
Chapter 15
Isogeometric Analysis of Navier-Stokes Flow
Using Locally Refinable B-Splines

Peter Nørtoft and Tor Dokken

15.1 Introduction

In recent years, isogeometric analysis (IGA) has gained increasing interest as a
numerical method for solving engineering problems within fluid mechanics [7, 15].
This popularity may be attributed to its ability to model complex geometries exactly,
to approximate the flow fields with arbitrarily high degree of smoothness, and to
couple the geometric modeling and the flow analysis into one single framework.
At the very heart of the isogeometric paradigm is the unification of finite element
analysis (FEA) for solving the governing flow equations, and computer-aided design
(CAD) for modeling the geometry of the flow domain.

One of the early challenges of the isogeometric paradigm was the concept of
local refinement. To resolve the flow around some obstacle, say, a fine approximation
of the field is often required in the boundary layer close to the obstacle, whereas a
coarse approximation suffices in the far-field away from the obstacle. Here, efficient
local refinement is of paramount importance: a coarse representation of the entire
flow domain leaves the boundary layer unresolved, and the results are useless; a
fine representation of the entire flow domain yields a fatal blow-up in the number
of degrees of freedom, rendering the approach useless. This is sketched in Fig. 15.1.
Although well-established within FEA, efficient local refinement was initially
prohibited in IGA, primarily owing to the tensor-product structures inherited from
CAD, that only allowed for global refinements, or a “poor man’s” local refinement
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Fig. 15.1 Difference
between global (b) and local
(c) refinement of a region of
interest (RoI) inside a flow
domain (a)
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through patching. Several ways to achieve local refinement in an isogeometric
setting have been proposed since the birth of IGA, including in particular T-splines
[2, 9, 18], and hierarchical splines [14, 19].

In this work, we study a novel approach to local refinement in the context of fluid
mechanics, namely through the recently proposed locally refinable (LR) B-splines
[4, 8, 16]. We investigate two families of locally refined B-spline discretizations of
the flow variables for solving the mixed formulation of the stationary, incompress-
ible Navier-Stokes equations in 2 dimensions using IGA. These two LR B-spline
discretizations are motivated by recent results for ordinary tensor-product B-spline
discretizations of the flow variables [3, 5, 17]. Our focus here is primarily on how
to refine the flow discretizations, as dictated by a refinement strategy, and not on
whether or where to refine, as dictated by some error estimator. In the context of a
full-blown adaptive mesh refinement setup, of course, one needs to address all of
these issues.

The outline of the rest of the work is as follows. We start by introducing the
governing Navier-Stokes equation in Sect. 15.2, after which we introduce the LR B-
splines as refinable building blocks for solving it in Sect. 15.3. Then, in Sect. 15.4,
we briefly outline the general isogeometric framework, and in Sect. 15.5 we
present the two flow discretizations. Numerical examples are presented in Sect. 15.6
with focus on the numerical stability, error convergence during refinements, and
benchmarking. Finally, we summarize our findings and outline future work.

15.2 Navier-Stokes Equation

We start by introducing the steady-state, incompressible Navier-Stokes equation.
This is the equation that governs the motion of fluids under sufficiently simple
conditions.
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Fig. 15.2 A fluid contained
in a flow domain

∂W

Wuuu velocity
p pressure
Re Reynolds number
fff force

We consider a fluid in a 2-dimensional domain ˝ as depicted in Fig. 15.2. We
assume the fluid is isothermal, i.e., at constant temperature, incompressible, i.e., the
density is constant, and Newtonian, i.e., the stress and the strain rate are linearly
related through the viscosity, which is also assumed to be constant. Finally, we
assume that the flow is stationary, i.e., time-independent. The state of the fluid is
then given by the velocity and the pressure, and these are governed by the Navier-
Stokes and mass-continuity equations:

.u � r/ u C rp � 1

Re
�u C f D 0; (15.1a)

r � u D 0: (15.1b)

Here u D .u; v/ is the velocity, p is the pressure, and f are additional body forces
acting on the fluid, all in dimensionless form, while Re WD �UL=� is the Reynolds
number, where � is the density, � is the viscosity, and U and L are characteristic
velocity and length scales of the problem, respectively. In somewhat loose terms,
Re is a measure of the degree of nonlinearity, and hence complexity, of the flow
problem. We will consider primarily laminar flows with Re . 2;000, as opposed to
turbulent flows with Re & 2;000.

