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Plane Mixed Discriminants and Toric Jacobians

Alicia Dickenstein, Ioannis Z. Emiris, and Anna Karasoulou

Dedicated to the memory of our friend Andrei Zelevinsky
(1953–2013)

6.1 Introduction

Polynomial algebra offers a standard and powerful approach to handle several
problems in geometric modeling. In particular, the study and solution of systems
of polynomial equations has been a major topic. Discriminants provide a key tool
when examining well-constrained systems, including the case of one univariate
polynomial. Their theoretical study is a thriving and fruitful domain today, but they
are also very useful in a variety of applications.

The best studied discriminant is probably known since high school, where one
studies the discriminant of a quadratic polynomial f .x/ D ax2CbxCc D 0 (a 6D 0).
The polynomial f has a double root if and only if its discriminant �2 D b2 � 4ac

is equal to zero. Equivalently, this can be defined as the condition for f .x/ and its
derivative f 0.x/ to have a common root:

9 x W f .x/ D ax2 C bx C c D f 0.x/ D 2ax C b D 0 , �2 D 0: (6.1)

One can similarly consider the discriminant of a univariate polynomial of any
degree. If we wish to calculate the discriminant �5.f / of a polynomial f of degree
five in one variable, we consider the condition that both f and its derivative vanish:

f .x/ D ax5 C bx4 C cx3 C dx2 C ex C g D 0;

f 0.x/ D 5ax4 C 4bx3 C 3cx2 C 2dx C e D 0:
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In this case, elimination theory reduces the computation of �5 to the computation of
a 9�9 Sylvester determinant, which equals a �5.f /. If we develop this determinant,
we find out that the number monomials in the discriminant increases rapidly with
the input degree:

�5 D �2;050a2g2bedc C 356abed2c2g � 80b3ed2cg C 18dc3b2g

e � 746agdcb2e2 C 144ab2e4c � 6ab2e3d 2 � 192a2be4d � 4d 2ac
3e2 C 144d 2a2ce3 � 4d 3b3e2 � 4c3e3b2 � 80abe3dc2 C 18b3e3

dc C 18d 3acbe2 C d 2c2b2e2 � 27b4e4 � 128a2e4c2 C 16ac4e3 � 27

a2d 4e2 C 256a3e5 C 3;125a4g4 C 160a2gbe3c C 560a2gdc2e2 C 1;020

a2gbd2e2 C 160ag2b3ed C 560ag2d 2cb2 C 1;020ag2b2c2e � 192

b4ecg2 C 24ab2ed3g C 24abe2c3g C 144b4e2dg � 6b3e2c2g C 14

4dc2b3g2 � 630dac3bg2 � 630d 3a2ceg � 72d 4acbg � 72dac4e

g � 4d 3c2b2g � 1;600ag3cb3 � 2;500a3g3be � 50a2g2b2e2 � 3;750a3

g3dc C 2;000a2g3db2 C 2;000a3g2ce2 C 825a2g2d 2c2 C 2;250a2g3b

c2 C 2;250a3g2ed2 � 900a2g2bd3 � 900a2g2c3e � 36agb3e3 � 1;600

a3ge3d C 16d 3ac3g � 128d 2b4g2 C 16d 4b3g � 27c4b2g2 C 108ac5

g2 C 108a2d 5g C 256b5g3:

In fact, if we compute the resultant of f and xf 0 by means of the 10 � 10 Sylvester
determinant, we find the more symmetric output: a g �5.f /. This formula is very
well known for univariate discriminants (Ch.12, [18]), and we generalize it in
Theorem 3.

One univariate polynomial is the smallest well-constrained system. We are con-
cerned with multivariate systems of sparse polynomials, in other words, polynomials
with fixed support, or set of nonzero terms. Sparse (or toric) elimination theory
concerns the study of resultants and discriminants associated with toric varieties.
This theory has its origin in the work of Gel’fand, Kapranov and Zelevinsky on
multivariate hypergeometric functions. Discriminants arise as singularities of such
functions [17].

Gel’fand, Kapranov and Zelevinsky [18] established a general definition of
sparse discriminant, which gives as special case the following definition of (sparse)
mixed discriminant (see Sect. 6.2 for the relation with the discriminant of the
associated Cayley matrix and with the notion of mixed discriminant in [3]). In
case n D 2, the mixed discriminant detects tangencies between families of curves
with fixed supports. In general, the mixed discriminant �A1;:::;An.f1; : : : ; fn/ of n

polynomials in n variables with fixed supports A1; : : : ; An � Z
n is the irreducible

polynomial (with integer coprime coefficients, defined up to sign) in the coefficients
of the fi which vanishes whenever the system f1 D � � � D fn D 0 has a multiple
root (that is, a root which is not simple) with non-zero coordinates, in case this
discriminantal variety is a hypersurface (and equal to the constant 1 otherwise). The
zero locus of the mixed discriminant is the variety of ill-posed systems [24].

For each i D 1; : : : ; n, pick an element ai;0 2 Ai and denote by LA1;:::;An the
lattice generated by fa � ai;0; a 2 Ai ; i D 1; : : : ; ng. We shall work with the
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polynomial defining the discriminant cycle (see Sect. 6.2), which is defined as the
power �

i.A1;:::;An/
A1;:::;An

of the mixed discriminant raised to the index

i.A1; : : : ; An/ D ŒZn W LA1;:::;An �; (6.2)

which we always assume to be finite. In most situations, this index equals 1 and so
both concepts coincide.

