Chapter 6
Plane Mixed Discriminants and Toric Jacobians

Alicia Dickenstein, Ioannis Z. Emiris, and Anna Karasoulou

Dedicated to the memory of our friend Andrei Zelevinsky
(1953-2013)

6.1 Introduction

Polynomial algebra offers a standard and powerful approach to handle several
problems in geometric modeling. In particular, the study and solution of systems
of polynomial equations has been a major topic. Discriminants provide a key tool
when examining well-constrained systems, including the case of one univariate
polynomial. Their theoretical study is a thriving and fruitful domain today, but they
are also very useful in a variety of applications.

The best studied discriminant is probably known since high school, where one
studies the discriminant of a quadratic polynomial f(x) = ax*+bx+c = 0(a # 0).
The polynomial f has a double root if and only if its discriminant Ay = b* — 4ac
is equal to zero. Equivalently, this can be defined as the condition for f(x) and its
derivative f'(x) to have a common root:

Ix : f(x)=al +bx+c=f'(x) =2ax+b=0 & A, =0. 6.1)

One can similarly consider the discriminant of a univariate polynomial of any
degree. If we wish to calculate the discriminant As( ) of a polynomial f of degree
five in one variable, we consider the condition that both f and its derivative vanish:

fx)=ad +bx*+ e +dl +ex+ g =0,
F(x) = 5ax* + 4bx> + 3cx? + 2dx + e = 0.
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In this case, elimination theory reduces the computation of A to the computation of
a 9x9 Sylvester determinant, which equals a As( f). If we develop this determinant,
we find out that the number monomials in the discriminant increases rapidly with
the input degree:

As = —2,050a>g>bedc + 356abed*c*g — 80b3ed*cg + 18dc*h*g

e — 746agdcb’e® + 144ab’e*c — 6ab’e’d? — 192a’be*d — 4d*ac

32 + 144d%a*ce® — 4d3b3e? — 4c3e’h? — 80abe’dc* + 18h3%e?

dc + 18d3ache® + d*c?*b*e? — 27b*e* — 128a%e*c? + 16ac’e® — 27
a’d*e® + 256a%e® + 3,125a*g* + 160a’gbe’c + 560agdc*e® + 1,020
a’gbd*e* + 160ag’b’ed + 560ag>d>cb* + 1,020ag*bc?e — 192
b*ecg® + 24ab’ed®g + 24abe’c g + 144b*e?dg — 6b3e’c?g + 14
4dc?’b3g? — 630dac’bg® — 630d3a’ceg — 72d*acbg — T2dac*e

g —4d3c*h?’g — 1,600ag’ch® — 2,500a°g*be — 50a’g*b*e? — 3,750a>
g3de + 2,000a>g3db* + 2,000a>g*ce? + 825a%g>d*c? + 2,250a%g>h
c? +2,250a3g%ed? — 900a’g*bd> — 900a’g*c3e — 36agh’e® — 1,600
a’ge’d + 16d3ac’g —128d%b*g? + 16d*b3g — 27¢*b*g* + 108ac’
g2 4 108a%d°g 4 256b°g>.

In fact, if we compute the resultant of " and x f’ by means of the 10 x 10 Sylvester
determinant, we find the more symmetric output: a g As( f). This formula is very
well known for univariate discriminants (Ch.12, [18]), and we generalize it in
Theorem 3.

One univariate polynomial is the smallest well-constrained system. We are con-
cerned with multivariate systems of sparse polynomials, in other words, polynomials
with fixed support, or set of nonzero terms. Sparse (or toric) elimination theory
concerns the study of resultants and discriminants associated with toric varieties.
This theory has its origin in the work of Gel’fand, Kapranov and Zelevinsky on
multivariate hypergeometric functions. Discriminants arise as singularities of such
functions [17].

Gel’fand, Kapranov and Zelevinsky [18] established a general definition of
sparse discriminant, which gives as special case the following definition of (sparse)
mixed discriminant (see Sect.6.2 for the relation with the discriminant of the
associated Cayley matrix and with the notion of mixed discriminant in [3]). In
case n = 2, the mixed discriminant detects tangencies between families of curves
with fixed supports. In general, the mixed discriminant Ay, . a,(f1,..., fn) of n
polynomials in n variables with fixed supports A4i,..., 4, C Z" is the irreducible
polynomial (with integer coprime coefficients, defined up to sign) in the coefficients
of the f; which vanishes whenever the system f; = --- = f, = 0 has a multiple
root (that is, a root which is not simple) with non-zero coordinates, in case this
discriminantal variety is a hypersurface (and equal to the constant 1 otherwise). The
zero locus of the mixed discriminant is the variety of ill-posed systems [24].

