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Abstract The nature of the cyber warfare environment creates a unique confluence
of situational awareness, understanding of correlations between actions, and
measurement of progress toward a set of goals. Traditional fusion methods leverage
the physical properties of objects and actions about those objects. These physical
properties in many cases simply do not apply to cyber network objects. As a result,
systematic, attributable measurement and understanding of the cyber warfare envi-
ronment requires a different approach. We describe the application of a mathematical
search engine having inherent design features that include tolerance of missing or
incomplete data, virtually connected action paths, highly dynamic tactics and proce-
dures, and broad variations in temporal correlation. The ability efficiently to consider
a breadth of possibilities, combined with a chiefly symbolic computation outcome,
offers unique capabilities in the cyber domain.

1 Introduction

Game theory (1–15) is a mathematical theory of strategic behavior, in which a course
of action (COA) consists of one or more individual moves taken by each player at a
given stage of the game starting from their estimate of the current game state S(k)

at time k. A game theory engine is a computational device for advising a particular
player as to the selection of future COAs based upon their estimate of the current
state S(k), given one or more evaluation functions ε (S( j)), j = k + 1, k + 2, K
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Fig. 1 Tree structure of a game theory engine output at a particular step of the game

that measure the change in the utility of future states that would result from a set of
“moves” (i.e., actions taken) by himself and/or the other player(s).

The objective of a game theory engine is to identify for each player the set of
feasible moves by all players from a given state, and to select the COA for a player
that optimizes the sequence of future states with respect to his own assumptions at
each step as the game proceeds. This optimal COA is also referred to as a “plan”.
The output of the game theory engine at each step of the game is represented as a tree
with branches that are contingent upon the actions of all players. Figure 1 illustrates
this structure in the case of a two-player game.

In general, each player in a game may have their own evaluation function, which
in a two-player game we would denote by ε1 (S) and ε2 (S), respectively. In the
simplest case, also known as a zero-sum game, the state S is commonly agreed by
both players and assumed to represent the true state of the network, and the evaluation
functions satisfy ε1 (S) = −ε2 (S), i.e., one player’s gain (loss) in value is equal in
magnitude and opposite in sign to the other player’s gain (loss).

In more complex and realistic cases, the current true state S(k) of the network
may not be available in full detail to one or more players. In such cases, each player
may have their own unique (and perhaps only partially accurate) estimates, say Ŝ1(k)

and Ŝ2(k), respectively, of the true state, while player 1 may have an estimate Ŝ12(k)

of the state perceived by player 2, and vice versa for player 2’s estimate of the state
Ŝ21(k) perceived by player 1. Either player may assume the feasibility of certain
moves by herself or her adversary that are in fact disallowed by the true state of the
network. For example, a player may believe they know the password to a device and
thus assume they can login and perform certain actions, when in fact they do not
have the current password. The player may not be aware until a later time, if at all,
that some of their moves were actually unsuccessful.
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In addition to the potentially distinct estimates of state, the evaluation functions
for each player may be different, so that for example in a two-player game, even
if both players are in complete agreement on a common state S, the evaluation
functions ε1 (S), ε2 (S), ε12(S) and ε21(S) may all be distinct. Thus, in addition to
the true state, we may have to consider four different state estimates, as well as four
different evaluation functions, at each step of a two-player game, and even more
when additional players are involved.

Since a game theory engine is capable of considering a very large number of pos-
sible moves, it provides a natural mechanism for the modeling and analysis of cyber
warfare offensive and defensive tactics. This is not to suggest that the human analyst
can be replaced in this role. Instead, we consider this to be a useful tool to supple-
ment the expertise of the human analyst by enabling the modeling of adversaries, the
prediction of the efficacies of potential moves and the scoring of the vulnerability of
a network (either one’s own or an adversary’s) to various cyber-attacks.

In this chapter,we describe a practical game theory engine denoted Themistocles
that has been developed and employed over the past decade in cyber warfare analysis.
At each time step k, Themistocles fuses past actions into a representation of the
current state S(k) of a network and the corresponding perceived states by all players.
The latter states are functions of observed, inferred or hypothesized actions. Actions
that could changethese state estimates may be observed directly (i.e., sensor data
indicates the action), inferred indirectly from other observations, or hypothesized
(neither observed nor implied by other objective evidence). All three types of actions
involve varying degrees of uncertainty.