These equations govern the flow in the interior of the domain ˝ , and they must
be augmented by suitable boundary conditions. Here, we consider so-called full
Dirichlet boundary conditions, along with a condition on the average pressure:

u D g on @˝; (15.2a)Z
˝

p dx D p0: (15.2b)

15.3 Locally Refinable B-Splines

We now proceed to give a brief introduction to Locally Refinable (LR) B-splines.
First, the underlying B-splines are introduced, after which their LR extensions
are described in 2 dimensions. The intention is to give the reader an intuitive
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understanding of LR B-splines, and thereby pave the road for using them to solve
the Navier-Stokes equation in the next sections. For a more rigorous introduction to
LR B-splines, we refer to [8].

15.3.1 B-Splines

We start by recalling the definition of univariate B-splines. Given a polynomial
degree d � 0 and a non-decreasing sequence of d C 2 knots � D f�1; : : : ; �dC2g, a
univariate B-spline BŒ�� W R ! R is defined recursively through:

BŒ��.�/ D � � �1

�dC1 � �1

BŒ�1; : : : ; �dC1�.�/ C �dC2 � �

�dC2 � �2

BŒ�2; : : : ; �dC2�.�/;

(15.3a)

starting with

BŒ�i ; �iC1�.�/ D
�

1 if �i � � < �iC1

0 otherwise
(15.3b)

for i D 1; : : : ; d C 1, and where terms with zero denominator are defined to be
zero. A univariate B-spline is thus a piecewise polynomial function of degree d . Its
support is the interval Œ�1; �dC2�, and the continuity across a knot �i is d �m, where
m denotes the multiplicity of the knot �i .

Multivariate B-splines can be formed quite naturally through tensor-product
structures based on multiple univariate B-splines. In two parametric dimensions
we have the following: Given two polynomial degrees di and two non-decreasing
sequences of di C 2 knots �i D f�i;1; : : : ; �i;di C2g for i D 1; 2, a bivariate tensor-
product B-spline BŒ�1; �2� W R2 ! R is given by:

BŒ�1; �2�.�1; �2/ D BŒ�1�.�1/ BŒ�2�.�2/: (15.4)

The support of a tensor-product B-spline is the rectangle Œ�1;1; �1;d1C2� �
Œ�2;1; �2;d2C2�. Figure 15.3 illustrates the construction of a bivariate tensor-
product B-spline from two univariate B-splines. In the example shown, the two
univariate B-splines that form the bivariate bi-quadratic tensor-product B-spline are
constructed from the polynomial degrees d1 D d2 D 2, and the knot vectors �1 D
f0; 1=3; 2=3; 1g and �2 D f0; 0; 1=3; 2=3g. The knot vectors �1 and �2 are extracted
from two identical global knot vectors �1 D �2 D f0; 0; 0; 1=3; 2=3; 1; 1; 1g. Each
of these gives rise to 5 univariate B-splines, resulting in a total of 25 bivariate
B-splines.
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Fig. 15.3 Construction of a
bi-quadratic tensor-product
B-spline (grayscale surface)
from two univariate quadratic
B-splines (lines in bold) with
given knot vectors (colored
triangles)
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15.3.2 LR Mesh

Locally refinable B-splines rest naturally on B-splines. They include the tensor-
product B-splines introduced above as a special case, but in addition provide a much
more “local” framework for multivariate B-splines. Before understanding the notion
of an LR B-spline, we must, however, understand the notion of an LR mesh.

Just like any tensor-product B-spline is formed on a tensor-product mesh, as
sketched in Fig. 15.3, any LR B-spline is formed on an LR mesh. A mesh holds
information about essentially two things: the location and the multiplicity of all
knots. For tensor-product B-splines, as defined in (15.4), the mesh is specified
simply through the two global knot vectors �1 and �2. As the LR mesh cannot
be defined by global knot vectors, it has to be defined by its Nm knotline segments
and their multiplicities. Each knotline segment is defined by a start point and an end
point. When the multiplicities of all knotline segments in a given mesh are all set to
1, we will refer to it as the grid.