Discriminants have many applications. Besides the classical application in the
realm of differential equations to describe singularities, discriminants occur for
instance in the description of the topology of real algebraic plane curves [19], in
solving systems of polynomial inequalities and zero-dimensional systems [16], in
determining the number of real roots of square systems of sparse polynomials [9],
in studying the stability of numerical solving [6], in the computation of the Voronoi
diagram of curved objects [13], or in the determination of cusp points of parallel
manipulators [20].

Computing (mixed) discriminants is a (difficult) elimination problem. In prin-
ciple, they can be computed with Gröbner bases, but this is very inefficient in
general since these polynomials have a rich combinatorial structure [18]. Ad-
hoc computations via complexes (i.e., via tailored homological algebra) are also
possible, but they also turn out to be complicated. The tropical approach to compute
discriminants was initiated in [8] and the tropicalization of mixed planar discrim-
inants was described in [10]. Recently, in [12], the authors focus on computing
the discriminant of a multivariate polynomial via interpolation, based on [11, 23];
the latter essentially offers an algorithm for predicting the discriminant’s Newton
polytope, hence its nonzero terms. This yields a new output-sensitive algorithm
which, however, remains to be juxtaposed in practice to earlier approaches.

We mainly work in the case n D 2, where the results are more transparent and the
basic ideas are already present, but all our results and methods can be generalized to
any number of variables. This will be addressed in a subsequent paper [7]. Consider
for instance a system of two polynomials in two variables and assume that, the first
polynomial factors as f1 D f 0

1 � f 00
1 . Then, the discriminant also factors and we

thus obtain a multiplicativity formula for it, which we make precise in Corollary 7.
This significantly simplifies the discriminant’s computation and generalizes the
formula in [2] for the classical homogeneous case. This multiplicativity formula
is a consequence of our main result (Theorem 3 in dimension 2, see also Theorem 4
in any dimension) relating the mixed discriminant and the resultant of the given
polynomials and their toric Jacobian (see Sect. 6.3 for precise definitions and
statements). As another consequence of Theorem 3, we reprove, in Corollary 6,
the bidegree formula for planar mixed discriminants in [3].

The rest of this chapter is organized as follows. The next section overviews
relevant existing work and definitions. In Sect. 6.3 we present our main results
relating the mixed discriminant with the sparse resultant of the two polynomials
and their toric Jacobian. In Sect. 6.4 we deduce the general multiplicativity formula
for the mixed discriminant when one polynomial factors.
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6.2 Previous Work and Notation

In this section we give a general description of discriminants and some definitions
and notations that we are going to use in the following sections.

Given a set A � R
n, let Q D conv.A/ denote the convex hull of A. We say

that A is a lattice configuration if it is contained in Z
n, whereas a polytope with

integer vertices is called a lattice polytope. We denote by Vol.�/ the volume of a
lattice polytope, normalized with respect to the lattice Zn, so that a primitive simplex
has normalized volume equal to 1. Normalized volume is obtained by multiplying
Euclidean volume by nŠ.

Given a non-zero Laurent polynomial

f D
X

a

caxa;

the finite subset A of Zn of those exponents a for which ca 6D 0 is called the support
of f . The Newton polytope N.f / of f is the lattice polytope defined as the convex
hull of A. We will assume that the coefficients ca take values in an algebraically
closed field K of characteristic 0.

A (finite) set A is said to be full, if it consists of all the lattice points in its convex
hull. In [3], A is called dense in this case, but we prefer to reserve the word dense
to refer to the classical homogeneous case. A subset F � A is called a face of A,
denoted F � A, if F is the intersection of A with a face of the polytope conv.A/.

As usual Q1 C Q2 denotes the Minkowski sum of sets Q1 and Q2 in R
n. The

mixed volume MV.Q1; : : : ; Qn/ of n convex polytopes Qi in R
n is the multilinear

symmetric function with respect to Minkowski sum that generalizes the notion of
volume in the sense that MV.Q; : : : ; Q/ D Vol.Q/, when all Qi are equal to a fixed
convex polytope Q.

The following key result is due to Bernstein and Kouchnirenko. The mixed
volume of the Newton polytopes of n Laurent polynomials f1.x/; : : : ; fn.x/ in n

variables is an integer that bounds the number of isolated common solutions of
f1.x/ D 0; : : : ; fn.x/ D 0 in the algebraic torus .K�/n, over an algebraically
closed field K of characteristic 0 containing the coefficients. If the coefficients of the
polynomials are generic, then the common solutions are isolated and their number
equals the mixed volume. This bound generalizes Bézout’s classical bound to the
sparse case: for homogeneous polynomials the mixed volume and Bézout’s bound
coincide.

Mixed volume can be defined in terms of Minkowski sum volumes as follows.

