
Chapter 8
Rational Bézier Formulas with Quaternion
and Clifford Algebra Weights

Rimvydas Krasauskas and Severinas Zubė

8.1 Introduction

Bézier curves and surfaces are widely used in computer graphics and computer-
aided design. Their formulas are affine invariant and depend on control points that
are visually intuitive and convenient for many applications. On the other hand, there
is an important class of primitive surfaces (spheres, rotational cylinders, rotational
cones, and tori) with specific properties that are not intrinsic to their classical Bézier
representation. For example, one simple reason is the lack of affine invariance.

An alternative theory for curves on a plane was introduced by Sanchez-Reyes
in [20]: complex rational Bézier curves were defined using complex numbers
for control points and weights. This complex Bézier approach has two main
advantages:

• More compact representation: the degree is halved (e.g. circles have linear form);
• Invariance with respect to Möbius transformations.

In order to extend this theory of complex planar curves to surfaces in space we
use quaternions and follow the quaternion representation of circles in space [21].
Here one can hardly expect a theory as complete as in the planar case. Indeed, as
the quaternion algebra H is 4-dimensional, one needs to take extra care to ensure
that resulting surfaces are contained in the 3-dimensional subspace in H which
is identified with R

3. Also tools for intuitive shape manipulation are still under
development.

Of course, there is one notable exception: the case of spherical quaternion curves
and surface patches can be reduced to the complex planar case (because a sphere is
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Möbius equivalent to a plane). We only sketch the spherical case in Sect. 8.2.5. and
postpone the details to a separate publication.

The first part of the current chapter (Sects. 8.2–8.3) is devoted to the simplest
non-trivial case of a quaternion surface, namely a bilinear Quaternion–Bézier (QB)
patch. Arbitrary bilinear QB surface patches are characterized as special Darboux
cyclide patches using a recent exposition of the classical theory of Darboux cyclides
in [19]. Actually, the results of the unpublished manuscript [13] are presented here
with extended proofs and more details about Möbius transformations. Note that
these new formulas not only reproduce earlier known biquadratic parametrizations
of principal patches of Dupin cyclides (considered, e.g. in [2, 11]), but also
define totally unknown patches on general Darboux cyclides, which can hardly be
generated using the customary Bézier approach.

The second part of the chapter is targeted to a reader who has certain acquain-
tance with geometric (Clifford) algebras and the isotropic model of Laguerre
geometry. Similar Bézier-like formulas make sense in higher dimensional pseudo-
Euclidean spaces if quaternions are replaced with elements of the corresponding
geometric algebra. Section 8.4 is devoted to general Clifford–Bézier formulas and
recent research: the conformal model of Euclidean space, isotropic geometry and
isotropic cyclides, and applications to PN-surface modeling.

8.2 Quaternionic Bézier Formulas

8.2.1 Quaternions

We will use the algebra of quaternions H with the standard basis 1, i, j, k:

i2 D j2 D k2 D �1; ij D k; jk D i; ki D j:

Reals R and the 3-dimensional space R
3 will be identified with the real and the

imaginary vector subspaces of H:

R D ReH; r 7! r1; R
3 D Im H; v 7! v1i C v2j C v3k:

It will be convenient to decompose a quaternion q 2 H into its scalar (real) part and
its vector (imaginary) part:

q D r C v D r1 C v1i C v2j C v3k; r D Re.q/; v D Im .q/:

The quaternionic product in this notation has the following compact formula:

qq0 D .r C v/.r 0 C v0/ D .rr0 � v � v0/ C .rv0 C r 0v C v � v0/;

where v � v0 and v � v0 are dot and vector products in R
3.
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If q D r C v then Nq D r � v is a conjugate quaternion, jqj D p
q Nq is its length,

and q�1 D Nq=jqj2 is the inverse of q. In particular, if v 2 Im H then Nv D �v and
v�1 D �v=jvj2.

8.2.2 Möbius Transformations in R
3

Möbius (M) transformations in space are generated by inversions in R
3 with respect

to spheres. Alternatively, after identifying R3 with the subset ImH of imaginary
quaternions, M-transformations can be generated by four kinds of elementary
transformations: reflections, translations, dilatations, and special inversions (with
unit radius and center in the origin)

Rv.x/ D �vxv; Ta.x/ D x C a; Sr.x/ D rx; inv.x/ D �x�1; (8.1)

where v; a 2 ImH, jvj D 1, r 2 RC. The composition of an even number of
reflections is a rotation.

M-transformations can be represented as fractional-linear functions ˚A associ-
ated with a 2 � 2 matrix A with quaternion entries:

˚A.x/ D .ax C b/.cx C d/�1; A D
�

a b

c d

�
: (8.2)

Usual multiplication of matrices (multiplication of their elements should be in nat-
ural order!) corresponds to composition of fractional-linear functions. For example,
elementary transformations Eq. (8.1) correspond to the following matrices

�
v 0

0 v

�
;

�
1 a

0 1

�
;

�
r 0

0 1

�
;

�
0 �1

1 0

�
: (8.3)

From [3, Theorem 11.1] it follows that the map A 7! ˚A defines a surjective
homomorphism of the matrix group

GL.ImH/D
��

a b

c d

�
j Re.a Nc/ D Re.b Nd/ D 0; Nbc C Nda 2 R

�
�

; R
�DR n f0g;

to the group of M-transformations of ImH.
For any for points p0; : : : ; p3 2 ImH we define a cross-ratio

cr.p0; p1; p2; p3/ D .p0 � p1/.p1 � p2/
�1.p2 � p3/.p3 � p0/�1: (8.4)

There is a full analog of the well-known fact that four complex points lie on a
circle only if their cross-ratio is real.
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Proposition 8.1 ([4]) A cross-ratio cr.p0; p1; p2; p3/ is real if and only if these four
points are on a circle. A real cross-ratio is Möbius invariant.