An LR mesh is a special kind of a mesh. The life of an LR mesh has two different
stages:

1. The initial tensor-product construction
2. The subsequent local refinements

From the beginning, the LR mesh is constructed simply as a standard tensor-
product mesh. An example is shown in Fig. 15.4a. The global knot vectors are
�1 D �2 D f0; 0; 0; 1=5; 2=5; 3=5; 4=5; 1; 1; 1g. Using this tensor-product mesh as a
starting point, the mesh is then refined by subsequently inserting knotline segments
into it, such that the mesh remains a box-partition, i.e., consists of a collection of
quadrilaterals throughout each refinement. Let us assume that we want to refine the
highlighted box in Fig. 15.4a. First, Fig. 15.4b shows the result of a usual tensor-
product refinement, i.e., when inserting one vertical and one horizontal knotline
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Fig. 15.4 Three different meshes: the initial tensor-product mesh (a), a globally refined tensor-
product mesh (b), and a locally refined mesh (c). Multiplicities are three on the boundary and one
elsewhere

segments through the box of interest and letting these extend all the way to the
boundaries. This clearly identifies the problem with the tensor-product approach;
along with the actual box of interest, all boxes towards the boundaries are also
refined. The LR mesh, however, allows for much more local refinements. An
example is shown in Fig. 15.4c. Here, we have inserted two short knotline segments,
one vertical and one horizontal. As we shall see below, the knotline segments must
be specified in such a way that each of them splits an LR B-spline. This is part
of the reason why the knotline segments extend outside the highlighted box, and
why the neighboring boxes are still refined. For consistency with the notation in
different dimensions and settings, we usually refer to the knotline segments as mesh-
rectangles and to the boxes as elements. These are central ingredients of an LR
mesh.

15.3.3 LR B-Splines

With the LR mesh introduced, we now turn to the LR B-splines. An LR mesh
gives rise to a number of LR B-splines, just like a tensor-product mesh gives rise
to a number of tensor-product B-splines, cf. Fig. 15.3. By inserting local mesh-
rectangles into an LR mesh, we enrich the space of B-splines living on it, and this in
a much more local sense than by inserting global knots into a tensor-product mesh.

To illustrate this, let us return to the example from above, and assume that the
polynomial degrees are d1 D d2 D 2. Figure 15.5a sketches the B-splines on the
initial tensor-product mesh in Fig. 15.4a. To be more precise, the plot shows the
Greville abscissae of the B-splines, which for any B-spline is just the average of
the di central knots f�i;2; : : : ; �i;di C1g in each parameter direction i D 1; 2, and
thus a condensed way of visualizing the functions. By making the tensor-product
refinements as in Fig. 15.4b, we end up with the B-splines sketched in Fig. 15.5b.
The global nature of the refinement is again evident, as B-splines appear also
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cba

Fig. 15.5 Greville abscissae of all bi-quadratic B-splines on three different meshes: the initial
tensor-product mesh (a), a globally refined tensor-product mesh (b), and a locally refined mesh
(c). Multiplicities are three on the boundary and one elsewhere

away from the element of interest. On the other hand, by inserting the local mesh
rectangles as in Fig. 15.4c, we obtain the LR B-splines shown in Fig. 15.5c. All
new LR B-splines appear in close proximity of the element of interest. We mention
in passing that, as the tensor-product meshes in Fig. 15.4a, b are indeed also LR
meshes, the tensor-product B-splines in Fig. 15.5a, b are also LR B-splines.

But how do the new LR B-splines in Fig. 15.5c actually come about from the LR
mesh in Fig. 15.4c? To answer this question, we consider Fig. 15.6. We first consider
the insertion of the vertical mesh-rectangle. Remembering that all the tensor-product
B-splines have support over 3 � 3 knot spans, we easily see that there are exactly
three B-splines for which the mesh-rectangle traverses their entire support in the
vertical direction, as indicated in Fig. 15.6a (left). These are the coarse functions
that are to be refined. The resulting functions after this first refinement are shown
in Fig. 15.6a (right). Note that each of the new LR B-splines has exactly the same
underlying knot structure as a standard tensor-product B-spline. Next, we consider
the insertion of the horizontal mesh-rectangle. Now, there are four LR B-splines
for which the mesh-rectangle traverses its entire support in the vertical direction,
as indicated in Fig. 15.6b (left). These are now the coarse functions that are to be
refined. The resulting functions after this second refinement are shown in Fig. 15.6b
(right). The order of insertion turns out to play no role. Thus, we may as well insert
the horizontal mesh-rectangle first, and then vertical afterward; the final outcome
will be the same.