For each player, the feasible paths from their current state estimate and their
estimate of their opponents’ perceived state to a series of future states are constructed
and scored with respect to the corresponding evaluation functions. The challenges
are (1) to represent the evaluation functions of each player so that the scoring of each
potential future state can be performed from the perspective of that player, and (2)
to maintain a sufficient number of hypothesized future states to enable exploration
of the full spectrum of path possibilities. In numerous formal cyber war games,
Themistocles has demonstrated a capability to generate recommended COAs that
met with the approval of human experts monitoring the games as being consistent
with their best judgment of strategies and closely predicted the actions and tactics of
human agents.

The remainder of this chapter is organized as follows. Section 2 describes the struc-
ture and algorithms of Themistocles. Section 3 presents examples of Themistocles’
employment in cyber warfare scenarios. Section 4 concludes.

2 Themistocles Structure and Algorithms

Themistocles is comprised of four major software components, as illustrated in Fig. 2.
The main processing flow is contained within the Search and Move Generation
components. The Scheduler manages time within the game and initiates processing
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Fig. 2 Diagram of Themistocles components and their inputs/outputs

within the other components. The User Interface manages interaction with the user,
including user controls and displays. This section first lays out the definitions required
to specify system components and variables in Themistocles and then describes each
of these in turn.

2.1 Definitions

The following definitions further detail the structure of Themistocles as a game-
theoretic engine for modeling and analyzing cyber warfare scenarios.
Domain. The operating domain of Themistocles is a network of digital devices that
are potentially capable of communicating with one another over this network. The
devices may or may not be operable, and a given device may or may not be accessible
by one or more players in a game.
State. The state in Themistocles is defined as the set of all variables and their associ-
ated values needed to characterize the system situation at a given point in time. In all
cases, templates may be used to configure the system for ease of setting up a game.
Global state variables characterize the overall situation on the network, while local
state variables describe the situation on each device. Local state variables describe
devices’ pertinent attributes, operational status and accessibility. The number of local
state variables is device specific, but may range upwards of 100 variables of different
types. Examples of these include the on/off state of the device, whether it is a server,
the operating system (O/S), the root password, as well as subjective variables such
as the degree of belief in current suspicious activity on the device, etc. Global state
variables include subjective variables such as the work cost of each prospective move,
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Table 1 Partial list of local
state variables for a network
computer

Cyber object state variable Value type

Admin password known Boolean

BufferOverflow vulnerability Boolean

Database service Numerical

FTP service Boolean

HTTP service Boolean

Has account Boolean

Has password file Boolean

isCritical Boolean

isHostKnown Boolean

isHostUp Boolean

isServer Boolean

Patch version Numerical

Physically accessible Boolean

Physically at machine Boolean

Root kit installed Boolean

Needs investigation Boolean

Key logger installed Boolean

Suspicious activity seen Numerical

Table 2 Partial list of global
state variables for a network

Global state variable Value type

Danger level Numerical

Paranoia Numerical

Political risk Numerical

Risk Numerical

Work Numerical

Number of victims Numerical

Number of decoys Numerical

the cumulative work cost for each player, the risk of discovery for each prospective
move for a player (usually only factored into the evaluation functions ofred players)
and the cumulative paranioa of a blue player (used to determine the eligibility of
certain drastic moves such as system restores).