Foreachi = 1,...,n, pick an element a; o € A; and denote by L4,
lattice generated by {a — a;9,a € A;,i = 1,...,n}. We shall work with the
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polynomial defining the discriminant cycle (see Sect. 6.2), which is defined as the

A"';{f”) of the mixed discriminant raised to the index

i(Al,... ,An) = [Zn N L:Al ..... An]’ (62)

which we always assume to be finite. In most situations, this index equals 1 and so
both concepts coincide.

Discriminants have many applications. Besides the classical application in the
realm of differential equations to describe singularities, discriminants occur for
instance in the description of the topology of real algebraic plane curves [19], in
solving systems of polynomial inequalities and zero-dimensional systems [16], in
determining the number of real roots of square systems of sparse polynomials [9],
in studying the stability of numerical solving [6], in the computation of the Voronoi
diagram of curved objects [13], or in the determination of cusp points of parallel
manipulators [20].

Computing (mixed) discriminants is a (difficult) elimination problem. In prin-
ciple, they can be computed with Grobner bases, but this is very inefficient in
general since these polynomials have a rich combinatorial structure [18]. Ad-
hoc computations via complexes (i.e., via tailored homological algebra) are also
possible, but they also turn out to be complicated. The tropical approach to compute
discriminants was initiated in [8] and the tropicalization of mixed planar discrim-
inants was described in [10]. Recently, in [12], the authors focus on computing
the discriminant of a multivariate polynomial via interpolation, based on [11, 23];
the latter essentially offers an algorithm for predicting the discriminant’s Newton
polytope, hence its nonzero terms. This yields a new output-sensitive algorithm
which, however, remains to be juxtaposed in practice to earlier approaches.

We mainly work in the case n = 2, where the results are more transparent and the
basic ideas are already present, but all our results and methods can be generalized to
any number of variables. This will be addressed in a subsequent paper [7]. Consider
for instance a system of two polynomials in two variables and assume that, the first
polynomial factors as fi = f| - f”. Then, the discriminant also factors and we
thus obtain a multiplicativity formula for it, which we make precise in Corollary 7.
This significantly simplifies the discriminant’s computation and generalizes the
formula in [2] for the classical homogeneous case. This multiplicativity formula
is a consequence of our main result (Theorem 3 in dimension 2, see also Theorem 4
in any dimension) relating the mixed discriminant and the resultant of the given
polynomials and their foric Jacobian (see Sect.6.3 for precise definitions and
statements). As another consequence of Theorem 3, we reprove, in Corollary 6,
the bidegree formula for planar mixed discriminants in [3].

The rest of this chapter is organized as follows. The next section overviews
relevant existing work and definitions. In Sect.6.3 we present our main results
relating the mixed discriminant with the sparse resultant of the two polynomials
and their toric Jacobian. In Sect. 6.4 we deduce the general multiplicativity formula
for the mixed discriminant when one polynomial factors.
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6.2 Previous Work and Notation

In this section we give a general description of discriminants and some definitions
and notations that we are going to use in the following sections.

Given aset A C R”, let @ = conv(A) denote the convex hull of A. We say
that A is a lattice configuration if it is contained in Z", whereas a polytope with
integer vertices is called a lattice polytope. We denote by Vol(-) the volume of a
lattice polytope, normalized with respect to the lattice Z", so that a primitive simplex
has normalized volume equal to 1. Normalized volume is obtained by multiplying
Euclidean volume by n!.

Given a non-zero Laurent polynomial

f=2 e,
a

the finite subset A of Z" of those exponents a for which ¢, # 0 is called the support
of f. The Newton polytope N(f) of f is the lattice polytope defined as the convex
hull of A. We will assume that the coefficients ¢, take values in an algebraically
closed field K of characteristic 0.

A (finite) set A is said to be full, if it consists of all the lattice points in its convex
hull. In [3], A4 is called dense in this case, but we prefer to reserve the word dense
to refer to the classical homogeneous case. A subset FF € A is called a face of A,
denoted F' < A, if F is the intersection of A with a face of the polytope conv(A).

