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Preface

The cyberspace has an overwhelming influence on everyday activities of indi-
viduals and organizations. It has become a crucial part of society, industry, and
government. It is used as a repository of different types of information, including
critical ones, and as a means to oversee many activities and undertakings of social
as well as industrial nature. Any type of malevolence directed on cyberspace
creates disruptions affecting large numbers of people, organizations, and compa-
nies. Any minor attack on the Internet, as the most prominent part of cyberspace,
can cause uncountable damage and loss of information, and has the ability to
distress people’s activities, and paralyze corporations and governments.

This vulnerability of the cyberspace can be used to intentionally confuse, dis-
rupt, and even stop normal functions of societies and organizations. In the light of
our increased dependence on the proper and sound operation of the cyberspace,
mechanisms and systems, preventing any disruption and malicious actions on the
Internet is of critical importance. In other words, safety and security of cyberspace
has become essential.

By Cyberwarfare, we mean situations in which one entity, individual or orga-
nization, attacks another entity through cyberspace for the purpose, among other
things, of stealing information, effecting the performance of its adversaries com-
puter environment or sabotaging physical or information centric systems. With the
pervasive use of computers and the Internet, organizations have become more and
more vulnerable to cyber attacks.

The techniques emerging from areas of Computational Intelligence and
Machine Learning are destined to find their way to cyberwarfare-related appli-
cations. The currently developed and mature techniques of fuzzy logic, artificial
neural networks, evolutionary computing, prediction and classification, decision-
making techniques, game theory, and also information fusion can be used to
address a broad range of issues and challenges related to prevention, detection and
impact analysis of different intrusions and attacks on cyber infrastructure.

This volume gives readers a glimpse, by all means far from being compre-
hensive, on new and emerging ways that Computational Intelligence and Machine
Learning methods can be applied to issues related to cyberwarfare. The book
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includes a number of chapters that can be conceptually divided into three topics:
chapters describing different data analysis methodologies with their applications to
cyberwarfare issues, chapters presenting a number of instruction detection
approaches, and chapters dedicated to analysis of possible cyber attacks and their
impact. The book starts with a number of chapters related the topic of data and
information processing methods. Machine Learning, fuzziness, decision-making,
and information fusion are examples of topics and methods targeted by the fol-
lowing chapters.

The first chapter entitled ‘‘Malware and Machine Learning’’ by Charles LeDoux
and Arun Lakhotia provides an overview of Machine Learning techniques and
their application to detect different forms of malware. The similarities between
malware that contains inherent patterns and similarities due to code and code
pattern reuse, and Machine Learning that operates by discovering inherent patterns
and similarities create an opportunity to explore a synergetic effect created via
combining these two fields. The authors provide an overview of machine learning
methods and how they are being applied in malware analysis. They describe the
major issues together with an elucidation of the malware problems that machine
learning is best equipped to solve.

Recognizing fuzzy logic-based techniques are some of the most promising
approaches for crisis management is stimulated by Dan E. Tamir, Naphtali D.
Rishe, Mark Last, and Abraham Kandel in their chapter ‘‘Soft Computing Based
Epidemical Crisis Prediction’’. They focus on epidemical crisis prediction as one
of the most challenging examples of decision making under uncertain information.
According to the authors, the key for improving epidemical crises prediction
capabilities is the ability to use sound techniques for data collection, information
processing, and decision making under uncertainty. They point out that complex
fuzzy graphs can be used to formalize the techniques and methods used for the
data mining. Additionally, they assert that the fuzzy-based approach enables
handling events of low occurrence via low fuzzy membership/truth-values, and
updating these values as information is accumulated or changed.

An approach called ACP—Artificial societies, Computational experiments, and
Parallel execution—is described and used for security-related purposes in the
chapter ‘‘An ACP-Based Approach to Intelligence and Security Informatics’’
authored by Fei-Yue Wang, Xiaochen Li, and Wenji Mao. The authors focus on
behavioral modeling, analysis and prediction in the domain of security informatics.
Especially, they look at group behavior prediction and present two methods of
doing it. The first approach uses plan-based inference that takes into consideration
agents’ preferences. The second approach uses graph theory and incorporates a
graph search algorithm to forecast complex group behavior. The results of
experimental studies to demonstrate the effectiveness of the proposed methods are
presented.

Attacks on open information sources are addressed in the chapter ‘‘Microfiles as
a Potential Source of Confidential Information Leakage’’ by Oleg Chertov and Dan
Tavrov. In particular, they look at microfiles as an important source of information
in cyberwarfare. They illustrate, using real data, that ignoring issues that ensure
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group anonymity can lead to leakage of confidential information. They show that it
is possible to define fuzzy groups of respondents and obtain their distribution using
appropriate fuzzy inference system. They discuss methods for protecting distri-
butions of crisp as well as fuzzy groups of respondents.

The issues related to open source intelligence are addressed by Daniel Ortiz-
Arroyo who authored the chapter ‘‘Decision Support in Open Source Intelligence’’.
The decision support system presented here has been developed within the
framework of the FP7 VIRTUOSO project. At the beginning, the author describes
the overall scope and architecture of the VIRTUOSO platform. Further, he pro-
vides details of the main components of the constructed decision support system.
These components employ computational intelligence techniques—soft-fusion and
fuzzy logic—to integrate and visualize, together with other VIRTUOSO tools,
diverse sources of information, and to provide access to the knowledge extracted
from these sources. Some applications of this system in cyber-warfare are
described.

The process of integration of data and information is addressed in ‘‘Information
Fusion Process Design Issues for Hard and Soft Information: Developing an Initial
Prototype’’ by James Llinas. The author provides a thorough description of
challenges and requirements imposed on data and information fusion systems
providing support for decision-making processes in the military/defense domains.
In these domains, the nature of decision-making ranges from conventional mili-
tary-like to socio-political—also characterized as ‘‘hard’’ and ‘‘soft’’ decisions.
Because of this, the nature of information required for analysis is highly diversi-
fied. The heterogeneity of available information is indicated as an important factor
driving the data and information fusion process design. Overall, the author offers
perspectives on how those new requirements affect the design and development of
data and information fusion systems.

An important aspect of instruction detection is addressed in the next three
chapters. The first of them—‘‘Intrusion Detection with Type-2 Fuzzy Ontologies
and Similarity Measures’’ by Robin Wikstrom and Jozsef Mezei—targets an issue
of embedding experts’ knowledge in detecting constantly changing intrusion types.
The authors propose a framework based on fuzzy ontology and similarity measures
to incorporate experts’ knowledge to the process of identification of these
anomalies and handling imprecise information. Such a framework allows for
identification of attacks that have never been experienced before. The authors
present a fuzzy ontology developed based on the intrusion detection needs of a
financial institution.

Another approach for instruction detection is proposed by Gulshan Kumar and
Krishan Kumar. In the chapter ‘‘A Multi-objective Genetic Algorithm Based
Approach for Effective Intrusion Detection Using Neural Networks’’, they propose
a novel multiobjective genetic algorithm (MOGA) based approach for effective
intrusion detection based on benchmark datasets. The approach generates a pool of
non-inferior solutions—detection systems—that optimize trade-offs of multiple
conflicting objectives, and creates an ensemble of these solutions to detect intru-
sions. The approach consists of three phases: (1) a MOGA based generation of
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solutions leading to creation of a Pareto front of non-inferior individual solutions;
(2) a further refinement of the obtained solutions via identification of a Pareto front
of ensemble solutions; and (3) an aggregation method used for fusing individual
predictions to determine outcome of the ensemble-based detection system. The
authors used two benchmark datasets: KDD cup 1999, and ISCX 2012 to dem-
onstrate and validate the performance of the proposed approach for intrusion
detection.

The next chapter starts with a brief review of exiting works in the Machine
Learning community that offers treatments to cyber insider detection. Following
this, the authors of ‘‘Cyber Insider Mission Detection for Situation Awareness’’—
Haitao Du, Changzhou Wang, Tao Zhang, Shanchieh Jay Yang, Jai Choi, and Peng
Liu—introduce their own method for early detection of a mission of system’s
insider. The method uses Hidden Markov Models to estimate insider’s levels of
activities. Fuzzy rules and Ordered Weighted Average are used to fuse multiple
facets of information about an intruder. Experimental results based on simulated
data show that the integrated approach detects the insider mission with high
accuracy and in a timely manner, even in the presence of obfuscation techniques.

Research activities that address an important objective aiming at better
understanding of cyberwarfare scenarios, as well as impacts that different attacks
have on multiple aspects of systems are presented next. Here, we have three
versatile and important contributions.

The first of them ‘‘A Game Theoretic Engine for Cyber warfare’’ is dedicated to
the application of game-theoretic principles to the cyberwarfare domain. Allen Ott,
Alex Moir, and John T. Rickard—the authors of the chapter—look at application
of a game theory to investigate behavior of an attacker and defender. They use a
well-known Themistocles engine that has been developed and used over the past
decade in cyberwarfare analysis, for the modeling and analysis of cyberwarfare
offensive and defensive tactics. It is shown that generated courses of actions
(COAs) for both offensive and defensive cyberwarfare scenarios are consistent
with the move choices made by independent experts who monitor the game. The
authors indicate future extensions such as fuzzification of move scores using both
type-1 and interval type-2 membership functions, as well as utilization of hier-
archical linguistic weighted power means for the aggregation of COA scores. All
this will enable to handle inherent imprecision associated with the costs/benefits of
individual moves.

The impact of cyber threats on a military network subjected to attacks is
addressed in the next chapter ‘‘Mission Impact Assessment for Cyber warfare’’.
The authors—Jared Holsopple, Shanchieh Jay Yang, and Moises Sudit—estimate
impact of such threats on operations of a military system during its mission. They
propose application of a tree-based structure, called a Mission Tree, to model
relationships between missions, tasks, and assets. These relationships are modeled
using Order Weighted Aggregators (OWAs), which address a diverse set of
relationship types. The Mission Tree is capable of providing a quantitative esti-
mate of and impact by propagating the impact ‘‘up,’’ from the leaves to the root,
through the tree. An important aspect of the impact assessment process proposed
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in the chapter is related to constant changes of missions or tasks performed by the
system. The authors explore how scheduled or non-scheduled changes should
affect the mission tree and influence the impact assessment process.

Economical consequences of attacks are subject of the next chapter by Suchitra
Abel entitled ‘‘Uncertainty Modeling: The Computational Economists’ View on
Cyberwarfare’’. The author analyzes factors affecting the security of internet-based
business. A casual model-based security system that focuses on core characteris-
tics of contemporary internet-based businesses is presented. It extends traditional
utility-based models with Bayesian causal networks. These networks represent
relationships between variables, internal, and external, influencing business
activities in normal and under attack conditions.

We hope that the readers will enjoy this book and that they will benefit from the
useful and interesting methods and techniques conveyed by the authors in the
broad domain of cyberwarfare.

New Rochelle, USA Ronald R. Yager
Riyadh, Saudi Arabia Naif Alajlan
Edmonton, Canada Marek Z. Reformat
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Malware and Machine Learning

Charles LeDoux and Arun Lakhotia

Abstract Malware analysts use Machine Learning to aid in the fight against
the unstemmed tide of new malware encountered on a daily, even hourly, basis.
The marriage of these two fields (malware and machine learning) is a match made
in heaven: malware contains inherent patterns and similarities due to code and code
pattern reuse by malware authors; machine learning operates by discovering inherent
patterns and similarities. In this chapter, we seek to provide an overhead, guiding
view of machine learning and how it is being applied in malware analysis. We do
not attempt to provide a tutorial or comprehensive introduction to either malware or
machine learning, but rather the major issues and intuitions of both fields along with
an elucidation of the malware analysis problems machine learning is best equipped
to solve.

1 Introduction

Malware, short for malicious software, is the weapon of cyber warfare. It enables
online sabotage, cyber espionage, identity theft, credit card theft, and many more
criminal, online acts. A major challenge in dealing with the menace, however, is its
sheer volume and rate of growth. Tens of thousands of new and unique malware are
discovered daily. The total number of new malware has been growing exponentially,
doubling every year over the last three decades.

Analyzing and understanding this vast sea of malware manually is simply impos-
sible. Fortunately for the malware analyst, very few of these unique malware are truly
novel. Writing software is a hard problem, and this remains the case whether said
software is benign or malicious. Thus, malware authors often reuse code and code
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2 C. LeDoux and A. Lakhotia

patterns in creating new malware. The result is the existence of inherent patterns and
similarities between related malware, a weakness that can be exploited by malware
analysts.

In order to capitalize on this inherent similarity and shared patterns between
malware, the anti-malware industry has turned to the field of Machine Learning, a
field of research concerned with “teaching” computers to recognize concepts. This
“learning” occurs through the discovery of indicative patterns in a group of objects
representing the concept being taught or by looking for similarities between objects.
Though humans too use patterns in learning, such as using color, shape, sound, and
smell to recognize objects, machines can find patterns in large swaths of data that
may be gibberish to a humans, such as the patterns in sequences of bits of a collection
of malware. Thus, Machine Learning has a natural fit with Malware Analysis since
it can more rapidly learn and find patterns in the ever growing corpus of malware
than humans.

Both Machine Learning and Malware Analysis are very diverse and varied fields
with equally diverse and varied ways in which they overlap. In this chapter, we seek to
provide a guiding, overhead cartography of these varied landscapes, focusing on the
areas and ways in which they overlap. We do not seek to provide a comprehensive
tutorial or introduction to either Malware or Machine Learning research. Instead,
we strive to elucidate the major ideas, issues, and intuitions for each field; pointing
to further resources when necessary. It is our intention that a researcher in either
Malware Analysis or Machine Learning can read this chapter and gain a high-level
understanding of the other field and the problems in Malware that Machine Learning
has, is, and can be used to solve.

2 A Short History of Malware

The theory of malware is almost as old as the computer itself, tracing back to lec-
tures by von Neumann in late 1940s on self-reproducing automata [1]. These early
malware, if they can be called as such, did nothing significantly more than demon-
strate self-reproduction and propagation. For example, one of the earliest malware
to escape “into the wild” was called Elk Cloner and would simply display a small
poem every 50th time an infected computer was booted:

Elk Cloner : The program with a personality

I t will get on al l your disks
I t will in f i l t ra te your chips
Yes it ’s Cloner!

I t will stick to you like glue
I t will modify ram too
Send in the Cloner!
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The term computer virus was coined in early 1980s to describe such
self-replicating programs [2]. The use of the term was influenced by the analogy of
computer malware to biological viruses. A biological virus comes alive after it infects
a living organism. Similarly, the early computer viruses required a host—typically
another program—to be activated. This was necessitated by the limitations of the
then computing infrastructure which consisted of isolated, stand-alone, machines.
In order to propagate, that is infect currently uninfected machines, a computer virus
necessarily had to copy itself in various drives, tapes, and folders that would be
accessed by different machines. In order to ensure that the viral code was executed
when it reached the new machine, the virus code would attach itself to, i.e. infect,
another piece of code (a program or boot sector) that would be executed when the
drive or tape reached another machine. When the now infected code would later
execute, so would the viral code, furthering the propagation.

The early viruses remained mostly pranks. Any damage they caused, such as crash-
ing a computer or exhausting disk space, was largely unintentional and a side effect of
uncontrolled propagation. However, the number and spread of viruses quickly grew
to enough of a nuisance that it led to the development of first anti-virus companies in
the late 1980s. Those early viruses were simple enough that they could be detected
by specific sequences of bytes, a la signatures.

The advent of networking, leading to the Internet, changed everything. Since
data could now be transferred between computers without using an external storage
device, so could the viruses. This freedom to propagate also meant that a virus no
longer needed to infect a host program. A new class of malware called worm emerged.
A worm was a stand alone program that could propagate from machine to machine
without necessarily attaching to any other program.

Malware writing too quickly morphed from simple pranks into malicious vandal-
ism, such as that done by the ILOVEYOU worm. This worm came as an attachment
to an email with the (unsurprising) subject line “ILOVEYOU”. When a user would
open the attachment, the worm would first email itself to the user’s contacts and
then begin destroying data on the current computer. There were a number of similar
malware created, designed only to wreak havoc and gain underground notoriety for
their authors. These “graffiti” malware, however, soon gave way to the true threat:
malware designed to make money and steal secrets.

Malware today has little if any resemblance to the malware of past. For one,
gone are the simple days of pranks and vandalism conducted by bored teenagers and
budding hackers. Modern malware is an well-organized activity forming a complete
underground economy with its own supply chain. Malware is now a tool used by large
underground organizations for making money and a weapon used by governments
for espionage and attacks. Malware targeted towards normal, everyday computers
can be designed to steal bank and credit card information (for direct theft of money),
harvest email addresses (for selling to spammers), or gain remote control of the
computer. The major threat from malware, however, comes from malware targeted not
towards the average computer, but towards a particular corporation or government.
These malware are designed to facilitate theft of trade or national secrets, steal
crucial information (such as sensitive emails), or attack infrastructure. For example,
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Stuxnet was malware designed to attack and damage various nuclear facilities in
Iran. These malware often have large organizations (such as rival corporations) or
even governments behind them.

3 Types of Malware

Whenever there is a large amount of information or data, it helps to categorize and
organize it so that it can be managed. Classification also aids in communication
between people, giving them a common nomenclature. The same is true of malware.
The industry uses a variety of methods to classify and organize malware. The classi-
fication is often based on the method of propagation, the method of infection, and the
objective of the malware. There is, however, no known standard nomenclature that
is used across the industry. Classifications sometimes also come with legal impli-
cations. For instance, can a program that inserts advertisements as you browse the
web be termed as malicious. What if the program was downloaded and installed by
the user, say after being enticed by some free offering? To thwart legal notices the
industry invented the term potentially unwanted program or PUP to refer to such
programs.

Though there is no accepted standard for classification of malware in the industry,
there is a reasonable agreement on classifying malware on their method of propaga-
tion into three types: virus, worm, and trojan (short for Trojan horse).

Virus, despite being often used as a synonym for malware, technically refers to a
malware that attaches a copy of itself to a host, as described earlier. Propagation by
infecting removable media was the only method for transmission available prior to
the Internet, and this method is still in use today. For instance, modern viruses travel
by infecting USB drives. This method is still necessary to reach computer systems
that are not connected to the Internet, and is hypothesized as the way Stuxnet was
transmitted.

A trojan propagates the same way its name sake entered the city of Troy, by hiding
inside something that seems perfectly innocent. The earliest trojan was a game called
ANIMAL. This simple game would ask the user a serious of questions and attempt to
guess what animal the user was thinking of. When the game was executed, a hidden
program, named PERVADE, would install a copy of itself and ANIMAL to every
location the user had access to. A common modern example of a trojan is a fake
antivirus, a program that purports to be an anti-virus system but in fact is a malware
itself.

