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1 Introduction

The Data and Information Fusion (DIF) process can be argued to have three main
functions: Common Referencing (CR) (also known as “Alignment”), Data Associa-
tion (DA), and State Estimation, as shown in Fig. 1:

It can be argued that any DIF process can be architected as a network of such nodes
(see [1]). In Fig. 1, we have either data or estimates (from a prior Fusion Node) enter-
ing this process. Data Alignment or CR is a function that transforms all input data
to a common format and also, importantly, a common semantic framework. DA is a
function that associates the evidence from multiple sources to asserted entities in the
domain of interest; such entities can be not only physical objects but events, behav-
iors, situational substructures, etc. DA involves accounting for sensor and estimation
errors, and also for semantic differences and similarities; the idea is to assemble and
partition evidential sets of information so that subsequent inferencing and estima-
tion processes are applied to the most robust collections of evidence about any such
entity. DA comprises the three operations shown of Hypothesis Generation (defin-
ing feasible associations), Hypothesis Evaluation (a strategy for scoring inter-entity
associability of the collective evidence), and Hypothesis Selection (typically some
type of optimization scheme to define the best associations of all that are feasible and
of higher scores). At this point, there is thus a set of entity-evidence groupings (evi-
dence “assigned” to a given entity), and the assigned evidence is passed to whatever
estimation process is at work on the given entity for next-time-increment processing.
State Estimation (SE) follows, with various inferencing or estimation methods oper-
ating on these aligned and associated evidential sets. By a far greater proportion, the
DIF research and development community has applied such techniques to evidential
data coming from modern electromechanical sensors, i.e., what some call “physics-
based” sensors. In the military/defense domains, these are the modern sensors used
for Intelligence, Surveillance, and Reconnaissance (ISR) applications, ranging from
satellite-based sensor systems to embedded, Unattended Ground Sensors (UGS’s). In
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Fig. 1 Nominal fusion node processes

these cases, the designer of automated CR-DA-SE DIF operations enjoys the benefits
of dealing with input sources that are well-calibrated and understood, and largely if
not exclusively (in raw form at least) numerical. Data from such sources has come
to be called “hard” data in the sense of these well-understood properties. For the
type of operations involving traditional military engagements, where ISR must be
conducted covertly and at a distance, the use of such ISR sensors and hard data has
worked reasonably well.

However, subsequent to the end of the Cold War, the nature of defense and military
operations has changed dramatically, from so-called “conventional” operations to
what today are called “irregular” and “asymmetric” operations. These environments
are characterized by a number of complicating features:

• They can be quite complex, involving terrorist, criminal, insurgent, and warfighting
mixed operations

• They typically have no clearly defined or identifiable adversaries
• Hostiles/adversaries are mixed in with neutral, friendly persons or forces
• The goals involve not only destructive goals (“kinetic” actions) but establishment

of influence and indirect effects

among other factors; such definitions are controversial and it is not our intent to be
precise here but to give a flavor for these distinctions. Some of the other subtleties of
these environments are that there are now improved data sources to better understand
an “enemy” (a first principle of warfare), not only from a military point of view but
from a socio-cultural point of view. Further, as noted above, friendly forces are often
embedded in certain of these environments, which permits direct and close obser-
vation by these forces (humans, not sensors). Experiences in Iraq and Afghanistan
and other places in the world in dealing with intelligence and security problems
are typical of these new problems, and have required the (ongoing) formulation of
new paradigms of intelligence analysis and dynamic decision-making. Broadly, these
problems fall into the categories of counter-terrorism and counter-insurgency (COIN)
as well as stability operations. Depending on the phases of counter-insurgency or
other operations, the nature of decision-making ranges from conventional military-
like to socio-political (sometimes also characterized as “hard” and “soft” decisions).
Because of this wide spectrum of action, the nature of information support required
for analysis has an equally wide range. Since automated DIF processes provide
some of the support to such decision-making, requirements for DIF process design
must address these varying requirements, resulting in considerable challenges in DIF



Information Fusion Process Design Issues . . . 131

process design. One important driving factor for DIF process design is the new het-
erogeneity of the information supportive of DIF process design; these factors are
discussed in the Sect. 2.

2 Heterogeneity of Supporting Information

2.1 Observational Data

As remarked above, the experiences in Iraq and Afghanistan, and in other similar
involvements have also shown that some of the key observational and intelligence
data in such operations comes not only from traditional sensor systems but from
dismounted soldiers or other human observers reporting on their patrol activities.
These data are naturally communicated in language in the form of various military
and intelligence reports and messages. Such data, in textual, linguistic form, are
entirely different than hard sensor data, as they are much more ambiguous, yet they
can also be much more semantically rich; they are “soft” data in the sense that they
are both largely uncalibrated and their content is much harder to fully understand
(deep understanding begs the age-old challenge of forming automated methods for
natural language understanding). Such “Soft” data finds its way into DIF processes
as both structured and unstructured digitized text, and this input modality creates new
challenges to DIF process designs, contrasted with more traditional DIF applications
involving the use of highly-calibrated, numerically precise observational data from
sensors. Combined with the data from the usual repertoire of “hard” or sensor data
from various radio frequency (RF) sensors, video and other imaging systems, as well
as SIGINT and satellite imagery, the observational data stream is a composite of data
of highly different quality, sampling rates, content, and structure.

