)
2 , . . . , X

(t)
r }, ∀1 ≤ p ≤ r, we discuss

the updating principles of three-way decisions of X
(t)
p at time t+ 1 through the

following two cases: (1) xn+1 ∈ X(t+1)
p , (2) xn+1 �∈ X(t+1)

p .

Case 1: xn+1 ∈ X(t+1)
p , i.e., X

(t+1)
p = X

(t)
p ∪ {xn+1}.

Lemma 1. ∀1 ≤ q ≤ n, we have

Pr(X(t)
p |S(t)

A (xq)) ≤ Pr(X(t+1)
p |S(t+1)

A (xq))
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Proposition 2. Let the positive region of X
(t)
p is POSα,β(X

(t)
p ). With the ad-

dition of xn+1 at time t+ 1, POSα,β(X
(t+1)
p ) can be updated as follows.

POSα,β(X
(t+1)
p ) = POSα,β(X

(t)
p ) ++′

where +′ = {x ∈ BNDα,β(X
(t)
p )∪NEGα,β(X

(t)
p )|xn+1 ∈ S(t+1)

A (x), P r(X
(t+1)
p |

S
(t+1)
A (x)) ≥ α}.

Proposition 3. Let the boundary region of X
(t)
p is BNDα,β(X

(t)
p ). With the

addition of xn+1 at time t+ 1, BNDα,β(X
(t+1)
p ) can be updated as follows.

BNDα,β(X
(t+1)
p ) = BNDα,β(X

(t)
p )−+++′

where + = {x ∈ BNDα,β(X
(t)
p )|xn+1 ∈ S

(t+1)
A (x), P r(X

(t+1)
p |S(t+1)

A (x)) ≥ α},
+′ = {x ∈ NEGα,β(X

(t)
p )|xn+1 ∈ S(t+1)

A (x), β < Pr(X
(t+1)
p |S(t+1)

A (x)) < α}.

Case 2: xn+1 �∈ X(t+1)
p , i.e., X

(t+1)
p = X

(t)
p .

Lemma 2. ∀1 ≤ q ≤ n, we have

Pr(X(t)
p |S(t)

A (xq)) ≥ Pr(X(t+1)
p |S(t+1)

A (xq))

Proposition 4. Let the positive region of X
(t)
p is POSα,β(X

(t)
p ). With the ad-

dition of xn+1 at time t+ 1, POSα,β(X
(t+1)
p ) can be updated as follows.

POSα,β(X
(t+1)
p ) = POSα,β(X

(t)
p )−+

where + = {x ∈ POSα,β(X
(t)
p )|xn+1 ∈ S(t+1)

A (x), P r(X
(t+1)
p |S(t+1)

A (x)) < α}.

Proposition 5. Let the boundary region of X
(t)
p is BNDα,β(X

(t)
p ). With the

addition of xn+1 at time t+ 1, BNDα,β(X
(t+1)
p ) can be updated as follows.

BNDα,β(X
(t+1)
p ) = BNDα,β(X

(t)
p )−+++′

where + = {x ∈ BNDα,β(X
(t)
p )|xn+1 ∈ S

(t+1)
A (x), P r(X

(t+1)
p |S(t+1)

A (x)) ≤ β},
+′ = {x ∈ POSα,β(X

(t)
p )|xn+1 ∈ S(t+1)

A (x), β < Pr(X
(t+1)
p |S(t+1)

A (x)) < α}.

For the second situation, since the new object xn+1 does not belong to any
existing decision classes, then xn+1 will form a new decision class, i.e., π(t+1) =

π(t) ∪ {X(t+1)
r+1 }, where X

(t+1)
r+1 = {xn+1}. At this point, ∀1 ≤ p ≤ r, since

xn+1 �∈ X
(t)
p , i.e., X

(t+1)
p = X

(t)
p , then the three-way decisions of X

(t+1)
p can

be obtained by the case 2 of the first situation. On the other hand, for the

new decision class X
(t+1)
r+1 , the positive and boundary regions of X

(t+1)
r+1 can be

obtained as follows.
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Proposition 6. With the addition of xn+1 at time t + 1, for the new decision

class X
(t+1)
r+1 , POSα,β(X

(t+1)
r+1 ) can be obtained as follows.

POSα,β(X
(t+1)
r+1 ) = {xq ∈ U (t+1)|xn+1 ∈ S(t+1)

A (xq), |S(t+1)
A (xq)| ≤

1

α
}

Proposition 7. With the addition of xn+1 at time t + 1, for the new decision

class X
(t+1)
r+1 , BNDα,β(X

(t+1)
r+1 ) can be obtained as follows.

BNDα,β(X
(t+1)
r+1 ) = {xq ∈ U (t+1)|xn+1 ∈ S(t+1)

A (xq),
1

β
< |S(t+1)

A (xq)| <
1

α
}

Based on the updated (α, β)-probabilistic positive and boundary regions, the
negative region can be obtained directly according to Definition 3 when a new
object is inserted into the incomplete decision system.

3.2 Deletion of an Object

Given an incomplete decision system S(t) = (U (t), C ∪{d}, V, f) at time t, where
U (t) = {x1, x2, . . . , xn}. Suppose that the object xq is deleted from S(t) at time
t+ 1, where 1 ≤ q ≤ n, we have U (t+1) = U (t) − {xq}.

Proposition 8. Let A ⊆ C, U (t)/SIM(A) = {S(t)
A (x1), S

(t)
A (x2), . . . , S

(t)
A (xn)}.

∀1 ≤ i ≤ n and i �= q, we have

S
(t+1)
A (xi) =

{
S
(t)
A (xi), (xi, xq) �∈ SIM(A);

S
(t)
A (xi)− {xq}, (xi, xq) ∈ SIM(A);

Let π(t) = {X(t)
1 , X

(t)
2 , . . . , X

(t)
r }. Similar to the addition of object, when an

object xq is removed from the universe, ∀1 ≤ p ≤ r, we discuss the updating

principles of three-way decisions of X
(t)
p at time t+1 through the following two

cases: (1) xq ∈ X(t+1)
p , (2) xq �∈ X(t+1)

p .

Case 1: xq ∈ X(t+1)
p , i.e., X

(t+1)
p = X

(t)
p − {xq}.

Lemma 3. ∀1 ≤ i ≤ n, i �= q, we have

Pr(X(t)
p |S(t)

A (xi)) ≥ Pr(X(t+1)
p |S(t+1)

A (xi))

Proposition 9. Let the positive region of X
(t)
p is POSα,β(X

(t)
p ). With the re-

moval of xq at time t+ 1, POSα,β(X
(t+1)
p ) can be updated as follows.

POSα,β(X
(t+1)
p ) = POSα,β(X

(t)
p )−+

where + = {x ∈ POSα,β(X
(t)
p )|xq ∈ S(t+1)

A (x), P r(X
(t+1)
p | S(t+1)

A (x)) < α}.
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Proposition 10. Let the boundary region of X
(t)
p is BNDα,β(X

(t)
p ). With the

removal of xq at time t+ 1, BNDα,β(X
(t+1)
p ) can be updated as follows.

BNDα,β(X
(t+1)
p ) = BNDα,β(X

(t)
p )−+++′

where + = {x ∈ BNDα,β(X
(t)
p )|xq ∈ S

(t+1)
A (x), P r(X

(t+1)
p |S(t+1)

A (x)) ≤ β},
+′ = {x ∈ POSα,β(X

(t)
p )|xq ∈ S(t+1)

A (x), β < Pr(X
(t+1)
p |S(t+1)

A (x)) < α}.

Case 2: xq �∈ X(t+1)
p , i.e., X

(t+1)
p = X

(t)
p .

Lemma 4. ∀1 ≤ i ≤ n, i �= q, we have

Pr(X(t)
p |S(t)

A (xi)) ≤ Pr(X(t+1)
p |S(t+1)

A (xi))

Proposition 11. Let the positive region of X
(t)
p is POSα,β(X

(t)
p ). With the re-

moval of xq at time t+ 1, POSα,β(X
(t+1)
p ) can be updated as follows.

POSα,β(X
(t+1)
p ) = POSα,β(X

(t)
p ) ++

where + = {x ∈ BNDα,β(X
(t)
p ) ∪ NEGα,β(X

(t)
p )|xq ∈ S

(t+1)
A (x), P r(X

(t+1)
p |

S
(t+1)
A (xq)) ≥ α}.

Proposition 12. Let the boundary region of X
(t)
p is BNDα,β(X

(t)
p ). With the

removal of xq at time t+ 1, BNDα,β(X
(t+1)
p ) can be updated as follows.

BNDα,β(X
(t+1)
p ) = BNDα,β(X

(t)
p )−+++′

where + = {x ∈ BNDα,β(X
(t)
p )|xq ∈ S

(t+1)
A (x), P r(X

(t+1)
p |S(t+1)

A (x)) ≥ α},
+′ = {x ∈ NEGα,β(X

(t)
p )|xq ∈ S(t+1)

A (x), β < Pr(X
(t+1)
p |S(t+1)

A (x)) < α}.
Based on the updated (α, β)-probabilistic positive and boundary regions, the

negative region can be obtained directly according to Definition 3 when an object
is deleted from the incomplete decision system.

4 Conclusion

Three-way decisions have become an important approach for trading off dif-
ferent types of classification error to support decision making at a minimum
cost, which is complementary to binary decision making. A three-way decision
of acceptance, rejection and deferment can be derived directly from positive,
negative and boundary regions based on rough set theory. In this paper, we
proposed an incremental approach for updating three-way decisions in the in-
complete decision system. The approach aims at incremental computing the
(α, β)-probabilistic positive, boundary and negative regions incrementally when
the object set changes. Our future work will focus on algorithm development
and experimentation for the validation of the proposed approaches.
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Abstract. Approximation of a many-valued logic by a logic with less
number of truth values is an important topic. Three-way approximation
based on a pair of thresholds is an example considered by Yao. However,
the determination of thresholds has not been investigated yet. In this
paper, we aim to study this issue in the context of many-valued NM-
logic with the standard valuation domain {0, 1

n−1
, 2
n−1

, · · · , n−2
n−1

, 1}. The
main result is that when n is odd, the thresholds for three-way decision
is uniquely determined. When n is even, there is actually no three-way
decision, but two-way decision.

Keywords: three-way decision, NM-logic, valuation, thresholds.

1 Introduction

Pawlak’s rough set divides the universe into three disjoint regions, i.e., positive
region, boundary region and negative region. To interpret these three regions,
the concept of three-way decisions was proposed by Yao in [1] and [2]. In the
theory of three-way decision, the three regions are viewed, respectively, as the
regions of acceptance, rejection, and non-commitment in a ternary classification.
The positive and negative regions can be used to induce rules of acceptance and
rejection, whenever it is impossible to make an acceptance or a rejection decision,
the third non-commitment decision is made.

Many recent studies further investigated extensions and applications of three-
way decisions [3,4,5,6,7,8,9]. To extend the concept of three-way decisions of
rough sets to a much wider context, [10] outlines a theory of three-way deci-
sions. In this paper, Yao pointed out that three issues regarding evaluations and
designated values should be considered, that is, construction and interpretation
of a set of values for measuring satisfiability and a set of values for measuring
non-satisfiability, construction and interpretation of evaluations and determina-
tion and interpretation of designated values for acceptance and designated values
for rejection.

By using three-way decision, three-valued approximations of a many-valued
logic can be derived based on the two designated sets [10,11]. Precisely, we accept
a truth degree as being true if it is in the positively designated set, reject it as

C. Cornelis et al. (eds.): RSCTC 2014, LNAI 8536, pp. 136–143, 2014.
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being true if it is the negatively designated set, and neither accept nor reject if it
is not in any of the two sets. By so doing, an approximation of the many-valued
logic can be obtained. In widely used totally ordered valuation domain, the
thresholds can uniquely determine the positively designated set and negatively
designated set, and thus play a key role in the three-valued approximation of
many-valued logic. However, this issue of thresholds determination has not been
investigated yet.

In this paper, we aim to solve this problem in a special kind of many-valued
logic, i.e., NM-logic [12] which is equivalently called R0-logic in [13]. The val-
uation domain we consider in this paper is {0, 1

n−1 , · · · ,
n−2
n−1 , 1} instead of its

abstract algebra. Moreover, to make the three-valued approximation of many-
valued logic consistent with logical structure in NM logic, it is required that the
mapping from the set of logic formulae to {0, 12 , 1} should be a valuation, that is,
it preserves the logical connectives. Such a requirement can uniquely determine
the thresholds, as we will show below.

2 Preliminaries

In this section, we briefly review some preliminary knowledge about three-way
decision and multiple-valued logic.

2.1 Three-Way Decision

As stated in [10], the essential ideas of three-way decisions are described in terms
of a ternary classification according to evaluations of a set of criteria.

Suppose U is a finite nonempty set of objects or decision alternatives and C is
a finite set of conditions. Each condition in C may be a criterion, an objective, or
a constraint. To better suit our needs, we assume that C is a finite set of criteria
in the present paper. Our decision task is to classify objects of U according to
whether they satisfy the set of criteria. Note that in widely used two-way deci-
sion models, an object either satisfies the criteria or does not satisfy the criteria,
accordingly, we can divide the universe into two parts, i.e., the set of objects
satisfying the criteria and the set of objects not satisfying the criteria. However,
when using this approach, we can encounter some fundamental problems. For
instance, it may happen that we cannot decide whether an object satisfy the
criteria or not due to the incomplete information. in such a situation, the choice
of two-way decision may be costly. Consequently, we have to search for an ap-
proximate solution. Instead of making a binary decision, we use thresholds on
the degrees of satisfiability to make one of three decisions: (a) accept an object
as satisfying the set of criteria if its degree of satisfiability is at or above a certain
level; (b) reject the object by treating it as not satisfying the criteria if its degree
of satisfiability is at or below another level; and (c) neither accept nor reject the
object but opt for a noncommitment. The third option may also be referred to
as a deferment decision that requires further information or investigation.

To formally describe the satisfiability of objects, rules for acceptance and
rules for rejection, we need to introduce the notion of evaluations of objects and
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designated values for acceptance and designated values for rejection. Evalua-
tions provide the degrees of satisfiability, designated values for acceptance are
acceptable degrees of satisfiability, and designated valued for rejection are accept-
able degrees of non-satisfiability. They provide a basis for a theory of three-way
decisions.

In Yao’s paper [10], three different but closely related types of three-way
decision were presented, they are three-way Decisions with a pair of poset-based
evaluations, three-way decisions with one poset-based evaluation and three-way
decisions with an evaluation using a totally ordered set. In the present paper, we
only consider the three-way decision with an evaluation using a totally ordered
set, which is also a convenient and widely used approach.

Definition 1 [10] Suppose (L,≤) is a totally ordered set, that is, ≤ is a total
order. For two elements α, β with β < α (i.e., β < α ∧ ¬(α < β)), suppose that
the set of designated values for acceptance is given by L+ = {t ∈ L|t ≥ α} and
the set of designated values for rejection is given by L− = {b ∈ L|b ≤ β}. For
an evaluation function v : U → L, its three regions are defined by:

POS(α, β)(v) = {x ∈ U |v(x) ≥ α}, (1)

NEG(α, β)(v) = {x ∈ U |v(x) ≤ β}, (2)

BND(α, β)(v) = {x ∈ U |β < v(x) < α}. (3)

2.2 Many-Valued NM-Logic

Many-valued NM-logic [12,13] consists of the syntax and semantics of its logical
language. In the syntax, atomic formulae p1, p2, · · · (the set of atomic formulae
is denoted by AF )are always used to denote simple proposition, the set of all
logic formulae F (S) can be defined in the following way:

(i) Each atomic formula belongs to F (S),
(ii) If B,C ∈ F (S), then B ∨ C,B ∧ C,¬B,B → C ∈ F (S),
(iii) Any formula of F (S) can be defined by finitely using (i) and (ii).
In NM-logic, two additional logic connectives ⊗ and ⊕ can be defined by

∀A,B ∈ F (S), A⊗B = ¬(A→ ¬B), A⊕B = ¬A→ B.

The axioms of NM-logic include the following types of formulae:
(i) B → (C → B ∧ C),
(ii) (⇁ B →⇁ C) → (C → B),
(iii) (B → (C → D)) → (C → (B → D)),
(iv) (C → D) → ((B → C) → (B → D)),
(v) B →⇁⇁ B,
(vi) B → B ∨ C,
(vii) B ∨ C → C ∨B,
(viii) (B → D) ∧ (C → D) → (B ∨ C → D),
(ix) (B ∧ C → D) → (B → D) ∨ (C → D),
(x) (B → C) ∨ ((B → C) →⇁ B ∨ C),

where B ∧C is an abbreviation for ⇁ (⇁ B∨⇁ C).
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The inference rule is MP rule, i.e., we can infer {B} from {A,A→ B}.
Semantically, we only consider the linearly order truth values containing n

elements, i.e., Ln = {0, 1
n−1 ,

2
n−2 , · · · ,

n−2
n−1 , 1}. Some commonly used operations

defined on Ln include ∨,∧,¬, which are defined by

∀a, b ∈ L, a ∨ b = max {a, b}, a ∧ b = min {a, b},¬a = 1− a.

The definition of implication operator → is defined
a→ b = 1 when a ≤ b and a→ b = (1 − a) ∨ b, otherwise.
Moreover, a key notion in semantics is valuation, which is a mapping from

F (S) to L preserving logical connectives, i.e., it satisfies the following condition:
v(A ∨B) = v(A) ∨ v(B), v(A ∧ B) = v(A) ∧ v(B), v(¬A) = 1 − v(A), v(A →

B) = v(A) → v(B).
Since any valuation preserves the logic connectives in many-valued logic, it can

be uniquely determined by its value on the set of atomic formulae {v(p1), · · · ,
v(pn), · · ·}.

3 Three-Way Decision in Many-Valued NM-Logic

In this section, we narrow our focus on three-valued approximation of many-
valued logic. We choose a special kind of many-valued NM-logic [12,13], that
is, the valuation domain L is endowed with the NM implication operator, apart
from the other operators.

Let U be the set of logic formulae in NM-logic, i.e., U = F (S), L be the
valuation domain, i.e., L = {0, 1

n−1 , · · · ,
n−2
n−1 , 1} and any valuation v : F (S) → L

be the evaluation function. Then by using Definition 1, we obtain that for any
two thresholds α, β (α > β), the corresponding three regions in the context of
many-valued NM-logic are given by

POSα,β(v) = {A ∈ F (S)|v(A) ≥ α}, (4)

NEGα,β(v) = {A ∈ F (S)|v(A) ≤ β}, (5)

BNDα,β(v) = {A ∈ F (S)|β < v(A) < α}. (6)

According to the truth value of A under valuation v, one of three truth values
{0, 12 , 1} can be assigned to it. Specifically, when A belongs to the acceptance
region POSα,β(v), the truth value of A is equal to 1, if A appears in the rejection
region NEGα,β(v), its truth value is equal to 0, and 1

2 otherwise. The obtained
three-valued logic [14] with the truth values {0, 12 , 1} is the three-valued approx-
imation of many-valued logic. Such an approximation naturally leads to a new
mapping ϕ : F (S) → {0, 12 , 1}, as defined by

ϕ(A) =

⎧⎨⎩
1, A ∈ POSα,β(v),
1
2 , A ∈ BNDα,β(v),
0, A ∈ NEGα,β(v).

To further indicate the close relationship between ϕ and v, we denote ϕ by ϕv

instead.
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It is important to remark here that ϕv is not necessarily a valuation in NM-
logic, as shown by the following example.

Example 1. Let L = {0, 14 ,
2
4 ,

3
4 , 1}, α = 3

4 , β = 0, then according to the defini-
tion of three-way decision, one conclude that

POSα,β(v) = {A ∈ F (S)|v(A) ≥ 3

4
}, (7)

NEGα,β(v) = {A ∈ F (S)|v(A) ≤ 0}, (8)

BNDα,β(v) = {A ∈ F (S)|0 < v(A) <
3

4
}. (9)

Consequently, ϕv is defined by

ϕv(A) =

⎧⎨⎩
1, v(A) ≥ 3

4 ,
1
2 , 0 < v(A) < 3

4 ,
0, v(A) ≤ 0.

Construct a mapping v : AF → L as follows: v(p1) = 3
4 and the valuation

value of any other atomic formula under v is arbitrarily chosen. Then v can
generate a unique valuation, for simplicity, we still denote it by v. According to
the definition of ϕv, we have ϕv(p) = 1 and ϕv(¬p) = 1

2 . Clearly, it does not
satisfy ϕv(¬p) = 1 − ϕv(p), that is, ϕv is not a valuation mainly due to the
choice of thresholds α, β.

Example 1 shows that under the three-valued approximation of many-valued
logic, the obtained new mapping ϕv : F (S) → {0, 12 , 1} is not necessarily a
valuation, which in turn implies that the obtained approximation may be not
consistent with the logical structure of many-valued NM-logic. Such an obser-
vation motivates us to discuss the determination of thresholds in three-valued
approximation of many-valued logic below.

Theorem 1. In three-valued approximation of many-valued logic, ∀v : F (S) →
Ln, ϕv is a valuation if and only if the thresholds α, β satisfy the following
conditions:

(i) α > 1
2 > β,

(ii) α+ β = 1,
(iii) |(β, α) ∩ Ln| ≤ 1.

Proof. “ ⇒′′:
(i) Suppose, on the contrary, that α ≤ 1

2 , and let v1 : F (S) → Ln be a
valuation satisfying v1(p1) = α . Since v1(p1) = α ≥ α, we then have from the
definition of ϕv that ϕv1(p1) = 1. Similarly, we have ϕv1(¬p1) = 1 owing to
v1(¬p1) = 1 − α ≥ α, which, however, contradicts with the fact that ϕv1 is a
valuation.

A similar analysis can show that β < 1
2 .

(ii) Let v1 : F (S) → Ln be the same valuation defined as above, then by
definition, ϕv1(p1) = 1. Since ϕv1 is a valuation, we immediately have ϕv1(¬p1) =
0, which together with (2)-(5) implies that v1(¬p) ≤ β, i.e., 1− α ≤ β.
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Similarly, define v2 : F (S) → Ln as a valuation satisfying v2(p2) = β, then
by definition, ϕv2(p2) = 0. Since ϕv2 is a valuation, we also have ϕv2(¬p2) = 1,
which together with (2)-(5) implies that v2(¬p2) ≥ α, i.e., 1− β ≥ α.

Putting these two results together, we have that 1− β = α. i.e., α+ β = 1.
(iii) Suppose, on the contrary, that (β, α) ∩ Ln contains more than two el-

ements, say as a, b. We assume, without any loss of generality, that a > b.
Define v3 : F (S) → Ln as a valuation satisfying v(p3) = a, v(p4) = b, then
v(p3 → p4) = v(p3) → v(p4) = (1 − a) ∨ b. We have from (ii) and β < a, b < α
that β < (1 − a) ∨ b < α, and therefore, ϕv(p3 → p4) = 1

2 . However, it
follows from v(p3) = a, v(p4) = b that ϕv(p3) = ϕv(p4) = 1

2 , consequently,
ϕv(p3) → ϕv(p4) = 1, a contradiction with the fact that ϕv is a valuation.

“ ⇐:′′ According to the definition of valuation, it suffices to show that ∀A,B ∈
F (S), ϕv(A∨B) = ϕv(A)∨ϕv(B), ϕv(¬A) = 1−ϕv(A), ϕv(A→ B) = ϕv(A) →
ϕv(B). We need only show that ϕv(A → B) = ϕv(A) → ϕv(B). The other two
equalities can be shown similarly.

There are three cases to be considered below.
Case 1: ϕv(A→ B) = 1, then we have v(A→ B) ≥ α, i.e., v(A) → v(B) ≥ α.

According to the definition of R0 implication, we further have v(A) ≤ v(B), or
(1 − v(A)) ∨ v(B) ≥ α. Suppose the former holds, then we immediately have
ϕv(A) ≤ ϕv(B), consequently, ϕv(A) → ϕv(B) = 1, showing ϕv(A → B) =
ϕv(A) → ϕv(B). Suppose the latter holds, there are also three subcases. Subcase
1: 1− v(A) ≥ α, v(B) < α, then v(A) ≤ 1−α. We have from (ii) that β = 1−α,
and so, v(A) ≤ β, consequently, ϕv(A) = 0 and ϕv(A) → ϕv(B) = 1. Subcase
2: 1 − v(A) ≥ α, v(B) ≥ α, since v(A) ≤ 1 − α < α ≤ v(B), we have from
the definition of ϕv that ϕv(A) ≤ ϕv(B), consequently, ϕv(A) → ϕv(B) = 1.
Subcase 3: 1 − v(A) ≤ α, v(B) ≥ α, we immediately have that ϕv(B) = 1, and
hence, we can conclude that ϕv(A) → ϕv(B) = 1.

Case 2: ϕv(A → B) = 1
2 , then we have β < v(A → B) < α, i.e., β <

(1−v(A))∨v(B) < α, which in turn implies that 1−v(A) < α, v(B) < α. There
are three subcases to be considered below. Subcase 1: 1 − v(A) > β, v(B) ≤ β.
Combining 1− v(A) < α,α+ β = 1 and (2)-(5), we have ϕv(A) =

1
2 , ϕv(B) = 0,

and hence, ϕv(A) → ϕv(B) = 1
2 → 0 = 1

2 = ϕv(A→ B). Subcase 2: 1 − v(A) >
β, v(B) > β. Then we conclude from 1− v(A) < α, v(B) < α,α+β = 1 and (2)-
(5) that both v(A) and v(B) simultaneously belong to the set (β, α) ∩ Ln. The
fact that |(β, α) ∩Ln| ≤ 1 implies immediately that v(A) = v(B), consequently,
v(A→ B) = 1 and ϕv(A→ B) = 1, which, however, is a contradiction with the
precondition ϕv(A → B) = 1

2 . This shows that the subcase does not actually
exist. Subcase 3: 1 − v(A) ≤ β, v(B) > β. Combining 1 − v(A) < α, v(B) < α
and α + β = 1, we conclude that both v(A) ≥ α, β < v(B) < α. According to
(2)-(5), we have ϕv(A) = 1, ϕv(B) = 1

2 , and hence, ϕv(A) → ϕv(B) = 1 → 1
2 =

1
2 = ϕv(A→ B), as desired.

Case 3: ϕv(A → B) = 0, then we have v(A → B) ≤ β, i.e., (1 − v(A)) ∨
v(B) ≤ β, which in turn implies that 1 − v(A) ≤ β, v(B) ≤ β, consequently,
ϕv(A) = 1, ϕv(B) = 0, and hence, ϕv(A) → ϕv(B) = ϕv(A→ B), as desired.

This completes the proof of Theorem 1.
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Theorem 2. In three-valued approximation of many-valued logic, ∀v : F (S) →
Ln, ϕv is a valuation if and only if it satisfies the following condition:

(i) When n is odd,

ϕv(A) =

⎧⎨⎩
1, v(A) ≥ n+1

2(n−1) ,
1
2 , v(A) =

1
2 ,

0, v(A) ≤ n−3
2(n−1) .

(ii) When n is even,

ϕv(A) =

{
1, v(A) ≥ n

2(n−1) ,

0, v(A) ≤ n−2
2(n−1) .

P roof. It follows from Theorem 1 and the structure of Ln.
As shown in [10], the existing models of three-way decision mainly include

Pawlak’s rough set model, decision-theoretic rough set model, shadowed set,
etc. Comparatively, our approach is different from those mentioned above in
that it is firstly presented from the viewpoint of formal logic. Moreover, it can
improve the classification of logic formulae in that the pair of thresholds (α, β)
can be uniquely determined.

The requirement that ϕv : F (S) → {0, 12 , 1} should be a valuation mainly
comes from the perspective of logic, that is, ϕv should preserve the logical con-
nectives in NM-logic.

4 Conclusion

In this paper, we consider three-valued approximation of many-valued logic from
the viewpoint of three-way decision. Our discussion is based on the following as-
sumption: when the set of objects consists of logic formulae, then evaluation func-
tion should be the valuation in many-valued logic. Based upon this assumption,
some interesting results have been obtained, i.e., when n is odd, the thresholds
for three-way decision is uniquely determined. When n is even, there is actually
no three-way decision, but two-way decision.

Note that our work in this paper is a tentative approach to combining three-
way decision and logic because the considered logic has the linearly ordered truth
values. In the future, we will extend the present work to a more general setting,
where the truth values may be not linearly ordered, and moreover, NM-logic
may be replaced by other types of logic systems.
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Abstract. Decision-theoretic rough set is a special rough set approach,
which includes both misclassification and delayed decision costs. Though
the property of monotonicity does not always hold in decision-theoretic
rough set, the decision-monotonicity reduct may help us to increase both
lower approximation and upper approximation. The experimental results
in this paper tell us that by comparing with the original decision system,
more cost is required with decision-monotonicity reduct. The implied
philosophy is: if you want to get more, you should pay more!

Keywords: cost, decision-monotonicity reduct, decision-theoretic rough
set.

1 Introduction

Presently, Decision-Theoretic Rough Set (DTRS) [1] has attracted much atten-
tion due to the following two reasons: 1. it introduced the basic idea of cost
sensitivity into rough set model ; 2. the used thresholds come from cost itself.

However, it must be noticed that the property of monotonicity does not always
hold in DTRS [2,3]. For example, the lower and upper approximations are not
necessarily monotonic increasing or decreasing with the increasing of the con-
ditional attributes. Therefore, the attribute reduction is an valuable problem,
which should to be addressed in DTRS since monotonicity plays a crucial role
in finding reducts of classical rough set. With respect to different requirements,
two main types of the attribute reductions have been considered in DTRS: one
is the reduct related to decision while the other is the reduct related to cost. For
example, Yao and Zhao [2] have proposed decision-monotonicity criterion and
generality criterion based reducts, which can be included into the first category.
Li et al. [3] proposed the concept of non-monotonic attribute reduction, which
aims to keep or increase the number of decision rules supported by positive re-
gions. As far as the cost related reduct is considered, Yao and Zhao [2] proposed

C. Cornelis et al. (eds.): RSCTC 2014, LNAI 8536, pp. 144–151, 2014.
c© Springer International Publishing Switzerland 2014



Want More? Pay More! 145

cost criterion based reduct, Jia et al. [4] analyzed three different algorithms to
obtain reducts with smaller costs.

In many practical applications, our main objective is to classify an object
into a class other than exclude an object from a class. Classification of object is
corresponding to the positive rule in DTRS while exclusion of object is corre-
sponding to the negative rule in DTRS. Therefore, we argue that Yao and Zhao’s
decision-monotonicity reduct is a very important reduct in DTRS because it re-
quires to keep or increase the number of positive rules in a decision system. The
decision-monotonicity criterion means the following two conditions:

The purpose of this paper is to further investigate decision-monotonicity
reduct. This is mainly because decision-monotonicity reduct only take the de-
cision rules into consideration while cost is also an important aspect in DTRS.
Therefore, what we want to explore is the relationship between decision and cost
of decision-monotonicity reduct.

2 DTRS

Formally, an information system can be considered as a pair I = 〈U,AT 〉, in
which U is a non-empty finite set of the objects called the universe; AT is a
non-empty finite set of the attributes (features). ∀a ∈ AT , Va is the domain of
attribute a. ∀x ∈ U , a(x) denotes the value that x holds on a (∀a ∈ AT ). Given
an information system I, ∀A ⊆ AT , an indiscernibility relation IND(A) may
be defined as IND(A) = {(x, y) ∈ U2 : ∀a ∈ A, a(x) = a(y)}, [x]A = {y ∈ U :
(x, y) ∈ IND(A)} is the equivalence class of x in terms of IND(A).

For a Bayesian decision procedure, a finite set of the states can be denoted
by Ω = {ω1, ω2, · · · , ωs}, a finite set of t possible actions can be denoted by
A = {a1, a2, · · · , at}. ∀x ∈ U , let Pr(ωj |x) be the conditional probability of
object x being in state ωj, and λ(ai|ωj) be the loss, or cost for taking action ai
when the state is ωj . Suppose that we take the action ai for object x, then the
expected loss is R(ai|x) =

∑s
j=1 λ(ai|ωj) · Pr(ωj |x).

For Yao’s DTRS, the set of states is composed by two classes such that Ω =
{X,∼ X}, it can be used to indicate that an object is in class X or out of
class X ; the set of actions is given by A = {aP , aB, aN}, in which aP , aB and
aN express three actions: aP means that x is classified into positive region of
X , i.e., POSA(X); aB means that x is classified into boundary region of x,
i.e., BNDA(X); aN means that x is classified into negative region of X , i.e.,
NEGA(X). The loss function regarding the costs of three actions in two different
states is given in Tab. 1.

Table 1. The loss function regarding the costs of three actions in two states

X ∼ X
aP λPP λPN

aB λBP λBN

aN λNP λNN
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In Tab. 1, λPP , λBP and λNP are the losses for taking actions of aP , aB and
aN , respectively, when stating x is being in X ; λPN , λBN and λNN are the losses
for taking actions of aP , aB and aN , respectively, when stating x is out of X . It
should be noticed that both λBP and λBN are delayed decision costs. ∀x ∈ U ,

by using the conditional probability Pr(X |[x]A) = |[x]A∩X|
|[x]A| , the expected losses

associated with taking three actions are:
R(aP |[x]A) = λPP · Pr(X |[x]A) + λPN · Pr(∼ X |[x]A);
R(aB |[x]A) = λBP · Pr(X |[x]A) + λBN · Pr(∼ X |[x]A);
R(aN |[x]A) = λNP · Pr(X |[x]A) + λNN · Pr(∼ X |[x]A).
The Bayesian decision procedure leads to the following minimum-risk decision

rules:
(P) R(aP |[x]A) ≤ R(aB |[x]A) ∧R(aP |[x]A) ≤ R(aN |[x]A) → x ∈ POSA(X);

(B) R(aB |[x]A) ≤ R(aP |[x]A) ∧ R(aB |[x]A) ≤ R(aN |[x]A) → x ∈ BNDA(X);
(N) R(aN |[x]A) ≤ R(aP |[x]A) ∧R(aN |[x]A) ≤ R(aB |[x]A) → x ∈ NEGA(X).

Since Pr(X |[x]A) + Pr(∼ X |[x]A) = 1 and we assume a reasonable loss func-
tion with the conditions such that 0 ≤ λPP ≤ λBP ≤ λNP and 0 ≤ λNN ≤
λBN ≤ λPN , then decision rules (P), (B) and (N) can be expressed as:

(P) Pr(X |[x]A) ≥ α ∧ Pr(X |[x]A) ≥ γ → x ∈ POSA(X);
(B) Pr(X |[x]A) < α ∧ Pr(X |[x]A) < β → x ∈ BNDA(X);
(N) Pr(X |[x]A) < γ ∧ Pr(X |[x]A) ≤ β → x ∈ NEGA(X);

where α = (λPN−λBN )
(λPN−λBN )+(λBP−λPP ) , β = (λBN−λNN)

(λBN−λNN )+(λNP−λBP ) ,

γ = (λPN−λNN)
(λPN−λNN )+(λNP−λPP ) .

Since 0 ≤ β < γ < α ≤ 1, then we have
(P) Pr(X | [x]A) ≥ α→ x ∈ POSA(X);
(B) β < Pr(X | [x]A) < α→ x ∈ BNDA(X);
(N) Pr(X | [x]A) ≤ β → x ∈ NEGA(X).
The above three rules are referred to as (P) rule, (B) rule and (N) rule, respec-

tively. Following these rules, the lower approximation, upper approximation of
X are ADT (X) = {x ∈ U : Pr(X |[x]A) ≥ α};ADT (X) = {x ∈ U : Pr(X |[x]A) >
β}.

For decision-theoretic rough set, we may consider following three costs which
are supported by objects in positive region, boundary region and negative region,
respectively.

(P) cost:
∑

x∈POSA
DT (X)

(
Pr(X |[x]A) · λPP + (1 − Pr(X |[x]A)) · λPN

)
.

(B) cost:
∑

x∈BNDA
DT (X)

(
Pr(X |[x]A) · λBP + (1 − Pr(X |[x]A)) · λBN

)
.

(N) cost:
∑

x∈NEGA
DT (X)

(
Pr(X |[x]A) · λNP + (1− Pr(X |[x]A)) · λNN

)
.

The overall cost of X is denoted by COSTA(X) such that COSTA(X) =
COSTPOS

A (X)+COSTBND
A (X)+COSTNEG

A (X). Obviously, (P) cost is closely
related to (P) rule since the computation of (P) cost is based on the objects in
positive region and objects in positive region can induce (P) rules. Similarity,
(B) cost is closely related to (B) rule and (N) cost is closely related to (N) rules.
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3 Decision-Monotonicity Reduct

Definition 1. Let I =< U,AT ∪ {d} > be a decision system in which A ⊆ AT ,
U/IND({d}) = {X1, · · · , Xn} is the set of the decision classes induced by deci-
sion attribute d, A is referred to as a decision-monotonicity reduct if and only if
A is the minimal set of the conditional attributes, which preserves ATDT (Xj) ⊆
ADT (Xj) and ATDT (Xj) ⊆ ADT (Xj) for each Xj ∈ U/IND({d}).

It has been known that the (P) rules are supported by objects in positive
region. Therefore, for the first condition ATDT (Xj) ⊆ ADT (Xj), it is required
that by reducing attributes, a (P) rule is still a (P) rule with the same decision.
Moreover, by the second condition ATDT (Xj) ⊆ ADT (Xj), ∀x ∈ ATDT (Xj) −
ATDT (Xj), we have x ∈ ADT (Xj)−A(Xj) or x ∈ ADT (Xj), from which we can
conclude that by reducing attributes a (B) rule is still a (B) rule, or is upgraded
to a (P) rule with the same decision.

In many rough set literatures, two approaches have been widely adopted to
find reducts [5]: exhaustive algorithm and heuristic algorithm. Unfortunately,
exhaustive algorithm takes exponential time and is not feasible when we deal
with large amount of data. This is why heuristic algorithm has attracted much
attention. Most heuristic algorithms have the same structure and their differ-
ences lie in the different constructions of the heuristic functions. In this section,
we will use the heuristic algorithm to compute decision-monotonicity reduct.

Algorithm 1. Heuristic approach to compute decision-monotonicity reduct.

Input: Decision system I =< U,AT ∪ {d} >;
Output: A decision-monotonicity reduct A.
1. Compute ATDT (Xj) and ATDT (Xj) for each Xj ∈ U/IND({d});
2. A←− ∅, ADT (Xj) = ADT (Xj) = ∅ for each Xj ∈ U/IND({d});

//Addition
3. while ATDT (Xj) �⊆ ADT (Xj) or ATDT (Xj) �⊆ ADT (Xj) do
4. for each a ∈ AT −A
5. Compute the significance of attribute a;
6. end for
7. Find the maximal significance and the corresponding a;
8. A = A ∪ {a}
9. end while

//Deletion
10. for each a ∈ A
11. if ATDT (Xj) ⊆ A− {a}

DT
(Xj) and ATDT (Xj) ⊆ A− {a}DT (Xj)

then
12. A = A− {a};
13. end if
14. end for
15. Return A.
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4 Experimental Analysis

The experiments in this section is to uncover the relationships between decision
and cost of decision-monotonicity reduct in DTRS. All the experiments in this
section have been carried out on a personal computer with Windows 7, Intel
Core 2 DuoT5800 CPU (2.00 GHz) and 2.00 GB memory. The programming
language is Matlab 2010b. The data sets used are outlined in Tab. 2, which were
all downloaded from UCI Repository of machine learning databases.

Table 2. A description of data sets

ID Data sets Objects Attributes Classes
I Statlog (Australian Credit Approval) 690 14 X1(307)/X2(383)
II Congressional Voting Records 435 16 X1(267)/X2(168)
III Statlog (German Credit Data) 1000 24 X1(300)/X2(700)
IV Ionosphere 351 34 X1(126)/X2(225)
V SPECT Heart 267 22 X1(55)/X2(212)

Tab. 3 shows the experimental results of (P) rules, (P) costs, (B) rules and
(B) costs. The number of (P)/(B) rules is equivalent to the numbers of objects
in positive/boundary regions, respectively. This is mainly because each object
in positive/boundary regions can induce a (P)/(B) decision rules.

Table 3. The comparisons between raw data and reduct data for (P) rules, (P) costs,
(B) rules and (B) costs

ID (P) rules (P) cost (B) rules (B) cost
Raw Reduct Raw Reduct Raw Reduct Raw Reduct

I
X1 301 301 0 0 10.8 11.1 0.9770 1.0530
X2 377.8 379.4 0.5424 1.2624 10.2 9 0.4456 0.2673
II
X1 267 284.6 0 5.7533 0 0 0 0
X2 168 195.5 0 8.8848 0 0 0 0
III
X1 300 302.8 0 2.0861 0 0 0 0
X2 700 702.8 0 2.0861 0 0 0 0
IV
X1 123.6 146.1 0.1436 8.2153 9.4 21.3 12.2353 15.0917
X2 225.6 238.8 1.3423 5.9613 2.4 1.8 0 0
V
X1 46.8 47.5 4.7331 5.1563 16.8 17.6 4.9706 6.0161
X2 200.3 203.3 2.7096 4.0181 21.6 20.1 8.6606 8.8863



Want More? Pay More! 149

Based on a careful investigation of Tab. 3, it is not difficult to draw the
following conclusions:

1. by comparing with the original data set, decision-monotonicity reduct can
generate more (P) rules, this is mainly because the first condition of decision-
monotonicity reduct requires that by reducing attributes, a positive rule is
still a positive rule with the same decision;

2. with the increasing of number of (P) rules, (P) cost also increases, in other
words, we should pay more to obtain more (P) rules;

3. by comparing with the original data set, decision-monotonicity reduct can
generate more or less (B) rules, this is mainly because the second condi-
tion of decision-monotonicity reduct requires that by reducing attributes, a
boundary rule is still a boundary rule, or is upgraded to a positive rule with
the same decision;

4. by comparing with original (B) cost, the (B) cost obtained by decision-
monotonicity reduct may increase or decrease.

Tab. 4 shows the experimental results of (P)+(B) rules, (P)+(B) costs, (N)
rules and (N) costs, respectively. The number of (P)+(B) rules is equivalent to
the sum of numbers of objects in lower approximation and boundary region, i.e.
upper approximation, while number of (N) rules is equivalent to the number of
objects in negative region. (P)+(B) cost is the sum of (P) and (B) cost.

Table 4. The comparisons between original data and reduct data for (P)+(B) rules,
(P)+(B) costs, (N) rules and (N) costs

ID (P)+(B) rules (P)+(B) cost (N) rules (N) cost
Raw Reduct Raw Reduct Raw Reduct Raw Reduct

I
X1 311.8 312.1 0.9970 1.0530 378.2 377.9 0.7519 0.7519
X2 388 388.4 0.9880 1.5297 302 301.6 0.4043 0.2426
II
X1 267 284.6 0 5.7533 168 150.4 0 0
X2 168 195.5 0 8.8848 267 239.5 0 0
III
X1 300 302.8 0 2.0861 700 697.2 0 0
X2 700 702.8 0 2.0861 300 297.2 0 0
IV
X1 133 167.4 12.3789 23.307 218 183.6 1.1296 0.9349
X2 228 240.6 1.3423 5.9613 123 110.4 0 0
V
X1 63.6 65.1 9.7037 11.1669 203.4 201.9 3.7049 3.7049
X2 221.9 223.4 11.3702 12.9044 45.1 43.6 4.2684 4.1970

Based on a careful investigation of Tab. 4, it is not difficult to draw the
following conclusions:
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1. by comparing with the original data set, decision-monotonicity reduct can
generate more (P)+(B) rules, this is mainly because the second condition of
decision-monotonicity reduct requires that by reducing attributes, a (P)+(B)
rule is still a (P)+(B) rule with the same decision;

2. with the increasing of number of (P)+(B) rules, (P)+(B) cost also increases,
in other words, we should pay more to obtain more (P)+(B) rules;

3. by comparing with the original data set, decision-monotonicity reduct can
generate less (N) rules, this is mainly because the second condition of decision-
monotonicity reduct requires that by reducing attributes, a negative rule is not
necessarily to be a negative rule with the same decision;

4. by comparing with original (N) cost, the (N) cost obtained by decision-
monotonicity reduct decrease.

Tab. 5 shows the overall costs for five data sets. We can see that these overall
costs are not only computed for each decision classes, but also obtained in whole
decision system.

Table 5. The comparison between original data and reduct data for overall costs

ID Overall costs
Raw Reduct

I 3.1412 3.6402
X1 1.7489 1.8049
X2 1.3923 1.8353
II 0 14.6381
X1 0 5.7533
X2 0 8.8848
III 0 4.1722
X1 0 2.0861
X2 0 2.0861
IV 19.4698 30.2032
X1 13.5085 24.2419
X2 5.9613 5.9613
V 29.0472 31.9732
X1 13.4086 14.8718
X2 15.6386 17.1014

Finally, following a careful investigation of Tab. 5, it is not difficult to draw
the following conclusions:

1. by comparing with the original data set, the overall cost of decision class
obtained by decision-monotonicity reduct increase;

2. by comparing with the original data set, the overall cost of decision system
obtained by decision-monotonicity reduct increase.

From discussions above, it is clear that through decision-monotonicity reduct,
the numbers of decision rules supported by lower/upper approximation increase,
while the corresponding costs also increase.
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5 Conclusions

Decision-monotonicity reduct is proposed to keep or increase the lower approxi-
mation and upper approximation of decision-theoretic rough set. In this paper,
what we want to explore is the relationships between such increasing and the
variation of decision cost. Through experimental analysis, we have drawn an
important conclusion such that the increasing of decision-theoretic rough ap-
proximation leads to the increasing of decision cost.

The present study is the first step to decision-monotonicity reduct in decision-
theoretic rough set. The following are challenges for further research.

1. Decision-monotonicity reduct with complex types of cost, e.g. interval-valued
costs.

2. Decision-monotonicity reduct by considering both Yao’s loss function and
test cost.
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Abstract. Most of the clustering algorithms reported assume a data
set does not always change. However, it is often observed that the an-
alyzed data set changes over time. To combat changes, we introduce a
new incremental soft clustering approach based on three-way decisions
theory in this paper. Firstly, an initial clustering algorithm is proposed
by using representative points. Secondly, to eliminate the influence of the
processing order on final incremental clustering results, the incremental
data is pre-clustered the same way. To quickly search similar areas for
incremental data, a searching tree based on the representative points is
constructed, and the strategies of searching and updating are presented.
Finally, the three-way decisions strategy is used for incremental cluster-
ing. The results of the example analysis show the approach is effective
to incremental clustering.

Keywords: Incremental clustering, Soft clustering, Searching tree,
Three-way decisions.

1 Introduction

Clustering analysis is one of important basic research directions in the field
of data mining. Nowadays, with the development of information technology,
the amount of data is growing quickly in many industries such as electronic
commerce, social networks, medical images, biological information, etc. So the
clustering results obtained previously need to be updated with the increasing
data. However, the traditional static clustering algorithms are not suitable to
deal with these dynamic data sets, because they have to scan all the data again.

Nowadays, more researchers pay attention to the incremental clustering ap-
proaches. Pham et al. [1] proposed the clustering objective function based on the
center under the framework of K-means clustering algorithm, but the approach
suffered from several drawbacks such as it needs predefined number of clusters
and only detects spherical clusters. Cheng et al. [2] proposed an incremental grid
density-based clustering algorithm, clusters of arbitrary shape could be found
according to concept of grid density reachable, but the granularity of grid is
difficult to define. Patra et al. [3] proposed an incremental clustering algorithm
based on distance and leaders. The incremental data are clustered by calculat-
ing distance between it and the surrounding leaders, but the algorithm needs

C. Cornelis et al. (eds.): RSCTC 2014, LNAI 8536, pp. 152–159, 2014.
c© Springer International Publishing Switzerland 2014
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to search the whole data space to find the surrounding leaders. Ning et al. [4]
proposed an incremental spectral clustering approach by efficiently updating the
eigen-system, but it could not find the overlapping clusters.

On the other hand, overlapping clustering is more appropriate in a variety of
important applications such as network structure analysis, wireless sensor net-
works and biological information. Therefore, there are a few achievements of
overlapping clustering for incremental data. For example, SHC [5] is an incre-
mental clustering algorithm based on concept of Histogram Ratio of a cluster,
and SHC analyzes difference of semantic histogram ratio of each cluster when
new data are added. DHS [6] algorithm is also a soft incremental clustering al-
gorithm, and it is derived from dynamic hierarchical agglomerative framework,
which causes computational complexity is very high. Pérez-Suárea et al. [7] pro-
posed an algorithm based on density and compactness for dynamic overlapping
clustering, which is a graph-based clustering algorithm and represents collection
of objects as a similarity graph, but it builds a large number of small clusters.

Therefore, the main objective of this paper is to present a novel incremental
clustering approach which can also deal with the overlapping region among clus-
ters, where the interval sets are used to represent a cluster [8]. Inspired by the
three-way decisions theory [9], we will solve the problem based on the three-way
decisions. In order to enhance the performance of computing, some information
corresponding to the initial clustering results will be recorded in a tree first, the
node of the tree is not an object but a region of some objects. When the incre-
mental data arrives, the tree will be dynamically updated, and some strategies
are proposed to reduce the finding space. The experimental results show that
the proposed approach is effective to deal with the soft incremental clustering.

2 Basic Theory

2.1 Formulation of Three-Way Decisions Incremental Clustering

Let U = {x1, · · · , xi, · · · , xN} be a universe of D-dimensions objects, where xi =
(x1i , · · · , xdi , · · · , xDi ) and i = 1, 2, · · · , N . Let the clustering results of the universe
be C = {C1, . . . , Ck, . . . , CK}, and clusters are described by an interval set as
C = {[C1, C1], · · · , [Ck, Ck], · · · , [CK , CK ]}. For a cluster Ck = [Ck, Ck], objects

in Ck belong to the cluster definitely, objects in Ck−Ck may belong to the cluster,

objects inU−Ck do not belong to the cluster definitely. In other words, the cluster
Ck consists of three regions, i.e. the positive region, the boundary region and the
negative region, which are represented as POS(Ck), BND(Ck) and NEG(Ck);
and POS(Ck) = Ck, BND(Ck) = Ck −Ck, NEG(Ck) = U −Ck. The three do-
mains of the cluster provide strong theoretical basis for three-way decisions, it can
be used to construct corresponding three-way decisions rules. That is, an object
will belong to POS(Ck), NEG(Ck) or BND(Ck), when we make the decision of
positive/acceptance, negative/rejection or deferred/non-promise.

Assuming that the time series are T0, · · · , Tt, · · · , Tn. For a moment t, the sys-
tem can be described by a knowledge expression system ISt = (U t, At), where U t

means the universe at the moment and At means the set of D-dimensions
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attributes. A dynamic information system (DIS) can be represented by informa-
tion system series at eachmoment, namely,DIS={IS0, · · · , ISt, ISt+1, · · · , ISn}.

The problem of incremental clustering can be formalized as follows. Give an
dynamic information system at the time t + 1, ISt+1 = (U t+1, At+1), U t+1 =
U t++U,At+1 = At, clustering result of time t is RCt = {Ct

1, . . . , C
t
i , . . . , C

t
|RCt|},

and the structure information of each cluster at time t is known, then the ques-
tion is to find clustering result at time t+1, namely,RCt+1 = {Ct+1

1 , . . . , Ct+1
i , . . .

, Ct+1
|RCt+1|}. Of course, to combat the soft incremental clustering, the cluster will

be represented as an interval set.

2.2 Related Definitions

In a D-dimensions space, when considering a small enough region, the objects are
usually well-distributed, thus we can use a fictional point called representative
point to represent these objects. Considering the discovery area, the center is o
and r is the radius, the number of objects in the area is called the density of o
relative to r and denoted by Density(o, r).

Definition 1. Representative points: For point p, distance r and threshold
threshold, if Density(p, r) ≥ threshold, then p is a representative point.

Representative points are fictional points, not points/objects in the system.

Definition 2. Representing region: Every representative point p is the rep-
resentative of a circular area where the point is the center of the area and the
radius is r, and the region is representing region of representative point p.

All objects in the representing region of a representative point are seen as
an equivalence class, all objects that do not be represented by any representa-
tive point are noise. For example, assuming rk is the kth representative point,
coverk = {x1, · · · , xk} is the objects in its representative region. Since the repre-
sentative point rk can represent the region, it is reasonable to suppose that the
fictional point has D-dimensions attributes. That is rk = (r1k, · · · , rdk, · · · , rDk ) and
a triple is used to represent the rdk, namely, rdk = (rdk.left, r

d
k.right, r

d
k.average).

The following formulas are used to compute them: rdk.left = min(xd1, · · · , xdk),

rdk.right = max(xd1 , · · · , xdk) and rdk.average = 1
k

k∑
i=1

xdi .

Generally speaking, it is possible that there exists overlapping region between
the representative regions.

Definition 3. Similarity between representative regions: Let ri and rj be
two arbitrary representative points, the similarity between their representative
regions is defined as follows.

Similarity(ri, rj) =

√√√√ D∑
k=1

(rki .average− rkj .average)
2 (1)

To speed up the searching similar space for the incremental data, we build the
searching tree based on the representative points. The root represents the original
space composing of all representative points, then we sort the attributes by



An Incremental Three-Way Clustering Approach 155

significance. According to the most significance attribute, we construct the nodes
in the 1st layer. That is, all representative points are split according to these
representative points’ values in the attribute, and the same way to construct the
other layers.

Definition 4. The node: Let Nodeij be the jth node of the i layer in the
searching tree, let R = {r1, · · · , r|Nodeij |} be the set of representative points

belonging to the node Nodeij . The node is represented by a value range,Nodeij =

(Nodeij .left,Node
i
j.right), where Node

i
j.left = min(ri1.left, . . . , r

i
|Nodeij |

.left),

and Nodeij .right = max(ri1.right, . . . , r
i
|Nodeij |

.right).

In addition, we need to measure the similarity between the incremental data
representative points and nodes when looking up the searching tree. That is, we
need to measure the similarity between 2 mathematical value ranges.

Definition 5. Similarity of value range: For arbitrary value range Range1
and Range2, wherein Range1 = (Range1.left, Range1.right), so as to Range2.
Assuming Range1.left ≤ Range2.left, if we have Range1.right ≥ Range2.left,
then we call that Range1 is similar to Range2.

3 Incremental Clustering Algorithm Based on Three-Way
Decisions

3.1 The Initial Clustering Algorithm

The initial clustering algorithm is a soft clustering algorithm based on the con-
cepts of representative points. Firstly, we search the representative points of
the data space according to the Definition 1, and the map between represen-
tative points and the objects in its representative region is built. Secondly, the
algorithm adds some strong connected edges or weak connected edges among
representative points based on three-way decisions. Thirdly, the algorithm finds
out the strongly connected subgraph, which is the positive region of the cluster,
the union of the regions of representative points, which have the weak connected
to strong connected subgraph, constructs the boundary region of the cluster.
The algorithm is described as follows.

Algorithm 1: The Initial Clustering Algorithm:
Input: U = {x1, . . . , xn}; the parameter τ
Output: the initial clustering results RC and the noise set NS.
Step 1. Finding the representative points set RP and noise set NS according to
the Def.(1), Def.(2). The step is repeated τ times.
Step 2. Constructing undirected graphG between representative points in RP us-
ing the idea of three-way decisions. Here, α, β are thresholds. For all RPi, RPj ∈
RP , to compute the Similarty(RPi, RPj) according to the Eq.(1). If Similarty(
RPi, RPj) ≥ α, there is a strong connected edge between them, if β ≤ Similarty(
RPi, RPj) < α, there is a weak connected edge between them.
Step 3. Searching strong connected subgraphs in graph G. Every strong con-
nected subgraph represents POS(RCi). The objects in the union of regions
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corresponding to representative points which have weak edges connected to this
strong connected subgraph, but not in POS(RCi) form the BND(RCi).

3.2 Constructing the Searching Tree

The method of creating searching tree is similar to that of creating the decision
tree, which is built top-down. Firstly, we calculate the attribute importance of
each attribute and sort them in descending order according to the attribute
importance. The entropy index [10] is used to measure the attribute importance
in this paper. Assuming that the sorted attributes are denoted as AS. Secondly,
we build every layer according to the attribute importance, the more important
attribute is prior to construct layer of tree. When there exists two adjacent layer
whose numbers of nodes is roughly same, then we stop building the searching
tree. Let |node(i)| be the number of nodes of the ith layer.

Algorithm 2: Constructing the Searching Tree
Input: the representative point set RP , the ordered attribute set AS;
Output: the representative points searching tree T .
Step 1. Constructing the root node including all representative points, i = 0.
Step 2. Constructing the nodes of the ith(i ≥ 1) layer. Classifying every node
Nodei−1

j of the i − 1th layer into the nodes of the ith layer according to the
Definition 5 based on the ith attribute of AS.
Step 3. If |node(i)|

|node(i+1)| > λ(0 < λ < 1), then stop; otherwise, go to the Step 2.

3.3 Clustering the Incremental Data

Because the objects in new incremental data block are not completely isolated,
there exists links among them. Firstly, we cluster the incremental data using the
Algorithm 1, and the representative points in the incremental data block will be
discussed in the following. Secondly, Algorithm 3 gives the searching and updat-
ing processing for every representative point in the incremental data block to find
the similar nodes by searching the searching tree. Then, Algorithm 4 proposes an
incremental clustering based on three-way decisions. Let rwait be one represen-
tative point in the incremental data block, let Node(j) = {Nodejk1, . . . , Node

j
kn}

be the jth layer similar nodes.

Algorithm 3: Searching and Updating the Searching Tree
Input: the searching tree T , the incremental representative point rwait;
Output: the similar representative points Similarpoint.
Step 1. Adding rwait to root node. According to the 1th dimension attribute
value of rwait and definition 5, determining Node(1) in the 1th layer.
Step 2. According to Node(j) (initial j = 1) and the j + 1 dimension attribute
value of rwait, determining Node(j + 1). There are 3 cases as follows.
(1) There exists only one node, i.e. assuming Nodejki in Node(j) is similar to
rwait according to definition 5, if jth layer is last layer, adding all representative
points in Nodejki to Similarpoint, adding rwait to Nodejki, otherwise, adding
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rwait to Node
j
ki, adding child nodes of Nodejki to Node(j + 1), goto Step 3.

(2) There exists more than two nodes, i.e. assuming Nodejki, Node
j
kj in Node(j)

are similar to rwait, if jth layer is last, adding all points in Nodejki, Node
j
kj to

Similarpoint, merging rwait, Node
j
ki, Node

j
kj into a new node, otherwise, merg-

ing rwait, Node
j
ki, Node

j
kj , merging child node of Nodejki, Node

j
kj to form new

child node, then adding all child nodes of new node to Node(j+1), goto Step 3.
(3) There exists none, i.e. any Nodejki in Node(j) is not similar to rwait, if the
jth layer is not last, then rwait itself forms a new node of the jth and subsequent
several layers.
Step 3. j = j+1, goto Step 2. We calculate similarity between rwait and represen-
tative points in Similarpoint after finding similar region. Then, rwait is merged
into initial clusters or forms new cluster, the detail algorithm is described as
follows.

Algorithm 4: Clustering the New Data
Input: Similarpoint, the incremental representative point rwait.
Output: the final clustering results.
Step 1. For all ri ∈ Similarpoint, calculating Similarity(rwait, ri) according to
Eq.(1). Let Ralpha be representative points which satisfy Similarity(rwait, ri) ≥
α and Rbeta be points which satisfy β ≤ Similarity(rwait, ri) < α.
Step 2. Clustering rwait, there are 2 cases as follows:
(1) if Ralpha is null, forming new cluster, the POS(RCnew) is composed by rwait

, the BND(RCnew) is composed by objects in the union of region corresponding
to the representative points in Rbeta.
(2) if representative points in Ralpha belong to same or different clusters, merg-
ing rwait and lower bound of these clusters together to form POS(RCmerge),
and objects in the union of region corresponding to the representative points in
Rbeta but not in POS(RCmerge) into BND(RCmerge).

4 Example Analysis

In this section, we have carried out a number of experiments on synthetic data
sets to validate the performance of the proposed algorithm. The 2-dimension
synthetic data set is tested to illustrate the ideas presented in the previous
section, which has 1000 objects. 90% of the data set is used as the original data
set, and 10% of the data set is used as the incremental data. In this experiment,
the parameters r, threshold, τ, α, β, λ are set as 0.3,2,4,0.401,0.5,0.9, respectively.
In order to show the effectiveness of the proposed algorithm, we design three tests
on the synthetic data set.

The first case: the incremental data is selected randomly for every cluster. The
clustering results of DS1 are shown in the Fig.1, DS1 is clustered into 5 clusters
initially. The incremental clustering results of DS1 are shown in the Fig.2, it is
obviously that cluster C1 has grown and the emergence of new boundary region
of cluster C5 has been observed.
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Fig. 2. The incremental results of DS1

The second case: we remove the objects that connect with the two parts of
the cluster C5 and C6 intentionally, and the clustering results are shown in Fig.3
according to Algorithm1, DS2 is clustered into 6 clusters initially. Then, these
objects add to the set DS2, the incremental clustering results in the Fig.4 show
that the two parts be connected as a cluster, which reveals the inherent structure
in the DS2.
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Fig. 3. The original results of DS2
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Fig. 4. The incremental results of DS2

The third case: we remove a cluster from the test data set as shown in Fig.5
intentionally, the DS3 is clustered into 4 clusters according to Algorithm1. Then,
these objects add to set DS3, and the incremental clustering results of DS3 are
shown in Fig.6. The approach proposed in this paper can find the new cluster.
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5 Conclusions

In this paper, we presented an incremental clustering algorithm based on three-
way decisions. We used representative points in initial data set to build the
searching tree and defined the conception of the similarity of value range. As
a consequence, when incremental data is added up to the initial data set, we
can quickly find the similar subspace of new data by looking up the searching
tree. We then calculated the similarity between new data and all representative
points in the similar area and decided the cluster of the new data. The proposed
approach not only can find clusters of arbitrary shapes, but have the ability of
processing merging of different clusters and finding new clusters in the incremen-
tal data. The results of the example analysis also show the approach is effective
for incremental clustering. Future works aim to provide a convenient parameter
selection method in the algorithm.
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Abstract. Three-way decision rules can be constructed from rough set
regions, i.e., positive, negative and boundary regions. These rough set re-
gions can be viewed as the acceptance, rejection, and non-commitment
decision regions in three-way classification. Interpretation and determi-
nation of decision regions are one of the key issues of three-way decision
and rough set theories. We investigate the relationship between changes
in rough set regions and their impacts on the Gini coefficients of decision
regions. Effective decision regions can be obtained by satisfying objective
functions of Gini coefficients of decision regions. Three different objective
functions are discussed in this paper. The example shows that effective
decision regions can be obtained by tuning Gini coefficients of decision
regions to satisfy a certain objective function. It is suggested that with
the new approach more applicable decision regions and decision rules
may be obtained.