A worm, as mentioned earlier, is essentially a self-propagating malware. Whereas
a virus, after attaching itself to a program or document, relies on an action from a
user to be activated and spread, a worm is capable of spreading between network
connected computers all by itself. This is typically accomplished one of two ways:
exploiting vulnerabilities on a networked service or through email. The worm CODE
RED was an example of the first type of worm. CODE RED exploited a bug in a
specific type of server that would allow a remote computer to execute code on the
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server. The worm would simply scan the network looking for a vulnerable server.
Once found, it would attempt to connect to the server and exploit the known bug.
If successful, it would create another instance of the worm that repeated the whole
process. The ILOVEYOU worm, discussed earlier, is an example of an email worm
and spread as an email attachment. When a user opened the attachment, the worm
would email a copy of itself to everyone in the user’s contact list and damage the
current machine.

While the above methods of propagation are the mostly commonly known, they
by no means represent all possible ways in which malware can propagate. In general,
one of two methods are employed to get a malware onto a system: exploit a bug in
software installed on the computer or exploit the trust (or ignorance) of the user of
the computer through social engineering. There are many different types of software
bugs that allow for arbitrary code to be executed and almost as many ways to trick
a user into installing a malware. Complicating matters further, There is no technical
reason for a malware to limit its use to only one method of propagation. It is entirely
conceivable, as was demonstrated by Stuxnet, for a malware to enter a network
through email or USB, and then spread laterally to other machines by exploiting
bugs.

4 Malware Analysis Pipeline

The typical end goal of malware analysis is simple: automatically detect malware
as soon as possible, remove it, and repair any damage it has done. To accomplish
this goal, software running on the system being protected (desktop, laptop, server,
mobile device, embedded device, etc.) uses some type of “signatures” to look for
malware. When a match is made on a “signature”, a removal and repair script is
triggered. The various portions of the analysis “pipeline” all in one way or another
support this end goal [3, 4].

The general phases of creating and using these signatures are illustrated by Fig. 1.
Creating a signature and removal instructions for a new malware occurs in the “Lab.”
The input into this malware analysis pipeline is a feed of suspicious programs to
be analyzed. This feed can come from many sources such as honeypots or other
companies. This feed first goes through a triage stage to quickly filter out known
programs and assign an analysis priority to the sample. The remaining programs
are then analyzed to discover what it looks like and what it does. The results of the
analysis phase are used to create a signature and removal/repair instructions which
are then verified for correctness and performance concerns. Once verified, these
signatures are propagated to the end system and used by a scanner to detect, remove,
and repair malware.

Each of the various phases of the anti-malware analysis process is attempting to
accomplish a related, but independent task and thus has its own unique goals and
performance constraints. As a result, each phase can independently be automated
and optimized in order to improve the performance of the entire analysis pipeline.
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Fig. 1 Phases of the malware analysis pipeline

In fact, it is almost a requirement that automation techniques be tailored for the
specific phase they are applied in, even if the technique could be applied to multiple
phases. For example, a machine learning algorithm designed to filter out already
analyzed malware in the triage stage will most likely perform poorly as a scanner.
While both the triage stage and the scanner are accomplishing the same basic task,
detect known malware, the standard by which they are evaluated is different.

4.1 Triage

The first phase of analysis, triage, is responsible for filtering out already analyzed
malware and assigning analysis priority to the incoming programs. Malware ana-
lysts receive a very large number of new programs for analysis every day. Many
of these programs, however, are essentially the same as programs that have already
been analyzed and for which signatures exist. A time stamp or other trivial detail
may have been changed causing a hash of the binary to be unique. Thus, while the
program is technically unique, it does not need to reanalyzed as the differences are
inconsequential. One of the purposes of triage is to filter these binaries out.

In addition to filtering out “exact” matches (programs that are essentially the
same as already analyzed programs), triage is typically also tasked with assigning
the incoming programs into malware families when possible. A malware family is
a group of highly related malware, typically originating from common source code.
If an incoming program can be assigned to a known malware family, any further
analysis does not need to start with zero a priori knowledge, but can leverage general
knowledge about the malware family, such as known intent or purpose.

A final purpose of the triage stage is to assign analysis priority to incoming
programs. Humans still are and most likely will remain an integral part of the analysis
pipeline. Like any other resource, what the available human labor is expended upon
must be carefully chosen. Not all malware are created equal; it is more important
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that some malware have signatures created before others. For example, malware that
only affects, say, Microsoft Windows 95 will not have the same priority as malware
that affects the latest version of Windows.

The performance concerns for the triage phase are (1) ensuring that programs
being filtered out truly should be removed and (2) efficient computation in order to
achieve very high throughput. Programs filtered out by triage are not subjected to
further analysis and thus it is very important that they do not actually need further
analysis. Especially dangerous is the case of malware being filtered out as a benign
program. In this case, that particular malware will remain undetectable. Marking
a known malware or a benign program as malware for further processing, while
undesirable, is not disastrous as it can still be filtered out in the later processing stages.
Along the same lines, it is sufficient that malware be assigned to a particular family
with only a reasonably high probability rather than near certainty. Finally, speed is
of the utmost importance in this stage. This stage of the analysis pipeline examines
the largest number of programs and thus requires the most efficient algorithms.
Computationally expensive algorithms at this stage would cause a backlog so great
that analysts would never be able to keep up with malware authors.

4.2 Analysis

In the analysis phase, information about what the program being analyzed does, i.e.
its behavior, is gathered. This can be done in two ways: statically or dynamically.

Static analysis is performed without executing the program. Information about
the behavior of the program is extracted by disassembling the binary and converting
it back into human readable machine code. This is not high level source code, such as
C++, but the low level assembly language. An assembly language is the human read-
able form of the instructions being given directly to the processor. ARM, PowerPC,
and ×86 are the better known examples of assembly languages. After disassembly,
the assembly code (often just called the malware “code” for short) can be analyzed
to determine the behavior of the program. The methods for doing this analysis con-
stitute an entire research field called program analysis and as such are outside the
scope of this chapter. Nielson et al. [5] have a comprehensive tutorial to this field.

Static analysis can theoretically provide perfect information about the behavior of
a program, but in practice provides an over approximation of the behaviors present.
Only what is in the code is what can be executed, thus the code contains everything
the program can do. However, extracting this information from a binary can be
difficult, if not impossible. Perfectly solving many of the problems of static analysis
is undecidable.

As an example of the problems faced by static analysis, binary disassembly is
itself an undecidable problem. Binaries contain both data and code and separating
the two from each other is undecidable. As a result some disassemblers treat the entire
binary, including data, as if it were code. This results in a proper extraction of most
of the original assembly code, along with much code that never originally existed.
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There are many other methods of disassembly, such as the recent work by Schwarz
et al. [6]. While these methods significantly improve on the resulting disassembly,
none can guarantee correct disassembly. For instance, it is possible that there exists
“dead code” in the original binary, i.e. code that can never be reached at runtime.
In an ideal disassembly, such code ought to be excluded. Thus all of static analysis
operates on approximations. Most disassemblers used in practice do not guarantee
either over approximation or under approximation.

Dynamic analysis, in contrast with static analysis, is conducted by actually exe-
cuting the program and observing what it does. The program can be observed from
either within or without the executing environment. From within uses the same tools
and techniques software developers use to debug their own programs. Tools that
observe the operating system state can be utilized and the analyzed program run in
a debugger. Observation from without the execution environment occurs by using a
specially modified virtual machine or emulator. The analyzed program is executed
within the virtual environment and the tools providing the virtualization observe and
report the behavior of the program.

Dynamic analysis, as opposed to static analysis, generally provides an under
approximation of the behaviors contained in the analyzed program, but guarantees
that returned behaviors can be exhibited. Behaviors discovered by dynamic analysis
are obviously guaranteed to be possible as the program was observed performing
these behaviors. Only the observed behaviors can be returned, however. A single
execution of a program is not likely to exhibit all the behaviors of the program as
only a single path of execution through the binary is followed per run. A differing
execution environment or differing input may reveal previously unseen behaviors.

4.3 Signatures and Verification

While the most common image conjured by the phrase “malware signatures” is
specific patterns of bytes (often called strings) used by an Anti-Virus system to detect
a malware, we do not use the term in that restricted sense. What we mean by signature
is any method utilized for determining if a program is malware. This can include the
machine learning system built to recognize malware, a set of behaviors marked as
malicious, a white list (anything not on the white list is marked as malicious), and
more. The important thing about a signature is that it can be used to determine if a
program is malware or not.

Along with the signatures, instructions for how to remove malware that has
infected the system and repair any damage it has done must also be created. This
is usually done manually, utilizing the results of the analysis stage. Observe what
the malware did, and then reverse it. One major concern here is ensuring that the
repair instructions do not cause even more damage. If the malware changed a registry
key, for example, and the original key is unknown, it may be safest to just leave the
key alone. Changing it to a different value or removing it all together may result
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in corrupting the system being “protected.” Thus repair instructions are often very
conservative, many times only removing the malware itself.

Once created, the signatures need to be verified for correctness and, more impor-
tantly, for accuracy. Even more important than creating a signature that matches the
malware is creating a signature that only matches the malware. Signatures that also
match benign programs are worse than useless; they are acting like malware them-
selves! Saying that benign programs are actually malware, called a false positive,
is an error that cannot be tolerated once the signatures have been deployed to the
scanner.

4.4 Application

Once created, the signatures are deployed to the end user. At the end system, new
files are scanned using the created signatures. When a file matches a signature, the
associated repair instructions followed.

The functionality of the scanner will depend on the type of signature created.
String based signatures will use a scanner that checks for existence of the string in
the file. A scanner based on Machine Learning signatures will apply what has been
learned through ML to detect malware. A rule based scanner will check if the file
matches its rules, and so on and so forth.

5 Challenges in Malware Analysis

One of the fundamental problems associated with every step of the malware analysis
pipeline is the reliance on incomplete approximations. In every stage of the pipeline,
the exact solution is generally impossible. Triage cannot perfectly identify every
part of every program that has already been identified. Analysis will generate either
potentially inaccurate or incomplete information. All types of signatures are limited.
Even verification is limited by what can be practically tested.

Naturally, malware authors have developed techniques that directly attack each
stage of the analysis pipeline and shift the error in the inherent approximations to their
favor. Packing and code morphing are used against triage to increase the number of
“unique” malware that must be analyzed. Packing, tool detection, and obfuscation are
used against the analysis stage to increase the difficultly of extracting any meaningful
information.

While the ultimate goal of the malware authors is obviously to completely avoid
detection, simply increasing the difficulty of achieving detection can be considered a
“win” for the malware authors. The more resources consumed in analyzing a single
malware, the less total malware that can be analyzed and detected. If this singular
cost is driven high enough, then detection of any but the most critical malware simply
becomes too expensive.
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5.1 Code Morphing

The most common and possibly the most effective attack against the malware analysis
pipeline targets the first stage: triage. The attack is to simply inundate the pipeline
with as many unique malware as possible. Unique is not used here to mean novel,
i.e. does something unique; here it simply means that the triage stage considers it
something that has not been analyzed before. Analysis stages further down the pipe
from Triage are allowed to be more expensive because it is assumed Triage has
filtered out already analyzed malware, severely reducing the number of malware the
expensive processes are run on. By slipping more malware past Triage and forcing
the more expensive processes to run, the cost of analysis can be driven up, possibly
prohibitively high.

One of the ways this attack is accomplished is through automated morphing of
the malware’s code into a different but semantical equivalent form. Such malware
is often called metamorphic or polymorphic. Before infecting a new computer, a
rewriting engine changes what the code looks like through such means as altering
control flow, utilizing different instructions, and adding instructions that have no
semantic effect. The changes performed by the rewriting engine only change the
look or syntax of the code and leave its function or semantics intact. The result is
that each “generation” of metamorphic malware is functionally equivalent, but the
code can be radically different.

While several subtle variations in definitions exist, we view the difference between
metamorphic and polymorphic malware as where the rewriting engine lies. Metamor-
phic malware contains its own, internal rewriting engine, that is, the malware binary
rewrites itself. Polymorphic malware, on the other hand, have a separate mutating
engine; a separate binary rewrites the malware binary. This mutating engine can
either be distributed with the malware (client side) or kept on a distributing server
and simply distribute a different version of malware every time (server side).

Metamorphic malware is more limited than polymorphic malware in the transfor-
mations it can safely perform. Any rewriting engine is going to contain limitations
as to what it can safely take as input. If the engine is designed to modify the con-
trol flow of the program, for example, it will only be able to rewrite programs for
which it can identify the existing control flow. Since metamorphic malware contains
its own rewriting engine, the output of the rewriting engine must be constrained to
acceptable input. Without this constraint, further mutations would not be possible.
Polymorphic malware, however, does not contain this constraint. Since the rewriting
engine is separate and can thus always operate over the exact some input, the output
does not need to be constrained to only acceptable input.
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5.2 Packing

Packing is a process whereby an arbitrary executable is taken and encrypted and
compressed into a “packed” form that must be uncompressed and decrypted, i.e.
“unpacked”, before execution. This packed version of the executable is then pack-
aged as data inside another executable that will decompress, decrypt, and run the
original code. Thus, the end result is a new binary that looks very different from the
original, but when executed performs the exact same task, albeit with some additional
unpacking work. A program that does packing is referred to a packer and the newly
created executable is called the packed executable.

Packing directly attacks Triage and static analysis. While packing a binary does not
modify any of the malware’s code, it drastically modifies the binary itself, potentially
even changing a number of statistical properties. If there is some randomization
within the packing routine, a binary that appears truly unique will result every time
the exact same malware is packed. Unless the Triage stage can first unpack the binary,
it will not be able to match it to any known malware.

Packing does more than simply complicate the triage stage, it also directly attacks
any use of static analysis. As discussed in Sect. 4.2, the first step in static analysis
is usually to disassemble the binary. Packing, however, often encrypts the original
binary, preventing direct disassembly. A disassembler will not be able to mean-
ingfully interpret the stored bits unless it is first unpacked and the original binary
recovered.

The need to unpack a program (recover the original binary) is usually not a straight
forward task—hence the existence of a challenge. As one might expect, there exists
very complex packers intentionally designed to foil unpacking. Some packers, for
example, only decrypt a single instruction at a time while others never fully unpack
the binary and instead run the packed program in a virtual machine with a randomly
created instruction set.

It might seem that simply detecting that an executable was packed would be
sufficient to determine that it was malware. There are, however, legitimate uses for
packing. First, packing is capable of reducing the overall size of the binary. The
compression rate of the original binary is often large enough that even with the
additional unpacking routine (which can be made fairly small), the packed binary
is smaller in size than the original binary. Of course, when size is the only concern,
the encryption part of packing is unnecessary. So, perhaps detecting encryption is
sufficient? Unfortunately, no. Encryption has a legitimate application in protecting
intellectual property. A software developer may compress and encrypt the executables
they sell and ship to prevent a competitor from reversing the program and discovering
trade secrets.
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5.3 Obfuscation

While packing attempts to create code that cannot be interpreted at all, obfuscation
attempts to make extracting meaning from the code, statically or dynamically, as dif-
ficult as possible. In general, obfuscation refers to writing or transforming a program
into a form that hides its true functionality. The simplest example of a source code
obfuscation is to give all variables meaningless names. Without descriptive names,
the analyst must determine the purpose of each variable. At the binary level, examples
of obfuscation include adding dead code (valid code that is never executed), inter-
leaving several procedures within each other, and running all control flow through a
single switch statement (called control flow flattening). An in depth treatment of code
obfuscation, including methods for deobfuscating the code, is given by Collberg and
Nagra [7].

5.4 Tool Detection

A major problem in dynamic analysis is malware detecting that it is being analyzed
and modifying its behavior. Static analysis has a slight advantage in that the analyzed
malware has no control over the analysis process. In dynamic analysis, however,
the malware is actually being executed and so can be made capable of altering its
behavior. Thus, malware authors will often check to see if any of the observation
tools often used by malware analysis are present, and if so, perform only benign
activities. For example, a malware may check to see if it is being run by a debugger
and if so, exit. This effectively makes the malware invisible to dynamic analysis.

There are two types of checks that can be done by malware: check for a class of
tool and check for a specific tool. There are specific types of tools normally used to
observe malware in dynamic malware analysis such as debuggers and virtualization.
When these tools are used, they usually leave some detectable artifact in the system.
For example, in both cases of using a debugger or a virtualized environment, it will
be necessity be the case that executing at least some instructions will take longer
that if running unobserved. If a malware can detect this discrepancy, through a timer,
perhaps, it can detect it is being observed.

Easier than checking for a class of tools, however, is to just check for the specific
set of the most widely used tools. Finding a single check that can detect all tools of
a particular type is difficult, and the test can be unreliable. A (usually) simpler test
is to check for the existence of a specific tool. For example, an executing program
could check if it is being run under one of the most common debuggers, Olly Debug,
by looking for a process named ollydbg.exe. As a natural limitation of software,
the number of mature, commonly used commercial or open source analysis tools
available is relatively limited. Thus, a malware author can implement a number of
simple checks and prevent a large portion of analysis. Naturally, the tool authors can
remove the detected artifact, but completely eliminating every trace of a executing
program is near impossible. As tool authors remove one artifact, malware authors
can use another, resulting in a never ending game of cat and mouse.
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5.5 Difficulty Obtaining Verification Data

An important part of the verification stage is obtaining “ground truth” information.
This ground truth can simply be thought of as the correct answer. If evaluating
a new technique’s ability to detect malware, then the ground truth would be the
labeling of each executable as malware or benign. If evaluating a classifier’s ability
to separate malware into families, the ground truth would consist of the labeling of
each executable with the family it belongs to. The ground truth is needed to determine
the correctness of the labels assigned by a machine learning system and to measure
its performance.

Obtaining this ground truth is typically an expensive and error prone process.
This is because the ground truth usually must be determined manually. Creating the
labeling for executables often requires a human analyst to examine the program and
give an expert opinion. This takes time and, as with any human judgment, is subject
to potential errors. While this may not seem like an issue when the labeling is simply
“malware” and “not malware,” the challenge increases significantly when labeling
a malware with its family. This task may involve manually, albeit with support of
tools, viewing and comparing large amounts of information—such as disassembled
code, strings, and API calls—for correct labeling. This is complicated by the fact
that different malware families share similar characteristics, such as using the same
method to trap keystrokes. In such cases, human judgment, inaccuracies, and fatigue
may lead to errors in labeling.

6 Machine Learning Concepts

In general, the purpose of machine learning algorithms is to “teach” a program to
recognize some type of concept [8]. The concept learned and the way it is taught are
of course specific to both the exact machine learning algorithm and the application
of the program. In the malware domain, these concepts can be as broad as “malware”
or as focused as “implements x.” They can be as abstract as “worm” or concrete as
“written by Bob Doe.” The concepts that can be recognized, and the applications of
this recognition, are practically limitless.