LR B-splines possess many of the properties that standard tensor-product B-
splines do. They are piecewise polynomial functions, they have compact support,
and they form a partition of unity, i.e., they sum to one in all points, a property
ensured through a simple scaling of each of the functions. Linear independence of
a set of LR B-splines is not guaranteed per se. This is crucial when using them to
solve equations like the Navier-Stokes equation. To ensure linear independence, the
functions either have to be established through refinement schemes known a priori
to result in linear independent LR B-splines, or they must be tested a posteriori
through, e.g., a so-called peeling algorithm [8]. In Sect. 15.5 below, we shall return
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a
Before After

b
Before After

Fig. 15.6 B-splines before (left) and after (right) insertion of the vertical mesh rectangle (a)
and the horizontal mesh rectangle (b). LR B-splines with Greville abscissae shown in blue are
unaffected by the insertion, whereas LR B-splines with Greville abscissae shown in yellow are
removed or inserted as a result of the insertion

to the construction of LR B-splines in the context of approximation of flow pressure
and velocities for solving the Navier-Stokes equations.

15.4 Isogeometric Analysis

In this section, we outline the fundamentals of how to solve the Navier-Stokes and
continuity equations (15.1) in an isogeometric framework based on LR B-splines.
This essentially involves three ingredients: a parametrization of the geometry, a
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Fig. 15.7 A parametrization
of the flow domain ˝
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discretization of the flow variables for the Galerkin projection, and the weak form
of governing equations.

First, we construct a parametrization of the flow domain ˝ , as sketched in
Fig. 15.7. We take the parameter domain Ő as the unit square and use bivariate
LR B-splines as basis functions. The parametrization x W Œ0; 1�2 ! R

2 reads:

x.�1; �2/ D
NgX
iD1

xiPg
i .�1; �2/; (15.5)

where xi are the control points, Pg
i are the LR B-splines, Ng is the number of LR

B-splines and control points, and the superscript g indicates that the functions refer
to the geometry parametrization.

Next, we seek approximations of the velocity uh W Œ0; 1�2 ! R
2 and pressure

ph W Œ0; 1�2 ! R as linear combinations of LR B-splines, just like the geometry
representation in Eq. (15.5) above:

uh.�1; �2/ D
NuX

iD1

uiPu
i .�1; �2/ ; ph.�1; �2/ D

NpX
iD1

p
i
Pp

i .�1; �2/: (15.6)

Here, Pu
i and Pp

i denote the LR B-spline basis functions for the velocity and
pressure, Nu and Np are the number of velocity and pressure B-splines, while u
and p are the unknown control variables for the velocity and pressure, respectively.
For simplicity, we discretize the two components of the velocity identically. The
approximations in Eqs. (15.6) are defined in parameter space, whereas the governing
equations (15.1) are posed in physical space. To evaluate the pressure in physical
space p W ˝ ! R, we use the inverse of the geometry parametrization as p ı x�1.
To evaluate the velocity in physical space u W ˝ ! R

2, we simply map each
component as a scalar Iu ı x�1, where I is the identity map. Note here that,
with abuse of notation, we use p and u to denote the pressure and the velocity,
respectively, both over the physical space and over the parameter space. In Sect. 15.5
below, we describe in greater detail how to construct the LR B-spline discretizations
of the pressure and velocity fields.
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Finally, we cast the governing equations (15.1) and (15.2) into their weak form,
which reads: find .u; p/ with u D g on @˝ and

R
˝

p dx D 0 such that

0 D
Z

˝

�� 1

Re
rvk C vk u

� � ruk � �
prvk C vk f

� � ek

�
dx; k D 1; 2 ;

(15.7a)

0 D
Z

˝

q .r � u/ dx (15.7b)

for all .v; q/ with v D 0 on @˝ , where we have used integration by parts in the
derivation. Here, .e1; e2/ are the standard Cartesian basis vectors, and the functions
p and q must be square-integrable, while u and v as well as all their first-order
derivatives must be square-integrable.