MV.Q1; : : : ; Qn/ D
nX

kD1

.�1/n�k
X

I�f1;:::;ng;jI jDk

1

nŠ
Vol

� X

i2I

Qi

�
:
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This implies, for n D 2:

2MV.Q1; Q2/ D Vol.Q1 C Q2/ � Vol.Q1/ � Vol.Q2/:

Definition 1 A family of finite lattice configurations A1; : : : ; Ak in Z
n is called

essential if the affine dimension of the lattice LA1;:::;An equals k � 1, and for all
proper subsets I � f1; : : : ; kg it holds that the dimension of the lattice generated
by fa � ai ; a 2 Ai; i 2 I g is greater or equal than its cardinality jI j.
Definition/Theorem 1 [18, 25] Fix a family of n C 1 finite lattice configura-
tions A1; : : : ; AnC1 which contains a unique essential subfamily fAi; i 2 I g.
Given Laurent polynomials f1; : : : ; fnC1 in n variables with respective supports
A1; : : : ; AnC1, the resultant ResA1;:::;AnC1

.f1; : : : ; fnC1/ is the irreducible polyno-
mial with coprime integer coefficients (defined up to sign) in the coefficients of
f1; : : : ; fnC1, that vanishes whenever f1; : : : ; fnC1 have a common root in the torus
.C�/n. In fact, in this case, the resultant only depends on the coefficients of fi with
i 2 I .

If there exist two different essential subfamilies, then the (closure of the) variety
of solvable systems is not a hypersurface and in this case we set:

ResA1;:::;AnC1
.f1; : : : ; fnC1/ D 1:

In what follows, we consider n (finite) lattice configurations A1; : : : ; An in Z
n

and we denote by Q1; : : : ; Qn their respective convex hulls. Let f1; : : : ; fn be
Laurent polynomials with coefficients in K and support A1; : : : ; An, respectively:

fi .x/ D
X

˛2Ai

ci;˛x˛; i D 1 : : : ; n:

In [3] the mixed discriminantal variety, is defined as closure of the locus of
coefficients ci;˛ for which the associated system f1 D � � � D fn D 0 has a non-
degenerate multiple root x 2 .K�/n. This means that x is an isolated root and the n

gradient vectors

�
@fi

@x1

.x/; : : : ;
@fi

@xn

.x/

�

are linearly dependent, but any n � 1 of them are linearly independent.

Definition 2 If the mixed discriminantal variety is a hypersurface, the mixed
discriminant of the previous system is the unique up to sign irreducible polynomial
�A1;:::;An with integer coefficients in the unknowns ci;a which defines this hyper-
surface. Otherwise, the family is said to be defective and we set �A1;:::;An D 1.
The mixed discriminant cycle Q�A1;:::;An is equal to i.A1; : : : ; An/ times the mixed
discriminant variety, and thus its equation equals �A1;:::;An raised to this integer
(defined by (6.2)).
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By [3, Theorem 2.1], when the family A1; : : : ; An is non defective, the mixed
discriminant �A1;:::;An coincides with the A-discriminant defined in [18], where A is
the Cayley matrix

A D

0
BBBBB@

1 0 : : : 0

0 1 : : : 0

: : : : : : : : : : : :

0 0 : : : 1

A1 A2 : : : An

1
CCCCCA

:

This matrix has 2n rows and m D Pn
iD1 jAi j columns, so 0 D .0; : : : ; 0/ and 1 D

.1; : : : ; 1/ denote row vectors of appropriate lengths. We introduce n new variables
y1; : : : ; yn in order to encode the system f1 D � � � D fn D 0 in one polynomial with
support in A, via the Cayley trick: �.x; y/ D y1f1.x/ C � � � C ynfn.x/. Note that
i.A1; : : : ; An/ equals the index in Z

2n of the lattice generated by the columns of the
matrix A.

In what follows, when we refer to resultants or discriminants, we shall refer to
the equations of the corresponding cycles (as in Definition 2), but we will omit the
tildes in our notation. More explicitly, we will follow the convention in the articles
[5] by D’Andrea and Sombra and [14] by Esterov, which is faithful to intersection
theory. This convention allows us to present cleaner formulas. For instance, when
the family A1; : : : ; AnC1 is essential, our notion of resultant equals the resultant in
[18, 25] raised to the index i.A1; : : : ; AnC1/. In most examples these two lattices
coincide, and so our resultant cycle equals the resultant variety and the associated
resultant polynomial is irreducible.

Remark 6.2 Assume A1 consists of a single point ˛ and that f1g is the only essential
subfamily of a given family A1; : : : ; AnC1. Let f1.x/ D cx˛ . Then, for any choice
of Laurent polynomials f2; : : : ; fnC1 with supports A2; : : : ; AnC1, it holds that (cf.
[5, Example 3.14])

ResA1;:::;AnC1
.f1; : : : ; fn/ D cMV.A2;:::;AnC1/: (6.3)

With this convention, the following multiplicativity formula holds:

Theorem 2 [5, Corollary 4.6],[22] Let A0
1; A00

1 ; A1; : : : ; AnC1 be finite subsets of Zn

with A1 D A0
1 C A00

1 . Let f1; : : : ; fnC1 be polynomials with supports contained in
A1; : : : ; AnC1 and assume that f1 D f 0