8.2.3 Properties of Quaternionic Bézier Formulas

A quaternionic Bézier (QB) formula is a fraction of two linear combinations of
control points and weights pi ; wi 2 H with coefficients Bi

F D
 X

i

pi wi Bi

! X
i

wi Bi

!�1

:

The coefficients Bi can be the following Bernstein polynomials:

• Bd
i .t/ D �

d
i

�
.1 � t/d�i t i , i D 0; : : : ; d define QB curves of degree d ;

• B
d1

i .s/B
d2

j .t/, i D 0; : : : ; d1, j D 0; : : : ; d2, define QB tensor product surfaces
of bidegree .d1; d2/;

• Bd
ij D dŠ

.d�i�j /Ši Šj Š
.1 � s � t/d�i�j si t j , with integers i � 0, j � 0, i C j � d ,

define QB triangular surfaces of degree d .

General QB formulas take values in the 4-dimensional space of quaternions
H. The most interesting space for us will be R

3, which is identified with ImH.
Therefore, we always need to ensure that the QB curves and surfaces under
consideration are contained in ImH.

Proposition 8.2 A QB formula F D .
P

i piwi Bi /.
P

i wi Bi /
�1 is invariant with

respect to Möbius transformations: if ˚ D ˚A defined by (8.2) then

˚.F / D .
P

i p0
iw

0
i Bi /.

P
i w0

i Bi /
�1; p0

i D ˚.pi /; w0
i D O̊ .pi ; wi / D .cpi C d/wi :

If F 2 ImH then ˚.F / 2 ImH.

Proof It is easy to check this directly using the identities

˚.xy�1/ D .ax C by/.cx C dy/�1; p0
i w

0
i D ˚.pi/˚.pi ; wi / D .api C b/wi :

ut
This proposition allows us to calculate Möbius transformations of any rational

Bézier curves and surfaces (with real weights) and get a lot of new non-trivial
examples of QB curves and surfaces in ImH.

Remark 8.1 Möbius deformations of 3D models were realized on GPU using
real time evaluations of quaternion formulas in [9] (see Fig. 8.1). Since such
transformations are conformal, they may be convenient for deforming organic
shapes including textures.
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Fig. 8.1 Möbius transformation of the Utah Teapot [9]

In general the quaternion representation has half the degree of the customary
rational Bézier case with real weights.

Proposition 8.3 A QB formula F D .
P

i pi wi Bi /.
P

i wi Bi /
�1 of degree d (resp.

bidegree .d1; d2/) defines the same parametrization as the following Bézier formula
of degree 2d (resp. bidegree .2d1; 2d2/)

QF D .N ND/.D ND/�1; N D
X

i

pi wi Bi ; D D
X

i

pi wi Bi :

Proof Note that the new numerator N ND and denominator D ND can both be
expanded in the new basis fBiBj g and D ND is real. ut

8.2.4 Circular Arcs

Here we reformulate some results of [21] about the quaternionic representation of a
circle and give proofs based on Propositions 8.2 and 8.3.

Let p0 and p1 be the two endpoints of a circular arc C in R
3 D ImH, and let p1

be some point on the complementary arc of C . We are going to parametrize this arc
rationally in three steps:

• Apply the inversion I W x 7! p1 � .x � p1/�1 with the center in p1 to the
circle C ;

• Parametrize the resulting line segment L.t/ D I.p0/.1 � t/ C I.p1/t ;
• Apply the same inversion once more C.t/ D I.L.t//.

The inversion I is a composition Tp1
ı inv ı T�p1

of elementary transformations
(8.1) and has the following matrix representation (see (8.3))

�
1 p1
0 1

��
0 �1

1 0

��
1 �p1
0 1

�
D
�

p1 �1 � p21
1 �p1

�
:

According to Proposition 8.2, a linear Bézier curve L.t/ with control points I.p0/,
I.p1/ and unit weights is transformed to a linear QB curve with control points
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I.I.pi// D pi , and weights wi D I.pi / � p1 D �.pi � p1/�1, i D 0; 1. So
we finally get the parametrization of the circular arc

C.t/ D .p0w0.1 � t/ C p1w1t/.w0.1 � t/ C w1t/
�1; (8.5)

that is contained in Im H by construction.

Remark 8.2 One can divide both weights in (8.5) by w0 and get the equivalent pair
of weights w0

0 D 1 and w0
1 D w1w�1

0 . If just one weight is multiplied by a real
number � > 0 then the arc is reparametrized.

Remark 8.3 The parameter t in C.t/ has a simple interpretation as a cross-ratio

t D cr.p1; p1; p0; C.t//: (8.6)

Indeed, according to Proposition 8.1 it is enough to check the following much
simpler identity cr.1; I.p1/; I.p0/; L.t// D t , where 1 D I.p1/ is the infinite
point of Im H.