One main deficiency and critical path is on the soft data/human observation side,
since it is generally agreed that DIF for observational data provided by hard, physical-
science type sensors is much more mature; some have in fact argued that capabilities
for Level 1 Fusion with hard data input is rather mature and that limited research
investments should be made in this area. Although additional hard/Level 1 fusion
research remains to be done, we generally concur with these judgments and believe
that the first requirement is to define and prototype a viable processing paradigm
for soft data fusion both for single and multiple input streams, so that the critical
pre-estimation functions of Common Referencing and DA can be constructed. If we
examine a notional processing diagram for multiple streams of human observational
data expressed in linguistic terms (this is just one category of soft data), we envision
something like the process in Fig. 2 (this is similar to a prototype of this process we
have developed at our research center [2]):

In this depiction, each human observer processes the energy received from their
sensing capability into a Perception-Cognition cycle, and a mental process judges
how to express the observation in language (Linguistic Framing), resulting in a
linguistic utterance, and the chosen instance of language. This utterance may be
audio and need to be converted to digital text, and then formed into a message (that
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may be sent over network communications channels, not shown). Today, the received
message is typically parsed by a state-of-the-art Text Extractor, yielding for example
RDF Triples of Subject-Verb-Object phrases, or some other representation (see [3]
for the “propositional graph” approach we are using in our research). In virtually
every military application, the message stream and/or the triples would be filtered
through a human observer who functions as a first-level Quality Control process.
Each filtered triples stream then comprises the raw data input into a downstream
Data Fusion process. The meta-data (time-tags, uncertainty, etc) and the semantic
content of these triples need to be framed in a normalized way by processing through
the CR function, and then associated to determine if they relate to the same Entity
in the true, unknown world, so that multisource, fusion-based estimation processes
can exploit their informational content.

2.2 Open Source and Social Media Data

Soft or Hard data can also find its way into modern DIF processes in the form of
monitored Open Source and Social Media feeds such as newswire feeds, Twitter and
Blog sources judged to be possibly helpful. Getting such data into a DIF system
will require automated web crawlers and related capabilities, and subsequent nat-
ural language processing capabilities, as much of these data are also represented in
language.

2.3 Contextual Data

Modern problems also afford (and demand) the use of additional data and information
beyond just observational data. A major category of such data and information is
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Contextual Information. Contextual Information is that information that can be said
to “surround” a situation of interest in the world (many definitions and character-
izations exist but we will not address such issues here). It is information that aids
in understanding the (estimated) situation and also aids in reacting to the situation,
if a reaction is required. Contextual Information can be relatively or fully static or
can be dynamic, possibly changing along the same timeline as the situation (e.g.,
weather). It is also likely that the full characterization and specification of Contextual
Information may not be able to be known at system/algorithm design time, except
in very closed worlds. Thus, we envision an “a priori” framework of exploitation of
Contextual Information that attempts to account for the effects on situational esti-
mation of that Contextual Information (CI henceforth) that is known at design time.
Even if such effects are known at design time, there is a question of the ease or
difficulty involved in integrating CI effects into a fusion system design or into any
algorithm designs. This issue is influenced in part by the nature of the CI and the
manner of its native representation, e.g., as numeric or symbolic, and the nature of the
corresponding algorithm; for example, cases can arise that involve integrating sym-
bolic CI into a numeric algorithm. Strategies for a priori exploitation of CI may thus
require the invention of new hybrid methods that incorporate whatever information
an algorithm normally employs in estimation (usually observational data) with an
adjunct CI exploitation process. Note too that CI may, like observational data, have
errors and inconsistencies itself, and accommodation of such errors is a consideration
for hybrid algorithm design. Similarly, we envision the need for an “a posteriori”
CI exploitation process, due to at least two factors: (1) that all relevant CI may not
be able to be known at system/algorithm design time, and may have to be searched
for and discovered at runtime, as a function of the current situation estimate, and
(2) that such CI may not be of a type that was integrated into the system/algorithm
designs at design time and so may not be able to be easily integrated into the situation
estimation process. In this case then we envision that at least part of the job of poste-
riori CI exploitation would involve checking the consistency of a current situational
hypothesis with the newly-discovered (and situationally-relevant) CI. There are yet
other system engineering issues. The first is the question of accessibility; CI must
be accessible in order to use it, but accessibility may not be a straightforward matter
in all cases. One question is whether the most-current CI is available; another may
be that some CI is controlled or secure and may have limited availability. The other
question is one of representational form. CI data can be expected to be of a type that
has been created by “native” users; for example, weather data, important in many
fusion applications as CI, is generated by meteorologists, for meteorologists (not
for fusion system designers). Thus, even if these data are available, there is likely
to be a need for a “middleware” layer that incorporates some logic and algorithms
to both sample these data and shape them into a form suitable for use in fusion
processes. In even simpler cases, this middleware may be required to reformat the
data from some native form to a useable form. In spite of some a priori mapping of
how CI influences or constrains the way in which situational inferences or estimates
can be developed, which may serve certain environments, the defense and security
type applications, with their various dynamic and uncertain types of CI, demand a
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more adaptive approach. Given a nominated situational hypothesis Hf from a fusion
process or “engine”, the first question is: what CI type information is relevant to this
hypothesis? Relevant CI is only that information that influences our interpretation
or understanding of Hf. Presuming a “relevancy filter” can be crafted, a search func-
tion would explore the available CI and make this CI available to an “posteriori”
reasoning engine. That reasoning engine would then use: (1) a CI-guided subset of
Domain Knowledge, and (2) the retrieved CI to reason over Hf to first determine
consistency of Hf with the relevant CI. If it is inconsistent, then some type of adju-
dication logic will need to be applied to reconcile this inconsistency between: (1)
the fusion process that produced Hf and (2) the posteriori reasoning process that
judges it as inconsistent. If however Hf is judged as consistent with the additional
CI, an expanded interpretation of Hf could be developed, providing a deeper sit-
uational understanding. This overall process, which can be considered a “Process
Refinement” operation, would be a so-called “Level 4” process in the context of the
JDL Data Fusion Process Model (see [1]), that is, as an adaptive operation for fusion
process enhancement. The overall ideas discussed here are elaborated in [4].