Table 1 provides a listing of some typical local state variables for a network com-
puter, while Table 2 provides a listing of some typical global state variables for the
network. Each of these state variables has a set of sub-values corresponding to its
true state and its estimated state by each player in a game, both for themselves and
for the other players. Thus in a two-player game, there will be 5 sub-values for each
state variable, i.e., truth state, player 1’s own estimate of the state values and his
estimate of player 2’s assignment of state values, and similarly for player 2.
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Table 3 Partial list of typical moves available to network defender/attacker

Defender move name Move effect Opponent observables

AnalyzeSystemLogs Logs viewed, get info such as a
login record or service
installation

None

AnalyzeDataLogs Database viewed, learn whether
data was modified, deleted,
or added

None

IP filter Blocks a given set of IP
addresses at the firewall

SYN flood stops working

InvestigateShutdown Determine if a host shutdown
was legitimate

None

NotifySecurity Security team is on alert More extreme counter moves

RestoreSystemFromBackup Deletes all data and software,
puts it back into standard
start state

Lost connection, lost malicious
services, lost backdoor

Attacker move name Move effect Opponent observables

Modify data Corrupt data in a database Tripwire alert on modified files

Port scan Determine IP’s of host’s on a
subnet and the services they
offer

TrafficAnalyzer alert (i.e.,
Snort)

SetupBot Take over a machine for later
attacks

None

SQL injection Gain root privileges by
embedding string literal
escape characters into the
login command

None

SYN flood Distributed denial of service
(DDoS) by sending
thousands of TCP SYN
packets to a single machine

Service unusable or network
slow

Move. A move is a member of a relatively small set of steps (i.e., O (10) actions)
that a player can execute on a given device (e.g., a login). Moves have prerequisites
(e.g., a device must be turned on, the player must know the login password, and the
paranoia level makes the move eligible) and effects. The effects include a work cost
associated with the move, which is expert-assigned, and changes in local or global
state variable values (which in turn can add to the cumulative work cost for a player).
Table 3 provides a listing of typical moves, along with their prerequisites and effects.
Move generation. Move generation is the process of creating a set of feasible moves
for a particular player, given the current state of the system. This set also has relatively
small cardinality in most instances, since a particular player typically has access to
only a fraction of the devices on the network. As well, the values of both local and
global state variables can further prune the set of feasible moves.
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Objective function. An objective function is one of a set of utility functions for
each player whose independent variables are local and/or global state variables of
the system. These state variable values are mapped into negative or positive integer
scores, with the sign depending upon whether a given state of the system confers
negative or positive benefit to the player. The scores are expert-assigned on a relative
scale on the interval [−5 × 104, 5 × 104], and reflect the cost/benefit of system state
variable values. Thus a score of 1000 (−1000) reflects 10 times the benefit (cost) of a
score of 100 (−100). A weighted average of these scores is calculated over all of the
objective functions for each player, and the result is mapped via a sigmoid function
to the interval [1, 105] to produce an overall score for a given system state, from
that players’ perspective. This range is chosen in order to provide adequate dynamic
range to the normalization steps that map COA state scores back into utility values,
the latter residing in the unit interval [0, 1]. Table 4 presents a typical set of objective
functions for a blue player (defender), while Table 5 presents a typical set for a red
player (attacker).

In addition to the state-related scores calculated from these objective functions,
there are also work costs (with negative values) that reflect the time and expense
associated with a given move. These costs are cumulated over sequences of moves,
and the cumulative work cost upon arriving at a given state is deducted from the
overall score associated with that state. In addition, there are scoring-related state
variables such as the danger level for the network, a number in [0, 1] that determines
how the scores of individual players’ COAs are combined into a joint COA score,
with a value of 0.5 giving equal weight, a value of 0 assigning all weight to the red
players’ score(s) and a value of 1 assigning all weight to the blue players’ score(s).
Utility. Utility is a normalized score associated with each state involved in a particular
COA, i.e., with each state resulting from a sequence of moves by the players in
the game. The normalization is with respect to all feasible moves deriving from the
current system state. Thus the utility of the successive states in a COA monotonically

Table 4 Blue player objective function descriptions

Objective function Description

Preserve availability Adds points for each host under supervision if the host is up
and working properly

Investigate suspicious activity Adds points for states that provide information about a host
that has gone down or is non-functional, even if it isn’t
fixed

DoS defense Adds points for maneuvers to stop a denial of service, such as
blocking IP addresses, ports, or applying patches

Worm defense Adds points for applying patches; deducts points for
non-critical ports being open, deducts points for each host
infected