The customary Bézier representation of C.t/ can be derived using Proposi-
tion 8.3: denote the numerator of the fraction (8.5) by N and the denominator by D,
then rewrite this fraction as C.t/ D ND�1 D N ND.D ND/�1 with a real denominator,
and expand both N ND and D ND in the quadratic Bernstein basis B2

i , i D 0; 1; 2:

N ND D p0w0 Nw0B2
0 C 1

2
.p0w0 Nw1 C p1w1 Nw0/B

2
1 C p2w2 Nw2B2

2 ;

D ND D w0 Nw0B2
0 C 1

2
.w0 Nw1 C w1 Nw0/B

2
1 C w2 Nw2B2

2 :

Hence C.t/, as a quadratic rational Bézier curve, has real weights

W0 D w0 Nw0; W1 D 1

2
.w0 Nw1 C w1 Nw0/ D Re.w0 Nw1/; W2 D w1 Nw1; (8.7)

and control points

P0 D p0; P1 D p0w0 Nw1 C p1w1 Nw0

w0 Nw1 C w1 Nw0

; P2 D p1: (8.8)

We can also calculate a tangent vector v0 to C.t/ at p0 as a derivative C 0.0/ at
t D 0. First we differentiate the identity N D CD and get N 0 D C 0D C CD0. Then
C 0.0/ D .N 0.0/ � C.0/D0.0//D.0/�1 D .p1w1 � p0w0 � p0.w1 � w0//w�1

0 and

v0 D C 0.0/ D .p1 � p0/w1w�1
0 : (8.9)

Therefore, the weights cannot be arbitrary. The following relations between
weights and control points will be useful later.
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Proposition 8.4 If C is a QB curve (8.5) with p0; p1 2 ImH then:

C � ImH , Re.p0w0 Nw1 C p1w1 Nw0/ D 0 (8.10)

C � ImH , Im .w1w�1
0 / ? .p1 � p0/ (8.11)

C is a line , w1w�1
0 2 R (8.12)

If C � ImH and u D Im .w1w�1
0 / ¤ 0 then C is a circle in a plane orthogonal

to u.

Proof The circle C is contained in ImH if and only if its middle control point P1

is there, i.e. ReP1 D 0. From its expression in (8.8) condition (8.10) follows. This
is also equivalent to v0 2 ImH, so .p1 � p0/w1w�1

0 2 ImH (see (8.9)) and (8.11)
follows. Similarly (8.12) and the last statement can be derived from (8.9). ut

8.2.5 Spherical Quaternionic Bézier Curves and Surface
Patches

In this section we sketch the theory of QB curves and surfaces on a sphere (or plane),
by reducing quaternionic-Bézier formulas to complex-Bézier formulas.

Let us start with the simplest surface example. A spherical triangle with corner
points p0, p1, p2 bounded by three circular arcs (such that these three circles
intersect in a point p1) has the parametrization formula with weights: wi D
�.pi � p1/�1, i D 0; 1; 2, (see Fig. 8.2, left)

T .s; t/ D .p0w0.1�s�t/Cp1w1sCp2w2t/.w0.1�s�t/Cw1sCw2t/�1: (8.13)

Indeed this is the Möbius image of a planar linear Bézier triangle (cf. Sect. 8.2.4).
In order to generalize this example we introduce two different inclusions of C

into H (which are compatible with geometric algebra formulas in Sect. 8.4.3)

in1 W C ! H; x C yi 7! x � yk; in2 W C ! ImH; x C yi 7! xi C yj: (8.14)

Fig. 8.2 Spherical QB-patches: linear and quadratic triangle, biquadratic quad patch
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Then any complex-Bézier formula .
P

i pi wi Bi /.
P

i wi Bi /
�1, pi ; wi 2 C, can be

transformed to a QB formula .
P

i p0
i w

0
i Bi /.

P
i w0

i Bi /
�1, w0

i D in1.wi /, p0
i D

in2.pi /, on the plane z D 0 or on any sphere in ImH by Möbius invariance according
to Proposition 8.2. Hence the whole theory of complex Bézier curves on a plane
developed in [20] can be translated into QB form and then extended to any sphere.

Even more, it appears that all rational Bézier curves and surface patches on a
sphere can be represented in QB form of halved degree. The following theorem can
be proved using generalized stereographic projection [6] and its interpretation in
terms of complex projective line [10].

Theorem 8.1 Any rational Bézier curve or triangular (resp. rectangular) surface
patch of degree 2d (resp. of bidegree .2d1; 2d2/) on a sphere S2 � ImH can be
represented in a quaternionic Bézier form of degree d (resp. of bidegree .d1; d2/)
with the control net composed of circular arcs lying on S2.

Figure 8.2 (middle and right) illustrates a QB-triangle of degree 2 (which is a
spherical octant) and a biquadratic QB-rectangle.

The quaternionic approach allows us to deal with all spheres in R
3 in the unique

framework. In a certain sense every sphere carries its own complex structure that is
encoded in global quaternionic structure.

8.3 Bilinear Quaternionic Bézier Patches

We do not know much about general QB curves and surfaces, so we are going to
study important particular cases.

