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Preface

SAGA – ShApes, Geometry and Algebra – was a Marie Curie Initial Training
Network (ITN) organized from 2008 to 2012 and intended to offer researchers in
the first five years of their careers the opportunity to improve their research skills,
join established research teams and enhance their career prospects.

As a common requirement in an ITN, researchers were usually expected to
exhibit transnational mobility, i.e., move from one country to another. In addition to
crossing geographic borders, SAGA offered mobility between the closely related,
but nearly disjoint, scientific communities of Geometric Modeling and Algebraic
Geometry. Projects funded by the European Union have played a central part in
bridging the gap between these communities, with the first steps taken from 2001
to 2005 in the Fifth Framework Future and Emerging Technologies project GAIA
– Intersection Algorithms for Geometry-based IT, which utilized approximate
algebraic methods.

For young and seasoned researchers alike, SAGA has offered an inspiring venue
for exchanging ideas and forming new connections for cooperation. The young
researchers of SAGA have not only established relations with researchers at their
own institutions, but also with researchers at other institutions working in their
field of interest, through the secondments to other partners and participation in the
workshops and events. That being said, the most important aspect for the future
careers of these young researchers is most likely the basis for future cooperation
and research they have established among themselves.

This book provides insights into research conducted in the SAGA ITN and
represents its long-term documentation. It consists of an introduction and 14
chapters, divided into four parts according to the work packages in the SAGA ITN,
and written by a combination of young and established researchers.

The editors are grateful to the reviewers for their reports, which made it possible
to select chapters suitable for publication and to improve them considerably. In
addition, we would like to thank the lead scientists for their continuing devotion to
SAGA. Special thanks go to Ewald Quak, for his central role in the organization of
events and ensuring quality throughout. We would also like to express our gratitude

v



vi Preface

to all external contributors, among whom Tom Grandine deserves special mention
for his excellent talks at the events connecting mathematics to the industry. Finally,
we would like to thank Springer, in particular Martin Peters and Ruth Allewelt,
for the pleasant and smooth cooperation in preparing this volume. The research
leading to these findings was supported by funding from the European Community’s
Seventh Framework Program under grant agreement no. PITN-GA-2008-214584-
SAGA.

Oslo, Norway Tor Dokken
May 2014 Georg Muntingh
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Chapter 1
Introduction to ShApes, Geometry, and Algebra

Tor Dokken and Georg Muntingh

1.1 Motivation

Computer Aided Design and Manufacturing (CAD/CAM) originated nearly half
a century ago and is now a key part of product development and the production
process.

During the last decade, technologies for information processing and data acqui-
sition have made rapid progress. The availability of cheap computing power
on desktop computers, including high-performance graphics capabilities, and the
advent of laser scanners for 3D objects, which are able to digitize even complex geo-
metric models within seconds, pose new challenges for CAD/CAM. The geometric
models have become more complex, and the use of this technology has become far
more widespread, especially among small and medium-sized enterprises.

The technology represented by the STEP standard (ISO 10303, Automation
systems and integration – Product data representation and exchange) is no longer
adequate to address the mathematical problems that arise. In the long term, this
development may prove to be problematic, since it decouples the CAD/CAM
industry from new applications such as mobile telecommunication and the computer
game industry. CAD systems are due for major rework to be able to exploit the
computational performance of multi-core CPUs and data stream accelerators such
as programmable graphics cards. Experiments show that data stream accelerators
outperform CPUs by an order of magnitude for tasks that can be effectively paral-
lelized. Current hardware has three to four orders of magnitude more computational
performance than the hardware standard CAD technology originally targeted. This
presents the opportunity to use more advanced approaches in CAD systems.
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Within the numerical analysis community, the use of higher order polynomial
representations (hpFEM and the isogeometric approach) has been conceived as a
new way to break the complexity barrier caused by piecewise linear representations,
and to deal efficiently with free-form geometry. In order to exploit the potential of
these developments, this progress has to be matched by corresponding research and
development in the geometric and CAD/CAM community.

1.2 The SAGA Initial Training Network

To address the above issues, the European Commission funded ShApes, Geometry
and Algebra (SAGA, 2008–2012). As a Marie Curie Actions Initial Training
Network (ITN), its main objective was to recruit and train young researchers,
i.e., researchers with less than 5 years of research experience, in a multi-national
network of academic and industrial research partners. These partners, and their
representatives, were:

• Dr. Tor Dokken (Chief Scientist and SAGA coordinator)
SINTEF, Department of Applied Mathematics, Oslo, Norway;

• Prof. Ragni Piene
University of Oslo, CMA/Department of Mathematics, Norway;

• Prof. Bert Jüttler
Johannes Kepler Universität, Institute of Applied Geometry, Linz, Austria;

• Dr. Bernard Mourrain
Institut National de Recherche en Informatique et Automatique, INRIA Sophia-
Antipolis Research Center, France;

• Prof. Laureano Gonzalez-Vega
Universidad de Cantabria, Departamento de Matematicas, Estadistica y Com-
putacion, Santander, Spain;

• Prof. Rimvydas Krasauskas
Vilniaus universitetas, Faculty of Mathematics and Informatics, Computer-aided
Geometry Lab, Lithuania;

• Prof. Ioannis Emiris
National and Kapodistrian University of Athens, Department of Informatics and
Telecommunications, Greece;

• Dr. Raffaele De Amicis (director of GraphiTech)
Fondazione GraphiTech, Trento, Italy;

• Mr. Dominique Laffret (vice president Strategic Partnerships)
Missler Software, France;

• Prof. Eigil Samset
Kongsberg SIM, Norway.

SAGA employed 14 Early Stage Researchers (ESRs), i.e., researchers with less
than 4 years of research experience at the time of recruitment. ESRs without a PhD
degree were expected to pursue one, especially the 7 fellows that were granted a
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36 months fellowship. By the summer of 2014, six of these had defended their
PhD, and the remaining fellow will defend her PhD in the autumn of 2014. Of the
remaining ESRs, three used their time to complete their PhD. SAGA also recruited
eight Experienced Researchers (ERs), i.e., Postdoctoral Research Fellows, for a time
period of 3–12 months. In addition the network financed 5 Visiting Scientists for 1
or 2 months.

The researchers were recruited from many different countries, with ESRs from
China, Colombia, Denmark, France, Germany, Greece, India, Lithuania, Niger,
Norway, Portugal, United Kingdom, Vietnam (2�), and ERs from Argentina,
Canada, France, Italy (3�), Norway and Vietnam. The Visiting Scientists came
from Argentina, Czech Republic, Japan, Spain and the United States. However,
the network reached much further, as the SAGA kick-off event, winter and autumn
schools attracted many young and established researchers from outside the network
as well, whose attendance was partly funded by SAGA. There were five such events
[22–24]:

• SAGA kick-off in Castro Urdiales, November 17–21, 2008, Spain,
47 participants from outside SAGA;

• Auron Winter School, March 15–19, 2010, France,
30 participants from outside of SAGA;

• Kolympari Autumn School, October 4–8, 2010, Greece,
39 participants from outside of SAGA;

• Vilnius Autumn School, September 27–30, 2011, Lithuania,
34 participants from outside of SAGA;

• SAGA Final Conference in Trento, October 9–11, 2012, Italy,
31 participants from outside of SAGA.

In addition SAGA mini-symposia and special sessions were organized in various
major international conferences, to give the SAGA fellows the opportunity to
present their results as a group as well, for example at

• The SIAM Conference on Applications of Algebraic Geometry, October 8–12,
2011, in Raleigh, North Carolina, USA;

• The 8th International Conference on Mathematical Methods for Curves and
Surfaces, June 28–July 3, 2012, in Oslo, Norway.

SAGA aimed to promote the relatively new field of Approximate Algebraic
Geometry, which bridges traditional fields like Computer-Aided Geometric
Design, Real Algebraic Geometry, Computer Algebra, Numerical Analysis, and
Approximation Theory. In addition, the project had as a goal to strengthen
interdisciplinary research and development concerning CAD/CAM, by training
a new generation of researchers familiar with both academic and industry
viewpoints, while supporting the cooperation among the partners and with other
interested collaborators in Europe. We briefly mention some research highlights in
SAGA:



4 T. Dokken and G. Muntingh

• Refinement and development of an easy to compute non-square matrix-based
implicit representation for parameterized rational planar curves, space curves and
surfaces [6, 7, 17].

• Development of a new algorithm for isolating the real roots of a system of
multivariate polynomials, given in the monomial basis [18].

• New combinatorial lower and upper bounds for the dimension of spline spaces
over planar T-meshes and triangulated domains [19, 26].

• Exploiting sparsity of the input parametric representation in exact and approx-
imate implicitization with a new method that is oblivious of base points and
reduces to a matrix kernel computation, thus leading to fast methods amenable
to approximate computation [12–16].

• A novel semi-automatic procedure to model the geometry of wooden elements
[25].

• Improved blends between primitive CAD surfaces, and new results on exact
rational parameterizations for fixed and variable radius rolling ball blends of pairs
of natural quadrics [8, 9].

• An initial understanding was established for the structure of the spline ring
as a generalized Stanley-Reisner ring [26]. In toric geometry, several new
results concerning the characterization of lattice polytopes related to higher
discriminants were obtained [10, 11].

• Hausdorff limits of toric patches and degenerations were studied, resulting in a
new and elementary interpretation of the secondary polytope [21].

• A novel approach to build a bijective parameterization for a contractible domain
in R

3 with a significant potential for use in isogeometric analysis [20].
• Approximate implicitization has been extended from only using the Bernstein

basis to the use of Jacobi polynomials such as Chebyshev polynomials. The
use of Jacobi polynomials allows for assembling the matrix of approximate
implicitization by using algorithms similar to Fast Fourier Transform that
significantly improve the assembly process. The use of Chebyshev polynomials
significantly increases the accuracy of approximate implicitization [1–5].

The research leading to these results has received funding from the European
Community’s Seventh Framework Programme under grant agreement no. PITN-
GA-2008-214584-SAGA.

1.3 A Preview of This Book

The remainder of this volume is a collection of research results obtained in the
SAGA ITN, written by a combination of young researchers and lead scientists. It
is divided into four parts, each corresponding to a work package in the project. We
proceed with a brief summary of each chapter.
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Part I: Change of Representation

Barrowclough presents an accessible discussion of several approaches to computing
implicitizations numerically, including both exact methods for low degree curves
and approximate methods for higher degree surfaces and envelopes.

Emiris, Kalinka, and Konaxis describe an implicitization algorithm based on
predicting the support of the implicit equation from specialized resultants, whose
implementation is efficient for common instances in geometric modeling.

Luu Ba studies the conversion of parametric curves and surfaces into a matrix-
based implicit representation, in which the ambient space is stratified into points
with multiplicity equal to the corank of the matrix, i.e., points outside the variety,
regular points on the variety, singular points of multiplicity 2 on the variety, etc.

Part II: Geometric Computing: Algebraic Tools

Mantzaris and Mourrain review recent advances for handling isolated singularities
of polynomial ideals, based on computing a basis for the dual space and of the
local quotient ring at a given (approximate) singular point, deflating the system by
augmenting it with new equations derived from the dual basis, and certifying the
singular point and its multiplicity structure for the perturbed system.

Dickenstein, Emiris and Karasoulou present an original formula that relates the
(mixed sparse) discriminant of two bivariate (Laurent) polynomials to the sparse
resultant of these polynomials and their toric Jacobian, which yields as a corollary
the known formula for the bidegree of the discriminant and a novel multiplication
formula for the discriminant when one of the polynomials factors.

Chau and Galligo provide a subdivision algorithm for computing an approxi-
mation of the intersection curve between two parametric surfaces, represented in
4D parameter space, for which the exactness of the topology is certified up to any
specified precision.

Krasauskas and Zubė provide simple, elegant extensions of results about quater-
nion Bézier curves and surfaces to analogous results about Bézier curves and
surfaces in various Clifford algebras, in order to develop an intuitive approach to
defining and manipulating such Bézier curves and surfaces.

Part III: Algebraic Geometry for CAD Applications

Piene presents recent developments in “algebraic spline geometry”, and provides
two examples that support the Local Spline Ring Conjecture on the geometry
of generalized Stanley-Reisner rings, which are the rings C r.�/ of r-smooth
piecewise polynomials on a simplicial complex � � R

d . Roughly, the statement
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is that the affine scheme corresponding to the generalized Stanley-Reisner ring
C r.�/ is a “twisted” version of a topological embedding of �, in which the
irreducible components intersect with an intersection multiplicity corresponding to
the smoothness r .

Villamizar and Mourrain derive lower and upper bounds for the dimension of
the space of r-smooth piecewise polynomials of degree d defined on triangular
and tetrahedral partitions, using the homological approach initiated by Billera. The
formulas take into account the geometry of the faces surrounding the interior faces
of the partition and make use of Fröberg’s conjecture on the dimension of ideals
generated by a generic set of forms in a polynomial ring.

Postinghel presents recent results on a class of polynomial interpolation problems
that amount to determining the dimension of linear systems of homogeneous or
multi-homogeneous polynomials vanishing together with their partial derivatives
at a finite set of general points, employing algebro-geometric techniques such as
blowing-up and degenerations. These results include a proof of a special case of
Fröberg’s conjecture, a formula for the dimensions of linear systems with general
points of any multiplicity in P

n in a family of cases for which the base locus is
only linear, and a complete classification of the linear systems with double points in
general position in products .P1/n of projective lines.

Dahl presents a new method for constructing rational variable radius rolling ball
blends of natural quadrics, based on placing suitable control spheres at strategic
points. The method is illustrated by a detailed example of a composite configuration
with multiple edges and 3-sided corners.

Part IV: Practical Industrial Problems

Adamou, Fioravanti, Gonzalez-Vega, and Mourrain present new approaches for
computing an exact algebraic parametrization of a planar curve-curve bisector and
two low degree rational surfaces bisector, and an automatic geometric and numerical
characterization of the planar point-curve and curve-curve bisector. In addition, they
describe a new algorithm for computing a Voronoi diagram of a set of parallel half-
lines in three-dimensional space, constrained to a compact domain.

Nguyen presents an algorithm for constructing a bijective parametrization of
a contractible domain in R

3 from a triangulation of the boundary using trivariate
tensor-product B-splines. This mapping is defined via a sequence of harmonic maps
and modified by a reparameterization to agree with the boundary parameterization,
and the final spline representation for the domain is constructed by approximating
the inverse of the computed mapping.

Nørtoft and Dokken extend to Locally Refinable B-splines two well-known
tensor-product flow discretizations, namely the Taylor-Hood and the multigrid
discretizations, and apply these to solve the mixed formulation of the steady-state,
incompressible Navier-Stokes equations in two dimensions using isogeometric
analysis. The chapter ends with a series of numerical investigations of the use of
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Locally Refinable B-splines in isogeometric analysis of flow problems, including
the stability of the discretizations, error convergence during refinement based on a
manufactured solution, and benchmarking based on the lid-driven cavity problem.
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Part I
Change of Representation



Chapter 2
Numerical Methods for Implicitisation
and Their Applications

Oliver J.D. Barrowclough

2.1 Introduction

Mathematical representation of geometric objects plays an important role in fields
such as automotive and aeronautical engineering, architecture, computer graphics,
animation and robotics. Modern CAD systems are based on representations that
encompass a very general set of freeform curves and surfaces. The two main
representations of such objects are the parametric and implicit forms. Of these, the
parametric form is by far the most prevalent. This is mainly due to the ease of
generating points lying on parametric curves and surfaces. The natural geometric
properties of Bézier and B-spline parametric forms have also supported their
dominance. However, implicit forms have several useful properties that complement
those of the parametric representation. For example, deciding whether a given point
lies inside, outside or exactly on a given curve or surface, is simplified if an implicit
representation is available. Implicit representations also naturally support operations
such as intersections, unions, differences and offsets. For these reasons, methods for
change of representation are of great practical importance.

Many of the curves and surfaces used in CAD have very simple forms that also
exhibit simple representations. In 2D, these include lines, ellipses, parabolas and
hyperbolas, all of which come under the common term of conic sections. In 3D,
such surfaces include planes, spheres, cylinders of algebraic degree 2, as well as tori,
which are of degree 4. In both the 2D and 3D cases, these shapes can be represented
both parametrically and implicitly. However, more advanced models, such as those
seen in automobile design, aircraft wings, ship hulls and wind turbines require more
general freeform representations.
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It is well known that any rational parametric curve or surface can be written in
implicit form. The conversion process is known as implicitisation. Since parametric
forms have become the prevalent representation at the design stage of an application,
it is the problem of implicitisation that has received most attention from the
research community. Moreover, the conversion in the opposite direction, known as
parametrisation, is not always possible, since implicit representations encompass a
larger class of shapes.1 In this chapter we discuss several methods for implicitisation
including exact methods for low degree curves, and approximate methods for higher
degree curves and surfaces. We also look briefly at the implicitisation of envelope
curves and surfaces. During the discussion we highlight some of the challenges
that are faced in constructing computationally attractive implicitisation algorithms.
The work is motivated both as a continuation of recent research into approximate
algebraic geometry, and a desire to construct methods better suited for numerical
computation on modern architectures. The ever increasing level of parallelism
in commodity computers, both with multicore CPUs and GPUs has removed
the barrier for the implementation of some computationally intensive methods.
Moreover, high quality real-time visualisation methods for implicit surfaces are now
available on modern hardware. It is thus important for computationally efficient
methods of generating implicitly represented geometries to be available.

An in-depth review of exact implicitisation methods using symbolic computation
can be found in [24]. In contrast, this chapter highlights methods that are suitable
for numerical computation, although most of the methods can be implemented
symbolically if exact precision is required. Methods that support implementation
in floating point arithmetic are important for reasons of performance. Moreover,
floating point arithmetic is required for many of the linear algebra based approx-
imation algorithms utilised in the methods presented here. Symbolic and infinite
precision methods will provide exact results, but this comes at the expense of
severely slower performance in almost all cases. Since this chapter is motivated
by applications for implicitisation, we restrict our attention to real affine space as
opposed to the more general complex projective space. Prototype implementations
of the algorithms have been tested using several programming languages including
Python, C++ and CUDA.

Several of the papers that we cite herein were written as part of the EU
research project SAGA. Among the aims of SAGA was to conduct further research
into methods for change of representation and several new results in the field of
implicitisation have emerged as a result of the project. This chapter summarises
some of these results.

This chapter is structured as follows: We begin, in Sect. 2.2, with a description
of specific techniques for implicitisation of low degree rational planar curves.
In Sect. 2.3 we present methods, both exact and approximate, for implicitisation
of rational parametric curves, surfaces and hypersurfaces. In Sect. 2.4 we discuss

1Note that we restrict our attention to rational parametrisations in this paper. Other parametrisa-
tions of non-rational algebraic curves are possible.
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briefly how the methods can be extended to implicitisation of envelope curves and
surfaces. We conclude, in Sect. 2.5, with some examples of how implicitisation
algorithms can be used in applications.

2.2 Implicitisation Methods for Low Degree Planar Rational
Curves

In this section we begin from the very simplest planar curves, describing rep-
resentations both in the parametric and implicit form. The common parametric
representation we will use is the rational Bézier representation. This is defined for a
sequence of control points .c0; : : : ; cn/; with ci 2 R

2; and a sequence of associated
weights .w0; : : : ; wn/; with wi 2 R as

p.t/ D
Pn

iD0 wi ci

�
n
i

�
t i .1 � t/n�i

Pn
iD0 wi

�
n
i

�
t i .1 � t/n�i

; (2.1)

for t 2 ˝ � R: The region of interest of the curve is defined by the points
corresponding to the parameters t in the domain ˝ ; which is often the unit interval
Œ0; 1�: Any rational curve in the affine plane can be parametrised in the rational
Bézier form.

Several exact methods for general degree rational planar curve implicitisation
exist; see, for example [8, 10, 21, 34]. In this section we look at alternative
methods that define the implicit polynomial explicitly in terms of the control points
and weights. This has the advantage of giving some geometric intuition to the
construction.

2.2.1 Lines in the Plane

The simplest non-trivial curves in the plane are lines. Typically, from a designer’s
perspective, a line in the plane will be defined by two distinct points c0; c1 2 R

2:

The rational Bézier representation of a line between these points can be given as

p.t/ D w0c0.1 � t/ C w1c1t

w0.1 � t/ C w1t
: (2.2)

Since the choice of weights w0; w1 has no consequence for the design in this case,
they are typically set equal to one. Since the Bernstein basis is a partition of unity,
the denominator then becomes equal to one.

An irreducible implicit representation of a line in the plane is unique up to a scalar
factor. In a Cartesian coordinate system, we can define the implicit polynomial
representing the parametric line (2.2) as
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Lij.x; y/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

x y 1

ci;0 ci;1 1

cj;0 cj;1 1

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
: (2.3)

By this definition, the norm of the gradient krLijk2 is equal to the Euclidean
distance between the two points ci and cj :

krLijk2 D kci � cj k2: (2.4)

In general, we may wish to define such linear forms without reference to a
specific coordinate system. It is natural to define the linear form by enforcing
condition (2.4)—that the magnitude of the gradient of the linear form containing
the two defining points is equal to the Euclidean distance between those points.
Making this assumption simplifies the higher degree constructions in the following
sections, and is naturally supported by the Cartesian definition (2.3).

2.2.2 Rational Quadratic Bézier Curves in the Plane

Rational quadratic planar curves encompass the entire set of conic sections,
including parabolas, hyperbolas and ellipses. In Bézier form they are defined by
three control points, and associated weights; that is, with n D 2 in (2.1). The
three control points also conveniently define a triangle, on which we can define
a barycentric coordinate system. By making a judicious choice of basis on this
coordinate system, simple expressions for the implicit polynomial coefficients can
be found.

The implicit representation of any conic section that is defined in Bézier form,
with non-collinear control points, is given by the following equation:

4w2
1�0�2 � w0w2�

2
1 D 0;

where �0; �1 and �2 denote the barycentric coordinates defined by the triangle with
vertices c0; c1 and c2 [19]. The equation can also be expressed independently of the
coordinate system, in terms of products of linear forms between the points. In that
case we have2

q D 4w2
1L01L12 � w0w2L2

02 D 0;

where Lij is defined, as in Sect. 2.2.1, as a linear form whose gradient norm is
proportional to the distance between the points ci and cj : The functions L01L12

2A proof of this can be seen by expanding the determinant in the implicitisation algorithm given in
[35].
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c0

c1

c2
q

c0

c1

c2

= 4w2
1

L01L12

c0

c1

c2

− w0w2

L202

Fig. 2.1 The construction of an implicit representation of rational quadratic Bézier curves in the
plane. Here, Lij denotes a linear form containing both ci and cj

and L2
02 depend on the control points, but provide a basis for all different weight

configurations of a given curve, so we refer to them loosely as ‘basis functions’.
Figure 2.1 shows a diagrammatic representation of the zero sets of the basis

functions used for the implicit representation of rational quadratic Bézier curves.
The number of lines between any two points ci and cj ; reflect the multiplicity with
which Lij appears in the basis function.

2.2.3 Rational Cubic Bézier Curves in the Plane

How best to extend the quadratic method above to cubic and higher degree curves
is an interesting problem. For rational cubic curves, one approach, described by
Floater in [20], is to choose a Bernstein basis over the triangle defined by the points
c0; c3 and the intersection point d; of the lines L01 and L23: In terms of this basis,
the coefficients of the implicit polynomial can be given by explicit formulas. In
particular, four of the ten coefficients are immediately zero; thus, some sparsity in
the implicit polynomial representation is exhibited. Floater’s method suffers from
problems when the tangent lines to the curve at the end points c0 and c3 are parallel,
since in this case the point d is undefined. Also, if either of c1 or c2 lie on the line
between c0 and c3; the coordinate system collapses.

A new approach to computing the implicit representation of rational planar cubic
Bézier curves is presented in [4]. This method requires only four basis functions,
which are pictured in Fig. 2.2, and fails only in the case of collinear control points.
The method also exhibits simple expressions for the coefficients, and moreover,
a great deal of information about the geometry of the curve can be extracted from
those coefficients. For example, very simple methods for identifying when unwanted
self-intersections occur are presented, along with classifications of the type of curve
(i.e., either cuspidal, self-intersecting or exhibiting an acnode). In addition, an
explicit formula for the position of the double point is given in terms of a barycentric
combination of the control points. We refer the reader to [4] for a fuller description
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Fig. 2.2 A diagrammatic
representation of the zero sets
of the basis functions for
rational planar cubic curves

c0

c1 c2

c3
L01L12L23

c0

c1 c2

c3

L01L2
13

c0

c1 c2

c3

L2
02L23

c0

c1 c2

c3

L3
03

of the method and its consequences. Another approach with some similar results is
described by Stone and DeRose in [38].

2.2.4 Rational Bézier Curves of Higher Degree

Explicit methods for implicitisation become more complex as the degree of the
curve increases. In the introduction of [3], a set of functions that appear to support
all rational quartic planar Bézier curves without collinear control points is presented.
These functions are pictured in Fig. 2.3. We make a formal conjecture that this is the
case here.

Conjecture 2.2.1 Suppose we are given a rational quartic Bézier curve in the plane
(i.e., with n D 4 in (2.1)), such that no three of the control points c0; : : : ; c4 are
collinear. Then the implicit representation can be written as a linear combination of
the following set of nine functions:

fL01L12L23L34; L01L12L2
24; L2

02L23L34; L01L
2
13L34;

L02L2
04L24; L01L

3
14; L3

03L34; L2
02L

2
24; L4

04g:

A formal proof of this conjecture is a subject for further research. To what extent
the interesting properties seen for cubic curves can be replicated for quartic and
higher degrees, also remains to be seen. However, the number of basis functions
required to represent the polynomials increases exponentially with degree. In fact,
the number of functions required for a curve of degree n, is related to the number of
terms in the discriminant of a univariate polynomial of degree n. For higher degrees,
this quickly becomes greater than the dimension of the polynomial space (which is
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Fig. 2.3 A diagrammatic representation of the zero sets of nine basis functions that appear to
support the implicit representation of rational quartic Bézier curves, when no three control points
are collinear

O.n2/), leading to linear dependencies between the functions and thus the loss of
the basis property. Due to this high level of complexity, it is therefore reasonable
to suspect that the methods for higher degrees will be difficult to analyse. However,
the potential geometric insight that may be possible with such techniques warrants
further investigation.

An often cited drawback of implicit curves and surfaces is that it is difficult
to directly control the geometry by manipulating the coefficients of the defining
polynomial. However, the methods presented in this section show that elegant
geometric structures are also present using implicit representations. Indeed, these
methods can be used directly for design using implicit visualisation methods,
without reference to the parametric representation at all; though, in practice, the
availability of both representations is optimal for design.

Although existing methods for exact implicitisation can be suitable for moder-
ately high degree planar curves, problems begin to arise for surfaces and hypersur-
faces. Moreover, it is often infeasible to compute exact implicitisations in floating
point arithmetic, due to the limited precision available. Some of the issues with exact
implicitisation are highlighted in the following section.
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2.3 Numerical Methods for Implicitisation of Higher Degree
Curves, Surfaces and Hypersurfaces

For the description of rational parametric surfaces and hypersurfaces, we can also
use the rational Bézier representation. This is defined in a similar way to curves,
and can be extended by using either tensor-product or simplex structures. For a
general approach, we will assume that we have a rational parametric description
p.t/; t 2 ˝ � R

d�1 of a hypersurface in R
d : Any rational hypersurface in R

d can
be parametrised in the rational Bézier form.

For planar rational curves, the degree of the exact implicit polynomial represen-
tation is equal to that of the parametric representation. However, when it comes
to surfaces, this is no longer true. For rational surfaces of total degree n defined
on a triangular domain, the degree of the implicit polynomial is n2. Further, for
tensor-product parametric surfaces of bi-degree .n1; n2/, the degree of the implicit
polynomial is 2n1n2. For higher dimensional hypersurfaces, the degrees increase
even more rapidly.

Traditional methods for implicitisation of surfaces using the theory of elimination
and resultants have been known as far back as the nineteenth Century [33]. However,
several obstacles have hindered the practical use of these algorithms. Some of
the problems, highlighted in the papers [14, 22, 34] among others, include the
following:

• Additional solutions. It is often the case that the implicit polynomial defined
by resultant computation contains factors that are not part of the implicit
equation of the curve. Thus, polynomial factorisation is required to find the
irreducible polynomial of interest. Factorisation of polynomials is an undesirable
operation in CAGD, especially when using floating point coefficients because
small perturbations in the coefficients of a reducible polynomial, which occur
when approximating with floating point numbers, can render it irreducible.

• Computationally expensive algorithms. Computation of the determinant of a
matrix with symbolic entries entails O.nŠ/ operations, where n is the dimension
of the matrix. Thus, the methods are highly dependent on the size of the matrix,
and quickly become slow for high degrees. Often the evaluation times will be
unreasonable for applications.

• Numerical stability. For reasons of performance, it is often desirable to use
floating point numerics. In CAGD, rational parametric curves and surfaces
are mostly given in Bernstein form, whereas the traditional techniques for
implicitisation typically use the monomial basis. The basis transformations
between Bernstein and monomial bases are ill conditioned, and a loss of accuracy
is to be expected.

• High polynomial degrees. As described previously, the exact algebraic degrees
of surfaces can be undesirably high. Sometimes (e.g., if symmetries occur), the
algebraic degree will reduce, but extra factors in the implicit equation will occur.
High degrees also lead to issues with performance and numerical stability.
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• Base points. A base point is defined as a point where the numerator and
denominator of the parametric description disappear simultaneously. In the case
that base points occur, traditional methods for resultant computation will fail
(the implicit polynomial will be identically zero). Moreover, base points are a
common occurrence even in freeform surfaces [34].

• Unwanted branches and self-intersections. Whereas parametric curves and
surfaces are defined in a specific parameter domain, implicit curves require a
2D region of interest to be defined. It is quite possible, and often the case, that
extra branches or self-intersections occur that are not present in the parametric
definition. This is, however, a feature of exact implicitisation, rather than a
problem with any specific method. Further techniques such as approximation
are required in order to remove them.

Some of these challenges have been resolved in the CAGD literature of the
past few decades. For example, Sederberg and Chen introduced the method of
moving curves and surfaces which removed the problem of base points, and in
fact reduced the complexity in such situations, by reducing the algebraic degree
[34]. Other methods, such as those using linear algebra, introduced the ability to
approximate parametric surfaces with implicit surfaces. In this section we focus
mainly on methods for implicitisation (and approximate implicitisation) that utilise
linear algebra. Some approaches to tensor-product implicitization are described in
[6, 13], whereas simplex approaches (specialised to surfaces) are described in [5].
The general formulation is quite simple, but it can be specialised in many different
ways, each of which exhibit different properties. There also exist techniques that
have been developed to improve the performance of the method in certain cases, by
exploiting sparsity (e.g., [17, 18]).

2.3.1 A General Method for Implicitisation and Approximation
Using Linear Algebra

All of the implicitisation techniques described in this section require a choice of
basis. Typical examples include the traditional power or monomial basis, which is
the main basis in the theoretical field of algebraic geometry. More applied methods
tend to use more numerically stable bases, such as the Bernstein basis. These are
generally defined in a barycentric coordinate system which is local to the region of
interest of the curve or surface.

The types of basis function that can be used are conceptually different. We
give the name dynamic basis functions, to bases that change with changes in the
geometry of the curve or surface (e.g., local Bernstein bases). This contrasts with
static basis functions, such as the monomial basis, which do not depend on the curve
or surface in question. Static basis functions can exhibit poor numerical stability if
the hypersurface is far from the origin. Well chosen dynamic basis functions have
better numerical properties and can reduce the complexity of the computation. For



20 O.J.D. Barrowclough

example, the dynamic basis functions defined previously in Sects. 2.2.2–2.2.4 are a
good choice for low degree planar curves.3

In terms of a general function set fq0; : : : ; qL W qi W Rd ! R; i D 0; : : : ; Lg we
write

q D
LX

iD0

biqi ;

for scalar coefficients b D .bi /
L
iD0: The task is then to generate the coefficients

b; which define the function q; such that q ı p � 0; where p is the parametric
description defined at the beginning of Sect. 2.3. Often it is not possible, or
indeed desirable, to achieve this exactly. In such cases, approximations of q;

such that q ı p � 0 within the domain ˝ may be preferable. This is done
by attempting to minimise the algebraic error jq ı pj: Minimising the error in
affine space is a computationally intractable problem. However, the algebraic error
provides a good approximation to the geometric error away from singularities
[13].

By substituting the parametric description into the (unknown) implicit form, we
obtain

q ı p.t/ D ˛.t/T Db;

where D is a matrix of coefficients and ˛.t/ is a vector of basis functions of the
function q ı p in the parameter t: In the exact case, the null space of D will give
the desired coefficients. In the approximate case, taking the right singular vector
corresponding to the smallest singular value in a singular value decomposition
(SVD), will generally give good approximations. A more detailed description
of different approaches to approximate implicitisation using linear algebra is
given in [6]. A short summary of some techniques is provided in the following
sections.

2.3.2 Approximate Implicitisation

The original method for approximate implicitisation was introduced in 1997 in
the doctoral thesis of T. Dokken [13, 14]. This approach allows the degree of the
implicit polynomial to be chosen, and the algorithm proceeds to find an algebraic
approximation. The method, which utilises the beneficial properties of Bézier and
Bernstein representations, was extended to several other polynomial bases in [6].

3Note that it is not necessary that the function set forms a basis for the entire set of multivariate
polynomials of a certain degree in R

d ; but it is necessary that the function set supports the implicit
representation.
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All of these methods exhibit the same very high convergence rates, justifying
their suitability for approximate approaches to implicitisation. These methods are
designed to provide approximations, but also have the potential to provide exact
implicitisations if the chosen degree is high enough, and exact precision arithmetic
is used.

Dokken’s original approach, using partition of unity bases, finds a polynomial q

that provides an upper bound on the maximum values of the algebraic error in terms
of the smallest singular value �min of the matrix D:

jq ı p.t/j � �min ; for all t 2 ˝ :

An alternative approach, known as weak approximate implicitisation, which
minimises the least squares error was introduced later [12, 15]:

min
kbk2D1

Z

˝

.q ı p.t//2 dt: (2.5)

This approach also uses SVD approximation, but is different from the approach
outlined in Sect. 2.3.1 in that the matrix coefficients are generated by performing
integrals. This method is very general, and tends to give better approximations than
Dokken’s original approach.

It was shown in [6] that by using orthonormal polynomial bases, the same theo-
retical results as for weighted least squares problems can be achieved, but with much
better numerical stability than the weak approach. In particular, when the parametric
hypersurface is described in tensor-product form, approximate implicitisation in the
Chebyshev basis gives several computational and approximative advantages. For
example, the Chebyshev coefficients can be generated efficiently using Fast Fourier
Transforms. Additionally, the maximum error on the domain of interest was shown
experimentally to be far superior to that of the Bernstein basis. The Bernstein basis
did, however, outperform all other bases with respect to numerical stability, when
implicitising with the correct degree.

Figure 2.4 shows how the values are distributed in the matrices for four different
bases. Note that the distribution of singular values is much more even in the
Bernstein basis than the other bases. For the Chebyshev basis, the values lower
down in the matrix degenerate to the extent that the bottom half of the matrix hardly
contributes to the approximation. This is potentially useful for large problems,
where large areas of the matrix could be discarded prior to SVD in order to improve
performance.

Alternative approaches to approximate implicitisation have also been introduced.
Wurm and Jüttler introduced a method in [23, 40] that approximates scattered data
by implicit surfaces. Shen et al. introduced the concept of approximate �-bases,
which led to a different approach to approximate implicitisation [36]. Their work
also has applications to the degree reduction of curves.
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Fig. 2.4 Implicitisation
matrices (left) and their
singular value
decompositions, highlighting
the structures for the various
polynomial bases. The light
blue elements are zero or
close to zero. (a)
DC D UC ˙ C VT

C for the
Chebyshev basis. (b)
DL D UL˙ LVT

L for the
Lagrange basis. (c)
DB D UB ˙ B VT

B for the
Bernstein basis. (d)
DM D UM ˙ M VT

M for the
monomial basis

2.3.3 Interpolation and Approximation of Point Data

One of the simplest and potentially most powerful approaches to approximate
implicitisation is using point data for interpolation or approximation. The theory
of interpolation with implicit hypersurfaces, has some interesting and non-trivial
features. For simplicity, in this section we consider a rational planar curve given by

p.t/ D
�

f .t/

h.t/
;

g.t/

h.t/

�

; (2.6)

for univariate polynomials f; g; h with GCD.f; g; h/ D 1: However, the results are
generalisable to higher dimensions. Using Lagrange interpolation as an implicitisa-
tion method can essentially proceed in one of two ways, which we describe below.

The first method, which we say uses on-curve data, looks for a non-trivial poly-
nomial that vanishes at sufficiently many points along the parametric hypersurface.
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Fig. 2.5 Interpolation using parameter-uniform on-curve data (left) and uniform off-curve data
(right). The basis for the implicit polynomial is a Bernstein basis over barycentric coordinates of a
bounding triangle

This is described in [6] as implicitisation in the Lagrange basis, and is consistent
with the general framework of Sect. 2.3.1. This is pictured, for the case of planar
curves, on the left-hand side of Fig. 2.5. The number of nodes, N; required for exact
implicitisation of a degree n rational curve is given in [6] by

N D n2 C 1:

When the degree chosen for interpolation is smaller than required for exact
implicitisation, this approach will produce approximations.

The second method, which we say uses off-curve data, is the method described
by Marco and Martinez [27, 28]. This is pictured, for the case of planar curves, on
the right-hand side of Fig. 2.5. This approach uses a resultant of the following two
polynomials:

xh.t/ � f .t/; yh.t/ � g.t/:

The resultant is then evaluated at numerically at sufficiently many sample points
.xi ; yj /

n1;n2

i;jD0;0 in order to generate enough data to solve a bivariate Lagrange inter-
polation problem. Essentially, the data generated defines the implicit polynomial in
a Lagrange basis and the method proceeds to generate the monomial coefficients by
using a basis transformation matrix (i.e., via a Vandermonde matrix). Computing
the determinant of a numerical matrix is much less computationally intensive than
that of a symbolic matrix. One reason for this is that for numerical matrices, LU-
decomposition is possible, where the matrix is decomposed into the product of a
lower and an upper triangular matrix. The determinant is then given by the product
of the entries on the diagonals of the matrices. Note that the approach of Marco and
Martinez can be used with any type of resultant matrix.
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For a given curve, an example of the two methods is shown in Fig. 2.5. Using the
on-curve method, the interpolation data is all known to be zero (since it lies on the
curve) but we evaluate the parametric curve at nodes in the parameter domain, in
order to find the interpolation nodes in R

2: The implicit coefficients are then given
by the solution to a homogeneous linear system. In the off-curve method, the nodes
are predetermined (e.g., on a uniform grid), but we have to evaluate the resultant
in order to generate data for the interpolation. Both methods are also suitable for
implicitising general hypersurfaces, although the off-curve method relies on suitable
multivariate resultants.

For exact implicitisation using the on-curve method, care needs to be taken to
ensure that the interpolation points lie in general position, so that the unique implicit
polynomial can be found. It is well known that any five points in the plane, with no
four collinear, determine a conic. This is because there are five degrees of freedom
in the implicit representation of a conic (in fact, there are six coefficients, but since
implicit representations are unchanged by non-zero scalar multiplication, one degree
of freedom is removed). The equivalent statement for cubics is complicated by the
famous Cayley-Bacharach theorem from algebraic geometry [16]:

Theorem 1 (Cayley-Bacharach theorem) Consider the nine points in which two
implicit planar cubic curves, I1 and I2; intersect. Then any cubic curve I3 that
passes through any eight of these points, also passes through the ninth.

When sampling from a rational parametric curve, problems with finding points in
general position can be avoided by a small oversampling [6]. This is the reason we
use ten interpolation points, rather than nine, in the example of Fig. 2.5.

Both the on-curve and off-curve methods can also be used for approximate
implicitisation. In general, the on-curve method provides better approximations
than the off-curve method. In fact, the on-curve method, which approximates in the
parameter domain, exhibits the same high convergence rates as the general approach
of Sect. 2.3.1. For the off-curve method, the approximation must be made in the
geometric domain, which generally results in greater errors. A discussion of how the
Lebesgue constant from approximation theory is important in judging the quality of
implicit approximations is presented in [6].

Hermite interpolation using implicit surfaces has also been investigated by
several authors; see for example [1, 2]. These methods attempt to interpolate both
position and derivative data, in order to obtain C k-continuous curves or surfaces.
Such requirements can also be met using approximate implicitisation, by adding
constraints to the approximation [13]. The constraints can be added before or after
approximation, the former via Lagrangian multipliers, and the latter by merging
combinations of lower order approximations [15, 39].

2.3.4 Sparse Implicitisation

The main reason that multivariate polynomials of large total degree are computa-
tionally unattractive, is that any basis for such polynomials will have very large
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dimension. However, there will often exist a basis for the implicit description where
several, or even most of the coefficients are zero. If it is known, a priori, which
of these coefficients are zero, the complexity of the implicitisation problem can be
reduced; in some cases substantially [17, 18].

In [18], techniques are introduced that exploit sparsity in the monomial basis
representation of the implicit equations. For example, assume we want to implicitise
a parabola defined by the control points .�1; 1/T ; .0; �1/T and .1; 1/T ; with all
weights equal to one. The implicit equation of this curve is simply y � x2 D 0;

however, without this knowledge, we would generally proceed to use a basis of
all six monomials of up to total degree 2 f1; x; y; x2; xy; y2g; forming a matrix of
dimensions 5 � 6: If it is known that only the monomials y and x2 are required to
define the implicit equation, the size of the linear system can be reduced to 2 � 2:

In order to predict the support of the implicit function (i.e., the set of monomials
that have non-zero coefficients in the implicit polynomial), the method of Emiris
uses toric elimination theory. The method constructs the Newton polygon directly
from the parametric representation and the support is then taken to include all
monomials in the convex hull of the Newton polygon. Support prediction methods
are also well suited for approximate implicitisation [6,17]. Whereas in approximate
implicitisation we choose to reduce the total degree, techniques using support
prediction can remove any other monomials from the basis, even those that are not
necessarily of high degree.

One of the main problems with using sparsity in practice is that freeform
hypersurfaces do not, in general, exhibit a high degree of sparsity in the monomial
basis. Also, since current algorithms only work in the monomial basis, basis
transformations are required, which have potentially ill conditioned behaviour. In
a sense, the basis functions described in Sects. 2.2.3 and 2.2.4, can be thought of
as a sparse basis for performing implicitisation. However, since they depend on
the control points, they are more complicated to construct than simple monomials.
Further research is required to determine if suitable sparse bases can be defined for
general freeform hypersurfaces.

In applications where exactness is required in order to create watertight models
(such as in isogeometric analysis), sparse methods may prove a valuable tool in
obtaining computationally tractable solutions.

2.4 Implicitisation of Envelope Curves, Surfaces
and Hypersurfaces

In recent years, there has been an increase of interest in implicitisation of envelope
curves and surfaces. This has particular applications in the field of robotics [32]. An
envelope curve is defined as follows: consider a rational family of rational curves
defined by



26 O.J.D. Barrowclough

p.s; t/ D
�

p1.s; t/

g.s; t/
;

p2.s; t/

g.s; t/

�

; .s; t/ 2 Œs0; s1� � Œt0; t1�:

Either s or t can be thought of as a time-like parameter and the remaining parameter
(either t or s) parametrises the curves. The envelope is a curve that touches all
members of the family pI two examples are pictured in Fig. 2.8 (p. 34). The envelope
corresponds to the parameter values where the Jacobian becomes singular [32],
and this definition can also be used to define envelopes in higher dimensions. A
polynomial function h.s; t/; called the envelope function, can be defined in terms of
the coefficients of p whose zero set corresponds exactly to such points. In general,
the envelope does not have a simple parametrisation so the methods described
earlier in this chapter are not directly relevant for envelope implicitisation. However,
recently, Schulz and Jüttler showed that approximate implicitisation can be adapted
to envelope curves in a similar way [32]. They showed that if q is the exact implicit
representation of the envelope, then

q ı p.s; t/ D �.s; t/h.s; t/2

for some unknown function �: Thus, finding polynomials q and � that approximate
this equation gives methods for approximating the envelope.

A distinctive feature of envelope curves, like surfaces, is the high degrees that
occur. Envelopes are also of interest in higher dimensions, where the problem of
high degrees is exacerbated even further. Approximate implicitisation is therefore a
potentially important tool in working with such manifolds.

In [7] a fast method for implicitising envelope curves, based on the method of
[32] is defined. The method is also easily generalisable to higher dimensions, which
is important for use in applications. For example, the possible positions of a robot
with several connected arms is described by a parametric equation with one variable
for each arm. In this way, high dimensions can easily occur, even with relatively
simple geometries.

2.5 Applications of Methods for Implicitisation

The intention of this section is to highlight applications of (approximate) implici-
tisation algorithms. We consider three main applications: intersection algorithms,
visualisation and robotics. We also discuss some open problems that have arisen by
using the methods in practice.

2.5.1 Intersection Algorithms in Computer Aided Design

Intersection algorithms in CAD were the principal motivation behind the develop-
ment of approximate implicitisation [13]. Whereas transversal intersections can be
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successfully approximated using subdivision schemes, tangential (and near tangen-
tial) intersections pose a more difficult problem [35]. For such cases, approximate
implicitisation can be helpful [13, 39]. Algorithms for surface trimming are also
related to intersection algorithms, and can benefit from the explicit implicitisation
method outlined in [4].

2.5.1.1 Self-Intersections

There exist several methods for computing self-intersections of rational curves and
surfaces, including [9, 29, 39]. In this section we mainly focus on the methods in
[39], which are well suited to approximate implicitisation.

For an implicitly defined hypersurface q; we refer to points p where

q.p/ D 0 and rq.p/ D 0

as singularities of the hypersurface. All self-intersections of algebraic hypersurfaces
are singularities, but the converse is not necessarily true. For example, planar curves
can also exhibit singularities as cusps or isolated points known as acnodes.

The simplest examples of self-intersections are for low degree curves. Clearly,
in R

2; a line will never intersect itself. Conic sections will also never exhibit
singularities unless they can be decomposed into two lines (i.e., the implicit
polynomial is reducible). For rational cubic curves with real coefficients, there
always exists a real singularity, in the form of a self-intersection (crunode), cusp
or acnode. For algebraic curves of degree 3 and higher there also exist non-
singular curves, which do not have rational parametrisations [33]. Such curves
have genus4 greater than or equal to one, but these cases are not treated here;
we concentrate on the case of rational curves, with genus zero. In [4] an explicit
formula for the location of the singularity of a planar cubic curve in terms of a
barycentric combination of its control points is presented. Simple conditions for
when the singularity defines a self-intersection, and in particular, an unwanted self-
intersection are also defined. In addition, the parameter values of the singularity can
be computed explicitly as the roots of a special quadratic polynomial.

For most higher degree curves and surfaces, explicit formulas are not generally
available and we often resort to numerical rootfinding. In [39], a method for com-
puting self-intersections using approximate implicitisation is presented. Consider a
given parametric hypersurface p.t/; its normal n.t/ and its (approximate) implicit
representation q: The roots of the polynomial

rq ı p.t/ 	 n.t/; (2.7)

are then candidates for self-intersections [39].

4The genus of an algebraic curve is a concept from algebraic geometry that describes the
topological properties of the curve.
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It is normally possible to find exact implicit representations of rational parametric
curves, since the degrees involved are not excessively high. For surfaces, exact
methods are generally too complex, due to the high degrees that appear. Thomassen
proposes using approximate implicitisation for computing self-intersections [39]. In
the case of surfaces, Thomassen’s approach to computing self-intersections gives
excellent numerical results, although some post-processing is required to remove
false positive intersections.

There exist alternative methods for finding self-intersections using resultants,
which work for any degree [9, 11]. However, these methods are better suited to
symbolic computation. Alternative methods for computing surface self-intersections
numerically are presented in [29].

2.5.1.2 Curve and Surface Intersection via Algebraic Substitution

Computing intersections between two general freeform parametric curves or sur-
faces is generally much more complex than computing self-intersections. For
example, whereas a planar cubic curve can only intersect itself once, two cubic
curves can intersect in up to nine points in the plane. This can be generalised to
higher degrees by the classical result known as Bézout’s theorem:

Theorem 2 (Bézout’s theorem) Let q1.x; y/ W R2 ! R and q2.x; y/ W R2 ! R be
irreducible polynomials of total degree m1 and m2 that define two algebraic curves.
Then the total number of intersections between the curves (including complex
intersections, intersections of higher multiplicity than one, and intersections at
infinity) is given by m1m2:

Again, there are many methods for computing general intersections including both
algebraic and subdivision approaches [35]. While subdivision methods perform well
and give stable results for transversal intersections, tangential intersections pose
more of a problem. In such cases, exact or approximate implicit representations can
be useful.

For the sake of generality, in this section we outline the method for hypersur-
face/hypersurface intersections. This method utilises both implicit and parametric
representations for computing intersections [13, 35]. Suppose we have two rational
parametric hypersurfaces p1.s/ W ˝1 ! R

d and p2.t/ W ˝2 ! R
d for ˝1; ˝2 �

R
d�1: Suppose we also have corresponding implicit representations q1.x/ W Rd !

R and q2.x/ W Rd ! R: In computing the intersection, we are interested in finding
the parameter values s 2 ˝1 and t 2 ˝2 such that p1.s/ D p2.t/: We are also
interested in the set

P D fx 2 R
d W x D p1.s/ D p2.t/; s 2 ˝1; t 2 ˝2g:

The s-preimage of the intersection is defined as

S D fs 2 ˝1 W q2.p1.s// D 0g:
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A subset of the points s 2 S is normally computed numerically. For each point si ;

thus computed, it must be checked that the t-preimage of the point p1.si / is in the
domain ˝2: Sederberg and Parry suggest using inversion formulas for this purpose
[35]. It is also possible to use the reverse procedure of computing

T D ft 2 ˝2 W q1.p2.t// D 0g:

However, this approach may be slower, since each pair of points in the two domains
would need to be compared [39].

It is also possible to use approximate implicit representations in place of q1 and
q2; in a direct analogue of the above procedure. This was proposed in Dokken’s
thesis [13].

One aspect of computing intersections, which is not taken into account when
using approximate implicitisation, is that of topological consistency. This is con-
cerned with the intersection results having compatible definitions in the different
domains. According to [37], topological consistency requires that the representa-
tions of the intersection in the two parameter domains and the representation in
R

d ; should all correspond to the same manifold. In general, the parameter domain
preimage of hypersurface intersections will not be rational. For the case of surfaces,
Song et al. [37] propose a linear perturbation method, whereby the parametric
surfaces are altered slightly in order to force the intersection curve to be rational. In
general, approximate implicit methods will not give topologically consistent results.
However, this would be an interesting direction for future research.

2.5.1.3 Surface Trimming

Although piecewise rational surfaces are the predominant surface representation in
CAD, often an additional operation is used to bound the region in which such a
surface is defined. This process, known as surface trimming, defines regions of the
parameter domain that correspond either to valid or invalid5 surface points. The
curves in the parameter domain are often expressed as densely sampled piecewise
linear curves [19]. One reason for using piecewise linear curve data is that the
problem of computing whether the point is considered valid or invalid is simplified,
by counting ray intersections. However, such methods have limited accuracy.

The data for defining trimming curves may be generated, for example, from the
intersection of two surfaces. This may be in the form of points in the parameter
domain, which can be interpolated or approximated, and may also include derivative
data. For example, a common approach is cubic Hermite interpolation, where we
find a cubic curve p; such that

5We refer to points on the original surface as valid if they also belong to the trimmed surface.
Otherwise the points are invalid.
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p.0/ D p0; p.1/ D p1; p0.0/ D m0; and p0.1/ D m1;

for given point and derivative data p0; p1; m0 and m1: The rational Bézier form
of cubic curves is particularly useful for this task, since interpolation and tangency
constraints at the endpoints are given naturally by the control polygon [19]. In fact,
the control points of such a polynomial cubic curve can be given explicitly as

c0 D p0; c1 D p0 C m0

3
; c2 D p1 C m1

3
and c3 D p1:

Because the parametric form of cubic curves is not optimal for deciding which
points lie inside or outside a curve, it is not a good choice for trimming curves.
However, since we are given the control points and weights of the curve, the method
of [4] can be used directly (i.e., no computationally expensive implicitisation meth-
ods are necessary). Hence, integration with existing cubic Hermite interpolation
schemes is immediate, and will result in a piecewise implicit cubic representation.
Moreover, it will provide a robust method for deciding whether or not the point lies
within the trimming curve.

For implicitly representing piecewise curves in this way, some post-processing
will be required in order to define the correct domains for each segment. Typically,
restricting each segment to the convex hull of its control polygon will suffice.
However, we must also define what happens outside the union of the convex hulls.
One approach could be to use a Delaunay triangulation, similar to the method used
in [25] for curve rendering.

2.5.2 Rendering Curves and Surfaces

Traditionally, the parametric form of B-spline and Bézier curves and surfaces has
been used for rendering, since it is very easy to evaluate points lying on the
curve or surface. Recently, real-time rendering in the implicit form has generated
increased attention, particularly using ray casting and ray tracing [26, 31]. Such
implementations rely heavily on the efficiency of modern GPU hardware, which
can process per-pixel computations using highly parallel architectures. Since these
methods compute on a per-pixel basis, a major advantage is that the resolution is
independent of the zoom level or the viewpoint. Resolution independent methods
have also been applied to curve rendering [25].

For applications that involve rendering regions bounded by curves, such as font
shading, the implicit form of rational cubic and conic curves can be used. In
[25], conic and cubic curves are evaluated implicitly by projecting one of a set of
canonical curves onto screen space, resulting in highly efficient computations. The
technique used in [30] is to employ the implicitisation method of [20], along with
subdivisions to obtain a simple Bézier arch. In a similar way, the method of [4]
could also be implemented for efficient rendering of cubic curves on the GPU.



2 Numerical Methods for Implicitisation and Their Applications 31

Fig. 2.6 An example of two cubic Bézier curves with control points .0; 0/; .b0; b1/; .2=3; 1/ and
.1; 0/ (left: .b0; b1/ D .1=3C 0:01; 1/; right: .b0; b1/ D .1=3 � 0:01; 1/, represented by hollow
circles). The implicit representation flips orientation, despite only a small perturbation of the
control points

A common technique for visualising implicit curves is to shade regions of
the plane according to the sign of the implicit polynomial in those regions. For
example, we can shade the region W D f.x; y/ W q.x; y/ � 0g in white, and
G D f.x; y/ W q.x; y/ > 0g D W c in grey (e.g., Fig. 2.6). However, such a
method has some disadvantages in practice. Figure 2.6 shows two cubic Bézier
curves rendered with such a method. The control points of these curves lie very close
to each other, and yet the curve has flipped orientation. The reason for the change
of orientation is that the curve has ‘passed through’ a conic section (both curves
are strictly cubic, but they lie very close to a conic section).6 This is not an artifact
of the specific algorithm; it is in the nature of the implicit representation of cubic
curves. This is necessarily true since it is also possible to transform between the
two curves smoothly, without passing through the conic. This example highlights
the unstable nature of cubic curves near conic sections. In [25], Loop and Blinn
overcome such problems by adding a test to check that the ‘inside’ of the curve
always lies to the right of the curve, in the direction of increasing parameter. We
describe here an alternative technique that also solves other problems with unwanted
self-intersections.

In addition to the implicit polynomial q; [4] gives explicit definitions of two
lines, S1 and S2 that intersect each other at the double point, and intersect the curve
at c0 and c3 respectively. As opposed to the ‘inside/outside’ approach, we propose
defining the regions as follows:

W D f.x; y/ W S1.x; y/q.x; y/ � 0 OR S1.x; y/S2.x; y/ > 0g; G D W c:

Using these definitions gives a smooth representation of the implicit curve, with
no unwanted flips near conics. In addition, if an unwanted self-intersection occurs,

6The left figure has an acnode at .1; 100/; and the right figure has a crunode at .1;�100/:
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Fig. 2.7 An example of rendering a given cubic Bézier curve with the inside/outside method (left)
and the proposed method (right). Note that no rootfinding is required. In the image to the right,
it may be desirable to colour the triangle bounded by c0 , c3 and the singularity in grey, but this is
omitted for clarity

this method will automatically visually eliminate it (see Fig. 2.7). In previous
algorithms, this has been achieved by subdividing the curves at the parameter values
of the singularity [25, 30].

In a similar vein to the rendering of curves, the presence of the GPU has opened
new doors to surface rendering in the implicit form [26,31]. However, real-time ray
tracing of implicit surfaces is quite severely restricted by the implicit degree and
is currently only feasible for degrees approximately �12: Since a general bicubic
parametric patch has implicit degree 18, the potential for exact methods appears to
be limited.

The methods for approximate implicitisation presented earlier in this chapter
have the potential to be coupled with implicit surface ray tracing methods. This
would give the benefits of both the geometric control by manipulating the control
polygon, and the high quality rendering that ray tracing produces. However, several
challenges would need to be resolved.

An inherent problem with the implicit representation is the presence of extra-
neous branches. These branches define areas of the curve or surface that are not
part of the region of interest. Although approximation has the potential to remove
some extraneous branches, they are also a common occurrence in approximate
implicitisation. One method for removing branches is to form linear combinations
of several good approximations to the surface. When performing the algorithm for
approximate implicitisation for a given degree m, we obtain a matrix (the right
singular matrix of the SVD), that defines a basis for the space of polynomials of total
degree m. The space is partitioned in such a way that the approximations (in the form
of singular vectors), are ordered in quality by their corresponding singular values.
If vmin and vmin�1 refer to the singular vectors corresponding to the two smallest
singular values, we can explore the linear space f�vmin C .1 � �/vmin�1; � 2 Rg for
an approximation in which extra branches are not present. If there are more good
approximations, more dimensions can be added to the linear space. In particular,
the orthogonal basis methods introduced in [6] generally exhibit a larger family
of good approximations than the original method [13]. However, since criteria for
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when unwanted branches occur are hard to determine, it is difficult to automate
this process. Moreover, though likely, it is not guaranteed that the linear space will
contain a solution free from extra branches.

Defining suitable boundaries in which to render is another challenge that is more
difficult to overcome for surfaces than curves. For surfaces, a 3D domain must be
chosen for rendering. In certain cases, it may suffice to define the surface to lie
within the 3D box that is limited by the upper and lower bounds of the control
points, in a Cartesian system. However, this is not the case in general; the four
boundary curves of a general bicubic patch can define any cubic space curve.
Moreover, these boundary curves do not always define the silhouette of the surface.
The method in [7] for computing envelopes, is related to the problem of finding
silhouettes. Utilising this for the case of rendering may be a direction for future
research, although performance would be a major obstacle with current hardware
and implementations.

2.5.3 Robotics

In [7] an extension to the method for approximate implicitisation of envelope curves
first published in [32] is proposed. Envelope curves have a variety of applications in
robotics, including defining boundaries, collision detection and gearing. Envelope
implicitisation is also interesting from a theoretical point of view, in giving an
explicit definition to the curve.

In [32] a method for piecewise implicit approximation of envelope curves
is presented along with several examples. One reason for choosing piecewise
approximation is that the method becomes very computationally expensive for all
but the lowest degrees. The new implementation in [7] allows faster approximations,
thus in this section we present examples of higher degree implicitisations, as
opposed to piecewise approximations.

In Fig. 2.8 we show the method applied to two different families of curves, both
of which are implicitised at degree 6. The first, which is a quadratic family of circles
of variable radius, has the homogeneous definition

p.s; t/ D
2X

iD0

4X

jD0

.xij; yij; wij/B
2
i .s/B4

j .t/;

where

.xij/
.2;4/

i;jD.0;0/ D
0

@
1=3 �1=25 1=9 1=25 1=3

1=3 �9=100 1=9 9=100 1=3

2=3 �7=50 2=9 7=50 2=3

1

A ;
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ba

Fig. 2.8 The envelope curves defined by the families of curves given in Sect. 2.5.3 and computed
using the techniques of [7]. The implicit representation has degree 6 in both cases

.yij/
.2;4/

i;jD.0;0/ D
0

@
0 0 4=75 0 0

1 0 34=75 0 1

0 0 14=75 0 0

1

A ;

.wij/
.2;4/

i;jD.0;0/ D
0

@
1 0 1=3 0 1

1 0 1=3 0 1

1 0 1=3 0 1

1

A :

The seemingly higher degree in the t-parameter direction is because the degree has
been raised in order to obtain a better parametrisation of the circles. The family
is really biquadratic in nature. For the implicit degree of the envelope curve we
take m D 6: However, envelope implicitisation using this method also requires a
choice of bidegree for the coupling function �; which we denote by .k1; k2/: In
order to obtain good results for this example, we require k1 D 10 and k2 D 16:

This particular choice of bidegree .k1; k2/; is discussed in more detail in [7]. The
necessity of using such high degrees makes the algorithm rather slow, but the
example shows that accurate implicitisations of moderately high degree are possible.
Also, notice that the envelope function, h.s; t/; has three branches within the
region of interest. Thus, attempting to implicitise the entire envelope with a single
polynomial is a relatively complicated problem. If a piecewise implementation
is used, these branches would normally be considered separately. This example
is generated by a medial axis transform of the type which appear commonly in
robotics. Of course, in this example, a square root parametrisation of the envelope
curve is possible, thus less computationally intensive methods could be used by
generating point data on the curve.

The second example is a quadratic family of parabolas, defined by



2 Numerical Methods for Implicitisation and Their Applications 35

.xij/
.2;4/

i;jD.0;0/ D
0

@
1=3 �1=25 1=9 1=25 1=3

1=3 �9=100 1=9 9=100 1=3

2=3 �7=50 2=9 7=50 2=3

1

A ;

.yij/
.2;4/

i;jD.0;0/ D
0

@
0 0 4=75 0 0

1 0 34=75 0 1

0 0 14=75 0 0

1

A ;

with the weight function w.s; t/ � 1:

Using a single polynomial implicit representation of the envelope rather than
a piecewise approximation can be somewhat advantageous. Since we only need a
single polynomial for the entire region of interest, there are none of the compli-
cations of defining 2D regions for the pieces. In addition, for higher degrees, the
approximation can be expected to be somewhat better, due to the high convergence
rates computed in [7].
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Chapter 3
Sparse Implicitization via Interpolation

Ioannis Z. Emiris, Tatjana Kalinka, and Christos Konaxis

3.1 Introduction

Implicitization is the process of changing the representation of a geometric object
from parametric to algebraic, or implicit. It is an important operation in Algebraic
Geometry with applications in Computer Aided Design (CAD) and Geometric Mod-
eling. There have been numerous approaches, including those based on Gröbner
bases [2, 6, 19], resultants [4, 22], residues [3], moving lines and surfaces [23], and
�-bases [8].

Our approach follows the standard method of interpolating the unknown coef-
ficients of the implicit polynomial given a superset of its monomials. It can be
applied to planar curves, surfaces, or hypersurfaces of any dimension, given by a
polynomial, rational or trigonometric parameterization, including those with base
points. It is well known that base points raise important issues for certain methods.
Our method has its limits: in the case of trigonometric parameterizations they have
to be convertible to rational functions and the support prediction step requires that
geometric objects have to be presented in the monomial basis. On the upside,
we have employed our approach to parameterizations in the Bernstein basis by
converting them to the monomial basis, see Sect. 3.3.2.

The main ingredient of our method is the Newton polytope of the implicit
equation, or implicit polytope.

Definition 3.1 Given a polynomial f D P
a cata 2 RŒt1; : : : ; tn�, ta D

t
a1

1 	 	 	 tan
n ; a 2 N

n; ca 2 R; its support is the set fa 2 N
n W ca ¤ 0g, where

N D f0; 1; : : :g; its Newton polytope N.f / is the convex hull of its support.
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There are several methods for computing the implicit polytope, such as those
based on tropical geometry, or mixed fiber polytopes, see e.g. [9,16,28]. In this work
the implicit polytope is computed from the Newton polytope of the sparse (or toric)
resultant, or resultant polytope, of polynomials defined by the parametric equations
[11–13]. Under certain genericity assumptions, the implicit polytope coincides with
a projection of the resultant polytope, see [14, 15]. The rest of our approach does
not depend on the method used to compute the implicit polytope. In fact, [28, sec.4]
states that

Knowing the Newton polytopes reduces computing the [implicit] equation to numerical
linear algebra. The numerical mathematics of this problem is interesting and challenging
[: : :]

The set of lattice points contained in the implicit polytope form a superset of the
support of the implicit equation, or implicit support. This predicted support is used
to build a numeric matrix, whose kernel is, ideally, 1-dimensional, thus yielding (up
to a nonzero scalar multiple) the coefficients corresponding to the predicted implicit
support. This is a standard case of sparse interpolation of the polynomial from its
values. When dealing with hypersurfaces of high dimension, or when the support
contains a large number of lattice points, then exact solving is expensive. Since
the kernel can be computed numerically, our approach also yields an approximate
sparse implicitization method.

The kernel of the numerical matrix may be of high dimension. We address this
situation by presenting techniques that alleviate this phenomenon. More formally,
we relate it to the geometry of the predicted support, which is a superset of the true
implicit support. Another reason for obtaining a high-dimensional kernel is that the
numeric evaluation of the support monomials may not be sufficiently generic.

It is possible to apply our method to a more general problem, namely to comput-
ing the discriminant of a multivariate polynomial, which is an important question
with several geometric applications. The vanishing of the discriminant characterizes
the existence of multiple roots of the given polynomial. This is a hard computation,
since explicit formulas only exist for low-degree univariate polynomials. In general,
one can reduce discriminant computation to computing the resultant of a rather
large system, comprised of the polynomial and its partial derivatives, but this is
inefficient. Instead, we reduce discriminant computation to sparse implicitization,
thus obtaining an output-sensitive algorithm, whose complexity depends on the
size of the discriminant’s Newton polytope, see [15] for details. Moreover, this
technique can be used to compute discriminants of well-constrained systems as well
as resultants because the latter can be viewed as a special case of discriminants.

This chapter is organized as follows: Sect. 3.2 defines basic concepts, overviews
existing work and sketches the framework of sparse implicitization. Section 3.3
presents our implicitization algorithm and its implementation, discusses the case
of higher dimensional kernels and applications to Bézier and Non-uniform rational
B-spline (NURBS) curves. We conclude in section “Conclusion and Future Work”
and provide some directions for future work.
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3.2 Implicitization Reduced to Elimination

In this section we describe how elimination theory, and in particular sparse
elimination theory, can be used in implicitization by providing the implicit polytope,
or a polytope that contains it.

Let us describe the problem of implicitization formally. A parameterization of a
geometric object can be described by a set of parametric functions:

x0 D f0.t/; : : : ; xn D fn.t/; t WD .t1; t2; : : : ; tn/; (3.1)

where t is the vector of parameters and f WD .f0; : : : ; fn/ is a vector of coordinate
functions (continuous functions, polynomial, rational, or trigonometric, defined on
some product ˝ WD ˝1 � 	 	 	 � ˝n, of one-dimensional intervals ˝i , of values
of t1; : : : ; tn. We assume that trigonometric parameterizations may be converted to
rational functions using the standard half-angle transformation

sin � D 2 tan �=2

1 C tan2 �=2
I cos � D 1 � tan2 �=2

1 C tan2 �=2
:

The implicitization problem asks for the smallest algebraic variety containing
the closure of the image of the parametric map f W R

n ! R
nC1 W t 7! f .t/.

This image is contained in the variety defined by the ideal of all polynomials p s.t.
p.f0.t/; : : : ; fn.t// D 0; for all t in ˝: We restrict ourselves to the case when
this is a principal ideal, and we wish to compute its unique (up to scalar multiple)
defining polynomial

p.x0; : : : ; xn/ D 0; (3.2)

given its Newton polytope, or a polytope that contains it. We can regard the variety
in question as the projection of the graph of the map f to the last nC1 coordinates.
If f is polynomial, implicitization is reduced to eliminating t from the polynomial
system

Fi WD xi � fi .t/ 2 .RŒxi �/Œt �; i D 0; : : : ; n;

seen as polynomials in t with coefficients which are functions of the xi . This is also
the case for rational parameterizations

xi D fi .t/

gi .t/
; i D 0; : : : ; n; (3.3)

which can be represented as polynomials

Fi WD xi gi .t/ � fi .t/ 2 .RŒxi �/Œt �; i D 0; : : : ; n; (3.4)
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where we have to take into account that the gi .t/ cannot vanish by adding the
following polynomial to the system FnC1 D 1 � yg0.t/ 	 	 	 gn.t/, where y is a new
variable. If one omits FnC1, the generator of the corresponding (principal) ideal may
be a multiple of the implicit equation. Then the extraneous factor corresponds to the
gi . Eliminating t; y may be done by taking the resultant of the polynomials in (3.4).

Let Ai � Z
n; i D 0; : : : ; n C 1, be the supports of the polynomials Fi and

consider the generic polynomials

F 00; : : : ; F 0n; F 0nC1 (3.5)

with the same supports Ai and symbolic coefficients cij .

Definition 3.2 The sparse resultant Res.F 00; : : : ; F 0nC1/ is a polynomial in the cij

with integer coefficients, namely

R 2 ZŒcij W i D 0; : : : ; n C 1; j D 1; : : : ; jAi j�;

which vanishes if and only if the system F 00 D F 01 D 	 	 	 D F 0nC1 D 0 has a
common root in a specific variety. This variety is the projective variety P

nC1 over
the algebraic closure of the coefficient field in the case of projective (or classical)
resultants, or the toric variety defined by the Ai ’s.

The sparse resultant is unique up to sign.
The theory of the sparse resultant can be used to derive degree bounds for the

implicit equation. For the case where the denominators of the parameterization are
the same we have the following.

Proposition 3.1 Consider the rational parameterization

xi D fi .t/

g.t/
; i D 0; : : : ; n; t D .t1; t2; : : : ; tn/: (3.6)

Let V � C
nC1 be the Zariski closure of the image of the parameterization and

define polynomials Fi WD xi g.t/ � fi .t/ 2 .CŒxi �/Œt �; i D 0; : : : ; n, with supports
Ai . Then, the total degree of the implicit polynomial is bounded by nŠ times the
volume of the convex hull of A0 [ 	 	 	 [ An. The degree of the implicit polynomial in
each xj ; j 2 f0; : : : ; ng, is bounded by the mixed volume of the Fi ; i ¤ j , seen as
polynomials in t .

Proof For simplicity we shall describe our arguments in the affine space instead of
the projective space.

The degree of V is obtained as the number of points in the intersection of V

with a generic linear subspace of dimension equal to codimension.V / D 1. Let
Hi .x0; : : : ; xn/ D ai;0x0 C 	 	 	 C ai;nxn C ai;nC1 D 0; i D 1; : : : ; n, be n generic
affine hyperplanes. Substituting the parametric expressions in (3.6) to the Hi and
clearing the denominators, we obtain a system of n non-linear equations in the
parameters t :
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ai;0f0.t/ C 	 	 	 C ai;nfn.t/ C ai;nC1g.t/ D 0; i D 1; : : : ; n: (3.7)

The number of common roots of the system (3.7), hence, the number of intersection
points of V with a generic linear subspace of dimension 1, is bounded by the mixed
volume [7], of the Newton polytopes of the polynomials in (3.7). The support of
each polynomial in (3.7) is the union of the supports Ai of the polynomials Fi ; i D
0; : : : ; n. Hence, every polynomial has the same Newton polytope and the mixed
volume of the system equals nŠ times the volume of this Newton polytope.