1 Introduction

The acceptance and rejection are two options adopted in the commonly used
binary decision model. However, making a definite decision of either acceptance
or rejection may lead to either a high level of incorrect-acceptance error and a
high level incorrect-rejection error [7]. Yao formulated three-way decision the-
ory [21]. It extends binary decision model by adding a non-commitment option.
Yao introduced and suggested to interpret three rough set regions, i.e., positive,
negative and boundary regions as the regions of acceptance, rejection, and non-
commitment in a ternary classification [20]. The rules of acceptance and rejection
decisions can be induced from the positive and negative regions, respectively.
The non-commitment decisions can be made from the boundary region [20]. In
Pawlak model, the decisions of acceptance and rejection are made from positive
and negative regions with no errors [13].The intolerance to any error may lead to
smaller positive and negative regions which are only applicable to a small set of
objects. Probabilistic rough sets introduce a pair of thresholds (α, β) to weaken
the strict condition of the Pawlak model. They provide a trade-off between error
and applicability in order to obtain more efficient decision regions [18][19].

Interpretation and determination of decision region thresholds are one of the
key issues in three-way or ternary decision theories. Many attempts have been

C. Cornelis et al. (eds.): RSCTC 2014, LNAI 8536, pp. 160–171, 2014.
c© Springer International Publishing Switzerland 2014
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made to determine region thresholds with various approaches. Decision-theoretic
rough set model (DTRS) determines the pair of region thresholds by minimiz-
ing overall classification cost [22]. Game-theoretic rough sets (GTRS) obtain
region thresholds by formulating competition or cooperation among multiple
criteria [1][2][12][17]. In information-theoretic rough sets (ITRS), the effective
decision regions are obtained by minimizing Shannon entropy of three proba-
bilistic rough set regions [5]. In this paper, we use Gini coefficient to measure
decision regions, which in turn will provide a balance between decision regions.
The relationship between changes in rough set regions and their impacts on the
Gini coefficients of decision regions is used for this purpose. In particular, three
objective functions for Gini coefficients of regions are discussed in this paper.
Different effective decision regions can be obtained by satisfying different objec-
tive functions. The result in this study may enhance our understanding of rough
sets and three-way decision and make them practical in applications.

2 Rough Set Regions and Gini Coefficients

In this section, we briefly introduce the background concepts used in the paper,
namely, the relationship between decision regions and thresholds, the concept of
Gini coefficients, and Gini coefficients of decision regions.

2.1 Decision Regions and Thresholds

Suppose that the universe U is a finite nonempty set. Let E ⊆ U × U be an
equivalence relation on U , i.e., E is reflexive, symmetric, and transitive [13]. The
basic building blocks of rough set theory are the equivalence classes of E. For an
element x ∈ U , the equivalence class containing x is given by [x] = {y ∈ U |xEy}.
The family of all equivalence classes is called the quotient set of U , and is denoted
by U/E = {[x]|x ∈ U}. It defines a partition of the universe.

For an indescribable concept C ⊆ U , lower and upper approximations are
used to approximate it. In probabilistic rough sets, a pair of thresholds (α, β)
are used to define approximations [19]. We assume that 0 ≤ β < α ≤ 1, and
this condition is hold in this paper. Based on these approximations, positive,
negative and boundary regions are defined as [19]:

POS(α,β)(C) =
⋃
{[x] | [x] ∈ U/E, Pr(C|[x]) ≥ α},

NEG(α,β)(C) =
⋃
{[x] | [x] ∈ U/E, Pr(C|[x]) ≤ β},

BND(α,β)(C) =
⋃
{[x] | [x] ∈ U/E, β < Pr(C|[x]) < α}. (1)

The acceptance, rejection and non-commitment decisions can be induced from
the positive, negative and boundary regions, respectively. This provides an in-
terpretation of the three rough set regions as the acceptance, rejection, and non-
commitment decision regions in three-way classification. We denote the three
decision regions as POS(α,β)(C), NEG(α,β)(C) and BND(α,β)(C).
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Intuitively speaking, given an equivalence class [x], if the probability of the

concept C given [x] is greater or equal to α, i.e., Pr(C|[x]) = [x]∩C
[x] ≥ α, we

accept [x] in the concept C. The incorrect acceptance error is less than or equal
to 1−α [5]. If the probability of the concept C given [x] is less or equal to β, i.e.,

Pr(C|[x]) = [x]∩C
[x] ≤ β, we reject [x] as the concept C. The incorrect rejection

error is less than or equal to β [5].
Pawlak rough set model is a special case of probabilistic rough set model in

which α = 1 and β = 0. The decisions of acceptance and rejection are made with
no error. The incorrect acceptance error of acceptance region and the incorrect
rejection error of rejection region are both 0. But the non-commitment region
in the Pawlak model may be too large to apply in practical applications. The
thresholds (α, β) in probabilistic rough sets provide a trade-off between errors
and applicability of the model.

2.2 Gini Coefficients

AGini coefficient or Gini index is an inequality measure used in economics [8][10].
Mathematically, Gini coefficient can be used as a measure of divergence of two or
more probability distributions [4][9]. Gini coefficients have been applied in many
studies. For example, in data mining, it is used to measure the impurity of node
when building decision tree and determining the best split attribute [3][16].

Considering objects in the set S having an attribute A with k possible values,
a1, a2, ..., ak. We use block σA=ai(S) to denote the set of objects in S with
attribute value ai. The blocks containing objects with different attribute values
constitute a partition of S, πA = {σA=a1(S), σA=a2(S), ..., σA=ak

(S)}, i.e., the
union of these blocks is the set S and the intersection of any two blocks is an
empty set. The probabilistic distribution of a partition πA can be defined as:

PπA =

(
|σA=a1(S)|

|S| ,
|σA=a2(S)|

|S| , ...,
|σA=ak

(S)|
|S|

)
, (2)

where | · | denotes the cardinality of a set, and |σA=ai(S)| \ |S| denotes the
probability of the block σA=ai(S), i.e., Pr(ai) = |σA=ai(S)| \ |S|.

There are two kinds of Gini coefficients, namely, the absolute Gini coefficient
and the relative Gini coefficient. The absolute Gini coefficient of S with respect
of the probability distribution PπA measures the inequality of each block of the
partition πA and can be defined by [3]:

Gini(S, πA) =
k∑

i=1

|σA=ai(S)|
|S| ×

(
1− |σA=ai(S)|

|S|

)
= 1−

k∑
i=1

(
|σA=ai(S)|

|S|

)2

.

(3)

The value of absolute Gini coefficient is between 0 to k−1
k . When all objects in

S have same attribute value ai, the absolute Gini coefficient obtains the mini-
mum value 0. When PπA distributes averagely in S, the absolute Gini coefficient
obtains the maximum value, k−1

k .
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Given two attributes A with k possible values, a1, a2, ..., ak, and B withm pos-
sible values, b1, b2, ..., bm, we can get two partitions πA = {σA=a1(S), σA=a2(S),
..., σA=ak

(S)} and πB = {σB=b1(S), σB=b2(S), ..., σB=bm(S)}. The two parti-
tions mean dividing the set S into different groups based on the values of at-
tributes A and B. The relative Gini coefficient of each block σB=bi(S) measures
the distribution of PπA in block σB=bi(S), and can be calculated as:

Gini(σB=bi(S)) =
|σB=bi(S)|

|S| ×Gini (σB=bi(S), πA)

=
|σB=bi(S)|

|S| ×

⎛⎝1− k∑
j=1

( |σA=aj (S) ∩ σB=bi(S)|
|σB=bi(S)|

)2
⎞⎠ . (4)

The relative Gini coefficient of each block σB=bi(S) reaches the maximum value
k−1
k when PπA is averagely distributed in each block σB=bi(S). It obtains the

minimum value 0 when each block σB=bi(S) only contains the objects with single
attribute value aj .

2.3 Gini Coefficients of Decision Regions

Given a concept C and a threshold pair (α, β), the three decision regions are
defined according to Equation (1). As the three decision regions are pair-wise
disjoint and their union is the entire universe U , the following partition is formed:

π(α,β) = {POS(α,β)(C), NEG(α,β)(C), BND(α,β)(C)}. (5)

The probabilistic distribution of the partition π(α,β) is the probabilities of three
decision regions:

Pπ(α,β)
=
(
Pr(POS(α,β)(C)), P r(NEG(α,β)(C)), P r(BND(α,β)(C))

)
. (6)

The probabilities of three decision regions are:

Pr(POS(α,β)(C)) =
|POS(α,β)(C)|

|U | ,

P r(NEG(α,β)(C)) =
|NEG(α,β)(C)|

|U | ,

P r(BND(α,β)(C)) =
|BND(α,β)(C)|

|U | . (7)

The concept C and its complement set constitute a partition, i.e., πC =
{C,Cc}. The absolute Gini coefficient of each decision region with respect to πC
are determined as [23]:

Gini
(
POS(α,β)(C), πC

)
= 1− Pr(C|POS(α,β)(C))

2 − Pr(Cc|POS(α,β)(C))
2,

Gini(NEG(α,β)(C), πC) = 1− Pr(C|NEG(α,β)(C))
2 − Pr(Cc|NEG(α,β)(C))

2,

Gini(BND(α,β)(C), πC) = 1− Pr(C|BND(α,β)(C))
2 − Pr(Cc|BND(α,β)(C))

2.
(8)
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The probability Pr(C|POS(α,β)(C)) in Equation (8) denotes the conditional
probability of an object x in C given that the object is in the acceptance decision
region POS(α,β)(C). The conditional probabilities are computed as:

Pr(C|POS(α,β)(C)) =
|C ∩ POS(α,β)(C)|
|POS(α,β)(C)|

,

P r(C|NEG(α,β)(C)) =
|C ∩NEG(α,β)(C)|
|NEG(α,β)(C)|

,

P r(C|BND(α,β)(C)) =
|C ∩BND(α,β)(C)|
|BND(α,β)(C)|

. (9)

The conditional probabilities of Cc are similarly obtained.
The relative Gini coefficients of acceptance, rejection and non-commitment

decision regions are [23]:

GP (α, β) = Pr(POS(α,β)(C))×Gini(POS(α,β)(C), πC),

GN (α, β) = Pr(NEG(α,β)(C))×Gini(NEG(α,β)(C), πC),

GB(α, β) = Pr(BND(α,β)(C)) ×Gini(BND(α,β)(C), πC). (10)

If a half of the objects in a region belong to C and the other half of the objects
belong to Cc, the absolute Gini coefficient of a region has the maximum value of
1/2. The range of the probabilities for a region is between 0 to 1. We can infer
that the ranges of these relative Gini coefficients of the three decision regions
are between 0 to 1/2:

0 ≤ GP (α, β), GB(α, β), GN (α, β) ≤ 1/2. (11)

In Pawlak model, i.e., (α, β) = (1, 0), the acceptance region only contains
the objects belonging to the concept C and the rejection region only contains
the objects not belonging to the concept C. Therefore, Pawlak model has the
minimal relative Gini coefficients of 0 for both acceptance and rejection regions.
However, it may have the maximum relative Gini coefficient for non-commitment
region, since non-commitment region contains the objects belonging to C and
objects belonging to Cc. In addition, the non-commitment region is normally
large in size. When α is decreased or β is increased, the relative Gini coefficients
of the three regions will change correspondingly. When α equals to β, the size of
non-commitment region shrinks to 0, and the sizes of acceptance and rejection
regions increase. At this time, three-way decision evolves into binary decision
model. The relative Gini coefficient of non-commitment region obtains the min-
imal value 0, and the sum of the relative Gini coefficients of acceptance and
rejection regions is maximal. We can see there exists a restriction mechanism
among three decision regions. Gini coefficients of regions may provide a balance
among three regions, but the position of balance depends on the requirements
of applications.
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3 Determining Decision Regions by Setting Objective
Functions for Gini Coefficients of Regions

The change of decision regions will have directly affect on the relative Gini coef-
ficients of these decision regions. We can obtain effective decision regions which
satisfy various kinds of objective functions for relative Gini coefficients of regions.
In this section, we mainly discuss three types of objective functions, minimizing
the overall Gini coefficient, minimizing the difference between Gini coefficients
of immediate decision regions and non-commitment region, and setting limits for
three Gini coefficients. Since we may have to consider the sizes of decision regions
during analysis, we will use Gini coefficient to indicate relative Gini coefficient
in the rest of the paper when no confusion arises.

3.1 Minimizing the Overall Gini Coefficient

We consider the trade-off among Gini coefficients of the three decision regions
and formulate it as an optimization problem. The approach of converting deter-
mination of region thresholds to an optimization problem is feasible and effec-
tive [21]. Assume that a measure evaluates some desired quality of the induced
decision regions and a lower value of the measure represents a more desirable
classification. Our goal is to find an optimal pair of thresholds that minimizing
the overall quality of three decision regions [7]. Various measures can be em-
ployed to evaluate decision regions. Information-theoretic rough sets use Shan-
non entropy to measure the uncertainty of decision regions and try to obtain
region thresholds which can induce decision regions with minimizing the overall
uncertainty [5][7]. Here we employ the optimization problem to obtain effective
decision regions which can provide a trade-off among Gini coefficients of the
decision regions.

Let’s use the summation of Gini coefficients of three decision regions to denote
the overall Gini coefficients of rough set regions:

Gsum(α, β) = GP (α, β) +GN (α, β) +GB(α, β). (12)

The aim is to minimize Gsum(α, β) to obtain the decision regions that make the
distributions π(α,β) and πC more convergent. The problem of finding optimal
threshold pairs can be formulated as the optimization problem:

(α, β) = {(α, β)|MIN(Gsum(α, β))}. (13)

In Pawlak model, the acceptance and rejection regions have the minimal Gini co-
efficient of 0, i.e., GP (1, 0) = GN (1, 0) = 0. However, the overall Gini coefficient
of decision model Gsum(1, 0) may not be the minimum due to the maximal Gini
coefficient of non-commitment region. With the decrease of α and the increase
of β, the Gini coefficients of acceptance and rejection regions will increase and
the Gini coefficient of non-commitment region will decrease. When α equals to
β, i.e., α = β, the non-commitment region has a minimal size of 0 and three-way
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decision model evolves to a two-way decision model. The Gini coefficient of non-
commitment region obtain the minimal value 0, i.e., GB(α, β) = 0. However, the
overall Gini coefficient of decision model Gsum(1, 0) may not be the minimum
due to the changes of acceptance and rejection regions. The optimal decision
regions that make the overall Gini coefficient minimum depend on the distribu-
tion of data. There may be more than one threshold pair corresponding to the
minimal overall Gini coefficient. One can search the space of all possible region
thresholds to obtain optimal ones that satisfy the objective function. When data
set are big and the size of possible thresholds are huge, heuristic strategies can
be employed to reduce the search cost and time.

3.2 Minimizing the Difference between Gini Coefficients

We consider acceptance and rejection regions versus non-commitment region
as two types of regions. Since we can make decisions and induce rules from
acceptance and rejection regions, and we have to defer decisions or make non-
commitment decisions from non-commitment region, we call them immediate de-
cision regions and non-commitment decision region, respectively [11]. The Gini
coefficients of immediate and non-commitment decision regions influence each
other. The increase of one’s value may lead to the decrease of the other’s value.
In Pawlak model, Gini coefficients of immediate decision regions are 0 and Gini
coefficient of non-commitment decision region is the maximum. The model is not
applicable due to the large size of non-commitment decision region. In binary
decision models, Gini coefficients of immediate decision regions are the maxi-
mum and Gini coefficient of non-commitment decision region is 0. The model
has unacceptable error rates. These two extreme situations lead to unsuitable
decision regions. We need to consider a criterion to make a trade-off between
Gini coefficients of immediate and non-commitment decision regions.

Dividing three regions into two groups and considering the difference between
them previously was employed in shadowed sets [6][14]. Pedrycz proposed that an
optimal pair of thresholds should satisfy minimization of the absolute difference
of the sum of the elevated and reduced areas and shadow area [14][15]. The sizes
of three areas are calculated by the cardinality of the sets. An optimal pair of
thresholds can be obtained by taking the arguments that minimize the difference
of the sum of the elevated and reduced areas and shadow. In this paper, we use
this objective function to consider the difference between Gini coefficients of
immediate and non-commitment decision regions.

The difference between Gini coefficients of immediate and non-commitment
decision regions is expressed as:

Gdiff (α, β) = (GP (α, β) +GN (α, β)) −GB(α, β). (14)

We aim to minimize Gdiff (α, β) to obtain the decision regions that make a trade-
off between Gini coefficients of immediate and non-commitment decision regions.
The problem of finding pairs of optimal region thresholds can be formulated as
the optimization problem:
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(α, β) = {(α, β)|MIN (|Gdiff (α, β)|)}. (15)

In Pawlak model, the acceptance and rejection regions have the minimal Gini
coefficient of 0, i.e., GP (1, 0) = GN (1, 0)=0, the non-commitment region has
the maximal Gini coefficient, we can obtain Gdiff (1, 0) = GB(1, 0). With the
decrease of α and the increase of β, the difference between two Gini coefficients
will decrease. After it reaches the minimal value, the difference between two Gini
coefficients will increase again. The shape of the change seems to be concave.
When α = β, the Gini coefficient of non-commitment region has the minimal
value 0, i.e., GB(γ, γ) = 0. We have Gdiff (γ, γ) = GP (γ, γ) + GN (γ, γ). The
distribution of data decide the final values of thresholds pairs. More than one
pair may be obtained. Similarly, we can search the space of all possible region
thresholds to obtain the suitable decision regions. When the search space is large,
heuristic search maybe helpful.

3.3 Setting Limits for Three Gini Coefficients

We consider acceptance, rejection and non-commitment decision regions indi-
vidually. In some applications, the requirements for acceptance decisions and
rejection decisions are different. For example, in the medical applications, when
diagnosing if a patient suffers from a serious disease, a more conservative as-
sessment should be made for rejection decisions. Rejecting a patient can delay
the treatment and may lead to the lose of life. In this kind of applications, we
need to treat three decision regions individually and try to keep the Gini co-
efficients of them less simultaneously. We can set limits for Gini coefficients of
acceptance, rejection and non-commitment decision regions, and control them
less than specific values simultaneously:

(α, β) = {(α, β)|GP (α, β) ≤ cP ∧GN (α, β) ≤ cN ∧GB(α, β) ≤ cB}. (16)

The specific limits cP , cB and cN can be designated by users or experts, or
evaluated by statistical results. The suitable limits are important for obtaining
effective decision regions. The determination of these specific limits is beyond
the scope of this paper, we will explore it in future papers.

Table 1 shows the changes of Gini coefficients of three decision regions when
α decreases from 1 to γ and β increases from 0 to γ. In the table, ↗ denotes
the increase, ↘ denotes the decrease, and → denotes no change. There are two
observations:

Table 1. The relationship between the changes of decision regions and Gini coefficients
of regions

(α, β) = (1, 0) (α ↓, β) (α, β ↑) (α ↓, β ↑) (α, β) = (γ, γ)

GP (α, β) 0 ↗ → ↗ ↗
GB(α, β) max ↘ ↘ ↘ 0

GN(α, β) 0 → ↗ ↗ ↗
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– The threshold α influences the Gini coefficients of acceptance and non-
commitment decision regions. The decrease of α causes the increase in Gini
coefficient of acceptance region while the decrease in Gini coefficient of non-
commitment region;

– The threshold β influences the Gini coefficients of rejection and non-commit-
ment regions. The increase of β causes the increase in Gini coefficient of
rejection region while the decrease in Gini coefficient of non-commitment
region.

There are three specific limits for three decision regions. If one or two decision
regions are not important for applications, the objective function can ignore in-
significant decision regions. For example, if an application only cares acceptance
decision region, the objective function would be (α, β) = {(α, β)|GP (α, β) ≤ cP }.
There could be many thresholds pairs satisfying the objective functions. The re-
sult thresholds depend on what strategy is used to search.

4 A Demonstrative Example

In this section, we present a demonstrative example to illustrate the relationship
between the changes of decision regions and their impacts on Gini coefficients
of decision regions. Table 2 summarizes probabilistic data about a concept C.
There are 16 equivalence classes denoted by Xi(i = 1, 2, ..., 16), which are listed
in a decreasing order of the conditional probabilities Pr(C|Xi) for convenient
computations.

Table 2. Summary of the experimental data

X1 X2 X3 X4 X5 X6 X7 X8

Pr(Xi) 0.093 0.088 0.093 0.089 0.069 0.046 0.019 0.015
Pr(C|Xi) 1 0.978 0.95 0.91 0.89 0.81 0.72 0.61

X9 X10 X11 X12 X13 X14 X15 X16

Pr(Xi) 0.016 0.02 0.059 0.04 0.087 0.075 0.098 0.093
Pr(C|Xi) 0.42 0.38 0.32 0.29 0.2 0.176 0.1 0

When (α, β) = (1, 0), the three decision regions are POS(1,0)(C) = X1,
BND(1,0)(C) = X2 ∪X3 ∪ ... ∪X15 and NEG(1,0)(C) = X16.

The absolute Gini coefficients of acceptance and rejection regions are both 0:

Gini(POS(1,0)(C), πC) = Gini(NEG(1,0)(C), πC) = 0.

The relative Gini coefficients of acceptance and rejection regions are both 0, i.e.,
GP (1, 0) = 0 and GN (1, 0) = 0.

For the non-commitment region, the probability is

Pr(BND(1,0)(C)) =

15∑
i=2

Pr(Xi) = 0.814.
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The conditional probability of C is

Pr(C|BND(1,0)(C)) =

∑15
i=2 Pr(C|Xi)Pr(Xi)∑15

i=2 Pr(Xi)
=

0.4621

0.814
= 0.5677.

The absolute Gini coefficient of the non-commitment region is

Gini(BND(1,0)(C), πC) = 1− (0.5677)2 − (1− 0.5677)2 = 0.4908.

The relative Gini coefficient of the non-commitment region is

GB(1, 0) = Pr(BND(1,0)(C))×Gini(BND(1,0)(C), πC) = 0.3995.

Table 3 shows the Gini coefficients of decision regions corresponding to dif-
ferent thresholds pairs. Instead of listing all possible thresholds pairs, we only
choose α = (1, 0.9, 0.8, 0.7, 0.6) and β = (0, 0.1, 0.2, 0.3, 0.4, 0.5). Each cell repre-
sents the values of Gini coefficients of three regions, GP , GB and GN . The cell on
the top left corner corresponds to the thresholds (α, β) = (1, 0) and the Gini co-
efficients of three regions are GP (1, 0) = 0, GB(1, 0) = 0.3995 and GN (1, 0) = 0.

Table 3. Gini coefficients of regions for different thresholds pairs

�
��α
β

0.0 0.1 0.2

GP , GB, GN GP , GB, GN GP , GB, GN

1.0 0.0000, 0.3995, 0.0000 0.0000, 0.3332, 0.0186 0.0000, 0.2014, 0.0716

0.9 0.0280, 0.2563, 0.0000 0.0280, 0.2199, 0.0186 0.0280, 0.1378, 0.0716

0.8 0.0579, 0.1617, 0.0000 0.0579, 0.1382, 0.0186 0.0579, 0.0811, 0.0716

0.7 0.0672, 0.1453, 0.0000 0.0672, 0.1233, 0.0186 0.0672, 0.0691, 0.0716

0.6 0.0773, 0.1336, 0.0000 0.0773, 0.1125, 0.0186 0.0773, 0.0599, 0.0716

�
��α
β

0.3 0.4 0.5

1.0 0.0000, 0.1658, 0.0902 0.0000, 0.0906, 0.1309 0.0000, 0.0757, 0.1407

0.9 0.0280, 0.1132, 0.0902 0.0280, 0.0572, 0.1309 0.0280, 0.0448, 0.1407

0.8 0.0579, 0.0634, 0.0902 0.0579, 0.0242, 0.1309 0.0579, 0.0150, 0.1407

0.7 0.0672, 0.0521, 0.0902 0.0672, 0.0155, 0.1309 0.0672, 0.0071 0.1407

0.6 0.0773, 0.0432, 0.0902 0.0773, 0.0078, 0.1309 0.0773, 0.0000 0.1407

Based on Table 3, we can obtain effective decision regions which make Gini
coefficients of regions satisfy different objective functions.

– When determining decision regions by minimizing the overall Gini coefficient,
we can see Gsum(0.7, 0.2) = 0.2079 is the minimal value in the table, (α, β) =
(0.7, 0.2) is the thresholds close to optimal. Please be noted that since we
did not compute all possible thresholds, we can not say they are optimal.
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– When determining decision regions by minimizing the difference between
Gini coefficients of immediate and non-commitment decision regions, we can
see Gdiff (0.7, 0.3) = 0.0291 is the minimal value in the table, (α, β) =
(0.7, 0.3) is the thresholds close to optimal.

– When determining decision regions by setting specific limits for GP (α, β) ≤
0.06, GB(α, β) ≤ 0.1, and GN (α, β) ≤ 0.08, we can obtain two pairs of
thresholds, (α, β) = {(0.8, 0.2), (0.8, 0.3)}.

Based on the same data set, different objective functions can produce dif-
ferent decision regions. It is hard to decide which approach is better, since the
objective functions depend on the applications. No matter which objective func-
tion selected, the decision regions induced from the result thresholds are more
applicable and effective than the regions without error when measured by Gini
coefficients.

5 Conclusion

Gini coefficient is a kind of entropy calculation. In this paper, we use Gini coef-
ficient to measure the distribution of three decision regions defined by rough set
model. We analyze the impacts that the changes of decision regions bring on the
Gini coefficients of decision regions. Effective decision regions can be obtained by
adjusting Gini coefficients of decision regions to satisfy defined objective func-
tions. In particular, we discuss three objective functions, i.e., minimizing the
overall Gini coefficients of three regions, minimizing the difference between Gini
coefficients of immediate and non-commitment decision regions, and setting lim-
its for Gini coefficients of acceptance, rejection and non-commitment decision
regions. In the first two situations, we formulate the thresholds search as the op-
timization problems. The third one deals with the relatively flexible requirement,
in which each Gini coefficient of decision region can be considered independently.
The requirements of applications determine the suitable objective functions.

The future work will focus on the search strategies and learning mechanisms
for obtaining effective decision regions, as well as determination of suitable spe-
cific limits for each decision region.
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Abstract. The concept of three-way decisions was proposed by Yao
and most of three-way decisions models use two thresholds α and β to
partition the universe into three parts: the positive region POS(X), the
negative region NEG(X) and the boundary region BND(X). But acquire-
ment of a pair of thresholds is a challenge. In this paper, we propose a
new method to get the thresholds of three-way decisions model. We intro-
duce loss function into three-way decisions model based on constructive
covering algorithm (CCA). A loss function is interpreted as the costs of
making classification decisions. More specifically, for reducing losses of
classification, we change the radius of the cover according to the loss
function, then we compute the thresholds based on the modification.
This paper propose an effective method to compute thresholds α and β,
which is according to cost-sensitive three-way decisions model based on
CCA.

Keywords: Constructive Covering Algorithm, three-way decisions, loss
function, DTRSM.

1 Introduction

The concept of three-way decisions was proposed by Yao and used to interpret
rough set three regions [1][2][3]. Most of the three-way decisions models use two
parameters α and β to divide the universe into three parts. More specially, the
positive region POS(X), the negative region NEG(X) and the boundary region
BND(X). The rules generated by these three regions correspond to the results
of a three-way decisions that the situation is verified positively, negatively, or
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undecidedly based on the evidence. The positive rules express that an object or
object sets belong to one decision class when the threshold is more than α; the
probabilistic boundary rules express that an object or object sets belong to one
decision class when the thresholds are between α and β; the probabilistic negative
rules express that an object or object sets not belong to one decision class when
the threshold is less than β. The ideas of three-way decisions have in fact been
considered and may be further applied to many fields, including medical clinic
[4], environmental management [5], e-learning [6], email spam filtering [7], model
selection [8], information filtering [9], market timing decisions [10].

A great challenge for the three-way decision models is acquirement of a pair
of thresholds. Different thresholds may lead to different decision results. How to
choose the proper thresholds thus becomes an important task. Unfortunately, the
thresholds are usually given by experts experience in most of the probabilistic
rough sets. Instead of this, Yao introduced the risk to probabilistic rough sets and
proposed decision theoretic of rough set (DTRS) with bayesian theory [11]. Two
thresholds α and β can be directly and systematically calculated by minimizing
the decision loss [12]. Herbert and Yao introduced a game-theoretic approach to
DTRS for learning optimal parameter values [13][14].

Zhou introduced a cost-sensitive three-way decision approach to email spam
filtering. A loss function is interpreted as the costs of making classification deci-
sions. A decision is made for which the overall cost is minimum[15]. In this paper,
we propose a new method to get the thresholds of three-way decision models.
The new model is cost-sensitive. More specifically, the new method combines
loss function with three-way decisions model based on constructive covering al-
gorithm. Radius of the cover is depended on the loss function. We can compute
α and β according to the change of the radius. The rest of the paper is orga-
nized as follows. In Section 2, we briefly review the related work about decision
theoretic of rough set and constructive covering algorithm. In Section 3, a new
method that based on constructive covering algorithm to get thresholds of three-
way decision models is proposed. Experimental comparison results are shown in
Section 4. We conclude the paper and explain future work in Section 5.

2 Related Work

2.1 Probabilistic Rough Set Models

In probabilistic rough set models, we can obtain the (α,β)-probabilistic positive,
boundary and negative regions based on the (α,β)-probabilistic lower and upper
approximations:

POS(α,β)(X) = {x ∈ U |Pr(X|[x ]) ≥ α}
BND(α,β)(X) = {x ∈ U |β < Pr(X|[x ]) < α}
NEG(α,β)(X) = {x ∈ U |Pr(X|[x ]) ≤ β}

(1)

Where the equivalence class [x ] of x is viewed as description of x and Pr(X |[x ])
denotes the conditional probability of the classification, U is the universe.
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In most of probabilistic rough sets, the thresholds are given by experts with
intuitive understanding or experiences. However, Yao introduces Bayesian deci-
sion procedure into rough set theory (RST) and proposes a decision-theoretic
rough set model (DTRSM), in which the acceptable level of errors α and β can
be automatically computed from losses function, and the optimal decisions with
the minimum conditional risk can be directly calculated by using Bayes theory
[17].

We briefly review the concepts of DTRS. Let ={X,¬X } be a set of 2 states,
indicating that an element in X and not in X respectively. Let A={aP , aB, aN}
be a finite set of 3 possible actions. The λPP , λBP and λNP denote the losses
incurred for taking action aP , aB and aN when an object belongs to X ; the
λPN , λBN and λNN denote the losses incurred for taking action aP , aB and aN
when an object does not belong to X. After deducing from the Bayesian decision
procedure, fundamental result of DTRSM is that the positive, boundary and
negative regions are defined by a pair of thresholds (α,β) which is shown as
formula (1). We accept an object x to be a member of C if Pr(X |[x ]) is greater
than α; we reject x if Pr(X |[x ]) is less than β; we neither accept nor reject x if
Pr(X |[x ]) is between α and β.

2.2 Three-Way Decisions Model Based on CCA

Three-Way Decisions Model Based on CCA was proposed by Zhang and Xing
[16]. Given a training samples set X={(x1,y1),(x 2,y2),...(x p,yp)}, (i=1,2,...p),
which is the set in n-dimensional Euclidean space. x i=(x 1

i ,x
2
i ,...x

n
i ) is n-

dimensional characteristic attribute of the ith sample. y i is the decision at-
tribute, i.e., category. The specific formation process of the covers has been
introduced in [16]. CCA finally obtained a set of covers C={C1

1 ,C
2
1 ,...

,Cn1
1 ,C1

2 ,C
2
2 ,... ,C

n2
2 ,... ,C1

m,..., Cnm
m }, where Cj

i represents the j th cover of the

ith category. We assume Ci=
⋃
Cj

i , j=1,2,...ni. Ci represents all covers of the
ith category samples.

For convenience in discussion, we assume only two categories C1 and C2. The
covers of C1 and C2 are (C1

1 ,C
2
1 ,. . . ,C

m
1 ) and (C1

2 ,C
2
2 ,. . .,C

n
2 ), respectively,

i.e., C1=(C1
1 ,C

2
1 ,. . . ,C

m
1 ), C2=(C1

2 ,C
2
2 ,. . . ,C

n
2 ). Each category has at least a

cover. Assume Ci=
⋃
Cj

i and each Ci represents all covers of the i th category
samples. We define POS of C1, namely, POS(C1) by the difference of unions⋃
Ci

1-
⋃
Cj

2 , NEG(C1) by
⋃
Cj

2-
⋃
Ci

1 and BND(C1) by the rest, where i=1,2,. .
. ,m, j=1,2,. . . ,n. That is to say, POS(C1) is equal to NEG(C2); POS(C2) is
equal to NEG(C1); BND(C1) is equal to BND(C2).

3 Cost-Sensitive Three-Way Decisions Model Based on
CCA

In this paper, a cost-sensitive three-waydecisionsmodel based on constructive cov-
ering algorithm (CCA) is introduced in this section. We propose a new way to get
the thresholds of three-way decisions. We describe the process as Algorithm 1.
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Algorithm 1:
Step 1: Formation of Covers. According to the constructive covering algorithm,

we can obtain a set of cover C=(C1
1 ,C

2
1 ,. . . ,C

n1
1 ,C1

2 ,C
2
2 ,. . .,C

n2
2 ). Each category

has a cover at least. The radius of those covers are θ=(θ11,θ
2
1 ,. . . ,θ

n1
1 ,θ12,θ

2
2 ,. .

.,θn2
2 ).
Step 2: Change the Radius θ.
We define the samples in Ci

1(i=1,2,...,n1) belong to positive region and
Cj

2(j=1,2,...,n2) belong to negative region. We use following method to mod-
ify the radius of the covers. For covers of C1, we regard the k -nearest distance
between the center and the dissimilar point as radius (k=0,1,2,3,4..); for covers
of C2, we regard the t -nearest distance between the center and the dissimilar
point as radius (t=0,1,2,3,4..). When (k,t)=(0,0), the radius is the minimum
radius which regards the max distance between the center and the similar points
as the radius in the boundary that don’t have any dissimilar points. Fig. 1 shows
the change of radius.

Fig. 1. Change of the Radius θ

Step 3: Compute average value of radius increase.
When the radius increase, the number of cover decrease. After increase the

radius, we suppose the cover C=(C1
1 ,C

2
1 ,. . . ,C

m1
1 ,C1

2 ,C
2
2 ,. . .,C

m2
2 ), and the

radius θ=(θ11k,θ
2
1k,. . . ,θ

m1

1k ,θ12t,θ
2
2t,. . .,θ

m2
2t ). The average value of radius increase

can be computed by following formula.

+θ1 =
θ11 + θ21 + ...+ θn1

1

n1
− θ11k + θ21k + ...+ θm1

1k

m1
(2)

+θ2 =
θ12 + θ22 + ...+ θn2

2

n2
− θ12t + θ22t + ...+ θm2

2t

m2
(3)

Step 4: Compute the ratio of radius increase.
The ratio of C1’ radius increase is R(C1). The ratio of C2’ radius increase is

R(C2). The formulas are as following.

R(C1) =
+θ1

θ1
1+θ2

1+...+θ
n1
1

n1

R(C2) =
+θ2

θ1
2+θ2

2+...+θ
n2
2

n2

(4)

Step 5: Compute the value of α and β.
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The initial value of α is 1. The initial value of β is 0. We compute α and β
according to the following formulas:

α = 1−R(C1) β = 0 +R(C2) (5)

According to the above Algorithm, we can know that when k and t are dif-
ferent, the change of two covers are different, that is to say, the change of POS
and NEG are different. The value of k and t are depended on the size of λPN

and λNP . When λPN<λNP , in order to decrease loss, we need to increase the
value of k and the value of t remains the same (or make the value of k>t). Then,
the average radius value of C1 will increase, and the area of POS will increase.
Meanwhile the NEG remains the same, the value of α decrease, and β=0. When
λPN>λNP , in order to decrease loss, we need to keep the value k unchanged
and increase the value of t(or make the value of k<t). Then, the average radius
value of C2 will increase, and the area of NEG will increase. Meanwhile the POS
remains the same, the value of α=1, and β increase. When λPN=λNP , increase
the value of k and t simultaneously or remain the value of k and t the same.

4 Experimental Result

Our experiments were performed on spambase and chess data set
from UCI Machine Learning Repository(http://www.ics.uci.edu/mlearn/
MLRepository.html). Spambase consists of 4601 instances and each instance
is described by 58 attributes. Chess consists of 3196 instances and each instance
is described by 36 attributes.

Firstly, we define some evaluation criteria.

Definition 1: The correct classification rate of samples in the cover (CRSC) is
the ratio of the number of correct classification samples in the cover(CNSC) and
all samples in cover(ASC). The samples in cover are the samples in POS and
NEG. The formula is as follow.

CRSC = CNSC/ACS (6)

Definition 2: The correct classification rate of samples (CRS) is the ratio of
the number of correct classification samples (CNS) and all samples (AS). The
formula is as follow.

CRS = CNS/AS (7)

Definition 3: The correct classification rate of samples in positive region
(CRSP) is the ratio of the number of correct classification samples in positive re-
gion (CNSP) and all samples in positive region (ASP). The formula is as follow.

CRSP = CNSP/ASP (8)

Definition 4: The correct classification rate of samples in negative region
(CRSN) is the ratio of the number of correct classification samples in nega-
tive region (CNSN) and all samples in negative region (ASN). The formula is as
follow.

http://www. ics. uci. edu/mlearn/MLRepository. html
http://www. ics. uci. edu/mlearn/MLRepository. html
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CRSN = CNSN/ASN (9)

In spambase, the losses of classify legitimate to spam is bigger than spam to
legitimate, i.e., λNP>λPN . In chess, there is no actual meaning, we only assum
λNP<λPN . According to the algorithm 1, in order to decrease loss, we need to
decrease α in spambase and increase β in chess. In the three-way decision model
based on CCA, the initial value of α=1, β=0 when (k,t)=(0,0).

Table 1 and Table 2 show the accuracy and change of radius when t=0 on
spambase and k=0 on chess respectively. D is average radius value of all covers,
D0 is average radius value of C1, D1 is average radius value of C2. Nc denotes
the number of the covers.

Table 1. The result of radius comparison and correct rate with t=0 on spambase

(k,t) D D0 D1 CRCS(%) CRS(%) NC

(1,0) 0.124937 0.143770 0.109157 92.40 91.15 798

(2,0) 0.128826 0.155920 0.109146 91.58 90.70 742

(3,0) 0.127154 0.155880 0.108853 91.14 90.52 713

(4,0) 0.133110 0.175463 0.108991 90.90 90.04 685

(5,0) 0.135057 0.184366 0.109200 90.57 89.87 659

(6,0) 0.138107 0.198312 0.10888 90.12 89.35 651

Table 2. The result of radius comparison and correct rate with k=0 on chess

(k,t) D D0 D1 CRCS(%) CRS(%) NC

(0,1) 0.346854 0.323234 0.380350 87.57 87.12 584

(0,2) 0.353722 0.323234 0.405312 85.36 85.05 545

(0,3) 0.356741 0.322775 0.420480 85.15 84.80 524

(0,4) 0.358964 0.323433 0.401010 84.66 84.20 503

(0,5) 0.359679 0.323047 0.438559 83.56 83.17 490

(0,6) 0.359363 0.323870 0.443968 84.05 83.89 488

When k increase, α will decrease. From Table 1 we can see that CRCS and CRS
decrease (about 2%) with k increase. The reason is that there are more and more
negative samples in C1. The number of NC decrease. If we need CRS(%)>90%,
k increase from 1 to 4, the average radius of C1 increases +θ1=0.175463-
0.143770=0.031693 and the average radius of C2 increases +θ2=0; the ratio of
radius increases R(C1)=0.031693/0.143770=0.22044, R(C2)=0; and then when
(k,t)=(4,0), we can compute α=1-R(C1)=0.77956, β=R(C2)=0.

When t increase, α will increase. In Table 2, CRCS and CRS decrease (about
3%) with t increase. If we need CRS(%)>85%, we can compute β=(0.420480-
0.380350)/0.380350=0.105508, α=0 when (k,t)=(0,3).

Table 3 and Table 4 show the number of samples in three regions when t=0
on spambase and k=0 on chess respectively. P to P denotes the number of emails
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classified as legitimate, P to N denotes the number of emails classified as spam,
P to B denotes the number of emails classified to boundary. N to P denotes
the number of spam emails classified as legitimate, N to P denotes the number
of spam emails classified as spam, N to B denotes the number of spam emails
classified to boundary.

Table 3. The result of samples in three region with t=0 on spambase

(k,t) PtoP PtoN PtoB NtoP NtoN NtoB CRSP (%) CRSN(%)

(1,0) 253 11 13 21 147 12 92.34 93.04

(2,0) 257 11 10 25 145 10 91.13 92.92

(3,0) 262 9 7 29 143 8 90.03 94.08

(4,0) 262 9 6 31 141 8 89.42 94.00

(5,0) 264 9 5 33 140 7 88.89 93.96

(6,0) 265 8 4 32 142 6 89.83 94.67

Table 4. The result of samples in three region with k=0 on chess

(k,t) PtoP PtoN PtoB NtoP NtoN NtoB CRSP (%) CRSN(%)

(0,1) 136 21 8 16 131 4 82.42 84.52

(0,2) 131 28 6 17 132 2 79.39 85.16

(0,3) 129 31 6 15 134 3 78.18 86.45

(0,4) 128 33 4 14 135 2 77.58 87.10

(0,5) 124 36 5 14 135 2 77.15 87.10

(0,6) 124 37 4 12 138 1 77.15 89.03

From Table 3 we can see that with k increase, P to P and N to P increase,
that is to say, the number of sample in C1 is more and more. The area of NEG
is not change, but the number of sample in NEG decrease. That is because each
Ci

1(i=1,2,...n1) contains several negative samples, which makes P to N and N
to N decrease, i.e., the number of sample in NEG decreases. With k increase,
the radius of C1 becomes big, and then the area of POS becomes big, which
makes blank space samller, i.e., the area of BND becomes samll. We can see the
number of samples in POS increase and the number of samples in BND decrease
in Table 3. The loss of P to N is bigger than N to P, in order to reduce the loss
of classification, we should reduce P to N. From Table 3, P to N decrease and
N to P increase with the k increase. Meanwhile, CRSP is reduced and CRSN is
increasing gradually. To the contrary, in Table 4, P to P , N to P decrease and
P to N, N to N increase simultaneously. And the samples in BND decrease for
the same reason.
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5 Conclusions

In this paper, we proposed an effective method to compute thresholds α and
β of three-way decisions model. The new model combined loss function with
three-way decisions model based on constructive covering algorithm (CCA). We
changed the radius of the cover according to the loss function with the purpose
of reducing loss of classification, then computed the thresholds based on the
modification.

In the experiment, with the radius increasing, the correct rate of classification
decreases. We can compute the thresholds based on some certain conditions,
such as the minimum accuracy we need to access, the maximum number of mis-
classification samples, and so on. Therefore, how to find appropriate conditions
is our future research.
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Abstract. As an important part of data preprocessing in machine learn-
ing and data mining, feature selection, also known as attribute reduction
in rough set theory, is the process of choosing the most informative sub-
set of features. Rough set theory has been used as such a tool with much
success. The main objective of this paper is to propose a feature selec-
tion procedure based on a special group of probabilistic rough set models,
called confirmation-theoretic rough set model(CTRS). Different from the
existing attribute reduction methods, the definition of positive features
is based on Bayesian confirmation measures. The proposed method is
further divided into two categories based on the qualitative and quan-
titative nature of the underlying rough set models. This study provides
new insights into the problem of attribute reduction.

Keywords: feature selection, attribute reduction, probabilistic rough
set, confirmation-theoretic rough set.

1 Introduction

As an important part of data preprocessing in machine learning and data min-
ing, feature selection is the process of choosing a most informative subset of
features. It is used to break curse of dimensionality, reduce the amount of time
and memory required by data mining algorithms, and allow data to be more
easily visualized. Feature selection methods have been extensively studied, such
as the brute-force approach that tries all possible feature subsets; the embedded
approaches that occur naturally as part of the data mining algorithm. There are
two basic categories of feature selection methods. Filter approaches select fea-
tures before data mining algorithm is run; and the wrapper approaches use the
data mining algorithm as a black box to find best subset of attributes. Examples
of well known measures used in feature selection include information gain, best
first search, and Genetic algorithms.

Rough set theory was introduced by Pawlak [5] in the early 1980s as a tool for
analyzing data represented in an information table. It has been used for feature
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selection, also called attribute reduction, with much success. As an important
concept of rough set theory, an attribute reduct is a subset of attributes that
is jointly sufficient and individually necessary for preserving a particular prop-
erty of the given information table. Attribute reduction has also been studied
in generalized rough set models, e.g., probabilistic rough set models. This pa-
per investigates attribute reduction in a special group of probabilistic rough set
models, called confirmation-theoretic rough set model[17]. Different from the ex-
isting attribute reduction methods, the definition of positive features is based on
Bayesian confirmation measures. The proposed method is further divided into
two categories based on the qualitative and quantitative nature of the underlying
rough set models. The qualitative measure does not consider the degree of sup-
port of certain feature to a decision class, whereas in the quantitative measure,
we only select the features with degree of support beyond certain level.

2 Rough Set-Based Feature Selection

2.1 Feature Selection Based on Pawlak’s Rough Set Model

In Pawlak’s rough set model [5], information about a set of objects are rep-
resented in an information table with a finite set of attributes. Formally, an
information table can be expressed as: S = (U,At, {Va | a ∈ At}, {Ia | a ∈
At}), where U is a finite nonempty set of objects called universe; At is a finite
nonempty set of attributes; Va is a nonempty set of values for a ∈ At; Ia : U → Va
is an information function. An equivalence relation can be defined with respect
to A ⊆ At, denoted as E. Two objects x and y in U are equivalent if and only if
they have the same values on all attributes. For a subset C ⊆ U , the lower and
upper approximations of C are defined by:

apr(C) = {x ∈ U | [x] ⊆ C};
apr(C) = {x ∈ U | [x] ∩ C �= ∅}. (1)

Based on the rough set approximations of C defined by U/E, one can divide
the universe U into three pair-wise disjoint regions: the positive region POS(C)
is the union of all the equivalence classes that is included in the decision class
C; the boundary region BND(C) is the union of all the equivalence classes that
have a nonempty overlap with C; and the negative region NEG(C) is the union
of all equivalence classes that have an empty intersection with C:

POS(C) = apr(C);

NEG(C) = U − (POS(C) ∪ BND(C));

BND(C) = apr(C)− apr(C). (2)

The basic idea of attribute reduction is to keep only those attributes that
preserve the equivalence relation and, consequently, set approximation. Suppose
the attribute set At = A∪{D}, where {D} is the decision attribute. An attribute
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set A′ ⊆ A is a attribute reduct of A with respect to D if it satisfies the following
two conditions [11]:

i) POSA′(D) = POSA(D);

ii) ∀a∈A′ ,POSA′−{a}(D) ⊂ POSA(D). (3)

Conditions of equation (3) indicate that a reduct is i) jointly sufficient and ii)
individually necessary for preserving the positive region of information table S.

2.2 Feature Selection Based on Probabilistic Rough Set Models

The positive and negative regions in Pawlak rough sets may be too restrictive
to be practically useful in real applications. Attempts to use probabilistic infor-
mation for approximations have been considered by many authors[9,14,16,17] to
allow some tolerance of errors, in which the degrees of overlap between equiv-
alence classes [x] and a set C to be approximated are considered. A condi-
tional probability is used to state the degree of overlapping and is defined as:

Pr(C | [x]) = |C∩[x]|
|[x]| , where | · | denotes the cardinality of a set, and the condi-

tional probability is written as Pr(C | [x]) representing the probability that an
object belongs to C given that the object is described by [x].

Yao et al. [10,12] introduced decision-theoretic rough set (DTRS) model, in
which a pair of thresholds α and β with 1 ≥ α > β ≥ 0 on the probability is used
to define three probabilistic regions. The (α, β)-probabilistic positive, boundary
and negative regions are defined by [12]:

POS(α,β)(C) = {x ∈ U | Pr(C | [x]) ≥ α},
BND(α,β)(C) = {x ∈ U | β < Pr(C | [x]) < α},
NEG(α,β)(C) = {x ∈ U | Pr(C | [x]) ≤ β}. (4)

Similar to the study of a Pawlak reduct, a probabilistic attribute reduct can
be defined by requiring that the (α, β)-probabilistic positive region of D is un-
changed [11]:

i) POSA′
(α,β)

(D) = POSA(α,β)
(D);

ii) ∀a∈A′ ,POSA′−{a}(α,β)
(D) ⊂ POSA(α,β)

(D). (5)

It may be considered as a generalization of Pawlak attribute reduct defined by
α = 1 and β = 0.

3 Confirmation-Theoretic Rough Set Models

Based onBayes’ theorem and Bayesian confirmation theory [1,2], alternativemod-
els of probabilistic rough sets have been proposed and studied [3,4,8,9]. In this
section, we present a confirmation-theoretic framework to summarize the main
results from these studies and show their differences from the (α, β)-probabilistic
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Probabilistic RS models
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Applications
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Representative models

Qualitative models Quantitative models 

DTRS model [109,117,118]
0.5 Probabilistic RS model [67]
VPRS model  [143]

Classification of evidence
Feature selection

Fig. 1. Categorization of probabilistic rough set models

approximations. To differentiate these models from decision-theoretic models, we
refer to them as (Bayesian) confirmation-theoretic rough set models. To differen-
tiate the derived three regions from probabilistic approximation regions, we refer
to them as (Bayesian) confirmation regions. Fig. 1 shows a categorization of the
existing probabilistic rough set models and their applications.

3.1 Bayesian Rough Set Model and Rough Bayesian Model

Bayes’ theorem [1] shows the relation between two conditional probabilities that
are the reverse of each other. It expresses the conditional probability (or a poste-
riori probability) of an eventH after E is observed in terms of a priori probability
of H , probability of E, and the conditional probability of E given H . The Bayes’
theorem is expressed as follows:

Pr(H |E) =
Pr(E|H)

Pr(E)
Pr(H), (6)

where Pr(H) is a priori probability of H that H happens or is true, Pr(H |E)
is the a posteriori probability that H happens after observing E, and Pr(E|H)
is the likelihood of H given E. Through Bayes’ theorem, a difficulty to estimate
probability Pr(H |E) is expressed in terms of an easy to estimate likelihood
Pr(E|H). This makes Bayes’ theorem particularly useful in data analysis and
pattern classification.

Ślȩzak [8] drew a natural correspondence between the fundamental notions of
rough sets and Bayesian inference. The set to be approximated corresponds to
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a hypothesis and an equivalence class to a piece of evidence. Based on such a
correspondence, Ślȩzak and Ziarko [9] introduced a Bayesian rough set (BRS)
model. A priori probability Pr(C) is used to replace α and β in the (α, β)-
probabilistic rough set model as a threshold for defining three regions:

BPOS(C) = {x ∈ U | Pr(C | [x]) > Pr(C)},
BBND(C) = {x ∈ U | Pr(C | [x]) = Pr(C)},
BNEG(C) = {x ∈ U | Pr(C | [x]) < Pr(C)}. (7)

They also suggested to compare two likelihood functions Pr([x] | C) and Pr([x] |
Cc) directly when neither a posteriori probability Pr(C | [x]) nor a priori prob-
ability Pr(C) is derivable from data. That is,

BPOS(C) = {x ∈ U | Pr([x] | C) > Pr([x] | Cc)},
BBND(C) = {x ∈ U | Pr([x] | C) = Pr([x] | Cc)},
BNEG(C) = {x ∈ U | Pr([x] | C) < Pr([x] | Cc)}. (8)

3.2 Parameterized Model Based on Bayesian Confirmation

Greco et al. [3] introduced a parameterized rough set model by considering a
pair of thresholds on a Bayesian confirmation measure, in addition to a pair
of thresholds on probability. The Bayesian confirmation measure is denoted by
c([x], C) which indicates the degree to which an equivalence class [x] confirms
the hypothesis C. Given a Bayesian confirmation measure c([x], C) and a pair of
thresholds (s, t) with t < s, three (α, β, s, t)-parameterized regions are defined
by:

PPOS(α,β,s,t)(C) = {x ∈ U | Pr(C | [x]) ≥ α ∧ c([x], C) ≥ s},
PBND(α,β,s,t)(C) = {x ∈ U | (Pr(C | [x]) > β ∨ c([x], C) > t) ∧

(Pr(C | [x]) < α ∨ c([x], C) < s)},

PNEG(α,β,s,t)(C) = {x ∈ U | Pr(C | [x]) ≤ β ∧ c([x], C) ≤ t}. (9)

4 Feature Selection Based on Two Categories of CTRS
Models

The three probabilistic regions defined in confirmation-theoretic rough set mod-
els provide a classification of attributes (features) of an information table. In
machine learning and data mining, this is commonly referred to as the problem
of feature selection. In rough set analysis, the problem is called attribute reduc-
tion, a selected set of attributes for rule induction is called a reduct. Generally
speaking, an attribute reduct is a minimal subset of attributes whose induced
rule sets have the same level of performance as the entire set of attributes, or a
lower but satisfied level of performance.
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Table 1. The training set

s1 s2 s3 s4 · · · C

p1 0 1 1 1 C

p2 1 0 0 0 Cc

p3 1 1 0 0 C

p4 1 0 1 1 C

p5 1 1 1 1 Cc

p6 0 1 0 0 Cc

p7 1 1 0 1 C

4.1 Feature Selection Based on Qualitative CTRS Models

Equation (7) and equation (8) in Section 3.1 provide qualitative measurements of
attributes. Based on Bayes’s theorem (equation (6)), we can proof that these two
measures are equivalent. Table 1 is a training set representing the relationships
between patients’ symptoms to a certain disease C. The columns represent a set
of symptoms {s1, s2, s3, s4 . . .} and the rows represent patients {p1, p2, p3 . . .}.
For simplicity, I only use binary values where 1 represents symptom presents
and 0 represents symptom not present. The decision attribute has two values,
C indicates that a patient has disease and Cc (set complement) indicates that
the patient does not have disease. At the first step, we calculate the a posteriori
probability Pr(C|si) of a patient having disease C given the symptom si. For
example, for s1, we have:

Pr(C | s1) =
|C ∩ s1|
|s1|

=
|{p1, p3, p4, p7} ∩ {p2, p3, p4, p5, p7}|

|{p2, p3, p4, p5, p7}|
=

3

5
. (10)

At the second step, we calculate the a priori probability Pr(C) as:

Pr(C) =
|C|
|U | =

|{p1, p3, p4, p7}|
|{p1, p2, p3, p4, p5, p6, p7}|

=
4

7
. (11)

At the third step, we look at the change between a posteriori probability and
a priori probability, since Pr(C | s1) > Pr(C), s1 should be classified into the
positive features that supports decision C. Similarly, we can calculate the rest
of symptoms and only select those in the positive regions for classification.

Note that the qualitative measurement did not consider the degree of support
from certain feature to a decision class, we might end up with too many features
in the positive region.

4.2 Feature Selection Based on Quantitative CTRS Models

Equation (9) in Section 3.2 provide quantitative measurements of attributes. We

calculate the likelihood ratio Pr(si|C)
Pr(si|Cc) , where Pr(si|C) indicates the chances of

a patient having symptom si given that he/she has disease C, and Pr(si|Cc)
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indicates the chances of a patient having symptom si given that he/she does not
have disease C. For s1, we have:

Pr(s1 | C) =
|C ∩ s1|
|C| =

|{p1, p3, p4, p7} ∩ {p2, p3, p4, p5, p7}|
|{p1, p3, p4, p7}|

=
3

4
. (12)

Similarly, we can get,

Pr(s1 | Cc) =
|Cc ∩ s1|
|Cc| =

|{p2, p5, p6} ∩ {p2, p3, p4, p5, p7}|
|{p2, p5, p6}|

=
2

3
. (13)

The likelihood ratio Pr(si|C)
Pr(si|Cc) = 9

8 . Assume the pair of thresholds (s′, t′) is set

up as (0.8, 0.2), since 9
8 > 0.8, s1 should be classified into the positive region of

features that supports decision C. Same procedure can be applied to calculate
the rest of symptoms and only select those with the degree of support greater
than 0.8 for classification.

In equation (9), a general form is used for quantitative measurement; any
Bayesian confirmation measures c([x], C) [3,4] can be used for feature selection.
A pair of thresholds (s, t) is used. If c([x], C) ≥ s, the features of x support C.
If c([x], C) ≤ t, the features of x are against C. If t < c([x], C) < s, the features
of x are neutral to C and hence are not informative. Alternatively, the value
of a Bayesian confirmation measure can be used to make pairwise comparisons
between features. For example, if c(s1, C) > c(s2, C), symptom s1 provides a
better indication for class C than symptom s2, and s1 will be selected over s2.

4.3 Feature Selection Procedure Based on CTRS Models

Based on the above analysis, a feature selection procedure based on confirmation-
theoretic rough set model can be summarized as follows.
1. Shuffle the data set and split into a training set and a testing set.
2. Let i vary among feature-set sizes: i = (0, 1, 2, ..., n).
Let fsi = positive feature set of size i, where “positive” is measured by using

qualitative measures described in Section 4.1 or quantitative measures described
in Section 4.2 over the training set.
End of loop of (i).

3. Output the feature set fsi.
The main differences between our approach and other existing attribute re-

duction methods are that we use Bayesian confirmation measures as criteria to
choose positive features, whereas the definition of traditional attribute deduction
is to choose the minimal set of attributes preserving the positive region.

5 Conclusions and Future Work

In this paper, a feature selection procedure based on a special group of probabilis-
tic rough set models, called confirmation-theoretic rough set model, is proposed.
Different to existing attribute reduction based on probabilistic rough set models,
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the definition of positive features is based on Bayesian confirmation measures.
Instead of treating all probabilistic rough set models as the same in terms of
their applications, we argue that confirmation-theoretic rough set models are
well suited for feature selection and evaluation, whereas decision-theoretic rough
set models are suitable for classification. The proposed feature selection method
is further divided into two categories based on the qualitative and quantitative
nature of their underlying rough set models. Note that the proposed method
does not guarantee the selected feature set is minimal. Experimental study will
be conducted as future work to compare with other feature selection methods.
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8. Śl ↪ezak, D.: Rough Sets and Bayes Factor. In: Peters, J.F., Skowron, A. (eds.)
Transactions on Rough Sets III. LNCS, vol. 3400, pp. 202–229. Springer, Heidelberg
(2005)
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Abstract. Reducing the size of the concept lattices is a fundamental
problem in formal concept analysis. This paper presents several proper-
ties of useful fuzzy-attributes, in the general case of multi-adjoint concept
lattices. Moreover, the use of these fuzzy-attributes provides a mecha-
nism to reduce the size of concept lattices considering a subset of the
original one and, therefore, without losing and modifying important
information.
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1 Introduction

In (fuzzy) Formal Concept Analysis (FCA) [14], the concept lattice obtained
from usual relational database is huge and obtaining consequences from this
is really difficult. Hence, looking for strategies to reduce the size of the ob-
tained concept lattice, conserving the main information of the database, is very
important.

There exist several mechanisms with this goal, however almost all of them
modify the concept-forming operators and so, the original concepts, such as the
use of hedges [1,8]. Other methodologies, change the original context (granular
computing [7]) or consider a restrictive setting, for instance, they do not use
fuzzy subsets of objects and attributes but, a crisp subset of objects and a fuzzy
subset of attributes, as in [11].

The multi-adjoint concept lattice framework [12,13] is a general approach, in
which the philosophy of the multi-adjoint paradigm was applied to the formal
concept analysis. Adjoint triples [3] are used as basic operators to carry out
the calculus in this framework and so, a general non-commutative environment
can be considered. Moreover, different degrees of preference related to the set of
objects and attributes can easily be established in this general concept lattice
framework.
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In representation theory of fuzzy formal concept analysis, the fuzzy notions
of attributes - fuzzy-attributes - which are fuzzy subsets of attributes, play an
important role, for example, from the fuzzy-attributes the set of meet-irreducible
elements of a concept lattice is obtained. In the general case of multi-adjoint con-
cept lattices, this paper is a continuation of [4] which presents several properties
of fuzzy-attributes and uses them in order to provide an original mechanism
to reduce the size of concept lattices without losing and modifying important
information.

The structure of the paper is as follows: preliminary notions and results, to-
gether with the multi-adjoint concept lattice framework, are introduced in Sec-
tion 2; Section 4 presents irreducible α-cut concept lattices and several properties
in order to reduce the size of multi-adjoint concept lattices. The paper finishes
with several conclusions and future challenges.

2 Preliminaries

First of all, we recall several notions and results which are needed throughout
the paper.

Definition 1. Given a lattice (L,), such that ∧,∨ are the meet and the join
operators, and an element x ∈ L verifying

1. If L has a top element �, then x �= �.
2. If x = y ∧ z, then x = y or x = z, for all y, z ∈ L.

we call x meet-irreducible (∧-irreducible) element of L. Condition (2) is equiv-
alent to

2′. If x < y and x < z, then x < y ∧ z, for all y, z ∈ L.

Hence, if x is ∧-irreducible, then it cannot be represented as the infimum of
strictly greatest elements. A join-irreducible (∨-irreducible) element of L is de-
fined dually.

In a finite lattice, each element is equal to the infimum of meet-ireducible
elements and the supremum of join-irreducible elements.

Other definitions and results about lattice theory, which will be used later,
are the following.

Definition 2. Let (L,) be a lattice and ∅ �= M ⊆ L. Then (M,) is a sub-
lattice of (L,), if for each a, b ∈M we have that a ∨ b ∈M and a ∧ b ∈M .

Definition 3 ([2]). A lattice (L,) is called distributive if, for all x, y, z ∈ L,

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

Note that the above condition is equivalent to its dual: x∨(y∧z) = (x∨y)∧(x∨z),
for all x, y, z ∈ L.
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Fig. 1. Examples of no distributive lattices: M3 and N5 lattices

Theorem 1 ([2]). A lattice which is not distributive contains one of the exam-
ples in Figure 1 as a sublattice.