2.4 Ontological Data

DIF processes and algorithms have historically been developed in a framework that
has assumed the a priori availability of a reliable body of procedural and dynamic
knowledge about the problem domain; that is, knowledge that supports a more direct
approach to temporal reasoning about the unfolding patterns of interest in the prob-
lem domain. In COIN and other complex problems, such a priori and reliable knowl-
edge is most often not available—the Tactics, Techniques and Procedures (“TTP’s”)
of modern-day adversaries are highly adaptive and extremely hard to model with
confidence. The US DARPA COMPOEX Program [5] attempted to develop such
models but only achieved partial success, experiencing gaps in the overall modeling
space of such desired behavioral models. We label these types of problems as “weak
knowledge” problems, implying that only fragmentary a priori behavioral model type
knowledge is available to aid in DIF based reasoning, inferencing, and estimation.

Ontological information however, that does not attempt to overtly form such
comprehensive behavioral and temporal models but does include temporal prim-
itives along with structural/syntactic relations among entities, can be specified a
priori with reasonably good confidence, and thus provides a declarative knowledge
base to support DIF reasoning and estimation. Note that such knowledge is also
represented in language and is available as digital text, in the same way as data
from messages, documents, Twitter, etc. The use of ontological information in DIF
systems can be varied; ontological information can augment observed data, can aid
in asserting possible relationships, help in directing search and also in sensor man-
agement (to acquire expected information based on ontological relations), and yet
other ways. Importantly, specified ontologies can also serve as providing consistent
and grounded semantic terminology for any given system. In our current research,
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we employ ontologies primarily for augmenting observational data with asserted
ontological data whose relevance is algorithmically determined using “spreading
activation” and then integrated to enrich the evidential basis for reasoning [6]. The
broader implications of ontologies for intelligence analysis are described in [7],
that comes from our university’s National Center for Ontological Research (see
http://ncorwiki.buffalo.edu/index.php/Main_Page).

2.5 Learned Information

Finally, there is the class of information that could be learned (online) from all of
the above sources if the DIF process is designed with a Data Mining/Inductive or
Abductive Learning functional component. Very little research and prototyping of
such dual-inferencing-process type DIF systems has been done although the concep-
tualization of such DIF schemes and architectures has been put forward some time
ago by Waltz (e.g., [8]), as shown in Fig. 2. Any DIF system that incorporates such
dual-inferencing schemes will encounter the challenge of knowledge management;
whether and how any runtime learned knowledge gets integrated into runtime oper-
ations, or gets saved for later operations, or any other scheme for employment of
learned knowledge is a challenge for storing, managing, and integrating that knowl-
edge. The runtime integration of learned information raises a number of both algo-
rithmic issues as well as architectural issues. For example, if meaningful patterns
of behavior can be learned and can be measured/judged as persistent or enduring,
such patterns could be incorporated in a dynamically-modifiable knowledge base to
be reused. In Fig. 3, Waltz shows that the management of such knowledge evolving
from what he calls Data Mining operations is handled by the “Level 4”, process
refinement function of the traditional JDL DIF process.