The set of all concepts that can be learned by a particular machine learning algo-
rithm is referred to as the concept space. This is not a set picked out by a researcher,
but the theoretical set of all possible concepts for the particular machine learning
algorithm selected. A single algorithm is not capable of learning just any concept
from the universe of all concepts, but only a comparatively small subset of this infinite
universe.
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6.1 Features

Machine learning algorithms do not directly digest raw malware, but rather first
extract features that provide an abstract view of the malware. These features can be
thought of as the “language” of the classifier; a way for describing malware to a
given machine learning algorithm. For example, features for representing fruit may
include things such as shape, color, and whether or not it is firm. An apple would then
have the features “shape= round, color= red, firm=yes” while a banana would have
the features “shape= long, color=yellow, firm=no”. An example feature type used
in malware is the set of system calls made. The types of features used to represent
malware are discussed in more detail in Sect. 7.

Defining the type of feature used by a machine learning algorithm is a crucial
design decision as the feature space (the set of all possible features that can be
taken as input) defines the concept space (the set of all possible concepts that can
be learned). Only concepts that are capable of being represented or described by
the type of features selected by the designer can be learned by the algorithm. For
example, features that describe a binary will not, barring black magic, represent the
concept “apple.” Thus, it is important that the defined features create a concept space
containing the concept to learn. Even more important, however, is that the concept
space contain as little else as possible. If the concept space is too large, learning the
desired concept becomes a “needle in the haystack” problem.

6.2 Classification and Clustering

In malware, the two basic tasks machine learning is used for are classification and
clustering. Classification attaches one of a predetermined set of labels to an unknown
program. Each of these labels represents a class or category of objects. Thus, assign-
ing a label to a program is akin to marking that program as belonging to a specific
class; hence the term classification. The simplest example of classification is labeling
a program as malicious or benign. Clustering, on the other hand, partitions the given
group of programs into clusters of related programs. The criteria for “related” is
usually a similarity function that measures how much two programs resemble each
other.

The general pipeline for performing classification in malware analysis is given
in Fig. 2. This process has two stages: learning and classification. Both stages begin
by extracting the feature representation of the malware. In the learning phase, the
malware additionally contain attached labels providing the “correct answer” for clas-
sification. In other words, malware, and consequently features, are labeled with the
concept they exemplify. A learning algorithm takes these features and labels and
creates a model to represent the learned concepts. This model can be thought of as
a function that takes a feature representation of a malware as input and outputs the
concept that the malware best matches, i.e. a label. Classification, then, is simply
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Fig. 2 General classification process

Fig. 3 General clustering
process

applying this function to an unknown malware. The details of what a model is and
how it operates are specific to the exact type of learning algorithm used and thus out
of scope for this chapter.

The basic idea of clustering is to put malware into clusters such that malware
within a given cluster are more closely related to each other than with malware
outside the cluster. The basic process used to accomplish this is given in Fig. 3.
Clustering, like classification, first begins by extracting feature representations of
the malware. Clustering, however, does not contain a learning phase or utilize labels.
The set of features is given directly to a clustering algorithm that partitions the input
set into clusters of related malware. Like classification, the exact methods of defining
“related” and partitioning are varied and out of scope for this discussion.



16 C. LeDoux and A. Lakhotia

While both classification and clustering effectively partition a given group of
malware, there are a number of key differences between the two tasks. Classification
uses a predefined (usually human defined) set of labels; clustering uses the number
of groupings that best fit the given notion of “related.” Classification focuses on
attaching labels to a single malware at a time; clustering operates on whole groups
of malware. Labels in classification directly correspond to concepts (the concept
to learn is “named” by the label); concepts represented by clusters are not named
and are thus not always apparent (besides the overly-general “related to each other”
concept).

As an illustrative example, let us consider the difference between classifying and
clustering a group of binaries into malware families. The first difference is in the
method of processing the binaries. After the learning stage, classification will exam-
ine each binary one at a time and attach a family name to it. Clustering, on the other
hand, will immediately begin operating on the entire collection at once, returning
a partitioning of the binaries into groups without labels. The second difference is
the number of families that the binaries can be grouped into. In classification, this
number is pre-specified and the learning algorithm can learn no more and no less
than this number. Clustering, however, can theoretically create as many groups as
there are binaries (one binary per group). It may, for example, split what an analyst
considered one family into two sub-families. The final major difference is in inter-
preting the learned concepts. It is obvious how the labels of classification correspond
to malware families; the labels were created by the analyst after all. The same is not
necessarily true of clustering. Not only can the number of families differ from what
is expected by the analyst, but none of the groups are labeled and so discovering
which groups map to which family is not always straightforward.

A special case of clustering often used in malware analysis, called near neighbor
search, is to find programs that are similar to a given “query” program. Knowing what
an unknown malware is similar to has a number of uses, the most immediate being
a leveraging of existing knowledge. If the unknown malware is 90 % similar to an
already existing malware, only the 10 % dissimilar portion must be analyzed. Thus,
for this and other reasons it is common to want to find the group of known malware
that are very (very here being a relative term) similar to an unknown malware of
interest. This is conceptually the same as creating a clustering of similar malware
and discarding all clusters except the one containing the unknown malware. (Efficient
near neighbor search algorithms, of course, do not actually create the clusters that
will be discarded.)

6.3 Types of Learning

While the utilized feature type defines the concept space (Sect. 6.1), it is the type
of learning algorithm that defines how this concept space is searched. There are
a large number of machine learning algorithms, but they can generally be broken
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up into several categories based on how they learn concepts: Supervised Learning,
Unsupervised Learning, Semi-Supervised Learning, and Ensemble Learning.

Supervised Learning (Sect. 8) can be described as “learning by example.” Super-
vised Learning is often considered synonymous with classification (as supervised
learning is often the type of learning algorithm used for classification) and follows
the classification pipeline laid out in Fig. 2. The labeled features are fed to the learn-
ing algorithm as examples of what each concept looks like. The model is built based
upon these examples and the concepts learned correspond the to labels provided.

Unsupervised Learning (Sect. 9) is learning without the “correct answer” given
by labels. This form of learning is often considered synonymous with clustering and
follows the clustering pipeline put forth in Fig. 3. Instead of forming a model of
predefined concepts, unsupervised learning groups objects together based on a given
concept of “relatedness” or “similarity.” The idea is that objects within a cluster
should be more closely related (more similar) to each other than objects outside the
cluster. After clustering, every group of objects will represent some concept, though
there are no labels or names attached to the represented concept.

Semi-supervised Learning (Sect. 11) combines both supervised and unsuper-
vised learning. Semi-Supervised learning operates over a group of object where
some, but not all, of the objects contain “correct answer” labels. The typical appli-
cation of this sort of learning algorithm is to perform clustering and use the labels
that do exist to improve the final clustering result.

Ensemble Learning (Sect. 12) is learning from a collection of classifiers or clus-
ters. For a classifier ensemble, a number of classifiers are trained with their associated
models. To classify a new malware, the results of applying all the created models are
combined into a single classification. Cluster ensembles work similarly. A number
of clusterings of the data are independently created and then merged to create a final
clustering.

While Classification and Clustering are often used as synonyms for Supervised and
Unsupervised Learning, a distinction can be made. Classification and clustering are
tasks, while supervised and unsupervised learning are types of learning algorithms.
It is possible to perform classification using an unsupervised learning algorithm.
Given a set of malware, clusters can be formed in an unsupervised method (without
using any labels), labels attached to the clusters after they have been formed, and
classification done by assigning a new malware the label of the most similar cluster.
This classification would be unsupervised learning because the concepts (the clus-
ters) were learned without any labels being utilized. The labels were simply names
attached to already learned concepts.

7 Malware Features

As initially discussed in Sect. 6.1, the type of feature defined and utilized in any
machine learning application is of utmost importance. Features are the input to the
machine learning algorithm and define the concept space, i.e. the space of all possible
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concepts that can be modeled by this algorithm. If the desired concept cannot be
modeled, the features are useless. Similarly, if the concept space is too large, then
learning how to model the desired concepts is analogous to finding a needle in a
haystack. Thus the great importance of defining high quality features.

Just as the types of malware analysis can be divided into static and dynamic, so
too can malware features. Static features [9] are features extracted from the binary of
the malware without executing it, i.e. through static analysis. While this can refer to
the actual bits of the binary or structural information contained in the header, it more
commonly refers to features extracted from the disassembled binary. A disassem-
bled binary is created by converting the bits of the binary back into human readable
machine code (assembly language, not high level source such as C). Various trans-
formations on this disassembly are then performed to create many different types of
features.

Dynamic features [10], on the other hand, are features extracted by executing the
malware and observing what it does, i.e. through dynamic analysis. There are several
levels of abstraction that dynamic features can exist at ranging from a trace of the
instructions executed in the processor to a predefined set of behaviors watched for.

Static and dynamic features have the issues discussed in Sect. 4.2. It is usually
impossible to perfectly extract the precise of feature representation for a given
malware and thus approximations are used. Static features often result in an over
approximation and dynamic features often result in an under approximation. Take
for example, the defined feature type “the set of system calls that can be made by the
program.” Static analysis will usually extract almost all of the actual system calls
that belong in the true set of features, but will also include potentially many system
calls that the program will never actually execute. Features extracted by dynamic
analysis are guaranteed to be in the true feature set, but not all system calls will be
observed and recorded.

7.1 Binary Based Features

The simplest static features are structural features based directly on the raw binary.
That is, features that treat the binary as nothing more than an executable file and
do not attempt to extract any information more abstract than what the structure of
the binary is. These types of features have been based on sequences of bytes in the
binary, information contained in the binary’s header, and the strings visible in the
binary.

7.1.1 N-Gram and N-Perm

One of the most common types of binary based static features is the byte n-gram.
N-grams are a feature commonly used in text classification and they are created by
sliding a window n characters long across a document and recording the unique strings
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Table 1 Byte code 2-grams
and 2-perms

Byte code 2-grams 2-perms

0f0e ‘0f0e’ ‘0e0f’ ‘0e0f’‘0fb4’‘0eb4’

0f0e ‘0eb4’ ‘b40f’

b40f

found (a technique often referred to as shingling or windowing in text classification
literature). For example, the 2-grams for the string ‘ababc’ are ‘ab’, ‘ba’, and ‘bc’.
In the malware context, the n-grams are created over the byte code representation of
the binary. N-grams were introduced to malware classification by members of the
IBM TJ Watson Research Center [11–14].

A modification on n-grams proposed by Karim et al. [15] was n-perms. N-grams
are extremely brittle, especially when n in large. Simply removing, adding, or swap-
ping a few instructions can have a major impact on the set of n-grams retrieved.
Karim et al. [15] proposed to treat all permutations of a single n-gram as equal.
Thus, in the example given earlier, the string ‘ababc’ with 2-grams ‘ab’, ‘ba’, and
‘bc’ would only have 2-perms of ‘ab’ and ‘bc’. The 2-grams ‘ab’ and ‘ba’ would be
considered equal and only ‘ab’ stored.

Examples of byte code and the corresponding n-grams and n-perms are given
in Table 1. The byte code is the hexadecimal representation of a binary. The 2-
grams are created by sliding a window of size two across the individual bytes and
recording unique sequences. The 2-grams are shown in the order encountered. The
2-perms are created by internally sorting each 2-gram. So, for example, the 2-gram
‘0f0e’ becomes the n-perm ‘0e0f’. This has the desired effect of normalizing all
permutations. In this example, there are four 2-grams, but only three 2-perms.

7.1.2 PE Header Based

A common source of structural information for creating features is the PE header. The
PE Header is the data structure in a Windows executable that holds the information
needed by the loader to place the program into memory and begin execution. Thus
most of the information in the PE header relates to the locations and sizes of important
pieces of the binary. For example, the loader needs to know the number, location,
and size of the sections of the binary.1 There are also a number of important data
structures that the loader needs to be able to find, such as the import table. The import
table is a list of the various external libraries that will need to be loaded into this
program’s address space.

Using the structural information provided by the PE Header in the triage analysis
stage turns out to be quite effective. The information in the PE Header is very quick
to extract (the OS does this every time the program is executed) and robust against

1 Binaries are not one big blob, but separated into sections of logically related code and data. At a
minimum, there will be two sections: one designated for data and the other for code.
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minor changes in the binary. Compiling a program twice may result in binaries unique
by hash because of trivial changes, but both binaries would contain almost identical
PE Header information. This approach was proposed by Wang et al. [16].

Walenstein et al. [17] examined this effectiveness of using header information as
features. They were especially interested in learning how much the information in the
header contributed to the accuracy obtained when using byte based n-grams. When
n-grams are computed over the entire binary, the header information is implicitly
captured. What they found was that not only was header information quite useful in
discovering malware variants, but that it also contributed a good deal to the usefulness
of byte based features. Walenstein et al. [17], however, cautioned that it would be
trivial for malware authors to remove or modify most, if not all, of the identifying
information in the PE header and so this information should not be solely relied upon.

A non-structural feature that has been used from the PE header is the set of
libraries and functions listed in the import table [18]. The import table is a data
structure pointed to by the PE header and contains the list of functions from external
libraries that are required by the program. Since external libraries are obviously
external to the binary, hard coded addresses of the library functions cannot be used
in the program. This is where the import table comes in. For each required function,
the import table contains an entry with the name of the function and an address for
the function. At load time, the loader pulls the libraries into the program’s address
space and writes the correct address to each entry in the import table.

The list of imported library functions contains a wealth of information. When
dealing with well known libraries, such as libc or the set of Windows system calls,
the intended task of each function is, well, known. For example, if functions from
crypt32.dll (dll is short for dynamic link library) are imported, it is likely that this
program performs cryptography tasks. Thus, if the import table hasn’t been tampered
with (usually a bad assumption in malware, but still true often enough), it can provide
a nice high level idea of the types of behaviors the program is intended to perform.

7.1.3 Strings

A final type of feature based on the binary is strings. This was first explored by Schultz
et al. [18] and is quite simply any sequence of bytes that can be validly interpreted
as a printable sequence of characters. This idea was later refined by Ye et al. [19]
to only include “interpretable” strings, that is only strings that make semantic sense.
Ye et al. [19] posited that strings such as “8ibvxzciojrwqei” provided little useful
information.

Table 2 illustrates the difference between strings and interpretable strings. The
column to the left is the byte sequences found in the binary. The middle column is
the result of treating the byte sequences as ASCII characters. Finally, the last column
indicates whether the string would be considered interpretable.
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Table 2 Strings and interpretable strings

Bytes String Interpretable?

44 65 74 65 63 74 65 64 20 6d 65
6d 6 F 72 79 20 6 C 65 61 6b 79 81
0 A 00

“Detected Memory leaks! n” �

47 65 74 4 C 61 73 74 41 63 74 69
76 65 50 6 F 70 75 70 00

GetLastActivePopup �

31 39 32 2e 31 36 38 2e 38 33 2e 31
35 33

192.168.83.153 �

3b 33 2b 23 3e 36 26 1e ;3+# 6.& χ

77 73 72 65 77 6e 61 66 34 79 6 F
77 33 69 37 35

wsrewnaf4yow3i75 χ

7.2 Disassembly Based Features

While structural information is useful for finding malware that looks the same, it
isn’t always useful for discovering malware that behaves the same. Using the list of
imported library functions is a good, but limited first step. Ideally, we could convert
the binary back into its original source code, complete with comments, and extract
features from there. This, however, is a hopeless endeavor as much of the information
is lost when the source code is compiled. Comments and variable names, for example,
are usually completely tossed away and thus unrecoverable. As a next-best option, a
disassembly of the binary (described below) is used.

Many static features begin with a disassembly stage, but perform further abstrac-
tions on the disassembly before extracting features. These types of features will be
discussed in later sections. Here, we describe what disassembly is and the features
that are extracted directly from it.

7.2.1 Disassembly

Disassembling a binary refers to extracting its assembly code (often simply referred to
as “code” or “disassembly” for short). Assembly is a low level programming language
that describes in human readable terms the actions of the processor. Recovering the
assembly code is a matter of parsing the binary and mapping the bytes back into
the human readable terms. The mapping between bytes and assembly instructions
is one to one, but due to the complexity of the most prevalent architecture (the ×86
family), statically accomplishing this task is not as straightforward as it may seem. It is
further complicated by malware authors taking deliberate steps to break disassembly
[20, 21]. Despite these complications, robust tools have been developed that can
provide surprisingly accurate results.

It may seem that an easy way to extract the disassembly of a binary is to do it
dynamically instead of statically. In other words, execute the binary and record the
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instructions as interpreted by the processor. This has been done [22–24], but what
results isn’t a full disassembly of the binary, but rather an instruction trace. Only
the instructions that were actually executed by the processor will be disassembled
and recorded. A single execution path through dynamic analysis is likely to only
encounter a small percentage of the full binary. When it is desired to extract the full
disassembly of the binary, it is still best done statically.

An example of disassembly is given below in Table 3. At the far left is the C
program from which the binary was compiled. It is a simple program that does nothing
useful; it just increments a variable ten times. Next are the instruction addresses and
the bytes that comprise the individual instructions. The disassembled instructions
are presented next to and on the same line as the byte code representation of the
instructions.

The first three instructions set up the stack (the place in memory the variables are
stored). The registers ebp and esp are the base pointer and stack pointer. The base
pointer points to the base of the stack and the stack pointer points to the top. The next
three instructions (addresses 80483ba–80483c8) initialize the variables i and j. The
variable j in placed on the stack first (memory address [ebp-8]), i second (memory
address [ebp-4]). Variable i is set to zero twice because this is the case in the source
code (when it is initialized and when the loop starts). The top of the loop is at address
80483d1 where j is incremented by 1, followed by an increment of i and a check if i
is equal to 9 (less than 10 condition in the source). If it is not, control flow is returned
back to the top of the loop. If i is equal to 9, then the final instructions are executed,
exiting the program.

Table 3 Example disassembly

Source code Address Byte code Disassembly

int main() { 80483b4 55 push ebp

int j = 0; 80483b5 89 e5 mov ebp, esp

int i = 0; 80483b7 83 ec 10 sub esp, 0x08

for (i=0; i< 10; i++){ 80483ba c7 45 f8 00 00 00 00 mov [ebp-8], 0

j++; 80483c1 c7 45 fc 00 00 00 00 mov [ebp-4], 0

} 80483c8 c7 45 fc 00 00 00 00 mov [ebp-4], 0

} 80483cf eb 08 jmp 80483d9

80483d1 83 45 f8 01 add [ebp-8], 1

80483d5 83 45 fc 01 add [ebp-4], 1

80483d9 83 7d fc 09 cmp [ebp-4], 9

80483dd 7e f2 jle 80483d1

80483df c9 leave

80483e0 c3 retn
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7.2.2 Opcodes and Mnemonics

One of the most common types of features directly based on the disassembly is
opcodes [25–29] or mnemonics [30, 31] of the disassembled instructions, usually in
ngram or nperm form. The opcode of an instruction is the first byte or two that tells
the CPU what type the instruction is (ex. add, move, jump) and the types of operands
to expect (register, memory address). A mnemonic is simply the human readable
symbol that represents the opcode. Several opcodes will map to the same mnemonic
because a mnemonic does not contain the operand information of the opcode. For
example, the mnemonic for adding two values together is add, but there are around
eight different opcodes for this one add mnemonic.