Remark 8.4 Non-spherical QB-curves of degree 2 in ImH are characterized in [22]
as the diagonals P.t; t/ of bilinear QB-surfaces defined by (8.15). Note that the
middle control point of such curves is not contained in ImH.

The simplest cases of QB surfaces are linear triangles and bilinear quadrangles.
The first case will turn out to be spherical, hence we will focus on the latter.

Proposition 8.5 Any linear QB triangle in ImH is spherical.

Proof Consider the formula of a QB triangular patch (8.13), and apply inversion
with center on the boundary circle going through p0 and p1 that transforms this
circle into a line. Using the same notation for control points and weights, one
can assume w0 D w1 D 1 (see Remark 8.2 and (8.12)). Then it follows from
Proposition 8.4 that Im .w2/ is orthogonal to a family of circles with control points
q.s/ D p0.1 � s/ C p1s, p2 and weights 1, w2, that cover the patch. Hence, this
inversion of the initial triangular patch is planar. ut
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8.3.1 Properties of Bilinear QB-Patches

Let us define a bilinear QB-quadrangular patch (call it just a bilinear QB-patch) with
slightly different indexing (the fraction is used in the sense a

b
D ab�1):

P.s; t/ D p0w0.1 � s/.1 � t/ C p1w1s.1 � t/ C p2w2.1 � s/t C p3w3st

w0.1 � s/.1 � t/ C w1s.1 � t/ C w2.1 � s/t C w3st
;

(8.15)

We consider only the case when the image is contained in Im H D R
3.

Lemma 8.1 If two adjacent boundary circles of a bilinear QB-patch P defined by
(8.15) are cospherical then the patch is either spherical or a patch of a double ruled
quadrics (including its Möbius transformations).

Proof Denote by Cij, ij D 01; 02; 13; 23, the boundary circles connecting adjacent
points pi and pj . If circles C01 and C02 are cospherical then there are two cases:
(a) they intersect in two points p0 and q ¤ p0; (b) they are tangent in p0 (a double
point).

In case (a) we apply inversion with a center q and use the same notation for the
transformed patch. Now C01 and C02 are line segments, and one can assume (after
a reparametrization) w0 D w1 D w2 D 1 (see (8.12)). If w3 2 R then the patch
P is on a bilinear quadric (or plane). Otherwise Im .w3/ ¤ 0, and according to
Proposition 8.4 Im .w3/?.p3�p1/ and Im .w3/?.p3�p2/. Hence the two boundary
circles C13 and C23 lie on the same plane ˘ going through three points p1, p2, p3.
All the weights along these circles have the same direction, since they are linear
averages between w3 and 1. Similarly it follows that all other circles on P are on
the same plane ˘ , and P is planar, i.e. spherical. Case (b) can be treated similarly:
apply an inversion with center p0 and notice that despite the blown-up corner p0 the
same arguments are valid. ut
Lemma 8.2 Let four circles Cij, ij D 01; 02; 13; 23, in ImH be defined by pairs of
control points and weights f.pi ; wi /; .pj ; wj /g, and suppose that any two adjacent
circles are not cospherical. Then there is a unique non-zero number

� D �Re.p1w1 Nw2 C p2w2 Nw1/
�
Re.p0w0 Nw3 C p3w3 Nw0/

��1 2 R; (8.16)

such that the same control points with weights w0, w1, w2, �w3 define a bilinear
QB-patch in Im H D R

3.

Proof Denoting numerator and denominator in formula (8.15) with control points
pi , i D 0; : : : ; 3, and weights w0, w1, w2, �w3 by N and D, we can modify it to the
form with a real denominator P D ND�1 D N D.DD/�1. Then we expand N D in
a biquadratic Bernstein basis and get control points (multiplied by their weights) of
the corresponding rational biquadratic Bézier surface. Boundary control points are



156 R. Krasauskas and S. Zubė

obviously in ImH, since they represent circular arcs in ImH. The middle control
point multiplied by its weight has the following form:

q11 D .p1w1 Nw2 C p2w2 Nw1/ C �.p0w0 Nw3 C p3w3 Nw0/;

where both expressions in brackets have non-zero real parts (otherwise, adjacent
boundary circles will be cospherical, cf. the proof of Proposition 8.5 and for-
mula (8.10)). Solving the equation Re.q11/ D 0 for � we get exactly (8.16). ut
Lemma 8.3 Let C02, C01, C13 be circles in R

3, and suppose that p0 D C02 \ C01

and p1 D C01 \ C13 are unique points of their transversal intersection. Then for
any other point p2 2 C02, p2 ¤ p0, there exists a unique bilinear QB-patch (up
to trivial reparametrization) with control points pi , i D 0; 1; 2, and p3 2 C13 with
three boundary arcs lying on the given three circles.

Proof Our goal is to construct a closed contour of circular quaternionic arcs and
then fill the contour using Lemma 8.2.