Such learning processes will also not be perfect and have some uncertainty that
also needs to be factored into the traditional CR and DA functions of the target fusion
process.

The heterogeneity of data and information as just described also creates new
challenges and complexities for the traditional functions of DIF as depicted in Fig. 1.
In the next section, we address the impacts of these modern defense/security problems
and of data heterogeneity on the DIF functions of Data Alignment or Common
Referencing, and on DA.

3 Common Referencing and Data Association

As pointed out in Fig. 1, CR is that traditional DIF system function that is some-
time called “Alignment” and is the function that normalizes these input sources
for any given fusion application or design. CR addresses such things as coordinate
system normalization, temporal alignment issues, and uncertainty alignment issues
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Fig. 3 Notional fusion process architecture combining data mining and data fusion (from [8])

across the input streams, among other issues. With the highly-disparate input streams
described above, the design of required CR techniques is a non-trivial challenge.
There are at least two major CR issues that this heterogeneous data represent: tem-
poral alignment and uncertainty alignment. Consider a textual input message whose
free text, in just a few lines, could have past-present-future tense expressions, e.g.,
“3 days ago I saw….”, “past precedents lead me to believe that tomorrow I should
see….”, etc. Other sources can also have varied temporal structures regarding their
input. Such data lead to the issue of what the DIF community has called “OOSM:
out-of- sequence-measurements” for hard/sensor data but the issue carries over to
all sources as well. Dealing with these issues requires complex temporal alignment
techniques for CR and also raises the issue of retrospective fusion processing opera-
tions to correct for delayed inputs (if warranted; this is a design choice). For example,
such process designs impute the need to set a threshold for allowable delays (how far
back in time will we adjust for), and this also sets a requirement for memory capacity
to save all data in that window to allow undoing and redoing the inferences when
such time-late or past-referenced data arrives. Temporal alignment methods we have
used for Soft data are described in [9].

The uncertainty alignment requirement evolves due to the high likelihood that
any uncertainty in the widely disparate sources described above will be represented
in inconsistent forms. Consider the basic differences between the uncertainty in
sensor (hard) data and textual (soft) data; sensor data uncertainty is sensibly always
expressed in probabilistic form whereas, due to the problem of imprecise adjectives
and adverbs in language, linguistic uncertainty is often expressed in possibilistic
(fuzzy) terms. It can be expected that uncontrolled Open Source or Social Media
data may use yet other uncertainty formalisms to express or tag inputs (e.g., beliefs
and subjective confidence measures). Transformation and normalization of disparate
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forms of uncertainty is a specialized topic in the uncertainty/statistical literature
(e.g., [10]), and is among the high-priority issues in the DIF community [11]. It
should be noted that such transformations can only be developed by invoking some
statistical type qualities that are preserved across the transform, such as some form
of total uncertainty; that is, the transform of some probability value does not cre-
ate an “equivalent” value of a probability in, say, a possibilistic space; instead the
transformed value is one that satisfies some statistical constraint about which the
transform is structured. For the interested reader, seminal papers on the probability-
possibility transformation issue are in [12–14]. In our research, we have addressed
the probabilistic- possibilistic transformation issue in an approach that satisfies the
consistency and preference preservation principles [15], resulting in the most spe-
cific distribution for a specified portion of a probabilistic representation; this yields
a truncated triangular transformation in our case [16].

Regarding the DA function, that some consider the heart of a fusion process,
these highly-varied data raise the level of DA complexity in significant ways. The
soft data category, that inherently is reporting about Entities and (judged) Relation-
ships, and is inherently in semantic format (language/words), raises the important
issue of how to measure semantic similarity of such elements as reported in these
various input streams. Such scores are needed in the “Hypothesis Evaluation” step
of the DA process (see [17] on these DA subfunctions). But there are further DA
complications that arise due to the soft data: linguistic phrases have verbs that reflect
inter-Entity (noun) relationships; also of note is that the Natural Language Process-
ing (NLP) community has employed graphical methods for the representation of
linguistic structures. As a result, the DA process now involves inter-association of
both Entities (nouns) and Relations (verbs), and of graphical structures. This require-
ment extends to the hard data as well since that data needs to be cast in a semantic
framework in order to enable the overall DA process for the combined Hard and
Soft data. Developing DA methods for graphical structures represents an entirely
new challenge for the DA function. In such approaches for these applications, a
scoring approach also needs to be developed to assess Relational similarity as well
as Entity similarity, and a composite association scheme for these graphical sub-
structures needs to be evolved. Historical approaches to DA have often employed
solution methods drawn from assignment problems in Operations Research. When
association is required between many non-graphical data sources (i.e., among entities
and attributes, as in the multisensor-multitarget tracking DA problem), this can be
handled by such methods as the multidimensional assignment problem [18, 19]. The
main difference between the multidimensional assignment problem and graph-based
association is how topological information from the graphs is used. Our research
center has attacked this problem and has developed research prototype algorithms,
as described in [20] where the graph association problem is formulated as a binary
linear program and a heuristic for solving the multiple graph association is developed
using a Lagrangian relaxation approach to address issues involving a between-graph
transitivity requirement.