As usual Q| + O, denotes the Minkowski sum of sets O and @, in R”. The
mixed volume MV(Q1, ..., Q,) of n convex polytopes Q; in R” is the multilinear
symmetric function with respect to Minkowski sum that generalizes the notion of
volume in the sense that MV (Q, ..., Q) = Vol(Q), when all Q; are equal to a fixed
convex polytope Q.

The following key result is due to Bernstein and Kouchnirenko. The mixed
volume of the Newton polytopes of n Laurent polynomials fi(x),..., f,(x) inn
variables is an integer that bounds the number of isolated common solutions of
filx) = 0,..., fu(x) = 0 in the algebraic torus (K*)", over an algebraically
closed field K of characteristic 0 containing the coefficients. If the coefficients of the
polynomials are generic, then the common solutions are isolated and their number
equals the mixed volume. This bound generalizes Bézout’s classical bound to the
sparse case: for homogeneous polynomials the mixed volume and Bézout’s bound
coincide.

Mixed volume can be defined in terms of Minkowski sum volumes as follows.

n

MV(Qi.....00) =Y (="* Y %Vol(ZQ,-).

k=1 1c{l,..n}|l|=k i€l
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This implies, forn = 2:

2MV(Q1, Q2) = Vol(Q1 + Q2) — Vol(Q1) — Vol(Q>).

Definition 1 A family of finite lattice configurations Ay, ..., Ar in Z" is called
,,,,, 4, equals k — 1, and for all

proper subsets I C {1,...,k} it holds that the dimension of the lattice generated
by{a —a;,a € A;,i € I} is greater or equal than its cardinality |1 |.

Definition/Theorem 1 [18, 25] Fix a family of n + 1 finite lattice configura-
tions Ay,...,Ay+1 Which contains a unique essential subfamily {A;,i € 1I}.
Given Laurent polynomials fi,..., fu+1 in n variables with respective supports
At,.... Aut1, the resultant Resy, . 4, (f1..... fu+1) is the irreducible polyno-
mial with coprime integer coefficients (defined up to sign) in the coefficients of
f1s - s fu+1, that vanishes whenever f1, ..., f,+1 have a common root in the torus
(C*)". In fact, in this case, the resultant only depends on the coefficients of f; with
iel.

If there exist two different essential subfamilies, then the (closure of the) variety
of solvable systems is not a hypersurface and in this case we set:

ResAl ..... A,,Jr](flv‘*-’ﬁl—Fl): 1

In what follows, we consider n (finite) lattice configurations A;,..., A, in Z"
and we denote by Qy,..., @, their respective convex hulls. Let f,..., f, be
Laurent polynomials with coefficients in K and support Ay, ..., A,, respectively:

filx) = Zci,axa, i=1...,n.

aE€A;

In [3] the mixed discriminantal variety, is defined as closure of the locus of
coefficients ¢; o, for which the associated system f; = --- = f, = 0 has a non-
degenerate multiple root x € (K*)". This means that x is an isolated root and the n

gradient vectors
afi afi
(@ i)

8_x1 dax;,

are linearly dependent, but any n — 1 of them are linearly independent.

Definition 2 If the mixed discriminantal variety is a hypersurface, the mixed
discriminant of the previous system is the unique up to sign irreducible polynomial
,,,,, 4, Wwith integer coefficients in the unknowns c; , which defines this hyper-
surface. Otherwise, the family is said to be defective and we set Ay,
The mixed discriminant cycle A ArnA, 1S equal to i(Ay, ..., Ay) times the mixed
discriminant variety, and thus its equation equals Ay, . 4, raised to this integer

(defined by (6.2)).

4, = L
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By [3, Theorem 2.1], when the family A4y, ..., A, is non defective, the mixed
discriminant A 4, 4, coincides with the A-discriminant defined in [18], where 4 is
the Cayley matrix

1 0...0

01...0

A= ... ... ...

0 0...1

Al Az ... Ay
This matrix has 2n rows and m = Y '_, |A;| columns, so 0 = (0,...,0) and 1 =
(1,...,1) denote row vectors of appropriate lengths. We introduce n new variables
V1, ..., Yy in order to encode the system f; = --- = f, = 0in one polynomial with
support in A, via the Cayley trick: ¢ (x,y) = y1 fi(x) + -+ + v, fu(x). Note that
i(Ay,...,A,) equals the index in Z?" of the lattice generated by the columns of the

matrix A.