Lemma 1 ([2]). In a distributive lattice, the decomposition of an element as a
no-redundant meet of ∧-irreducible elements is unique.

The main goal of this paper is to reduce the size of multi-adjoint concept lat-
tices. For that, we have considered the multi-adjoint concept lattice framework,
since it is a general fuzzy setting which embeds other interesting frameworks and
provides a great flexibility. Next, we recall this fuzzy concept lattice introduced
in [13].

In the multi-adjoint concept lattice framework, considered operators in order
to define the concept-forming operators are adjoint triples, which are general-
izations of a triangular norm (t-norm) and its residuated implication [6].

Definition 4. Let (P1,≤1), (P2,≤2), (P3,≤3) be posets and &: P1 × P2 → P3,
↙ : P3×P2 → P1, ↖ : P3×P1 → P2 be mappings, then (&,↙,↖) is an adjoint
triple with respect to P1, P2, P3 if:

x ≤1 z ↙ y iff x& y ≤3 z iff y ≤2 z ↖ x (1)

where x ∈ P1, y ∈ P2 and z ∈ P3. This condition is also called adjoint property.

Definition 5. A multi-adjoint frame L is a tuple (L1, L2, P,&1, . . . ,&n) where
(L1,1) and (L2,2) are complete lattices, (P,≤) is a poset and, for all i =
1, . . . , n, (&i,↙i,↖i) is an adjoint triple with respect to L1, L2, P .

From a frame, a multi-adjoint context can be defined.

Definition 6. Let (L1, L2, P,&1, . . . ,&n) be a multi-adjoint frame, a context is
a tuple (A,B,R, σ) such that A and B are non-empty sets (usually interpreted
as attributes and objects, respectively), R is a P -fuzzy relation R : A × B → P
and σ : A×B → {1, . . . , n} is a mapping which associates any element in A×B
with some particular adjoint triple in the frame.

We will write LB
2 and LA

1 in order to represent the set of mappings g : B →
L2, f : A → L1, respectively. On these sets a pointwise partial order can be
considered from the partial orders in (L1,1) and (L2,2), which provides LB

2
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and LA
1 with the structure of complete lattice, that is, abusing notation, (LB

2 ,2)
and (LA

1 ,1) are complete lattices where 2 and 1 are defined pointwise, that
is, given g1, g2 ∈ LB

2 , f1, f2 ∈ LA
1 , g1 2 g2 if and only if g1(b) 2 g2(b), for all

b ∈ B; and f1 1 f2 if and only if f1(a) 1 f2(a), for all a ∈ A.
Given a multi-adjoint frame and a context for that frame, the concept-forming

operators are denoted as ↑σ : LB
2 −→ LA

1 and ↓σ

: LA
1 −→ LB

2 are defined, for all
g ∈ LB

2 , f ∈ LA
1 and a ∈ A, b ∈ B, as

g↑σ(a) = inf{R(a, b)↙σ(a,b) g(b) | b ∈ B} (2)

f↓σ

(b) = inf{R(a, b)↖σ(a,b) f(a) | a ∈ A} (3)

and form a Galois connection [13]. In order to simplify the notation we will write
↑ and ↓ instead of ↑σ and ↓σ

, respectively.
A concept is defined as usual: a multi-adjoint concept is a pair 〈g, f〉 satisfying

that g ∈ LB
2 , f ∈ LA

1 and that g↑ = f and f↓ = g; with (↑, ↓) being the Galois
connection defined above.

Given g ∈ LB
2 (resp. f ∈ LA

1 ), the generated concept from g (resp. f) is
〈g↑↓, g↑〉 (resp. 〈f↓, f↓↑〉).

Finally, the definition of concept lattice in this framework is defined.

Definition 7. The multi-adjoint concept lattice associated with a multi-adjoint
frame (L1, L2, P,&1, . . . ,&n) and a context (A,B,R, σ) is the set

M = {〈g, f〉 | g ∈ LB
2 , f ∈ LA

1 and g↑ = f, f↓ = g}

in which the ordering is defined by 〈g1, f1〉  〈g2, f2〉 if and only if g1 2 g2
(equivalently f2 1 f1).

The ordering just defined above provides M with the structure of a complete
lattice. The details can be seen in [13].

Now, a characterization of the ∧-irreducible elements is extracted from [5].
Hereon, we will consider a multi-adjoint concept lattice (M,) associated with
a multi-adjoint frame (L1, L2, P,&1, . . . ,&n), a context (A,B,R, σ), an index set
I, such that A = {ai | i ∈ I}, and the following specific family of fuzzy subsets
of LA

1 .

Definition 8. For each ai ∈ A, the fuzzy subsets of attributes φi,x ∈ LA
1 defined,

for all x ∈ L1, as

φi,x(a) =

{
x if a = ai
0 if a �= ai

will be called fuzzy-attributes. The set of all fuzzy-attributes will be denoted as
Φ = {φi,x | ai ∈ A, x ∈ L1}.

Note that it is possible that there exist φj,xj , φk,xk
,∈ Φ and i ∈ I, such that

φj,xj = φi,x and φk,xk
= φi,x′ , with x, x′ ∈ L1 and x �= x′.

Lemma 2. For all f ∈ LA
1 , we have that f =

∨
i∈I φi,f(ai).
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The following result characterizes the ∧-irreducible elements of a multi-adjoint
concept lattice.

Theorem 2. The set of ∧-irreducible elements of M, MF (A), is formed by the

pairs 〈φ↓i,x, φ
↓↑
i,x〉 in M, with ai ∈ A and x ∈ L1, such that

φ↓i,x �=
∧
{φ↓j,xj

| φj,xj ∈ Φ, φ
↓
i,x ≺2 φ

↓
j,xj

}

and φ↓i,x �= g�, where � is the maximum element in L2 and g� : B → L2 is the
fuzzy subset defined as g�(b) = �, for all b ∈ B.

Note that in a finite environment each concept in M is the infimum of ∧-
irreducible elements, hence MF (A) is like a base of M. This idea will be used to
reduce the size of M, before that, several properties of these particular concepts
need to be introduced.

3 Fuzzy-Attributes Generating Meet-Irreducible
Elements

This section presents several properties about the meet-irreducible elements of
a multi-adjoint concept lattice generated from a fuzzy-attribute. The first one
introduces three technical properties.

Proposition 1. Let g be an extension of a concept ofM such that g =
∧

j∈J φ
↓
j,xj

,

where 〈φ↓j,xj
, φ↓↑j,xj

〉 ∈MF (A). Then, the following properties hold:

1. g↑↓ =
∧

i∈I φ
↓
i,g↑(ai)

,

2. xj 1 g
↑(aj), for all j ∈ J ,

3. φ↓
j,g↑(aj)

2 φ
↓
j,xj

, for all j ∈ J .

It is clear that φ↓↑j,xj
(aj) = xj does not hold in general, a counterexample is

obtained from the concept C16 in Example 1, which satisfies that

C16 = 〈φ↓2,0.5, φ
↓↑
2,0.5〉 = 〈φ↓2,0.4, φ

↓↑
2,0.4〉

Therefore, 0.4 �= φ↓↑2,0.4 = 0.5. However, this equality holds considering the values
given by the intension of a fuzzy subset of objects, as the following proposition
shows.

Proposition 2. Let g be an extension of a concept ofM such that g =
∧

j∈J φ
↓
j,xj

,

with 〈φ↓j,xj
, φ↓↑j,xj

〉 ∈MF (A). Then

φ↓↑
j,g↑(aj)

(aj) = g↑(aj)

for all j ∈ J .
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Proposition 3. Given an extension g of a concept ofM such that g =
∧

j∈J φ
↓
j,xj

,

where 〈φ↓j,xj
, φ↓↑j,xj

〉 ∈MF (A). The following equality holds.∧
j∈J

φ↓j,xj
=
∧
j∈J

φ↓
j,g↑(aj)

Applying the previous result to the particular fuzzy subset φ↓j,xj
, the following

corollary is obtained.

Corollary 1. The equality φ↓j,xj
= φ↓

j,φ↓↑
j,xj

(aj)
holds, for all 〈φ↓j,xj

, φ↓↑j,xj
〉 ∈

MF (A) and j ∈ J .

Proposition 4. Given an extension g of a concept ofM such that g =
∧

j∈J φ
↓
j,xj

,

where 〈φ↓j,xj
, φ↓↑j,xj

〉 ∈MF (A), we have

g 2

∧
t∈T

φ↓
t,g↑(at)

for all T ⊆ Jc, where Jc is the complement set of J .

The properties above are themselves important and in frameworks in which
fuzzy-attributes are used, as the next one is.

4 Reducing the Size of Multi-Adjoint Concept Lattices

Decreasing the size of the concept lattices [1,7,9,10,11] is one of the most impor-
tant problems in FCA. Nevertheless, several of the existing mechanisms modify
the information given by the concepts. This section uses the previous characteri-
zation in order to provide a new procedure to reduce the size of the multi-adjoint
concept lattices, without modifying the information given by the context, but
beginning from the fuzzy-attributes that really can represent an attribute.

From Theorem 2 we have that every fuzzy-attribute φi,x associated with an
attribute ai, with x ∈ L, can be considered in the computation of the concept
lattice, if this fuzzy-attribute generates a meet-irreducible element. For instance,
if L = {0.0, 0.2, 0.5, 0.7, 1.0}, then φi,0.2 could be considered, when the value for
the attribute ai is not representative, since α = 0.2 is very small (although this
depend on the context). Therefore, it could be more interesting to consider the
fuzzy-attributes φi,x in which the value x exceeds a threshold α, proposed by an
user or expert.

From the irreducible elements of MF (A) we will only consider the fuzzy-
attributes with a considerable value. Hence, given a threshold α, we will only
assume the fuzzy-attributes of each attribute ai that provide to ai a value greater
than α, that is, we consider the following set of meet- irreducible elements of
(M,):

MF (A)α = {〈φ↓i,x, φ
↓↑
i,x〉 ∈MF (A) | α 1 x}
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Hence, we only consider the concepts of (M,), which are obtained from the
infimum of elements ofMF (A)α. Moreover, in order to obtain a complete lattice

we also need to consider the greatest element in (M,), that is 〈g�, g↑�〉.

Definition 9. Given α ∈ L1, the set Mα, defined as:

Mα = {〈g, f〉 ∈ M | g =
∧
j∈J

φ↓j,xj
, with φj,xj ∈MF (A)α}

⋃
{〈g�, g↑�〉}

is called irreducible α-cut of M.

Attending to Definition 9, it is easy to check that if we increase the value of
α, the size of the concept lattice of Mα will be reduced.

The set, which is presented in Definition 9, with the ordering defined in M,
restricted to Mα, forms a lattice, indeed, this is a sublattice of the original one.

Theorem 3. For each α ∈ L1, if Mα is an irreducible α-cut of M, then the
pair (Mα,) is a sublattice of (M,).

Therefore, (Mα,) is a concept lattice and, consequently, the following result
holds.

Corollary 2. Given (M,) and (Mα,), we have that Ext(Mα) ⊆ Ext(M),
Int(Mα) ⊆ Int(M), where Ext(Mα), Ext(M), Int(Mα) and Int(M) are the
extension and intension sets of the concept lattices Mα and M, respectively.

A similar procedure can be developed with respect to the join-irreducible
elements. Now, more properties of these concept lattices are studied.

Proposition 5. Given α ∈ L1 and g an extension of a concept of Mα such
that g =

∧
j∈J φ

↓
j,xj

, with 〈φ↓j,xj
, φ↓↑j,xj

〉 ∈MF (A)α. Then α 1 g
↑(aj), for all

j ∈ J .

Proposition 6. Given α ∈ L1 and g an extension of a concept of Mα such that
g =
∧

j∈J φ
↓
j,xj

, with 〈φ↓j,xj
, φ↓↑j,xj

〉 ∈MF (A)α, the equality φ↓↑
j,g↑(aj)

(aj) = g↑(aj)

holds, for all j ∈ J .

Note that, given g ∈ LB
2 , as g

↑↓ is the extension of a concept of M, there

exists a family of ∧-irreducible elements in M, 〈φ↓j,xj
, φ↓↑j,xj

〉j∈J ⊆ MF (A), such

that g↑↓ =
∧

j∈J φ
↓
j,xj

. The first conjecture we can propose is that the generated
concept from g in Mα is obtained considering only the ∧-irreducible satisfying
α 1 xj , that is:

gα =
∧
j∈J

α�1xj

φ↓j,xj

However, this is not true in general. In Example 1 we have that a decomposition
of the extension of the concept C3 is g3 = φ↓2,0.6 ∧ φ↓1,0.7. Therefore, g30.7 =∧

j∈J
α�1xj

φ↓j,xj
= φ↓1,0.7, which clearly is a contradiction, since C3 �= C6. The
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main reason is that this fuzzy subset has several decompositions in ∧-irreducible
elements. In this case, C3 has three decompositions: C6 ∧ C13, C6 ∧ C15 and
C6 ∧ C16. In order to avoid this fact, distributive concept lattices should be
considered. Hence, the following result is obtained.

Theorem 4. Given a concept lattice M, which is distributive, g ∈ LB
2 and

α ∈ L1, the least extension of a concept of Mα that contains to g is

gα =
∧
j∈J

α�1xj

φ↓j,xj

where g↑↓ =
∧

j∈J φ
↓
j,xj

with 〈φ↓j,xj
, φ↓↑j,xj

〉j∈J ⊆MF (A).

If the concept lattice M is not distributive, new strategies must be stud-
ied in order to compute the generated concept from a fuzzy subset of objects
(attributes) in Mα.

The following example presents a particular multi-adjoint concept lattice and
different irreducible α-cuts of it.

Example 1. The frame L = (L,,&∗
P ) is considered, where L = [0, 1]10 is a

regular partition of [0, 1] in 10 pieces and &∗
P is the product conjunctor defined

on L, see [3] for more details. In this framework, the context is (A,B,R, σ),
where A = {a1, a2}, B = {b1, b2, b3}, R : A× B → L is given by Table 1, and σ
is constant.

Table 1. Relation R of Example 1

R b1 b2 b3

a1 0.2 0.7 0.5

a2 0.5 1 0

The concept lattice (M,), associated with the framework and context con-
sidered, has 18 concepts listed below.

C0 = 〈{0.2/b1, 0.7/b2}, {1.0/a1, 1.0/a2}〉
C1 = 〈{0.2/b1, 0.8/b2}, {0.8/a1, 1.0/a2}〉
C2 = 〈{0.2/b1, 0.7/b2, 0.5/b3}, {1.0/a1}〉
C3 = 〈{0.2/b1, 1.0/b2}, {0.7/a1, 1.0/a2}〉
C4 = 〈{0.2/b1, 0.8/b2, 0.6/b3}, {0.8/a1}〉
C5 = 〈{0.3/b1, 1.0/b2}, {0.6/a1, 1.0/a2}〉
C6 = 〈{0.2/b1, 1.0/b2, 0.7/b3}, {0.7/a1}〉
C7 = 〈{0.4/b1, 1.0/b2}, {0.5/a1, 1.0/a2}〉
C8 = 〈{0.3/b1, 1.0/b2, 0.8/b3}, {0.6/a1}〉
C9 = 〈{0.5/b1, 1.0/b2}, {0.4/a1, 1.0/a2}〉
C10 = 〈{0.4/b1, 1.0/b2, 1.0/b3}, {0.5/a1}〉
C11 = 〈{0.6/b1, 1.0/b2}, {0.3/a1, 0.8/a2}〉
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C12 = 〈{0.5/b1, 1.0/b2, 1.0/b3}, {0.4/a1}〉
C13 = 〈{0.7/b1, 1.0/b2}, {0.2/a1, 0.7/a2}〉
C14 = 〈{0.6/b1, 1.0/b2, 1.0/b3}, {0.3/a1}〉
C15 = 〈{0.8/b1, 1.0/b2}, {0.2/a1, 0.6/a2}〉
C16 = 〈{1.0/b1, 1.0/b2}, {0.2/a1, 0.5/a2}〉
C17 = 〈{1.0/b1, 1.0/b2, 1.0/b3}, {0.2/a1}〉

The Hasse diagram of this lattice is shown in the left side of Figure 2.

{[1.0, 1.0, 0.0]}

{[1.0, 1.0, 1.0]}

{[0.8, 1.0, 0.0]}

{[0.7, 1.0, 0.0]}

{[0.6, 1.0, 0.0]}

{[0.6, 1.0, 1.0]}

{[0.5, 1.0, 0.0]}

{[0.5, 1.0, 1.0]}

{[0.4, 1.0, 0.0]}

{[0.4, 1.0, 1.0]}

{[0.3, 1.0, 0.0]}

{[0.3, 1.0, 0.8]}

{[0.2, 1.0, 0.0]}

{[0.2, 1.0, 0.7]}

{[0.2, 0.8, 0.0]}

{[0.2, 0.8, 0.6]}

{[0.2, 0.7, 0.0]}

{[0.2, 0.7, 0.5]}

{[1.0, 1.0, 0.0]}

{[1.0, 1.0, 1.0]}

{[0.8, 1.0, 0.0]}

{[0.7, 1.0, 0.0]}

{[0.5, 1.0, 0.0]}

{[0.5, 1.0, 1.0]}

{[0.4, 1.0, 0.0]}

{[0.4, 1.0, 1.0]}

{[0.3, 1.0, 0.0]}

{[0.3, 1.0, 0.8]}

{[0.2, 1.0, 0.0]}

{[0.2, 1.0, 0.7]}

{[0.2, 0.8, 0.0]}

{[0.2, 0.8, 0.6]}

{[0.2, 0.7, 0.0]}

{[0.2, 0.7, 0.5]}

Fig. 2. The Hasse diagram of (M,�) (left) and the concept lattice (M0.4,�) (right)

With respect to the fuzzy-attributes, clearly, 〈φ↓a,0.0, φ
↓↑
a,0.0〉 = C17, for all

a ∈ A. Moreover, 〈φ↓1,0.1, φ
↓↑
1,0.1〉 and 〈φ↓1,0.2, φ

↓↑
1,0.2〉 are C17. The rest are
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〈φ↓1,0.3, φ
↓↑
1,0.3〉 = C14

〈φ↓1,0.4, φ
↓↑
1,0.4〉 = C12

〈φ↓1,0.5, φ
↓↑
1,0.5〉 = C10

〈φ↓1,0.6, φ
↓↑
1,0.6〉 = C8

〈φ↓1,0.7, φ
↓↑
1,0.7〉 = C6

〈φ↓1,0.8, φ
↓↑
1,0.8〉 = C4

〈φ↓1,0.9, φ
↓↑
1,0.9〉 = 〈φ↓1,1.0, φ

↓↑
1,1.0〉 = C2

〈φ↓2,0.1, φ
↓↑
2,0.1〉 = 〈φ↓2,0.2, φ

↓↑
2,0.2〉 = 〈φ↓2,0.3, φ

↓↑
2,0.3〉 =

= 〈φ↓2,0.4, φ
↓↑
2,0.4〉 = 〈φ↓2,0.5, φ

↓↑
2,0.5〉 = C16

〈φ↓2,0.6, φ
↓↑
2,0.6〉 = C15

〈φ↓2,0.7, φ
↓↑
2,0.7〉 = C13

〈φ↓2,0.8, φ
↓↑
2,0.8〉 = C11

〈φ↓2,0.9, φ
↓↑
2,0.9〉 = 〈φ↓2,1.0, φ

↓↑
2,1.0〉 = C9

Obtaining the concepts associated with the fuzzy-attributes Φ, which are

{C2, C4, C6, C8, C9, C10, C11, C12, C13, C14, C15, C16, C17}

Referring to Theorem 2, it is not hard to see that the set of ∧-irreducible elements
of M is MF (A) = {C2, C4, C6, C8, C10, C12, C13, C14, C15, C16}.

Now, we present two examples which show different irreducible α-cuts concept
lattices of M assuming the same values for α.

Taking into account Definition 9, the fuzzy-attributes φi,x ∈ Φ which generate
a meet-irreducible element ofM, satisfying that α 1 x, are considered. Then, in
order to build the concept lattice (M0.4,), the following set of fuzzy-attributes
is needed:

{φ↓1,0.4, φ
↓
1,0.5, φ

↓
1,0.6, φ

↓
1,0.7, φ

↓
1,0.8, φ

↓
1,1.0, φ

↓
2,0.5, φ

↓
2,0.6, φ

↓
2,0.7}

The right side of Figure 2 shows the concept lattice corresponding to M0.4.
It is easy to check that this mechanism produces a reduction of the concept

lattice without the appearance of new meet-irreducible elements. The concepts
C11 and C14 has been erased by the threshold.

With respect to the another value of α, the fuzzy-attributes which are needed
to obtain the concept lattice (M0.7,) are:

{φ↓1,0.7, φ
↓
1,0.8, φ

↓
1,1.0, φ

↓
2,0.7}

As result, the built concept lattice is presented in Figure 3. Note that ir-
reducible 0.7-cut provides a concept lattice composed by 8 concepts, hence, a
major reduction has been done.



Fuzzy-Attributes and a Method to Reduce Concept Lattices 199

{[0.7, 1.0, 0.0]}

{[1.0, 1.0, 1.0]}

{[0.2, 1.0, 0.7]}

{[0.2, 1.0, 0.0]}

{[0.2, 0.8, 0.0]}

{[0.2, 0.8, 0.6]}

{[0.2, 0.7, 0.0]}

{[0.2, 0.7, 0.5]}

Fig. 3. Concept lattice (M0.7,�)

5 Conclusions and Future Work

This paper has introduced several properties of the particular case of fuzzy sub-
sets of attributes, which are called fuzzy-attributes. These mappings are used, for
example, to characterize the meet-irreducible set of a concept lattice. Further-
more, considering an α-cut of the meet-irreducible elements, we have introduced
a sublattice of the original concept lattice, which keep the main information
obtained from the relational database, reducing the size and so, the complexity,
of the concept lattice. This method is original and the comparison with other
methods to reduce the size of a concept lattice will be studied in the future.
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Abstract. Formal Concept Analysis (FCA) as inherently relational can
be formalized and generalized by using categorical constructions. This
provides a categorical view of the relation between “object” and “at-
tributes”, which can be further extended to a more generalized view on
relations as morphisms in Kleisli categories of suitable monads. Struc-
ture of sets of “objects” and “attributes” can be provided e.g. by term
monads over particular signatures, and specific signatures drawn from
and developed within social and health care can be used to illuminate
the use of the categorical approach.

1 Introduction

In traditional FCA [15], a so called “context”, or “formal context”, is in the
end just a relation on sets, I ⊆ G×M , often written as and said to be a triple
(G,M, I). Further, G is called the set of “objects” andM the set of “attributes”.
However, the user of formal concept lattices is left with the burden to intuitively
explain what is really, if at all, meant by “object” and M the set of “attribute”.
Sometimes “object” can be a name or a number, e.g., saying that ‘Alice’ as a
name has “attribute” ‘old’, or ‘92’ as a number has “attribute’ ‘even’. Note,
however, we may also in another application say that ‘Alice’ as a name has
“attribute” ‘92’, so it is not at all clear what the distinction between “object”
and “attribute” really is. Basically, in FCA, G and M are just plain sets, and
can be seen as objects in the category Set of sets and functions. Further, in
traditional FCA, the elements of those sets have no structure whatsoever. In
this paper we will formalize FCA categorically, thereby opening up possibilities
to give “object” and “attribute” more precise meanings, also going beyond just
using Set as the underlying category for FCA, and, needless to say, adopting
a much more generalized view on relations. In the simplest case, relations over
sets correspond precisely to morphisms in the Kleisli category of the ordinary
powerset monad (see e.g. [8] for basic notions related to monads and Kleisli
categories). It is not surprising that the notion of monad appears in this research
topic, since FCA is essentially built on the notion of Galois connection [1], a
kind of dual version of adjunction, and adjunctions are straightforwardly linked

� M.Á. Galán and M. Ojeda-Aciego has been partially suppported by Spanish project
TIN2012-39353-C04-01.
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to monads [11]. Other approaches related to both FCA and adjunctions/Galois
connections can be seen in the development of the theory of generalized Chu
mappings, within the category of contexts as objects and the so-called L-Chu
correspondences as morphisms [10].

A so called “formal concept”, or just a “concept” is a pair (A,B), with A ⊆ G
and B ⊆ M , such that A = {g ∈ G | gIm for all m ∈ B} and B = {m ∈ M |
gIm for all g ∈ A}. A lattice, the so called “formal concept lattice”, is given
for the set of all concepts by (A1, B1) ≤ (A2, B2) if and only if A1 ⊆ A2 (or,
equivalently, B1 ⊇ B2).

Since there is no convention about how to use given names for objects and at-
tributes in “informally constructed” names for formal concepts, combining names
into names for concepts, or simply inventing the names otherwise, has become
tradition within FCA. This, however, means that there is no terminological or
ontology basis for FCA, but concepts themselves are seen as ontology objects.
For applications e.g. in social and health care this is not recommendable since
concepts related to disease and function must comply with classifications like
WHO’s ICD (International Classification of Diseases) and ICF (International
Classification of Functions, Disabilities and Health). A similar observation can
be made for description logics, which is successfully used for web ontology, but
adopting success more than content for social and health care has turned out
not to be as straightforward as expected e.g. by SNOMED. We may also note
how rough set theory is related to these relational approaches, and a more for-
mal intertwining of FCA, description logic and rough sets is certainly desirable,
where some less strictly logical attempts have been made. Our approach to lative
logic [6] using underlying categories has been shown to open up the possibility to
strictly define description logic as being related to λ-calculus [4], and indeed not
to first-order logic as frequently claimed. Further, rough sets have been shown
to be ‘monadic’ in the Kleisli morphism sense [3].

2 Categorical Notions

In this paper the readers are assumed to be familiar with categorical terminol-
ogy, however, we introduce some key definitions for convenience. Signatures and
term monads over monoidal biclosed categories are given in [4]. These notions
and constructions are given here over the category Set since traditional FCA
is developed in Set. Naturally, the development in the current paper may be
generalised to the Goguen category Set(Q), where Q is a quantale.

Let a category C and a set of sorts S be given. It is well-known that CS
is a category with objects1 XS = (Xs)s∈S where each Xs ∈ Ob(C). We have
fS : XS → YS as morphisms, where fS = (fs)s∈S and each fs ∈ homSet(Xs, Ys).
The composition of morphisms is defined by fS ◦ gS = (fs ◦ gs)s∈S .

We may sometimes need to refer to an object Xs ∈ Ob(C) when XS is given
in a form or another. We then need to define a functor args : CS → C, which

1 Note that a categorical object should obviously not be confused with an “object” in
a formal context.
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is given by argsXS = Xs and argsfS = fs. Note that a functor F : C → D may
be extended to a functor FS : CS → DS (the functor remains the same for all
s ∈ S). For example, the powerset functor P : Set → Set and the many-valued
powerset (based on the quantale Q) functor Q : Set → Set both can be extended
as functors on SetS , and we write PS = (P)s∈S and QS = (Q)s∈S .

For any two functors F,G : C → D a natural transformation τ between F and G,
denoted by τ : F → G, assigns for each C-object X a D-morphism τX : FX → GX
satisfying Gf ◦ τX = τY ◦ Ff for all f ∈ homC(X,Y ). Clearly, there may be
natural transformations τ between functors F,G : CS → DS also such as τ : F →
G, where (τXS )S : (FsXS)s∈S → (GsXS)s∈S satisfying (GsfS)s∈S ◦ (τXS )S =
(τYS )S ◦ (FsfS)s∈S .

Moreover, a monad F over a category C is a triple (F, η, μ), where F : C → C is
a (covariant) functor, and η : id → F and μ : FF → F are natural transformations
satisfying μ ◦ Fμ = μ ◦ μF and μ ◦ Fη = μ ◦ ηF = idF. Note that we may have
monads over CS also.

2.1 Signatures and the Term Monad Construction

Using notations adopted in computer science, a many-sorted signature Σ =
(S,Ω) over Set consists of a set S (of sorts) and a set Ω (of operators). Both S
and Ω should be considered as objects in Set, however, S is used in this paper
also as an index set since we have S ∼= homSet({∅}, S). Technically more precise
description is given indeed in [4].

Intuitively, operators in Ω ∼=
∐

s∈SΩs are written as ω : s1×· · ·×sn → s. This
is seen by using a convenient notation Ωm→s for a set of operators ω : s1 × · · · ×
sn → s as m = (s1, . . . , sn) ∈ Sn. We will consider S0 = {∅} and Ŝ =

∐
n∈N

Sn

although, practically speaking, in an application there may be some maximum
arity k such that always m ∈

∐
n≤k S

n. Moreover, Ω→s stands for the set of
constants ω : → s. With these notations we keep explicit track of sorts and
arities and we have

Ωs =
∐
m∈Ŝ

Ωm→s.

For handling connections between signatures we have a category SignSet with
signatures Σ as its objects, where morphisms between signatures Σ1 = (S1, Ω1)
and Σ2 = (S2, Ω2) are pairs (s, o) such that s : S1 → S2 and o : Ω1 → Ω2.

Moreover, for each ω1 ∈ Ωm→s
1 , there exists a ω2 ∈ Ωn→s(s)

2 such that o(ω1) = ω2

and n = (s(s1), . . . , s(s2)). Composition is defined pairwise.
In our general term functor construction we have functors Ψm,s : SetS → Set

such that
Ψm,s((Xt)t∈S) = Ωm→s ×

∏
i=1,...,n

Xsi

as m = (s1, . . . , sn) and action on morphisms is defined in a natural way. The
inductive steps starts with T1

Σ,s =
∐

m∈Ŝ Ψm,s. For ι > 1 we proceed by Tι
Σ,sXS =∐

m∈Ŝ Ψm,s(T
ι−1
Σ,tXS � Xt)t∈S) and for morhisms Tι

Σ,sfS =
∐

m∈Ŝ Ψm,s(T
ι−1
Σ,tfS �

ft)t∈S). We have now functors Tι
Σ : SetS → SetS when assigning Tι

ΣXS =
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(Tι
Σ,sXS)s∈S and Tι

ΣfS = (Tι
Σ,sfS)s∈S . Clearly, the system (Tι

Σ)ι>0 of endo-
functors is an inductive system in a natural way, thus, there exist natural trans-
formations Ξι+1

ι : Tι
Σ → Tι+1

Σ of which each morphism is a canonical injection.
There exists then an inductive limit F, and finally our term functor is given by
TΣ = F � idSetS , which can be extended to a monad.

2.2 Levels of Signatures

The three-level arrangement of signatures was presented in [4].

(i) Level one: The level of ‘primitive and underlying’ sorts and operations, with
a many-sorted signature

Σ = (S,Ω)

(ii) Level two: The level of ‘type constructors’, with a single-sorted signature

λΣ = ({ι}, {s :→ ι | s ∈ S} ∪ {� : ι× ι→ ι})

(iii) Level three: The level in which we may construct ‘λ-terms’ based on the
signature

Σλ = (Sλ, Ωλ)

with Sλ = TλΣ∅, and Ωλ = M ∪ {apps,t : (s � t)× s → t}, where

M = {ωλ
i1,...,in :→ (si1 � · · · � (sin−1 � (sin � s) · · · ) |
| ω : s1 × . . .× sn→ s∈Ω, (i1, . . . , in) is a permutation of (1, . . . , n)}

The natural numbers signature in levels is as follows

(i) Level one:

NAT = ({nat}, {0 :→ nat, succ : nat→ nat})

(ii) Level two:
λNAT = ({ι}, {nat :→ ι,� : ι× ι→ ι})

(iii) Level three:
Σλ = (TλNAT

∅, Ωλ)

where

Ωλ = {0λ :→ nat, succλ1 :→ (nat � nat)} ∪ {apps,t : (s � t)× s → t}

Hierarchies of sets, or sets of sets, sets of sets of sets, and so on, can be modelled
by the ‘powerset’ type constructor P : type → type on level two, i.e., intuitively
thinking that the algebra P is a powerset functor. A signature ΣDescriptionLogic =
(S,Ω) for description logic can then be provided as follows

(i) S = {concept}, and we may add constants like c1, . . . , cn :→ concept.
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(ii) We include a type constructor P : type→ type into SΩ, with an intuitive se-
mantics of being the powerset functor, so that Pconcept is the constructed
type for ”powerconcept”.

(iii) ”Roles” are r :→ (Pconcept � PPconcept), and we need operators η :→
(concept � Pconcept) and μ :→ (PPconcept� Pconcept) in Ω′, so that
”∃r.x” can be defined as

appPPconcept,Pconcept(μ, appPconcept,PPconcept(r, x)).

term sets as appearing on different levels of signatures will be used in examples
within categorical formal concept analysis.

3 Categorical Formal Concept Analysis

There is a number of options for the categorization of FCA. We start with a
purely categorial extension of the relational view, also in a generalized relational
setting, which makes no explicit enhancements of “object” and “attribute”, and
then we go further into specification of the content of “object” and “attribute”.

3.1 Generalized Relations as Kleisli Morphisms

The most trivial categorical observation is that a category of contexts can be
defined as the category SetRel of sets and relations, which is isomorphic to
the Kleisli category SetP, where P = (P, η, μ) is the powerset monad over Set.
Indeed, if (G,M, I) is a context, then we represent the relation I ⊂ G ×M as
a mapping ι : G → PM , where ι(g) = {m ∈ M | gIm}. This mapping is the so
calledKleisli morphism, i.e., a morphism in that Kleisli category. This morphisms
indeed generates one of the derivation operators of FCA. The corresponding
inverse relation I−1 is represented as ι−1(m) = {g ∈ G | mI−1g}, i.e., providing
the mapping ι−1 :M → PG.

A pair (A,B) in the context of (G,M, I) is now a formal concept if and only
if

A = o(B)

and
B = α(A),

where α : PG→ PM is given by

α(A) = {m ∈M | A ⊆ ι−1(m)},

and o : PM → PG by
o(B) = {g ∈ G | B ⊆ ι(g)}.

Both mappings α and o have powersets as domain and range and are not in this
sense Kleisli morphisms. However, the unit of the monad can be used to provide
the equivalent conditions

A =
⋃

B⊆ ι(g)

ηG(g)
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and
B =

⋃
A⊆ ι−1(m)

ηM (m).

The multiplication of the monad can be used to introduce weaker conditions. In
order to establish such weaker conditions, note that A = o(B) means that a ∈ A
if and only if B ⊆ ι(a), and that B = α(A) means that b ∈ B if and only if
A ⊆ ι−1(b). This then gives conditions

A ⊆
⋃
b∈B

ι−1(b) = (μ ◦ Pι−1)(B)

and
B ⊆

⋃
a∈A

ι(a) = (μ ◦ Pι)(A),

which are implied by the formal concept conditions. These weaker conditions
reveal that there are different kinds of possibilities to determine concepts in the
given context.

Now note that in this categorical notation, there is no need to restrict to using
the powerset functor only. Any monad F = (F, η, μ) will act as a “context monad”
for contexts (X,Y, ι), where X,Y ∈ Ob(Set), ι : X → FY , ι−1 : Y → FX , and
either of the conditions above involving η or μ are fulfilled. We may then call
such a pair (A,B) a “monadic concept”, given the conditions adopted.

The ordering relation in formal concept lattice makes use of the ⊆ relation
which, for any set X , makes (PX,⊆) a partial order. The powerset monad is in
fact a partially ordered monad [7], written as (P,≤, η, μ), where ≤ is ⊆ in the
partial order (PX,≤). Monads, in particular over Set, can often be extended to
partially ordered monads F = (F,≤, η, μ), so that F can represent a more deeply
structured functor far beyond just the powerset monad. The fuzzy powerset
monad and the filter monad [2] are typical examples. In these cases, a concept
lattice of monadic concepts is still defined as (A1, B1) ≤ (A2, B2) if and only if
A1 ≤ A2 (or, equivalently, B1 ≤ B2), but now a “concept” is not just a pair of
sets. Composing contexts obviously creates a view on “composition of concept
lattices”, but is not treated in this paper.

These categorical formulations provide more content to the concept lattice,
but still no new information concerning the specific explanation of “objects” and
“attributes”, as far as the underlying sets X and Y in (X,Y ) are concerned. In
the following subsections we will provide more elaborate examples on those X
and Y , so that they are not just ‘sets of points’.

3.2 Multi-Sorted Signatures and Terms

Let Σ = (S,Ω) be a multi-sorted signature on level one within the three-level
arrangement of signatures. Whenever we have a term t ∈ TΣλ,sXSλ , with s ∈
TλΣ∅, we write it shortly as t :: s. Obviously, this creates a context

(TΣλ,sXSλ ,TλΣ∅, ::)
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where further enhancements of the relation :: can be extended to ::F given various
choices of the corresponding monad F. In this case “attributed object” would
correspond to a some notion of “term of type”, and broader view on “objects”
would allow terms of any sort, so that the context is

(
⋃

s∈TλΣ
∅

TΣλ,sXSλ ,TλΣ∅, κ),

where κ would not necessarily have to comply with ::.
Similarly we may think of monadic contexts involving sorts only, in (s ∈

TλΣ∅, s ∈ TλΣ∅, ιsorts), or terms only, in ((TΣλ,sXSλ ,TΣλ,sXSλ , ιterms)). Fur-
ther, we may involve sentences in the sense as formally produced by sentence
functors [5], and from there on suggest contexts appearing like

(Gsentences,Mterms, ιsentences,terms),

(Gterms,Msentences, ιterms,sentences),

and
(Gsentences,Msentences, ιsentences,sentences).

Specific choices on the basic underlying signatures at level one will then deter-
mine most of the structure for these contexts and concepts. Again, F may take
various ‘generalized powerset’ forms.

3.3 Some Further Generalized Approaches to Formal Concept
Analysis

The logic of formal concepts can be viewed in various ways, and clearly depending
on how we prefer to view concepts. Intuitively, concepts are ‘statements’ saying
how “objects are attributed”. The traditional view of the concept lattice is to
see it as a lattice of propositions.

For the L-fuzzy powerset extension of FCA, the partially ordered monad F
is the partially ordered L-fuzzy powerset monad L = (L,≤, η, μ). Now, the def-
inition of the derivation operators, is modified accordingly to the underlying
framework of L-fuzzy powersets, and expressed in terms of the L-fuzzy subset-
hood relation. For instance, the derivation operator f : LG→ LM is defined, for
an L-set of objects A : G→ L, as the degree to which the attributes are satisfied
with respect to the given L-fuzzy set of objects A; specifically, the result is the
L-set of attributes f(A) :M → L defined by

f(A)(y) =
∧
x∈G

A(x) → ι(x)(y), (1)

where → is the residuated implication of L, which is assumed to be a complete
residuated lattice.

Even in the standard fuzzy case, where L is the real unit interval, there may be
several candidates for the implication (there are lots of families of pairs formed
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by t-norms and their residuated mappings), and implication is essential when
defining the subsethood relation and, hence, the derivation operators in a fuzzy
setting.

The previous observation brings FCA into the realm of the multi-adjoint
framework. Multi-adjoint FCA [14] starts on this generalization, by allowing
to use a different implication for different subsets of objects/attributes, some-
how considering different sorts within the sets of objects and attributes, and
linking the approach to material introduced in Section 3.2. One of the initial
advantages of the multi-adjoint approach was to obtain an easy and flexible way
to formalize preferences; furthermore, it has proven to be a sufficiently general
framework under which to interpret several other generalizations of FCA and
related approaches [9,12].

Last but not least, there are options other than (1) to define the derivation
operators, leading to concept lattices more easily interpretable in terms of rough-
ness than fuzziness [13].

3.4 Health Contexts and Concepts Involving Classification for
Disease, Drug and Functioning

WHO maintains and further develops a number of classifications, including clas-
sification for disease, drugs and functioning, where ICD (International Classifica-
tion of Disease) and ICF (International Classification of Functioning, Disability
and Health) are reference classifications, and ATC/DDD (Anatomical Therapeu-
tic Chemicals Classification with Defined Daily Doses) is a related classification.
Classifications and their codes are hierarchical, so that higher level codes are sets
of lower level codes. Within these hierarchies there are hidden relations, that are
indeed pointed out, but not formally related within the classifications. Arrang-
ing these classifications in signatures ICD, ATC and ICF enables to formalize such
relations even as generalized relations.

Drugs for the nervous system is a typical example of a main anatomical group
of drugs. This group is on the 1st ATC level and coded as ‘N nervous system’. On
2nd level in this group there are e.g. ‘N05 psycholeptics’, and on 3rd level there
are ‘N05C hypnotics and sedatives’ as an example of a pharmacological subgroup.
Going to the chemical levels, the 4th level includes e.g. ‘N05CD benzodiazepine
derivatives’, and the 5th level includes specific drugs like ‘N05CD02 nitrazepam’.

The ATC signature could then on level two of the levels of signatures be ar-
ranged to include the ATC levels as 1st, 2nd, 3rd, 4th, 5th :→ type so that on
level three we might say e.g. that “pharmacologic interventions” in general for a
patient is a set of 3rd level items, whereas a set of “drug prescriptions” is a set of
5th level items. Clearly, there is lots of abuse of language in this contexts, even
in the medical domain. However, a signature can help to make these notions
more precise for a particular application context. We could have operators like
PharmacologicIntervention :→ P(3rd) and DrugPrescriptions :→ P(5th)
and we clearly “transformation” between the levels e.g. in form of φ5th→3rd :
5th → 3rd, so that nitrazepam on 5th level can be formally treated also as
‘sedative’ on 3rd level.
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Note also how drug interactions, e.g. according to the Swedish-Finnish SFINX
model, can be syntactically described by the operator

DrugDrugInteraction : 5th× 5th → QSFINX

where QSFINX is the 5-level scale used in SFINX for describing the severity of
interactions. Operations like

DrugDrugInteractionith,jth : ith× jth → QSFINX

DrugSetOfDrugsInteractionith,jth : ith× Pjth → QSFINX

SetOfDrugsDrugSetOfDrugsInteractionith,jth : ith× Pjth → QSFINX

can also be consider, where SetOfDrugsDrugSetOfDrugsInteraction5th,5th is a
well recognized problem, for which there is still not a proper solution.

For ICF, similar encodings will be applied. For postural control we have factors
like gait and muscle function, where, for coding purposes, the latter is to a larger
extent identifiable with items in the ICF (WHO’s International Classification of
Function) classification. A typical example is

Muscle functions (ICF b730-b749)

Muscle power functions (b730)

...

The ICF datatypes and its generic scale of quantifiers from xxx.0 NO problem to
xxx.4 COMPLETE problem and including the xxx.8 not specified is suitable
for modelling using quantales, where xxx.8 not specified will play the role
of the unital. This can be formalized in a signature. Algebras must obviously
be included in all these encodings, and for ICF it relates to the generic scale of
quantifiers, and how that “8” can be situated in relation to the other quantifiers
so as algebraically to form a quantale.

Generally, this view gives us several options for providing contexts involving
diseases, functioning and drugs, respectively using sets of terms functors TICD,
TICF and TATC, as introduced by ICD, ICF and ATC codes. Drug-drug interac-
tions are then based on a context like (TATCX,TATCX, ιATC,ATC), disease-functioning
by (TICDX,TICFY, ιICD,ICF), and so on.

4 Conclusions

The current paper serves as our kick off to further elaboration of monadic FCA
and its applications. We have presented an approach to formal concepts using
Kleisli categories, including a syntactic view for contexts, which, on the one
hand, opens up the structure and meaning of “objects” and “attributes”, and,
on the other hand, enables to adopt a generalized view of relations using Kleisli
morphisms as substitutions. From practical point of view, social and health care
is a typical application domain, where terminology and ontology e.g. for disorder
and functioning need to be connected with various interventions and as evaluated
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using scales and qualifiers. In these application areas, it is important to clearly
define the distinction between ‘statement’ and ‘value’, or, more broadly speaking,
to provide a better understanding of the distinction between the use of logics
and statistics, respectively.
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Abstract. There exists a direct relation between fuzzy rough sets and
fuzzy preorders. On the other hand, it is well known the existing paral-
lelism between Formal Concept Analysis and Rough Set Theory. In both
cases, Galois connections play a central role. In this work, we focus on
adjunctions (also named isotone Galois connections) between fuzzy pre-
ordered sets; specifically, we study necessary conditions that have to be
fulfilled in order such an adjunction to exist.
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1 Introduction

Adjunctions, together with their antitone counterparts (also called Galois con-
nections), have played an important role in computer science because its many
applications, both theoretical and practical, and in mathematics because of its
ability to link apparently very disparate worlds; this is why Denecke, Erné, and
Wismath stated in their monograph [12] that Galois connections provide the
structure-preserving passage between two worlds of our imagination.

Finding an adjunction (or Galois connection) between two fields is extremely
useful, since it provides a strong link between both theories allowing for mutual
synergistic advantages. The algebraic study of complexity of valued constraints,
for instance, has been studied in terms of establishing a Galois connection [10].

This work is focused on the study of adjunctions between fuzzy (pre-)ordered
structures. Both research topics are related to, on the one hand, the theory of
formal concept analysis (FCA) and, on the other hand, to rough set theory.
For instance, in[22] Pawlak’s information systems are studied in terms of Galois
connections and functional dependencies; there are also papers which develop
rough extensions of FCA by using rough Galois connections, see for instance [25];
there are works which study whether certain extensions of the upper and lower
approximation operators form a Galois connection [11].

There is a number of papers which study Galois connections from the ab-
stract algebraic standpoint [1,2,8,9,14,15,20] and also focusing on its applica-
tions [12,13,24,26,27,28,29]. In previous works [18,19], the authors studied the
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problem of defining a right adjoint for a mapping f : (A,≤A) → B from a par-
tially (pre)ordered set A to an unstructured set B. The natural extension of that
approach is to consider a fuzzy preordered set (A, ρA).

In this paper, we start the study of conditions which guarantee the existence
of adjunctions between sets with a fuzzy preorder. Specifically, we provide here a
set of necessary conditions for an adjunction exists between (A, ρA) and (B, ρB).

2 Preliminary Definitions and Results

The most usual underlying structure for considering fuzzy extensions of Ga-
lois connections is that of residuated lattice, L = (L,∨,∧,�,⊥,⊗,→). An L-
fuzzy set is a mapping from the universe set to the membership values structure
X : U → L where X(u) means the degree in which u belongs to X . Given X
and Y two L-fuzzy sets, X is said to be included in Y , denoted as X ⊆ Y , if
X(u) ≤ Y (u) for all u ∈ U .

An L-fuzzy binary relation on U is an L-fuzzy subset of U×U , that is ρU : U×
U → L, and it is said to be:

– Reflexive if ρU (a, a) = � for all a ∈ U .
– Transitive if ρU (a, b)⊗ ρU (b, c) ≤ ρU (a, c) for all a, b, c ∈ U .
– Symmetric if ρU (a, b) = ρU (b, a) for all a, b ∈ U .
– Antisymmetric if ρU (a, b) = ρU (b, a) = � implies a = b, for all a, b ∈ U .

Definition 1 (Fuzzy poset)
An L-fuzzy partially ordered set is a pair U = (U, ρU ) in which ρU is a reflexive,
antisymmetric and transitive L-fuzzy relation on U .

A crisp ordering can be given in U by a ≤U b if and only if ρU (a, b) = �.

From now on, when no confusion arises, we will omit the prefix “L-”.

Definition 2. For every element a ∈ U , the extension to the fuzzy setting of
the notions of upset and downset of the element a are defined by a↑, a↓ : U → L
where a↓(u) = ρU (u, a) and a↑(u) = ρU (a, u) for all u ∈ U.

An element a ∈ U is a maximum for a fuzzy set X if X(a) = � and X ⊆ a↓.
The definition of minimum is similar.

Note that maximum and minimum elements are necessarily unique, because of
antisymmetry.

Definition 3. Let A = (A, ρA) and B = (B, ρB) be fuzzy ordered sets.

1. A mapping f : A→ B is said to be isotone if ρA(a1, a2) ≤ ρB(f(a1), f(a2))
for each a1, a2 ∈ A.

2. Moreover, a mapping f : A→ A is said to be inflationary if ρA(a, f(a)) = �
for all a ∈ A. Similarly. a mapping f is deflationary if ρA(f(a), a) = � for
all a ∈ A.
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Definition 4 (Fuzzy adjunction). Let A = (A, ρA), B = (B, ρB) be fuzzy
posets, and two mappings f : A → B and g : B → A. The pair (f, g) forms an
adjunction between A and B, denoted (f, g) : A � B if, for all a ∈ A and b ∈ B,
the equality ρA(a, g(b)) = ρB(f(a), b) holds.

Notation 1. From now on, we will use the following notation, for a mapping
f : A → B and a fuzzy subset Y of B, the fuzzy set f−1(Y ) is defined as
f−1(Y )(a) = Y (f(a)), for all a ∈ A.

Finally, we recall the following theorem which states different equivalent forms
to define a fuzzy adjunction.

Theorem 1 ([16]). Let A = (A, ρA), B = (B, ρB) be fuzzy posets, and two
mappings f : A→ B and g : B → A. The following conditions are equivalent:

1. (f, g) : A � B.
2. f and g are isotone, g ◦ f is inflationary, and f ◦ g is deflationary.
3. f(a)↑ = g−1(a↑) for all a ∈ A.
4. g(b)↓ = f−1(b↓) for all b ∈ B.
5. f is isotone and g(b) = max f−1(b↓) for all b ∈ B.
6. g is isotone and f(a) = min g−1(a↑) for each a ∈ A.

Theorem 2 ([17]). Let (A, ρA) be a fuzzy poset and a mapping f : A −→ B. Let
Af be the quotient set over the kernel relation a ≡f b ⇐⇒ f(a) = f(b). Then,
there exists a fuzzy order ρB in B and a map g : B −→ A such that A � B if
and only if the following conditions hold:

1. There exists max[a]f for all a ∈ A.
2. ρA(a1, a2) ≤ ρA(max[a1]f ,max[a2]f ), for all a1, a2 ∈ A.

3 Building Adjunctions between Fuzzy Preordered Sets

In this section we start the generalization of Theorem 2 above to the framework
of fuzzy preordered sets.

The construction will follow that given in [19] as much as possible. Therefore,
we need to define a suitable fuzzy version of the p-kernel relation.

Firstly, we need to set the corresponding fuzzy notion of transitive closure of
a fuzzy relation, and this is done in the definition below:

Definition 5. Given a fuzzy relation S : U×U → L, for all n ∈ N, the iterations
Sn : U × U → L are recursively defined by the base case S1 = S and, then,

Sn(a, b) =
∨
x∈U

(
Sn−1(a, x)⊗ S(x, b)

)
The transitive closure of S is a fuzzy relation Str : U × U → L defined by

Str(a, b) =

∞∨
n=1

Sn(a, b)
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The relation ≈A allows for gettting rid of the absence of antisymmetry, by
linking together elements which are ‘almost coincident’; formally, the relation
≈A is defined on a fuzzy preordered set (A, ρA) as follows:

(a1 ≈A a2) = ρA(a1, a2)⊗ ρA(a2, a1) for a1, a2 ∈ A

The kernel equivalence relation ≡f associated to a mapping f : A → B is
defined as follows for a1, a2 ∈ A:

(a1 ≡f a2) =

{
⊥ if f(a1) �= f(a2)

� if f(a1) = f(a2)

Definition 6. Let A = (A, ρA) be a fuzzy preordered set, and f : A→ B a map-
ping. The fuzzy p-kernel relation ∼=A is the fuzzy equivalence relation obtained
as the transitive closure of the union of the relations ≈A and ≡f .

Notice that the fuzzy equivalence classes [a]∼=A
: A→ L are fuzzy sets defined as

[a]∼=A
(x) = (x ∼=A a) (1)

The notion of maximum or minimum element of a fuzzy subset X of a fuzzy
preordered set is the same as in Definition 2. There is an important difference
which justifies the introduction of special terminology in this context: due to
the absence of antisymmetry, there exists a crisp set of maxima (resp. minima)
forX , which is not necessarily a singleton, which we will denote p-max(X) (resp.,
p-min(X)).

The following theorem states the different equivalent characterizations of the
notion of adjunction between fuzzy preordered sets. As expected, the general
structure of the definitions is preserved, but those concerning the actual defini-
tion of the adjoints have to be modified by using the notions of p-maximum and
p-minimum.

Theorem 3 ([16]). Let A = (A, ρA),B = (B, ρB) be two fuzzy preordered sets,
and f : A → B and g : B → A be two mappings. The following statements are
equivalent:

1. (f, g) : A � B.
2. f and g are isotone, and g ◦ f is inflationary, f ◦ g is deflationary.
3. f(a)↑ = g−1(a↑) for all a ∈ A.
4. g(b)↓ = f−1(b↓) for all b ∈ B.
5. f is isotone and g(b) ∈ p-max f−1(b↓) for all b ∈ B.
6. g is isotone and f(a) ∈ p-min g−1(a↑) for all a ∈ A.

The following definitions recall the notion of Hoare ordering between crisp
subsets, and then introduces an alternative statement in the subsequent lemma:

Definition 7. Consider a fuzzy preordered set (A, ρA), and C,D crisp subsets
of A, we define the following relations
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– (C 1W D) =
∨
c∈C

∨
d∈D

ρA(c, d)

– (C 1H D) =
∧
c∈C

∨
d∈D

ρA(c, d)

– (C 1S D) =
∧
c∈C

∧
d∈D

ρA(c, d)

Lemma 1. Consider a fuzzy preordered set (A, ρA), and X,Y ⊆ A such that
p-minX �= ∅ �= p-minY , then(

p-minX 1W p-minY
)
=
(
p-minX 1H p-min Y

)
=
(
p-minX 1S p-minY

)
and their value coincides with ρA(x, y) for any x ∈ p-minX and y ∈ p-minY

Proof. Firstly, notice that if u1, u2 ∈ p-minX , then ρA(u1, u2) = �, by the
definition of p-minX .

Secondly, ρA(x1, y1) = ρA(x2, y2) for all x1, x2 ∈ p-minX , y1, y2 ∈ p-minY .
Indeed, ρA(x1, y1) ≥ ρA(x1, x2) ⊗ ρA(x2, y1) = � ⊗ ρA(x2, y1) ≥ ρA(x2, y2) ⊗
ρA(y2, y1) = ρA(x2, y2). Analogously, ρA(x2, y2) ≥ ρA(x1, y1). ��

We can now state the main contribution of this work: some necessary condi-
tions for the existence of fuzzy adjunctions between fuzzy preordered sets. The
result obtained resembles that in the crisp case [19]:

Theorem 4. Given fuzzy preordered sets A = (A, ρA) and B = (B, ρB), and
mappings f : A→ B and g : B → A such that (f, g) : A � B then

1. gf(A) ⊆
⋃
a∈A

p-max[a]∼=A

2. p-min(UB[a]∼=A
∩ gf(A)) �= ∅, for all a ∈ A.

3. ρA(a1, a2) ≤
(
p-min(UB[a1]∼=A

∩ gf(A)) 1 p-min(UB[a2]∼=A
∩ gf(A))

)
for all a1, a2 ∈ A.

Proof. 1. Consider a ∈ A, and let us show that gf(a) ∈ p-max[gf(a)]∼=A
.

By definition of p-maximum element of a fuzzy set, we have to prove that
it is an element of its core, and also an upper bound. To begin with, it is
straightforward that [gf(a)]∼=A

(gf(a)) = �, therefore we have just to prove
the inclusion [gf(a)]∼=A

⊆ (gf(a))↓ between fuzzy sets, that is, we have to
prove [gf(a)]∼=A(u) ≤ ρA(u, gf(a)) for all u ∈ A.
Recall that relation ∼=A has been defined as the transitive closure of the join
≈A ∪ ≡f , which we will denote R hereafter. Specifically, by using the defini-
tion of transitive closure (Defn. 5) and properties of the supremum, we will
prove by induction that any iteration Rn satisfies the following inequality:

gf(a)Rnu ≤ ρA(u, gf(a)) ∀u ∈ A (2)
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– For n = 1 and u ∈ A, let us prove the inequality by using the definition
of the relations involved we obtain

gf(a)Ru = (gf(a) ≈A u) ∨ (gf(a) ≡f u)

= (ρA(gf(a), u)⊗ ρA(u, gf(a)) ∨ (gf(a) ≡f u)

≤ ρA(u, gf(a)) ∨ (gf(a) ≡f u)

Depending on the value of gf(a) ≡f u, which is a crisp relation, there
are just two possible cases to consider, and both are straightforward:
If (gf(a) ≡f u) = ⊥, there is nothing to prove, as the previous inequality
collapses to inequality (2).
If (gf(a) ≡f u) = �, inequality (2) degenerates to a tautology since
the upper bound turns out to be �. In effect, we have fgf(a) = f(u)
by definition of the kernel relation ≡f , in addition, using the hypothesis
(f, g) : A � B, we have that

ρA(u, gf(a)) = ρB(f(u), f(a))

= ρB(fgf(a), f(a)) = ρA(gf(a), gf(a)) = �

– Assume inequality (2) holds for n− 1. By definition of the n-th iteration
of a fuzzy relation, and the induction hypothesis, we have that

gf(a)Rnu =
∨
x∈A

(
gf(a)Rn−1x⊗ xRu

)
≤
∨
x∈A

(
ρA(x, gf(a))⊗

(
(x ≈A u) ∨ (x ≡f u)

))
=
∨
x∈A

(
ρA(x, gf(a))⊗

(
(ρA(x, u)⊗ ρA(u, x)) ∨ (x ≡f u)

))
≤
∨
x∈A

(
ρA(x, gf(a))⊗

(
ρA(u, x) ∨ (x ≡f u)

))
.

Now, similarly to case n = 1, for every disjunct above there are two cases
depending on the outcome of the kernel relation:
If (x ≡f u) = ⊥, by commutativity of ⊗ and transitivity of ρA, then the
corresponding disjunct simplifies to ρA(u, gf(a)).
If (x ≡f u) = �, then the disjunct simplifies to ρA(x, gf(a)); but, more-
over, using the fact that f(x) = f(u) and the hypothesis (f, g) : A � B,
we have that

ρA(x, gf(a)) = ρB(f(x), f(a)) = ρB(f(u), f(a)) = ρA(u, gf(a))

Summarizing, inequation (2) holds for all n and, by definition of the
transitive closure, we have [gf(a)]∼=A(u) ≤ ρA(u, gf(a)) for all u ∈ A.

2. Note that the set of upper bounds and the image involved in this condition
are crisp sets. Specifically, we will prove that gf(a) belongs to the intersection
p-min(UB[a]∼=A ∩ g(f(A)).
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To begin with, we have to check that gf(a) ∈ UB[a]∼=A
∩ gf(A). As it is

obvious that gf(a) ∈ gf(A), we have just to show gf(a) ∈ UB[a]∼=A
, that

is, gf(a) is an upper bound of the fuzzy set [a]∼=A
. We have to prove that

(a ∼=A u) ≤ ρA(u, gf(a)) holds for all u ∈ A. Again, by using the definition
of ∼=A as transitive closure, and properties of the supremum, it is sufficient
to show that

aRnu ≤ ρA(u, gf(a)) ∀u ∈ A (3)

From now on, the proof follows the line of the previous item.

– For n = 1, and u ∈ A, we have that

aRu = (a ≈A u) ∨ (a ≡f u)

=
(
ρA(a, u)⊗ ρA(u, a)

)
∨ (a ≡f u)

≤ ρA(u, a) ∨ (a ≡f u).

Considering the two possible values of a ≡f u:
If (a ≡f u) = ⊥, by monotonicity of f and the adjunction property, we
have that

ρA(u, a) ≤ ρB(f(u), f(a)) = ρA(u, gf(a)).

If (a ≡f u) = �, inequality (3) once again degenerates to a tautology.
Specifically, using f(a) = f(u) and the adjunction property, we have

ρA(u, gf(a)) = ρB(f(u), f(a)) = ρB(f(a), f(a)) = �

– Assume the inequality (3) holds for n− 1, and let us prove it for n. For
this, consider x ∈ A,

aRnu =
∨
x∈A

aRn−1x⊗ xRu

≤
∨
x∈A

ρA(x, gf(a))⊗
(
(x ≈A u) ∨ (x ≡f u)

)
=
∨
x∈A

ρA(x, gf(a))⊗
(
(ρA(x, u)⊗ ρA(u, x)) ∨ (x ≡f u)

)
≤
∨
x∈A

ρA(x, gf(a))⊗
(
ρA(u, x) ∨ (x ≡f u)

)
.

Once again, we reason on each disjunct separately, considering the pos-
sible results of x ≡f a, and using monotonicity of f and the hypothesis
(f, g) : A � B when necessary:
If (x ≡f u) = ⊥, then the result follows by commutativity of ⊗ and
transitivity of ρA.
If (x ≡f u) = �, from f(x) = f(u), then we have

ρA(x, gf(a)) = ρB(f(x), f(a)) = ρB(f(u), f(a)) = ρA(u, gf(a))
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Summarizing, we have proved that gf(a) is an upper bound of the fuzzy
set [a]∼=A

.
Finally, for the minimality, we have to check that ρA(gf(a), x) = � for all
x ∈ UB[a]∼=A

∩ g(f(A))).
Consider x ∈ UB[a]∼=A

∩ g(f(A)); then there exists a1 ∈ A such that x =
gf(a1) and (a ∼=A u) ≤ ρA(u, x) for all u ∈ A. Particularly, considering u = a
and using the monotonicity of g and the adjunction property, we have that,

� = (a ∼=A a) ≤ ρA(a, x) = ρA(a, gf(a1))

= ρB(f(a), f(a1))

≤ ρA(gf(a), gf(a1)) = ρA(gf(a), x).

3. Consider a1, a2 ∈ A, as f and g are isotone maps, then we have

ρA(a1, a2) ≤ ρA(g(f(a1)), g(f(a2)))

From the inequality above, we directly obtain the required condition

ρA(a1, a2) ≤
(

p-min(UB[a1]∼=A
∩ g(f(A))) 1 p-min(UB[a2]∼=A

∩ g(f(A)))
)

since we have just proved above that g(f(a)) ∈ p-min(UB[a]∼=A
∩ gf(A)) for

all a ∈ A. ��

Corollary 1. Let A = (A, ρA) be a fuzzy preordered set, let B be an unstructured
set and f : A→ B be a mapping. If f is the left adjoint for an adjunction, then
there exists a subset S ⊆ A such that

(1) S ⊆
⋃
a∈A

p-max[a]∼=A

(2) p-min(UB[a]∼=A
∩ S) �= ∅, for all a ∈ A.