Submit weekly report Adds points for successfully uploading data to a database on a
weekly basis

Minimize work Deducts points for executing moves that utilize administrator
time/energy
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Table 5 Red player objective function descriptions

Objective Description

Corrupt database Adds points for modifying data on any database

Corrupt web server Adds points for modifying data on any web server

Cover tracks Adds points for removing log entries, software installations, etc.
that result from an attack and could lead to being caught

DoS host Adds points for preventing network access to any host

Gain server root account Adds points for obtaining a username/password on a server

Minimize risk Deducts points for executing moves that have risk

Poison DNS Adds points for modifying host files to point to one of your own
servers

Remote reconnaissance Adds points for mapping an opponent’s network and determining
what services and vulnerabilities are there

Setup bots Adds points for getting root privileges on remote machines

Steal data Adds points for exfiltrating data from any host

Steal server data Adds points for exfiltrating data from any server

decreases as the depth of the COA increases, and a COA is terminated when the utility
of its leaf node falls below a cutoff threshold. This process is further described in the
Search component below.
Action Queue. The Themistocles Action Queue manages the execution of all moves.
It has two primary functions: (1) to test the effects of each move, and (2) to manage
the time clock of the game. When a prospective feasible move is added to the action
queue, the resulting state change is calculated and the game time is advanced to
the next interesting time. The latter time is the minimum increment of time until the
move generates an observable event, or until the move completes, or until a pass time
is reached (i.e., the maximum increment of time permitted in the game scenario).
Once a particular move has been added to the Action Queue, the overall utility of the
resulting state is calculated and stored. Following this, the move is removed from the
Action Queue and the next feasible move is added, with this process repeated until
the respective utilities of all feasible moves have been calculated.

With these definitions, we now proceed to describe the four components of
Themistocles in Fig. 2 and their interactions.

2.2 Search Component

The search engine is the core of the Themistocles software. The search engine per-
forms the selection and evaluation of prospective feasible moves recursively over
time. The output of the engine at each step in the game is data describing the pre-
scribed COA and the states corresponding to each evaluated COA.

The Themistocles search process is a tree-based search designed quickly to
produce an initial prescribed COA, using a leaf node score cutoff threshold in
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combination with a maximum tree depth, and then successively to refine the pre-
scribed COA by deepening the search via iterative reductions in the cutoff threshold,
as elaborated upon below. Each player performs his own tree search at each step of
the game, based upon his own estimates of the system state and his estimates of the
system state assumed by the adversary(s).

The root node of a player’s search tree corresponds to the current state of the
system S(k) at time step k in the game. Starting with the root node, the tree is
constructed in a partially serialized manner by considering the collection of child
nodes N n

i, j at levels n = 1, 2, K that would result from the feasible move sets of a
given player and her adversary(s), where the superscript n refers to the depth of the
tree, i indexes the child nodes at a given level n and j indexes the child nodes of
parent node i (n = 1 corresponds to the children of the root node, for which only
a single parent node exists, i.e., i = 1 only for this level). Each node in the tree
corresponds to a prospective future system state S p

i j (k + n), n = 1, 2, K for player
p, where these states are ordered in a time sequence dictated by the move effects.

A utility value V
(

S p
i j (k + n)

)
for player p is calculated for each child node,

and these values are then normalized to sum to unity by dividing each child node
value by the sum over all child node values, resulting in a normalized utility value

V ′
(

S p
i j (k + n)

)
, i.e.,

V ′ (S p
i j (k + n)

)
=

V
(

S p
i j (k + n)

)

∑
j

V
(

S p
i j (k + n)

) . (1)

For n = 1, i.e., the first level of child nodes from the root node, these values are
equated to the corresponding nodes’ game score denoted by P p

i j (k + 1), i.e., P p
1 j

(k + 1) ≡ V ′
(

S p
1 j (k + 1)

)
. For n > 1 the V ′

(
S p

i j (k + n)
)

are multiplied by the

parent node’s game score P p
i ′i (k + n − 1) (where i ′ is the index of the grandparent

node), resulting in a game score for node N n
i, j given by

P p
i j (k + n) = P p

i ′i (k + n − 1)V ′ (S p
i j (k + n)

)
(2)

If P p
i j (k + n) > Pcutoff for a given child node N n

i, j , then node N n
i, j becomes a parent

node for a follow-on set of moves that deepens the tree. Thus the score of the terminal
node for a given COA(path) through the tree decreases as the tree depth increases.
Some moves may be generated with an associated probability, in which case the child
node utility value prior to normalization is also multiplied by its (expert assigned)
probability of occurrence.