1 f 00
1 where f 0

1 has support A0
1 and f 00

1 has
support A00

1 . Then

ResA1;:::;AnC1
.f1; : : : ; fnC1/

D ResA0
1;:::;AnC1

.f 0
1 ; : : : ; fnC1/ � ResA00

1 ;:::;AnC1
.f 00

1 ; : : : ; fnC1/:
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Cattani, Cueto, Dickenstein, Di Rocco and Sturmfels in [3] proved that the
degree of the mixed discriminant � is a piecewise linear function in the Plücker
coordinates of a mixed Grassmanian. An explicit degree formula for plane curves is
also presented in [3, Corollary 3.15]. In case A1; A2, they are two dimensional, full,
and with the same normal fan, then the bidegree of �A1;A2 in the coefficients of f1

and f2 equals:

.Vol.Q1 C Q2/ � area.Q1/ � perim.Q2/; Vol.Q1 C Q2/ � area.Q2/ � perim.Q1/;

where Qi D conv.Ai /, i D 1; 2, and Q1 C Q2 is their Minkowski sum. The area
is normalized, so that a primitive triangle has area 1 and the perimeter perim.Qi/

of Qi is the cardinality of @Qi \ Z
2: We will recover the general formula for this

degree and present it in Corollary 6.
Busé and Jouanolou consider in [2] the following equivalent definition of the

mixed discriminant, in case that f1; : : : ; fn are dense homogeneous polynomials
in .x0; : : : ; xn/ of degrees d1; : : : ; dn respectively, that is, their respective supports
Ai D di � are all the lattice points in the di -th dilate of the unit simplex � in R

n. It
is the non-zero polynomial in the coefficients of f1; : : : ; fn which equals

Resd1�;:::;dn�;ıi � .f1; : : : ; fn; Ji /

Resd1�;:::;dn�;� .f1; : : : ; fn; xi /
; (6.4)

for all i 2 f1; : : : ; ng, where Ji is the maximal minor of the Jacobian matrix
associated to f1; : : : ; fn obtained by deleting the i -th row and column and ıi DP

j ¤i .dj �1/. We give a more symmetric and general formula in Corollary 5 below.
The multiplicativity property of the discriminant in the case of dense homoge-

neous polynomials was already known to Sylvester in the multivariate case [26]
and generalized by Busé and Jouanolou in [2], where they develop a formalism for
discriminants for polynomials with coefficients in a ring. In particular A1 D d1� D
.d 0

1 Cd 00
1 /� and f1 is equal to the product f 0

1 �f 00
1 of two polynomials with respective

degrees d 0
1; d 00

1 , the following factorization holds:

�d1�;:::;dn� .f1; : : : ; fn/ D �d 0
1�;:::;dn� .f 0

1 ; : : : ; fn/ � �d 00
1 �;:::;dn� .f 00

1 ; : : : ; fn/

� Resd 0
1�;d 00

1 �;:::;dn� .f 0
1 ; f 00

1 ; : : : ; fn/2:

(6.5)

It is straightforward to see from the definition, that in case �A0
1;:::;An

.f 0
1 ; : : : ; fn/ D 0

or �A00
1 ;:::;An

.f 00
1 ; : : : ; fn/ D 0 or ResA0

1;A00
1 ;:::;An

.f 0
1 ; f 00

1 ; : : : ; fn/ D 0 then,

�A0
1CA00

1 ;:::;An
.f 0

1 f 00
1 ; f2; : : : ; fn/ D 0:

It follows from [14] that when each support configuration Ai is full,
the Newton polytope of the discriminant �A0

1CA00
1 ;A2;:::;An

.f 0
1 f 00

1 ; f2; : : : ; fn/

equals the Minkowski sum of the Newton polytopes of the discriminants
�A0

1;A2;:::;An
.f 0

1 ; f2; : : : ; fn/ and �A00
1 ;A2;:::;An

.f 00
1 ; f2; : : : ; fn/ plus two times the
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Newton polytope of the resultant ResA0
1;A00

1 ;A2;:::;An
.f 0

1 ; f 00
1 ; f2; : : : ; fn/. So, a first

guess would be that the factorization into the three factors in (6.5) above holds for
general supports. We will see in Corollary 7 that other factors may occur, which we
describe explicitly.

This behaviour already occurs in the univariate case:

Example 1 Let A0
1 D f0; i1; : : : ; im; d1g; A00

1 D f0; j1; : : : ; jl ; d2g be the support
sets of f 0

1 D a0 Cai1 xi1 C� � �Caim xim Cad1 x
d1 ; f 00

1 D b0 Cbj1x
j1 C� � �Cbjl

xjl C
bd2x

d2 respectively. Then

�.f 0
1 f 00

1 / D �.f 0
1 / � �.f 00

1 / � R.f 0
1 ; f 00

1 /2 � E;

where E D a
i1�m0

0 b
j1�m0

0 a
d1�im�m1

d1
b

d2�jl �m1

d2
; with m0 WD minfi1; j1g and m1 WD

minfd1 � im; d2 � jlg: On the other hand, in the full case i1 D j1 D 1; im D
d1 � 1; jl D d2 � 1, thus E D 1 because its exponents are equal to zero.

6.3 A General Formula

The aim of this section is to present a formula which relates the mixed discriminant
with the resultant of the given polynomials and their toric Jacobian, whose definition
we recall.