We choose any point q 2 C13, q ¤ p1, and apply inversion with center q. Using
the same notation, we see that C13 is a line, and we can find unique (up to real
multiplier) weights w1 D 1, w0 and w2, that allows us to parametrize the circles C01,
C02. The point p2 and weight w2 determine a plane ˘ where a circle C23 should be
(see Proposition 8.4). So we can find a point p3 as an intersection ˘ \ C13 with a
weight w3 D 1. An exceptional case when ˘ is parallel to the line C13 can happen
only when the initial point q (before inversion) can be chosen as p3. ut

8.3.2 Implicitization

We are going to find the implicit equation of the patch (8.15) as an algebraic surface
in R

3.
Let us consider a formal equation with a quaternion X D u C xi C yj C zk on

the left side and with a bilinear quaternionic patch on the right side:

X D N.s; t/D.s; t/�1; (8.17)

where N.s; t/ and D.s; t/ are the numerator and the denominator of the fraction in
(8.15). Let us multiply both sides of (8.17) by D.s; t/ and move all terms to the left
side

XD.s; t/ � N.s; t/ D 0:

We treat this quaternionic equation as a system of 4 real linear equations with 4
unknowns

.1 � s/.1 � t/; s.1 � t/; .1 � s/t; st:
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The 4 � 4 matrix M of this system has 4 columns filled with components of
quaternions .X � pi/wi , i D 0; : : : ; 3. Hence the entries of the matrix M are linear
forms in u; x; y; z, and the polynomial

F.u; x; y; z/ D det
�
.X � p0/w0; .X � p1/w1; .X � p2/w2; .X � p3/w3

	
(8.18)

must vanish on every point X of the patch P.s; t/. Therefore, F.u; x; y; z/ D 0

defines at most a quartic equation in the variables u, x, y, z.

Theorem 8.2 Let P.s; t/ be the bilinear parametrization of the patch 8.15 in
Im H D R

3. Then an implicit equation of the corresponding parameterized surface
is a factor of the polynomial F.0; x; y; z/ defined by (8.18) and has at most degree 4.

Example 8.1 A bilinear QB-patch P.s; t/ with the following points Œp0; : : : ; p3� D
Œ�i; i; �iCj; iCj� and weights Œw0; : : : ; w3� D Œ1; j; 1; j� generates the equation of the
cylinder x2 Cz2 �1 D 0. The same points as above with the weights .w0; : : : ; w3/ D
.1; j; k; i/ generate the equation of the torus

 
x2 C

�
y � 1

2

�2

C z2 C 3

4

!2

� 4 .x2 C z2/ D 0:

All these examples can be classified as Darboux cyclide patches. Darboux
cyclides are quartic surfaces with a double conic x2Cy2Cz2 D 0 at infinity and their
Möbius transformations: non-spherical quadrics and cubics with the same double
conic. We consider only irreducible cases: for example, a union of two spheres is
excluded.

Corollary 8.1 Any non-spherical bilinear QB-patch is a Darboux cyclide patch.

Proof According to Theorem 8.2 a bilinear QB-patch has at most degree 4. Since
it is Möbius invariant, its arbitrary inversion is also a bilinear QB-patch. These are
sufficient conditions for the patch to be on a Darboux cyclide (see details in [15]).

ut

8.3.3 Bilinear Quaternionic Bézier Patches on Darboux
Cyclides

It is known from the theory of Darboux cyclides (see the exposition in [19]) that
they can contain at most 6 real families of circles, that are grouped in pairs. Two
circles from distinct families intersect in a unique point if these families are from
different pairs, otherwise the circles are cospherical [19, Propositions 4, 5]. Any
bilinear QB-patch defines a Darboux cyclide by Corollary 8.1 and generates two
families of isoparametric circles on it.

Theorem 8.3 Any two families of circles from different pairs on a given Darboux
cyclide are generated by a bilinear QB-patch. Two families of circles from the same
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Fig. 8.3 A Darboux cyclide
with six circles representing
six distinct families

pair can be generated only by a QB-patch defined by rulings of a double ruled
quadric (or its Möbius equivalent).

Proof Take two circles C02, C13 from one family and one C01 from another family
that is not in the same pair. Then pairs of circles C02, C01 and C01, C13 intersect in
the unique points p0 and p1. Hence we are in the situation of Lemma 8.3 that allows
us to construct a bilinear QB-patch bounded by these three circles. So it is enough
to prove the uniqueness of a Darboux cyclide going through these circles. Here we
can follow [19] and employ the conformal model by lifting the whole construction
to a 3-sphere S3 in the space R

4. Now the circles C02, C13 are contained in two 2-
planes which intersect in the apex of the quadratic 3-dimensional cone, which cuts
our Darboux cyclide in S3. Let us cut the cone by any hyperplane ˘ (not containing
the apex) and project all circles from the apex to ˘ . Their images will be two skew
lines L02, L13 and a conic C 0

01 intersecting them. Therefore the uniqueness problem
is reduced to the following simple one: prove the uniqueness of a quadric surface
in R

3 going through a given pair of skew lines and one conic. The second part of
the theorem follows from Lemma 8.1, since circles from the paired families are
cospherical. ut

In Fig. 8.3 below we can see an example of a symmetric Darboux cyclide with
six paired families of circles (i.e. there are three pairs).

Corollary 8.2 There are exactly 12 different bilinear QB-patches on a Darboux
cyclide with 6 real families of circles.