The above process is continued until no parent node has a child node with a score
above the cutoff threshold, at which point these parent nodes become the leaf nodes
of the tree. This search for a particular player is illustrated in Fig. 3, where the white
nodes represent the states resulting from that player’s move choices and the dark



228 A. Ott et al.

Projected 
time

Current State (Si )

…

…

… …

…

Plausible 
moves

Projected 
Course of 

Action

Fig. 3 Search tree from a given current state, showing projected moves by both players in a two-
player game

nodes represent the states resulting from the adversary’s move choices. Note that the
search tree admits a combination of these states in any path through the tree.

The COA is scored based upon knowledge engineering defined abstract parame-
ters specifying expected effects of moves and weights of objective functions for a
given player evaluation model. Themistocles instantiates the moves and effects of
each move and calculates the COA score at each node based upon the accrued move
effects and weighted objective functions for each player. The path terminating at the
highest scoring leaf node is selected as the prescribed COA and is then executed in
an autonomous game simulation. In an interactive game, the top three scoring COAs
are presented to the user, who then selects the one of his choice.

2.3 Move Generator

A move is defined to have the following characteristics:

• A list of preconditions.
• Effect on state upon initiation.
• Effect on state upon completion.
• A list of conditional effects during execution.
• Timing information for the entire move and each effect.
• A list of possible outcomes and probabilities for each effect.

In addition to explicitly modeling timing effects and stochastic move outcomes, the
move set differs from traditional game move sets in another fundamental way. In a
traditional game, two opposing players alternate moves. In most real-world domains
such as cyber-warfare, this is simply not the case. Each player has the option of
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Fig. 4 Snippet of partially-serialized game tree

choosing multiple moves that are executed simultaneously. In fact, both players will
frequently be executing multiple actions at the same time.

To accommodate this, the search utilizes an untraditional approach to tree con-
struction where all simultaneously chosen moves are serialized, such that they are
listed in order in the tree despite the fact that they will be executed at the same time.
This is accomplished by introducing a new move type: Pass. A pass indicates that
the player will not be choosing to begin any additional actions until the next inter-
esting time. All moves chosen before a pass are interpreted as beginning at the same
simulated time. Figure 4 shows an example of a small subset of a partially serialized
game tree.

When there are no players left to choose a move at a particular interesting time,
the serialized move tree is parsed and the scheduler is notified of the postulated move
selections for each player and the time queue entries for each action chosen.

While each move has a duration and set of possible outcomes associated with it,
both players may or may not be aware of these outcomes. Awareness of the state
of the network is based on available resources, and may be contingent on making
moves to gain information. Even when a move produces an observable, such as a
message logged by a deployed Intrusion Detection System (IDS), the players may
not be in a position to see the observable without further action. In the event that a
player can see the observable the system will give that player a chance to respond to
the observed event.

Note that both players are not necessarily given the option of moving during a
particular slice of time. Players only move if one of the defined events occurs such
that they are aware of it. Thus, if the defender completes a move, the defender will
have the option to choose more moves but the attacker will only have that option if
the event has produced an observable to the attacker.

For added realism, there are three types of dynamic environmental moves included
in any game: pure, scheduled, and consequential. Pure environmental moves include
elements of the environment that have unknown or dynamically changing attributes.
Schedule driven moves have scheduled preferential occurrence (such as circadian
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rhythm driven actions). Consequential environment effects simulate unexpected
results tied to a specific state change or move execution. The actual state effects
can be modeled that same way as player moves, using the action model. However,
the triggering effect can be different.