(3) ρA(a1, a2) ≤
(
p-min(UB[a1]∼=A

∩ S) 1 p-min(UB[a2]∼=A
∩ S)

)
for all

a1, a2 ∈ A.

It is worth to notice that the necessary conditions obtained above closely
follow the characterizations one obtained in the crisp case for existence of ad-
junctions between preordered sets. Specifically, in [19], it was proved that given
any (crisp) preordered set A = (A,�A) and a mapping f : A → B, there exists
a preorder B = (B,�B) and g : B → A such that (f, g) forms a crisp adjunc-
tion between A and B if and only if there exists a subset S of A such that the
following conditions hold:

(1) S ⊆
⋃
a∈A

p-max[a]∼=A

(2) p-min(UB[a]∼=A
∩ S) �= ∅, for all a ∈ A.

(3) If a1 �A a2, then
(

p-min(UB[a1]∼=A ∩ S) 1 p-min(UB[a2]∼=A ∩ S)
)
, for

a1, a2 ∈ A.
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Obviously, although in this paper we have just proved one implication (the
necessary conditions), as the obtained results are exactly the corresponding fuzzy
translation of the crisp one, it seems likely that the converse should hold as well.

In order to provide some clue about the significance of the obtained conditions,
it is worth to recall the characterization of the existence of adjunctions from a
crisp poset to an unstructured set, which somehow unifies some well-known facts
about adjunctions in a categorical sense, i.e. if g is a right adjoint then it preserves
limits.

In [18] it was proved that given a poset (A,≤A) and a map f : A→ B, there
exists an ordering ≤B in B and a map g : B → A such that (f, g) is a crisp
adjunction between posets from (A,≤A) to (B,≤B) if and only if

(i) There exists max([a]≡f
) for all a ∈ A.

(ii) a1 ≤A a2 implies max([a1]≡f
) ≤A max([a2]≡f

), for all a1, a2 ∈ A.

where ≡f is the kernel relation wrt f .
These two conditions are closely related to the different characterizations of

the notion of adjunction, as stated in Theorem 1 (items 5 and 6); specifically,
condition (i) above states that if b ∈ B and f(a) = b, then necessarily g(b) =
max([a]∼=f

), whereas condition (ii) is related to the isotonicity of both f and g.
In some sense, the necessary conditions (1), (2), (3) obtained in Corollary 1

reflect the considerations given in the previous paragraph, but the different un-
derlying ordered structure leads to a different formalization. Formally, condition
(i) above is split into (1) and (2), since in a preordered setting, if b ∈ B and
f(a) = b, g(b) needs not be in the same class as a but being maximum in its
class (1). However, the latter condition is too weak and (2) provides exactly
the remaining requirements needed in order to adequately reproduce the desired
properties for g. Now, condition (3) it just the rephrasing of (ii) in terms of the
properties described in (2).

4 Future Work

We have provided a set of necessary conditions for the existence of right adjunc-
tion to a mapping f : (A, ρA) → B. The immediate future task is to study the
other implication in order to find a set of necessary and sufficient conditions so
that it is possible to define a fuzzy preorder on B such that f is a left adjoint.

Several papers on fuzzy Galois connections have been written since its intro-
duction in [1]; consider for instance [3,14,23] for some recent ones. Another source
of future work will be to study possible generalizations of the previously obtained
results to the existence of fuzzy adjunctions within appropriate structures, and
study the potential relationship to other approaches based on adequate versions
of fuzzy closure systems [21].

Last but not least, in the recent years there has been some interesting develop-
ments on the study of both fuzzy partial orders and fuzzy preorders, see [4,5,6,7]
for instance. In these works, it is noticed that versions antisymmetry and reflex-
ivity commonly used are too strong and, as a consequence, the resulting fuzzy
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partial orders are very close to the classical case. Accordingly, another line of
future work will be the adaptation of the current results to these alternative
weaker definitions.
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Abstract. Libraries represent a focal point of academic life and as such
serve also a societal purpose of bringing together people around common
themes. This purpose is nowadays enhanced and facilitated by the so-
called digital libraries. For this reason, it is necessary to develop tools
for helping users to reach decision with a high level of conensus in these
virtual environments. The aim of this contribution is to present a tool for
reaching consensus in order to minimize the main problems that these
virtual environments presents (difficulty of establishing trust relations,
low and intermittent participation rates, and so on) while incorporating
the the benefits that they offers (rich and diverse knowledge due to a
large number of users, real-time comunication, and so on). To do so, the
fuzzy linguistic modelling is used to represent the users’ opinions.

Keywords: Consensus, linguistic information, digital library.

1 Introduction

Libraries form an essential part of academic institutions, enabling and facilitating
the exchange and growth of information, knowledge and culture among teachers,
students and the general public [1]. This purpose is nowadays enhanced and
facilitated by the use of technology and, in recent times, by the so-called digital
libraries [2,3].

Digital libraries are the logical extension of physical libraries in an electronic
information society, offering new levels of access to broader audiences of users.
Digital libraries enable users to access human knowledge at anytime and any-
where, in a friendly multimodal way, by overcoming barriers of distancia, lan-
guage and culture, and by using multiple network-connected devices. Therefore,
the decisions about important issues in digital libraries have to be made by their
own users.
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This situation can be seen as a group decision making problem. Group decision
making (GDM) is a situation faced when individuals collectively make a choice
from a suitable set of alternatives. This decision is no longer attributable to
any single individual who is a member of the group. This is because all the
individuals and social group processes such as social influence contribute to the
outcome [4,5].

One the one hand, as the natural language is the standard representation of
those concepts that humans use for communication, it seems natural that users
use words instead of numerical values to provide their opinions. The linguistic
approach is an approximate technique that represents qualitative aspects as lin-
guistic values by means of linguistic variables, that is, variables whose values are
not numbers but words or sentences in a natural or artificial language [6].

On the other hand, it is clear that involving a very large number of individ-
uals in a decision process is a difficult task but, with the appearance of new
electronic technologies, we are in the beginning of a new stage where traditional
decision models may leave some space to a more direct participation of the
“webizens”. In fact, Web 2.0 represents a paradigm shift in how people use
the Web as nowadays; everyone can actively contribute content on-line. However,
the challenge is to develop more sophisticated Web 2.0 applications with better
“participation architectures” that allow sharing data to their users, trusting users
as co-developers, harnessing collective intelligence, etc., [7]. They should be able
to overcome the inherent problems of the Web 2.0 Communities as [8,9]: (i) large
user base, (ii) heterogeneity in the users, which present different backgrounds
and use different expression domains, (iii) the low and intermittent participa-
tion rates, (iv) the dynamism of the Web 2.0 frameworks, e.g. the group of users
could vary over time, and (v) difficulties of establishing trust relations.

In this paper we propose a new tool for reaching consensus in digital libraries
by assuming fuzzy linguistic information to represent the users’ opinions. As
many traditional consensus approaches, it implements an iterative process in
which the users of the digital library interact in order to reach a consensus
solution on a particular problem. As digital libraries present several different
inherent characteristics that are not present in usual decision making problems,
this consensus tool incorporates some different modules to tackle them.

To do so, the paper is organized as follows. In Section 2 some of the most im-
portant characteristics of digital libraries and of group decision making problems
under fuzzy linguistic preference relations are presented. In Section 3 the new
linguistic consensus tool helping users of the digital libraries to obtain consensus
solutions is described. Section 4 deals with a real world application of the tool.
Finally, in Section 5 we point out our concluding remarks.

2 Preliminaries

In this section we present some important information about digital libraries
and Web 2.0, and some generalities on GDM problems.
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2.1 Digital Libraries and Web 2.0

The term Web 2.0 [10] was coined to describe the trends and business models
that survived the technology sector market crash of the 1990s. He noted that
the companies, which had survived the collapse, seemed to have some things
in common: they were collaborative in nature, interactive, dynamic, and users
created the content in these sites as much as they consumed it.

Developing the idea of Web 2.0 in the library context, the concept of digital
library 2.0 emerges. Digital library 2.0 can be seen as a reaction from librarians
to the increasingly relevant developments in information and communications
technology (i.e., Web 2.0 and social software) and to an environment that is sat-
urated with information available through more easily accessible channels. This
reaction comes in the form of increased openness and trust toward library users,
and in the development of new communication channels and services that are in
tune with social developments. Digital library 2.0 has multiple facets reflecting
the typical means of user participation that Web 2.0 enables. These facets in-
clude blogging, tagging, social bookmarking, social networking, podcasting and
so on.

New Web 2.0 technologies have provided a new framework in which virtual
communities can be created in order to collaborate, communicate, and share
information and resources, and so on. This very recent kind of communities
allows people from all over the globe to meet other individuals that share some
of their interests. Among the different activities that the users of digital library
2.0 usually perform we can cite: (i) generate on-line contents and documents,
which is greatly improved with the diversity and knowledge of the involved
people, (ii) provide recommendations about different products and services, and
(iii) participate in discussions and forums.

Apart from the obvious advantage of meeting new people with similar inter-
ests, digital libraries communities present some characteristics that make them
different from other more usual kinds of organizations.:

– Large user base. Digital libraries communities usually have a large user base
[8]. This can be seen from a double perspective. On the one hand, the total
knowledge that a large user base implies is usually greater and more diverse
than in a small community. This can be seen as a clear advantage: making
decisions is usually performed better when there is a rich knowledge on
the evaluated subject. On the other hand, managing a large and diverse
amount of opinions in order to extract and use that knowledge might be
a difficult task: for example, some of the users might not find easy to use
typical numerical preference representation formats and thus, linguistic ones
should be implemented.

– Heterogeneous user base. Not only the user base in digital library commu-
nities is large, but it is usually heterogeneous. This fact implies that we
cannot easily assume that all the individuals may find easy to use the tools
that are being developed and introduced in the websites. A clear example is
the use of numerical ratings: some users may find difficult to express their
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preferences about a set of alternatives using numerical ratings and thus, it
may be interesting to provide tools which can deal with natural language or
linguistic assessments.

– Low participation and contribution rates. Although many digital library com-
munities have a quite large user base, many of those users do not directly
participate in the community activities. Moreover, encouraging them to do
so can be difficult [9]. Many of the users of a digital library community are
mere spectators that make use of the produced resources but they do not
(and is not willing to) contribute themselves with additional resources. This
can be a serious issue when making decisions if only a small subset of the
users contribute to a decision and it does not reflect the overall opinion of
the community.

– Intermittent contributions. Partially due to the fast communication possibil-
ities and due to a very diverse involvement of the different members, it is
a common issue that some of them might not be able to collaborate during
a whole decision process, but only in part of it. This phenomenon is well
known in web communities: new members are continuously incorporated to
the community and existing users leave it or temporarily cease in their con-
tributions.

– Real time communication. The technologies that support digital library com-
munities allow near real time communication among its members. This fact
let us create models that in traditional scenarios would be quite impractical.
For example, in a referendum, it is not easy at all to make a second round if
there has been a problem in the first one due to the high amount of resources
that it requires.

– Difficulty of establishing trust relations. As the main communication way,
digital library communities use electronic devices and, in the majority of the
cases, the members of the community do not know each other personally,
it might be difficult to trust other members to, for example, delegate votes.
This fact implies that it might be necessary to implement control mechanisms
to avoid a malicious user taking advantage of others.

2.2 GDM Problems under Fuzzy Linguistic Information

A GDM situation consists of a problem to solve, a solution set of possible al-
ternatives, X = {x1, x2, . . . , xn}, (n ≥ 2), and a group of two or more experts,
E = {e1, e2, . . . , em}, (m ≥ 2), who express their opinions about the set of
alternatives to achieve a common solution.

One of the problems in this field is to find the best way to represent the
information. There are situations in which the information cannot be assessed
precisely in a quantitative form but may be in a qualitative one. For example,
when attempting to qualify phenomena related to human perception, we are
often led to use words in natural language instead of numerical values, e.g. when
evaluating quality of a football player, terms like “good”, “medium” or “bad”
can be used.
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The ordinal fuzzy linguistic approach [11] is a tool based on the concept
of linguistic variable [12,13,14] to deal with qualitative assessments. It is a very
useful kind of fuzzy linguistic approach because its use simplifies the processes of
computing with words as well as linguistic representation aspects of problems.
It is defined by considering a finite and totally ordered label set S = {si},
i ∈ {0, . . . , g}, in the usual sense, i.e., si ≥ sj if i ≥ j, and with odd cardinality
(usually 7 or 9 labels). The midterm represents an assessment of “approximately
0.5”, and the rest of the terms are placed symmetrically around it. The semantics
of the label set is established from the ordered structure of the label set by
considering that each label for the pair (si, sg−i) is equally informative [25].
For example, we can use the following set of seven labels to represent linguistic
information: S = {s0 = N, s1 = V L, s2 = L, s3 =M, s4 = H, s5 = VH, s6 = P},
where N = Null, V L = Very Low, L = Low, M = Medium, H = High, V H
= Very High and P = Perfect. Using this approach, it is possible to define
automatic and symbolic aggregation operators of linguistic information, as for
example the LOWA operator [4].

In such a way, we assume that the experts give their preferences by using fuzzy
linguistic preference relations (FLPR). A FLPR P h given by an expert eh is a
fuzzy set defined on the product set X ×X , that is characterized by a linguistic
membership function: μP h : X ×X → S, where the value μP h(xi, xj) = phij is
interpreted as the linguistic preference degree of the alternative xi over xj for
the expert eh.

Usually, to solve a GDM problem, two processes are considered [4,15,16]:

– Consensus process. This process refers to how to obtain the maximum degree
of agreement among the experts on the solution alternatives [5]. Usually, this
process is guided by the figure of a moderator and it is carried out before
the selection process. Clearly, it is preferable that the experts reach a high
degree of consensus on the solution set of alternatives before obtaining the
final solution.

– Selection process. This process describes how to obtain the solution set of
alternatives from the opinions on the alternatives given by the experts. It
consists of two phases: aggregation and exploitation. The aggregation phase
defines a collective opinion according to the preferences provided by the
experts. The exploitation phase transforms the global information about the
alternatives into a global ranking.

Initially, in the consensus tool proposed in this contribution, we consider that
in any nontrivial GDM problem the experts disagree in their opinions so that
decision making has to be viewed as an iterative process composed by several
discussion rounds, in which experts are expected to modify their preferences
according to the advice given by the moderator. This means that agreement is
obtained only after some rounds of consultation. In each round, we calculate the
consensus measures and check the current agreement existing among experts.

Normally, to achieve consensus among the experts, it is necessary to provide
the whole group of experts with some advice (feedback information) on how far
the group is from consensus, what are the most controversial issues (alternatives),
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whose preferences are in the highest disagreement with the rest of the group,
how their change would influence the consensus degree, and so on. In such a
way, the moderator carries out three main tasks: (i) to compute the consensus
measures, (ii) to check the level of agreement and (iii) to produce some advice
for those experts that should change their minds.

3 A Tool for Reaching Consensus in Digital Libraries

There have been some attempts to model consensus processes that use new web
environments to solve decision problems. For example, in [17] a web based con-
sensus support system for GDM was presented. This system was prepared to be
incorporated into GDM processes in which the experts would interact using a
simple web platform. Therefore, it could not be used to deal with Web 2.0 deci-
sion frameworks in which we find large number of individuals with intermittent
contributions and low participation rates. Recently, Alonso et al. [18] presented
a theoretical model to overcome all these characteristic.

In this section we show a new tool that implements as a basis the theoretical
model presented in [18]. It is specifically adapted to deal with digital library’s
features in order to increase the consensus level of the library users when making
a decision on a set of alternatives. Some of the properties of the presented tool
are:

– It does not require the existence of a moderator. It is the own application
who acts as virtual moderator.

– It allows working in highly dynamical environments where participation and
contribution rates change.

– It uses linguistic information to model user’s preferences and trust relations.
– It allows weighting the contributions of each user according to some degree

of expertise (staff, students and professors’ opinions could have different
weights).

– It implements a feedback module to help experts to change their preferences
about the alternatives (the virtual moderator provides recommendations to
join the expert’s opinions).

– It provides a delegation scheme based on trust that allows minimizing com-
munications and easing the computation of solutions.

– It implements a trust checking procedure to avoid some of the difficulties
that the delegation scheme could introduce in the consensus reaching model.

Its operation implies the implementation of several different modules that are
applied sequentially in each consensus round:

– Initialization module. This module serves as an entry point for the experts
that are going to participate in the consensus process. Thus, this module
presents the different alternatives X = {x1, . . . , xn} in the problem to the
experts. Once they know the feasible alternatives, each expert eh ∈ E is
asked to provide a fuzzy linguistic preference relation P h that represents
his/her opinions about the alternatives.
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– Neighbors computation module. For each participating expert eh a set of
neighbors (experts with similar opinions) is computed along with a global
current preference relation. This information is presented to the experts.
To calculate the neighborhoods we use a distance measure defined in [18].
The global current preference relation is computed by aggregating all the
individual FLPRs using the LOWA operator [4].

– Delegation module. Another important mechanism that has been widely used
in decision processes where lots of individuals are involved is delegation [19].
In fact, classical democratic systems rely on delegation in order to simplify
the decision making processes: as not all the individuals are involved in the
decision process (some of them delegate on others), the final decisions are
usually achieved faster and in a simpler way. Therefore, this module allows
each expert to delegate in other experts (presumably from his computed
neighborhood, with similar opinions). It creates a kind of trust network that
allows experts to leave (temporally or not) the decision process but main-
taining part of his influence in the problem. This delegation mechanism is
introduced to soften the intermittent contributions problem (because an ex-
pert who cannot continue the resolution process may choose to delegate to
other experts instead of just leaving the process) and to decrease the number
of preference relations involved in the problem.

– Feedback module. To ease the update of the preferences of the experts that
have not delegated (in order to achieve a greater level of consensus) the
system will provide several easy to follow feedback rules to the experts. The
users will then update their preferences.

– Consensus checking module. The system will check the consensus status by
computing different consensus measures [16]. If the consensus degree is high
enough the consensus phase ends and the selection one is applied.

– Trust checking module. This module is carried out if the consensus measure
is not high enough. It is introduced in order to avoid some of the problems
that can be derived of the characteristics of digital library communities: the
difficulties of establishing real trust relations. It is not difficult to imagine a
scenario where some experts delegate to another that shares a common point
of view on the decision that has to be made and, in a certain consensus round,
this expert decides to drastically change his/her preferences, probably not
reflecting the opinions of the experts that delegated to him anymore. To
avoid this kind of situations this module will compare the last preference
relation expressed by expert eh with the last preference relations of the
experts that delegated to him/her (direct or indirectly). This comparison is
made by applying a distance operator.

It is worth noting that, although the presented tool manages a series of more
or less complex interactions, it is based on existing mechanisms (delegation and
feedback reinforcement), which are used in real decision making problems. More-
over, the computations of all variables are quite straightforward and thus, the
computational complexity of the tools is low. As it happens in real decision
making problems, some of the modules of the tool as the delegation or change of
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preferences steps can slow down the resolution process. However, as those steps
do work only during a fixed amount of time for each round this does not repre-
sent a noticeable problem. In addition, as the experts are not forced to provide
their preferences, to delegate or even to change their opinions, those steps would
not interfere with the whole resolution time, even if an expert “misses” one of
the consensus iterations.

4 Application

Although the main goal of this contribution is to present a theoretical model
which could be adapted to deal with similar GDM problems, in order to test
and analyze the presented tool, in this section, we describe the use of the sys-
tem and its applicability to one of the most important European digital library
communities: the Spanish Open University (UNED) academic digital library.

With more than 260,000 scholars, UNED is, in terms of the number of stu-
dents, the largest university of Spain and the second largest in Europe, next to
the Open University in the UK. At this moment, the UNED library provides a
wide range of 2.0 functionalities. Thus, it is a suitable scenario where our system
can be applied perfectly.

In such a vast environment, where thousands of users interact it has been
necessary to introduce new tools to avoid conflicts and increase the consensus
of the main decisions. As the UNED digital library covers a large variety of
controversial issues, this kind of tools can help to reach better decisions.

The consensus system proposed in this contribution suits some of those sit-
uations. For example, lets imagine a particular conflictive issue as the funding
distribution problem. This problem can be modeled like a GDM problem in
which the experts are the digital library users (students, professors, staff and
so on), who has to compare the different alternatives to assign the money. We
model the alternatives as the library resources (technology resources, science
resources, medical resources, humanities resources and so on).

When we apply our tool, we allow choosing a solution of consensus among the
alternatives in which:

– Every user that is willing to participate can do it (thus increasing the level
of confidence in the final decision making).

– New users may incorporate in the middle of the consensus process.
– Participating users will not be forced to finish the consensus process, as they

may choose to delegate to other users.
– Some users may have higher weight than others (for example, registered

users, or library staff).
– The consensus status may be reached faster than using traditional discussion

mechanism (due to the incorporation of the feedback mechanism).
– The preferences of the users are given in a linguistic way increasing their

understandability.

Therefore, the final chosen option for the different resources would be a much
justified one than if we apply some much more traditional models as direct and
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simple voting mechanisms. After using the proposed application, the system will
show to the general manager the computed ranking of these resources in order
to manage the funding distribution.

The mission of incorporating the new tool to an already constructed digital
library web community as the UNED digital library is not a difficult one. In fact,
it can be incorporated as a separate tab like polls and forums.

To do so, this tool incorporates two different interfaces, the first one for the
library managers and the website administrator and a second one in which the
rest of users could express their preferences. The former allows managers to
define the problem (creating a description of what is the decision that has to be
carried out), to define the available alternatives and other details as the linguistic
set that is going to be used. On the other hand, the user interface, that allows
them to provide their preferences or delegate, is implemented as a client that
communicates with a server where all the required processes are carried out.
Finally, the computed information is presented in the website and it is updated
in real time as well as the resolution process is carried out.

5 Conclusions

In this contribution we have presented a new tool for reaching consensus that
has been specially designed to be applied in digital libraries. This tool makes
use of existing mechanism that are applied in real decision making situations:
it uses fuzzy linguistic preference relations for the expression and management
of experts preferences and it has been designed to manage a large users base by
means of a delegation scheme. This delegation scheme is based in a particular
kind of trust network created from linguistic trust evaluations given by the ex-
perts that simplifies the computations and the time needed to obtain the users
preferences. Moreover, this delegation scheme also solves the intermittent con-
tribution problem, which is present in almost any on-line community (that is,
many of the users will not continuously collaborate but will do it from time to
time). The model also incorporates a feedback mechanism to help the experts in
changing their preferences in order to quickly obtain a high level of consensus.

The tool also allows incorporating new experts to the consensus process. It is
able to handle some of the dynamic properties that real digital library communi-
ties have. Finally, it incorporates a trust check mechanism that allows detecting
some abnormal situations in which an expert may try to take advantage of others
by drastically changing his opinion and benefiting from the trust that the other
experts might have deposited in him in previous consensus rounds.
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Abstract. In tourism there are attempts to standardize the service quality 
evaluation, such as the SERVQUAL instrument, which is a five-item scale 
consisting of: tangibles, reliability, responsiveness, assurance and empathy. 
However, this scale is not commonly used in the most popular tourism 
websites. In this context, we present an implementation, using IBM SPSS 
Modeler, of a linguistic multi-criteria decision making model to integrate the 
hotel guests’ opinions included in the WWW and expressed on other 
dimensions (or attributes) in order to obtain a SERVQUAL scale evaluation 
value of service quality. As a particular case study, we show an application 
example using TripAdvisor website. 

1 Introduction 

The fuzzy linguistic approach is a tool intended for modeling qualitative information 
in a problem. It is based on the concept of linguistic variable and has been 
satisfactorily used in multi-criteria decision making (MCDM) problems [3]. The 2-
tuple fuzzy linguistic approach [2] is a model of information representation that 
carries out processes of “computing with words” without the loss of information. 

The SERVQUAL scale [6] is a survey instrument which claims to measure the 
service quality in any type of service organization. In [1] we have presented a model 
to integrate the hotel guests’ opinions included in several websites (and expressed in 
other different dimension or attributes) in order to get a SERVQUAL overall 
evaluation value of service quality by means two linguistic multi-criteria decision 
making (LMCDM) processes based on the 2-tuple fuzzy linguistic approach. 

In this paper we present a general SPSS Modeler [5] implementation of this 2-tuple 
LMCDM model. This makes able to be widely applied at a practical level and not 
only at a theoretical one. SPSS Modeler© is a robust data mining software, produced 
by IBM©. It has a visual interface which allows users to leverage data mining 
algorithms without programming. 

The rest of the paper is organized as follows: Section 2 revises the preliminary 
concepts, i.e. the 2-tuple linguistic modeling and the SERVQUAL scale. Section 3 
presents the implementation of the LMCDM model using IBM SPSS Modeler. 
Section 4 shows an application example using a two-stage LMCDM model 
integrating customers’ opinions collected from TripAdvisor [7] website. Finally, we 
point out some concluding remarks and future work. 
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2 Preliminaries 

2.1 The 2-Tuple Fuzzy Linguistic Approach  

Let S = {s0,…,sT} be a linguistic term set with odd cardinality, where the mid-term 
represents a indifference value and the rest of terms are symmetric with respect to it. 
We assume that the semantics of labels is given by means of triangular membership 
functions and consider all terms distributed on a scale on which a total order is 
defined, i.e. si ≤ sj ⇔ i < j. In this fuzzy linguistic context, if a symbolic method 
aggregating linguistic information obtains a value b ∈ [0,T], and b ∉{0,…,T}, then an 
approximation function is used to express the result in S. 
 
DEFINITION 1 [2]. Let b be the result of an aggregation of the indexes of a set of labels 
assessed in a linguistic term set S, i.e. the result of a symbolic aggregation operation, 
b ∈ [0,T]. Let i = round(b) and α = b-i be two values, such that i ∈ [0,T] and α ∈ [-
0.5,0.5), then α is called a Symbolic Translation. 

The 2-tuple fuzzy linguistic approach [2] is developed from the concept of 
symbolic translation by representing the linguistic information by means of 2-tuple 
(si, αi), si

 
∈

 S and αi
 
∈

 [-0.5,0.5), where si represents the information linguistic label, 
and αi is a numerical value expressing the value of the translation from the original 
result b to the closest index label, i, in the linguistic term set S. This model defines a 
set of transformation functions between numeric values and 2-tuple: 

 
DEFINITION 2 [2]. Let S = {s1,…,sT} be a linguistic term set and b ∈ [0,T] a value 
representing the result of a symbolic aggregation operation, then the 2-tuple that 
expresses the equivalent information to b is obtained with the following function: 

∆: [0,T] → S × [-0.5,0.5) 
∆(b) = (si, α), with si,  i = round(b) and α = b – i, α ∈ [-0.5,0.5)         (1) 

where round() is the usual round operation, si has the closest index label to b and α 
is the value of the symbolic translation. 

For all ∆, there exists ∆-1, defined as ∆-1(si, α) = i + α.          (2) 

Below, we describe the aggregation operators which we use in our model: 
 

DEFINITION 3 [4]. Let A = {(l1, α1),…, (ln, αn)} be a set of linguistic 2-tuple and W =  
{(w1, α1

w),…, (wn, αn
w)} be their linguistic 2-tuple associated weights. The 2-tuple 

linguistic weighted average Āw is: 

Āw [((l1, α1),(w1, α1
w)),…, ((ln, αn),(wn, αn

w))] = ∆
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with βi = ∆-1(li, αi) and βwi = ∆-1(wi, αi
w). 
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2.2 The SERVQUAL Scale 

Below, we will explain the five resultant scales proposed for SERVQUAL [6] and 
their adaptation to hotel guests’ perceptions [1]: 
 

• Tangibles: It makes reference to the appearance of the physical facilities, 
equipment, personnel, and communication materials. 

• Reliability: This is the ability to perform the promised service dependably and 
accurately. Customers generally place heavy emphasis on the image, sanitary 
condition, safety and privacy of the hotel. 

• Responsiveness: Willingness to help customers and provide prompt service. A 
courteous and friendly attitude by the service personnel makes the consumer 
feel respected, and definitely enhances the customer’s appraisal of the hotel. 

• Assurance: Knowledge and courtesy of employees and their ability to inspire 
trust and confidence. The price level is usually one of the most important 
factors that will influence the evaluation result by customers. 

• Empathy: Caring and individualized attention that the firm provides its 
customers. If the hotel is located in a remote district, whether the hotel 
provides a tourist route suggestion, convenient traffic routes, or a shuttle bus 
to pick up customers will influence customers’ desire to go to the hotel. 

3 Implementing a LMCDM Using IBM SPSS Modeler 

In a LMCDM [3] process, the goal consists in searching the best alternatives of the set 
id_alternative = {id_alternative1,…, id_alternativen} according to the linguistic 
assessments provided by a group of experts, id_criterion = {id_criterion1,…, 
id_criterionm} with respect to a set of evaluation criteria. In our model, we assume 
that these assessments are weighted by the self-rated expertise level set weight = 
{weight1,…, weightm}. We also assume that we have p decision problems, one for 
each dimension (attribute or set of attributes of the problem domain) value. Therefore, 
we define the assessments set as assessments = {assessmentsdij} ∀i, j, d, i ∈ {1,…, n}, 
j ∈ {1,…, m}, d ∈ {1,…, p}. 

In order to obtain an easy linguistic interpretability and the high precision of the 
model results, we assume that all the information provided by the experts is in the 2-
tuple form [2]. In our system to represent the 2-tuple values with a single attribute 
(string data type), we denote the pair (si, α), si ∈ S, with “si sign(α) abs(α)”, e.g. (s0, -
0.1) is denoted by the string “s0 -0.1” and (s0, 0) by “s0”. 

Our goal is to design a SPSS IBM Modeler Super Node that solves all the 
problems that are under the previous approach. These Super Nodes (symbolized by 

) are similar to a procedure with inputs (labeled with From Stream, for example in 
Fig. 2) and/or outputs values (labeled with To Stream, see Fig. 2). 

First, we need to store information about the symmetric and uniformly distributed 
domain S = {s0,…, sT}, T = 4: s0 = Strongly Disagree = SD, s1 = Disagree = D, s2 = 
Neutral = N, s3 = Agree = A, and s4= Strongly Agree = SA. For this purpose we use a 
metadata called 2T-LABELS (see Table 1 and Fig. 1). 
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Table 1. Example of metadata 
2T-LABELS 

ID
_L
AB
EL

RA
NK
IN
G
_L
AB
EL

AL
PH
A

BE
TA

G
AM

M
A

SD 0 0.0 0.0 0.25
D 1 0.0 0.25 0.5
N 2 0.25 0.5 0.75
A 3 0.5 0.75 1.0
SA 4 0.75 1.0 1.0  

 

Fig. 1. Representation of the metadata showed in Table 1 

 
Below we show implementations made to solve this problem: 

 
Super Node 2T-MCDM (Fig. 2) 

  Inputs: ∀d ∈ {1,…, p} 
  

  Outputs: ∀d ∈ {1,…, p} 
 

 
 

 

Fig. 2. 2T-MCDM: IBM SPSS Super Node for the MCDM calculation 

This node from the 2-tuple assessment values (for each alternative and dimension) 
and the 2-tuple weight values (for each criterion) obtain the performance and 
consensus 2-tuple values (for each alternative and dimension) result of the LMCDM. 
The performance value is obtained using the 2-tuple linguistic weighted average 
showed in Eq. 3. The consensus value is obtained using the weighted Euclidean 
distance between this performance value and the corresponding assessments. The basic 
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idea of this node is to convert the input 2-tuple values to crisp values and then perform 
a crisp MCDM process. After this process, the results are converted to 2-tuple values. 
Following, we explain the rest of Super Nodes contained in the 2T-MCDM: 

 

Super Node reverse_2t (Fig. 3) 

  Input: label_2t. Output: reverse_label_2t 

 

Fig. 3. reverse_2t: IBM SPSS Super Node for ∆-1 calculation 

This node implements the ∆-1 function (Eq. 2), i.e. the output is ∆-1(label_2t). For 
this purpose the node uses the metadata 2T-LABELS showed in Table 1. 
 

Super Node direct_2t (Fig. 4) 

  Input: reverse_label_2t. Output: label_2t 

 

Fig. 4. direct_2t: IBM SPSS Super Node for ∆ calculation 

This node implements the ∆ function (Eq. 1), i.e. the output is ∆(reverse_label_2t) 
using the metadata 2T-LABELS (see Table 1). 

 
Super Node CRISP-MCDM (Fig. 5) 

  inputs: ∀d ∈ {1,…, p} 
 

 
 

  outputs: ∀d ∈ {1,…, p} 
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Fig. 5. CRISP-MCDM: IBM SPSS Super Node for a crisp MCDM calculation 

This node performs a MCDM process which manages only crisp values. Decision 
processes are composed by two phases: Aggregation that combines the expert 
preferences. Exploitation that obtains a solution set of alternatives for the decision 
problem. Also it obtains the values of consensus using a Euclidean distance. 

4 Application Example 

In [1] we have presented a two-stage LMCDM to integrate the hotel guests’ opinions 
included in several websites in order to get a SERVQUAL evaluation value of service 
quality. In this section, we present a SPSS IBM Modeler implementation of this 
model, using the Super Node presented in the previous section, with an application 
example using customers’ opinions about the high-end hotels located in Granada 
(Spain), which were collected from TripAdvisor [7] during the year 2013. In this 
website customers write reviews on the following dimensions: sleep quality, location, 
rooms, service, value and cleanliness (see Fig. 6) using a linguistic five scale which 
can be modeled  with S = {s0,…, sT}, T = 4: s0 = Terrible = SD, s1 = Poor = D, s2 = 
Average = N, s3 = Very Good = A, and s4= Excellent = SA (see Table  and Fig. 1). 
 

 

Fig. 6. Evaluation form of a hotel in TripAdvisor website 

Following, we explain the implemented two-stage LMCDM model: 
 
1. LMCDM process addressed by the information provided by hotel experts 
In this step, we have counted on the collaboration of five experts. The objective is to 
obtain the linguistic importance of the input attributes for each SERVQUAL scale. 
The stream to solve this phase is very simple (Fig. 7). It collects the input information 
provided by experts (Table 2) and then executes the node 2T-MCDM obtaining the 
output data (Table 3) with an acceptable level of consensus among experts. 
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Fig. 7. IBM SPSS Modeler stream for the first LMCDM (experts) 

Table 2. Input data: (a) Criteria 2T-CRITERIA: experts and self-rated weight.  (b) Alternatives 
2T-ALTERNATIVES: SERVQUAL scales. (c) Dimensions 2T-DIMENSIONS (Fig. 6).        
(d) Assessments 2T-ASSESSMENTS: provided by experts (only for the alternative PZB1). 

 (a)  (b) 
 

 
 
 

 (c) 

 (d) 

Table 3. Output data 2T-LMCDM-1: Importance of the dimensions (Fig. 6) for each scale 

 
 

2. LMCDM process addressed by the information provided by hotel guests 
In order to get the SERVQUAL evaluation value we use the linguistic importance for 
each SERVQUAL scale, obtained in the previous step (Table 3) playing the role of 
weight criteria. The alternatives are the SERVQUAL scales. In addition we also use 
the TripAdvisor hotel guests’ (id_criterion) opinions  from 2T-QUESTIONNAIRE as 
assessments (Table 4a) on the dimensions (id_dimension) showed in Fig. 6. The 
stream to solve this phase is showed in Fig. 8. It collects the input sources and then 
executes the Super Node 2T-MCDM obtaining the evaluation of the hotels (Table 4b).  
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Fig. 8. IBM SPSS Modeler stream for the second LMCDM (hotel guests’ opinions) 

Table 4. (a)  Input data 2T-QUESTIONNAIRE: TripAdvisor hotel guests’ opinions (only a few 
rows). (b) Output data 2T-LMCDM-2: SERVQUAL evaluation for all hotels. 

 
(a) 

 
(b) 

5 Concluding Remarks and Future Work 

We have presented a general IBM SPSS Modeler [5] implementation of a 2-tuple 
LMCDM model. This makes able to be widely applied at a practical level on several 
types of problems. Thus, we have implemented the model [1] for integrating the 
opinions expressed by hotel guests in the TripAdvisor website [7], in order to obtain 
the overall value of service quality under the SERVQUAL instrument perspective. 
We are currently focusing on the development of an entire opinion aggregation 
architecture which will use the implementation presented in this paper. 
 
Acknowledgements. This work has been developed with the financing of FEDER 
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Abstract. The aim of a sensory evaluation process is to compute the global value
of each evaluated product by means of an evaluator set, according to a set of sen-
sory features. Several sensory evaluation models have been proposed which use
classical aggregation operators to summary the sensory information, assuming
independent sensory features, i.e, there is not interaction among them. However,
the sensory information is perceived by the set of human senses and, depend-
ing on the evaluated product, its sensory features may be dependent and present
interaction among them. In this contribution, we present the integration of depen-
dent sensory features in sensory evaluation processes. To do so, we propose the
use of the fuzzy measure in conjunction with the Choquet integral to deal with
this dependence, extending a sensory evaluation model proposed in the literature.
This sensory evaluation model has the advantage that offers linguistic terms to
handle the uncertainty and imprecision involved in evaluation sensory processes.
Finally, an illustrative example of a sensory evaluation process with dependent
sensory features is shown.

Keywords: Sensory evaluation, decision analysis, sensory information, linguis-
tic information, interaction, dependence.

1 Introduction

Evaluation processes are key in quality inspection, marketing and other fields in indus-
trial companies. In these processes, it is very common that a group of evaluators assess
a set of evaluated product, according to a set of criteria in order to obtain a global value
of each evaluated product. To achieve this aim, some evaluation models are based on
decision analysis methods due to the fact that these methods offer a simple and rational
analysis that can be adapted in the evaluation context.

The sensory evaluation is an evaluation discipline that is carried out to evoke, mea-
sure, analyze, and interpret reactions of the sensory features of products [3]. This eval-
uation discipline has an important impact on many industrial areas such as comestibles,
cosmetic and textile [16].

In the literature, several sensory evaluation models [6, 11–13, 15] have been
proposed. These evaluation models assume that the multiple sensory features are com-
pletely independent, without presenting interaction among them. However, sensory fea-
tures are perceived by the set of human senses sight, smell, taste, touch and hearing and,
depending on the evaluated product, its sensory features may not be independent. For
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example, the texture and appearance are sensory features that are evaluated in cloth-
ing fabrics and there is a dependence between them. Another example are fruits where,
usually, the sensory feature of taste can interact with other sensory features [16].

Therefore, in each sensory evaluation process is necessary to analyze each sensory
feature and its relationships or dependence among them, i.e., to consider the interaction
among sensory features. Furthermore, this interaction should be managed when the set
of assessments is aggregated [10, 16] to obtain successful results that model the reality
of sensory evaluation processes. Thereby, in order to manage the interaction among
sensory features, sensory evaluation models should be extended.

In this contribution, we propose the use of fuzzy measures [18] in conjunction with
fuzzy integrals [17] to capture the interaction among sensory features and to manage
this interaction to compute the global value of each evaluated product in the sensory
evaluation process. To do so, we propose the use of the Choquet integral [1] that is a
fuzzy integral as well as a useful tool to model the dependence or interaction of criteria
in several applications [4].

The information involved in sensory processes is perceived by the human senses
and always involves imprecision and uncertainty that has a non-probabilistic nature
[11]. For this reason, we propose to extend a sensory evaluation model that uses the
fuzzy linguistic approach [21] to model and manage such an uncertainty by means of
linguistic variables. The use of linguistic information in sensory evaluation processes
involves Computing with Words (CWW) processes in which the objects of computation
are words or sentences from a natural language and the results are also expressed in a
linguistic expression domain [8]. Therefore, CWW processes are carried out in our
proposal, considering the interaction among aggregated arguments. Finally, we show a
case study to illustrate the usefulness and effectiveness of the fuzzy measures with the
Choquet integral in a sensory evaluation process with linguistic information for fruit
jam samples.

The rest of the contribution is organized as follows: Section 2 reviews the CWW
processes in the context of dependent aggregation as well as the linguistic sensory eval-
uation model that will be extended. In Section 3, the integration of dependent features
in the linguistic sensory evaluation model is presented. In Section 4, an illustrative ex-
ample of the extended linguistic evaluation model is shown. In the last section, we give
the conclusions.

2 Preliminaries

In this section, CWW processes with dependent arguments are reviewed by means of
the 2-tuple linguistic model, which is used to represent the linguistic information in the
linguistic sensory evaluation model that will be reviewed later.

2.1 CWW with Presence of Dependence

In this section, we review the 2-tuple linguistic model and dependent aggregation oper-
ators for linguistic 2-tuples, these will be used in our proposal to capture the interaction
among sensory features and to carry out CWW processes, considering such interaction.
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2-Tuple Linguistic Model. The 2-tuple linguistic model has been successfully applied
in different fields such as sustainable energy [5], recommender systems [14], quality of
service [7], performance appraisal [4], etc. This model represents the information by
means of a pair of values (s, α), where s is a linguistic term with syntax and semantics
and α is a numerical value that represents the value of the symbolic translation. The
symbolic translation is a numerical value assessed in [−0.5, 0.5) that supports the dif-
ference of information between a counting of information β assessed in the interval of
granularity [0, g] of the linguistic term set S and the closest value in S = {s0, . . . , sg}
which indicates the index of the closest linguistic term in S.

This model defined a set of functions to facilitate the computational processes with
linguistic 2-tuples [9].

Definition 1 [9]. Let S = {s0, . . . , sg} be a set of linguistic terms. The 2-tuple set
associated with S is defined as 〈S〉 = S × [−0.5, 0.5). The function ΔS : [0, g] −→
〈S〉 is given by,

ΔS(β) = (si, α), with

{
i = round (β),

α = β − i,
(1)

where round(·) assigns to β the integer number i ∈ {0, 1, . . . , g} closest to β.

Proposition 1 Let S = {s0, . . . , sg} be a linguistic term set and (si, α) be a linguistic
2-tuple. There is always a function Δ−1

S = i+ α such that, from a linguistic 2-tuple, it
returns its equivalent numerical value β ∈ [0, g].

Remark 1 The conversion of a linguistic term into linguistic 2-tuple consists of adding
a value 0 as symbolic translation. H : S → 〈S〉 that allows us to transform a
linguistic term si into a linguistic 2-tuple (si, 0).

The 2-tuple linguistic representation model has a linguistic computational model
associated based on Δ−1

S and ΔS that accomplishes CWW processes in a precise way.
Different 2-tuple linguistic aggregation operators have been proposed [9] that consist
of obtaining a linguistic 2-tuple value that summarizes a set of linguistic 2-tuples. The
2-tuple ordered weighted averaging (OWA) aggregation operator that will be used in
our case study is defined as follows:

Definition 2 [9] Let S = {(s1, α1), (s2, α2), ..., (sn, αn)} be a set of 2-tuples and

w = (w1, w2, ..., wn) ∈ [0, 1]n be the weighting vector of S such that
n∑

i=1

wi = 1.

The 2-tuple ordered weighted averaging aggregation operators for linguistic 2-tuples
is defined as:

2TOWAw(S) = ΔS

(
n∑

i=1

wiΔ
−1
S (sσ(i), ασ(i))

)
,

with σ a permutation on {1, ..., n} such that (sσ(1), ασ(1)) ≥ . . . ≥ (sσ(n), ασ(n)).
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Dependent Aggregation Operators. Choquet integral-based aggregation operators [1]
consider the dependence of the aggregated arguments in order to deal with the interac-
tion among them. These aggregation operators require fuzzy measures [18] in order
to represent the interaction among arguments. Following, the fuzzy measures and the
Choquet integral for linguistic 2-tuples are defined.

Definition 3 [18]. Let N = {1, . . . ,m} be a set of m arguments. A fuzzy measure
is a set function μ : 2N → [0, 1] that satisfies the following conditions: μ(∅) = 0,
μ(N) = 1 and μ(S) ≤ μ(T ) whenever S ⊆ T (μ is monotonic)

To represent set functions, for a small m, it is convenient to arrange their values into
an array. For example, the fuzzy measure for m = 3 is represented as follows:

μ(f1, f2, f3)
μ(f1, f2) μ(f1, f3) μ(f2, f3)
μ(f1) μ(f2) μ(f3)

μ(∅)

(2)

Definition 4 [20]. Let μ be a fuzzy measures on X = {x1, x2, ..., xn} and a set of
linguistic 2-tuples S = {(s1, α1), (s2, α2), ..., (sn, αn)}. The 2-tuple Choquet integral
(2TCI) for linguistic 2-tuples is defined as:

2TCIμ(S) = ΔS

(
n∑

i=1

wiΔ
−1
S (sσ(i), ασ(i))

)

where wi = μ(Hσ(i)) − μ(Hσ(i−1)), with σ a permutation on {1, ..., n} such that
(sσ(1), ασ(1)) ≥ (sσ(2), ασ(2)) ≥ ... ≥ (sσ(n), ασ(n)) and xσ(i) is the attribute corre-
sponding to (sσ(i), ασ(i)). With the conventionHσ(0) = ∅ andHσ(i)={xσ(1), ..., xσ(i)},

for i ≥ 1. Obviously wi ≥ 0 and
n∑

i=1

wi = 1.

By using the Choquet integral, in [20] some aggregation operators for linguistic 2-
tuples was introduced, including the 2-tuple correlated averaging operator, the 2-tuple
correlated geometric operator and the generalized 2-tuple correlated averaging operator.

2.2 Linguistic Sensory Evaluation Model

In this section, we briefly review the linguistic sensory model based on linguistic 2-
tuples [11] that offers linguistic terms to handle the uncertainty and imprecision in-
volved in evaluation sensory processes, providing linguistic results.

The linguistic sensory evaluation model adapts the common decision resolution
scheme proposed in [2] and consists of three phases (see Figure 1) that are reviewed
in the following subsections.

Evaluation Framework. This phase defines the structure and the set of elements in
the sensory evaluation process that these are:
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Fig. 1. Linguistic sensory evaluation model with independent sensory features

– C = {ck : k = 1, ...,m} is the evaluator panel.
– X = {xj : j = 1, ..., n} is the set of evaluated products.
– F = {fi : i = 1, ..., h} is the set of sensory features that identify each evaluated

product.
– S = {sl : l = 0, ..., g} is the linguistic scale in which evaluators’ assessments will

be expressed.

Gathering Information. In this phase, each evaluator ck ∈ C expresses his/her as-
sessment value of each evaluated product xj ∈ X by means of a linguistic assessment
vector: Uk

j = {uk1j, uk2j , . . . , uknj}. This linguistic information is transformed into lin-
guistic 2-tuples, using the Remark 1.

Rating Products. The aim of the sensory evaluation process is to compute a global
value of the set of evaluated products, according to the sensory information gathered
in the previous phase. A key issue in this process is to carry out CWW processes,
aggregating the sensory information in an appropriate way by means of aggregation
operators for linguistic 2-tuples. To do so, this phase consists of two steps.

1. Computing a global value for each sensory feature: first, it is computed a global
linguistic 2-tuple, (ujk, α), for each sensory feature fk, of the evaluated product
xj , using an aggregation operator for linguistic 2-tuples 2TAO1.

(ujk, α) = 2TAO1((u
1
jk, α1), . . . , (u

n
jk, αn))

2. Computing a global value for each evaluated product: the final aim of the rating
process is to obtain a global value, (uj , α), for each evaluated product, xj accord-
ing to its global values for the set of sensory features. To do so, this step aggregates
the global linguistic 2-tuple values for each feature sensory, (ujk, α), using an ag-
gregation operator for linguistic 2-tuples 2TAO2, assuming that the set of sensory
features is independent.

(uj, α) = 2TAO2((uj1, α1), ...., (ujh, αh))

Until now, sensory evaluation models have been used classical aggregation operators for
linguistic 2-tuples as arithmetic average, weighted average or median average
[6, 11–13] to compute the global value for each evaluated product, without assuming
the interaction among sensory features.
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3 Integration of Dependent Features on Sensory Evaluation
Process

In this section, we present the management of dependent sensory features in sensory
evaluation processes. To do so, we extend the reviewed linguistic sensory evaluation
model in Section 2.2 in order to capture and model the interaction among sensory fea-
tures and compute global assessments, taking into account this interaction.

In order to achieve the aim of this contribution, the fuzzy measures and the Choquet
Integral are used to manage the interaction among sensory features. So, these will be
used in the phase of Evaluation Framework as well as in the step of computing global
value for each evaluated product of Rating Products. These phases are described bellow
and illustrated in Figure 2 in the extended linguistic sensory evaluation model

Fig. 2. Extended linguistic sensory evaluation model to manage dependent sensory features

Extending the Evaluation Framework. In the evaluation framework, it is necessary
to analyze each sensory feature and its relationships or depende among them. To do so,
it is necessary to define in the evaluation framework the fuzzy measure associated with
the set of sensory features F = {fi : i = 1, ..., h}:

– μ : 2F −→ [0, 1] are the fuzzy measures that represent the dependence among the
set of sensory features.

In order to clarify the use of the fuzzy measures in the sensory evaluation process,
three examples are illustrated, considering a sensory evaluation process in which three
sensory features are evaluated: F = {f1, f2, f3}.

Example 1. Let μ be the fuzzy measure on F given by Eq. (3), these fuzzy measures
represent interaction among f1 and f2 due to the fact that μ(f1, f2) = 0.6 > μ(f1) +
μ(f2) = 0.5. The sensory feature f3 is independent respect to f1 and f2 because
μ(f1, f3) = μ(f1) + μ(f3) = 0.7 and μ(f2, f3) = μ(f2) + μ(f3) = 0.8.

1
0.6 0.7 0.8
0.2 0.3 0.5

0

(3)

Example 2. Let μ be the fuzzy measure on F given by Eq. (4) that is a symmetric
additive fuzzy measure, these sensory features are independent and have the same



246 M. Espinilla, F.J. Martínez, and F.J. Estrella Liébana

weight in the evaluation process due to the fact that the same cardinalities of the cor-
responding subsets have the same value in μ: μ(f1) = μ(f2) = μ(f3) = 1/3 and
μ(f1, f2) = μ(f1, f3) = μ(f2, f3) = 2/3.

1
2/3 2/3 2/3
1/3 1/3 1/3

0

(4)

Example 3. Let μ be the fuzzy measure on F given by Eq. (5) that is an additive fuzzy
measure, these features sensory are independent, there is not interaction among them.
However, the sensory features not have the same weight in the set because μ(f3) =
0.5 > μ(f2) = 0.3 > μ(f3) = 0.2.

1
0.5 0.7 0.8
0.2 0.3 0.5

0

(5)

Extending the Rating Products. In this phase, it is carried out CWW processes, aggre-
gating the sensory information and considering the interaction among sensory features.
To do so, the second step is extended in order to compute the linguistic global value
(uj , α), for each evaluated product, according to the interaction as well as the global
values of the set of sensory features computed previously in the firs step.

– Computing a global value for each evaluated product: In order to manage the in-
teraction among sensory features when the set of global values are aggregated, it
is necessary to use an aggregation operator that can deal with the fuzzy measure
defined in the evaluation framework. Therefore, Choquet integral-based aggrega-
tion operators for linguistic 2-tuples, which consider the fuzzy measure, are used
to manage the interaction among sensory features and to aggregate the linguistic
information.

(uj , α) = 2TAOμ((uj1, α1), ...., (ujh, αh))

It is noteworthy that the interaction of the set of sensory features is captured by fuzzy
measures. Therefore, if the fuzzy measure does not capture the interaction, the Choquet
integral does not consider such interaction. Thereby, depending on the properties of
fuzzy measures, the Choquet Integral can include classical aggregation operators, for
example weighted means. So, the Choquet integral with respect to an additive fuzzy
measure μ is the weighted arithmetic mean with the weights wi = μ(i). With respect
to a symmetric additive fuzzy measure, the Choquet integral is the arithmetic mean and
the values of μ are given by μ(A) = |A|/n.

4 Dependent Sensory Features of Fruit Jam. Case Study

In this section, we present a case study to illustrate the usefulness and effectiveness of
the integration of dependent sensory features in the sensory evaluation process of fruit
jam samples.
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4.1 Evaluation Framework

The evaluation framework includes a set of twenty evaluators, C = {c1, . . . , c20}, who
assess two samples of fruit jam, X = {x1, x2}. Each fruit jam sample is characterized
by three sensory features f = {f1, f2, f3} which are respectively: taste, smell and
texture. In this case study, evaluators express their assessments about the set of sensory
features, using the linguistic term set S that is illustrated in the Figure 3.

Fig. 3. Linguistic term set

Furthermore, an expert in the company provides the interaction among the set of
sensory features by means of fuzzy measures that are shown in Eq. (6):

1
0.6 0.5 0.4
0.2 0.2 0.2

0

(6)

In this sensory evaluation process, the three independent sensory features are as-
sociated with the same weight μ(f1) = 0.2, μ(f2) = 0.2 and μ(f3) = 0.2. How-
ever, the company establishes that the sensory feature of taste is more important in
coalition with the other two sensory features, smell and texture. Due to the fact that
μ(f1, f2) = 0.6 > μ(f1) + μ(f2) = 0.4 and μ(f1, f3) = 0.5 > μ(f1) + μ(f3) = 0.4.
Furthermore, it is more important the interaction among taste and smell than taste and
texture because μ(f1, f2) = 0.6 > μ(f1, f3) = 0.5. Finally, the sensory features of
smell and taste are independent, since their fuzzy measures are additive, μ(f2, f3) =
0.4 = μ(f2) + μ(f3) = 0.4.

4.2 Gathering Information

Once the evaluation framework has been defined in the previous phase, the information
must be gathered. The evaluator set provides their assessments by using linguistic as-
sessment vectors. Therefore, each evaluator ck provides his/her assessments about the
evaluated product xj according to each sensory feature fi.

In this case study, the evaluator set provides all assessments, but if the provided in-
formation is incomplete, some decision-making models could be used to manage it. The
linguistic information gathered by the evaluator set is shown in Table 1, this information
is transformed into linguistic 2-tuples, using the Remark 1.
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Table 1. Assessments about x1 and x2 provided by the evaluators

x1 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 c17 c18 c19 c20

f1 VH P P P P H H H H H L M M M M VL VL VL VL L
f2 P P P P P VH VH VH P P VH VH VH VH VH L VH VH VH VH
f3 P P P P P P P P P P VH VH VH VH VH L VH VH VH VH

x2 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 c17 c18 c19 c20

f1 L M M M H H H VH VH VH N N VL VL VL VL VL L L L
f2 H VH VH P P P P P P P L L M M M M M M H H
f3 VH VH VH P P P P P P P VL VL L L M H H H VH VH

4.3 Rating Products

In order to ensure an effective rating process, it is necessary to consider the interaction
among sensory features of the evaluated product to compute a global value for each
evaluated product. The description of the rating process is described as follows:

Computing a Global Value for Each Sensory Feature. In the first step of this process,
the 2-tuple OWA operator is applied, which requires an weighting vector. In this case
study, the linguistic quantifier "Most" [19] is used to obtain the weight vector that is:
w = (0, 0, 0, 0, 0, .1, .1, .1, .1, .1, .1, .1, .1, .1, .1, .1, 0, 0, 0, 0). Global values for each
sensory feature are shown in Table 2.

Table 2. Global values for each sensory feature

x1 x2

f1 (s3,−0.2) = (M,−0.2) (s2,−0.4) = (L,−0.4)

f2 (s5, 0.06) = (V H, 0.06) (s4,−0.03) = (H,−0.03)

f3 (s5, 0.26) = (V H, 0.26) (s4, 0.26) = (H, 0.26)

Computing a Global Value for Each Product. Aggregating the global values for
each sensory feature of each sample xj is obtained its global value. Considering the
interaction among sensory features, the Choquet Integral is used with the fuzzy measure
defined in the evaluation framework. The computed linguistic global assessments are
x1 = (s4, 0.3) = (H, 0.3) and x2 = (s3, 0.04) = (H, 0.04).

5 Conclusions

In this paper, we have presented the integration of dependent sensory features in a lin-
guistic sensory evaluation model to capture the interaction among sensory features and
to compute the global assessment of each evaluated product, considering such interac-
tion. To do so, we have proposed the use of fuzzy measure to model the dependence
among sensory features and the Choquet integral aggregation operator for linguistic
2-tuples to obtain the linguistic global assessment of each evaluated product. Finally,
an illustrative example of a sensory evaluation process with interaction among some
sensory features has been presented.
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Abstract. Low back pain affects a large proportion of the adult popu-
lation at some point in their lives and has a major economic and social
impact. To soften this impact, one possible solution is to make use of rec-
ommender systems, which have already been introduced in several health
fields. In this paper, we present TPLUFIB-WEB, a novel fuzzy linguistic
Web system that uses a recommender system to provide personalized
exercises to patients with low back pain problems and to offer recom-
mendations for their prevention. This system may be useful to reduce
the economic impact of low back pain, help professionals to assist pa-
tients, and inform users on low back pain prevention measures. A strong
part of TPLUFIB-WEB is that it satisfies the Web quality standards
proposed by the Health On the Net Foundation (HON), Official College
of Physicians of Barcelona, and Health Quality Agency of the Andalu-
sian Regional Government, endorsing the health information provided
and warranting the trust of users.

Keywords: Low back pain, health care, recommender systems, fuzzy
linguistic modeling, quality evaluation.

1 Introduction

Low back pain is a painful and economically costly syndrome that affects two-
thirds of adults in developed societies at some point in their lives [1]. It is almost
always a self-limiting episode of pain, with a tendency to spontaneous and com-
plete improvement, although there is frequently a transition from acute to chronic
disease [2]. Low back pain has an enormous social and economic impact and is a
leading cause of absenteeism in all professions. Physical exercise has proven effec-
tive to protect against low back pain and promote recovery from processes that
can transform into chronic pain, reducing the number of days off work and helping
in the treatment of psychological components of this condition [3].

C. Cornelis et al. (eds.): RSCTC 2014, LNAI 8536, pp. 250–261, 2014.
c© Springer International Publishing Switzerland 2014
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Recently developed Information and Communication Technology (ICT) appli-
cations in healthcare have demonstrated potential for addressing different chal-
lenges, including: the development of personalized medicine, i.e., the tailoring
of medical decisions, practices, and/or products to individual patients [4], the
reduction of healthcare costs [5], and the universalization of health, i.e., the ac-
cessibility of care to all citizens, regardless of their resources or place of residence
[6]. Recommender Systems (RSs) are one ICT application that may be useful in
the healthcare field [7]. RSs assist users in their decision making processes to find
relevant information. They could be seen as a Decision Support System, where
the solution alternatives are the information items to be recommended and the
criteria to satisfy are the user preferences and needs [8,9]. RSs offer a personal-
ized approach, because each user can be treated in a different way. They may be
useful in the diagnosis of chronic disease, offering a prediction of the disease risk
to support the selection of appropriate medical advice for patients [10]. Thus, in
the field of physiotherapy, RSs may help to achieve an effective personalization
of recommended exercises.

The aim of this article is to present a fuzzy linguistic Web system, designated
TPLUFIB-WEB1, for individuals with low back pain, providing them with ap-
propriate exercises and information. The major innovations and contributions of
the system include:

1. The provision of personalized exercises by using a recommender system.
2. The ability to use it in any place and at any time, yielding savings in travel

and staffing costs.
3. Its user-friendly nature, designed for individuals with minimal skills and

using fuzzy linguistic modeling to improve the representation of user prefer-
ences and facilitate user-system interactions [11,12].

4. The reliability of the information offered and the selection of exercises, en-
dorsed by a team of experts in physiotherapy from the School of Health
Sciences of the University of Granada. We emphasize that the aim was not
to develop new exercises or treatments for low back pain but rather to incor-
porate clinically validated proposals [3,13], including preventive strategies,
in a Web tool to facilitate their use by individuals at any time anywhere.

The utilization of the Internet to seek medical information has increased
sharply over recent years. Figure 1 shows the Web search interest in ”low back
pain” worldwide since 2004 according to the ”Google Trends” tool2. The maxi-
mum search interest is scored as 100, and the interest was 70 by June 2013. As
depicted in Figure 2, the search interest in the Spanish term ”lumbalgia” in the
same month was also very high (90).

The number of physiotherapists per 100 000 inhabitants in Spain is low in com-
parison to other European countries (see the report listed at: http://www.pordata.
pt/en/Europe/Physiotherapists+per+100+thousand+inhabitants-1925 ), support-
ing the need for complementary tele-rehabilitation systems to assess low back

1 Accessible in: http://sci2s.ugr.es/sapluweb/
2 http://www.google.com/trends/

http://www.pordata.pt/en/Europe/Physiotherapists+per+100+thousand+inhabitants-1925
http://www.pordata.pt/en/Europe/Physiotherapists+per+100+thousand+inhabitants-1925
http://sci2s.ugr.es/sapluweb/
http://www.google.com/trends/
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pain. The enormous number of health recommendations available on the Web
is cause of concern to the user, who needs to be sure of their provenance and
reliability. For this reason, measures were taken to guarantee the quality and
reliability of the data in our Web system. Thus, TPLUFIB-WEB satisfies the
requirements of the World Wide Web Consortium (W3C) Web Accessibility
Initiative3 and of health accreditation bodies, i.e., the Health On the Net Foun-
dation (HON)4, Official College of Physicians of Barcelona5 and Health Quality
Agency of the Andalusian Regional Government6.

Fig. 1. Google trends for ”low back pain”

Fig. 2. Google trends for ”lumbalgia”

The paper is organized as follows: Section 2 describes preliminary information
pertaining to recomender systems and the fuzzy linguistic modeling; Section 3
presents the new Web system, TPLUFIB-WEB; Section 4 addresses the valida-
tion of the system, and section 5 offers conclusions based on the study findings.

2 Preliminaries

2.1 Recommender Systems

RSs are systems that produce individualized recommendations as output or have
the effect of guiding the user in a personalized manner towards appropriate tasks

3 http://www.w3.org
4 http://www.healthonnet.org/
5 http://wma.comb.es/es/home.php
6 http://www.juntadeandalucia.es/agenciadecalidadsanitaria

http://www.w3.org
http://www.healthonnet.org/
http://wma.comb.es/es/home.php
http://www.juntadeandalucia.es/agenciadecalidadsanitaria
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among a wide range of possible options [7]. In order to provide personalized rec-
ommendations, system requires knowledge about users, such as ratings provided
of already explored items [7,14]. To maintain available this knowledge it implies
system should keep also user profiles that contain also users preferences and ne-
cessities. Nevertheless, the way system acquires this information depends on the
recommendation scheme used. The system could obtain the information about
users either in an implicit way, that is analyzing their behavior, or explicitly
requiring user to specify their preferences.