Examples of opcodes and mnemonics are given in Table 4. The assembly and
corresponding byte codes are given first, followed by the instruction’s opcode and
mnemonic. All the instructions listed have unique opcodes, but there are only two
unique mnemonics: push and mov. For push instructions, the opcode tells the proces-
sor which register to push onto the stack. The opcode will be 50+ a number repre-
senting which register was pushed. In a mov, the opcode indicates the kind of move
that will occur. For example, opcode 8b indicates that the move will be from register
to register, while opcode 89 tells the processor that the move will be from a register
into a memory location. The next byte in the instruction tells the processor which
register combinations will be used. The byte ‘ec’ explicitly indicates that the contents
of esp will be moved into ebp. Byte 45 means the contents of eax will be moved into
the address specified by the value currently in ebp plus a one byte offset; the next
byte is this offset.

Using opcodes or mnemonics abstracts away the exact operands used for the
instructions. This enables code that differs in only the relative jump addresses, for
example, to produce the same set of features. The noise of structural based features
is thus reduced without much loss of information. Obviously, mnemonics abstracts
the features further than opcodes because opcodes still contain information of the
types of operands. An instruction adding two registers will have a different opcode
but the same mnemonic as an instruction adding a register address and an immediate
(constant).

Table 4 Example opcodes and mnemonics

Assembly Bytes Opcode Mnemonic

push eax 50 50 push

push ebp 55 55 push

mov ebp, esp 8b ec 8b mov

mov [ebp, oxf8], eax 89 45 f8 89 mov
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7.3 Control Flow Based

The control flow of a program is the way in which execution, or control, is capable of
passing through the program. Control refers to the part of a program that is currently
executing, i.e. is in control. Control flow, then, is the various execution paths that can
be taken through the program.

Control flow information can either be captured globally or locally. In general, the
complete information regarding all possible paths that can be taken through every
single part of the program is too great and too complicated to be of use. Thus, global
control flow is typically captured by recording how different pieces of the program
interact with one another. Within each piece, local control flow will then be separately
recorded. In malware, this is done using a call graph and control flow graphs. A call
graph records which functions call each other and a control flow graph records for a
single function the possible execution paths through that function.

7.3.1 Callgraph

A callgraph is a directed graph depicting the calling relationships between the proce-
dures of the program, i.e. which procedures contain calls to which other procedures.
A callgraph does not give information on how control flows through the procedure
itself, just how it is transferred between procedures. This provides a coarse, high
level overview of the flow of control and data through the entire binary. The use of
call graphs for malware analysis was first proposed by Carrera and Erdelyi [32] and
further refined by Briones and Gomez [33] and Kinable and Kostakis [34].

An example call graph with the C source it was derived from is given in Fig. 4.
The call graph was derived from source code because this makes the concept easier
to comprehend, but the exact same concepts apply at the assembly level as well.
This source has five functions: main, doAwesome, doMoreAwesome, doWork, and
doAwesomeWork. Each of these five functions is represented by a single node on the
call graph. An edge between two node represent a “calls” relationship. For example,
the edge between main and doWork represents the relationship “main calls doWork.”
Loops indicate recursion, such as the loop from doMoreAwesome onto itself. The
function doMoreAwesome recursively calls itself until sufficient awesome has been
achieved.

While a callgraph can be constructed statically or dynamically, it is usually done
statically. This is because the purpose of a call graph is generally to show which
functions can call which other functions, not to only show that a function did call
another function in a single execution path. Static analysis is more capable than
dynamic analysis in extracting this full call graph. Dynamic analysis will only be
able to determine calling relationships that it actually witnesses.
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void doAwesome( ) {
// Does Awesome

}
void doMoreAwesome( ) {

// F i r s t doAwesome
doAwesome( ) ;
i f (Need More Awesome) {

doMoreAwesome( ) ;
}

}
void doWork( ) {

// Do work
}
void doAwesomeWork( ) {

// F i r s t do work
doWork( ) ;
// Then make i t awesome
doMoreAwesome( ) ;

}
i n t main ( ) {

doAwesomeWork( ) ;
}

(a) (b)

Fig. 4 Example callgraph

7.3.2 Control Flow Graph

At a finer grain than the call graph is the control flow graph (CFG) [35]. A CFG is
a graph of the control flow within a single procedure. Just as a call graph provides a
view of control flow at the binary level, a CFG provides this view at a procedure level.
The CFG is created by first breaking the sequential code of the procedure into discrete
blocks called basic blocks. Basic blocks are constructed such that if control reaches
the block, every instruction within the block is guaranteed to execute; basic blocks
have a single entry and a single exit point. Edges in the CFG represent decisions
made about the sequence of instructions to execute. For example, an if statement
will create two edges, one representing the “TRUE” path, the other the “FALSE”
path.

An example of creating a CFG is given in Fig. 5. The Assembly from which the
CFG is created is given on the left and the corresponding CFG on the right. The
assembly code initializes a variable at memory location ebp-8 and adds the value of
eax to it 10 times. The is equivalent to multiplying eax by 10 and storing the value
in the variable. The first basic block, consisting of two moves and a jump, initializes
the variables and jumps to the loop condition at the end. The beginning of the new
basic block will not be immediately after the jump instruction, but rather where the
jump instruction goes to. In this case the basic block will start at the condition check.
This condition check will exit if the counter stored at memory location ebp-4 is equal
to 9. Otherwise it will go to code that adds eax and increments the counter before
returning back to the check.
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0 : mov [ ebp −8] , 0
1 : mov [ ebp −4] , 0
2 : jmp 5
3 : add [ ebp −8] , eax
4 : add [ ebp −4] , 1
5 : cmp [ ebp −4] , 9
6 : j l e 3
7 : r e tn

(a) (b)

Fig. 5 Example control flow graph (CFG)

This example illustrates how the single entry, single exit property breaks apart the
code into basic blocks. Just because instructions are sequential without a branching
instruction between them does not mean that they will all be in a basic block together.
The add instructions and condition check in addresses 3–6 are sequential, but they
are broken into two basic blocks because the jump at address 2 branches into the
middle of this sequence.

7.4 Semantics Based

In any programming language there are infinitely many ways to accomplish any given
task, even a task as simple as assigning zero to a variable. As discussed in Sect. 5,
this fact is often used by malware authors to create differing versions of malware
that accomplish the same goal. In response, malware analysts have created features
that do not rely on what the code is but rather what the code does, i.e. its semantics.

7.4.1 State Change

In static analysis, semantics is often defined as the effect executing the code will have
on the hardware state [36–38], i.e. the change in values stored in registers and memory.
Not every change need be recorded but rather the end result of a given portion of code.
The size of these portions differ, but generally it is either a basic block [37, 38] or a
procedure [36]. Computing the effect of executing a basic block is straightforward
as, barring exception handling, execution flows through successive instructions in
the block. The semantics of a block follows from the functional composition of
semantics of individual instructions. Doing the same for a procedure, however, is not
straightforward, especially, as is usually the case, when its CFG has branches and
loops.
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There are two methods of representing semantics: (a) enumerated concrete seman-
tics and (b) symbolic expressions. In the first method the semantics is represented as
a set of pairs of specific, concrete input and output states. For instance, the pair (eax
= 5, ebx = 20) may represent that when executed with the value 5 in the register
eax, the program upon termination will have the value 20 inebx. A set of such pairs,
of course with significantly more complex input and output states, would represent
the semantics of the code. Using symbolic expressions instead, the semantics may
be represented succinctly as a single expression. For instance, the expression ebx
= pre(eax)* 4 may represent that the value of ebx upon termination is the 4
times the value of eax at the start.

The benefit of using enumerated concrete semantics is that two different ways
of effecting the same change of state will have exactly same input and output pairs.
Alternatively, even a single difference in the input and output pair would imply a dif-
ferent semantics. The challenge, of course, is that a program may have exponentially
large space of input, making it infeasible to compute and represent such semantics.
On the other hand, symbolic expressions offer the advantage that a single expres-
sion may represent the entire semantics. However, since one cannot guarantee that
two equivalent program always produce the same expression—this would solve the
Halting Problem—differences in the semantic expression need not imply that the
underlying code has different semantics.

The two different methods of representing, as well as computing, semantics have
been used respectively by Jin et al. [37] and Lakhotia et al. [38]. Jin et al. [37] address
the issue of exponentially large input space by randomly sampling the space. They
pre-generate a large number of input states and use them to compute the semantics
of all basic blocks. Each basic block is executed using the same set of input states
and the corresponding output state recorded. A basic block can then be represented
by a hash of all of its output states.

Lakhotia et al. [38] use symbolic interpretation to compute the semantics of blocks,
without assigning any concrete values. Rather than execute a basic block with spe-
cific inputs, [38] execute it with symbolic inputs. Furthermore, they use algebraic
properties, such as the distributive law, and simplifications to map expressions into
a canonical form when possible. For example, they simplify the expression (eax
+ 4) * 5 to eax * 5 + 20. This ensures that, for a large set of operations,
all expressions that are functionally equivalent resolve to the same symbolic repre-
sentation. After computing the symbolic output values, Lakhotia et al. [38] further
abstract the semantics by converting the concrete register names and numbers into
logical variables. This type of feature they call the “juice” of the basic block and
term it “GenSemantics.”

Tables 5 and 6 respectively illustrate how the features of [37, 38] work. In both
tables, the left column contains two functionally identical basic blocks. Both tables
contain the same two blocks. The two presented blocks both assign 3 to eax, set the
value of edx to ecx, and multiply by 3 the value of ebx + 4. The first block uses a
multiply instruction; the second block uses a series of adds to have the same effect.

Table 5 ([37]) shows the result of executing the two basic blocks on two sets of
input values. The columns labeled Input 1 and Input 2 show the input states, as values
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Table 5 Features by Jin et al. [37]

Basic block Input 1 Output 1 Input 2 Output 2

add ebx,4 eax = 33 eax = 3 eax = 62 eax = 3

mov eax,3 ebx = 4 ebx = 21 ebx = 7 ebx = 33

mul ebx,eax ecx = 25 ecx = 58 ecx = 72 ecx = 54

mov ecx,edx edx = 58 edx = 58 edx = 54 edx = 54

add ebx,4

mov eax,3 eax = 33 eax = 3 eax = 62 eax = 3

mov ecx,ebx ebx = 4 ebx = 21 ebx = 7 ebx = 33

add ebx,ecx ecx = 25 ecx = 58 ecx = 72 ecx = 54

add ebx,ecx edx = 58 edx = 58 edx = 54 edx = 54

mov ecx,edx

Table 6 Features by Lakhotia et al. [38]

Basic block Semantics GenSmantics

add ebx,4

mov eax,3 eax = 3 A = N1

mul ebx,eax ebx = pre(ebx) * 3 + 12 B = pre(B) × N1 + N2

mov ecx,edx ecx = pre(edx) C = pre(D)

add ebx,4

mov eax,3

mov ecx,ebx eax = 3 A = N1

add ebx,ecx ebx = pre(ebx) * 3 + 12 B = pre(B) × N1 + N2

add ebx,ecx ecx = pre(edx) C = pre(D)

mov ecx,edx

in the registers eax, ebx, ecx, and edx. The columns labeled Output 1 and Output 2
show the corresponding states after executing the blocks.

As can be seen in the example, the outputs of the two blocks are exactly the
same when using the same set of input values. It is important that the same list of
input values be used across all blocks in all binaries that are going to be compared.
As should be obvious, only features created with the same list of inputs can be
meaningfully compared. Thus, as in this example, there will often be more generated
values than needed because we have to generate enough values so that all possible
basic blocks will have enough input values.

Table 6 gives [38] features extracted from the same two blocks. The middle col-
umn provides the initial semantics extracted through symbolic execution and simpli-
fication. The notation pre(x) represents the value of x when the basic block was
reached; it is a symbolic notation for the input value. The right column contains the
generalized semantics.

Chaki et al. [36] tackles the problem of computing the semantics at the level of
the procedure instead of at the basic block level. Computing a single expression
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that represents the semantics of an entire expression becomes significantly more
challenging, more so if the semantics is to be in a canonical form to ease compari-
son. For instance, computing the semantics of a loop would involve computing an
expression that represents its fixed point. However, if a single path through the pro-
cedure is selected, the semantics can be computed as straightforwardly as in basic
blocks. This is what [36] do. Given a single path through the procedure, they compute
features very similar to the GenSemantics of [38]. This process is repeated for all
bounded paths through the procedure. For unbounded paths, due to cycles, a bounded
depth first traversal is used to limit the length of the path traversed. The features from
all the traversed paths are unioned together to represent the whole procedure.

7.4.2 API Calls

Another way of defining the semantics of a program is through the set of API calls
the program makes. An API call refers to when a program calls a function provided
by some library, often the system library. The system library is a library of functions
provided by the operating system to perform tasks that only the operating system
has permissions to perform directly, such as writing a file to disk. Other well known
libraries include the standard C library, encryption libraries, and more. If a program
makes an API call to a well known and widely distributed library, then the purpose
of that call can easily be determined.

When the order in which API calls are made is preserved in an API trace, the
semantic information becomes even stronger. Sequences of API calls can be used to
potentially determine the presence of high level behaviors [22, 39] such as “walks
through a directory” or “copies itself to disk.”

The set or trace of API calls provides a “behavioral profile” of the binary being
examined. This idea was first proposed by bailey et al. [40] and later formalized by
Trinius et al. [41]. Trinius et al. [41] designed what they called a Malware Instruction
Set (MIST) for representing various layers of semantic information present in API
calls. The layers are ordered from most to least abstract. Each “instruction” in MIST
represents a single API call.

The first layer of a MIST instruction contains a category for the API call and the
operation performed by the call. The category represents the type of object the API
call operates on. For example, an API call that writes a file to disk would be in a
“File System” category, one that opens a socket in a “Network” category, and an API
that edits a registry value would be in a “Registry” category. The operation is, as the
name implies, what was done to the object. The “File System” category, for example,
has operations such as “open_file”, “read_file”, “write_file”. Every category has a
pre-specified set of possible operations. Both the category and operation are derived
from the name of the API call.

Subsequent layers of a MIST instruction are derived from the parameters to the
API call and ordered by the expected variability of their values. For example, an API
call that manipulates a file will contain as one of its parameters the name of the file to
manipulate. From this file path, we can separate out two parts, the path and the name.
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The path will have a lower variability than the file name. A binary that writes to the
windows directory is likely to write to the windows directory on every execution.
However, the names of the files may well be different for every execution, since its
common for malware to randomly generate filenames. Thus, the file path has a lower
expected variability than the file name and is put at a higher level.

7.5 Hybrid Features

In an effort to increase the accuracy of classification, various authors have utilized
feature fusion: combining multiple types of features to created hybrid features.

The first to use feature fusion was Masud et al. [42]. They combined features
from three different levels of abstraction: binary n-grams, derived assembly features
(DAF), and system calls. Binary n-grams are the same as described in Sect. 7.1.
The feature on the next level of abstraction is the DAF. A DAF is basically just the
disassembled binary n-grams. A DAF is created by extending the n-gram on the front
and the back as needed to fit instruction boundaries and then disassembling these
instructions. At the highest level of abstraction are system calls. The names of the
system calls present in the header of the executable were extracted and used.

Lu et al. [43] combine static and dynamic features. The static features chosen were
the names of system calls present in the binary of the executable and the dynamic fea-
tures were expert defined behaviors commonly seen in malicious programs. Several
examples of the behaviors searched for are packing the executable, DLL injection,
and hiding files. There were twelve such features defined. These static and dynamic
feature sets were fused by taking the union of the feature sets.

Islam et al. [44] simply combined two features they considered useful in an attempt
to make an even more useful feature set. They take the union of function length
frequency and printable string feature sets. Function length frequency is the number of
functions a program has of a given length. It was found by Islam that malware within
the same family tend to have functions of around the same length, thus motivating the
use of function length frequency as a feature. Printable strings are simply sequences
of bytes which can be interpreted as valid ASCII strings.

LeDoux et al. [45] takes a different approach. Whereas the above cited works all
combined mutually exclusive feature sets, LeDoux et al. fuses features that are very
similar, but collected in different ways. The hypothesis being that the differences
present between two feature sets that should be identical is itself a feature and can
help identify malware that is intentionally obfuscated against one of the methods of
collecting features.
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8 Supervised Learning

Supervised Learning describes a class of learning algorithms that build a model used
in classification (see Sect. 6.2). These algorithms learn the concepts represented by
the model by examining labeled examples of the concepts. The label provides the
“correct answer,” that is the concept that is being exemplified. This training data
(the labeled examples) is often referred to as the ground truth. After the model has
been learned, a never before seen example of a learned concept can be classified by
matching it to the learned model.

The method of learning and classifying used by Supervised Learning can concep-
tually be thought of as teaching a child different types of animals by showing him
flash cards and telling him the name of the animal. “This is a horse. This is a dog.
This is another horse. This is a cat.” By looking at many examples of horses, dogs,
and cats, the child builds up an internal representation of each animal type. Then
when shown a picture of a never before seen dog, and asked to “classify it”, the child
will be able to respond “It is a dog.”

One of the limitation of classifiers built using supervised learning is that they will
only be able to attach a label it has already learned and must attach one of these
labels. Supervised learning can only explicitly learn concepts it is told about through
the labels in the training data. Neither is it able to provide an “I don’t know” answer.
It must attach one of its learned labels. To extend our earlier example further, if our
child is only shown pictures of horses, cats, and dogs, and then asked to “classify”
a picture of a lion, he will respond “cat,” not lion. If shown a picture of a tractor,
however, the child will be able to respond “I don’t know.” A classifier built using
supervised learning would respond “horse.”

Another potential issue with supervised learning specific to the malware domain
is the reliance on the ground truth labels. In malware analysis, ground truth can
often only be reliably determined through manual reverse engineering and analysis
of the binary by a human expert. The expert makes a judgment call based upon his
experience and assigns an appropriate label to the binary. This process is expensive
in terms of time and resources required, thus restricting the number of labels that
can be reasonably generated. The required level of expertise for performing this task
limits the reasonable size of ground truth even further (crowd sourcing can’t solve
this problem). As an added detriment, any process that relies on human decisions is
prone to error, regardless of the level of expertise of the human. Training a Supervised
Classifier on improperly labeled data can lead to very poor performance.