In what follows, when we refer to resultants or discriminants, we shall refer to
the equations of the corresponding cycles (as in Definition 2), but we will omit the
tildes in our notation. More explicitly, we will follow the convention in the articles
[5] by D’ Andrea and Sombra and [14] by Esterov, which is faithful to intersection
theory. This convention allows us to present cleaner formulas. For instance, when
the family Ay, ..., A,+; is essential, our notion of resultant equals the resultant in
[18,25] raised to the index i(Ay,..., A,+1). In most examples these two lattices
coincide, and so our resultant cycle equals the resultant variety and the associated
resultant polynomial is irreducible.

Remark 6.2 Assume A consists of a single point « and that {1} is the only essential
subfamily of a given family A;,..., A,4+1. Let fi(x) = cx*. Then, for any choice
of Laurent polynomials f;, ..., f,+1 with supports A, ..., A,+1, it holds that (cf.
[5, Example 3.14])

Resa, . ayy (fleeenn fr) = MV, (6.3)

With this convention, the following multiplicativity formula holds:

Theorem 2 [5, Corollary 4.6],[22] Let A, A7, Ai. ..., Ay41 be finite subsets of "
with Ay = A} + A]. Let fi...., fut1 be polynomials with supports contained in
Ay, ..., Auy1 and assume that fi = f| f/" where f| has support A| and f|' has
support AY. Then
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Cattani, Cueto, Dickenstein, Di Rocco and Sturmfels in [3] proved that the
degree of the mixed discriminant A is a piecewise linear function in the Pliicker
coordinates of a mixed Grassmanian. An explicit degree formula for plane curves is
also presented in [3, Corollary 3.15]. In case A, A,, they are two dimensional, full,
and with the same normal fan, then the bidegree of A4, 4, in the coefficients of f)
and f, equals:

(Vol(Q1 + Q2) —area(Q1) — perim(Q2), Vol(Q1 + Q1) —area(Q2) — perim(Q1),

where Q; = conv(A;),i = 1,2, and Q| + Q> is their Minkowski sum. The area
is normalized, so that a primitive triangle has area 1 and the perimeter perim(Q;)
of Q; is the cardinality of dQ; N Z2. We will recover the general formula for this
degree and present it in Corollary 6.

Busé and Jouanolou consider in [2] the following equivalent definition of the
mixed discriminant, in case that fi,..., f, are dense homogeneous polynomials
in (xo,...,x,) of degrees dy, ..., d, respectively, that is, their respective supports
A; = d;o are all the lattice points in the d;-th dilate of the unit simplex o in R”. It
is the non-zero polynomial in the coefficients of f1, ..., f, which equals

Resdla,...,d,,a,&a(fla sy f;’la Jl)
Resdla,...,d,,a,a (ﬁa sy f;’la xi) ’

(6.4)

for all i € {1,...,n}, where J; is the maximal minor of the Jacobian matrix
associated to fi,..., f, obtained by deleting the i-th row and column and §; =
3 i (d; —1). We give a more symmetric and general formula in Corollary 5 below.

The multiplicativity property of the discriminant in the case of dense homoge-
neous polynomials was already known to Sylvester in the multivariate case [26]
and generalized by Busé and Jouanolou in [2], where they develop a formalism for
discriminants for polynomials with coefficients in a ring. In particular A; = d,0 =
(d{+d]")o and f; is equal to the product f; - f;” of two polynomials with respective
degrees d|, d/', the following factorization holds:
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guess would be that the factorization into the three factors in (6.5) above holds for
general supports. We will see in Corollary 7 that other factors may occur, which we
describe explicitly.

This behaviour already occurs in the univariate case:

Example 1 Ler A| = {0,i1,...,im.d1}, AY = {0, j1,..., ji.d>} be the support
sets of f| = ap+ay X'+ +a;, X" +aqx¥, f{' = by+bjx/t +---+bjxI +
ba,x® respectively. Then

A = AU - A - RU K- E,
where E = az)‘_m" b({‘_m” aj‘_i’”_m‘ bjz_j’_m‘, with mg := min{iy, j;} and m| :=
min{d, — i,,,dy — ji}. On the other hand, in the full case iy = j, = 1,i, =
dy—1,j; = dy— 1, thus E = 1 because its exponents are equal to zero.