Similarly, to bound the degree of the implicit equation in each xj ; j D 0; : : : ; n,
intersect V with n lines xi D ki ; i D 0; : : : ; j � 1; j C 1; : : : ; n, where ki is a
generic constant. Substituting the parametric expressions in (3.6) to each xi ; i ¤ j ,
we obtain a system of n equations in the n variables t :

Fi D ki g.t/ � fi .t/ D 0; i D 0; : : : ; j � 1; j C 1; : : : ; n;

each having support Ai . Then, the mixed volume MV.A0; : : : ; Aj�1; AjC1; : : : ; An/

of the system bounds the degree of the implicit equation in the variable xj .

Our approach refines the above information since it is based on the Newton
polytope of the implicit equation rather than degree bounds. In order to exploit
sparseness in the implicit polynomial, the problem of computing the Newton
polytope of a rational hypersurface in the framework of sparse elimination theory
was first posed in [27] for generic Laurent polynomial parameterizations.

The implicit equation of the parametric hypersurface defined in (3.4) equals the
resultant Res.F0; : : : ; FnC1/, provided that the latter does not vanish identically.
Thus, the implicit equation can be obtained from Res.F 00; : : : ; F 0nC1/ by specializing
the symbolic coefficients of the F 0i ’s to the actual coefficients of the Fi ’s, provided
that this specialization is generic enough. In this case, the implicit polytope equals
the resultant polytope projected to the space of the implicit variables, i.e. the Newton
polytope of the specialized resultant, up to some translation. When this condition
fails for the given specialization of the cij ’s, the support of the specialized resultant
is a superset of the support of the actual implicit polynomial modulo a translation.
This follows from the fact that the method computes the same resultant polytope as
the tropical approach, where the latter is specified in [26], see Proposition 3.2. Note
that there is no exception even in the presence of base points.

Algorithms based on tropical geometry have been offered in [10, 26, 28]. This
method computes the abstract tropical variety of a hypersurface parametrized by
generic Laurent polynomials in any number of variables, thus yielding its implicit
support. For non-generic parameterizations of rational curves, the implicit polygon
is predicted. In [21], the authors describe efficient algorithms implemented in the
GFan library for the computation of Newton polytopes of specialized resultants,
which may then be applied to predict the implicit polytope.

Proposition 3.2 ([26, Prop.5.3]) Let f0; : : : ; fn 2 CŒt˙1
1 ; : : : ; t˙1

n � be any Laurent
polynomials whose ideal I of algebraic relations is principal, say I D hpi, and
let Pi � R

n be the Newton polytope of fi . Then the resultant polytope which is
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constructed combinatorially from P0; : : : ; Pn contains a translate of the Newton
polytope of p.

A direct consequence is that our method produces the precise implicit polytope
when the input is sufficiently generic, otherwise it gives a polytope that contains
the implicit polytope. Our method relies on sparse elimination theory: the implicit
polytope is obtained from the projection of the resultant polytope of the polynomials
in (3.5) defined by the specialization of their symbolic coefficients to those of the
polynomials in (3.4).

In the case of curves, the implicit polytope is directly determined in [11]. In
higher dimensions we use the algorithm developed in [13]. This is an incremental
algorithm to compute the resultant polytope, or its orthogonal projection along a
given direction. By the Cayley Trick [20], there exists a bijection from the set
of regular triangulations of the Cayley pointset C of the Newton polytopes of the
polynomials F 0i , to the set M of regular tight mixed subdivisions of the Minkowski
sum of these Newton polytopes. In [25] a surjection is established from the set M
to the the vertices of the resultant polytope. Combining these results, one obtains a
surjection from C to the vertices of the resultant polytope. The algorithm exploits
this surjection and computes one triangulation of C per vertex and one per facet of
projection of the resultant polytope. It is implemented in the package ResPol [17].
The algorithm exactly computes vertex- and halfspace-representations of the target
polytope and it is output-sensitive. It is efficient for inputs relevant to implicitization:
it computes the polytope of surface equations within 1 s, assuming there are less than
100 terms in the parametric polynomials, which includes all common instances in
geometric modeling.

3.3 Algorithm and Implementation

In this section we present our implicitization algorithm and its implementation. We
discuss the cases of higher dimensional kernels and the applicability of our method
to Bézier and NURBS curves. We also compare our method against other methods,
such as the Gröbner bases method and Maple’s native routines.

The main steps of our algorithm are the following:

Algorithm 1

Input: Polynomial or rational parameterization xi D fi .t/; i D 0; : : : ; n.
Output: Implicit polynomial p.x0; : : : ; xn/ in the monomial basis in N

nC1.

Step 1: Determine (a polytope containing) the implicit polytope.
Step 2: Compute all lattice points S � N

nC1 in the polytope.
Step 3: Repeat 
 jS j times: Select value � for t , evaluate xi .�/; i D 0; : : : ; n,
thus evaluating each monomial with exponent in S . This yields a matrix M .
Step 4: Given the matrix M , solve M Ep D 0 for kernel Ep.
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Step 5: Compute the greatest common divisor (GCD) of Ep>i 	 Em; i D
1; : : : ; corank.M /, where Em is the vector of monomials with exponent in S

and Epi are the kernel vectors of M .
Step 6: Return the primitive part of the computed GCD.

Let us describe in more detail the construction of matrix M in Step 3 assum-
ing that the parameterization is rational. Let S WD fs1; : : : ; sjS jg; each sj D
.sj 0; : : : ; sjn/ is an exponent of a (potential) monomial mj WD xsj D x

sj 0

0 	 	 	 xsjn
n

of the implicit polynomial, where xi D fi .t/=gi .t/. We evaluate mj at some
�k; k D 1; : : : ; �, avoiding values that make the denominators of the parametric

expressions close to 0, and obtain mj jtD�k
WD Q

i

�
fi .�k/

gi .�k/

�sj i

. Thus, we build an

� � jS j; � 
 jS j, matrix M with rows indexed by the �k and columns indexed by
the mj :

M D

2

6
6
4

m1jtD�1 	 	 	 mjS jjtD�1

::: 	 	 	 :::

m1jtD�� 	 	 	 mjS jjtD��

3

7
7
5 :

We compute the kernel of the matrix M either symbolically or numerically.
For exact computations we prefer Maple, while for the numerical ones SAGE
using Singular Value Decomposition (SVD). In our Maple implementation the
computation of the lattice points in Step 2 is done, for up to 4 dimensions,
by routines that utilize the Maple package convex [18], whereas our SAGE
implementation uses its built-in functions for the same task. For higher dimensions
we have employed the software package Normaliz.

When the kernel computation in Step 4 is done numerically, we build a
rectangular overconstrained matrix M , by evaluating the monomials in S at more
than jS j values, in order to increase the numerical stability.

Experiments with curves and surfaces in the monomial basis, as well as in the
Bernstein basis, show that when building the matrix M , it is important to choose �

values that are suitable for the specific instance.
Choosing � for implicitization of classical algebraic curves and surfaces, we

have experimented with random integers in the range ��2 : : : �2, random rational
numbers, complex �-th roots of unity and random complex numbers modulo 1.
Random integers offer the most numerically stable results, however with large
matrices they result in fast growth of matrix entries. Random rational values have
proved to be unreliable when implicitizing classical algebraic curves and surfaces,
although complex values are numerically stable. The case of curves and surfaces in
the Bernstein basis is treated in Sect. 3.3.2.

By the construction of the matrix M using values � that correspond to points on
the parametric surface, we have the following:

Lemma 3.1 Any polynomial in the basis of monomials indexing M , with coefficient
vector in the kernel of M , is a multiple of the implicit polynomial p.
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3.3.1 Multidimensional Kernel

In this subsection we address the case of high dimensional kernels, we relate this
situation to the geometry of the predicted support and propose techniques that
alleviate this phenomenon.

Let Q; P be the predicted and actual implicit polytopes respectively. When Q is
significantly larger than P , we obtain a matrix M of corank > 1, see Theorem 3.1
below.

Example 3.1 Consider the paraboloid x2
0 C x2

1 � x2 D 0. If its parameterization is

x0 D u; x1 D v; x2 D u2 C v2;

then we define the polynomials F0 D x0 � u; F1 D x1 � v; F2 D x2 � u2 � v2; with
supports A0 D f.1; 0/; .0; 0/g; A1 D f.0; 1/; .0; 0/g; A2 D f.2; 0/; .0; 2/; .0; 0/g.
The Cayley pointset of these supports is the set

C Df.1; 0; 0; 0/; .0; 0; 0; 0/; .0; 1; 1; 0/; .0; 0; 1; 0/; .2; 0; 0; 1/;

.0; 2; 0; 1/; .0; 0; 0; 1/g:

The predicted implicit polytope Q has vertices .2; 0; 0/; .0; 2; 0/; .0; 0; 1/ which
are obtained from some triangulations of the pointest C (see end of Sect. 3.2).
Then our method yields the actual implicit equation. If its parametrization is
x0 D u cos v; x1 D u sin v; x2 D u2, which can be represented as rational functions

x0 D t � ts2

1 C s2
; x1 D 2ts

1 C s2
; x2 D t2;

then we define polynomials F0 D x0.1 C s2/ � t C ts2; F1 D x1.1 C s2/ �
2ts; F2 D x2 � t2 with supports A0 D f.0; 0/; .0; 2/; .1; 0/; .1; 2/g; A1 D
f.0; 0/; .0; 2/; .1; 1/g, and A2 D f.0; 0/; .2; 0/g. Their Cayley pointest is C D
f.0; 0; 0; 0/; .0; 2; 0; 0/, .1; 0; 0; 0/, .1; 2; 0; 0/, .0; 0; 1; 0/; .0; 2; 1; 0/; .1; 1; 1; 0/,
.0; 0; 0; 1/; .2; 0; 0; 1/g; and Q has vertices .4; 0; 0/; .0; 4; 0/; .0; 0; 2/. The matrix
M has corank D 4 and all the polynomials corresponding to the kernel vectors are
multiples of the implicit equation: g1 D .x2 C x2

0 � x2
1/.�x2 C x2

0 C x2
1/; g2 D

x0x1.�x2 C x2
0 C x2

1/; g3 D x2
1.�x2 C x2

0 C x2
1/; g4 D x2.�x2 C x2

0 C x2
1/.

The following theorem establishes the relation between the dimension of the
kernel of M and the accuracy of the predicted support. It remains valid even in the
presence of base points. In fact, it also accounts for them, since then P is expected
to be much smaller than Q.

Theorem 3.1 Let P D N.p/ be the implicit polytope and Q the predicted
polytope. Then, assuming M has been built using sufficiently generic evaluation
points, the dimension of its kernel equals
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#fm 2 Z
n W m C P � Qg D #fm 2 Z

n W N.xm 	 p/ � Qg:

Proof By Lemma 3.1, the kernel of M consists of the coefficient vectors Ec of all
polynomials of the form fp, where N.fp/ � Q, or, equivalently, N.f /CN.p/ � Q.

Now, assume that there are precisely r elements a1; : : : ; ar 2 Z
n such that N.xai 	

p/ � Q and let gi D xai p; i D 1; : : : ; r . Then the coefficient vector Eci of gi lies in
the kernel of M because gi vanishes on all evaluation points mi.�i /; i D 1; : : : ; k,
used for constructing M , since p vanishes on these points. Moreover, the vectors
Eci in the set fEc1; : : : ; Ecrg are linearly independent. Every coefficient vector Ec of a
polynomial of the form fp, where N.fp/ � Q, can be written as a linear combination
of the vectors Eci , hence corank.M / D r . Since P � Q, it follows that r 
 1, hence
the nullspace of M has dimension 
 1.

Corollary 3.1 Let M be the matrix from Algorithm 1, built with sufficiently generic
evaluation points, and suppose the specialization of the corresponding polynomials
to the parametric equations is sufficiently generic. Let fv1; : : : ; vkg be a basis
of the kernel of M and g1; : : : ; gk be the corresponding polynomials (Step 4 of
Algorithm 1). Then the GCD of g1; : : : ; gk equals the implicit equation.

In practice the actual implicit equation can usually be found among the poly-
nomials corresponding to the kernel vectors, or it can be obtained as the GCD of
� corank.M / (at least two) such polynomials, or via multivariate factoring of one
polynomial corresponding to a kernel vector. Another approach to the problem is
reduction of the predicted Newton polytope by discarding some of its vertices or by
taking offsets. This allows to obtain a matrix of lesser corank or even of corank 1,
and it can also be used for approximating the implicit equation.

3.3.2 Bernstein Basis

Our approach to implicitization relies on the support prediction method that operates
in the monomial basis. However, current CAGD systems widely use parametric
representations in the Bernstein basis where the data is often given as floating point
numbers which prohibits exact computations.

To expand the applicability of our method, we experimented in approximating
the implicit equation of such curves and surfaces. For practical purposes, such an
approximation is expected to be of the lowest possible degree while reasonably close
to the parametric curve or surface in the region of interest of the parameterization.
In the process, the parameterization has to be converted to the monomial basis
which may cause precision loss. To obtain a smaller predicted implicit polytope, we
apply “filtering”, i.e. we remove all monomials whose coefficients’ absolute value
is smaller than a threshold depending on the input by some educated guess (e.g.
<10�2). Finally, when building the matrix M we have to ensure that the evaluation
points lie within the region of interest of the parameterization.
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Table 3.1 Implicitization of Bézier and NURBS curves. Runtimes are given in seconds

Curve Degree Exact solving SVD SVD SVD

evaluation rationals rationals Chebyshev roots of

method nodes unity

Bézier curve 4 0.16 0.12 0.13 0.21

Bézier curve 5 0.29 0.16 0.19 0.33

Bézier curve 6 0.47 0.16 0.21 0.53

Bézier curve 8 5.84 0.46 0.49 1.1

NURBS curve 3 – 0.05 0.05 0.09

NURBS curve 4 – 0.09 0.1 0.22

NURBS curve 7 – 0.43 0.36 0.93

Experiments performed on an Intel c�Core2 Duo CPU, 2.20 GHz, 3Gb memory, SAGE 5.4

Table 3.1 contains Bézier curves of various degree which have integer coeffi-
cients when expressed in the monomial basis and NURBS curves from the package
of industrial examples kindly provided by the authors of [24]. The NURBS curves
have floating point coefficients, thus we are restricted to numerical methods.

In these experiments we have used evaluation by rational numbers, random
or uniformly distributed, and complex roots of unity. Rational numbers provided
both numerical stable and fast results. Note that for classical algebraic curves and
surfaces evaluation by rational numbers led to a loss of numerical stability.

We have also tried evaluation with Chebyshev nodes in Œ0; 1�:

� D 1

2
C 1

2
cos

�
2i � 1

2n
	

�

; i D 1; : : : ; n;

which allow to minimize the approximation error in numerical computations [1].
Complex roots of unity gave the slowest timings and introduced complex coeffi-
cients into the resulting approximate implicit equation.

3.3.3 Comparisons to Other Methods

We compare our Maple implementation against (a) Maple’s native function
Implicitize() which employs integration over each parameter t1; : : : ; tn, of the
matrix obtained from Em Em> after substitution of the variables xi by the parametric
expressions [5] (recall that Em is a vector of monomials whose exponents form
a superset of the support of the implicit equation), and (b) implicitization using
Gröbner bases in Maple. Results are shown in Table 3.2. A highly effective
linear solving function implemented in Maple (LinearSolve) results in exact
computations being faster than the numerical ones.
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Table 3.2 Comparison of our method (exact and numerical) to Maple’s function Implicitize()
and Gröbner bases. Runtimes are given in seconds

Surface Degree LinearSolve SVD Implicitize() Gröbner

Plücker’s conoid 3 0.016 0.063 46.07 0.031

Plücker’s conoid 5 0.016 0.063 85.43 0.046

Plücker’s conoid 7 0.031 0.141 359.49 0.078

Plücker’s conoid 9 0.046 0.202 695.65 0.078

Plücker’s conoid 11 0.078 0.375 >2,000 0.141

Experiments performed on an Intel c�Core2 Duo CPU, 2.20 GHz, 3 Gb memory, Maple 14

Fig. 3.1 Plücker’s conoid surfaces used in Table 3.2. From the left to right: degree 3, 5, 7, 9, 11

The input consists of a family of classical algebraic surfaces, the so-called
Plücker’s conoid (Fig. 3.1): x0 D t; x1 D s; x2 D Re..tCi �s/a/

j.tCi �s/aj , where i is the
imaginary unit and a 2 N. The surfaces have a base point at t D s D 0. By
choosing even values for the parameter a, we obtain rational parameterizations of
the surfaces with the desired total degree.

The implicit polytope has been computed using ResPol. Timings shown in
Table 3.2 concern only the interpolation part of the algorithm.

Of the three methods Implicitize() is the slowest, however the method has fewer
restrictions on the parameterization, accepting non-rational representations. Our
method is faster than Implicitize() and competitive to Gröbner bases.

This becomes more apparent as the degree and dimension grow: the ranunculoid
curve (degree 12) was computed in 1.3 s by our method and in 7.3 s using
Gröbner bases. For the standard benchmark of the bicubic surface (degree 18) the
corresponding timings are 42 min and over 4 h, respectively.

Conclusion and Future Work
We have developed an algorithm for computing implicit equations that
combines linear algebra with promising support prediction methods. The
method applies to polynomial, rational and trigonometric parameterizations
of classical algebraic equations of curves and (hyper)surfaces. Moreover, it
can be used for implicitization of geometric objects represented in NURBS
form, after converting them to the monomial basis. The method works even
in the presence of base points.

(continued)
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Its efficiency can be improved on the support prediction level, by taking
offsets of the predicted polytope, which reduces the size of the matrix and
its corank, and on the interpolation level, by taking advantage of the special
structure of the constructed matrices. The method may also be used to attack
the problem of implicitizing space curves, in which case the curve is defined
as the intersection of the surfaces obtained by the kernel vectors. This will
require the development of algorithms that compute the predicted implicit
polytope from the Newton polytope of the Chow form of polynomials defined
from the parameterization.
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Chapter 4
The Intersection Problems of Parametric Curves
and Surfaces by Means of Matrix-Based Implicit
Representations

Thang Luu Ba

4.1 Introduction

Rational algebraic curves and surfaces can be described in different ways, the most
common being the parametric and implicit representations. Parametric represen-
tations describe the geometric object as the closed image of a rational map and
implicit representations describe it as the zero set of polynomial equations. Both
representations have a wide range of applications in Computer Aided Geometric
Design and Geometric Modeling. A parametric representation is much convenient
for drawing a surface but less appropriate for checking if a point lies on a surface
whereas the converse holds for the implicit representation.

The matrix-based implicit representation of parametric curves and parametric
surfaces has been addressed many times in literature (for example [6, 11, 21, 23]).
However, it has usually been by writing the implicit equation as the determinant of
a square matrix. The case of planar curves is particularly well known because one
always knows how to find such a simple square matrix. One can read the article
of T. W. Sederberg and S.R. Parry [24] who seemed to introduce this technique to
the problems intersection between plane curves for modeling geometric. The case
of parametric surfaces is especially much more difficult because the geometry of
their parameterizations becomes richer with the inevitable appearance of base points
(these are points where a parameterization is not well defined). In order to find a
square matrix whose determinant is an implicit equation, one must be restricted
to particular classes of parameterizations [6, 11, 16], which turns out to be very
restrictive in practice.
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In this paper, we show how, by releasing the constraint matrix square, we can
easily form an implicit matrix-based representation for a very general class of
parametric surfaces. The matrix in question is no longer square, but still allows
to characterize the surface: the cancellation of a determinant is here replaced here
by a drop in rank. In addition, treatment of intersection problems can be reduced
to linear algebra computations, allowing the use of robust tools and approximate
calculation, such as the singular value decomposition, calculating eigenvalues, and
generalized eigenvectors. Note that these implicit representation matrices can be
seen as a bridge between the parametric representation of a curve, surface and its
implicit representation.

This article covers a series of works [3–5,7,8,10], which led to the notion of the
implicit representation matrix of a parametric curve or a parametric surface, together
with the development of applications for intersection problems in geometric model-
ing [8, 9, 20]. Its content is part of the authour’s PhD thesis [19].

4.2 Matrix Based Implicit Representations of Parametric
Surfaces

4.2.1 Construction of Matrix Representations

Given a parametric rational surface, we briefly recall from [3, 10] how to build a
matrix that represents this surface in a sense that we will make explicit. So suppose
given a parameterization

P
2
R


�! P
3
R

.s W t W u/ 7! .f1 W f2 W f3 W f4/.s; t; u/

of a surface S such that gcd.f1; : : : ; f4/ 2 R n f0g: Set d WD deg.fi / 
 1, i D
1; 2; 3; 4; and denote by x; y; z; w the homogeneous coordinates of the projective
space P

3
R

. Notice that s; t; u are the homogeneous parameters of the surface S and
that an affine parameterization of S can be obtained by “inverting” one of these
parameters; for instance, setting s0 D s=u and t 0 D t=u we get the following affine
parameterization of S:

R
2 
�! R

3

.s0; t 0/ 7!
�

f1.s0; t 0; 1/

f4.s0; t 0; 1/
;

f2.s
0; t 0; 1/

f4.s0; t 0; 1/
;

f3.s0; t 0; 1/

f4.s0; t 0; 1/

�

The implicit equation of S is a homogeneous polynomial S.x; y; z; w/ 2
RŒx; y; z; w� of smallest degree such that S.f1; f2; f3; f4/ D 0 (observe that it
is defined up to multiplication by a nonzero element in R). It is well known that
the quantity deg.S/ deg.
/ is equal to d 2 minus the number of common roots of
f1; f2; f3; f4 in P

2
R

, that are called base points of the parameterization 
, counted
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with suitable multiplicities (see for instance [10, Theorem 2.5] for more details).
The notation deg.S/ stands for the degree of the surface S, which is nothing but the
degree of the implicit equation of S.

The notation deg.
/ stands for the degree of the parameterization 
 (co-restricted
to S) that, roughly speaking, measures the number of times the surface S is drawn by
the parameterization 
. More precisely, deg.
/ is equal to the number of pre-images
of a general point on S by the parameterization 
.

For every non-negative integer �, we build a matrix M.
/� as follows. Consider
the set L.
/� of polynomials of the form

a1.s; t; u/x C a2.s; t; u/y C a3.s; t; u/z C a4.s; t; u/w

such that

• ai .s; t; u/ 2 RŒs; t; u� is homogeneous of degree � for i D 1; : : : ; 4,
•
P4

iD1 ai .s; t; u/fi .s; t; u/ � 0 in RŒs; t; u�.

The set L.
/� has a natural structure of R-vector space of finite dimension
because each polynomial ai .s; t; u/ is homogeneous of degree � and that the set of
homogeneous polynomials of degree � in the variables s; t; u is an R-vector space of
dimension

�
�C2

2

�
with canonical basis the set of monomials fs�; s��1t; 	 	 	 ; u�g. So,

denote by L.1/; : : : ; L.n�/ a basis of the R-vector space L.
/� ; it can be computed
by solving a single linear system whose indeterminates are the coefficients of the
polynomials ai .s; t; u/, i D 1; 2; 3; 4. The matrix M.
/� is then by definition the
matrix of coefficients of L.1/; : : : ; L.n�/ as homogeneous polynomials of degree �

in the variables s; t; u. In other words, we have the equality of matrices:

�
s� s��1t 	 	 	 u�

	
M.
/� D �

L.1/ L.2/ 	 	 	 L.n�/
	

:

Notice that we have chosen for simplicity the monomial basis for the R-vector space
of homogeneous polynomials of degree � in s; t; u. However, any other choice, for
instance the Bernstein basis, can be made without affecting the result.

For every integer � 
 2d � 2, the matrix M.
/� is said to be a representation
matrix of 
 because it satisfies the following properties under the assumption that
the base points of 
, if any, form locally a complete intersection, which means that
at each base point, the ideal of polynomials .f1; f2; f3; f4/ can be generated by two
equations (see [10, Definition 4.8] for more details):

• The entries of M.
/� are linear forms in RŒx; y; z; w�.
• The matrix M.
/� has

�
�C2

2

�
rows (which is nothing but the dimension of the

R-vector space of homogeneous polynomials of degree � in three variables, here
s; t; u) and possesses at least as many columns as rows.

• The rank of M.
/� is
�

�C2
2

�
(the rank of M.
/� measures the independency of the

columns (and the rows) as linear combinations with coefficients in R).
• When specializing M.
/� at a given point P 2 P

3
R

, its rank drops if and only if P

belongs to S.
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• The greatest common divisor of the
�

�C2
2

�
-minors of M.
/� is equal to the implicit

equation of S raised to the power deg.
/.

From a computational point of view, the matrix M.
/� with the smallest possible
value of � has to be chosen. It is rarely a square matrix. Also, notice that the last
property given above is never used for computations; our aim is to keep the matrix
M.
/� as an implicit representation of S in place of its implicit equation.

There are many results that lead to enlarge the above family of matrices and
to make it available in other contexts. Since a detailed overview of these results
is not the main purpose of this paper, we just recall them shortly with appropriate
references to the literature:

• The hypothesis on the base points of 
 can be relaxed. If the base points are
locally almost a complete intersection, meaning that they are locally given by
three (and not two) equations, then the above family of matrices can still be
constructed and provide a matrix representation of the surface S plus a certain
product of hyperplanes that can be described from the parameterization 
. In
addition, the lower bound 2d � 2 for the integer � can be decreased. See [3, 10].

• In our setting, 
 parameterizes what is called a triangular Bézier patch. It turns
out that a similar family of matrices M.
/� can be built for parameterizations
of tensor product surfaces, and even for any parameterization whose parameter
space is a projective toric variety (triangular and tensor product surfaces are
particular cases of parameterizations whose parameter space is a projective toric
variety). We refer the interested reader to [2, 7].

• To build the matrices M.
/� we used what is called moving planes, that is to say
syzygies of the parameterization 
. It is actually possible to build another family
of matrices by taking into account moving quadrics, i.e. syzygies associated to
the square of the ideal generated by the parameterization of 
. In this way, we get
a family containing smaller matrices whose entries are either linear or quadratic
forms in RŒx; y; z; w�. In some sense, they generalize the matrices given in [11]
and [6]. See [4].

Example 4.1 The Steiner surface S of degree 2 parameterized by


1 W P2 ! P
3 W .s W t W u/ 7! .s2 C t2 C u2 W tu W st W su/

admits the matrix representation

M.x; y; z; w/ WD

0

B
B
B
B
B
B
B
@

�x 0 �y 0 �y y 0 z 0

y �y 0 w 0 �x �y 0 0

0 0 w 0 0 0 z 0 �x

w 0 0 �y 0 z 0 �y y

0 w 0 0 0 z 0 0 y

w 0 0 0 z 0 0 0 y

1

C
C
C
C
C
C
C
A

:



4 Intersection Problems of Parametric Curves and Surfaces 57

Example 4.2 Let S be the rational surface of degree 3 that is parametrized by


 W P2 ! P
3 W .s W t W u/ 7! .f1 W f2 W f3 W f4/

where

f1 D s3 C t2u; f2 D s2t C t2u; f3 D s3 C t3; f4 D s2u C t2u:

Then, a matrix representation of S is

0

B
B
B
B
B
B
B
@

0 0 0 w � y 0 0 z � x

w 0 0 x w � y 0 0

x � y � z 0 0 �z 0 w � y 0

0 w 0 0 x 0 �y

0 x � y � z w 0 �z x y C z � x

0 0 x � y � z 0 0 �z 0

1

C
C
C
C
C
C
C
A

4.2.2 Points on Surface and Inversion Problem

Suppose given a parameterization 
 of a parametric surface S and a point P in P
3.

Denote by M.
/� a matrix representation of 
 for some integer � 
 2d � 2. Since
its entries are linear forms in the variables x; y; z; w, one can evaluate M.
/� at P

and get a matrix with coefficients in the ground field R. Then, we have that

rank .M.
/�.P // <

 
� C 2

2

!

if and only if P 2 S:

This property answers the point-on curve problem.
If rankM.
/�.P / D rankM.
/� � 1 D �

�C2

2

� � 1 then P has a unique pre-
image .s0 W t0 W u0/ by 
 and moreover, this pre-image can be recovered from the

computation of a generator, say WP D .w0; : : : ; w.�C2
2 /�1

/ 2 R.�C2
2 /, of the kernel

of the transpose of M.
/�.P /. Indeed, if b0.s; t; u/; : : : ; b.�C2
2 /�1

.s; t; u/ is the basis

of RŒs; t; u�� that has been chosen to build M.
/� , then there exists � 2 R n f0g such
that

WP D �
�
b0.s0; t0; u0/; : : : ; b.�C2

2 /�1
.s0; t0; u0/

�
:

For instance, suppose that .b0.s; t; u/; : : : ; b.�C2
2 /�1

.s; t; u// D .si t j u��i�j , 0 �
i; j � �; i Cj � �/ (the usual monomial basis), then .s0 W t0 W u0/ D .w2 W w1 W w0/.
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Obviously, the inversion problems have been translated into compute kernel of
the transpose of M.
/�.P /, for which there exits numerically effective algorithms
like the Singular Value Decomposition.

We also point out that the points P 2 S such that rankM.
/�.P / D rankM.
/� �
1 D �

�C2
2

��1 are precisely the regular points on S: However, the conversion doesn’t
hold.

4.3 Curve/Surface Intersection

Suppose given a parametric surface S represented by a homogeneous and irreducible
implicit equation S.x; y; z; w/ D 0 in P

3
R

and a rational space curve C represented
by a parameterization


 W P1
R

! P
3
R

W .s W t/ 7! .x.s; t/ W y.s; t/ W z.s; t/ W w.s; t// (4.1)

where x.s; t/; y.s; t/; z.s; t/; w.s; t/ are homogeneous polynomials of the same
degree and without common factor in RŒs; t �.

A standard problem in nonlinear computational geometry is to determine the set
C\S � P

3
R

, especially when it is finite. One way to proceed, is to compute the roots
of the homogeneous polynomial

S.x.s; t/; y.s; t/; z.s; t/; w.s; t// (4.2)

because they are in correspondence with C \ S through the regular map 
. Observe
that (4.2) is identically zero if and only if C \ S is infinite, equivalently C � S (for
C is irreducible).

Assume that M.x; y; z; w/ is a matrix representation of the surface S, meaning a
representation of the polynomial S.x; y; z; w/. By replacing the variables x; y; z; w
by the homogeneous polynomials x.s; t/; y.s; t/; z.s; t/; w.s; t/ respectively, we get
the matrix

M.s; t/ D M.x.s; t/; y.s; t/; z.s; t/; w.s; t//:

Therefore, we have the following easy property: for every point .s0 W t0/ 2 P
1
R

the
rank of the matrix M.s0; t0/ drops if and only if the point .x.s0; t0/ W y.s0; t0/ W
z.s0; t0/ W w.s0; t0// belongs to the intersection locus C \ S.

It follows that points in C \ S associated to points .s W t/ such that s ¤ 0, are in
correspondence with the set of values t 2 R such that M.1; t/ drops of rank strictly
less than its row and column dimensions, i.e., the set of generalized eigenvalues of
M.1; t/ that this will be explained in detail in the next section. Now, we present a
technique from linear algebra which allows us to obtain the regular part of the pencil
matrices.
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4.3.1 Linearization of a Polynomial Matrix in the Monomial
Basis

We begin with some notation. Let A and B be two matrices of size m � n with
coefficients in R. We will call a generalized eigenvalue of A and B a value in the
set

�.A; B/ WD ft 2 R W rank.A � tB/ < minfm; ngg:

In the case m D n, the matrices A and B have n generalized eigenvalues if and
only if rank.B/ D n. If rank.B/ < n, then �.A; B/ can be finite, empty or infinite.
Moreover, if B is invertible then �.A; B/ D �.AB�1; I / D �.AB�1/, which is the
ordinary spectrum of AB�1.

Suppose given an m � n-matrix M.t/ D .ai;j .t// with polynomial entries
ai;j .t/ 2 RŒt �. It can be equivalently written as a polynomial in t with coefficients
m � n-matrices with entries in R: if d D maxi;j fdeg.ai;j .t//g then

M.t/ D Md td C Md�1t
d�1 C : : : C M0

where Mi 2 R
m�n.

The generalized companion matrices A; B of the matrix M.t/ are the matrices
with coefficients in R of size ..d � 1/m C n/ � dm that are given by

A D

0

B
B
B
B
B
@

0 Im : : : : : : 0

0 0 Im : : : 0
:::

:::
:::

:::
:::

0 0 : : : 0 Im

M t
0 M t

1 : : : : : : M t
d�1

1

C
C
C
C
C
A

; B D

0

B
B
B
B
B
@

Im 0 : : : : : : 0

0 Im 0 : : : 0
:::

:::
:::

:::
:::

0 0 : : : Im 0

0 0 : : : 0 �M t
d

1

C
C
C
C
C
A

where Im stands for the identity matrix of size m and M t
i stands for the transpose of

the matrix Mi . These companion matrices allow to linearize the polynomial matrix
M.t/ in the sense that there exists two unimodular matrices E.t/ et F.t/, i.e.,
invertible matrices with non-vanishing determinant independent of t , with entries
in RŒt � and of size dm and .d � 1/m C n respectively, such that

E.t/ .A � tB/ F.t/ D
 

tM.t/ 0

0 Im.d�1/

!

: (4.3)

Then, we have
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rank M.t/ drops , rank.A � tB/ drops:

We also refer the reader to [14, 20] for more details. We call t such that rank.A �
tB/ drops the generalized eigenvalues of the pencil of matrices A � tB. We thus
transformed the computation of generalized eigenvalues of the matrix polynomial
M.t/ into the computation of generalized eigenvalues of a pencil of matrices A �
tB. If the matrices A; B were two square matrices, then we could compute their
generalized eigenvalues by the QZ-algorithm [15]. Therefore, our next task is to
reduce the pencil A � tB into a square pencil that keeps the information we are
interested in.

4.3.2 Extracting the Regular Part of a Non-square Pencil
of Matrices

For any couple constant matrices A; B of size p � q such that A � tB is full rank,
there exist constant invertible matrices P and Q such that the pencil P.A � tB/Q

is of the block-diagonal form

diagfLi1 ; : : : ; Lis ; Lt
j1

; : : : ; Lt
ju

; ˝k1 ; : : : ; ˝kv ; A0 � tB0g

where A0; B 0 are square matrices, B 0 is invertible and Lt
jl

is the transpose of Ljl
for

l D 1; : : : ; u. The dimensions i1; : : : ; is; j1; : : : ; ju; k1; : : : ; kv and the determinant
of A0� tB0 (up to a scalar) are independent of the representation. Here Lk.t/; ˝k.t/

are the two matrices of size k � .k C 1/ and k � k respectively, defined by

Lk.t/ D

0

B
B
B
B
B
@

1 t 0 : : : 0

0 1 t : : : 0
:::

:::
:::

:::
:::

0 : : : 1 t 0

0 0 : : : 1 t

1

C
C
C
C
C
A

; ˝k.t/ D

0

B
B
B
B
B
@

1 t 0 : : : 0

0 1 t : : : 0
:::

:::
:::

:::
:::

0 : : : : : : 1 t

0 0 : : : 0 1

1

C
C
C
C
C
A

:

This form is called the Kronecker canonical form of a pencil of matrices (see for
instance [13, p. 35–37]). Notice that if the pencil A � tB is not full rank then there
is a zero matrix in Kronecker canonical form.

It is interesting to notice that the above decomposition can be computed within
O.p2q/ arithmetic operations. We refer the reader to [1] for a proof, as well as for
an analysis of the stability of this decomposition.

Following the ideas developed in [1] and the reduction methods exploited in [22],
we now describe an algorithm that allows to remove the Kronecker blocks Lk , Lt

k

and ˝k from the pencil of matrices A � tB in order to extract the regular pencil
A0 � tB0. We also refer the reader to [20] for more details.
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We start with a pencil A � tB where A; B are constant matrices of size p �
q with coefficients in a field R. Set � D rank B . In the following algorithm, all
computational steps are realized via the classical LU-decomposition.

• Transform B into its column echelon form; that amounts to determining unitary
matrices P0 and Q0 such that

B1 D P0BQ0 D Œ B1;1
„ƒ‚…

�

j 0„ƒ‚…
q��

�

where B1;1 is an echelon matrix. Then, compute

A1 D P0AQ0 D Œ A1;1
„ƒ‚…

�

j A1;2
„ƒ‚…

q��

�

• Transform A1;2 into its row echelon form; that amounts to determine unitary
matrices P1 and Q1 such that

P1A1;2Q1 D
 

A01;2

0

!

where A01;2 has full row rank while keeping B1;1 in echelon form.

Put Q01 D
 

I� 0

0 Q1

!

, I� is the identity matrix of size �. Then,

P1A1Q01 D
 

A01;1 A01;2

A2 0

!

I P1B1Q
0
1 D

 
B 01;1 0

B2 0

!

Thus we obtain a new pencil of matrices, namely A2 � tB2.
• Starting from j D 2, repeat the above steps 1 and 2 for the pencil Aj � tBj until

the pj � qj matrix Bj has full column rank, that is to say until rank Bj D qj .
• If Bj is not a square matrix, then we repeat the above procedure with the

transposed pencil At
j � tBt

j .

At last, we obtain the regular pencil A0�tB0 where A0; B 0 are two square matrices
and B 0 is invertible. Moreover, we have the

rank.A � tB/ drops , rank.A0 � tB0/ drops:

We are now ready to state our algorithm for solving the curve/surface intersection
problem:



62 T. Luu Ba

Algorithm 1: Matrix intersection algorithm
Input: A matrix representation of a surface S and a parametrization (4.1) of a

rational space curve C not contained in S.
Output: The intersection points of S and C.
1. Compute the matrix representation M(t).
2. Compute the generalized companion matrices A and B of M(t).
3. Compute the companion regular matrices A0 and B 0.
4. Compute the generalized eigenvalues of .A0; B 0/.
5. For each eigenvalue t0, the point

.1 W t0/ D P.x.1; t0/ W y.1; t0/ W z.1; t0/ W w.1; t0// is one of the intersection
points.

Remark that this algorithm returns all the points in C \ S except possibly the
point 
.1 W 0/. This point can be treated independently.

Example 4.3 Let S be the sphere that we suppose given as the image of the
parametrization


 W P2 ! P
3 W .s W t W u/ 7! .f1 W f2 W f3 W f4/

where

f1 D s2 C t2 C u2; f2 D 2su; f3 D 2st; f4 D s2 � t2 � u2:

Let C be the twisted cubic which is parametrized by

x.t/ D 1; y.t/ D t; z.t/ D t2; w.t/ D t3:

The computation of a matrix representation of the sphere S gives

0

@
�y 0 z x C w
0 �y �x C w �z
z x C w y 0

1

A :

Now, a point P belongs to the intersection of S and C if and only if P D .1 W t W
t2 W t3/ and t is one of the generalized eigenvalues of the matrix

M.t/ D
0

@
�t 0 t2 1 C t3

0 �t �1 C t3 �t2

t2 1 C t3 t 0

1

A :

As before, we compute the generalized eigenvalues and find:

t1 � 0:7373527056; t2 � �0:7373527056;
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Fig. 4.1 Intersection of the
sphere and the twisted cubic,
the axis Oz

t3 � 0:5405361044 C 1:031515287i; t4 � �0:5405361044 � 1:031515287i;

t5 � 0:5405361044 � 1:031515287i; t6 � �0:5405361044 C 1:031515287i:

All these eigenvalues have multiplicity 1. They all correspond to one intersection
point of S and C which has multiplicity 1. By Bézout Theorem, there are all the
intersection points between these two algebraic varieties (all of them are at finite
distance) (Fig. 4.1).

4.4 Surface/Surface Intersection

Computing the intersection between two parametric algebraic surfaces is a funda-
mental task in Computer Aided Geometric Design. Several methods and approaches
have been developed for that purpose. Some of them are based on the use of



64 T. Luu Ba

matrix representations of the objects because they allow to transform geometric
operations on the intersection curve into matrix operations. This approach seems
to have been first introduced by J. Canny and D. Manocha in their paper [21].
Roughly speaking, it amounts to representing the implicit equation of one of the two
surfaces as the determinant of a certain matrix, necessarily square. Then, instead of
using this implicit equation, the matrix itself is used as a representation of this first
parametric surface and then a matrix representation of the intersection curve is easily
obtained by replacing the implicit variables by the parameterization of the second
surface. In this section, we extend the approach of Canny and Manocha concerning
surface/surface intersection to the significantly larger class of parameterizations
introduced in Sect. 4.2.

Suppose given two distinct parametric surfaces S1 and S2. A standard problem in
nonlinear computational geometry is to determine the set S1 \ S2 which is a curve
in P

3
R

. As we explained above, one can build a representation matrix of S1 that we
will denote by M.x; y; z; w/. Let


 W P2
R

! P
3
R

W .s W t W u/ 7! .a.s; t; u/ W b.s; t; u/ W c.s; t; u/ W d.s; t; u//

be a parameterization of S2 where a.s; t; u/; b.s; t; u/; c.s; t; u/; d.s; t; u/ are homo-
geneous polynomials of the same degree and without common factor in RŒs; t; u�. By
substituting in the matrix M.x; y; z; w/ the variables x; y; z; w by the homogeneous
polynomials a.s; t; u/; b.s; t; u/; c.s; t; u/; d.s; t; u/ respectively, we get the matrix

M.s; t; u/ WD M.
.s W t W u// D M.a.s; t; u/; b.s; t; u/; c.s; t; u/; d.s; t; u//:

From the properties of the representation matrix M.x; y; z; w/, we know that
M.s; t; u/ has maximal rank � (where � is the number of rows of M ). Moreover,
for every point .s0 W t0 W u0/ 2 P

2
R

we have

rank.M.s0; t0; u0// < � if and only if

(

.s0 W t0 W u0/ 2 S1 \ S2 or

.s0 W t0 W u0/ is a base point of 
:

(4.4)
The equivalence (4.4) shows that the spectrum of the matrix M.s; t; u/, that is to

say the set

˚
.s0 W t0 W u0/ 2 P

2
R

such that rank M.s0; t0; u0/ < �



;

yields the intersection locus S1 \ S2 plus the base points of the parameterization 


of S2.
In [9] we proved that the spectrum of the matrix M.s; t; u/ is an algebraic curve

in P
2
R

, that is to say is equal to the zero locus of a homogeneous polynomial in
RŒs; t; u�. In particular, there are no isolated points in the spectrum of M.s; t; u/.
As a consequence if we use matrix representations to deal with the surface/surface
intersection problem, we will at some point end up with a pencil of bivariate and
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non-square matrices that represents the intersection curve (after dehomogenization).
Therefore, in order to be able to handle this intersection curve, for instance to
determine its exact topology, it is necessary to extract a pencil of bivariate and
square matrices that yields a matrix representation of the intersection curve as
a matrix determinant. For that purpose, we develop an algorithm (called �W -
Decomposition) based on the remarkable work of V. N. Kublanovskaya [17, 18].

We build two companion matrices A.t/ and B.t/ which allow us to linearize
the polynomial matrix M.s; t; 1/ such that the spectrum of the matrix M.s; t; 1/

coincides the spectrum of the matrix A.t/ � sB.t/. Then, we provide an algorithm
that extracts a square matrix whose determinant represents the intersection locus
S1 \ S2. A pencil of polynomial matrices A.t/ � sB.t/ is equivalent to a pencil of
the following form

P.t/.A.t/ � sB.t//Q.t/ D
0

@
M1;1.s; t/ 0 0

M2;1.s; t/ M2;2.s; t/ 0

M3;1.s; t/ M3;2.s; t/ M3;3.s; t/

1

A

where P.t/; Q.t/ are unimodular matrices and the pencil M2;2.s; t/ is a regular
pencil that corresponds to the intersection locus S1 \ S2.

Now, we get the following algorithm (for more details see [9]):

Algorithm 2: Matrix representation of an intersection curve
Input: Two parametric algebraic surfaces S1 and S2 such that the parameterization of S1 has

local complete intersection base points.
Output: The intersection curve S1 \ S2 represented as a matrix determinant.
1. Compute a matrix representation of S1, say M.x; y; z; w/.
2. Replace x; y; z; w by the parameterization of S2 in the matrix M to get a matrix M.s; t/

(set u D 1).
3. Compute the generalized companion matrices A.s/ and B.s/ associated to M.s; t/.
4. Return the regular pencil of matrices M1.s; t / D A1.s/� tB1.s/.

In comparison with [21], our algorithm returns a result of the same type:
a determinant matrix representation of the intersection curve, but the class of
parameterizations of surfaces for which step 1 can be performed is here dramatically
extended. We present an illustrative example.

Example 4.4 We start with the Steiner surface S1 parameterized by


1 W P2 ! P
3 W .s W t W u/ 7! .s2 C t2 C u2 W tu W st W su/

which admits the matrix representation
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M.x; y; z; w/ WD

0

B
B
B
B
B
B
B
@

�x 0 �y 0 �y y 0 z 0

y �y 0 w 0 �x �y 0 0

0 0 w 0 0 0 z 0 �x

w 0 0 �y 0 z 0 �y y

0 w 0 0 0 z 0 0 y

w 0 0 0 z 0 0 0 y

1

C
C
C
C
C
C
C
A

:

We want to study the intersection between S1 and the cubic surface S2 parameterized
by


2 W P2 ! P
3 W .s W t W u/ 7! .s3 C t3 W stu W su2 C tu2 W u3/:

As in the previous example, to determine the intersection between S1 and S2 we will
compute the spectrum of the polynomial matrix

M.s; t; u/

D

0

B
B
B
B
B
B
B
@

�s3 � t 3 0 �stu 0 �stu stu 0 su2 C tu2 0

stu �stu 0 u3 0 �s3 � t 3 �stu 0 0

0 0 u3 0 0 0 su2 C tu2 0 �s3 � t 3

u3 0 0 �stu 0 su2 C tu2 0 �stu stu
0 u3 0 0 0 su2 C tu2 0 0 stu
u3 0 0 0 su2 C tu2 0 0 0 stu

1

C
C
C
C
C
C
C
A

:

By dehomogenizing with respect to the variable u, we consider

M.s; t/ D

0

B
B
B
B
B
B
B
@

�s3 � t3 0 �st 0 �st st 0 s C t 0

st �st 0 1 0 �s3 � t3 �st 0 0

0 0 1 0 0 0 s C t 0 �s3 � t3

1 0 0 �st 0 s C t 0 �st st
0 1 0 0 0 s C t 0 0 st
1 0 0 0 s C t 0 0 0 st

1

C
C
C
C
C
C
C
A

:

Writing M.s; t/ as M.s; t/ D M3t
3 CM2t2 CM1t CM0, we obtain the generalized

companion matrices of M.s; t/:

A.s/ D
0

@
0 I6 0

0 0 I6

M t
0 M t

1 M t
2

1

A ; B.s/ D
0

@
I6 0 0

0 I6 0

0 0 �M t
3

1

A :

Applying the algorithm that extracts a square matrix for the pencil At .s/ � tBt .s/,
we obtain its regular part M1.s; t/ D A1.s/ � tB1.s/ where
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A1.s/ D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

s 0 1 1 0 0 0 0 0 0 0 0

0 0 s 0 0 0 0 0 0 0 0 0

s 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

s 0 0 0 0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

; B1.s/ D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

�s2 1 0 0 0 �s 0 0 s 0 0 0

s3 s s4 1 0 0 s3 0 s2 0 0 0

0 0 s 0 �1 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 �1 0 0 1 0 0 0 0

s 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

:

Its yields a plane curve of degree 6 whose implicit equation is det.M1.s; t// D
t2 C 2st C s2t2 C 2s3t3 � st5 C s2 � ts5. This plane curve parameterizes S1 \ S2

through the regular map 
2.

4.5 Matrix-Based Implicit Representations of Parametric
Curves in Space

Let f0; f1; f2; f3 be homogeneous polynomials in RŒs; t � of the same degree d 
 1

such that their greatest common divisor is a non-zero constant in R. Consider the
regular map of a parametric space curve

P
1
R


�! P
3
R

.s W t/ 7! .f0 W f1 W f2 W f3/.s; t/:

4.5.1 Construction of the Representation Matrix

Consider the set of syzygies of f WD .f0; f1; f2; f3/, that is to say the set

Syz.f/ D
(

.g0.s; t/; : : : ; g3.s; t// W
3X

iD0

gi .s; t/fi .s; t/ D 0

)

�
3M

iD0

RŒs; t �:

From a classical structure theorem of commutative algebra called the Hilbert-Burch
Theorem (see for instance [12, §20.4]), Syz.f/ is known to be a free and graded
RŒs; t �-module of rank 3. Moreover, there exists non-negative integers �1; �2; �3

and 3 vectors of polynomials

.ui;0.s; t/; ui;1.s; t/; ui;2.s; t/; ui;3.s; t// 2 Syz.f/ � RŒs; t �4; i D 1; 2; 3; (4.5)
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such that

• For every i 2 f1; 2; 3g, j 2 f0; 1; 2; 3g, ui;j .s; t/ is a homogeneous polynomial
in RŒs; t � of degree �i 
 0,

• The 3 vectors in (4.5) form an RŒs; t �-basis of Syz.f/,
• �1 C �2 C �3 D d where d D deg fi :

• For every j 2 f0; : : : ; 3g, the determinant of the matrix obtained by deleting the
column .ui;j /iD1;2;3 from the matrix

M.s; t/ WD
0

@
u1;0.s; t/ u1;1.s; t/ u1;2.s; t/ u1;3.s; t/

u2;0.s; t/ u2;1.s; t/ u2;2.s; t/ u2;3.s; t/

u3;0.s; t/ u3;1.s; t/ u3;2.s; t/ u3;3.s; t/

1

A (4.6)

is equal to .�1/j c fj .s; t/ 2 RŒs; t � where c 2 R n f0g.

A collection of vectors as in (4.5) that satisfy the above properties is called a �-basis
of the parameterization 
. It is important to notice that a �-basis is far from unique,
but the collection of integers .�1; �2; �3/ is unique if we order it. Therefore, in the
sequel we will always assume that a �-basis is ordered so that 0 � �1 � �2 � �3.

For every integer i D 1; 2; 3 and every integer � 2 N, consider the matrix
Sylv�.ui / that satisfies to the identity

�
s� s��1t 	 	 	 st��1 t�

	� Sylv�.ui / D �
s���i ui s���i�1tui 	 	 	 st���i�1ui t ���i ui

	
:

It is a .� C 1/ � .� � �i C 1/-matrix which usually appears as a building block in
well-known Sylvester matrices. It follows that the matrix

Sylv�.u1; u2; u3/ WD
0

@Sylv�.u1/ Sylv�.u2/ Sylv�.u3/

1

A :

It has � C 1 rows and 3.� C 1/ � d columns. Its entries are linear forms in
RŒx; y; z; w�; in particular, it can be evaluated at any point .x W y W z W w/ 2 P

3
R

and yielding a matrix with coefficients in R.
In [8], we proved that for all � 
 �3 C �2 � 1 the matrix M.
/� WD

Sylv�.u1; u2; u3/ is a matrix-based representation of the curve C, i.e.,

(i) M.
/� is generically full rank, that is to say generically of rank � C 1,
(ii) The rank of M.
/� drops exactly on the curve C.

Of course, in practice the most useful matrix is the smallest one, that is to say
M.
/�3C�2�1.

Example 4.5 Let C be the rational space curve parameterized by

P
1
R


�! P
3
R
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.s W t/ 7! .s4 W s3t W s2t2 W t4/:

A �-basis of C is given by

p D �tx C sy;

q D �ty C sz;

r D �t2z C s2w:

We have �1 D �2 D 1, �3 D 2 and hence �3 C �2 � 1 D 2. Therefore, we obtain
the following representation matrix of 
:

M.
/2 D
0

@
y 0 z 0 w

�x y �y z 0

0 �x 0 �y �z

1

A :

4.5.2 Points on Curves and Inversion Problems

The same ideas introduced in Sect. 4.2.2, we can solve the points on curves and
inversion problems. For instance, suppose given a parameterization 
 of a rational
curve C and a point P in P

3. Denote by M.
/� a matrix representation of 
 for some
integer � 
 �3 C�2 � 1. Since its entries are linear forms in the variables x; y; z; w,
one can evaluate M.
/� at P and get a matrix with coefficients in the ground field
R. Then, we have that

rank .M.
/�.P // < � C 1 if and only if P 2 C:

This property answers the point-on curve problem.
If rankM.
/�.P / D rankM.
/� � 1 D � then P has a unique pre-image .s0 W

t0/ by 
 and moreover, this pre-image can be recovered from the computation of
a generator, say WP D .w0; : : : ; w�/ 2 R

�C1, of the kernel of the transpose of
M.
/�.P /. Indeed, if b0.s; t/; : : : ; b�.s; t/ is the basis which has been chosen to
build M.
/� , then there exists � 2 R n f0g such that

WP D � .b0.s0; t0/; : : : ; b�.s0; t0// :

For instance, suppose that bi.s; t/ D si t��i , i D 0; : : : ; � (the usual monomial
basis), then .s0 W t0/ D .w1 W w0/ if w0 ¤ 0, otherwise .s0 W t0/ D .1 W 0/.

We point out that the points P 2 C such that rankM.
/�.P / D rank
M.
/� � 1 D � are precisely the regular points on C, that is to say that all the
points that do not verify this property are singular points on C. We will come back
again to this property and to the treatment of the singular points on C in the next
section.
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Example 4.6 Suppose that the parameterization 
 is given by

f0.s; t/ D 3s4t2 � 9s3t3 � 3s2t4 C 12st5 C 6t6;

f1.s; t/ D �3s6 C 18s5t � 27s4t2 � 12s3t3 C 33s2t4 C 6st5 � 6t6;

f2.s; t/ D s6 � 6s5t C 13s4t2 � 16s3t3 C 9s2t4 C 14st5 � 6t6;

f3.s; t/ D �2s4t2 C 8s3t3 � 14s2t4 C 20st5 � 6t6:

A �-basis for C is

p D .s2 � 3st C t2/x C t2y;

q D .s2 � st C 3t2/y C .3s2 � 3st � 3t2/z;

r D 2t2z C .s2 � 2st � 2t2/w:

From deg.p/ D deg.q/ D deg.r/ D 2, we have �3 C �2 � 1 D 3 and hence a
matrix representation of C is given by

M.
/3 D

0

B
B
@

x C y 0 3y � 3z 0 2z � 2w 0

�3x x C y �y � 3z 3y � 3z �2w 2z � 2w
x �3x y C 3z �y � 3z w �2w
0 x 0 y C 3z 0 w

1

C
C
A :

Let P D .1 W 1 W 1 W 1/ 2 P
3. Evaluating M.
/3 at P we find that

M.
/3 D

0

B
B
@

2 0 0 0 0 0

�3 2 �4 0 �2 0

1 �3 4 �4 1 �2

0 1 0 4 0 1

1

C
C
A

is of rank 4 so that P does not lie on C.
If one evaluates the matrix M.
/3 at the point P D .9 W 9 W 9 W 6/ 2 P

3 we obtain
the matrix

M.
/3.P / D

0

B
B
@

18 0 0 0 6 0

�27 18 �36 0 �12 6

9 �27 36 �36 6 �12

0 9 0 36 0 6

1

C
C
A :

which has rank 3. Therefore, P is a smooth point on the curve C. Moreover,
the computation of the kernel of the transpose of M.
/3.P / returns the vector
.1; 1; 1; 1/: Thus, we deduce that P D 
.1 W 1/.
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4.5.3 Rank of a Representation Matrix at a Singular Point

Let P be a point on C. There exists at least one point .s1 W t1/ 2 P
1 such that

P D 
.s1 W t1/. Now, let H be a plane in P
3 passing through P , not containing C

and denote by H.x; y; z; w/ an equation (a linear form in RŒx; y; z; w�) of H. We
have the following degree d homogeneous polynomial in RŒs; t �

H.f0.s; t/; f1.s; t/; f2.s; t/; f3.s; t// D
dY

iD1

.ti s � si t/ (4.7)

where the points .si W ti / 2 P
1, i D 1; : : : ; d; are not necessarily distinct. We define

the intersection multiplicity of C with H at the point P , denoted iP .C;H/, as the
number of points .si W ti /iD1;:::;d such that 
.si W ti / D P .

The multiplicity mP .C/ of the point P on C is defined as the minimum of the
intersection multiplicities iP .C;H/ where H runs over all the planes not containing
C and passing through the point P 2 C. This minimum is reached for a sufficiently
generic H.

Suppose given a representation matrix M.
/� of the curve C which is built from
the �-basis p; q; r of degree �1 � �2 � �3. Its entries are linear forms in
RŒx; y; z; w� so that it makes sense to evaluate M.
/� at a point P in P

3 to get a
matrix M.
/�.P / with entries in R. In [8], we prove the following property: Given
a point P in P

3, for every integer � 
 �2 C �3 � 1 we have

rankM.
/�.P / D � C 1 � mP .C/;

or equivalently corankM.
/�.P / D mP .C/.
This result provides a stratification of the points in P

3 with respect to the curve
C. Indeed, we have that

• If P is such that rankM.
/�.P / D � C 1 then P 62 C,
• If P is such that rankM.
/�.P / D � then P is a regular point (i.e. of multiplicity

1) on C,
• If P is such that rankM.
/�.P / D � � 1 then P is singular point of multiplicity

2 on C,
• and so on.

Moreover, if P is a singular point on C then necessarily

2 � mP .C/ � �2 or mP .C/ D �3: (4.8)

One can read more details in [8] for computational singularities aspects of C.
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4.5.4 Curve/Curve Intersection

Suppose given two rational curves, say C1 parameterized by

P
1 
1�! P

3 W .s W t/ 7! .f0 W 	 	 	 W f3/.s; t/ (4.9)

and C2 parameterized by the regular map

P
1 
2�! P

3 W .s W t/ 7! .g0 W 	 	 	 W g3/.s; t/: (4.10)

Let M.
1/� be a representation matrix of C1 for a suitable integer �. The substitution
in M.
1/� of the variables x; y; z; w by the homogeneous parameterization of C2

yields the matrix

M.
1/�.s; t/ WD M.
1/�.g0.s; t/; : : : ; g3.s; t//:

As a consequence of the properties of a representation matrix, we have the following
property: Let .s0 W t0/ 2 P

1. Then rankM.
1/�.s0; t0/ < � C1 if and only if the point

2.s0; t0/ belongs to the intersection locus C1 \ C2.

The set C1 \ C2 is in correspondence with the points of P1 where the rank of
M.
1/�.s; t/ drops. By setting t D 1, the determination of the values of s such
that the rank of M.
1/�.s; 1/ drops can be treated at the level of matrices (that is
to say without any symbolic computation and in particular without any determi-
nant computations) by using linearization techniques and generalized eigenvalues
computations. We obtain the algorithm similar to Algorithm 1.

Algorithm 3: Intersection of two parametric curves
Input: Two parametric curves C1 and C2 given by (4.9) and (4.10).
Output: The intersection points of C1 and C2.
1. Compute the matrix representation M.
/�.
1/ of C1 for a suitable �.
2. Compute the generalized companion matrices A and B of M.
/�.
1/.
3. Compute the companion regular matrices A0 and B 0.
4. Compute the generalized eigenvalues of .A0; B 0/.
5. For each eigenvalue t0, 
2.t0 W 1/ is an intersection point.

Remark that this algorithm returns all the points in C1 \ C2 except possibly the
point 
.1 W 0/. This point can be treated independently.

Conclusion
This paper presents an implicit representation concept of a parametric curve or
a parametric surface. This representation is a matrix whose entries are linear
forms in the coordinates of R

3. This matrix representation characterizes a

(continued)
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curve or a surface by a rank drop property. It is easily to calculate and in
addition a useful tool for solving intersection problems. Moreover, its main
interest is particularly to transform intersection problems into numerical linear
algebra problems which can be solved using powerful and robust algorithms,
such as the singular value decomposition and the computation of generalized
eigenvalues or eigenvectors. Thus, in the context of ray tracing on a surface
set, this approach could improve the robustness of the existing methods in
particular situations.

All algorithms that we proposed above have been implemented in the
software Maple and the corresponding files are available at http://cgi.di.uoa.
gr/~thanglb/.
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Part II
Geometric Computing: Algebraic Tools



Chapter 5
Singular Zeros of Polynomial Systems

Angelos Mantzaflaris and Bernard Mourrain

5.1 Introduction

A main challenge in algebraic and geometric computing is singular point iden-
tification and treatment. Such problems naturally occur when computing the
topology of implicit curves or surfaces [1], the intersection of parametric surfaces
in geometric modeling. When algebraic representations are used, this reduces to
solving polynomial systems. Several approaches are available: algebraic techniques
such as Gröbner bases or border bases, resultants, subdivision algorithms [16, 19],
homotopies, and so on. At the end of the day, a numerical approximation or a
box of isolation is usually computed to identify every real root of the polynomial
system. But we often need to improve the numerical approximation of the roots.
Numerical methods such as Newton’s iteration can be used to improve the quality of
the approximation, provided that we have a simple root. In the presence of a multiple
root, the difficulties are significantly increasing. The numerical approximation can
be of very bad quality, and the methods used to compute this approximation are
converging slowly (or not converging). The situation in practical problems, as
encountered in CAGD for instance, is even worse, since the coefficients of the
input equations are known with some incertitude. Computing multiple roots and
root multiplicities of approximate polynomial systems is an ill-posed problem, since
changing slightly the coefficients may transform a multiple root into a cluster of
simple roots (or even make it disappear).

For instance Newton’s method converges only linearly to such a point, if it
converges at all [6]. Also, certification tests for the existence of roots on a domain
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do not directly treat these cases. On the other hand, computing the local multiplicity
structure around a singularity breaks down to stable linear algebra methods, which
can be run approximately. One can use this local structure to deflate the root,
and thus restore super-linear convergence of Newton iteration, or use standard
verification techniques to certify a singular root of the original system. In case of
inexact coefficients, known up to a certain tolerance, an exact singular root no longer
exists. Nevertheless, a well chosen symbolic perturbation, combined with deflation,
allows the certification of a nearby system, within a controlled neighborhood of the
original one, which attains a single singular point.

The numerical treatment of singular zeroes is a difficult task, mainly because of
the ill-posedness of the problem. The following strategy can however be adopted.
Find a perturbation of the input system such that the root is a deformation of an exact
multiple root. Certainly, there is not a single multiple system, if the input data is
approximate. But using the knowledge of the dual structure and interval arithmetic,
our method aims at providing a controlled deformation that is compatible with the
input.

In this way, we identify the multiplicity structure and we are able to setup
deflation techniques which restore the quadratic convergence of the Newton system.
The certification of the multiple root is also possible on the symbolically perturbed
system by applying a fixed point theorem, based e.g. on interval arithmetic [22] or
˛-theorems ([7] and references therein).

This approach has already been explored in the past. The first algebraic work on
the analysis of singular points may be due to F.S. Macaulay [14], who introduced the
terminology of “inverse system”. His so-called dialytic method has been exploited
in [4, 12, 13] to construct the inverse system of a multiple point.

Another construction of inverse systems is described e.g. in [17], reducing the
size of the intermediate linear systems (and exploited in [23]).

In [18], another approach to construct the dual basis at the singular point which
is based on an integration strategy, has been proposed.

Regarding deflation techniques, in [20], by applying a triangulation preprocess-
ing step on the Jacobian matrix at the approximate root, minors of the Jacobian
matrix are added to the system to reduce the multiplicity.

In [11], a representation of the ideal in a triangular form in a good position and
derivations with respect to the leading variables are used to iteratively reduce the
multiplicity. This process is applied for p-adic lifting with exact computation.

In [12, 13], instead of triangulating the Jacobian matrix, the number of variables
is doubled and new equations are introduced, which are linear in the new variables.
They describe the kernel of the Jacobian matrix at the multiple root. The process is
iterative, yet for some practical applications, the root may already be deflated with
a few iterations.

In [4], the deflation method is applied iteratively until the root becomes regular,
doubling each time the number of variables.

In [21], a minimization approach is used to reduce the value of the equations and
their derivatives at the approximate root, assuming a basis of the inverse system is
known.
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In [24], the inverse system is constructed via Macaulay’s method; tables of mul-
tiplications are deduced and their eigenvalues are used to improve the approximated
root. They show that the convergence is quadratic at the multiple root.

Verification of multiple roots of (approximate) polynomial equations is a difficult
task. The approach proposed in [22] consists of introducing perturbation parameters
and to certifying the multiple root of nearby system by using a fixed point theorem,
based on interval arithmetic. It applies only to cases where the Jacobian has corank
equal to 1.

The goal of this paper is to review different techniques that can be used to handle
efficiently the following tasks:

(a) Compute a basis for the dual space and of the local quotient ring at a given
(approximate) singular point.

(b) Deflate the system by augmenting it with new equations derived from the dual
basis, introducing adequate perturbation terms.

(c) Certify the singular point and its multiplicity structure for the perturbed
system checking the contraction property of Newton iteration (e.g. via interval
arithmetic).

These tools can be applied to improve the quality of approximation of a multiple
isolated solution of a system of (polynomial) equations, but they can also be used
to solve geometrical problems, such as for instance computing the number of
real branches at a singular point of an algebraic curve. For more details on these
applications, we refer to [15] and references therein.

5.2 Preliminary Considerations

In this section we present some definitions together with the main tools that we shall
need in the sequel.

We denote by R D KŒx�, x D .x1; : : : ; xn/, a polynomial ring over the field K of
characteristic zero. The dual ring R� is the space of linear functionals 
 W R ! K.
It is commonly identified to the space of formal series KŒŒ@�� where @ D .@1; : : : ; @n/

are formal variables. Thus we view dual elements as formal series in differential
operators at a point � 2 K

n. To specify that we use the point �, we also denote these
differentials @� . When applying 
.@�/ 2 KŒŒ@��� to a polynomial g.x/ 2 R we will
denote by 
�Œg� D 
�g D 
.@�/Œg.x/� the operation


�Œg� D
X

˛2Nn

�˛

˛1Š 	 	 	 ˛nŠ
	 d j˛jg

dx˛1

1 	 	 	 dx˛n
n

.�/; (5.1)

for 
.@�/ D
X

�˛

1

˛Š
@˛

� 2 KŒŒ@� ��. Extending this definition to an ordered set

D D .
1; : : : ; 
�/ 2 KŒŒ@���, we shall denote D�Œg� D .

�

1g; : : : ; 

�
�g/. In some



80 A. Mantzaflaris and B. Mourrain

cases, it is convenient to use normalized differentials instead of @: for any ˛ 2 N
n,

we denote d˛
� D 1

˛Š
@˛

� . In particular, with the use of this notation we recover the

nice property that, if � D 0, we have d˛
0 xˇ D 1 if ˛ D ˇ and 0 otherwise.

More generally, .d˛
� /˛2Nn is the dual basis of ..x � �/˛/˛2Nn , i.e., a non-zero

root implies a linear transformation of the variables, so that the root is translated to
.0; 0/.

Example 5.1 Consider the integral of a polynomial function g 2 R over the unit
hypercube. Since this is a linear map, it may be expressed in terms of differentials,
i.e.:

g 7�!
Z

Œ0;1�n
g.x/ dx1 	 	 	 dxn D

X

˛2sup.g/

c˛ d˛Œg� ;

where d˛Œg� D 1

˛Š

@j˛jg
@x˛

.0/ and sup.g/ stands for the support of g. Indeed, it can

be verified using simple calculations that the (unique) coefficients are given by c˛ D
nY

iD1

1

˛i C 1
.

For 
 2 R� and p 2 R, let us define the operation p 	 
 W q 7! 
.p q/. We
check that

.xi � �i / 	 @˛
� D d

d@i;�

.@˛
� /; (5.2)

and R� obtains the structure of an R�module. This property shall be useful in the
sequel.

5.2.1 Isolated Points and Differentials

Let I D hf1; : : : ; fsi be an ideal of R and � 2 K
n a root of the polynomial system

f D .f1; : : : ; fs/. We call � an isolated zero of V.I/ if, in a primary decomposition
of I , the radical of one of the primary components is the maximal ideal m� D
hx1 � �1; : : : ; xn � �ni defining � and no other primary component is contained in
m�.

Suppose that � is an isolated root of f , then a minimal primary decomposition
of

I D
\

Q prim:�I
Q
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contains a primary component Q� such that
p
Q� D m� and

p
Q0 6� m� for the

other primary components Q0 associated to I [2].
As

p
Q� D m� , it follows that R=Q� is a finite dimensional vector space. The

multiplicity �� of � is defined as the dimension of R=Q� . A point of multiplicity
one is called regular point, or simple root, otherwise we say that � is a singular
isolated point, or multiple root of f . In the latter case we have Jf .�/ D 0.

Example 5.2 Consider the ideal I D hx1 � x2 C x2
1 ; x1 � x2 C x2

2i, and the root
� D .0; 0/. Then a minimal primary decomposition of I is

I D hx3
2; x1 � x2 C x2

2i \ h�2 C x2; 2 C x1i :

Among the two factors we find the maximal ideal of � given by the radical idealq
hx3

2; x1 � x2 C x2
2i D hx1; x2i.

We can now define the dual space of an ideal.

Definition 5.1 The dual space of I is the subspace of elements of KŒŒ@� �� (formal
series of the variables @�), � 2 V.I/, that vanish on all the elements of I . It is also
called the orthogonal of I and is denoted as I?.

The dual space is known to be isomorphic to the quotient R=I . Consider now the
orthogonal of Q� , i.e. the subspace D� of elements of R� that vanish on members
of Q� , namely

Q?� D D� D f
 2 R� W 
�Œp� D 0; 8p 2 Q�g:

The following is an essential property that allows extraction of the local structure
D� directly from the “global” ideal I D hf i, notably by matrix methods that will
be outlined in Sect. 5.3.

Proposition 5.1 ([18, Th. 8]) For any isolated point � 2 K of f , we have I? \
KŒ@�� D D� .

In other words, we can identify D� D Q?� with the space of polynomial differential

operators that vanish at � on every element of I . Also note that D?� D Q� .
The space D� has dimension �� , the multiplicity at �. As the variables .xi � �i /

act on R� as derivations (see (5.2)), D� is a space of differential polynomials in @� ,
which is stable under derivation. This property will be used explicitly in constructing
D� (Sect. 5.3).

Definition 5.2 The nilindex of Q� is the maximal integer N 2 N such that mN
� 6�

Q� .

It is directly seen that the maximal order of elements in D� is equal to N , also
known as the depth of the space.
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5.2.2 Quotient Ring and Dual Structure

In this section we explore the relation between the dual ring and the quotient R=Q� ,
where Q� is the primary component of the isolated point �. We show how to extract
a basis of this quotient ring from the support of the elements of D� and how D� can
be used to reduce any polynomial modulo Q� .

It is convenient in terms of notation to make the assumption � D 0. This poses
no constraint, since it implies only a linear change of coordinates.

Let suppD0 be the set of exponents of monomials appearing in D0, with a non-
zero coefficient. These are of degree at most N , the nilindex of Q0. Since

.8
 2 D0; 
0Œp� D 0/ iff p 2 D?0 D Q0 ;

we derive that suppD0 D f� W x� … Q0g. In particular, we can find a basis
of R=Q0 between the monomials fx� W � 2 suppD0g. This is a finite set
of monomials, since their degree is bounded by the nilindex of Q0. Now let
Let x�j ; j D 1; : : : ; s be an enumeration of these monomials. It is clear that
these are finitely many, since Q0 is zero-dimensional. Given a monomial basis
B D .xˇi /iD1;:::;� of R=Q0 and, for all monomials x�j … Q0, the expression
(normal form)

x�j D
�X

iD1

�ij xˇi .mod Q0/ (5.3)

of x�j in the basis B, then the dual elements [18, Prop. 13]


i .d/ D dˇi C
s��X

jD1

�ij d�j ; (5.4)

for i D 1; : : : ; � form a basis of D� . We give a proof of this fact in the following
lemma.