The main application of supervised learning to malware analysis has been in
attempting to built automated malware detectors [46], in triage [47], and in evaluating
the quality of malware features. The original intention of supervised learning in
malware was to build a classifier that could act as the scanner on the end system.
However, the false positive rate of these classifiers tend to be too high. A false positive
is when the classifier labels a benign program as malware. On the end system, the
false positive rate must be extraordinarily low as constantly labeling valid programs
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as malware will at best annoy the user into not using the scanner and at worst break
the system by removing critical system files.

While not useful as a scanner, supervised learning has been of use in triage [47].
Supervised Learning can be used to build a classifier that identifies if a new, incom-
ing program belongs to any of the already known and analyzed malware families.
Knowing which family malware belongs to makes any manual analysis needed an
easier prospect because the analyst does not have to start from nothing, but can lever-
age knowledge of what that family of malware does and how it usually operates. A
higher false positive rate can be tolerated in the triage stage than in a scanner because
the results are still verified later on.

A final use of supervised learning in malware is for controlled test and comparison
of the quality of malware features. Due to the fact that Supervised Learning required
that data with ground truth exists, determining performance metrics for classification
is straightforward. A portion of the labeled data is set aside for testing purposes and
the rest of the data used for creating the model. The testing data is classified using the
created model and labels assigned by the model are compared against the ground truth
labels to determine accuracy of classification. To compare the quality of features, the
accuracy of classification can be compared. Features that are of a higher quality will
result in a higher accuracy.

9 Unsupervised Learning

Unsupervised Learning [34, 48–51] algorithms learn concepts without the use of
any labeled data. Labeled data may be used to perform a post hoc evaluation of the
learned concepts, but they are in no way used for learning. Concepts are learned
in unsupervised algorithms by clustering together related objects in such a way that
objects within a cluster are more similar to each other than objects outside the cluster.
Each cluster then represents a single concept. What this concept is, however, is not
always easy to discover.

In order to determine which binaries are related and so belong in the same clus-
ter, unsupervised learning algorithms rely on measuring the similarity of malware.
A comprehensive overview of the various similarity functions that can be used to
compare binaries is given by Cesare and Xiang [52]. It is important to note that sim-
ilarity metrics do not directly measure the similarity of two binaries, but rather the
similarity of the binary’s features. The same pair of binaries may have very different
similarities depending on the choice of feature type. Take, for example, two malware
with dissimilar implementation but an almost identical set of performed system calls.
Features that rely mostly on the implementation, such as opcode n-grams, will result
in measuring a low similarity. Features that only look at system calls, however, will
result in the exact opposite: high similarity.

One of the major issues with clustering is that many of the most common clustering
algorithms require a priori knowledge of the number of clusters to create; the number
of required clusters is a parameter to the clustering algorithm. When it is known how
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many malware families are present in the data set, it is common practice to use this
number as the number of clusters. However, while the number of families present
in a laboratory sample of malware may be determined, the same cannot be said of
the sets of malware encountered “in the wild.” If the incorrect number of clusters is
selected, performance will quickly degrade.

Fortunately, not all unsupervised algorithms require prespecifying the number of
clusters to create. Representative of these algorithms, and the most commonly used,
is hierarchical clustering. Hierarchical clustering can be either agglomerative or
divisive. Agglomerative Hierarchical clustering works by iteratively combining the
two most similar items into a cluster. Items include both the individual objects and
already created clusters. So a single iteration could consist of putting two objects into
a cluster of size two, adding an object to an already existing cluster, or combining
two clusters together. This process is repeated until everything has been put into
a single cluster. Each step is tracked, resulting in a hierarchical tree of clusters
called a dendrogram. Divisive hierarchical clustering works similarly, but starts with
everything in a single cluster and iteratively splits clusters until everything is in a
cluster of size one.

Hierarchical clustering changes the problem from needing to know a priori the
optimal number of clusters to knowing when to stop the agglomerative (or divisive)
process, i.e. where to cut the tree. This is determined using a type of metric known
as a clustering validity index [53]. While a number of such indices exist, they are all
a measure of some statistic regarding the similarity of objects within the clusters, the
distance between objects in different clusters, or a combination of the two. A number
of these metrics were evaluated by [50] for performance in the malware domain using
a particular feature type.

10 Hashing: Improving Clustering Efficiency

In applications of clustering in malware, there are two inherent performance bottle
necks: large feature space and the requirement to compute all pairwise similarities.
The number of features generated for each individual malware is usually quite large.
A single malware can have thousands, even hundreds of thousands of features rep-
resenting itself. This has a two fold effect. First, it drives up the time cost of doing
a single similarity computation. Second, storing this massive amount of features
requires an equally massive amount of memory. Either a specialized computer with
the required amounts of memory must be used, or the majority of the time spent
computing similarities will be in swapping the features to and from disk.

Compounding the time and space requirements of clustering is the complexity of
a typical clustering algorithm. Even efficient algorithms run at O(n2) due to the need
to compute the similarity between every pair of objects.2 This is tolerable for small to

2 Objects don’t need to be compared with themselves and similarity functions are (typically)
symmetric, so the actual number of comparisons required is (n2 − n)/2).
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medium sized datasets, but severely limits the scalability of clustering. Parallelism
can help up to a point, but handling millions of malware requires more efficient
approaches.

The solutions being explored for both of the above problems are the same: hash-
ing. Feature hashing based on Bloom filters [54] is being used to both reduce the
memory overhead and the time a single similarity comparison takes. The number
of required pairwise comparisons is being reduced or even eliminated by perform-
ing clustering based on a shared hash value. A few explorations have been made in
using cryptographic hashes [51, 55, 56]. More commonly, however, Locality Sensi-
tive Hashing is being used as a “fuzzy hash” to reduce the complexity of clustering
[37, 48]. In some instances, constant time is even achieved [37]!

10.1 Feature Hashing

To reduce the memory requirement and time for a single similarity comparison,
[54] present a method for hashing features into a very small representation using
Bloom filters [57]. A Bloom filter is a probabilistic data structure used for fast set
membership testing. It consists of a bit vector of size m with all bits initially set to
zero and k hash functions, h1, h2, . . . .hk , that hash objects into integers uniformly
between 1 and m, inclusive. In practice, these k hash functions are approximated by
simply splitting the MD5 into k even chunks, taking the modulo of each chunk with
m, and then treating each resulting value as the result of one of k hash functions. To
insert object × into the bloom filter, for each hi (x), set the bit at position hi (x) to
one. Object y can then be tested for membership by checking that all bits at positions
hi (x) for each i from 1 to k is set to one.

Jang et al. [54] perform feature hashing by inserting all features for a single binary
into a bloom filter with only one hash function. The decision to use only one hash
function was made in order to facilitate fast and intuitive similarity comparisons.
Similarity between malware can be quickly approximated by measuring the number
of shared and unique bits in each binary’s corresponding bloom filter. In addition,
only the bloom filters need to be stored, not every single feature, thus reducing the
total storage requirement. Jang et al. [54] experienced compression rates of up to 82
times!

10.2 Concrete Hashes

Cryptographic hashes such as MD5 and SHA-1 are widely used to filter out exact
binary duplicates. However, hashes at this level are not robust; changing a single bit
can result in a dramatically different hash. Several approaches have been taken to
improve this robustness by taking hashes of different types of features instead of the
raw bits of the binary.
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Wicherski [51] attempted to use the information stored in the PE header of a binary
to define a hash for the purpose of filtering out duplicate binaries. The information
in the PE header was utilized to make the hash robust against minor changes in the
binary. For example, if the only difference between two binaries is a time stamp in
the header, the binaries should be considered equal. To create this hash, [51] takes a
subset of bits from several PE header fields, concatenates them together (in a fixed,
reproducible ordering) and takes the SHA-1 of this bit sequence.

Wicherski [51] does not use all bits from all PE header fields, but rather judicially
selects both the fields and bits used in the construction of the hash. The fields used
are image flags such as whether the binary is a DLL, the Windows subsystem the
binary is to be run in, the initial size of the stack and the heap, the initial address
each section of the binary is loaded into memory at, the size of each section, and
the flags for each section that indicate permissions and alignment. For each PE field
included in the hash, only a subset of the full bits in the field are utilized. The exact
bit range used for each field is chosen such that a change in one of bits indicates a
major structural change in the binary. For example, the first 8 bits of the 32 bit initial
stack size are almost always 0, and there is often minor changes in the lower bits in
polymorphic malware.

In a different approach, [55, 56] use cryptographic hashes of functions in order
to discover when malware is sharing code. The only modification made by Cohen
and Havrilla [56] to the code before hashing is that all constants, such as jump
and memory access addresses, are zeroed out. A cryptographic hash of the string
representation of the code of the procedure is then taken. LeDoux et al. [55] use
the abstractions defined by Lakhotia et al. [38] and described in Sect. 7.4. For each
basic block in a procedure, the feature of Lakhotia et al. [38] is computed. A hash
of the procedure is created by sorting and concatenating all the basic block features
together and taking a cryptographic hash.

10.3 Locality Sensitive Hashing

To improve upon the robustness of concrete cryptographic hashes, MinHash, a type
of Locality Sensitive Hash (LSH) [58] is being utilized in several different ways. A
MinHash is a hash functions with the property that hashes of two arbitrary objects
will be equivalent with a probability equal to the Jaccard Similarity between the
objects. In other words, if two binaries are 90 % similar, there is a 90 % chance
that they will produce the same LSH. Jaccard Similarity is a method for measur-
ing the similarity of two sets and is defined as |A ∩ B|/|A ∪ B|, the size of the
intersection divided by the size of the union. Two arbitrary MinHashes, then, will
collide with a probability equal to the Jaccard Index of the two hashed objects,
P(MinHash(A) = MinHash(B)) = |A ∩ B|/|A ∪ B|.

To create a MinHash of a set, an ordering over the universe of objects that can
be placed in the set must be defined. This ordering can be arbitrary, but it must be
fixed. A very simple example ordering is just “the order in which I first encountered
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the object” (this ordering does, however, need to be remembered across all sets that
are to be compared). After this ordering is defined, several random permutations of
the ordering are selected. A MinHash is then the minimum elements of the set as
defined by the selected random order permutations.

For an illustrative example of MinHash, take the sets A = 1, 2, 3 and B = 4, 5, 6
with the ordering defined numerically. To create the MinHash, we first randomly
select a number of permutations of the ordering, let’s say these are 5, 4, 2, 1, 3 and
3, 1, 4, 5, 2. Then the MinHash of set A is 2,1 and that of B is 5, 4.

There are two ways in which MinHashes are being used in malware analysis: for
direct clustering and as a filter to reduce the complexity of clustering. The computed
MinHashes can be used to define a clustering that has constant time complexity. Two
binaries are considered to be in the same cluster if and only if they have the same
MinHash. This was an approach taken by Jin et al. [37].

Rather than directly clustering, MinHashes can also be used as a filter to drastically
reduce the size of n so that the clustering complexity of O(n2) becomes bearable.
Bayer et al. [48] first utilized this approach in the malware space. They defined many
MinHashes by selecting a different set of random permutations for each MinHash.
Malware were first put into an initial cluster if any of the MinHashes matched. Bayer
et al. [48] would then computed the Jaccard Similarity for only pairs of binaries in the
same cluster. The resulting similarities were then used to create a final clustering.
Since n now refers to the number of object in a single cluster, O(n2) becomes a
tolerable performance.

11 Semi-supervised Learning

Halfway between Supervised and Unsupervised Learning is the wonderful world of
Semi-supervised Learning. As the name implies, Semi-supervised Learning utilizes
both labeled and unlabeled data. It is usually used for clustering with the available
labels helping decide both the number and shape of clusters to create.

While there are a number of existing Semi-supervised learning algorithms [59],
there currently exists only one instance of such an application in malware. Santos
et al. [60] use a Semi-Supervised Learning algorithm known as “Learning with Local
and Global Consistency” (LLGC) [61] to classify binaries as malicious or benign.

LLGC first starts with a directed, weighted graph representation of the data. The
nodes of the graph are binaries being clustered and the weighted edges are the simi-
larity values between the binaries. Every node keeps track of how much it “believes”
it belongs to a particular label by attaching a weight to the different labels. When
the graph is first constructed, unlabeled data has zero belief in any of the labels and
labeled data has perfect belief in its label. So a binary labeled “malware” will start
with a weight of 1 for the label “malware” and a weight of 0 for the label “benign.”
An unlabeled binary will have a weight of 0 for both labels.

LLGC relies on two assumptions to create clusters. The first is that similar objects
are likely to have the same label (“Local” consistency). The second is that objects
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in the same cluster are likely to have the same label (“Global” consistency). LLGC
uses these two assumptions to “spread” beliefs through the initial graph. Nodes with
higher similarity with each other will be incrementally updated so that their weights
assigned to labels more closely mirror each other. The incremental updates continue
until weights attached to labels converge. Each node is then assigned the label it has
the highest weight attached to, i.e. the label it has the highest belief in.

12 Ensembles

Similar to the way in which features can be combined to create a more accurate clas-
sification, different learning algorithms can be combined to produce a single, more
accurate learner. Such a learner is referred to as an ensemble. There are several ways
in which classifiers can be combined [62]: voting, stacking, bagging, and boosting.

One of the simplest methods of creating an ensemble is voting [63–65]. This sim-
ply consists of creating a number of independent classifiers, running them separately,
obtaining the different outputs, and then using some type of voting mechanism to
determine which of the outputs to accept as the final answer. This voting mechanism
most often takes the form of majority vote (simply select the answer that the most
classifiers returned). Other forms of voting include weighted majority vote, a veto
vote [64] where a “special” classifier can veto the decision of the majority, and a
trust-based vote [65] where voting takes into account how much each individual
classifier is “trusted” to provide a correct answer.

The above voting strategies really only apply to learning algorithms that perform
classification and do not apply to clustering. A majority vote, for example, doesn’t
make sense for clustering as the number of possible ways to cluster is practically
unbounded. It is unlikely that any two partitioning created by two different clustering
algorithms will be the same. Instead, a consensus partition [66, 67] is used. Consensus
partitioning can conceptually be thought of as a voting scheme for clustering. Like in
voting ensembles, the first step is to cluster the data several times using independent
methods each time. In the “combining phase” a new partitioning of the data is created
that maximizes the “consensus” between each independent clustering. There are a
number of ways that have been proposed to create this consensus clustering using
graph based, combinatorial, or statistical methods. Various ways of creating this
consensus clustering are covered by Strehl and Ghosh [68] and Topchy et al. [69].

Stacking [43, 70–72] is a type of ensemble in which a set of classifiers are con-
nected in series, with each classifier taking as input the output of the classifier before
it in the series. A simple example of such a classifier is [43] and their system called
SVM-AR, depicted in Fig. 6. In this system, [43] first use a supervised classifier to
decide if an executable is malicious or benign. After a decision is made, a trained
rule-based classifier is used to “check” the results. If the supervised classifier said the
executable was malware, the executable is checked against the rules for determining
if an executable is benign. If any of these rules match, then final decision is “benign.”
A similar process is applied if the supervised classifier says the executable is benign.
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Fig. 6 SVM-AR by Lu et al. [43], an example stacking ensemble

Bagging [19] is an ensemble technique that instead of combining several different
kinds of learners, uses the same learning algorithm, but trains the algorithm on ran-
dom bootstrapped samples of the training data. There is a class of learning algorithms
known as unstable algorithms. In unstable learning algorithms, slight changes in the
training data can lead to very different models. Bagging seeks to solve this by com-
bining many models created on slightly different data. The differing data is created
through bootstrapped sampling of the original training data. A bootstrap sample is a
random sample taken with replacement. Thus each bootstrapped sample will contain
duplicates and be missing some of the original data. The learned models are usually
combined through voting.

Boosting [46, 72] is meant to be an improvement over bagging. Like bagging,
boosting combines many differently trained instances of the same learning algorithm.
Where boosting differs is in the way the various training data sets are selected.
Bagging selects training sets at random. Boosting selects training sets such that
training focuses on data the already trained classifiers are getting incorrect. This
results in building classifiers that specialize on specific portions of the data. Each
individually trained classifier may have weak performance overall, but be extremely
accurate on a specific subset of the data. Combining a number of such specialized
classifiers (by voting, usually) results in more accurate ensemble overall.
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Abstract Epidemical crisis prediction is one of the most challenging examples
of decision making with uncertain information. As in many other types of crises,
epidemic outbreaks may pose various degrees of surprise as well as various degrees
of “derivatives” of the surprise (i.e., the speed and acceleration of the surprise).
Often, crises such as epidemic outbreaks are accompanied by a secondary set of
crises, which might pose a more challenging prediction problem. One of the unique
features of epidemic crises is the amount of fuzzy data related to the outbreak that
spreads through numerous communication channels, including media and social
networks. Hence, the key for improving epidemic crises prediction capabilities is in
employing sound techniques for data collection, information processing, and decision
making under uncertainty and exploiting the modalities and media of the spread of the
fuzzy information related to the outbreak. Fuzzy logic-based techniques are some of
the most promising approaches for crisis management. Furthermore, complex fuzzy
graphs can be used to formalize the techniques and methods used for the data mining.
Another advantage of the fuzzy-based approach is that it enables keeping account of
events with perceived low possibility of occurrence via low fuzzy membership/truth-

This material is based in part upon work supported by the National Science Foundation under
GrantsI/UCRC IIP-1338922, AIR IIP-1237818, SBIR IIP-1330943, III-Large IIS-1213026,
MRI CNS-0821345, MRI CNS-1126619, CREST HRD-0833093, I/UCRC IIP-0829576, MRI
CNS-0959985, FRP IIP-1230661.

D.E. Tamir (B)

Department of Computer Science, Texas State University, San Marcos, TX, USA
e-mail: dan.tamir@txstate.edu

N.D. Rishe · A. Kandel
School of Computing and Information Sciences, Florida International University,
Miami, FL, USA
e-mail: rishen@cs.fiu.edu

A. Kandel
e-mail: abraham.kandel.fiu@gmail.com

M. Last
Department of Information Systems Engineering, Ben-Gurion University of the Negev,
Beer-Sheva, Israel
e-mail: mlast@bgu.ac.il

© Springer International Publishing Switzerland 2015
R.R. Yager et al. (eds.), Intelligent Methods for Cyber Warfare,
Studies in Computational Intelligence 563, DOI 10.1007/978-3-319-08624-8_2

43



44 D.E. Tamir et al.

values and updating these values as information is accumulated or changed. In this
chapter we introduce several soft computing based methods and tools for epidemic
crises prediction. In addition to classical fuzzy techniques, the use of complex fuzzy
graphs as well as incremental fuzzy clustering in the context of complex and high
order fuzzy logic system is presented.