Proof Apply Theorem 8.3 and count cases: three choices of two pairs of circle
families times four choices of two families from these two distinct pairs. ut

8.3.4 Principal Dupin Cyclide Patches

For a definition of a Dupin cyclide see e.g. [5] and references therein. This is a
particular case of a Darboux cyclide containing two self-paired families of circles
(i.e. both families in a pair coincide, see previous Sect. 8.3.3). A principle Dupin
cyclide patch is a quadrangular patch bounded by circles from these families (see
Fig.8.3), which can be characterized by the following properties:

• All angles are right angles and corner points p0; : : : ; p3 are on a circle;
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Fig. 8.4 Principal patches on: cilinder, torus, general Dupin cyclide

• Tangent vectors at the end points of the opposite boundary arcs in the adjacent
corners are symmetric with respect to a vector joining these points; e.g. let vij be
a tangent vector at pi pointing to pj then v23 D �.p2 � p0/v01.p2 � p0/

�1.

Theorem 8.4 A principal Dupin cyclide patch with corners in four points
p0; : : : ; p3 on a circle and two orthogonal tangent vectors v01 and v02 at p0 can be
parametrized by a bilinear QB-patch with these control points and the following
weights (where qij D .pi � pj /=jpi � pj j):

w0 D 1; w1 D q01v01; w2 D q02v02; w3 D jp2 � p1jjp3 � p0j�1q13w1q20w2:

The proof of this theorem and other important quaternionic formulas related to
principal Dupin cyclide patches can be found in [14] (Fig. 8.4).

8.4 Clifford–Bézier Formulas

In this section we collect several extensions of the quaternionic approach, showing
that they can be unified in the framework of geometric algebra (associated with the
most general case of pseudo-Euclidean spaces). Sections 8.4.1–8.4.4 require basic
knowledge of geometric algebra (e.g. [7,8,16]). Preliminaries for Sect. 8.4.5 include
elements of Laguerre geometry and Pythagorean-normal surfaces [12, 17, 18].

8.4.1 Pseudo-Euclidean Space and Its Geometric Algebra

A pseudo-Euclidean space is a vector space R
n
� , with a scalar (interior) product

having signature � D .nC; n�; n0/, n D nC C n� C n0, i.e. with an orthonormal
basis fe1; : : : ; eng, such that

ei � ei D

8̂̂
<
ˆ̂:

1; if i � nC;

�1; if nC C 1 � i � nC C n�;

0; if i > nC C n�;

ei � ej D 0; i ¤ j: (8.19)
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An abbreviated notation for signature will be used � D .n/ D .n; 0; 0/ and � D
.nC; n�/ D .nC; n�; 0/.

Define a geometric algebra G� D G.Rn
�/ as a Clifford algebra generated by

the pseudo-Euclidean space R
n
� with a signature � D .nC; n�; n0/. The geometric

product is defined to be associative and distributive with respect to addition, with
the extra relation for vectors v � v D v2 2 R. If v; u 2 R

n
� then the geometric product

is a sum of interior and exterior (see below) products

vu D v � u C v ^ u: (8.20)

The algebra G� has the same underlying vector space as the usual exterior algebraV
.Rn

� /, namely it is a vector space of dimension 2n, that can be decomposed as a
direct sum E0 ˚ E1 ˚ � � � ˚ En of subspaces with the following bases

f1g; fe1; : : : ; eng; feij j i < j g; feijk j i < j < kg; : : : fI D e12:::ng;
(8.21)

where eij:::k D ei ej � � � ek. The vector spaces E0; : : : ; En are scalars, vectors, bi-
vectors, etc. respectively. The basis of En has only one element I D e1e2 � � � en,
which is called a pseudoscalar. A dual of x 2 G� is x� D Ix. For any x 2 G� , its
k-grade component hxik is the projection to the subspace Ek of grade k.

A reversion operation in the algebra G� is defined as follows (see [7, 8, 16] for
details). If x is a product of vectors x D v1v2 � � � vn�1vn, then its reversion is Qx D
vnvn�1 � � � v2v1. If all vi are non-zero, then x Qx D .vn � vn/ � � � .v2 � v2/.v1 � v1/ 2 R.
Hence it is easy to calculate the inverse element x�1 D Qx=.x Qx/.

8.4.2 Möbius Transformations in R
n
�

A group of Möbius transformations Möb.Rn
� / of a pseudo-Euclidean space R

n
� is

generated by: pseudo-Euclidean reflections, translations, dilatations, and special
inversions

Rv.x/ D �vxv; Ta.x/ D x C a; Sr.x/ D rx; inv.x/ D x�1; (8.22)

where v; a 2 R
n
� , jvj D 1, r 2 RC. Note the different sign in the inversion formula

compared with the quaternionic case (8.1).
Similar to Sect. 8.2.2 M-transformations of R

n
� can be represented by 2 � 2

matrices A (with entries in G� ) and corresponding fractional-linear functions ˚A,
see (8.2).

We define Clifford–Bézier surfaces (CB-surfaces) by the same rational Bézier
formulas treating them as formulas in G� , i.e. with control points pij 2 R

n
� and

weights wij 2 G� .
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Proposition 8.6 CB formulas .
P

i pi wi Bi /.
P

i wi Bi /
�1 with control points pi 2

R
n
� and weights wi 2 G� (with certain kind of Bernstein polynomials Bi ) are

mapped by an M-transformation ˚.x/ D .ax C b/.cx C d/�1 to the same formulas
with new control points p0

i D ˚.pi / and new weights w0
i D O̊ .pi ; wi / D

.cpi C d/wi .