Definition 3 Let f1.x1; : : : ; xn/; : : : ; fn.x1; : : : ; xn/ be n Laurent polynomials in n

variables. The associated toric Jacobian J T
f equals x1 � � � xn times the determinant

of the Jacobian matrix of f, or equivalently, the determinant of the matrix:

2
66664

x1

@f1

@x1

� � � xn

@f1

@xn
:::

: : :
:::

x1

@fn

@x1

� � � xn

@fn

@xn

3
77775

:

Note that the Newton polytope of J T
f is contained in the sum of the Newton

polytopes of f1; : : : ; fn.
As we remarked before, we will mainly deal in this chapter with the case n D 2.

Also, to avoid excessive notation and make the main results cleaner, we assume
below that A1; A2 are two finite lattice configurations whose convex hulls satisfy

dim.Q1/ D dim.Q2/ D 2:

Let f1; f2 be polynomials with respective supports A1; A2:

fi .x/ D
X

˛2Ai

ci;˛x˛; i D 1; 2;
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where x D .x1; x2/. We denote by ˙ the set of primitive inner normals � 2 .Z2/�
of the edges of the convex hull of A1 C A2. We call A

�
i the face of Ai where the

inner product with � is minimized. We call this minimum value �
�
i . We also denote

by f
�

i the subsum of terms in fi with exponents in this face

f
�

i .x/ D
X

˛2A
�
i

ci;˛x˛; i D 1; 2;

which is �-homogeneous of degree �
�
i . Now, A

�
i is either a vertex of Ai (but not of

both A1; A2 since two vertices do not give a Minkowski sum edge), or its convex
hull is an edge of Ai (with inner normal �), which we denote by e

�
i . Note that if the

face of A1 CA2 associated to � is a vertex, both polynomials f
�

i are monomials and
their resultant locus has codimension two.

We denote by �i .�/ .i D 1; 2/ the integer defined by the following difference:

�i .�/ D minfh�; mi; m 2 Ai � A
�
i g � �

�
i (6.6)

and by

�.�/ D minf�1.�/; �2.�/g; (6.7)

the minimum of these two integers. Note that by our assumption that dim.Qi / D 2,
we have that �.�/ � 1.

Without loss of generality, we can translate the support sets A
�
1; A

�
2 to the origin

and consider the line L� containing them. The resultant (cycle) ResA
�
1;A

�
2
.f

�
1 ; f

�
2 / is

considered as before, with respect to the lattice L� \ Z
2.

Remark 6.3 As in Remark 6.2, if f
�

1 is a monomial, the resultant equals the
coefficient of f

�
1 raised to the normalized length `.e

�
2/ of the edge e

�
2 of A2 (that

is, the number of integer points in the edge, minus 1). If � is an inner normal
of edges A

�
1 and A

�
2, pick points a

�
i;0 2 A

�
i ; i D 1; 2, the resultant we consider

equals the irreducible resultant raised to the index of the lattice generated by
fa � a

�
i;0; a 2 A

�
i ; i D 1; 2g in L� \ Z

2. Note that the exponent �.�/ D 1 if at
least one of the configurations is full.

The following is our main result. We present a rather complete sketch of the
proof; a full proof requires further technical tools related to the notions in [15],
which will be given for the general case in [7]. We recall our convention that
resultants and discriminants are defined as the irreducible equations raised to the
lattice indices that define the corresponding cycles.
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Theorem 3 Let f1; f2 be generic Laurent polynomials with respective supports
A1; A2. Then, we have the following equality of polynomials up to a nonzero rational
number:

ResA1;A2;A1CA2.f1; f2; J T
f / D �A1;A2.f1; f2/ � E;

where the factor E equals the finite product:

E D
Y

�2˙

ResA
�
1;A

�
2
.f

�
1 ; f

�
2 /�.�/:

Proof. Let X be the projective toric variety associated to A1 C A2. This compact
variety consists of an open dense set TX isomorphic to the torus .C�/2 plus
one toric Weil divisor D� for each � 2 ˙ . The Laurent polynomials f1; f2; J T

f

define sections L1; L2; LJ of globally generated line bundles on X . The resultant
ResA1;A2;A1CA2.f1; f2; J T

f / vanishes if and only if L1; L2; LJ have a common zero
on X , which could be at TX or at any of the D�. This indicates the only possible
factors of the resultant.

There is an intersection point at TX if and only if there is a common zero of f1; f2

and J T
f in the torus .C�/2. In this case, the discriminant �A1;A2 .f1; f2/ vanishes.

It follows that �A1;A2.f1; f2/ divides ResA1;A2;A1CA2.f1; f2; J T
f / (the indices ŒZ2 W

LA1;A2 � and ŒZ2 W LA1;A2;A1CA2� are equal).
If instead there is a common zero at some D�, this translates into the fact that

f
�

1 ; f
�

2 and .J T
f /� D J T

f � (with obvious definition) have a common solution. But as

f
�

i are �-homogeneous, they satisfy the weighted Euler equalities:

�1x1

@f
�

i

@x1

C �2x2

@f
�

i

@x2

D �
�
i f

�
i ; i D 1; 2; (6.8)

from which we deduce that J T
f � lies in the ideal I.f

�
1 ; f

�
2 / and so, the three polyno-

mials will vanish exactly when there is a nontrivial common zero of f
�

1 and f
�

2 . This
implies that all facet resultants ResA

�
1;A

�
2
.f

�
1 ; f

�
2 / divide ResA1;A2;A1CA2.f1; f2; J T

f /.