Pure environmental actions are simulated using a Bernoulli or Poisson distribution
tied to specific environmental factors. This technique was used effectively in training
programs for noise generation. This simulation takes into account the state context
so that the outcomes will make sense; for example, actions will not occur from an
object that isn’t capable of the proposed function.

For schedule driven factors, conditional effects are applied based upon the time of
occurrence. The time simulation can be selected based upon the particular environ-
mental factor being modeled. For example, this technique was used in space network
operations to model environmental factors such as thunderstorms, which in some
areas are highly dependent upon the time of day.

2.4 Scheduler

The Scheduler is responsible for maintaining the time queue of “interesting times”.
These interesting times are provided by move postulation, including start and end
time, sensor data input, and user input.

When a move is executed, the scheduler inserts the selected moves into the action
queue, advances time to the next interesting time, decides which player next has a
turn, and calls move generation to provide that player with all available moves. The
move start times are the times from the serialized move tree after composition of all
projected player move selections. The move completion times are the times at which
the last move effect is complete whether or not there is an observable state effect.

A move may have zero or more expected impacts to state and zero or more
observables for any player as a result of the move execution at specified times during
its execution. A Pass move has the simplest time data, having no effects on state times
but a completion time. Any time a move completes, whether or not it had an impact
on state, the Scheduler returns control to the move generator to determine whether
or not another move of any type by any player should be initiated. Move generation
augments the serialized move tree with moves selected for any player followed by a
pass move.

The Scheduler maintains two interesting time queues. The primary simulated
game time queue is the game action queue. The game action queue is maintained
for all actions derived from human or computer selected moves, environment model
moves, and sensor data reports. The secondary queue is the search action queue.
This queue is maintained for all actions derived from projected moves by the search
engine during a course of action evaluation. Any time an interesting time from the
game action queue implies a change of state, the scheduler initiates a course of action
evaluation by copying the game action queue to the search action queue, and initiating
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a search with the search action queue. The search action queue is then managed with
projected moves and state changes selected by the search engine and driven by the
search action queue.

When a course of action path has been evaluated to the point where the cutoff
score has been reached, then the scheduler will back up the search action queue to
the time of the last state that was not completely evaluated (paths with scores higher
than the cutoff still exist), and reinitiate the search engine. When all paths have
satisfied the cutoff, then the Scheduler will return to the game action queue and send
results of the latest state search to the appropriate player. A computer (automated)
player will always select the top scoring move(s), a human player can select moves
indicated by the search results and/or any other set of valid moves. This process
repeats continuously until there are no further actions in the game action queue. A
condition where no further actions exist in the game action queue occurs when the
game has been updated comprehensively but a human player has yet to finish move
selection or when a predetermined time limit has been reached.

The scheduler may run Themistocles much faster than real time or much slower
than real time. The scheduler runs Themistocles as fast as possible between the game
action queue entries. If the primary (game action queue) processing is provided solely
by computer input and not held for sensor data input, then Themistocles can run
many times real time. If the cutoff score is set very low, requiring deeper and broader
analysis (search action queue), or the moves in the primary (game action queue) are
defined in very fine grained time or with operator delay, then Themistocles can run
many times slower than real time.

The Scheduler also manages checkpoint retention, saving the state of the game
at specified times. The checkpoint initiation can be based upon a change in state
trigger, a simulation time trigger, or an operator trigger. As requested by the user, the
Scheduler restores the game to a full fidelity image at a specified time from a stored
checkpoint file.

2.5 User Interface

The User Interface (UI) leverages JAVA graphics packages to provide a graphical
representation of the state. It displays sufficient information that the observer may
understand the status of the game and the state of the target network. The UI may
present multiple views from the perspective of individual players including state,
resources, and moves available. In human mode, the player has an end turn button
that basically completes the move selections for that interesting time and triggers
the action queue to insert the pass move for the active display player. The UI also
supports configuration of the game simulation including checkpoint and rollback.