8.4.3 C and H as Subalgebras of Geometric Algebras

Complex numbers C are identified with an even subalgebra of G2:

inC W C ! .G2/even; z D x C y i 7! x C ye12: (8.23)

Multiplying by e1 from the right, one can get the standard map from C to R
2:

inC W C ! R
2; z D x C y i 7! e1inC.z/ D xe1 C ye2:

Hence any complex Bézier formula can be mapped to a Clifford–Bézier one

e1inC

�
.
P

i pi wi Bi /.
P

i wi Bi /
�1
� D .

P
i p0

iw
0
i Bi /.

P
i w0

i Bi /
�1; (8.24)

where p0
i D e1inC.pi /, and w0

i D inC.wi /.
Quaternions H are identified with an even subalgebra of G3:

inH W H ! .G3/even; q D r C x i C y j C z k 7! r � xe23 C ye13 � ze12: (8.25)

Using duality X� D IX , one can get the standard map from imaginary quaternions
Im H to R

3:

x i C y j C z k 7! I inH.q/ D xe1 C ye2 C ze3:

Hence any Quaternionic-Bézier formula can be mapped to a Clifford–Bézier one

I inH

�
.
P

i pi wi Bi /.
P

i wi Bi /
�1
� D .

P
i p0

i w
0
i Bi /.

P
i w0

i Bi /
�1; (8.26)

where p0
i D I inH.pi /, and w0

i D inH.wi /.
Therefore all the results from Sects. 8.2 and 8.3 about QB curves and surfaces

are valid for the corresponding CB curves and surfaces in the algebra G3 generated
by the Euclidean space R3 with signature .3; 0; 0/.

There are just a couple differences in the formulas:

• Conjugation q 7! Nq in H should be changed to reversion x 7! Qx in G3,
• The inversion q 7! �q�1 in ImH should be changed to x 7! x�1 in R

3 � G3.
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8.4.4 Conformal Model of Euclidean Space

We are going to demonstrate how our methods can be applied to representing the
usual rational Bézier curves and surfaces in the conformal model.

Consider a pseudo-Euclidean space R
5
4;1 and its generated geometric algebra

G4;1. The standard basis fe1; : : : ; e5g, ei � ei D 1, i ¤ 5, e5 � e5 D �1, will be
changed to the following one

fe0; e1; e2; e3; e1g; e0 D .�e4 C e5/=2; e1 D e4 C e5:

Define an embedding of Euclidean space R
3 to R

5
4;1:

conf.x/ D x C 1
2
x2e1 C e0 (8.27)

to a quadric of null-vectors

X � X D 0; X 2 R
5
4;1: (8.28)

If we expand X in the standard basis X D P
i xi ei then X �X D x2

1 C� � �Cx2
4 �x2

5 .
Hence the quadric (8.28) defines a 3-sphere S3 in the affine part x5 ¤ 0 of the
associated projective space RP 4 D P.R5

4;1/. Actually conf W R
3 ! S3 is the

inverse of stereographic projection.
Let us apply the machinery we developed. Using the identities xe1 C e1x D 0

and e21 D 0, one can modify formula (8.27) as the composition of two fractional-
linear functions

conf.x/ D x. 1
2
xe1 C 1/ C e0 D x. 1

2
e1x C 1/�1 C e0:

Hence, the map conf W R
3 ! R

5
4;1 is the restriction of a Möbius transformation

˚C 2 Möb.R5
4;1/ given by the matrix:

C D
�

1 C 1
2
e0e1 e0

1
2
e1 1

�
D
�

1 e0

0 1

��
1 0

1
2
e1 1

�
:

Therefore, according to Proposition 8.6 one can ‘lift’ any CB-curve or surface
(including the usual rational Bézier curves and surfaces with real weights) to the
conformal model. Indeed new control points Pi and weights Wi are related to the
old ones pi and wi as follows:

Pi D conf.pi /; Wi D . 1
2
pie1 C 1/wi : (8.29)
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The main advantage of this conformal model (i.e. R3 embedded into R
5
4;1) is in

the possibility to represent important geometric objects and transformations in R
3 as

formulas in the algebraG4;1 (see e.g. [7,8,16]). For example, the conformal image of
a circle C � R

3 going through three points pi , i D 0; 2; 3, is the intersection of S3:
X � X D 0 with a 2-plane ˘ ^ X D 0, where ˘ D conf.p0/ ^ conf.p1/ ^ conf.p2/

is a 3-vector. We treat the 3-vector ˘ 2 G3 as a 2-plane and say that it is associated
with the circle C .

Let us demonstrate how this technique can help us to find a quadratic cone con-
taining the conformal image conf.P.s; t// of a bilinear CB-patch (cf. Sect. 8.3.3).
Using formulas (8.29) we lift the control points pi and weights wi given by
(8.15) to the corresponding control points Pi and weights Wi in the conformal
model. We also compute tangent vectors Vij D .Pj � Pi /Wj W �1

i (see (8.9)).
Then the 3-vectors ˘01 D P0 ^ P1 ^ V01, ˘23 D P2 ^ P3 ^ V23 represent
2-planes associated with the opposite boundary circles C01 and C23 from the
same family (in the notation of Lemma 8.3). The family of 2-planes associated
with the paired family of circles can be obtained using the classical Steiner
construction by intersecting two pencils of hyperplanes defined by the 2-planes
˘01 and ˘23. We have two obvious corresponding pairs of hyperplanes in these
pencils: ˘01 ^ V02; ˘0 ^ P2 and ˘23 ^ P0; ˘2 ^ V20. Hence the implicit equation
of the quadric cone we are looking for should be the determinant of these four
hyperplanes:

.˘01 ^ V02 ^ X/.˘23 ^ V20 ^ X/ � .˘01 ^ P2 ^ X/.˘23 ^ P0 ^ X/ D 0:

Of course in order to fix a correct projective correspondence between the pencils
one needs three corresponding hyperplanes on these pencils. So in general a
certain additional coefficient will be needed in the above equation. In our case the
coefficient is 1 by the magic of geometric algebra.