Lemma 5.1 The set of elements D D .
i /iD1;:::;� defined in (5.4) is a basis of D�

and the normal form of any g.x/ 2 R with respect to the monomial basis B D
.xˇi /iD1;:::;� is

NF.g/ D
�X

iD1



�
i Œg� xˇi : (5.5)

Proof First note that the elements of D are linearly independent, since dˇi appears
only in 
i.d/. Now, by construction,



5 Singular Zeros of Polynomial Systems 83

�X

iD1



�
i Œx˛�xˇi D NF.x˛/ ;

for all x˛ … Q� , e.g. NF.xˇi / D xˇi . Also, for x˛ 2 Q� , 8i; 

�
i .x˛/ D 0,

since ˛ … suppD. Thus the elements of D compute NF.�/ on all monomials
of R, and (5.5) follows by linearity. We deduce that D generates the dual, as in
Definition 5.1. ut

It becomes clear that with the knowledge of the dual basis at �, we are able to
compute any g 2 R modulo Q� by applying the basis elements to the monomials of
g (formal derivation plus evaluation at �). This lemma also shows an isomorphism
between the dual D� and the quotient ring R=Q�, since it implies a one-to-one
mapping between the primal and dual basis.

Example 5.3 Consider f .x; y/ D x4 C 2x2y2 C y4 C 3x2y � y3 and g.x; y/ D
18xy2 � 6x3. The common zero � D .0; 0/ yields the local dual space

D D .1; dx; dy; dx
2; dxdy; dy

2; dx
3 C 1

3
dxdy

2; dx
2dy C 3 dy

3;

dx
4 C 1

3
dx

2dy
2 C dy

4 C 8
3

d 3
y /;

therefore � is a singular zero with multiplicity m D 9.
The primal counterpart is B D .1; x; y; x2; xy; y2; x3; x2y; x4/. The relation

between D and B is revealed in the following construction:

2

6
6
6
6
6
6
6
6
6
6
6
6
4

1 x y x2 xy y2 x3 x2y x4 xy2 y3 x2y2 y4

1 1 0 0 0 0

dx 1 0 0 0 0

dy 1 0 0 0 0

d 2
x 1 0 0 0 0

dxdy 1 0 0 0 0

d 2
y 1 0 0 0 0

d 3
x 1 1=3 0 0 0

d 2
x dy 1 0 3 0 0

d 4
x 1 0 8=3 1=3 1

3

7
7
7
7
7
7
7
7
7
7
7
7
5

:

(5.6)

The dual monomial of every row couples with a primal monomial in the corre-
sponding column. From the rows we read the coefficients basis elements in D. The
leftmost 9 � 9 block is the identity matrix, implying the duality between D and B.
Then in the last four columns there are some extra monomials; these do not belong
to the basis B, yet appear with a non-zero coefficient in D. These monomials are not
in Q� , but they can be reduced modulo B: the last four columns yield the normal
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form of these monomials with respect to B. For example, using column 11 we find

y3 D 3x2y C 8

3
x4 .mod Q�/.

Using the normal form formula (5.5), we can derive the table of multiplication by
x and y in the quotient algebra represented by B. To do this, it suffices to compute
NF.y x˛i yˇi / and NF.x x˛i yˇi /, for all monomials x˛i yˇi 2 B. This computation
can be done by looking up the normal form of each monomial from the rows of
matrix (5.6). The coefficients of these normal forms fill the i�th rows of the matrices

Mx D

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1=3 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

and My D

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1=3 0 0

0 0 0 0 0 0 0 3 8=3

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1=3

0 0 0 0 0 0 0 0 0

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

:

Computing the normal form of the border monomials of B via (5.5) also yields the
border basis relations and the operators of multiplication in the quotient R=Q� (see
e.g. [5] for more properties).

If a graded monomial ordering is fixed and B D .xˇi /iD1;:::;� is the correspond-
ing monomial basis of R=Q0, then dˇi is the leading term of (5.4) with respect
to the reversed ordering (that is, we reverse the outcome of the comparison of two
monomials, keeping equality unchanged) [13, Th. 3.1].

Conversely, if we are given a basis D of D� whose coefficient matrix in the dual
monomials basis .d˛/˛…Q�

is D 2 K
��s , we can compute a basis of R=Q� by

choosing � independent columns of D, say those indexed by dˇi ; i D 1; : : : ; �. If
G 2 K

��� is the (invertible) matrix formed by these columns, then D0 WD G�1D, is

D0 D

2

6
4

ˇ1 	 	 	 ˇ� �1 	 	 	 �s��


01 1 0 �1;1 	 	 	 �1;s��

:::
: : :

:::
:::


0� 0 1 ��;1 	 	 	 ��;s��

3

7
5; (5.7)

i.e. a basis of the form (5.4). Note that an arbitrary basis of D does not have the
above diagonal form, nor does it directly provide a basis for R=Q� . However, a
basis of this form has the desired property


iŒx
ˇj � D

�
1 ; if i D j

0 ; if i ¤ j
;

for all i D 1; : : : ; �.
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For t 2 N, Dt denotes the vector space of polynomials of D of degree � t . The
Hilbert function h W N ! N is defined by h.t/ D dim.Dt /; t 
 0, hence h.0/ D 1

and h.t/ D dimD for t 
 N . The integer h.1/ � 1 D corank Jf is known as the
breadth of D .

5.3 Computing Local Ring Structure

The computation of a local basis, given a system and a point, is done essentially
by matrix-kernel computations, and consequently it can be carried out numerically,
even when the point or even the system is inexact. Throughout the section we
suppose f 2 Rm and � 2 K

n with f .�/ D 0.
Several matrix constructions have been proposed that use different conditions to

identify the dual space as a null-space. They are based on the stability property of
the dual basis:

8 
 2 Dt ;
d

d@i


 2 Dt�1 ; i D 1; : : : ; n: (5.8)

We list existing algorithms that compute dual-space bases:

• As pointed out in (5.2), an equivalent form of (5.8) is

8
 2 Dt ; 
Œgi fi � D 0 ; 8gi 2 R ” 
Œxˇ 	 fi � D 0 ; 8ˇ 2 N
n (5.9)

Macaulay’s method [14] uses this equivalent characterization to derive the
algorithm that is outlined in Sect. 5.3.1.

• In [17] they exploit (5.8) by forming the matrix Di of the map

d

d@i

W KŒ@�t ! KŒ@�t�1

for all i D 1; : : : ; n and some triangular decomposition of the differential
polynomials in terms of differential variables. This approach was used in [23] to
reduce the row dimension of Macaulay’s matrix, but not the column dimension.

• The closedness subspace method of Zeng [25], uses the same condition to
identify a superset of suppDtC1 when a basis of Dt is computed, and thus reduces
the column dimension of the matrix.

• The integration method in [18] “integrates” elements of a basis of Dt , and obtains
a priori knowledge of the form of elements in degree t C 1 (Sect. 5.3.2).

All methods are incremental, in the sense that they start by setting D0 D .1/ and
continue by computing Di ; i D 1; : : : ; N; N C 1. When #DN D #DNC1 then DN

is a basis of D , and N is the nilindex of Q.
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We shall review two of these approaches to compute a basis for D , and then
describe an improvement, that allows simultaneous computation of a monomial
basis of the quotient ring, while avoiding redundant computations.

5.3.1 Macaulay’s Dialytic Matrices

This matrix construction is presented in [14, Ch. 4], a modern introduction is
contained in [4], together with an implementation of the method in ApaTools.1

The idea behind the algorithm is the following: An element of D is of the form


.d/ D
X

j˛j�N

�˛d˛

under the condition: 
0 evaluates to 0 at any g 2 hf i, that is,


0.g/ D 
0
�X

gi fi

�
D 0 ” 
0.xˇfi / D 0 ;

for all monomials xˇ; ˇ 2 N.
If we apply this condition recursively for j˛j � N , we get a vector of coefficients

.�˛/j˛j�N in the (right) kernel of the matrix with rows indexed by constraints

0Œxˇf i � D 0, jˇj � N � 1. A basis of DN is given by the kernel of this matrix
in depth N . The method consists in computing the kernel of these matrices for
N D 1; 2; : : : ; when N reaches the nilindex of I , For some value of N , this kernel
stabilizes and the generating vectors form a basis of D .

Note that the only requirement is to be able to perform derivation of the input
equations and evaluation at � D 0.

Example 5.4 Let f1 D x1 � x2 Cx2
1 , f2 D x1 � x2 Cx2

2 . We also refer the reader to
[4, Ex. 2] for a detailed demonstration of this instance. The matrices in order 1 and
2 are:

�
1 d1 d2

f1 0 1 �1

f2 0 1 �1




;

2

6
6
6
6
6
6
4

1 d1 d2 d 2
1 d1d2 d 2

2

f1 0 1 �1 1 0 0

f2 0 1 �1 0 0 1

x1f1 0 0 0 1 �1 0

x1f2 0 0 0 1 �1 0

x2f1 0 0 0 0 1 �1

x2f2 0 0 0 0 1 �1

3

7
7
7
7
7
7
5

:

1http://www.neiu.edu/~zzeng/apatools.htm

http://www.neiu.edu/~zzeng/apatools.htm
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The kernel of the left matrix gives D1 D .1; d1 C d2/. Expanding up to order 2, we
get the matrix on the right, and D2 D .1; d1 C d2; �d1 C d 2

1 C d1d2 C d 2
2 /. If we

expand up to depth 3 we get the same null-space, thus D D D2.

5.3.2 Integration Method

This method is presented in [18]. It is an evolution of Macaulay’s method, since
the matrices are not indexed by all differentials, but just by elements based on
knowledge of the previous step. This performs a computation adapted to the given
input and results in smaller matrices.

For 
 2 KŒ@�, we denote by
R

k

 the element ˚ 2 KŒ@� with the property

d
d@k

˚.@/ D 
.@/ and with no constant term with respect to @k .

Theorem 5.3 ([18, Th. 15]) Let f
1; 
2; : : : ; 
sg be a basis of Dt�1, that is, the
subspace of D of elements of order at most t � 1. An element 
 2 KŒ@� with no
constant term lies in Dt iff it is of the form:


.@/ D
sX

iD1

nX

kD1

�ik

R
k


i .@1; : : : ; @k; 0; : : : ; 0/; (5.10)

for �ik 2 K, and the following two conditions hold:

(i)
sX

iD1

�ik

d

d@l


i .@/ �
sX

iD1

�il

d

d@k


i .@/ D 0, for all 1 � k < l � n .

(ii) 
�Œfk� D 0, for k D 1; : : : ; m .

Condition .i/ is equivalent to d
d@k


 2 Dt�1, for all k. Thus the two conditions
express exactly the fact that D must be stable under derivation and its members
must vanish on hf i.

This gives the following algorithm to compute the dual basis: Start with
D0 D h1i. Given a basis of Dt�1 we generate the ns candidate elementsR

k

i�1.@1; : : : ; @k; 0; : : : ; 0/. Conditions .i/ and .i i/ give a linear system with

unknowns �ik . The columns of the corresponding matrix are indexed by the
candidate elements. Then, the kernel of this matrix gives a basis of Dt , which we
use to generate new candidate elements. If for some t we compute a kernel of the
same dimension as Dt�1, then we have a basis of D .

Example 5.5 Consider the instance of Example 5.4, f1 D x1 � x2 C x2
1 , f2 D

x1 � x2 C x2
2 . We have f1.�/ D f2.�/ D 0, thus we set D0 D f1g. Equation (5.10)

gives 
 D �1d1 C �2d2. Condition (i) induces no constraints and (ii) yields the
system
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�
1 �1

1 �1


 �
�1

�2




D 0 (5.11)

where the columns are indexed by d1; d2. We get �1 D �2 D 1 from the kernel of
this matrix, thus D1 D f1; d1 C d2g.

For the second step, we compute the elements of D2, that must be of the form


 D �1d1 C �2d2 C �3d
2
1 C �4.d1d2 C d 2

2 /:

Condition (i) yields �3 � �4 D 0, and together with (ii) we form the system

2

4
0 0 1 �1

1 �1 1 0

1 �1 0 1

3

5

2

6
4

�1

:::

�4

3

7
5 D 0; (5.12)

with columns indexed by d1; d2; d 2
1 ; d1d2 Cd 2

2 . We get two vectors in the kernel, the
first yielding again d1 C d2 and a second one for �1 D �1; �2 D 0; �3 D �4 D 1,
so we deduce that �d1 C d 2

1 C d1d2 C d 2
2 is a new element of D2.

In the third step we have


 D �1d1 C �2d2 C �3d
2
1 C �4.d1d2 C d 2

2 / C (5.13)

�5.d
3
1 � d 2

1 / C �6.d
3
2 C d1d

2
2 C d 2

1 d2 � d1d2/;

condition (i) leads to �3 ��4 C .�5 ��6/.d1 Cd2/ D 0, and together with condition
(ii) we arrive at

2

6
6
4

0 0 0 0 1 �1

0 0 1 �1 0 0

1 �1 1 0 �1 0

1 �1 0 1 0 0

3

7
7
5

2

6
4

�1

:::

�6

3

7
5 D 0; (5.14)

of size 4 � 6, having two kernel elements that are already in D2. We derive that
D D hD2i D hD3i and the algorithm terminates.

Note that for this example Macaulay’s method ends with a matrix of size 12�10,
instead of 4 � 6 in this approach.

5.3.3 Computing a Primal-Dual Pair

In this section we provide a process that allows simultaneous computation of a basis
pair .D;B/ of D and R=Q.
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Computing a basis of D degree by degree involves duplicated computations. The
successive spaces computed are D1 � 	 	 	 � DN D DNC1. It is more efficient to
produce only new elements 
 2 Dt , independent in Dt =Dt�1, at step t .

Also, once a dual basis is computed, one has to transform it to the form (5.4),
in order to identify a basis of R=Q as well. This transformation can be done a
posteriori, by finding a sub-matrix of full rank and then performing Gauss–Jordan
elimination over this sub-matrix, to reach matrix form (5.7).

We introduce a condition (iii) extending Theorem 5.3, that addresses these two
issues: It allows the computation of a total of � independent elements throughout
execution, and returns a “triangular” basis, e.g. a basis of R=Q is identified.

Lemma 5.2 Let Dt�1 D .
1; : : : ; 
k/ be a basis of Dt�1, whose coefficient matrix
is

2

6
4

ˇ1 	 	 	 ˇk �1 	 	 	 �s�k


1 1 � � � 	 	 	 �
::: 0

: : : � :::
:::

:::


k 0 0 1 � 	 	 	 �

3

7
5; (5.15)

yielding the monomial basis Bt�1 D .xˇi /iD1;:::;k . Also, let 
 2 KŒ@� be of the
form (5.10), satisfying (i–ii) of Theorem 5.3.

If we impose the additional condition:

(iii) 
�Œxˇi � D 0, 1 � i � k,

then the kernel of the matrix implied by (i–iii) is isomorphic to Dt =Dt�1. Conse-
quently, it extends Dt�1 to a basis of Dt .

Proof Let S be the kernel of the matrix implied by (i–iii), and let 
 2 KŒ@� be a
non-zero functional in S . We have 
 2 Dt and 
�Œxˇi � D 0 for i D 1; : : : ; k.

First we show that 
 … Dt�1. If 
 2 Dt�1, then 
 D Pk
iD1 �i 
i . Take for i0

the minimal i such that �i ¤ 0. Then 
�Œxˇi0 � D �i0 , which contradicts condition
(iii). Therefore, S \Dt�1 D f0g, and S can be naturally embedded in Dt =Dt�1, i.e.
dim S � dimDt � dimDt�1.

It remains to show that dim S is exactly dimDt � dimDt�1. This is true, since
with condition (iii) we added k D dimDt�1 equations, thus we excluded from the
initial kernel (equal to Dt ) of (i–ii) a subspace of dimension at most k D dimDt�1,
so that dim S 
 dimDt � dimDt�1.

We deduce that S Š Dt =Dt�1, thus a basis of S extends Dt�1 to a basis of Dt .
ut

The above condition is easy to realize; it is equivalent to 8i; dˇi … supp 
,
which implies adding a row (linear constraint) for every i . If we choose the elements
of B with a “reversed” total degree ordering (if a monomial compares total-degree
“less than” another one, then it compares “bigger than” the same monomial in the
reversed order), then in many cases this constraint becomes �ik D 0 for some i; k. In
this case we rather remove the column corresponding to �ik instead of adding a row.
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Hence this lemma allows to shrink the kernel (but also the dimension) of the matrix
and compute only new dual elements, which are reduced modulo the previous basis.
For a detailed size comparison, see Table 5.1.

Let us explore our running example, to demonstrate the essence of this improve-
ment.

Example 5.6 We re-run Example 5.5 using Lemma 5.2. In the initialization step
D0 D .1/ is already in triangular form with respect to B0 D f1g. For the first
step, we demand 
Œ1� D 0, thus the matrix is the same as (5.11), yielding D1 D
.1; d1 C d2/. We extend B1 D f1; x2g, so that D1 is triangular with respect to B1.

In the second step we remove from (5.12) the second column, hence we are left
with the 3 � 3 system

2

4
0 1 �1

1 1 0

1 0 1

3

5

2

4
�1

�3

�4

3

5 D 0;

yielding a single solution �d1 C d 2
1 C d1d2 C d 2

2 . We extend B1 by adding the
monomial x1: B2 D f1; x2; x1g.

For the final step, we search an element of the form (5.13) with 
Œx1� D 
Œx2� D
0, and together with (i–ii) we get:

2

6
6
4

0 0 1 �1

1 �1 0 0

1 0 �1 0

0 1 0 0

3

7
7
5

2

6
4

�3

:::

�6

3

7
5 D 0:

We find an empty kernel, thus we recover the triangular basis D D D2, which can
be diagonalized to reach the form:

2

4

1 d2 d1 d 2
1 d1d2 d 2

2


1 1 0 0 0 0 0


2 0 1 0 1 1 1


3 0 0 1 �1 �1 �1

3

5:

This diagonal basis is dual to the basis B D .1; x2; x1/ of the quotient ring and also
provides a normal form algorithm (Lemma 5.1) with respect to B. In the final step
we generated a 4 � 4 matrix, of smaller size compared to all previous methods.

Another example is treated in Fig. 5.1, with the aid of pictures.
This technique for computingB can be applied similarly to other matrix methods,

e.g. Macaulay’s dialytic method.
If h.t/ � h.t � 1/ > 1, i.e. there is more than one element in step t , then the

choice of monomials to add to B is obtained by extracting a non-zero maximal
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x2

x1

x2

x1

x2

x1

x2

x1

x2

x1

x2

x1

x2

x1

x2

x1

a b

c d

e f

g h

Fig. 5.1 Discovering a primal-dual basis pair for the root � D .0; 0/ of the bivariate system
f2x1x2

2 C 5x4
1 ; 2x2

1x2 C 5x4
2g. (a) � D .0; 0/ nullifies the system, so monomial 1 is inserted in

B. (b) In degree 1 we have d1 and d2, so x1 and x2 are added to B. (c) In degree 2, we add the
dual monomials of d2

1 ; d1d2, and d2
2 to B. (d) In degree 3, two dual basis elements appear d3

1 ; d3
2 .

(e) In degree 4 we get 2d4
1 � 5d1d2

2 , 2d4
2 � 5 d2

1 d2, and we choose x4
1 . (f) In degree 5, we get

2d5
1 C 2d5

2 � 5 d2
1 d2

2 therefore x5
1 is a primal monomial. (g) We find no element of degree 6 and

the algorithm stops: � has multiplicity 11. (h) Different choices at each step lead to different bases;
here is another possible result
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minor from the coefficient matrix in .d˛/. In practice, we will look first at the
minimum monomials with respect to a fixed term ordering.

5.4 Deflation of a Singular Point

Deflation techniques allow to transform a system of equations defining a singular
solution into a new system where the solution corresponds to a simple point. Usually
this is done by adding new variables and new equations so that a simple isolated
solution of the extended system projects onto the singular solution of the initial
system. We will illustrate different types of deflation.

5.4.1 The Univariate Case

In preparation for the multivariate case, we review an approach for treating
singularities of univariate polynomials.

Let g.x/ 2 KŒx� be a polynomial which attains at x D 0 a root of multiplicity
� > 1. The latter is defined as the positive integer � such that d �g.0/ ¤ 0 whereas

g.0/ D dg.0/ D 	 	 	 D d ��1g.0/ D 0. Here we denote by d kg.x/ D 1

kŠ

d k

dxk
g.x/

the normalized derivative of order k with respect to x.
We see that D0 D h1; d; : : : ; d ��1i is the maximal space of differentials

which is stable under derivation, that vanish when applied to members of Q0, the
hxi�primary component of hgi at x D 0.

Example 5.7 Let g.x/ D .x � 1/4, and � D 1. First we check that the space of
differentials that vanish on the solution include all linear combinations of D� D
h1; d�; d 2

� ; d 3
� i. For instance, we compute d 2Œg� D 6.x � 1/2j� D 0.

Now d 4 is not a member of D� since d 4Œg� D 1 ¤ 0 does not vanish. Similarly,
for all i 
 4, there exists a member of the ideal generated by g which does not
evaluate to zero when we apply the differential d i , namely d i Œxi�4g� D 1.

We conclude that the local dual space is exactly D� , and verify that � 4�fold zero
of f .

Consider now the symbolically perturbed equation

f1.x; "/ D g.x/ C "1 C "2x C 	 	 	 C "��1x��2 (5.16)

and apply every basis element of D0 to arrive at the new system

f .x; "/ D
�
f1; df 1; : : : ; d ��1f1

�
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in � � 1 variables. The i�th equation has the form

fi D d i�1f1 D d i�1g C
��1X

kDi

 
k � 1

i � 1

!

xk�i "k ;

i.e linear in ", the last one being f� D d ��1g.x/. This system deflates the root,
since the determinant of its Jacobian matrix at .0; 0/ is

det Jf .0; 0/ D

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

d
dx f1

:::
d
dx f��1

1 0

: : :

0 1
d
dx f� 0

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

D �df �.0/

D ��d �g.0/ ¤ 0:

Now suppose that �� is an approximate zero, close to x D �. We can still compute
D� by evaluating g.x/ and the derivatives up to a threshold relative to the error
present in ��. Then we can form (5.16) and use verification techniques to certify
the root. Checking that the Newton operator is contracting shows the existence and
unicity of a multiple root in a neighborhood of the input data. We are going to extend
this approach, described in [22], to multi-dimensional isolated multiple roots.

5.4.2 Deflation Using the Dialytic Approach

Let us consider a system of equations f D .f1; : : : ; fs/, fk 2 RŒx�, s 
 n, which
has an isolated zero �.

If the Jacobian matrix

Jf .x/ D

0

B
@

@x1f1.x/ 	 	 	 @xnf1.x/
:::

:::

@x1 fs.x/ 	 	 	 @xnfs.x/

1

C
A

at the point � is of (maximal) rank n, then the root � is simple. Moreover the iteration

x.nC1/ D x.n/ C Jf .x.n//Cf .x.n//

converges to � as soon as the initial point x.0/ is close enough to � [9].
When the root is not simple, then the rank of Jf .�/ is r1 < n and there are n�r1

linearly independent differentials of order 1 of the form u1@x1 C 	 	 	 C un@xn which
satisfy

u1@x1 f.�/ C 	 	 	 C un@xn f.�/ D 0; (5.17)
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or equivalently

Jf .�/

0

B
@

u1

:::

un

1

C
A D 0:

To fix a solution of this system, we can choose n � r1 random vectors rj D
.r0;j ; r1;j ; : : : ; rj;n/ for j D 1; : : : ; n � r1 and consider the equations

u1r1;j C 	 	 	 C unrj;n C rj;0 D 0; j D 1; : : : ; n � r1: (5.18)

Extending the initial system of equations f .x/ with the new Eqs. (5.17) and (5.18),
we obtain a new system of equations denoted f Œ1�.xŒ1�/ in the variables xŒ1� D
.x1; : : : ; xn; u1; : : : ; un/. This system is called a system deflated from f .

By construction, if � is an isolated root of f .x/ D 0 and rank Jf .�/ D r1, there
is a unique u� satisfying Eqs. (5.17) and (5.18). Thus x�Œ1� D .�; u�/ is an isolated
solution of the system f Œ1�.xŒ1�/ D 0.

If the root x�Œ1� of this system is simple, then Newton iteration applied on f Œ1�

will converge quadratically to x�Œ1� for an initial point x
.0/

Œ1� in its neighborhood.
If the root is not simple, the deflation can be applied to the system f Œ1�.xŒ1�/ D 0

and we obtain a new system f Œ2�.xŒ2�/ D 0 in 4 n variables.
As shown in the next result, the process can be applied inductively until the root

becomes simple:

Theorem 5.4 ([3, 12]) If � is an isolated root of the system f .x/ D 0, there exists
a number k 2 N such that f Œk�.xŒk�/ D 0 has a simple root x�Œk� whose projection
on the first n coordinates is �.

It is proved in [12] (or in [3]) that the number k of iterations is at most the depth
of the multiplicity of f at �, that is the maximum degree of a differential polynomial
of the inverse system of f at �.

Notice that the number of variables of the system f Œk� is n � 2k.

Example 5.8 Consider the system f1.x1; x2/ D 2x1x
2
2 C 5x4

1; f2.x1; x2/ D
2x2

1x2 C 5x4
2 and the singular point � D .0; 0/. Since Jf .�/ D 0, we apply a

first deflation step, i.e. we compute the equations Jf .x/

�
u1

u2

�

, and two random

linear equations:

g1.xŒ1�/ D f1 D 2 x1x2
2 C 5 x1

4; g2.xŒ1�/ D f2 D 2 x1
2x2 C 5 x2

4

g3.xŒ1�/ D �
2 x2

2 C 20 x1
3
�

u1 C 4 x1x2u2

g4.xŒ1�/ D 4 x1x2u1 C �
2 x1

2 C 20 x2
3
�

u2

g5.xŒ1�/ D 16 u1 C u2 � 1; g6.xŒ1�/ D 70 u1 C 77 u2
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The new Jacobian matrix Jg.�Œ1�/ is rank-defect, with �Œ1� D .x; u/ D
�

0; 0;
11

166
;

�5

83

�

is zero, and the multiplicity has dropped from 11 to 4. Therefore

we repeat the procedure for this new system using random equations from the kernel
of J.g/.�Œ1�/ (5.18):

h1.xŒ2�/ D 2 x1x2
2 C 5 x1

4; h2.xŒ2�/ D 2 x1
2x2 C 5 x2

4

h3.xŒ2�/ D �
2 x2

2 C 20 x1
3
�

u1 C 4 x1x2u2

h4.xŒ2�/ D 4 x1x2u1 C �
2 x1

2 C 20 x2
3
�

u2

h5.xŒ2�/ D 16 u1 C u2 � 1; h6.xŒ2�/ D 70 u1 C 77 u2

h7.xŒ2�/ D �
2 x2

2C20 x1
3
�

v1C4 x1x2v2; h8.xŒ2�/ D 4 x1x2v1C
�
2 x1

2C20 x2
3
�

v2

h9.xŒ2�/ D �
60 x1

2u1C4 x2u2

�
v1C .4 x2u1C4 x1u2/ v2C �

2 x2
2C20 x1

3
�

v3C4 x1x2v4

h10.xŒ2�/ D .4 x2u1C4 x1u2/ v1C �
4 x1u1C60 x2

2u2

�
v2C4 x1x2v3C �

2 x1
2C20 x2

3
�

v4

h11.xŒ2�/ D 16 v3Cv4; h12.xŒ2�/ D 70 v3C77 v4

h13.xŒ2�/ D 53 v1C12 v2C19 v3C63 v4�1; h14.xŒ2�/ D 40 v1C90 v2C3 v3C49 v4

We obtain a new system which has a regular root at �Œ2� D .x; u; v/ D
�

0; 0;
11

166
;

�5

83
;

3

143
;

�4

429
; 0; 0

�

, so deflation is achieved in two steps. We see that

the number of (equations and) variables increased exponentially, from 2 to 8, and
the system is no longer square.

5.4.3 Deflation Using the Inverse System

We consider again a system of equations f D .f1; : : : ; fs/, fk 2 RŒx�, which has
an isolated root � of multiplicity �.

In this section, we will also extend the initial system by introducing new variables
so that the extended system has a simple isolated root, which projects onto the
multiple point �. Contrarily to the deflation technique described in Sect. 5.4.2, the
number of new variables will be directly related with the multiplicity � of the point.
Let b D ..x � �/ˇ1 ; : : : ; .x � �/ˇ�/ be a basis of R=Q� and D D .
1; : : : ; 
�/

its dual counterpart, with ˇ1 D .0; : : : ; 0/, 
1 D 1.
We introduce a new set of equations starting from f , as follows: add to every fk

the polynomial gk D fk Cpk , pk D P�
iD1 "i;k.x��/ˇi where "k D ."k;1; : : : ; "k;�/

is a new vector of � variables.
Consider the system
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Dg.x; "/ D
�

1.@x/Œg�; : : : ; 
�.@x/Œg�

�
:

where 
xŒgk� D 
i .dx/Œgk� is defined as in (5.1) with � replaced by x, i.e. we
differentiate gk but we do not evaluate at �. This is a system of �s equations, which
we shall index Dg.x; "/ D .g1;1; : : : ; g�;s/. We have

gik.x; "/ D 
x
i Œfk C pk� D 
x

i Œfk� C 
x
i Œpk� D 
x

i Œfk� C pi;k.x; "/:

Notice that pi;k.�; "/ D 

�
i Œpk� D "i;k because D D .
1; : : : ; 
�/ is dual to b.

As the first basis element ofD is 1 (the evaluation at the root), the first s equations
are g.x; "/ D 0.

Note that this system is under-determined, since the number of variables is � sCn

and the number of equations is �s. We shall provide a systematic way to choose n

variables and purge them (or better, set them equal to zero).
By linearity of the Jacobian matrix we have

JDg.x; "/ D JDf .x; "/ C JDp.x; "/

D Œ JDf .x/ j 0 � C Œ J x
Dp.x; "/ j J "

Dp.x; "/ �; (5.19)

where J x
Dp.x; "/ (resp. J "

Dp.x; "/) is the Jacobian matrix of Dp with respect to
x (resp. "). By construction the Jacobian matrix J "

Dp.x; "/ of the system p D
.
x

i .pj //1�i;j�� is, up to a reordering of the rows and columns, a block diagonal
matrix with s blocks of the form

�

x

i Œbj �
�

1�i;j��
:

As D is dual to the basis b,
�

x

i Œbj �.�; 0/
�

1�i;j��
is the identity matrix, the

Jacobian J "
Dp.x; "/ evaluated at .�; 0/ is, up to a reordering of the crows and

columns, the identity matrix of dimension �s.
Using decomposition (5.19), we easily deduce the following property:

Lemma 5.3 The � s � � s Jacobian matrix J "
Dg.x; "/ is of full rank � s at .�; 0/.

Another interesting property is the following [15]:

Lemma 5.4 The �s � n Jacobian matrices J x
Dg.x; "/ and J x

Df .x; "/ are of full
rank n at .�; 0/.

We are going to use these properties to construct sub-systems of Dg with a simple
root “above” �.

The columns of JDg.x; "/ are indexed by the variables .x; "/, while the rows
are indexed by the polynomials gik . We construct the following systems:

(a) Let Df I be a subsystem of Df s.t. the corresponding n rows of JDf .�/ are
linearly independent (Lemma 5.4 implies that such a subset exists). We denote
by I D f.i1; k1/; : : : ; .in; kn/g their indices.
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(b) Let D Qg.x; Q"/ be the square system formed by removing the variables
"k1;i1 ; : : : ; "kn;in from Dg.x; "/. Therefore the Jacobian JD Qg.x; Q"/ derives
from JDg.x; "/, after purging the columns indexed by "k1;i1 ; : : : ; "kn;in and it’s
.ij ; kj /-th row becomes Œr.
x

ij
Qgij ;kj /T j 0 �.

A first consequence is the following result, giving a n � n system deduce from the
initial system f , with a simple root at �:

Theorem 5.5 (Deflation Theorem 1 [15]) Let f .x/ be a n�variate polynomial
system with an ��fold isolated zero at x D �. Then the n�n system Df I .x/ D 0,
defined in (a), has a simple root at x D �.

Example 5.9 In our running example, we expand the rectangular Jacobian matrix
of 6 polynomials in .x1; x2/. Choosing the rows corresponding to f1 and .d1 � d 2

2 �
d1d2 � d 2

1 /Œf1�, we find a non-singular minor, hence the resulting system .f1; 2x1/

has a regular root at � D .0; 0/.

The deflated system Df I .x/ D 0 is a square system in n variables. Contrarily
to the deflation approach in [4, 12], we do not introduce new variables and one step
of deflation is provably sufficient. The trade-off is that here we assume that exact
dual elements are pointed at by indices I , so as to be able to compute the original
multiple root with high accuracy.

On the other hand, when the coefficients are machine numbers, an exact multiple
root is unlikely to exist. In the following theorem, we introduce new variables that
will allow us later to derive an approximate deflation method. The need to introduce
new variables comes from the fact that in practice the exact root is not available,
or even worse, the input coefficients contain small error. Therefore, our method
shall seek for a slightly perturbed system with an exact multiple zero within a
controlled neighborhood of the input, that fits as close as possible to the approximate
multiplicity structure of the input system and point.

Theorem 5.6 (Deflation Theorem 2 [15]) Let f .x/ be a n�variate polynomial
system with a ��fold isolated root at x D �. The square system D Qg.x; Q"/ D 0, as
defined in (b), has a regular isolated root at .x; Q"/ D .�; 0/.

Nevertheless, this deflation does differ from the deflation strategy in [4, 12]. There,
new variables are added that correspond to coefficients of differential elements, thus
introducing a perturbation in the dual basis. This is suitable for exact equations, but,
in case of perturbed data, the equations do not actually define a true singular point.

Example 5.10 Consider the system [13] of 3 equations in 2 variables f1 D x3
1 C

x1x
2
2 ; f2 D x1x2

2 C x3
2 ; f3 D x2

1x2 C x1x2
2 , and the singular point .0; 0/ of

multiplicity equal to 7.
Suppose that the point is given. Using Theorem 5.3 and Lemma 5.2 we derive

the primal-dual pair

D D .1; d1; d2; d 2
1 ; d1d2; d 2

2 ; d 3
2 C d 3

1 C d 2
1 d2 � d1d

2
2 / ;
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where d 3
2 is underlined to show that it corresponds to x3

2 in the primal monomial
basis B D .1; x1; x2; x2

1 ; x1x2; x2
2 ; x3

2/ The biggest matrix used, in depth 4, was of
size 9 � 8, while Macaulay’s method terminates with a matrix of size 30 � 15.

To deflate the root, we construct the augmented system Df of 21 equations. The
21 � 2 Jacobian matrix JDf .x/ is of rank 2 and a full-rank minor consists of the
rows 4 and 5. Therefore, we find the system .d 2

1 Œf1�; d1d2Œf1�/ D .3x1; 2x2/ which
deflates .0; 0/. Note that even though both equations of the deflated system derive
from f1, the functionals used on f1 are computed using all initial equations.

The perturbed equations are then

g1 D f1 C "1;1 C "1;2x1 C "1;3x2 C C"1;4x
2
2 C "1;5x

3
2

g2 D f2 C "2;1 C "2;2x1 C "2;3x2 C C"2;4x2
1 C "2;5x1x2 C "2;6x

2
2 C "2;7x

3
2

g3 D f3 C ↑3;1 C ↑3;2x1 C ↑3;3x2 C C"3;4x2
1 C "3;5x1x2 C "3;6x

2
2 C "3;7x

3
2

and the resulting system Dg has a simple root at .�; 0/.

5.5 Approximate Multiple Point

In real-life applications it is common to work with approximate inputs. Also, there is
the need to (numerically) decide if an (approximate) system possesses a single (real)
root in a given domain, notably for use in subdivision-based algorithms, e.g. [16,19].

In the regular case, Smale’s ˛�theory, extending Newton’s method, can be used
to answer this problem, also partially extended to singular cases in [7], using zero
clustering. Another option is to used the following certification test, based on the
verification method of Rump [22, Th. 2.1]:

Theorem 5.7 ([10,22] Krawczyk-Rump Theorem) Let f 2 Rn, R D KŒx�, be a
polynomial system and �� 2 R

n a real approximate regular isolated point. Given an
interval domain Z 2 IR

n containing �� 2 R
n, and an interval matrix M 2 IR

n�n

whose i�th column Mi satisfies

rfi .Z/ � Mi for i D 1 : : : ; n

then the following holds: If the interval domain

Vf .Z; ��/ WD �Jf .��/�1f .��/ C .I � Jf .��/�1M /Z (5.20)

is contained in
ı
Z, the interior of Z, then there is a unique � 2 Z with f .�/ D 0

and the Jacobian matrix Jf .�/ 2 M is non-singular.

In our implementation we use this latter approach, since it is suitable for inexact
data and suits best with the perturbation which is applied. In particular, it coincides
with the numerical scheme of [22] in the univariate case.
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In the case of an isolated multiple point of a polynomial system, we applied a
deflation to transform it into a regular root of an extended system. The theorem
is applied to the system of Theorem 5.6, using an (approximate) structure D. The
resulting range of the "�parameters encloses a system that attains a single multiple
root of that structure. Hence the domain for "�variables reflects the distance of the
input system from a precise system with local structure D. Therefore, we obtain
a perturbed system in a neighborhood of the input together with a numerically
controlled bound on the perturbation coefficients, with a unique multiple root having
a prescribed multiplicity.

If the multiple point is known approximately, we use implicitly Taylor’s expan-
sion of the polynomials at this approximate point to deduce the dual basis, applying
the algorithm of the previous section. The following computation can be applied:

• At each step, the solutions of linear system (5.10, i–iii) are computed via Singular
Value Decomposition. Using a given threshold, we determine the numerical rank
and an orthogonal basis of the solutions from the last singular values and the last
columns of the right factor of the SVD.

• For the computation of the monomials which define the equations (Lemma 5.2,
iii) at the next step, we apply QR decomposition on the transpose of the basis to
extract a non-zero maximal minor. The monomials indexing this minor are used
to determine constraints (5.10, i–iii). A similar numerical technique is employed
in [25], for Macaulay’s method.

Example 5.11 Let f1 D x2
1x2�x1x2

2 ; f2 D x1�x2
2 . The verification method of [22]

applies a linear perturbation to this system, but fails to certify the root � D .0; 0/.
We consider an approximate point �� D .:01; :002/ and we compute the

approximate multiplicity structure

D D .
1; : : : ; 
4/ D .1:0; 1:0d2; 1:0d1 C 1:0d 2
2 ; 1:0d1d2 C 1:0d 3

2 /:

The augmented system g.x/ D .
j Œfi �/ D .f1; 2:0x1x2 � 1:0x2
2 � 1:0x1; 2:0x1 �

2:0x2; 1:0x1 � 1:0x2
2 ; f2; �2:0x2; 0:; 0:/ has a Jacobian matrix:

Jg.��/T D
�

:00 :016 �:99 2:0 1:0 0 0 0

:00 �:02 :016 �2:0 �:004 �2:0 0 0




with a non-zero minor at the third and forth row. Using this information, we apply
the following perturbation to the original system:

g1 D x2
1x2 � x1x2

2 C "11 C "12x2

g5 D x1 � x2
2 C "21 C "22x2 C "23x1 C "24x1x2

Thus g.x1; x2; "11; "12; "21; "22; "23; "24/, computed as before, is a square system
with additional equations:
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g2 D 1:0x2
1 � 2:0x1x2 C 1:0"12

g3 D 2:0x1x2 � 1:0x2
2 � 1:0x1

g4 D 2:0x1 � 2:0x2

g6 D �2:0x2 C 1:0"22 C 1:0x1"24

g7 D 1:0"23 C 1:0x2"24

g8 D 1:0"24

Now take the box Z1 D Œ�:03; :05� � Œ�:04; :04� � Œ�:01; :01�6. We apply
Theorem 5.7 on g, i.e. we compute Vg.Z1; ��/. For the variable "21 the interval
is Œ�:015; :15� 6� .�:01; :01/, therefore we don’t get an answer.

We shrink a little Z1 down to Z2 D Œ�:03; :05� � Œ�:02; :02� � Œ�:01; :01�6 and
we apply again Theorem 5.7, which results in

Vg.Z2; .��; 0/ / D

2

6
6
6
6
6
6
6
6
6
6
6
4

Œ�:004; :004�

Œ�:004; :004�

Œ�:001; :001�

Œ�:007; :007�

Œ�:006; :006�

Œ�:009; :009�

Œ�:00045; :00035�

Œ:0; :0�

3

7
7
7
7
7
7
7
7
7
7
7
5

� ıZ2;

thus we certify that the input equations admit a perturbation of magnitude of :01, so
that the perturbed system has a unique exact root within the interval Œ�:03; :05� �
Œ�:02; :02�.

5.6 Experimentation

We have implemented the presented algorithms in MAPLE. It can compute (approxi-
mate) dual bases by means of Macaulay’s method as well as the integration method,
and it can derive the augmented system defined in Theorem 5.6. Then Krawczyk-
Rump’s interval method is used to verify the root.

Example 5.12 Let, as in [11, 13],

f1 D 2x1 C 2x2
1 C 2x2 C 2x2

2 C x2
3 � 1;

f2 D .x1 C x2 � x3 � 1/3 � x3
1 ;

f3 D .2x3
1 C 2x2

2 C 10x3 C 5x2
3 C 5/3 � 1;000x5

1:
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The point .0; 0; �1/ occurs with multiplicity equal to 18, in depth 7. The final matrix
size with our method is 54 � 37, while Macaulay’s method ends with a 360 � 165

matrix.
If the objective is to deflate as efficiently as possible, then one can go step by

step: First compute a basis of D1 and stop the process. We get the evaluation 1 and
2 first order functionals, which we apply to f1. We arrive at

.1Œf1�; .d2 � d1/Œf1�; .d1 C d3/Œf1�/ D .f1; �4x1 C 4x2; 2 C 4x1 C 2x3/

and we check that the Jacobian determinant is 64, thus we have a deflated system
only with a partial local structure. The condition number of the Jacobian matrix is
also very satisfactory, with a value of around 5:55.

The recent paper [8], implementing the dialytic deflation method produces a
deflated system of size 75 � 48 for this instance, with a condition number of order
106.

Example 5.13 Consider the equations (taken from [4, DZ3]):

f1 D 14x1C33x2�3
p

5.x2
1C4x1x2C4x2

2C2/Cp
7Cx3

1C6x2
1x2C12x1x

2
2C8x3

2;

f2 D 41x1�18x2�
p

5C8x3
1�12x2

1x2C6x1x
2
2�x3

2C3
p

7.4x1x2�4x2
1�x2

2�2/

and take an approximate system Qf with those coefficients rounded to 6 digits. A
5�fold zero of f rounded to 6 digits is �� D .1:50551; :365278/.

Starting with the approximate system and with a tolerance of :001, we compute
the basis

D D .1; d1 C :33d2; d 2
1 C :33d1d2 C :11d 2

2 ; d 3
1 C :33d 2

1 d2 C :11d1d
2
2 C :03d 3

2

�1:54d2; d 4
1 C:33d 3

1 d2C:11d 2
1 d 2

2 C:03d1d
3
2 C:01d 4

2 �1:54d1d2�1:03d 2
2 /

having 4 correct digits, with respect to the initial exact system, and the primal
counterpart B D .1; x1; x2

1 ; x3
1 ; x4

1/.
We form the deflated system (b), with I D f.3; 1/; .5; 1/g, i.e. the 3rd and 5th

dual element on f1 have non-null Jacobian. By adding 8 new variables, the system
is perturbed as:

g1;1 D Qf1 C "1;1 C "1;2.x1 � ��1 / C "1;4.x1 � ��1 /3 ;

g2;1 D Qf2 C
5X

iD1

"2;i .x1 � ��1 /iC1

and their derivation with respect to D.
We consider a box Z with center D �� and length D :004 at each side. Also, we

allow a range E D Œ�:004; :004�8 for the variables Q". Applying Theorem 5.7 we get
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Table 5.1 Benchmark systems from [3], reporting matrix size at the last step of computing a dual
local basis, and overall time for primal-dual computation. The computations are done using Maple.

Observe that Macaulay’s method results in a matrix of size n

 
p � 1C n

p � 1

!

�
 

pC n

p

!

, in contrast

to a matrix of size .
n.n� 1/

2
�C n/��.n� 1/C 1 for the primal-dual approach

System �=n MM’11 Mourrain’97 Macaulay

cmbs1 11/3 27� 23 :18 s 27 � 33 :95 s 105� 56 1:55 s

cmbs2 8/3 21� 17 :08 s 21 � 24 :39 s 60� 35 :48 s

mth191 4/3 10� 9 :03 s 10 � 12 :07 s 30� 20 :14 s

decker2 4/2 5� 5 :02 s 5� 8 :05 s 20� 15 :10 s

Ojika2 2/3 6� 5 :02 s 6� 6 :03 s 12� 10 :04 s

Ojika3 4/3 12� 9 :07 s 12 � 12 :27 s 60� 35 :59 s

KSS 16/5 155 � 65 8:59 s 155 � 80 40:41 s 630� 252 70:03 s

Capr. 4/4 22� 13 :28 s 22 � 16 :47 s 60� 35 2:34 s

Cyclic-9 4/9 104 � 33 1:04 s 104 � 36 5:47 s 495� 220 31:40 s

DZ1 131/4 700 � 394 14 m 700 � 524 26 m 4;004� 1;365 220 m

DZ2 16/3 43� 33 :68 s 43 � 48 4:38 s 360� 165 25:72 s

DZ3 5/2 6� 6 :04 s 6� 10 :23 s 30� 21 :79 s

a verified inclusion Vg.Z � E; .��; 0// inside Z � E and we deduce that a unique
specialization Q" 2 E “fits” the approximate system Qf to the multiplicity structure D.

Indeed, one iteration of Newton’s method on g.x; "/ gives the approximate point
� D .1:505535473; :365266196/ and corresponding values for "0 2 E , such that �

is a 9�digit approximation of the multiple root of the perturbed system g.x; "0/.

In Table 5.1 we run dual basis computation on the benchmark set of [4].
Multiplicity, matrix sizes at termination step and computation time is reported. One
sees that there is at least an order of gain in the running time using the primal-dual
approach.
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Chapter 6
Plane Mixed Discriminants and Toric Jacobians

Alicia Dickenstein, Ioannis Z. Emiris, and Anna Karasoulou

Dedicated to the memory of our friend Andrei Zelevinsky
(1953–2013)

6.1 Introduction

Polynomial algebra offers a standard and powerful approach to handle several
problems in geometric modeling. In particular, the study and solution of systems
of polynomial equations has been a major topic. Discriminants provide a key tool
when examining well-constrained systems, including the case of one univariate
polynomial. Their theoretical study is a thriving and fruitful domain today, but they
are also very useful in a variety of applications.

The best studied discriminant is probably known since high school, where one
studies the discriminant of a quadratic polynomial f .x/ D ax2CbxCc D 0 (a 6D 0).
The polynomial f has a double root if and only if its discriminant �2 D b2 � 4ac

is equal to zero. Equivalently, this can be defined as the condition for f .x/ and its
derivative f 0.x/ to have a common root:

9 x W f .x/ D ax2 C bx C c D f 0.x/ D 2ax C b D 0 , �2 D 0: (6.1)

One can similarly consider the discriminant of a univariate polynomial of any
degree. If we wish to calculate the discriminant �5.f / of a polynomial f of degree
five in one variable, we consider the condition that both f and its derivative vanish:

f .x/ D ax5 C bx4 C cx3 C dx2 C ex C g D 0;

f 0.x/ D 5ax4 C 4bx3 C 3cx2 C 2dx C e D 0:
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In this case, elimination theory reduces the computation of �5 to the computation of
a 9�9 Sylvester determinant, which equals a �5.f /. If we develop this determinant,
we find out that the number monomials in the discriminant increases rapidly with
the input degree:

�5 D �2;050a2g2bedc C 356abed2c2g � 80b3ed2cg C 18dc3b2g

e � 746agdcb2e2 C 144ab2e4c � 6ab2e3d 2 � 192a2be4d � 4d 2ac
3e2 C 144d 2a2ce3 � 4d 3b3e2 � 4c3e3b2 � 80abe3dc2 C 18b3e3

dc C 18d 3acbe2 C d 2c2b2e2 � 27b4e4 � 128a2e4c2 C 16ac4e3 � 27

a2d 4e2 C 256a3e5 C 3;125a4g4 C 160a2gbe3c C 560a2gdc2e2 C 1;020

a2gbd2e2 C 160ag2b3ed C 560ag2d 2cb2 C 1;020ag2b2c2e � 192

b4ecg2 C 24ab2ed3g C 24abe2c3g C 144b4e2dg � 6b3e2c2g C 14

4dc2b3g2 � 630dac3bg2 � 630d 3a2ceg � 72d 4acbg � 72dac4e

g � 4d 3c2b2g � 1;600ag3cb3 � 2;500a3g3be � 50a2g2b2e2 � 3;750a3

g3dc C 2;000a2g3db2 C 2;000a3g2ce2 C 825a2g2d 2c2 C 2;250a2g3b

c2 C 2;250a3g2ed2 � 900a2g2bd3 � 900a2g2c3e � 36agb3e3 � 1;600

a3ge3d C 16d 3ac3g � 128d 2b4g2 C 16d 4b3g � 27c4b2g2 C 108ac5

g2 C 108a2d 5g C 256b5g3:

In fact, if we compute the resultant of f and xf 0 by means of the 10 � 10 Sylvester
determinant, we find the more symmetric output: a g �5.f /. This formula is very
well known for univariate discriminants (Ch.12, [18]), and we generalize it in
Theorem 3.

One univariate polynomial is the smallest well-constrained system. We are con-
cerned with multivariate systems of sparse polynomials, in other words, polynomials
with fixed support, or set of nonzero terms. Sparse (or toric) elimination theory
concerns the study of resultants and discriminants associated with toric varieties.
This theory has its origin in the work of Gel’fand, Kapranov and Zelevinsky on
multivariate hypergeometric functions. Discriminants arise as singularities of such
functions [17].

Gel’fand, Kapranov and Zelevinsky [18] established a general definition of
sparse discriminant, which gives as special case the following definition of (sparse)
mixed discriminant (see Sect. 6.2 for the relation with the discriminant of the
associated Cayley matrix and with the notion of mixed discriminant in [3]). In
case n D 2, the mixed discriminant detects tangencies between families of curves
with fixed supports. In general, the mixed discriminant �A1;:::;An.f1; : : : ; fn/ of n

polynomials in n variables with fixed supports A1; : : : ; An � Z
n is the irreducible

polynomial (with integer coprime coefficients, defined up to sign) in the coefficients
of the fi which vanishes whenever the system f1 D 	 	 	 D fn D 0 has a multiple
root (that is, a root which is not simple) with non-zero coordinates, in case this
discriminantal variety is a hypersurface (and equal to the constant 1 otherwise). The
zero locus of the mixed discriminant is the variety of ill-posed systems [24].

For each i D 1; : : : ; n, pick an element ai;0 2 Ai and denote by LA1;:::;An the
lattice generated by fa � ai;0; a 2 Ai ; i D 1; : : : ; ng. We shall work with the
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polynomial defining the discriminant cycle (see Sect. 6.2), which is defined as the
power �

i.A1;:::;An/
A1;:::;An

of the mixed discriminant raised to the index

i.A1; : : : ; An/ D ŒZn W LA1;:::;An �; (6.2)

which we always assume to be finite. In most situations, this index equals 1 and so
both concepts coincide.

Discriminants have many applications. Besides the classical application in the
realm of differential equations to describe singularities, discriminants occur for
instance in the description of the topology of real algebraic plane curves [19], in
solving systems of polynomial inequalities and zero-dimensional systems [16], in
determining the number of real roots of square systems of sparse polynomials [9],
in studying the stability of numerical solving [6], in the computation of the Voronoi
diagram of curved objects [13], or in the determination of cusp points of parallel
manipulators [20].

Computing (mixed) discriminants is a (difficult) elimination problem. In prin-
ciple, they can be computed with Gröbner bases, but this is very inefficient in
general since these polynomials have a rich combinatorial structure [18]. Ad-
hoc computations via complexes (i.e., via tailored homological algebra) are also
possible, but they also turn out to be complicated. The tropical approach to compute
discriminants was initiated in [8] and the tropicalization of mixed planar discrim-
inants was described in [10]. Recently, in [12], the authors focus on computing
the discriminant of a multivariate polynomial via interpolation, based on [11, 23];
the latter essentially offers an algorithm for predicting the discriminant’s Newton
polytope, hence its nonzero terms. This yields a new output-sensitive algorithm
which, however, remains to be juxtaposed in practice to earlier approaches.

We mainly work in the case n D 2, where the results are more transparent and the
basic ideas are already present, but all our results and methods can be generalized to
any number of variables. This will be addressed in a subsequent paper [7]. Consider
for instance a system of two polynomials in two variables and assume that, the first
polynomial factors as f1 D f 01 	 f 001 . Then, the discriminant also factors and we
thus obtain a multiplicativity formula for it, which we make precise in Corollary 7.
This significantly simplifies the discriminant’s computation and generalizes the
formula in [2] for the classical homogeneous case. This multiplicativity formula
is a consequence of our main result (Theorem 3 in dimension 2, see also Theorem 4
in any dimension) relating the mixed discriminant and the resultant of the given
polynomials and their toric Jacobian (see Sect. 6.3 for precise definitions and
statements). As another consequence of Theorem 3, we reprove, in Corollary 6,
the bidegree formula for planar mixed discriminants in [3].

The rest of this chapter is organized as follows. The next section overviews
relevant existing work and definitions. In Sect. 6.3 we present our main results
relating the mixed discriminant with the sparse resultant of the two polynomials
and their toric Jacobian. In Sect. 6.4 we deduce the general multiplicativity formula
for the mixed discriminant when one polynomial factors.



108 A. Dickenstein et al.

6.2 Previous Work and Notation

In this section we give a general description of discriminants and some definitions
and notations that we are going to use in the following sections.

Given a set A � R
n, let Q D conv.A/ denote the convex hull of A. We say

that A is a lattice configuration if it is contained in Z
n, whereas a polytope with

integer vertices is called a lattice polytope. We denote by Vol.	/ the volume of a
lattice polytope, normalized with respect to the lattice Zn, so that a primitive simplex
has normalized volume equal to 1. Normalized volume is obtained by multiplying
Euclidean volume by nŠ.

Given a non-zero Laurent polynomial

f D
X

a

caxa;

the finite subset A of Zn of those exponents a for which ca 6D 0 is called the support
of f . The Newton polytope N.f / of f is the lattice polytope defined as the convex
hull of A. We will assume that the coefficients ca take values in an algebraically
closed field K of characteristic 0.

A (finite) set A is said to be full, if it consists of all the lattice points in its convex
hull. In [3], A is called dense in this case, but we prefer to reserve the word dense
to refer to the classical homogeneous case. A subset F � A is called a face of A,
denoted F � A, if F is the intersection of A with a face of the polytope conv.A/.

As usual Q1 C Q2 denotes the Minkowski sum of sets Q1 and Q2 in R
n. The

mixed volume MV.Q1; : : : ; Qn/ of n convex polytopes Qi in R
n is the multilinear

symmetric function with respect to Minkowski sum that generalizes the notion of
volume in the sense that MV.Q; : : : ; Q/ D Vol.Q/, when all Qi are equal to a fixed
convex polytope Q.

The following key result is due to Bernstein and Kouchnirenko. The mixed
volume of the Newton polytopes of n Laurent polynomials f1.x/; : : : ; fn.x/ in n

variables is an integer that bounds the number of isolated common solutions of
f1.x/ D 0; : : : ; fn.x/ D 0 in the algebraic torus .K�/n, over an algebraically
closed field K of characteristic 0 containing the coefficients. If the coefficients of the
polynomials are generic, then the common solutions are isolated and their number
equals the mixed volume. This bound generalizes Bézout’s classical bound to the
sparse case: for homogeneous polynomials the mixed volume and Bézout’s bound
coincide.

Mixed volume can be defined in terms of Minkowski sum volumes as follows.

MV.Q1; : : : ; Qn/ D
nX

kD1

.�1/n�k
X

I	f1;:::;ng;jI jDk

1

nŠ
Vol
�X

i2I

Qi

�
:
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This implies, for n D 2:

2MV.Q1; Q2/ D Vol.Q1 C Q2/ � Vol.Q1/ � Vol.Q2/:

Definition 1 A family of finite lattice configurations A1; : : : ; Ak in Z
n is called

essential if the affine dimension of the lattice LA1;:::;An equals k � 1, and for all
proper subsets I � f1; : : : ; kg it holds that the dimension of the lattice generated
by fa � ai ; a 2 Ai; i 2 I g is greater or equal than its cardinality jI j.
Definition/Theorem 1 [18, 25] Fix a family of n C 1 finite lattice configura-
tions A1; : : : ; AnC1 which contains a unique essential subfamily fAi; i 2 I g.
Given Laurent polynomials f1; : : : ; fnC1 in n variables with respective supports
A1; : : : ; AnC1, the resultant ResA1;:::;AnC1

.f1; : : : ; fnC1/ is the irreducible polyno-
mial with coprime integer coefficients (defined up to sign) in the coefficients of
f1; : : : ; fnC1, that vanishes whenever f1; : : : ; fnC1 have a common root in the torus
.C�/n. In fact, in this case, the resultant only depends on the coefficients of fi with
i 2 I .

If there exist two different essential subfamilies, then the (closure of the) variety
of solvable systems is not a hypersurface and in this case we set:

ResA1;:::;AnC1
.f1; : : : ; fnC1/ D 1:

In what follows, we consider n (finite) lattice configurations A1; : : : ; An in Z
n

and we denote by Q1; : : : ; Qn their respective convex hulls. Let f1; : : : ; fn be
Laurent polynomials with coefficients in K and support A1; : : : ; An, respectively:

fi .x/ D
X

˛2Ai

ci;˛x˛; i D 1 : : : ; n:

In [3] the mixed discriminantal variety, is defined as closure of the locus of
coefficients ci;˛ for which the associated system f1 D 	 	 	 D fn D 0 has a non-
degenerate multiple root x 2 .K�/n. This means that x is an isolated root and the n

gradient vectors

�
@fi

@x1

.x/; : : : ;
@fi

@xn

.x/

�

are linearly dependent, but any n � 1 of them are linearly independent.

Definition 2 If the mixed discriminantal variety is a hypersurface, the mixed
discriminant of the previous system is the unique up to sign irreducible polynomial
�A1;:::;An with integer coefficients in the unknowns ci;a which defines this hyper-
surface. Otherwise, the family is said to be defective and we set �A1;:::;An D 1.
The mixed discriminant cycle Q�A1;:::;An is equal to i.A1; : : : ; An/ times the mixed
discriminant variety, and thus its equation equals �A1;:::;An raised to this integer
(defined by (6.2)).
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By [3, Theorem 2.1], when the family A1; : : : ; An is non defective, the mixed
discriminant �A1;:::;An coincides with the A-discriminant defined in [18], where A is
the Cayley matrix

A D

0

B
B
B
B
B
@

1 0 : : : 0

0 1 : : : 0

: : : : : : : : : : : :

0 0 : : : 1

A1 A2 : : : An

1

C
C
C
C
C
A

:

This matrix has 2n rows and m D Pn
iD1 jAi j columns, so 0 D .0; : : : ; 0/ and 1 D

.1; : : : ; 1/ denote row vectors of appropriate lengths. We introduce n new variables
y1; : : : ; yn in order to encode the system f1 D 	 	 	 D fn D 0 in one polynomial with
support in A, via the Cayley trick: 
.x; y/ D y1f1.x/ C 	 	 	 C ynfn.x/. Note that
i.A1; : : : ; An/ equals the index in Z

2n of the lattice generated by the columns of the
matrix A.

In what follows, when we refer to resultants or discriminants, we shall refer to
the equations of the corresponding cycles (as in Definition 2), but we will omit the
tildes in our notation. More explicitly, we will follow the convention in the articles
[5] by D’Andrea and Sombra and [14] by Esterov, which is faithful to intersection
theory. This convention allows us to present cleaner formulas. For instance, when
the family A1; : : : ; AnC1 is essential, our notion of resultant equals the resultant in
[18, 25] raised to the index i.A1; : : : ; AnC1/. In most examples these two lattices
coincide, and so our resultant cycle equals the resultant variety and the associated
resultant polynomial is irreducible.

Remark 6.2 Assume A1 consists of a single point ˛ and that f1g is the only essential
subfamily of a given family A1; : : : ; AnC1. Let f1.x/ D cx˛ . Then, for any choice
of Laurent polynomials f2; : : : ; fnC1 with supports A2; : : : ; AnC1, it holds that (cf.
[5, Example 3.14])

ResA1;:::;AnC1
.f1; : : : ; fn/ D cMV.A2;:::;AnC1/: (6.3)

With this convention, the following multiplicativity formula holds:

Theorem 2 [5, Corollary 4.6],[22] Let A01; A001 ; A1; : : : ; AnC1 be finite subsets of Zn

with A1 D A01 C A001 . Let f1; : : : ; fnC1 be polynomials with supports contained in
A1; : : : ; AnC1 and assume that f1 D f 01 f 001 where f 01 has support A01 and f 001 has
support A001 . Then

ResA1;:::;AnC1
.f1; : : : ; fnC1/

D ResA0
1;:::;AnC1

.f 01 ; : : : ; fnC1/ 	 ResA00
1 ;:::;AnC1

.f 001 ; : : : ; fnC1/:
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Cattani, Cueto, Dickenstein, Di Rocco and Sturmfels in [3] proved that the
degree of the mixed discriminant � is a piecewise linear function in the Plücker
coordinates of a mixed Grassmanian. An explicit degree formula for plane curves is
also presented in [3, Corollary 3.15]. In case A1; A2, they are two dimensional, full,
and with the same normal fan, then the bidegree of �A1;A2 in the coefficients of f1

and f2 equals:

.Vol.Q1 C Q2/ � area.Q1/ � perim.Q2/; Vol.Q1 C Q2/ � area.Q2/ � perim.Q1/;

where Qi D conv.Ai /, i D 1; 2, and Q1 C Q2 is their Minkowski sum. The area
is normalized, so that a primitive triangle has area 1 and the perimeter perim.Qi/

of Qi is the cardinality of @Qi \ Z
2: We will recover the general formula for this

degree and present it in Corollary 6.
Busé and Jouanolou consider in [2] the following equivalent definition of the

mixed discriminant, in case that f1; : : : ; fn are dense homogeneous polynomials
in .x0; : : : ; xn/ of degrees d1; : : : ; dn respectively, that is, their respective supports
Ai D di � are all the lattice points in the di -th dilate of the unit simplex � in R

n. It
is the non-zero polynomial in the coefficients of f1; : : : ; fn which equals

Resd1�;:::;dn�;ıi � .f1; : : : ; fn; Ji /

Resd1�;:::;dn�;� .f1; : : : ; fn; xi /
; (6.4)

for all i 2 f1; : : : ; ng, where Ji is the maximal minor of the Jacobian matrix
associated to f1; : : : ; fn obtained by deleting the i -th row and column and ıi DP

j¤i .dj �1/. We give a more symmetric and general formula in Corollary 5 below.
The multiplicativity property of the discriminant in the case of dense homoge-

neous polynomials was already known to Sylvester in the multivariate case [26]
and generalized by Busé and Jouanolou in [2], where they develop a formalism for
discriminants for polynomials with coefficients in a ring. In particular A1 D d1� D
.d 01 Cd 001 /� and f1 is equal to the product f 01 	f 001 of two polynomials with respective
degrees d 01; d 001 , the following factorization holds:

�d1�;:::;dn� .f1; : : : ; fn/ D �d 0
1�;:::;dn� .f 01 ; : : : ; fn/ 	 �d 00

1 �;:::;dn� .f 001 ; : : : ; fn/

	 Resd 0
1�;d 00

1 �;:::;dn� .f 01 ; f 001 ; : : : ; fn/2:

(6.5)

It is straightforward to see from the definition, that in case �A0
1;:::;An

.f 01 ; : : : ; fn/ D 0

or �A00
1 ;:::;An

.f 001 ; : : : ; fn/ D 0 or ResA0
1;A00

1 ;:::;An
.f 01 ; f 001 ; : : : ; fn/ D 0 then,

�A0
1CA00

1 ;:::;An
.f 01 f 001 ; f2; : : : ; fn/ D 0:

It follows from [14] that when each support configuration Ai is full,
the Newton polytope of the discriminant �A0

1CA00
1 ;A2;:::;An

.f 01 f 001 ; f2; : : : ; fn/

equals the Minkowski sum of the Newton polytopes of the discriminants
�A0

1;A2;:::;An
.f 01 ; f2; : : : ; fn/ and �A00

1 ;A2;:::;An
.f 001 ; f2; : : : ; fn/ plus two times the
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Newton polytope of the resultant ResA0
1;A00

1 ;A2;:::;An
.f 01 ; f 001 ; f2; : : : ; fn/. So, a first

guess would be that the factorization into the three factors in (6.5) above holds for
general supports. We will see in Corollary 7 that other factors may occur, which we
describe explicitly.

This behaviour already occurs in the univariate case:

Example 1 Let A01 D f0; i1; : : : ; im; d1g; A001 D f0; j1; : : : ; jl ; d2g be the support
sets of f 01 D a0 Cai1 xi1 C	 	 	Caim xim Cad1 x

d1 ; f 001 D b0 Cbj1x
j1 C	 	 	Cbjl

xjl C
bd2x

d2 respectively. Then

�.f 01 f 001 / D �.f 01 / 	 �.f 001 / 	 R.f 01 ; f 001 /2 	 E;

where E D a
i1�m0

0 b
j1�m0

0 a
d1�im�m1

d1
b

d2�jl�m1

d2
; with m0 WD minfi1; j1g and m1 WD

minfd1 � im; d2 � jlg: On the other hand, in the full case i1 D j1 D 1; im D
d1 � 1; jl D d2 � 1, thus E D 1 because its exponents are equal to zero.

6.3 A General Formula

The aim of this section is to present a formula which relates the mixed discriminant
with the resultant of the given polynomials and their toric Jacobian, whose definition
we recall.

Definition 3 Let f1.x1; : : : ; xn/; : : : ; fn.x1; : : : ; xn/ be n Laurent polynomials in n

variables. The associated toric Jacobian J T
f equals x1 	 	 	 xn times the determinant

of the Jacobian matrix of f, or equivalently, the determinant of the matrix:

2

6
6
6
6
4

x1

@f1

@x1

	 	 	 xn

@f1

@xn
:::

: : :
:::

x1

@fn

@x1

	 	 	 xn

@fn

@xn

3

7
7
7
7
5

:

Note that the Newton polytope of J T
f is contained in the sum of the Newton

polytopes of f1; : : : ; fn.
As we remarked before, we will mainly deal in this chapter with the case n D 2.

Also, to avoid excessive notation and make the main results cleaner, we assume
below that A1; A2 are two finite lattice configurations whose convex hulls satisfy

dim.Q1/ D dim.Q2/ D 2:

Let f1; f2 be polynomials with respective supports A1; A2:

fi .x/ D
X

˛2Ai

ci;˛x˛; i D 1; 2;



6 Plane Mixed Discriminants and Toric Jacobians 113

where x D .x1; x2/. We denote by ˙ the set of primitive inner normals � 2 .Z2/�
of the edges of the convex hull of A1 C A2. We call A

�
i the face of Ai where the

inner product with � is minimized. We call this minimum value �
�
i . We also denote

by f
�

i the subsum of terms in fi with exponents in this face

f
�

i .x/ D
X

˛2A
�
i

ci;˛x˛; i D 1; 2;

which is �-homogeneous of degree �
�
i . Now, A

�
i is either a vertex of Ai (but not of

both A1; A2 since two vertices do not give a Minkowski sum edge), or its convex
hull is an edge of Ai (with inner normal �), which we denote by e

�
i . Note that if the

face of A1 CA2 associated to � is a vertex, both polynomials f
�

i are monomials and
their resultant locus has codimension two.

We denote by �i .�/ .i D 1; 2/ the integer defined by the following difference:

�i .�/ D minfh�; mi; m 2 Ai � A
�
i g � �

�
i (6.6)

and by

�.�/ D minf�1.�/; �2.�/g; (6.7)

the minimum of these two integers. Note that by our assumption that dim.Qi / D 2,
we have that �.�/ 
 1.

Without loss of generality, we can translate the support sets A
�
1; A

�
2 to the origin

and consider the line L� containing them. The resultant (cycle) ResA
�
1;A

�
2
.f

�
1 ; f

�
2 / is

considered as before, with respect to the lattice L� \ Z
2.

Remark 6.3 As in Remark 6.2, if f
�

1 is a monomial, the resultant equals the
coefficient of f

�
1 raised to the normalized length `.e

�
2/ of the edge e

�
2 of A2 (that

is, the number of integer points in the edge, minus 1). If � is an inner normal
of edges A

�
1 and A

�
2, pick points a

�
i;0 2 A

�
i ; i D 1; 2, the resultant we consider

equals the irreducible resultant raised to the index of the lattice generated by
fa � a

�
i;0; a 2 A

�
i ; i D 1; 2g in L� \ Z

2. Note that the exponent �.�/ D 1 if at
least one of the configurations is full.

The following is our main result. We present a rather complete sketch of the
proof; a full proof requires further technical tools related to the notions in [15],
which will be given for the general case in [7]. We recall our convention that
resultants and discriminants are defined as the irreducible equations raised to the
lattice indices that define the corresponding cycles.
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Theorem 3 Let f1; f2 be generic Laurent polynomials with respective supports
A1; A2. Then, we have the following equality of polynomials up to a nonzero rational
number:

ResA1;A2;A1CA2.f1; f2; J T
f / D �A1;A2.f1; f2/ 	 E;

where the factor E equals the finite product:

E D
Y

�2˙

ResA
�
1;A

�
2
.f

�
1 ; f

�
2 /�.�/:

Proof. Let X be the projective toric variety associated to A1 C A2. This compact
variety consists of an open dense set TX isomorphic to the torus .C�/2 plus
one toric Weil divisor D� for each � 2 ˙ . The Laurent polynomials f1; f2; J T

f

define sections L1; L2; LJ of globally generated line bundles on X . The resultant
ResA1;A2;A1CA2.f1; f2; J T

f / vanishes if and only if L1; L2; LJ have a common zero
on X , which could be at TX or at any of the D�. This indicates the only possible
factors of the resultant.

There is an intersection point at TX if and only if there is a common zero of f1; f2

and J T
f in the torus .C�/2. In this case, the discriminant �A1;A2 .f1; f2/ vanishes.

It follows that �A1;A2.f1; f2/ divides ResA1;A2;A1CA2.f1; f2; J T
f / (the indices ŒZ2 W

LA1;A2 � and ŒZ2 W LA1;A2;A1CA2� are equal).
If instead there is a common zero at some D�, this translates into the fact that

f
�

1 ; f
�

2 and .J T
f /� D J T

f � (with obvious definition) have a common solution. But as

f
�

i are �-homogeneous, they satisfy the weighted Euler equalities:

�1x1

@f
�

i

@x1

C �2x2

@f
�

i

@x2

D �
�
i f

�
i ; i D 1; 2; (6.8)

from which we deduce that J T
f � lies in the ideal I.f

�
1 ; f

�
2 / and so, the three polyno-

mials will vanish exactly when there is a nontrivial common zero of f
�

1 and f
�

2 . This
implies that all facet resultants ResA

�
1;A

�
2
.f

�
1 ; f

�
2 / divide ResA1;A2;A1CA2.f1; f2; J T

f /.