In virtually all computer applications involving the estimation or inferencing about
some state of affairs such as a “situation”, there is the issue of constructing computer-
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based processes (software) that is able to work with notions of “meaning”. Dealing
with notions of meaning becomes more difficult in DIF processes as one attempts to
build methods for so-called “high-level” fusion, involving more abstract hypotheses
such as situations and threats, etc. In modern problems and with hard and soft data
sources, these problems are aggravated; some aspects of these issues are discussed
in the next section.

4 Semantics

The introduction of linguistic information, as well as the transformation of
sensor+algorithm estimation process outputs (hard fusion outputs) into a seman-
tic frame, also adds to the complexity of DIF process design and development.
Semantic complexity is also added by the very nature of modern intelligence and
security problems wherein the situations of interest relate to both military operations
and also socio-political behaviors and entities. Clear meanings of such notions of
interest in modern intelligence or ISR problems such as “patterns of life”, “rhythm
of the city”, “radicalization” as patterns or situations of interest—to be estimated
by DIF systems—have proven difficult to specify in clear semantic terms, that is, to
specify their meaning with adequate specificity for computer-based processes. While
the use of ontologies helps in this regard, standardization issues remain when con-
sidering networked and distributed systems, which are typical in the modern era. For
example, in distributed intelligence or military systems there is typically no single
point of architectural authority that can mandate a single ontological framework for
the network. For large-scale real systems there is also the problem of large legacy
systems that were never designed with ontological formalisms in mind; this creates
a “retrofit” problem of adjusting the semantic framework of that system to some new
ontological standard, which can be a costly and complex operation.

It must also be noted that the way in which all textual/linguistic information gets
into a DIF system is through processing in some type of NLP or text extraction system.
Such systems serve as a front-end filter for the admission of fundamental entity and
relationship data, the raw Soft data of the system, and so any imperfections in such
extractions bound the capture of semantically-grounded evidential information for
the subsequent reasoning and estimation processes; that is, the meaning of the text can
be lost. While errors in hard sensor data are typically known with reasonable accuracy
due to sensor calibrations, the errors in text extraction and NLP systems are either
weakly known or unknown, sometimes as a result of proprietary constraints. Other
strategies to deal with the complexities of semantics involve the use of controlled
languages, to bound the grammatical structures and also the extent of the vocabulary
that has to be dealt with. A good example for military/intelligence applications is
the “Battle Management Language” or BML [21] that has been under development
since about 2003 for both Command and Control simulation studies but also for DIF
applications (e.g., [22, 23]).
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There is a corresponding need to better understand the nature of semantic (and
syntactic) complexity in language, and also to develop measures and metrics that aid
in developing better NLP processes and controlled languages. There is a reasonably
rich literature on these topics (e.g., [24]) that should be exploited in regard to the
integrated design of DIF systems that today have to deal with a wide range of semantic
difficulties.

As hinted at in our discussion regarding DA, many of these current problems
involve graphical data representations and therefore impose the use of graphically-
based algorithmic techniques. Some of these issues are addressed in the next section.

5 Graphical Representations and Methods

There are a number of reasons that, for COIN and asymmetric warfare-type problems,
graphs are becoming a dominant representational form for the information in and
the processes involved in DIF systems. In the information domain, many of the
components discussed in Sect. 2 are textual/linguistic and to capture this information
in digital form, graphs are the representational form of choice. The problem domain
is also described in the ontologies that are also typically couched in graphical forms.
Note that ontologies describe inter-entity relations of various types. Note too that the
inferences and estimates of interest in these problems are of the “higher-level” type
in the sense of the JDL Model of Information Fusion, that is, estimates of situations
and threat states. These higher-level states—the conditions of interest for intelligence
and security applications—are also best described as graphs, since situations can in
the most abstract sense be considered as a graph of entities and relations.

As a result, it is not unexpected to see that the core functions of DIF such as DA
as previously described, are employing graphical methods in these fusion function
operations. The U.S. Army’s primary intelligence support system, the Distributed
Common Ground Station-Army (DCGS-A) employs a “global graph” approach to
capture all of the evidentiary information that supports DIF and other intelligence
analysis operations; see [25] and Fig. 4 that shows the top-level structure of this
graphical concept.