By using the LR B-splines approximations (15.6) as test and weight functions in
the weak equations (15.7), and pulling the integrals back to the parameter domain
based on the parametrization (15.5), a non-linear system of equations of the form
M .U / U D F may be obtained:

2
4

1
Re K C C .u/ 0 �G T

1

0 1
ReK C C .u/ �G T

2

G 1 G 2 0

3
5

2
64

u
1

u
2

p

3
75 D

2
4 F 1

F 2

0

3
5 ; (15.8)

where

K i;j D
Z

Œ0;1�2

rT Pu
i J �1 J �T rPu

j det
�
J

�
d�; (15.9a)

C i;j .u/ D
Z

Œ0;1�2

Pu
i uT J �T rPu

j det
�
J

�
d�; (15.9b)

G ki;j D
Z

Œ0;1�2

Pp
i eT

k J �T rPu
j det

�
J

�
d�; k D 1; 2 (15.9c)

F ki D
Z

Œ0;1�2

Pu
i eT

k f det
�
J

�
d�; k D 1; 2 (15.9d)

where J i;j WD @xi =@�j is the Jacobian matrix of the parametrization (15.5).
To solve the governing partial differential equations (15.1) using LR B-spline

based isogeometric analysis, we thus need to solve the system of algebraic equations
(15.8). To do this, we evaluate the integrals in (15.9) using Gaussian quadrature, and
use an iterative Newton-Raphson solver. The Dirichlet boundary conditions (15.2a)
on the velocity are enforced strongly, perhaps only in an approximative sense, while
the additional condition (15.2b) on the mean pressure is imposed weakly through a
least-square approach.
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15.5 Flow Discretizations

We now proceed to introduce two families of discretizations of the pressure and
velocity fields based on LR B-splines, thus substantiating the flow approximations
(15.6) introduced above. We refer to these as the Taylor-Hood and multigrid
families.

As indicated in Sect. 15.3, LR B-splines are characterized by a high degree of
flexibility. In loose terms, we can play around with the two polynomial degrees, the
two vectors of unique, global knots, and the multiplicities of each of the small mesh-
rectangles along each of the global knots. When discretizing the flow variables,
however, we narrow the scope slightly. As explained below, we choose to character-
ize the LR B-spline flow discretizations simply through one polynomial degree d ,
from which we then specify the polynomial degrees, regularities (smoothnesses) ˛,
and levels of refinement r of both the pressure and the velocity fields.

The construction of both the Taylor-Hood and the multigrid flow discretizations
comprises the same two stages as outlined in Sect. 15.3:

1. The tensor-product initialization
2. The subsequent local refinements

For now, we assume that a tensor-product spline representation x of the geometry
is provided to us as input. We shall relax this assumption later.

In the initialization of both the Taylor-Hood and the multigrid discretization, we
construct tensor-product spline representations of the velocity uh and the pressure
ph in the usual fashion [5,17]. For both uh and ph, we take the global knot vectors �i

to be open, i.e., the multiplicity of the first and last knots are di C 1, and we take all
interior knots to have the same multiplicity mi < di for the parametric dimensions
i D 1; 2. Furthermore, in order to limit the number of parameters, and thus simplify
the notation in the following, we assume for both uh and ph that the degree and
the regularity are the same in both parametric dimensions, i.e., d1 D d2 D d and
˛1 D ˛2 D ˛, although these assumptions are not strictly required.

From the given tensor-product spline representation x of the geometry, we now
choose a degree d and construct the tensor-product spline discretization ph of the
pressure using the same grid as for the geometry x, with the degree d p D d , full
regularity ˛p D d �1, and no refinements rp D 0. The assumption of full regularity
is not strictly required, but again it limits the number of parameters.

Next, we construct the discretization uh of the velocity from ph through one of
two approaches: In the Taylor-Hood approach, we increase the polynomial degree
d u D d p C1, fix the regularity ˛u D ˛p D d �1 by increasing the knot multiplicity,
and keep the refinement level ru D 0. In the multigrid approach, we increase both
the polynomial degree d u D d p C 1, the regularity ˛u D ˛p C 1 D d , and the
refinement level through insertion of, say, one additional knot in each regular knot
span, such that ru D 1. These tensor-product initializations are illustrated in the top
of Fig. 15.8 for both the Taylor-Hood and multigrid discretization.

With the tensor-product initialization in place, we turn to the subsequent local
refinements. For both the Taylor-Hood and the multigrid discretizations, we base
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Fig. 15.8 Illustration of the tensor-product initialization (top) and subsequent local refinements
(bottom) following the Taylor-Hood (left) and multigrid (right) approaches for degree d D 2

these on the structured mesh approach [16] with constant multiplicities mf D
d f � ˛f for both fields f 2 fu; pg. The idea, when refining according to the
structured mesh approach, is to reason in terms of basis functions. First we choose
a set of LR B-splines to refine, and then we insert new mesh-rectangles with the
same multiplicity as the existing ones, in such a way that each regular span of mesh-
rectangles whose two mesh-rectangles are both contained in the same LR B-spline
within the specified set is split uniformly into n new spans of mesh-rectangles. Here,
we will for simplicity use n D 2.