8.4.5 CB-Surfaces in Isotropic Space and PN-Surfaces

In this Section we survey results of [15] on CB-surfaces based on the geometric
algebra G2;0;1 generated by an isotropic space R3

2;0;1.
The signature � D .2; 0; 1/ means that x � x D x2

1 C x2
2 in coordinates

of the standard basis (see (8.19)). Therefore, distances in isotropic geometry are
measured as Euclidean distances in the projection to the first two coordinates, which
is called a top view. Isotropic Möbius (i-M) transformations are elements of the
group Möb.R3

.2;0;1// as defined in Sect. 8.4.2. The distinguished vertical direction
separates all planes into two classes: vertical (isotropic) and non-vertical planes.
Images of these two classes of planes under i-M transformations generate two
types of isotropic spheres (i-spheres): paraboloids of revolution with a vertical axis
(parabolic type) and cylinders with top view circles (cylindrical type). An isotropic
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circle (i-circle) is the intersection between an i-sphere of parabolic type and a
plane: it is either an ellipse with a circle as top view or a parabola with a vertical
axis.

It appears that the theory of QB-surfaces developed in Sects. 8.2 and 8.3
(and initially introduced in [13]) can be successfully developed in the case of
CB-surfaces in isotropic space. In general one just needs to add everywhere
‘isotropic’, e.g. circles and M-transformations should be changed to i-circles and
i-M-transformations. The counterpart of a Dupin cyclide is an isotropic cyclide: a
quartic surface in R

3
2;0;1 with a double conic x2

1 C x2
2 D 0 at infinity or its i-M-

transformations.
In [15] bilinear CB-patches in R

3
2;0;1 are studied in much detail: their implicitiza-

tion formula is derived, they are characterized as patches on isotropic cyclides and
the uniqueness of patches with three given boundary isotropic circles is proved.

The motivation for these studies is in the following theorem due to Pottmann and
Peternell [17, 18]:

Theorem 8.5 The duality (8.30) defines a 1–1 correspondence between non-
developable PN-surfaces in the Euclidean space R

3 and rational surfaces in the
isotropic space R3

2;0;1.

We recall here PN-surfaces and the construction of duality. Pythagorean-normal
(PN) surfaces are rational surfaces in the Euclidean space R

3 together with a
field of rational unit normals. PN-surfaces are important in geometric modeling
applications, since they are rational surfaces with rational offsets. Following [17,18]
(see also survey in [12]), we map oriented planes in R

3 to points of the isotropic
space

n1x1 C n2x2 C n3x3 C h D 0 7! 1

n3 C 1
.n1; n2; h/ 2 R

3
2;0;1: (8.30)

Treating a surface in R
3 as the set of its oriented tangent planes, then applying the

map (8.30) we get a dual surface in R
3
2;0;1

We end this exposition with one PN-surface modeling example.

Example 8.2 Consider a corner defined by three orthogonal planes, where three
edges are blended using cylinders of radii r1 < r2 < r3. The goal is to find a
quadrangular PN-patch that will blend smoothly the given three cylinders and the
top horizontal plane as shown in Fig. 8.5. The idea is to apply duality (8.30): the
cylinders go to i-circular arcs and the top plane goes to a point in the isotropic
space. Using the isotropic analog of Lemma 8.3 (see [15, Theorem 1]), one can fill
the triangular contour shown in Fig. 8.5 (left) with a bilinear CB-patch and go back
using duality. The resulting PN-surface patch can be represented as a Bézier surface
of bidegree .3; 4/, Fig. 8.5 (right).
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Fig. 8.5 A CB-patch (with a top view) and its dual PN-surface patch

Conclusions
We introduced quaternionic Bézier curves and surfaces in Euclidean space R3

with two main advantages compared to the customary rational Bézier case:
more compact representation (the degree is halved) and Möbius invariance.
Disadvantages include absence of affine invariance and complicated condi-
tions on control points and weights that keep quaternionic Bézier curves and
surfaces in R

3.
The simplest non-trivial case of bilinear quaternionic Bézier patches was

studied:

• The implicitization formula is presented;
• They are characterized as Darboux cyclide patches;
• All such patches on a given Darboux cyclide are classified;
• Principal patches on Dupin cyclides are presented in this form.

We also have shown that complex or quaternionic Bézier formulas can be
translated to more general geometric algebra settings. This approach is useful
for representing usual rational Bézier curves and surfaces in the conformal
model, and for understanding bilinear Clifford–Bézier patches in isotropic
space, which have potential applications to rational offset surface modeling.

Acknowledgements The authors would like to thank Helmut Pottmann for pointing out that
general bilinear quaternionic patches may represent Darboux cyclides and providing access to the
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