Developing a comprehensive understanding of these problems thus involves a log-
ical synthesis of the many situational substructures or subgraphs in these problem
domains; the fusion-process-generated subgraphs can be thought of situational com-
ponents or hypotheses. The subgraphs are somewhat thematic and can be thought of
as revolving about the “PMESII” notion of the heterogeneity of the classes of infor-
mation of interest in such problems (PMESII stands for Political, Military, Economic,
Social, Infrastructure, and Information categories). Thus, it is also not surprising to
see Social Network Analysis tools—that are by the way graph-theoretic and graph-
centric—employed in support of intelligence analysis, here with the focus on the
Social and Infrastructure patterns and subgraphs of the problem space.

In our own work for such problems, we considered that it would be broadly helpful
in analysis to enable a subgraph-querying capability as a generalized analysis tool.
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Fig. 4 U.S. Army’s “Global Graph” concept for DCGS-A (from [25])

In such an approach, the analyst forms a query in text that can be transformed to
a graph (we call these “template” graphs in that they are subgraph structures of
interest—a textual/graphical question in effect) that is then searched for in the
associated-evidence graph that is formed by the DA process. This search opera-
tion is a stochastic, inexact graph-matching problem, since the nodes and arcs of the
evidential data set have uncertainty values associated with them (or perhaps the tem-
plate graph as well, if the query has stochastic/uncertain aspects), and also because
what is sought is the best match to the query, not an exact match, since there may be
no exact match in such unpredictable problem situations. Other complexities arise
in trying to realize such capability, such as executing such operations incrementally
for streaming data, and also doing them in a computationally-efficient way since the
graphs can get quite large. As a consequence of several PhD efforts, we have real-
ized today a rather mature graph-matching capability for intelligence analysis that is
implemented in a cloud-based process; see [26–28], among other of our works.

6 Analytics, Sensemaking, and Decision-Making

We have noted previously that for the problems of interest here, those so-called “irreg-
ular” and “asymmetric” problems, the amount and reliability of a priori knowledge
about the problem spaces is typically very limited. By and large, this means that
analyzing the associated, multisource evidential data involves a mixture of strategies
as has been suggested in Fig. 2. System designers and analysts must understand that
there will be no singular tool or analytical technique that provides the “answer” at
the level of abstraction desired. Such analysis environments are not entirely new to
intelligence and military ISR analyses but these modern problems impose new and
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additional difficulties in analysis methods and strategies. Commanders and analysts
do not approach these environments totally absent of knowledge, and they usually
have some type of focal topics and issues of interest. For commanders and analysts
both, it is usual to have a set of Priority Intelligence Requirements (PIR’s) that are
ideally interrelated to anticipated Course of Action (COA) decision options. How-
ever, the action space for these problems involves the range of political, economic,
military, paramilitary, psychological, and civic actions, i.e., not only “kinetic” actions
involving the use of weaponry. As remarked previously, the decision space can thus
also be labeled as “soft” in that the decision-space includes such decisions as those
resulting in the realization of desired levels of influence (e.g., onto tribal leaders
etc). It can be seen immediately from this definition that both the understanding of
a current situation and its various elements, and the space of possible decisions and
actions both have a much larger dimensionality than traditional military decision-
making in force-on-force operations. Collectively, the broad elements of this action
space can be broken into “direct” and “indirect” classes of actions, where direct
actions are those focused on adversarial structure in the traditional military sense,
and indirect actions those focused on undermining support to the adversaries while
simultaneously attacking them militarily. It can also be argued that the End States of
any decision sequence are “Effects” created by the sequence of actions (the COA).
The concepts of Effects Based Operations (EBO), not a new term but actively revis-
ited for these modern problems (e.g. [29]), shows that many references suggest that
EBO is a viable concept for irregular/asymmetric problems, in part because effects
are soft-type results, and subsume behavioral end-states, reflecting a human focus.
One simple taxonomy of Effects is shown in Fig. 5 (from [30]), a main distinction
being “Physical” versus “Behavioral”, which could be equated to “Kinetic” versus
“Non-kinetic”.

The development of an interlinked COA to create these behavioral, non-kinetic
Effects as end-states is very difficult and involves a web of interdependencies that
make EBO a process involving notions of Complex Adaptive Systems (CAS). Smith
[31] elaborates on this in various ways, and this CAS notion is also discussed in [32]
that emphasizes the non-deterministic aspect of any Course of Action producing
an intended Effect. Smith [31] has an extended development of the Effects-Based
approach for asymmetric operations, and in consideration of what Smith calls an
action-reaction cycle model (sensibly equivalent to Situation Management) puts
forward a linked process that specifically shows the influences of understanding
the Social Domain as part of the “Sensemaking” process that ultimately drives the
COA development.