Now, we wish to see that the resultant ResA
�
1;A

�
2
.f

�
1 ; f

�
2 / raised to the power

�.�/ occurs as a factor. The following argument would be better written in terms
of the multihomogeneous polynomials in the Cox coordinates of X which represent
L1; L2; LJ [4]. Fix a primitive inner normal direction � 2 ˙ of A1 C A2, let t be a
new variable and define the following polynomials

Fi .t; x/ D
X

˛2Ai

ci;˛t h�;˛i��
�
i x˛; i D 1; 2; (6.9)

so that

Fi .1; x/ D fi .x/; Fi .0; x/ D f
�

i .x/; i D 1; 2;
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and we can write

Fi .t; x/ D f
�

i .t; x/ C t�i .�/gi .x/ C t�i .�/C1hi .t; x/; i D 1; 2; (6.10)

where the polynomials gi .x/ and hi .t; x/ are defined by these equalities. Note
that our assumption that the convex hulls Q1; Q2 have dimension two implies that
g1; g2 ¤ 0.

For each t , we deduce from the bilinearity of the determinant, that there exists a
polynomial H.t; x/ such that the toric Jacobian of F1; F2 can be written as J T

F D
J T

f � C t�.�/H.t; x/. But, as we remarked, J T
f � lies in the ideal I.f

�
1 ; f

�
2 /. Note that

if for instance �1 6D 0, then the power of x1 in each monomial of Fi can be obtained
from the power of t and the power of x2, that is, we could use t and x2 as “variables”
instead. We will denote by ResX the resultant defined over X [4]. Therefore,

ResA1;A2;A1CA2.F1; F2; J T
F / D ResX

A1;A2;A1CA2
.F1; F2; t�.�/H2/:

Now, it follows from Theorem 2 that

ResX
A1;A2;A1CA2

.F1; F2; t�.�// D ResA
�
1;A

�
2
.f

�
1 ; f

�
2 /�.�/:

Setting t D 0 we see that ResA
�
1;A

�
2
.f

�
1 ; f

�
2 /�.�/ is a factor of ResA1;A2;A1CA2

.f1; f2; J T
f /.

If we prove that no positive power of t divides H2 for generic coefficients,
we get the desired factorization considering all possible � 2 ˙ . To see this,
first note that up to multiplying each fi by a monomial (that is, after translation
of each Ai ) we can assume without loss of generality that �

�
1 D �

�
2 D 0. It

follows from (6.8) that J T
f D 0. The polynomials gi in (6.10) are �-homogeneous

of respective degrees �1.�/; �2.�/. Assume �.�/ D �1.�/ � �2.�/. In case
�1.�/ < �2.�/, the coefficient of t�1 in J T

F equals the toric Jacobian J T

g1;f
�

2

of

g1 and f
�

2 , which are �-homogeneous polynomials with different �-degrees (equal
to �1.�/ > �2 D 0). It is easy to check that J T

g1;f
�

2

is a nonzero polynomial in the

coefficients of g1; f
�

2 . In case �1 D �2, we get another term which is the toric
Jacobian J T

f
�

1 ;g2
of f

�
1 and g2, which is nonzero by the same arguments and depends

on different coefficients than J T

g1;f
�

2

. Thus, their sum is not the zero polynomial, as

wanted.

Theorem 3 and the proof will be extended to the general n-variate setting in a
forthcoming paper [7]. We only state here the following general version without
proof. Recall that a lattice polytope P of dimension n in R

n is said to be smooth if
at each every vertex there are n concurrent facets and their primitive inner normal
directions form a basis of Zn. In particular, integer dilates of the unit simplex or the
unit (hyper)cube are smooth.
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Theorem 4 Let P � R
n be a smooth lattice polytope of dimension n. Let Ai D

.diP / \Z
n , i D 1; : : : ; n, d1; : : : ; dn 2 Z>0, and f1; : : : ; fn polynomials with these

supports, respectively. Then, we have the following factorization

ResA1;:::;An;A1C���CAn.f1; : : : ; fn; J T
f / D �A1;:::;An.f1; : : : ; fn/ 	 E;

where the factor E equals the finite product:

E D
Y

�2˙

ResA
�
1;:::;A

�
n
.f

�
1 ; : : : ; f �

n /:

Note that all the exponents in E equal 1 and all the lattice indices equal 1.
When the given lattice configurations Ai are the lattice points di � of the di -th

dilate of the standard simplex � in R
n (that is, in the homogeneous case studied

in [2]), formula (6.4) gives, for any n in our notation:

Resd1�;:::;dn�;ı� .f1; : : : ; fn; Ji / D
�d1�;:::;dn� .f1; : : : ; fn/ 	 Res.d1�/ei ;:::;.dn�/ei .f

ei

1 ; : : : ; f ei
n /;

where e0; : : : ; en are the canonical basis vectors (or e0 D �e1 � 	 	 	 � en, if we
consider the corresponding dehomogenized polynomials, by setting x0 D 1). Note
that Theorem 4 gives the following more symmetric formula:

Corollary 5 With the previous notation, it holds:

Resd1�;:::;dn�;.d1C���Cdn/� .f1; : : : ; fn; J T
f / D

�d1�;:::;dn� .f1; : : : ; fn/ 	
nY

iD0

Res.d1�/ei ;:::;.dn�/ei .f
ei

1 ; : : : ; f ei
n /:

It is straightforward to deduce from this expression the degree of the homoge-
neous mixed discriminant, obtained independently in [1, 2, 21]. Similar formulas
can be obtained, for instance, in the multihomogeneous case.

We recall the following definition from [3]. If v is a vertex of Ai , we define its
mixed multiplicity as

mmA1;A2 .v/ WD MV.Q1; Q2/ � MV.Ci ; Qj /; fi; j g D f1; 2g; (6.11)

where Ci D conv.Ai � fvg/.
Let ˙ 0 � ˙ be the set of inner normals of A1 C A2 that cut out, or define, edges

e
�
i in both Q1; Q2. The factorization formula in Theorem 3 can be written as follows,

and allows us to recover the bidegree formulas for planar mixed discriminants in [3].

Corollary 6 Let A1; A2 be two lattice configurations of dimension 2 in the plane,
and let f1; f2 be polynomials with these respective supports. Then, the resultant
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of f1; f2 and their toric Jacobian, namely ResA1;A2;A1CA2.f1; f2; J T
f /, factors as

follows:

�A1;A2.f1; f2/ 	
Y

v vertex of A1 or A2

c
mmA1 ;A2 .v/
v 	

Y

�2˙ 0

ResA
�
1;A

�
2
.f

�
1 ; f

�
2 /

�.�/
: (6.12)

The bidegree .ı1; ı2/ of the mixed discriminant �A1;A2.f1; f2/ in the coefficients of
f1 and f2, respectively, is then given by the following:

Vol.Qj / C 2 	 MV.Q1; Q2/ �
X

�2˙ 0

`.e
�
j / 	 �.�/ �

X

v vertex of .Ai /

mmA1;A2.v/; (6.13)

where i 2 f1; 2g; i ¤ j .

Proof. To prove equality (6.12), we need to show by Theorem 3 that the factor

E D
Y

�2˙

ResA
�
1;A

�
2
.f

�
1 ; f

�
2 /�.�/

equals the product

Y

v vertex of A1 or A2

c
mmA1 ;A2 .v/
v 	

Y

�2˙ 0

ResA
�
1;A

�
2
.f

�
1 ; f

�
2 /

�.�/
:

When � 2 ˙ 0, i.e. � is a common inner normal to edges of both Q1 and Q2, we get
the same factor on both terms, since that our quantity �.�/ coincides with the index
minfu.e1.�/; A1/; u.e2.�/; A2/g, in the notation of [3].

Assume then that � is only an inner normal to Q2. So, A
�
1 is a vertex v, f

�
1 D cxv

is a monomial (with coefficient c) and f
�

2 is a polynomial whose support equals
the edge e

�
2 of A2 orthogonal to �. In this case, ResA

�
1;A

�
2
.f

�
1 ; f

�
2 / D c`.f�/ by

Remark 6.2.
For such a vertex v, denote by E.v/ the set of those �0 … ˙ 0 for which v C e

�0

2

is an edge of Q1 C Q2. Note that it follows from the proof of [3, Prop.3.13] (cf. in
particular Figure 1 there), that there exist non negative integers �0.�0/ such that

mm.v/ D
X

�02 E.v/

`.e
�0

2 / 	 �0.�0/:

Indeed, �.�0/ D �0.�0/.
To compute the bidegree, we use the multilinearity of the mixed volume with

respect to Minkowski sum. Observe that the toric Jacobian has bidegree .1; 1/ in
the coefficients of f1; f2, from which we get that the bidegree of the resultant
ResA1;A2;A1CA2.f1; f2; J T

f / is equal to

.2MV.A1; A2/ C Vol.Q2/; 2MV.A1; A2/ C Vol.Q1//: (6.14)
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Substracting the degree of the other factors and taking into account that the
bidegree of the resultant ResA

�
1;A

�
2
.f

�
1 ; f

�
2 / equals .`.e

�
2/; `.e

�
1//, we deduce the

formula (6.13), as desired.

6.4 The Multiplicativity of the Mixed Discriminant

This section studies the factorization of the discriminant when one of the poly-
nomials factors. We make the hypothesis that f 01 ; f 001 ; f2 have fixed support sets
A01; A001 ; A2 � Z

2. So f1 D f 01 	 f 001 has support in the Minkowski sum A1 WD
A01 C A001 ; in fact, its support is generically equal to A1. We will denote by �0.�/

(resp. �00.�/) the integer defined in (6.7), with A1 replaced by A01 (resp. A001 ).

Corollary 7 Assume A01; A001 and A2 are full planar configurations of dimension 2.
Let f 01 ; f 001 ; f2 be generic polynomials with these supports and let f1 D f 01 	 f 001 .
Then,

�A1;A2 .f1; f2/ D �
A

0

1;A2
.f

0

1 ; f2/ 	 �
A

00

1 ;A2
.f

00

1 ; f2/ 	 Res
A

0

1;A
00

1 ;A2
.f

0

1 ; f
00

1 ; f2/
2 	 E;

where E equals the following product:

Y

�2˙

Res.A0
1/�;A

�
2
..f 01 /�; f

�
2 /�0.�/��.�/ 	 Res.A00

1 /�;A
�
2
..f 001 /�; f

�
2 /�00.�/��.�/: (6.15)

Proof. By Theorem 3, we get that

�A1;A2.f1; f2/ D ResA1;A2;A1CA2.f1; f2; J T
f /

Q

�2˙

ResA
�
1;A

�
2
.f

�
1 ; f

�
2 /�.�/

; (6.16)

and similarly for �A0
1;A2

.f 01 ; f2/ and �A00
1 ;A2

.f 001 ; f2/. Let us write the numerator
of (6.16) as follows:

ResA0
1CA00

1 ;A2;A0
1CA00

1CA2
.f 01 f 001 ; f2; J T

f 0
1 f 00

1 ;f2
/;

where J T
f 0

1 f 00
1 ;f2

D f 01 J T
f 00

1 f2
C f 001 J T

f 0
1 ;f2

. We now apply Theorem 2 to re-write it as

follows:

ResA0
1;A2;A0

1CA00
1CA2

.f 01 ; f2; J T
f 0

1 f 00
1 ;f2

/ ResA00
1 ;A2;A0

1CA00
1CA2

.f 001 ; f2; J T
f 0

1 f 00
1 ;f2

/

D ResA0
1;A2;A0

1CA00
1CA2

.f 01 ; f2; f 001 J T
f 0

1 ;f2
/ ResA00

1 ;A2;A0
1CA00

1CA2
.f 001 ; f2; f 01 J T

f 00
1 ;f2

/;

because the resultant of fh1; h2 C gh1; : : : g equals the resultant of fh1; h2; : : : g,
for any choice of polynomials h1; h2; g (with suitable supports). We employ again
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Theorem 2 to finalize the numerator as follows:

ResA0
1;A2;A0

1CA2
.f 01 ; f2; J T

f 0
1 ;f2

/ 	 ResA00
1 ;A2;A00

1CA2
.f 001 ; f2; J T

f 00
1 ;f2

/ 	 Res
A

0

1;A
00

1 ;A2

.f
0

1 ; f
00

1 ; f2/2:

For the denominator of (6.16), we use again Theorem 2 to write:

Y

�2˙ 0

ResA0
1

�
;A

�
2
.f 01

�
; f

�
2 /�0.�/ 	

Y

�2˙ 00

ResA00
1

�
;A

�
2
.f 001

�
; f

�
2 /�00.�/ D

Y

�2˙

ResA0
1

�CA00
1

�
;A

�
2
.f 0�1f 00�1; f

�
2 /�.�/ 	 E;

because the products

Y

�2˙n˙ 0

ResA0
1

�
;A

�
2
.f 01

�
; f

�
2 /�0.�/ D

Y

�2˙n˙ 00

ResA00
1

�
;A

�
2
.f 001

�
; f

�
2 /�00.�/ D 1;

since f 01
�
; f

�
2 (resp. f 001

�
; f

�
2 ) are both monomials. To conclude the proof, simply

assemble the above equations.

As a consequence, we have degA1;A2
�.f1; f2/ D

D degA0
1;A2

�.f 0
1 ; f2/C degA00

1 ;A2
�.f 00

1 ; f2/C2 	 degA0
1;A00

1 ;A2
Res.f 0

1 ; f 00
1 ; f2/� deg.E/:

When all the configurations are full and with the same normal fan, all the
exponents �.�/ D �0.�/ D �00.�/ D 1. Therefore, E D 1 and no extra factor
occurs.

We define �01.�/; �001 .�/ as in (6.6). Indeed, we now fix � and will simply write
�01; �001 ; �1; �2. It happens that only one of the factors associated to � can occur in E

with non zero coefficient. More explicitly, we have the following corollary, whose
proof is straightforward.

Corollary 8 With the notations of Corollary 7, for any � 2 ˙ it holds that:

• If �01 D �001 , then �0 D �00 D � and there is no factor in E “coming from �”.
• If �01 ¤ �001 , assume wlog that �1 D �01 < �001 . There are three subcases:

– If �2 � �1, again there is no factor in E “coming from �”.
– If �1 D �01 < �2 < �001 , then the resultant Res.A0

1/�;A
�
2
..f 01 /�; f

�
2 / does not

occur, but Res.A00
1 /�;A

�
2
..f 001 /�; f

�
2 / has nonzero exponent (this resultant could

just be the coefficient of a vertex raised to the mixed multiplicity).
– If �1 D �01 < �001 � �2, the situation is just the opposite than in the previous

case.
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Conclusion and Future Work
The intent of this book chapter was to present our main results relating
the mixed discriminant of two bivariate Laurent polynomials with fixed
support, with the sparse resultant of two bivariate Laurent polynomials with
fixed support and their toric Jacobian. On our way, we deduced a general
multiplicativity formula for the mixed discriminant when one polynomial
factors as f D f 0 	 f 00. This formula occurred as a consequence of our main
result, Theorem 3, and generalized known formulas in the homogeneous case
to the sparse setting. Furthermore, we obtained a new proof of the bidegree
formula for planar mixed discriminants, which appeared in [3].

The generalization of our formulas to any number of variables will allow us
to extend our applications and to develop effective computational techniques
for sparse discriminants based on software for the computation of resultants.
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Chapter 7
Topology of the Intersection of Two
Parameterized Surfaces, Using Computations
in 4D Space

Stéphane Chau and André Galligo

7.1 Introduction

7.1.1 Interest of the Problem

In Computer Aided Geometric Design (CAGD), parameterized surfaces are used
to delimit volumes. The computation of the intersection curve between two such
surfaces is thus crucial for the description of CAGD objects. A simple method to
address this problem consists in using a mesh for each surface, and then proceed
to their intersection via intersection of triangles. But the instability created by
intersecting almost parallel triangles constitutes a drawback. A more stable method
relies on global representations of the surfaces by B-splines; however the usual
CAGD procedures (offsetting, drafting, . . . ) do not keep this model. In practice, so-
called procedural surfaces (i.e. given by evaluation) are used, in CAGD systems,
to represent sequences of constructions indicated by the user. Then a B-spline
approximation is computed for further developments. So, even if the intersection
method is exact, in its final step, it only provides an approximation of the “real”
intersection curve.

Ideally, approximations of the surfaces should not be separated from the inter-
section process. An intermediate strategy is to approximate the given surfaces by
meshes of algebraic shapes more complex than the triangles; hence the intersection
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locus will be more precise. A good choice is to approximate by Bézier surface
patches of small degree (see Sect. 7.1.2). Then, it is crucial to be able to efficiently
intersect two such polynomial parameterized surfaces.

The present paper aims to contribute to a robust solution of this problem which
avoids some drawbacks such as large intermediate algebraic expressions that appear
in projection methods.

The intersection curve of two such parameterized surfaces is characterized by 3
equations Fi .s; t/ D Gi .u; v/, i D 1; 2; 3 of 4 variables. So, it is the image of a
curve in a four dimensional space. We provide a method to draw this curve with a
guaranteed topology.

Our method depends ultimately on an a priori fixed threshold epsilon, which
controls the approximations. In practice, this value is determined by the engineers
for the targeted applications: in CAD-CAM a precision of 1 � is often required.

7.1.2 An Example of Biquadratic Meshing of a Procedural
Surface

Let S be a general parameterized surface given by evaluations. We consider a
grid of points on S of size .2m C 1; 2n C 1/. This is used to build a grid of
biquadratic patches of size .m; n/. Figure 7.1 (left) illustrates this grid in the 2D
parameter space. Thus, the coefficients are shared between adjacent patches. An
example of this kind of approximation is given in Fig. 7.2. In this example, we have
a shape composed by three B-spline surfaces on the left, then we consider an offset,
which cannot be represented by a B-spline, and we approximate it by a grid of 144

(2
m

+
1)

po
in
ts

=
m

pa
tc
he
s

(2n+ 1) points = n patches

n = 2p

2(p−1)

2(p−2)

m = 2q
2(q−1)

2(q−2)

Fig. 7.1 Grid of biquadratic patches on the left. Grid of boxes with n D 2p and m D 2q on the
right
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Fig. 7.2 Approximation of an offset by a grid of 144 biquadratic patches

Fig. 7.3 Approximation of an offset by a grid of 144 biquadratic patches (clipped picture)

biquadratic patches (the result is shown on the right). In order to provide a better
view of the offset, a clipped picture is also given (Fig. 7.3).

Now, we consider two such grids and hierarchies on S1 and S2, the two surfaces
to be intersected. We produce another grid of m � n 3D boxes taking min-max
values of the patch coefficients, each box containing the patch due to the convex hull
property of the Bézier surfaces. Then, we build a quadtree hierarchy covering this
grid. Figure 7.1 (right) illustrates this construction. Using these quadtrees we look
for intersecting boxes and we obtain a set of pairs of intersecting boxes associated
to patches. This process is efficient and, as we will see, provides a good description
of the intersection curve. However, it requires an efficient and robust algorithm for
the intersection of two Bézier surface patches.

In the sequel, we concentrate on the presentation of our subdivision algorithm
for the intersection of polynomial patches.
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7.1.3 Organization of the Paper

In Sect. 7.2, a brief description of previous work on topology computation is given.
We sketch an introduction on the subdivision approach for plane curves. Section 7.3
is devoted to the algorithmic study of the topology of an implicit four dimensional
curve. A complete description of its computation, by a subdivision method, is given
in this case. In fact, this case corresponds to the intersection curve between two
polynomial parameterized patches.

Implementation aspects are addressed in Sect. 7.4 and examples are presented.
The last Sect. 7.5 addresses the problem of computing exactly the image of that
curve in R

3. The hardness of the problem is demonstrated, then a solution is
outlined.

7.2 Previous Work on Topology Computation of a Curve

The problem of tracing the intersection of two surfaces, also called surface-surface
intersection, is a classical problem in Computer Aided geometric Design, and was
addressed very early in that community, and improved continuously, see e.g. [5, 12,
16, 20, 23, 27, 28] and the references therein. It was also considered rather early,
together with the estimation of its complexity in the Computer algebra community,
see e.g. [4, 7, 14, 22].

The contributions and the progresses increased in the last decade. One distin-
guishes between 2D and 3D curves, between the cases of implicit or parametric
curves and also between algebraic or subdivision methods which proceed up to a
predefined precision.

7.2.1 Isotopic Curve

The topology of an algebraic curve C in R
n (n 
 2) can be represented by a list of

line segments whose concatenation forms a curve isotopic to C. In the last decade,
several algorithmic papers started the study of this subject, see e.g. [13, 18, 21, 25]
and their bibliography. They use the following basic constructions to make this
mathematical definition effective. Sweeping methods rely on parallel lines or planes
and detect topological events (critical points) such as we will see, tangent points to
the sweeping planes or singularities; we refer to [19,20] for planar curves and [3,18]
for spatial curves. With these algebraic approaches, the precise determination of the
critical points generally requires to compute sub-resultant sequences and is often
time consuming. This and the computation of the complexity has been improved
recently with the works of [1, 2, 9–11, 15, 24]; several nice complexity results are
now available.
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Subdivision and exclusion techniques, see [25, 26], rely on (simple) criteria to
remove unnecessary domains, then restrict to domains where the situation is tame.
Polynomial representation in Bernstein bases is generally preferred, see [16, 27].

7.2.2 Regularity Test and Subdivision Method, the Case
of a Plane Curve

A subdivision approach to compute the topology of the intersection curve between
two algebraic surfaces is given in [25]. It consists in subdividing the domain until
a regularity test is satisfied. Let us briefly recall it. To simplify the presentation, we
consider in this subsection the case of a plane curve.

Let f .x; y/ be a polynomial and B D Œa; b� � Œc; d � � R
2 a box. Consider the

implicit plane curve associated to f in the box B by the equation f .x; y/ D 0.
A regularity test allows to determine uniquely the topology of the curve in the box
from its intersection with the boundary. A collection of segments is provided, which
realizes an isotopy.

Proposition 7.1 If @yf .x; y/ ¤ 0 for all .x; y/ 2 B D Œa; b� � Œc; d �, then for all
x 2 Œa; b� there exists at most one y 2 Œc; d � such that f .x; y/ D 0.

Proof: Let x0 be a value in Œa; b�. If there were two different values y0 < y1 in
Œc; d � such that f .x0; y0/ D f .x0; y1/ D 0 then by Rolle’s theorem, there would
exist y2 2 Œy0; y1� such that @yf .x0; y2/ D 0. �

Remark 7.1 • This criterion considers @yf .x; y/ for all values .x; y/ in the box
and not only for all points of the curve, so it is rather restrictive.

• To implement this criterion, the polynomial @yf .x; y/ is expressed in Bernstein
basis and the coefficients are required to share the same sign.

• A similar statement holds replacing the condition @yf .x; y/ ¤ 0 by
@xf .x; y/ ¤ 0 (for all .x; y/ 2 B).

If f satisfies this test, then the topology of the curve f.x; y/ 2 B j f .x; y/ D 0g
can be determined by knowing the intersection points between the curve and the
border of B . Hence, a first step is to compute all these intersection points (a point is
repeated if its multiplicity is even) and sort them by their x component to obtain a
list of points p1; p2; : : : ; p2s�1; p2s . Then, in the box, the curve is isotopic to the set
of segments: Œp1; p2�; : : : ; Œp2s�1; p2s� (see the illustration in Fig. 7.4). The criterion
can be checked recursively by subdividing the initial curve (using De Casteljau’s
algorithm) until a family of boxes is obtained where the test is verified. The approach
is extended (in [25]) to the case of a 3D curve defined implicitly by two equations.
This provides an elegant and efficient solution to the topology computation problem
of an intersection curve between two implicit surfaces.
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Fig. 7.4 Topology via
regularity test in 2D case

x

y

7.2.3 No Loop and Single Component

The results in the present work are part of the PhD thesis of the first author [8].
In our review of the previous works, we point out the interesting recent paper

[6] which approach is close to our method, but developed independently. Paper [6]
is also based on a subdivision method and the use of tests to guaranty that “there
is just one component [of the intersection] over a given domain”, this property is
similar to what we described in the previous subsection and to our generalized
injectivity requirements (see Sect. 7.3.2). However the formalisms are different.
Indeed, in that work, the authors rely on (more general) wedge products and
Gaussian hyperspheres; while here all the intermediate constructions are elementary
and the case by case descriptions are simple and adapted to our precise target.
Moreover, [6] does not consider the knot problem that we addressed in the our
section.

7.3 Topology of (Parameterized) Surface/Surface
Intersection

7.3.1 Equations

This is the main technical section, where our setting, our intermediate constructions
and our criteria are presented.

Let F and G be two polynomial surface patches defined by the maps:

F W
�

Œ0; 1�2 �! R
3

.s; t/ 7�! F.s; t/

�

G W
�

Œ0; 1�2 �! R
3

.u; v/ 7�! G.u; v/

�

:
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We suppose that the intersection F \ G is a curve C in R
3; it is the image of

C D ˚
.s; t; u; v/ 2 Œ0; 1�4 j F.s; t/ � G.u; v/ D 0



:

Our aim is to compute the topology of C by a subdivision method generalizing the
approach described in Sect. 7.2. An injectivity criterion which says that for all s0 2
Œ0; 1�, there exists at most one .t0; u0; v0/ 2 Œ0; 1�3 such that F.s0; t0/ � G.u0; v0/ D
0, is needed. So, we fix s0 2 Œ0; 1�, and study the map:


 W
�

Œ0; 1�3 �! R
3

.t; u; v/ 7�! F.s0; t/ � G.u; v/

�

Thereafter, we set 
.t; u; v/ D F.s0; t/ � G.u; v/ D .
1; 
2; 
3/.

7.3.2 Topology of a 4 Dimensional Implicit Curve (Regularity
Criterion)

Let us first recall basic facts and definitions.
Consider a differential map f W E1 ! E2. Then, f is not injective, if there

exists a “witness” pair x1; x2 2 E1 such that f .x1/ D f .x2/. We also say that f is
(resp. is not) locally injective at a point x0, if the jacobian determinant of f at x0 is
invertible (resp. vanishes)

Computationally, one distinguishes two cases of non injectivity. First, it is a local
behavior, i.e. there exists a point x0 2 E1 such that in any (small) neighborhood
of x0 there exist such a witness pair x1; x2 then, since f is a differential map, this
phenomena can be detected on a linear approximation of f at x0, by computing
the jacobian determinant of f , hence relying on local non injectivity. Second, the
witness pair .x1; x2/ of defect of injectivity is such that x1 and x2 are far apart,
then the defect of injectivity is a priori difficult to control computationally; a usual
strategy is to connect the points x1 and x2 along a curve, in order to detect another
witness point x0 2 E1 where f is not locally injective.

Construction of the Injectivity Criterion for �

A necessary condition of injectivity is the local injectivity of 
. By the inverse
function theorem, it is satisfied when the jacobian of 
 is nonzero over Œ0; 1�3:

8.t; u; v/ 2 Œ0; 1�3; det .@t 
.t; u; v/; @u
.t; u; v/; @v
.t; u; v// ¤ 0:

Now, we assume local injectivity, and we look for sufficient conditions of (global)
injectivity of 
.
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If 
 is not injective, there exist two different points A and B in Œ0; 1�3 such that
for all i 2 f1; 2; 3g, 
i .A/ D 
i .B/. For our analysis, we fix A and we introduce
the two following subsets of Œ0; 1�3, which will be useful to connect A and B:

S1 WD ˚
M 2 Œ0; 1�3 j 
1.M / D 
1.A/



(7.1)

C1;2 WD ˚
M 2 Œ0; 1�3 j 
1.M / D 
1.A/ and 
2.M / D 
2.A/



: (7.2)

First case: Let us rule out the possibility that A and B are on a same connected
component of C1;2 that we denote by � . Since � is a connected curve, local
injectivity of 
, and the inverse function theorem, implies that � can be
differentiably parameterized. Then, 
3 restricted to � is differentiable and takes
the same value at A and B; by Rolle’s theorem 
3 admits an extremum on C1;2.
This implies that 
 is not locally injective near the argument of the extremum; a
contradiction with our assumption of local injectivity.

Second case: A and B are on two different connected components of C1;2 denoted
by CA and CB . One of these two curves describes a loop. This is ruled out with
exactly the same reasoning as in the First case.

Third case: A and B are on two different connected components of C1;2 denoted
by CA and CB . None of these two curves describes a loop.

Hence, CA (as well as CB ) intersects twice the border of the cube Œ0; 1�3. Then,
C1;2 intersects the border of the cube Œ0; 1�3 in four distinct points.Therefore, if we
can rule out this last possibility, we will get a sufficient condition of injectivity.

To prevent the possibility of several intersection points of C1;2 with the border,
our strategy is to impose sufficient monotony conditions on 
1 and 
2. We are
guided by the fact that at all these intersection points 
1 and 
2 take the same values,
since they belong to C1;2. Later, a subdivision process will monitor these monotony
properties.

Monotony Condition on �1

First, we impose monotony conditions on 
1 restricted to the edges of Œ0; 1�3. For
example, we can require that 
1 increases on each edge of Œ0; 1�3 as indicated in
Fig. 7.5. So 
1 � 
1.A/ vanishes at most once on each path going from the vertex O

to the vertex I following the ordered edges. This condition implies that the implicit
surface S1 (of equation 
1.t; u; v/ D 
1.A/) is connected. Indeed, if S1 admitted
two connected components in the cube, they would intersect the edges at the same
points and contradict differentiability of 
, hence it does not happen.

We classify all possible configurations by the number of the intersection points
(3, 4, 5 or 6) between S1 and the edges, as illustrated in Fig. 7.6. Note that since
C1;2 � S1 and @S1 � @Œ0; 1�3, the equality #.C1;2 \ @S1/ D #.C1;2 \ @Œ0; 1�3/ holds
(see Fig. 7.7).
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Fig. 7.5 Example of monotony of 
1 on the edges of Œ0; 1�3
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Fig. 7.6 Configurations of the surface S1 in Œ0; 1�3 under the monotony constraint on 
1
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Fig. 7.7 Example of
monotony of 
2 along the
border of S1

u

t

v

u = 0

v = 0

t = 0

C1,2
∇φ1
Variations of φ2

Monotony Condition on �2 Along @S1

Now, we study each configuration. We impose monotony conditions on 
2 along the
border of S1 to force C1;2 to have at most two intersection points with this border.
Hence contradicts the possibility of having four intersection points with the border
of the cube.

The following lemma will be useful:

Lemma 7.1 Let f be a C1 real function over an open convex set U � R
2 and h be

a nonzero vector in R
2. If for all u 2 U we have rf .u/ 	 h > 0, then f is increasing

in the direction h on U i.e. 8u 2 U and 8� > 0 such that .u C � h/ 2 U , we have
f .u C � h/ > f .u/.

Proof: Let u0 2 U and � > 0 such that .u C � h/ 2 U . Then f .u0 C � h/ �
f .u0/ D R 1

0 '.t/ dt with '.t/ D rf .u0 C t�h/ 	 h which is positive. �

• Replacing f by �f , we get similarly that rf .u/ 	 h < 0 implies f is decreasing
in the direction h on U .

• Remember that in the plane, for a nonzero vector �!w D .a; b/, the vector �!w? WD
.�b; a/ is normal to �!w and the oriented angle 3.�!w ; �!w?/ is equal to 	=2.

So, in order to ensure monotony of 
2 along the border of S1 (see Fig. 7.7), we
orient S1 by the vector field r
1. This induces an orientation on the border @S1 of
S1; @S1 is the intersection of S1 with the faces of the cube. This orientation of the
border of S1 in each face is given by �!w? where �!w is the projection of r
1 on the
faces. Then, we impose a monotony direction of 
2 restricted to @S1 on each face
of the cube. To illustrate this procedure, Fig. 7.8 represents, in the three coordinates
planes, the monotonies shown on Fig. 7.7: the desired monotony in the .u; v/-plane
(pictured in the middle of Fig. 7.8) is obtained by projecting the vector r
1 on this
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Fig. 7.8 Traces of S1 on the faces of the box with orientations

plane and we have �!w D .@u
1.0; 	/; @v
1.0; 	//. Then, we force the decreasing of
.u; v/ 7! 
2.0; u; v/ in the direction �!w?. Applying Lemma 7.1, we require:

8.u; v/ 2 Œ0; 1�2;

�
@u
2.0; u; v/

@v
2.0; u; v/

�

	
��@v
1.0; u; v/

@u
1.0; u; v/

�

< 0:

This dot product is a polynomial of bi-degree .3; 3/ with respect to the variables
.u; v/. Considered also as a polynomial in s (that we fixed at the beginning of this
section) it is of degree 4 in s.

Choice of Monotony Constraints

Here, we present our choice of sufficient condition such that #.C1;2\@S1/ � 2. First,
we consider the case when S1 intersects the six faces of the cube Œ0; 1�3. In the other
cases, we just skip the condition corresponding to missing segments contracted to a
point (see Figs. 7.9 and 7.10).

The border of S1 is isotopic to an hexagon fM1; : : : ; M6g as shown on Fig. 7.11.
A sufficient monotony condition is given by a choice of an initial point MI and a

final point MF among fM1; : : : ; M6g with the possible choice MI D MF such that

2 is monotonic on the paths on @S1 joining MI to MF . This clearly implies that

2 � 
2.A/ vanishes at most twice on @S1. Since the four variables fs; t; u; vg play
similar roles, we extend our choice of sufficient conditions applying permutations
on these letters.

1. Instead of fixing s, we can fix t , u or v and consider the corresponding maps.
2. The roles of 
1, 
2, and 
3 can be exchanged.

All these options will be considered to speed up the implementation.
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Fig. 7.9 Exemple of monotony of 
2 along the border of S1 in the case when S1 intersects six
faces of the box and the resulting configurations in the other cases
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Fig. 7.10 Traces of S1 on the faces of the box (it corresponds to the case represented in Fig. 7.9)
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Fig. 7.11 Traces of S1 on the faces of the box (it corresponds to the case represented in Fig. 7.9)

7.4 Algorithms and Data Structures

In this section, we present implementation aspects of our intersection algorithm we
used Axel1 an algebraic geometric modeler.

7.4.1 Hextree Data Structure and Topology

A subdivision algorithm on a box in Œa1; b1� � Œa2; b2� � Œa3; b3� � Œa4; b4� � R
4

explores sub-boxes constructed by considering intermediate values ci between ai

and bi for i 2 f1; : : : ; 4g; here we choose ci D ai C bi

2
. So a box has 16 sub-

boxes. Iterating this construction, an hextree is build; i.e. each node of the tree has
16 children numbered from 0 to 15. In binary expression, this number is written
˛1˛2˛3˛4 with ˛i D 0 or 1; for i 2 f1; : : : ; 4g, if ˛i D 0, the sub-box is constructed
over Œai ; ci � and if ˛i D 1 it is constructed over Œci ; bi �. For example, the twelfth
child is written 1100 and corresponds to the sub-box Œc1; b1� � Œc2; b2� � Œa3; c3� �
Œa4; c4�.

This is called an hextree data structure, it generalizes the quadtrees which are
widely used to represent planar shapes. See e.g. [17] A label which stores the needed
information is associated to each node of the tree. Here, the information will be the
description of the topology of the intersection curve C into the corresponding sub-

1http://axel.inria.fr

http://axel.inria.fr
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box. More precisely, we require that, at the leaves of the tree, this intersection is
empty or its dimensions are below some threshold or it is isotopic to a collection
of disjoint segments; each segment connects two intersection points of the curve
C with the border of the considered sub-box. Each such segment is represented
by the coordinates of its extremal points. Note that in R

4, all the 16 children sub-
boxes of a given box are adjacent. Our injectivity criterion described in Sect. 7.3 is
implemented in a test function (called regular) if it returns false on a sub-box then
the sub-box is subdivided.

7.4.2 Subdivision Algorithm

The following Algorithm 4 describes the subdivision method for the topology
computation. Some other functions that are needed are described in the sequel.

Algorithm 4: Algorithm for topology in 4D: topology(C; B; �)
Input:The curve C, a box B D Œa1; b1� � Œa2; b2�� Œa3; b3� � Œa4; b4� and a tolerance �.
Output:A list of segments in R

4 representing the topology.
Create the hextree H. Initialize the root of H by B and the intersection points C \ @B .
Create a list of nodes L: L � rootOf(H).
While L ¤ ;, Take the first item n of L (and remove it from L)
If regular(C; n), Then n � regularTopology(C; n)
Else If the current box has a size 
 �, Then L � subdivision (C; n).
Else Connect all the border points to the center of the box (this applies when we stop the
subdivision because we arrived below the fixed threshold).
Return(fusion(H)).

Now we describe the other functions called by topology.

Function regular

This function corresponds to the injectivity criterion described in Sect. 7.3. In fact
there are four different tests and each of them corresponds to the fixed variable
choice s; t; u or v (see Algorithm 5). If one of them is verified, then we call the
corresponding function regularTopology.

Function regularTopology

If one of the four regularity tests regular is verified, then the topology of
C is known. In the function regularTopology, we just have to connect the
border points in the current node. We also have four differentregularTopology
functions corresponding to the fixed variable s; t; u or v. For example, if s is
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Algorithm 5: Injectivity criterion: regular(C; n)
If 
 is locally injective in n, Then

If 
1 has the wanted monotony on the edges of n, Then
If 
2 or 
3 has the wanted monotony on @S1,

Then Return (true), Else Return (false),
Else If 
2 has the wanted monotony on the edges of n, Then

If 
1 or 
3 has the wanted monotony on @S2,
Then Return (true), Else Return (false),

Else If 
3 has the wanted monotony on the edges of n, Then
If 
1 or 
2 has the wanted monotony on @S3, Then Return (true),

Else Return (false), Else Return (false), Else Return (false).

fixed, then we have, in the current node, a list of even number of border points
p1; p2; : : : ; p2k�1; p2k (we repeating a point if its multiplicity is even) sorted
by their s component. Then, the topology is described by the list of segments:
Œp1; p2�; : : : ; Œp2k�1; p2k�.

Function subdivision

This function subdivides the current box creating 16 children as described in
Sect. 7.4.1. It allocates the inherited intersection points and computes the new
intersection points with the faces of these sub-boxes.

Function fusion

This function is called when the construction of the hextree H is finished. More
precisely, each leaf of H contains the topology in the corresponding sub-box.
fusion provides the topology of C in the initial box B . Its implementation consists
in merging recursively the topology between the children of each node.

7.4.3 Connected Components and Loops

Algorithm 4 allows to identify the connected components easily. Indeed, the resulted
topology of C is a list of segments fŒp1; p2�; : : : ; Œp2k�1; p2k�g, when k is a positive
integer. If there exists i 2 f1; : : : ; k � 1g, such that p2i ¤ p2iC1, then the two
segments Œp2i�1; p2i � and Œp2iC1; p2iC2� are on two different connected components
of the topology. A similar simple argument allows to detect the loops (connected)
components. The algorithm is illustrated with some examples, that the reader will
find at the end of Sect. 7.5.
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7.5 Topology in R
3

Sections 7.3 and 7.4 presented an algorithm to compute the topology of a curve C
in R

4 defined by three equations F.s; t/ D G.u; v/ (with .s; t; u; v/ 2 Œ0; 1�4 for
example). Now, we consider the following projections:

	1 W
�

Œ0; 1�4 �! R
2

.s; t; u; v/ 7�! .s; t/

�

	2 W
�

Œ0; 1�4 �! R
2

.s; t; u; v/ 7�! .u; v/

�

:

The intersection � in R
3 of the two parameterized surface patches F and G is

the image of C by F ı 	1 (or G ı 	2). Our algorithm guarantees (up to the tolerance
�) the topology of C, which is isotopic to a collection of segments in Œ0; 1�4. This
implies that the image by F ı 	1 of a connected component C1 of C is connected.
However, if C1 is a loop in �0; 1Œ4 (a closed path) then its image is also a loop in
R

3.Moreover, if C admits several connected components which are loops in Œ0; 1�4,
their images by F ı 	1 in R

3 may be interlaced (like the Olympic rings). If C1

is determined by a segment discretization which is too coarse, the knot structure
(and the interlacements) can be missed in the image by F ı 	1 of this piecewise
approximation. We may have the situation depicted in Fig. 7.12.

Similarly, the topology of the projection OC of C � Œ0; 1�4 on Œ0; 1�2 by 	1, may not
be determined by a coarse discretization of C, even if this discretization is sufficient
to determine the topology of C in Œ0; 1�4, see Fig. 7.13: the self-intersection point
is missed. In order to capture these features, the algorithm described in Sects. 7.3
and 7.4 should be extended and the subdivision criteria refined.

As described in Sects. 7.3 and 7.4, we choose a threshold � such that the singular
points of the curve � will be contained in boxes of a size smaller than �. We aim to
determine the topology of the curve � up to this indetermination, i.e. two segments
entering a box of a size smaller than � are supposed to intersect and form a singular
point. All other points are considered smooth.

Fig. 7.12 Image of a loop
with knot structure

F ◦

C1 ⊂ [0; 1]4 intersection curve in R
3
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Fig. 7.13 Missing a
self-intersection point by
projection

C ⊂ [0; 1]4

1

C ⊂ [0; 1]2

Suppose that C has k loops connected components (when k is a positive integer)
denoted respectively by C1; : : : ;Ck (we can detect them by using the criterion
described in Sect. 7.4.3). We get �i D .F ı 	1/.Ci / for all i 2 f1; : : : ; kg.

7.5.1 One Curve Box

Recall that each node of the hextree H (described in Sect. 7.4.1) stores a box in R
4

and the topology of C in this box. Let n be a node ofH, Bn be the corresponding box
and Bn D BF \ BG , where BF (respectively BG) is the bounding box constructed
with the control points of F.s; t/ (respectively G.u; v/) written in the Bernstein basis
with respect to 	1.Bn/ (respectively 	2.Bn/). Then, by the convex hull property of
the Bézier patches, the bounding box Bn contains the part of � corresponding to Bn

i.e. the image of C \ Bn by F ı 	1 (or G ı 	2).
The discretization of C is refined, by subdividing all the leaves of H, such that

each box (in R
4) intersecting one of the loops C1; : : : ;Ck contains at most one

segment, i.e. its border intersects C in two points. Note that in the previous section
our algorithm allowed more intersection points. After this step some ambiguities of
the node and interlacement structure of � may remain. One can see in Fig. 7.14 two
bounding boxes (in R

3) sharing interior points. Joining the pairs of points on the
borders, the red curve segment may (or may not) pass behind the other green curve
segment. So we need to refine the discretization further.

Lemma 7.2 Let �1; �2 � � be two disjoint segments of curves. After a finite
number of subdivisions of .F ı 	1/�1.�1/ and .F ı 	1/�1.�2/, the boxes containing
�1 and the boxes containing �2 are disjoint.
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Fig. 7.14 Two boxes sharing interior points

Proof: Indeed by subdivision, the boxes can be made nearer to the curves than
the distance between the two curves. �

The subdivision on the leaves of H is refined by using Lemma 7.2. Then,
we rule out potential ambiguity on interlacements between two loops (situation
corresponding the to right picture on Fig. 7.12) because we avoid the situation
depicted in Fig. 7.14. The ambiguity on a possible node that is not a loop must
still be analyzed.

7.5.2 Node and Discretization

Lemma 7.3 Let � � � be a segment of curve contained in a bounding box
obtained after the subdivision process described in Sect. 7.5.1. Then, the border
of this box has just two points p1 and p2 of � . After a finite number of subdivisions
of .F ı 	1/�1.�/, we have det.NF ; NG; ���!p1p2/ ¤ 0 (in the corresponding box) with
NF D @sF � @t F and NG D @uG � @vG.

Proof: The condition det.NF ; NG; ���!p1p2/ ¤ 0 means that the tangent vector
of � is never orthogonal to ���!p1p2. As � is smooth by hypothesis, the lemma is a
consequence of the implicit function theorem. �
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Fig. 7.15 Interlacement situation
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Fig. 7.16 Interlacement with two adjacent segments

If we subdivide the leaves of H by using Lemma 7.3, then we rule out potential
interlacements ambiguities inside each bounding box. However, we still have to
avoid interlacing two adjacent branches.

Proposition 7.2 Let us assume the discretization satisfies Lemmas 7.2 and 7.3
and suppose that det.NF ; NG; ���!p1p2/ ¤ 0, det.NF ; NG; ���!p2p3/ ¤ 0 and
det.NF ; NG; ���!p1p3/ ¤ 0 for two adjacent branches Œp1; p2� and Œp2; p3�.

If the image (by F ı 	1 or G ı 	2) of a loop connected component of C admits a
node, then it shows up on the discretization i.e. the sequence of segments obtained
by subdivision also describes a node isotopic to that of � .

Proof: Indeed, we will have the situation depicted in Fig. 7.15. Since,
det.NF ; NG; ���!p1p2/ ¤ 0, det.NF ; NG; ���!p2p3/ ¤ 0 and det.NF ; NG; ���!p1p3/ ¤ 0,
we cannot have a node formed by two adjacent segments (depicted in Fig. 7.16). So,
we just have to investigate the case when we have at least three segments Œp1; p2�,
Œp2; p3� and Œp3; p4� (depicted in Fig. 7.15). Lemma 7.3 ensures that each of these
segments does not interlace. If the three segments are interlacing, then the bounding
boxes containing respectively Œp1; p2� and Œp3; p4� intersect each other.�
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7.5.3 Examples

We illustrate the algorithm on some examples. First two intersection situations
of two polynomial patches are shown on Figs. 7.17 and 7.18. Another classical
example (the teapot) is considered. Figure 7.19 shows an approximation of the
teapot by 32 biquadratic patches with intersection loci. The resulting topology of
these loci is shown on Fig. 7.20.

Fig. 7.17 Example of intersection between two polynomial patches

Fig. 7.18 Example of intersection between two polynomial patches
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Intersection loci

Fig. 7.19 Teapot intersection loci

Fig. 7.20 Topology of the teapot intersection

Conclusion
In this paper we have presented a subdivision based algorithm for computing
topology of the intersection of two polynomially parameterized surfaces. The
computations were performed in a 4D space.

A natural extension would be to treat similarly the intersection of two
rationally parameterized surfaces; i.e. introducing a couple of polynomials
F0.s; t/ and G0.u; v/ non vanishing on Œ0; 1� and replacing the initial equations
by F.s;t/

F0.s;t /
� G.u;v/

G0.u;v/
. All the theoretical developments exposed in this paper

rely on differential geometry; they do not explicitly require that the equations
are polynomials. So they can be generalized. However the speed of our

(continued)
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implementation, which relies on a fast polynomial equations solver, strongly
benefited from the fact that we considered polynomials and not rational
fractions.

Acknowledgements The authors are grateful to Bernard Mourrain and to the anonymous
reviewers for helpful comments and suggestions.
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Chapter 8
Rational Bézier Formulas with Quaternion
and Clifford Algebra Weights

Rimvydas Krasauskas and Severinas Zubė

8.1 Introduction

Bézier curves and surfaces are widely used in computer graphics and computer-
aided design. Their formulas are affine invariant and depend on control points that
are visually intuitive and convenient for many applications. On the other hand, there
is an important class of primitive surfaces (spheres, rotational cylinders, rotational
cones, and tori) with specific properties that are not intrinsic to their classical Bézier
representation. For example, one simple reason is the lack of affine invariance.

An alternative theory for curves on a plane was introduced by Sanchez-Reyes
in [20]: complex rational Bézier curves were defined using complex numbers
for control points and weights. This complex Bézier approach has two main
advantages:

• More compact representation: the degree is halved (e.g. circles have linear form);
• Invariance with respect to Möbius transformations.

In order to extend this theory of complex planar curves to surfaces in space we
use quaternions and follow the quaternion representation of circles in space [21].
Here one can hardly expect a theory as complete as in the planar case. Indeed, as
the quaternion algebra H is 4-dimensional, one needs to take extra care to ensure
that resulting surfaces are contained in the 3-dimensional subspace in H which
is identified with R

3. Also tools for intuitive shape manipulation are still under
development.

Of course, there is one notable exception: the case of spherical quaternion curves
and surface patches can be reduced to the complex planar case (because a sphere is
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Möbius equivalent to a plane). We only sketch the spherical case in Sect. 8.2.5. and
postpone the details to a separate publication.

The first part of the current chapter (Sects. 8.2–8.3) is devoted to the simplest
non-trivial case of a quaternion surface, namely a bilinear Quaternion–Bézier (QB)
patch. Arbitrary bilinear QB surface patches are characterized as special Darboux
cyclide patches using a recent exposition of the classical theory of Darboux cyclides
in [19]. Actually, the results of the unpublished manuscript [13] are presented here
with extended proofs and more details about Möbius transformations. Note that
these new formulas not only reproduce earlier known biquadratic parametrizations
of principal patches of Dupin cyclides (considered, e.g. in [2, 11]), but also
define totally unknown patches on general Darboux cyclides, which can hardly be
generated using the customary Bézier approach.

The second part of the chapter is targeted to a reader who has certain acquain-
tance with geometric (Clifford) algebras and the isotropic model of Laguerre
geometry. Similar Bézier-like formulas make sense in higher dimensional pseudo-
Euclidean spaces if quaternions are replaced with elements of the corresponding
geometric algebra. Section 8.4 is devoted to general Clifford–Bézier formulas and
recent research: the conformal model of Euclidean space, isotropic geometry and
isotropic cyclides, and applications to PN-surface modeling.

8.2 Quaternionic Bézier Formulas

8.2.1 Quaternions

We will use the algebra of quaternions H with the standard basis 1, i, j, k:

i2 D j2 D k2 D �1; ij D k; jk D i; ki D j:

Reals R and the 3-dimensional space R
3 will be identified with the real and the

imaginary vector subspaces of H:

R D ReH; r 7! r1; R
3 D Im H; v 7! v1i C v2j C v3k:

It will be convenient to decompose a quaternion q 2 H into its scalar (real) part and
its vector (imaginary) part:

q D r C v D r1 C v1i C v2j C v3k; r D Re.q/; v D Im .q/:

The quaternionic product in this notation has the following compact formula:

qq0 D .r C v/.r 0 C v0/ D .rr0 � v 	 v0/ C .rv0 C r 0v C v � v0/;

where v 	 v0 and v � v0 are dot and vector products in R
3.
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If q D r C v then Nq D r � v is a conjugate quaternion, jqj D p
q Nq is its length,

and q�1 D Nq=jqj2 is the inverse of q. In particular, if v 2 Im H then Nv D �v and
v�1 D �v=jvj2.

8.2.2 Möbius Transformations in R
3

Möbius (M) transformations in space are generated by inversions in R
3 with respect

to spheres. Alternatively, after identifying R3 with the subset ImH of imaginary
quaternions, M-transformations can be generated by four kinds of elementary
transformations: reflections, translations, dilatations, and special inversions (with
unit radius and center in the origin)

Rv.x/ D �vxv; Ta.x/ D x C a; Sr.x/ D rx; inv.x/ D �x�1; (8.1)

where v; a 2 ImH, jvj D 1, r 2 RC. The composition of an even number of
reflections is a rotation.

M-transformations can be represented as fractional-linear functions ˚A associ-
ated with a 2 � 2 matrix A with quaternion entries:

˚A.x/ D .ax C b/.cx C d/�1; A D
�

a b

c d

�

: (8.2)

Usual multiplication of matrices (multiplication of their elements should be in nat-
ural order!) corresponds to composition of fractional-linear functions. For example,
elementary transformations Eq. (8.1) correspond to the following matrices

�
v 0

0 v

�

;

�
1 a

0 1

�

;

�
r 0

0 1

�

;

�
0 �1

1 0

�

: (8.3)

From [3, Theorem 11.1] it follows that the map A 7! ˚A defines a surjective
homomorphism of the matrix group

GL.ImH/D
��

a b

c d

�

j Re.a Nc/ D Re.b Nd/ D 0; Nbc C Nda 2 R
�
�

; R
�DR n f0g;

to the group of M-transformations of ImH.
For any for points p0; : : : ; p3 2 ImH we define a cross-ratio

cr.p0; p1; p2; p3/ D .p0 � p1/.p1 � p2/
�1.p2 � p3/.p3 � p0/�1: (8.4)

There is a full analog of the well-known fact that four complex points lie on a
circle only if their cross-ratio is real.
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Proposition 8.1 ([4]) A cross-ratio cr.p0; p1; p2; p3/ is real if and only if these four
points are on a circle. A real cross-ratio is Möbius invariant.

8.2.3 Properties of Quaternionic Bézier Formulas

A quaternionic Bézier (QB) formula is a fraction of two linear combinations of
control points and weights pi ; wi 2 H with coefficients Bi

F D
 
X

i

pi wi Bi

! 
X

i

wi Bi

!�1

:

The coefficients Bi can be the following Bernstein polynomials:

• Bd
i .t/ D �

d
i

�
.1 � t/d�i t i , i D 0; : : : ; d define QB curves of degree d ;

• B
d1

i .s/B
d2

j .t/, i D 0; : : : ; d1, j D 0; : : : ; d2, define QB tensor product surfaces
of bidegree .d1; d2/;

• Bd
ij D dŠ

.d�i�j /Ši Šj Š
.1 � s � t/d�i�j si t j , with integers i 
 0, j 
 0, i C j � d ,

define QB triangular surfaces of degree d .

General QB formulas take values in the 4-dimensional space of quaternions
H. The most interesting space for us will be R

3, which is identified with ImH.
Therefore, we always need to ensure that the QB curves and surfaces under
consideration are contained in ImH.

Proposition 8.2 A QB formula F D .
P

i piwi Bi /.
P

i wi Bi /
�1 is invariant with

respect to Möbius transformations: if ˚ D ˚A defined by (8.2) then

˚.F / D .
P

i p0iw0i Bi /.
P

i w0i Bi /
�1; p0i D ˚.pi /; w0i D O̊ .pi ; wi / D .cpi C d/wi :

If F 2 ImH then ˚.F / 2 ImH.

Proof It is easy to check this directly using the identities

˚.xy�1/ D .ax C by/.cx C dy/�1; p0i w0i D ˚.pi/˚.pi ; wi / D .api C b/wi :

ut
This proposition allows us to calculate Möbius transformations of any rational

Bézier curves and surfaces (with real weights) and get a lot of new non-trivial
examples of QB curves and surfaces in ImH.

Remark 8.1 Möbius deformations of 3D models were realized on GPU using
real time evaluations of quaternion formulas in [9] (see Fig. 8.1). Since such
transformations are conformal, they may be convenient for deforming organic
shapes including textures.
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Fig. 8.1 Möbius transformation of the Utah Teapot [9]

In general the quaternion representation has half the degree of the customary
rational Bézier case with real weights.

Proposition 8.3 A QB formula F D .
P

i pi wi Bi /.
P

i wi Bi /
�1 of degree d (resp.

bidegree .d1; d2/) defines the same parametrization as the following Bézier formula
of degree 2d (resp. bidegree .2d1; 2d2/)

QF D .N ND/.D ND/�1; N D
X

i

pi wi Bi ; D D
X

i

pi wi Bi :

Proof Note that the new numerator N ND and denominator D ND can both be
expanded in the new basis fBiBj g and D ND is real. ut

8.2.4 Circular Arcs

Here we reformulate some results of [21] about the quaternionic representation of a
circle and give proofs based on Propositions 8.2 and 8.3.

Let p0 and p1 be the two endpoints of a circular arc C in R
3 D ImH, and let p1

be some point on the complementary arc of C . We are going to parametrize this arc
rationally in three steps:

• Apply the inversion I W x 7! p1 � .x � p1/�1 with the center in p1 to the
circle C ;

• Parametrize the resulting line segment L.t/ D I.p0/.1 � t/ C I.p1/t ;
• Apply the same inversion once more C.t/ D I.L.t//.

The inversion I is a composition Tp1
ı inv ı T�p1

of elementary transformations
(8.1) and has the following matrix representation (see (8.3))

�
1 p1
0 1

��
0 �1

1 0

��
1 �p1
0 1

�

D
�

p1 �1 � p21
1 �p1

�

:

According to Proposition 8.2, a linear Bézier curve L.t/ with control points I.p0/,
I.p1/ and unit weights is transformed to a linear QB curve with control points
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I.I.pi// D pi , and weights wi D I.pi / � p1 D �.pi � p1/�1, i D 0; 1. So
we finally get the parametrization of the circular arc

C.t/ D .p0w0.1 � t/ C p1w1t/.w0.1 � t/ C w1t/
�1; (8.5)

that is contained in Im H by construction.

Remark 8.2 One can divide both weights in (8.5) by w0 and get the equivalent pair
of weights w00 D 1 and w01 D w1w�1

0 . If just one weight is multiplied by a real
number � > 0 then the arc is reparametrized.

Remark 8.3 The parameter t in C.t/ has a simple interpretation as a cross-ratio

t D cr.p1; p1; p0; C.t//: (8.6)

Indeed, according to Proposition 8.1 it is enough to check the following much
simpler identity cr.1; I.p1/; I.p0/; L.t// D t , where 1 D I.p1/ is the infinite
point of Im H.

The customary Bézier representation of C.t/ can be derived using Proposi-
tion 8.3: denote the numerator of the fraction (8.5) by N and the denominator by D,
then rewrite this fraction as C.t/ D ND�1 D N ND.D ND/�1 with a real denominator,
and expand both N ND and D ND in the quadratic Bernstein basis B2

i , i D 0; 1; 2:

N ND D p0w0 Nw0B2
0 C 1

2
.p0w0 Nw1 C p1w1 Nw0/B

2
1 C p2w2 Nw2B2

2 ;

D ND D w0 Nw0B2
0 C 1

2
.w0 Nw1 C w1 Nw0/B

2
1 C w2 Nw2B2

2 :

Hence C.t/, as a quadratic rational Bézier curve, has real weights

W0 D w0 Nw0; W1 D 1

2
.w0 Nw1 C w1 Nw0/ D Re.w0 Nw1/; W2 D w1 Nw1; (8.7)

and control points

P0 D p0; P1 D p0w0 Nw1 C p1w1 Nw0

w0 Nw1 C w1 Nw0

; P2 D p1: (8.8)

We can also calculate a tangent vector v0 to C.t/ at p0 as a derivative C 0.0/ at
t D 0. First we differentiate the identity N D CD and get N 0 D C 0D C CD0. Then
C 0.0/ D .N 0.0/ � C.0/D0.0//D.0/�1 D .p1w1 � p0w0 � p0.w1 � w0//w�1

0 and

v0 D C 0.0/ D .p1 � p0/w1w�1
0 : (8.9)

Therefore, the weights cannot be arbitrary. The following relations between
weights and control points will be useful later.
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Proposition 8.4 If C is a QB curve (8.5) with p0; p1 2 ImH then:

C � ImH , Re.p0w0 Nw1 C p1w1 Nw0/ D 0 (8.10)

C � ImH , Im .w1w�1
0 / ? .p1 � p0/ (8.11)

C is a line , w1w�1
0 2 R (8.12)

If C � ImH and u D Im .w1w�1
0 / ¤ 0 then C is a circle in a plane orthogonal

to u.

Proof The circle C is contained in ImH if and only if its middle control point P1

is there, i.e. ReP1 D 0. From its expression in (8.8) condition (8.10) follows. This
is also equivalent to v0 2 ImH, so .p1 � p0/w1w�1

0 2 ImH (see (8.9)) and (8.11)
follows. Similarly (8.12) and the last statement can be derived from (8.9). ut

8.2.5 Spherical Quaternionic Bézier Curves and Surface
Patches

In this section we sketch the theory of QB curves and surfaces on a sphere (or plane),
by reducing quaternionic-Bézier formulas to complex-Bézier formulas.

Let us start with the simplest surface example. A spherical triangle with corner
points p0, p1, p2 bounded by three circular arcs (such that these three circles
intersect in a point p1) has the parametrization formula with weights: wi D
�.pi � p1/�1, i D 0; 1; 2, (see Fig. 8.2, left)

T .s; t/ D .p0w0.1�s�t/Cp1w1sCp2w2t/.w0.1�s�t/Cw1sCw2t/�1: (8.13)

Indeed this is the Möbius image of a planar linear Bézier triangle (cf. Sect. 8.2.4).
In order to generalize this example we introduce two different inclusions of C

into H (which are compatible with geometric algebra formulas in Sect. 8.4.3)

in1 W C ! H; x C yi 7! x � yk; in2 W C ! ImH; x C yi 7! xi C yj: (8.14)

Fig. 8.2 Spherical QB-patches: linear and quadratic triangle, biquadratic quad patch
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Then any complex-Bézier formula .
P

i pi wi Bi /.
P

i wi Bi /
�1, pi ; wi 2 C, can be

transformed to a QB formula .
P

i p0i w0i Bi /.
P

i w0i Bi /
�1, w0i D in1.wi /, p0i D

in2.pi /, on the plane z D 0 or on any sphere in ImH by Möbius invariance according
to Proposition 8.2. Hence the whole theory of complex Bézier curves on a plane
developed in [20] can be translated into QB form and then extended to any sphere.

Even more, it appears that all rational Bézier curves and surface patches on a
sphere can be represented in QB form of halved degree. The following theorem can
be proved using generalized stereographic projection [6] and its interpretation in
terms of complex projective line [10].

Theorem 8.1 Any rational Bézier curve or triangular (resp. rectangular) surface
patch of degree 2d (resp. of bidegree .2d1; 2d2/) on a sphere S2 � ImH can be
represented in a quaternionic Bézier form of degree d (resp. of bidegree .d1; d2/)
with the control net composed of circular arcs lying on S2.

Figure 8.2 (middle and right) illustrates a QB-triangle of degree 2 (which is a
spherical octant) and a biquadratic QB-rectangle.

The quaternionic approach allows us to deal with all spheres in R
3 in the unique

framework. In a certain sense every sphere carries its own complex structure that is
encoded in global quaternionic structure.

8.3 Bilinear Quaternionic Bézier Patches

We do not know much about general QB curves and surfaces, so we are going to
study important particular cases.

Remark 8.4 Non-spherical QB-curves of degree 2 in ImH are characterized in [22]
as the diagonals P.t; t/ of bilinear QB-surfaces defined by (8.15). Note that the
middle control point of such curves is not contained in ImH.

The simplest cases of QB surfaces are linear triangles and bilinear quadrangles.
The first case will turn out to be spherical, hence we will focus on the latter.

Proposition 8.5 Any linear QB triangle in ImH is spherical.

Proof Consider the formula of a QB triangular patch (8.13), and apply inversion
with center on the boundary circle going through p0 and p1 that transforms this
circle into a line. Using the same notation for control points and weights, one
can assume w0 D w1 D 1 (see Remark 8.2 and (8.12)). Then it follows from
Proposition 8.4 that Im .w2/ is orthogonal to a family of circles with control points
q.s/ D p0.1 � s/ C p1s, p2 and weights 1, w2, that cover the patch. Hence, this
inversion of the initial triangular patch is planar. ut
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8.3.1 Properties of Bilinear QB-Patches

Let us define a bilinear QB-quadrangular patch (call it just a bilinear QB-patch) with
slightly different indexing (the fraction is used in the sense a

b
D ab�1):

P.s; t/ D p0w0.1 � s/.1 � t/ C p1w1s.1 � t/ C p2w2.1 � s/t C p3w3st

w0.1 � s/.1 � t/ C w1s.1 � t/ C w2.1 � s/t C w3st
;

(8.15)

We consider only the case when the image is contained in Im H D R
3.

Lemma 8.1 If two adjacent boundary circles of a bilinear QB-patch P defined by
(8.15) are cospherical then the patch is either spherical or a patch of a double ruled
quadrics (including its Möbius transformations).

Proof Denote by Cij, ij D 01; 02; 13; 23, the boundary circles connecting adjacent
points pi and pj . If circles C01 and C02 are cospherical then there are two cases:
(a) they intersect in two points p0 and q ¤ p0; (b) they are tangent in p0 (a double
point).

In case (a) we apply inversion with a center q and use the same notation for the
transformed patch. Now C01 and C02 are line segments, and one can assume (after
a reparametrization) w0 D w1 D w2 D 1 (see (8.12)). If w3 2 R then the patch
P is on a bilinear quadric (or plane). Otherwise Im .w3/ ¤ 0, and according to
Proposition 8.4 Im .w3/?.p3�p1/ and Im .w3/?.p3�p2/. Hence the two boundary
circles C13 and C23 lie on the same plane ˘ going through three points p1, p2, p3.
All the weights along these circles have the same direction, since they are linear
averages between w3 and 1. Similarly it follows that all other circles on P are on
the same plane ˘ , and P is planar, i.e. spherical. Case (b) can be treated similarly:
apply an inversion with center p0 and notice that despite the blown-up corner p0 the
same arguments are valid. ut
Lemma 8.2 Let four circles Cij, ij D 01; 02; 13; 23, in ImH be defined by pairs of
control points and weights f.pi ; wi /; .pj ; wj /g, and suppose that any two adjacent
circles are not cospherical. Then there is a unique non-zero number

� D �Re.p1w1 Nw2 C p2w2 Nw1/
�
Re.p0w0 Nw3 C p3w3 Nw0/

��1 2 R; (8.16)

such that the same control points with weights w0, w1, w2, �w3 define a bilinear
QB-patch in Im H D R

3.

Proof Denoting numerator and denominator in formula (8.15) with control points
pi , i D 0; : : : ; 3, and weights w0, w1, w2, �w3 by N and D, we can modify it to the
form with a real denominator P D ND�1 D N D.DD/�1. Then we expand N D in
a biquadratic Bernstein basis and get control points (multiplied by their weights) of
the corresponding rational biquadratic Bézier surface. Boundary control points are
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obviously in ImH, since they represent circular arcs in ImH. The middle control
point multiplied by its weight has the following form:

q11 D .p1w1 Nw2 C p2w2 Nw1/ C �.p0w0 Nw3 C p3w3 Nw0/;

where both expressions in brackets have non-zero real parts (otherwise, adjacent
boundary circles will be cospherical, cf. the proof of Proposition 8.5 and for-
mula (8.10)). Solving the equation Re.q11/ D 0 for � we get exactly (8.16). ut
Lemma 8.3 Let C02, C01, C13 be circles in R

3, and suppose that p0 D C02 \ C01

and p1 D C01 \ C13 are unique points of their transversal intersection. Then for
any other point p2 2 C02, p2 ¤ p0, there exists a unique bilinear QB-patch (up
to trivial reparametrization) with control points pi , i D 0; 1; 2, and p3 2 C13 with
three boundary arcs lying on the given three circles.

Proof Our goal is to construct a closed contour of circular quaternionic arcs and
then fill the contour using Lemma 8.2.

We choose any point q 2 C13, q ¤ p1, and apply inversion with center q. Using
the same notation, we see that C13 is a line, and we can find unique (up to real
multiplier) weights w1 D 1, w0 and w2, that allows us to parametrize the circles C01,
C02. The point p2 and weight w2 determine a plane ˘ where a circle C23 should be
(see Proposition 8.4). So we can find a point p3 as an intersection ˘ \ C13 with a
weight w3 D 1. An exceptional case when ˘ is parallel to the line C13 can happen
only when the initial point q (before inversion) can be chosen as p3. ut

8.3.2 Implicitization

We are going to find the implicit equation of the patch (8.15) as an algebraic surface
in R

3.
Let us consider a formal equation with a quaternion X D u C xi C yj C zk on

the left side and with a bilinear quaternionic patch on the right side:

X D N.s; t/D.s; t/�1; (8.17)

where N.s; t/ and D.s; t/ are the numerator and the denominator of the fraction in
(8.15). Let us multiply both sides of (8.17) by D.s; t/ and move all terms to the left
side

XD.s; t/ � N.s; t/ D 0:

We treat this quaternionic equation as a system of 4 real linear equations with 4
unknowns

.1 � s/.1 � t/; s.1 � t/; .1 � s/t; st:
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The 4 � 4 matrix M of this system has 4 columns filled with components of
quaternions .X � pi/wi , i D 0; : : : ; 3. Hence the entries of the matrix M are linear
forms in u; x; y; z, and the polynomial

F.u; x; y; z/ D det
�
.X � p0/w0; .X � p1/w1; .X � p2/w2; .X � p3/w3

	
(8.18)

must vanish on every point X of the patch P.s; t/. Therefore, F.u; x; y; z/ D 0

defines at most a quartic equation in the variables u, x, y, z.

Theorem 8.2 Let P.s; t/ be the bilinear parametrization of the patch 8.15 in
Im H D R

3. Then an implicit equation of the corresponding parameterized surface
is a factor of the polynomial F.0; x; y; z/ defined by (8.18) and has at most degree 4.

Example 8.1 A bilinear QB-patch P.s; t/ with the following points Œp0; : : : ; p3� D
Œ�i; i; �iCj; iCj� and weights Œw0; : : : ; w3� D Œ1; j; 1; j� generates the equation of the
cylinder x2 Cz2 �1 D 0. The same points as above with the weights .w0; : : : ; w3/ D
.1; j; k; i/ generate the equation of the torus

 

x2 C
�

y � 1

2

�2

C z2 C 3

4

!2

� 4 .x2 C z2/ D 0:

All these examples can be classified as Darboux cyclide patches. Darboux
cyclides are quartic surfaces with a double conic x2Cy2Cz2 D 0 at infinity and their
Möbius transformations: non-spherical quadrics and cubics with the same double
conic. We consider only irreducible cases: for example, a union of two spheres is
excluded.

Corollary 8.1 Any non-spherical bilinear QB-patch is a Darboux cyclide patch.

Proof According to Theorem 8.2 a bilinear QB-patch has at most degree 4. Since
it is Möbius invariant, its arbitrary inversion is also a bilinear QB-patch. These are
sufficient conditions for the patch to be on a Darboux cyclide (see details in [15]).

ut

8.3.3 Bilinear Quaternionic Bézier Patches on Darboux
Cyclides

It is known from the theory of Darboux cyclides (see the exposition in [19]) that
they can contain at most 6 real families of circles, that are grouped in pairs. Two
circles from distinct families intersect in a unique point if these families are from
different pairs, otherwise the circles are cospherical [19, Propositions 4, 5]. Any
bilinear QB-patch defines a Darboux cyclide by Corollary 8.1 and generates two
families of isoparametric circles on it.

Theorem 8.3 Any two families of circles from different pairs on a given Darboux
cyclide are generated by a bilinear QB-patch. Two families of circles from the same
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Fig. 8.3 A Darboux cyclide
with six circles representing
six distinct families

pair can be generated only by a QB-patch defined by rulings of a double ruled
quadric (or its Möbius equivalent).

Proof Take two circles C02, C13 from one family and one C01 from another family
that is not in the same pair. Then pairs of circles C02, C01 and C01, C13 intersect in
the unique points p0 and p1. Hence we are in the situation of Lemma 8.3 that allows
us to construct a bilinear QB-patch bounded by these three circles. So it is enough
to prove the uniqueness of a Darboux cyclide going through these circles. Here we
can follow [19] and employ the conformal model by lifting the whole construction
to a 3-sphere S3 in the space R

4. Now the circles C02, C13 are contained in two 2-
planes which intersect in the apex of the quadratic 3-dimensional cone, which cuts
our Darboux cyclide in S3. Let us cut the cone by any hyperplane ˘ (not containing
the apex) and project all circles from the apex to ˘ . Their images will be two skew
lines L02, L13 and a conic C 001 intersecting them. Therefore the uniqueness problem
is reduced to the following simple one: prove the uniqueness of a quadric surface
in R

3 going through a given pair of skew lines and one conic. The second part of
the theorem follows from Lemma 8.1, since circles from the paired families are
cospherical. ut

In Fig. 8.3 below we can see an example of a symmetric Darboux cyclide with
six paired families of circles (i.e. there are three pairs).

Corollary 8.2 There are exactly 12 different bilinear QB-patches on a Darboux
cyclide with 6 real families of circles.