One of the most popular method used to obtain recommendations is the col-
laborative approach [7]. In this approach the recommendations for a user are
based on the ratings provided by other users similar to this user. Another method
more simple but not less important is the content-based approach [7]. This ap-
proach recommends items to a user by matching the content of the item and the
user’s past experience with similar items, ignoring data from other users. These
aproaches work with the set of historic ratings, which are provided by the users
when they experience an item or update a previous rating.

Each technique has its advantages and disadvantages, according to the set-
ting. However, a hybrid approach can also be adopted to compensate for their
weaknesses and benefit from their strengths [7,15,9].

2.2 Fuzzy Linguistic Modeling

The fuzzy linguistic modeling is a tool based on the concept of linguistic variable
[16] which has given very good results for modeling qualitative information in
many problems in which quantitative information can not be assessed precisely
[17].

The 2-tuple FLM [18] is a continuous model of representation of information
that allows to reduce the loss of information typical of other fuzzy linguistic
approaches (classical and ordinal, see [16]).

Let S = {s0, ..., sg} be a linguistic term set with odd cardinality. We assume
that the semantics of labels is given by means of triangular membership func-
tions and consider all terms distributed on a scale on which a total order is
defined. In this fuzzy linguistic context, if a symbolic method aggregating lin-
guistic information obtains a value β ∈ [0, g], and β /∈ {0, ..., g},. β is represented
by means of 2-tuples (si, αi), where si ∈ S represents the linguistic label of the
information, and αi is a numerical value expressing the value of the translation
from the original result β to the closest index label, i, in the linguistic term set
(si ∈ S).

This model defines a set of transformation functions between numeric values
and 2-tuples Δ(β) = (si, α) and Δ

−1(si, α) = β ∈ [0, g] [18].
In order to establish the computational model a negation, comparison and

aggregation operators are defined. Using functions Δ and Δ−1 that transform,
without loss of information, numerical values into linguistic 2-tuples and vicev-
ersa, any of the existing aggregation operators (i.e. arithmetic mean, weighted
average operator or linguistic weighted average operator) can be easily extended
for dealing with linguistic 2-tuples [18].
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In any fuzzy linguistic approach, an important parameter to determine is the
“granularity of uncertainty”, i.e., the cardinality of the linguistic term set S.
When different experts have different uncertainty degrees on the phenomenon
or when an expert has to assess different concepts, then several linguistic term
sets with a different granularity of uncertainty are necessary [19]. In [19] a multi-
granular 2-tuple FLM based on the concept of linguistic hierarchy is proposed.

A Linguistic Hierarchy, LH, is a set of levels l(t,n(t)), where each level t is a
linguistic term set with different granularity n(t) from the remaining of levels of
the hierarchy. The levels are ordered according to their granularity, i.e., a level
t+1 provides a linguistic refinement of the previous level t. We can define a level
from its predecessor level as: l(t, n(t)) → l(t+1, 2 ·n(t)−1). A graphical example
of a linguistic hierarchy is shown in Figure 3. Using this LH , the linguistic terms
in each level are the following:

– S3 = {a0 = Null = N, a1 =Medium =M, a2 = Total = T }.
– S5 = {b0 = None = N, b1 = Low = L, b2 = Medium = M, b3 = High =
H, b4 = Total = T }

– S9 = {c0 = None = N, c1 = V ery Low = V L, c2 = Low = L, c3 =
More Less Low = MLL, c4 = Medium = M, c5 = More Less High =
MLH,
c6 = High = H, c7 = V ery High = V H, c8 = Total = T }

Fig. 3. Linguistic Hierarchy of 3, 5 and 9 labels

In [19] a family of transformation functions between labels from different levels
was introduced. This family of transformation functions is bijective. This result
guarantees that the transformations between levels of a linguistic hierarchy are
carried out without loss of information.
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3 TPLUFIB-WEB: A Web System to Help in the
Treatment of Low Back Pain Problems

TPLUFIB-WEB is accessible at: http://sci2s.ugr.es/sapluweb/. Figure 4
shows the system structure. The system structure has three main components
(see Figure 4):

Fig. 4. Operating scheme

1. A multimedia database of exercises for recommendation to patients according
to their pathology.

2. A database of patient profiles that stores the characteristics of each patient,
not only the internal representation of their diagnostics but also their per-
sonal evaluations obtained after user-system interaction.

3. A personalized method for generating exercise recommendations that imple-
ments the hybrid recommendation policy based on information from the
multimedia and patient profile databases.

Different sets of linguistic labels (S1, S2, ...) are used to represent the different
concepts necessary for the system activity; we selected the LH presented in
section 2.2. The different concepts assessed in the system are the following:

– The membership degree of patient diseases with respect to each of the defined
diagnostic subgroups, which is labeled in S1.

– The predicted degree of relevance of exercise for a patient, which is labeled
in S2.

– The degree of similarity between the diseases of two patients or between
exercises, which is labeled in S3.

– The degree of satisfaction with a recommended exercise expressed by a pa-
tient, which is labeled in S4.

We use the set with 5 labels to represent the degrees of membership and
satisfaction (S1 = S5 and S4 = S5) and 9 labels to represent the degrees of
predicted relevance (S2 = S9) and similarity (S3 = S9).

http://sci2s.ugr.es/sapluweb/
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3.1 Multimedia Database

A multimedia database was developed that contained exercises for all possi-
ble pathologies. Exercises can be exchanged among different subgroups in the
construction of a customized program for each patient. Instruction videos were
recorded for reproduction on computers and mobile devices. It is very impor-
tant to obtain an adequate representation of exercises, because these are the
items to be recommended by our system. Given that each exercise is suitable
for a diagnostic subgroup with a specific pathology, these subgroups are used to
represent the corresponding exercises. We first considered patients with a previ-
ous diagnosis of chronic mechanical low back pain based on different symptoms,
establishing the following five diagnostic subgroups: muscle weakness, lumbar
instability, psychometric variables, flexibility, and postural syndrome.

Once a new exercise is entered into the system, it obtains an internal represen-
tation that is mainly based on its appropriateness for each diagnostic subgroup.
An exercise i is represented as a vector V Ti = (V Ti1, V Ti2, ..., V Ti5), where each
component V Tij ∈ S1 is a linguistic assessment that represents the fitness de-
gree of exercise i with respect to the diagnostic subgroup j. These fitness degrees
are determined by the physiotherapists when they insert new exercises into the
system.

For instance, suppose that a new exercise x, specially designed to improve
the lumbar instability and postural syndrome, is inserted. Then, the physio-
therapist would select for it the diagnostic sugroups 2 and 5 with a member-
ship degree ”Total” because they are in the positions 2 and 5 respectively;
these membership degrees belong to the label set S1, i.e. in our proposal the
set S5, with labels b0, b1, ..., b4. The rest of the disgnostic subgroup have a
membership degree with a value of ”None”. So, x is represented as: V Tx =
((b0, 0), (b4, 0), (b0, 0), (b0, 0), (b4, 0)).

3.2 Patient Profiles Database

The patient profiles database stores the patients’ pathological conditions, which
are used to personalize the exercises. The results of a series of tests undergone by
patients [13] are analyzed by experts to establish the pathology used to represent
their respective profiles. The representation of the pathologies is also based on
the same features as those applied for representation of the exercises. After
obtaining the test results, the experts assess the membership of the patient’s
pathology in each one of the five diagnosis subgroups. A patient i is represented
as a vector V Pi = (V Pi1, V Pi2, ..., V Pi5), where each component V Pij ∈ S1 is
a linguistic assessment (i.e., a 2-tuple) that represents the fitness degree of i for
each subgroup j.

For instance, suppose a patient p whose pathology is muscle weakness and
some flexibility. Then, the physiotherapist would select for it the diagnostic
sugroups 1 and 3 with a membership degree ”Total” and ”Medium” respectively,
because they are in the positions 1 and 3; these membership degrees belong to
the label set S1, i.e. in our proposal the set S5, with labels b0, b1, ..., b4. The rest
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of the disgnostic subgroup have a membership degree with a value of ”None”.
So, p is represented as: V Tp = ((b4, 0), (b0, 0), (b2, 0), (b0, 0), (b0, 0)).

3.3 Method of Generating Recommendations of Exercises

TPLUFIB-WEB is based on a hybrid recommendation strategy, which switches
between a content-based and a collaborative approach. The former approach is
applied when a new exercise is entered into the system and the latter when a
new patient is registered or when previous recommendations to a patient are up-
dated, whenever the system has received sufficient ratings. We rely on a matching
process by similarity measures among vectors. Particularly, we use the standard
cosine measure, but defined in a linguistic context:

σl(V1, V2) = Δ(g ×
∑n

k=1(Δ
−1(v1k, αv1k)×Δ−1(v2k, αv2k))√∑n

k=1(Δ
−1(v1k, αv1k))2 ×

√∑n
k=1(Δ

−1(v2k, αv2k))2
)(1)

with σl(V1, V2) ∈ S3 × [−0.5, 0.5], and where g is the granularity of the term set
used to express the similarity degree, i.e. S3, n is the number of terms used to
define the vectors (i.e. the number of diagnosis subgroups that have been con-
sidered) and (vik, αvik) is the 2-tuple linguistic value of the diagnostic subgroup
k in the exercise or patient vector Vi (label of S1).

When a new exercise i is entered into the system, a content-based approach
is used to know if it could be appropriate for a patinent p, as follows:

1. Compute σl(V Ti, V Pp) ∈ S3. As S3 = S9, exercise i is considered appropri-
ate for patient p if σl(V Ti, V Pp) > (s94, 0)

2. If exercise i is considered appropriate for patient p, then the system rec-
ommends i to p with an estimated relevance degree i(p) ∈ S2 × [−0.5, 0.5],
which is obtained as follows:
(a) Look for all exercises stored in the system that were previously assessed

by p.
(b) To aggregate all the ratings of p over these exercises, weigthed by the

similarity between i and each of the exercises. To do that we use the
linguistic weighted average operator [18].

As mentioned above, TPLUFIB-WEB also applies a collaborative approach to
generate recommendations. The number of ratings rises with the increase in pa-
tients using the system, thereby allowing a collaborative approach to be adopted.
Moreover, when new patients are entered into the system, they receive recom-
mendations about existing exercises that may be of interest to them. Because
these patients have not yet evaluated any exercise, the collaborative approach
is used to generate these recommendations. To estimate (when no ratings are
yet scored) or upgrade the relevance of a exercise i for a patient p following the
collaborative approach:

1. Compute σl(V Ti, V Pp) ∈ S3. If S3 = S9, i is considered appropriate for p if
σl(V Ti, V Pp) > (s94, 0).
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2. If i is appropriate, the set of patients ℵp with a similar pathology to that of
p, usually called nearest neighbors, is identified. This is done by calculating
σl(V Pp, V Py) ∈ S3, between p and the vectors of all patients already in the
system (V Py, y = 1..n where n is the number of patients). Because S3 = S9,
patient y is considered a nearest neighbor to p if σl(V Pp, V Py) > (s94, 0).

3. Retrieve the exercises positively rated by the nearest neighbors of p.

4. Each exercise i of recovered in the previous step is recommended to p with a
predicted relevance degree i(p) ∈ S2 × [−0.5, 0.5], computed as the aggrega-
tion of all the ratings, weighted by the similarity between e and their nearest
neighbors. To do that we use the linguistic weighted average operator [18].

3.4 Feedback Phase

When patients have completed the recommended exercises, they are asked to
assess the relevance of these recommendations in order to update their patient
profiles. TPLUFIB-WEB receives the user feedback in this way. Patients commu-
nicate their linguistic evaluation judgements to the system, rc ∈ S4, indicating
their satisfaction with the recommendations (higher values of rc = greater satis-
faction). Future recommendations are strenghened by taking account of patients’
ratings, and the user-system interaction required is minimal in order to facilitate
the sending of this important information.

4 Validating TPLUFIB-WEB

As previously stated, all the exercises recommended by TPLUFIB-WEB have
already been approved by physiotherapists [3,13]. Furthermore, it is not our
intention to validate the performance of the recommendation system in a strict
sense. We have focused on the quality of TPLUFIB-WEB and the confidence
that it inspires.

TPLUFIB-WEB satisfies the following quality criteria:

1. Reliability of information provided. The health Web underwent an accredi-
tation process to ensure compliance with ethical codes and user rights and
satisfactory fulfillment of quality standards. To date, the quality of the sys-
tem has been accredited by the following:

– Health on the net foundation, HONcode7, certifying that the website
was reviewed by the HONcode Team at a given date and complies with
the eight principles of this code.

– The Official College of Physicians of Barcelona (COMB)8, a non-profit
organization started in 1999 to provide benchmarks for reliability and
service and improve the quality of health information on the Internet.

7 http://www.healthonnet.org/
8 http://wma.comb.es/es/home.php

http://www.healthonnet.org/
http://wma.comb.es/es/home.php
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2. Quality of the website. The system complies with the protocols laid down by
the Health Quality Agency of the Andalusian Regional Goverment9, designed
to guarantee the reliability of the information and paying special attention
to the protection and rights of patients. Accordingly, TPLUFIB-WEB is
governed by very strict rules and fulfills the requirements of the World Wide
Web Consortium (W3C)Web Accessibility Initiative10, including compliance
with XHTML 1.0 and CSS standards to facilitate use of the website on all
types of device/platform.

3. Usability. Evaluation of the user-friendliness of the system is based on the
responses of TPLUFIB-WEB users themselves to a questionnaire hosted
on the home page during the trial period (one month). In that period, 64
individuals completed the survey, which comprises ten items. The first six
questions are related to their understanding of the information by patients.
The next three questions regard their ability and efficiency in using the
website. The last item asked for a global evaluation of the health website,
on a scale of 0 to 10.
The results demonstrate that the website is very positively perceived by its
users. The patients were able to understand the received information and
perform the exercises themselves. The usability and efficiency of the website
was rated as “Very Good orGood” by 95% of the responders, and the patients
evaluated the website with an average global score of 8.84 out of 10.

5 Concluding Remarks

This study presents a fuzzy linguistic Web tool named TPLUFIB-WEB, which
incorporates a recommender system to provide personalized exercises to patients
with low back pain. A physiotherapist establishes the pathology of a patient after
evaluating the results of different tests, which are used to generate the recom-
mendations. The website also provides patients with advice for handling future
problems. The main benefits of this system deal with the personalization and
the possibility of following the exercises anywhere and at anytime, potentially
contributing to the reduction in the economic impact of low back pain. We have
applied TPLUFIB-WEB in a real environment, and the experimental results
demonstrate that acceptance of the system by users and patients is very high
and that it may be able to achieve major costs savings for national health systems
and patients by enhancing the effectiveness of each health professional involved.

Further research is warranted to explore other ICT applications in healthcare,
especially in areas in which the physical presence of the health professionals is
not wholly necessary and minimal supervision is adequate. There is also a need
to improve the proposed recommendation approach, investigating new method-
ologies for the generation of recommendations.

9 http://www.juntadeandalucia.es/agenciadecalidadsanitaria
10 http://www.w3.org

http://www.juntadeandalucia.es/agenciadecalidadsanitaria
http://www.w3.org
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Abstract. Non-additive (fuzzy) measures also known as cooperative
games or capacities are set functions that can be used to evaluate subsets
of a reference set. In order to evaluate their similarities and differences,
we can consider distances between pairs of measures.

Games have been extended to communication situations in which be-
sides of the game there is a graph that establishes which sets are feasible
(which coalitions are possible, which individuals can cooperate).

In this paper we consider the problem of defining a distance for pairs
of measures when not all sets are feasible.

1 Introduction

Non-additive measures, also known as fuzzy measures, cooperative games and
capacities are set functions that are monotonic. They can be used in applications
that range from decision making to data fusion. They are successful applications
in computer vision, database integration, risk assessment and game theory.

The literature presents different studies on these measures. For example, some
indices have been defined to evaluate the power of one of the individuals in a
coallition or their interaction. In decision making and information fusion, the
measures are often combined with integrals. Choquet [3] and Sugeno [11] inte-
grals are two examples of fuzzy integrals that permit us to integrate a function
with respect to a non-additive measure. See e.g. [12] for examples and definitions.

An important aspect in all applications is how to determine the appropriate
measure for a given system. For this purpose, different approaches have been
considered for measure identification. Some are based on heuristic techniques,
other in machine learning techniques (either supervised or unsupervised ones).

In some cases, several non-additive measures can be obtained for the same
problem due e.g. to the execution of the same algorithm with different data sets.
In this case it is of relevance to consider the similarity between these measures
obtained. For example, in [1] several non-additive measures were generated in a
reidentification problem for risk assessment.

C. Cornelis et al. (eds.): RSCTC 2014, LNAI 8536, pp. 262–269, 2014.
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Up to our knowledge, the problem of defining distances for non-additive mea-
sures has not been much explored. [13,8] considered some distances for non-
additive measures when the reference set is not finite. In [4] a distance was
introduced in the case that the measure is finite. It is based on the Euclidean
distance.

In this paper we further explore the problem of distance definition.
More specifically, we focus in the case that not all coalitions are possible. That

is, following [5,2] we consider the case that for some reason not all the subsets of
the reference set are feasible. Using the terminology of cooperative games, this
means that some subsets cannot cooperate.

A typical example is when the reference set is the set of political parties in
a parliament. The measure evaluates the worth of a certain coalition. However,
because some incompatibilities between parties, not all coalitions between them
are possible.

Another example is when the reference set corresponds to the nodes of a
network. In this case it may happen that there are nodes that are not reachable
from other nodes (i.e., the graph is disconnected) maybe because part of the
network is down. In this case, the measure (e.g., the worth of a subset of nodes)
has to take into account these isolated nodes.

The structure of the paper is as follows. In Section 2 we review some relimi-
naries. In Section 3 we introduce our new definitions. We prove some properties
of the distances. The paper finishes with some conclusions.

2 Preliminaries

In this section we review the concepts that are needed in the rest of the paper.
We begin defining non-additive measure. As stated above, non-additive measure
is also known with the name fuzzy measure, and cooperative game.

The measure is defined over a reference set X . In the area of (multicriteria)
decision making, X usually corresponds to the set of criteria, and the measure
μ(A) for A ⊆ X corresponds to the importance of the set of criteria A. One
interpretation in game theory is that A is a coalition of individuals or parties
from X . Then, μ(A) is the power of the coalition A in e.g. a parliament.

Definition 1. A non-additive measure μ on a set X is a set function μ :
℘(X) → [0, 1] satisfying the following axioms:

(i) μ(∅) = 0 (boundary conditions)
(ii) A ⊆ B implies μ(A) ≤ μ(B) (monotonicity)

In the area of fuzzy measures it is usual to require μ(X) = 1. Unless we state
otherwise, we will presume that μ(X) = 1.

In this definition, we can evaluate the measure for any subset of X . Let us
now consider a communication network. We will consider that the elements of
the reference set are the ones that define the network. Then, the network will
establish which communications between pairs of elements of X are feasible.
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So, in other words, the network will be used to restrict the possible coalitions.
Definitions below follow [5]. See also [2].

Given X , we represent a communication network by an undirected graph
G = (X,E) where X is the set of nodes of the graph (in our case, the elements of
the reference set X) and E is the set of edges of the graph. As usual, E ⊂ X×X .

Given X , the graph G = (X,E), and a set of elements S, we define the graph
G(S) = (S,E(S)) where E(S) = {(n1, n2) ∈ E|n1 ∈ S, n2 ∈ S}. We call G(S)
the subgraph induced from the underlying graph G and S.

A sequence of different nodes n1, . . . , nm where (ni, ni+1) ∈ E is called a path
(with lenght m − 1). If there is a path between ni and nj we say that nj is
reachable from ni in graph G, and we write ni ∼G nj.

The relation ∼G is an equivalence relation on X . X/E is defined in terms of
this equivalence relation X/E := X/ ∼G.

Definition 2. [5] Let X be a reference set, μ a non-additive measure on X, and
G = (X,E) a graph on X. Then, the triplet (X,μ,E) is called a communication
situation.

Definition 3. [5] Let X be a reference set, μ a non-additive measure on X,
and G = (X,E) a graph on X which define a communication situation (X,μ,E).
Then, a coalition S ⊆ X is said to be feasible if S is connected in G.

Taking into account the communication network, not all sets S ⊆ X are
feasible. From the point of view of coalitions, this means that not all of them are
possible. That is, when the members of a set S cannot communicate with each
other because there is no path between some of the members, the value of the
set is different from μ(S). The next definition assigns a value to the set taking
into account the feasible sets (the feasible coalitions).

Definition 4. [5] Let X be a reference set, μ a non-additive measure on X, and
G = (X,E) a graph on X which defines a communication situation (X,μ,E).
Then, the network restricted measure (X,μE) associated with (X,μ,E) is defined
by

μE(S) =
∑

T∈S/E

μ(T )

for all S ⊆ X.

Lemma 1. [5] When the graph is complete (i.e., E = X ×X), μE = μ.

This lemma follows naturally from the fact that S/E = {S} when the graph
is complete.

It is relevant here to underline that having a measure μ such that μ(X) = 1,
this does not imply that μE(X) = 1. Note that we may have either μE(X) < 1
or μE(X) > 1. To see this, let us consider a reference set X , and the graph
G = (X,E) with E = ∅. Now, if we define μ1 such that

∑
x∈X μ1(x) < 1 we will

have μE
1 (X) < 1 while if we define μ2 such that

∑
x∈X μ2(x) > 1 we will have

μE
2 > 1.
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Because of that we introduce a new definition of a network restricted measure.
The difference is that now we normalize the measure so that the measure for the
whole reference set is one.

Definition 5. Let X be a reference set, μ a non-additive measure on X, and
G = (X,E) a graph on X which defines a communication situation (X,μ,E).
Then, the normalized network restricted measure (X,μE) associated with
(X,μ,E) is defined by

μE
N (S) =

∑
T∈S/E μ(T )∑
T∈X/E μ(T )

for all S ⊆ X.

2.1 Shapley and Banzhaf Values

Different indices have been defined in the literature for non-additive measures.
The Shapley and Banzhaf are used in the context of coalitions to evaluate the
strength or power of an individual or a party. See e.g. [2,12] for details.

We review here the Shapley and the Banzhaf index.

Definition 6. Given a reference set X and a non-additive measure μ on X, the
Shapley value of μ for xi ∈ X, denoted by ϕxi(μ), is defined as follows:

ϕxi(μ) :=
∑

S⊆X\{xi}

|S|!
(N − |S| − 1)!N !

(
μ(S ∪ {xi})− μ(S)

)
(1)

Definition 7. Given a reference set X and a non-additive measure μ on X;
then,

1. The unnormalized (or nonstandardized or absolute) Banzhaf index of μ for
xi is defined by

β′
xi
(μ) :=

∑
S⊆X

(
μ(S)− μ(S \ {xi})

)
2N−1

.

2. The Penrose index (or normalized Banzhaf index or relative Banzhaf index)
of μ for xi is defined by

βxi(μ) :=

∑
S⊆X

(
μ(S)− μ(S \ {xi})

)∑N
i=1

∑
S⊆X

(
μ(S)− μ(S \ {xi})

) .
These indices are defined for a non-additive measure μ. Let us consider the

case in which we have a communication situation (X,μ,E). Myerson [10] defined
the following value for this situation.

Definition 8. [10] Let X be a reference set, μ a non-additive measure on
X, and G = (X,E) a graph on X which defines a communication situation
(X,μ,E). Then, the Myerson value for (X,μ,E) is denoted by Φ(X,μ,E) and
it is defined by:

Φ(X,μ,E) := φ(μE)

where φ(μE) is the Shapley value of (X,μE).
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Lemma 2. When G is the complete graph, Φ(X,μ,E) = φ(μ).

This follows from Lemma 1. We will use the same definition but using the
normalized measure μE

N instead of μE . We will denote it by ΦN .

Lemma 3. Let X be a reference set, and let μ be a non-additive measure such
that μ(X) = K; then, the Shapley value and the Myerson value is positive and
such that

∑
x∈X φ(x) = K.

In our case that we require μ(X) = 1, we have that the Shapley value is such
that

∑
x∈X φ(x) = 1.

3 Distance on Non-additive Measures

In [4], the Euclidean distance was used for pairs of (generalized) Shapley values.
That is, given two vectors of Shapley values φ1 and φ2 the following distance
was considered:

d(φ1, φ2) =

√∑
x∈X

(φ1(x) − φ2(x))2.

In the next definition we propose to use this expression to define a distance
between pairs of non-additive measures. This can be naturally extended for non-
additive measures in a communication situation using the Myerson value.

Definition 9. Let X be a reference set and μ1 and μ2 to non-additive measures
on this set. Then, we define a distance between μ1 and μ2 as follows:

d(μ1, μ2) =

√∑
x∈X

(φ1(x)− φ2(x))2

where φ1 and φ2 are, respectively, the Shapley values of μ1 and μ2.

Definition 10. Let X be a reference set, μ1 and μ2 non-additive measures on
X, and G = (X,E) a graph on X which defines a communication situation
(X,μ,E). Then, we define a distance between μ1 and μ2 on the communication
situtation (X,μ,E) as follows:

d(μ1, μ2) =

√∑
x∈X

(ΦN (X,μ1, E)(x) − ΦN (X,μ2, E)(x))2

where ΦN is the Myerson value with the normalized network restricted measure.

Lemma 4. Definitions 9 and 10 define a distance (i.e., they satisfy positiveness,
symmetry, and triangular inequality).
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Proof. Positiveness and symmetry follow from the definition. Triangular inequal-
ity follows from the triangular inequality of the Euclidean distance. Note that
for the measures, the triangular inequality means:

d(μx, μy) + d(μy, μz) ≥ d(μx, μz)

which according to the definition of the distance corresponds to

d(x, y) + d(y, z) ≥ d(x, z)

where x, y, and z are the Shapley value or the Myerson value of the measures
μx,μy, and μz. As the last equation holds for the Euclidean distance, the trian-
gular inequality holds for the distances above. ��

According to Lemma 3, when μ(X) = 1, the Shapley value is positive and such
that

∑
x∈X φ(x) = 1. So, ΦN can be seen as a probability distribution. In this

framework, it is possible to consider distances and expressions for probability dis-
tributions, and all the properties for these distances will hold for the measure. In
particular, we can consider e.g. f -divergence, Hellinger distance, KL-divergence,
and other standard distances and similarity measures for probabilities. Taking
advantage of this fact, we define below the Hellinger distance.

Definition 11. Let X be a reference set, μ1 and μ2 non-additive measures on
X, and G = (X,E) a graph on X which defines a communication situation
(X,μ,E). Then, we define the Hellinger distance between μ1 and μ2 on the
communication situtation (X,μ,E) as follows:

d(μ1, μ2) =
1

2

√∑
x∈X

(√
ΦN (X,μ1, E)(x) −

√
ΦN (X,μ2, E)(x)

)2
where ΦN is the Myerson value.

Lemma 5. The Hellinger distance in Definition 11 satisfies positiveness, sym-
metry and triangular inequality.

We have defined some distances and shown that they satisfy the basic proper-
ties of distances. These definitions were based on the Shapley index. Analogous
definitions can be given with the Banzhaf index. The proof of their properties is
also analogous to the proofs given here.

3.1 Normalization

In Definition 5 we have introduced the normalized network restricted measure.
The normalization was done so that μE

N (X) = 1 when μ(X) = 1 as this is not
the case with μE .

Note that this is not the only possible way to normalize the measure. An
alternative way is to define the network restricted measure using the maximum
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(or a t-conorm) instead of using the summatory. Finally, the normalization would
just to fix μ(X) = 1.

The definition of the network restricted measure using the maximum would
permit us to have a measure that is monotonic with respect to the links included
in the set of edges E. That is, if we define μE

∧ (S) =
∑

T∈S/E μ(T ) then for all

graphs G = (X,E) on X , and all (i, j) ∈ E,

μE
∧ (A) ≥ μ

E\(i,j)
∧ (A)

for all A ⊆ X .
This property does not hold for other measures.
Any of these normalizations would lead to a measure whose Shapley value is

a probability distributions and, thus, the expressions above would apply.

4 Summary and Future Work

In this paper we have introduced distances for non-additive measures when there
is a communication situation and not all coalitions are possible. The distance
between two non-additive measures is defined in terms of the Shapley value of
their normalized network restricted measures. We need to introduce the normal-
ized network restricted measures so that the Shapley value of the measure is a
probability distribution.

As future work we will consider additional properties of the distance. One of
them is to know whether the distance is monotonic decreasing with respect to
removing links to the network from the complete graph.

Then, we will also consider the case of defining distances when there is a fuzzy
communication structure in the line of [7] and [6].

Finally, another line for future research is to consider the study of distances
taking into account the index introduced in [9] (a Myerson value for complete
coalition systems). The authors study an extension of the Myerson value for
complete coalitions.
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Abstract. Algorithms which learn Linguistic Fuzzy Rule-Based Sys-
tems from data usually start up from the definition of the linguistic vari-
ables, generate a set of candidate rules and, afterwards, search a subset
of them through a metaheuristic technique. In high-dimensional datasets
the number of candidate rules is intractable, and a preselection is a must.
This work adapts an existing preselection algorithm for Fuzzy Asociation
Rule-Based Classification Systems to deal with TSK-0 LFRBSs. Experi-
mental results show a good behaviour of the adaptation allowing to build
precise and simple models for high-dimensional problems.

Keywords: linguistic fuzzy modeling, machine learning, high-
dimensional, Takagi-Sugeno-Kang.

1 Introduction

Fuzzy Rule-Based Systems (FRBSs) have been used to solve different classifi-
cation and prediction problems [1,2,4] due to their interpretability for the end
user. These systems can be designed ad-hoc by an expert, or generated automat-
ically from a data set. In the last case, there are many algorithms which consider
fixed fuzzy partitions of the variables and derive only the rule base [1,3,6]. In
general, such algorithms consider a set of candidate fuzzy rules and try to find
the optimal subset.

When dealing with relatively high-dimensional data sets, the set of candidate
rules grows exponentially. Some works deal with this problem by generating a
subset with only the most promising candidate rules i.e., those which cover a high
number of instances and maximize some metric relative to accuracy or precision.
For example, in [4] the authors choose a set of rules based on their support and
individual performance for classification. After that, a genetic algorithm carries
out a rule subset selection and derive the final fuzzy system. In this paper,
we adapt this strategy to design an algorithm for regresion. In particular, we
aim to learn TSK-0 Linguistic Fuzzy Rule-Based Systems (LFRBSs) in high-
dimensional problems.

This paper is divided into four sections besides this introduction. In Section
2, we describe TSK-0 LFRBSs. The following section explains our adaptation to

C. Cornelis et al. (eds.): RSCTC 2014, LNAI 8536, pp. 270–279, 2014.
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the aforementioned strategy to derive only the most promising candidate rules
from data, and the method used to determine the final rule set. Section 4 includes
the set up of experimentation and results. And finally, in Section 5, we sumarize
the conclusions and expose some future work.

2 TSK-0 Linguistic Fuzzy Rule-Based Systems

In TSK FRBSs, the antecedent of each rule consists of a number of predicates
with the form X is F , where X is a variable of the problem, and F is a fuzzy
set defined over the domain of X . If we use a finite partition of linguistic labels
instead of fuzzy sets (X is A) and we relate each label to a particular fuzzy set
F , the interpretability grows up. This type of systems are called Linguistic Fuzzy
Rule-Based Systems (LFRBSs) [13]. On the other hand, the consequent of a TSK
rule is formed by a polynomial function of the input variables, PS(X1, . . . , Xn).
The order of a TSK FRBS refers to the degree of the polynomial. Thus, a TSK-0
system means that Ps are polynomial of degree 0. Having said that, a fuzzy rule
Rs is represented as:

Rs : If X1 is As
1 and . . . and Xn is As

n then Y = bs

Given the set of rules RB, the output produced by a TSK-0 FRBS when
processing an instance el = (xl1, . . . , x

l
n, y

l) is a weighted average of the individual
outputs generated by each rule Rs ∈ RB:

ŷl =

∑
Rs∈RB h

l
sbs∑

Rs∈RB h
l
s

(1)

where hls(el) = T (As
1(x

l
1), . . . , A

s
n(x

l
n)) is the compatibility degree of the instance

el with the rule Rs, T is a T-norm 1, and Ps(x
l
1, . . . , x

l
n) is the value of the poly-

nomial of the rule Rs for the input instance el.

3 Learning TSK-0 Fuzzy Rules in High-Dimensional
Problems

As we use linguistic variables for the ancededents our algorithm takes as starting
point two elements:

– A data set E = {e1, . . . , el, . . . , eN}, where el = (xl1, . . . , x
l
n, y

l), xli is the
input part of the instance and yl is the output2.

– The data base, which contains the definition of the linguistic variables (their
domains, fuzzy partitions and fuzzy terms).

1 In this work we use min as a T-Norm.
2 In this work we only consider one output variable, but this number can be greater
than one.
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In general, rule derivation methods proceed in two main stages. Firstly, they
generate a set of candidate rules RB (only the antecedent part), such that every
rule Rs ∈ RB fires at least one instance el ∈ E . Afterwards, they choose a sub-
set of RB and fix the consequent of each selected rule. In order to do that, they
usually consider metrics based on the error. In this work, we have used the Mean
Squared Error. Let be ŷlo the output of the LFRBS which contains the set of
rulesRBo when processing the instance el. Then, MSEo(E) is obtained as follows:

MSEo(E) =
N∑
l=1

(ŷlo − yl)2

N

3.1 Candidate Rule Extraction

This task, divided into two stages, is an adaptation of the method described in
[4] for fuzzy association rule extraction in classification problems. First of all,
it carries out a fuzzy association rule extraction [5] to obtain all the frequent
item sets. After that, the process derives fuzzy rules from the previous item sets
(they correspond to the antecedent part) and carries out a prescreening process
to reduce the amount of fuzzy rules. Next, both parts will be explained in detail.

Rule Extraction. An item set A is a set of predicates (Xi is Ai) which does
not contain two predicates involving the same variable Xi. Therefore, it repre-
sents the antecedent of a linguistic fuzzy rule. In order to quantify the support
in the context of regression, we have adapted the formula used in [4] for Fuzzy
Rule-Based Classification Systems (FRBCSs) [9]. Let E be the data set, A a
fuzzy item set, el an instance of the data set E and μA(el) the compatibility de-
gree of el with the predicates from the item set A. We define the support of A as:

Support(A) =

∑
el∈E μA(el)

N

Frequent item sets are those whose support is greater than a given threshold
(minimum support). Following the apriori principle [10], if a fuzzy item set is
not frequent, all the item sets derived from it –by adding a fuzzy predicate–
are not frequent either, so there is no need to calculate their support. This is
important, since time and space complexity reduction are improved by a factor
of 10 according to [5].

In order to obtain frequent item sets efficiently, they are listed by means of a
tree. In such a tree, the root (level 0) represents the empty item set, and a child
of a node represents an item set which contains the same items of the father
plus one more. Therefore, in the level lth there are item sets formed by exactly l
predicates. If the item set in a node is not frequent, there is no need to expand
it. We can see a general structure of the tree in Figure 1.

Once the search tree has been built, we derive the corresponding candidate
fuzzy rule set, RBap, from the item sets.



TSK-0 FRBS for High-Dimensional Problems 273
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Fig. 1. General structure of the search tree

Prescreening. In high-dimensional problems, the amount of candidate rules
generated by the previous method can still be huge. In this stage we select the
most promising rules, making the search space tractable by the algorithm which
selects rules and finds the consequents (in the next stage).

The process of prescreening constists of an iterative rule selection, as it is
described in Algorithm 1.

Input: RBap,kt,E
Output: RBo

E ′ ← E ;
cl = 0,∀el ∈ E ′;
while ∃el ∈ E ′ | cl < kt do

Rs = argmaxRt
wWRAccR(Rt) | Rt ∈ RBap;

RBap = RBap − {Rs};
RBo = RBo ∪ {Rs};
cl = cl + 1, ∀el ∈ E ′s;
E ′ ← E ′ − {cl} | cl ≥ kt,∀el ∈ E ′s;

end

Algorithm 1: Prescreening algorithm

On each step, one rule (the best according to some criterium) is selected from
RBap. This is repeated until all the instances of the data set are covered at least
kt times (by different selected rules). The criterium to select the best rule is based
on a pattern weighting sheme. Every example el has a weight w(el, i) =

1
i+1 , such

that i is the number of selected rules which cover el. When an instance has been
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covered kt times, it is no longer considered. The formula used to evaluate each
rule, called wWRAcc Regression (wWRAccR), is an adaptation of wWRAcc”
described in [4] for the case of classification. The original expression wWRAcc”
is divided into two factors:

wWRAcc”(Rs) =
[
fwWRAcc′′
a

]
·
[
fwWRAcc′′
b

]
=

[
n′′(A · Cj)

n′(Cj)

]
·
[
n′′(A · Cj)

n′′(A)
− n(Cj)

N

]
,

where n(Cj) is the number of instances of class Cj ; n
′′(A) is the sum of the

product of the weights of all covered patterns by their matching degrees; n′(Cj)
is the sum of the weights of instances of the class Cj and n′′(A · Cj) is the sum
of the product of the weights of all correctly covered instances by their matching
degrees. In some way, the first factor tries to reward those rules which cover,
with a high degree, highly-weighted instances, whereas the second one aims to
select accurate rules.

As in the case of regression yl is a real number, and a rule consequent is a
polynomial of degree 0 (again a real number), the adaptation of fwWRAcc′′

b is
not straightforward. Based on the results shown in [12], the standard deviation
of the instances (the output values) which fire a particular rule seems to be a
good quality indicator for that rule. Given a rule Rs and the set of instances
covered by it Es, we use the standard deviation of Es, sd(Es) , to determine if
a rule is better than other in terms of precission. In order to give both factors

fwWRAccR
a and fwWRAccR

b similar importance, as their domains are not the
same, we normalize them in the range [0− 1]. As this adaptation is not simple,
and in order to test if its behaviour is correct or not, we have considered two
variations for the formula which include and does not include the second factor
(wWRAccR and wWRAccR’ respectively).

Let hls be the compatibility degree of the rule Rs with the instance el, Es

the instances from the data set covered by the rule Rs and sd(Es) the standard
deviation of the class variable Y for the examples covered by Rs. Then:

wWRAccR(Rs) =
[
fwWRAccR
a

]
=

[
N∑
l=1

w(el, i) · hl
s

w(el, i)

]
,

wWRAccR′(Rs)=

[
fwWRAccR′
a −minwWRAccR′

a

maxwWRAccR′
a −minwWRAccR′

a

]
·
[

fwWRAccR′
b −minwWRAccR′

b

maxwWRAccR′
b −minwWRAccR′

b

]
,

where fwWRAccR′
a =

∑N
l=1

w(el,i)·hl
s

w(el,i)
, fwWRAccR′

b = sd(Es), minwWRAccR′
a is the

minimum value for the first factor for all the rules, maxwWRAccR′
a is the maximum

value for the first factor for all the rules, and minwWRAccR′
b and maxwWRAccR′

b

the minimum and maximum values for the second factor.
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3.2 Rulebase Generation

In this stage, we fix the consequent for every single rule Rs ∈ RBo. We have
focused this problem as a linear regression one, and solved by minimizing the
squared error in the prediction using the Least Squares method [8]. As it fixes
the consequent of all rules at once, cooperation among rules [7] is considered.

The output when processing an example el, given a rulebaseRBo,is computed
as shown in Equation 1. This operation can be vectorized as:

[
ŷlo
]
=
[
cl1 · · · clRBo

]⎡⎢⎣ b1
...

b|RBo|

⎤⎥⎦
where cls is:

cls =
hls∑

RBo
hls

Using all the N examples in the data set, the previous expression turns into
the following:

Y = C ·B =

⎡⎢⎣ y1...
yN

⎤⎥⎦ =

⎡⎢⎣ c
l
1 · · · c1|RBo|
...

...
...

clN · · · cN|RBo|

⎤⎥⎦
⎡⎢⎣ b1

...
b|RBo|

⎤⎥⎦
The matrix of consequents B can be obtained as B = C−1 · Y . In order

to compute C−1 we have used the Moore-Penrose pseudoinverse built by the
Singular Value Decomposition method [11].

4 Experiments

In order to test the proposed algorithms, we have used five data sets for re-
gression from the KEEL repository3. Two of them (pole and puma32h) have
been generated artificially, while the rest are problems from the real world. The
data sets treasury and mortgage have 15 features, compactiv has 21, pole 26 and
puma32h has 32 variables.

We have tested the two alternatives designed for the adaptation of the formula
for the prescreening stage (wWRAccR and wWRAccR’). Both have been exe-
cuted using the described method for the rulebase generation (the Least Squares
method).

For all the configurations the number of labels to model each fuzzy variable
has been set to 5, and symmetrical triangular partitions have been used. We
have set the maximum number of antecedents per rule to 3. The min support

3 http://www.keel.es/

http://www.keel.es/
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has been established to 0.05 and kt = 20. These parameters have been experi-
mentally chosen in order to achieve a tractable number of candidate rules but
also good systems in terms of error. Results have been averaged over 30 indepen-
dent executions for all the data sets. For each one, the training set has been set
randomly selecting 80% of the instances, taking as seed the number of execution.
The remaining instances have been left for testing. As we run 30 executions per
problem and prescreening expression, we can suppose that results are normally
distributed, so we have used a parametrical statistical test (t-Student) to com-
pare the results obtained with both approaches (wWRAccR or wWRAccR’),
setting the confidence level of α = 0.05.

The results are shown in Table 1. The first column shows the name of the
dataset, the second is the prescreening expression used in the learning process,
the two following columns are the number of candidate rules generated by the
rule extraction and prescreening stages, the next two are the training and test
error expressed in RMSE (root of MSE), and the last column is the mean average
of the number of antecedents by rule. We can see an improvement in terms of
test error for all the data sets, except for pole, when using wWRAccR’. In Table
2 the p-values for the comparison between both approaches are shown for each
dataset, setting the alternative hypothesis as wWRAccR test errors are greater
than wWRAccR’.

In relation to the number of generated rules, we have noticed an increase
in the case of wWRAccR’, as well as the mean number of antecedents per rule.
Having seen that, we wonder if the improvement in precision is due to the quality
of the selected rules or if it is just an effect of having more rules for the Least
Squares method. In order to analyze that, we have re-executed the previous
experimentation for the wWRAccR’ configuration, but changing the stop criteria
for the prescreening method in order to obtain the same number of candidate
rules as wWRAccR. In this case, it will stop iterating when |RBo| is equal to
the number of generated rules for the same configuration but using wWRAccR
for the prescreening expression.

Table 1. Comparison between the two prescreening expressions

Problem Prescr. Exp. |RBap| |RBo| Tra.err Test err. #Ant.

compactiv wWRAccR 8269.3 41.2 7.3230 7.4438 1.9
compactiv wWRAccR’ 8269.3 51.0 6.7967 6.9010 2.1

mortgage wWRAccR 8104.3 51.1 0.5256 0.6631 1.7
mortgage wWRAccR’ 8104.3 66.9 0.2987 0.4037 2.0

pole wWRAccR 9766.8 32.4 35.2445 35.2378 1.4
pole wWRAccR’ 9766.8 34.1 36.5824 36.6168 1.6

puma32h wWRAccR 4624.0 51.4 0.0294 0.0296 1.0
puma32h wWRAccR’ 4624.0 52.9 0.0232 0.0233 1.0

treasury wWRAccR 8153.1 51.0 0.7340 0.8625 1.7
treasury wWRAccR’ 8153.1 73.0 0.3748 0.5442 2.0
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Table 2. Statistical test (t-Student) for comparison between wWRAccR and
wWRAccR’ test error

compactiv mortgage pole puma32h treasury

p-value 8.70 · 10−68.70 · 10−68.70 · 10−6 5.46 · 10−85.46 · 10−85.46 · 10−8 1.00 · 100 4.30 · 10−144.30 · 10−144.30 · 10−14 5.76 · 10−115.76 · 10−115.76 · 10−11

As it is shown in Table 3, when the number of generated rules is the same,
wWRAccR’ improves the results in terms of test error for 3 out of 5 problems.
Table 4 shows the p-values for the comparison between both approaches for each
dataset. As we can see, the precision for the wWRAccR’ expression decreases
for all the data sets, so having more rules for the Least Squares method leads to
an improvement in test errors. However, results are still statistically better for
the problems mortgage, puma32h and treasury.

Table 3. Comparison between the two prescreening expressions when the number of
candidate rules is forced to be the same

Problem Prescr. Exp. |RBap| |RBo| Tra.err Test err. #Ant.

compactiv wWRAccR 8269.3 41.2 7.3230 7.4438 1.9
compactiv wWRAccR’ 8269.3 41.2 7.2728 7.3880 2.1

mortgage wWRAccR 8104.3 51.1 0.5256 0.6631 1.7
mortgage wWRAccR’ 8104.3 51.1 0.3702 0.4733 1.9

pole wWRAccR 9766.8 32.4 35.2445 35.2378 1.4
pole wWRAccR’ 9766.8 32.4 36.8963 36.9311 1.6

puma32h wWRAccR 4624.0 51.4 0.0294 0.0296 1.0
puma32h wWRAccR’ 4624.0 51.4 0.0237 0.0238 1.0

treasury wWRAccR 8153.1 51.0 0.7340 0.8625 1.7
treasury wWRAccR’ 8153.1 51.0 0.4826 0.5695 1.8

Table 4. Statistical test (t-Student) for comparison between wWRAccR and
wWRAccR’ test error when |RBo|wWRAccR’ = |RBo|wWRAccR

compactiv mortgage pole puma32h treasury

p-value 3.43 · 10−1 3.36 · 10−53.36 · 10−53.36 · 10−5 1.00 · 100 3.52 · 10−123.52 · 10−123.52 · 10−12 3.88 · 10−103.88 · 10−103.88 · 10−10

5 Conclusions

In this work we have adapted the candidate rule generation process exposed
in [4] from classification to modeling by using TSK-0 LFRBSs. Afterwards, we
apply the Least Squares method to fix the consequent value for all the candidate
rules. Results show that we can deal with relatively high-dimensional problems
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and build systems with a small number of simple rules (which have, on average,
a maximum of 2.1 antecedents per rule).

We have noticed, in most cases, an improvement in terms of test error when the
standard deviation is used, even when the number of candidate rules generated
by the prescreening stage is forced to be the same. Therefore, the use of the
standard deviation as a metric for rule’s quality seems to perform well.

However, we also have noticed that using wWRAccR’ for the data set pole
does not lead to an improvement in any of the two experiments. We found out
that so many variables are unequally distributed in this problem, being the most
part of the data in one extreme of the variable domain. As we use symmetrical
triangular partitions for each fuzzy variable, many candidate rules covers the
most part of the data set. Hence, for both expressions used in the prescreening
stage, the factor which takes into account the number of covered instances by
this rules is far better, and significantly reduce the impact of the second factor
in case of wWRaccR’. As a consequence, the set of candidate rules is mostly the
same when using any of the two expressions.

In future works, we plan to extend this paper using TSK-1 LFRBSs, and test
them with more and larger data sets. We also are attempting to improve the way
fuzzy sets are generated to outperform the prediction capacity of the LFRBSs,
exploiting the expressiveness of TSK-1 fuzzy rules.
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Abstract. Road accident is a disaster that vocalizes a major cause of disability, 
untimely death and the loss of human lives. Therefore, investigating the 
condition of road accidents for prediction and prevention purposes on highways 
is significant. In this paper, we propose a new fuzzy granular decision tree to 
generate the road accident rules applying the discrete and continuous data 
stored in accident databases. Among all critical factors in the occurrence of 
traffic accidents, environmental factors and road design (geometry) are 
considered in this study. This method establishes an optimized fuzzy granular 
decision tree with the minimum redundancy and road accident severity 
classification using fuzzy reasoning. California highways were considered as 
the case study to examine the proposed approach.  The experimental results 
demonstrate that the proposed method is approximately 16% more accurate 
than the fuzzy ID3 method with less redundancy in constructing the decision 
tree.  

Keywords: Fuzzy granular decision tree, ID3, fuzzy reasoning, Fuzzy granular 
entropy. 

1 Introduction 

Road traffic accident is a social and public health challenge as it always comes with 
injuries and fatalities [1]. The World Health Organization reports that road collisions, 
as the ninth leading cause of death in 2004, will be ranked as the fifth factor in 2030 
[1]. It estimates over 1 million people are killed each year in road collisions, which is 
equal to 2.1% of the annual global mortality, resulting in an estimated social cost of 
$518 billion[2]. In Canada, approximately 3,000 people are killed every year on the 
roads [3]. The previous traffic safety studies show that, in most accident cases, the 
occurrences of traffic accidents are rarely random in space and time.  In this regard, 
identifying the risk factors that significantly influence the severity of traffic accidents, 
and discovering the relationships between such factors and collision severity is an 
important research topic. Large amount of the data regarding road collision such as 
the collision attributes, road condition and environmental attributes, road geometry 
and conditions has been accumulated over the time,. It is still a challenge to analyze 
and extract rules from diverse historic collision data from a large database. Data 
mining is a suitable solution to help decision makers recognize the rules of vehicular 
collision severity of large databases[4] .  
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Decision tree is a data mining method that can generate understandable rules [5]. It 
provides a hierarchical representation of the data and decision path to create logical 
rules. ID3 is a classical method to generate decision trees.  Based on the literature 
review, there are some problems in traditional decision tree. A major problem in the 
traditional decision trees such as ID3 and C4.5 is the large number of branches that 
causes duplication and repetition of subtrees within the tree [6] dealing with large 
number of attributes. Both repetition and duplication make redundancy in the decision 
tree methods. In that case, the tree needs to be pruned while maintaining the accuracy 
of the tree. Also, another issue is to prevent over-fitting [7]. The other problem is 
related to splitting a node. An attribute chosen based on only information about only 
this node causes redundant attributes at different levels. This problem also creates 
redundancy in the decision tree. Besides, the vehicle collision events’ database 
contains two different kinds of attributes: discrete and continuous. The entropy in 
traditional algorithms considers only discrete attributes and not continuous data such 
as spatial measures that are some of the important factors in vehicle incidents.  

To overcome above mentioned problems, this paper proposes the fuzzy granular 
decision tree (FGDT). The main contributions of this paper are listed as follows: 1) 
the fuzzy granular entropy is proposed to measure the degree of disorder or 
uncertainty of objects in each granular with respect to both discrete and numerical 
data. 2) To demonstrate the potential of fuzzy granular computing against other 
existing problem solving approaches, the fuzzy granular computing is applied in a 
case study. This method considers the environmental factors and spatial 
characteristics of accident locations to make a decision to categorize the road vehicle 
collision events in to three classes of PDO1, Injury and Fatal. 3) The inference process 
of fuzzy reasoning system are proposed to use fuzzy membership functions input and 
the fuzzy granular decision tree rules which are if-then linguistic rules, whose 
antecedents  and consequents are composed of fuzzy statements.  

The rest of the paper is organized as follows: Constructing the fuzzy granular 
decision tree for vehicle collisions rule extraction is discussed in the Section 2. The 
implementation and case study are also elaborated in Section 3. Section 4 describes 
the assessment of fuzzy granular decision tree and fuzzy ID3 methods. Section 5 
concludes the paper with the results from this study. 

2 Fuzzy Granular Decision Tree for Vehicle Collisions Severity 
Rules Extraction 

This section introduces the proposed method in the framework of fuzzy granular 
computing. As discussed earlier, in constructing the decision tree in vehicle collision 
database, this paper proposes a fuzzy granular decision tree (FGDT) to support the 
discrete and continuous data by defining the membership functions and fuzzification 
of data in the database. While other decision tree methods such as ID3 consider only 
discrete attributes; the fuzzy granular decision tree which is an extension of classical 
decision tree perceives both discrete and continuous attributes. 

Also, to overcome the over-fitting problem in conventional decision tree methods, 
the FGDT chooses an attribute-value in favor of all nodes at the same level when 

                                                           
1 Property Damage Only. 
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splitting a node. But in the conventional methods, the attribute is solely chosen based 
on the information about this node; not any other nodes at the same level. Thus, in the 
conventional decision tree, different nodes at the same level may use different 
attributes, and the same attribute with all possible values may be used at different 
levels which causes the over-fitting issue. The vehicle collision event rules’ mining is 
employed to demonstrate the potential of fuzzy granular decision tree in solving the 
mentioned issues. The traffic accident is usually caused by human, vehicle, 
environmental factors, roadway design and some spatial factors [8]. Due to the lack of 
sufficient human and vehicle historical damage data, this research attempts to impose 
the environmental, roadway design and spatial factors to test the proposed 
methodology. Fuzzy Granular Decision Tree (FGDT) is the proposed decision tree in 
this paper which is a generalization of the classical decision tree. First, all the data in 
the training data set are fuzzified in the form of membership functions.  Then, the 
fuzzy granular entropy is calculated for each object in the data set. Next, according to 
the calculated fuzzy granular entropy and generality and redundancy criteria, the 
fuzzy granular decision tree is constructed. The last step expresses the decision 
method of the final classification that is done by training and checking data using by 
fuzzy rules based system. In the following, the FGDT will be discussed step by step 

2.1 Fuzzification of Data  

This paper attempts to use the fuzzy concepts to calculate and construct the decision 
tree, substituting the training data with the fuzzy expression and forming the fuzzy 
granular decision tree. The function of fuzzy membership functions for each attribute 
is very significant in the creation of fuzzy granular decision tree. As such, various 
functions are tested, and appropriate function for each factor is determined. Triangular 
and trapezoidal functions (with a maximum equal to 1 and the minimum equal to 0) 
are widely-applied membership functions. This research uses triangular and 
trapezoidal membership functions because of their simplicity, learning capability, and 
the short amount of time required for designing the system. Based on the collision 
data in fuzzy membership function, the fuzzification of collision data is applied to the 
database by the defined membership functions.  

2.2 Fuzzy Granular Conditional Entropy 

Conditional entropy is the most commonly used measure for selecting attribute-value 
in the construction of the decision tree for classification. Many decision tree 
algorithms such as ID3 and common granular decision tree require data with a 
discrete value. Discretization of a continuous variable is not easy, particularly to 
determine the boundary of each interval. As an example the distance from a collision 
to an intersection can be named. Therefore, the fuzzy concept in the process of 
granular decision tree is substituted with the data set with the fuzzy expression and 
form the fuzzy granular decision tree method. Based on this concept, the fuzzy 
granular entropy is proposed to employ the continuous and discrete values in decision 
tree construction. The fuzzy granular conditional entropy is introduced based on 
defined membership values of each object in each granular because of the data fuzzy 
expression. Equation 1 specifies the Fuzzy Granular Conditional Entropy with the 
given granular universe S. 
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where µ is the membership value of the jth granule to the ith class.  This equation is 
defined based on the concept of applying the value of the membership function  
of each factor of collision events rather than using the crisp values. The summation of 
the membership values of granular in the specific class is designed as a numerator of 
Equation 1 and the summation of membership values of all granular in a specific 
formula is calculated as the denominator of this equation. The calculated entropy 
presents the entropy of the granular S of formula  a v  related to training data. In 
the fuzzy granular conditional entropy the membership function (which belongs to 
formula  a v for each granule) are involved to calculate the entropy. 

2.3 Road Vehicle Collision Fuzzy Granular Decision Tree 

To create a road collision fuzzy granular decision tree with minimum uncertainty, the 
subset of formula (attribute-value) with the highest values of coverage, confidence, 
generality and minimum granular fuzzy entropy should be selected as a node of the 
tree. Then the road collision rules are generated automatically based on training data 
of the case study. Constructing fuzzy granular decision tree involves applying concept 
of generality which represents the presence of a granular rather than the other granular 
in universe. Also, employing the notion of fuzzy granular entropy which measures the 
homogeneity of each granular and decrease the redundancy by selecting those 
granular which have the minimum redundancy rather than the other granular to cover 
the universe. The proposed decision tree automatically selects more appropriate nodes 
based on measurement of the redundancy by counting the repetitive object of granular 
and universe in each step to select the node with minimum redundancy and maximum 
coverage of universe granular. Furthermore, this process can recognize which granule 
is more appropriate at the end of each level to be broken down first until it reaches the 
granular which objects will be the subset of final classes. This granular is called non-
active granular. After creating the fuzzy granular decision tree, the rules are extracted 
from it. The rules that are extracted from fuzzy granular decision tree have description 
structure based on IF-Then phrases called linguistic rules. To extract the rules, we 
have used a simple approach by following a path through the tree to one of the leaves. 
This path starts from the root of the tree to a leaf and establishes conditions, in terms 
of specifying the final class. 

2.4 Reasoning with Fuzzy Granular Decision Tree 

The process of FRBS is started from a given input to output using a set of fuzzy if-
then linguistic rules which are generated from FGDC, whose antecedents and 
consequents are compound of fuzzy statements, related by the concepts of fuzzy 
implication and the compositional rule of inference [9]. The fuzzy reasoning is 
applied to determine the final classes of collision events in four steps. The last step 
called defuzzification is used to convert fuzzy value to the final crisp classes of PDO, 
Injury and Fatal value. This crisp number is obtained in a process known as the  
defuzzification. Centroid defuzzification method denotes a point representing the 

(1) Fuzzy Granular Conditional Entropy a v ∑ ∑
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center of gravity of the aggregated fuzzy set A, on the interval [a,b] which can be 
calculated using  [10]: 

 
 
 
 
 

where  zCOG is the crisp output, µA Z   is the aggregated membership function, and z 
is the output variable. In the case study section, there is an example of FRBS based on 
real data of collision events. 

3 Case Study in California State 

The data which is used in this study includes 1837 collision event points which are 
recorded in the databases of years 2009 and 2010 belonging to 13 counties of 
California State. In the dataset, 1004 points were considered as training data and the 
other 833 event points are taken as testing data. Table 1 demonstrates the sample of 
the first level of fuzzy granular decision tree measures so that the universe is equal to  
{O1,O2,O3, O4, O5, O6, O7, O8, O9, O10, O10, O11, O12, O13, O14, O15, O16}. The seven 
granules of formulas Road Lighting = Day Light, Dist to Intersection = Far, Weather 
= Clear, Dist to Intersection = Very Near, Collision Time = Morning, Road Radius = 
Small and Road Slope = Low have the minimum values of entropy. They are sorted in 
order of their value of entropy. The formula Road Lighting = Day Light with granule 
= {O1, O4, O7, O10, O13} is chosen as the first node of fuzzy granular decision tree 
due to its least entropy. These other six granules cannot include the universe thereby; 
they are not a covering solution to reduce the redundancy. The algorithm will search 
and analyze other granules in order to find a set of granules that cover the whole 
universe. The algorithm considers the non-redundant covering and removes those six 
adding candidates since they cannot form a non-redundant covering. 

Table 1. The Road Collision Information Table 
Objects Weather Surface Lighting Time Radius (m) Slope  (%)

Distance 
from 

Intersection(
m) 

Distance from 
Population 
Centers(m) 

Severity 

O1 Clear Dry Day-Light 11 800.00 3.00 360.00 1700.00  PDO 
O2 Clear Dry Dusky/Dark 10 850.00 7.00 180.00 2800.00 PDO 
O3 Clear Dry Dusky/Dark 20 900.00 8.00 280.00 1000.00 Injury 
O4 Clear Not Dry Day-Light 9 300.00 4.00 200.00 1900.00 Injury 
O5 Clear Not Dry Dusky/Dark 13 550.00 11.00 90.00 900.00 Injury 
O6 Clear Not Dry Dusky/Dark 21 880.00 3.50 170.00 1800.00 Injury 
O7 Raining Not Dry Day-Light 12 890.00 4.00 420.00 1100.00 PDO 
O8 Raining Not Dry Dusky/Dark 14 350.00 10.00 220.00 750.00 Injury 
O9 Raining Not Dry Dusky/Dark 15 350.00 18.00 75.00 420.00 Fatal 
O10 Fog Dry Day-Light 11 770.00 6.00 320.00 1450.00 PDO 
O11 Fog Dry Dusky/Dark 10 500.00 9.00 240.00 350.00 Injury 
O12 Fog Dry Dusky/Dark 21 780.00 13.00 130.00 980.00 Injury 
O13 Fog Not Dry Day-Light 10 1500.00 4.00 170.00 1200.00 PDO 
O14 Fog Not Dry Dusky/Dark 20 450.00 3.00 110.00 650.00 Fatal 
O15 Fog Not Dry Dusky/Dark 22 600.00 7.00 110.00 650.00 Fatal 
O16 Fog Not Dry Dusky/Dark 21 850.00 14.00 110.00 650.00 Fatal 

(2) 
.
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As a consequence, it will not choose these granules even if other measures are in 
favor of this granule. If many objects in a candidate granule are already in granular 
decision tree, this granule will not be chosen. The formula of Road Lighting = Dusk-
Down with the granular of {O2,O3,O5,O6,O8,O9,O11,O12,O14,O15,O16} is 
considered the most suitable granule to cover the universe, and will be chosen 
accordingly. It can be verified that the union of two chosen formula granules 
{O1,O4,O7,O10,O13},{O2,O3,O5,O6,O8,O9,O11,O12,O14,O15,O16} satisfied 
covering universe with no redundancy. Obviously, the objects in Road Lighting = 
Day Light and  Lighting = Dusk-Down do not belong to the same decision classes 
because they are active nodes, therefore, further granulation to this granule will be 
conducted in order to find smaller definable granules. 

4 Reasoning with Fuzzy Granular Decision Tree 

The first step is the fuzzification interface which is transforming a crisp data into 
fuzzy sets. The rule evaluation is the next step in which the strengths of rules are 
computed based on the extracted rules and inputs. Then, they should be applied to 
antecedents of the fuzzy rules. In this study, the minimum (AND) fuzzy value is 
applied as the strengths of rules. Fig.1 illustrates the rules evaluation step of some 
training data as a sample of fuzzy rule evaluation. The third step is the aggregation of 
the rules’ outputs which is the process of unification of the outputs of all rules. The 
last step is the defuzzification that translates the fuzzy rule which in turn, translates 
the results back to the real world values. 

 

Fig. 1. The rule evaluation of extracted rules 
5 Accuracy Assessment of  Fuzzy Granular  Decision Tree  

and Fuzzy ID3 Collisions Methods  

With implementing FGDT and fuzzy ID3methods, 22 rules are extracted from 
granular, and 25 rules are extracted from fuzzy ID3, which are applied to 833 road 
collision events in California. To assess the accuracy of the results, the error matrix is 
proposed to be used in classification accuracy assessment [11]. Overall accuracy, 
validity (producer accuracy) and reliability (or user accuracy which are represented in 
Equation 3, 4 and 5, respectively), are derived from the error matrix for both fuzzy 
granular and fuzzy ID3 resulted classes. Table 2 represents the overall, producer and 
user accuracy. 
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where a  is number of collision events in the class i in row, which are classified by 
classifiers and class j in column which are labeled in reality. 