The User interface connects to the game server using JAVA Remote Method Invo-
cation (RMI) so that a client can be run on any other (potentially remote) machine.
As well, any interface could be created and connected to the game server through
the RMI.
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3 Examples

This section presents an example of Themistocles’ use in a realistic cyber warfare
game. We first describe the network environment being defended, including the
security measures and policies in place. We next present a scenario involving the red
and blue players’ objectives. We then describe the red players’ attack moves and the
resulting observables that are generated for the blue player by these actions. We step
through the sequence of top-scoring COAs generated by Themistocles in the context
of the moves undertaken by the red and blue players. We conclude with a summary
of the results.

3.1 Cyber War Game Environment

We consider a network of 10 regular workstations that are used on a daily basis, as
shown in the Themistocles screen capture of Fig. 5. Two additional workstations are
used for system administration. There is also an internal web server used for organi-
zational data sharing, an internal database server holding proprietary data shareable
only with employees and an internal email server. At the network interface, there is
a firewall with virtual private network (VPN) support. Outside the firewall, in the
network demilitarized zone (DMZ), there is a network intrusion detection system
(NIDS) machine with backup and archiving capabilities and a web server for sharing
data with remote employees. An unknown number of external machines have valid
access to the network.

Fig. 5 Themistocles screen shot showing the cyber warfare game environment
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Certain security measures and policies have been implemented on the network. To
wit, the fixed mission of the network allows the firewall to be configured to restrict
incoming and outgoing traffic only to those services needed. Source information
comes only via VPNs. The operating system (O/S) configurations have been stripped
of unneeded functionality and services. All application software on the network
machines is under configuration management. Finally the external IDS detects any
attempts to violate the firewall rules.

3.2 Attack Scenario

The objectives of the red player in the game are to steal information from any com-
puter on the network and to maintain access to the network for future attacks, while
minimizing the chance of being discovered. We assume that the red player knows
the IP address of the external web server in Fig. 5.

The objectives of the blue player are to maintain the availability of all servers
while minimizing the amount of effort and resources required to do so, and to gather
intelligence on any attacks in progress.

The attack proceeds as follows. Using a bot to help avoid attribution, the red
player scans the DMZ web server for vulnerable services running on the machine.
An exploit is used to gain root privileges on this server, ensuing with a backdoor
installation. Using this backdoor, the red player maps the internal network. From
this point, the red player attempts the exfiltration of data and the installation of root
kits on any and all network devices that are exploitable. When the red player observes
the failure of an attack against any particular host, a new host is selected for attack.

As a result of the red players’ attack, the blue player observes the following on
their control workstations:

• The IDS detects the port scan of the external web server. Due to background
network activity, this observation does not lead to any response.

• A tripwire detects that new software has been installed on the external web server
(i.e., the backdoor software).

• The IDS detects heavy download traffic to the external web server as the red player
performs data exfiltration.

• A tripwire detects the upload of the rootkit software.

With these preliminaries, the blue player employs Themistocles to aid in her selection
of moves to counter the attack in progress.

3.3 Themistocles Recommended Courses of Action

Table 6 shows the sequence of moves generated by Themistocles as the game proceeds
from attack initiation to its conclusion. To illustrate the game, we will examine the first
couple of COAs recommended by Themistocles for the blue player at the conclusion
of the preceding sequence of moves by the red player.
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Table 6 Sequence of moves by red and blue players