6.3 A General Formula

The aim of this section is to present a formula which relates the mixed discriminant
with the resultant of the given polynomials and their toric Jacobian, whose definition
we recall.

Definition 3 Let fi(x1,...,X,),..., fu(x1,...,X,) be n Laurent polynomials in n
variables. The associated toric Jacobian JT equals X1 - -+ X, times the determinant
of the Jacobian matrix of f, or equivalently, the determinant of the matrix:

LA o
laxl "dx,
N
laxl "x,

Note that the Newton polytope of J fT is contained in the sum of the Newton

polytopes of fi,..., fu-

As we remarked before, we will mainly deal in this chapter with the case n = 2.
Also, to avoid excessive notation and make the main results cleaner, we assume
below that A, A, are two finite lattice configurations whose convex hulls satisfy

dim(Q1) = dim(Q,) = 2.

Let f1, f> be polynomials with respective supports A1, A,:

fi)) = ciax®, =12,

aE€A;
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where x = (x1,x;). We denote by X' the set of primitive inner normals 7 € (Z?)*
of the edges of the convex hull of 4| + A,. We call A? the face of A; where the
inner product with 7 is minimized. We call this minimum value v,.”. We also denote
by fi” the subsum of terms in f; with exponents in this face

[ =) cax®, i=1.2,

aeA?

which is n-homogeneous of degree v;". Now, A is either a vertex of 4; (but not of
both A}, A, since two vertices do not give a Minkowski sum edge), or its convex
hull is an edge of A; (with inner normal 1), which we denote by e/'. Note that if the
face of A1 + A, associated to 7 is a vertex, both polynomials f;” are monomials and
their resultant locus has codimension two.

We denote by 1;(n) (i = 1,2) the integer defined by the following difference:

ui(n) = min{(n.m),m € 4; — A7} — v/ (6.6)
and by

w(n) = min{ui(n), n2(n)}, (6.7)

the minimum of these two integers. Note that by our assumption that dim(Q;) = 2,
we have that () > 1.

Without loss of generality, we can translate the support sets A, A; to the origin
and consider the line L” containing them. The resultant (cycle) Res Al Al ( fln, fz”) is

considered as before, with respect to the lattice L7 N 72

Remark 6.3 As in Remark 6.2, if fl'7 is a monomial, the resultant equals the
coefficient of f," raised to the normalized length £(e) of the edge e, of A, (that
is, the number of integer points in the edge, minus 1). If 1 is an inner normal
of edges A] and A}, pick points a, € A].i = 1,2, the resultant we consider
equals the irreducible resultant raised to the index of the lattice generated by
{a —a}y.a € Al,i = 1,2} in L" N Z*. Note that the exponent p(n) = 1 if at
least one of the configurations is full.

The following is our main result. We present a rather complete sketch of the
proof; a full proof requires further technical tools related to the notions in [15],
which will be given for the general case in [7]. We recall our convention that
resultants and discriminants are defined as the irreducible equations raised to the
lattice indices that define the corresponding cycles.
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Theorem 3 Let f1, f» be generic Laurent polynomials with respective supports
A1, Ay. Then, we have the following equality of polynomials up to a nonzero rational
number:

Res 4y ap. 4,44, (1 2. I [) = Anyay (frs f2) - E,

where the factor E equals the finite product:

E = l—[ ResA?Ag(fln, FAO LS

nex

Proof. Let X be the projective toric variety associated to A; + A,. This compact
variety consists of an open dense set Ty isomorphic to the torus (C*)?> plus
one toric Weil divisor D, for each n € X. The Laurent polynomials fi, f>,J
define sections L, Ly, L; of globally generated line bundles on X. The resultant
Resa, 4,.4,+4,(f1, f2, JfT) vanishes if and only if Ly, L,, L ; have a common zero
on X, which could be at Tx or at any of the D;. This indicates the only possible
factors of the resultant.

There is an intersection point at T’y if and only if there is a common zero of fi, f>
and J T in the torus (C*)2. In this case, the discriminant A4, 4,(f1, f2) vanishes.