A very important notion (see [33]) is that the COA development process starts
with a projected “Plausible Future” state so that actions are taken not necessarily on
the basis of the current situation but one that is expected to exist at the time actions
are taken on it, i.e., so that the situational state and actions onto it are as synchronous
as possible. Note that, ideally, the DIF system should be supportive of some type
of situational projection of such plausible future states, as part of an analysis suite.
Supported under Air Force Research Laboratory funding, we have explored the ideas
involved with, and the prototyping of automated DIF techniques for such estimation
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Fig. 5 Sample taxonomy of effects (from [30])

of plausible futures; see [34]. Additional remarks on the issues surrounding DIF,
decision-making, COA development in the counterinsurgency environment can be
seen in Llinas [35].

We see, as shown later, what today are called Sensemaking processes, as lying
between DIF and DM processes, in a stage wherein “final” situation assessments
and understandings (in the human mind) are developed. Thus, our view of this meta-
process is as a three-stage operation: DIF as an automated process that nominates
algorithmically-formed situational hypotheses (including nominations of “plausible
future situations”), Sensemaking that dynamically interacts with DIF and human
judgment in a kind of mixed-initiative operation to produce a final situational
hypotheses upon which then DM operations are triggered. While there is also a sub-
stantive literature on Sensemaking, we address here three models: those of Pirolli
and Card [36], of Klein et al. [37], and of Kurtz and Snowden [38]. The first two
have many similarities and so we will show a figure of just one. These models depict
Sensemaking as an iterative operation involving a hopefully-converging dynamic
between a supporting information-space and an evolving situation hypothesis space.
Here, the former is considered to be an automated DIF process and the latter is seen
as occurring in the human mind, possibly aided by automated utilities. In [36], the
overall Sensemaking process is “organized into two major loops of activities: (1)
a “foraging” loop that involves processes “aimed at seeking information, searching
and filtering it, and reading and extracting information, possibly into some schema,
and (2) a sensemaking loop that involves iterative development of a mental model
(a conceptualization) from the schema that best fits the evidence.” The Klein et al.
Sensemaking model [37], called a Data-Frame Model, has many similarities to the
process characteristics just described. The Kurtz and Snowden model, organized
around their framework called Cynefin [38] is really based on the idea that catego-
rizing the nature of the problem at hand, thereby partitioning it (in a “divide and
conquer” strategy) and applying appropriate solution methods, is a part of the Sense-
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Fig. 6 Pirolli and card (left) and Kurtz and Snowden (right) models of Sensemaking (from
[36, 38])

making process. Cynefin partitions problems into four categories called: Known (sol-
uble by known methods), Knowable (soluble by analytical/reductionist techniques),
Complex (soluble by what [38] calls Probe-Sense-Respond iterative discovery type
processes), and Chaos (soluble by actions to reduce disorder, sensing the results, and
responding or acting again). Cynefin takes a broader view of the states of complexity
as ranging from order-to complexity-to chaos than do the models of Pirolli, Card or
Klein; we include them because our concerns are for modern irregular, asymmet-
ric warfare applications that often can have such properties. Diagrams showing the
Pirolli/Card and Kurtz/Snowden models are provided in Fig. 6.

7 Connected Processes

So how do these processes interact, as we are asserting here? Fig. 7 shows a functional
characterization of how:

• DIF, a largely-automated inferencing/estimation providing process that offers:

– Algorithmically-developed situational estimates
– Organized raw observational data—note these are hard (sensor) and soft (lin-

guistic)
– Controllable collection management of observational data
– An Analytical Suite of useful but typically disparate tools

• Sensemaking, a semi-automated, human-on-the-loop process that:

– Considers the DIF-provided estimates
– Forages over these hypotheses as well as the data (e.g. drill-down etc)
– Assesses the “Cynefin-category” nature of the problem at hand
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Fig. 7 Interconnected/dependent DIF-Sensemaking-DM-Resource Mgmt processes

– Considers possible Policy, Authority, and Mission factors
– Culminates in a “Final Adjudicated Situation Hypothesis” that is also judged as

to acceptability; if not, this hypothesis is the starting point for decision-making
and action-taking to “manage the situation”

• Decision-making, also a semi-automated, human-on-the-loop process that:

– Operates in a System 1 (intuitive), 2 (contemplative, analytic) or “hybrid/mixed”
DM mode

– Yields a selected Course of Action
– That triggers a Resource Optimization process to define specific resources that

physically enable the selected COA onto the real-world situation

In [33], some of the issues regarding inter-process interdependencies were dis-
cussed (such as temporal dependencies), although that paper’s focus was on the
various metrics involved across these processes. Another point we will make in this
chapter is that yet another consideration related to decision-making is that most mod-
els of DM depict it as an analytical, contemplative process (analytical DM or ADM).
It is important we think to realize that the DM community also discusses intuitive
DM (IDM) that has considerably different properties than ADM. If we examine
the disparate features of ADM and IDM, shown below in Table 1, we see that DIF
process designs will need to be quite different to service the distinct functionalities
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Table 1 Comparative
features of IDM/System
1 and ADM/System 2 DM
modalities (from [43])