Move Owner Machine Function

SetupExternalProxy Attacker externalHostX

FTPScan Attacker externalHostX DMZWebserver

AnalyzeSystemLogs Defender nids1

Exploit FTP Attacker externalHostX DMZWebserver

UploadHostileSoftware Attacker externalHostX DMZWebserver

InstallBackdoor Attacker externalHostX DMZWebserver

InstallNIDS Attacker sysMgtConsole

LoginViaBackdoor Attacker externalHostX DMZWebserver

ScanSubnetForVulnerabilities Defender sysMgtConsole 10.0.1.*

PingSubnetInternal Attacker DMZWebserver 10.0.1.*

PortScanSubnetInternal Attacker DMZWebserver 10.0.1.*

ExploitFtp Attacker DMZWebserver Web server

UploadHostileSoftware Attacker DMZWebserver Web server

HardenSystem Defender Web server

InstallRootkit fails Attacker DMZWebserver Web server

ExploitFtp Attacker DMZWebserver DB server

ExfiltrateData Attacker DMZWebserver DB server

DeployHoneypot Attacker DB server

ModifyData Attacker DMZWebserver DB server

ExfiltrateData fails Attacker DMZWebserver DB server

ExploitFtp Attacker DMZWebserver e-mail server

UploadHostileSoftware Attacker DMZWebserver e-mail server

ApplyPatches Defender e-mail server

InstallRootkit fails Attacker DMZWebserver e-mail server

InstallRootkit Attacker externalHostX DMZWebserver

Quarantine Defender DMZWebserver

Given the red players’ objectives, he begins with an FTP scan on the DMZ web
server followed by a Pass. At the blue players’ first turn, she observes the FTP scan
and Themistocles analyzes the feasible subsequent moves and selects the highest-
utility COA as shown in Fig. 6. Note that this COA includes moves by both the blue
and red players, from the blue players’ perspective of their own and the red players’
scoring of these moves. The normalized utility of each successive move is shown
in the next to last column. The depth of a COA tree is limited by setting the cutoff
utility at 5 × 10−5. Thus the COA in Fig. 6 represents the deepest COA having the
highest utility above this cutoff threshold.

Referring back to the actual game moves in Table 6, the blue player elects to
analyze the system logs as recommended for the next step by Themistocles. The red
player then counters with the FTP exploit, uploading and installing the backdoor
on the DMZ web server. When the blue players’ next turn comes, Themistocles
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Fig. 6 Highest-utility COA for both players upon observation of the red FTP scan

Fig. 7 Highest-utility COA for both players upon observation of the backdoor installation

generates the highest-utility COA shown in Fig. 7, whereupon the blue player follows
the recommended next step and installs a NIDS on an internal router.

The red players’ next step is to login via the backdoor software he has installed,
as shown in Table 6. The game proceeds as shown by the moves in this table to the
final step where the blue player quarantines the DMZ web server.
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3.4 Analysis of the Example Game

The blue player began seeing suspicious behavior from alerts by its external NIDS
early in the game. Themistocles recommended an installation of an additional NIDS
on an internal router in order to catch malicious network activity if the red player had
gotten inside the defenses. A vulnerability scan was recommended to determine if any
unauthorized services had been installed. The backdoor installed on the DMZ web
server was detected, and this forced the blue player to make an important decision—
immediately remove the backdoor and make the DMZ web server unavailable to its
regular users, or keep the server running and use this as an opportunity to identify
the attacker. In keeping with the blue players’ mission, Themistocles recommended
the latter by deploying a “honeypot,” while making sure to turn off all unnecessary
services on the internal web server being attacked. The red player notices the web
server is no longer available to attack, so heads for the database server. This leads
the blue player to gather information on the red player, but the latter figures out that
it is a honeypot when a data corruption attempt doesn’t succeed. This is because
honeypots do not have real data on them, so modifications aren’t written to disk. The
red player moves on to the e-mail server and at this point the blue player decides this
is getting too aggressive and decides to shut out the red player by applying patches
and quarantining the server to remove all malicious software.

In the end, the red player was able to gain access to the blue players’ internal
systems and map the entire internal network, but was not successful in stealing any
data. One rootkit was successfully installed on the external DMZ web server, but that
was a risk the blue player desired to take in order to gather more information on the
red players’ identity.

4 Conclusion

The Themistocles engine represents a well-tested application of game-theoretic
principles to the cyber warfare domain. In several government-sponsored formal
cyber war games, Themistocles has been shown to generate COAs for both offensive
and defensive cyber warfare scenarios that are consistent with the move choices of
independent experts monitoring the game.

Future work in this area will include the fuzzification of move scores to both type-
1 and interval type-2 membership functions and the use of hierarchical linguistic
weighted power means for the aggregation of COA scores (16–18). This will enable
us to take account of the inherent imprecision associated with the costs/benefits of
individual moves, and to employ a perspective ranging from the most pessimistic to
the most optimistic on the aggregations of these scores.
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