Proof Apply Theorem 8.3 and count cases: three choices of two pairs of circle
families times four choices of two families from these two distinct pairs. ut

8.3.4 Principal Dupin Cyclide Patches

For a definition of a Dupin cyclide see e.g. [5] and references therein. This is a
particular case of a Darboux cyclide containing two self-paired families of circles
(i.e. both families in a pair coincide, see previous Sect. 8.3.3). A principle Dupin
cyclide patch is a quadrangular patch bounded by circles from these families (see
Fig.8.3), which can be characterized by the following properties:

• All angles are right angles and corner points p0; : : : ; p3 are on a circle;
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Fig. 8.4 Principal patches on: cilinder, torus, general Dupin cyclide

• Tangent vectors at the end points of the opposite boundary arcs in the adjacent
corners are symmetric with respect to a vector joining these points; e.g. let vij be
a tangent vector at pi pointing to pj then v23 D �.p2 � p0/v01.p2 � p0/

�1.

Theorem 8.4 A principal Dupin cyclide patch with corners in four points
p0; : : : ; p3 on a circle and two orthogonal tangent vectors v01 and v02 at p0 can be
parametrized by a bilinear QB-patch with these control points and the following
weights (where qij D .pi � pj /=jpi � pj j):

w0 D 1; w1 D q01v01; w2 D q02v02; w3 D jp2 � p1jjp3 � p0j�1q13w1q20w2:

The proof of this theorem and other important quaternionic formulas related to
principal Dupin cyclide patches can be found in [14] (Fig. 8.4).

8.4 Clifford–Bézier Formulas

In this section we collect several extensions of the quaternionic approach, showing
that they can be unified in the framework of geometric algebra (associated with the
most general case of pseudo-Euclidean spaces). Sections 8.4.1–8.4.4 require basic
knowledge of geometric algebra (e.g. [7,8,16]). Preliminaries for Sect. 8.4.5 include
elements of Laguerre geometry and Pythagorean-normal surfaces [12, 17, 18].

8.4.1 Pseudo-Euclidean Space and Its Geometric Algebra

A pseudo-Euclidean space is a vector space R
n
� , with a scalar (interior) product

having signature � D .nC; n�; n0/, n D nC C n� C n0, i.e. with an orthonormal
basis fe1; : : : ; eng, such that

ei 	 ei D

8
ˆ̂
<

ˆ̂
:

1; if i � nC;

�1; if nC C 1 � i � nC C n�;

0; if i > nC C n�;

ei 	 ej D 0; i ¤ j: (8.19)
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An abbreviated notation for signature will be used � D .n/ D .n; 0; 0/ and � D
.nC; n�/ D .nC; n�; 0/.

Define a geometric algebra G� D G.Rn
�/ as a Clifford algebra generated by

the pseudo-Euclidean space R
n
� with a signature � D .nC; n�; n0/. The geometric

product is defined to be associative and distributive with respect to addition, with
the extra relation for vectors v 	 v D v2 2 R. If v; u 2 R

n
� then the geometric product

is a sum of interior and exterior (see below) products

vu D v 	 u C v ^ u: (8.20)

The algebra G� has the same underlying vector space as the usual exterior algebraV
.Rn

� /, namely it is a vector space of dimension 2n, that can be decomposed as a
direct sum E0 ˚ E1 ˚ 	 	 	 ˚ En of subspaces with the following bases

f1g; fe1; : : : ; eng; feij j i < j g; feijk j i < j < kg; : : : fI D e12:::ng;
(8.21)

where eij:::k D ei ej 	 	 	 ek. The vector spaces E0; : : : ; En are scalars, vectors, bi-
vectors, etc. respectively. The basis of En has only one element I D e1e2 	 	 	 en,
which is called a pseudoscalar. A dual of x 2 G� is x� D Ix. For any x 2 G� , its
k-grade component hxik is the projection to the subspace Ek of grade k.

A reversion operation in the algebra G� is defined as follows (see [7, 8, 16] for
details). If x is a product of vectors x D v1v2 	 	 	 vn�1vn, then its reversion is Qx D
vnvn�1 	 	 	 v2v1. If all vi are non-zero, then x Qx D .vn 	 vn/ 	 	 	 .v2 	 v2/.v1 	 v1/ 2 R.
Hence it is easy to calculate the inverse element x�1 D Qx=.x Qx/.

8.4.2 Möbius Transformations in R
n
�

A group of Möbius transformations Möb.Rn
� / of a pseudo-Euclidean space R

n
� is

generated by: pseudo-Euclidean reflections, translations, dilatations, and special
inversions

Rv.x/ D �vxv; Ta.x/ D x C a; Sr.x/ D rx; inv.x/ D x�1; (8.22)

where v; a 2 R
n
� , jvj D 1, r 2 RC. Note the different sign in the inversion formula

compared with the quaternionic case (8.1).
Similar to Sect. 8.2.2 M-transformations of R

n
� can be represented by 2 � 2

matrices A (with entries in G� ) and corresponding fractional-linear functions ˚A,
see (8.2).

We define Clifford–Bézier surfaces (CB-surfaces) by the same rational Bézier
formulas treating them as formulas in G� , i.e. with control points pij 2 R

n
� and

weights wij 2 G� .
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Proposition 8.6 CB formulas .
P

i pi wi Bi /.
P

i wi Bi /
�1 with control points pi 2

R
n
� and weights wi 2 G� (with certain kind of Bernstein polynomials Bi ) are

mapped by an M-transformation ˚.x/ D .ax C b/.cx C d/�1 to the same formulas
with new control points p0i D ˚.pi / and new weights w0i D O̊ .pi ; wi / D
.cpi C d/wi .

8.4.3 C and H as Subalgebras of Geometric Algebras

Complex numbers C are identified with an even subalgebra of G2:

inC W C ! .G2/even; z D x C y i 7! x C ye12: (8.23)

Multiplying by e1 from the right, one can get the standard map from C to R
2:

inC W C ! R
2; z D x C y i 7! e1inC.z/ D xe1 C ye2:

Hence any complex Bézier formula can be mapped to a Clifford–Bézier one

e1inC

�
.
P

i pi wi Bi /.
P

i wi Bi /
�1
� D .

P
i p0iw0i Bi /.

P
i w0i Bi /

�1; (8.24)

where p0i D e1inC.pi /, and w0i D inC.wi /.
Quaternions H are identified with an even subalgebra of G3:

inH W H ! .G3/even; q D r C x i C y j C z k 7! r � xe23 C ye13 � ze12: (8.25)

Using duality X� D IX , one can get the standard map from imaginary quaternions
Im H to R

3:

x i C y j C z k 7! I inH.q/ D xe1 C ye2 C ze3:

Hence any Quaternionic-Bézier formula can be mapped to a Clifford–Bézier one

I inH

�
.
P

i pi wi Bi /.
P

i wi Bi /
�1
� D .

P
i p0i w0i Bi /.

P
i w0i Bi /

�1; (8.26)

where p0i D I inH.pi /, and w0i D inH.wi /.
Therefore all the results from Sects. 8.2 and 8.3 about QB curves and surfaces

are valid for the corresponding CB curves and surfaces in the algebra G3 generated
by the Euclidean space R3 with signature .3; 0; 0/.

There are just a couple differences in the formulas:

• Conjugation q 7! Nq in H should be changed to reversion x 7! Qx in G3,
• The inversion q 7! �q�1 in ImH should be changed to x 7! x�1 in R

3 � G3.
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8.4.4 Conformal Model of Euclidean Space

We are going to demonstrate how our methods can be applied to representing the
usual rational Bézier curves and surfaces in the conformal model.

Consider a pseudo-Euclidean space R
5
4;1 and its generated geometric algebra

G4;1. The standard basis fe1; : : : ; e5g, ei 	 ei D 1, i ¤ 5, e5 	 e5 D �1, will be
changed to the following one

fe0; e1; e2; e3; e1g; e0 D .�e4 C e5/=2; e1 D e4 C e5:

Define an embedding of Euclidean space R
3 to R

5
4;1:

conf.x/ D x C 1
2
x2e1 C e0 (8.27)

to a quadric of null-vectors

X 	 X D 0; X 2 R
5
4;1: (8.28)

If we expand X in the standard basis X D P
i xi ei then X 	X D x2

1 C	 	 	Cx2
4 �x2

5 .
Hence the quadric (8.28) defines a 3-sphere S3 in the affine part x5 ¤ 0 of the
associated projective space RP 4 D P.R5

4;1/. Actually conf W R
3 ! S3 is the

inverse of stereographic projection.
Let us apply the machinery we developed. Using the identities xe1 C e1x D 0

and e21 D 0, one can modify formula (8.27) as the composition of two fractional-
linear functions

conf.x/ D x. 1
2
xe1 C 1/ C e0 D x. 1

2
e1x C 1/�1 C e0:

Hence, the map conf W R
3 ! R

5
4;1 is the restriction of a Möbius transformation

˚C 2 Möb.R5
4;1/ given by the matrix:

C D
�

1 C 1
2
e0e1 e0

1
2
e1 1

�

D
�

1 e0

0 1

��
1 0

1
2
e1 1

�

:

Therefore, according to Proposition 8.6 one can ‘lift’ any CB-curve or surface
(including the usual rational Bézier curves and surfaces with real weights) to the
conformal model. Indeed new control points Pi and weights Wi are related to the
old ones pi and wi as follows:

Pi D conf.pi /; Wi D . 1
2
pie1 C 1/wi : (8.29)
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The main advantage of this conformal model (i.e. R3 embedded into R
5
4;1) is in

the possibility to represent important geometric objects and transformations in R
3 as

formulas in the algebraG4;1 (see e.g. [7,8,16]). For example, the conformal image of
a circle C � R

3 going through three points pi , i D 0; 2; 3, is the intersection of S3:
X 	 X D 0 with a 2-plane ˘ ^ X D 0, where ˘ D conf.p0/ ^ conf.p1/ ^ conf.p2/

is a 3-vector. We treat the 3-vector ˘ 2 G3 as a 2-plane and say that it is associated
with the circle C .

Let us demonstrate how this technique can help us to find a quadratic cone con-
taining the conformal image conf.P.s; t// of a bilinear CB-patch (cf. Sect. 8.3.3).
Using formulas (8.29) we lift the control points pi and weights wi given by
(8.15) to the corresponding control points Pi and weights Wi in the conformal
model. We also compute tangent vectors Vij D .Pj � Pi /Wj W �1

i (see (8.9)).
Then the 3-vectors ˘01 D P0 ^ P1 ^ V01, ˘23 D P2 ^ P3 ^ V23 represent
2-planes associated with the opposite boundary circles C01 and C23 from the
same family (in the notation of Lemma 8.3). The family of 2-planes associated
with the paired family of circles can be obtained using the classical Steiner
construction by intersecting two pencils of hyperplanes defined by the 2-planes
˘01 and ˘23. We have two obvious corresponding pairs of hyperplanes in these
pencils: ˘01 ^ V02; ˘0 ^ P2 and ˘23 ^ P0; ˘2 ^ V20. Hence the implicit equation
of the quadric cone we are looking for should be the determinant of these four
hyperplanes:

.˘01 ^ V02 ^ X/.˘23 ^ V20 ^ X/ � .˘01 ^ P2 ^ X/.˘23 ^ P0 ^ X/ D 0:

Of course in order to fix a correct projective correspondence between the pencils
one needs three corresponding hyperplanes on these pencils. So in general a
certain additional coefficient will be needed in the above equation. In our case the
coefficient is 1 by the magic of geometric algebra.

8.4.5 CB-Surfaces in Isotropic Space and PN-Surfaces

In this Section we survey results of [15] on CB-surfaces based on the geometric
algebra G2;0;1 generated by an isotropic space R3

2;0;1.
The signature � D .2; 0; 1/ means that x 	 x D x2

1 C x2
2 in coordinates

of the standard basis (see (8.19)). Therefore, distances in isotropic geometry are
measured as Euclidean distances in the projection to the first two coordinates, which
is called a top view. Isotropic Möbius (i-M) transformations are elements of the
group Möb.R3

.2;0;1// as defined in Sect. 8.4.2. The distinguished vertical direction
separates all planes into two classes: vertical (isotropic) and non-vertical planes.
Images of these two classes of planes under i-M transformations generate two
types of isotropic spheres (i-spheres): paraboloids of revolution with a vertical axis
(parabolic type) and cylinders with top view circles (cylindrical type). An isotropic
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circle (i-circle) is the intersection between an i-sphere of parabolic type and a
plane: it is either an ellipse with a circle as top view or a parabola with a vertical
axis.

It appears that the theory of QB-surfaces developed in Sects. 8.2 and 8.3
(and initially introduced in [13]) can be successfully developed in the case of
CB-surfaces in isotropic space. In general one just needs to add everywhere
‘isotropic’, e.g. circles and M-transformations should be changed to i-circles and
i-M-transformations. The counterpart of a Dupin cyclide is an isotropic cyclide: a
quartic surface in R

3
2;0;1 with a double conic x2

1 C x2
2 D 0 at infinity or its i-M-

transformations.
In [15] bilinear CB-patches in R

3
2;0;1 are studied in much detail: their implicitiza-

tion formula is derived, they are characterized as patches on isotropic cyclides and
the uniqueness of patches with three given boundary isotropic circles is proved.

The motivation for these studies is in the following theorem due to Pottmann and
Peternell [17, 18]:

Theorem 8.5 The duality (8.30) defines a 1–1 correspondence between non-
developable PN-surfaces in the Euclidean space R

3 and rational surfaces in the
isotropic space R3

2;0;1.

We recall here PN-surfaces and the construction of duality. Pythagorean-normal
(PN) surfaces are rational surfaces in the Euclidean space R

3 together with a
field of rational unit normals. PN-surfaces are important in geometric modeling
applications, since they are rational surfaces with rational offsets. Following [17,18]
(see also survey in [12]), we map oriented planes in R

3 to points of the isotropic
space

n1x1 C n2x2 C n3x3 C h D 0 7! 1

n3 C 1
.n1; n2; h/ 2 R

3
2;0;1: (8.30)

Treating a surface in R
3 as the set of its oriented tangent planes, then applying the

map (8.30) we get a dual surface in R
3
2;0;1

We end this exposition with one PN-surface modeling example.

Example 8.2 Consider a corner defined by three orthogonal planes, where three
edges are blended using cylinders of radii r1 < r2 < r3. The goal is to find a
quadrangular PN-patch that will blend smoothly the given three cylinders and the
top horizontal plane as shown in Fig. 8.5. The idea is to apply duality (8.30): the
cylinders go to i-circular arcs and the top plane goes to a point in the isotropic
space. Using the isotropic analog of Lemma 8.3 (see [15, Theorem 1]), one can fill
the triangular contour shown in Fig. 8.5 (left) with a bilinear CB-patch and go back
using duality. The resulting PN-surface patch can be represented as a Bézier surface
of bidegree .3; 4/, Fig. 8.5 (right).



8 Rational Bézier Formulas with Quaternion and Clifford Algebra Weights 165

Fig. 8.5 A CB-patch (with a top view) and its dual PN-surface patch

Conclusions
We introduced quaternionic Bézier curves and surfaces in Euclidean space R3

with two main advantages compared to the customary rational Bézier case:
more compact representation (the degree is halved) and Möbius invariance.
Disadvantages include absence of affine invariance and complicated condi-
tions on control points and weights that keep quaternionic Bézier curves and
surfaces in R

3.
The simplest non-trivial case of bilinear quaternionic Bézier patches was

studied:

• The implicitization formula is presented;
• They are characterized as Darboux cyclide patches;
• All such patches on a given Darboux cyclide are classified;
• Principal patches on Dupin cyclides are presented in this form.

We also have shown that complex or quaternionic Bézier formulas can be
translated to more general geometric algebra settings. This approach is useful
for representing usual rational Bézier curves and surfaces in the conformal
model, and for understanding bilinear Clifford–Bézier patches in isotropic
space, which have potential applications to rational offset surface modeling.

Acknowledgements The authors would like to thank Helmut Pottmann for pointing out that
general bilinear quaternionic patches may represent Darboux cyclides and providing access to the
preliminary version of [19]. The majority of the numerical experiments and symbolic computations
were made for this paper using the software package CLUCalc/CLUViz described in [16] and the
MAPLE package Clifford [1].
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References

1. R. Ablamowicz, B. Fauser, A Maple 10 Package for Clifford Algebra Computations, Version
10 (2007). http://math.tntech.edu/rafal/cliff10

2. G. Albrecht, W.L.F. Degen, Construction of Bézier rectangles and triangles on the symmetric
Dupin horn cyclide by means of inversion. Comput. Aided Geom. Des. 14, 349–375 (1997)

3. C. Bisi, G. Gentili, Moebius transformations and the poincare distance in the quaternionic
setting. Indiana Univ. Math. J. 58, 2729–2764 (2010)

4. A. Bobenko, U. Pinkall, Discrete isothermic surfaces. J. Reine Angew. Math. 475, 187–208
(1996)

5. W. Degen, Cyclides, in Handbook of Computer Aided Geometric Design (Elsevier, Amster-
dam/Boston, 2002), pp. 575–601

6. R. Dietz, J. Hoschek, B. Juettler, An algebraic approach to curves and surfaces on the sphere
and on other quadrics. Comput. Aided Geom. Des. 10, 211–229 (1993)

7. L. Dorst, D. Fontijne, S. Mann, Geometric Algebra for Computer Science (Morgan-Kaufmann,
San Francisco, 2007)

8. R. Goldman, A Homogeneous model for three-dimensional computer graphics based on the
clifford algebra for R3, in Guide to Geometric Algebra in Practice, ed. by L. Dorst, J. Lasenby
(Springer, New York, 2011), pp. 329–352
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Part III
Algebraic Geometry for CAD Applications



Chapter 9
Algebraic Spline Geometry: Some Remarks

Ragni Piene

9.1 Algebraic Geometry and Geometric Modeling

Applications of algebraic geometry to Computer Aided Geometric Design often rely
on mathematical foundations based on the use of complex numbers and projective
geometry. However, all the considered practical questions are presented over the
real numbers and in an affine setting. This obvious remark implies that one needs
to focus on the study of real algebraic geometry and consider curves, surfaces and
solids as semi-algebraic sets (i.e., sets defined by means of polynomial equalities
and inequalities).

Certain aspects of the foundations of algebraic geometry, with special emphasis
on classical projective geometry of curves and surfaces, need to be extended and
developed for the real, affine, bounded – and in particular polyhedral – cases,
having in mind applications to CAGD. Particular issues that could be considered are
singularity theory: existence and description of real surface singularities; the theory
of polar and dual varieties in order to relate the description of real polar varieties to
Sturm–Habicht methods for determining the topology of real surfaces, and to find
efficient ways of computing points on the components of real varieties [5, 6]; the
theory of moduli spaces of varieties and of parameterized varieties and the study
of the semi-algebraic stratification of these moduli spaces; the design of parametric
catalogues of surfaces (parametric or not) that can be used in CAGD.

When modeling curves and surfaces algebraically, using just one interpolating
polynomial does not necessarily give a good approximation, due to Runge’s
phenomenon, even if the polynomial has high degree. It is preferable to use
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piecewise polynomials to approximate larger regions of a CAGD-model. By using
more polynomials, one can keep the polynomial degree low and still get better
approximations. An algebraic spline function is simply a piecewise polynomial
function on a polyhedral subdivision of a region in R

d .
By replacing affine, real algebraic varieties in R

d by simplicial complexes �

embedded in R
d , and polynomial functions by algebraic spline functions, one

gets a theory that we can call algebraic spline geometry. The purpose of such a
theory is to establish a better basis for the application of multivariate algebraic
splines to problems in geometric modeling. To bring real algebraic geometry and
spline surface representation in CAGD closer together, we should also develop and
understand certain aspects of the “classical” semi-algebraic real geometry so that it
can extend to the theory of multivariate algebraic splines.

A simplicial complex in R
d can be thought of as a union of semi-algebraic sets,

each determined by linear equations and linear inequalities, fitting together in a
prescribed way. One can generalize this approach by using polynomials of arbitrary
degree, as is done in [9], and to a certain extent in [12]. Still another point of view is
the following (cf. [11]): replace ordinary algebraic sets in R

d (defined as zero sets of
polynomials) by “piecewise” algebraic sets defined as zero sets of algebraic splines
on some given domain in R

d .

9.2 Algebraic Spline Spaces

Consider a (pure) d -dimensional simplicial complex � in R
d . We let C r.�/ denote

the set of piecewise polynomials (algebraic splines) on � of smoothness r . This
set is a ring under the usual pointwise addition and multiplication. The (global)
polynomial functions RŒx1; : : : ; xd � are of course r-smooth for any r , and hence
can be considered as a subring of every C r.�/. These functions will be called the
trivial splines.

The subsets C r
k .�/ � C r.�/ consisting of splines of degree � k are R-

vector spaces, called algebraic spline spaces, and a major problem is to determine
their dimension. In addition, one would like to find explicit bases for these
spaces.

In the context of the SAGA project, Mourrain and Villamizar addressed
the first problem in the case of d D 2 [7] and d D 3 [10, Ch. 3]. Using
the homological approach introduced by Billera [1] and further developed by
Billera–Rose [2, 3], they gave upper and lower bounds for the dimension of the
vector spaces C r

k .�/.
Yuzvinsky [13] considered C r.�/ as the global sections of a sheaf F r on the

poset associated to �. He was, like Billera and Rose, interested in the structure of
C r.�/ as a module over the ring of trivial splines, for example finding conditions
for it to be a free module or a Cohen–Macaulay module, and conditions for the sheaf
F r to be flasque.
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9.3 Generalized Stanley–Reisner Rings

Let � be a simplicial complex in R
d , with vertices fv1; : : : ; vng. The face ring, or

Stanley–Reisner ring of �, is the ring A� WD RŒY1; : : : ; Yn�=I�, where I� is the
monomial ideal generated by the products Yi1 	 	 	 Yij such that fvi1 ; : : : ; vij g is not a
face of �. It is known [4] that if two simplicial complexes have isomorphic Stanley–
Reisner rings, then they are themselves isomorphic.

By identifying Yi with the Courant function Yi.vj / D ıij extended by linearity,
we would have

P
i Yi D 1, and the ring A�=.

P
Yi � 1/ can be viewed as the

ring C 0.�/ of (continuous) splines on �. This ring is sometimes referred to as
the affine Stanley–Reisner ring of �. The points of Spec.C 0.�// are the points on
Spec.A�/ � R

n that lie on the hyperplane
P

i Yi D 1, and those points that have
non-negative coordinates, give a model of �.

As observed by Billera and Rose [3], one can “homogenize” the Stanley–Reisner
ring by replacing � by the .d C 1/-dimensional simplicial complex O� obtained by
embedding � in the hyperplane x0 D 1 in R

dC1 and taking its cone with vertex at
the origin Ov0 D .0; : : : ; 0/. Then

C 0. O�/ D RŒ OY0; OY1; : : : ; OYn�=.I O� C .

nX

iD0

OYi � 1// D A O�=.

nX

iD0

OYi � 1/ Š A�;

where the variables OYi represent the Courant functions of O� (see [8]). Since I� is a
homogeneous ideal, this ring is graded, and Proj C 0. O�/ also “describes” �.

For r 
 0, consider the subalgebras C r.�/ � C 0.�/ D A�=.
P

Yi � 1/ and
C r. O�/ � C 0. O�/ D A� consisting of splines of smoothness r . We call these rings
generalized Stanley–Reisner rings. As observed by Billera [1], the space of splines
on � of smoothness r and degree � k correspond to the space of splines on O� of
smoothness r and degree exactly k, in particular the dimensions of these two vector
spaces are equal.

Here we concentrate on the “affine” generalized Stanley–Reisner rings C r.�/.
In the following, we compute these rings and explain their geometric realization
Spec.C r.�// only in two particularly simple cases. Nevertheless, we think that even
these two examples support our conjecture, namely that the part of Spec.C r.�//

with non-negative coordinates (with respect to a certain embedding into an affine
space) models a twisted version of the simplicial complex �.

Example 1: d D 1. Let � be a one-dimensional simplicial complex with three
vertices v1; v2; v3 2 R, and assume v1 < v2 < v3 (Fig. 9.1).

Fig. 9.1 The one-dimensional simplicial complex of Example 1
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Since only fV1; V3g is not a face, we have

C 0.�/ D A�=.

3X

iD1

Yi � 1/ D RŒY1; Y2; Y3�=.Y1Y3; Y1 C Y2 C Y3 � 1/:

Then Spec.C 0.�// � R
3 is the union of the lines Y1 D Y2 C Y3 � 1 D 0 and

Y3 D Y1 C Y2 � 1 D 0. The segments of these two lines contained in the positive
octant mimic the two 1-faces of �, and they intersect transversally. Set

H WD v1Y1 C v2Y2 C v3Y3:

Then H.x/ D x for any point x 2 j�j. So RŒH � is the subring of trivial splines,
and RŒH � � C r.�/, for any r 
 0.

By performing the (affine) computations similar to what is done in [8], one sees
that H , Y rC1

1 , and Y rC1
3 generate the subring C r.�/ of C 0.�/. Note that, since

Y1H D .v1 � v2/Y
2

1 C v2Y1 and Y3H D .v3 � v2/Y
2
3 C v2Y3

in C 0.�/, all powers of Y1 and Y3 higher than r C 1 are in the subring generated by
(the images of) H , Y rC1

1 , and Y rC1
3 . Now consider the homomorphism

RŒx; y; z� ! RŒY1; Y2; Y3�=.Y1Y3; Y1 C Y2 C Y3 � 1/

that sends x to H �v2, y to .v1 �v2/
rC1Y rC1

1 , and z to .v3 �v2/
rC1Y rC1

3 . The image
of this map is C r.�/ and the kernel is the ideal .yz; y C z � xrC1/. Hence

C r.�/ Š RŒx; y; z�=.yz; y C z � xrC1/;

and Spec.C r.�// is the union of the plane curves y D z � xrC1 D 0 and z D
y � xrC1 D 0. For r 
 1, these two curves both have the x-axis as tangent at
their point of intersection (the origin), and the tangent intersects each curve with
multiplicity r C 1 (Fig. 9.2).

Fig. 9.2 Spec.C r .�// for r D 0; 1; 2



9 Algebraic Spline Geometry: Some Remarks 173

Fig. 9.3 The two-dimensional simplicial complex of Example 2

Example 2: d D 2. Consider a two-dimensional simplicial complex �, with
four vertices v1; : : : ; v4 2 R

2, no three on a line, and fv1; v3g as the only non-face.
Write vi D .vi1; vi2/ (Fig. 9.3).

Then

C 0.�/ D RŒY1; Y2; Y3; Y4�=.Y1Y3; Y1 C Y2 C Y3 C Y4 � 1/;

where the variables Yi represent the Courant functions. The trivial splines in this
case are

Hj WD v1j Y1 C v2j Y2 C v3j Y3 C v4j Y4; for j D 1; 2:

As in the previous example, we observe that Y rC1
1 and Y rC1

3 are in C r.�/.
Moreover, we deduce the following linear relation (assuming for simplicity that
none of the denominators are zero):

H1 � v21

v41 � v21

� H2 � v22

v42 � v22

D �v11 � v21

v41 � v21

� v12 � v22

v42 � v22

�
Y1 C �v31 � v21

v41 � v21

� v32 � v22

v42 � v22

�
Y3:

Multiplying this relation by powers of Y1 and of Y3, we see that the subring of
C r.�/ generated by the images of H1; H2; Y rC1

1 ; Y rC1
3 contain all powers of Y1 and

Y3 higher than r C 1. Hence we get that C r.�/ is the image of the homomorphism

RŒx1; x2; y; z� ! RŒY1; Y2; Y3; Y4�=.Y1Y3; Y1 C Y2 C Y3 C Y4 � 1/;

sending x1 to H1�v21

v41�v21
, x2 to H2�v22

v42�v22
, y to

� v11�v21

v41�v21
� v12�v22

v42�v22

�rC1
Y rC1

1 , and z to
� v31�v21

v41�v21
�

v32�v22

v42�v22

�rC1
Y rC1

3 . The kernel of this homomorphism is generated by yz and y C z �
.x1 � x2/rC1, so that

C r.�/ Š RŒx1; x2; y; z�=.yz; y C z � .x1 � x2/rC1/:

Hence Spec.C r.�// is the union of the surfaces y D z � .x1 � x2/rC1 D 0 and
z D y � .x1 � x2/

rC1 D 0. The intersection of these surfaces is the line y D z D
x1 � x2 D 0. The plane y D z D 0 is the tangent plane to both surfaces at all points
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of their line of intersection. The intersection of this tangent plane and each surface
is the line, with multiplicity r C 1.

If we instead consider the “homogeneous” Stanley–Reisner ring C 0. O�/ Š A�,
we set H0 WD Y1 C Y2 C Y3 C Y4 and define the homomorphism

RŒx0; x1; x2; y; z� ! RŒY1; Y2; Y3; Y4�=.Y1Y3/;

by sending x0 to H0, X1 to H1�v21H0

v41�v21
, x2 to H2�v22H0

v42�v22
, and y and z as before. We then

get

C r. O�/ Š RŒx0; x1; x2; y; z�=.yz; y C z � .x1 � x2/
rC1/:

This is a graded ring, where the xi have weight 1 and y and z have weight r C 1.
Hence Conjecture 3.1 of [10, Ch. 3], stated only for r D 1 and with a different
choice of variables, holds for all r . Note that Spec.C r. O�// is an affine cone, and
that we can view Spec.C r.�// as the intersection of this cone with the hyperplane
x0 D 1.

We see that, as a module over the ring of trivial splines RŒx1; x2�, C r.�/ is
isomorphic to RŒx1; x2� ˚ yRŒx1; x2� (note that the isomorphism depends on r).
Moreover, the r-splines of degree � k are of the form f .x1; x2/ C yg.x1; x2/,
where f is a polynomial of degree � k and g is of degree � k � .r C 1/. Hence

dim C r
k .�/ D

 
k C 2

2

!

C
 

k C 2 � .r C 1/

2

!

;

in accordance with [7, Thm. 13, p. 572], since there are no interior vertices in �.
It is natural to conjecture that the situation of these examples is the general one,

namely that Spec.C r.�// represents a twisted version of �, in which the varieties
corresponding to the d -faces are curved and intersect along varieties corresponding
to the .d � 1/-faces “with multiplicity r C 1” as described above. More precisely,
based on the above two examples, we conjecture the following “local” description
of Spec.C r.�//.

Local Spline Ring Conjecture Let � be a d -dimensional simplicial complex
consisting of two d -simplices intersecting in a .d � 1/-simplex. Then we can realize
Spec.C r.�// � R

dC2 as the union of two smooth d -dimensional varieties V1 and
V2 intersecting along a linear .d � 1/-dimensional space L, such that V1 and V2

have the same d -dimensional linear space T as tangent space at each point of L

and such that Vi and T have order of contact r C 1 at each point of L.

In [10, Ch. 4], Villamizar considered several examples of simplicial complexes
� in the special case d D 2, r D 1, and gave conjectural generators for C 1. O�/

as a R-subalgebra of C 0. O�/. The computations performed there for splines of low
degree, using again the method of [8], support the above conjecture.
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Chapter 10
On the Dimension of Spline Spaces
on Triangulations

Nelly Villamizar and Bernard Mourrain

10.1 Introduction

For a polyhedral partition � embedded in R
d , a polynomial spline is a piecewise

polynomial function defined on � with a specified order of global smoothness.
It is commonly accepted that the first mathematical reference to splines is

in the article from 1946 by Schoenberg [26], which is probably the first place
where the word “spline" is used in connection with smooth, piecewise polynomial
approximation. However, the idea that polynomials were the most convenient
functions for approximation and interpolation has its roots in the aircraft and
shipbuilding industries. On an irregular domain, such as an airplane or a human
skull, the approximation functions are needed to be defined and adaptable to satisfy
boundary conditions on domains of any reasonable shape. This idea developed into
what is now one of the most powerful tools to solve partial differential equations, the
finite element method [11]. Splines are nowadays important not only in numerical
analysis and approximation theory, they are very useful for modeling surfaces of
arbitrary topology and are a widely recognized tool in isogeometric analysis [9],
image analysis and free-form representation in Computer Aided Design (CAD) and
Computer Aided Geometric Design (CAGD) [10].
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To be useful in computations, the space of spline functions must have a basis, and
it in turn makes essential to study the dimension of these spaces. For the space of
piecewise polynomials on a given triangulation, or on a simplicial partition in R

d ,
the problem of finding the dimension and a suitable basis for it was first formally
formulated by Strang [29, 30]. He conjectured a formula for the dimension of the
spline space on a general triangulation [29]. However, serious difficulties already
begin to arise in the planar case, and the actual lower bound on the dimension of
the space is usually larger than the formula in the conjecture depending on the
embedding of the triangulation in R

2 (Morgan and Scott, The dimension of the space
of C 1 piecewise polynomials. Unpublished manuscript. http://citeseerx.ist.psu.edu/
viewdoc/summary? doi:10.1.1.42.4635, 1975; [19, 27]). The methods to compute
the dimension include the construction of nodal bases and the Bernstein–Bézier
approach, see [16] and the references therein.

In 1988, Billera introduced the use of homological algebra and some algebraic
machinery to study the spaces of splines on triangulations in any dimension [4].
By means of this approach, complicated linear algebra can be presented in a more
organized way, and he was able to find the dimension for the space of C 1 bivariate
splines for triangulations whose edges are in sufficiently general position, for any
fixed polynomial degree. See also [5, 7] for more results concerning the algebraic
structure of the spline space.

The homological construction was continued by Schenck and Stillman in [25],
and studied in [13, 23–25]. We start the next section by recalling this construction,
which we latter use to prove a formula for an upper bound on the dimension of
bivariate spline spaces, and new lower and upper bounds for trivariate spline spaces.

These bounds improve previous results [16, 27] and the approach leads to
connections of the dimension problem on spline spaces and classical problems in
algebraic geometry.

The formula for the upper bound in the bivariate case applies to any ordering
established on the interior vertices of the partition. Having no restriction on the
ordering makes it possible to obtain accurate approximations to the dimension
and even exact values in many cases, for instance it leads to a simple proof for a
dimension formula of the C r spline space when the degree of the polynomials is at
least 4r C 1 [20].

The results for the trivariate case in the literature do not take into account the
exact geometry of faces in the partition [1, 2, 17]. The bounds we prove include
terms that take into account the geometry of the faces surrounding the interior edges
and vertices of the partition. For our results we explore connections between spline
functions and ideals generated by powers of linear forms, ideals of fat points, the
Fröberg’s conjecture and the weak Lefschetz property, giving so an insight into ways
of improving these bounds by using results from algebraic geometry [21].

The structure of this chapter is as follows. In Sect. 10.2 we present in detail
the construction of the chain complex introduced by Schenck and Stillman [25]
in general settings i.e., for any finite d–dimensional simplicial complex. We recall
some properties of the homology modules, which leads to a formula for the
dimension with terms corresponding to the dimension of low homology modules.

http://citeseerx.ist.psu.edu/viewdoc/summary?
http://citeseerx.ist.psu.edu/viewdoc/summary?
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By bounding these terms we get lower and upper bounds for two dimensional
simplicial complexes in Sect. 10.3, and the three dimensional case is considered
in Sect. 10.4. At the end of each section we present some examples and some final
remarks.

10.2 Construction of the Chain Complex

We introduce the notation and some definitions from [23] that will be used
throughout this chapter.

We denote by � a connected, finite d -dimensional simplicial complex, supported
on j�j � R

d , such that � and all its links are pseudomanifolds [4]. We could think
of � as the triangulation of a (topological) d -ball.

For integers r and k, with r 
 0, k 
 r , denote by C r
k .�/ the space

of polynomial splines defined on �, of degree at most k, and continuously
differentiable of order r .

The problem of finding the dimension of C r
k .�/ can be reduced to the case in

which each maximal face of � contains the origin in R
d , in the following way [6].

We embed � in the hyperplane fxdC1 D 1g � R
dC1 and form the cone O� with

vertex at the origin. Let C r. O�/ be the set of splines defined on O� and continuously
differentiable of order r . For a fixed k, let C r. O�/k denote the subset of splines on
O� of degree exactly k. The elements of C r. O�/k are precisely the homogenization
of the elements of C r

k .�/, and

C r. O�/k Š C r
k .�/

as R-vector spaces [6]; in particular

dim C r
k .�/ D dim C r. O�/k: (10.1)

Thus, we turn the problem of finding dim C r
k .�/ (for different values of k) into the

problem of finding the Hilbert function of a graded algebra, namely C r. O�/, and we
may apply the tools of commutative and homological algebra to solve the problem.

Let us denote by �0 the set of interior faces of �. For i D 0; : : : ; d � 1 let �0
i

be the set of i -dimensional interior faces of � whose support is not contained in the
boundary @� of j�j, and let �0

d be the set of all maximal d -faces of �. We denote
by f 0

i the cardinality of these sets, for i D 0; : : : ; d .
Let us denote by R WD RŒx1; : : : ; xdC1� the polynomial ring in d C 1 variables.

Let R be the constant (chain) complex on � i.e., R.ˇ/ D R for every ˇ 2 �0.
For i D 0; : : : ; d we have Ri D Rf 0

i . The maps @i in the complex R are induced
by the usual simplicial boundary maps N@i used to compute the relative homology
of .�; @�/ with coefficients in R (see [4] and [22] for more general details about
relative homology).
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For £ 2 �0
d�1, let `£ be the linear form that vanishes on O£ (it is just the

homogenization of the linear polynomial vanishing on £). For every interior face
“ 2 �0 define

J .ˇ/ WD h`rC1
£ i£3“:

Let us denote by J the complex of ideals defined in this way, with the restriction of
the maps @i defined on Ri to Ji WD L

ˇ2�0
i
J .ˇ/, for i D 0; : : : ; d .

We consider the chain complex R=J defined as the quotient of R by J :

0
@dC1����!

M

�2�0
d

R @d��!
M

�2�0
d�1

R=J .�/
@d�1���! 	 	 	 @1��!

M

ˇ2�0
0

R=J .�/
@0��! 0

where @i are the induced relative (module @�) simplicial boundary maps.
In [4] it was proved that C r. O�/ is isomorphic to the top homology module of

R=J , i.e.,

Hd .R=J / WD ker.@d / Š C r. O�/:

This together with (10.1) and the Euler characteristic equation [28, p. 172]

¦.H.R=J // D ¦.R=J /;

implies that, for any fixed k 
 1

dim C r
k .�/ D

dX

iD0

.�1/i
X

ˇ2�0
d�i

dimR=J .ˇ/k �
dX

iD1

.�1/i dim Hd�i .R=J /k:

(10.2)

The subindex k indicates that we are considering the k-the part of the graded
module.

The aim is to determine a formula for all the modules in the latter equation in
terms of known information about �.

One first thing that we can use is the short exact sequence

0 �! J �! R �! R=J �! 0:

It gives rise to the long exact sequence of homology modules

	 	 	 ! HiC1.R=J / ! Hi .J / ! Hi .R/ ! Hi .R=J / ! Hi�1.J / ! 	 	 	
(10.3)
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When � is supported on a topological d -ball (as is the case for our simplicial
complexes), then Hi .R/ D 0 for every i ¤ d and Hd .R/ D R [22, p. 181].
Then from the long exact sequence (10.3) it follows that H0.R=J / D 0, and for
all i � d � 1

Hi .R=J / Š Hi�1.J /: (10.4)

In particular, we get the short sequence

0 �! Hd .R/ �! Hd .R=J / �! Hd�1.J / �! 0;

and it follows

C r. O�/ Š R ˚ Hd�1.J /; (10.5)

therefore, the study of the spline space reduces to the study of the homology module
Hd�1.J /.

Let us recall that by definition, for i D 0; : : : ; d

Hi .J / WD ker.@i /=Im @iC1 (10.6)

and we have

M

ˇ2�0
i

J .ˇ/ D ker @i ˚ Im @i ; (10.7)

where @i are the maps in the chain complex J .
The previous construction is valid in any dimension d , in particular for d D 2

and d D 3 that are the cases we want to explore here. The importance of the study
of ideals of powers of linear forms is easily detectable.

Since J .ˇ/ D 0 for all maximal faces ˇ of �, then

M

ˇ2�0
d

R=J .ˇ/k D
M

ˇ2�0
d

Rk and hence dim
M

ˇ2�0
d

Rk D f 0
d 	
 

k C d

d

!

:

(10.8)

Also by definition J .ˇ/ D h`rC1
ˇ i, the ideal generated by the power r C 1 of the

linear form that vanishes on Ǒ, for all ˇ 2 �0
d�1, thus

dim
M

ˇ2�0
d�1

R=J .ˇ/k D f 0
d�1 	

� 
k C d

d

!

�
 

k C d � .r C 1/

d

!


: (10.9)
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Here and throughout the chapter, we adopt the convention that for m; u 2 Z the
binomial coefficient

�
m
u

� D 0 if m < u.
Let us consider ˇ 2 �0

i for some 0 � i < d � 1. Observe that for a specific face
ˇ, we may make an affine change of coordinates and assume that the linear forms
in J .ˇ/ involve only the variables x1; : : : ; xd�i . Hence

R=J .ˇ/ Š RŒxdC1�i ; : : : ; xdC1� ˝R RŒx1; : : : ; xd�i �=J .ˇ/:

Then in order to obtain the dimension of a spline space we need to analyze ideals
generated by powers of linear forms in two, three,: : : and d -variables.

For instance, for a triangulation of a region in the plane, the ideals associated
to the vertices .ˇ 2 �0

0, d D 2) are generated by linear forms in two variables;
similarly the ideals corresponding to edges in a 3-dimensional partition (ˇ 2 �0

1,
d D 3).

Schenck and Stillman [25] proved the following free resolution of ideals in two
variables generated by powers of homogeneous linear forms (in [13] Geramita and
Schenck extended this result by using inverse systems of fat points, they gave a
completely characterization of the possible free resolutions for these kind of ideals
allowing mixed powers).

Let J .ˇ/ be an ideal generated by `rC1
1 ; : : : ; `rC1

t where `j for j D 1; : : : ; t are
linearly independent homogeneous linear forms in RŒx1; x2�. A free resolution of
R=J .ˇ/ is given by

0 ! R.�˝ � 1/a ˚ R.�˝/b ! ˚t
jD1R.�r � 1/!R ! R=J .ˇ/ ! 0

(10.10)

where ˝ � 1 is the socle degree of R=J .ˇ/; ˝ and the multiplicities a and b are
given by

˝ D
�

t r

t � 1

�

C 1; a D t .r C 1/ C .1 � t/ ˝; b D t � 1 � a: (10.11)

Thus, for a fixed polynomial degree k:

dimR=J .ˇ/k D
 

k C d

d

!

� t

 
k C d � .r C 1/

d

!

C b

 
k C d � ˝

d

!

C a

 
k C d � .˝ C 1/

d

!

:

(10.12)

Considering each face ˇ at a the time, the dimension of R=J .ˇ/k is given by
the previous formula. Summing them up we get the a dimension formula for the
corresponding module in (10.2).
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For ideals generated by powers of linear forms in three or more variables there is
no resolution known. There is a formula conjectured by Fröberg [12] on the expected
Hilbert series of an ideal generated by a generic set of forms (not necessarily powers
of linear forms) in a polynomials ring in n-variables. Fröberg’s conjecture has been
proved true in some cases, for instance for n D 2, that is the generic situation of the
module in (10.12), for n D 3 [3]. For other values of n, it has been proved for some
particular cases that depend on the number of generators, see [15] for a detailed list.
By using Fröberg’s conjecture and its equivalent form known as the maximal rank
property, one might find approximations for the dimension of the spline space, see
the discussion in [21] where the case of tetrahedral partitions in R

3 is studied. In
Sect. 10.4 below, with n D 3, we use a special case for which Fröberg’s sequence
gives the exact dimension of the ideal and prove a lower bound on the dimension of
the spline space C r

k .�/.
As the dimension of the simplicial complexes increases, the homology modules

become quite complicated. In Sect. 10.3 we consider splines spaces defined on
triangulations embedded in R

2 (d D 2), and in Sect. 10.4 spline spaces on simplicial
complexes embedded in R

3 (d D 3). We find lower and upper bounds for the
homology modules and manipulating the formula (10.2) we deduce lower and upper
bounds for the dimension of the spline space C r

k .�/.

10.3 Dimension of Bivariate Triangular Spline Spaces

Let � be a connected, finite two-dimensional simplicial complex supported on
j�j � R

2 which is homotopy equivalent to a disk. Applying (10.4), the fomula
in (10.2) reduces to

dim C r
k .�/ D

2X

iD0

.�1/i
X

ˇ2�0
2�i

dimR=J .ˇ/k C dim H0.J /k: (10.13)

Let us recall that in this setting the ring R is the polynomial ring in three variables
R D RŒx1; x2; x3�, corresponding to the homogenization O� of �.

Theorem 10.1 The dimension of C r
k .�/ is bounded below by

dim C r
k .�/ 


 
k C 2

2

!

C f 0
1

 
k C 1 � r

2

!

�
f 0

0X

iD1

�

ti

 
k C 1 � r

2

!

� bi

 
k C 2 � ˝i

2

!

� ai

 
k C 1 � ˝i

2

!


;
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where ti is the number of different slopes of the edges containing the vertex �i , and

˝i D
�

ti r

ti � 1

�

C 1; ai D ti .r C 1/ C .1 � ti / ˝i ; bi D ti � 1 � ai :

Proof Since dim H0.J /k 
 0, and (10.8), (10.9) and (10.12) give us formulas for
the remaining terms of (10.13), we get the lower bound given in the theorem.

In contrast with the formula of the lower bound, the theorem below provides an
upper bound on dim C r

k .�/. The ordering on the vertices plays an important role
in the formula. Different orderings can give different upper bounds, and since the
theorem can be applied to any ordering on the vertices in �0

0, it leads to find the
exact dimension in many cases [20], see Example 10.1 below.

Let �1; : : : ; �f 0
0

be an ordering on �0
0. For each vertex �i , denote by N.�i/ the set

of edges that contain �i , and define Qti as the number of different slopes of the edges
connecting �i to a vertex on the boundary or to one of the first i � 1 vertices in the
list.

Theorem 10.2 The dimension of C r
k .�/ is bounded above by

dim C r
k .�/ �

 
k C 2

2

!

C f 0
1

 
k C 1 � r

2

!

�
f 0

0X

iD1

�

Qti
 

k C 1 � r

2

!

� Qbi

 
k C 2 � Q̋

i

2

!

� Qai

 
k C 1 � Q̋

i

2

!


with Qti as we have defined above and

Q̋
i D

� Qti r

Qti � 1

�

C 1; Qai D Qti .r C 1/ C .1 � Qti / Q̋
i ; Qbi D Qti � 1 � Qai :

If Qti D 1 or 0, then Qai D Qbi D Q̋
i D 0.

Proof In the case d D 2, the isomorphism in (10.5) gives

dim C r
k .�/ D dim Rk C dim H1.J /k:

We know that H1.J / D ker @1 by (10.6), and
L

�2�0
1
J .�/ D ker.@1/ ˚ Im .@1/

by (10.7). Hence we can write

dim C r
k .�/ D dim Rk C

X

�2�0
1

dimJ .�/k � dim.Im @1/k
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where @1 is the map in the chain complex J . Therefore, to find an upper bound on
dim C r

k .�/ it is enough to find a lower bound on the dimension of Im @1 in degree
k. We define the maps ı; ' and 	 by R-linear extensions as follows.

Let us consider

ı W
M

�D.�;� 0/2�0
1

J .�/ Œ�� !
M

�2�0
0

M

�2N.�/

R Œ� j��

such that ı.Œ��/ D Œ� j�� � Œ� j� 0� for � D .�; � 0/ 2 �0
1, and the map

' W
M

�2�0
0

M

�2N.�/

R Œ� j�� !
M

�2�0
0

R Œ��

defined by

'.Œ� j��/ D
(

Œ�� if � 2 �0
0;

0 if � 62 �0
0:

Then, we have @1 D ' ı ı. We consider now the map

	 W
M

�2�0
0

M

�2N.�/

R Œ� j�� !
M

�2�0
0

M

�2N.�/

R Œ� j��

such that 	.Œ� j��/ D 0 if � is the end point of biggest index of � , and 	.Œ� j��/ D
Œ� j�� otherwise. Denote by Q@1 D ' ı 	 ı ı.

For every � 2 �0
0, let us define QN .�/ as the set of interior edges � connecting �

to another vertex which is not of bigger index. Let us consider the ideal

QJ .�/ D
X

�2 QN .�/

R `rC1
� � J .�/:

By construction, we have

Im Q@1 D
M

�2�0
0

QJ .�/ Œ��

and dim.Im @1/k 
 dim.Im Q@1/k:

Since for each edge � 2 �0
1 its correspondent linear form `� appears among the

generators of the ideal QJ .�/ for (only) one interior vertex, then

dim Im Q@1 D
f 0

0X

iD1

�

Qti
 

kC2�.rC1/

2

!

� Qbi

 
kC2� Q̋

i

2

!

�Qai

 
kC2�. Q̋

iC1/

2

!
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Fig. 10.1 Effect of the numbering on the upper bound

Fig. 10.2 Triangulation with two no connected interior vertices

with Qti D j QN .�i/j and Q̋
i ; Qai ; Qbi as defined in (10.11). This gives a lower bound on

dim Im @1 and proves the theorem.

Example 10.1 Effect of the ordering of the vertices on the upper bound.
Let � be the triangulated polygon in Fig. 10.1, and consider three different

numberings of the interior vertices as shown in (1)–(3).

By Theorem 10.1, dim C 1
2 .�/ 
 9. By Theorem 10.2 for the numbering (1), the

upper bound on dim C 1
2 .�/ is 11, for the numbering (2) the upper bound is 10, and

in fact there is a numbering that give us 9 as upper bound, namely the one shown
in (3). Thus, we can compute the exact dimension by combining these two bounds,
dim C 1

2 .�/ D 9.

Example 10.2 Let us consider the triangulation in Fig. 10.2. It is easy to see that the
lower bound on dim C r

k .�/ always equals the upper bound, for any k and r .

Thus, the dimension of the spline space is given by the formula

dim C r
k .�/ D

 
k C 2

2

!

C
 

k C 1 � r

2

!

C 2

 
k � 1

2

!

:
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10.4 Dimension of Trivariate Splines

Let � be a connected, finite 3-dimensional simplicial complex, supported on j�j �
R

3, such that j�j is homotopy equivalent to a 3-dimensional ball.
In this setting the formula in (10.2) takes the form

dim C r
k .�/ D

3X

iD0

.�1/i
X

ˇ2�0
3�i

dimR=J .ˇ/k C dim H1.J /k � dim H0.J /k

(10.14)

and by the equalities (10.6) and (10.7)

D dim Rk C dim
M

�2�2

J .�/k � dim Im .@2/k; (10.15)

where @2 is the corresponding map in the chain complex J :

0 �!
M

�2�0
2

J .�/
@2�!

M

�2�0
1

J .�/
@1�!

M

�2�0
0

J .�/ �! 0 (10.16)

The ring R is in this case the polynomial ring in four variables R D RŒx1; x2; x3; x4�,
corresponding to the homogenization O� of �.

From (10.8) and (10.9), we have explicit formulas for the first two terms
in (10.15), and thus, in order to find an upper bound on dim C r

k .�/ we need to find
a lower bound on the dimension of Im .@2/ in degree k. We proceed in an analogous
way as in the proof of Theorem 10.2 in the previous section.

To find an upper bound, let us consider a numbering on the interior edges �i

of �, say �1; : : : ; �f 0
1

. For each i D 1; : : : ; f 0
1 , let si be the number of different

linear forms defining the hyperplanes incident to �i , and define Qsi as the number of
different linear forms defining the hyperplanes incident to �i , which correspond to
triangles whose other two edges are either on @�, or have index smaller than i . See
Example 10.3.

Example 10.3 Numbering on the interior edges.

Let � be the Clough–Tocher split consisting of a tetrahedron which has been
split about an interior point into four subtetrahedra, see Fig. 10.3.

Let us consider the numbering on the edges as in the figure. In this case, three
different planes meet at each interior edges of the partition, then si D 3 for i D
1; : : : ; 4. On the other hand, following the counting and the definition above,es1 D 0,
es2 D 1, es3 D 2, and es4 D 3.

For each �i 2 �0
1, denote by QJ .�i / the ideal generated by the r C 1 powers of

the linear forms defining the Qsi hyperplanes.
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Fig. 10.3 Clough–Tocher
split

4

2

1

3

Let us notice that by construction, for the edges �i 2 �0
i of each triangle � in

�0
2, the linear form `� is among the generators of QJ .�i / for only one �i , namely that

with highest index.

Theorem 10.3 The dimension of C r
k .�/ is bounded above by

dim C r
k .�/ �

 
k C 3

3

!

C f 0
2

 
k C 2 � r

3

!

�
f 0

1X

iD1

�

Qsi

 
k C 2 � r

3

!

� Qbi

 
k C 3 � Q̋

i

3

!

� Qai

 
k C 2 � Q̋

i

3

!


with Qsi as we have defined above and

Q̋
i D

� Qsi r

Qsi � 1

�

C 1; Qai D Qsi .r C 1/ C .1 � Qsi / Q̋
i ; Qbi D Qsi � 1 � Qai :

If Qsi D 1 or 0 then Qai D Qbi D Q̋
i D 0.

Proof We define the maps ı; ' and 	 by R-linear extensions as follows. Let ı be
the map

ı W
M

�D.�;� 0;� 00/

J .�/Œ�� !
M

�i2�0
1

M

�2N.�i /

RŒ� j�i �

where, for each i , N.�i/ denotes the set of triangles that contain the edge �i . The
map ı is induced by the boundary map @2. Thus, ı.Œ��/ D Œ� j�� � Œ� j� 0� C Œ� j� 00�
for � D .�; � 0; � 00/ 2 �0

2, see Fig. 10.4.
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Fig. 10.4 Orientation of a
triangle � 2 �0

2

σ

∂2 [σ ] = [ τ ] − [τ ′ ] + [ τ ′′ ]τ ′ τ

τ ′′

Let

' W
M

�i2�0
1

M

�2N.�i /

RŒ� j�i � !
M

�i2�0
1

RŒ�i �

with

'.Œ� j�i �/ D
(

Œ�i � if �i 2 �0
1

0 if �i … �0
1:

Then @2 D ' ı ı. We consider the map

	 W
M

�i2�0
1

M

�2N.�i /

RŒ� j�i � !
M

�i2�0
1

M

�2N.�i /

RŒ� j�i �

defined by 	.Œ� j��/ D Œ� j��, 	.Œ� j� 0�/ D 	.Œ� j� 00�/ D 0 if � D .�; � 0; � 00/ and
either � 0 or � 00 are on the boundary of � or the index assigned to them is bigger than
the assigned to � . Denote by Q@2 D ' ı 	 ı ı.

For �i 2 �0
1, let QN .�i / be the set of triangles � 2 �0

2 that contain � as an edge
and whose other two edges do not have bigger index than the index of � . Then we
have,

eJ .�i / D
X

�2 QN .�i /

R`rC1
� � J .�i /:

By construction,

Im Q@2 D
M

�i2�0
1

QJ .�i /Œ�i �

and dim Im .@2/k 
 dim Im .Q@2/k . Thus, from the formula for dim C r
k .�/ given

in (10.15), it follows

dim C r
k .�/ � dimRk C dim

M

�2�2

J .�/k � dim Im .Q@2/:

By an affine change of coordinates we may assume the edge �i to be along one of
the coordinate edges, and thus the linear forms in QJ .�i / only involve two variables.
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Then dim Im .Q@2/k is given by (10.12) with d D 3, Qsi D j QN .�i /j, and Q̋
i , Qai and

Qbi as given by the formulas (10.11) with Qsi instead of ti . This together with (10.8)
and (10.9) proves the theorem.

Our aim now is to provide a lower bound on the dimension of C r
k .�/ to

complement the upper bound in Theorem 10.3.
Let us take zero as a lower bound for dim H1.J /k , then from (10.14), for any

k 
 0:

dim C r
k .�/ 
 dim Rk C

2X

iD1

.�1/i dim
M

ˇ2�0
3�i

J .ˇ/k C dim Im .@1/k (10.17)

Since we have explicit formulas for all the terms in (10.17) except for the last
one. We can establish a lower bound on dim C r

k .�/ by finding a lower bound on
dim Im .@1/.

We proceed analogously as before. This time we give an ordering to the vertices
in the interior of �. For each vertex �i , we denote by M.�i/ the set of edges � in
�0

1 that contain the vertex �i , and by QM.�i/ be the set of interior edges connecting
�i to one of the first i � 1 vertices in the list, or to a vertex in the boundary.

For each �i 2 �0
0, let ti be defined as before, the number of generators of J .�i /.

Define the ideal QJ .�i / as

QJ .�i / D h`rC1
� i�3� for � 2 QM.�i/;

and let Qti be the number of generators of QJ .�i /. An analogous argument to the one
we used in the proofs above leads to the following lemma.

Lemma 10.1 For a three dimensional simplicial complex �, the dimension of the
spline space C r

k .�/ is bounded by

dim C r
k .�/ 
 dim Rk C

2X

iD1

.�1/i dim
M

ˇ2�0
3�i

J .ˇ/k C dim
f 0

0M

iD1

QJ .�i /k:

(10.18)

Proof Follows from (10.17), and the argument as before.

We have explicit formulas for the terms in (10.18), except for dim
Lf 0

0

iD1
QJ .�i /k .

This term involves ideals generated by powers of linear forms in three variables,
which correspond to equations of planes going through a common point.

As we mentioned above, there is a formula F.t; r C 1; n/ conjectured by
Fröberg [12] concerning the dimension of ideals generated by a generic set of
forms (not necessarily powers of linear forms) in a polynomial ring in n variables.
This conjecture, in particular, was proved for the case n D 3 of forms in three
variables [3]. But since the conjectured dimension is not true in general when the
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generators are powers of linear forms [21], such formula only gives us a lower bound
on the dimension of R=J .�/k for every vertex � , namely

dimR=J .�/k 

kX

jD0

F.t; r C 1; 3/j ; (10.19)

where t is the number of linear forms that corresponds to the different planes that
contain the vertex � in �. Equality holds in (10.19) when t � 3 for each vertex
� 2 �0

0 [15].
The formula F.t; rC1; n/ associated to the Hilbert function of an ideal generated

by t forms of degree r C 1 in a polynomial ring of n D 3 variables over R (or any
field of characteristic zero) is be defined as follows, for j 
 0

F.t; r C 1; 3/j D
(

F 0.t; r C 1; 3/j ; if F 0.t; r C 1; 3/u > 0 for all u � j ,

0 otherwise;
(10.20)

where F 0.t; r C 1; 3/j is given by

F 0.t; r C 1; 3/j D dim Rj C
3X

vD1

.�1/v dim Rj�.rC1/v

 
t

v

!

:

It is a particular case of [15, Theorem 1.6].

Theorem 10.4 The dimension dim C r
k .�/ is bounded below by

dim C r
k .�/ 


 
k C 3

3

!

C
�

f 0
2

 
k C 2 � r

3

!

(10.21)

�
f 0

1X

iD1

�

si

 
k C 2 � r

3

!

� bi

 
k C 3 � ˝i

3

!

� ai

 
k C 2 � ˝i

3

!


C f 0
0

 
k C 3

3

!

�
f 0

0X

iD1

� kX

jD0

F.�i ; r C 1; 3/j

�


C

with �i D min.3; Qti /, si as defined above, and

˝i D
�

si r

si � 1

�

C 1; ai D si .r C 1/ C .1 � si / ˝i ; bi D si � 1 � ai :

Proof It is clear from Lemma 10.1 and the previous remarks. Since the dimension of
the spline space is at least the number of polynomials in tree variables of degree less
than or equal to k, then we take the positive part of the additional terms in (10.21).
See [21] for the detailed proof.
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Fig. 10.5 Regular
octahedron
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2 3
4
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Remark 10.1 The lower bound on C r
k .�/ in the previous theorem can be improved

if the linear forms defining the ideals J .�i / are generic, or if the Hilbert function
of ideals generated by powers of Qti 
 4 linear forms in three variables is known,
in which case one might avoid the step of taking �i D min.3; Qti /. In consequence,
the results in algebraic geometry about the Hilbert function of ideals of powers of
linear forms and the related ideal of fat points would significantly improve results
concerning the dimension of spline spaces.

For the central configurations that we will consider in this section, it is easy to
see that H0.J / is always zero, see [21] for more details.

Example 10.4 Let � be a octahedron subdivided into eight tetrahedra by placing a
symmetric central vertex, see Fig. 10.5.

Computations show that H1.J / is zero for all non-generic octahedra [23]. Since
in this partition, there are exactly three different planes through the central vertex,
then the Fröberg sequence gives us an explicit formula for the dimension of the ideal
associated to the (unique) interior vertex. Hence the dimension dim C r

k .�/ can be
directly computed using (10.14) as follows,

dim C r
k .�/ D

 
k C 3

3

!

C 12

 
k C 3 � .r C 1/

3

!

�
6X

iD1

�

2

 
k C 3 � .r C 1/

3

!

�
 

k C 3 � .2r C 2/

3

!


C
 

k C 3

3

!

�
kX

jD0

F.3; r C 1; 3/j :
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Fig. 10.6 Generic
octahedron

1

2

3
45
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From the definition of Fröberg’s sequence (10.20),

F.3; r C 1; 3/j D
 

j C 2

2

!

� 3

 
j C 1 � r

2

!

C 3

 
j � 2r

2

!

�
 

j � 3r � 1

2

!

:

It is easy to check that F.3; r C 1; 3/j > 0 for every 0 � j < 3r C 3, and equal to
zero otherwise. Hence, we can write

kX

jD0

F.3; r C 1; 3/j D
 

k C 3

3

!

� 3

 
k C 2 � r

3

!

C 3

 
k � 2r C 1

3

!

�
 

k � 3r

3

!

(10.22)

and thus, the formula for the dimension of the spline space on the regular octahedron
in Fig. 10.5 is given by the expression

dim C r
k .�/ D

 
k C 3

3

!

C 3

 
k C 2 � r

3

!

C 3

 
k C 1 � 2r

3

!

C
 

k � 3r

3

!

:

Example 10.5 Let us consider the generic case of an octahedron subdivided into
tetrahedra, where no set of four vertices of the octahedron is coplanar, Fig. 10.6. As
we mentioned above, we have H0.J / equal to zero. But in contrast to the regular
case, H1.J / is equal to zero when r D 1 but not for any other value of r [23].

For this partition �, we have t D 12 different planes corresponding to the
triangles meeting at the central vertex. Then � D min.3; t/ D 3, and using the
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formula (10.22) from the previous example for the sum of the F.3; r C 1; 3/j for
r D 1, Theorem 10.4 gives us the following lower bound

dim C 1
k .�/ 


 
k C 3

3

!

C
�

12

 
k C 1

3

!

� 6

�

3

 
k C 1

3

!

� 2

 
k

3

!


C
 

k C 3

3

!

�
kX

jD0

F.3; 2; 3/j




C

D
 

k C 3

3

!

C
�

�3

 
k C 1

3

!

C 12

 
k

3

!

� 3

 
k � 1

3

!

C
 

k � 3

3

!


C
:

In order to find an upper bound, we apply Theorem 10.3 for some ordering on the
interior edges of the partition. For instance, with the numbering on the edges as in
Fig. 10.6, we have Qs1 D 0, Qs2 D 1, Qs3 D Qs4 D 2, Qs5 D 3, and Qs6 D 4, and so for any
degree k:

dim C 1
k .�/ �

 
k C 3

3

!

C
 

k C 1

3

!

C 4

 
k

3

!

C 2

 
k � 1

3

!

:

Example 10.6 Let � be the Clough–Tocher split consisting of a tetrahedron which
has been split about an interior point into four subtetrahedra, Fig. 10.3.

We consider r D 1 and r D 2. In these two cases the homology module H1.J / is
zero.

(i) For r D 1, as in the previous example, we have

kX

jD0

F.3; 2; 3/j D
 

k C 3

3

!

� 3

 
k C 1

3

!

C 3

 
k � 1

3

!

�
 

k � 3

3

!

Then, the lower bound on the spline space proved in Theorem 10.4 is given by

dim C 1
k .�/ 


 
kC3

3

!

C
�

�3

 
kC1

3

!

C8

 
k

3

!

� 3

 
k � 1

3

!

C
 

k � 3

3

!


C
:

The upper bound we obtained in this example, by applying Theorem 10.3 with
the numbering of the edges as in Fig. 10.3 is the following:

dim C 1
k .�/ �

 
k C 3

3

!

C
 

k � 1

3

!

C 2

 
k

3

!

:
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Since for r D 1 the homology module H1.J / D 0, then we can
apply (10.14) and the bound (10.19) with t D 6 in the sequence (10.20) for
the (unique) interior vertex in �. This leads to the following upper bound

dim C 1
k .�/ �

(
1 for k D 0

2
�

kC3
3

� � 6
�

kC1
3

�C 8
�

k
3

� � 4 for k 
 1:
(10.23)

The formula (10.23) coincides with the generic dimension formula computed
in [2] for this partition �. Although the formula in [2] holds only for k 
 8

(and r D 1), it in turn coincides with the lower bound formula proved in [1]
in every degree k 
 0. In fact, in general, the dimension of the spline space
of any nongeneric decomposition is always greater than or equal to the generic
dimension, it is the smallest dimension encountered as one moves the vertices
of the complex. Thus, since the lower bound formula proved in [1] coincides
with the upper bound we proved above (10.23), we deduce the following result:
the exact dimension of the C 1 spline space over the Clough–Tocher split is

dim C 1
k .�/ D

(
1 for k D 0

2
�

kC3

3

� � 6
�

kC1

3

�C 8
�

k

3

� � 4 for k 
 1:

(ii) Let us consider the case r D 2.
A lower bound is given by the formula

dim C 2
k .�/


 
kC3

3

!

C
�

�3

 
k

3

!

C4

 
k�1

3

!

C4

 
k�2

3

!

�3

 
k�3

3

!

C
 

k�6

3

!


C

Using that H1.J / D 0, and (10.14), (10.19) and (10.20) as before, the
following is an upper bound for k 
 3:

dim C 2
k .�/ � 2

 
k C 3

3

!

� 6

 
k

3

!

C 4

 
k � 1

3

!

C 4

 
k � 2

3

!

� 14

The values of the previous bounds on dim C 2
k .�/ for k � 9 are given in the

following table. The first row shows the values obtained using the lower bound
formula from [1].

k 1 2 3 4 5 6 7 8 9

Lower bound [1] 4 10 20 35 56 84 120 179 261

Lower bound 4 10 20 35 56 84 123 187 282

Upper bound 4 10 20 36 58 90 136 200 286
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Remark 10.2 The examples above illustrate the improvement that our lower and
upper bounds provide with respect to previous results in the literature. Furthermore,
as we showed in the last example, the formulas we presented here might be
combined with results obtained by using different techniques leading thus to sharper
bounds, and in many cases to the exact dimension of the space.

Remark 10.3 The approaches we use in this work differ from the ones used before
to find bounds on the dimension of a spline space defined on a simplicial complex,
see [16] and the references therein. The results and examples we presented give an
insight into ways of improving the bounds and finding the exact dimension formula
under certain conditions. In [21] and [31], the reader can find a more extended
discussion on the relationship between splines and fat points, and the connection
of that theory with the Weak Lefschetz Property [14, 18], Hilbert series of ideals
of powers of generic linear forms, and Fröberg’s conjecture and its most recent
versions [8].
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Chapter 11
Polynomial Interpolation Problems in Projective
Spaces and Products of Projective Lines

Elisa Postinghel

11.1 Introduction

The classical polynomial interpolation theory of functions arises in numerical
analysis and statistics and is based on the fact that a univariate polynomial of fixed
positive degree d is uniquely determined by its values at d C 1 distinct points on
the affine line, due to the non-singularity of the Vandermonde matrix. One can ask
not only for the value of the polynomial but also of its derivatives, up to some
given order, at a finite number of distinct points. The corresponding homogeneous
problem, consisting of asking that the assigned distinct points are multiple roots of
the polynomial, is a full-rank linear problem in the vector space of polynomials of
degree d and has non-trivial solutions provided that the sum of all multiplicities
equals at most the degree.

The first generalization is the multivariate polynomial interpolation problem:
one can ask for the dimension of the vector space of homogeneous (or multi-
homogeneous) polynomials of fixed degree (resp. multi-degree) that vanish,
together with their partial derivatives up to fixed order, at a finite number of
assigned distinct points. This interpolation problem does not depend on the choice
of coordinates and it is referred to as Hermite interpolation. Unlike the one-variable
case, where the points are only required to be distinct, in the case of more variables
the dimension of such a vector space depends on the position of the points; it
reaches its minimum value when the points are in general position. In spite of its
easy formulation, surprisingly enough there is no complete answer to this problem
so far.
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Hermite interpolation problems for homogeneous or multi-homogeneous poly-
nomials lend themselves to being stated in the setting of linear systems and points
in projective spaces or products of projective spaces. The main question we address
is the so called dimensionality problem for linear systems which is: given a linear
system of hypersurfaces of a variety X and a general set of points of X , what is
the dimension of the linear subsystem formed by those elements having at least
the assigned multiplicity at the given points? In Sect. 11.2 we give a more precise
statement of the problem.

In Sects. 11.3 and 11.4 we consider the case where X D P
n. In Sect. 11.3 we

discuss the state of the art introducing the main results and conjectures.
In Sect. 11.4 we describe our main contribution [8] in this direction and explain

the techniques used. We also give a brief account on interesting applications of our
results in the commutative algebra setting of Fröberg-Iarrobino Conjectures on the
Hilbert series of the ideals generated by powers of general linear forms.

In Sects. 11.5 and 11.6 we consider the case where X D P
n1 � 	 	 	 � P

nr . In
Sect. 11.5 we relate it to the study of secant varieties of Segre-Veronese varieties,
the Waring problems and the rank of partially symmetric tensors.

In Sect. 11.6 we present our contribution [26] which is the complete classification
of linear systems with double points on the product P1 � 	 	 	 � P

1. Our approach to
the problem employs toric degenerations of Segre-Veronese varieties (Sect. 11.6.2).

11.2 Linear Systems with Multiple Base Points

Let X be a smooth, irreducible, complex projective variety of dimension n. Let LX

denote the linear system of hyperplane sections of X . Fix p1; : : : ; ps distinct points
on X in general position, i.e. in a Zariski open set (which means outside the zero
locus of a polynomial), and fix m1; : : : ; ms positive integers. We will denote by
L D LX .m1; : : : ; ms/ the linear subsystem of LX formed by all elements in LX

having multiplicity at least mi at pi , i D 1; : : : ; s.
If x0; : : : ; xn are local coordinates centred at pi and f .x0; : : : ; xn/ D 0 is the

equation of a divisor of LX , then such a divisor belongs to LX .mi/ if all monomials
of degree at most mi � 1 appearing in the Taylor expansion of f .x0; : : : ; xn/ vanish
at pi , for i D 1; : : : ; s. This imposes

�
nCmi�1

n

�
linear conditions to the coefficients of

f .x0; : : : ; xn/. Accordingly, the virtual dimension of LX .m1; : : : ; ms/ is defined as

vdim.L/ WD dim.LX / �
sX

iD1

 
n C mi � 1

n

!

� 1;

and the expected dimension as

edim.L/ WD max .vdim.L/; �1/ ;
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using the convention that the empty set has dimension �1. The dimension of L is
upper semi-continuous in the position of the points in X ; it achieves its minimum
value when they are in general position. Whereas the inequality dim.L/ 
 edim.L/

is always satisfied, the actual dimension of L is strictly greater than the expected one
if the conditions imposed by the assigned points are not linearly independent: in that
case we say that L is special. Otherwise, if the actual and the expected dimension
coincide, we say that L is non-special.

One naturally expects that most systems are non-special, at least for low
multiplicities. This immediately turns out to be false. Consider for instance the linear
system of plane conics and impose two distinct double points p1 and p2. Since each
of them imposes three conditions to a curve in the projective plane, with a count
of parameters one expects that the system is empty. But if l.x0; x1; x2/ D 0 is the
linear equation defining the line through p1 and p2, then l.x0; x1; x2/2 D 0 is a
conic which is singular at p1 and p2, therefore such a linear system does not have
the expected dimension.