It follows that Ay, 4,(f1, f2) divides Resa, ay.4,+4,(f1, f2, J T) (the indices [Z? :
EALAZ] and [Z £A1,A2,A1+Az] are equal)

If instead there is a common zero at some D, this translates into the fact that
A £y and (J T)” = J , (with obvious definition) have a common solution. But as

S are n- homogeneous they satisfy the weighted Euler equalities:
9 n n
mxli + Mmx L/ =" i=1,2, (6.8)
8 8x2
from which we deduce that J [, lies in the ideal 7(f", £,') and so, the three polyno-
mials will vanish exactly when there is a nontrivial common zero of fln and fzn. This
implies that all facet resultants ResA;z’Ag (fln, fz”) divide Res 4, 4,.4,+4,(f1, f2, JfT).
Now, we wish to see that the resultant Res AT A (A", ;) raised to the power
(1) occurs as a factor. The following argument would be better written in terms
of the multihomogeneous polynomials in the Cox coordinates of X which represent
Ly, Ly, Ly [4]. Fix a primitive inner normal direction n € X of A; + A, lett be a
new variable and define the following polynomials

Fi(t,x) = Y ciot™ a1 =12, (6.9)

aE€A;

so that

F(l.x)= fi(x), F0,x)=f'(x). i=12,
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and we can write
Fi(t,x) = f1(t.x) + 1" P gi(x) + O (1, x), i =12, (6.10)

where the polynomials g; (x) and %, (¢, x) are defined by these equalities. Note
that our assumption that the convex hulls Q;, O, have dimension two implies that
81,82 # 0.

For each 7, we deduce from the bilinearity of the determinant, that there exists a
polynomial H (¢, x) such that the toric Jacobian of Fj, F, can be written as J ; =
JJT,i + t* H(t, x). But, as we remarked, J)(T.n lies in the ideal 1(f,", f,"). Note that
if for instance 1; # 0, then the power of x1 in each monomial of F; can be obtained
from the power of ¢ and the power of x;, that is, we could use ¢ and x, as “variables”
instead. We will denote by Res” the resultant defined over X [4]. Therefore,

Resu, ay a, +4,(F1. Fo, JE) = Resh 4 4 4 (Fi. Fo 1"V Hy).
Now, it follows from Theorem 2 that

Resﬁl,Az,Al-‘rAz(Fl’ Fo,t"M) = ResA?,Ag (fln, fzn)u(n)_

Setting t = 0 we see that ResAY’Ag(fln, £ s a factor of Resa, 4, ai+4
(fi, fo. J fT )

If we prove that no positive power of ¢ divides H, for generic coefficients,
we get the desired factorization considering all possible n € X. To see this,
first note that up to multiplying each f; by a monomial (that is, after translation
of each A;) we can assume without loss of generality that UI’ = vg = 0. It
follows from (6.8) that JfT. = 0. The polynomials g; in (6.10) are n-homogeneous
of respective degrees (1), n2(n). Assume wu(n) = wpi(n) < p2(n). In case
m1(n) < pa(n), the coefficient of ¢#! in JFT equals the toric Jacobian Jng P of

g1 and f,’, which are n-homogeneous polynomials with different n-degrees (equal

to ui(n) > v, = 0). It is easy to check that Jng o is a nonzero polynomial in the
S5

coefficients of gi, f2’7_ In case w1 = u», we get another term which is the toric
Jacobian J }f,] ¢ of f," and g», which is nonzero by the same arguments and depends
182

on different coefficients than JgT .. Thus, their sum is not the zero polynomial, as
1,

fr
wanted.

Theorem 3 and the proof will be extended to the general n-variate setting in a
forthcoming paper [7]. We only state here the following general version without
proof. Recall that a lattice polytope P of dimension n in R” is said to be smooth if
at each every vertex there are n concurrent facets and their primitive inner normal
directions form a basis of Z". In particular, integer dilates of the unit simplex or the
unit (hyper)cube are smooth.



116 A. Dickenstein et al.

Theorem 4 Let P C R" be a smooth lattice polytope of dimension n. Let A; =
d;P)NZ", i =1,...,n,dy,...,d, € Z=y, and f1, ..., fn polynomials with these
supports, respectively. Then, we have the following factorization

Note that all the exponents in E equal 1 and all the lattice indices equal 1.