Now, when refining the flow discretization according to the structured mesh
approach, we have both the LR B-splines of the velocity discretization and the LR
B-splines of the pressure discretization to take into consideration. We choose to
specify refinements for both the pressure and the velocity through a set of pressure
LR B-splines. For both the pressure and the velocity discretization, we follow the
structured mesh approach and base the insertions of mesh-rectangles on the support
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Table 15.1 Characteristics of the two families of LR B-spline discretizations of the flow fields for
given degree d

Pressure Velocity

Discretization Degree Regularity Refinement Degree Regularity Refinement

Taylor-Hood d d � 1 0 d C 1 d � 1 0

Multigrid d d � 1 0 d C 1 d 1

of a specified collection of pressure LR B-splines. This gives us two collections
of mesh-rectangles; one collection is inserted in the pressure mesh, and one in the
velocity mesh. These two collections of mesh-rectangles either differ in the number
of mesh-rectangles or in the multiplicity of the mesh-rectangles, depending on the
discretization in question. The number of pressure and velocity mesh-rectangles
is dictated by the refinement level (e.g., N for both fields for the Taylor-Hood,
and N and n.N C 1/ � 1 for the pressure and velocity field, respectively, for the
multigrid). The multiplicity of the pressure and velocity mesh-rectangles is given
by the regularity (1 and 2, respectively, for the pressure and velocity fields for
the Taylor-Hood, and 1 for both fields for the multigrid). These local refinements
procedures are illustrated in the bottom of Fig. 15.8 for both the Taylor-Hood and
the multigrid discretization, and their characteristics are summarized in Table 15.1.

It should be emphasized that the number of velocity elements for the multigrid
discretization is larger than the number of velocity elements for the Taylor-
Hood discretization by a factor of .r C 1/2. Since integrals in the matrices in
Eq. (15.9) are evaluated based on elements, this makes the multigrid discretization
computationally more expensive than the Taylor-Hood discretization.

We conclude by noting that the assumption of the geometry being discretized by a
tensor-product spline can easily be relaxed. One obvious way to achieve this, while
still ensuring that the geometry grid is contained within the velocity and pressure
grids, is by assuming instead that the geometry is represented by an LR spline, that
was initialized as a tensor-product spline of some degree based on open knot vectors
with single interior knots, and whose subsequent refinements were all obtained
using the structured mesh approach. In this case, we may construct the Taylor-
Hood and multigrid flow discretization as before, except we must first set the initial
tensor-product pressure discretization equal to the initial tensor-product geometry
discretization, construct the tensor-product velocity discretization as before, and
then go through the exact same steps of local refinements of the flow discretizations
as for the final geometry discretization.

15.6 Numerical Examples

In this section, we test the LR B-spline flow discretizations introduced above in
different numerical examples. Through these, we investigate the stability of the
discretizations, we study their ability to reproduce an analytical solution, and we
examine their performance on a standard benchmark problem.
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15.6.1 Wall-Driven Annular Cavity: Stability

In the first example, we investigate the stability of the discretizations. We consider
the problem outlined in Fig. 15.9a, in which a fluid is contained in an annular cavity,
approximated by cubic B-splines. We are interested in the flow problem in the limit
of small Reynolds numbers. Hence, we neglect the nonlinear term in the Navier-
Stokes equation (15.1a), which then reduces to the Stokes equation. The sliding
movement of the lower circular part of the boundary induces a rotating flow in the
interior, while singularities in the pressure field form in the two lower corners, as
indicated in Fig. 15.9b. Unstable discretizations manifest themselves qualitatively
through spurious oscillations in the pressure field. Quantitatively, they violate the
so-called inf–sup condition:

inf
ph

sup
uh

R
˝

phr � uh dx

kphkL2 k uhkH 1

� ˇ > 0; (15.10)

where the constant ˇ is independent of the mesh resolution h.
In the following, we perform a series of numerical tests of whether the discretiza-

tions fulfill the inf–sup condition (15.10), i.e., whether they are stable or not, based
on the rather degenerate problem sketched in Fig. 15.9. For each discretization, we
refine a coarse mesh repeatedly, and estimate the value of ˇ in each step [1, 6]. We
follow two different schemes for choosing which LR B-splines to refine: by the first
scheme, we refine the LR B-splines with support in one of the two lower corners,
where the pressure singularities occur. By the second scheme, we refine a number of
randomly chosen LR B-splines. Examples of the pressure grids produced by these
two schemes are shown in Fig. 15.9c, d, respectively.