Table 2. The O.A,O P.A. U.A. values of Granular Algorithm 

 Fuzzy Granular Decision Tree Fuzzy ID3 

O.A. P.A. U.A. O.A. P.A. U.A. 
Class1 = PDO 

68.7% 

85% 62% 

52% 

77% 58% 

Class2 = 
Injury 

33% 62% 
26% 52% 

Class3 = Fatal 60% 79% 48% 27% 

 

The results in Table 2 proves that near 68% of the collision events in testing data 
are in complete agreement using the fuzzy granular decision tree while 52% of them 
are consistent with that of fuzzy ID3 decision. As the calculated reliability of the 
fuzzy granular method results shows, it can be expected that 62% of all the classified 
collision events PDO and Injury class are indeed the same as PDO and Injury on 
checking data. Also, 79% of fuzzy collision events as Fatal are indeed in a class of 
Fatal on the checking data. However, the validity shows that the fuzzy granular 
classified 85% of all PDO events, 33% of all Injury events and 60% of all Fatal events 
in the database. The calculated user accuracy of the fuzzy ID3 method shows 52% of 
all the classified collision events as PDO are the same as PDO class in checking data; 
Moreover, 52% of all classified collision events as Injury are indeed Injury on the 
checking data and 27% of all the classified collision events as Fatal matches with 
Fatal class in checking data. It can be concluded that the overall accuracy, reliability 
and accuracy of each individual class on fuzzy granular method, are higher than those 
of the fuzzy ID3 method. 
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6 Conclusion 

This paper proposed a new approach to extract rules for predicting vehicular road 
collisions. The results indicate that the fuzzy granular decision tree finds the most 
suitable granules defined by an attribute-value pair which is selected considering the 
continuous values in the database. Moreover, using the fuzzy data and fuzzy entropy 
efficiently impacts the performance of the learning by involving the discrete and 
continuous values in the database. This leads to more accurate results in comparison 
with classical decision trees including fuzzy ID3. This research attempted to compare 
the proposed method with decision tree method and not other classification 
approaches. As a future work, the proposed method can be compared with other 
classification methods such as C-RT, Naïve Bayes, Rnd Tree, MLN, ADA-boost and 
SVM. 
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Abstract. The main aim of this study is focused on the extraction or obtaining 
of important decision rules (DRs) using decision trees (DTs) from traffic acci-
dents’ data. These decision rules identify patterns related with the severity of 
the accident. In this work, we have incorporated a new split criterion to built 
decision trees in a method named Information Root Node Variation (IRNV) 
used for extracting these DRs. It will be shown that, with the adding of this cri-
terion, the information obtained from the method is improved trough new and 
different decision rules, some of them use different variables than the ones ob-
tained with the original method.  

Keywords: IRNV, Imprecise Info-Gain, decision rules, traffic accident severity. 

1 Introduction   

DTs have been widely applied in the road safety research, being the CART method 
developed in [1] the most used. One of the reasons for use DTs in order to analyze 
traffic accident´ severity is that the structure of a DT permits easily the extraction of 
Decision Rules (DRs). These DRs provide a direct way to describe the relationships 
between the accident attributes and can be used by safety analysts to understand the 
events leading up to an accident and identify the variables that determine how serious 
it will be. However, the extraction of knowledge with DRs obtained from a DT is very 
limited, and some important pattern cannot be found using only one DT. 

In order to extract all the knowledge from a particular dataset, the IRNV method 
used in [2] is applied in this study. The main characteristic of this method is that dif-
ferent DTs are built by varying the root node. The useful rules could be used by road 
safety analyst to establish specific measures of performance. 

It has been shown that the new split criterion of Abellán and Moral: Imprecise In-
fo-Gain [3], noted as IIG, based on imprecise probabilities and uncertainty measures, 
has a different performing than the ones from the classic split criteria [4]. The han-
dling of the imprecision is a key part of the difference above mentioned. As a logical 
consequence of this, we have incorporated this criterion in the method of IRNV, add-
ing it as a third criterion in that method. We considered that the new split criterion 
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could increase the information obtained from data because it has a different perform-
ing. In this paper, we will prove this assertion in an experimental study. In addition it 
the first practical application (in particular, studding traffic accident), that has been 
realized using this split criterion. 

The paper is organized as follows: In Section 2, the data used to carry on this study 
is presented, and the methodology used is described. In Section 3, the outcomes ob-
tained with the extended method are detailed and analyzed. Finally, the last section is 
devoted to the conclusions. 

2 Materials and Methods 

2.1 Data Description 

The data used in this study comes from the Directorate General of Traffic [5]. Only 
traffic accidents that occurred on rural two-lane highways for the province of Granada 
(Spain) were analyzed. The period of study was seven years (2003-2009). The data set 
was first checked out for questionable data, and those which were found to be unrea-
listic were screened out. The accidents analyzed involved 1 vehicle and they did not 
occur on intersections.  Therefore the data set used to conduct the study contains 1801 
accidents. 

The class variable is the severity of the accidents (SEV). It was defined according 
to the level of injury for the worst injured occupant (following previous studies such 
as [6,7], [8]). With the original classification of accidents by severity, there are 149 
fatal, 723 serious and 929 slight ones. Since the different categories of the variable 
severity are not balanced and this issue affects the overall accuracy of the model [8], 
the class variable was re-coded in two levels: SI - accidents with slightly injured 
(929); and KSI - accidents with killed or seriously injured (872). 

Nineteen variables (see description in Table 1) were used with the class variable 
(SEV) in an attempt to identify the important patterns of an accident related with their 
severity. The choice of the variables and their categorization were mainly guided by 
previous studies ([7,9], [10]). 

The dataset includes variables describing the conditions that contributed to the ac-
cident and injury severity: 

─ Injury severity variables: number of injuries and severity level of injuries  
─ Roadway information: safety barriers, pavement width, lane width, shoulder type, 

paved shoulder, road markings and sight distance. 
─ Context information: atmospheric factors and lighting.  
─ Accident information: causes, day, hour, month, occupant involved, type of acci-

dent. 
─ Vehicle information: type of vehicle. 
─ Driver information: age and gender. 
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Table 1. Description of the set of variables in the dataset 

NUM. 

  SEVERITY 
 

VARIABLE: 
CODE VALUES: CODE 

TOTAL %SI %KSI 

  Fixed objects collision: CO 19 76.47 23.53 

1 Accident  

Collision with pedestrian: CP 152 33.33 66.67 
Other (collision with animals, 

etc.): OT 32 68.57 31.43 

 type: ACT 
Rollover (carriage without colli-

sion): RO 118 61.86 38.14 

  
Run off road (with or without 

collision): ROR 1480 51.77 48.23 

2 Age: AGE 

≤ 20: ≤ 20 219 52.73 47.27 
[21-27]: [21-27] 492 50 50 
[28-60]: [28-60] 948 51.76 48.24 
 ≥ 61: ≥ 61 110 59.68 40.32 
Unknown: UN 32 27.59 72.41 

3 
Atmospheric 

factors: ATF 

Good weather: GW 1540 50.58 49.42 
Heavy rain: HR 43 63.16 36.84 
Light rain: LR 161 58.75 41.25 
Other: O 57 51.06 48.94 

4 
Safety barri-

ers: BAR 
No: N 1740 48.3 54.7 
Yes: Y 61 53.6 46.4 

5 Cause: CAU 

Driver characteristics: DC 1471 48.99 51.01 
Combination of factors: CO 262 61.16 38.84 
Other: OT 29 72.73 27.27 
Road characteristics: RC 24 84 16 
Vehicle characteristics: VC 15 63.64 36.36 

6 Day: DAY 

Working day after weekend or 
public holiday: APH 131 57.62 42.38 

Working day before weekend or 
public holiday:  BPH 286 52.26 47.74 

On a weekend or public holiday: 
PH 532 50.36 49.64 

Regular working day: WD 852 51.05 48.95 

7 
Lane width: 

LAW 

< 3,25 m: THI 503 46.87 53.13 
[3,25-3,75] m: MED 1264 53.2 46.8 
> 3,75 m: WID 34 58.54 41.46 

8 
Lighting: 

LIG 

Daylight: DAY 958 55.49 44.51 
Dusk: DU 103 54.29 45.71 
Insufficient (night-time): IL 131 51.15 48.85 
Sufficient (night-time): SL 66 59.72 48.28 
Without lighting (night-time): 

WL 543 43.1 56.9 

9 
Month: 

MON 

Autumn: AUT 412 53.07 46.93 
Spring: SPR 440 53.64 46.36 
Summer: SUM 479 51.63 48.37 
Winter: WIN 470 47.92 52.08 

10 
Number of 

injuries: NOI 
1 injury: [1] 1233 53.43 46.57 
> 1 injury: [>1] 568 47.35 52.65 

11 
Occupants 

involved: OI 

1 occupant: [1] 1171 51.2 48.8 
2 occupants: [2] 374 51.48 48.52 
> 2 occupants: [>2] 256 53.71 46.29 

12 
Paved 

shoulder: SHT 

No: N 309 49.35 50.65 
Non existent or impassable: NE 580 50.89 49.11 
Yes: Y 912 52.74 47.26 
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Table 1. (continued) 

13 
Pavement 

width: PAW 

[6-7] m: MED 530 53.19 46.81 
< 6 m: THI 282 45.56 54.44 
> 7 m: WID 989 52.27 47.73 

14 
Pavement 

markings: ROM 

Does not exist or was deleted: 
DME 168 52.35 47.65 

Separate margins of roadway: 
DMR 180 48.31 51.69 

Separate lanes and define road 
margins: SLD 1368 52.23 47.77 

Separate lanes only: SLO 85 46.59 53.41 

15 
Gender: 

SEX 

Female: F 286 62.18 37.82 
Male: M 1513 49.61 50.39 
Unknown: UN 2 75 25 

16 
Shoulder 

type: SHW 

< 1.5 m: THI 699 52.54 47.46 
[1.5-2.5] m: MED 898 50.28 49.72 
Non existent or impassable: NE 204 50.57 49.43 

17 
Sight dis-

tance: SID 

Atmospheric: ATM 30 67.5 32.5 
Building: BU 6 36.36 63.64 
Other: OT 12 50 50 
Topography: TOP 420 49.39 50.61 
Vegetation: VEG 13 50 50 
Without restriction: WR 1320 51.94 48.06 

18 Time: TIM 

[00:00-05:59]: [0-6) 340 48.06 51.94 
[06:00-11:59]: [6-12) 380 58.73 41.27 
[12:00-17:59]: [12-18) 591 52.77 47.23 
[18:00-23:59]: [18-24) 490 47.22 52.78 

19 
Vehicle 

type: VEH 

Cars: CAR 1287 47.1 52.9 
Trucks: TRU 78 53.8 46.2 
Motorbikes and motorcycles: 

MOT 385 35.6 64.4 
Other: OT 51 50.6 49.4 

2.2 Decision Trees, Split Criteria and IRNV Method 

A decision tree (DT) is a structure that can be used in classification and regression 
tasks. If the class variable, i.e. the variable under study, has a finite set of possible 
values, the task is named as classification; in other case, is named as regression.  

Within a decision tree, each node represents an attribute variable or feature (a cha-
racteristic of each item in the dataset) and each branch represents one of the values or 
states of this variable. A tree leaf specifies the expected value of the class variable. 
Associated to each node is the most informative variable, according a split criterion 
(the criterion to branching), which has not already been selected in the path from the 
root to this node. If the information about the class variable is not improved or there 
are no more features to choose, a leaf node is added with the most probable class val-
ue for the partition of the dataset associated to that node. A DT can be interpreted as a 
compact set of rules about the class variable. 

A key part of the procedure to build a DT is the split criterion. In the literature we 
can see many works focused on the use of classic split criteria (see [4]). The most 
used ones are the Information Gain (IG), Information Gain Ratio (IGR) and the Gini 
Index (GInf). IG and IGR were presented in [11,12] and GInf in [1]. 
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The Imprecise Info Gain (IIG) was presented in [3] and has a different performing 
than the classic ones (see [4]). It is based on the use of imprecise probabilities and 
uncertainty measures. This criterion can be defined as follows: in a classification 
problem, let C be the class variable, {X1,…,Xm} the set of features, and X a feature; 
then  

                        ===
i

))xX|(K(C*H )xP(X-(K(C))*HX)IIG(C, ii
,                    (1) 

where K(C) and K(C|X=xi) are the convex sets of probability distributions obtained 
via the Imprecise Dirichlet Model for the C and (C|X=xi) variables respectively [3] 
and the function H*(K(Z)) is the maximum Shannon’s entropy function of all the 
probability distributions that belong to the set K. This set K on a variable Z with val-
ues belong to {z1,…,zk} is defined as 
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with nzj as the frequency of the set of values (Z=zj) in the dataset, N the sample size 
and s a given hyperparameter. To calculate H* for s=1, the simple procedure of [13] 
can be used. 

A procedure to build DTs can be explained of the following way: Each node No in 
a DT produces a partition D of the dataset (for the root node the entire dataset is con-
sidered). Also, each node N has associated a list “Г” of labels of features (features 
that are not in the path from the root node to No). A recursive and simple procedure to 
build a DT can be expressed by the algorithm shown in Figure 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Algorithm to build a DT 

Procedure BuildTree (No, Г) 
1. If Г =Φ, then Exit 
2. Let D be the partition associated with node No 
3. Compute the value of the maximum gain of information for  a 

feature on D (using a split criterion: SC) 
δ= max SC(C,X) 

4. If δ is lower than or equal to 0 then Exit 
5. Else 

6. Let  Xt be the variable for which the maximum δ is at-
tained 

7. Remove Xt   from Г 
8. Assing Xt  to the node No 
9. For each possible value xt  of  Xt 
10. Add a node Nt 
11. Make Not  a child of No 
12.  Call BuilTree (Not , Г ) 
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Each Exit state in the above procedure corresponds to a leaf node. Here, the most 
probable value of the class variable, associated with the corresponding partition, is 
selected. 

The method called Information Root Node Variation (IRNV), to extract Decision 
Rules (DRs), is based on using different trees obtained by varying the root node. In 
this method, if there are m features, and RXi is the feature that occupies position i in 
importance (gain of information via a split criterion); RXi is used as the root to build 
DTi (i=1,…,m). We use the simple method for building trees explained above, none-
theless now the root node is selected directly for each tree (the rest of the building 
procedure remains the same). Thus, we obtain m trees and m rule sets (RS), DTi and 
RSi (i=1,…,m), respectively. Each RSi is checked in the test set to obtain the final 
rule set. The entire procedure is carried out using GInf and IGR criteria. 

The process of the method can be explained via the following scheme (for more 
details see [2]): 

1. Select a split criterion (SC) for building trees. 
2. Build DTi using RXi , as the root node, and SC ( i=1,…,m.) 
3. Extract RSi from each DTi. 
4. Check RSi in the corresponding TEST set  Selection of rules from RSi. 
5. Extract the final rule set obtained by using the SC. 
6. Change of SC and go back to step 2.  
7. Join the final rule sets obtained using GInf and IGR. 

In the original method of the IRNV, IGR and GInf are used as SC. In this work, we 
incorporate the IIG split criterion in the IRNV method, i.e. we also use the IIG crite-
rion in the point 6 of the above scheme. Hence, we build 3m DTs in the method to 
extract DRs. 

The new split criterion is more complex than the classic ones. The computational 
complexity of the method for building DTs via the IIG criterion is analyzed in [14]. It 
has a complexity of order O(N2m), with N the sample size of the data set and m the 
number of features. 

2.3 Significant Decision Rules 

A DR conforms a logical-conditional structure of the type “IF (X) → THEN (Y)”, 
where A is the antecedent of the rule (in our case, a set of statuses of several attribute 
variables); and B is the consequent (in our case, it is only one state of the class vari-
able).  

Each rule starts at the root node, and each variable that intervenes in tree division 
makes an IF of the rule, which ends in leaf nodes with a value of THEN (associated 
with the state resulting from the leaf node). The resulting state is the status of the class 
variable that shows the highest number of cases in the leaf node analyzed.  

A priori, the number of rules can be identified with the number of terminal nodes 
in the tree. Then, specific parameter and minimum thresholds are used to extract sig-
nificant rules ([2], [7], [10]): 
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─ Support (S) is the percentage of the dataset where “A & B” appear. Minimum 
threshold is S≥ 0.6%. 

─ Population (Po) is the percentage of the dataset where “A” appears. Minimum 
threshold is Po≥1%. 

─ Probability (P) is the percentage of cases in which the rule is accurate (i.e. P=S/Po 
expressed as percentage). Minimum threshold is P≥60%. 

The parameters’ thresholds for Po, C, and S are normally selected depending on the 
nature of the data (balanced or unbalanced), significant interest in fatal crashes (rare 
events), and sample size (small or large datasets). As this work uses the same data as 
in [9], we also use the same thresholds.  

Due to the large number of patterns considered, DTs can suffer from an extreme 
risk of Type-1 error, that is, of finding patterns that appear due to chance alone to 
satisfy constraints on the sample data [15]. To reduce this error and following other 
authors ([16] [7][8][10]) the rules extracted on the training set (with the minimum 
parameters) are validate using the test set. 

In addition the rules are formed by four variables as much because DTs with only 
four levels of proof are built. The main reason for including only four levels of proof 
is that simple and understandable rules (from safety point of view) are needed by 
Administration and Authorities. If the rules have more variables could not be useful. 
Previous studies such as Montella et al. [10] and Montella et al. [17] in which DTs 
and Association Rules are obtained to study traffic accidents, use the same levels of 
proof.  

3 Results 

In the first step, the dataset was randomly split into two different sets: training (70%) 
and test (30%) as in [6], [8]. Thus, 1,260 accidents formed the training set with the 
following severity distribution: 646- KSI, and 614-SI. 

Next, using the training set, the IRNV method is applied. The different DTs vary-
ing the root node were built using Weka platform [18]. The procedures for building 
the DTs based on Imprecise Info-Gain and the root node variation procedure were 
implemented using the method proposed in [13]. DTs were built with four levels of 
proof; previous studies such as [2], [10,17] use the same number of levels. This num-
ber of levels allows us to find useful and understandable rules by the safety analysts. 

Table 2 provides the number of DTs, the root nodes and the number of rules in the 
different steps of IRNV method obtained with the IIG criterion. 

Table 2. Number of rules obtained with IRNV using the IIG criterion 

DTs DT1 DT2 DT3 DT4 DT5 DT6 DT7 DT8 DT9 DT10 DT11 DT12 DT13 DT14 DT15 DT16 DT17 DT18 DT19 Total 

R.N ACT LIG SEX CAU VEH ATF PAW TIM AGE NOI DAY SID LAW MON OI ROM SHW BAR SHT   

R.T. 12 19 13 15 6 9 14 24 16 13 17 20 14 18 19 13 16 9 11 278 

R.V. 5 3 4 4 4 5 4 8 7 8 4 8 9 6 7 5 7 3 6 107 

R.N. Root node; R.T. Rules Training; R.V. Rules validated. 
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Next, we comment the results with IIG split criterion. The root node in DT1 is the 
variable ACT. In this tree, 12 rules can be extracted from the training set. With all the 
trees, 278 rules are obtained. In addition, the variable that generates the highest num-
ber of rules when they are used as root node is TIM with 24 rules (see Table 2). When 
the rules are validated using the test set, the number of rules decreases to 107. High-
lighted that, all DTs generate valid DRs (verify the minimum threshold fixed for the 
parameters S, Po and P). Remark that when we use the variable LAW as root node it 
is generates the highest number of valid rules (9 rules). 

In its original form, IRNV method is applied with two different split criterions 
GInf (based on the Gini Index) and IGR (info gain ratio). The method obtains for the 
training set 227 rules with GInf and 174 with IGR; however applying the IRNV me-
thod with the IIG criterion a bigger set of rules is obtained (278 rules).  

As the same way, for the test set with GInf and IGR, a minor number of rules are 
validated, 78 and 81 rules respectively (see [2]); whereas with the IIG split criterion 
we obtain 107 validated rules. 

Overall of the rules identified with the IIG split criterion, 21 rules (of 107) also 
were identified with GInf, and only 6 rules (of 107) are shared with IGR. Then, using 
this split criterion in the IRNV method, new and interesting information from the 
same dataset has been obtained. 

Regarding with the parameters, in the rules extracted with the three split criteria, 
confidence ranges between 60% and 100% are presented. The rule with the biggest 
support (27%) is obtained with GInf, for IIG the maximum support is 17.6%, whereas 
with IGR the values of support are minor, being the maximum support 8.9%. About 
the population parameter, the biggest value is attained for GInf (with 41.3%), follow-
ing for the IIG (28%) and the last is IGR with 13%. 

The IIG criterion identifies more different variables in the rules that the criterion 
GInf or IGR.  

The following new statuses of variables in the rules are identified (they appear in 
significant rules) when the IIG split criterion is applied instead of the criterion GInf:  

ROM=SLO, ROM=DMR, VEH=TRU and LIG=DU.  

Also, when the IIG split criterion is applied instead of the criterion IGR the follow-
ing new statuses of variables are identified: 

     ROM=SLO; ROM=DMR, VEH=TRU, MON=SUM, PAW=THI and AGE ≥ 61 
 
The distribution of the 107 rules obtained with the new criterion is the following: 50 
patterns for SI accidents and 57 patterns for KSI accidents. Due to the large number 
of patterns obtained, only rules with S>4% are extracted on Table 3. The support is a 
parameter that combines confidence and population (a support higher than 4% implies 
that the rule is met by at least 50 accidents in the sample under study).  

For KSI rules, the maximum value for confidence is 78.57% (rules 1 and 3). Sup-
port ranking between 4.92 and 4.37; and population ranges between 6.35 and 5.56.  

To reduce run-off-road accidents is one of the priorities of the Spanish Road Safety 
Strategy 2011-2020 [5]. Rules 1 and 3 identify one of the most important concerns for 
road safety in Spain: run-off-road accidents and they are related with motorcycles.  
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In addition these patterns shown that the presence of shoulders affects the severity of 
the accident.  

Rule 2 shows a problem related with the lighting condition and lane width. [7,9] 
also pointed out that KSI accidents are associated with roadways with no lighting. 

For SI rules parameter of confidence varies from 60.92% (rule 7) to 68.67% (rule 
6). Support varies from 4.21 (rule 7) to 17.62 (rule 10). And population ranges from 
28.10% (rule 10) to 6.35% (rule 11).  

Most of the SI rules shown patterns for run-off-road accidents, in which, the type 
of vehicle involved is a car. These patterns have one parameter related with the road: 
medium pavement (rules 4, 8 and 12) or lane (rule 10), shoulders minor than 1.5 m 
(rule 13) or paved shoulder (rule 14). So, one safety measure in order to reduce the 
severity is the improvement of the shoulders. 

Rule 7 identifies run-off-road accidents with car for young drivers when the type of 
day is a working day. This pattern could be showing a particular problem related to 
the inexperience of young drivers in this kind of roads.  

Rules 6, 9 and 11 show similar SI patterns in which vehicle involved is a car. Two 
of them occur at the morning time (rules 6 and 9), for working days with good weath-
er conditions (rule 6) or during a day on roads without sight distance restrained (rule 
9). In rule 11 accidents also occurs on working days, in summer with only one occu-
pant involved.  

Then, from safety point of view accidents which occur on working days, with good 
weather conditions or during a day have a minor severity. 

Table 3. DRs ordered by severity 

    NUM ANTECEDENT 
CONSE-
QUENT 

Po 
(%) S (%) 

C 
(%) 

1 
NOI=[1];VEH=MOT; 
ACT=ROR;SHT=Y KSI 5.56 4.37 78.57 

2 
SID=WR;LIG=WL; 
LAW=THI;SEX=M KSI 6.35 4.92 77.50 

3 
OI=[1];VEH=MOT; 
ACT=ROR;SHT=Y KSI 5.56 4.37 78.57 

4 
ACT=ROR;VEH=CAR; 
PAW=MED;ROM=SLD SI 14.21 9.13 64.25 

5 
ATF=GW;LIG=DAY; 
SEX=F;OI=[1] SI 6.59 4.44 67.47 

6 
TIM=(6-12];VEH=CAR; 
DAY=WD;ATF=GW SI 6.59 4.52 68.67 

7 
AGE=(20-27];ACT=ROR; 
DAY=WD;VEH=CAR SI 6.90 4.21 60.92 

8 
NOI=[1];VEH=CAR; 
ACT=ROR;PAW=MED SI 11.27 7.54 66.90 

9 
SID=WR;LIG=DAY; 
VEH=CAR;TIM=(6-12] SI 9.37 6.35 67.80 

10 
LAW=MED;VEH=CAR; 
ACT=ROR;NOI=[1] SI 28.10 17.62 62.71 
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Table 3. (continued) 

11 
MON=SUM;DAY=WD; 
VEH=CAR;OI=[1] SI 6.35 4.60 72.50 

12 
OI=[1];VEH=CAR; 
ACT=ROR;PAW=MED SI 10.56 6.98 66.17 

13 
SHW=THI;ACT=ROR; 
VEH=CAR;NOI=[1] SI 17.46 10.79 61.82 

14 
SHT=Y;ACT=ROR; 
VEH=CAR;NOI=[1] SI 20.48 13.02 63.57 

4 Conclusions  

We have incorporated a new split criterion based on imprecise probabilities and un-
certainty measures on a method to obtain Decision Rules called IRNV. This method 
uses only classic split criteria. We have showed that the incorporation of this new split 
criterion can complete the information extracted for data in different ways.  

With the new split criterion in the procedure of the IRNV, more rules than with the 
classic criteria are generated. Finally, 170 new validated rules have been obtained. 

From safety point of view interested results have been presented using the new 
split criterion: KSI rules for the motorcyclists’ run-off-road accidents are obtained. In 
additions, the rules obtained imply others important variables: roadways with no 
lighting and paved shoulder. The first is associated with KSI accidents. The presence 
of shoulders affects the severity of the accident Therefore, some countermeasures that 
could be applied by the Administration in order to reduce the severity of these acci-
dents are: remove dangerous obstacles in the roadside and adopt improved safety 
barrier designs and new crash test procedures to protect Powered Two Wheelers 
(PTWs). 

Also, it is stressed the need for studying the conditions in the environment of two-
lane rural highways (i.e. shoulders or lighting, etc.), because they have a substantial 
impact on crash severity; it is found particular factors related with a minor level of 
severity (such as working days, good weather conditions or lighting day). 

As a future work, from the safety point of view, specific studies analyzing the main 
factors that affect the severity of motorcycled will be realized. And the used of the 
proposed method for studies other datasets (i.e., other infrastructure, roads and coun-
tries) or specific dangerous locations (i.e., black points, or intersections). 
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Abstract. Sorting a set of inputs for relevance in modeling problems
may be ambiguous if the data is vague. A general extension procedure
is proposed in this paper that allows applying different deterministic
or random feature selection algorithms to fuzzy data. This extension is
based on a model of the relevance of a feature as a possibility distribu-
tion. The possibilistic relevances are ordered with the help of a fuzzy
ranking. A practical problem where the most informative software met-
rics are searched for in an automatic grading problem is solved with this
technique.

Keywords: Low Quality Data, Vague Data, Genetic Fuzzy Systems,
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1 Introduction

Learning Management Systems or Content Management Systems allow students
and teachers to interact via lectures, assignments, exams or gradings. Open on-
line courses take advantage of these resources, but tracking students and taking
examination are nonetheless time consuming tasks, thus there is demand for in-
telligent techniques that help the instructor to manage large groups of students.
In particular, procedures are seeked that automate the grading process, under-
stood as taking standardized measurements of varying levels of achievement in
a course [2].

Many different automatic grading systems exist in the context of Computer
Science online courses. For instance, in [17] a semi-automated system for task
submission and grading is proposed, but the grading itself must be done manu-
ally by the teacher. The WebToTeach system [2], on the contrary, is able to check

C. Cornelis et al. (eds.): RSCTC 2014, LNAI 8536, pp. 299–308, 2014.
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submitted source code automatically. Similar to this, and focused on program-
ming, the methods in [15] or [11] achieve an automatic grading by comparing
the output of each student program with the output of a correct program. There
is no measurement of the internals of the source code, which it is labelled as
correct if the output is correct, regardless of the solution strategy. The AutoLEP
system [23] is more recent. One of the salient points of the last work is a pro-
cedure to compare any implementation of an algorithm against a single model.
Furthermore, in [22] a methodology is presented that accomplishes automatic
grading by testing the program results against a predefined set of inputs, and
also by formally verifying the source code or by measuring the similarities be-
tween the control flow graph and the teacher’s solution. The parameters of a
linear model are found that averages the influence of the three techniques in
order to match teacher’s and automatic grading in a corpus of manually graded
exercises. Finally, in [14], software metrics are used to measure the properties
of the students’ programs and a fuzzy rule-based system is used to determine
how close the programs submitted by students and the solutions provided by
the teacher are, partially achieving an automatic grading. On the whole, these
approaches pay particular attention to exam grading, that comprises comparing
the outputs of student programs to that of a correct program for the problem
at hand and also checking certain aspects about the internals of the source code
(i.e., code style, documentation, etc.)

However, for the most part, the purpose of the student when following an open
online course is not to obtain a certificate but to acquire a knowledge. In this
respect, from the instructor’s side it is important that early corrective actions
can be taken when learning difficulties are detected and therefore a continuous
assessment of the student must be carried out. Since the evolution of each stu-
dent should not be tracked down to a single exam, incremental measurements
should be taken, and the students must upload many different assignments.
This introduces a new source of uncertainty into this problem, as the number of
assignments is variable, and some of them might be incomplete or missing. Fur-
thermore, if software metrics are used to assess the quality of the assignments,
not all of them will be equally informative. Because of the mentioned reasons,
in this paper:

– A method is proposed for computing a fuzzy aggregated value that summa-
rizes the metrics of the different source files that are related to the same
programming concept.

– The relevance of the different metrics is assessed with an extension of a crisp
feature selection algorithm to fuzzy data.

– A learning fuzzy system that can extract if-then rules from fuzzy data is
used to build the rule based system that performs the grading.

This paper is organized as follows: in Section 2, the method for combining the
values of a metric over a set of different source files, and a method for ranking
the importance of the fuzzy aggregated values are described. In Section 3, a
case study with actual data collected in classroom lectures in 2013 and 2014 is
provided. Section 4 concludes the paper and highlights future research lines.
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2 Feature Selection for Regression with Vague Data

As mentioned, the grading process is intended to determine the level of achieve-
ment of each programming concept, which in turn is assessed by means of a set
of source code files written by the students. The metrics of all files in these sets
are jointly considered. Given that these sets are of different sizes for different
students and some of its elements may be missing, a robust combination method
is needed. The proposed combination will be based on the assumption that the
application of a software metric to a given source code can be assimilated to the
process of measuring the value of an observable variable that provides partial
information about an unobservable variable, which in this case is the degree of
assessment of a given programming concept. It is remarked that the information
provided by different observations may be in conflict. The conversion of a set
of observations or items into an estimation of a non-observable or latent vari-
able that can be fed into a model has been solved in different ways in other
contexts. For instance, there exists models in marketing where sets of items are
preprocessed and aggregated into a characteristic value [8]. The most commonly
used aggregation operator is the mean, although many different functions may
be used instead.

In [20], however, a different approach was used: it was assumed that there
exists a true value for the latent variable, but also that this value cannot be
precised further than a set that contains it. The same idea will be adopted in
this paper. This method is compatible with a possibilistic view of the uncertainty,
where fuzzy sets are used for describing partial knowledge about the data. This
interpretation is grounded in the result that the contour function of a possibility
distribution is a fuzzy set [12], and α-cuts of fuzzy sets are linked to confidence
intervals about the unknown value of the feature with significance levels 1 − α
(see reference [10]). This last property supports the use of intervals or fuzzy data
for modelling uncertain data: a fuzzy set is searched for such that their α-cuts
are confidence intervals with degree 1−α of the expected value of the observation
error. In this paper, bootstrap estimates of these confidence intervals have been
used, that are stacked to form the fuzzy membership functions describing the
aggregated value of the metrics. In the following of this section, a method for
ranking the importance of the fuzzy aggregated metrics in relation to the grading
problem is presented that allows aplying an arbitrary deterministic or random
feature selection algorithm to this problem.

2.1 Random Feature Selection Algorithms Extended to Vague Data

In the following, the grades and fuzzy aggregated metrics will be regarded as
random and fuzzy random variables, respectively. A fuzzy random variable will
be regarded as a nested family of random sets,

(Λα)α∈(0,1), (1)

each one associated to a confidence level 1− α [9]. A random set is a mapping
where the images of the outcomes of the random experiment are crisp sets.
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A random variable X is a selection of a random set Γ when the image of any
outcome by X is contained in the image of the same outcome by Γ . For a random
variable X : Ω → R and a random set Γ : Ω → P(R), X is a selection of Γ
(written X ∈ S(Γ )) when

X(ω) ∈ Γ (ω) for all ω ∈ Ω. (2)

In turn, a random set can be viewed as a family of random variables (its selec-
tions.)

Let be M + 1 paired samples (Xk
1 , X

k
2 , . . . , X

k
N ), and (Y1, Y2, . . . , YN ), with

k = 1, . . . ,M , from M + 1 standard random variables X1, X2, . . . , XM and Y
(in this particular case, M is the number of metrics and N is the number of
students). It will be assumed that all universes of discourse are finite. Let be
assumed that a feature selection algorithm is a random mapping between the
M +1 paired samples and a permutation σ of {1, . . . ,M} that sorts the metrics
according to their relevance:

σ(X1
1 , X

1
2 , . . . , X

M
N , Y1, Y2, . . . , YN , ω) = (σ1, . . . , σM )(ω) (3)

where pik = P (σi = k) = P (ω|σi(ω) = k) with i, k = 1 . . . ,M , is the probability
that the k-th random variable Xk is ranked as the i-th most relevant feature. If
the feature selection criterion is deterministic (for instance, a correlation or mu-
tual information-based criterion [3]) then pik ∈ {0, 1}. In other cases, successive
launches of the feature selection algorithm over the same sample will produce
different permutations (think for instance in random forest feature importance
measures [18]).

Now let be M +1 fuzzy paired samples (X̃k
1 , X̃

k
2 , . . . , X̃

k
N), and an also paired

crisp sample (Y1, Y2, . . . , YN ) fromM+1 fuzzy random variables X̃1, X̃2, . . . , X̃M

and the random variable Y . Let the list of fuzzy numbers σ̃ = (σ̃1, . . . , σ̃M ) be
defined as

μσ̃i
(k) = sup{α | P (σi(X1

1 , X
1
2 , . . . , X

M
N , Y1, Y2, . . . , YN ) = k) ≥ ε

Xk
i ∈ S([X̃k

i ]α), i, k = 1, . . . ,M}
(4)

for a given small value ε. It will be shown later in this paper that each fuzzy
number σ̃ models our incomplete knowledge about the possible ranks of each
fuzzy aggregated metric X̃k; these metrics will be ordered according to a ranking
between fuzzy numbers. In the next section a detailed practical case is worked.

3 Case Study

Fourty six volunteering students from the first course of an Engineering Degree
in Computer Science at Oviedo University, Spain, participated in this study.
The Python programming language was used. Students were allowed to upload
as many source code files as they wished, ranging from none to more than a
solution for each problem. 800 files were uploaded. Seven programming concepts
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Table 1. Relevant metrics

Programming concept Description of the metric Rank 99% Rank 80%

Conditional COCOMO SLOC [4] 1 ± 0 11 ± 10
Conditional Number of tokens 2 ± 0 8.5 ± 7.5
Conditional Code ratio 4 ± 1 25 ± 24
File I/O Number of characters 4 ± 1 11 ± 8

Conditional Number of lines 7 ± 1 21 ± 19
Functions Number of characters 4 ± 1 43 ± 37
Conditional Number of keywords 7.5 ± 1.5 36 ± 33
Conditional Number of comments 17 ± 6 48 ± 44
File I/O Ratio of comments 17 ± 6 48 ± 44
File I/O McCabe Complexity [16] 17 ± 9 30 ± 24
File I/O Number of blocks 17 ± 9 31 ± 25

were studied: Standard I/O, Conditionals, While loop, For loop, Functions, File
I/O and Lists. The evaluation of the students comprised both theoretical and
practice skills, with two exams each, at the midterm and at the end of the term.
The uploaded exercises were not part of the exams and had no impact on the
final grading. 23 software metrics and properties were measured for each source
file1 [1], thus the feature selection stage has to choose between 161 different
combinations of programming concept and software metric.

The feature selection algorithm to be extended is based on the random forest
feature importance measures [18]. A fuzzy rank (see [5]) was used to sort the
fuzzy rankings. In Figure 3, right part, an example is given with the shapes of
the membership functions of the fuzzy ranks of the metrics “COCOMO SLOC”
[4] and “McCabe Complexity” [16]. The most relevant metrics (this is the subset
for which the best model attained a minimum error, details are given later in
this section), and two α-cuts of their fuzzy ranks, are shown in Table 1

Interestingly enough, only two programming concepts (Conditional and File
I/O) made into this list. The most informative metric was COCOMO SLOC, fol-
lowed by other indicators related to the fact that the best students seem to have
better coding style and produce a larger code base with a better documentation.

In Figure 1, the rank of the most relevant metrics, according to the proposed
algorithm, are graphically displayed. Supports (dashed lines), modal points
(bars), fuzzy ranks (abscissa) and crisp ranks (ordinate of the squares) of the 50
most relevant metrics are displayed. Observe that those metrics whose square is
plotted below the diagonal line ocupy a more relevant position under the fuzzy
rank than they were assigned by the crisp feature selection algorithm. Squares
over the diagonal line, on the contrary, are assigned more weight by the crisp
algorithm than they are with the fuzzy extension.

From a methodological point of view the proposed technique is robust and
the available information is better exploited with the combination of the fuzzy
feature selection and a genetic fuzzy system (the NMIC modelling algorithm

1 http://www.webappsec.org/

http://www.webappsec.org/
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Fig. 1. Supports (dashed lines), modal points (bars), fuzzy ranks (abscissa) and crisp
ranks (ordinate of the squares) of the 50 most relevant metrics. Those metrics whose
square is plotted below the diagonal line ocupy a more relevant position under the
fuzzy rank.

for low quality data [19]) than it is with standard feature selection and model
learning algorithms. To prove this fact, regression trees [6], neural networks [13],
support vector machines [21], random forests [7] and the NMIC algorithm were
launched over subsets sweeping the range between 10 and 20 metrics, found by
both the extended fuzzy feature selection algorithm and the original crisp version
operating on the centerpoints of the aggregated data. In Table 2 these results
are jointly displayed. In Figure 2, test errors corresponding to the selection of
the most relevant variables with random forest feature importance measures
(applied to the centerpoints of the fuzzy data) are drawn with dashed lines.
The proposed extension of the same feature selection method to fuzzy data,
followed by a learning with the same centerpoints for Regression Trees, Neural
Networks, Support Vector Machines and Random Forest, but the whole fuzzy
data for NMIC, are drawn with solid lines. Observe that, if the number of features
associated to the lowest test error is chosen as a quality index, the proposed
extension improved the accuracy of the grading system in 4 of 5 cases (all but
the Regression Tree, with incidentally attained the worst results).

The combination of the NMIC algorithm with fuzzy data was consistently bet-
ter in all cases (statistically relevant results, according to Friedman/Wilcoxon
tests, p-value better than 0.05). In the left part of Figure 3 a set of boxplots is
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Fig. 2. Test error as a function of the number of features for feature subsets of sizes 10
to 20. Test errors after a random forest feature importance-based selection, applied to
the centerpoints of the fuzzy data, are drawn with dashed lines. The extension of this
method to fuzzy data, followed by a learning with the same centerpoints for Regression
Trees, Neural Networks, Support Vector Machines and Random Forest, but the whole
fuzzy data for NMIC, are drawn with solid lines.
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Table 2. Test error or the different regression methods for feature sets ranging from
10 to 20 variables

Multilayer Regression Random
Features Perceptron SVM Tree Forest NMIC

10 7.703 7.185 8.574 6.671 7.011
11 7.729 7.093 8.574 7.285 6.321
12 7.823 7.128 8.185 6.802 6.629
13 7.451 6.911 8.185 6.742 6.678
14 7.641 6.914 8.185 6.854 7.073
15 7.472 6.670 8.084 7.617 7.056
16 7.661 6.652 8.185 6.576 7.236
17 7.785 6.791 8.185 7.716 6.764
18 7.838 6.728 8.703 7.285 8.399
19 8.195 6.445 8.703 7.256 7.256
20 8.672 6.648 8.909 8.357 7.451
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Fig. 3. Left part: Boxplot showing the statistical differences between the test error of
the combination of Neural Networks (NN), Support Vector Machines (SVM), Regres-
sion Trees (RT), Random Forests (RF) and NMIC with the feature set computed as
described in this paper. NMIC exploits the imprecision in the information better than
the alternatives. Right part: Membership functions of the ranks of the first (solid) and
10-th (dashed) features, i.e. COCOMO SLOC and McCabe complexity.

drawn, showing the statistical differences between the test error of the combi-
nation of Neural Networks (NN), Support Vector Machines (SVM), Regression
Trees (RT), Random Forests (RF) and NMIC with the feature set computed
as described in this paper. The last graphic is intended to shown that NMIC
exploits the imprecision in the information better than the alternatives, demon-
strating that the fuzzy aggregation loses less information than the alternatives
and also that the proposed method is able to exploit this extra information.
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4 Concluding Remarks and Future Work

A method for ranking software tests according to their relevance in an automatic
grading systems has been proposed. The main innovation of the new method lies
in the development of a set of techniques that can make use of a fuzzy aggregation
of the information contained in a variable number of exercises about the same
learning subject.

From a methodological point of view, the new algorithm is a solid alterna-
tive. The combination of a learning algorithm for vague data and the extended
feature selection proposed in this paper was shown to make a better use of the
imprecision in the information than any of the alternatives, demonstrating that
the fuzzy aggregation keeps valuable information and also that the proposed
method is able to exploit this. On the other hand, from the point of view of
the automated grading techniques, it has been found that the most informative
metrics are some measures of the cost and complexity of the code, followed by
indicators related to the code size and quality of the documentation. However,
there is still a margin for improving this knowledge, as the number of students
participating in ths study was small and further work is needed to build a larger
corpus of hand-graded assignments.
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from the European Regional Development Fund.
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Abstract. The problem of recognition of a sequence of objects (e.g., video-
based image recognition, phoneme recognition) is explored. The generalization 
of the fuzzy phonetic decoding method is proposed by assuming the distribution 
of the classified object to be of exponential type. Its preliminary phase includes 
association of each model object with the fuzzy set of model classes with grades 
of membership defined as the confusion probabilities estimated with the Kull-
back-Leibler divergence between model distributions. At first, each object (e.g., 
frame) in a classified sequence is put in correspondence with the fuzzy set 
which grades are defined as the posterior probabilities. Next, this fuzzy set is in-
tersected with the fuzzy set corresponding to the nearest neighbor. Finally, the 
arithmetic mean of these fuzzy intersections is assigned to the decision for the 
whole sequence. In this paper we propose not to limit the method's usage with 
the Kullback-Leibler discrimination and to estimate the grades of membership 
of models and query objects based on an arbitrary distance with appropriate 
scale factor. The experimental results in the problem of isolated Russian vowel 
phonemes and words recognition for state-of-the-art measures of similarity are 
presented. It is shown that the correct choice of the scale parameter can signifi-
cantly increase the recognition accuracy. 

Keywords: Classification, sequence of objects, fuzzy sets, phoneme recogni-
tion, fuzzy decoding method, Kullback-Leibler discrimination, Mel-frequency 
cepstral coefficients. 

1 Introduction 

The problem of recognition of a set of objects is quite acute [1] though it usually ap-
pears as a part of complex object or speech recognition algorithms [2]. For instance, 
conventional speech recognition system includes the extraction of regular segments 
extracted by any phoneme segmentation method, dividing them into a sequence of 
partially-overlapped frames, classification of each frame with available phonetic data-
base (acoustic model) and further processing of frame's recognition result (Dynamic 
Time Warping or Hidden Markov Models, language models, etc) [3]. The efficiency of 
speech recognition is largely determined by the quality of phoneme recognition [3, 4]. 
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The latter is exactly the task of recognition of a sequence of objects (frames). Another 
important example is a still-to-still approach to a video-based image recognition [5]. 
According to this approach, at first, detected object is tracked and recognized in each 
video frame. Next, recognition results for each frame are aggregated by a simple voting 
(SV) procedure or more complex algorithms to provide final solution [2]. 

This paper seeks the way to improve the quality of conventional SV scheme by the 
usage of the fuzzy set theory [6, 7]. Following the ideas of our fuzzy phonetic decod-
ing method (FPD) [4], we define each class (i.e., phoneme label, person in face  
recognition) as a fuzzy set of all available model objects. In comparison with conven-
tional class definition as a crisp set of models corresponding to this class, our ap-
proach allows to take into account the closeness of models from different classes. The 
distance between each frame and every model rX  should be approximately equal to 

the distance between the model from correct class and rX . In order to verify the 

frame's recognition result, we use the fuzzy intersection of sets corresponding to this 
frame and to the nearest neighbor model. Thus, the main difference between the cur-
rently proposed fuzzy decoding (FD) method and the original FPD is as follows: 

1) The FD method is a generalization of the FPD to a problem of statistical classi-
fication of the sequence of object observations (e.g., still-to-still video recognition). 
Hence the FD is not restricted to the use only in the field of phoneme recognition.  

2) The FD method is able to be combined with the nearest neighbor rule with an 
arbitrary distance, while the original FPD was designed only for its application with 
comparison of power spectral density (PSD) speech features with the Kullback-
Leibler (KL) minimum information discrimination principle [8]. It is known from the 
speech recognition theory [3, 9], other methods (first of all, comparison of the mel-
frequency cepstral coefficients (MFCC)) are characterized with better accuracy and 
performance. Our current experimental study shows that the proposed FD method can 
increase the recognition accuracy even for MFCC features compared with conven-
tional Euclidean metric.  

The rest of the paper is organized as follows: Section 2 presents the SV solution of 
the problem of statistical classification of objects' sequence by assuming the objects 
distribution to be of exponential family. In Section 3, we introduce our generalization 
of the FPD, namely, the fuzzy decoding method, and show the possibility of its usage 
with an arbitrary distance. In Section 4, we present the experimental results of the 
proposed method in the isolated vowel phonemes and words recognition task for Rus-
sian language [4, 10]. Finally, concluding comments are given in Section 5. 

2 Classification of a Sequence of Objects 

Let the input sequence { } TttX ,1,)( =  of 1≥T  objects be specified. For example, 

each object )(tX  may be a feature vector of speech frame (in automatic speech rec-

ognition) or an image frame (in video-based object recognition task). The problem is  
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to assign the sequence { })(tX  to one of R>1 classes. We suppose that different ob-

servations of only one object is presented in this sequence (i.e., object detection and 
tracking procedures were performed preliminarily, e.g., the sequence { })(tX  contains 

several serial speech frames of one phone). Each r-th class is given with the model 
training set rX . In this paper we define this recognition task in terms of statistical 

classification. It is assumed that objects in each class are identically distributed and all 
distributions are of multivariate exponential type ( )Xfθ  generated by the fixed (for 

all classes) function ( )Xf0  with K-dimensional parameter vector θ  [11] 

 ( ) ( ) ( ) )(/0)(ˆ)(exp τθθτθ MXfXXf ⋅⋅= , 

( ) ( ) ⋅⋅= dXXfXM 0)(ˆ)(exp)( θθττ  
(1)

where )(ˆ Xθ  is an estimation of parameter θ  using available data (random sample) X, 

and )(θτ  is a normalizing function (K-dimensional parameter vector) defined by the 

following equation if the parameter estimation )(ˆ Xθ  is unbiased (see [8] for details): 

 ( ) θτ
τθθ =≡ ⋅ )(ln)(ˆ M

d

d
dXXfX . (2)

Each class is determined by its parameter vector rθ . This assumption about expo-

nential family of each class ( )Xf
rX )(θ̂  in which parameter rθ  of r-th class is  

estimated by using the observed (given) sample rX , covers wide range of known 

distributions (polynomial, normal, etc.). In such case an optimal Bayesian solution for 
classification of observation )(tX  is obtained with the nearest neighbor rule with the 

KL discrimination [8] 
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The final solution of a sequence recognition task is obtained in favor of *r  class 
by SV [2, 4]: 

r
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= , (4)
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where  

( )
=

−=
T

t
rtr

1
)(νδμ  (5)

and )(⋅δ  is the discrete Dirac delta function. 

3 Fuzzy Decoding Method  

Unfortunately, if several model classes are quite close to each other, the accuracy of 
straightforward SV (3)-(5) is rather low. To improve the quality we propose to follow 
our FPD method [4] and to define each class as the fuzzy set of models. Namely, the 

j-th ( Rj ,1= ) class is represented not only by a model jX , but by a fuzzy set 














 )(, j

rrX μ , where the grade of membership )( j
rμ  is defined as the confusion 

probability ( )jXrXP of marking j-th class as an object of the r-th class (i.e., the 

distance between the object from j-th class and rX  is minimal). This probability can 

be estimated on the basis of known asymptotic properties of the KL divergence [8]. 
Namely, the double KL distance between objects from j-th and r-th classes is asymp-
totically distributed as a non-central chi square with )1( −K  degrees of freedom and 

noncentrality parameter ( ) 







⋅ jX

rX
fI ;ˆ:*ˆ2 θ . As the number of parameters K is 

usually quite large, the central limit theorem can be applied and the KL discrimination 

is asymptotically normally distributed. Hence, the probability ( )jXrXP  can be es-

timated with the known distribution of independent minimum normal variables [13]: 
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where ( )⋅Φ  is a cumulative distribution function of ( )1;0N , and any numeric method 

is used for integration. 
Next, each query object )(tX  is associated with the fuzzy set ( )( ){ })(, tXrrX μ , 

where the grade of membership ( ))(tXrμ  is defined as the r-th posterior probability 
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( ))(tXrXP  [2]. If all classes are assumed to be equiprobable, the latter probability is 

estimated from the known equation [11, 14] 

 ( ) ( )
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According to the asymptotic properties of the KL divergence [8], the distance be-
tween the object )(tX  from j-th class and rX  is approximately equal to 

( ) 







jX

rX
fI ;ˆ:*ˆ
θ . In such case, conditional probabilities ( ))(tXrXP  and 

( )jr XXP  are approximately identical for all { }Rr ,...,1∈ . Thus, to verify the cor-

rectness of the nearest neighbor class )(tν  (3), the decision ( ){ }trrX ;, μ  for the frame 

)(tX  is a fuzzy intersection of sets 
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rtr μνμμ , (8)

where ))(( t
r
νμ  is determined by (6) after substitution )(tj ν= . Final decision is taken 

in favor of one of the model minimal speech units on the basis of all tr;μ  (8). In this 

work, a decision is made by SV (4), but rμ  is defined as follows 


=

=
T

t
trTr

1
;

1 μμ , (9)

The proposed classification method (3), (4), (6)-(9) is a generalization of the FPD 
in the problem of recognition of a sequence of objects. As one can notice, it includes 
only calculation of the KL divergence in (3), (6) and (7). Hence, our final proposal is 
to replace this discrimination by the similar to (3) nearest neighbor rule with arbitrary 
distance ( )⋅ρ : 

( )rXtX
Rr

t ),(
,1

minarg)( ρν
=

= , 
(10)

Equations (6) and (7) should be slightly modified to add appropriate smoothing 
factor 0>= constα . The latter can be found experimentally. In such case,  
equation (7) becomes equivalent to the known output of the probabilistic neural net-
work [15] 
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By using the same idea, conditional probability (6) is estimated with  
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Thus, in this section we proposed the fuzzy decoding method (8)-(12) in the recog-
nition of a sequence of objects problem. Our method is based on the nearest neighbor 
rule (10) and may be used with arbitrary distance to increase the accuracy of conven-
tional SV (4), (5), (10). The next section experimentally supports this claim. 

4 Experimental Results  

In this section we examine the usage of the proposed FD method in the typical prob-
lem of set of objects classification, namely, vowel phonemes recognition for Russian 
language. To implement our FD method we use the following state-of-the-art similari-
ty measures and speech features: 

1) 12 MFCCs features + their first derivatives (totally, K=24 parameters) compared 
with the Euclidean distance [3]. 

2) Autoregression (AR) estimates of the speech signal PSD [3] compared with: 
a) the Itakura-Saito (IS) divergence [16] (equivalent with a constant factor to the 

KL information discrimination for Gaussian signals [17]) 

 
= 
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where )(1 fG  and )(2 fG  are the PSDs of signals 1X  and 2X , respectively, F is the 

speech sampling rate. 
b) Spectral distortion (SD) which is the known equivalent to the linear prediction 

coding cepstral coefficients' comparison in Euclidean space [3] 
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The model database was filled with R=10 Russian vowels pronounced by each of 5 
speakers (3 men and 2 women) in isolated mode. These models were used to recog-
nize the vowel in isolated syllables and words produced by the same speaker, i.e., we 
test a speaker-dependent mode of speech recognition [3]. The following parameters 
were chosen: sampling frequency F=8 kHz, AR-model order 20 (i.e., K=20 for the 
PSD features), signal to noise ratio is equal to 30 dB, utterances are divided into 45-
ms frames with 30-ms overlap. The range of the smoothing parameter variation is 

}5.1,1,5.0,1.0,05.0,01.0,005.0{∈α . All tests are performed in a modern laptop (4 

core i7, 6 Gb RAM).  
In the first experiment every speaker produced 1000 isolated vowels (100 for each 

class). The dependence of the average recognition accuracy for various metrics on α is 
shown in Fig. 1. To compare the computing efficiency of the proposed FD method 
with the SV we summarized the recognition results for the best (in terms of achieved 
accuracy) value of α in Table 1.  
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Fig. 1. Dependence of the phoneme recognition accuracy on α 

Table 1. The best phoneme recognition experimental results  

Distance/features The best obtained α Time, ms Accuracy, % 
SV FD SV FD 

Euclidean+MFCC 1 0.7±0.02 1.0±0.01 80±1.7 85±1.4 
IS+PSD 0.05 3.5±0.05 5.5±0.04 81.5±1.9 86±1.4 
SD+PSD 0.01 1.8±0.03 2.2±0.04 77±1.7 82±1.5 

 
Based on these results, it is possible to draw the following conclusions. First, expe-

rimentally obtained parameter α can significantly increase the accuracy of phonemes 
recognition. For example, the SD's accuracy for the best obtained smoothing parame-
ter α=0.01 is 10% higher than the accuracy for α=1. Second, the conventional ap-
proach to speech recognition (Euclidean discrimination with MFCC features) is  
expectedly characterized with the best computing efficiency. Third, though the FD's 
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performance is a bit higher than the SV's performance, the proposed FD method's 
error rate is usually much lower than the SV's error. 

The second experiment is devoted to isolated words recognition. Two vocabularies 
were used, namely, 1) the list of 1832 Russian towns with corresponding regions; and 
2) the list of 1913 drugs (hereinafter "Pharmacy"). All speakers pronounced every 
word from all vocabularies twice in isolated syllable mode to simplify the recognition 
procedure [18]. The phonetic database of R=10 speaker-dependent vowels from the 
first experiment was used. The algorithm is quite straightforward [19, 20]. Syllables 
are extracted with simple amplitude detector and vowels are recognized in each sylla-
ble [21] by described SV and PD methods. Finally, each word is associated with the 
mean of grades of memberships rμ  (5), (9) of syllables contained in this word. The 

word with the highest mean of grades is put into solution. To compare our results with 
the state-of-the-art approach, we used CMU Pocketsphinx 0.8 [22] with the MLLR 
speaker adaptation [3] to recognize vowels in each syllable. Posterior probabilities 
evaluated by Sphinx for each syllable are aggregated with SV (similar to (4), (5)). The 
dependence of the words recognition accuracy on the smoothing parameter is shown 
in Fig. 2 (Towns) and Fig. 3 (Pharmacy).  
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Fig. 2. Dependence of the words recognition accuracy α, vocabulary Towns 
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Fig. 3. Dependence of the words recognition accuracy α, vocabulary Pharmacy 
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Comparing these figures with the results of the first experiment (Fig. 1), one can 
notice that the best smoothing parameter is quite stable to the choice of distance and 
features. Namely, the best accuracy of words recognition is achieved with the same 
values of α as for the phoneme recognition task (Table 1). The average accuracy for 
the best α is summarized in Table 2. Though the standard deviation in each case 
seems to be quite high, these results are statistically significant as we used quite large 
test databases. The high variation may be explained by the fact, that all speakers can-
not reach the same error rate due to their physical abilities. 

Table 2. Isolated words recognition accuracy, % 

Distance/features Towns Pharmacy
SV FD SV FD

Euclidean+MFCC 92±3.4 96±2.9 89.5±2.2 93±2.0 
IS+PSD 91.5±3.2 95±3.0 90±2.0 93.5±1.9
SD+PSD 88.5±2.7 93±2.4 87±2.9 91±2.8 
CMU Pocketsphinx 90.5±2.3 - 89.4±3.0 - 

 
The most significant conclusion here is the superiority of the proposed FD method 

over conventional SV in terms of achieved accuracy. These experiments support the 
fact that our method may be successfully applied not only with the IS divergence 
(equivalent to the KL discrimination), but with various measures of similarity. For 
instance, the best recognition accuracy is achieved with state-of-the-art MFCC fea-
tures comparison in Euclidean space. It is also remarkable that the error rate of the SV 
with MFCC is lower than the Pocketsphinx' error. It seems that our speaker adaptation 
is much more effective as the phonetic database for the SV (and the FD) is filled with 
the speaker's vowels and does not contain information from general acoustic model. 

5 Conclusion and Future Work 

In this paper we introduced a generalization of our FPD method for exponential fami-
ly of distribution. As the synthesized equations (3), (7), (8) contain only evaluation of 
the KL divergence, we produced final expressions (10)-(12) to apply our method with 
an arbitrary distance. The experiment with Russian speech recognition showed the 
stability of the smoothing parameter's choice to a type of distance and object features. 
As a result, the usage of the FD method yields to the increase of the recognition  
accuracy (Tables 1,2) in comparison with conventional voting algorithm (5). The 
computing efficiency of the FD is obviously lower than for the SV technique due to 
calculation of the posterior probabilities (11). However, the phoneme recognition time 
is still reasonable even for real-time applications (Table 1). 

The further research of the FD method may be continued in the following  
directions. First, it is an application to the continuous speech recognition [3] and ag-
gregation of our solution with speaker-independent systems (e.g., Pocketsphinx [22]). 
Other possible direction is the application of our method with other set of objects 
recognition tasks, mainly, with still-to-still video-based face recognition [5, 14].  
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Abstract. We have recently designed an extension of the XPath lan-
guage which provides ranked answers to flexible queries taking profit of
fuzzy variants of and, or and avg operators for XPath conditions, as well
as two structural constraints, called down and deep, for which a certain
degree of relevance is associated. In practice, this degree is very low for
some answers weakly accomplishing with the original query, and hence,
they should not be computed in order to alleviate the computational
complexity of the information retrieval process. In this work we focus
on the scalability of our interpreter for dealing with massive XML files
by making use of its ability for prematurely disregarding those compu-
tations leading to non significant solutions (i.e., with a poor degree of
relevance according the preferences expressed by users when using the
new command FILTER). Since our proposal has been implemented with
a fuzzy logic language, here we exploit the high expressive resources of
this declarative paradigm for performing “dynamic thresholding” in a
very natural and efficient way, thus connecting with the so-called top-k
answering problem, which is very well-known in the fuzzy logic and soft
computing arena.

Keywords: Information Retrieval Systems, Fuzzy XPath, Information
Filtering Systems, Fuzzy Filtering & Thresholding, Fuzzy Logic
Programming.

1 Introduction

The XPath language [7] has been proposed as a standard for XML querying and
it is based on the description of the path in the XML tree to be retrieved. XPath
allows to specify the name of nodes (i.e., tags) and attributes to be present in
the XML tree together with boolean conditions about the content of nodes and
attributes. XPath querying mechanism is based on a boolean logic: the nodes re-
trieved from an XPath expression are those matching the path of the XML
tree. Therefore, the user should know the XML schema in order to specify
queries. However, even when the XML schema exists, it can not be available
for users. Moreover, XML documents with the same XML schema can be very
different in structure. Let us suppose the case of XML documents containing the
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curriculum vitae of a certain group of persons. Although they can share the same
schema, each one can decide to include studies, jobs, training, etc. organized in
several ways: by year, by relevance, and with different nesting degree.

Therefore, in the context of semi-structured databases, flexible query lan-
guages arise for allowing the formulation of queries without taking into account a
rigid database schema, usually including too mechanisms for obtaining a certain
ranked list of answers. The ranking of answers can provide satisfaction degree de-
pending on several factors. In a structural XPath-based query, the main criteria
to provide a certain degree of satisfaction depends on the hierarchical deepness
and document order. Therefore the query language should provide mechanisms
for giving priority to answers when they occur in different parts of the document.
In this sense, the need for providing flexibility to XPath has recently motivated
the investigation of extensions of the XPath language. We can distinguish those
in which the main goal is the introduction of fuzzy information in data (similar-
ity, proximity, vagueness, etc) [9,16,30,26] and the proposals in which the main
goal is the handling of crisp information by fuzzy concepts [10,13,15,14,20]. Our
work focuses on the second line of research.

In [10,13] authors introduce in XPath flexible matching by means of fuzzy con-
straints called close and similar for node content, together with below and near
for path structure. In addition, they have studied deep-similar notion for tree
matching. In order to provide ranked answers they adopt a Fuzzy set theory-based
approach in which each answer has an associated numeric value (the membership
degree). The numeric value represents the Retrieval Status Value (RSV) of the
associated item. In the work of [15], they propose a satisfaction degree for XPath
expressions based on associating a degree of importance to XPath nodes, and
they study how to compute the best k answers. In both cases, authors allow the
user to specify in the query the degree in which the answers will be penalized.
On the other hand, in [14], they have studied how to relax XPath queries by
means of rewriting in order to improve information retrieval in the presence of
heterogeneous data resources. Our proposal also connects with the recent ap-
proaches of [27,28] but, as we are going to see, it is important to note that many
of our fuzzy commands are directly inspired by the powerful expressive resources
of the underlying fuzzy logic language used for implementing our tool.