When the given lattice configurations A4; are the lattice points d;o of the d;-th
dilate of the standard simplex o in R” (that is, in the homogeneous case studied
in [2]), formula (6.4) gives, for any » in our notation:

Resdll‘f ..... dnU,SG(ﬁs---sﬁlsJi):
Ado,..dvo (f1o ooy fu) - Res@oyi . apoy (oo os £

where ey, ..., e, are the canonical basis vectors (or eg = —e; — --- — ¢, if we
consider the corresponding dehomogenized polynomials, by setting xo = 1). Note
that Theorem 4 gives the following more symmetric formula:

Corollary 5 With the previous notation, it holds:

i=0

It is straightforward to deduce from this expression the degree of the homoge-
neous mixed discriminant, obtained independently in [1, 2, 21]. Similar formulas
can be obtained, for instance, in the multihomogeneous case.

We recall the following definition from [3]. If v is a vertex of A;, we define its
mixed multiplicity as

mmg, 4, (v) := MV(Q1, Q2) —MV(C;, Q;), {i,j} ={1.2}, (6.11)

where C; = conv(A; — {v}).

Let X’ C X be the set of inner normals of A, + A, that cut out, or define, edges
ei" inboth O, Q,. The factorization formula in Theorem 3 can be written as follows,
and allows us to recover the bidegree formulas for planar mixed discriminants in [3].

Corollary 6 Let Ay, Ay be two lattice configurations of dimension 2 in the plane,
and let fi, f> be polynomials with these respective supports. Then, the resultant
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of fi, fo and their toric Jacobian, namely Resa, a,.4,+4,(f1, f2. JfT.), factors as
follows: ‘

mmay Ay (V)
Ao ) T ™Y T Resy (A7 D" 6.12)

v vertex of Ay or Aa nex’

The bidegree (81, 8>) of the mixed discriminant A 4, 4,(f1, f2) in the coefficients of
Jfi1 and f, respectively, is then given by the following:

Vol(Q))+2-MV(Q1,Q2)— D _ LD -pm— Y mmy4(),  (6.13)

nex’ v vertex of (A;)

wherei € {1,2},1 # j.
Proof. To prove equality (6.12), we need to show by Theorem 3 that the factor

E = []Res g (S, fLH"

nex

equals the product

l_[ CCVIWIAl.Az(V) . l_[ ResA;’,Ag(fln’ fzﬂ)ﬂ(ﬂ)‘

v vertex of A} or A, nex’

When € X, i.e. n is a common inner normal to edges of both Q and Q,, we get
the same factor on both terms, since that our quantity () coincides with the index
min{u(e;(n), A1), u(ea(n), A2)}, in the notation of [3].

Assume then that 7 is only an inner normal to Q5. So, AY is a vertex v, fl'7 =cx’
is a monomial (with coefficient ¢) and fzn is a polynomial whose support equals
the edge e) of A, orthogonal to 7. In this case, ResAY,Ag LA = ct) by
Remark 6.2. ,

For such a vertex v, denote by £(v) the set of those ¢ X’ for which v + e;
is an edge of O + Q. Note that it follows from the proof of [3, Prop.3.13] (cf. in
particular Figure 1 there), that there exist non negative integers u’(n’) such that

mm(v) = Y L)1 n).

e EW)

Indeed, (') = p'(n').

To compute the bidegree, we use the multilinearity of the mixed volume with
respect to Minkowski sum. Observe that the toric Jacobian has bidegree (1, 1) in
the coefficients of fj, f>, from which we get that the bidegree of the resultant

Resa, ay.4144,(f1, 2, J}) is equal to

(2MV(A;, A3) + Vol(Q2), 2MV(A,, A5) + Vol(Q1)). (6.14)
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Substracting the degree of the other factors and taking into account that the
bidegree of the resultant Res g1 1 ( A £ equals (£(e)), £(e])), we deduce the
formula (6.13), as desired.

6.4 The Multiplicativity of the Mixed Discriminant

This section studies the factorization of the discriminant when one of the poly-
nomials factors. We make the hypothesis that f{, f”, f> have fixed support sets
A Al Ay € 72 So fi = f{ - f/" has support in the Minkowski sum A; :=
A 4+ A7; in fact, its support is generically equal to A;. We will denote by u' (1))
(resp. 1" (n)) the integer defined in (6.7), with A, replaced by A’ (resp. A7).