Now, we wish to see that the resultant ResA
�
1;A

�
2
.f

�
1 ; f

�
2 / raised to the power

�.�/ occurs as a factor. The following argument would be better written in terms
of the multihomogeneous polynomials in the Cox coordinates of X which represent
L1; L2; LJ [4]. Fix a primitive inner normal direction � 2 ˙ of A1 C A2, let t be a
new variable and define the following polynomials

Fi .t; x/ D
X

˛2Ai

ci;˛t h�;˛i��
�
i x˛; i D 1; 2; (6.9)

so that

Fi .1; x/ D fi .x/; Fi .0; x/ D f
�

i .x/; i D 1; 2;
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and we can write

Fi .t; x/ D f
�

i .t; x/ C t�i .�/gi .x/ C t�i .�/C1hi .t; x/; i D 1; 2; (6.10)

where the polynomials gi .x/ and hi .t; x/ are defined by these equalities. Note
that our assumption that the convex hulls Q1; Q2 have dimension two implies that
g1; g2 ¤ 0.

For each t , we deduce from the bilinearity of the determinant, that there exists a
polynomial H.t; x/ such that the toric Jacobian of F1; F2 can be written as J T

F D
J T

f � C t�.�/H.t; x/. But, as we remarked, J T
f � lies in the ideal I.f

�
1 ; f

�
2 /. Note that

if for instance �1 6D 0, then the power of x1 in each monomial of Fi can be obtained
from the power of t and the power of x2, that is, we could use t and x2 as “variables”
instead. We will denote by ResX the resultant defined over X [4]. Therefore,

ResA1;A2;A1CA2.F1; F2; J T
F / D ResX

A1;A2;A1CA2
.F1; F2; t�.�/H2/:

Now, it follows from Theorem 2 that

ResX
A1;A2;A1CA2

.F1; F2; t�.�// D ResA
�
1;A

�
2
.f

�
1 ; f

�
2 /�.�/:

Setting t D 0 we see that ResA
�
1;A

�
2
.f

�
1 ; f

�
2 /�.�/ is a factor of ResA1;A2;A1CA2

.f1; f2; J T
f /.

If we prove that no positive power of t divides H2 for generic coefficients,
we get the desired factorization considering all possible � 2 ˙ . To see this,
first note that up to multiplying each fi by a monomial (that is, after translation
of each Ai ) we can assume without loss of generality that �

�
1 D �

�
2 D 0. It

follows from (6.8) that J T
f D 0. The polynomials gi in (6.10) are �-homogeneous

of respective degrees �1.�/; �2.�/. Assume �.�/ D �1.�/ 	 �2.�/. In case
�1.�/ < �2.�/, the coefficient of t�1 in J T

F equals the toric Jacobian J T

g1;f
�

2

of

g1 and f
�

2 , which are �-homogeneous polynomials with different �-degrees (equal
to �1.�/ > �2 D 0). It is easy to check that J T

g1;f
�

2

is a nonzero polynomial in the

coefficients of g1; f
�

2 . In case �1 D �2, we get another term which is the toric
Jacobian J T

f
�

1 ;g2
of f

�
1 and g2, which is nonzero by the same arguments and depends

on different coefficients than J T

g1;f
�

2

. Thus, their sum is not the zero polynomial, as

wanted.

Theorem 3 and the proof will be extended to the general n-variate setting in a
forthcoming paper [7]. We only state here the following general version without
proof. Recall that a lattice polytope P of dimension n in R

n is said to be smooth if
at each every vertex there are n concurrent facets and their primitive inner normal
directions form a basis of Zn. In particular, integer dilates of the unit simplex or the
unit (hyper)cube are smooth.
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Theorem 4 Let P � R
n be a smooth lattice polytope of dimension n. Let Ai D

.diP / \Z
n , i D 1; : : : ; n, d1; : : : ; dn 2 Z>0, and f1; : : : ; fn polynomials with these

supports, respectively. Then, we have the following factorization

ResA1;:::;An;A1C���CAn.f1; : : : ; fn; J T
f / D �A1;:::;An.f1; : : : ; fn/ � E;

where the factor E equals the finite product:

E D
Y

�2˙

ResA
�
1;:::;A

�
n
.f

�
1 ; : : : ; f �

n /:

Note that all the exponents in E equal 1 and all the lattice indices equal 1.
When the given lattice configurations Ai are the lattice points di � of the di -th

dilate of the standard simplex � in R
n (that is, in the homogeneous case studied

in [2]), formula (6.4) gives, for any n in our notation:

Resd1�;:::;dn�;ı� .f1; : : : ; fn; Ji / D
�d1�;:::;dn� .f1; : : : ; fn/ � Res.d1�/ei ;:::;.dn�/ei .f

ei

1 ; : : : ; f ei
n /;

where e0; : : : ; en are the canonical basis vectors (or e0 D �e1 � � � � � en, if we
consider the corresponding dehomogenized polynomials, by setting x0 D 1). Note
that Theorem 4 gives the following more symmetric formula:

Corollary 5 With the previous notation, it holds:

Resd1�;:::;dn�;.d1C���Cdn/� .f1; : : : ; fn; J T
f / D

�d1�;:::;dn� .f1; : : : ; fn/ �
nY

iD0

Res.d1�/ei ;:::;.dn�/ei .f
ei

1 ; : : : ; f ei
n /:

It is straightforward to deduce from this expression the degree of the homoge-
neous mixed discriminant, obtained independently in [1, 2, 21]. Similar formulas
can be obtained, for instance, in the multihomogeneous case.