As we will resume in Section 2, in [3,4,5,6] we have presented both an inter-
preter and a debugger coping with an extension of the XPath query language for
managing flexible queries in a very natural way (the tool can be tested on-line via
http://dectau.uclm.es/fuzzyXPath/). Our approach proposes two structural
constraints called down and deep for which a certain degree of relevance can be
associated. In such a way that down provides a ranked set of answers depending
on the path is found from “top to down” in the XML document, and deep provides
a set of answers depending on the path is found from “left to right” in the XML
document. Both structural constraints can be combined. In addition, we provide
fuzzy operators and, or and avg for XPath conditions. In this way, users can ex-
press the priority they give to answers. Such fuzzy operators can be combined to
provide ranked answers. Our approach has been implemented with the so-called
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«Multi-Adjoint Logic Programming» language (MALP in brief) [22] by using our
«Fuzzy LOgic Programming Environment for Research» FLOPER [23,24,25],
which can be freely downloaded from http://dectau.uclm.es/floper/.

We wish to remark now that our proposal is an extension of previous works
about the implementation of XPath by means of logic programming [2], which
has been extended to XQuery in [1]. The new extension follows the same en-
coding proposed in [1] in which a predicate called xpath is defined by means
of Prolog rules, which basically traverse the Prolog representation of the
XML tree by means of a Prolog list. In order to implement Fuzzy-XPath by
means of FLOPER we proceed similarly to the Prolog implementation of
XPath, but proposing a new (fuzzy) predicate called fuzzyXPath implemented
in MALP. The new query language returns a set of ranked answers each one
with an associated RSV. Such RSV is computed by easily using MALP rules
(thus exploiting the correspondences between the languages for-being and to-be
implemented), where the notion of RSV is modeled inside a multi-adjoint lat-
tice, and usual fuzzy connectives of the MALP language act as ideal resources
to represent new flexible XPath operators.

As we will see in Section 3, the main goal of this paper consists in the intro-
duction of a new fuzzy command inside Fuzzy-XPath which comfortably relies on
our implementation based on fuzzy logic programming. So, when «[FILTER=r]»
precedes a fuzzy query, the interpreter lazily explores an input XML document
for dynamically disregarding as soon as possible those branchs of the XML tree
leading to irrelevant solutions with an RSV degraded below r, thus allowing the
possibility of efficiently managing large files without reducing the set of answers
for which users are mainly interested in.

2 A Fuzzy Extension of XPath

Following [3,4,5,6], our flexible XPath is defined by means of the following rules:

xpath := [deepdown]path
path := literal | text() | node | @att |

node/path | node//path
node := QName | QName[cond]
cond := path op path

deepdown := DEEP=degree, DOWN=degree
op := > | = | < | and | or | avg

Basically, our fuzzy proposal extends XPath as follows:

• A given XPath expression can be adorned with «[DEEP = r1, DOWN = r2]»
which means that the deepness of elements is penalized by r1 and that the
order of elements is penalized by r2, and such penalization is proportional
to the distance. In particular, «[DEEP = 1, DOWN = r2]» can be used for
penalizing only w.r.t. document order. DEEP works for //, and DOWN
works for / and //.
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<bib>
<book year="2001" price="45.95">

<title>Don Quijote de la Mancha</title>
<author>Miguel de Cervantes Saavedra</author>
<publications> <book year="1997" price="35.99">

<title>La Galatea</title>
<author>Miguel de Cervantes Saavedra</author>
<publications>

<book year="1994" price="25.99">
<title>Los trabajos de Persiles y Segismunda</title>
<author>Miguel de Cervantes Saavedra</author></book>

</publications></book>
</publications></book>

<book year="1999" price="25.65">
<title>La Celestina</title>
<author>Fernando de Rojas</author></book>

<book year="2005" price="29.95">
<title>Hamlet</title>
<author>William Shakespeare</author>
<publications>

<book year="2000" price="22.5">
<title>Romeo y Julieta</title>
<author>William Shakespeare</author></book>

</publications></book>
<book year="2007" price="22.95">

<title>Las ferias de Madrid</title>
<author>Felix Lope de Vega y Carpio</author>
<publications>

<book year="1996" price="27.5">
<title>El remedio en la desdicha</title>
<author>Felix Lope de Vega y Carpio</author> </book>

<book year="1998" price="12.5">
<title>La Dragontea</title>
<author>Felix Lope de Vega y Carpio</author></book>

</publications></book>
</bib>

Fig. 1. Input XML document in our examples

• Moreover, the classical and and or connectives admit here a fuzzy behavior
based on fuzzy logic, i.e., assuming two given RSV’s r1 and r2, operator and
is defined as r3 = r1 ∗ r2 and operator or returns r3 = r1 + r2 − (r1 ∗ r2). In
addition, the avg operator is defined as r3 = (r1 + r2)/2.

In general, an extended XPath expression defines, w.r.t. a XML document, a se-
quence of subtrees of the XML document where each subtree has an associated
RSV. XPath conditions, which are defined as fuzzy operators applied to XPath
expressions, compute a new RSV from the RSVs of the involved XPath expres-
sions, which at the same time, provides a RSV to the node. In order to illustrate
these explanations, let us see some examples of our proposed fuzzy version of
XPath according to the XML document shown in Figure 1 whose skeleton is
depicted in Figure 2.

Example 1. Suppose the XPath query: « [DEEP=0.9,DOWN=0.8]//title », that
requests title’s penalizing the occurrences from the document root by a propor-
tion of 0.9 and 0.8 by nesting and ordering, respectively, and for which we obtain
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Fig. 2. XML skeleton represented as a tree

Document RSV computation

<result>
<title rsv="0.81">Don Quijote de la Mancha</title>
<title rsv="0.6561">La Galatea</title>
<title rsv="0.531441">Los trabajos de Persiles y ...</title>
<title rsv="0.648">La Celestina</title>
<title rsv="0.5184">Hamlet</title>
<title rsv="0.419904">Romeo y Julieta</title>
<title rsv="0.41472">Las ferias de Madrid</title>
<title rsv="0.3359232">El remedio en la desdicha</title>
<title rsv="0.26873856">La Dragontea</title>

</result>

0.81 = 0.92

0.6561 = 0.94

0.531441 = 0.96

0.648 = 0.92 ∗ 0.8
0.5184 = 0.92 ∗ 0.82

0.419904 = 0.94 ∗ 0.82

0.41472 = 0.92 ∗ 0.83

0.3359232 = 0.94 ∗ 0.83

0.26873856 = 0.94 ∗ 0.84

Fig. 3. Output of a query using DEEP/DOWN

Document RSV computation
<result>

<book rsv="0.5" ...> <title>Don Quijote ...</title> ...</book>
<book rsv="1.0"...><title>La Celestina</title> ...</book>
<book rsv="1.0" ...><title>Hamlet</title> ...</book>
<book rsv="0.5" ...><title>Las ferias de Madrid</title> ...</book>

</result>

0.5 = 0 + 1/2
1 = 1 + 1/2
1 = 1 + 1/2
0.5 = 1 + 0/2

Fig. 4. Output of a query using AVG
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Document RSV computation

<result>
<title rsv="0.3645">La Galatea</title>
<title rsv="0.295245">Los trabajos de Persiles y... </title>
<title rsv="0.72">La Celestina</title>
<title rsv="0.288">Hamlet</title>
<title rsv="0.2304">Las ferias de Madrid</title>
<title rsv="0.2985984">El remedio en la desdicha</title>
<title rsv="0.11943936">La Dragontea</title>

</result>

0.3645 = 0.93 ∗ 1/2
0.295245 = 0.95 ∗ 1/2
0.72 = 0.9 ∗ 0.8 ∗ 1
0.288 = 0.9 ∗ 0.82 ∗ 1/2
0.2304 = 0.9 ∗ 0.83 ∗ 1/2
0.2985984 = 0.93 ∗ 0.84 ∗ 1
0.11943936 = 0.93 ∗ 0.85 ∗ 1/2

Fig. 5. Output of a query using all operators

Records
FILTER

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1000 1.766 1.696 1.734 0.842 0.469 0.268 0.221 0.087 0.056
2000 6.628 6.432 6.998 3.242 1.439 0.677 0.599 0.168 0.122
3000 14.532 14.023 14.059 6.306 2.831 1.257 1.101 0.253 0.179
4000 25.535 24.684 24.722 10.883 4.827 1.918 1.794 0.345 0.242
5000 41.522 37.782 37.166 16.201 7.242 2.993 2.516 0.427 0.281
6000 58.905 55.354 55.596 24.411 10.993 4.207 3.554 0.554 0.373
7000 85.167 85.652 82.733 37.748 14.436 5.083 4.653 0.649 0.460
8000 137.737 102.816 102.763 69.401 26.680 8.273 5.894 0.690 0.481
9000 175.272 131.828 131.021 56.937 22.601 7.869 7.329 0.824 0.549
10000 195.613 185.201 167.676 95.286 26.649 9.516 9.595 0.973 0.742

Fig. 6. Performance of Fuzzy-XPath by using FILTER on XML files with growing sizes

the file listed in Figure 3. In such document we have included as attribute of
each subtree, its corresponding RSV. The highest RSVs correspond the main
book’s of the document, and the lowest RSVs represent the book’s occurring in
nested positions (those annotated as related publication’s).

Example 2. Figure 4 shows the answer associated to the XPath expression: «
/bib/book[@price<30 avg @year<2006] ». Here we show that books satisfying
a price under 30 and a year before 2006 have the highest RSV.

Example 3. Finally, combining all operators «[DEEP=0.9,DOWN=0.8]
//book [(@price>25 and @price<30) avg (@year<2000 or @year>2006)]/title»,
the RSV values are more scattered, as shown in Figure 5.

3 Using Filters for the Dynamic Thresholding of Queries

In [19,18] we have reported some thresholding techniques specially tailored for
the MALP language, where the main idea consists in to dynamically create
and evaluate filters for prematurely disregarding those superfluous computations
leading to non-significant solutions. Somehow inspired by the same guidelines,
we have recently equipped our fuzzyXPath interpreter with a new command
with syntax «[FILTER=r]» (being r a real number between 0 and 1) which can
be used just at the beginning of a query for indicating that only those answers
with RSV greater of equal than r must be generated and reported.
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Fig. 7. Runtime for several Fuzzy-XPath queries varying DEEP and FILTER

So, if we consider a Fuzzy-XPath query with the following form
«[FILTER=0.4]//book[@year<2000 avg @price<50]/title», we obtain nine an-
swers, but only five if we fix «[FILTER=0.8]». Obviously, we would hope that
the runtime of the second case should be lower than the first one since, as our
approach does, there is no need for computing all solutions and then filtering the
best ones. This desired dynamic behaviour when avoiding useless computations
is reflected in Figure 6 which considers the effort needed for executing (exclud-
ing parsing/compiling time) a query like «[FILTER=r]//book[(@price>25 and
@price<30) avg (@year<2000 or @year>2006)]»where each row represents the
size of several XML files accomplishing with the same structure of our running
example (but considering different nesting levels of tags book, title, author
and publications), and each column refers to a different degree of the FILTER
command. Here, the runtime is measured in seconds (the benchmarks have been
performed using a computer with processor Intel Core Duo, with 2 GB RAM
and Windows Vista) and each record in the input file refers to a different book
(that is, the number of records coincides with the number of occurrences of tag
book) which might contain other books inside its publications tag.

Moreover, in Figure 7 we continue with a similar query to the previous one,
but also considering the DEEP command1. Here, for a large XML document
with a fixed size, we express the number of seconds needed for executing such
query when varying FILTER and DEEP, where it is easy to see that the be-
haviour is more and more improved whenever FILTER grows and DEEP de-
creases, as wanted. Note that the previous query makes use of the avg command
and remember that its behaviour is defined, for two given RSV’s r1 and r2, as

1 This kind of statistics can be produced on-line for several XML files and Fuzzy-XPath
queries via the following URL that we have just prepared for the interested reader:
http://dectau.uclm.es/fuzzyXPath/fuzzyXPathEstatistic2.php#testing.
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Fig. 8. Varying DEEP and FILTER in a query using avg{30, 1}

r3 = (r1+r2)/2. We have recently conceived a priorized version of such operator
which let us to give different degrees of importance to its arguments. In general,
avg{p1, p2} is computed by r3 = (r1 ∗ p1 + r2 ∗ p2)/(p1 + p2) and hence, if in
the previous query we use avg{30, 1} instead of standard avg, we indicate that
the first sub-condition (i.e., @price>25 and @price<30) is 30 times more impor-
tant than the second one (i.e., @year<2000 or @year>2006), whereas avg{1, 30}
represent the inverse criterium. In Figures 8 and 9 we provide statistics in the
same way than in Figure 7, but using now average with priorities 30-1 and 1-30,
respectively.

Although the core of our application is written with (fuzzy) MALP rules, our
implementation is based on the following items:

(1) We have reused/adapted several modules of our previous Prolog-based
implementation of (crisp) XPath described in [1,2].

(2) We have used the SWI-Prolog library for loading XML files, in order to
represent a XML document by means of a Prolog term2.

(3) The parser of XPath has been extended to recognize the new keywords
FILTER, DEEP, DOWN, avg, etc... with their proper arguments.

(4) Each tag is represented as a data-term of the form: element(Tag, Attribu-
tes, Subelements), where Tag is the name of the XML tag, Attributes is
a Prolog list containing the attributes, and Subelements is a Prolog list
containing the sub-elements (i.e. sub-trees) of the tag. For instance, the doc-
ument of Figure 1 is represented in SWI-Prolog like in Figure 10. Loading
of documents is achieved by predicate load_xml(+File,-Term) and writing
by predicate write_xml(+File,+Term).

(5) Predicate fuzzyXPath(+ListXPath,+Tree,+Deep,+Down,+Filter,+Accum)
receives six arguments: (1) ListXPath is the Prolog representation of a

2 The notion of term (i.e., data structure) is just the same in MALP and Prolog.
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[element(bib,[],
[element(book,[year=2001,price=45.95],

[element(title,[],[Don Quijote de la Mancha]),
element(author,[],[Miguel de Cervantes Saavedra]),
element(publications,[],

[element(book,[year=1997,price=35.99],
[element(title,[],[La Galatea]),
element(author,[],[Miguel de Cervantes Saavedra]),

element(publications,[],...])...]),])])

Fig. 10. A data-term representing a XML document

XPath expression; (2) Tree is the term representing an input XML doc-
ument; (3) Deep/Down/Filter have the obvious meaning, and finally (4)
the last argument Accum (which is appropriately updated -maybe decreased-
when going deeper in the exploration of the file) accumulates the sequence
of penalties produced till reaching a concrete node, and it is very useful
for deciding when performing a recursive call to the children of such node
whenever the value of Accum is better than the one fixed by Filter.

(6) The evaluation of the query generates a truth value which has the form of
a tree, called tv tree. For instance, the query shown in Example 1, gener-
ates the one illustrated in Figure 11. The main power of a fuzzy logic pro-
gramming language like MALP w.r.t. Prolog, is that instead of answering
questions with a simple true/false value, solutions are reported in a much
more tinged, documented way. Basically, the fuzzyXPath predicate traverses
the Prolog tree representing a XML document annotating into the tv tree
the corresponding deep/down values according to the movements performed
in the horizontal and vertical axis, respectively. In addition, the tv tree is
annotated with the values of and, or and avg operators in each node.
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(7) Finally, the tv tree is used for computing the output of the query, by multi-
plying the recorded values. A predicate called tv_to_elem has been imple-
mented to output the answer in a pretty way.

tv(1, [[],
tv(0.9,[[],

tv(0.9,[element(title,[],[Don Quijote de la Mancha]),[],
tv(1,[[],[],
tv(1,[[],

tv(0.9,[[],
tv(0.9,[element(title,[],[La Galatea]),[],
tv(1,[[],[],
tv(1,[[],

tv(0.9,[[],
tv(0.9,[element(title,[],[Los trabajos de Persiles..]),...]),

tv(0.8,[[],
tv(0.9,[element(title,[],[La Celestina]),[],[]]),...

Fig. 11. Example of a MALP output

4 Conclusions and Future Work

In [3,4,5,6] we have recently enriched XPath with new constructs (both struc-
tural -deep and down- and constraints -avg and fuzzy versions of classical or/and
operators-) in order to flexibly query XML documents. This paper has high-
lighted the benefits of using a new fuzzy command for filtering the set of ranked
answers in a dynamic way, in order to reduce the runtime and complexity of
computations when dealing with large files. Our approach represents the first
real-world application developed with the fuzzy logic language MALP, for which
we have recently developed some thresholding tabulation techniques3 [19,18]. All
these actions will be very useful for addressing in our framework the well-known
“top-k ranking problem” (i.e. determining the top k answers to a query without
computing the -usually wider, possibly infinite- whole set of solutions, which is
strongly related with the FILTER command reported along this paper) inspired
by [8,11,12,21,29,17].
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3 We are now implementing into FLOPER this highly efficient procedural mechanism.
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Abstract. In the group decision of this paper, it is assumed that the practice is
entrusted to each decision maker. In such a decision problem, it is not necessary
for a decision maker to obey the group decision completely, but necessary to con-
sider it into his/her final decision. In this paper, when a group of decision makers
give the comparisons of alternatives, their individual decisions are obtained as
the interval weights of alternatives so as to have a common weight. The problem
is formulated based on Interval AHP. By relaxing two conditions of the individ-
ual decisions for a consensus, a decision maker has to admit the modification of
his/her initial judgments and/or the enlargement of his/her individual decision.

Keywords: Group decision making, Consensus, Interval analysis, Analytic hier-
archy process.

1 Introduction

The decision problem in this paper follows AHP (Analytic Hierarchy Process). It is an
approach to multi-criteria decision making problems and induces the preference of a de-
cision maker from his/her judgments [1]. In the setting of AHP, a decision maker gives
the comparisons of all pairs of alternatives intuitively, and his/her preference denoted
as the weights of the alternatives is obtained from them.

Most decisions, at least in organizations and society, are the responsibility of groups
rather than individuals [2]. In a group decision making problem, a group of decision
makers try to reach a consensus based on their individual opinions. There are two pos-
sible goals of the group decision making. One is to induce the group decision which
all the decision makers practice together [3]. The advantages of using AHP for this
group decision making, such as showing the decision process to the decision makers,
are explained in [4,5]. The popular technique to aggregate individuals into a group is
geometric mean [6] and several other techniques are proposed [7,8]. In the cases where
the group decision is practiced by all decision makers together, it is not necessary to
show each decision maker his/her individual decisions. On the other hand, there are
cases where the practice is entrusted to each decision maker in a group. S/he decides
the individual decision under the group consensus at his/her discretion and practices
it independently. The other possible goal is to induce such a final individual decision
reflecting the group decision. For instance, a group of the managers of several branch
offices are representatives of making the business policy of their company. Each man-
ager has own opinion based on the peculiar situation of his/her branch office so that
the initial individual opinions are not always the same. However, with discussion, they
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decide the company’s policy. They reconsider and decide their branches’ individual
policies taking it into consideration. The final individual policies of all branches may
not be exactly the same but should reflect the company’s policy. In this example, the
individual decision is up to each decision maker to some extent and may be different
from the independently obtained decision from his/her initial judgments. Two possible
goals of group decision making are to induce the group decision and the individual de-
cisions, depending on group and individual practice, respectively. This paper focuses on
the latter goal which tries to induce the individual decisions under the group consensus.

In group AHP, the group decision is obtained from the aggregated initial judgments
or it is the aggregation of the independently obtained individual decisions [9]. As is
mentioned before, AHP requires a decision maker to give the pairwise comparisons of
alternatives, instead of his/her preference of alternatives directly. Therefore, both the
group decision and the individual decisions are unknown in a decision making pro-
cess. It is not necessary to aggregate the individual judgments beforehand and/or the
individual decisions afterward. In this paper, all the individual decisions are obtained
simultaneously from the initial individual judgments under the condition that there ex-
ists a group decision included in all of them. The method to induce the final individual
decisions under the group consensus is proposed.

2 Preliminary

2.1 Individually Given Comparisons

There are m members in a group and they make decision on n alternatives. Each mem-
ber of the group, decision maker k, gives his/her intuitive judgments on alternatives
independently as the following pairwise comparison matrix Ak. S/he gives comparison
akij of pair of alternatives i and j, without caring for the other pairs of alternatives
(i′, j′) �= (i, j) and the other members k′ �= k.

Ak =

⎡⎢⎣ 1 · · · ak1n
... akij

...
akn1 · · · 1

⎤⎥⎦ ∀k, (1)

whose element akij represents the importance ratio of alternative i to alternative j by
decision maker k and is between 1/9 to 9; akij ∈ {1/9, 1/7, . . . , 1, 3, . . . , 9}, generally
in AHP [1]. The comparisons are identical akii = 1 and reciprocal akij = 1/akji so
that s/he has to compare n(n − 1)/2 pairs of alternatives. The comparison matrix is
consistent, if and only if the following transitivity relations for all pairs of alternatives
are satisfied.

akij = akilaklj ∀(i, j, l). (2)

Decision maker k compares alternatives i and j and gives comparison akij in (1)
without fixing their weights,wki andwkj beforehand. That is, the weights of alternative
i, implicitly used for giving comparisons akij and akil may not be equal; wj

ki �= wl
ki.

In this way, the weight of an alternative based on the given comparisons is uncertain. In
order to reflect such uncertainty, the weight of an alternative is denoted as an interval in
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Interval AHP [10,11]. Assuming the weight of alternative i in his/her mind as interval
Wki = [wki, wki], s/he uses a real value in the interval wj

ki ∈ Wki ↔ wki ≤ wj
ki ≤

wki in giving comparison akij . Then, the individual interval weights of alternatives
of decision maker k, Wk , is denoted as Wk = (Wk1,Wk2, . . . ,Wkn), where Wki =
[wki, wki]. The sum of the widths represents uncertainty in the decision of decision
maker k.

2.2 Conditions of Individual Decision

The individual preference on alternatives is obtained from the given comparisons fol-
lowing three conditions. The 1st condition of the individual decision is the relation to
the given comparison. The given comparison is included in the ratio of the correspond-
ing interval weights

akij ∈
Wki

Wkj
=

[wki, wki]

[wkj , wkj ]
↔

⎧⎨⎩
wki

wkj
≤ akij ≤

wki

wkj

∀i, j,

ε ≤ wki ≤ wki ∀i,
(3)

where ε is a small positive number and the fraction of intervals is defined as its maxi-
mum range.

The 2nd condition is to normalize the interval weights by interval probability [12,13],
since the comparison is denoted as a ratio as in (3).∑

i�=j wki + wkj ≥ 1,
∑

i�=j wki + wkj ≤ 1 ∀j, (4)

where the redundancy of the intervals to make their sum be 1 is excluded. For instance,
the 1st condition requires wkj not to be too small. When the weights are real values
as wki = wki = wki∀i, two inequalities are replaced into

∑
i wki = 1 as ordinal

probability.
The last condition is to make the interval weights be as close as possible to the given

comparison. Because of the inclusion relation (3), the widths of interval weights are
minimized as

min
∑

i(wki − wki), (5)

which also minimizes uncertainty in the decision of decision maker k. In case of the
consistent comparisons which satisfy transitivity (2), it reaches the minimum 0, i.e.,
wki = wki = wki, where the weight is fixed regardless of compared alternatives. In the
other cases, the weight of at least one alternative is an interval so that (5) is over 0.

Then, the individual interval weights are obtained from the individually given com-
parisons by the following linear programing (LP) problem in Interval AHP,

min
∑

ki(wki − wki),

s. t.
wki

wkj
≤ akij ≤

wki

wkj

∀i, j, k,∑
i�=j wki + wkj ≥ 1

∑
i�=j wki + wkj ≤ 1 ∀j, k,

ε ≤ wki ≤ wki ∀i, k,

(6)



334 T. Entani

where the variables are the upper and lower bounds of the interval weights. Since three
conditions for each decision maker are independent from the other decision makers’, (6)
for m decision makers simultaneously is divided into m LP problems for each decision
maker.

3 Individual Decision under Group Consensus

3.1 Group Decision as Consensus

For a consensus, it is natural that the group decision Wi = [wi, wi] should be included
in any of the individual decisions Wi = [wki, wki] so that wki ≤ wi and wi ≤ wki. If
the independently obtained individual interval weights satisfy

maxk wki ≤ mink wki, (7)

then the group interval weight is defined as Wi = [maxk wki,mink wki]. On the other
hand, if maxk wki > mink wki, the group decision as a consensus of all decision mak-
ers cannot be found. In this case, the independently obtained decisions may be improved
by reflecting the group decision. It is one of the advantages of being a group to reflect
each other for the better individual decisions.

3.2 Relaxing Conditions of Individual Decision

In order to reflect group decision into the final individual decisions, it is assumed that
there is a consensus among. The final individual decisions are obtained so as to satisfy
(7), which is rewritten as

wli ≤ wki ∀k, l, k �= l (8)

where for a pair of decision makers their lower bounds are smaller than the upper
bounds of the others.

Instead of adding consensus constraint (8) into (6), where the individual decisions
are independently obtained, its constraints are relaxed. They are the inclusion relation
(3) and the widths of interval weights (5). That is, the initial individual comparisons are
modified and/or the final individual decisions are enlarged.

As for the inclusion relation (3), the initial comparison akij is modified with the
positive and negative excess into a′kij = akij + pkij − nkij , where 0 ≤ pkij , nkij .

wki

wkj
≤ a′kij = akij + pkij − nkij ≤

wki

wkj

∀i, j, k, (9)

where akij can be too small or large considering the others so that nkijpkij = 0. The
inclusion relation (9) is rewritten as follows.

wki

wkj
≤ akij + pkij , akij − nkij ≤

wki

wkj

∀i, j, k,

↔ wkj ≤ akijwki + pkijwki, wkj − nkijwkj ≤ wki ∀i, j, k,
(10)



Individual Decisions under Group Consensus 335

When one of the excesses is positive, the initial comparison akij is not included in
the ratio of the final individual interval weights; akij /∈ Wki/Wkj . In order to include
akij as much as possible, the sum of excesses is minimized.

min
∑

kij(nkij + pkij), (11)

which, in other words, minimizes the modifications of the initial comparisons. Such a
modified comparisons considering the group consensus may be more reliable than the
initial ones because of the following two reasons. One is that the comparisons may not
be perfect and have some errors, since they are given intuitively. The other is that akij
may be a little different from what is in the decision maker’s mind, since s/he chooses
one value in {1/9, 1/7, ..., 1, ..., 7, 9}. The advantage and disadvantage of these values
are discussed from the viewpoint of AHP [14].

As for the widths (5), if the widths of the individual interval weights are enlarged
enough, it is possible to find their core as a group decision, such that Wki = [0, 1]∀k, i
andWi = [0, 1]∀i. In order for the final individual decisions to be as certain as possible,
their widths are minimized as

min
∑

ki(wki − wki), (12)

whose optimal value cannot be smaller than that of (6) because of adding the consensus
constraint (8).

When a group of decision makers are required to reach a consensus, they have to ad-
mit that their final decisions are obtained from the modified judgments and/or enlarged
from their independently obtained decisions.

3.3 Final Individual Decisions

By relaxing the conditions of the individual decision, the individual interval weights
of all decision makers are obtained simultaneously so as to have a common weight.
By adding consensus condition (8) to independent Interval AHP (6), the problem is
formulated as follows.

min
∑

ki(wki − wki),
min
∑

kij(n
′
kij + p′kij),

s.t. wki ≤ akijwkj + p′kij , akijwkj − n′
kij ≤ wki ∀i, j, k,

0 ≤ n′
kij , p

′
kij∀i, j, k,∑

i�=j wki + wkj ≥ 1,
∑

i�=j wki + wkj ≤ 1 ∀k, j,
ε ≤ wki ≤ wki ∀k, i,
wli ≤ wki ∀i, k, l, k �= l,

(13)

where n′
kij = nkijwkj and p′kij = pkijwkj for calculation. The variables are the indi-

vidual interval weights Wki = [wki, wki] and the excesses n′
kij and p′kij in addition.

There are two objective functions on the enlargement of the individual decisions
(12) and modifications of the comparisons (11). When the decision makers do not care
the modifications of their initial comparisons, such that they are not confident of their
judgments, it is enough to minimize the 1st objective function (12). As a result the initial
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judgments are not always included in the final individual decision. While, when the
decision makers are confident of their judgments, they may focus on whether their initial
judgments are reflected to their final decisions or not. The 2nd objective function (11) is
primary minimized. As a result, the individual interval weights have wide ranges so that
the final individual decisions are vague. These are the extreme cases by ignoring one
of the objective functions. In practice, two independent objective functions in (13) are
treated in various ways following multiobjective programming techniques. One of the
simplest treatments is the application of weighting approach as min (1−λ)

∑
ki(wki−

wki) + λ
∑

kij(nkij + pkij), where λ ∈ [ε, 1 − ε]. λ is given based on the confidence
of the decision makers in their initial judgments.

4 Numerical Example

There are 3 decision makers who give the comparisons on 4 alternatives as in Table
1. By (6), the individual interval weights are independently obtained and shown next
to each matrix. As for A3 and A4, all individual decisions have common weights, al-
though, as for A1 and A2, they do not. Therefore, in this example, in order to reach a
consensus, they need to admit the modifications of their initial comparisons and/or the
enlargement of their final decisions.

Table 1. Initial comparisons and independent individual decisions

DM1 A1 A2 A3 A4 Interval weight
A1 1 2 3 4 0.500
A2 1/2 1 2 3 0.250
A3 1/3 1/2 1 2 [0.125, 0.167]
A4 1/4 1/3 1/2 1 [0.083, 0.125]

DM2 A1 A2 A3 A4 Interval weight
A1 1 3 3 4 0.571
A2 1/3 1 3 3 [0.190, 0.214]
A3 1/3 1/3 1 4 [0.071, 0.190]
A4 1/4 1/3 1/4 1 [0.048, 0.143]

DM3 A1 A2 A3 A4 Interval weight
A1 1 1 4 6 0.390
A2 1 1 1 2 [0.244, 0.390]
A3 1/4 1 1 3 [0.098, 0.244]
A4 1/6 1/2 1/3 1 [0.065, 0.122]

By (13), the individual interval weights with λ = 0.2, 0.3 and 0.6 are obtained simul-
taneously and shown in Table 2. It has two objective functions to minimize the enlarge-
ment of individual decisions and the modifications of judgments. The widths of the final
individual interval weights and the modified comparisons are shown at the bottom two
lines of Table 2. The less the confidence of the decision makers in their judgments, the
smaller λ is given. Then, the widths of the individual interval weights become smaller,
as well as the number of the modified comparisons increases. With λ = 0.2, the widths
of the individual decisions are primary minimized so that all of them are obtained as
the same real values. From the viewpoint that their initial judgments are flexible, it is
reasonable for all decision makers to treat the certain group decision as their own de-
cisions. While, with λ = 0.6, instead that no comparisons are modified, the widths are
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wider than those in Table 1 and the individual decisions are vague. From the viewpoint
that the decision makers stick to their initial judgments, it is reasonable for all decision
makers to accept the enlargement of their decisions as far as their initial judgments are
reflected into their final decisions.

With λ = 0.3, DM1 and DM2 reach a consensus without modifying their initial
comparisons, though, DM3 has to modify two comparisons, a312 and a323. This may
be because two comparisons by DM3 are unreliable comparing to the others’. In this
way, the individual decision considering the group decision can be obtained by revising
the suspicious initial comparisons.

All the independent decisions of A3 and A4 in Table 1 include [0.125, 0.167] and
[0.083, 0.122], respectively, and such cores include the group decisions with all λs. With
λ = 0.6, the group interval weights are (0.5, 0.25, [0.125, 0.167], [0.083, 0.1]), which
don’t satisfy (4), i.e., they are not normalized. By reducing the redundancy in them,
the normalized intervals (0.5, 0.25, [0.15, 0.167], [0.083, 0.1]) are easily found. The
detailed method to obtain the normalized intervals in a set of intervals is not discussed
here, since the group decision in this study is necessary to ensure a consensus and is not
used for a practice.

Table 2. Individual and group interval weights with λ = 0.2, 0.3 and 0.6

λ = 0.2 DM1 DM2 DM3 Group
A1 0.500 0.500 0.500 0.500
A2 0.250 0.250 0.250 0.250
A3 0.167 0.167 0.167 0.167
A4 0.083 0.083 0.083 0.083

Width 0 0 0 0
Modified comparison {14, 23} {12, 14, 23, 34} {12, 13, 23, 24, 34}

λ = 0.3 DM1 DM2 DM3 Group
A1 0.500 [0.500, 0.529] 0.500 0.500
A2 0.250 [0.176, 0.259] 0.250 0.250
A3 [0.125, 0.167] [0.086, 0.169] [0.125, 0.188] [0.125, 0.167]
A4 [0.083, 0.125] [0.042, 0.125] [0.062, 0.125] [0.083, 0.125]

Width 0.084 0.278 0.126 0.084
Modified comparison - - {12, 23}

λ = 0.6 DM1 DM2 DM3 Group
A1 0.500 [0.500, 0.529] [0.404, 0.500] 0.500
A2 0.250 [0.176, 0.259] [0.200, 0.404] 0.250
A3 [0.125, 0.167] [0.086, 0.169] [0.125, 0.200] [0.125, 0.167]
A4 [0.083, 0.125] [0.042, 0.125] [0.067, 0.100] [0.083, 0.100]

Width 0.084 0.278 0.408 0.059
Modified comparison - - -
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5 Conclusion

The individual decisions of all decision makers are obtained simultaneously from their
initially given comparisons under the group consensus. It is suitable when the practice
is entrusted to each decision maker and the group decision itself is not used for a prac-
tice. Assuming the group decision as the core of individual decisions, all the individual
interval weights have to have a common weight so that their maximum lower bound
should be less than their minimum upper bound. Instead of adding the consensus con-
straint into independent Interval AHP, two conditions of the individual decisions are
relaxed. As a result, the decision maker may admit the modifications of his/her initial
judgments and/or the enlargement of his/her final decision. The problem is transformed
into LP problem for calculation. Its two objective functions of minimizing the excess
from the initial comparisons and the enlargement of the widths from the independently
obtained ones. They are aggregated into one by weighting approach. When the decision
makers stick to their initial judgments, the weight for minimizing the modifications is
assumed to be greater than that for minimizing the widths. And vice versa, when they
are not confident of their initial judgments. The modification of the initial comparisons
is also reasonable since the initially given comparisons are not always perfect.
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Abstract. This paper shows a fuzzy ontology based approach to au-
tomatically build user profiles from a collection of user interest docu-
ments. The ontological representation of the user profile enhances the
performance in tasks such as filtering, categorization and information
retrieval. The proposed technique takes advantage of relevance measures
to generate semantic representations of user context. The proposed work
also presents a strategy for automatic generation of fuzzy ontologies to
support user profile modeling. The experiments performed confirm that
the automatically obtained fuzzy ontologies are good representation of
the user’s preferences. In order to test the applicability of the obtained
ontologies, a text categorization experiment has been proposed and the
obtained results indicate that the approach can be applied with satisfac-
tory results and warrants further research.

Keywords: User Profile, Fuzzy Ontology, User Modeling, Text Mining.

1 Introduction

The World Wide Web presents new challenges to information retrieval [10]. The
rapid growth of digital libraries, such as Internet, makes it difficult to human
beings to access useful information conveniently and effectively. This is due to
the fact that most of information is embedded in a non-structured or semi-
structured way, which makes the search of a particular content a daunting and
time consuming task. Traditional search engines usually use techniques that
match the words in the query with the document content, and display as result
thousands of pages of which only a few ones are really useful and relevant. In
addition, search engines are not able to identify the nature and interests of a user
in such dynamic environment, for that reason a user profile could be required to
present the information in a manner that truly reflects user’s needs. [5].

Some of the most important issues to take advantage in the process of cons-
tructing user profiles are the notions of the Semantic Web and Personalized
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Information Management, which use the semantic context of the presented in-
formation and the user preferences to facilitate the information storage and
retrieval process [4]. On the other hand, ontologies have proven to be success-
ful in handling a machine processable representation of information and have
been used to model user context in various applications [5]. In [2] it is shown
how a fuzzy ontology-based approach can improve semantic documents retrieval.
The proposal is illustrated using an information retrieval algorithm based on an
object-fuzzy concept network. The proposed fuzzy ontology, based on the seman-
tic correlation between concepts, is capable to represent a dynamic knowledge of
a domain adapting itself to the context. On the other hand, in [1] a personal on-
tology is defined using a knowledge extraction process from the general purpose
ontology YAGO guided by a set of keywords.

A bottleneck in developing ontology-based systems stems from the fact that
the conceptual formalism that supports by typical ontologies may not be suf-
ficient to represent uncertainty that is commonly found in many application
domains [11]. Moreover, most of ontologies modeling user preferences are appli-
cation specific and its construction can be a long and costly task. The use of
conceptual structures to provide users access useful information requires that
there is something bridging the gap between the conceptual and real world.

This paper presents an approach that takes advantage of Fuzzy Logic [14] to
automatically build the so-called fuzzy ontology of concept relations from a col-
lection of documents. The ontology generated is then used for modeling a user
profile. The idea is to provide a semantic representation of the user context based
on characterizations represented by weighted concepts that are sense-related to
the context itself. The ontology together with the concept characterizations are
referred to as an ontological user profile of the document collection supplied by
a particular user. The main contributions of this research work are the develop-
ment of an automatic fuzzy ontology extraction strategy, based on co-occurrence
and frequency of concepts in a document collection and a new ontology-based ap-
proach to represent user’s preferences. Automatic ontology generation alleviates
the knowledge acquisition bottleneck of manually constructing domain ontology.

The rest of the paper is organized as follows. Section 2 provides a detailed
description of all stages needed to automatically construct an ontological user
profile. The results of the experiments carried out are presented in section 3 and
finally, some conclusions and future works are pointed out in section 4.

2 User Profile Generation Process

The proposal presented in this paper includes several phases of data processing
to automatically generate fuzzy ontology-based user profiles from a previously
selected document collection. This set of documents is provided with consider-
ation to the user’s role on the system, i.e. a “content generator” user will select
the documents created by him/her, but, a “content consumer or distributor” user
will select the documents retrieved and selected by him/her.



Fuzzy Ontology-Based Approach for Automatic Construction 341

2.1 Linguistic Preprocessing

The building process is the following. First, the document set is preprocessed in
order to characterize texts by their topically significant words, for this purpose,
all non-textual information like digits, dates and punctuation marks is removed
from the documents (lexical analysis). Next, collocations were extracted accord-
ing to the method described in [3]. Finally, three techniques are used to reduce
the vocabulary and make the representation of texts more meaningful: stop lists
and stemming and zipf law. Language detection and spelling correction processes
are also included in this stage.

2.2 Indexing

This stage aims to provide an index structure, called pre-ontology, which con-
tains information about all terms generated in the previous stage. By analyzing
the treated documents, the following term features are recovered: Term ID and
List of Documents Features where the concept appears. For each document,
the stored attributes are the following: ID, number of occurrences of the most
frequent term in the document contents and a list of terms’ positions in the
document. Each term position is a tuple (p, s) where s represents the section
or paragraph where the term is located and p the index of the term into the
corresponding section.

2.3 User Relevant Concepts Identification

A set of chosen concepts that represent the user preferences are built using
the pre–ontology as source data. Each concept has a weight on each document
according to FIS-CRM Model (fis− crm(ci, d)). The fundamental basis of FIS-
CRM [8] is to “share” the occurrences of a contained word among the fuzzy
synonyms that represent the same concept,and to “give” a fuzzy weight to the
words that represent a more general concept that the contained one . In this way,
a word may have a fuzzy weight in the new vector even if it is not contained in
it, as long as the referenced concept underlies the document.

We distinguished three levels of concept relevance (relevant, sub-relevant and
other), which will help to generate a semantic representation of the user context.
Therefore, it is necessary to establish a method to quantify the value or usefulness
of a concept in a documents set to identify a user. In this way, the weight kmodui
of a concept ci within a user profile u can be calculated as proposed in the
equation 1. According to this formula a concept is regarded as relevant in a
user profile if it occurs more frequently than other concepts in a certain user
document set, but occasionally elsewhere. A concept that occurs frequently in
several document set could be a relevant domain concept but it is not useful to
represent the user.

kmodui =
∑
j∈u

wij ×
(
1 +

docs (ci, u)

|D|

)
× Ln

(
|U |

U (ci)
+ 1

)
(1)
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where wij represents the relevance degree of the concept ci in the document dj (dj
belongs to the user profile u) using the FIS-CRM model (wij = fis−crm(ci, dj)),
docs(ci, u) is the number of documents in the user profile u in which the concept
ci occurs, |D| is the total number of documents considered in the user profile,
|U | is the total number of user profiles in the context and U(ci) represents the
number of user profiles in which the concept ci has a positive membership degree.

Once the concepts weights are calculated, it is possible to identify the relevance
distribution of all the concepts and use them to construct the groups according
to the following statements: Relevant concepts (concepts with higher relevance
degrees), Sub-Relevant concepts (concepts with relevance degrees higher than the
average) and Other concepts concepts with relevance degree lower than the aver-
age.The user profile is defined by the most relevant concepts from the Relevant
concepts set (75% to 100%). These concepts have an associated weight propor-
tional to their importance. In this way, we can build a joint vector representation
of the documents selected by the user. This representation does not correspond
to the theoretical geometric center of the profile, neither in dimensions nor in
values. It is used as a representative semantic description of user preferences.

2.4 User Ontology Generation

In our research, the final aim is to build a valued network of relations between
the user relevant concepts indexed by the pre-ontology. A fuzzy ontology, in
this context, may be considered as a set of directed graphs where each node
represents an item and the edges denote that a concept “is related with” other
concept. A relatedness degree (RD) is associated with each edge to represent
the strength of the “is related with” association.

Our approach of generating a fuzzy ontology is based on the algorithm pre-
sented in [13]. This algorithm allows us to get a fuzzy measure of the generality
degree (GD) between pair of words contained in the document collection. For-
mally, it defines C = (d1, d2, . . . , dn) as a set of documents, where each document
D = (t1, t2, . . . , tm) is represented by a set of terms ti. The generality degree
(GD) between two terms ti and tj is defined as (Eq. 2):

GD (ti, tj) =

∑
d∈D occur (ti, d)⊗ occur (tj , d)∑

d∈D occur (ti, d)
(2)

where ⊗ denotes a fuzzy conjunction operator, and the value of the function
ocurr(ti, d), referring to the occurrence of term ti in document d, is 1 if t1
appears in d and 0 otherwise.

In this work, we have extended the idea of term occurrence to incorporate the
concept frequency, and used it to calculate the relatedness degree (RD). Given a
concept ti, the weight of ci in document d is represented by fis− crm(ci, d) and
its membership value is defined according to the FIS-CRM model fis−crm(ci, d)
mentioned above (Eq. 3).
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RD (ci, cj) =

∑
d∈D fis− crm (ci, d)⊗ fis− crm (cj , d)∑

d∈D fis− crm (ci, d)
(3)

where fis− crm (ci, d) is the normalized relevance of ci in document d. In this
work, it is assumed the association strength between concepts is asymmetric, be-
cause the proposed relationship is a hierarchical semantic connection. Regarding
“the fuzziness” of the proposed approach, a ontology could considered a set of
fuzzy sets, we will analyze the effect of six different fuzzy conjunction operators
(x ⊗ y), defined by the following t-norms[7]: Minimum (Mi), Hamacher Prod-
uct (HP), Algebraic Product (AP), Einstein Product (EP), Bounded Difference
(BD) and Drastic Product (DP).

The fuzzy ontology is constructed by first calculating the relatedness degree
(RD) for each pair of two distinct concepts from the pre-ontology (i.e. RD(ci, cj)
and RD(cj , ci)). Then, two tests are applied to select the relation that will be
incorporated into the ontology. The first test is performed to eliminate redundant
concept associations. For each triple (ci, cj , RD(ci, cj)) and (cj , ci, RD(cj , ci)),
the one with higher RD value is added as an ontology association and the other
is discarded. This decision strategy will choose a positive concept instance if one
of the RD values is far from the other, or the strategy will choose a stronger
association if the two RD values are close to each other. Finally, in the second
test, less meaningful information is eliminated by removing from the ontology
the associations that have a RD value lower than an α − cut defined by the
user. Unrelated concepts (RD = 0) are automatically excluded in this phase.
The fuzzy ontology contains a description of the RD associations in the form of
directed graphs.

2.5 User Profile Update

Additional documents of interest can be selected or created by users, and the
user profile needs to be updated to incorporate this relevant information source.
The update procedure should produce the same result as if the new documents
had been available at the beginning of the profile generating process. To perform
this task, we first need to carry out the linguistic pre-processing and the concept
indexing for all new documents. As a result, another version of the pre-ontology
is generated. Next, for each concept from this pre-ontology, the relevance weight
is calculated and the user relevant concepts set is updated, incorporating new
concepts or updating concept weights. Then, relevant, sub-relevant and other
concepts groups are restructured by reordering each of them. Finally, the user
ontology is updated. For each concept from the new pre-ontology, the relatedness
degree (RD) is calculated according to all concepts from user pre-ontology. After
applying redundant concept exclusion and α−cut elimination the new user profile
is generated.
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3 Experiments

The study group was shaped by 12 teachers from different countries. A total
number of 135 resources was analyzed to generate the profiles of the users, i.e.
each user selected around 11 resources as relevant. Resources are basically text
based presentations or documents related to topics of research or teaching activ-
ities of the participant. User profile ontological definition were created for each
participant, applying the methodology and algorithms described previously.

In order to choose the evaluate the method to measure the relevance of a
concept in a user context, an evaluative analysis of the relevant concept set in
terms of the standard definition of recall, precision, and F-measure (the harmonic
mean between precision and recall) [12] have been carried out.

In order to evaluate the proposed method, we first analyzed the two sets
of weighted concepts, according to the kmod measure and a classic tf − idf
approach. The analysis was performed by comparing the well-ranked generated
concepts with a set of concepts afforded by users. These concepts are keywords
and a short description of users’ interest areas. The higher the ranking of a term
in a weighted concepts set that appears in the user’s keyword list, the better the
semantic representation of the user context and, consequently, the better the
weighting method.

The kmod measure gives us statistically better results(F = 0.35) in user
relevant concepts extraction. Analyzing the experiment results, it is important
to highlight two aspects. Firstly, keywords and short descriptions given by users
are not a standard de facto, which means that some relevant terms founded
by the algorithm that do not appear in that context may still be important to
determine the user profile. Secondly, the documents made available by users may
include extended information about the treated area or information about topics
that are not mentioned in keywords and short descriptions

On the other hand, the ontology statistics for the number of extracted rela-
tions in accordance with different fuzzy conjunction: the Einstein Product (EP),
the Bounded Difference (BD) and the Drastic Product (DP). Some tests were
carried out to evaluate the generated ontologies. In the first test, the hierarchical
classification of the terms was analyzed by users. According to users, the ontol-
ogy that best represents user preferences is that generated by using Einstein
Product (EP), followed by Bounded Difference (BD) and Drastic Product (DP),
respectively.

In addition, in this work we used WordNet [6] as golden standard to contrast
them with our generated ontologies.. For this analysis, we compared all rela-
tionships from generated ontologies with four WordNet semantic relations (syn-
onyms, coordinates, hyponyms and hypernyms). We obtain low precision and
recall values and, consequently, low F-Measure values are not surprising (F =
0.02) . This may occur for several reasons. Firstly, the kind of non-taxonomic
relationship generated by fuzzy ontology construction methods is not contained
in a golden standard, which is often organized on syntactic and taxonomic levels.
Secondly, due to the large amount of information comprised in golden standards,
we were only able to make a first level analysis (i.e., relationships were compared
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with synonyms, but not with synonyms of synonyms). Thirdly, we generated on-
tologies that specifically comprise the users’ basic features and try to describe
his/her particular domain. On the other hand, golden standards are very generic
and focus on the description of a large portion of the world, making it quite dif-
ficult to cover certain individual aspects, which are highly important in user
ontologies.

Finally, we also performed some tests by contrasting users’ ontologies rela-
tionships with standard measures implemented in WordNet Similarity [9]. The
precision is improved considerably if compared with previous analysis. However,
the results still depends highly on the golden standard used, in this case, Word-
Net.

On the other hand, we can observe that, similarly to the previous experiment,
the ontology that presents better results, in terms of goodness, is that one gen-
erated by using Einstein Product (EP), followed by Bounded Difference (BD)
and Drastic Product (DP), respectively.

4 Conclusions

The use of fuzzy ontologies to represent user profiles has been proposed in this
work. We discussed the shortcomings found in ontology and user profile construc-
tion and presented an approach that takes advantage of text mining techniques to
automatically extract relevant information from a collection of user documents,
and use it to represent the user context in form of a fuzzy ontology-based user
profile. We implemented and evaluated a concept weight measure, and several
fuzzy conjunction operators used in the process.

One of the main strengths of this approach is the possibility of capturing
relevant user information automatically, and representing it in a way that can
be easily recovered and used by any application. In this way, starting from a
document collection provided by the user, an automatic mechanism could be
set out without requiring anything else from the user’s point of view. The im-
plementation and subsequent analysis of the strategy have showed the viability
of automatic generation of fuzzy ontology-based user profiles. The experiment
results indicated that user profiles generated are a good representation of the
user context. Most of the information recovered, processed and then represented
can be considered relevant for the user and characterize, in an organized way,
the treated environment. Nevertheless, certain undesirable results strengthen
the need of new techniques to improve the result obtained from this kind of
structures.

Future work includes working with a larger number of users and a greater
volume of documents in order to verify the quality of the model and to learn
the subjectivity of users, points of view. Further research is directed towards the
task of improving the user profile quality, using a pruning process to avoid con-
cepts which have no significance. It is also necessary to consider the information
provided a priori by the user.
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Abstract. The paper presents a description of a hierarchically structured recom-
mender system for improving the efficiency of a company’s growth engine. Our
dataset (NPS dataset) contains answers to a set of queries (called questionnaire)
sent to a randomly chosen groups of customers. It covers 34 companies called
clients. The purpose of the questionnaire is to check customer satisfaction in us-
ing services of these companies which have repair shops all involved in a similar
type of business (fixing heavy equipment). These shops are located in 29 states in
the US and Canada. Some of the companies have their shops located in more than
one state. They can compete with each other only if they target the same group of
customers. The performance of a company is evaluated using the Net Promoter
System (NPS). For that purpose, the data from the completed questionnaires are
stored in NPS datasets. We have 34 such datasets, one for each company. Knowl-
edge extracted from them, especially action rules and their triggers, can be used to
build recommender systems giving hints to companies how to improve their NPS
ratings. Larger the datasets, our believe in the knowledge extracted from them
is higher. We introduce the concept of semantic similarity between companies.
More semantically similar the companies are, the knowledge extracted from their
joined NPS datasets has higher accuracy and coverage. Our hierarchically struc-
tured recommender system is a collection of recommender systems organized as
a tree. Lower the nodes in the tree, more specialized the recommender systems are
and the same the classifiers and action rules used to build their recommendation
engines have higher precision and accuracy.

1 Introduction

Net Promoter Score (NPS) is used to measure a customer’s loyalty to a product or ser-
vice provider [11], [12]. It is based on the response to a 1 to 10 scale with 0 being very
unlikely to recommend the provider and 10 being very likely to recommend. Net Pro-
moter System is based on the fundamental assumption that customers can be divided
into three categories: promoters, passives, and detractors. Promoters are loyal enthusi-
asts who are buying from a company and urge their friends to do the same. Passives are
satisfied but unenthusiastic customers who can be easily taken by the competition. De-
tractors are less than loyal customers who may urge their friends to avoid that company
[10]. Customers are categorized based on their answers to the likelihood to recommend
question. The figure below explains how these three categories are computed.
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Fig. 1. Net Promoter Score (NPS)

Customers falling into interval 9-10 are seen as promoters, into 7-8 as passives, and
into 0-6 as detractors. The partition into these three categories is widely accepted by
business organizations but still other discretizations of NPS can be taken into consid-
eration especially when classifiers extracted from NPS datasets do not have acceptable
precission/recall for one of these three categories. The classical way to evaluate the
efficiency of a company’s growth engine is to compute NPS efficiency rating which is
defined as the percentage of customers who are promoters minus the percentage who are
detractors. Companies with the most efficient growth engines such as Amazon, Costco,
Vanguard, or Dell have NPS efficiency ratings between 50 to 80 percent. But even these
companies still have room for improvement.

In order to formulate actions for improving the performance of a company, we need
to know why a customer is or is not likely to recommend the company to their col-
leagues/friends. This is why customers are asked to complete a questionnaire which
gives us personal information about them and about their satisfaction with the services
provided by a company. Examples of questions included in the questionnaire are give
below:

– name of the customer
– name of the organization (client)
– invoice amount
– internal contact name (person with whom you deal in a company)
– how many days was needed to repair the equipment
– when the equipment was delivered to repair shop
– any disagreements?
– name/type of the equipment to be repaired
– are you satisfied with the job

More questionnaires are completed by customers, larger dataset for mining is avail-
able. Classifiers extracted from this dataset, defining each of the NPS categories, are
evaluated using confusion matrix. If their accuracy and coverage is high then the action
rules built from them will have high confidence as well. Different types of classifiers
have been tested with a goal to identify which one has the highest accuracy/coverage.

Our dataset (NPS dataset) contains answers to a set of queries (called questionnaire)
sent to a randomly chosen groups of customers. The purpose of the questionnaire is
to check customer satisfaction in using services of 34 repair shops (clients) involved



Hierarchically Structured Recommender System for Improving NPS of a Company 349

in a similar type of business (fixing heavy equipment). These shops are located in 34
states in the US and Canada and they can compete with each other only if they are geo-
graphically closely located. For each shop, we extracted a number of classifiers from its
NPS dataset. We also extended the original NPS dataset by developing and adding new
groups of attributes, including temporal attributes. The accuracy/coverage of several
classifiers for the category promoter become very high for all 34 shops. However, the
accuracy and coverage of classifiers for the categories passive and detractor still remains
low. So, action rules can not be built from pairs of classification rules [5] unless we are
interested to build recommender system for each shop (or groups of shops) which only
will target customers who completed the questionnaire. To apply action rules success-
fully for other customers, we have to extract these rules either directly from the dataset
or built them from action reducts [2],[5].

The concept of an action rule was proposed by Ras and Wieczorkowska in [7] and
investigated further in [1], [3], [9], [14]. Action rules describe possible transitions of
objects from one state to another with respect to a distinguished attribute called the
decision [7]. In our application domain, we are only interested in transitions from de-
tractors and passives to promoters. We assume that attributes used to describe customers
are partitioned into stable and flexible. Values of flexible attributes can be changed. In
our domain, invoice amount or name/type of equipment to be repaired are examples
of stable attributes. ”Client name”, ”how many days are needed by the shop to fix the
equipment” are examples of flexible attributes. ”Client name” is a flexible attribute
because customers may decide to change shops for fixing their equipment. In early pa-
pers, action rules have been constructed from two classification rules [(ω ∧ α) → φ]
and [(ω ∧ β) → ψ], where ω is a stable part for both rules. Action rule was defined as
the term [(ω) ∧ (α → β)] ⇒ (φ→ ψ), where ω is the description of clients for whom
the rule can be applied, (α → β) shows what changes in values of flexible attributes
are required, and (φ→ ψ) gives the expected effect of the action. Let us assume that φ
means detractors and ψ means promoters. Then, the discovered knowledge shows how
values of flexible attributes need to be changed so the customers classified as detractors
will become promoters.

2 Action Rules

In this section we recall the definition of an information system (also called a dataset),
action set, and also recall the classical strategy of constructing action rules from action
sets.

By an information system [4] we mean a triple S = (X,A, V ), where:

1. X is a nonempty, finite set of objects
2. A is a nonempty, finite set of attributes, i.e.
a : U −→ Va is a function (can be partial function) for any a ∈ A, where Va is
called the domain of a

3. V =
⋃
{Va : a ∈ A}.

For example, Table 1 shows an information system S with a set of objects X =
{x1, x2, x3, x4, x5, x6, x7, x8}, set of attributes A = {a, b, c, d}, and the set of their
values V = {a1, a2, b1, b2, c1, c2, d1, d2}.
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Table 1. Information System S

a b c d

x1 a1 b1 c1 d1
x2 a2 b1 c1 d1
x3 a2 b2 c1 d2
x4 a2 b2 c2 d2
x5 a2 b1 c1 d1
x6 a2 b2 c1 d2
x7 a2 b1 c2 d2
x8 a1 b2 c2 d1

Additionally, we assume that A = ASt ∪ AFl, where attributes in ASt are called
stable and attributes in AFl are called flexible. “Customer name” is an example of a
stable attribute. “Interest rate” for each customer account is an example of a flexible
attribute.

Let S = (X,A, V ) is an information system, where V =
⋃
{Va : a ∈ A}.

By an atomic action set we mean a singleton set containing an expression (a, a1 →
a2) called atomic action, where a is an attribute and a1, a2 ∈ Va. If a1 = a2, then a is
called stable on a1. Instead of (a, a1 → a1), we usually write (a, a1) for any a1 ∈ Va.

By Action Sets we mean a smallest collection of sets such that:

1. If t is an atomic action set, then t is an action set.
2. If t1, t2 are action sets, then t1 ∪ t2 is a candidate action set.
3. If t is a candidate action set and for any two atomic actions (a, a1 → a2), (b, b1 →
b2) contained in t we have a �= b, then t is an action set.

By the domain of an action set t, denoted byDom(t), we mean the set of all attribute
names listed in t.

By an action rule we mean any expression r = [t1 ⇒ t2], where t1 and t2 are
action sets. Additionally, we assume that Dom(t2) ∪ Dom(t1) ⊆ A and Dom(t2) ∩
Dom(t1) = ∅. The domain of action rule r is defined as Dom(t1) ∪Dom(t2).

Now, we give an example of an action rule assuming that our information system
S is represented by Table 1, a, c are stable and b, d are flexible attributes. Expressions
(a, a2), (b, b1 → b2), (c, c2), (d, d1 → d2) are examples of atomic actions. Expression
(b, b1 → b2) means that the value of attribute b is changed from b1 to b2. Expres-
sion (c, c2) means that the value c2 of attribute c remains unchanged. Expression r =
[{(a, a2), (b, b1 → b2)} ⇒ {(d, d1 → d2)}] is an example of an action rule. The rule
says that if value a2 remains unchanged and value b will change from b1 to b2, then it
is expected that the value d will change its value from d1 to d2.

3 Extracting Classifiers and Action Rules from NPS Datasets

In this section, we present a brief discussion on some classifiers built from NPS datasets
representing answers to the customer satisfaction questionnaire completed by about
50,000 customers
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The first result concerns classifiers built from the union of all NPS datasets which
contains the answers collected from the customers for all the clients. We tested the
classifiers available in WEKA by using the average confusion matrix for 10 random
samplings, extracted from the union of all NPS datasets, each one covering about 1200
customers. J48 gave the best results which are presented in Table 2.

Table 2. Confusion Matrix for J48 and the original NPS dataset covering all clients

Promoter Passive Detractor

Promoter 87 407 0
Passive 77 422 1
Detractor 29 170 0

We can see that Table 2 presents confusion matrix for the dataset with 494 promoters,
500 passives, and 199 detractors. So the average, total number of customers is 1193.
NPS score is 494/1193 - 199/1193 = 0.41 - 0.17 = 0.24 (24 percent). The large number
of Passive customers (almost 1/2) is the main reason of this very low NPS score.
To improve that score, action rules need to be extracted from NPS dataset. The first
step to achieve our goal is to improve the classifiers extracted from that dataset. A
number of new attributes have been constructed using text mining methods and added
to the original NPS dataset. These attributes include: Overall satisfaction, Likelihood
to be a repeated customer, Technician arrived when promised, and Repair completed
correctly. The new average confusion matrix obtained from 10 random samplings using
J48 classifier for the extended NPS dataset is shown in Table 3. Obviously the NPS score
did not change because the decision column is the same.

Table 3. Confusion Matrix for J48 and NPS dataset with new features

Promoter Passive Detractor

Promoter 407 80 7
Passive 123 327 50
Detractor 23 77 99

Much better results we received for the extended NPS datasets covering certain com-
binations of clients, especially single clients. Table 4 shows confusion matrix for the
Tree Classifier using Rough Set Exploration System (RSES) for a dataset which rep-
resents two clients.

Assume now that we use RSES Tree Classifier to construct action rules by pairing
classification rules describingDetractor with classification rules describingPromoter.
The goal is to reclassify as many Detractors as possible to Promoters. The average
confidence of action rules will be 0.993 · 0.849 = 0.84 (see the Accuracy column in
Figure 2). Our action rules can target only 4.2 (out of 10.2) detractors. So, we can ex-
pect 4.2 · 0.84 = 3.52 detractors moving to the promoter status. The NPS score for the
initial dataset covering two clients was 0.80. After applying our action rules we get:
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Fig. 2. Two-Clients Confusion Matrix for RSES Tree Classifier

– Number of Promoters = 168.5 + 3.52 = 172.2
– Number of Passives = 19.1
– Number of Detractors = 10.2 - 3.52 = 6.68

Total number of customers = 197.8. So, the new NPS = [ 172.2197.8 - 6.7
197.8 ] = 0.87 −

0.03 = 0.84, which means 4 percent of improvement in NPS is expected.

4 Clustering of Clients Based on Semantic Similarity in NPS
Datasets

In this section, we introduce the notion of semantic similarity between clients. In-
formally speaking, we say that two clients are semantically similar if they agree on
the knowledge concerning Promoter, Passive, and Detractor which is hidden in
their NPS datasets. Stronger is the agreement, semantically more similar they are. NPS
Datasets of two or more clients semantically similar can be joined together giving us
larger NPS datasets for mining. Larger the datasets, our own confidence in the results
shown in confusion matrices is higher.

Assume now that RC[1], RC[2] are the sets of classification rules extracted from
the questionnaire-type datasets (NPS datasets) collected for clients C1, C2. Also, we
assume that

RC[1] = RC[1, P romoter] ∪RC[1, Passive] ∪RC[1, Detractor],
where RC[1, P romoter] = {r[1, P romoter, i] : i ∈ IPr}, RC[1, Passive] =
{r[1, Passive, i] : i ∈ IPs}, RC[1, Detractor] = {r[1, Detractor, i] : i ∈ IDr},
where {r[1, P romoter, i] : i ∈ IPr} is a collection of classification rules defining
”Promoter”, {r[1, Passive, i] : i ∈ IPs} is a collection of classification rules defining
”Passive”, and {r[1, Detractor, i] : i ∈ IDr} is a collection of classification rules
defining ”Detractor”.