The so called dimensionality problem for linear systems with base points in
general position is: classify all special systems.

One may also ask more refined questions about linear systems such as: describe
their base locus, namely the locus along which all elements of the linear systems
vanish. Notice that in the example of conic curves through two double points
described above, the unique element of the linear system, namely l.x0; x1; x2/2 D 0,
is singular along the whole line. The same geometric argument applies to the system
of quadrics of P3 with two double points: all hypersurfaces in the system are singular
along the line joining p1 and p2, therefore the line is contained with multiplicity (at
least) two in the base locus of the linear system. Imposing a third base point to the
system, say p3, one is implicitly imposing that both lines spanned by p1; p3 and by
p2; p3 are base lines. A similar phenomenon occurs with plane quartics with five
double points. Indeed one expects to have none of them. On the contrary, as there
exists a plane conic through five general points, say f .x0; x1; x2/ D 0, then the
quartic f .x0; x1; x2/2 D 0 belongs to the system and is contained in its base locus.

In spite of their easy formulation, these problems are very hard and challenging.
Very little is known, although many efforts have been made in the last century. In
the next sections we will discuss previously known results and conjectures and we
will present our contributions to these kinds of problems. In Sect. 11.4 a detailed
description of the linear components of the base locus of a linear system in X D P

n

is given and, the dimensionality problem for linear systems with bounded number of
points or multiplicities is answered. In Sect. 11.6 a complete classification of special
linear systems in the case where X is the Segre-Veronese embedding of .P1/n and
m1 D 	 	 	 D ms D 2 is established.
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11.3 Prescribing Multiple Points in P
n

The study of linear systems of hypersurfaces in complex projective spaces with
finitely many assigned base points of given multiplicities is a fundamental problem
in algebraic geometry, related to the Waring problem for polynomials and to the
classification of defective higher secant varieties to projective varieties.

Let L D Ln;d .m1; : : : ; ms/ be the linear system of hypersurfaces of degree
d in P

n passing through a general union of s points p1; : : : ; ps with multiplicity
respectively m1; : : : ; ms � d . The virtual dimension of L is

vdim.L/ D
 

n C d

n

!

�
sX

iD1

 
n C mi � 1

n

!

� 1

and the expected dimension of L is edim.L/ D max.vdim.L/; �1/. The linear
system L is said to be special if dim.L/ > edim.L/ and non-special if dim.L/ D
edim.L/. The speciality of L is defined to be the difference dim.L/ � edim.L/.

Remark 11.1 A geometric interpretation of the notion of speciality for a linear
system is the following. Let X be the blow-up X of Pn at the points pi ’s and let
us denote by H the pull-back of the class of a hyperplane of Pn and by Ei ’s the
classes of the exceptional divisors of the points pi ’s, so that the Picard group of X

is Pic.X/ D hH; Ei W i D 1; : : : ; si. The proper transform D of an element in L is
linearly equivalent to the divisor

dH �
sX

iD1

miEi 2 Pic.X/:

By abuse of notation we will use the same letter L to denote the linear system in X

associated to D, when no confusion arises. The following equalities hold

• dim.L/ D h0.X;OX.D// � 1,
• vdim.L/ D �.OX .D// � 1 D h0.X;OX.D// � h1.X;OX .D// � 1,

where hi denotes the dimension of the i -th cohomology group and � denotes the
Euler characteristic of a sheaf. Indeed, set D.j; k/ to be the divisor

dH �
j�1X

iD1

miEi � kEj 2 Pic.X/;

with 1 � j � s and 1 � k � mj . From the long exact sequences in cohomology
associated with the short exact sequences

0 ! D.j; k/ ! D.j; k/ C Ej ! .D.j; k/ C Ej /jEj ! 0;
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obtained by following the lexicographic order on the set of indices f.j; k/ W 1 � j �
s; 1 � k � mj g, one obtains hi .X; D.j; k// D 0, i
 2. Hence L is non-special if
and only if

h0.X;OX .D// 	 h1.X;OX .D// D 0:

Remark 11.2 The multiplicity conditions give a homogeneous ideal in the homoge-
neous coordinate ring of the projective space; the graded pieces of such an ideal,
as we vary d , correspond to the linear systems L. In this way determining the
dimension of L, for different values of d , is equivalent to computing the Hilbert
function of the graded ideal of the points, providing an algebraic presentation of the
notion of speciality for linear systems.

The problem of determining the speciality of linear systems of hypersurfaces of
P

n with fixed degree and prescribed multiplicities at a given collection of points
attracted the attention of many researchers in the last century. What is known is
essentially concentrated in the case of double base points, namely m1 D 	 	 	 D
ms D 2. A complete classification of special linear systems with double base points
in general position was proved by Alexander and Hirschowitz [3] by means of the so
called Horace’s method. Recent and simplified proofs can be found in [9] and [29].
The theorem states that a linear system in P

n with only double points is special,
besides four exceptional cases, only if the degree is 2 and the number of points is
2 � s � n. The case of quadrics is easily understood. Indeed on the one hand
the linear system L D Ln;2.2s/ D Ln;2.2; : : : ; 2/ satisfies vdim.L/ D �

nC2
2

� �
s.n C 1/ � 1; on the other hand it is easy to see that any hypersurface in L is a
quadric cone with vertex the linear subspace P

s�1 spanned by the s points, hence
dim.L/ D �

n�sC2
2

� � 1, which is the dimension of the complete linear system of
quadric hypersurfaces in P

n�s . One can now check that dim.L/ > edim.L/ for
2 � s � n. The quartics of P2 with five double points, that we already discussed
in Sect. 11.2, are special and, for the same reason, so are the quartics of P

3 and
P

4 with respectively 9 and 14 double points. Finally, the cubics of P4 with seven
double points fall into the list of special cases, see for instance [29] for a detailed
description of these exceptional cases.

The problem becomes more and more complicated for higher multiplicities and
is open so far. It is related for n > 2 to the Fröberg-Iarrobino conjecture, which
gives a predicted value for the Hilbert series of an ideal generated by s general d -
powers of linear forms in the polynomial ring with n C 1 variables. Indeed such an
ideal can be related to the ideal of a collection of fat points, therefore it is possible
to give a geometric interpretation of the conjecture in terms of linear systems with
assigned multiple points. See Sect. 11.4.2 for details.

As one expects, when the multiplicities are big enough with respect to the degree,
the conditions imposed by the multiple points are not linearly independent, as in
the case of quadrics through double points. The above discussion in fact can be
extended for instance to any linear system with degree d and points of multiplicity
d : it is clear that any linear subspace Pr spanned by r C 1 among the s base points
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is contained in the base locus of L with multiplicity d and gives a contribution to
the speciality of L that depends on d and r .

In general it is challenging to compute the dimension of the linear systems. The
issue is that the multiplicities of the points could force L to contain in the base
locus, besides the multiple points, also higher dimensional cycles, the presence of
which may generate speciality, as predicted in the Conjectures by Segre, Harbourne,
Gimigliano and Hirschowitz for P2 [21, 22, 25, 32] (see also [12, 14, 15, 23]) and by
Laface and Ugaglia for P3 [27].

In order to state the conjectures, we introduce the following notation. Given two
planar linear systems L D L2;d .m1; : : : ; ms/ and L0 D L2;d 0.m01; : : : ; m0s/ with
the same s base points, we define their intersection product to be the intersection
product of their strict transforms on the blow-up of P2 at the s points, namely the
following number:

L:L0 WD dd0 �
sX

iD1

mim
0
i :

If L D L3;d .m1; : : : ; ms/ is a linear system in P
3 and L is the line spanned

by the points pi and pj , then the intersection product of L and L is set to be the
intersection product of their strict transforms in the blown-up of P3 at the points:

L:L D d � mi � mj :

Conjecture 11.1 (Segre, Harbourne, Gimigliano, Hirschowitz) Fix n D 2. In the
above notation, the linear system L D L2;d .m1; : : : ; ms/ is special if and only if
there exists a rational curve in some linear system L0 D L2;d 0.m01; : : : ; m0s/ such
that L0:L0 D �1 and L:L0 � �2.

In spite of many partial results (see e.g. [12, 13] and references therein) �for
instance it was proved to be true if s � 9 or s D k2 with equal multiplicities
[16, 20, 31] and for mi � 12 and any number of points [14]� the conjecture is still
open in general.

Assuming that Conjecture 11.1 holds for ten points in general position in P
2,

Laface and Ugaglia [27] formulated the following conjecture in the case n D 3, that
has been proved to be true for s � 8 in [18].

Conjecture 11.2 (Laface, Ugaglia) Assume that 2d
mi1 Cmi2 Cmi3 Cmi4 , for any
fi1; i2; i3; i4g�f1; : : : ; sg. Then L is special if and only if one of the following
holds:

1. There exists a line L D hpi ; pj i, for some i; j 2 f1; : : : ; sg such that L:L � �2;
2. There exists a quadric through 9 points Q D L3;2.19/ such that Q:.L�Q/:.L�

K/ < 0, where K is the canonical divisor.

Remark 11.3 The arithmetic condition on the degree and the multiplicities in Con-
jecture 11.2 implies that L can not be reduced via some birational transformation
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of P3 – precisely via a cubo-cubic Cremona transformation – to a non-special linear
system, see [27] for more details.

11.4 A Notion of Speciality for Linear Systems in P
n

This section is devoted to the results obtained in [8].
In the direction of extending the existing conjectures for n � 3 to the case n 
 4,

and possibly to other projective varieties, a very natural and general question to
address is the following.

Question 11.1 In the notation of Sect. 11.3, consider any non-empty linear system
L D Ln;d .m1; : : : ; ms/ in P

n and denote by D the corresponding divisor on the
blow-up X of P

n at the s base points in general position. Let QD be the strict
transform of D in the blow-up QX of X along the base locus of L. Is QD non-special,
namely, does hi . QX;O QX . QD// vanish for all i 
 1?

To answer this question one has to tackle two problems: the first one is to describe
the base locus of L, the second one is to understand the contribution given by
each cycle (curve, surface, etc.) in the base locus to the speciality of L, namely
to h1.X;OX .D//.

In the above notation, assume that L is a non-empty linear system. Let I.r/ �
f1; : : : ; sg be any multi-index consisting of r C 1 distinct indices, for 0 � r �
min.n; s/ � 1 and denote by LI.r/ Š P

r the unique linear r-cycle through the points
in general position pi , for i 2 I.r/. Define the number

kI.r/ WD max

0

@
X

i2I.r/

mi � rd; 0

1

A :

The following result is easy to prove:

Lemma 11.1 (Linear Base Locus Lemma [8]) Let L WD Ln;d .m1; : : : ; ms/ be a
non-empty linear system. In the above notation, assume that 0 � r � n � 1 and
kI.r/ > 0. Then L contains in its base locus the cycle LI.r/ with multiplicity at least
kI.r/.

The proof is by induction on r . The case r D 1 of the statement is an easy
consequence of Bézout’s theorem.

The analysis of the linear part of the base locus yields a new definition of
expected dimension [8, Definition 3.2]:

Definition 11.1 The linear virtual dimension of L is the number
 

n C d

n

!

C
min.n�1;s�1/X

rD0

X

I.r/�f1;:::;sg
.�1/rC1

 
n C kI.r/ � r � 1

n

!

� 1: (11.1)
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The linear expected dimension of L, denoted by ldim.L/, is the maximum of the
linear virtual dimension of L and �1. A linear system L is said to be linearly special
if dim.L/ ¤ ldim.L/, linearly non-special otherwise.

If L is not empty, we have dim.L/ 
 ldim.L/ 
 edim.L/, namely ldim.L/

provides a better lower bound to the dimension of L.
In (11.1), the number .�1/rC1

�
nCkI.r/�r�1

n

�
computes the contribution of the

linear cycle LI.r/ spanned by the points pj , j 2 I.r/, which is contained in the base
locus of L with multiplicity at least kI.r/. For instance, in the case L D Ln;2.2s/

discussed in Sect. 11.3, we have kI.r/ D 2, for all multi-indices I.r/ � f1; : : : ; sg,
r 
 1. The contribution of each linear r-cycle LI.r/ is .�1/rC1

�
n�rC1

n

�
and

the speciality of L is completely described by the sum of these contributions:
dim.L/ � edim.L/ D P

I.r/;r
1.�1/rC1
�

n�rC1
n

�
. Therefore L is linearly non-

special.
We address the following question:

Question 11.2 Classify the linearly special linear systems.

11.4.1 Classification Results

In what follows we give a complete answer to Question 11.2 and a partial answer
to Question 11.1 for s � n C 2. Moreover, for an arbitrary number of points s 

nC3, we provide a sufficient condition for a linear system to be linearly non-special,
partially answering Question 11.2. This summarizes the main results obtained in [8].

Case s � n C 2

In [8, Section 4] a detailed description of the cohomologies of the strict transform
QD of D with respect to the blow-up QX of Pn along the linear base locus is given.

The results can be summarized as follows.
Denote by 	n

.0/ W Xn
.0/ ! P

n the blow-up of Pn at p1; : : : ; ps , with E1; : : : ; Es

exceptional divisors. Consider the following sequence of blow-ups:

Xn
.n�1/

	n
.n�1/�! 	 	 	

	n
.3/�! Xn

.2/

	n
.2/�! Xn

.1/

	n
.1/�! Xn

.0/;

where Xn
.r/

	n
.r/�! Xn

.r�1/ denotes the blow-up of Xn
.r�1/ along the union of the pull-

backs of the linear subspaces LI.r/ � P
n, via 	n

.r�1/ ı 	 	 	 ı 	n
.0/. Let EI.r/ be the

corresponding exceptional divisors. We will denote, abusing notation, by H the
pull-back in Xn

.r/ of the hyperplane class of Pn and by EI.�/, for 0 � � � r � 1, the
pull-backs in Xn

.r/ of the exceptional divisors of Xn
.�/, respectively. The Picard group

of Xn
.r/ is therefore Pic.Xn

.r// D hH; EI.�/ W p � � � ri:
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The strict transform of D D D.0/ 2 Pic.Xn
.0// via the composed map 	n

.r/ ı 	 	 	 ı
	n

.0/ is the following divisor

D.r/ D dH �
X

I.�/; 0���r

kI.�/EI.�/ 2 Pic.Xn
.r//

Abusing notation, we will abbreviate with D.r/ the sheaf OXn
.r/

.D.r//.

Theorem 11.1 (Brambilla, Dumitrescu, Postinghel [8]) In the notation above,
for every r such that 1 � r � n � 1, then

hrC1.D.r// D
X

I.�/; rC1���minfs�1;n�1g
.�1/rC1��

 
n C kI.�/ � � � 1

n

!

and hi .D.r// D 0; i ¤ 0; r C 1. In particular dim.L/ D ldim.L/ and the speciality
of L is given by

h1.L/ D
X

I.r/; 1�r�minfs�1;n�1g
.�1/r�1

 
n C kI.r/ � r � 1

n

!

:

In the first part of Theorem 11.1 it is proved that an r-dimensional linear cycle
LI.r/ for which kI.r/ 
 1 gives a contribution, that is .�1/rC1

�
nCkI.r/�r�1

n

�
, at

the level of the r-th cohomology group of the strict transform D.r�1/ of D, after
blowing-up all cycles of dimension at most r �1. The second part furnishes a partial
answer to Question 11.1.

A consequence of this result is that any non-empty linear system Ln;d

.m1; : : : ; ms/ in P
n is always linearly non-special if s � n C 2. In particular

this gives a positive answer to Question 11.1 and it shows that the Laface-Ugaglia
Conjecture for linear systems of P3 holds in this range.

The proof is by induction on r and n and is based on the computation of the Euler
characteristic, denoted simply by �.D.r//, of the sheaves OXn

.r/
.D.r//, for 0 � r �

minfs � 1; n � 1g. We discussed above the equality �.D.0// � 1 D vdim.L/, which
is the expected value for the dimension of L, namely the number of polynomials
of degree d minus the number of linear conditions imposed by the multiple points,
see Sect. 11.3. For r D 1 the Euler characteristic also detects the linear obstructions
to the non-speciality of L given by the presence of multiple lines in the base locus
of L, that is �.D.1// D �.D.0// C P

I.1/

�
nCkI.1/�2

n

�
. For r D 2 also the presence

of planes is detected, namely �.D.2// D �.D.1// � P
I.2/

�
nCkI.2/�3

n

�
, and so on.

The Euler characteristic of D.Nr/ encodes the (alternating) sum of all contributions
to the speciality of L given by linear cycles, in particular �.D.Nr// � 1 equals the
number (11.1) introduced in Definition 11.1. The interested reader can find details
in [8, Section 4.3].
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Case s 
 n C 3

For the case s 
 n C 3, in [8] a sufficient condition for a linear system with
an arbitrary number of general points to be linearly non-special is given. More
precisely, we prove that if the sum of the multiplicities of an arbitrary number
s 
 n C 3 of points is bounded with respect to the degree d , then the speciality
of L is completely described by the linear obstructions, namely by the linear cycles
LI.r/ Š P

r spanned by the base points which are contained at least doubly in the
base locus and the dimension of L is therefore computed.

Let s.d/ 
 0 be the number of points of multiplicity d , set b.L/ WD minfn �
s.d/; s � n � 2g and consider the inequality

sX

iD1

mi � nd C b.L/: (11.2)

Theorem 11.2 (Brambilla, Dumitrescu, Postinghel [8]) In the notation above,
assume that L satisfies condition (11.2). Then dim.L/ D ldim.L/.

In particular this proves that the Laface-Ugaglia Conjecture holds if n D 3 and
the linear system satisfies (11.2).

The proof is based on an adaptation of the degeneration technique introduced
by Hirschowitz [24], la méthode d’Horace, which consists in making iterated
specializations of as many points as convenient on a fixed hyperplane H and then
applying induction on n and d . One gets the so called Castelnuovo exact sequence:

0 �! OL �! L �! LjH �! 0;

where the kernel OL is a linear system of hypersurfaces of degree d � 1 and s

points with lower multiplicities, while the restricted system LjH is a linear system
of degree-d hypersurfaces with multiple points in P

n�1. Thus, arguing by induction,
if the two external systems are linearly non-special and non-empty, then the system
L is linearly non-special too, because dim.L/ D dim. OL/ C dim.LjH / C 1 and
ldim.L/ D ldim. OL/ C ldim.LjH / C 1.

11.4.2 Final Remarks

The linear expected dimension ldim.L/ is meant to be a refined version of the
expected dimension edim.L/. Indeed, in the notation introduced above, edim.L/ D
max.�.D.0//; 0/ � 1 and ldim.L/ D max.�.D.Nr//; 0/ � 1, and the difference of
these numbers encodes the contributions of the linear obstructions to the speciality
of L.



11 Polynomial Interpolation Problems 209

Nevertheless, not only linear cycles contained with multiplicity in the base locus
of a linear system generate speciality. For instance the existence in the base locus of
multiple rational normal curves, plays an important role. We remark that when the
points are s 
 nC3, the assumption (11.2) is, in particular, a sufficient condition for
the base locus to contain no multiple rational normal curves through nC3 points. In
fact, we expect that when multiple rational normal curves appear in the base locus,
they give a contribution to the speciality of the system.

On the other hand, as already noticed by Laface and Ugaglia for the case n D 3,
also the existence of quadric surfaces passing through nine general points in the base
locus can give contribution to the speciality of a linear system. In this case it does
not seem very clear how to quantify such contributions.

It would be interesting to extend the definition of linear expected dimension of
a linear system on P

n taking into account also the contribution of the non-linear
positive dimensional cycles contained with multiplicity in the base locus. This may
lead to a natural generalization to the case n 
 4 of Conjecture 11.1 for P2 and
Conjecture 11.2 for P3.

Connection to the Fröberg-Iarrobino Conjecture

The dimensionality problem for linear systems with assigned multiple points is
related to the Fröberg-Iarrobino Conjecture, which gives a predicted value for the
Hilbert series of an ideal generated by s general d -powers of linear forms in the
polynomial ring with n C 1 variables. In terms of our Definition 11.1 the conjecture
can be stated as follows: a linear system is always linearly non-special but in a finite
list of exceptions, see [8, Sect. 6.1] for more details.

In [11, Proposition 9.1] Chandler proves that the Fröberg-Iarrobino Conjecture
is true if either s � n C 1 or

Ps
iD1 mi � dn C 1. Theorems 11.1 and 11.2 improve

Chandler’s result and show that the Fröberg-Iarrobino conjecture holds if either s �
n C 2 or condition (11.2) is satisfied.

11.5 Secant Varieties and Linear Systems with Double Points

Let X be a non-degenerate complex projective variety of dimension n embedded
in P

N . The s-secant variety Secs.X/ of X is defined to be the Zariski closure of
the union of the linear spans in P

N of s-tuples of independent points of X . By a
parameter computation one gets that

dim.Secs.X// � edim.Secs.X// WD minfsn C s � 1; N g;

where the integer on the right hand side is called the expected dimension of Secs.X/.
The variety X is said to be s-defective if dim.Secs.X// < edim.Secs.X//.
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The d -th Veronese embedding Xn;d of the projective space P
n is the map �n;d W

P
n ! P.nCd

n /�1 given by

Œx0 W x1 W 	 	 	 W xn� 7! Œxd
0 W xd�1

0 x1 W 	 	 	 W xd
n �:

The Segre embedding of the product Pn1 � P
n2 is the map Seg W P

n1 � P
n2 !

P
.n1C1/.n2C1/�1 defined as

.Œx0 W x1 W 	 	 	 W xn1 �; Œy0 W y1 W 	 	 	 W yn2�/ 7! Œx0y0 W x0y1 W 	 	 	 W xn1yn2 �:

Combining the two maps one obtains the so called Segre-Veronese embeddings of
products of projective spaces as follows. Fix integers r 
 1, n1; : : : ; nr 
 1 and
d1; : : : ; dr 
 1. Set N WD Qr

iD1

�
niCdi

ni

��1, n D .n1; : : : ; nr / and d D .d1; : : : ; dr /.
The multi-degree-d Segre-Veronese embedding of Pn WD P

n1 � 	 	 	 � P
nr is the map

�n;d W Pn ! P
N defined as follows:

.Œx1;0 W 	 	 	 W x1;n1 �; : : : ; Œxr;0 W 	 	 	 W xr;nr �/ 7! Œ	 	 	 W
rY

iD1

niY

jD0

x
di;j

i;j W 	 	 	 �;

with
Pni

jD0 di;j D di , i D 1; : : : ; r . Denote by Xn;d � P
N the Zariski closure of

the image of �n;d that we will call Segre-Veronese variety. Notice that the map �n;1

is the Segre embedding of Pn.
Secant varieties of Segre-Veronese varieties are not well-understood so far.

The problem of determining the dimension of the s-secant varieties of the
Segre-Veronese varieties Xn;d is very hard and is open in general. Several partial
results are known for Segre-Veronese varieties of small dimension [1, 5, 7, 10], and
in any dimension for Veronese varieties by the Alexander-Hirschowitz Theorem
[3, 9, 29] (cf. Sect. 11.3). A conjectural classification of secant defective Segre
varieties is given in [2, Question 6.6]. This conjecture was proved to be true for
n D .1; : : : ; 1/ in [6] and for s � 6 in [2], but it is still open in general.

Tensor Decomposition and the Waring Problems

Secant varieties of Segre-Veronese varieties are of particular interest because of
their connection to tensor decomposition problems. Tensors play a wider and
wider role in numerous applications including signal processing [17], the study
of entanglement in quantum physics [19], phylogenetics [4] and many others. For
secant varieties there is a variant of the notion of rank of a tensor, namely the
border rank, that turns out to be extremely useful in applications as one is often
more interested in the limiting rank of a tensor rather than in its exact rank.

For a non-degenerate projective variety X � P
N , the X -rank of a point p 2 P

N ,
RX .p/, is the smallest integer s such that p belongs to the linear span of s points
of X . The X -border rank of p 2 P

N , RX.p/, is the smallest s such that p belongs
to the limit of linear spans of s points of X , namely if p 2 Secs.X/. If X is a
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Segre-Veronese variety, the X -rank and X -border rank agree with the notions of
rank and border rank of partially symmetric tensors. See [28].

The classical problem of determining the X -rank of a point in a specific situation
is often referred to as the generalized Waring problem in tribute to Waring who
asked in the eighteenth century about the presentation of an integer as a sum of
powers: Given positive integers d and s, may we write any positive integer as
a sum of s non-negative d -th powers? The Waring problem for polynomials is:
Given positive integers d; s; n, what is the minimal s D s.d; n/ such that a general
homogeneous polynomial f .x0; : : : ; xn/ of degree d can be expressed as a sum of s

d -th powers of linear forms li .x0; : : : ; xn/, i D 1; : : : ; s? The image Xn;d of the d -
Veronese embedding of Pn is the set of (projectivized) d -th powers of linear forms
and Secs.Xn;d / is the Zariski closure of the set of homogeneous polynomials that
can be written as the sum of s d -th powers of linear forms. Therefore the Waring
problem for polynomials can be restated in the following way: What is the smallest s

such that Secs.Xn;d / D P
N ? The solution to the problem is given in the Alexander-

Hirschowitz Theorem, that we previously discussed. Indeed one can rephrase the
problem of determining the dimension of the s-secant varieties of the Veronese
embeddings in terms of linear systems of Pn with imposed double points. We explain
this correspondence in the more general case of Segre-Veronese embeddings in the
next section.

Rephrasing in Terms of Prescribing Double Points

Computing the dimension of the s-secant variety of a Segre-Veronese variety is
equivalent to calculating the dimension of the linear systems Ln;d.2s/ of multi-
degree d hypersurfaces of Pn that are singular at s points in general position. This is
a consequence of a classical result, known as Terracini’s Lemma.

Lemma 11.2 (Terracini’s Lemma) Let X � P
N be an irreducible, non-

degenerate, projective variety. Let p1; : : : ; ps be general points of X , with
s � N C 1. Then the tangent space to Secs.X/ at a general point q 2 hp1; : : : ; psi
equals the linear span of the tangent spaces to X at p1; : : : ; ps:

TSecs .X/;q D ˝
TX;p1 ; : : : ; TX;ps

˛
:

A multi-degree d hypersurface S of P
n corresponds, via the Segre-Veronese

embedding �n;d, to a hyperplane section H of Xn;d � P
N . Moreover S has a double

point at p if and only if H is tangent to Xn;d at �n;d.p/. Now, fix p1; : : : ; ps general
points in P

n and consider the linear system Ln;d.2s/ of multi-degree d hypersurfaces
which are singular at p1; : : : ; ps . It is in correspondence with the linear system of
hyperplane sections in P

N tangent to Xn;d at �n;d.p1/; : : : ; �n;d.ps/, namely with
the intersection

Ts
iD1.TXn;d;�n;d.pi //

? of the orthogonal spaces to the tangent spaces.
Furthermore, since

.TXn;d;�n;d.p1//
? \ 	 	 	 \ .TXn;d;�n;d.ps//

? D ˝
TXn;d;�n;d.p1/; : : : ; TXn;d;�n;d.ps/

˛?
;
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then by Lemma 11.2 one gets

dim.Secs.Xn;d// D dim.TSecs.Xn;d/;q/ D N � dim.Ln;d.2s//;

where q is a general point of the secant variety Secs.Xn;d/.

11.6 Classification of Special Linear Systems with Double
Points in .P1/n

This section is devoted to the results obtained in [26].
A natural approach to the dimensionality problem of linear systems is via

degenerations. Degenerations allow one to move the multiple base points of a
linear system in special position, using a semi-continuity argument. Ciliberto and
Miranda in [14] and [15] exploited a degeneration of the plane, originally proposed
by Ran [30] to study higher multiplicity interpolation problems for planar linear
systems with general multiple base points. This approach consists in degenerating
the plane to a reducible surface, with two components intersecting along a line,
and simultaneously degenerating the linear system to a limit linear system which
is somewhat easier than the original one. In particular this degeneration argument
allows to use induction either on the degree or on the number of imposed multiple
points. This method was generalized in [29] to the case of P

n to study linear
systems of degree d hypersurfaces with a general collection of double points and
provide a short and simplified proof of the Alexander-Hirschowitz Theorem. A
further generalization is used in [26] to classify linear systems of multi-degree d
hypersurfaces of P1 � 	 	 	 � P

1 with assigned general double points.

11.6.1 Classification Results

Let Ld.2s/ be the linear system of multi-degree d hypersurfaces of .P1/n D P
1 �

	 	 	�P
1 with s prescribed general nodes. In [26] the following complete classification

result is proved.

Theorem 11.3 (Laface, Postinghel [26]) The linear system Ld.2s/ of .P1/n is non-
special except in the following cases.

n degrees s edim.L/ dim.L/

2 .2; 2a/ 2aC 1 �1 0

3 .1; 1; 2a/ 2aC 1 �1 0

3 .2; 2; 2/ 7 �1 0

4 .1; 1; 1; 1/ 3 0 1
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The proof, by induction on the number of factors n and on the multi-degree d,
exploits a degeneration of .P1/n and of Ld.2s/ as described in Sect. 11.6.2. A basic
step for the induction is represented in the fundamental paper [6], where the authors
show that, if all the di D 1, then L.1;:::;1/.2

s/ has always but in one case (n D 4) the
expected dimension.

This theorem’s reformulation in terms of secant varieties provides a complete
classification of all defective secant varieties of Segre-Veronese embeddings Xd �
P

N , N D Qn
iD1.di C 1/ � 1, of products of projective lines.

Theorem 11.4 (Laface, Postinghel [26]) The s-secant variety of Xd � P
N is non-

defective with the list of exceptions of Theorem 11.3.

11.6.2 Degeneration Techniques

The toric degeneration of the Segre-Veronese embedding Xd of .P1/n employed in
[26] is the following.

Degeneration of the Variety

Let P D Pd be the convex lattice polytope Œ0; d1� � 	 	 	 � Œ0; dn� � R
n. Its integer

points define the toric map which is the Segre-Veronese embedding �d W .P1/n !
Xd � P

N . Fix an integer k such that 1 � k � dn � 1 and consider the function

 W P \ Z

n ! Z defined by


.v/ D
�

0 if vn � k;

vn � k if vn > k:

It defines a regular subdivision of P in the following way. The convex hull of
the half lines f.v; t/ 2 P � R
0 W t 
 
.v/g is an unbounded polyhedron
with two lower faces. By projecting these faces onto P one obtains the regular
subdivision fP 1; P 2g of P , where P 1 D P.d1;:::;dn�1;dn�k/, P 2 D P.d1;:::;dn�1;k/ and
P 1 \ P 2 D P.d1;:::;dn�1/ D Œ0; d1� � 	 	 	 � Œ0; dn�1�. We show the configuration of
this toric degeneration in Fig. 11.1 for n D 3.

The regular subdivision defines a 1-dimensional embedded degeneration, i.e. a 1-
parameter family fXtgt2C of varieties, whose general fiber Xt , t ¤ 0, is isomorphic
to Xd and whose central fiber X0 is isomorphic to the union X1 [ X2, where X1 is
the Segre-Veronese embedding X.d1;:::;dn�1;dn�k/ � P

N 1
of .P1/n and, similarly, X2

is the Segre-Veronese embedding X.d1;:::;dn�1;k/ � P
N 2

, where N 1 WD Qn�1
iD1.di C

1/.dn � k C 1/ � 1 and N 2 WD Qn�1
iD1.di C 1/.k C 1/ � 1. The intersection X1;2 WD

X1 \ X2 is the Segre-Veronese embedding X.d1;:::;dn�1/ � P
N 1;2

of .P1/n�1, where
N 1;2 WD Qn�1

iD1.di C 1/ � 1.
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d1

d2

d3 − k k

Fig. 11.1 A regular subdivision of P.d1;d2;d3/

Degenerating the Linear System

We consider the linear system Lt WD L D Ld.2s/ with s assigned general double
points p1;t ; : : : ; ps;t , t ¤ 0. A linear system on X0 is given by two linear systems,
respectively on X1 and on X2, which agree on the intersection X1;2.

Fix a non-negative integer s1 � s and specialize s1 points generically on X1

and the other s2 WD s � s1 points generically on X2, i.e. take a flat family
fp1;t : : : ; ps;t gt2C such that p1;0; : : : ; ps1;0 2 X1 and ps1C1;0; : : : ; ps;0 2 X2. The
limiting linear system L0 on X0 is formed by the flat limits of the elements of
multi-degree d on the general fiber Xt which are singular at p1;0; : : : ; ps;0. Consider
the following linear systems:

L1 WD L.d1;:::;dn�1;dn�k/.2
s1

/; L2 WD L.d1;:::;dn�1;k/.2
s2

/;

OL1 WD L.d1;:::;dn�1;dn�k�1/.2
s1

/; OL2 WD L.d1;:::;dn�1;k�1/.2
s2

/;
(11.3)

where Li , OLi are defined on Xi and OLi is the kernel of the restriction map of Li to
X1;2, i D 1; 2. This is given by the exact sequence:

0 �! OLi �! Li �! Li jX1;2 �! 0:

We have

L0 WD L1 �L1;2 L2; L1;2 WD L1jX1;2 \ L2jX1;2

and, by upper semi-continuity, that dim.L0/ 
 dim.Lt /.

Lemma 11.3 In the above notation, if dim.L0/ D edim.L/, then the linear system
L has the expected dimension, i.e. it is non-special.

By choosing suitable integers s1; s2 and k we prove Theorem 11.3.
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10. J. Buczyński, J.M. Landsberg, Ranks of tensors and a generalization of secant varieties. Linear

Algebra Appl. 438(2), 668–689 (2013)
11. K.A. Chandler, The geometric interpretation of Fröberg-Iarrobino conjectures on infinitesimal

neighbourhoods of points in projective space. J. Algebra 286(2), 421–455 (2005)
12. C. Ciliberto, Geometric aspects of polynomial interpolation in more variables and of Waring’s

problem, in Proceedings of the Third European Congress of Mathematics, I, (Barcelona 2000).
Progress in Mathemetics, vol. 201 (Birkhäuser, Basel, 2001), pp. 289–316

13. C. Ciliberto, B. Harbourne, R. Miranda, J. Roé, Variations on Nagata’s Conjecture. Clay
Mathematics Proceedings, vol. 18 (American Mathematical Society, Providence, 2013), pp.
185–203

14. C. Ciliberto, R. Miranda, Degenerations of planar linear systems. J. Reine Angew. Math. 501,
191–220 (1998)

15. C. Ciliberto, R. Miranda, Linear systems of plane curves with base points of equal multiplicity.
Trans. Am. Math. Soc. 352(9), 4037–4050 (2000)

16. C. Ciliberto, R. Miranda, Nagata’s conjecture for a square or nearly-square number of points.
Ric. Mat. 55(1), 71–78, (2006)

17. L. De Lathauwer, J. Castaing, Tensor-based techniques for the blind separation of DS-CDMA
signals. Signal Process. 87(2), 322–336 (2007)

18. C. De Volder, A. Laface, On linear systems of P3 through multiple points. J. Algebra 310(1),
207–217 (2007)

19. J. Eisert, D. Gross, Multiparticle entanglement, in Physics Textbook, ed. by D. Bruß et al.
Lectures on Quantum Information (Wiley-VCH, Weinheim, 2007), pp. 237–252

20. L. Evain, Une minoration du degré des courbes planes à singularités imposées. Bull. S.M.F.
126, 525–543 (1998)

21. A. Gimigliano, On linear systems of plane curves, Ph.D. thesis, Queen’s University, 1987



216 E. Postinghel

22. B. Harbourne, The geometry of rational surfaces and Hilbert functions of points in the plane.
Can. Math. Soc. Conf. Proc. 6, 95–111 (1986)

23. B. Harbourne, Points in good position in P2, in Zero-dimensional Schemes, Ravello, 1992 (de
Gruyter, Berlin, 1994), pp. 213–229

24. A. Hirschowitz, La méthode d’Horace pour l’interpolation á plusiers variables. Manuscr. Math.
50, 1091–1110 (1985)

25. A. Hirschowitz, Une conjecture pour la cohomologie des diviseurs sur les surfaces rationnelles
génériques. J. Reine Angew. Math. 397, 208–213 (1989)

26. A. Laface, E. Postinghel, Secant varieties of Segre-Veronese embeddings of .P1/r . Math. Ann.
356(4), 1455–1470 (2013)

27. A. Laface, L. Ugaglia, On a class of special linear systems of P
3. Trans. Am. Math. Soc.

358(12), 5485–5500 (2006)
28. J.M. Landsberg, Tensors: Geometry and Applications. Graduate Studies in Mathematics, vol.

128 (American Mathematical Society, Providence, 2012)
29. E. Postinghel, A new proof of the Alexander-Hirschowitz interpolation theorem. Ann. Mat.

Pura Appl. (4) 191(1), 77–94 (2012)
30. Z. Ran, Enumerative geometry of singular plane curves. Invent. Math. 9, 447–465 (1989)
31. J. Roè, Limit linear systems and applications (2006, preprint). http://arxiv.org/abs/math.AG/

0602213
32. B. Segre, Alcune questioni su insiemi finiti di punti in geometria algebrica. Atti Convegno

Intern. di Geom. Alg. di Torino 15–33 (1961)

http://arxiv.org/abs/math.AG/0602213
http://arxiv.org/abs/math.AG/0602213


Chapter 12
Rational Parametrizations of Edge and Corner
Blends for Isogeometric Analysis

Heidi E.I. Dahl

12.1 Introduction

One of the major bottlenecks in the traditional computer aided design-analysis-
redesign cycle is the transition between design and analysis models: the tools used
in Computer Aided Design (CAD) and those used in Finite Element Analysis (FEA)
have been developed independently, and their model representations have been
chosen based on different needs and priorities. Isogeometric Analysis (IGA) seeks
to address this by using the same geometric model throughout, from which both
analysis models and design models can be extracted (see, e.g., [4]).

When developing geometric models for IGA we need to reconcile the different
requirements of CAD and FEA. For example, though shape accuracy is important in
CAD, gaps between adjacent elements are allowed within fine tolerances. In FEA,
however, adjacent elements are required to match exactly. The introduction of IGA
has therefore led to a renewed interest in exact representations of curve, surface and
volume elements.

In CAD, and in particular in the design of mechanical parts, complex shapes
are to a large extent constructed from planes, the natural quadrics (spheres, and
right circular cylinders and cones), and rolling ball blends between them. When the
rolling ball blends are rational, these are all Pythagorean Normal (PN) surfaces:
rational surfaces with rational unit normal vector fields. By extending the surface
parametrizations along the unit normal vectors, we can construct thick surfaces,
a relatively simple class of rational volume parametrizations. Furthermore, if the
unit normal vector fields of two adjacent surface patches match along the common
boundary curve, the two volume elements will match exactly along the resulting
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boundary surface. These volume parametrizations are therefore well-suited for FEA,
and thus for IGA.

In previous papers [5, 6] we have described algorithms for minimal bi-degree
rational parametrizations of fixed and variable radius rolling ball blends of the
natural quadrics. In this paper we will outline several strategies for constructing
variable radius blends between two primitive surfaces, and show how such blends
can be combined to blend a given configuration of edges and corners. We will also
specify the level of continuity between the individual blending surface patches. For
simplicity we will focus on corners with three faces. However, some of our results
can be generalized to n-sided corners.

The chapter is structured as follows: Sect. 12.2 outlines the motivation for
investigating variable radius rolling ball blends, and Sect. 12.3 introduces the key
concepts from Laguerre geometry used in our constructions. Section 12.4 presents
our methods for constructing variable radius edge and corner blends, and Sect. 12.5
shows how they are applied to blend a composite corner example. Section 12.6
outlines how our approach may be generalized to PN surfaces, before we summarize
our results in the “Conclusions” section

12.2 Beyond Fixed Radius Blends

The primitive surfaces most commonly used in CAD, i.e., planes and the natural
quadrics, are PN surfaces. This gives us several desirous properties when creating
surface and volume parametrizations. But although planes and natural quadrics are
rational surfaces, this is not always the case for rolling ball blends between them.

Rolling ball blends are patches on canal surfaces, which are the envelopes of
one-parameter families of spheres. The curve traced by the centres of the spheres
is called its spine curve, and the varying radius is described by its radius function.
It has been shown that a canal surface with rational spine and radius function has a
rational parametrization [11], and an algorithm for minimal bi-degree .n; 2/ rational
parametrizations of patches on canal surfaces was described in [7].

In [6] we specified the configurations of natural quadrics which admit rational
fixed radius rolling ball blends for any radius R (for ease of notation we write cone
for right circular cone and/or cylinder):

• A plane and a cone.
• Two cones with two points of oriented contact (see definition in Sect. 12.3).
• Two cones with one point of oriented contact.
• A sphere and a cone with one point of oriented contact.

We also presented closed expressions for their minimal bi-degree parametrizations.
The major restriction of fixed radius blends, apart from the limited range of

configurations where such rational blends exist, is the limited flexibility inherent
in their construction: their only degree of freedom is the radius of the blend. For the
plane/cone blend in Fig. 12.1, this results in an uneven blend, where the width of
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Fig. 12.1 Fixed radius rolling ball blend of a plane and a cone, with a local self-intersection on
the right

Fig. 12.2 A plane and a cone with two control spheres (left), and the resulting variable radius
rolling ball blend (right)

the blend is much wider on the right than on the left. There is also an upper limit on
the radius of the blend if we want to avoid local self-intersections in the blending
surface, such as on the right hand side of the blend in Fig. 12.1.

When we compose several patches of blending surfaces to create a composite
blend of a network of edges and corners, as is typically the case in the model
of a physical object, the fixed radius is too severe a restriction when we want to
ensure at least G1 continuity between adjacent patches. By constructing variable
radius rolling ball blends, we give designers added flexibility to adjust the blend for
aesthetic and functional reasons.

In current CAD systems, the rolling ball blends that are implemented analytically,
i.e., without approximation, are those that can be constructed from patches on
spheres, cylinders and tori. Otherwise, the blend is typically created by specifying
a curve in each surface and constructing a surface patch between them with a given
level of continuity with the original surfaces.

We propose a more intuitive approach to the construction of variable radius
rolling ball blends, using control spheres tangent to the original surfaces to specify
the radius of the blend at certain key points. A simple illustration is given in
Fig. 12.2, where two control spheres specify the radius of the blend above and
below the cone, their centres contained in the plane of symmetry of the plane/cone
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Fig. 12.3 Example of a composite corner. Left: A corner detail, consisting of a patch on a cone
limited by four planes. Right: The composite blend, constructed in Sect. 12.5

configuration. If we require the blend to maintain the plane of symmetry, the two
control spheres uniquely define a variable radius rolling ball blend with quadratic
spine and radius function, shown on the right in the figure.

We will use the example corner in Fig. 12.3 to demonstrate how the control
spheres are used to construct a patchwork of edge and corner blends with at least
G1 continuity between adjacent patches. The example corner consists of a patch on
the cone

x2 C y2 D .z � 26/2

4
p

3
(12.1)

and four limiting planes z D 0 (bottom), z D 10 (top), 20 y C z D 0 (left),
and 20 x C z D 0 (right). Such a corner detail may occur, e.g., when designing
models for pressure molded plastic: in order to ensure that the component is easily
removable from the mold, vertical surfaces are slightly tilted. This transforms a
vertical cylindrical housing for a screw into a cone, and tilts the vertical planes
slightly outwards. As the vertical planes no longer contain the axis of the cone, the
cone/plane intersection cannot be blended by a cylindrical patch.

We will continue the example in Sect. 12.5. In the next section we will outline
some of the theoretical background for our constructions in a brief introduction
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to Laguerre geometry, limiting the technical details to what we will need in the
following sections. For further details about the subject see, e.g., [3, 5, 6, 9], or
Peternell and Pottmann’s paper [12]. Please note that the approach to Laguerre
geometry in the last paper is slightly different than the one we are using, which
is described in [5, 6, 9].

12.3 It’s All Spheres: A Short Introduction to Laguerre
Geometry

A fixed radius rolling ball blend of two surfaces is constructed by tracing the path
of a sphere around their intersection in such a way that at any point the sphere is
tangent to both surfaces. If we let the radius of the sphere vary as it moves along
the two surfaces, this results in a variable radius rolling ball blend. By construction,
rolling ball blends are G1 continuous with the original surfaces.

Right circular cones and cylinders are linear canal surfaces: they are envelopes
of families of spheres whose spine and radius functions are linear. Thus, when we
consider rolling ball blends of the natural quadrics, all our objects can be expressed
in terms of families of spheres.

In the description of rolling ball blends above, there is an element of ambiguity:
in general, there is a choice of four placements of the rolling ball blend along an
intersection of two surfaces. In order to have an unambiguous definition of the blend
we assign each surface an orientation, given by the direction of its unit normal vector
field. For a sphere, this is defined by the sign of its radius: if the radius is positive
the unit normal vectors point towards its centre, if it is negative they point outwards.
As envelope surfaces, canal surfaces inherit their orientation from their family of
spheres. For a cone, this implies that the orientation of the two half cones on either
side of its apex is opposite: the radius function is linear and passes through zero at
the apex.

We say that two surfaces are in oriented contact at a point if they are tangent and
their unit normal vectors coincide. By considering oriented surfaces, we can now
define a rolling ball blend without the original ambiguity: it is the surface traced by
an oriented sphere around the intersection of two oriented surfaces, in such a way
that at any point the sphere is in oriented contact with both the original surfaces.
The placement of the blend is then uniquely defined.

12.3.1 Minkowski Space

Since all our objects are defined by oriented spheres, we are interested in measuring
the distance between two oriented spheres. Given two oriented spheres with centres
Es0 and Es1, and radii r0 and r1, we represent them by the four-dimensional points
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Ep0 D �Es0I r0

�
and Ep1 D �Es1I r1

�
. The distance between Ep0 and Ep1 is given by the

Minkowski metric

�
� Ep1 � Ep0

�
� D

q˝ Ep1 � Ep0; Ep1 � Ep0

˛
(12.2)

where

˝Eu; Ev˛ D u1v1 C u2v2 C u3v3 � u4v4; Eu D .u1; u2; u3I u4/ ; Ev D .v1; v2; v3I v4/ ;

(12.3)

is the Minkowski scalar product. When
˝ Ep1 � Ep0; Ep1 � Ep0

˛ 
 0, this is the tangential
distance between the two spheres (see, e.g., [3], Fig. 3.6). Oriented contact between
Ep0 and Ep1 then corresponds to

�
� Ep1 � Ep0

�
� D 0.

The 4-dimensional space equipped with this scalar product is called Minkowski
space, written R

3;1, and can be interpreted as the space of all oriented spheres.
A canal surface can then be represented as a curve in R

3;1. The converse is not
necessarily well-defined: in order to ensure that the envelope surface of the family
of spheres is real, we require that the curve Ef .t/ D �Es.t/I r.t/

� 2 R
3;1 satisfies

k EPf .t/k2 > 0. While cones, as linear canal surfaces, satisfy this condition, it is worth
noting that this is not the case for all lines in R

3;1. Consider the line interpolating
two points Ep0 and Ep1 corresponding to two spheres such that one is completely
contained within the other. The derivative of this curve is proportional to Ep1 � Ep0,
we have

�
� Ep1 � Ep0

�
�2

< 0, and the linear family of spheres does not have a real
envelope.

In general we have three types of lines in R
3;1 (see, e.g., [9]):

• Hyperbolic lines, corresponding to cones, where
�
� Ep1 � Ep0

�
�2

> 0;

• Parabolic lines, where
�
� Ep1 � Ep0

�
�2 D 0;

• Elliptic lines, where
�
� Ep1 � Ep0

�
�2

< 0.

Minkowski space is also used to represent the 4-dimensional space-time in which
Einstein’s theory of special relativity is formulated, so in the literature the types of
lines are also sometimes called space-like, light-like and time-like, respectively.

A linear family of spheres corresponding to a line in R
3;1 is called a pencil of

spheres. Parabolic lines and the corresponding parabolic pencils of spheres are a
useful tool in the construction of rolling ball blends. They are generated by two
spheres in oriented contact, thus all spheres in the pencil are in oriented contact at
this point. The point of oriented contact corresponds to the sphere with zero radius,
and can thus be found by solving a linear equation. By considering the parabolic
pencils generated by a sphere and a rolling ball, this gives us the touching curve on
the sphere, i.e., the curve traced by the rolling ball along the sphere.

In order to determine the touching curve on a cone, we note that if the rolling
ball is in oriented contact with the cone, then it is in oriented contact with exactly
one sphere in the family associated with the cone. Thus the quadratic equation we
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get from the expression for the Minkowski metric in Eq. 12.2 is reduced to a linear
equation for determining the sphere at zero distance from the rolling ball, i.e., we
find the touching curve on a cone by solving two linear equations.

12.3.2 Curves in the Bisector in R
3;1

When constructing a rolling ball blend, we want to determine a one-parameter
family of spheres such that any sphere is in oriented contact with both surfaces. By
construction, the spine curve of the corresponding canal surface lies in their bisector
surface, so one approach to variable radius rolling ball blends is to consider rational
curves in the bisector surface in R

3. However, if our interest is in rational blend
parametrizations, we need not only the spine curve but also the radius function to be
rational. And in general, the distance of a rational curve from a cone is not rational.

Consider the family of all spheres in oriented contact with a given surface.
This corresponds to a hypersurface in R

3;1, called its isotropic hypersurface. By
intersecting two isotropic hypersurfaces, we get the 2-dimensional surface in R

3;1

corresponding to all spheres in oriented contact with both original surfaces. This
is called their bisector surface in R

3;1. Any rational curve in this bisector surface
corresponds to a canal surface with rational spine curve and radius function, and
thus to a rational rolling ball blend of the two original surfaces.

Given an oriented plane ˘ in R
3:

˘ W Ax1 C Bx2 C Cx3 C D D 0; A2 C B2 C C 2 D 1; (12.4)

with unit normal vector .A; B; C /T , the spheres in oriented contact with ˘ define a
hyperplane ˘m in R

3;1:

˘m W Ax1 C Bx2 C Cx3 � x4 C D D 0: (12.5)

The isotropic hypersurface of a cone is its isotropic quadric (see [6]):

˝Ex � Ep0; Ep1 � Ep0

˛2 D �
�Ex � Ep0

�
�2 �� Ep1 � Ep0

�
�2

(12.6)

where Ep0 and Ep1 are two distinct points on the hyperbolic line corresponding to the
cone, and Ex D .x1; x2; x3I x4/.

In general, the problem of constructing a rational rolling ball blend between two
surfaces can be reduced to the problem of constructing a rational curve in their
bisector surface in R

3;1, then applying the algorithms in [5,6]. When considering two
natural quadrics, their bisector surface has a rational parametrization. We can thus
generate rational curves in the bisector from rational planar curves in the parameter
domain. However, the parametrization degree of these curves is necessarily high.
For the purpose of parametrizing rolling ball blends, we want relatively low-degree
curves in R

3;1, in order to keep the bi-degree of the resulting surface parametrization
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as low as possible. We are thus primarily interested in constructing rational curves
of low degree in the bisector surface in R

3;1.
If an approximate parametrization of the blending surface is sufficient, we can

apply the results in [8] to construct a spline curve in the bisector surface, giving
us a large degree of flexibility in the construction. For exact parametrizations we
need to consider rational curves in 2-dimensional surfaces in R

3;1. A first approach
is to consider hyperplane sections of the bisector surface in R

3;1. This is a direct
generalization of the construction of blends of fixed radius R, where the curve is
determined by the intersection with the hyperplane x4 D R. However, even when
a bisector surface is rational, this is not necessarily the case for its hyperplane
sections. There are only two types of surfaces where any hyperplane section is
rational: rational ruled surfaces and the quartic Steiner surface [10]. This gives us
the configurations with rational fixed radius blends at the beginning of Sect. 12.2:

• A plane and a cone.
• Two cones with two points of oriented contact.
• Two cones with one point of oriented contact.
• A sphere and a cone with one point of oriented contact.

In the first two cases the bisector surface in R
3;1 is a rational ruled quadric, in

the last two it is a quartic Steiner surface. The hyperplane sections of the bisector
surfaces in R

3;1 are then one or two conics (first and second case), or a singular
quartic curve (third and fourth case). Note that though the curve in R

3;1 is contained
in a hyperplane section, the spine curve of the corresponding canal surface is not
necessarily planar (see Fig. 12.5, left); it only means that its radius function depends
linearly on the coordinates of the spine curve.

To summarize, planes, natural quadrics, and rolling ball blends between them
can all be represented as hyperplanes, points, and curves in R

3;1. By parametrizing
rational curves in the bisector surface in R

3;1, we can construct rational variable
radius rolling ball blends of the original surfaces.

In the next section we will outline how a composite corner blend can be
constructed using mainly hyperplane sections of individual edge blends, while
maintaining at least G1 continuity between adjacent patches. We will then apply
this to construct a blend of the composite corner in Fig. 12.3.

12.4 Variable Radius Rolling Ball Blends

We propose using a set of carefully chosen control spheres to construct variable
radius rolling ball blends of composite corners. The placement of the control spheres
is guided by the intended sequence of construction of the blends, and by the level of
continuity required between adjacent patches. From the control spheres we construct
curve segments in R

3;1 corresponding to variable rolling ball blends of edges and
corners. Using the parametrization algorithm in [5], we can then construct the
rational parametrizations of the individual blending patches.
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Before we outline the algorithm for the construction of composite blends, we
need to describe how individual edge and corner blend patches are constructed.

12.4.1 Edge Blends

In Sect. 12.3 we described how a canal surface can be represented as a curve in R
3;1.

A segment of a canal surface containing an edge blend can therefore be constructed
by specifying the two end spheres and a curve segment connecting them, in the
bisector surface in R

3;1. In this paper we use two approaches for constructing such
curve segments: (rational) Bézier curves in planar bisector surfaces, and hyperplane
sections of non-planar bisector surfaces. In general, any technique for constructing
rational curves between two points in a 2-dimensional surface can be applied, taking
into account the restrictions on tangent directions at the joins of two adjacent curve
segments.

The bisector surface in R
3;1 of two oriented planes in R

3 is a 2-dimensional plane
in R

3;1, and any rational curve in this plane corresponds to a rational blend of the two
planes in R

3. Representing the curve in Bézier form, its control points correspond
to control spheres in oriented contact with both the original planes. This is shown
on the right in Fig. 12.4.

When the bisector surface is non-planar, we can construct the curve segment
by taking the intersection of the bisector surface with a hyperplane containing the
points corresponding to the two end spheres. In general we need four points to define
a hyperplane in R

3;1, but when intersecting the bisector in R
3;1 of a cone and a plane

˘ the intersection of a hyperplane with ˘m is a 2-dimensional plane. The implicit
equation for ˘m express x4 in terms of the other variables (its coefficient is non-
zero), thus we may eliminate x4 from the expression of the intersecting hyperplane

Fig. 12.4 Curves in the bisector surface in R
3;1, projected to their first three coordinates, i.e.,

the spine curve of the corresponding canal surface in the bisector surface in R
3 (green). Left:

Intersection with a 2-dimensional plane (yellow). Right: A Bézier curve in the bisector plane
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reducing it to a linear equation in three variables. It is therefore sufficient to choose
three points in the bisector surface in R

3;1 to uniquely define the intersection with
the isotropic quadric of the cone. Given the two end spheres, this leaves us one
degree of freedom in the choice of the hyperplane section.

In this case we can visualize the hyperplane section directly in R
3. The centres of

the three control spheres are points on the bisector surface of the cone and the plane
˘ in R

3, and they define a plane intersecting the bisector surface in the quadratic
spine curve of the blend. As the distance from a rational curve to a plane is rational,
we can thus do the construction directly in R

3 in this case. This approach is shown
on the left in Fig. 12.4. The spine curves shown in this figure correspond to the
blends of the left plane with the cone, and the top plane with the left plane, in the
example composite corner in Fig. 12.3. The parametrized blends are shown on the
right in Fig. 12.3.

When constructing variable radius blends of two cones, however, a hyperplane
section in R

3;1 cannot be reduced to the construction of a 2-dimensional plane, and
thus its visualization in R

3 is not as straightforward as in the plane/cone case. The
hyperplane gives us a linear relation

Ax1 C Bx2 C Cx3 C Ex4 C D D 0 (12.7)

which can be interpreted as assigning a radius x4 to each point .x1; x2; x3/ 2 R
3.

We can visualize this by considering the plane Ax1 C Bx2 C Cx3 C D D 0 in R
3

where the assigned radius is zero. As we move away from this plane in the normal
direction, the radii increase linearly at a rate of change of E=.A2 C B2 C C 2/.

The choice of a hyperplane can thus be visualized as the choice of a unit vector
.A; B; C / giving the direction of the maximum rate of change in radius, the rate of
change E of the radius in this direction, and the distance D of the zero-radius plane
from the origin. This is illustrated in Fig. 12.5, where we construct a variable radius
blend of two perpendicular cylinders in oriented contact at one point, with radius
1 and 2 respectively (recall that we need at least one point of oriented contact to
ensure that any hyperplane section is rational). We choose as .A; B; C / the common
unit normal vector at the point of oriented contact, so that the symmetry of the
configuration of the two cylinders is maintained in the blend. The blending radius
below the smallest cylinder is fixed by placing a control sphere, thus determining
D. By varying E we obtain a series of hyperplane sections of the bisector surface in
R

3;1, illustrated on the left of Fig. 12.5. Note that all the spine curves pass through
a common point below the smaller cylinder, at the centre of the control sphere. On
the right of the figure, we show the narrowest of the blends, and the limiting curves
of the blends as E changes.

12.4.2 Corner Blends

We distinguish between two types of three-sided corners: homogeneous corners
where all the adjoining edges are convex/concave, such as the central top corner and
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Fig. 12.5 Symmetric variable radius rolling ball blends of two cylinders with one point of oriented
contact. Left: The spine curves in the bisector in R

3, projected from hyperplane sections of the
bisector in R

3;1. Right: A variable radius blend of the two cylinders, and the limiting curves of the
blends corresponding to the spine curves on the left

the two bottom corners in Fig. 12.3, and heterogeneous corners where one of the
edges differs from the two others, such as the corners at the ends of the intersection
of the cone with the top plane.

At homogeneous corners we can connect the edge blends by simply requiring
that they all end at a sphere tangent to all three faces. Two adjacent edge blends will
then meet in the touching point of the sphere with their common face. The corner
patch is a patch on the sphere, limited by three circular arcs, and is by construction
G1 continuous with the edge blends. By considering the edge blends as Bézier
curves of spheres, we can also specify the necessary conditions for achieving G2

continuity with the corner sphere: it has to correspond to a double control point (see
[5], Rem. 11). This approach can be generalized to n-sided corners, as long as there
exists a sphere tangent to all faces, which is equivalent to requiring that the corner
circumscribes a right circular cone.

In order to ensure at least G1 continuity, we must make sure that adjacent edge
blends do not overlap, i.e., that two adjacent arcs of circles limiting the spherical
patch only intersect at the touching point. For a three-sided corner, this condition is
described in Fig. 9 of [5]: in the control polygon of the spine curve, the next to last
control point must avoid the triangle defined by the vertex of the corner, the centre
of the corner sphere, and the point on the edge 2R distant from the vertex, where
R is the radius of the corner sphere. A similar condition can be derived for n-sided
corners.

At heterogeneous corners we cannot find a sphere tangent to all faces, so we need
an alternative approach. When the face opposite the single convex/concave edge is
planar, we can use a patch on a Dupin cyclide to blend the corner. This approach is
also valid for homogeneous corners.



228 H.E.I. Dahl

Fig. 12.6 A cone with a parabolic pencil of spheres (left), and the Dupin cyclide containing the
blend with the plane (right). The cone, plane and blend are shown on the right in Fig. 12.2

The construction makes use of the following theorem:

Theorem 12.1 Given an oriented canal surface and an oriented plane, for each
characteristic circle on the canal surface there exists a unique oriented Dupin
cyclide containing a patch blending the canal surface with the plane along the
characteristic circle.

Proof The canal surface is in oriented contact with one of the spheres in its one-
parameter family along a characteristic circle. We will prove the theorem by
showing that given a plane ˘ and a circle on a sphere ˙ , the one-parameter family
of spheres in oriented contact with both the sphere along the circle, and the plane,
corresponds to a pseudo-Euclidean (PE) circle in R

3;1, i.e., its envelope is a Dupin
cyclide (Fig. 12.6, right).

A point Ep.t/ on the circle is identified with the zero radius sphere . Ep.t/I 0/,
which together with ˙ generate a parabolic line in R

3;1. The union of the parabolic
lines through points on the circle is a quadratic cone, whose infinite points are all
contained in the absolute quadric ˝:

˝ W x0 D 0; x2
1 C x2

2 C x2
3 � x2

4 D 0: (12.8)

Here .x0; x1; x2; x3I x4/ 2 P
4 is a point in projective space corresponding to the

affine point
�

x1

x0
; x2

x0
; x3

x0
I x4

x0

�
2 R

3;1.

The intersection of the cone with the hyperplane ˘m, i.e., the sphere in each
parabolic pencil in oriented contact with ˘ , is therefore a conic with two infinite
points on ˝ , which is one definition of a PE circle. This proves the theorem. ut
Remark 12.1 The Dupin cyclide blend of a cone and a plane can also be found in
[1, 2, 13].

In a composite corner, a heterogeneous corner blend can be constructed by first
blending the single concave/convex edge. This determines the characteristic circle
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on the end sphere of this edge blend. Applying the procedure described in the proof
above, i.e., intersecting the quadratic cone with the hyperplane, gives a rational
parametrization of the PE circle corresponding to the cyclide blend of the end
sphere, and thus the edge blend, with the plane.

At either end of the cyclide blend, the tangent lines of the PE circle determine
the tangent cones of the adjacent edge blends. Similarly, we can specify one of the
end spheres of the cyclide corner blend and its tangent cone, to uniquely determine
the end spheres and tangent cones of the two remaining edge blends adjacent to the
corner. Dupin cyclide corner blends therefore have one primary edge, whose blend
is constructed before the two others. As opposed to spherical corner blends they
influence the order in which the individual blending patches are constructed.

12.4.3 Constructing Composite Variable Radius Rolling Ball
Blends

In the case of a single edge blend, the only restriction on our choice of control
spheres is that they should be in oriented contact with both surfaces, i.e., that the
corresponding pointsR3;1 lie in the bisector surface. When constructing a composite
blend of a network of edges and corners, we also need to consider the continuity
between adjacent blending patches. In [5] we give the conditions for when the
join of two canal surfaces is G1 and G2 continuous: it is equivalent to G1 and G2

continuity of the join between the corresponding curves in R
3;1. The G2 condition is

too strict to expect to be able to construct a composite blending patch with internal
G2 continuity using mainly hyperplane sections of the bisector surface in R

3;1, so in
the following we will focus on the construction of a composite blend with internal
G1 continuity.

The condition for G1 continuity means that the curve segments in R
3;1 corre-

sponding to two adjacent blending patches are joined in a point where their tangent
lines coincide. The envelope in R

3 of the tangent line of a curve in R
3;1 is called

the tangent cone of the canal surface, and is by construction G1 continuous with the
canal surface along the characteristic circle.

In the sequential construction of a composite blend, one end sphere and tangent
cone is given by the preceding blending patch. A hyperplane is then defined by the
choice of the second end sphere, and if there are sufficient degrees of freedom, a
final control point or tangent cone. In general, any curve in the bisector surface in
R

3;1 connecting the two endpoints with the required initial tangent line will produce
an edge blend of G1 continuity with the preceding blending patch.

Remark 12.2 At the end of a curve segment, when we use its tangent line to
construct the hyperplane section for the adjacent curve, we ensure that the two
curves are G1 continuous at the join. However, as we are considering only a segment
of the second curve, the resulting composite curve may have a singularity at the join
(Fig. 12.7, left, where the second end sphere lies on the left hand segment of the
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Fig. 12.7 Left: The spine curve (red) of the blend of the cone with the left plane, is the intersection
of a plane (yellow) with the bisector surface (green). The intersection curve is tangent to the spine
curve (blue) of the adjacent corner blend, but the join of the left red segment with the top blue
segment is singular. Right: The spine curve and blending surface of a non-singular G1 join

intersection curve). When we make sure that the join is non-singular, both the join
of the curve segments in R

3;1 and the join of the blending surfaces in R
3 are G1

(Fig. 12.7, right).

We start the construction of the composite blend by identifying the heterogeneous
corners, checking that the face opposite the single concave/convex edge is planar.
We then choose which of the homogeneous corners will also be blended with Dupin
cyclide patches. These cyclide corner blends will determine the order in which the
individual blending patches of the composite corner will be constructed. Care must
be taken with edges where the corner blends at both ends are cyclide patches, to
ensure that there are enough degrees of freedom to construct the edge blend. Such
edges are therefore natural starting points in the sequence of blend constructions.

After choosing the primary edge for each cyclide corner blend, we choose the
order in which the blending patches will be constructed, making sure that in each
case the primary edge is blended first. We then place the control spheres and tangent
cones which will determine the hyperplane sections and thus the curve segments in
R

3;1 corresponding to the blending patches.
We start by placing control spheres, tangent to all three faces, at the homogeneous

corners which will be blended by spherical patches. In addition to specifying the
blending radii at the end of the adjacent edge blends, these control spheres contain
the spherical corner blends.

We then place a control sphere in oriented contact with the two faces of the
primary edge of each Dupin cyclide corner, specifying the blending radius at the end
of the primary edge blend. This control sphere uniquely determines two secondary
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control spheres at the end of the two remaining edge blends adjacent to the corner:
they are in oriented contact with the control sphere at its points of oriented contact
with the two faces, and with the face opposite the primary edge. The tangent cone
at the end of the primary edge blend then uniquely determines the Dupin cyclide
corner blend. At the two secondary control spheres, the cyclide patch determines
the tangent cones of the adjacent edge blends.

These control spheres define the blending radii at the corners of the composite
blend. It remains to place additional control spheres where needed in order to define
the curve segments corresponding to edge blends, either for hyperplane sections of
the bisector surface in R

3;1, or as control points of a Bézier curve in a planar bisector
surface. Note that this last type of control spheres are slightly different from the
others: apart from the endpoints they do not lie on the curve segment in R

3;1.
After completing the placement of the control spheres we follow the methods

outlined above, and sequentially construct curve segments in R
3;1 corresponding to

blends of the edges and corners of the composite corner. Using the parametrization
algorithm in [5], we then construct the rational parametrization of the blends.

The following algorithm summarises the above construction:

Algorithm 12.1 A rational variable radius rolling ball blend of a composite corner
can be constructed with the following algorithm as long as four conditions are
satisfied:

• All faces are patches on planes or on natural quadrics.
• Two quadric patches meeting along an edge are patches on two oriented quadrics

with one or two points of oriented contact.
• All corners have three adjoining edges.
• At all heterogeneous corners, the face opposing the single convex/concave edge

is planar.

The blend is then constructed by completing the following steps:

1. For each heterogeneous corner, verify that the face opposite the single con-
vex/concave edge is planar. These corners will all be blended by patches on
Dupin cyclides.

2. Choose which homogeneous corners will be blended by spherical patches, and
which by Dupin cyclide patches.

3. For each Dupin cyclide corner choose the primary edge, making sure that the
opposite face is planar.

4. Determine the sequence in which the individual blending patches will be
constructed, respecting the order imposed by the Dupin cyclide corners.

5. Place a control sphere at each spherical corner, tangent to all three faces.
6. Place a control sphere at the primary edge of each Dupin cyclide corner.
7. Derive the secondary control spheres at each Dupin cyclide corner.
8. Determine the control spheres where a tangent cone will be determined by the

adjacent blending patch.
9. Place additional control spheres and/or tangent cones as needed for the edge

blends, to properly define hyperplanes and/or control points for Bézier curves.
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10. Sequentially parametrize the curve segments in R
3;1.

11. Parametrize the blending patches by applying Alg. 2 of [5].

This algorithm can easily be extended to include homogeneous corners that
circumscribe cones, but for the sake of clarity we chose to formulate Algorithm 12.1
for three-sided corners only. The second condition of the algorithm can be relaxed if
we construct the edge blends directly from rational curves in the bisector in R

3;1: if
there is no oriented contact this surface is still rational, though we cannot guarantee
the rationality of its hyperplane sections.

The fourth condition is sufficient to guarantee that we can construct a Dupin
cyclide corner blend at the end of the edge blend. This may still be possible if the
face opposing the single convex/concave edge is a patch on a cone. In fact, this is
possible if and only if the cone and the tangent cone at the end of the opposite edge
blend inscribe a common sphere, i.e., are in oriented contact at two points. In that
case the two corresponding lines in R

3;1 intersect, spanning a 2-dimensional plane.
A PE circle is uniquely defined by three finite points on it (see [9], Rem. 8), thus
these two lines, and the point corresponding to the end sphere at the tangent cone,
define a PE circle and thus a Dupin cyclide blend.

Finally, the approach in Algorithm 12.1 can be extended to other types of
surfaces, and PN surfaces in general: see Sect. 12.6.

12.5 Blending the Example Corner

To demonstrate Algorithm 12.1, we apply it to the construction of a blend of the
composite corner in Fig. 12.3. The example has been constructed to satisfy the four
conditions for applying the algorithm.

1. Heterogeneous corners: The composite corner has two heterogeneous corners,
one at each end of the intersection of the cone with the top plane (the top arc).
In each case, the opposite face is planar: the left and right plane.

2. Homogeneous corners: For this example, we choose to blend all the homoge-
neous corners with spherical patches.

3. Primary edges: For the two heterogeneous corners, the primary edge is the top
arc.

4. Sequence of construction: As recommended above, we start the blending
construction at the top arc, to ensure that we have enough degrees of freedom
to construct the hyperplane section. We then blend the heterogeneous corners
at each end of the top arc, before we blend the left and right plane/cone
intersections (the vertical blends), and the intersections of the top plane with the
left and right plane (the top blends). The remaining edges can be constructed in
any order, e.g., starting with the intersection of the cone with the bottom plane
(the bottom arc) before blending the remaining plane/plane intersections.
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Fig. 12.8 The control spheres of the composite blend (S12 and S13 have been omitted on the left).
The graph on the right shows the centres of the control spheres, and the segments of spine curves
we construct between them

5. Spherical corners: We place control spheres at the spherical corners, S1, S3,
and S7 in Fig. 12.8.

6. Dupin cyclide corners: At the Dupin cyclide corners, we place the control
spheres S4 and S6 as the end spheres of the blend of the top arc.

7. Secondary control spheres: The placement of these spheres determine the
secondary control spheres S8, S9, S10, and S11.

8. Tangent cones: The blend of the top arc determines the tangent cones at each
end, and the Dupin cyclide blends at each end of the top arc determine the
tangent cones at the top of the vertical blends, and at one end of each top blend.

9. Remaining control spheres/tangent cones: For the top arc we need an additional
control sphere to uniquely define the 2-dimensional plane in R

3;1, so we choose
S5 at its midpoint. This is also the case for the bottom arc, so we choose S2

at its midpoint. The vertical blends are completely defined by two end spheres
and one tangent cone each. The top blends will be constructed as Bézier curves
in the bisector plane in R

3;1. Their end spheres are already defined, and the
tangent direction at the heterogeneous corners given. We choose a middle
control sphere for each blend, S12 and S13, along these tangent directions. In
addition, we choose that the continuity with the spherical blend at S7 should be
G2, and so this control sphere should be a double control point for both Bézier
curves. The remaining plane/plane blends will be patches on cylinders, so no
further control spheres/tangent cones are needed.
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Fig. 12.9 Blending the intersection of the cone with the top plane: The one-parameter family of
spheres and the blending patch

10. Curve segments in R
3;1:

• The three control spheres S4, S5, and S6 define a 2-dimensional plane in
R

3;1. Its intersection with the isotropic quadric of the cone is a conic. The
corresponding one-parameter family of spheres and the resulting blending
patch are shown in Fig. 12.9.