1 Introduction

In the context of this Chapter, the term epidemical (or epidemic) referrers to a disease
which spreads widely and attacks many persons at the same time. An epidemical
crisis is an epidemic that spreads very fast and affects numerous people in different
countries and continents. In this sense, the term epidemical crisis and pandemic are
almost synonyms.

Epidemical crisis prediction (ECP) is a special case of disaster prediction and
management (DPM). DPM is one of the most challenging examples of decision
making under uncertain information. One of the main issues related to ECP/DPM
is the amount of a priori information available, i.e., the amount of surprise affiliated
with the epidemical crisis as well as the risk and devastation that follow the crisis
outbreak. A closer look at these parameters shows that the velocity and acceleration
(and higher derivatives) of these parameters are highly important. Another important
aspect includes secondary adverse effects (i.e., secondary epidemical crises) that are
triggered by the initial disaster.

One of the main concerns about epidemical crises is the amount of surprise that
accompanies the outbreak. Emergencies may produce a wide range of surprise levels.
The terror attack of 9/11 is an example of a disaster with very high level of surprise.
On the other hand the landfall of a hurricane in Florida in the middle of a hurricane
season is not as surprising.

Even in the extreme cases where the nature of the disaster is known, preparedness
plans are in place, and analysis, evaluation, and simulations of the disaster manage-
ment procedures have been performed, the amount and magnitude of “surprises”
that accompany the real disaster pose an enormous demand. In the more severe
cases, where the entire disaster is an unpredicted event, the disaster management and
response system might fast run into a chaotic state. Hence, the key for improving
disaster preparedness and mitigation capabilities is in employing sound techniques
for data collection, information processing, and decision making under uncertainty.

Analysis of epidemical crises presents three types of challenges: the first is the
ability to predict the occurrence of epidemical crises, the second is the need to produce
a preparedness plan, and the third is the actual real time response activities related
to providing remedies for a currently occurring disaster.

As a special case of DPM, ECP is a highly challenging example of decision making
under uncertain information. Epidemical outbreaks might pose various degrees of
surprise as well as various degrees of the “derivatives” of the surprise. One of the
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unique features of epidemical crises is the amount of fuzzy data related to an outbreak
that spreads through numerous communication channels and social networks.

The key for improving epidemical crises prediction and management capabilities
is in employing sound techniques for data collection, information processing, and
decision making under uncertainty and in exploiting the modalities and media of
the spread of the fuzzy information related to the outbreak. Hence, fuzzy logic-
based techniques are some of the most promising approaches for crisis management.
Furthermore, complex fuzzy graphs can be used to formalize the techniques and
methods used for the data mining. Another advantage of the fuzzy-based approach is
that it enables keeping account of events with perceived low possibility of occurrence
via low fuzzy membership/truth-values and updating these values as information is
accumulated or changed.

In this chapter we introduce several soft computing based methods and tools
for epidemical crises prediction. In addition to classical fuzzy techniques, the use
of complex fuzzy graphs as well as incremental fuzzy clustering in the context of
complex and high order fuzzy logic systems is presented.

The rest of this chapter elaborates on some of the important aspects of ECP and
DPM, concentrating on the related uncertainty which can be addressed via fuzzy
logic-based tools as well as the geospatial-temporal analytics/Big Data aspects of
the problem. Section 2 provides the background, Sect. 3 provides an overview of
several fuzzy logic-based tools for ECP, and Sect. 4 concludes and proposes future
research.

2 Background

The topic of predicting epidemical crises falls under the more general subject of dis-
aster prediction management and mitigation (DPM). In this section, we discuss DPM
(Sect. 2.1) and elaborate on some of the distinguishing factors of ECP (Sect. 2.2). In
addition, we describe the geospatial-temporal analytics of the correlation of envi-
ronmental factors and incidence of disease and report on a set of tools and concept
demonstrations that show the solvability of Big Data problems involving geospatial
data correlated with publically available medical data.

Epidemical crises occur with different degrees of unpredictability and severity,
which are manifested in two main facets. First, the actual occurrence of the pandemics
might be difficult (potentially impossible) to predict. Second, regardless of the level
predictability of the crisis, it is very likely that it will be accompanied by secondary
effects. Hence, epidemical crises are a major source of “surprise” and uncertainty and
their mitigation and management require sound automatic and intelligent handling
of uncertainty.

Often, the stakeholders of ECP programs are classifying the unpredictability
of epidemical crises as two types of unknowns: unknown unknowns and known
unknowns. The first type of unknowns (unknown unknowns) is often referred to
by the metaphor of a black swan, coined by Taleb [30, 31], while the second type
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of unknowns (known unknowns) is referred to as a gray swan. Arguably, however,
there is no such animal as a black swan and every swan is a gray swan depending
on the amount of surprise it carries and the potential devastation associated with it.
In almost all the cases of epidemical crises recorded so far there was some a priori
information concerning the disaster yet this information was filtered, ignored, or just
did not pass a threshold of being classified as significant.

2.1 Severity and Predictability of Epidemical Crises

In his excellent books [30, 31], Nassim Nicholas Taleb describes the following
features of blackswan events:

1. The blackswan is an outlier; lying outside of the space of regular expectations.
2. It has very low predictability and it carries an extremely adverse impact.
3. The unknown component of the event is far more relevant than the known

component.
4. Finally, we can explain the event post factum and through those explanations

make it predictable in retrospect.

In this sense, the black swan represents a class of problems that can be referred
to as the “unknown unknowns.” However, a thorough investigation of many of the
events that are widely considered as black swans, e.g., the September 11, 2001 attack
in NYC, shows that there had been available information concerning the evolving
event; yet, this information did not affect the decision making and response prior to
the attack. Hence, the term “not connecting the dots” is often used to describe these
phenomena. This brings to the forefront the problem of predicting the occurrence
of epidemical crises. More important is the issue of identifying (and not ignoring)
anomalies.

This suggests that the term black swan is a bit too extreme and one should consider
using the term gray swan where the gray level relates to the level of surprise. A gray
swan represents an unlikely event that can be anticipated and carries an extremely
adverse impact. In this respect, gray swans represent a two dimensional spectrum
of information. The first dimension represents the predictability of the event where
black swans are highly unpredictable and white swans are the norm. The second
dimension represents the amount of adverse outcome embedded in the event; with
black swans representing the most adverse outcomes. Consequently, the black swan
is a special case of a gray swan.

To further elaborate, one type of unpredictability relates to a set of events that can
be considered as known unknowns. For example, a hurricane occurring in Florida
during the hurricane season should not surprise the responsible authorities. Moreover,
often, there is a span of a few days between the identification of the hurricane and the
actual landfall. Regardless, even a predictable hurricane landfall carries numerous
secondary disastrous events that are hard to predict.

We refer to these secondary events as second generation gray swans. Second
generation swans are generated and/or detected while the disaster is occuring. The
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collapse of the Twin Towers in 9/11 is an example of a second-generation gray
swan. A gray swan might (and according to the Murphy laws is likely to) spawn
additional gray swans. Generally, second generation swans evolve late and fast.
Hence, they introduce a more challenging detection problem and require specialized
identification tools, such as dynamic clustering. Detecting relatively slow evolving
[first generation] gray swans before the disaster occurs and relatively fast evolving
second generation gray swans requires an adequate set of uncertainty management
tools.

The following is a partial list of well-known gray swans, each of which has a
different degree of surprise as well as different degree of severity.

1. Philippines typhoon disaster
2. Bangladeshi factory collapse
3. Iceland volcano eruption
4. Fukushima—tsunami followed by nuclear radiation and risk of meltdown of

nuclear facilities in the area
5. HIV, HSV2, Swine, SARS, and West Nile Virus infection outbreaks
6. 9/11 NYC attack followed by the collapse of the Twin Towers
7. Financial Markets’ falls (1987, 2008), Madoff’s fraud
8. The 1998 fall and bailout of Long-Term Capital Management L.P. hedge fund
9. Yom Kippur War

10. December 7, 1941—Pearl Harbor
11. Assassinations of Lincoln, Kennedy, Sadat, and Rabin

Fuzzy logic is one of the suggested tools that can help create a better understand-
ing of ECP tools, including, but not limited to, intelligent robotics, learning and
reasoning, language analysis and understanding, and data mining. Hence, research
in fuzzy logic and uncertainty management is critical for producing a successful ECP
programs.

Recently, the academic community and government agencies have effected
spurring growth in the field of data mining in Big Data systems.These advances are
beginning to find their way into ECP programs and are redefining the way we address
potential disaster and mitigate the effects of epidemical crises. Nevertheless, acad-
emia, industry, and governments need to engage as a unified entity to advance new
technologies as well as apply established technologies in preparation and response
to the specific emerging problems of epidemical crises.

2.2 Epidemical Crises Information Spread

Predicting the epidemical outbreak is an important component of the management
and mitigation of a pandemic. It can enable early setup of a mitigation plan. Never-
theless, the fact that an epidemical crisis is somewhat predictable does not completely
reduce the amount of surprise that accompany the actual occurrence of the crisis.
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Hence, any mitigation plan, that is, a set of procedures compiled in order to address
the adverse effects of epidemical crises, should be flexible enough to handle addi-
tional surprises related to secondary adverse effects of the epidemical crisis. Finally,
the real time ramification program is the actual set of procedures enacted and exe-
cuted as the epidemical crisis occurs. There are two preconditions for successful
remedy of epidemical crisis affects. First, the authorities/leadership have to attempt
following the original mitigation plan as close as possible while instilling a sense of
trust and calmness in the people that experience the crisis and the mitigation provider
teams. Second, and as a part of their leadership traits, the authorities must possess
the ability to adapt their remedy procedures to the dynamics of the epidemical crisis,
potentially providing effective improvisations aimed at handling secondary disas-
trous events that evolve from the main disaster. A simple example for such events
is looting and violence that might accompany a major disaster. For this end, fast
automatic assessment of the dynamics is paramount.

One of the distinguishing features of pandemics’ outbreaks is the modalities of
sharing information in communication and social networks. Often, due to the panic
that accompanies outbreaks there is an explosion of data which is characterized by
large amount of information and high “velocity” and higher derivatives of velocity
of information spread. Using the current terminology to describe the phenomenon:
pandemic news are likely to become viral. Notably, many countries would try to
completely ban, control, or limit, the news spread. But experience show that these
attempts are not likely to be fruitful: citizens of these countries can still find numerous
ways to spread the information through social networks. Hence, data mining in
electronic versions of newspapers and related media as well as in social networks is an
important cyber warfare ammunition. In addition, it is well known (but not published)
that many national security agencies are digitizing “hard forms” of publicly available
information of other countries such as newspapers. These might be related to official,
semi-official, or private media-outlets. This media, however, is easier to control by a
country that is trying to conceal an epidemical outbreak. One interesting pattern in
this situation is the appearance of a few news reports at the beginning of the outbreak,
followed by acceleration in reports, followed by a complete seizure of these reports
due to a discovery of the news by the country’s leaders, followed by a complete ban
on this news.

Interestingly, there is another cyber source of information which relates to restric-
tions that a country might put on travelers entering the country. For example, during
the SARS pandemic several countries has required that people entering the country
would go through a fast automatic screening of body temperatures.

2.3 Geospatial-Temporal Analytics of Correlation
of Environmental Factors and Incidence of Disease

We have developed tools and concept demonstrations that show the solvability of
Big Data problems involving geospatial data correlated with publically available
medical data. We bring the Big Data approach to geospatial epidemiology, a field of
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study focused on describing and analyzing geographic variations of disease spread,
considering demographic, environmental, behavioral, socioeconomic, genetic, and
infectious risk factors [8]. Our work in this area assists the development of the
related field of personalized medicine by correlating clinical, genetic, environmental,
demographic, and other background geospatial data.

Our TerraFly GeoCloud [18] system combines several diverse technologies and
components in order to analyze and visualize geospatial data. In this system, a user can
upload a spatial dataset and display it using the TerraFly Map API [26]. Datasets can
be subsequently analyzed using various functions, such as Kriging, a geo-statistical
estimator for unobserved locations, and Spatial Clustering, which involves the group-
ing of closely related spatial objects. Various analysis functions related to spatial
epidemiology have been integrated into TerraFly GeoCloud. Analysis functions can
be used by selecting the appropriate dataset and function in the interface menu, along
with the variables to be analyzed. TerraFly GeoCloud then processes the data and
returns a result that can be visualized on the TerraFly Map or on a chart. Results
displayed on the map include a legend, which identifies certain range values by
color. Certain visualizations are interactive, allowing additional information to be
displayed.

Our Spatial Epidemiology System provides four kinds of API algorithms for
data analysis and results visualization, based on the TerraFly GeoCloud System:
(1) disease mapping (mortality/morbidity map, SMR map); (2) disease cluster deter-
mination (spatial cluster, HotSpot analysis tool, cluster and outlier analysis); (3)
geographic distribution measurement (mean central, median central, standard dis-
tance, distributional trends); and (4) regression (linear regression, spatial auto-
regression). The system is interfaced with our Health Informatics projects [4, 13,
25, 27–29, 40, 43].

We work on tools and methodologies that will assist in operational and analytical
Health Informatics. The TerraFly Geospatial Analytics System (http://terrafly.com)
demonstrates correlation of location to environment-related disorders, enabling clin-
icians to more readily identify macro-environmental exposure events that may alter
an individual’s health. It also enables applications in targeted vaccine and disease
management, including disease surveillance, vaccine evaluation and follow-up, intel-
ligent management of emerging diseases, cross-analysis of locations of patients and
health providers with demographic and economic factors, personalized medicine,
and other geospatial and data-intensive applications.

3 Tools for Predictions and Evaluations of Fuzzy Events

Fuzzy logic-based techniques are some of the most promising approaches for ECP.
The advantage of the fuzzy-based approach is that it enables keeping account on
events with perceived low possibility of occurrence via low fuzzy membership/truth-
values and updating these values as information is accumulated or changed. Numerous
fuzzy logic-based algorithms can be deployed in the data collection, accumulation,

http://terrafly.com
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and retention stage, in the information processing phase, and in the decision making
process. In this section we describe several possible fuzzy tools to try and predict
epidemical crises and cope with evolving epidemical crises via sound ECP programs.
We consider the following fuzzy logic-based tools:

1. Fuzzy switching mechanisms
2. Fuzzy expectation and variance
3. Fuzzy relational databases (FRDB), fuzzy data-mining and fuzzy social network

architectures (FSNA)
4. Neuro Fuzzy-based Logic, and Systems
5. Complex and multidimensional fuzzy Sets, Logic, and Systems
6. Complex fuzzy graphs
7. Dynamic and incremental fuzzy clustering

3.1 Making Decisions with no Data

As an example for this idea we use the fuzzy treatment of the transient behavior
of a switching system and its static hazards [12]. Perhaps the major reason for the
ineffectiveness of classical techniques in dealing with a static hazard and obtaining
a logical explanation of the existence of a static hazard lies in their failure to come to
grips with the issue of fuzziness. This is due to the fact that the hazardous variable
implies imprecision in the binary system, which does not stem from randomness
but from the lack of a sharp transition between members in the class of input states.
Intuitively, fuzziness is a type of imprecision that stems from a grouping of elements
into classes that do not have sharply defined boundaries—that is, where there is no
sharp transition from membership to non-membership. Thus, the transition of a state
has a fuzzy behavior during the transition time.

Any fuzzy-valued switching function can be expressed in disjunctive and con-
junctive normal forms, in a similar way to two-valued switching functions. A
fuzzy-valued switching function over n variables can be represented by a mapping
f : [0, 1]n → [0, 1] . We define a V-fuzzy function as a fuzzy function f (x) such
that f (ξ) is a binary function for every binary n-dimensional vector ξ . It is clear
that a V-fuzzy function f induces a binary function F such that F : [0, 1]n → [0, 1]
determined by F(ξ) = f (ξ) for every binary n-dimensional vector ξ .

If a V-fuzzy function f describes the complete behavior of a binary combinational
system, its steady-state behavior is represented by F , the binary function induced by
f . Let f (x) be an n-dimensional V-fuzzy function, and let ξ and ρ be adjacent binary
n-dimensional vectors. The vector T ρ

ξ j
is a static hazard of f iff f (ξ) = f (ρ) �=

f (T ρ
ξ j

).

If f (ξ) = f (ρ) = 1 then T ρ
ξ j

is a 1-hazard. If f (ξ) = f (ρ) = 0 then T ρ
ξ j

is a 0-hazard. If f is V-fuzzy and T ρ
ξ j

is a static hazard, then f (T ρ
ξ j

) has a perfect

fuzzy value, that is, f (T ρ
ξ j

) ∈ (0, 1). Consider the static hazard as a malfunction
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represented by an actual or potential deviation from the intended behavior of the
system. We can detect all static hazards of the V-fuzzy function f (x) by considering
the following extension of Shannon normal form. Let f (x̄), x̄ = (x1, x2, ..., xn), be
a fuzzy function and denote the vector

(x1, x2, x j−1, x j+1, ..., xn) by x j .

By successive applications of the rules of Fuzzy Algebra, the function f (x) may
be expanded about x j as follows:

f (x) = x j f1(x j ) + x̄ j f2(x j ) + x j x̄ j f3(x j ) + f4(x j ),

where f1, f2, f3, and f4 are fuzzy functions. It is clear that the same expansion holds
when the fuzzy functions are replaced by B-fuzzy functions of the same dimension.
Let ξ and ρ be two adjacent n-dimensional binary vectors that differ only in their
j th component. Treating ξ j as a perfect fuzzy variable during transition time implies
that T ρ

ξ j
is a 1-hazard of f iff f (ξ) = f (ρ) = 1 and f (T ρ

ξ j
) ∈ [0, 1). We show that

the above conditions for the vector T ρ
ξ j

to be 1-hazard, yielding the following result:

Theorem 1 ([12]): The vector T ρ
ξ j

is a 1-hazard of the B-fuzzy function f (x) given
above iff the binary vector ξ j is a solution of the following set of Boolean equations:

f1(x j ) = 1, f2(x j ) = 1, f4(x j ) = 0.

Proof

State 1: ξ j = 1 and ξ j = 0 imply f1(ξ
j ) + f4(ξ

j ) = 1.
State 2: ξ j = 0 and ξ j = 1 imply f2(ξ

j ) + f4(ξ
j ) = 1.

Transition state: ξ j ∈ (0, 1) [which implies ξ j ∈ (0, 1)], and thus:

0 ≤ max{min[ξ j , f1(ξ
j )], min[ξ j , f2(ξ

j )], min[ξ j , ξ , f3(ξ
j )], f4(ξ

j )} < 1.

It is clear from the transition state that f4(ξ j ) cannot be equal to one, and thus:

f4(ξ
j ) = 0, f1(ξ

j ) = f2(ξ
j ) = 1.