We recall the following definition from [3]. If v is a vertex of Ai , we define its
mixed multiplicity as

mmA1;A2 .v/ WD MV.Q1; Q2/ � MV.Ci ; Qj /; fi; j g D f1; 2g; (6.11)

where Ci D conv.Ai � fvg/.
Let ˙ 0 � ˙ be the set of inner normals of A1 C A2 that cut out, or define, edges

e
�
i in both Q1; Q2. The factorization formula in Theorem 3 can be written as follows,

and allows us to recover the bidegree formulas for planar mixed discriminants in [3].

Corollary 6 Let A1; A2 be two lattice configurations of dimension 2 in the plane,
and let f1; f2 be polynomials with these respective supports. Then, the resultant
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of f1; f2 and their toric Jacobian, namely ResA1;A2;A1CA2.f1; f2; J T
f /, factors as

follows:

�A1;A2.f1; f2/ �
Y

v vertex of A1 or A2

c
mmA1 ;A2 .v/
v �

Y

�2˙ 0

ResA
�
1;A

�
2
.f

�
1 ; f

�
2 /

�.�/
: (6.12)

The bidegree .ı1; ı2/ of the mixed discriminant �A1;A2.f1; f2/ in the coefficients of
f1 and f2, respectively, is then given by the following:

Vol.Qj / C 2 � MV.Q1; Q2/ �
X

�2˙ 0

`.e
�
j / � �.�/ �

X

v vertex of .Ai /

mmA1;A2.v/; (6.13)

where i 2 f1; 2g; i ¤ j .

Proof. To prove equality (6.12), we need to show by Theorem 3 that the factor

E D
Y

�2˙

ResA
�
1;A

�
2
.f

�
1 ; f

�
2 /�.�/

equals the product

Y

v vertex of A1 or A2

c
mmA1 ;A2 .v/
v �

Y

�2˙ 0

ResA
�
1;A

�
2
.f

�
1 ; f

�
2 /

�.�/
:

When � 2 ˙ 0, i.e. � is a common inner normal to edges of both Q1 and Q2, we get
the same factor on both terms, since that our quantity �.�/ coincides with the index
minfu.e1.�/; A1/; u.e2.�/; A2/g, in the notation of [3].

Assume then that � is only an inner normal to Q2. So, A
�
1 is a vertex v, f

�
1 D cxv

is a monomial (with coefficient c) and f
�

2 is a polynomial whose support equals
the edge e

�
2 of A2 orthogonal to �. In this case, ResA

�
1;A

�
2
.f

�
1 ; f

�
2 / D c`.f�/ by

Remark 6.2.
For such a vertex v, denote by E.v/ the set of those �0 … ˙ 0 for which v C e

�0

2

is an edge of Q1 C Q2. Note that it follows from the proof of [3, Prop.3.13] (cf. in
particular Figure 1 there), that there exist non negative integers �0.�0/ such that

mm.v/ D
X

�02 E.v/

`.e
�0

2 / � �0.�0/:

Indeed, �.�0/ D �0.�0/.
To compute the bidegree, we use the multilinearity of the mixed volume with

respect to Minkowski sum. Observe that the toric Jacobian has bidegree .1; 1/ in
the coefficients of f1; f2, from which we get that the bidegree of the resultant
ResA1;A2;A1CA2.f1; f2; J T

f / is equal to

.2MV.A1; A2/ C Vol.Q2/; 2MV.A1; A2/ C Vol.Q1//: (6.14)
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Substracting the degree of the other factors and taking into account that the
bidegree of the resultant ResA

�
1;A

�
2
.f

�
1 ; f

�
2 / equals .`.e

�
2/; `.e

�
1//, we deduce the

formula (6.13), as desired.

6.4 The Multiplicativity of the Mixed Discriminant

This section studies the factorization of the discriminant when one of the poly-
nomials factors. We make the hypothesis that f 0

1 ; f 00
1 ; f2 have fixed support sets

A0
1; A00

1 ; A2 � Z
2. So f1 D f 0

1 � f 00
1 has support in the Minkowski sum A1 WD

A0
1 C A00

1 ; in fact, its support is generically equal to A1. We will denote by �0.�/

(resp. �00.�/) the integer defined in (6.7), with A1 replaced by A0
1 (resp. A00

1 ).

Corollary 7 Assume A0
1; A00

1 and A2 are full planar configurations of dimension 2.
Let f 0

1 ; f 00
1 ; f2 be generic polynomials with these supports and let f1 D f 0

1 � f 00
1 .