Corollary 7 Assume A', A and A, are full planar configurations of dimension 2.
"

Let f|. f[", fo be generic polynomials with these supports and let fi = f| - f/".
Then,

AAI’AZ(fl’ f2) = AA;,Az(fl/7 f2) ) AA/I/,Az(fl”v f2) : ResA/l,A;/,Az(fl/’ fl//s f2)2 -E,

where E equals the following product:

l_[ ReS(A{)n,Ag ((fl/)n’ fzﬂ)u (M=) , ReS(Aj’)n,Ag ((fl//)n’ fzﬂ)u (M=) (6.15)
neX

Proof. By Theorem 3, we get that

ResAlsAz.,A1+Az(fla f2a JfT)
[T Res o o (f", folyrm
nex 142

AALAZ(.fl’ f2) = s (616)

and similarly for A, 4,(f{, f2) and Ay 4,(f/", f2). Let us write the numerator
of (6.16) as follows:
ReS g1 7.t 1+ 7+ LI o Ty 1),

T _ 1T n T Corita
;vllllere J A = I 1 + fi J_ p We now apply Theorem 2 to re-write it as
ollows:

T T
Res 1y a4 a0+, N S g )RES yi i aeas (s fon Ty g 1)
T T
= ReSA;,Az,A;+A;’+A2(f1/v fa, f‘l//‘]fl/,fz) ResA;’,Az,A§+A§’+Az(ﬁ/lv S, fl/Jfl”,fz)’

because the resultant of {h,hy + ghy,...} equals the resultant of {hy,hs, ...},
for any choice of polynomials 41, h;, g (with suitable supports). We employ again
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Theorem 2 to finalize the numerator as follows:

T T
ResAq’AZ’Aq +A2(ﬁ/, fz, Jfl/,fz) . ResAY!Az’A/{_’_AZ(fl”, f2, Jfl//sfz) . ResA/l,A;/,Az
’ ” 2
(fl ’ fl ’ f‘z) .

For the denominator of (6.16), we use again Theorem 2 to write:

[ Resan (" LDF - [T Resgpn (A, S0 =

nex’ nex’”

moenn 0y p(n)
l—[ResAQ”+A’{”,AQ(f1f b )N E,
nex

because the products

l_[ Res 0 o (f{". ;)" @ = l_[ Res g (£, /)" =1,

nexX\x’ nexX\x”

since f/", fy (resp. f{'", f,') are both monomials. To conclude the proof, simply
assemble the above equations.

As a consequence, we have deg,, 4, A(f1, f2) =

=degy 4, A(f. o)+ deg,r 4, A, )42+ degyr 47 4, Res(f{. f”. fo)—deg(E).

When all the configurations are full and with the same normal fan, all the
exponents u(n) = u'(n) = u”(n) = 1. Therefore, E = 1 and no extra factor
occurs.

We define /(7). ] (1) as in (6.6). Indeed, we now fix n and will simply write
W, 1y, s o It happens that only one of the factors associated to 7 can occur in E
with non zero coefficient. More explicitly, we have the following corollary, whose
proofis straightforward.

Corollary 8 With the notations of Corollary 7, for any n € X' it holds that:

o Ifp) = uy, then W = p” = w and there is no factor in E “coming from n”.
o Ifp| # i, assume wlog that p, = p'; < p'. There are three subcases:

— If uo < w1, again there is no factor in E “coming from n”.

— Ifp = py < po < Y, then the resultant Res 41y 41 ((f)H", f51) does not
occur, but Res 4y 41 (SN, f31) has nonzero exponent (this resultant could
just be the coefficient of a vertex raised to the mixed multiplicity).

— Ifuy = ) < p < po, the situation is just the opposite than in the previous
case.
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Conclusion and Future Work
The intent of this book chapter was to present our main results relating
the mixed discriminant of two bivariate Laurent polynomials with fixed
support, with the sparse resultant of two bivariate Laurent polynomials with
fixed support and their toric Jacobian. On our way, we deduced a general
multiplicativity formula for the mixed discriminant when one polynomial
factors as f = f’- f”. This formula occurred as a consequence of our main
result, Theorem 3, and generalized known formulas in the homogeneous case
to the sparse setting. Furthermore, we obtained a new proof of the bidegree
formula for planar mixed discriminants, which appeared in [3].

The generalization of our formulas to any number of variables will allow us
to extend our applications and to develop effective computational techniques
for sparse discriminants based on software for the computation of resultants.
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