Several items must be pointed out. The system is not a fuzzy system. It is a
Boolean system. The modeling of the system as a fuzzy system is due to the lack
of knowledge regarding the behavior of x j during the transition. It is providing us
with a tool to make decisions (regarding the Boolean values of f1, f2 and f4) with
no data whatsoever regarding x j . Thus, we were able to make non-fuzzy decisions
in a deterministic environment with no data.
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3.2 Fuzzy Expectation and Variance

Ordinarily, imprecision and indeterminacy are considered to be statistical, random
characteristics and are taken into account by the methods of the Probability Theory.
In real situations, a frequent source of imprecision is not only the presence of random
variables, but the impossibility, in principle, of operating with exact data as a result of
the complexity of the system, or the imprecision of the constraints and objectives. At
the same time, classes of objects that do not have clear boundaries appear in the prob-
lems; the imprecision of such classes is expressed in the possibility that an element
not only belongs or does not belong to a certain class, but that intermediate grades
of membership are also possible. The membership grade is subjective; although it is
natural to assign a lower membership grade to an event that have a lower probability
of occurrence. The fact that the assignment of a membership function of a fuzzy set is
“non-statistical” does not mean that we cannot use probability distribution functions
in assigning membership functions. As a matter of fact, a careful examination of the
variables of fuzzy sets reveals that they may be classified into two types: statistical
and non-statistical.

Definition 1 ([12]): Let B be a Borel field (σ -algebra) of subsets of the real line �.
A set function µ(·) defined on B is called a fuzzy measure if it has the following
properties:

1. µ(Φ) = 0 (Φ is the empty set);
2. µ(�) = 1;
3. If α, β ∈ B and α ⊂ β then µ(α) ≤ µ(β);
4. If {α j | 1 ≤ j < ∞} is a monotonic sequence, then

lim
j→∞[µ(α j )] = µ[ lim

j→∞(α j )].

Clearly, Φ,� ∈ B; also, if {α j | 1 ≤ j < ∞, α j ∈ B} is a monotonic sequence
then lim

j→∞(α j ) ∈ B. In the above definition, (1) and (2) mean that the fuzzy measure is

bounded and nonnegative, (3) means monotonicity (in a similar way to finite additive
measures used in probability), and (4) means continuity. It should be noted that if
� is a finite set, then the continuity requirement can be deleted. (�, B,µ) is called
a fuzzy measure space; µ(·) is the fuzzy measure of (�, B). The fuzzy measure
µ is defined on subsets of the real line. Clearly, µ[χA ≥ T ] is a non-increasing,
real-valued function of T when χA is the membership function of set A. Throughout
our discussion, we use ξ T to represent {x | χA(x) ≥ T } and µ(ξ T ) to represent
µ[χA ≥ T ], assuming that the A set is well specified. Let χ A: � → [0, 1] and
ξ T = {x | χA(x) ≥ T }. The function χA is called a B-measurable function if
ξ T ∈ B,∀T ∈ [0, 1]. Definition 2 introduces the fuzzy expected value (F EV ) of
χA when χA ∈ [0, 1]. Extension of this definition when χA ∈ [a, b], a < b < ∞, is
presented in [12].
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Definition 2 ([12]): Let χA be a B-measurable function such that χA ∈ [0, 1]. The
fuzzy expected value (FEV ) of χA over a set A, with respect to the measure µ(·),
is defined as

(
sup

T ∈ [0, 1]
)

{min[T,µ(ξ T )]}, where ξ T = {x | χA(x) ≥ T }. Now,

µ{x | χA(x) ≥ T } = f A(T ) is a function of the threshold T . The actual calculation
of FEV(χA) then consists of finding the intersection of the curves T = f A(T ). The
intersection of the two curves will be at a value T = H , so that FEV(χA = H ∈
[0, 1]. It should be noted that when dealing with the FEV(η) where η ∈ [0, 1], we
should not use a fuzzy measure in the evaluation but rather a function of the fuzzy
measure, η′, which transforms η under the same transformation that χ and T undergo
to η and T ′, respectively. In general the FEV has the promise and the potential to be
used as a very powerful tool in developing ECP technologies.

3.3 Fuzzy Relational Databases and Fuzzy Social Network
Architecture

The FRDB model which is based on research in the fields of relational databases
and theories of fuzzy sets and possibility is designed to allow representation and
manipulation of imprecise information. Furthermore, the system provides means
for “individualization” of data to reflect the user’s perception of the data [42]. As
such, the FRDB model is suitable for use in fuzzy expert system and other fields of
imprecise information-processing that model human approximate reasoning such as
FSNA [15, 19].

The objective of the FRDB model is to provide the capability to handle imprecise
information. The FRDB should be able to retrieve information corresponding to
natural language statements as well as relations in FSNA. Although most of these
situations cannot be solved within the framework of classical database management
systems, they are illustrative of the types of problems that human beings are capable
of solving through the use of approximate reasoning. The FRDB model and the FSNA
model retrieve the desired information by applying the rules of fuzzy linguistics to
the fuzzy terms in the query.

The FRDB as well as the FSNA development [15, 19, 42] were influenced by the
need for easy-to-use systems with sound theoretical foundations as provided by the
relational database model and theories of fuzzy sets and possibility. They address
the following issues:

1. representation of imprecise information,
2. derivation of possibility/certainty measures of acceptance,
3. linguistic approximations of fuzzy terms in query languages,
4. development of fuzzy relational operators (IS, AS...AS, GREATER, ...),
5. processing of queries with fuzzy connectors and truth quantifiers,
6. null-value handling using the concept of the possibilities expected value,
7. modification of the fuzzy term definitions to suit the individual user.
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The FRDB and the FSNA are collections of fuzzy time-varying relations which
may be characterized by tables, graphs, or functions, and manipulated by recognition
(retrieval) algorithms or translation rules.

As an example, let us take a look at one of these relations, the similarity relation.
Let Di be a scalar domain, y ∈ Di . Then s(x, y) ∈ [0, 1] is a similarity relation with
the following properties: Reflexivity: s(x, x) = 1; Symmetry: s(x, y) = s(y, x);
Θ-transitivity: where Θ is most commonly specified as max-min transitivity. If,
y, z ∈ U , then s(x, z) ≥ max(y ∈ Di ) min(s(x, y), s(y, z)). Another example is
the proximity relation defined below. Let Di be a numerical domain and , y, z ∈ Di .
Here p(x, y) ∈ [0, 1] is a proximity relation that is reflexive, and symmetric with
transitivity of the form p(x, z) ≥ max(y ∈ Di )p(x, y) ∗ p(y, z).

The generally used form of the proximity relations is p(x, y) = e−β|x−y|, where
β > 0. This form assigns equal degrees of proximity to equally distant points. For
this reason, it is referred to as the absolute proximity in the FRDB and FSNA models.
Similarity and proximity are used in evaluation of queries of the general form: “Find
X such that X.A � d ” Where X.A is an attribute of X, d ∈ D is a value of attribute
A defined on the domain D, and � is a fuzzy relational operator. Clearly, both FRDS
and FSNA may have numerous applications in epidemical outbreak prediction.

In many ECP/DPM programs the amount of information is determined by the
amount of the uncertainty—or, more exactly, it is determined by the amount by
which the uncertainty has been reduced; that is, we can measure information as the
decrease of uncertainty. The concept of information itself has been implicit in many
ECP models. That is, both as a substantive concept important in its own right and as
a consonant concept that is ancillary to the entire structure of ECP.

3.4 Neuro-Fuzzy Systems

The term Neuro-Fuzzy systems refers to combinations of artificial neural networks
and Fuzzy logic. Neuro-Fuzzy systems enable modeling human reasoning via fuzzy
inference systems along with the modeling of human learning via the learning and
connectionist structure of neural networks. Neuro-Fuzzy systems can serve as highly
efficient mechanisms for inference and learning under uncertainty. Furthermore,
incremental learning techniques can enable observing outliers and the Fuzzy infer-
ence can allow these outliers to coexist (with low degrees of membership) with
“main-stream” data. As more information about the outliers becomes available, the
information, and the derivatives of the rate of information flow, can be used to iden-
tify potential epidemical crises that are hidden in the outliers. The classical model of
Neuro-Fuzzy systems can be extended to include multidimensional Fuzzy logic and
inference systems in numerical domains and in domains characterized by linguistic
variables.

Assuming that people form opinions that are fuzzy and that the information
exchange between people influences the opinion formation, the opinion formation
process is naturally modeled by structures such as fuzzy coupled map networks
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and fuzzy and neuro-fuzzy networks [35–39]. In these networks of information
aggregation and personal and collective opinion formation, interesting dynamic
processes that eventually produce self-organization in structured opinion groups is
developed [35, 39].

3.5 Complex Fuzzy Systems

Several aspects of the ECP program can utilize the concept of complex fuzzy logic
[7, 12, 14, 23, 24, 32–34, 41].

Complex fuzzy logic can be used to represent the two-dimensional information
embedded in the description of an epidemical crisis; namely, the severity and uncer-
tainty. In addition, inference based on complex fuzzy logic can be used to exploit
the fact that variables related to the uncertainty that is a part of epidemical crises are
multi-dimensional and cannot be readily defined via single dimensional clauses con-
nected by single dimensional connectives. Finally, the multi-dimensional fuzzy space
defined as a generalization of complex fuzzy logic can serve as a media for clustering
of epidemical crisis information in a linguistic variable-based feature space.

Tamir et al. introduced a new interpretation of complex fuzzy membership grade
and derived the concept of pure complex fuzzy classes [32]. This section introduces
the concept of a pure complex fuzzy grade of membership, the interpretation of this
concept as the denotation of a fuzzy class, and the basic operations on fuzzy classes.

To distinguish between classes, sets, and elements of a set we use the following
notation: a class is denoted by an upper case Greek letter, a set is denoted by an upper
case Latin letter, and a member of a set is denoted by a lower case Latin letter.

The Cartesian representation of the pure complex grade of membership is given
in the following way:

μ(V, z) = μr (V ) + jμi (z),

where μr (V ) and μi (z), the real and imaginary components of the pure complex
fuzzy grade of membership, are real value fuzzy grades of membership. That is,
μr (V ) and μi (z) can get any value in the interval [0, 1]. The polar representation of
the pure complex grade of membership is given by:

μ(V, x) = r(V )e jσφ(z),

where r(V ) and φ(z), the amplitude and phase components of the pure complex
fuzzy grade of membership, are real value fuzzy grades of membership. That is, they
can get any value in the interval [0, 1]. The scaling factor σ is in the interval [0, 2π ].
It is used to control the behavior of the phase within the unit circle according to the
specific application. Typical values of σ are {1, π

2 , π, 2π}. Without loss of generality,
for the rest of the discussion in this section we assume that σ = 2π .
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The difference between pure complex fuzzy grades of membership and the com-
plex fuzzy grade of membership proposed by Ramot et al. [23, 24] is that both
components of the membership grade are fuzzy functions that convey information
about a fuzzy set. This entails different interpretation of the concept as well as a dif-
ferent set of operations and a different set of results obtained when these operations
are applied to pure complex grades of membership. This is detailed in the following
sections.

3.5.1 Complex Fuzzy Class

A fuzzy class is a finite or infinite collection of objects and fuzzy sets that can be
defined in an unambiguous way and comply with the axioms of fuzzy sets given
by Tamir and Kandel [33] and the axioms of fuzzy classes given by [3, 6]. While a
general fuzzy class can contain individual objects as well as fuzzy sets, a pure fuzzy
class of order one can contain only fuzzy sets. In other words, individual objects
cannot be members of a pure fuzzy class of order one. A pure fuzzy class of order
M is a collection of pure fuzzy classes of order M − 1. We define a Complex Fuzzy
Class Γ to be a pure fuzzy class of order one, i.e., a fuzzy set of fuzzy sets. That is,
Γ = {Vi }∞i=1; or Γ = {Vi }N

i=1 where Vi is a fuzzy set and N is a finite integer. Note
that despite the fact that we use the notation Γ = {Vi }∞i=1 we do not imply that the
set of sets {Vi } is enumerable. The set of sets {Vi } can be finite, countably infinite,
or uncountably infinite. The use of the notation {Vi }∞i=1 is just for convenience.

The class Γ is defined over a universe of discourse U . It is characterized by a
pure complex membership function μΓ (V, z) that assigns a complex-valued grade
of membership in Γ to any element z ∈ U . The values that μΓ (V, z) may receive
lie within the unit square or the unit circle in the complex plane, and are in one of
the following forms:

μΓ (V, z) = μr (V ) + jμi (z),

μΓ (z, V ) = μr (z) + jμi (V ),

where μr (α) and μi (α), are real functions with a range of [0, 1].
Alternatively:

μΓ (V, z) = r(V )e jθφ(z),

μΓ (z, V ) = r(z)e jθφ(v),

where r(α) and and φ(α), are real functions with a range of [0, 1] and θ ∈ (0, 2π ].
In order to provide a concrete example we define the following pure fuzzy class.

Let the universe of discourse be the set of all the pandemics that hit the U.S. (in any
time in the past) along with a set of attributes related to the pandemic, such as spread
mechanism, speed of spread, symptoms, etc. Let Mi denote the set of pandemics that
hit the U.S. in the last i years. Furthermore, consider a function ( f1) that associates
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a number between 0 and 1 with each set of pandemics. For example, this function
might reflect the severity of the pandemics in terms risk to affected people. In addition,
consider a second function ( f2) that associates a number between 0 and 1 with each
specific epidemic. For example, this function might denote the incubation time of
the relevant micro-organisms. The functions ( f1, f2) can be used to define a pure
fuzzy class of order One. A compound of the two functions in the form of a complex
number can represent the degree of membership in the pure fuzzy class of “high risk
pandemics”in the set of pandemics that have occurred in the last 10 years.

Formally, let U be a universe of discourse and let 2U be the powerset of U . Let
f1 be a function from 2U to [0, 1] and let f2 be a function that maps elements of U
to the interval [0, 1]. For V ∈ 2U and z ∈ U define μΓ (V, z) to be:

μΓ (V, z) = μr (V ) + jμi (z) = f1(V ) + j f2(z)

Then, μΓ (V, z) defines a pure fuzzy class of order one, where for every V ∈ 2U ,
and for every z ∈ U, μΓ (V, z), is the degree of membership of z in V and the degree
of membership of V in Γ . Hence, a complex fuzzy class Γ can be represented as the
set of ordered triples: Γ = {V, z, μΓ (V, z) | V ∈ 2U , z ∈ U }

Depending on the form of μΓ (α) (Cartesian or polar), μr (α), ìi (α), r(α), and
φ(α) denote the degree of membership of z in V and/or the degree of membership of
V in Γ Without loss of generality, however, we assume that μr (α) and r(α) denote
the degree of membership of V in Γ for the Cartesian and the polar representa-
tions respectively. In addition, we assume that μi (α) and φ(α) denote the degree of
membership of z in V for the Cartesian and the polar representations respectively.
Throughout this chapter, the term complex fuzzy class refers to a pure fuzzy class
with pure complex-valued membership function, while the term fuzzy class refers to
a traditional fuzzy class such as the one defined by [3].

Degree of Membership of Order N

The traditional fuzzy grade of membership is a scalar that defines a fuzzy set. It
can be considered as degree of membership of order 1. The pure complex degree of
membership defined in this chapter is a complex number that defines a pure fuzzy
class. That is, a fuzzy set of fuzzy sets. This degree of membership can be considered
as degree of membership of order 2 and the class defined can be considered as a pure
fuzzy class of order 1. Additionally, one can consider the definition of a fuzzy set
(a class of order 0) as a mapping into a one-dimensional space and the definition of
a pure fuzzy class (a class of order 1) as a mapping into a two-dimensional space.
Hence, it is possible to consider a degree of membership of order N as well as a
mapping into an N -dimensional space. The following is a recursive definition of a
fuzzy class of order. Note that part 2 of the definition is not really necessary, it is
given in order to connect the terms pure complex fuzzy grade of membership and
the term grade of membership of order 2.
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Definition 3 ([32]):

(1) A fuzzy class of order 0 is a fuzzy set; it is characterized by a degree of mem-
bership of order 1 and a mapping into a one dimensional space.

(2) A fuzzy class of order 1 is a set of fuzzy sets. It is characterized by a pure
complex degree of membership. Alternatively, it can be characterized by a degree
of membership of order Two and a mapping into a two-dimensional space.

(3) A fuzzy class of order N is a fuzzy set of fuzzy classes of order N − 1; it is
characterized by a degree of membership of order N + 1 and a mapping into an
(N + 1)-dimensional space.

Generalized Complex Fuzzy Logic

A general form of a complex fuzzy proposition is: “x ...A...B...” where A and B are
values assigned to linguistic variables and ‘...’ denotes natural language constants.
A complex fuzzy proposition P can get any pair of truth values from the Cartesian
interval [0, 1]×[0, 1] or the unit circle. Formally a fuzzy interpretation of a complex
fuzzy proposition P is an assignment of fuzzy truth value of the form pr + j pi ,
or of the form r(p)e jθ(p), to P . In this case, assuming a proposition of the form
“x ...A...B...,” then pr (r(p)) is assigned to the term A and pi (θ(p)) is assigned to
the term B.

For example, under one interpretation, the complex fuzzy truth value associated
with the complex proposition:

x is a young person that lives close to the north pole of jupiter

can be 0.1 + j0.5. Alternatively, in another context, the same proposition can be
interpreted as having the complex truth value 0.3e j0.2. As in the case of traditional
propositional fuzzy logic, we use the tight relation between complex fuzzy classes /
complex fuzzy membership to determine the interpretation of connectives. For exam-
ple, let C denote the complex fuzzy set of “young people that live close to the north
pole of jupiter,” and let fc = cr + jci , be a specific fuzzy membership function of
C , then fc can be used as the basis for interpretations of P . Next we define several
connectives along with their interpretation.

Table 1 includes a specific definition of connectives along with their interpretation.
In this table, P, Q and S denote complex fuzzy propositions and fS denotes the
complex fuzzy interpretation of S. We use the fuzzy Łukasiewicz logical system as

Table 1 Basic propositional fuzzy logic connectives

Operation Interpretation

Negation f (′ P) = 1 + j1 − f (P)

Disjunction f (P ⊕ Q) = max(pR, qR) + j × max(p1, q1)

Conjunction f (P ⊗ Q) = min(pR, qR) + j × min(p1, q1)

Implication f (P −→ Q) = min(1, 1 − pR + qR) + j × min(1, 1 − p1 + q1)
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the basis for the definitions [5, 9]. Hence, the max t-norm is used for conjunction
and the min t-conorm is used for disjunction. Nevertheless, other logical systems,
such as Gödel fuzzy systems, can be used [5, 20].