• The tangent lines at each side of this conic determine the PE circles
corresponding to the two Dupin cyclide blends of the heterogeneous corners,
which in turn determine the tangent lines at the secondary control spheres
S8, S9, S10, and S11. The left cyclide blend, with its one-parameter family of
spheres, and two tangent cones, is shown in Fig. 12.10.

• For the vertical blends, S1, S8, and the tangent line at S8, and S3, S10, and the
tangent line at S10, define 2-dimensional planes in R

3;1, whose intersections
with the isotropic quadric of the cone are conics. The spine curve of the left
vertical blend is shown on the left in Fig. 12.4.

• For the bottom arc, the three control spheres S1, S2, and S3 define a 2-
dimensional plane in R

3;1, whose intersection with the isotropic quadric of
the cone is a conic.

• For the top blends, the control spheres fS9; S12; S7; S7g and fS11; S13; S7; S7g
define the control polygons of cubic Bézier curves with the required
continuity at each end. The spine curve and control polygon of the top left
blend is shown on the right in Fig. 12.4.

• As patches on cylinders, the remaining plane/plane blends are parametrized
as line segments in R

3;1.

11. Finally, we parametrize the individual blending patches by applying Alg. 2 of
[5]. The complete composite blending surface is shown on the right in Fig. 12.3.

This completes the composite blend, which has internal G1 continuity at all joins,
except for the internal joins at S7, which are G2 continuous.
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Fig. 12.10 Blending the left non-convex corner. Left: The one-parameter family of spheres in
oriented contact with both the left plane and the blend of the top arc. Right: The cyclide corner
blend with its tangent cones

In this construction, the control spheres are chosen with different degrees of
freedom. At the spherical corners, the choice of radius determines the control
spheres, so S1, S3, and S7 are chosen with one degree of freedom. At the Dupin
cyclide corners, any point in the bisector surface of the cone and the top plane can
be used as endpoints, so S4 and S6 are chosen with two degrees of freedom. In
practice, however, we want to use them to specify the radius of the blend at each
end of the top arc, so their placement is restricted to the areas close to the Dupin
cyclide corners. The secondary control spheres S8, S9, S10, and S11 are determined
by the choice of S4 and S6, and as such contribute no degrees of freedom to the
construction. At the midpoints of the two arcs, S2 and S5 are chosen with one degree
of freedom, as the radius here determines the 2-dimensional plane used to construct
the curve segment. As S12 and S13 are chosen along the tangent lines of the left and
right PE circle respectively, they are also chosen with one degree of freedom.

All in all, we have seven control spheres with one degree of freedom (S1, S2,
S3, S5, S7, S12, and S13), two with two degrees of freedom (S4 and S6), and four
with none (S8, S9, S10, and S11). These control spheres completely determine the
composite blend, and give us a total of 11 degrees of freedom for this composite
corner.

Remark 12.3 This is, however, not the only way to construct the blend. We chose
the order in which the blends are constructed, and chose to use cubic Bézier curves.

For the blends in the figures, we have chosen r1 D 0:75, r2 D 0:9, r3 D 0:75,
r4 D �0:6, r5 D �0:5, r6 D �0:6, and r7 D 0:4. At S4 and S6, we also choose
y4 D 0 and x6 D 0, respectively. We choose S12 D .0:80; 0:11; 10:64I 0:64/T and
S13 D .0:11; 0:80; 10:64I 0:64/T along the tangent lines at S9 and S11. Note that the
signs of the radii determine whether the control spheres are in front of or behind
the surface patches: S4, S5, and S6 all have negative radii, and are therefore placed
behind the blend of the top arc.
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If Algorithm 12.1 were to be implemented in, e.g., a commercial CAD system,
we envision that the system would present an initial composite blend with a limited
variation in blend radius. The control spheres could then be displayed and directly
manipulated to adjust the blend, both in terms of the variation in radius and the level
of continuity with the spherical patches.

12.6 Generalizing the Approach to Blends of PN Surfaces

The isotropic quadric of a cone can be generalized to oriented surfaces with a well
defined unit normal vector field. Consider a surface parametrized by Ef .s; t/, with
unit normal vector field En.s; t/. A point on the surface can be considered as a sphere
with zero radius, and the sphere EF .r; s; t/ D . Ef .s; t/ C r En.s; t/I r/ is in oriented
contact with the surface at Ef .s; t/. In fact, EF .r; s; t/ 2 R

3;1 is a parametrization
of the isotropic hypersurface of Ef .s; t/. For a PN surface, where both Ef .s; t/ and
En.s; t/ are rational, the isotropic hypersurface is rational as well.

To parametrize variable radius rolling ball blends between two PN surfaces, we
then need to consider curves in the intersection of two such isotropic hypersurfaces.
In general, the intersection of two such hypersurfaces is not necessarily rational,
and even when it is, there may not be many families of rational curves of relatively
low degree on it. A starting point for further research would be to investigate
rational variable radius rolling ball blends of PN surfaces, i.e., rational curves in
certain 2-dimensional surfaces in R

3;1. Blending a plane and a PN surface may be a
natural starting point: the intersection of each parabolic pencil with the hyperplane
is rational, which gives us a rational parametrization of the bisector surface in R

3;1.

Conclusions
We have outlined an algorithm for constructing variable radius rolling ball
blends of composite corners, with internal G1 continuity between adjacent
blending patches. The basis for the algorithm is the use of control spheres to
specify the blending radius at certain key points. The approach was illustrated
by applying the algorithm to the example corner in Fig. 12.3.

When the composite blend is rational, it is a PN surface, with an immediate
extension to rational parametrizations of thick surfaces. As relatively simple,
yet versatile volume parametrizations, we expect this class of rational volume
representations to be useful in Isogeometric Analysis.

There are several possible avenues of future research:

• The construction of rational curves in 2-dimensional surfaces in R
3;1, in

order to extend the class of rational variable radius rolling ball blends.

(continued)
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• More general blending surfaces, to extend the configurations of natural
quadrics with rational blends.

• Construction of blends between a larger class of primitive surfaces, such
as PN surfaces.
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Practical Industrial Problems



Chapter 13
Bisectors and Voronoï Diagram of a Family
of Parallel Half-Lines

I. Adamou, M. Fioravanti, L. Gonzalez-Vega, and B. Mourrain

13.1 Introduction

Computer aided design (CAD) technology is currently facing limitations mainly due
to conflicts between the underlying mathematical background and the capabilities
expected by various application areas. The incorporation and integration of results
from other mathematical disciplines than numerical analysis is expected, not only
to improve the fundamentals, but also to lead to new and more intuitive design tools
and methodologies.

The most common representation for curves and surfaces in CAD is the rational
parametric representation, and often, the implicit algebraic representation for some
specific operations. However, only the implicit algebraic curves and surfaces are
closed under some basic geometric operations (such as offsetting or bisecting),
while rational parametric representations are not conserved. The computation of
their exact algebraic implicit representation is very complicated or impractical, since
it often involves the representation and manipulation of the solution set of a system
of nonlinear equations of high degree. The exact description for certain geometric
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primitives, like offsets and bisectors, is very scarce, and therefore their use in CAD
is still based on approximate methods, which might not be accurate enough. In this
work, we present new methods for solving the following three problems:

1. Compute an exact parametrization of the bisector of two rational plane curves.
2. Compute exact parameterizations of the bisector of two rational surfaces.
3. Compute the topology of the Voronoï diagram of a finite family of parallel half-

lines.

Bisector of Two Planar Curves

Consider two geometric objects O1 and O2 (points, parametric curves, parametric
surfaces) in the space R

d ; d 2 f2; 3g, with respective parameterizations O1.u/; u 2
I1 and O2.v/; v 2 I2, where I1 and I2 are intervals or rectangles (eventually reduced
to a point).

Their (true) bisector B.O1; O2/ is defined as the equidistant set of points from
the two objects, i.e.:

B.O1; O2/ D
�

B 2 R
d W inf

u2I1

kB � O1.u/k D inf
v2I2

kB � O2.v/k
�

: (13.1)

The computation of an algebraic representation for the bisector is not an obvious
task from the definition (13.1). Indeed, even if the parametric object is given with a
regular and proper parametrization, it should be noted that the distance function

d W .B; O/ 7! inf
u2I

kB � O.u/k; (13.2)

is not always differentiable with respect to the point B; and a minimum of the
distance function could be achieved at more than one parameter value. To overcome
these difficulties, the following notion of untrimmed bisector is introduced (see
[24, 36, 51]).

Definition 13.1 The untrimmed bisector of O1 and O2 is defined as the set of
centres of spheres/circles which are tangent to O1 and O2 simultaneously.

This definition does not imply the same minimum distances measured from the two
objects, in the presence of critical shapes on the objects (singular point, inflection
point, self-intersection point). There are some extraneous parts that should be
trimmed in order to achieve the true bisector. The trimming process (identifying
and eliminating extraneous parts), which is the second challenge of the topic, is
more convenient and effective from the untrimmed bisector parametrization when it
is available.
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There are several pairs of objects possessing a rational bisector, but in general it
is very difficult to have a criterion for the rationality of the bisector, and very few
generic configurations of objects with rational bisector are known. The planar curve-
point bisector is rational, and an algorithmic method for the trimming is introduced
by Farouki and Johnstone in [24]. However, the bisector of two coplanar curves is
not rational in general (see [25]). On the other hand, it is expected the rationality of
the bisector of two curves with a parametrization for which the norm of the speed
vector is rational, called PH-curves (for Pythagorean Hodograph-curves) (see [53]
and [45]). The bisector of a circle or a straight line and a PH-curve is rational
(see [51]). The curve-curve bisector is an algebraic curve which, very often, is
of very high degree (see [15]) so that the trimming becomes highly problematic,
and impracticable. Thus, many ways of approximation have been proposed by
researchers for the representation of the bisector curve (see [26] and [15]). Related to
the bisector of two plane curves, we present in this paper the following methods:

1. A new algorithmic approach for computing the algebraic parametrization (ratio-
nal or not rational) for the untrimmed bisector of two planar curves by using
Cramer’s rule and an elimination step. We analyze in detail the application of the
algorithm to determine a parametrization of the bisector of two curves when one
of them is a circle or a straight line.

2. A new automatic approach for geometric and numerical characterization of
planar point-curve and curve-curve true bisector by using dynamic color in
GeoGebra,1 a dynamic mathematics software. The approach consists in scanning
and displaying, in a specific chosen color, the geometric locus of the true bisector.
Like the algorithmic method introduced by Shou et al. [59] for computing the
bisector of a point and a plane algebraic curve, this approach does not need a
trimming process. Furthermore, this approach allows to collect the coordinates
of many points on the true bisector, up to a tiny error.

Bisector of Two Surfaces

In the case of two rational surfaces, most of the known methods for computing the
exact description of the bisector are devised only for those bisectors possessing
rational parametrizations. Various approaches are appropriately used for very
special cases to determine a rational representation for the bisector (see for example
[13]). In other cases, symmetry considerations reduce the bisector computation to
the following cases: point-line, point-surface, or curve-surface [16, 17], where the
bisector is a rational surface. Similarly to the case of curves, if the considered
surfaces are PN-surfaces (for Pythagorean Normal-surfaces), i.e., surfaces with a
parametrization such that the norm of the normal vector is rational (see [53] and
[46]), the bisector is expected to be rational. Using Laguerre geometry, Martin

1http://geogebra.org

http://geogebra.org
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Peternell [51, 52] has shown the rationality of the bisector between: plane and PN-
surfaces, two PN-developable surfaces, two canal surfaces and some other cases.

In the case of non-rationality of the bisector, the exact description is scarce, the
implicit representation is of very high degree, and often, it is impractical to compute
it. Thus, B-spline and other kinds of approximation have been proposed (see for
instance [18]).

Our contribution for this case is a new approach, generalizing the method used in
the two planar curves case. It uses the so-called generalized Cramer’s rule (see [12]
and [11]) and suitable elimination steps, for computing an algebraic parametrization
(rational or non-rational) for the bisector surface of two low degree rational surfaces.
Some of the obtained results coincide with those mentioned above in the rational
case. The method is well-suited for approximation purposes, which is of special
interest in the non-rational case.

The new introduced approach allows to easily obtain parametrizations of
the plane-quadric, plane-torus, circular cylinder-quadric, circular cylinder-torus,
cylinder-cylinder, cylinder-cone and cone-cone bisectors, which are rational in
most cases. In the remaining cases, the parametrization involves square roots.

For the case of plane and quadric, or plane and torus, the implicit equation of
the (untrimmed) bisector can be easily computed, either from the equations defining
the bisector, or from the computed parametrization. The results we obtained for the
parametrization, as well as for the implicit equation, assuming that the quadric is
provided with its PN-parameterization (if possible), are summarized in Table 13.1.
They coincide with those proved, using a different approach, by Peternell [51]. Note
that the degree of the implicit equation of the untrimmed bisector is usually bigger
than the degree of the true bisector.

Table 13.1 The algebraic
representation of
plane-quadric and plane-torus
untrimmed bisectors

Max. degree of
Plane-quadric/torus Parametrization implicit eqn.

Parabolic cylinder Rational 6

Circular cylinder Rational 4

Elliptic cylinder Non rational 8

Hyperbolic cylinder Non rational 8

Circular cone Rational 4

Elliptic cone Non rational 8

Sphere Rational 4

Ellipsoid Rational 12

Elliptic paraboloid Rational 10

Hyperbolic paraboloid Rational 10

Hyperboloid one-sheet Rational 12

Hyperboloid two-sheets Rational 12

Torus Rational 8
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Voronoï Diagram of a Family of Parallel Half-Lines

The Voronoï diagram (VD) is a fundamental data structure in computational
geometry with many and very diverse applications in theoretical and practical areas,
such as proximity queries, high-clearance placements, motion planning problems,
classification problems, and many more (see [4, 27, 50] and [38]). For a given
discrete set of geometric objects (called sites) S D fs1; : : : ; sng in a metric
space .E; d/, the VD subdivides E in regions (called cells), where each region
associated to one site si consists of the points closer to the site si than to any other
site in S, for the distance d. Generally, the VD can be defined as the Minimization
Diagram (MD) (a projection of the lower envelope) of a finite set of continuous
functions ff1; : : : ; fng, where each function fi is defined as the distance function to
a site si (see [8]). Different types of sites and distance functions have been proposed
for different kinds of applications, according to the context.

In the space R
2 the VD has been studied extensively, and its structure is

nowadays thoroughly well understood. Many robust and efficient algorithms have
been proposed by several authors such as [19, 20, 23, 34, 56]. However, in three
and higher dimension spaces, the VD has been much less studied, and many basic
problems are still wide open. Some recent works for linear, quadrics, and semi-
algebraic sites have been developed (see [4, 7, 31, 37, 38, 40, 42, 50] and [22]).

In this paper, we consider the VD of a set of n parallel half-lines, fd1; : : : ; dng,
oriented to the positive x�direction, i.e.:

di D .xi C t; yi ; zi /; t > 0; i D 1 : : : n; (13.3)

where xl ¤ xk; and .yl ; zl / ¤ .yk; zk/, 8l ¤ k; constrained to a compact domain
D0 � R

3 of the form:

D0 D Œa10 ; b10 � � Œa20 ; b20 � � Œa30 ; b30 � ; (13.4)

with respect to the Euclidean distance.
The VD of this new kind of sites, could be used to provide useful solu-

tions to some theoretical and practical problems in the drilling industry (mining,
offshore drilling, hydraulic, etc.), in particular for exploring drilling-deepwater
closest ground, well collision and identifying unplanned ground avoidance (see
[5, 29, 32, 60–62] and [41]).

Two general classes of algorithms are available for computing VD: exact and
approximate. Some of the exact algorithms require the manipulation of an exact
representation of VD boundaries, dealing with high-degree curves and surfaces, and
their intersections, which lead very often to complex and very hard to implement
algorithms (see [57]). In order to overcome these difficulties, approximate algo-
rithms have been used often (see, for instance, [7]). We present a new approximate
algorithm to determine a meshing for the VD of the kind of sites we consider.
The method has three main parts. First, the subdivision of the initial domain D0

into sub-domains (boxes) until the topology of the boundary of the VD in each
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sub-domain is fully determined from its intersection with the boundary of the
box, or the size of the sub-domain is smaller than a constant threshold " initially
fixed. Second, the meshing of the cell boundaries contained in each sub-domain.
Finally, the reconstruction of the VD cells. Thus, the correct topology of the result
is certified, with the possible exception of certain boxes of size smaller than ".
The representation of the output from the method for a family of four half-lines
is represented in the Figs. 13.11–13.15. The implementation of the method has not
been completed yet. The testing of the implemented subroutines produce accurate
results with good timing.

The rest of the paper is organized in three sections, where we explain the details
of the methods, state some general results, and give examples of the application
of the algorithms. Section 13.2 is on the parametrization of the bisector of two
curves, and the bisector of two surfaces. In Sect. 13.3 we describe the algorithm
for computing the Voronoï diagram of a family of parallel half-lines, and the last
section is devoted to conclusions.

13.2 Bisectors

This section is divided in three parts. First, we present the equations that characterize
the untrimmed bisector of two curves in the plane, and the method to solve them.
Second, we present the method for the graphical visualization and numerical data
computation of the true bisector of two planar curves, using GeoGebra. In the
last subsection, we present the algorithm for the parametrization of the untrimmed
bisector of two surfaces.

13.2.1 Parametrization of Curve-Curve and Point-Curve
Bisectors

Consider two plane rational curves (or a point and a curve). Starting from the
equations of the untrimmed bisector of the curves (see Definition 13.1), we will
present a method for computing its parametrization. We will analyze the special
cases in which one of the curves is either a straight line or a circle.

Equations of the Untrimmed Bisector Curve

Let s and r be two regular rational curves, and s.u/ and r.t/ their parametrizations,
respectively. A point B D .X; Y / 2 R

2 is in the untrimmed bisector of the curves s

and r if it satisfies the following system of equations (see [36]):
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• The point B is in the normal lines of s and r , at s.u/ and r.t/, respectively:

h.X; Y / � s.u/; s0.u/i D 0;

h.X; Y / � r.t/; r0.t/i D 0;
(13.5)

where s0 and r0 denote derivatives.
• The point B is at equal distance from s.u/ and r.t/:

h.X; Y /; 2 .r.t/ � s.u//i C ks.u/k2 � kr.t/k2 D 0: (13.6)

Equations (13.5) can be written in matrix form as follows

A BT D V; (13.7)

where

A D
"

s0x.u/ s0y.u/

r0x.t/ r0y.t/

#

; V D
� hs.u/; s0.u/i

hr.t/; r0.t/i



:

The Algorithm for Computing a Parametrization of the Untrimmed
Bisector

Our goal is to compute a parametrization of the untrimmed bisector of the curves s

and r in terms of one parameter, either u or t . Our approach consists in:

• First, solve the system (13.7) for B in terms of u; t , using Cramer’s rule, and
substitute B.u; t/ in (13.6), to obtain the equation:

F.u; t/ D hB.u; t/; 2.r.t/ � s.u//i C ks.u/k2 � kr.t/k2 D 0: (13.8)

• Then, if possible, express one of the parameters, say u in terms of t , from
Eq. (13.8). More precisely, if F.u; t/ is a product of linear expressions in u, one
can easily express u in terms of t . Since there might be more than one solution
according to the degree of F.u; t/ with respect to u, we get

ui D ui .t/; i D 1; : : : ; m:

• Finally, substitute u by ui .t/ in B.u; t/; for each solution, and obtain the
parametrization of the untrimmed bisector of the form:

bi .t/ D B.ui .t/; t/ D Œxi .t/; yi .t/�
T ;

where xi .t/; yi .t/ are in general non-rational.
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Remark 13.1 Although the parametrization we obtain is not rational in general, we
may apply the trimming method of Farouki and Johnstone [24], which is based
in finding critical points (self-intersections, cusps, etc.) of the untrimmed bisector,
and identifying the intervals that must be trimmed. From the parametrization of
the bisector obtained with our method, we can compute the critical points for this
purpose.

We apply our algorithm, to parametrize the bisector of two rational curves, in the
particular cases where one of the curves is either a line or a circle.

1. Line-curve bisector: Assume s is a line and r is a regular rational curve, with
the respective parametrizations

s.u/ D .˛1 u C ˇ1 ; ˛2 u C ˇ2/ and r.t/ D .a.t/ ; b.t// : (13.9)

Applying the algorithm to this particular case we get the following
result. The theorem follows from straightforward computation. Moreover,
we obtain a closed form expression of the parametrizations in terms of
˛1; ˇ1; ˛2; ˇ2; a.t/; b.t/; a0.t/; and b0.t/. For full details see [1], Section 2.2.3.

Theorem 13.1 Let s and r be as in (13.9), and let �.t/ D
q

a0.t/2 C b0.t/2 be
the norm of the speed vector of the curve r .

(a) The equation F.u; t/ D 0 is quadratic in u, and its discriminant with respect
to u is non-negative. Therefore there exist two components b1 and b2 for the
untrimmed bisector parametrization, which might contain a square root of a
non-negative polynomial expression (originating from �).

(b) If the curve r is a PH-curve, the untrimmed bisector parametrization is
rational. Furthermore, if the norm of the speed vector of the line s,

ks0.u/k D
q

˛2
1 C ˛2

2

is not a rational number, then the parametrizations b1; b2 of the
untrimmed bisector are rational expressions with coefficients in the field

Q

�q
˛2

1 C ˛2
2




:

2. Circle-curve bisector: Assume s is a circle of radius d , and r is a regular rational
curve, with the respective parametrizations

s.u/ D
�

2 d u

1 C u2
;

d .1 � u2/

1 C u2

�

and r.t/ D .a.t/ ; b.t// : (13.10)

If we apply the method to this case, Eq. 13.8 takes the form

F.u; t/ D �
1 C u2

�2
F0.u; t/ D 0;
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where

F0.u; t/ D �d 2u2b0.t/ C a.t/2b0.t/u2 � 2 a0.t/a.t/du2 � 2 b0.t/b.t/du2

�b0.t/b.t/2u2 � 2 a0.t/a.t/b.t/u2 � 2 b.t/2ua0.t/

C2 ua0.t/a.t/2 C 2 d 2ua0.t/ C 4 ub0.t/b.t/a.t/ C d 2b0.t/

�2 b0.t/b.t/d C 2 a0.t/a.t/b.t/ � 2 a0.t/a.t/d

�a.t/2b0.t/ C b0.t/b.t/2;

is quadratic in u: Therefore, we get the following result.

Theorem 13.2 Let s be a circle and r a rational plane curve, with the

parametrizations (13.10). Let �.t/ D
q

a0.t/2 C b0.t/2, be the norm of the speed
vector of r .

(a) The discriminant of the equation F.u; t/ D 0, with respect to u is non-
negative. Therefore, there exist two components b1 and b2 of the untrimmed
bisector parametrization, which might contain a square root of a non-
negative polynomial expression (originating from �).

(b) If the curve r is a PH-curve, the untrimmed bisector parametrization is
rational.

Proof The theorem follows directly by completing the computations, and a
closed form expression of the parametrizations is obtained. See [1], Section 2.2.4,
for full details.

Remark 13.2 The definition of untrimmed bisector is invariant under Möbius
transformations. If we have a bisector parametrization B of two objects O1; O2, and
a Möbius transformation M , then M.B/ will be a parametrization of the bisector
of M.O1/ and M.O2/: This implies, in particular, that Theorem 13.2 follows
from Theorem 13.1, because given a circle and a straight line, there is a Möbius
transformation that maps the circle onto the line. This provides an alternative
method for producing certain parametrizations.

A similar reasoning can be applied in tridimensional space to relate, using
Möbius transformations, sphere-surface bisectors with plane-surface bisectors.

Example 13.2.1 Let

s.u/ D
�

2 u

1 C u2
;

1 � u2

1 C u2
C 4

�

and r.t/ D
�

2 t2 � 2;
2

3
p

3
t
�
t2 � 1

�
�

;

be the parametrizations of a circle and a PH-cubic, respectively. The norms of the
respective speed vectors of s and r are given by:

�s.u/ D 2

u2 C 1
and �r.t/ D 2

p
3

3

�
1 C 3 t2

�
:
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Applying the algorithm to s.u/ and r.t/ we have:

B.u; t/ D

2

6
6
6
4

4 u
�
�2

p
3 C 6

p
3t2 C 5 t � 2 t3 � 3 t5

�

p
3 � 3

p
3t2 � p

3u2 C 3
p

3t2u2 � 12 tu
2 t
��24 u C 5 � 2 t2 � 3 t4 � 5 u2 C 2 u2t2 C 3 u2t4

�

p
3 � 3

p
3t2 � p

3u2 C 3
p

3t2u2 � 12 tu

3

7
7
7
5

;

F .u; t/ D �
p

3

3

�
u2 C 1

�2
F0.u; t/ D 0;

where

F0.u; t/ D
�
6t4u C 4

p
3t3u � 13

p
3tu C 3u C 6t4 � 4

p
3t3 � 11

p
3t � 21

�

�
�6t4u C 4

p
3t3u C 5

p
3tu C 15u C 6t4 C 4

p
3t3 � 19

p
3t C 9

�
:

The two expressions of u in terms of t are given by:

u1.t/ D � 6 t4 C 4
p

3t3 � 19
p

3t C 9

�6 t4 C 4
p

3t3 C 5
p

3t C 15
;

u2.t/ D �6 t4 C 4
p

3t3 C 11
p

3t C 21

6 t4 C 4
p

3t3 � 13
p

3t C 3
;

and the untrimmed bisector parametrization is given by:

b1.t/ D B.u1.t/; t/; b2.t/ D B.u2.t/; t/:

The true bisector has two branches, one is given by the restriction of the
component b1 to the interval Œ�0:8331; �0:0697� and the other by the restriction
of the component b2 to the interval Œ1:16838; 3:1916�.

The two curves, the untrimmed and the trimmed bisectors are shown in the
Figs. 13.1 and 13.2.

13.2.2 Geometric and Numerical Characterization
for the Bisector using GeoGebra Dynamic Color

GeoGebra is a free software program (http://www.geogebra.org), that combines
Dynamic Geometry with the algebraic equations of the geometric objects (points,
lines, conics, etc.) represented. It gives simultaneously three representations of
the same mathematical object: geometric (graphical), algebraic and as cell of a
spreadsheet; any change in one of the representations produces, in a dynamic

http://www.geogebra.org
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Fig. 13.1 The curves (green
and red) and the untrimmed
bisector (blue) of
Example 13.2.1

Fig. 13.2 The curves (green
and red) and the trimmed
bisector (blue) of
Example 13.2.1

way, the corresponding change in the other representations. Using color models
[30,49], the GeoGebra automatic scanning method for an unknown geometric locus
is applied for solving the problem of the true bisector of two planar geometric
objects (curve, point) O1 and O2. Furthermore, the method allows the numerical
collection of coordinates of a sample of true bisector points, up to a very small fixed
error ". The work of this subsection has been done by the first author in collaboration
with R. Losada.

A color model (for example, RGB) is a specification of a three dimensional
coordinate system where each color is represented by a single point. The scanner
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consists in a sweeping vertical line, with a dense sample of n points on each
vertical line. The scanner line is automatically animated at the touch of a button,
proceeding in a horizontal pixel displacement and sweeping a domain containing
the two geometric objects. As a result of the process, each sampled point in the
screen will acquire a different color, depending on its coordinates. A good example
of application of color to the study of a geometric problem is presented in [44].

1. Geometric characterization of the true bisector curve
In order to use the scanning process, it is sufficient to know the condition that

each point B of the bisector locus must obey, i.e:

D.B/ � d.B; O1/ � d.B; O2/: (13.11)

For the distances from each scanner point to O1 and O2 the GeoGebra command
used is:

Distance Œ< point >; < object >� ;

which computes the minimal distance from a point to an object, as required in
the bisector definition (13.1).

Using the RGB model, the three dynamic color fields (Red, Green, Blue)
associated to each point B will be given the value

exp.�jD.B/j/;
which normalizes any value of (13.11) to the interval .0; 1�; such that, if D.B/ is
0; the resulting RGB value will be .1; 1; 1/ (i.e., white color), wherein the closer
of the pure white for the lower absolute value of D.B/. Thus, the true bisector
curve is geometrically characterized in white color.

Example 13.2.2 (a) Let

C1.t/ D �
t2; t3

�
and C2.t/ D �

t2 C 5 ; t
�

;

be the respective parametrizations of a cubic and a parabola curves. For n D
290 the geometric characterization of their true bisector curve is presented
in Fig. 13.3.

(b) Let

C1.u/ D �
u3 C 5 ; u2

�
and P D �

10 ; �1
�
;

be respectively the parametrization of a cubic curve and a fixed point. For
n D 290 the geometric characterization of their true bisector curve is
presented in Fig. 13.4.

2. Numerical characterization of the true bisector curve
Let O1 and O2 be two planar geometric objects, and let " be a small enough

fixed constant. During the scanning process of the true bisector locus of O1 and
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Fig. 13.3 The geometric
characterization of the true
bisector from
Example 13.2.2(a) in white
color

Fig. 13.4 The geometric
characterization of the true
bisector from
Example 13.2.2(b) in white
color

O2, the coordinates of each scanned point Bi verifying

ˇ
ˇ
ˇ
ˇd.Bi ; O1/ � d.Bi ; O2/

ˇ
ˇ
ˇ
ˇ < "; (13.12)

are stored in a list and their traces are plotted. When the error is very little, we
obtain a small list of the coordinates of the scanned points (see the example
below).

Example 13.2.3 Let

C1.t/ D
�

1

4
t2 � 5 ; t

�

and C2.t/ D
�

2.1 � t2/

1 C t2
;

2t

1 C t2

�

;

be respectively the parametrizations of a parabola and an ellipse. As a result of
the scanning process with GeoGebra, we get the following:

(a) For n D 400 and " D 0:005, we obtain a list of the coordinates of 134
points, whose traces are plotted in Fig. 13.5,
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Fig. 13.5 The trace of the
true bisector points in black
for n D 400 and "D 0:005

Fig. 13.6 The trace of the
true bisector points in black
for n D 400 and "D 0:0025

(b) For n D 400 and " D 0:0025, we obtain a list of the coordinates of 71
points, whose traces are plotted in Fig. 13.6,

(c) For n D 400 and " D 0:0005 we obtain a list of the coordinates of 38 points,
whose traces are plotted in Fig. 13.7.

13.2.3 The Bisector Surface of Two Low Degree Rational
Surfaces

Generalizing the method of Sect. 13.2.1 we present an algorithm to compute the
untrimmed bisector surface of two rational surfaces (see Definition 13.1). We start
by giving the equations which characterize the bisector.
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Fig. 13.7 The trace of the
true bisector points in black
for n D 400 and "D 0:0005

Equations of the Untrimmed Bisector Surface

Let S1 and S2 be two regular rational surfaces, and S1.s; t/ and S2.u; v/ their
parametrizations, respectively. A point B D �

X; Y; Z
� 2 R

3 is in the bisector of
the surfaces S1 and S2 if it satisfies the following system of equations (see [36]):

• The point B is in the normal lines of S1 and S2, at S1.s; t/ and S2.u; v/;

respectively:

h.X; Y; Z/ � S1.s; t/; @sS1.s; t/i D 0;

h.X; Y; Z/ � S1.s; t/; @t S1.s; t/i D 0;

h.X; Y; Z/ � S2.u; v/; @uS2.u; v/i D 0;

h.X; Y; Z/ � S2.u; v/; @vS2.u; v/i D 0;

(13.13)

• The point B is at equal distance from S1.s; t/ and S2.u; v/:

h.X; Y; Z/; 2.S2.u; v/ � S1.s; t//i C kS1.s; t/k2 � kS2.u; v/k2 D 0: (13.14)

Equations (13.13) can be written in matrix form as follows

A BT D R; (13.15)

where

A D

2

6
6
4

@sS1x @sS1y @sS1z

@t S1x @t S1y @t S1z

@uS2x @uS2y @uS2z

@vS2x @vS2y @vS2z

3

7
7
5 ; R D

2

6
6
4

hS1; @sS1i
hS1; @t S1i
hS2; @uS2i
hS2; @vS2i

3

7
7
5 :
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The Algorithm for Computing the Bisector Parametrization

Our goal is to compute a parametrization of the bisector of S1 and S2 in terms of two
parameters chosen from u; v; s and t . If for some values of the parameters u; v; s; t ,
the linear system (13.15) of unknown B admits a solution, then rank.jA; Rj/ 6 3,
and thus det.jA; Rj/ D 0.

Our approach consists in:

• First solve the system (13.15) for B in terms of u; v; s; t , by using the Moore-
Penrose generalized inverse of A; A� (see [11]):

A� D �a�1
k AT

�
.AAT /k�1 C a1.AAT /k�2 C : : : C ak�1In

	
;

where ai and k are such that

det.wIn � AAT / D a0wn C a1wn�1 C : : : C an�1w C an;

with a0 D 1; (k ¤ 0 is the largest index such that ak ¤ 0) or (k D 0 and
A� D 0). Thus

BT .u; v; s; t/ D A�R :

Substituting B.u; v; s; t/ in (13.14) we obtain the equation:

F.u; v; s; t/ D hB; 2.S2.u; v/�S1.s; t//iCkS1.s; t/k2 �kS2.u; v/k2: (13.16)

• Then, eliminate two of the four parameters u; v; s and t from

G.u; v; s; t/ D det.jA; Rj/ D 0; F.u; v; s; t/ D 0; (13.17)

as follows:

– First, if possible, express one of the parameters, say t , in terms of u; v and s

from

G.u; v; s; t/ D 0:

More precisely, if G.u; v; s; t/ is a polynomial linear (or a factor of k linear
expressions) in t , one can easily express t in terms of u; v and s, namely t D
t.u; v; s/ (or tj D t.u; v; s/; j D 1; : : : ; k), and substitute in

F.u; v; s; t/ D 0

to obtain

F0.u; v; s/ D F.u; v; t.u; v; s// D 0;
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– Then, in the same way, if possible, express s in terms of u and v from

F0.u; v; s/ D 0:

There might be more than one solution for s according to the degree of
F0.u; v; s/ in s, we get

si D si .u; v/; i D 1; : : : ; mI

• Finally, substitute successively t by t.u; v; s/; and for each solution, s by si .u; v/,
in B.u; v; s; t/: We obtain the untrimmed bisector parametrization of the form:

Bi .u; v/ D BT .u; v; si .u; v/; t.u; v; si .u; v/// D
2

4
xi .u; v/

yi .u; v/

zi .u; v/

3

5 ;

where xi .u; v/; yi .u; v/; zi .u; v/ are in general non-rational.

Using this algorithm, we can deal with the specific cases of plane-quadric, plane-
torus, circular cylinder-non developable quadric, circular cylinder-torus, cylinder-
cylinder, cylinder-cone and cone-cone bisectors.

Remark 13.3 In general, the rationality of the bisector parameterizations Bi .u; v/

depend on the rationality of the norm of the normal vectors of the two surfaces,
�1.s; t/ D k@sS1 � @t S1k and �2.u; v/ D k@uS2 � @vS2k. Since �1 and �2 could be
rational functions with non-rational coefficients, i.e.

9 ı1; ı2 62 Q; �1 2 QŒı1�.s; t/; �2 2 QŒı2�.u; v/;

then the bisector parameterizations Bi .u; v/ could also be rational with non rational
coefficients. More precisely if �1 2 QŒı1�.s; t/ and �2 2 QŒı2�.u; v/, then Bi 2
QŒı1 	 ı2�.u; v/:

We apply the method to compute the bisector of a plane and a quadric, or a plane
and a torus.

1. Plane and quadric/torus
Let

P.s; t/ D
2

4
˛1 s C ˇ1 t C �1

˛2 s C ˇ2 t C �2

˛3 s C ˇ3 t C �3

3

5 and S.u; v/ D
2

4
Sx.u; v/

Sy.u; v/

Sz.u; v/

3

5 ; (13.18)

be the respective parametrizations of a plane and a quadric or a torus. Since A
does not depend on s and t , and R is linear in s and t , then G.u; v; s; t/ is linear



258 I. Adamou et al.

in s and t , and F.u; v; s; t/ is quadratic in s and t: Applying the algorithm, we
have the following theorem.

Theorem 13.3 Consider a plane and a quadric surface or a torus, with the
parametrizations (13.18). Let �p D k@sP � @t Pk and �s.u; v/ D k@uS � @vSk.

(a) There exist two components of the parametrization for the untrimmed
bisector Bi .u; v/; i D 1; 2; that might contain a square root of a non-
negative expression (originating from �s).

(b) If �s.u; v/ is rational, then the untrimmed bisector parametrizations
Bi .u; v/; i D 1; 2; are rational. Furthermore, if �p 62 Q and �s 2 QŒı�.u; v/,
then Bi 2 QŒ�p � ı�.u; v/ (see Example 13.2.4).

Proof From G.u; v; s; t/ D 0 we get s D s.u; v; t/ and substitute in the equation
F.u; v; s; t/ D 0 to get

F0.u; v; t/ D F.u; v; s.u; v; t/; t/ D !0t2 C !1t C !2 D 0; (13.19)

where !0; !1; !2 depend on ˛i ; ˇi �i @uS; @vS; S. After some computations,
the discriminant of Eq. (13.19) is

� D 4 Œ.h�; .@sP � @t P/i/ : h.@tP � .@sP � @t P//; .@uS � @vS/i�2
�2

p �2
s .u; v/ > 0

where

� D
�Sx � �1

Sy � �2

Sz � �3




; �p D k@sP � @t Pk and �s.u; v/ D k@uS � @vSk:

Thus Eq. (13.19) has two solutions:

t1.u; v/ D �!1 � p
�

2!0

; t2.u; v/ D �!1 C p
�

2!0

;

with

p
� D 2 j.h�; .@sP �@t P /i/ : h.@t P �.@sP �@t P //; .@uS �@vS/ijj �p �s.u; v/j:

Substitute first s by s.u; v; t/; and then t by t1.u; v/ and t2.u; v/; in B.u; v; s; t/:

Thus, the two components of the parametrization of the bisector are

B1.u; v/ D B.u; v; s.u; v; t1/; t1/ and B2.u; v/ D B.u; v; s.u; v; t2/; t2/:

Since

j.h�; .@sP � @t P/i/.h.@tP � .@sP � @t P//; .@uS � @vS/i/j
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is a rational expression, and the norm of the normal vector �p D k@sP�@tPk is a
constant, then the parametrization of the bisector is rational if �s.u; v/ is rational.
In addition, if the constant �p 62 Q and if �s.u; v/ 2 QŒı�.u; v/; for a certain ı 62
Q, then the parametrization of the bisector is rational, i.e., Bi 2 QŒ�p:ı�.u; v/:

ut
Since all quadric surfaces are PN, except the non-circular cylinder or cone, we
deduce the following corollary.

Corollary 13.1 The bisector of a plane and a PN-surface is rational. In
particular the bisectors of a plane and all quadric surfaces, except non-circular-
cylinders and non-circular-cones, and the bisector of a plane and a torus, are
rational.

Example 13.2.4 Consider a plane and a circular cone, respectively
parametrized by

P.s; t/ D
2

4
s

t
1
3

.t C s/

3

5 and S.u; v/ D

2

6
6
6
4

2 uv

1 C u2

v
�
1 � u2

�

u2 C 1
v

3

7
7
7
5

:

Note that the cone axis is oblique to the plane. The norms of the normal vectors
are

�p D
p

11

3
62 Q and �s D 2

p
2v

u2 C 1
2 QŒ

p
2�.u; v/:

Applying the algorithm we obtain the two components of the untrimmed bisector
parametrization:

B1.u; v/ D

2

6
6
4

� 2uv.2
p

22u2�5 u2�p22uC6 uCp22C1/
3C12 u2C9 u4�4 u3�8 u

v.2
p

22u4�5u4�p22u3C6u3�p22u2C6u2Cp22u�6u�p22�1/
3C12 u2C9 u4�4 u3�8 u

v.2
p

22u4C13u4�p22u3�2u3C3
p

22u2C20u2�p22u�10uC7Cp22/
3C12 u2C9 u4�4 u3�8 u

3

7
7
5 ;

B2.u; v/D

2

6
6
4

2uv.2
p

22u2C5 u2�p22u�6 uCp22�1/
3C12 u2C9 u4�4 u3�8 u

�v.2
p

22u4C5u4�p22u3�6u3�p22u2�6u2Cp22uC6u�p22C1/
3C12u2C9u4�4u3�8u

�v.2
p

22u4�13u4�p22u3C2 u3C3
p

22u2�20u2�p22uC10u�7Cp22/
3C12u2C9u4�4u3�8u

3

7
7
5 :

The two surfaces and the bisector are shown in Fig. 13.8.



260 I. Adamou et al.

Fig. 13.8 Bisector of cone
and oblique plane

2. Circular cylinder and non developable quadric/torus
Let

C.s; t/ D

2

6
6
6
4

2 rs

1 C s2

r.1 � s2/

1 C s2

t

3

7
7
7
5

and S.u; v/ D
2

4
Sx.u; v/

Sy.u; v/

Sz.u; v/

3

5 ;

be the respective parametrizations of a circular cylinder and a quadric or a torus.
Note that in this case

G.u; v; s; t/ D det.jA; Rj/ D 0

is linear in t and quadratic in s: More precisely

G.u; v; s; t/ D �0.t/ .s2 � 1/ C �1.t/ s D 0; (13.20)

where

�0.t/ D �2 a.@uSy @vSz � @uSz @vSy/t � 2 a.@vSy Sz @uSz � @uSy Sx @vSx

�@uSy Sz @vSz C @vSy Sx @uSx/;

�1.t/ D �2 a.�2 @uSx @vSz C 2 @uSz @vSx/t � 2 a.2 @uSx Sy @vSy

�2 @vSx Sy @uSy C 2 @uSx Sz @vSz � 2 @vSx Sz @uSz/:

We distinguish two cases:

(a) The surface S is a surface of revolution, sharing the same axis with the
cylinder C:
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(b) The surface S is not of revolution or it does not share the same axis with the
cylinder C .

The Surface S Is a Surface of Revolution, Sharing the Same Axis with
the Cylinder C

If we parametrize the surface of revolution by

S.u; v/ D

2

6
4

A.u/ 1�v2

1Cv2

A.u/ 2v
1Cv2

B.u/

3

7
5 ; A; B 2 R.u/;

we get, using G.u; v; s; t/ D 0;

s1.v/ D 1 � v

1 C v
; s2.v/ D �1 C v

1 � v
:

In both cases Fi .u; v; t/ D F.u; v; si .v/; t/ is quadratic in t: Therefore we obtain
the following result. The complete proof can be found in [1], Section 3.4.

Theorem 13.4 Consider a cylinder C and a surface of revolution S sharing the
same axis with C: Let �s.u; v/ D k@uS � @vSk be the norm of the normal vector
of S .

(a) There exist four components of the parameterization for the untrimmed
bisector Bi .u; v/; i D 1; 2; 3; 4, that might contain a square root of a non-
negative expression (originating from �s).

(b) If �s is rational, then the bisector parametrizations Bi .u; v/; i D 1; 2; 3; 4

are rational. Furthermore, if �s 2 QŒı�.u; v/, then Bi 2 QŒı�.u; v/; i D
1; 2; 3; 4.

Since the norm of the normal vector of all quadrics of revolution and tori is
rational, we have:

Corollary 13.2 The bisector of a circular-cylinder and a quadric of revolution
or a torus sharing the same axis is rational.

The Surface S Is Not of Revolution or It Is Not Sharing the Same Axis
with the Cylinder C

In this case, after finding t D t.u; v; s/ from Eq. (13.20), it can be inferred, after
some cumbersome calculations, that

F.u; v; s; t.u; v; s// D f1.u; v; �s; s/ f2.u; v; �s; s/
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where f1.u; v; �s; s/ and f2.u; v; �s; s/ are quadratic in s.

Theorem 13.5 Let C be a circular cylinder and S a torus or a quadric which
is not of revolution, or it does not have the same axis of revolution as C: Let
�s.u; v/ D k@uS � @vSk be the norm of the normal vector of S: Then, there are
four components of the parameterization for the untrimmed bisector Bi .u; v/; i D
1; 2; 3; 4, that in general contain a square root.

The proof of this theorem may be found in [1], Section 3.4.

Example 13.2.5 Let

C.s; t/ D

2

6
6
6
4

2 s

1 C s2
C 4

t

1 � s2

1 C s2

3

7
7
7
5

and S.u; v/ D

2

6
6
6
6
4

2 u

1 C u2 C v2
v

1 C u2 C v2

2.1 � u2 � v2/

1 C u2 C v2

3

7
7
7
7
5

be a circular cylinder and an ellipsoid, respectively. Note that the ellipsoid is not
of revolution.

The four components of the bisector parametrization are given by:

Bi .u; v/ D

2

6
6
6
6
6
6
6
6
6
6
6
6
4

�2 u
�
4 .si.1Cu2Cv2//

2�4C3 si.u2�1Cv2/
�

.1Cu2Cv2/.si u2�2 usi
2C2 uCsiv2�si/

v
�
.si.16 u2�6 uC16 v2C16//

2�1C15 si.u2�1Cv2/
�

.1Cu2Cv2/.si u2�2 usi
2C2 uCsiv2�si/

�
.si.u2�1Cv2//

2�1
�
.2 u2C3 uC2C2 v2/

.1Cu2Cv2/.si u2�2 usi
2C2 uCsiv2�si/

3

7
7
7
7
7
7
7
7
7
7
7
7
5

;

i D 1; 2; 3; 4, where

s1 D a1 C b1� C r1

16c
; s2 D �a2 C b2� C r1

16c
; s3 D a3 C b3� C r2

16c
;

s4 D �a4 C b4� C r2

16c
; r1 D p

˛1 C ˇ1 � ; r2 D p
˛2 C ˇ2 �;

� D
p

u4 C 14 u2 C 2 u2v2 C 62 v2 C 1 C v4;

and ai ; bi ; c; ˛i ; ˇi 2 RŒu; v; �� are of very large size.
The good component of the bisector (the set of points at equal distance from

C and S ) is shown in Fig. 13.9.
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Fig. 13.9 Bisector of
cylinder and ellipsoid

We will now show the results of applying the algorithm to parametrize the
bisector of cylinders and cones.

Cylinder-Cylinder, Cylinder-Cone, or Cone-Cone Bisector

A cylindrical surface (or simply, cylinder) has a parametrization of the form

C.s; t/ D
2

4
f1 .s/ C k1 t

f2 .s/ C k2 t

f3 .s/ C k3 t

3

5 ;

where f1; f2; f3; are rational functions, and k1; k2; k3; are real constants. A conical
surface (or simply, cone) has a parametrization of the form

OC.u; v/ D
2

4
v g1 .u/

v g2 .u/

v g3 .u/

3

5

where g1; g2; g3; are rational functions.
Applying the algorithm to compute the bisector of a cylinder and a cone, we get

G.u; v; s; t/ D v G0.u; v; s; t/;

where G0.u; v; s; t/ is linear in the parameters t and v: We obtain the following
result, whose proof can be found in [1], Section 3.5.

Theorem 13.6 Suppose S1 and S2 are respectively a cylinder and a cone. Let
�1.s; t/ D k@sS1 � @t S1k and �2.u; v/ D k@uS2 � @vS2k, be the norms of the
respective normal vector of S1 and S2: Then

1. There exist two components of the parametrization for the untrimmed bisector
Bi .s; u/; i D 1; 2, that might contain a square root of a non-negative expression
(originating from �1 and �2).
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2. If �1 and �2 are rational, then the parametrization Bi .s; u/; i D 1; 2, is rational.
Furthermore if �1 2 QŒı1�.s; t/; �2 2 QŒı2�.u; v/, then Bi 2 QŒı1 	 ı2�.s; u/:

Example 13.2.6 Let

C1.s; t/ D
2

4
s2 C 2

t

s

3

5 and C2.u; v/ D

2

6
6
6
4

u

u2 C 1
1 � u2

u2 C 1
v

3

7
7
7
5

be a parabolic cylinder and an elliptic cylinder, respectively. The norms of the
respective normal vectors are

�1.s; t/ D
p

1 C 4 s2 and �2.u; v/ D
p

14 u2 C 1 C u4

.u2 C 1/
2

:

The two components of the untrimmed bisector parametrization are given by:

B1.u; s/ D

2

6
6
6
6
4

u.�16u.u2C1/.1C4s2/.s2C2/C14 u2C1Cu4C4R/
.u2C8su�1/.�u2C8suC1/.u2C1/

� .u2�1/.�4u.u2C1/.1C4s2/.s2C2/�2u2.�1C24s2/Cu4C1CR/
.u2C8su�1/.�u2C8suC1/.u2C1/

� s.�.u2C1/..u4C1/.5C2s2/C9u2.6�4s2//C2u.14u2C1Cu4/C8uR/
.u2C8su�1/.�u2C8suC1/.u2C1/

3

7
7
7
7
5

;

B2.u; s/ D

2

6
6
6
6
4

� u.16 u.u2C1/.1C4 s2/.s2C2/Cu4�14 u2�1C4 R/
.u2C8 su�1/.�u2C8 suC1/.u2C1/

.u2�1/.4 u.u2C1/.1C4 s2/.s2C2/�2 u2C48 s2u2�u4�1CR/
.u2C8 su�1/.�u2C8 suC1/.u2C1/

s.u2C1/.2 u4s2C5 u4C32 s2u2C54 u2�32 s2C5/C8 uR

.u2C8 su�1/.�u2C8 suC1/.u2C1/

3

7
7
7
7
5

;

with R D �
s2u2 C s2 C 2 u2 C 2 � u

�p
.14 u2 C 1 C u4/ .1 C 4 s2/. See Fig. 13.10

for a plot of one component of the bisector.

Remark 13.4 This approach can be applied in the same way to deal with the case
of two cylinders or two cones.

13.3 Voronoï Diagram of Parallel Half-Lines Constrained
to Compact Domain D0 � R

3

Let fd1; : : : ; dng be a family of n parallel half-lines and D0 a compact domain of
R

3; defined, respectively, by (13.3) and (13.4). We are interested in computing the
Voronoï diagram of fd1; : : : ; dng constrained to D0, with respect to the Euclidean
distance.
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Fig. 13.10 Bisector of elliptic and parabolic cylinder

The Euclidean distance between a point Q D .x; y; z/ of R3 and a site di is given
by:

Ogi .x; y; z/ D
(

d . .x; y; z/; .xi ; yi ; zi / / if x < xi ;

d . .y; z/; .yi ; zi / / if x > xi ;
(13.21)

where d.	; 	/ denotes the Euclidean distance. The VD of fd1; : : : ; dng may be
obtained as a minimization diagram (see [8, 14] and [58]), namely

VD.d1; : : : ; dn/ D MD.Og1; : : : ; Ogn/; (13.22)

and the Voronoi cell associated to a site di is

Vor.di / D fQ 2 D0 W Ogi .Q/ 6 Ogj .Q/; j D 1 : : : ng:

Furthermore, since d.Q; dj / < d.Q; dk/ if and only if d 2.Q; dj / < d 2.Q; dk/;

VD.d1; : : : ; dn/ � MD.g1; : : : ; gn/;

where

gi .x; y; z/ D
(

d2 . .x; y; z/; .xi ; yi ; zi / / if x < xi ;

d2 . .y; z/; .yi ; zi / / if x > xi ;
(13.23)

Note that gi is a piecewise polynomial expression in x; y; and z.
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13.3.1 Bisectors, Trisectors and Quadrisectors of Sites

Let us present an algebraic description of the boundary components of a VD cell.

1. Bisector of two sites: Let di and dj ; xi < xj be two sites with their respective
associated distance functions gi and gj . Let Ai D .xi ; yi ; zi /; Aj D .xj ; yj ; zj /,
and `i ; `j be their respective endpoints and supporting lines.

The bisector surface of di and dj , is the equidistant surface from the two sites.
It determines, locally, a VD face and it is defined by

bi;j D f.x; y; z/ 2 R
3 W bi;j .x; y; z/ D 0g;

where

bi;j .x; y; z/ D gi .x; y; z/ � gj .x; y; z/: (13.24)

The possible ambiguity in the notation will be clarified from the context.
Expanding Eq. (13.24), we obtain:

bi;j .x; y; z/ D

8
ˆ̂
<

ˆ̂
:

pi;j .x/ C `i;j .y; z/ if x < xi ,

qi;j .x/ C `i;j .y; z/ if xi 6 x < xj ,

`i;j .y; z/ if x > xj :

(13.25)

where

pi;j .x/ D 2x.xj � xi / C x2
i � x2

j ; (13.26)

qi;j .x/ D .x � xj /2; (13.27)

`i;j .y; z/ D 2 y.yj � yi / C yi
2 � yj

2 C 2 z.zj � zi / C zi
2 � zj

2: (13.28)

Thus, the bisector surface consists of three connected pieces of surfaces:

• One half plane (for x < xi ): contained in the bisector-plane of the two
endpoints Ai and Aj ;

• One half parabolic-cylinder piece (for xi 6 x < xj ): supported by the
bisector-surface of the endpoint Aj and the supporting line `i (since xi < xj );

• One half plane (for x > xj ): contained in the bisector-plane of the two
supporting lines `i and `j .

2. Trisector of three sites: Let di ; dj and dk; xi < xj < xk; be three sites with
their respective distance functions gi , gj and gk: Let Ai D .xi ; yi ; zi /; Aj D
.xj ; yj ; zj /; Ak D .xk; yk; zk/; and `i ; `j ; `k be their respective endpoints and
supporting lines.

The trisector of the three sites di ; dj and dk is the equidistant curve from
the three sites. It determines, locally, a VD edge and it is given by the common
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intersection of the three (3 D �
3
2

�
) bisectors spanned by three sites (2 by 2):

Ti;j;k D f.x; y; z/ 2 R
3 W bi;j .x; y; z/ D bi;k.x; y; z/ D bj;k.x; y; z/ D 0g:

(13.29)

Any equidistant portion of curve from more than three sites will be called
a degenerate edge portion. This can happen, for example, if there are more
than three neighbouring parallel half-lines which intersect a circle in the plane
Oyz (see Figs. 13.16 and 13.17). The trisector Ti;j;k consists of four connected
components of planar rational curves, and it is parametrized as follows:

Ti;j;k.x/ D

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

h
x; � a0;1Ca1;1x

c0
;

a2;1Ca3;1x

c0

iT

if x < xi ;
h
x; � a0;2Ca1;2xCa2;2x2

c0
;

a3;2Ca4;2xCa5;2x2

c0

iT

if xi 6 x < xj ;
h
x;

a0;3Ca1;3xCa2;3x2

c0
; � a3;3Ca4;3xCa5;3x2

c0

iT

if xj 6 x < xk;
h
x;

a0;4

c0
; � a1;4

c0

iT

if x > xk;

(13.30)

where: c0; al;l 0 are constant expressions depending on xi ; yi ; zi ; yj ; zj ; zj ;

xk; yk; zk . The four components of the trisector are:

• One half-line (for x < xi ) supported by the trisector line (the intersection of
three bisector-planes) of the corresponding endpoints Ai , Aj and Ak ,

• A piece of half-parabola (for xi 6 x < xj ) supported by the intersection
of the bisector-plane of the endpoints Aj and Ak , a parabolic-cylinder (the
bisector of Aj and `i ) and a parabolic-cylinder (the bisector of Ak and `i ),

• A piece of half-parabola (for xj 6 x < xk) supported by the intersection of
the bisector-plane of `i and `j , a parabolic-cylinder (the bisector of Ak and
`i ) and a parabolic-cylinder (the bisector of Ak and `j ),

• One half-line parallel to the x�direction (for x > xk) supported by the tri-
sector line (the intersection of the three bisector-planes) of the corresponding
lines `i , `j and `k.

Note that although each piece is a planar curve, they are not contained in the
same plane.

3. Quadrisector of four sites: The quadrisector is the equidistant point from four
sites di ; dj ; dk; and dl . It determines the VD vertex and it is defined by the
common point of four (4 D �

4
3

�
) trisectors spanned by the four sites (3 by 3):

Qi;j;k;l D Ti;j;k \ Ti;j;l \ Ti;l;k \ Tj;l;k (13.31)

Any equidistant point from more than four sites is called a degenerate vertex.

Let us introduce some definitions and the regularity criteria for the topology of
algebraic curves and surfaces introduced by L. Alberti and B. Mourrain [2] and
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Liang et al. [43], which can be applied to compute the topology of the trisector
curves and the bisector surfaces in a compact domain.

Definition 13.2 Let fg1; : : : ; gng be a family of distance functions associated to
a family of sites fd1; : : : ; dng and a compact domain D D Œa1; b1� � Œa2; b2� �
Œa3; b3� :

1. A distance gi0 is said to be active in D if it contributes, locally, to the lower
envelope of the family of distance functions fg1; : : : ; gng,

i:e: W min.gi0jD / 6 minfmax.gijD /; i D 1 : : : ; ng;

and the site di0 is said to be active in the domain D.
2. For a domain D � R

3, we call d -list a list of distance functions restricted to D;

denoted by B.D/ D fg1jD ; : : : ; gpjD g; so jB.D/j D p.

Definition 13.3 ([2,43]) An algebraic curve C (or surface S) is said to be t-regular
in a compact domain D if its topology is uniquely determined from its intersection
with the boundary of D.

A domain D is said to be t-regular if the bisectors and trisectors within it are
t-regular.

Definition 13.4 A d -list B.D/ is said to be b-regular if the corresponding bisectors
and trisectors are t-regular in D.

Since in our context we are interested in computing the topology of VD faces
(bisectors), edges (trisectors) and vertices (quadrisectors) in a domain D, any d -
list with more than four distance functions is not b-regular, whence the b-regularity
will be effectively checked for a d -list containing at most four distance functions as
follows:

1. A d -list B.D/ with one active distance function gijD (D does not contain a VD
cell, i.e. D � Vor.di /) is trivially b-regular.

2. A d -list B.D/ with two active distance functions gijD and gjjD (D might
intersect one bisector surface) is b-regular if the bisector bi;j is t-regular
in the domain D.

3. A d -list B.D/ with three active distance functions gijD , gjjD and gkjD (D might
intersect three bisectors and one trisector) is b-regular if:

(a) Each one of the three bisectors bi;j ; bi;k and bj;k , separately, is t-regular
in D;

(b) The trisector curve Ti;j;k is t-regular in D.

4. A d -list B.D/ with four active distance functions gijD , gjjD , gkjD and gljD
(thus, D might intersect six bisectors, four trisectors and one quadrisector) is
b-regular if:

(a) Each one of the six bisectors bm;n; m < n 2 fi; j; k; lg; separately, is
t-regular in D,
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(b) Each one of the four trisectors Tm;n;p; m < n < p 2 fi; j; k; lg, separately,
is t-regular in D, and

(c) The corresponding quadrisector point Qi;j;k;l is contained in D.

In the next section, we describe the main steps of the algorithm for computing
the VD.

13.3.2 The Algorithm

The approach consists of two main parts: the subdivision phase of the initial domain
D0; and the reconstruction phase of polyhedra isotopic to the VD cells constrained
to D0:

• During the subdivision phase, the initial domain D0 will be subdivided into sub-
domains which are t-regular or have size smaller than �: If D0 is not t-regular,
it is divided in two sub-domains by a mediator plane which is perpendicular to
one of the directions of the coordinate system. This process is repeated with
each sub-domain, and so on, following a kd -tree structure (see [6]), until all
sub-domains are t-regular or have size smaller than �: The sub-domains that
intersect VD cells will be identified and connected following an adjacency graph.
In the subdivision phase, floating-point computations are done using interval
arithmetic, a well known technique to reduce accumulated rounding errors (see
[3, 9, 47]). In interval arithmetic the real numbers are represented by intervals
whose endpoints are floating-point numbers. Interval arithmetic has been used
often in Computational Geometry and CAGD to design robust algorithms (see
[48, 54]). For example, a combination of a subdivision method and interval
arithmetic has been applied in [33] to the computation of arrangements.

• The reconstitution phase consists in traversing the adjacency graph using a depth-
first search (DFS) algorithm (see [10,21,28,39,55] and [35]), while meshing all
bisector surfaces and trisector curves in each traversed sub-domain.

Subdivision Phase

Let D0 D Œa1; b1� � Œa2; b2� � Œa3; b3� be the initial domain, the n sites d1; : : : dn,
and a threshold " > 0.

1. The process begin by computing the initial d -list

B.D0/ WD fg1jD0
; : : : ; gnjD0

g

carrying the distance functions associated to the n sites.
2. Then we initialize:

• A stack P by the d -list B.D0/ and
• The adjacency graph G by the empty graph.
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3. The principal step starts with a loop by taking a d -list B.D/ from the stack P :

Using interval arithmetic, the distance functions are bounded on the sub-domain
D, i.e.,

mi
D 6 gijD 6 M i

D; i D 1; : : : ; jB.D/j:

All distance functions which are not active in D are filtered out, i.e., all distances
gi0jD verifying

m
i0
D > minfM i

D; i D 1; : : : ; jB.D/jg;

will be eliminated from the d -list B.D/:

B.D/ WD B.D/Ÿfgi0jD g:

The resulting d -list, which contains only the active distances, will be tested for
regularity:

• If the d -list B.D/ is b-regular or if the threshold size on the sub-domain is
reached (i.e.: jDj D max16i63.jbi �ai j/ < "), then a list of the corresponding
bisectors and trisectors will be computed:

Bbis.D/ WD
�

Ti;j;k D bi;j \ bi;k \ bj;k; bi;j ; i < j < k 2 f1; : : : ; jB.D/jg
�

;

and it will be placed in the graph G.
• Else, the domain D will be subdivided in two sub-domains D1 and D2 by a

mediator plane which is perpendicular to the direction of the longest edge of
D. The adjacency graph G will be updated by replacing the d -list B.D/ by
the two new corresponding d -lists B.D1/ and B.D2/, by adding an adjacency
edge between them, and connecting them with their neighbour d -lists. Finally,
they are stored in the stack P :

The process continues until the stack P is empty.

However, the d -lists encountered when the threshold size is reached might span
degenerate VD edges and/or degenerate VD vertices. Indeed, this could happen if all
involved bisectors (and/or trisector) have some common intersection curve portion
(resp. and/or point) in the corresponding sub-domain.

At the end of the process, we obtain an adjacency graph in which the d -lists of
bisectors and trisectors are the nodes (or vertices) and the adjacencies (between lists)
are the edges. These nodes (lists Bbis.D/) could span: (1) one bisector, (2) three
bisectors and one trisector, (3) six bisectors, four trisectors and one quadrisector, or
eventually (4) degenerate VD edges and degenerate VD vertices, in the domain D.
The adjacency graph will serve for the traversal path during the next phase.
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Reconstruction Phase

This part of the method consists in the reconstruction of the VD cells, by traversing
and meshing all lists Bbis.D/ sorted in the adjacency graph G.

• The traversal of the lists will be realized by applying a DFS algorithm (see [28]
and [35]). The DFS algorithm is a way of traversing a graph or tree G, starting
at one specific node and going through all nodes exactly once. The algorithm is
successively applied to each sub-graph Gl;k of the adjacency graph G; where Gl;k

is the sub-graph of all lists containing the bisector bl;k :

Gl;k D fBbis.D/ 2 G W bl;k 2 Bbis.D/g:
• The meshing process of a list consists in constructing a polyhedron whose

topology is isotopic to the parts of the bisectors and trisectors that compose
the VD faces and VD edges, respectively, in the corresponding domain. Their
topology is determined from their intersection points with the boundary of the
domain (see the Figs. 13.11–13.15).

We introduce the following definition.

Definition 13.5 A site dp is said to be involved in a list Bbis.D/; if there exists
q 2 f1; : : : ; jB.D/jg such that bp;q 2 Bbis.D/:

An approximation of the boundary of the VD cell associated to a site di ; VDŒi �; will
be reconstructed by traversing and meshing all lists in which the site is involved. All
open VD cells will be completed by a piece of the boundary @D0 such that the
reconstruction will be constrained to D0.

The process of the reconstruction starts from a list Bbis.D/ (a node) of G, which
has not been traversed. The boundary of VDŒi �; will be obtained as follows:

Fig. 13.11 Cell associated to d1
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Fig. 13.12 Cell associated to d2

Fig. 13.13 Cell associated to d3

1. For all sites dj involved in Bbis.D/; j ¤ i , follow the sub-graph Gi;j of all lists
that contain the bisector bi;j , starting from Bbis.D/ by DFS.Gi;j ; Bbis.D//; and
mesh the bisectors and trisectors of all traversed lists.

2. If, during the traversal, we reach a list Bbis.D/1 that contains a VD edge Ti;j;j1 ,
then the site dj will be substituted by a site dj1 ; j1 ¤ i and continue the traversal
with the sub-graph Gi;j1 � G; of all lists that contain the bisector bi;j1 starting
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Fig. 13.14 Cell associated to d4

Fig. 13.15 VD cell four site d1; d2; d3 and d4

from Bbis.D/1 by: DFS.Gi;j1 ; Bbis.D/1/; and mesh the bisectors and trisectors
of all traversed lists, as before.

3. The process continues until reaching the initial list Bbis.D/ for the second time.

The VD cell VDŒi � is therefore covered. We repeat the same process for all sites.
At the end we obtain a polyhedral approximation of each VD cell, which is isotopic
to the VD cell in the domain D0:
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Remark 13.5 (a) The approximate VD computed is topologically equivalent to the
exact VD on each sub-domain D such that jDj > "; or when jDj < " and the
corresponding list Bbis.D/ contains only one VD edge or only one VD vertex.
In other cases the topology is unknown.

(b) The same process for computing the topology of VD faces and VD edges in the
regular case can be used in the case of degenerate VD edges and degenerate VD
vertices.

The implementation of the algorithm is being developed, but has not been completed
yet. Some subroutines has been tested with satisfactory results. To illustrate the
approach, we present a prototype example with four sites, using Maple software
and GeoGebra 3D.

Example 13.3.1 Let d1 D .�5C t; 3; �2/, d2 D .�3C t; �4; 4/, d3 D .3C t; 4; 3/

and d4 D .t; 0; 0/ be four half-lines and the domain D0 D Œ�10; 10� � Œ�6; 6� �
Œ�6; 10�.

The example requires the computation of about 45 intersection points (bisector
surface and trisector curve with the border of sub-domains), and building and
connecting about 65 triangles. The meshed VD cells of fd1; d2; d3; d4g constrained
to D0 are separately shown in the Figs. 13.11–13.14, and the four VD cells are
simultaneously presented in Fig. 13.15.

Remark 13.6 Suppose we have five parallel half-lines, which intersect a circle C in
the plane .Oyz/: Then we obtain a portion of degenerate VD edge as announced
in the trisector definition 2. More precisely, using the notation in Eq. 13.3, let
d1; d2; d3; d4; d5 be parallel half-lines, which intersect C; such that x1 < x2 < x3 <

x4 < x5. In this situation, we obtain a portion of degenerate VD edge: a half-line
with endpoint A; whose first coordinate is equal to x5; parallel to the given di , and
passing through the center of C (see Fig. 13.16). For x < x5 the edge bifurcates in
five branches of curve, all starting from A. Each branch consists of two pieces of

Fig. 13.16 The portion of degenerate edge (equidistant from the five half-lines) in green
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Fig. 13.17 The five branches of VD edge (for x < x5) started at end point A of the portion of
degenerate VD edge (for x > x5)

half-parabola and one half-line (see Fig. 13.17). The algorithm we present can deal
easily with this case.

Conclusion
We presented new approaches for computing an exact algebraic parametri-
zation of a planar curve-curve bisector and two low degree rational surfaces
bisector, and an automatic geometric and numerical characterization of the
planar point-curve and curve-curve bisector. In addition, we presented a new
algorithm for computing a Voronoï diagram of a set of parallel half-lines in
tri-dimensional space, constrained to a compact domain.

1. For the algebraic parametrization of bisectors, in most cases involving two
low degree planar rational curves or rational surfaces, the new methods
proposed produce, efficiently, an exact parametrization of the bisector. This
includes line-conic/cubic, circle-conic/cubic, circle-curve, plane-quadric,
plane-torus, circular cylinder-quadric, circular cylinder-torus, cylinder-
cylinder, cylinder-cone, and cone-cone bisectors.

(continued)
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Even if the parameterization obtained is not rational in general, we get a
representation that can be used easily for approximation purposes and for
the trimming process in the planar case.

2. For an automatic geometric and numerical characterization for the planar
point-curve and curve-curve true bisector, using color model RGB in
GeoGebra, the true bisector points are scanned and displayed in white
color. Although the method does not provide an algebraic representation,
it allows the collection of the coordinates of a dense set of bisector points,
up to a fixed small error, that can be used to compute the approximate
representation of the bisector. It should be noted that the approach is similar
to that introduced by Shou et al. [59], but much more advantageous by
obtaining an effective list of coordinates points of the true bisector, not
only for the point-curve case, but also for the curve-curve case.

3. For the VD, based on subdivision process and meshing algebraic curve and
surface in a compact domain, we presented a new algorithmic approach
for computing an approximative VD of new kind of sites, the parallel half-
lines, constrained to a compact domain D0 � R

3; and with respect to the
Euclidean distance. Unlike some approximative algorithms, the algorithm
we presented computes an approximation of the VD, which is topologi-
cally equivalent to the exact one, for all sub-domains D with jDj > ", and
when jDj < " and the corresponding list Bbis.D/ contains only one VD
edge or only one VD vertex. In other cases, an advanced method have to
be developed for guarantying correct topology of the VD. The approach
could be applied for a compact domain of any metric space, in which, the
distance function is transformable in a polynomial expression. We plan
to implement our algorithm in a programming language for an effective
analysis of the approach. In the future, we plan to extend the approach to
the case of non-Euclidean distance and non parallel half-lines, which could
be a more complicated problem.

Acknowledgements The authors want to thank the reviewers for the appropriate suggestions that
have helped to improve the paper.
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Chapter 14
Generating an Approximate Trivariate Spline
Representation for Contractible Domains

Thien T. Nguyen

14.1 Introduction

A volume parameterization is a vector function that maps points in a three dimen-
sional domain (physical domain) to points in a suitable domain (parameter domain),
usually a cube, cylinder, sphere or PolyCube [21], a solid formed by joining
several cubes face-to-face. Conversely, a parametric solid model is represented by
a mapping from a parameter domain to the physical space. Therefore, once we
know the parameterization mapping, we can construct the parametric model by
approximating the inverse of the parameterization mapping. In order to build a
valid (non-self-overlapping) model, the parametric mapping must be one-to-one.
The parameterization mapping must therefore also be bijective on its image.

In this paper, we describe an algorithm to convert a contractible domain in R
3,

defined by its closed triangular mesh boundary, to a valid parametric trivariate B-
spline model. The main goal is an application in isogeometric analysis, the new
numerical scheme that provides the possibility of integrating finite element analysis
into conventional NURBS-based CAD design tools [11]. So, our work is motivated
by the fact that isogeometric analysis requires solid models represented by trivariate
splines, while CAD systems usually only provide information on the boundary, i.e.,
mappings from the parametric domains to the boundary of the models [2].
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14.1.1 Related Work

Surface parameterization is mainly related to the problem of parameterizing trian-
gulated surfaces. It has gained a lot of research interest in the past decades due to
the advent of laser range scan technology which provided high-resolution models of
physical objects with millions to billions of sample points. Basically, a good surface
parameterization usually minimizes distortion in either angles or areas in some
sense. An excellent review of many important methods as well as the fundamental
theory is presented in the tutorial by Hormann et al. [10].