In a similar way, we define
RC[2] = RC[2, P romoter] ∪RC[2, Passive] ∪RC[2, Detractor],
where RC[2, P romoter] = {r[2, P romoter, i] : i ∈ JPr}, RC[2, Passive]=
{r[2, Passive, i] : i ∈ JPs}, RC[2, Detractor] = {r[2, Detractor, i] : i ∈ JDr}.
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ByC1[1, P romoter, i],C1[1, Passive, i],C1[1, Detractor, i] we mean confidence
of r[1, P romoter, i], r[1, Passive, i], and r[1, Detractor, i] in a dataset for client C1,
respectively.

ByC2[1, P romoter, i],C2[1, Passive, i],C2[1, Detractor, i] we mean confidence
of r[1, P romoter, i], r[1, Passive, i], and r[1, Detractor, i] in a dataset for client C2,
respectively.

ByC2[2, P romoter, i],C2[2, Passive, i],C2[2, Detractor, i] we mean confidence
of r[2, P romoter, i], r[2, Passive, i], and r[2, Detractor, i] in a dataset for client C2,
respectively.

ByC1[2, P romoter, i],C1[2, Passive, i],C1[2, Detractor, i] we mean confidence
of r[2, P romoter, i], r[2, Passive, i], and r[2, Detractor, i] in a dataset for client C1,
respectively.

Now, we can introduce the concept of semantic similarity between clients C1, C2
denoted by SemSim(C1, C2).

SemSim(C1, C2) =

Σ{|C1[1,Promoter,k]−C2[1,Promoter,k]|:k∈IPr}
card(IPr)

+ Σ{|C1[1,Passive,k]−C2[1,Passive,k]|:k∈IPs}
card(IPs)

+
Σ{|C1[1,Detractor,k]−C2[1,Detractor,k]|:k∈IDr}

card(IDr)
+ Σ{|C2[2,Promoter,k]−C1[2,Promoter,k]|:k∈JPr}

card(JPr)

+ Σ{|C2[2,Passive,k]−C1[2,Passive,k]|:k∈JPs}
card(JPs)

+ Σ{|C2[2,Detractor,k]−C1[2,Detractor,k]|:k∈JDr}
card(JDr)

.

Figure 3 shows the hierarchical clustering of 34 clients with respect to their semantic
similarity. Clients which are semantically and geographically close to each other can
have their datasets merged and the same considered as a single client from the business
perspective (customers have similar opinion about them). For each state (its abbrevia-
tion is given), we list clients operating in that state with their respective NPS values:

AB- {(clint − 9, NPS = 0.503)}, AZ- {(client − 8, NPS = 0.802)}, CA-
{(client− 13, NPS = 0.777), (client− 16, NPS = 0.767), (client− 17, NPS =
0.848), (client − 24, NPS = 0.724)}, GA- {(client − 34, NPS = 0.779)}, ID-
{(client − 30, NPS = 725)}, IL- {(client − 1, NPS = 0.836)}, KS- {(client −
7, NPS = 0.771)}, KY- {(client− 31, NPS = 0.804)}, LA- {(client− 19, NPS =
0.705)}, MN- {(client − 3, NPS = 0.823)}, MO- {(client − 7, NPS = 0.771),
(client − 10, NPS = 0.788)}, MS- {(client − 23, NPS = 0.860), (client − 26,
NPS = 0.828)}, NC- {(client − 4, NPS = 0.803), (client − 11, NPS =
0.797), (client − 12, NPS = 0.722), (client − 27, NPS = 0.760), (client −
32, NPS = 0.740)}, ND- {(client − 3, NPS = 0.823)}, NE- {(client −
21, NPS = 0.732)}, NV- {(client−5, NPS = 0.771)}, OH- {(client−22, NPS =
0.820), (client − 28, NPS = 0.779)}, OK- {(client − 29, NPS = 0.710)}, PA-
{(client − 6, NPS = 0.788), (client − 25, NPS = 0.800)}, QC- {(client −
14, NPS = 0.721)}, SC- {(client− 2, NPS = 765), (client− 11, NPS = 0.797)},
SD- {(client − 2, NPS = 0.765), (client − 3, NPS = 0.823)}, SK- {(client −
18, NPS = 0.636)}, TN- {(client−26, NPS = 0.828)}, TX- {(client−15, NPS =
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Fig. 3. Hierarchical clustering of 34 clients

0.762), (client− 20, NPS = 0.675), (client− 29, NPS = 0.710)}, UT- {client−
5, NPS = 0.771)}, WV- {(client−28, NPS = 0.779)}; WY- {(client−30, NPS =
0.725), (client− 33, NPS = 0.772)}, VA- {(client− 11, NPS = 0.800)}.

From the Figure 2, we can observe that {23, 26}, {24, 34}, {1, 11}, {21, 22},
{28, 31}, {19, 33} are examples of six clusters of semantically similar clients. Clients
in the cluster {23, 26} are both located in Mississippi so they are geographically close
as well. Their NPS ratings are 0.860 and 0.828, respectively. Since they both target the
same group of customers, Client 26 can improve its ratings by using recommendations
based on action rules extracted from the NPS dataset covering both clients. Clients in
the cluster {24, 34} are far away from each other. One is in California and the other
in Georgia. NPS rating for Client 24 is 0.724 and for Client 34 is equal to 0.80. They
do not compete for the same group of customers, so the strategy for improvement of
the NPS rating for Client 24 is more challenging. In this particular case, Client 24 has
the worst NPS ratings among clients in California (Client 13, 16, 17). Client 16 is se-
mantically the closest one to Client 24 and also its NPS rating is the closest to the NPS
rating of Client 24. So, we have two options. We can merge NPS datasets of clients
16 and 24, and next extract action rules from the joined dataset to get improvement of
the NPS score for Client 24 or we can merge the NPS datasets of Clients 24 and 34,
and next extract action rules from the joined dataset. Following the first option we are
targeting the same group of customers whereas in the second, the customers are from
two different states and geographically far away from each other. It is quite possible that
customers from two different states evaluating their local clients may follow different
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criteria when they answer the questionnaire. The optimal solution to solve this problem
is to test both options and chose the one which is giving us better improvement in NPS
score.

5 NPS-Based Recommender System

In this section, we present the methodology which can be followed to build a hier-
archically structured recommender system with nodes being recommender systems of
different generalization levels. Leaves of the tree represent personalized recommender
systems built from classifiers and action rules extracted from NPS dataset of a single
client (single company). The root of the tree represents the most generalized recom-
mender system which is built from classifiers extracted from the union of all NPS
datasets covering all 34 clients. The internal nodes of the tree are built following the
dendrogram presented in Figure 3. Lower the nodes in the tree, more specialized the
recommender systems are. Also, lower the nodes in the tree, the accuracy and precision
of the classifiers assigned to them is higher.

Fig. 4. Recommender System

Figure 4 presents Flexible Query Answering System (FQAS) built on the top of a
hierarchically structured recommender system. Client (company) which is not satisfied
with its current NPS ratings can submit a query to FQAS asking what can be done to
improve its NPS. The easiest answer can be obtained from the recommender system
constructed from the NPS dataset of that client but to get better recommendation we
have to use recommender systems which are not personalized. Namely, we should con-
sider getting help from recommender systems assigned to the nodes forming the path
which starts from the leaf (our client) in the dendrogram and leads to the root. So, the
process is bottom-up. For instance, if the Client 24 wants to improve its ratings, ac-
tion rules from its NPS dataset are extracted. If the hints from the recommender system
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based on these rules are not satisfactory, Client 24 is clustered with Client 34 (see the
dendrogram) since these two clients are semantically the most similar. If the NPS rating
of Client 34 is higher than the rating of Client 24, action rules are extracted from the
union of the corresponding two NPS datasets and hints based on them are given to the
client. Otherwise, we should check all leaves in the dendrogram leading us to the par-
ent of Client 24 and 34. We should chose that leaf which represents a client with NPS
rating higher than the rating of Client 24 and also which is semantically the closest one
to Client 24.

6 Conclusion

The paper presents preliminary results which finally will lead us to the construction of
a flexible hierarchically structured recommender system for improving NPS of a com-
pany in a global competitive market. Thirty four companies (clients) form the domain
for the agglomerative clustering algorithm based on their semantic distance. Clients are
compared in terms of the similarity of their knowledge concerning the meaning of three
concepts: promoter, passive, and detractor. The resulting dendrogram is a skeleton for
the collection of hierarchically structured recommender systems. Lower the nodes in the
dendrogram, more specialized the recommender systems are. The recommendations are
based on action rules which are extracted from the datasets assigned to all nodes of the
dendrogram. Higher a node in the dendrogram, the dataset assigned to it is larger - it is
built by taking the union of all datasets assigned to the descendants of that node. The
questionnaire sent to the customers allows them to enter statements in the text format
explaining their ratings. Information included in these statements will help us to find
triggers for action rules. The triggers are also called meta-actions [13], [6].
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Abstract. Groups of learners of similar features are often created in
order to diversify the environment accordingly. However student prefer-
ences may differ depending on the context of the system usage. Each
new student, who intends to join the community, should obtain context-
aware recommendation of the group of colleagues matching his needs. In
the paper, using fuzzy logic for modeling student groups is considered.
We propose to build the possibility-based representation of each group.
We assume that context can be modeled by a vector of weights. Then
recommendations for new students are determined taking into account
a degree of possibility of matching together with the respective context
parameters. We examine the presented approach by taking into account
learning style dimensions as attributes which characterize student pref-
erences. The method is evaluated on the basis of experimental results
obtained for data of different groups of real students.

Keywords: recommender systems, fuzzy logic, group modeling.

1 Introduction

Grouping students of similar characteristics, who should learn together enables to
adjust learning resources appropriately. However different student traits may be
important taking into account course requirements as well as the context of the
system use. Accordingly, building context-aware student group recommendations
can help students to join the suitable groups of colleagues while enrolling on
different courses.

The group assignment of each new learner should guarantee his similarity to
the group members. Effectiveness of recommendations depends on accuracy of
group modeling. In the paper [1] group representation in the probabilistic form
was proposed and accordingly modified Bayes classifier was used to build con-
text aware group recommendations. In [2] fuzzy group representation has been
defined with the use of linguistic terms corresponding to attribute values. The
linguistic variables were associated with fuzzy numbers defined over domains of
attributes. The recommendation process was based on the cardinality of the de-
fined fuzzy sets. In the current research, we propose to build the possibility-based
representation of each group. Attribute values of the group are represented by
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means of possibility distributions. In the recommendation process we apply the
fuzzy pattern matching technique [3]. We assume that context can be modeled by
a vector of weights. Then recommendations for new students are determined tak-
ing into account a degree of possibility of matching together with the respective
context parameters. The proposed method is examined for student traits based
on their learning style dimensions. It is validated, on the basis of experiments,
done for real students’ clusters.

The paper is organized as follows. The related work is described in the next
section. Then the proposed methodology for building recommendations, includ-
ing group modeling and context usage is depicted. In Section 4 the case study
of students described by dominant learning style dimensions is presented. Next,
results of experiments carried out on real students’ data are displayed and dis-
cussed. Finally, concluding remarks and future research are outlined.

2 Related Work

Context-awareness was very often considered for recommendation purposes.
Modeling context was discussed by Adomavicius & Tuzhilin, who introduced
algorithmic paradigms for incorporating contextual information into the recom-
mendation process [4]. Zheng et al. [5] considered differential context weighting
approach, in which the contribution of each contextual variable is weighted. The
broad review of context parameters as well as context aware e-learning systems
was presented in [6]. Rosaci and Sarne [7], considered both aspects: student’s
profile and an exploited device. Their recommendations were built on the basis
of the time spent by student on the particular Web site, taking into account
type of a device used for navigating. Yang et al. [8] proposed learning resources
recommendation system based on connecting similar students into small com-
munities, where they can share resources and communicate with each other.
Christodoulopoulos & Papanikolaou [9] discussed several factors that should be
considered while assigning learners into groups. A survey of the state-of-the art
in group recommendation was presented in [10]. Masthoff [11] described using of
group modeling and recommendation techniques for recommending to individ-
ual users. A collaborative Bayesian network-based group recommender system
has been proposed in [12]. Fuzzy Bayesian network was considered to build user
group recommendations based on context of scenario analysis and inference [13].

Using fuzzy logic for student modeling was examined by several researchers.
Authors used fuzzy sets to describe reality by means of linguistic terms, which
are close to human nature. The intelligent system, using fuzzy logic for eval-
uation and classification of student performance on the basis of the structure
of the observed learning outcome, was presented in [14]. In [15] for evaluation
of intelligent learning systems the authors considered the use of fuzzy sets to
specify the relevance or learning intensity of cognitive elements and fuzzy rules
that establish or modify those fuzzy sets.

In several works researchers considered fuzzy approach to adapting and per-
sonalizing of the learning process to the students’ needs. In the paper [16] authors
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applied fuzzy logic for defining a fuzzy ontology in which relationships between
objects, attributes and classes were described by means of fuzzy relations. They
elaborated a fuzzy ontology discovery algorithm to extract the concept maps rep-
resenting students’ knowledge structure. Fazlollahtabar and Mahdavi applied a
neuro-fuzzy approach for obtaining an optimal learning path [17]. Characteris-
tics of students were inferring on the base of teachers’ opinions expressed by
means of linguistic terms.

Fuzzy logic was included into recommendation techniques in e-learning by
several researchers. Ferreira-Satler et al.[18] built a fuzzy user profiles-based rec-
ommendation engine by including fuzzy ontology obtained automatically taking
into account learning objects published by users and used as the representation
of their preferences. Serrano-Guerrero et al.[19], in turn, applied a fuzzy lin-
guistic approach. Their algorithm suggested an adequate, depending on student
profile, set of activities which aimed at strenghtening students’ competences.

3 Recommender System

Let us assume that students are described by N attributes of nominal types Ai,
i = 1,..., N . A tuple ST representing a student is of the form:

ST = (st1, st2, ..., stN), sti ∈ DOM(Ai) , (1)

where DOM(Ai) stands for the domain of Ai. Attribute Ai may take on mi

nominal values ai,j , i = 1,..., N , j = 1,..., mi where mi stands for cardinality of
DOM(Ai): mi = card(DOM(Ai)) .

In e-learning, as the main factors which decide on context parameters, there
should be mentioned course requirements. They determine student features to-
gether with their priorities, which should be taken into account during the pro-
cess of course materials designing. Let wi, 0 ≤ wi ≤ 1, i = 1, ..., N denote weights
connected with attributes’ priorities. They will be further used in the matching
stage, which aims at suggesting the best choice of group of peers to learn together
during the considered course.

Let us assume that there exist groups of students with attributes Ai, i =
1,..., N . Representative values of attributes Ai for groups are not determined
uniquely. For creation of their representation one can apply tools for describing
uncertain or imprecise information. One of them is the fuzzy set theory. Based
on the concept of fuzzy sets there has been introduced the concept of possibility
distributions [20].

Definition 1. Let U be the universe of discourse, X be a variable on U and F
be a fuzzy set with μF (u). The possibility distribution of X with respect to F is
defined as

ΠX = {πX(u)/u : u ∈ U, πX(u) = μF (u)}. (2)

Each element u of U is assigned with a number πX(u) ∈ [0, 1] which is a possibil-
ity measure of X = u. If there exists u ∈ U such that πX(u) = 1 the possibility
distribution ΠX is called normalized.
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Let GSk, k = 1, 2, ..., NG be a group of students ST described by N attributes
of nominal type (1). Let us denote by ck,i cardinality of the most frequent value
of the attribute Ai in the group GSk:

ck,i = maxjcard {ST ∈ GSk : ST (Ai) = ai,j} . (3)

As the representation of the attribute Ai for the group GSk we will consider
a fuzzy set FSk,i with the following membership function:

μFSk,i
(ai,j) = card {ST ∈ GSk : ST (Ai) = ai,j} /ck,i. (4)

Let a group GSk be represented by a tuple (gsk,1, gsk,2, ..., gsk,n). The mem-
bership function μFSk,i

(u) may be interpreted as a measure of possibility that
objects from GSk are characterized by a certain attribute value [21]. Thus each
value gsk,i is represented by a normal possibility distribution:

gsk,i = {πk,i(ai,j)/ai,j : ai,j ∈ DOM(Ai), j = 1, 2, ...,mi}. (5)

The biggest values of πk,i(ai,j) indicate dominant attribute values in groups.
Possibilistic form of the group representation allows to determine matching de-
grees of attributes of new students and classify them to appropriate groups.

Let a tuple NST = (ns1, ns2, ..., nsN), nsi ∈ DOM(Ai), represent a new stu-
dent. Let us consider a group of students GSk represented by a tuple (gsk,1,
gsk,2, ..., gsk,n). The compatibility degree between NST and GSk can be es-
timated with the use of possibility measure, denoted by Pos(NST,GSk). This
measure expresses the extent to which the considered values satisfy a comparison
relation.

According to [3] a degree of possibility of matching NST to GSk for the
attribute Ai equals:

Pos(NST (Ai), GSk(Ai)) = πk,i(nsi). (6)

The total matching degree Pos(NST,GS) for the group is a minimal value
of Pos(NST (Ai), GSk(Ai)), i = 1, ..., N :

Pos(NST,GSk) = mini(Pos(NST (Ai), GSk(Ai))) . (7)

Maximal value of Pos(NST,GSk) indicates the group that should be recom-
mended for students.

The described way of recommendation assumes that all attributes are of equal
importance. However, if certain attribute Ai is less important for the choice of
the group and the matching degree Pos(NST (Ai), GSk(Ai)) is low, then the
group may be rejected regardless of matching degrees of other attributes. The
problem may be resolved by introduction of weights as it was proposed in [3].

Let each attribute Ai be assigned with a number wi ∈ [0, 1]. Let wi ∈ [0, 1] be
the weight of importance of the attribute Ai. For the most important attributes
wi = 1. For attributes which are not considered during the recommendation
process wi = 0. A degree of possibility of matching NST to GSk for Ai equals:

Pos(NST (Ai), GSk(Ai)) = max(πk,i(nsi), 1− wi). (8)



362 K. Myszkorowski and D. Zakrzewska

The total matching degree Pos(NST,GSk) is expressed by the formula:

Pos(NST,GSk) = minimax(πk,i(nsi), 1− wi). (9)

Let us assume, that there are NG student groups, then the whole process of
recommendation building will take place in the following way:

Algorithm of group recommendation building

Input A set of NG groups GSk, of students of N nominal attributes;

a tuple NST representing a new student;

a set of weights assigned with attributes;

Step 1: For each group GSk, k = 1, 2, ..., NG find its possibility-based

representation according to (5)

Step 2: For the student NST find the group GLrec with the maximal

value of the matching degree (9)

Step 3: Recommend GLrec to the student.

4 Students Characterized by Learning Styles

As an example for building contextual group recommendations, we will con-
sider student models based on learning styles. Das et al. [6] mentioned learning
styles as context parameters corresponding to media used by the learner. For
the purpose of the evaluation of the proposed methodology, we will apply Felder
& Silverman [22] model, where learning styles are described by means of 4 at-
tributes which indicate preferences for 4 dimensions from among excluding pairs:
active vs. reflective (L1), sensing vs. intuitive (L2), visual vs. verbal (L3), and se-
quential vs. global (L4) or balanced if the student has no dominant preferences.
Attribute values belong to the set of odd integers from the interval [-11, 11].
These numbers describe scores for features represented by respective attributes.
Each student can be modeled by a vector SL of 4 integer attributes:

SL = (sl1, sl2, sl3, sl4), sli ∈ {−11,−9,−7,−5,−3,−1, 1, 3, 5, 7, 9, 11} . (10)

Let jmaxi denotes the index of the most frequent value of the attribute Li in
the group. As the fuzzy group representative we will consider the following sets:

Repi = {li,j : |jmaxi − j| ≤ 2} , 1 ≤ i ≤ 4 . (11)

For the new student NSL = (nsl1, nsl2 , nsl3 , nsl4), and each group GLk, k
=1,..., NG we can define a weighted recommendation error Errk as follows:

errk,i =

{
1 if nsli /∈ Repi
0 otherwise

, (12)

Errk =

4∑
i=1

wi ∗ errk,i. (13)
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5 Experiments

The goal of the experiments was to evaluate the performance of the proposed
recommendation technique taking into account different weight parameters. The
evaluation was done by comparison of recommendation results obtained by using
the proposed method, with the ones which match students the best according
to the recommendation error defined by (13). The tests were carried out in the
context of different courses represented by the set of weight parameters.

The experiments were done for two different datasets of real students’ at-
tributes representing their dominant learning styles as was presented in SL
model (10). Students filled self-scoring questionnaire Index of Learning Styles
(ILS) [23] for assessing preferences on 4 dimensions of the Felder & Silverman
model. After selecting answers to 44 questions concerning student preferences
during learning process, learners obtained scores for the respective dimensions.
The first dataset contains data of 194 Computer Science students from different
levels and years of studies, including part-time and evening courses. This data
was further prepared by building groups of similar students. The second set con-
tains data of students, who were to learn together with their peers from the
first dataset and whose data was used for testing the recommendation efficiency.
The set consists of 31 data of students studying the same master’s course of
Information Systems in Management.

The groups were created by clustering taking into account techniques, which
are easy to understand for educators and for which input parameters can be
easily determined. There were used: partitioning - K-means (KM), statistical -
EM and hierarchical Farthest First Traversal (FFT). Clusters were created by
using Open Source Weka software http://www.cs.waikato.ac.nz/ml/weka. As the
number of data was not very big, clustering into 3,4,5,6 and 7 clusters were con-
sidered. Such approach allowed to check the proposed technique for groups of dif-
ferent qualities, similarity degrees and structures and to enable comparison of the
method performance depending on the number of considered groups. Recommen-
dations were built in the context of five different courses, where scores for student
attributes are represented by vectors: W1 = (1, 1, 1, 1);W2 = (1, 0, 1, 0);W3 =
(0, 1, 1, 0);W4 = (0, 1, 0, 1);W5 = (1, 1, 1, 0). Quantitative analysis of the results
showed that the majority of the students obtained the best recommendations.
The results did not show dependency between clustering schema and the per-
centage of properly assigned recommendations. The detailed results of quantita-
tive analysis are presented in Table 1. The first two columns contain clustering
method and the number of clusters. Next columns show percentage of students
who obtained the best recommendations for different weight vectors.

Qualitative analysis showed the big influence of the weight parameters as well
as group sizes on recommendations. In most of the cases, the recommendation
errors took on the largest values when all student attributes were of the same
importance. When the differences between cluster sizes were big, usually the
larger group was suggested. The biggest error values can be notified when there
exist students, whose profiles do not match any of existing groups. Such situation
took place in the case of six clusters created by EM algorithm.
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Table 1. Quantitative analysis depending on clustering schema

Schema Cl. no W1 W2 W3 W4 W5

EM 3 97.77% 90.13% 100% 100% 100%
4 87.10% 80.65% 93.55% 87.10% 93.55 %
5 83.87% 77.42% 97.77% 90.13% 90.13%
6 58.06% 77.42% 70.97% 70.97% 64.52%
7 74.19% 67.71% 83.87% 77.42% 93.55%

FFT 3 90.13% 87.10% 97.77% 97.77% 90.13%
4 83.87% 80.65% 93.55 % 90.13% 87.10%
5 80.65% 83.87% 87.10% 87.10% 87.10%
6 77.42% 83.87% 77.42% 83.87% 77.42%
7 80.65% 80.65% 70.97% 77.42% 74.19%

KM 3 90.13% 93.55% 97.77% 90.13% 90.13%
4 77.42% 90.13% 90.13% 80.65% 83.87%
5 87.10% 87.10% 77.42% 70.97% 80.65%
6 83.87% 93.55% 97.77% 90.13% 87.10%
7 70.97% 97.77% 87.10% 90.13% 80.65%

6 Concluding Remarks

In the paper, fuzzy logic for building student group recommendations in the
context of different courses was pondered. There was proposed a possibilistic
representation of the group. The considered technique was examined in the case
of students described by dominant learning styles and the course context repre-
sented by the weight vector. Experiments done for datasets of real students and
different group structures showed that for the majority of the students the sys-
tem indicated the best possible choice of colleagues to learn together. However
during experiments, situations when students did not match any of the existing
groups occurred. In such cases contacting tutors seems to be the best solution.

The proposed method of recommendation building can be applied by educa-
tors during the process of course management as well as organization of joint
activities for student groups of similar characteristics.

Future research will consist in further development of the recommendation
tool, examination of attributes of different types and taking into account dynam-
ical changes in group representations each time the recommendation is accepted.
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Abstract. Nowadays, surveillance systems are less dependent of humans' 
interactions, mostly in event's detection. However, there still are tasks to be 
performed by humans that could be delegated to autonomous robots. The 
integration of an autonomous service robot, as an agent, in a multi-agent 
surveillance system can reduce even more humans' dependency. This paper 
proposes a new architecture and a communication protocol that integrates 
ServRobot's autonomous robot into DVA's surveillance system. This integration 
allows the DVA's system to use the robot as a mobile unit for validation of 
triggered events, to perform surveillance missions and to gather sensors 
information. 

Keywords: Software agents, surveillance, sensors, distributed systems, archi-
tecture, protocol, collective behavior, autonomous robot. 

1 Introduction 

DVA project1 (partially sponsored by the European Regional Development Fund and 
the Portuguese Government) developed a surveillance intelligent system based on a 
multi-agent platform. DVA's system supports different sensors types and implements 
mechanisms of geo-referencing sensor's data and events. This distributed system im-
plements different agent's types, such as: Sensor Agent, Processor Agent, Inference 
Agent, Action Agent, Mobile Agent, Backup Agent, Interface Agent and Monitor 
Agent. 

ServRobot2 (partially sponsored by the European Regional Development Fund and 
the Portuguese Government), is an autonomous robot capable of: following people or 
lines, teleoperation, execute predefined missions (such as: go to a specific GPS posi-
tion), and obtain sensor data.  

                                                           
1 http://dva.holos.pt 
2 http://servrobot.holos.pt 
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The integration of ServRobot in DVA's system, as a Mobile Agent and Sensor 
Agent, could significantly improve DVA's performance, using it in the event's detec-
tion, fusing its sensor data with DVA traditional sensors, improving their inference 
engine; event's validation and event's handling using robot mobility and its environ-
ment perception. This paper proposes an architecture and message protocol to enable 
the implementation of this integration, allowing DVA to use ServRobot in different 
scenarios. 

It is expected that this proposed integration will improve intelligent surveillance 
system, reducing false positives, using robot’s sensors to complement DVA static 
sensors improving the reliability of events triggered and the need for human's interac-
tions using the robot mobility to confirm and handling events. 

In the reminder of this paper, Distributed Systems are described in Section 2; In 
Section 3 the proposed architecture is presented, followed by a description of the 
message protocol. This paper will conclude with an analysis of the work developed 
and definition of the research steps. 

2 Distributed Systems 

With the computing capabilities and network services evolution, distributed systems 
have widely sought to solve certain system's problems, since with a decentralized 
structure, it is possible to design a more robust and fault tolerance system [1–4].  

Multi-Agent Systems (MAS) allow distributed, flexible, robust, scalable and recon-
figurable systems, constituted by a team of multiple agents. These agents can be posi-
tioned at different locations and perform a wide-ranged monitoring. With these  
characteristics, it is possible to design systems with objectives such as protection of 
an international border against trespassing, timely detection of a bushfire, accurate 
analysis of the traffic state of a city, and so forth [2]. 

The development of MAS’s in robotic applications has been widely used in various 
applications, often adding more intelligence and autonomy to systems. Since Robotic 
Systems are evolving from industrial robots that are only responsible for one task, 
(performing it automatically), to autonomous and mobile robots that can collaborate 
among themselves and use sensors to understand their context, it was necessary to 
develop new systems to take advantage of all these new capabilities [3]. Taking this 
into account, it is possible to manage all these new features and requirements with a 
MAS. This paradigm can be applied to Robotics System in several forms: Heteroge-
neous mobile robots [4]; Robots working in ambient intelligence environments [5], 
[6]; Collective robot swarms [7]; Mobile sensor robotics networks [8] and Multi-agent 
control systems [9]. 

In general, robotic systems are controlled by Robotic Software Frameworks. These 
frameworks are focused on providing scalability, reusability, deployment and debug-
ging of the software developed in the system. There are many Open-Source Frame-
works available for the development of Robotic Systems such as: Player, OROCOS, 
ROS, YARP, OpenRave, OpenRTM, and others. However, these frameworks don’t 
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provide specific services oriented to MAS because they were developed focusing in 
Robotics and Hardware Systems [9].  

Multi-Agent Software Frameworks, are frameworks that achieve the necessary 
conditions of a MAS, mainly in the communication mechanisms such as messages, 
ports, topics, naming and lookup services, agent mobility, development and introspec-
tion tools. Examples of these frameworks are: JADE, Mobile-C, Zeus, and others [9]. 

3 Architecture 

The described work (section 2), in MAS’s, assumes that all the agents are developed 
in the same framework. Nevertheless, there are systems that could improve their fea-
tures and performance by interacting with "agents" from other systems. 

DVA is a Geo-referenced multi-agent surveillance system, composed by several 
agents: Sensor agent – provides sensor information; Processor agent – transforms 
sensor information into parameters; Inference agent – uses parameters in rules for 
event detection; Action agent – executes predefined actions for each event; Backup 
agent - stores all the system information; Interface agent – shows (in maps) the values 
of the sensors, events, actions and system status; Mobile agent – Associated with a 
human, equipped with a mobile device who is responsible to perform events’ actions, 
such as confirming the event or handling the event; Monitor agent – monitors all sys-
tem’s agents, ensuring correct system performance. 

Furthermore, ServRobot is a server/client system based on Player/Stage [9] frame-
work, where different software modules are implemented allowing inclusion of new 
features as an autonomous service robot. 

Both projects are operating independently of each other and it is not possible to in-
clude ServRobot as agent of DVA's system. In the next section a new architecture is 
proposed that extends DVA's architecture to allow ServRobot integration without 
compromising the operation of these separately. This way, ServRobot and DVA can 
continue to function as it is currently implemented differing only in ServRobot role, 
this being an agent available at DVA. 

3.1 Proposed Architecture 

The proposed architecture is represented at Fig. 1, which shows the current operation-
al DVA’s architecture elements in solid line. In dashed line, in the Fig. 1, are 
represented the proposed new elements used to extend the architecture to include 
ServRobot in the DVA system, using it as a mobile agent or as a mobile sensor.  

The “Robot Mobile” agent handles the registration process of robots and manages 
their availability and their skills. This registration allows, for example, that when the 
Action Agent has to execute an action to confirm an event, it can use the robot (as an 
additional Mobile agent) to check event's location and to confirm event’s occurrence. 
With this architecture, the Action agent has the possibility to delegate tasks to a robot, 
reducing the dependence of human resources connected to the system as Mobile 
agents. 
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Fig. 1. Architecture proposal 

The “Robot Sensor” agent will handle the reception of all sensory information 
sensed by the robot, integrating it as other standard DVA sensors. All the data col-
lected by the Robot Sensor agent will be sent to a Processor agent, just as traditional 
DVA sensors. This agent can get single sensor values (following a request/reply pat-
tern) or can subscribe to a sensor and receive its values periodically. 

Details of implementation of these two new agents are described in the next  
section. 

In summary, through this extended architecture, the DVA system will be capable 
of: sending a robot agent to execute a mission; get robot's sensors data; ensure the 
mobile surveillance of different areas; send a robot to confirm events, getting feed-
back from the environment. This architecture also makes possible for new devices to 
enter in the system as client devices, capable to teleoperate the robot or to get feed-
back from their sensors. 

4 Architecture's Proposed Implementation 

The architecture's proposed implementation requires a message protocol and a mid-
dleware framework to guarantee that all the functionalities reported before are availa-
ble. Next sections describe details of the middleware framework proposed and of the 
messages designed to establish the communication between the DVA system and 
ServRobot. 

4.1 Middleware Framework 

There are several middleware messaging frameworks available to use as base of the 
proposed architecture. Middleware frameworks also allow the programmer to inte-
grate applications developed for different executions contexts and in different times 
[10]. 
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Main messaging frameworks types can be classified as: Service-Oriented Archi-
tecture [10], (Some examples are: Representational State Transfer (REST), Simple 
Object Access Protocol (SOAP) or Constrained Application Protocol (CoAP)); Mes-
sage-Oriented Architectures (MOA) (Some examples are: Java Message System 
(JMS), Advanced Messaging Queuing Protocol (AMQP) or Zero Message Queue 
(ZeroMQ)). 

ZeroMQ (ZMQ) provides a new type of sockets on top of TCP/IP that enable to 
connect N-to-N sockets with patterns as Publish-Subscribe, Parallel-Pipeline, Fair-
Queuing, or Request-Response [11]. It is transport agnostic, supports in-process, inter-
process, and multicast communication [11]. As an asynchronous processing model, the 
messages can be dispatched, delivered and queued (sender or receiver side) in parallel 
without the need to block the main application process [12], [13], [14]. 

For these reasons, the messaging framework selected to be used in the DVA to 
ServRobot integration was ZMQ. It is a lightweight message-driven middleware li-
brary, specially designed for high throughput and low latency scenarios, that can be 
found in financial systems [12]. 

4.2 Message Patterns in Use 

The proposed architecture uses two of ZMQ message patterns: Request-Reply 
(REQ/REP) and Publish-Subscriber (PUB/SUB). Essentially, REQ/REP is used when 
an acknowledge is expected, for example on registration messages, direct orders; or 
one time sensor output requests. The concept of PUB/SUB is used when it's needed a 
periodically updates from a sensor. It's also used to send heartbeats to the connected 
clients as “I’m alive” messages. 

4.3 Message Language 

The language proposed for the exchanged messages, is the Extended Markup Lan-
guage (XML). XML was adopted taking into account its advantages to: modulate the 
concepts of the scenario in study (instead a byte codification); make changes in the 
message protocol by modeling new objects and data types [15]; develop in different 
platforms, debug problems and validate the messages' composition [16, 17]. 

Also, with XML an important issue to this architecture is guaranteed: communica-
tion interface does not contain limitations, so in future, new functionalities can be 
added easily with scalability, for new sensor/modules in the autonomous robot or new 
devices in the system [9]. 

4.4 Message Types 

Messages are divided into different types, being used each one for distinct purposes. 
The messages types used are: 

• Emergency Command - Used to abort an activity that is being undertaken. 
Independently of the current status of the robot, when it receives an emer-
gency command, the robot should stop immediately. 
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• Heartbeat Message - The heartbeat message is used as an “I’m alive.” type 
of message. It is sent using a PUB/SUB messaging pattern and is present in 
all devices in the architecture. 

• Registration Message - To join the system, the devices have to send a regis-
tration request to the "Robot Mobile" agent at DVA. 

• Simple Message - Simple Messages are a regular messages defined in this 
protocol. These messages have a DataType attribute that specifies the type of 
data contained on the message to send and can take values such as: Robot 
Status, Mission, Sensor and Reply.  

Reply 
Reply type is used as an "answer" to every request made from "Robot Mobile" agent. 

Mission 
Mission messages are used to request execution of missions to the robot and get feed-
back from the result of an executed mission. These messages will be used by the "Ro-
bot Mobile" agent when it receives a notification from Action agent, using a 
REQ/REP pattern. Different mission types are available, taking into account the ro-
bot’s capabilities. The mission arguments can be already stored at robot memory or 
sent in the message, as example on Fig. 2. 

It is also possible get missions list available at the robot memory or get a more de-
tailed data about one specific mission. This way "Robot Mobile" agent knows the 
robot capabilities available. It is possible to upload and remove missions on the ro-
bot's memory. 

 

 

Fig. 2. DoNewMission message example 

The robot also deals with the concept of Reference Point. A Reference Point is a 
known location (by the Robot and "Robot Mobile" agent) that is associated with a 
label. This way it is possible to execute a mission at ‘Room01’ instead using its coor-
dinates. There are messages that manipulate and get these Reference Points. 

Sensors 
Using these messages it is possible to get information about the robot's sensors, for 
example: get the list of all the sensors or get the detailed information of a specific 
sensor. This way, the “Robot Sensor” agent knows what kind of data it can gather 
from robot. 

<msg type="SimpleMsg"> 
  <Header>…  </Header> 
  <DataFrame DataType="Mission"> 
    <Command>DoNewMission</Command> 
    <Speed>10</Speed> 
    <MissionType>GoToPtsAbsXY</MissionType> 
    <XY>1;1</XY> 
    <XY>1;2</XY> 
  </DataFrame> 
</msg> 
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With these messages it is also possible for the “Robot Sensor” agent to subscribe or 
unsubscribe to specific sensor values that are published by the device. Those values 
are published with a certain Update Interval requested by the device when it sub-
scribes it. There are other methods to get values from sensors following a REQ/REP, 
obtaining the sensors information in terms of a specific parameter (for example a 
temperature of the left motor) or type of parameter (for example all the temperatures 
from the robot's sensors). 

Robot Status  
With this message, the “Robot Mobile” agent will be able know the robot’s availabili-
ty and the operation mode (Idle, Mission Mode or Teleoperation Mode). 

5 Conclusion 

Given the developments of MAS’s and robotic systems, it was shown that in certain 
applications, there are significant improvements in the integration of robotic agents in 
pre-existing multi-agent applications. But often, taking into account the differences 
between robotic frameworks and multi-agent frameworks, this process of integration 
is not trivial, it is necessary to implement an architecture and protocol for communi-
cation between systems. 

The proposed architecture, presented in this paper, will allow the integration of 
ServRobot's robot in the DVA system without affecting the operation of the current 
implementation. Thus, the DVA system has the possibility of: using the robot as an 
agent to acknowledge events that are reported in the system, execute surveillance 
missions, replacing humans that could be not available to that task. 

The use of robot's sensors to get feedback from the environment is another advan-
tage, fusing the data perceived by the robot with the data from DVA sensors, will 
expectably improve the detection of events in the rules of inference currently in use in 
DVA. The mobility of the robot is a positive factor taking into account that the re-
maining DVA's system sensors are fixed. This way, the dependence on human actions 
can be decreased taking advantage of developments in robotics, integrating in the 
DVA's system the autonomous robot. 

The next steps of the described work will be the development of the communica-
tion modules for the ServRobot and the DVA. These communication modules will 
include all the necessary functions that will be used to create, send, receive, interpret 
and debug the message flow. 

Also we will be integrating mobile devices as Clients and make robot missions 
available in DVA's web interface. 
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Abstract. This paper studies image object coverage segmentation by introduc-
ing soft boundaries. By using soft boundaries, fuzzy image can be segmented
into several classes with a sharing boundary which is called a soft boundary. In
this paper, several concepts of boundaries are defined, namely, hard boundary,
inner boundary and outer boundary. Soft boundary is defined by the subtraction
between inner boundary and outer boundary of a set. Coverage segmentation al-
gorithm and optimization method are proposed in this paper. Meanwhile, neigh-
bor decision rules are used in classification of pixels to filter noise or outliers.
Experiments and comparison with classical coverage segmentation methods are
presented, including noise test on the proposed method with four kinds of bound-
aries and neighbor decision rules.

Keywords: image classification, coverage segmentation, fuzzy c-means, spec-
tral projected gradient optimization, soft boundary.

1 Introduction

Image segmentation is a challenging problem which has been addressed more fre-
quently than any other problems in image processing[1]. It aims at partitioning an image
into a number of components constructed by a certain intra-component homogeneity
and inter-component discontinuity[2]. This is generally considered to be both the most
important and the most challenging task in image processing[3].

Recently, some researches focused on one specific type of fuzzy discrete object
representations[1]. Lindblad et al[4][5], have utilized the coverage model to improve
the estimation precision. They found that a possible lack of precision resulting from
limited spatial resolution may be overcome by properly utilizing grey-level value con-
tained in the images when estimating relevant features of the objects. If the criterion
for membership of a pixel to an object is the coverage of the pixel by the continuous
imaged object, and the assigned pixel value corresponds to the relative coverage of the
pixel, the resulting membership is referred to as a coverage representation.

However, there are relatively few generally applicable methods which explicitly re-
sult in a coverage representation[1]. In [2], Sladoje presented a method that, based on
any existing crisp segmentation, enhances it to a coverage segmentation by identifying
boundary pixels and suitable re-evaluating their coverage values[3]. Compared to crisp
segmentation, precision and accuracy of feature estimations are increased[4][5]. Com-
pared to other fuzzy representations, advantages of the coverage model come from the
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knowledge of a particular and clearly defined membership function; bounds of estima-
tion errors are derived utilizing these assumptions[1].

In this paper, we introduce some concepts of different boundaries and their useful-
ness in coverage segmentation. Then we provide an algorithm for coverage segmen-
tation. Experiments are presented to compare the performance of the proposed model
with different boundaries.

2 Related Work and Motivations

Models based on linear unmixing of image intensities are common in the field of im-
age processing. They are frequently used, such as in remote sensing[6][7] and fluores-
cence microscopy[8][9]. Per-pixel linear unmixing has been shown to be highly noise
sensitive[10]. Lindblad and Sladoje[1] addressed the general problem of estimating cov-
erage values by combining intensity information with spatial smoothness criteria, to
improve estimation accuracy. It can also process a multi-band input image containing
several objects, and it does not require crisp segmentation as an input. For each object,
pure class representatives are used. The coverage segmentation process is then based on
energy function minimization with several regularization terms. However, this method
is more computationally demanding than the method proposed in [2][11].

The work mentioned above is aimed to segment image with a membership matrix,
but there is few work on how the class representatives influence segmentation and how
to choose them. Fig1 shows image segmentations by different boundaries. In case (a),
the representatives of the object are too high light. Many pixels are classified into back-
ground. In this case, the boundary is too close to the high light. In case (b), the repre-
sentatives of the object are middle and adopt. This makes most of the object pixels to
be classified. In this case, the boundary is not too clear to see in the original image, but
it is useful for classification. In case (c), the representatives of the object are lower a
little. This makes many of the background pixels classified into the object. In this case,
the boundary is too near to the background, and a lot of pixels are misclassified.

                             (a)                    (b)                (c) 

Fig. 1. Image segmentation by different boundaries with different representatives. (a)High grey
averaged representatives; (b)Middle grey averaged representative; (c)low grey averaged represen-
tatives.
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Fig.1 shows an example which needs to choose adaptive class representatives to sep-
arate the object from its background. However, how to choose the adaptive class rep-
resentatives may depend on different images under different conditions. Further more,
image segmentation depends not only on class representatives but also the value of the
membership matrix for each pixel. In the following sections of this paper, we study the
issues by introducing the soft boundary for image segmentation.

3 Models

Given a multi-band digital image I of size N = width × height, on a discrete domain
ID, I : ID → Rb, where b denotes the number of bands of the image. We consider I to
be given as matrix of size N × b, I = [pi,k]N×b. In this representation, a row contains
intensities of one pixel in each of the observed bands, and a column represents the pixel
intensities of the image in one band. For convenience, denote the i-th pixel in the image
I as p(i, .). Let Wm denote the set of m-component (fuzzy) segmentation vectors[2],

Wm = {w = (w1,w2, · · · ,wm) ∈ [0, 1]m|
m∑

k=1

wk = 1} (1)

A coverage segmentation of an image I into m components is a set of ordered pairs

{((i, .), α(i))|(i, .) ∈ ID, α(i) ∈Wm}, α(i) ≈ |p(i, .)
⋂

S k |
|p(i, .)| (2)

where S k is the region of the k-th (out of m) image segment and ID ⊆ Z
2 is the dis-

crete image domain. Generally, the set S k is unknown. Therefore, the value of α(i) has
to be estimated from the image data. We denote an arbitrary m component coverage
segmentation with N elements (coverage vectors) by AN×m.

Denote the set of pixels belong to the k-th class as Ck. We introduce the following
definitions of a boundary used in image segmentation.

Definition 1. Hard Boundary p(i, .) ∈ Ck if αk = max{α1, α2, · · · , αm}, where α(i,.) =

(α1, α2, · · · , αm). Here, for any pixel p(i, .) there is a class label Ck, which it belongs to
without cross conquer, even the pixel is not clearly seen to be the same as other pixels
in Ck. We call the segmentation as classification with hard boundaries.

Definition 2. Inner Boundary p(i, .) ∈ Ck if αk = max{α1, α2, · · · , αm} and αk − αs >
σ/m, where αs = max{α1, α2, · · · , αm}\αk, σ is a parameter, such as 0.05. According to
this definition, there exist some pixels which do not belong to any class. We call the set
S I, including all the pixels, as the data of one class with inner boundary.

Definition 3. Outer Boundary p(i, .) ∈ Ck if αk = max{α1, α2, · · · , αm} or αmax − αk <
σ/m, where σ is a parameter, such as 0.05. According to this definition, there exists
some pixels which belong to more than one class. We call the set S O, including all the
pixels, as the data of one class with outer boundary.

Definition 4. Soft Boundary Suppose S I and S O are the sets for the data of the same
class C, define S B = S O − S I as the soft boundary of the data set of class C.
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Fig.2(a) is an example of a Hard Boundary. Fig.2(b) is an example of an Inner Bound-
ary. Fig.2(c) is an example of an Outer Boundary. Fig.2 is an example of Soft Boundary
example.

Fig. 2. Image segmentation by different boundary, (a) segmentation by hard boundaries; (b) seg-
mentation by inner boundaries; (c) segmentation by outer boundaries; (d) soft boundaries between
two classes

Generally, it holds that S I ∈ S O and S I
⋂

S O � ∅. This means inner boundary and
outer boundary can both used to separate one object from others, but with different
standards. For an object in an image, if its soft boundary is null, i.e. S B = ∅ and S I = S O,
we call the soft boundary vanish. In this case, usually the boundary of the object is
sharp. For an object in an image, its hard boundary is a special case of soft boundary
with σ = 0. The hard boundary is defined the same as classical boundary used in [2].
When an object has a soft boundary, the outer boundary is usually much larger than the
inner boundary. When the soft boundary is vanished, the object has a sharp boundary.

4 Algorithm

For any image I defined in Section 3, our goal is to obtain a coverage segmentation
of I corresponding to m classes (objects). Each pixel is assigned a vector of length m
whose components give the relative area of the pixel covered by each of the m classes.
A coverage segmentation of the image I is, in accordance with (2) and the following
notation introduced for I. Denoted A = [αi, j]N×m, where αi, j ∈ [0, 1] is the coverage
of the pixel with index i(i = 1, 2, · · · ,N) by a class (object) S j. Assuming spatially
non-overlapping classes S j which partition the image, each row of A sums up to one.

The proposed segmentation method models the image intensities I as a non-negative
linear mixture (i.e., a convex combination) of the pure class representatives. The pure
class representatives (often referred to as end-members) can be represented by a matrix



378 J. Liang et al.

C = [c j,k]m×b; where c j,k corresponds to the image value of a class j in the band k. Using
the introduced notation, we can, conveniently, express that I is approximately a linear
mixture of the end-members as follows

I ≈ A ·C (3)

For a given image I and a given end-member matrix C, the following data fidelity
term D(A) is defined,

D(A) =‖ I − AC ‖2 (4)

Minimization of D(A) constrained to A provides an unmixing segmentation. In the fol-
lowing segmentation algorithm based on Eq.(4), two classical optimization methods are
referred, one is fuzzy c-mean clustering[12] and the other is spectral projected gradi-
ent algorithm[13]. Algorithm 1 is the overall segmentation procedure of our proposed
coverage segmentation based on soft boundary.

Algorithm 1. Coverage segmentation based on soft boundary

begin
Data preparing

Image data
Class number

Initializing samples C and membership matrix A
Select C mutually or automatically
Random initialize A

Update and optimize A
Update A by FCM
Optimize A by the SPG algorithm

Classification
Compute inner boundary, outer boundary and soft boundary
Classification by A and neighbor decision

end

5 Experiments and Discussion

In this section, we first present a qualitative comparison with crisp and fuzzy pixel-wise
classification of the ”peppers” image. Then we evaluate the sensitivity of the proposed
method to noise on synthetic data, and compare the results with the method in [5].
Finally, we present a coverage segmentation on an image of astronautics with rough
boundaries, and compare the performance with the method presented in [1].

The results of a crisp segmentation for the ”peppers” image based on a Fuzzy clus-
tering (FCM) and SPG algorithm, are shown in Fig.3. Fig.3(a),(b),(c),(d),(e) show clas-
sification results of the segmentation based on Hard Boundary, Inner Boundary, Outer
Boundary, Soft Boundary and Neighbor decision, respectively. From Fig.3, we find that
by using soft boundary, some overlapping parts of the object are detected and departed
from other parts. We call these parts of pixels as debated region,which is error possible
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if trying to determine their classes. Moreover, Fig.3(e) shows that, by using neighbor
decision rule, some parts of noise and boundaries are clearly classified and connected
comparing with Fig.3(a),(b),(c). Especially, for the middle of Fig.3(e), there are some
yellow parts of pixels from the right(red) now classified into the yellow, which is it
should be from the point view of color construction theory.

Fig. 3. Segmentation with different boundaries (a) hard boundary. (b)inner boundary. (c) outer
boundary. (d) soft boundary. (e) neighbor decision.

In order to test how optimization of the objection function Eq.(4) may improve the
segmentation in detail, we provide the comparison of the segmentation results in Fig.4.
It shows the coverage segmentation results of two cases, i.e. optimization with/without
SPG algorithm. Experiments show that some image segmentation results are not sensi-
tive to SPG optimization algorithm, but most image samples, e.g. Fig.4, are very sen-
sitive to SPG optimization because of the tiny difference between classes in gray value
of each bands.

Fig. 4. Coverage segmentation results for optimization with/without SPG algorithm. (a) optimiza-
tion with SPG algorithm. (b) optimization without SPG algorithm.

Fig.5 shows the coverage segmentation results of ”Nebula”, with noise addition. It is
clearly visible that the image noise has a rather strong negative impact on the result. In
addition, the obtained segmentation is crisp and does not provide coverage information.



380 J. Liang et al.

We explore how the methods perform for increasing levels of noise. As a reference,
coverage values for a hard boundary, inner boundary, outer boundary and neighbor
decision boundary, are presented. Coverage values are computed by 256 × 256 times
super-sampling (the object is digitized at 256 higher resolution and coverage values are
approximated as the relative number of covered pixels for each square of 256 × 256
pixels)[1]. From Fig.5, one may find that outer boundary and hard boundary are more
sensitive to noise than inner boundary and neighbor decision boundary. It is reasonable
since the inner boundary is the smallest set in all boundaries, and neighbor decision
boundary is robust to noise because of its smoothness by a linear combination of its
neighbors.

Fig. 5. (a): (top) Test objects for one class of ”Nebula”. (second) Part of object with 5% noise
added. (third) Coverage segmentation result with 10% noise. (bottom) Coverage segmentation
result with 15% noise. (b): Average absolute error of coverage values of object border pixels with
different noise levels.

Experiments show that the proposed model has advantage in describing the over-
lapping region of objects. The inner boundary of the object can be considered as the
determined boundary of an object region with no doubt. The outer boundary of the ob-
ject is a possible boundary besides the inner boundary of the object region which is in
doubt and may be part of other object or background region. While soft boundary show
us the controversial parts in the boundary, which may belong to more than one class
of object regions. Furthermore, by using neighbor decision rule, coverage segmentation
is helpful in determining the boundary points by their neighbors’ membership value
besides by their own membership value.

6 Conclusion

We proposed a method for coverage segmentation of fuzzy images based on informa-
tion obtained from soft boundaries and neighbor decision. Inner boundaries and outer
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boundaries are applied to describe the determined and possible regions of objects, re-
spectively. The performance of the experiments show that the proposed method im-
proves the coverage segmentation of color objects with fuzzy boundaries and noise. For
fuzzy color objects, we demonstrated that the proposed method can compete with tra-
ditional coverage segmentation methods, especially when the images contain noise. In
case of noise free images, the proposed method dropped a little bit behind, which we be-
lieve is caused by the grey-level quantization during the down-sampling. The proposed
method provides an extended research on the high-resolution of fuzzy images.
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Province Training Young Academic Leaders Object, the six talent peaks project of
Jiangsu Province (No. DZXX-028) and National Natural Science Foundation of China
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Abstract. Conventional color histogram is sensitive to noisy interference such 
as illumination and quantization errors.  Furthermore, small changes in the 
conventional color histogram might result great changes due to large dimension 
or histogram bins. This paper presents a modified fuzzy color histogram. 
Firstly, it considers each pixel’s color associated to all the histogram bins ac-
cording to fuzzy logic and provides a histogram with single-dimension based on 
the CIELAB color space. Thus, it has the capacity to tolerate noisy interference 
and reduce computational complexity. Then, it combines the information about 
the location of pixels in an image to record the human vision perception varia-
tion in different spatial positions within an image. The proposed histogram is 
further exploit in the application of image indexing and retrieval. Experimental 
results show that the proposed histogram is more accurate and efficient in  
retrieving the user-interested images. 

Keywords: Fuzzy color histogram, Fuzzy logic, Spatial position, Vision  
perception. 

1 Introduction 

Among the characteristics of color images, the color of an image constitutes a power-
ful visual cue and the most robust characteristic[13,14]. Therefore, many researchers 
have recently used the color property to state the characteristic of an image and de-
veloped more accurate image retrieval methods. The color histogram is one of the 
common methods using color property[1-3]. With the advantages of simplicity and 
invariance to translation and rotation of the image, the color histogram is widely used 
in image indexing for image retrieval, video retrieval and object tracking[16-18].  

The primary weakness of the conventional color histogram is sensitive to noisy in-
terference, since it cannot consider the color similarity across different bins and the 
color dissimilarity in the same bin. Furthermore, large dimension or histogram bins 
can result in extensive computation. To address these issues, the concept called fuzzy 
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color histogram (FCH) has been proposed[4-9]. FCH considers the color similarity of 
each pixel’s color associated to all the histogram bins through fuzzy-set membership 
function. Two main methods are used to FCH production for content-based image 
retrieval. One method is fuzzy c-means algorithm [15] that is an unsupervised classi-
fication algorithm. It is a useful method to produce the fuzzy color histogram. For 
example, Ju et al. [6] determined the bin number of FCH and computed the bins’ 
membership values by using fuzzy c-means method. Since fuzzy c-means algorithm is 
very sensitive to the initialization condition, Khang et al.[10] split the color image 
hierarchically into multiple homogeneous regions, and merged those regions to obtain 
the initialization condition for fuzzy c-means algorithm. The other method is fuzzy 
inference system according to Fuzzy logic introduced by Zadeh[11]. Konstantinidis et 
al.[4] proposed to link the three elements into a single histogram by means of a fuzzy 
inference system, and the created FCH was used for image retrieval. The experimen-
tal results prove that the method is flexible and tolerant to imprecise data, and the 
expertise can be incorporated easily and efficiently. Maryam et al.[5] used OWA 
(ordered weighted average) aggregation operator in fuzzy inference system. The 
OWA fuzzy linking color histogram can reveal more detailed image information to 
description particular significance of the image. 

Generally speaking, FCH created by fuzzy inference system can contain only one 
dimension to reduce computational complexity,and the method is relatively easy to 
implement. However, the existing FCHs are all accompanied with some drawbacks. 
For example, they do not take into account the spatial distribution of image color and 
the change degree of pixel colors. This paper proposes a spatial fuzzy linking color 
histogram (SFLCH) to address the problems and make the image retrieval more accu-
rate. SFLCH integrates the fuzzy linking color histogram with the spatial information 
to depict the color distribution and the spatial information.  

The paper is organized as follows: Section 2 defines the modified fuzzy color his-
togram, color space selection and the structure of fuzzy inference system; Section 3 
illustrates the experiments and the analysis of the results; and the conclusion is stated 
in Section 4. 

2 The Proposed Fuzzy Color Histogram 

2.1 Fuzzy Linking Color Histogram Creation 

Color Space Transformation   
In order to create fuzzy linking color histogram, we selected CIELAB color space 
which is a perceptually uniform color space and approximates the way that humans 
perceive color. CIELAB color space is nearly linear with visual perception, or at least 
as close as any color space is expected to sensibly get. Since they are based on CIE 
system of color measurement, which is itself based on human vision, CIELAB is de-
vice independent and coloring information is referred to the color of the white point 
of the system. CIELAB is intended to mimic the logarithmic response of the eye. 
CIELAB was found to perform better than other color spaces (such as RGB, HSV, 
LCH) in various retrieval tests performed in the laboratory for this exact purpose that 
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the histogram creation method is assessed to retrieve similar images from a widely 
diverse image collection [19].  

The color space transformation from RGB to CIELAB needs to be operated pixel 
by pixel. RGB value cannot be transformed directly to the CIELAB color space. The 
transformation process requires two steps[12]. Firstly, RGB values are transformed to 
XYZ tristimulus values as follows: 
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The CIELAB equation is then applied, which involves the evaluation of cube roots as 
follows: 
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X0, Y0, and Z0 are tristimulus values of the nominally white object-color stimulus. 
In CIELAB, the luminance is represented as L*, the relative greenness-redness as 

A*, and the relative blueness-yellowness as B*. The range of CIELAB color space can 
be calculated through Equations (1) and (2).  

Fuzzy Inference System  
After color space transformation, the fuzzy linking color histogram is created by a 
fuzzy inference system. The structure of the proposed fuzzy inference system is 
shown in Fig.1. 

Fuzzification of input variables is achieved by using triangular member function. 
L* is subdivided into only three regions. A* and B* components have more weight 
than L* component. A* is subdivided into five regions: green, greenish, middle, red-
dish and red. B* is subdivided into five regions: blue, bluish, middle, yellowish  
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Fig. 1. Structure of the proposed fuzzy inference system 

and yellow. Fig.2(a)-(c) show membership functions of the inputs. The output of the  
system is shown in Fig.2(d). It has only 10 equally divided trapezoidal membership 
functions. 

Three components (L*, A* and B*) are linked to lead to the one output of the sys-
tem in Mamdani type of fuzzy inference according to 27 fuzzy rules which were es-
tablished through the expert experience.  

The defuzzification phase is performed by using the largest of maximum (LOM) 
method, and the resulting fuzzy set is defuzzified to produce output variable O which 
is a crisp number. 

 

        
(a) Membership function of input variable “L*”(b) Membership function of input variable “A*” 

     
(c) Membership function of input variable “B*”(d) Membership function of output variable “O” 

Fig. 2. Membership function of the inputs (L*, A* and B*) and the output (“O”) 
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2.2 Spatial Fuzzy Linking Color Histogram 

The fuzzy linking color histogram shows no information about the location of these 
pixels within the image. This paper proposes the spatial fuzzy linking color histogram 
(SFLCH) combined with spatial information to describe the color distribution of pixel 
colors in different regions. For each image, the SFLCH creation process can be illu-
strated as follows: 
Step 1: Color Space Transformation 

The color image T is transformed from RGB color space to CIELAB color space. 
Step 2: Image Regions Partition 

In CIELAB color space, image T is divided into several regions using human vision 
perception variation in different spatial positions within an image. This paper selects 
nine divided regions from left to right and top to bottom. 
Step 3: SFLCH Creation 

SFLCH describes the location and the color distribution of pixels in each divided 
region. The fuzzy histogram of each region consists of 10 bins representing black, 
dark grey, red, brown, yellow, green, blue, cyan, magenta and white. So the image T 
has a SFLCH totaling 9×10 bins. Fig.3 shows the images and SFLCH of the flower. 

3 Experimental Results 

             

            (a) The original image          (b) The nine regions of the flower image 

 

(c) SFLCH 

Fig. 3. The images and fuzzy histogram of the flower 
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The experiments were all run on MATLAB. To check the retrieval efficiency of the 
modified fuzzy color histogram, we have to test the performance of retrieving the 
user-interested images using three methods from the Corel Image Gallery. Method 1 
is SFLCH; Method 2 is the conventional histogram; Method 3 is the fuzzy linking 
color histogram. 20 similar images are retrieved for each query image. The average 
precision of each kind of query results were obtained, as shown in Fig.4. As a result, 
the proposed method is proved to be more accurate than other methods. SFLCH com-
bines the spatial information into FLCH and SFLCH is superior to FLCH. 
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Fig. 4. The average precision of 4 retrieval image methods. Method 1 is SFLCH; Method 2 is 
the conventional histogram; Method 3 is the fuzzy linking color histogram. 

 

(a) The classic fuzzy linking color histogram  

 

(b) SFLCH 

Fig. 5. The retrieval results of query image “horse” 
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Fig.5 shows the retrieval results of image “horse”, which use the classic fuzzy link-
ing color histogram and the modified fuzzy color histogram respectively. The query 
image is at the upper-left corner, and other 20 images are the retrieval similar images 
sorted by the similarity ratio. The experimental result clearly reveals that the proposed 
histogram is much more accurate than other methods for the first 20 returned images 
of the test image database. 

4 Conclusion 

SFLCH is presented to characterize a color image, which can effectively describe the 
color distribution with the spatial knowledge of the pixels in an image. Experimental 
results indicate that the modified fuzzy histogram can enhance the recognition capa-
bility of the image retrieval, and has proved to be more accurate and effective for 
content-based image retrieval being comparing with other methods. 

Image retrieval is generally known as a collection of techniques for retrieving im-
ages on the basis of features, either low-level (content-based image retrieval) or  
high- level (semantic-based image retrieval). Due to the difference between the users’ 
concerns on the semantic meaning and the appearances described by low-level fea-
tures, many researchers began to find the way how to bridge the semantic gap. They 
provide many state-of-the-art achievements in filling the semantic gap[20-22]. For 
examples, literature [20] proposed the supervised multiclass labeling that leads to 
optimal annotation and retrieval. Images are represented as bags of localized feature 
vectors and joint modeling of semantic label and visual feature distributions. Litera-
ture [21] proposed a new dimensionality reduction algorithm for relevance feedback 
to enhance the performance of image retrieval.  Images are represented by three 
types of popular global features: color, texture and shape. Because the visual features 
cannot well describe semantic contents, the system involves the user’s performance in 
the loop to bridge the semantic gap.  

Since semantic-based features rely on low-level ones, in this paper we modified the 
most widely used low-level feature “color histogram” that is a statistical tool to bear 
concrete information. We would like to find an efficient method of low-level features 
extraction in order to establish a good foundation for the semantic retrieval. That is 
our next research direction to bridge the gap between the low-level visual features and 
the high-level semantic meanings by the modified color histogram. 
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López, Griselda 288
Luna Tedesqui, Alejandro 319
Luo, Chuan 128

Mac Parthaláin, Neil 35
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