ba

dc

‖u‖ = 1

‖u‖ = 0

‖u‖=
0 ‖u‖

=
0

fff = 000

Re → 0

Fig. 15.9 Wall-driven annular cavity: problem setup (a), streamlines and pressure field (b), and
pressure grid examples (c and d)
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Fig. 15.10 Wall-driven annular cavity: Numerical estimates of the inf-sup “constant” ˇ as a
function of total number of analysis degrees of freedom Ntot for different discretizations (T-H:
Taylor-Hood and M-G multigrid) based on corner function refinements (a) and random function
refinements (b)

The estimated values of ˇ for the Taylor-Hood and multigrid discretizations
based on polynomial degrees 3–5, corresponding to degrees 3–5 for the pressure and
4–6 for the velocity, respectively, are shown in Fig. 15.10. A given discretization is
said to pass the inf–sup test, if the estimated value of ˇ does not tend to zero as
the number of degrees of freedom is increased; if the value does tend to zero, the
discretization fails the test. From these results, we are led to conclude that all the
investigated discretizations among both the Taylor-Hood and the multigrid families
pass the test. We emphasize that these conclusions are drawn on a (large but) finite
number of numerical tests, and not on mathematical proofs. Furthermore, in addition
to the Taylor-Hood and multigrid discretizations shown here, a discretization known
to be unstable, based on a bi-quadratic pressure approximation and a bi-quartic
velocity approximation, both fields having full regularity, was also tested and failed
the test as expected.

15.6.2 Forced Wedge-Shaped Cavity: Manufactured Solution
and Error Convergence

In this example, we study the ability of the discretizations to reproduce an analytical
solution. Motivated by examples in [11, 20], we consider the problem outlined in
Fig. 15.11a. A fluid is contained in the wedge-shaped region ˝ D f.x; y/ 2 R

2j 0 �
x � 2; 0 � y � 1 C x2=4g. We represent the domain exactly using quadratic B-
splines. As target solution, we use the following velocity and pressure fields:

u� D 5

532
ex x2 .x � 2/2 y .4 � 4 y C x2/

�.16 � 56 y C 8 x2 C 40 y2 � 14 yx2 C x4/; (15.11a)
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Re= 1

Fig. 15.11 Forced wedge-shaped cavity: problem setup (a) and velocity and pressure field (b)

v� D 5

266
ex x .x � 2/ y2 .4 � 4 yCx2/2

�.16 � 8 x � 16 yC12 x2C8 xy � 8 x3C4 yx2 � x4/; (15.11b)

p� D 1

4
C 1

4
tanh

�
200 .x � 1=2/2 C 200 .y � 3=8/2 � 4

�

C1

2
e�.5=2

p
2x�5=2

p
2y�5=2/

2�.25
p

2xC25
p

2y�250=3/
2

; (15.11c)

as sketched in Fig. 15.11b. The velocity field is incompressible and fulfills the
boundary conditions. By deriving the body force f � through direct insertion into
the Navier-Stokes equation, Eq. (15.11) is a manufactured analytical solution to
the governing equations (15.1) and (15.2). As is evident from Fig. 15.11b, both
the velocity and pressure fields exhibit phenomena that clearly call for local
refinement.

To select which B-splines to refine, we follow two different approaches: a global
approach and a local approach. By the global approach, we refine all functions,
i.e., we are back in the tensor-product setting. By the local approach, we base the
selection on the strong residual of the governing equations (15.1):

Rh D

0
B@

.uh � r/uh C @ph

@x
� 1

Re �uh C fx

.uh � r/vh C @ph

@y
� 1

Re�vh C fy

r � uh

1
CA : (15.12)
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Fig. 15.12 Forced wedge-shaped cavity: Error convergence for the pressure (a) and velocity (b),
and examples of the pressure grids produced by the global (c) and local refinement schemes for the
Taylor-Hood (d) and the multigrid discretization (e) for degree d D 4

As error indicator, we use the L2-norm of the residual vector Rh. We integrate this
on each element in the mesh, and for each (pressure) LR B-spline, we sum the
errors from each of the elements in their support. Ordering the LR B-splines in a
decreasing order according to their sum of errors, we refine the smallest number of
LR B-splines that account for at least, say, 25 % of the total error. This may be seen
as a Dörfler marking of LR B-splines.