While many successes are achieved in the field of surface parameterization,
there are only few works on volume parameterization and its theoretical guarantee
for bijectivity is far from adequate. Several key limitations have been pointed out
in [13] which prevent existing methods from being used in real applications. We
mention here some of them which are related to the theoretical background of this
paper. Martin et al. [17] proposed a parameterization method for a generalized
cylinder-type volume defined by a tetrahedral mesh. This method is based on
discrete harmonic functions and can be used for generating trivariate B-spline
models for isogeometric analysis. Because the parameter domain is a cylinder,
the parametrization is singular along the axis or the axis-like curve. The authors
improved their algorithm in [16] to deal with this drawback. Aigner et al. [1] used
least squares with several penalty terms corresponding to particular features of the
shape to build a spline approximation for swept volumes. Such volumes include
many free-form shapes in CAD system, like blades or propellers. Li et al. [13, 14]
solved harmonic equations by the fundamental solution method to find a mapping
between volumes with the same topology. This method is a bit slow and the results
seem to depend on the fine-tuning of certain parameters and source points. In our
method, we also use a meshless method to find a mapping, but based on the web-
splines method [9]. Xia et al. [23] presented an idea to parameterize objects with
handles to polycubes. In this method, two harmonic fields are first computed for
both a 3-dimensional object and a corresponding polycube. Then by tracing integral
curves generated by the harmonic fields, a parameterization is constructed. The
authors proved the bijectivity of the mapping by its construction.

Volume parameterization is also an attractive approach for all-hex meshing where
a volumetric mapping is exploited to transfer hex-mesh from a parameter domain
to the input model. Gregson et al. present a method to compute PolyCube maps in
[8]. CubeCover is another method for computing a volumetric map using a guiding
frame-field [19]. Recently, Zhang and her co-authors have published a method to
generate volumetric T-spline based on solving a harmonic field and PolyCube maps
[15, 22].
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14.1.2 Overview of Our Framework

Our framework consists of four steps.

- Step 1 (Surface segmentation and parameterization). The (triangular mesh)
boundary @˝ is subdivided into six patches �i ; i D 0; : : : ; 5; with the connec-
tivity of the facets of the unit cube. Then each patch is parameterized in order to
obtain data for the next steps. Each two incident patches are C 0 matched at their
sharing edge.

- Step 2. We find a mapping

f W ˝ ! Œ0; 1�3

p 7! f .p/ D .f1.p/; f2.p/; f3.p//T

by minimizing a sequence of harmonic mappings, i.e., we find f1, then use f1 to
find f2 and so on.

- Step 3. We modify the mapping f such that it is compatible to the surface
parameterization found in Step 1. The modified mapping keeps all important
properties from f , i.e., it is bijective.

- Step 4. Find the B-spline mapping x W Œ0; 1�3 ! R such that x � f �1 by
least-squares approximation.

Step 3 is the main new contribution in addition to the preliminary conference
version [18]. In the next sections, we describe our framework step by step in detail.

14.2 Surface Segmentation and Parameterization

For a domain ˝ defined as the interior of a closed triangular mesh, we would like
to subdivide the boundary @˝ into six patches �i ; i D 0; : : : ; 5, as illustrated in
Fig. 14.1. We use the method from [3]. In this method, users are allowed to choose
some triangles as seeds for each patch. We use the L2;1 metric as in the paper. Each
triangle is associated to a cost to a particular seed. We construct a queue and use
a region growing technique to obtain a segmentation result. The segmentation is
topologically equivalent to the unit cube, i.e., each face has exactly four incident
faces. After a segmentation of the boundary is generated, we parameterize each
patch to obtain the mapping from the boundary of ˝ to the boundary of the
unit cube. We use the mean value coordinate method by Floater [7] for mesh
parameterization. Then we may approximate each patch by its spline representation
and consider these parametric surfaces as the boundary of ˝ . In order to make
C 0 continuity between each two adjacent patches, the control points on the shared
edge are made coincident. Figure 14.1 shows six parametric patches in the spline
approximation of the boundary mesh patches. We use the configuration of the
boundary surfaces as illustrated in Fig. 14.2. For i D 0; : : : ; 5, we denote by
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Fig. 14.1 Surface segmentation and parameterization. (a) Surface segmentation. (b) �0; �1. (c)
�2; �3. (d) �4; �5
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Fig. 14.2 Parameterization configuration of the boundary surfaces

�i W �i ! Œ0; 1�2 the parameterization mapping of the patch �i and xi W Œ0; 1�2 ! �i

the parametric representation for each boundary surface, which is an approximation
of ��1

i .

14.3 Mapping Defined by Sequences of Harmonic Maps

Once we obtain the suitable partition of the boundary into six patches and
parameterization mappings, we proceed to Step 2. As described above, we are going
to find the coordinate functions successively, i.e., we first find f1, then use f1 to find
f2 and finally find f3 by using information from f1 and f2. In the following, we
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denote by �M and rM the Laplace-Beltrami operator and the tangential gradient
operator on a particular manifold M � R

3.

14.3.1 The First Coordinate Function f1

The function f1 is designed as a critical point of the following harmonic energy

E1.f1/ D
Z

˝

jjrf1jj2dvol3.˝/; (14.1)

subject to the boundary conditions

f1j�0 D 0; f1j�1 D 1

and

f1 D .�i /2 on �i ; i D 2; 3; 4; 5:

Figure 14.3a illustrates the boundary conditions that f1 must satisfy. So, the value
of f1 is 0 on the bottom surface, 1 on the top surface and increases gradually from
0 to 1 following the parametric curves on the remaining surface patches. Once f1 is
found, its level sets could be considered foliage layers piled up from the bottom to
the top of the object, as shown in Fig. 14.3b. We denote by

Fig. 14.3 The first coordinate function. (a) Boundary conditions. (b) The resulting level sets
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L1.z1/ D fp W f1.p/ D z1g; z1 2 Œ0; 1�;

the z1-level set of f1. Because f1 is a harmonic map from ˝ to Œ0; 1�, we see that
L1.z1/ is contractible for each z1 2 Œ0; 1� by the maximum principle.

14.3.2 The Second Coordinate Function f2

Once f1 is found, we consider a single level set L1.z1/ for a particular z1 2 Œ0; 1�.
We find f2 as a critical point of the following harmonic energy

E2.z1; f2/ D
Z

L1.z1/

jjrL1.z1/f2jj2dvol2.L1.z1//; (14.2)

subject to the boundary conditions

f2j�2\L1.z1/ D 0; f2j�3\L1.z1/ D 1

and

f2 D .�i /1 on �i \ L1.z1/; i D 4; 5:

Figure 14.4 illustrates the problem of f2 in more detail. So, we see in this figure,
the tangential gradient of f2 on the level set L1.z1/ at a certain point is the projection
of the gradient of f2 onto the tangent plane at that point of L1.z1/. On L1.z1/, the
value f2 is 0 at the blue boundary curve, 1 at the red boundary curve and increases
from 0 to 1 on the two remaining curves. Once the problem (14.2) is solved, an

Fig. 14.4 The second
coordinate function

∇f2

∇L1(z1)f2

∇f1

f1 = z1
f2 = 0

f2 = 1
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intersection of a level set of f2 and the surface L.z1/ is a single arc, as depicted on
Fig. 14.4. Indeed, if we denote by

L12.z1; z2/ D fp W f1.p/ D z1; f2.p/ D z2g; .z1; z2/ 2 Œ0; 1�2

the z2-level set of f2 on L1.z1/, then L12.z1; z2/ is contractible for each .z1; z2/ 2
Œ0; 1�2 by the maximum principle because f2 is a harmonic map from the manifold
L1.z1/ to Œ0; 1�.

14.3.3 The Third Coordinate Function f3

Following the same strategy, we consider a single level set L12.z1; z2/ for a particular
.z1; z2/ 2 Œ0; 1�2 and find f3 as a critical point of the following harmonic energy

E3.z1; z2; f3/ D
Z

L12.z1;z2/

jjrL12.z1;z2/f3jj3dvol1.L12.z1; z2// (14.3)

subject to the boundary conditions

f3j�4\L12.z1;z2/ D 0; f3j�5\L12.z1;z2/ D 1:

Figure 14.5 illustrates the problem of f3 in more detail. So, we see in this figure,
the tangential gradient of f3 on the level set L12.z1; z2/ at a certain point is the
projection of the gradient of f3 onto the tangent line at that point of L12.z1; z2/. A
tangent vector at that point can be calculated by the cross product of the gradient
of f1 and the gradient of f2, i.e. rf1 � rf2. On L12.z1; z2/, the value of f3 is 0 at
the blue point and 1 at the red point. Because f3 is a harmonic mapping from the

Fig. 14.5 The third
coordinate function

f3 = 0

∇f2

∇f3

f3 = 1∇L12f3

∇f1

f1 = z1

f2 = z2
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manifold (in this case, it is a curve) L12.z1; z2/ to Œ0; 1�, f3 is an increasing function
on this curve. Thus, if we denote by

L123.z1; z2; z3/ D fp W f1.p/ D z1; f2.p/ D z2; f3.p/ D z3g; .z1; z2; z3/ 2 Œ0; 1�3

the z3-level set of f3 in L12.z1; z2/, then L123.z1; z2; z3/ is contractible for each
.z1; z2; z3/ 2 Œ0; 1�3 by the maximum principle. Therefore L123.z1; z2; z3/ contains
only a single point, i.e., f D .f1; f2; f3/

T is bijective. The following theorem
summarizes the discussion above.

Theorem 14.1 If f1; f2 and f3 are the solutions of (14.1)–(14.3), respectively, then
the mapping f D .f1; f2; f3/

T from ˝ to Œ0; 1�3 is bijective.

Now we turn our attention to the boundary conditions of (14.1)–(14.3). There is
nothing special in (14.1) where the boundary conditions are applied to every point on
the boundary of ˝ . But in (14.2), if we can solve every problem for each z1 2 Œ0; 1�,
then the boundary conditions are applied only to four patches which are �2; �3; �4

and �5. There are no boundary conditions on two patches �0 and �1. In fact, we
create a new parameterization for �0 and �1 because L1.0/ D �0 and L1.1/ D �1.
If �0 and �1 have their own parameterizations �0 and �1, then f2 D .�i /1; i D 1; 2;

if and only if .�i /1 is also a critical point of the harmonic energy E2.z1; f2/. This
is due to the uniqueness property of harmonic mappings. Fortunately, because we
use the mean value coordinate method to compute the parameterization of �0 and
�1, the parameterizations satisfy Laplace’s equations. Therefore, the function f2 is
compatible with the parameterization of the boundary of the domain ˝ .

A similar observation happens in the problem (14.3). There are no boundary
conditions on the four patches �0 D L12.0; z2/, �1 D L12.1; z2/, �2 D L12.z1; 0/

and �3 D L12.1; z2/. We create new parameterizations on these patches. Basically,
f3 is an arc-length parameterization scaled to Œ0; 1� with respect to each curve
L12.z1; z2/; .z1; z2/ 2 Œ0; 1�2. The function .�i /2 on each patch �i ; i D 0; : : : ; 3

is equal to f3 if and only if .�i /2 is also a critical point of the harmonic energy
E3.z1; z2; f3/ on the iso-parametric curves in the v-direction of that patch where the
parameterization function .�i /1 must be identical to the coordinate function f2.

To overcome the drawbacks as discussed above, we use a reparameterization
technique to modify the function f3 such that the modified function is compatible
with the parameterization mapping on each boundary patch. We discuss in the next
section more details of these modifications.

14.3.4 Numerical Implementation

To solve the problems (14.1)–(14.3), we use a method similar to the web-splines
method [9]. More precisely, we find an approximate solution f � Of D
. Of1; Of2; Of3/

T in the finite dimensional space spanned by B-splines. For finding an
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approximate solution Ofl , we write

Ofl D
X

.i;j;k/2I
Ni;X .x/Nj;Y.y/Nk;Z.z/
„ ƒ‚ …

Bijk .x;y;z/

cl
i;j;k; l D 1; 2; 3

where cl
i;j;k are real coefficients for l D 1; 2; 3. The basis functions Ni; Nj and

Nk are B-splines of degree d1, d2 and d3 with respect to knot sequences X , Y
and Z which are determined by the projections of the axis-aligned bounding box
B of ˝ to the corresponding axis. In our implementation, we use uniform knot
vectors in the x, y and z-direction and consider only those tensor-product basis
functions whose supports overlap the domain. In order to determine the relevant
basis functions, we compute a characteristic function � of the domain ˝ by an
approximate implicitization algorithm, such as [12] or [5]. So, the boundary of the
domain ˝ is represented by the zero level set of an auxiliary function '.

Now with the penalty method to enforce the boundary conditions, the prob-
lem (14.1) is written as

�

Z

@˝

. Of1 � f1D/2 C
Z

˝

jjr Of1jj2 ! min
c1

i;j;k

where � is a large weight, e.g., 103 and f1D is the function defined by Dirichlet
boundary conditions of f on the boundary of ˝ . The above minimization problem is
quadratic with respect to c1

ijk , so it leads to solving a linear system. We transform the
integral over domain ˝ to the integral over the whole space by using the computed
characteristic function as follows

Z

˝

jjr Of1jj2 D
Z

R3

�jjr Of1jj2

In order to avoid a linear system with high condition number when the supports of
basis functions have only a small intersections with the domain, we set the value of
� to 1 on ˝ where the value of ' is negative and to a small value, e.g. 10�3, outside
˝ where the value of ' is positive. We evaluate the integral by Gauss quadrature.
The boundary integral term is evaluated by taking a weighted sum of finitely many
points.

Once Of1 is obtained, we proceed to solve the problem for f2. It is much more
difficult because f2 is the critical point of harmonic energy on every level set of f1.
By means of minimizing simultaneously the harmonic energy for all level sets of f1

contained in ˝ , we integrate from 0 to 1 and use the co-area formula [6] to obtain

Z 1

0

�Z

L1.z1/

jjrL1.z1/f2jj2
�

dz1 D
Z

˝

jjrL1.z1/f2jj2jjrf1jj
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The intrinsic gradient rL1.z1/f2 is nothing else but the projection of the usual
gradient onto the tangent space, see Fig. 14.4. We have

rL1.z1/f2 D Prf1rf2 WD rf2 � rf1 	 rf2

rf1 	 rf1

rf1

Then by using the similar technique to the problem of finding Of1, we arrive to the
quadratic minimization problem with respect to the coefficients c2

i;j;k. Solving a
sparse linear system gives us the solution.

Once Of1 and Of2 are obtained, we proceed to solve the problem for f3. Analogous
to the problem of finding f2, we minimize the harmonic energy of f3 on every
manifold which is the intersection of a level set of f1 and a level set of f2. This
means that we integrate the harmonic energy on Œ0; 1�2 and use the co-area formula.
This yields

Z

Œ0;1�2

�Z

L12.z1;z2/

jjrL12.z1;z2/f3jj2
�

dz1dz2 D
Z

˝

jjrL12.z1;z2/f3jj2jjrf1 � rf2jj

The intrinsic gradient rL12.z1;z2/f3, see Fig. 14.5, is calculated by

rL12.z1;z2/f3 D Prf1�rf2 rf3 WD .rf3 	 t/t

where the tangential vector is computed by

t D rf1 � rf2

jjrf1 � rf2jj :

Finally, similar to the problem of finding Of1 and Of2, we have to solve a quadratic
minimization problem to obtain the coefficients c3

i;j;k .

14.4 Boundary Parameterizations Preserving
by Reparameterization

First, we explain what is a reparameterization mapping for a parametric surface by
the following definition:

Definition 14.1 Let S WD fs.u; v/ 2 R
3 W .u; v/ 2 D � R

2g be an
arbitrary parametric surface. The mapping R W OD ! D; OD � R

2 is called a
reparameterization mapping if it satisfies

• R is bijective.
• R maps the boundary of OD to the boundary of D or R.@ OD/ D @D.
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After we obtain two coordinate functions f1 and f2, we see that the parameter-
izations of �4 and �5 are preserved. Moreover, the function f1 also reproduces
the .�i /2 of �i with i D 2; 3, and the function f2 reproduces the .�i /2 of �i

with i D 0; 1. Then we have to modify f3 by reparameterization functions in
order to preserve the parameterizations of �i ; i D 0; : : : ; 3. For instance, we
know that .f3; f2/ produces a parameterization for �0 and we want to have a
reparameterization R W Œ0; 1�2 ! Œ0; 1�2 such that R.f3; f2/ matches the original
parameterization �0 of the boundary patch �0. More precisely, if p 2 �0, we
have R.f3.p/; f2.p// D .r0.f3.p/; f2.p//; f2.p//. Here the second coordinate of
R is f2 because f2 reproduces the .�0/2 on �0, and we only have to compute the
reparameterization function r0.

14.4.1 Designing Reparameterization Functions

We prove that the mapping f with modified f3 is still bijective. In the proof, we
use another criterion of the bijectivity of a smooth mapping which is stated in the
following theorem

Theorem 14.2 ([24]) Suppose that f is a C 1 volumetric mapping from a compact
domain ˝ � R

n with a connected boundary to a topologically equivalent parameter
domain in R

n. If f is bijective on the boundary @˝ and its Jacobian Jf D det jrf j
does not vanish on ˝ , then f is bijective.

The next theorem describes our reparameterization technique.

Theorem 14.3 Suppose that f D .f1; f2; f3/
T solves the Eqs. (14.1)–(14.3) and

f3 is modified in two steps as follows

f C3 D r0.f3; f2/.1 � f1/ C r1.f3; f2/f1 (14.4)

f CC3 D r2.f
C

3 ; f1/.1 � f2/ C r3.f
C

3 ; f1/f2 (14.5)

where ri W Œ0; 1�2 ! Œ0; 1� are the reparameterization functions on �i ; i D 0; : : : ; 3.
Then the modified mapping f D .f1; f2; f CC3 /T is bijective and preserves the
boundary parameterizations.

Proof It is easy to see that the mapping f D .f1; f2; f3/T is bijective by the same
arguments as in the previous section. Without loss of generality, we assume that the
Jacobian of f is positive. Now we prove that .f1; f2; f CC3 / actually preserves the
parameterizations of boundary surfaces.

First, it is observed that f C3 D r0.f3; f2/ on �0 where f1 D 0 and f C3 D
r1.f3; f2/ on �1 where f1 D 1. Also, f CC3 D r2.f

C
3 ; f2/ on �2 where f2 D 0

and f CC3 D r3.f
C

3 ; f2/ on �3 where f2 D 1. Thus, f C3 is compatible with the
parameterizations of �0 and �1 and f CC3 is compatible with the parameterizations
of �2 and �3. We show f CC3 D f C3 on �0 and �1. Considering p 2 �0 \ �2, we
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have f1.p/ D 0; f C3 .p/ D .�2/2.p/ and r2.f
C

3 .p/; f1.p// D .�2/2.p/. This means
that r2.u; 0/ D u; 8u 2 Œ0; 1�. Analogously, we have r2.u; 1/ D u, r3.u; 0/ D u and
r3.u; 1/ D u for all u 2 Œ0; 1�. Then, on �0 i.e. f1 D 0, we have r2.f

C
3 ; f1/ D f C3

and r3.f
C

3 ; f1/ D f C3 . Therefore, by (14.5) f CC3 D f C3 on �0. Similarly, f CC3 D
f C3 on �1.

It remains to be shown that .f1; f2; f CC3 /T is bijective. That is, we will show the
Jacobian of .f1; f2; f CC3 /T calculated by the triple product

Œrf1; rf2; rf CC3 � D .rf1 � rf2/ 	 rf CC3

is larger than zero. To do this, we calculate the gradient of f C3 by

rf C3 Drf3

�
@ur0.f3; f2/.1 � f1/ C @ur1.f3; f2/f1

�

C rf2

�
@vr0.f3; f2/.1 � f1/ C @vr1.f3; f2/f1

�

C rf1.r1.f3; f2/ � r0.f3; f2//

Then we have

Œrf1; rf2;rf C3 � D Œrf1; rf2; rf3�:

:
�
@ur0.f2; f3/.1 � f1/ C @ur1.f2; f3/f1

�
(14.6)

On �0, we know f1 D 0 and Œrf1; rf2; rf C3 � > 0, because .f1; f2; f C3 /T

produces exactly the parameterization of �0 and that parameterization is regular.
One deduces from (14.6) with Jf D Œrf1; rf2; rf3� > 0 that @ur0.u; v/ >

0; 8.u; v/ 2 Œ0; 1�2. By similar arguments on �1, we have @ur1.u; v/ > 0; 8.u; v/ 2
Œ0; 1�2. By (14.6), this yields

Œrf1; rf2; rf C3 � > 0; on ˝:

Now, we calculate the gradient of f CC3 and obtain, using similar arguments, the
following:

Œrf1; rf2; rf CC3 � D Œrf1; rf2; rf C3 � Œ	 	 	 �
„ƒ‚…

>0

> 0; on ˝:

14.4.2 Numerical Implementation

We describe here how to compute the reparameterization functions r0.u; v/; r1.u; v/

in (14.4) and r2.u; v/; r3.u; v/ in (14.5). We use the well-known least squares
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fitting methods. First, the reparameterization function ri is represented as a linear
combination of basis functions defined on Œ0; 1�2, i.e.

ri .u; v/ D
niX

jD1

˛i
j Bi

j .u; v/; i D 0; : : : ; 3

Next, we consider the problem of finding r0. By its definition, if we have a point
p 2 �0, we wish r0.f3.p/; f2.p// D .�0/1.p/. For this reason, we formulate the
following least squares problem

nX

kD1

�
r0.f3.pk/; f2.pk// � .�0/1.pk/

�2 C regularization terms ! min
˛0

j

where the regularization terms can be defined as

w
Z 1

0

Z 1

0

Œ.r0/
2
uu C 2.r0/

2
uv C .r0/

2
vv�dudv

with a small weight w. The least squares problem leads to solving a linear system
to find a solution. The reparameterization function r1 is found in the similar way.
Once r0 and r1 are found, we can compute f C3 by the formula (14.4). Then, we
apply again the least squares fitting techniques to find the next reparameterization
function r2. More precisely, we solve the following minimization problem

nX

kD1

�
r2.f

C
3 .pk/; f1.pk// � .�2/1.pk/

�2 C regularization terms ! min
˛2

j

with the sample points pk 2 �2. Solving a linear system gives us a solution. Finally,
the last reparameterization function r3 is found by the same techniques.

14.5 Spline Approximation

This is the last step in our framework, once we obtain a boundary-parameterization-
preserving mapping. So, we are going to find the mapping x � f �1 in the tensor
product B-spline form as

x.u; v; w/ D
n1X

iD0

n2X

jD0

n3X

kD0

NU
i;p.u/NV

j;q.v/NW
k;r .w/di;j;k

D B.u; v; w/ 	 D; .u; v; w/ 2 Œ0; 1�3;
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where D D .di;j;k/ijk is the vector of control points and B.u; v; w/ D
.Bi;j;k.u; v; w//ijk is the vector of basis functions. Here we denote by
Bi;j;k.u; v; w/ D NU

i;p.u/NV
j;q.v/NW

k;r .w/ the tensor product B-splines of degree
p; q and r defined on three given knot vectors U ;V and W . Here, we have two
options. We can either use arbitrary basis functions as we want (usually defined
on uniform knot vector) or approximate boundary surface patches first by bivariate
B-splines then keep the boundary control points fixed during volume fitting process.
In the later case, the knot vectors of boundary surfaces should be compatible with
each other, if not we can use the knot insertion algorithm to make them compatible.
Now we formulate the problem of finding x as the following least squares problem

Z

˝

jj.x ı f /.p/ � pjj2dp C Rx ! min
D

(14.7)

where Rx is the fairness term

Rx D !1

Z

Œ0;1�3
.x2

u C x2
v C x2

w/dudvdw C !2

Z

Œ0;1�3
.x2

uuC

x2
vv C x2

ww C 2x2
uv C 2x2

vw C 2x2
wu/dudvdw

and !1 and !2 are weights. For the later case described above, the boundary control
points are known and are identical to the control points of the boundary surfaces.
So, we only have to compute the inner control points. The characteristic function
� for ˝ is used again to transform the integral over ˝ to the integral over R3. We
already computed � in the approximate implicitization step but now it is set to 0
outside ˝ . We have

Z

˝

jj.x ı f /.p/ � pjj2dp D
Z

R3

jj.x ı f /.p/ � pjj2�.p/dp

We evaluate the integral by numerical quadrature, taking uniform grid of points on
the bounding box B of ˝ .

The least squares problem is a quadratic minimization problem with respect to
the unknowns (which are the inner control points for the latter case). Therefore, it is
relatively simple to find the solution by solving a sparse linear system.

14.6 Results

We summarize the implementation of our framework step by step. Then we show
results from our method applied to several models, including a screw driver, a
molecule and a femur.
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14.6.1 Putting Things Together

First, a contractible domain defined by its closed triangular mesh boundary is given.
Next, we have to do segmentation and parameterization to make the boundary @˝

topology equivalent to Œ0; 1�3. Then, we find the bounding box of ˝ . It is the domain
for the web-splines method for computing the parameterization mapping. Next, we
generate the characteristic function for ˝ by an approximate implicitization method.
Finally, the three variational problems for coordinate functions, reparameterization
and spline approximation as described above, are performed.

14.6.2 Examples

Our method is implemented in C++ and uses Gotools [20] for B-splines manipula-
tions. In addition, for solving the various arising sparse linear systems, we employ
the umfpack routine [4]. The results in this paper are visualized using Coin 3D
and Qt.

Example 1 The first model we use to test our method is the base of a screw driver
given in triangular mesh. Figure 14.6 summarizes our method step by step. In this
example, we approximate six boundary patches by uniform tensor-product quadratic
B-splines with 32�32 control points. So, the resulting trivariate splines are uniform
and quadratic with 32 � 32 � 32 control points. We use the same configuration in
the next two examples. In Fig. 14.6d, we see that the discrete Coons patch method
gives us a solution with self-overlapping. If we do the boundary parameterization
preserving step before finding x, we will get a result with preserving boundary like
Fig. 14.6f, otherwise we will get the object with a jagged boundary like Fig. 14.6e.
We observe that both results in (e) and (f) have non-self-overlapping grids inside the
object.

Example 2 Figure 14.7 shows the results from our method applied to a molecule
model. The boundary of this model is smooth. Therefore, vanishing Jacobians
are expected to happen around the common edges of boundary surfaces. Like the
previous example, boundary parameterization preserving give us a better result.

Example 3 The last example we want to show is the femur model as shown in
Fig. 14.8. This model is rather more complicated than those of the previous two
examples. It seems that if we work directly on the mesh model, i.e. the former case
in the spline approximation section, instead of using approximate bivariate spline
boundary patches, we will get a result with better approximation for the true model.
However, the grid inside seems to be more jagged.
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Fig. 14.6 The base of a screw driver model. (a) Triangular mesh. (b) Mesh segmentation.
(c) Surface parameterization and approximation. (d) Discrete Coons patch. (e) Non boundary
conforming. (f) Boundary conforming

Fig. 14.7 The molecule model. (a) Triangular mesh. (b) Non boundary conforming. (c) Boundary
conforming
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Fig. 14.8 The femur model. (a) Triangular mesh. (b) Directly on the mesh. (c) Boundary
conforming

Conclusion
In this paper, we proposed a framework to compute a bijective mapping from a
domain defined by its boundary to the unit cube in R

3. This mapping is defined
via a sequence of harmonic maps and modified by a reparameterization to
conform with the boundary parameterization. The final spline representation
for the domain was constructed as an approximation of the inverse of the
computed mapping. We also demonstrated that our method works efficiently
for some complicated domains.

In the future, we wish to improve the feature-aligned boundary segmenta-
tion. We also want to pull back the framework to a parameter space so that the
numerical computation could be performed more efficient. Last but not least,
we would like to develop a method for objects with handles.
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Chapter 15
Isogeometric Analysis of Navier-Stokes Flow
Using Locally Refinable B-Splines

Peter Nørtoft and Tor Dokken

15.1 Introduction

In recent years, isogeometric analysis (IGA) has gained increasing interest as a
numerical method for solving engineering problems within fluid mechanics [7, 15].
This popularity may be attributed to its ability to model complex geometries exactly,
to approximate the flow fields with arbitrarily high degree of smoothness, and to
couple the geometric modeling and the flow analysis into one single framework.
At the very heart of the isogeometric paradigm is the unification of finite element
analysis (FEA) for solving the governing flow equations, and computer-aided design
(CAD) for modeling the geometry of the flow domain.

One of the early challenges of the isogeometric paradigm was the concept of
local refinement. To resolve the flow around some obstacle, say, a fine approximation
of the field is often required in the boundary layer close to the obstacle, whereas a
coarse approximation suffices in the far-field away from the obstacle. Here, efficient
local refinement is of paramount importance: a coarse representation of the entire
flow domain leaves the boundary layer unresolved, and the results are useless; a
fine representation of the entire flow domain yields a fatal blow-up in the number
of degrees of freedom, rendering the approach useless. This is sketched in Fig. 15.1.
Although well-established within FEA, efficient local refinement was initially
prohibited in IGA, primarily owing to the tensor-product structures inherited from
CAD, that only allowed for global refinements, or a “poor man’s” local refinement
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Fig. 15.1 Difference
between global (b) and local
(c) refinement of a region of
interest (RoI) inside a flow
domain (a)

(RoI)

a

b

c

through patching. Several ways to achieve local refinement in an isogeometric
setting have been proposed since the birth of IGA, including in particular T-splines
[2, 9, 18], and hierarchical splines [14, 19].

In this work, we study a novel approach to local refinement in the context of fluid
mechanics, namely through the recently proposed locally refinable (LR) B-splines
[4, 8, 16]. We investigate two families of locally refined B-spline discretizations of
the flow variables for solving the mixed formulation of the stationary, incompress-
ible Navier-Stokes equations in 2 dimensions using IGA. These two LR B-spline
discretizations are motivated by recent results for ordinary tensor-product B-spline
discretizations of the flow variables [3, 5, 17]. Our focus here is primarily on how
to refine the flow discretizations, as dictated by a refinement strategy, and not on
whether or where to refine, as dictated by some error estimator. In the context of a
full-blown adaptive mesh refinement setup, of course, one needs to address all of
these issues.

The outline of the rest of the work is as follows. We start by introducing the
governing Navier-Stokes equation in Sect. 15.2, after which we introduce the LR B-
splines as refinable building blocks for solving it in Sect. 15.3. Then, in Sect. 15.4,
we briefly outline the general isogeometric framework, and in Sect. 15.5 we
present the two flow discretizations. Numerical examples are presented in Sect. 15.6
with focus on the numerical stability, error convergence during refinements, and
benchmarking. Finally, we summarize our findings and outline future work.

15.2 Navier-Stokes Equation

We start by introducing the steady-state, incompressible Navier-Stokes equation.
This is the equation that governs the motion of fluids under sufficiently simple
conditions.
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Fig. 15.2 A fluid contained
in a flow domain

∂W

Wuuu velocity
p pressure
Re Reynolds number
fff force

We consider a fluid in a 2-dimensional domain ˝ as depicted in Fig. 15.2. We
assume the fluid is isothermal, i.e., at constant temperature, incompressible, i.e., the
density is constant, and Newtonian, i.e., the stress and the strain rate are linearly
related through the viscosity, which is also assumed to be constant. Finally, we
assume that the flow is stationary, i.e., time-independent. The state of the fluid is
then given by the velocity and the pressure, and these are governed by the Navier-
Stokes and mass-continuity equations:

.u 	 r/ u C rp � 1

Re
�u C f D 0; (15.1a)

r 	 u D 0: (15.1b)

Here u D .u; v/ is the velocity, p is the pressure, and f are additional body forces
acting on the fluid, all in dimensionless form, while Re WD �UL=� is the Reynolds
number, where � is the density, � is the viscosity, and U and L are characteristic
velocity and length scales of the problem, respectively. In somewhat loose terms,
Re is a measure of the degree of nonlinearity, and hence complexity, of the flow
problem. We will consider primarily laminar flows with Re . 2;000, as opposed to
turbulent flows with Re & 2;000.

These equations govern the flow in the interior of the domain ˝ , and they must
be augmented by suitable boundary conditions. Here, we consider so-called full
Dirichlet boundary conditions, along with a condition on the average pressure:

u D g on @˝; (15.2a)
Z

˝

p dx D p0: (15.2b)

15.3 Locally Refinable B-Splines

We now proceed to give a brief introduction to Locally Refinable (LR) B-splines.
First, the underlying B-splines are introduced, after which their LR extensions
are described in 2 dimensions. The intention is to give the reader an intuitive
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understanding of LR B-splines, and thereby pave the road for using them to solve
the Navier-Stokes equation in the next sections. For a more rigorous introduction to
LR B-splines, we refer to [8].

15.3.1 B-Splines

We start by recalling the definition of univariate B-splines. Given a polynomial
degree d 
 0 and a non-decreasing sequence of d C 2 knots � D f�1; : : : ; �dC2g, a
univariate B-spline BŒ�� W R ! R is defined recursively through:

BŒ��.�/ D � � �1

�dC1 � �1

BŒ�1; : : : ; �dC1�.�/ C �dC2 � �

�dC2 � �2

BŒ�2; : : : ; �dC2�.�/;

(15.3a)

starting with

BŒ�i ; �iC1�.�/ D
�

1 if �i � � < �iC1

0 otherwise
(15.3b)

for i D 1; : : : ; d C 1, and where terms with zero denominator are defined to be
zero. A univariate B-spline is thus a piecewise polynomial function of degree d . Its
support is the interval Œ�1; �dC2�, and the continuity across a knot �i is d �m, where
m denotes the multiplicity of the knot �i .

Multivariate B-splines can be formed quite naturally through tensor-product
structures based on multiple univariate B-splines. In two parametric dimensions
we have the following: Given two polynomial degrees di and two non-decreasing
sequences of di C 2 knots �i D f�i;1; : : : ; �i;diC2g for i D 1; 2, a bivariate tensor-
product B-spline BŒ�1; �2� W R2 ! R is given by:

BŒ�1; �2�.�1; �2/ D BŒ�1�.�1/ BŒ�2�.�2/: (15.4)

The support of a tensor-product B-spline is the rectangle Œ�1;1; �1;d1C2� �
Œ�2;1; �2;d2C2�. Figure 15.3 illustrates the construction of a bivariate tensor-
product B-spline from two univariate B-splines. In the example shown, the two
univariate B-splines that form the bivariate bi-quadratic tensor-product B-spline are
constructed from the polynomial degrees d1 D d2 D 2, and the knot vectors �1 D
f0; 1=3; 2=3; 1g and �2 D f0; 0; 1=3; 2=3g. The knot vectors �1 and �2 are extracted
from two identical global knot vectors �1 D �2 D f0; 0; 0; 1=3; 2=3; 1; 1; 1g. Each
of these gives rise to 5 univariate B-splines, resulting in a total of 25 bivariate
B-splines.
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Fig. 15.3 Construction of a
bi-quadratic tensor-product
B-spline (grayscale surface)
from two univariate quadratic
B-splines (lines in bold) with
given knot vectors (colored
triangles)

x1

x2

B

15.3.2 LR Mesh

Locally refinable B-splines rest naturally on B-splines. They include the tensor-
product B-splines introduced above as a special case, but in addition provide a much
more “local” framework for multivariate B-splines. Before understanding the notion
of an LR B-spline, we must, however, understand the notion of an LR mesh.

Just like any tensor-product B-spline is formed on a tensor-product mesh, as
sketched in Fig. 15.3, any LR B-spline is formed on an LR mesh. A mesh holds
information about essentially two things: the location and the multiplicity of all
knots. For tensor-product B-splines, as defined in (15.4), the mesh is specified
simply through the two global knot vectors �1 and �2. As the LR mesh cannot
be defined by global knot vectors, it has to be defined by its Nm knotline segments
and their multiplicities. Each knotline segment is defined by a start point and an end
point. When the multiplicities of all knotline segments in a given mesh are all set to
1, we will refer to it as the grid.

An LR mesh is a special kind of a mesh. The life of an LR mesh has two different
stages:

1. The initial tensor-product construction
2. The subsequent local refinements

From the beginning, the LR mesh is constructed simply as a standard tensor-
product mesh. An example is shown in Fig. 15.4a. The global knot vectors are
�1 D �2 D f0; 0; 0; 1=5; 2=5; 3=5; 4=5; 1; 1; 1g. Using this tensor-product mesh as a
starting point, the mesh is then refined by subsequently inserting knotline segments
into it, such that the mesh remains a box-partition, i.e., consists of a collection of
quadrilaterals throughout each refinement. Let us assume that we want to refine the
highlighted box in Fig. 15.4a. First, Fig. 15.4b shows the result of a usual tensor-
product refinement, i.e., when inserting one vertical and one horizontal knotline
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cba

Fig. 15.4 Three different meshes: the initial tensor-product mesh (a), a globally refined tensor-
product mesh (b), and a locally refined mesh (c). Multiplicities are three on the boundary and one
elsewhere

segments through the box of interest and letting these extend all the way to the
boundaries. This clearly identifies the problem with the tensor-product approach;
along with the actual box of interest, all boxes towards the boundaries are also
refined. The LR mesh, however, allows for much more local refinements. An
example is shown in Fig. 15.4c. Here, we have inserted two short knotline segments,
one vertical and one horizontal. As we shall see below, the knotline segments must
be specified in such a way that each of them splits an LR B-spline. This is part
of the reason why the knotline segments extend outside the highlighted box, and
why the neighboring boxes are still refined. For consistency with the notation in
different dimensions and settings, we usually refer to the knotline segments as mesh-
rectangles and to the boxes as elements. These are central ingredients of an LR
mesh.

15.3.3 LR B-Splines

With the LR mesh introduced, we now turn to the LR B-splines. An LR mesh
gives rise to a number of LR B-splines, just like a tensor-product mesh gives rise
to a number of tensor-product B-splines, cf. Fig. 15.3. By inserting local mesh-
rectangles into an LR mesh, we enrich the space of B-splines living on it, and this in
a much more local sense than by inserting global knots into a tensor-product mesh.

To illustrate this, let us return to the example from above, and assume that the
polynomial degrees are d1 D d2 D 2. Figure 15.5a sketches the B-splines on the
initial tensor-product mesh in Fig. 15.4a. To be more precise, the plot shows the
Greville abscissae of the B-splines, which for any B-spline is just the average of
the di central knots f�i;2; : : : ; �i;diC1g in each parameter direction i D 1; 2, and
thus a condensed way of visualizing the functions. By making the tensor-product
refinements as in Fig. 15.4b, we end up with the B-splines sketched in Fig. 15.5b.
The global nature of the refinement is again evident, as B-splines appear also
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cba

Fig. 15.5 Greville abscissae of all bi-quadratic B-splines on three different meshes: the initial
tensor-product mesh (a), a globally refined tensor-product mesh (b), and a locally refined mesh
(c). Multiplicities are three on the boundary and one elsewhere

away from the element of interest. On the other hand, by inserting the local mesh
rectangles as in Fig. 15.4c, we obtain the LR B-splines shown in Fig. 15.5c. All
new LR B-splines appear in close proximity of the element of interest. We mention
in passing that, as the tensor-product meshes in Fig. 15.4a, b are indeed also LR
meshes, the tensor-product B-splines in Fig. 15.5a, b are also LR B-splines.

But how do the new LR B-splines in Fig. 15.5c actually come about from the LR
mesh in Fig. 15.4c? To answer this question, we consider Fig. 15.6. We first consider
the insertion of the vertical mesh-rectangle. Remembering that all the tensor-product
B-splines have support over 3 � 3 knot spans, we easily see that there are exactly
three B-splines for which the mesh-rectangle traverses their entire support in the
vertical direction, as indicated in Fig. 15.6a (left). These are the coarse functions
that are to be refined. The resulting functions after this first refinement are shown
in Fig. 15.6a (right). Note that each of the new LR B-splines has exactly the same
underlying knot structure as a standard tensor-product B-spline. Next, we consider
the insertion of the horizontal mesh-rectangle. Now, there are four LR B-splines
for which the mesh-rectangle traverses its entire support in the vertical direction,
as indicated in Fig. 15.6b (left). These are now the coarse functions that are to be
refined. The resulting functions after this second refinement are shown in Fig. 15.6b
(right). The order of insertion turns out to play no role. Thus, we may as well insert
the horizontal mesh-rectangle first, and then vertical afterward; the final outcome
will be the same.

LR B-splines possess many of the properties that standard tensor-product B-
splines do. They are piecewise polynomial functions, they have compact support,
and they form a partition of unity, i.e., they sum to one in all points, a property
ensured through a simple scaling of each of the functions. Linear independence of
a set of LR B-splines is not guaranteed per se. This is crucial when using them to
solve equations like the Navier-Stokes equation. To ensure linear independence, the
functions either have to be established through refinement schemes known a priori
to result in linear independent LR B-splines, or they must be tested a posteriori
through, e.g., a so-called peeling algorithm [8]. In Sect. 15.5 below, we shall return
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a
Before After

b
Before After

Fig. 15.6 B-splines before (left) and after (right) insertion of the vertical mesh rectangle (a)
and the horizontal mesh rectangle (b). LR B-splines with Greville abscissae shown in blue are
unaffected by the insertion, whereas LR B-splines with Greville abscissae shown in yellow are
removed or inserted as a result of the insertion

to the construction of LR B-splines in the context of approximation of flow pressure
and velocities for solving the Navier-Stokes equations.

15.4 Isogeometric Analysis

In this section, we outline the fundamentals of how to solve the Navier-Stokes and
continuity equations (15.1) in an isogeometric framework based on LR B-splines.
This essentially involves three ingredients: a parametrization of the geometry, a
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Fig. 15.7 A parametrization
of the flow domain ˝
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discretization of the flow variables for the Galerkin projection, and the weak form
of governing equations.

First, we construct a parametrization of the flow domain ˝ , as sketched in
Fig. 15.7. We take the parameter domain Ő as the unit square and use bivariate
LR B-splines as basis functions. The parametrization x W Œ0; 1�2 ! R

2 reads:

x.�1; �2/ D
NgX

iD1

xiP
g
i .�1; �2/; (15.5)

where xi are the control points, Pg
i are the LR B-splines, Ng is the number of LR

B-splines and control points, and the superscript g indicates that the functions refer
to the geometry parametrization.

Next, we seek approximations of the velocity uh W Œ0; 1�2 ! R
2 and pressure

ph W Œ0; 1�2 ! R as linear combinations of LR B-splines, just like the geometry
representation in Eq. (15.5) above:

uh.�1; �2/ D
NuX

iD1

uiPu
i .�1; �2/ ; ph.�1; �2/ D

NpX

iD1

p
i
Pp

i .�1; �2/: (15.6)

Here, Pu
i and Pp

i denote the LR B-spline basis functions for the velocity and
pressure, Nu and Np are the number of velocity and pressure B-splines, while u
and p are the unknown control variables for the velocity and pressure, respectively.
For simplicity, we discretize the two components of the velocity identically. The
approximations in Eqs. (15.6) are defined in parameter space, whereas the governing
equations (15.1) are posed in physical space. To evaluate the pressure in physical
space p W ˝ ! R, we use the inverse of the geometry parametrization as p ı x�1.
To evaluate the velocity in physical space u W ˝ ! R

2, we simply map each
component as a scalar Iu ı x�1, where I is the identity map. Note here that,
with abuse of notation, we use p and u to denote the pressure and the velocity,
respectively, both over the physical space and over the parameter space. In Sect. 15.5
below, we describe in greater detail how to construct the LR B-spline discretizations
of the pressure and velocity fields.
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Finally, we cast the governing equations (15.1) and (15.2) into their weak form,
which reads: find .u; p/ with u D g on @˝ and

R
˝

p dx D 0 such that

0 D
Z

˝

�� 1

Re
rvk C vk u

� 	 ruk � �
prvk C vk f

� 	 ek

�
dx; k D 1; 2 ;

(15.7a)

0 D
Z

˝

q .r 	 u/ dx (15.7b)

for all .v; q/ with v D 0 on @˝ , where we have used integration by parts in the
derivation. Here, .e1; e2/ are the standard Cartesian basis vectors, and the functions
p and q must be square-integrable, while u and v as well as all their first-order
derivatives must be square-integrable.

By using the LR B-splines approximations (15.6) as test and weight functions in
the weak equations (15.7), and pulling the integrals back to the parameter domain
based on the parametrization (15.5), a non-linear system of equations of the form
M .U / U D F may be obtained:
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where

K i;j D
Z

Œ0;1�2

rT Pu
i J�1 J�T rPu

j det
�
J
�

d�; (15.9a)

C i;j .u/ D
Z

Œ0;1�2

Pu
i uT J�T rPu

j det
�
J
�

d�; (15.9b)

G ki;j D
Z

Œ0;1�2

Pp
i eT

k J�T rPu
j det

�
J
�

d�; k D 1; 2 (15.9c)

F ki D
Z

Œ0;1�2

Pu
i eT

k f det
�
J
�

d�; k D 1; 2 (15.9d)

where J i;j WD @xi =@�j is the Jacobian matrix of the parametrization (15.5).
To solve the governing partial differential equations (15.1) using LR B-spline

based isogeometric analysis, we thus need to solve the system of algebraic equations
(15.8). To do this, we evaluate the integrals in (15.9) using Gaussian quadrature, and
use an iterative Newton-Raphson solver. The Dirichlet boundary conditions (15.2a)
on the velocity are enforced strongly, perhaps only in an approximative sense, while
the additional condition (15.2b) on the mean pressure is imposed weakly through a
least-square approach.
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15.5 Flow Discretizations

We now proceed to introduce two families of discretizations of the pressure and
velocity fields based on LR B-splines, thus substantiating the flow approximations
(15.6) introduced above. We refer to these as the Taylor-Hood and multigrid
families.

As indicated in Sect. 15.3, LR B-splines are characterized by a high degree of
flexibility. In loose terms, we can play around with the two polynomial degrees, the
two vectors of unique, global knots, and the multiplicities of each of the small mesh-
rectangles along each of the global knots. When discretizing the flow variables,
however, we narrow the scope slightly. As explained below, we choose to character-
ize the LR B-spline flow discretizations simply through one polynomial degree d ,
from which we then specify the polynomial degrees, regularities (smoothnesses) ˛,
and levels of refinement r of both the pressure and the velocity fields.

The construction of both the Taylor-Hood and the multigrid flow discretizations
comprises the same two stages as outlined in Sect. 15.3:

1. The tensor-product initialization
2. The subsequent local refinements

For now, we assume that a tensor-product spline representation x of the geometry
is provided to us as input. We shall relax this assumption later.

In the initialization of both the Taylor-Hood and the multigrid discretization, we
construct tensor-product spline representations of the velocity uh and the pressure
ph in the usual fashion [5,17]. For both uh and ph, we take the global knot vectors �i

to be open, i.e., the multiplicity of the first and last knots are di C 1, and we take all
interior knots to have the same multiplicity mi < di for the parametric dimensions
i D 1; 2. Furthermore, in order to limit the number of parameters, and thus simplify
the notation in the following, we assume for both uh and ph that the degree and
the regularity are the same in both parametric dimensions, i.e., d1 D d2 D d and
˛1 D ˛2 D ˛, although these assumptions are not strictly required.

From the given tensor-product spline representation x of the geometry, we now
choose a degree d and construct the tensor-product spline discretization ph of the
pressure using the same grid as for the geometry x, with the degree d p D d , full
regularity ˛p D d �1, and no refinements rp D 0. The assumption of full regularity
is not strictly required, but again it limits the number of parameters.

Next, we construct the discretization uh of the velocity from ph through one of
two approaches: In the Taylor-Hood approach, we increase the polynomial degree
d u D d p C1, fix the regularity ˛u D ˛p D d �1 by increasing the knot multiplicity,
and keep the refinement level ru D 0. In the multigrid approach, we increase both
the polynomial degree d u D d p C 1, the regularity ˛u D ˛p C 1 D d , and the
refinement level through insertion of, say, one additional knot in each regular knot
span, such that ru D 1. These tensor-product initializations are illustrated in the top
of Fig. 15.8 for both the Taylor-Hood and multigrid discretization.

With the tensor-product initialization in place, we turn to the subsequent local
refinements. For both the Taylor-Hood and the multigrid discretizations, we base
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Fig. 15.8 Illustration of the tensor-product initialization (top) and subsequent local refinements
(bottom) following the Taylor-Hood (left) and multigrid (right) approaches for degree d D 2

these on the structured mesh approach [16] with constant multiplicities mf D
d f � ˛f for both fields f 2 fu; pg. The idea, when refining according to the
structured mesh approach, is to reason in terms of basis functions. First we choose
a set of LR B-splines to refine, and then we insert new mesh-rectangles with the
same multiplicity as the existing ones, in such a way that each regular span of mesh-
rectangles whose two mesh-rectangles are both contained in the same LR B-spline
within the specified set is split uniformly into n new spans of mesh-rectangles. Here,
we will for simplicity use n D 2.

Now, when refining the flow discretization according to the structured mesh
approach, we have both the LR B-splines of the velocity discretization and the LR
B-splines of the pressure discretization to take into consideration. We choose to
specify refinements for both the pressure and the velocity through a set of pressure
LR B-splines. For both the pressure and the velocity discretization, we follow the
structured mesh approach and base the insertions of mesh-rectangles on the support
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Table 15.1 Characteristics of the two families of LR B-spline discretizations of the flow fields for
given degree d

Pressure Velocity

Discretization Degree Regularity Refinement Degree Regularity Refinement

Taylor-Hood d d � 1 0 d C 1 d � 1 0

Multigrid d d � 1 0 d C 1 d 1

of a specified collection of pressure LR B-splines. This gives us two collections
of mesh-rectangles; one collection is inserted in the pressure mesh, and one in the
velocity mesh. These two collections of mesh-rectangles either differ in the number
of mesh-rectangles or in the multiplicity of the mesh-rectangles, depending on the
discretization in question. The number of pressure and velocity mesh-rectangles
is dictated by the refinement level (e.g., N for both fields for the Taylor-Hood,
and N and n.N C 1/ � 1 for the pressure and velocity field, respectively, for the
multigrid). The multiplicity of the pressure and velocity mesh-rectangles is given
by the regularity (1 and 2, respectively, for the pressure and velocity fields for
the Taylor-Hood, and 1 for both fields for the multigrid). These local refinements
procedures are illustrated in the bottom of Fig. 15.8 for both the Taylor-Hood and
the multigrid discretization, and their characteristics are summarized in Table 15.1.

It should be emphasized that the number of velocity elements for the multigrid
discretization is larger than the number of velocity elements for the Taylor-
Hood discretization by a factor of .r C 1/2. Since integrals in the matrices in
Eq. (15.9) are evaluated based on elements, this makes the multigrid discretization
computationally more expensive than the Taylor-Hood discretization.

We conclude by noting that the assumption of the geometry being discretized by a
tensor-product spline can easily be relaxed. One obvious way to achieve this, while
still ensuring that the geometry grid is contained within the velocity and pressure
grids, is by assuming instead that the geometry is represented by an LR spline, that
was initialized as a tensor-product spline of some degree based on open knot vectors
with single interior knots, and whose subsequent refinements were all obtained
using the structured mesh approach. In this case, we may construct the Taylor-
Hood and multigrid flow discretization as before, except we must first set the initial
tensor-product pressure discretization equal to the initial tensor-product geometry
discretization, construct the tensor-product velocity discretization as before, and
then go through the exact same steps of local refinements of the flow discretizations
as for the final geometry discretization.

15.6 Numerical Examples

In this section, we test the LR B-spline flow discretizations introduced above in
different numerical examples. Through these, we investigate the stability of the
discretizations, we study their ability to reproduce an analytical solution, and we
examine their performance on a standard benchmark problem.
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15.6.1 Wall-Driven Annular Cavity: Stability

In the first example, we investigate the stability of the discretizations. We consider
the problem outlined in Fig. 15.9a, in which a fluid is contained in an annular cavity,
approximated by cubic B-splines. We are interested in the flow problem in the limit
of small Reynolds numbers. Hence, we neglect the nonlinear term in the Navier-
Stokes equation (15.1a), which then reduces to the Stokes equation. The sliding
movement of the lower circular part of the boundary induces a rotating flow in the
interior, while singularities in the pressure field form in the two lower corners, as
indicated in Fig. 15.9b. Unstable discretizations manifest themselves qualitatively
through spurious oscillations in the pressure field. Quantitatively, they violate the
so-called inf–sup condition:

inf
ph

sup
uh

R
˝

phr 	 uh dx

kphkL2 k uhkH 1


 ˇ > 0; (15.10)

where the constant ˇ is independent of the mesh resolution h.
In the following, we perform a series of numerical tests of whether the discretiza-

tions fulfill the inf–sup condition (15.10), i.e., whether they are stable or not, based
on the rather degenerate problem sketched in Fig. 15.9. For each discretization, we
refine a coarse mesh repeatedly, and estimate the value of ˇ in each step [1, 6]. We
follow two different schemes for choosing which LR B-splines to refine: by the first
scheme, we refine the LR B-splines with support in one of the two lower corners,
where the pressure singularities occur. By the second scheme, we refine a number of
randomly chosen LR B-splines. Examples of the pressure grids produced by these
two schemes are shown in Fig. 15.9c, d, respectively.

ba

dc

‖u‖ = 1

‖u‖ = 0

‖u‖=
0 ‖u‖

=
0

fff = 000

Re → 0

Fig. 15.9 Wall-driven annular cavity: problem setup (a), streamlines and pressure field (b), and
pressure grid examples (c and d)
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Fig. 15.10 Wall-driven annular cavity: Numerical estimates of the inf-sup “constant” ˇ as a
function of total number of analysis degrees of freedom Ntot for different discretizations (T-H:
Taylor-Hood and M-G multigrid) based on corner function refinements (a) and random function
refinements (b)

The estimated values of ˇ for the Taylor-Hood and multigrid discretizations
based on polynomial degrees 3–5, corresponding to degrees 3–5 for the pressure and
4–6 for the velocity, respectively, are shown in Fig. 15.10. A given discretization is
said to pass the inf–sup test, if the estimated value of ˇ does not tend to zero as
the number of degrees of freedom is increased; if the value does tend to zero, the
discretization fails the test. From these results, we are led to conclude that all the
investigated discretizations among both the Taylor-Hood and the multigrid families
pass the test. We emphasize that these conclusions are drawn on a (large but) finite
number of numerical tests, and not on mathematical proofs. Furthermore, in addition
to the Taylor-Hood and multigrid discretizations shown here, a discretization known
to be unstable, based on a bi-quadratic pressure approximation and a bi-quartic
velocity approximation, both fields having full regularity, was also tested and failed
the test as expected.

15.6.2 Forced Wedge-Shaped Cavity: Manufactured Solution
and Error Convergence

In this example, we study the ability of the discretizations to reproduce an analytical
solution. Motivated by examples in [11, 20], we consider the problem outlined in
Fig. 15.11a. A fluid is contained in the wedge-shaped region ˝ D f.x; y/ 2 R

2j 0 �
x � 2; 0 � y � 1 C x2=4g. We represent the domain exactly using quadratic B-
splines. As target solution, we use the following velocity and pressure fields:

u� D 5

532
ex x2 .x � 2/2 y .4 � 4 y C x2/

�.16 � 56 y C 8 x2 C 40 y2 � 14 yx2 C x4/; (15.11a)
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Fig. 15.11 Forced wedge-shaped cavity: problem setup (a) and velocity and pressure field (b)

v� D 5

266
ex x .x � 2/ y2 .4 � 4 yCx2/2

�.16 � 8 x � 16 yC12 x2C8 xy � 8 x3C4 yx2 � x4/; (15.11b)

p� D 1

4
C 1

4
tanh

�
200 .x � 1=2/2 C 200 .y � 3=8/2 � 4

�

C1

2
e�.5=2

p
2x�5=2

p
2y�5=2/

2�.25
p

2xC25
p

2y�250=3/
2

; (15.11c)

as sketched in Fig. 15.11b. The velocity field is incompressible and fulfills the
boundary conditions. By deriving the body force f � through direct insertion into
the Navier-Stokes equation, Eq. (15.11) is a manufactured analytical solution to
the governing equations (15.1) and (15.2). As is evident from Fig. 15.11b, both
the velocity and pressure fields exhibit phenomena that clearly call for local
refinement.

To select which B-splines to refine, we follow two different approaches: a global
approach and a local approach. By the global approach, we refine all functions,
i.e., we are back in the tensor-product setting. By the local approach, we base the
selection on the strong residual of the governing equations (15.1):

Rh D

0

B
@

.uh 	 r/uh C @ph

@x
� 1

Re �uh C fx

.uh 	 r/vh C @ph

@y
� 1

Re�vh C fy

r 	 uh

1

C
A : (15.12)
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Fig. 15.12 Forced wedge-shaped cavity: Error convergence for the pressure (a) and velocity (b),
and examples of the pressure grids produced by the global (c) and local refinement schemes for the
Taylor-Hood (d) and the multigrid discretization (e) for degree d D 4

As error indicator, we use the L2-norm of the residual vector Rh. We integrate this
on each element in the mesh, and for each (pressure) LR B-spline, we sum the
errors from each of the elements in their support. Ordering the LR B-splines in a
decreasing order according to their sum of errors, we refine the smallest number of
LR B-splines that account for at least, say, 25 % of the total error. This may be seen
as a Dörfler marking of LR B-splines.

In the following, we study how the global integrals of the L2-norms of the errors
on the pressure and the velocity fields behave as we refine the two discretization
families based on each of the two refinement schemes. The results are shown in
Fig. 15.12a, b for the pressure and the velocity fields, respectively, using polynomial
degrees of 3 and 4. For any given number of degrees of freedom, the local refinement
scheme is seen to yield significantly lower errors than the global refinement scheme,
when comparing corresponding discretizations and degrees. For any given tolerance
on the errors, hence, local refinement reduces the required number of degrees of
freedom by up to an order of magnitude compared to global refinement. Comparing
the Taylor-Hood and the multigrid discretizations for any given refinement strategy
and polynomial degree, the two discretizations are seen to perform remarkably
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alike. As expected, we observe that higher polynomial degrees are associated with
smaller errors. Also shown in Fig. 15.12c–e are examples of the pressure grids
produced through global and local refinement of the Taylor-Hood and the multigrid
discretizations, respectively, for degree d D 4. Although the globally refined grids
in Fig. 15.12c have around four times as many degrees of freedom as the locally
refined grids in Fig. 15.12d, e, all four produce results with similar errors. The local
refinement scheme is seen to yield refinements in regions of strong gradients in the
target pressure field, cf. Fig. 15.11b.

We mention at last that the quantitative aspects of these results of course depend
on the specific problem, the error estimator, the refinement scheme, etc. We believe,
however, that their qualitative aspects often will be the same.

15.6.3 Lid-Driven Square Cavity: Benchmark

In the last example, we examine the performance of the discretizations on a standard
benchmark flow problem: the lid-driven square cavity. As outlined in Fig. 15.13a,
the fluid in the square container is set in motion by the sliding movement of
the lid of the container. The problem resembles the one in Sect. 15.6.1 above.
However, although the geometry is simpler, the flow is now (weakly) turbulent with
Re D 5;000. This introduces new challenges that we can test the LR B-spline flow
discretizations against.

We solve the problem based on the LR Taylor-Hood and multigrid flow dis-
cretizations of degree d D 3 using the pressure grids shown in Fig. 15.13b, yielding
a total of 22,515 and 22,785 degrees of freedom, respectively. The results of the
computations are shown in Fig. 15.14. In Fig. 15.14a, the computed streamlines
using the Taylor-Hood discretization clearly capture the counter-rotating eddies that
are known to form in the NW, SE, and SW corners [10, 13]. The streamline pattern

‖u‖ = 1

‖u‖ = 0

‖u‖
=
0

‖u‖
=
0

f = 0
Re= 5;000

ba

Fig. 15.13 The lid-driven square cavity: problem formulation (a) and pressure grids (b)
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Fig. 15.14 The lid-driven square cavity: computed streamlines using the Taylor-Hood dis-
cretization (a) and normal velocity profiles through the two cavity center lines using both the
Taylor-Hood (T-H) and multigrid (M-G) discretization (b)

looks the same for the multigrid discretization. In Fig. 15.14b, the normal velocity
profiles through the cavity center lines computed using both the Taylor-Hood and
the multigrid discretizations are seen to match very well with each other and with
literature data [13].

Conclusions
The ability to achieve local refinement is crucial in all computer methods
for flow problems. Locally Refinable B-splines represent a novel approach to
local refinement within the context of isogeometric analysis. In this study, we
have proposed two families of LR B-spline discretizations of the pressure
and velocity fields for solving the mixed formulation of the steady-state,
incompressible Navier-Stokes equations in two dimensions using isogeo-
metric analysis. These LR flow discretizations represent direct extensions
of well-known tensor-product flow discretizations, namely the Taylor-Hood
and the multigrid discretizations. Through representative examples, we have
performed a series of numerical investigations of the use of LR B-splines
in isogeometric analysis of flow problems, including the stability of the
discretizations, error convergence during refinement based on a manufactured
solution, and benchmarking based on the lid-driven cavity problem.

Future investigations will hopefully reveal more insight into the prop-
erties of the flow discretizations. Their straightforward extensions to three
dimensions should be studied. Extending the very promising but slightly more

(continued)
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complicated Raviart-Thomas discretization to support local refinement is also
of extreme interest, since this element satisfies the incompressibility condi-
tion exactly [11, 12]. Furthermore, efficient error estimators and refinement
schemes should be studied to allow for efficient adaptive mesh refinement.
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Deflation, 78, 92–99, 101
Degenerations, 200, 208, 212–214

toric, 200, 213
Degree, total, 42, 49
Depth-first search (DFS) algorithm, 269,

271
Dialytic method, 78, 90
Dilatation, 149, 160
Dimension

formula, 178, 182, 195, 196
of ideals, 190
lower bound, 178, 183, 185, 190, 191
of spline space(s), 171–196
of trivariate spline spaces, 178
upper bound, 178, 179, 183–187

Discretization
pressure, 310, 311
velocity, 310, 311

Discriminant, 40, 105–120
cycle, 107, 109
mixed, 105–120

Discriminantal variety, 106, 109
d -list, 268–270
Dörfler marking
Dual basis, 78–80, 83, 85, 87, 89, 91, 97, 99,

102
Dual ring, 79, 82
Dual space, 79, 81, 83, 85, 92
Dupin cyclide, 148, 158–159, 164, 165,

227–235

E
Early Stage Researchers (ESRs), 2, 3
Elliptic line, 222
Envelope, 12, 13, 25–26, 33–35
Error estimator, 300, 316, 318
Euler characteristic, 202, 207
Expected dimension

of a linear system, 201, 202, 206, 209,
214

of a secant variety, 211
Experienced Researchers (ERs), 3

F
Fast Fourier transform (FFT), 21
4D space, 123–144
Free and graded module, 67
Fröberg-Iarrobino conjecture, 200, 203, 209
Fröberg’s conjecture, 178, 183, 196
Function

piecewise polynomial, 177
spline, 178

G
Generalized companion matrices, 59, 62, 65,

66, 72
Generalized Cramer’s rule, 244
Generalized eigenvalue, 58–60, 62, 72, 73
Generalized Stanley–Reisner ring, 171–174
General position, 199–201, 203–205, 211

points in, 199–201, 203–205, 211
Genus, 27
GeoGebra, 243, 246, 250–254, 274, 276
Geometric algebra, 148, 153, 159–163, 165
Geometric modeling, 169–170
Greville abscissae, 304–306
Gröbner bases, 39, 44, 48, 49

H
Harmonic maps, 284–290, 297
Heterogeneous corner, 227, 228, 230–234
Hilbert function, 179, 191, 192
Homogeneous corner, 226, 227, 230–232
Homology module, 178, 180, 181, 183, 194,

195
HpFEM, 2
Hyperbolic line, 222, 223
Hypersurface, 12, 17–29

I
Ideal(s)

of fat points, 178, 182, 192
generated by a generic set of forms, 183,

190
of powers of linear forms, 178, 181–183,

190–192
Implicit curve, 129–135
Implicit equation, 39–40, 42, 43, 46–50,

53–56, 58, 64, 67
Implicitisation/implicitization, 39–50,

156–157, 164, 165
approximate, 12, 19–22, 24–29, 32, 33
exact, 12, 17, 19, 21, 23, 24, 26, 28
sparse, 24–25

Inf–sup condition, 312
Initial Training Network (ITN), 2–4
Injectivity criteria, 129–130
Integration method, 85, 87–88, 100
Interpolation, 39–50
Interpolation, sparse, 39–50
Inverse system, 78, 79, 94–98
Isogeometric analysis, 281, 282, 299–318
Isogeometric approach, 2
Isolated point, 80–82, 98
Isotopy, 127
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Isotropic hypersurface, 223, 236
Isotropic quadric, 223, 226, 234, 236
Isotropic space, 163–165

J
Jacobian, 105–120, 129

matrix, 78, 93, 95–99, 101, 111, 112
toric, 105–120

K
Kernel, 40, 44–47, 50
Knot structure, 138
Kronecker canonical form, 60

L
Lattice configuration, 108, 109, 112, 116
Lattice points, 40, 44, 45
Laurent polynomial, 43
Least squares fitting, 293
Level sets, 285–290
Lid-driven square cavity, 316–318
Linear cycle, 206–209
Linear form, 14, 15
Linear obstruction, 207, 208
Linear system

expected dimension, 200–202, 209, 214
linear expected dimension, 206, 209
linearly special, 206
linear virtual dimension, 205, 206
special, 201, 203, 206, 212–214
virtual dimension, 200, 205, 206

Locally refinable (LR) B-splines, 299–318
Local refinement, 299, 300, 303, 304, 309–311,

314–318
Local ring, 85–92
Loop, 128, 130, 137–141
Lower envelope, 245, 268
LU-decomposition, 61

M
Macaulay method, 79, 85, 87, 88, 90, 98–102
Matrix representation

of parametric curves, 53–73
of parametric surfaces, 53–73

Maximal ideal, 80, 81
Maximal rank property, 183
Maximum principle, 286–288
Mesh, 123

elements, 304, 315
mesh-rectangles, 304, 305, 309–311

Minimization diagram, 245, 265
Minkowski metric, 222, 223

Minkowski scalar product, 222
Minkowski space, 221–223
Minkowski sum, 44, 108, 111, 113, 117, 118
Mixed multiplicity, 116, 119
Mixed volume, 108, 117
Möebius invariance, 147, 154, 165
Möebius transformations, 147–151, 155, 157,

160–161
Monotony condition, 130–133
�-basis, 68–71
Multigrid discretization, 309, 311, 313,

315–317
Multiple points, 202–205, 207–209, 212
Multiple root, 77–79, 81, 93, 97, 99, 102
Multiplicativity formula, 107, 110, 120
Multiplicity, 55, 63, 71
Multiplicity structure, 78, 79, 97, 99, 102

N
Navier-Stokes equations, 300–302, 305, 306,

312, 314, 317
Newton method, 77, 98, 102
Newton polygon, 25
Newton polytope, 39–41, 43, 44, 47, 50, 107,

108, 111, 112
Nil-index, 81, 82, 85, 86
Non-uniform rational B-spline (NURBS), 40,

44, 48, 49
Normal form, 82, 84, 90

O
Octahedron

generic, 193
regular, 193

Orthogonal of ideal, 81

P
Parabolic line, 222, 228
Parallel half-lines, 241–276
Parameterization, 39, 41–47, 49, 50
Parameterized surface, 123–143
Parametric curve, 53–73
Parametric surface, 53–73
Patch, 124–126, 128, 138, 139, 142
Penalty methods, 289
Pencil of spheres, 222, 228
Pencils of matrices, 58, 60–66
PH-curve, 243, 248, 249
Piecewise polynomials, 170, 178
Plücker’s conoid, 49
PN-surface, 243, 244, 259
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Polynomial basis
Bernstein, 13, 15, 18–23
Chebyshev, 21, 22
Lagrange, 22, 23
monomial, 18, 19, 22, 23, 25

Polynomial interpolation
classical, 199
Hermite, 200
multivariate, 199

Polynomial, Laurent, 108–110, 112, 114, 120
Polytope

implicit, 39–41, 43, 44, 46, 47, 49, 50
resultant, 40, 43, 44

Pressure, 301, 306–317
Primal-dual pair, 88–92, 97, 102
Primary decomposition, 80, 81
Principal Dupin cyclide patch, 158–159
Procedural surface, 123–125
Pseudo-Euclidean (PE) circle, 228
Pseudo-Euclidean space, 148, 159–160, 162
Pseudoscalar, 160
Pythagorean-normal (PN) surface, 159, 217

Q
Quadrisector, 266–270
Quaternion–Bezier (QB) surface, 148, 154,

164
Quaternionic-Bézier formula, 148–154,

165
Quaternions, 147–165
Quotient ring, 79, 82–86
QZ-algorithm, 60

R
R

3;1, 223–224
Real algebraic geometry, 169, 170
Reconstruction phase, 269, 271–276
Reflection, 149, 160
Regular matrices, 62, 72
Regular point, 81
Regular subdivision, 213, 214
Reparameterization, 288, 290–293, 295, 297
Resultant, 18, 19, 23, 24, 28, 106, 107, 109,

110, 112–120
cycle, 110, 113
sparse, 42, 107, 120
specialized, 43

Reversion, 160, 161
Reynolds number, 301, 312
Rolle’s theorem, 127, 130
Rolling ball blend, 217–232, 236

Root
common, 105, 109
double, 105
multiple, 106, 109

S
SAGA, 2–4
Secant variety

defective, 202, 210, 213
expected dimension of, 209

Segre embedding, 210
Segre-Veronese

embedding, 201, 210, 211, 213
variety, 209–211

Simplex, 18, 19
Simplicial complex, 170, 171, 173, 174
Singularity

acnode, 15, 27
cusp, 15, 27
self-intersection (crunode), 15, 27

Singular point, 69, 71, 77–79, 92–98
Singular value decomposition (SVD), 20–22,

32, 45, 48, 49, 54, 58, 73
Smooth polytope, 116
Specialization, 43, 44, 47
Spline(s)

bivariate, 178
dimension, 177–196
space, 177–196
triangular, 183–186
trivariate, 178, 187–196

Stability, 300, 311–313, 317
Stanley–Reisner ring, 171–174
Steiner surface, 56, 65
STEP standard, 1
Stokes equation, 312
Subdivision method, 126–129, 136
Subdivision phase, 269
Support, 106, 108–114, 116–118, 120

B-splines, 305
configuration, 111
implicit, 40, 43
LR B-splines, 305, 312, 315
predicted, 40, 46, 47, 50

Surface
intersection, 126, 128–135
parameterization, 282, 283, 296
segmentation, 283–284

SVD. See Singular value decomposition (SVD)
Sylvester determinant, 106
Sylvester matrices, 68
Syzygies, 56, 67
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T
Tangent cone, 229–235
Tangential gradient, 285–287
Taylor-Hood discretization, 311, 316, 317
Tensor

border rank, 210, 211
decomposition, 210
partially symmetric, 200, 211
rank, 200, 210, 211
variety, 211

Tensor-product, 18, 19, 21
Tensor-product B-splines, 303–305
Terracini’s Lemma, 211
Tetrahedral partitions, 183
Threshold, 124, 136, 138
Translation, 149, 160
t -regular, 268, 269
Triangulation(s), 177–196
Trimming, 242, 243, 248, 276
Trisector, 266–274
Trivariate spline, 281–297
Trivial spline, 170, 172–174
Tropical geometry, 40, 43
True bisector, 242–244, 246, 250–255, 276

U
Untrimmed bisector, 242–244, 246–251, 254,

255, 257–259, 261–264

V
Variety, mixed discriminantal, 109
Velocity, 301, 306–311, 313–315, 317
Veronese embedding, 210, 211
Virtual dimension, 200, 202, 205, 206

of a linear system, 206
Volume parameterization, 281, 282
Voronoi diagram (VD)

cell, 246, 266, 268, 269, 271, 273, 274
edge, 266, 270–272, 274–276
face, 266, 268, 271, 274
vertex, 267, 274, 276

W
Waring problem, 200, 202, 210, 211
Weak Lefschetz property, 178, 196
Web-splines, 282, 288, 295
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