Then,

�A1;A2 .f1; f2/ D �
A
0

1;A2
.f

0

1 ; f2/ � �
A
00

1 ;A2
.f

00

1 ; f2/ � Res
A
0

1;A
00

1 ;A2
.f

0

1 ; f
00

1 ; f2/
2 � E;

where E equals the following product:

Y

�2˙

Res.A0
1/�;A

�
2
..f 0

1 /�; f
�

2 /�0.�/��.�/ � Res.A00
1 /�;A

�
2
..f 00

1 /�; f
�

2 /�00.�/��.�/: (6.15)

Proof. By Theorem 3, we get that

�A1;A2.f1; f2/ D ResA1;A2;A1CA2.f1; f2; J T
f /

Q
�2˙

ResA
�
1;A

�
2
.f

�
1 ; f

�
2 /�.�/

; (6.16)

and similarly for �A0
1;A2

.f 0
1 ; f2/ and �A00

1 ;A2
.f 00

1 ; f2/. Let us write the numerator
of (6.16) as follows:

ResA0
1CA00

1 ;A2;A0
1CA00

1 CA2
.f 0

1 f 00
1 ; f2; J T

f 0
1 f 00

1 ;f2
/;

where J T
f 0

1 f 00
1 ;f2

D f 0
1 J T

f 00
1 f2

C f 00
1 J T

f 0
1 ;f2

. We now apply Theorem 2 to re-write it as

follows:

ResA0
1;A2;A0

1CA00
1 CA2

.f 0
1 ; f2; J T

f 0
1 f 00

1 ;f2
/ ResA00

1 ;A2;A0
1CA00

1 CA2
.f 00

1 ; f2; J T
f 0

1 f 00
1 ;f2

/

D ResA0
1;A2;A0

1CA00
1 CA2

.f 0
1 ; f2; f 00

1 J T
f 0

1 ;f2
/ ResA00

1 ;A2;A0
1CA00

1 CA2
.f 00

1 ; f2; f 0
1 J T

f 00
1 ;f2

/;

because the resultant of fh1; h2 C gh1; : : : g equals the resultant of fh1; h2; : : : g,
for any choice of polynomials h1; h2; g (with suitable supports). We employ again
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Theorem 2 to finalize the numerator as follows:

ResA0
1;A2;A0

1CA2
.f 0

1 ; f2; J T
f 0

1 ;f2
/ � ResA00

1 ;A2;A00
1 CA2

.f 00
1 ; f2; J T

f 00
1 ;f2

/ � Res
A
0

1;A
00

1 ;A2

.f
0

1 ; f
00

1 ; f2/2:

For the denominator of (6.16), we use again Theorem 2 to write:

Y

�2˙ 0

ResA0
1

�
;A

�
2
.f 0

1
�
; f

�
2 /�0.�/ �

Y

�2˙ 00

ResA00
1

�
;A

�
2
.f 00

1
�
; f

�
2 /�00.�/ D

Y

�2˙

ResA0
1

�CA00
1

�
;A

�
2
.f 0�

1f 00�
1; f

�
2 /�.�/ � E;

because the products

Y

�2˙n˙ 0

ResA0
1

�
;A

�
2
.f 0

1
�
; f

�
2 /�0.�/ D

Y

�2˙n˙ 00

ResA00
1

�
;A

�
2
.f 00

1
�
; f

�
2 /�00.�/ D 1;

since f 0
1

�
; f

�
2 (resp. f 00

1
�
; f

�
2 ) are both monomials. To conclude the proof, simply

assemble the above equations.

As a consequence, we have degA1;A2
�.f1; f2/ D

D degA0
1;A2

�.f 0
1 ; f2/C degA00

1 ;A2
�.f 00

1 ; f2/C2 � degA0
1;A00

1 ;A2
Res.f 0

1 ; f 00
1 ; f2/� deg.E/:

When all the configurations are full and with the same normal fan, all the
exponents �.�/ D �0.�/ D �00.�/ D 1. Therefore, E D 1 and no extra factor
occurs.

We define �0
1.�/; �00

1 .�/ as in (6.6). Indeed, we now fix � and will simply write
�0

1; �00
1 ; �1; �2. It happens that only one of the factors associated to � can occur in E

with non zero coefficient. More explicitly, we have the following corollary, whose
proof is straightforward.

Corollary 8 With the notations of Corollary 7, for any � 2 ˙ it holds that:

• If �0
1 D �00

1 , then �0 D �00 D � and there is no factor in E “coming from �”.
• If �0

1 ¤ �00
1 , assume wlog that �1 D �0

1 < �00
1 . There are three subcases:

– If �2 	 �1, again there is no factor in E “coming from �”.
– If �1 D �0

1 < �2 < �00
1 , then the resultant Res.A0

1/�;A
�
2
..f 0

1 /�; f
�

2 / does not

occur, but Res.A00
1 /�;A

�
2
..f 00

1 /�; f
�

2 / has nonzero exponent (this resultant could
just be the coefficient of a vertex raised to the mixed multiplicity).

– If �1 D �0
1 < �00

1 	 �2, the situation is just the opposite than in the previous
case.



120 A. Dickenstein et al.

Conclusion and Future Work
The intent of this book chapter was to present our main results relating
the mixed discriminant of two bivariate Laurent polynomials with fixed
support, with the sparse resultant of two bivariate Laurent polynomials with
fixed support and their toric Jacobian. On our way, we deduced a general
multiplicativity formula for the mixed discriminant when one polynomial
factors as f D f 0 � f 00. This formula occurred as a consequence of our main
result, Theorem 3, and generalized known formulas in the homogeneous case
to the sparse setting. Furthermore, we obtained a new proof of the bidegree
formula for planar mixed discriminants, which appeared in [3].

The generalization of our formulas to any number of variables will allow us
to extend our applications and to develop effective computational techniques
for sparse discriminants based on software for the computation of resultants.
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