Intuitive Analytical

Experiential-inductive Hypothetico-
deductive

Bounded rationality Unbounded
rationality

Heuristic Normative reasoning

Gestalt effect/pattern
recognition

Robust decision
making

Modular (hard-wired)
responsivity

Acquired, critical,
logical thoght

Recognition-primed/thin
slicing

Multiple branching,
arborization

Unconscious thinking
theory

Deliberate,
purposeful thinking

for each DM mode. Thus, it can be argued that the DIF process should, ideally, be
informed of the DM modality that users are in at any moment, so that, assuming the
DIF design can be made DM-mode-sensitive, switch its operating mode to best ser-
vice any DM mode at the moment. The DIF research community has conducted very
minimal research on designing DM-mode-sensitive DIF processes; we see only two
papers in the recent literature addressing this topic (see [39, 40]). In regard to IDM in
particular, it could be argued that Case-Based Reasoning (CBR) techniques (similar
to Klein’s RPD process, that enable intuitive, experientially-based inferencing and
DM) might be a preferred inferencing mode in DIF for the IDM modality. While
there are similarities between IDM and CBR/RPD, there is an important distinction
for (probably most) modern operational domains about the notion of novelty in situ-
ations, and the true underlying capability of a human to deal with situations that are
“seriously different” from their experience base. Naturalistic decision making using
the RPD model fails in theory if there is a lack of experience or when encountering
a completely novel scenario [41]. A review of most IDM models suggests that the
inherent limits of IDM are the decision-makers personal range of situational experi-
ence combined with what has been “implicitly learned”. Any presented situation that
is not adequately similar to this body of experience requires adaptation and learning.
Boin et al. [42], state that “if the situation is radically different from those stored in
memory, a somewhat different kind of sense-making process will be necessary.”

Another dependency area is between the DIF and Sensemaking processes. Clearly
the Foraging function within Sensemaking implies that the DIF process will have to
be open to, and enable, a range of queries that will be in regard to: raw or processed
observational data, DIF functional operations (e.g., DA1), and nominated situational

1 The Army’s DCGS-A future system requirements for example include user-modifiable DA capa-
bilities.
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Fig. 8 Notional functional operations of the DIF-Sensemaking interactions

hypotheses, among possibly other runtime interactive operations. The notion of this
interaction is depicted in Fig. 8, showing an analyst API that allows runtime modi-
fication of either or both of the Association and Estimation functions, then followed
by IF reprocessing to generate new results that then get absorbed (possibly with
automated support, not shown) into the analyst’s schema and mental models.

8 The Human Role in DIF, Sensemaking, and DM

This general process model can be seen to have at least two human points of involve-
ment (assuming that the analyst is not the decision-maker). In our prototype hard-soft
DIF system, we also have a possible role for a human in regard to editing the auto-
mated text extraction process for the soft/message data stream due to the consider-
able difficulty in achieving high quality extraction with automated methods. It can be
appreciated that the complexity of natural language understanding, the complexities
of the problems domain and the hard-soft fusion process all impute a serious consid-
eration for placement of human intelligence in system design. The human role in DIF
processes has been discussed for some time in the DIF community, and there are some
works addressing the issues [44, 45]. In our judgment however, this general issue has
been inadequately addressed at the community level, probably as a result of the DIF
community having a quantitative bias, as can be seen in any review of community
publications. The assertions and discussion here expands the challenge of addressing
not only the human role in DIF but in Sensemaking and Decision-Making as well.
The larger issue is a meta-system design question across the DIF-Sensemaking-DM
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meta-process, as regards the placement of human intelligence and judgment for
interpretation, control, and decision-making. The usual issues of quality of interpre-
tation, quality of decision-making, quality of control versus timeliness need to be
dealt with in developing approaches to designing this meta-system.

9 Summary

The world is dynamic in many ways. Looking at world politics and technology, no one
should be surprised that there have been dramatic changes in the nature of security
aspects driven by world politics; over the span of a decade or so, there should similarly
not be any surprise that technology has advanced considerably. It is in this setting
that this chapter was written, to offer perspectives on what those meta-changes have
implied for the design and development of DIF systems as they sit in the interdepen-
dent environment with sensemaking and either analysis or decision-support systems.
DIF system designers need to both take a larger view of their system’s design but
also reach out to and collaborate with those designing the related major functional
capabilities for sensemaking and analysis and decision-making. DIF has always been
a multidisciplinary area of study; this larger view further complicates that aspect but
it is the opinion taken here that those interdependencies are inescapable, and that
effective and efficient DIF designs can only be realized in the context discussed
herein.
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