In the following, we study how the global integrals of the L2-norms of the errors
on the pressure and the velocity fields behave as we refine the two discretization
families based on each of the two refinement schemes. The results are shown in
Fig. 15.12a, b for the pressure and the velocity fields, respectively, using polynomial
degrees of 3 and 4. For any given number of degrees of freedom, the local refinement
scheme is seen to yield significantly lower errors than the global refinement scheme,
when comparing corresponding discretizations and degrees. For any given tolerance
on the errors, hence, local refinement reduces the required number of degrees of
freedom by up to an order of magnitude compared to global refinement. Comparing
the Taylor-Hood and the multigrid discretizations for any given refinement strategy
and polynomial degree, the two discretizations are seen to perform remarkably
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alike. As expected, we observe that higher polynomial degrees are associated with
smaller errors. Also shown in Fig. 15.12c–e are examples of the pressure grids
produced through global and local refinement of the Taylor-Hood and the multigrid
discretizations, respectively, for degree d D 4. Although the globally refined grids
in Fig. 15.12c have around four times as many degrees of freedom as the locally
refined grids in Fig. 15.12d, e, all four produce results with similar errors. The local
refinement scheme is seen to yield refinements in regions of strong gradients in the
target pressure field, cf. Fig. 15.11b.

We mention at last that the quantitative aspects of these results of course depend
on the specific problem, the error estimator, the refinement scheme, etc. We believe,
however, that their qualitative aspects often will be the same.

15.6.3 Lid-Driven Square Cavity: Benchmark

In the last example, we examine the performance of the discretizations on a standard
benchmark flow problem: the lid-driven square cavity. As outlined in Fig. 15.13a,
the fluid in the square container is set in motion by the sliding movement of
the lid of the container. The problem resembles the one in Sect. 15.6.1 above.
However, although the geometry is simpler, the flow is now (weakly) turbulent with
Re D 5;000. This introduces new challenges that we can test the LR B-spline flow
discretizations against.

We solve the problem based on the LR Taylor-Hood and multigrid flow dis-
cretizations of degree d D 3 using the pressure grids shown in Fig. 15.13b, yielding
a total of 22,515 and 22,785 degrees of freedom, respectively. The results of the
computations are shown in Fig. 15.14. In Fig. 15.14a, the computed streamlines
using the Taylor-Hood discretization clearly capture the counter-rotating eddies that
are known to form in the NW, SE, and SW corners [10, 13]. The streamline pattern

‖u‖ = 1

‖u‖ = 0

‖u‖
=
0

‖u‖
=
0

f = 0
Re= 5;000

ba

Fig. 15.13 The lid-driven square cavity: problem formulation (a) and pressure grids (b)
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Fig. 15.14 The lid-driven square cavity: computed streamlines using the Taylor-Hood dis-
cretization (a) and normal velocity profiles through the two cavity center lines using both the
Taylor-Hood (T-H) and multigrid (M-G) discretization (b)

looks the same for the multigrid discretization. In Fig. 15.14b, the normal velocity
profiles through the cavity center lines computed using both the Taylor-Hood and
the multigrid discretizations are seen to match very well with each other and with
literature data [13].

Conclusions
The ability to achieve local refinement is crucial in all computer methods
for flow problems. Locally Refinable B-splines represent a novel approach to
local refinement within the context of isogeometric analysis. In this study, we
have proposed two families of LR B-spline discretizations of the pressure
and velocity fields for solving the mixed formulation of the steady-state,
incompressible Navier-Stokes equations in two dimensions using isogeo-
metric analysis. These LR flow discretizations represent direct extensions
of well-known tensor-product flow discretizations, namely the Taylor-Hood
and the multigrid discretizations. Through representative examples, we have
performed a series of numerical investigations of the use of LR B-splines
in isogeometric analysis of flow problems, including the stability of the
discretizations, error convergence during refinement based on a manufactured
solution, and benchmarking based on the lid-driven cavity problem.

Future investigations will hopefully reveal more insight into the prop-
erties of the flow discretizations. Their straightforward extensions to three
dimensions should be studied. Extending the very promising but slightly more

(continued)
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complicated Raviart-Thomas discretization to support local refinement is also
of extreme interest, since this element satisfies the incompressibility condi-
tion exactly [11, 12]. Furthermore, efficient error estimators and refinement
schemes should be studied to allow for efficient adaptive mesh refinement.
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