The axioms used for fuzzy logic are used for complex fuzzy logic, and Modus
ponens is the rule of inference.

Complex Fuzzy Propositions and Connectives Examples

Consider the following propositions(P, Q, and S respectively):
P: “x is a young person that lives close to the north pole of Jupiter”.
Q: “x has elevated body temperature with a severe headach”.
S: “x is closely monitored due to high risk of acquiring the pandemic”.

Let A be the term “young person,” and let B denote the term “close to the
north pole of Jupiter.” Furthermore, let C be the term “elevated body temperature,”
(alternatively, the term “high fever” can be used) and let D denote the term “severe
headache” Hence, P is of the form: “x is a A that B,” and Q is of the form “ x is C
with D.” In this case, the terms “young person,” “ close to the north pole of Jupiter,”
“high fever,” and “severe headache” are values assigned to linguistic variables. Fur-
thermore, a term such as “headache,” can get fuzzy truth values (between 0 and 1)
or fuzzy linguistic values such as “minor,” “mild,” and “severe,” (the terms “that,”
and “with,” are linguistic constants). Assume that the complex fuzzy interpretation
(i.e., degree of confidence or complex fuzzy truth value) of P is pr + j pi , while
the complex fuzzy interpretation of Q is qr + jqi . Thus, the truth value of “x is a
young person,” is pR , and the truth value assigned to “x lives close to the north pole
of Jupiter,” is pi . The truth value of “x has high fever.” is qr , and the truth value of
“x has a severe headach,” is qi , Suppose that the term “old” stands for “not young,”
the term “far,” stands for “not close,” the term “low,” stands for “not high,” and the
term “no headache” denotes the negation of “severe headache.” In a similar way,
S is of the form: “x is E due to F,” where the complex fuzzy interpretation of S is
sr + jsi . Note that this is not the only way to define these linguistic terms and it is
used to exemplify the expressive power and the inference power of the logic. Then,
the complex fuzzy interpretation of the following composite propositions is:

(1) f (′ P) = (1 − pr ) + j (1 − pI )

That is, ′ P denotes the proposition
“x is an old person that lives close to the north pole of Jupiter”.
The confidence level in ′ P is (1 − pr ) + j (1 − pi ); where the fuzzy truth value
of the term “x is an old person,” is (1 − pr ) and the fuzzy truth value of the term
“...lives far ...,” is (1 − pi )

(2) f (P ⊕ ′Q) = max(pr , 1 − qr ) + j × max(pi , 1 − qi ).

That is, (P ⊕ ′Q) denotes the proposition
“x is a young person that lives close to the north pole of Jupiter”. OR
“x has low fever and no headach”. The truth values of individual terms, as well
as the truth value of P ⊕ ′Q are calculated according to Table 1.
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(3) f (′ P ⊕ Q) = min(1 − pr , qr ) + j × min(1 − pi , qi ).

That is, (′ P ⊕ Q) denotes the proposition
“x is an old person that lives far from the north pole of Jupiter”. AND
“x has high fever and severe headach”. The truth values of individual terms, as
well as the truth value of ′ P ⊕ Q are calculated according to Table 1.

(4) Let the term R stand for (P ⊕ Q), (the complex fuzzy interpretation of R is
rr + jri .) then, R −→ S = min (1, 1 − rr + sr ) + j×min (1, 1 − ri + sr )

Thus, (R −→ S) denotes the proposition
IF “x is a young person that lives close to the north pole of Jupiter”. AND
“x has high fever and severe headach”.
THEN
“x is closely monitored due to high risk of acquiring the pandemic disease”. The
truth values of individual terms, as well as the truth value of are calculated according
to Table 1.

Complex Fuzzy Inference Example

Assume that the degree of confidence in the proposition R defined above is rr + jri ,
and assume that the degree of confidence in the fuzzy implication T = R −→ S is
tr + j ti . Then, using Modus ponens

R

R −→ S

S

one can infer S with a degree of confidence min(rr , tr ) + j × min(ri , ti ).
In other words if one is using:
“x is a young person that lives close to the north pole of Jupiter”
AND “x has high fever and severe headach”.
IF
“x is a young person that lives close to the north pole of Jupiter”
AND “x has high fever and severe headach”.
THEN
“x is closely monitored due to high risk of acquiring the pandemic”.
“x is closely monitored due to high risk of acquiring the pandemic”.
Hence, using Modus ponens one can infer:
“x is closely monitored due to high risk of acquiring the pandemic disease”. with a
degree of confidence of min(rr , tr ) + j × min(ri , ti ) .

3.6 Fuzzy Graph Theory

Graph theory and in specific fuzzy graph theory can be used for deriving algorithms
for early identification of pandemic outbreaks. In this section we provide the basic
definitions and list some of the relevant algorithms. A literature search performed
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has revealed inconsistencies in the definitions. For this reason, we review some of
the definitions of non-fuzzy graphs and provide a detailed and precise definition of
the basic terms related to fuzzy graphs.

3.6.1 Non-fuzzy Graphs

A directed graph G is a tuple of the form G = (V, E, ϕ), where V is a set referred
to as the set of vertices. E is a set of edges, and ϕ is a function ϕ: E → V × V ,
such that for every e ∈ E, ϕ(e) = (u, v) , where u ∈ V and v ∈ V . We assume that
V ∩ E = ∅ and in general, we use the form e = (a, b) to denote a specific edge that
is “said” to connect the vertices a and b. For an undirected graph, both e1 = (u, v)
and e2 = (v,u) are in the domain/range of ϕ. A relation E ⊆ V × V can be used
as an implicit definition of an undirected graph with a set of vertices V and a set of
edges E . A weighted graph G is a quintuple G = (V, E, ϕ, w1, w2), where V, E ,
and ϕ are defined before and w1 : V → R; w2 : E → R; are functions thatmap
vertices and or edges to the set of real numbers R (it is possible but less common to
assign complex weights to vertices and edges).

We list some of the important terms and algorithms related to non-fuzzy graphs.
These terms and algorithms can be found in numerous textbooks [2]. The funda-
mental terms related to graphs are the order of the graph, the order of a vertex, and
the connectedness of the graph. Other fundamental terms related to graphs are com-
plete graphs, planner graphs and simple graphs, sub-graphs, spanning sub-graphs,
cliques, paths, cycles, tours, connectivity, Euler tours, Euler cycles, Hamiltonian
tours, Hamiltonian cycles, forests, and trees. The fundamental algorithms applied to
weighted graphs are: (1) finding the shortest path between vertices, (2) finding the
minimum spanning tree, (3) identifying maximal cliques, (4) finding the minimal
Euler tour/cycle and (5) finding the minimal Hamiltonian tour/cycle. In this context,
short, max and min might relate to the number of vertices/edges or the sum of weights
of the relevant vertices/edges.

3.6.2 Fuzzy Graphs

A fuzzy directed graph G is a quadruple of the form Ĝ = (V̂ , σ, Ê, ϕ), where
V̂ is a set referred to as the set of vertices and Ê ⊆ V̂ × V̂ is a set of edges,
σ : V̂ → [0, 1] is a mapping (function) from V̂ to [0, 1] ( i.e., σ is the assignment
of degrees of membership to members of V̂ ), and ϕ: Ê → [0, 1] is a function that
maps elements of the form e ∈ Ê = (u, v), to [0, 1] (i.e., ϕ is the assignment of
degrees of membership to members of Ê), where u ∈ V̂ and v ∈ V̂ . We assume
that V̂ ∩ Ê = ∅ and in general, we use the form e = (a, b) to denote a specific
edge that is “said” to connect the vertices a and b. For an undirected graph, both
e1 = (u, v) and e2 = (v,u) are in the domain of ϕ. A weighted fuzzy graph G is an
sextuple Ĝ = (V̂ , σ, w1 Ê, ϕ, w2), where V̂ , E, σ , and ϕ are as defined previously,
w1: V̂ → R; and w2: Ê → R are functions that map vertices and or edges to the
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set of real numbers R (it is possible but less common to assign complex weights to
vertices and edges).

Following these definitions, a fuzzy graph is a special case of a non-fuzzy weighted
graph. Hence, many of the algorithms applied to weighted graphs might be of interest
when fuzzy graph and their semantics are considered. Moreover, without loss of
generality, we can assume that weights represented by real numbers are normalized
to the range of [0, 1]. In this case the vertices and/or the edges can be represented
via a complex number representing the degree of membership of the vertex/edge in
the graph. Clearly, a non-weighted fuzzy graph is a special case of a “regular” fuzzy
graph. Fuzzy graphs were used in neuro-fuzzy models of information propagation
and aggregation, including opinion formation [37, 39]. In the next section we provide
important definitions related to complex fuzzy graphs.

3.6.3 Complex Fuzzy Graphs

A complex fuzzy directed graph G̃ is a quadruple of the form G̃ = (Ṽ , σ, Ẽ, ϕ),
where Ṽ is a complex fuzzy set referred to as the set of vertices and Ẽ ⊆ Ṽ × Ṽ
is a complex fuzzy set of edges, σ : Ṽ → [0, 1] × [0, 1] is a mapping from Ṽ to
[0, 1] × [0, 1] (i.e., σ is the assignment of a complex degrees of membership to
members of Ṽ ), and ϕ: Ẽ → [0, 1] × [0, 1] is a function that maps elements of
the form e ∈ Ẽ = (u, v), to [0, 1] × [0, 1] (i.e., ϕ is the assignment of complex
degrees of membership to members of Ẽ), where u ∈ Ṽ and v ∈ Ṽ . We assume
that Ṽ ∩ Ẽ = ∅ and in general, we use the form e = (a, b) to denote a specific
edge that is “said” to connect the vertices a and b. For an undirected graph, both
e1 = (u, v) and e2 = (v,u) are in the domain of ϕ. Note that the use of complex
fuzzy logic is a very strong “tool” that enables dealing with the edges/vertices as
carrying complex fuzzy membership values. Hence, it enables exploiting the features
of complex fuzzy set theory, complex fuzzy set theory, and complex fuzzy inference.
In general, one can use the two components of the complex number assigned to
vertices/edges as denoting complex fuzzy information. Alternatively one can use on
of the two components as a real fuzzy value and the second component as a weight.
To illustrate we provide the following example.

Complex Fuzzy Graph Example

Consider a pandemic that adversely affects “young” people that live in the “north”
part of Jupiter. The main initial symptoms of the pandemic disease are: (1) “high”
fever, (2) “severe” headaches. Many of the affected people are starting to post status
and queries to a social network. While they do not clearly disclose infection, their
status/queries might be indicative of a pandemic outbreak. Furthermore, assume
that Bob, who is 27 years old and lives “close” to the north pole of Jupiter, sends a
“Twitter�” type of message to Alice, who is 57 years old and lives in the same area.
The message reads “Staying home today.” Alice responds with “What’s wrong?”
Bob response is “I have a headache and a bit of fever”. Figure 1 depicts some of this
information in a complex fuzzy graph.
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A B

Fig. 1 A complex fuzzy graph representing pandemic related communication

In this graph the vertex ‘B’ represents Bob along with its degree of membership in
a complex fuzzy class. The vertex ‘A’ represents the same for Alice and the directed
edge from Bob to Alice represents the part of the communication between Bob and
Alice where Bob reveals his membership in yet another complex fuzzy class. This
type of graphs can be used to represent information, actions, and inference.

3.6.4 Complex Fuzzy Graphs’ Features and Algorithms

The order of a complex fuzzy graph G̃ is the cardinality of Ṽ (denoted as |Ṽ |). The
order of a vertex in G̃ is the number of edges incident to the vertex. Other terms
related to complex fuzzy graphs are complete graphs, planner graphs and simple
graphs, sub graphs, spanning sub-graphs, cliques, paths, cycles, tours, Euler tours,
Euler cycles, Hamiltonian tours, Hamiltonian cycles, forests, and trees. The funda-
mental algorithms applied to complex fuzzy graphs are: (1) finding the shortest path
between vertices, (2) finding the minimum spanning tree, (3) identifying maximal
cliques, (4) finding the minimal Euler tour/cycle, and (5) finding the minimal Hamil-
tonian tour/cycle. In this context, short, max and min, might relate to the number of
vertices/edges or the sum of weights of the relevant vertices/edges. These terms and
algorithms are derived from their definitions in the context of non-fuzzy graphs [2]
and fuzzy graphs [22]. We are currently working on the extension of these algorithms
to complex fuzzy graphs. One interesting and relevant example is finding the maxi-
mal complex fuzzy clique in a complex fuzzy graph. In this example, we expand the
work reported in [22] and use a neuro-fuzzy system as a “tool” for addressing the
problem.

3.7 Dynamic and Incremental Fuzzy Clustering

Clustering is a widely used mechanism for pattern recognition and classification.
Fuzzy clustering (e.g., the Fuzzy C-means) enables patterns to become members
of more than one cluster. Additionally, it enables maintaining clusters that rep-
resent outliers through low degree of membership. These clusters would be dis-
carded in clustering of hard (vs. Fuzzy) data. Incremental and dynamic clustering
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(e.g., the incremental Fuzzy ISODATA) enable the clusters’ structures to change as
information is accumulated. Again, this is a strong mechanism for enabling identifi-
cation of unlikely events without premature discarding of these events. The clustering
can be performed in a traditional feature space composed of numerical measurements
of feature values. Alternatively, the clustering can be performed in a multidimensional
Fuzzy logic space where the features represent values of linguistic variables The com-
bination of powerful classification capability, adaptive and dynamic mechanisms, as
well as the capability to consider uncertain data, maintain data with low likelihood
of occurrence, and use a combination of numerical and linguistic values makes this
tool, one of the most promising tools for predicting epidemical crisis outbreaks. We
currently conduct research on dynamic and incremental fuzzy clustering and it is evi-
dent that the methodology can serve as a highly efficient tool for identifying outliers.
We plan to report on this research in the near future.

4 Conclusion

In this chapter, we have outlined features of epidemical crises outbreaks. We have
shown that an important challenge related to an epidemical crisis is the identification
of slow-evolving uncertain events that points to the potential of occurrence of the
crisis before it occurs and of fast-evolving data concerning the secondary effect of
epidemical crises after the occurrence of primary crisis. We have outlined a set of
fuzzy logic-based tools that can be used to address these and other challenges related
to ECP.

Recent epidemical crises are showing that there is still a lack of technology-based
tools, particularly specific decision-support tools, for addressing epidemical crises,
mitigating their adverse impact, and managing crisis response programs.Additional
activities that will assist in ECP programs include [17]:

1. Accelerated delivery of technical capabilities for ECP
2. Preparation for an uncertain future
3. Development of world-class science, technology, engineering and mathematics

(STEM) capabilities

On top of these important tasks, one should never forget that in the development
of ECP programs we do not have the luxury of neglecting human intelligence [16].
In any fuzzy event related to a gray swan, investigation after the fact reveals enough
clear data points which had been read correctly but had not been treated properly.

In the future, we intend to investigate the ECP utility of several additional fuzzy
logic-based tools including:

1. Value-at-Risk (VaR) under fuzzy uncertainty
2. Non-cooperative fuzzy games
3. Fuzzy logic-driven web crawlers and web-bots
4. Fuzzy Expert Systems and Fuzzy Dynamic Forecasting
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Finally, we plan to expand our research on complex fuzzy graphs and their
applications, complex fuzzy logic-based neuro-fuzzy systems, and research on incre-
mental and dynamic fuzzy clustering. These research threads are expected to provide
significant advancement to our capability to identify and neutralize (as much as pos-
sible) primary and secondary adverse effects of epidemical crises.
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An ACP-Based Approach to Intelligence
and Security Informatics

Fei-Yue Wang, Xiaochen Li and Wenji Mao

1 Introduction

The field of Intelligence and security informatics (ISI) is resulted from the integration
and development of advanced information technologies, systems, algorithms, and
databases for international, national, and homeland security-related applications,
through an integrated technological, organizational, and policy-based approach [2].
Traditionally, ISI research and applications have focused on information sharing
and data mining, social network analysis, infrastructure protection, and emergency
responses for security informatics. Recent years, with the continuous advance of
related technologies and the increasing sophistication of national and international
security, new directions in ISI research and applications have emerged that address
the research challenges with advanced technologies, especially the advancements in
social computing. This is the focus of discussion in the current chapter.

As a new paradigm of computing and technology development, social comput-
ing can help us understand and analyze individual and organizational behavior and
facilitate ISI research and applications in many aspects. To meet the challenges
and achieve a methodology shift in ISI research and applications, in this chapter, we
shall propose a social computing-based research paradigm consisting of a three-stage
modeling, analysis, and control approach that researchers have used successfully to
solve many natural and engineering science problems, namely the ACP (Artificial
societies, Computational experiments and Parallel execution) approach [10–14].
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Based on the ACP approach, in this chapter, we shall focus on behavioral model-
ing, analysis and prediction in security informatics. We shall first present a knowledge
extraction approach to acquire behavioral knowledge from open-source intelligence
and facilitate behavioral modeling. On the basis of behavioral modeling, we shall
then present two approaches to group behavior prediction. The first approach employs
plan-based inference and explicitly takes the observed agents preferences into con-
sideration. The second approach employs graph theory and incorporates a graph
search algorithm to forecast complex group behavior. We finally provide the results
of experimental studies to demonstrate the effectiveness of our proposed methods.

2 The ACP Approach

The ACP approach [10–14] is composed of three interconnected parts: artificial
societies for modeling, computational experiments for analysis and parallel execution
for control. We shall discuss them in detail below.

2.1 Modeling with Artificial Societies

In the literature, there are no effective formal methods to model complex social-
techno systems, especially those heavily involving human and social behavior. The
ACP framework posits that agent-based artificial societies are the most suitable mod-
eling approach to social modeling and social computing. An artificial society-based
approach has three main components: agents, environments, and rules for interac-
tions. In this modeling approach, how accurately the actual system can be approx-
imated is no longer the only objective of modeling, as it is the case in traditional
computer simulations. Instead, the artificial society developed is considered as an
actual systemłan alternative possible realization of the target society. Along this line
of thinking, the actual society is also considered as one possible realization. As such,
the behaviors of the two societies, the actual and the artificial, are different but fit dif-
ferent evaluation and analysis purposes. Note that approximation with high fidelity
is still the desired goal for many applications when it is achievable but can be relaxed
otherwise, representing a necessary compromise that recognizes intrinsic limits and
constraints of dealing with complex social-techno-behavioral systems.

2.2 Analysis with Computational Experiments

Traditional social studies primarily rely on passive observations, small-scale human
subject experimental studies, and more recently computer simulations. Repeatable
experiments are very difficult to conduct, due to a number of reasons including
but not limited to research ethics, resource constraints, uncontrollable conditions,
and unobservable factors. Artificial societies can help alleviate some of these prob-
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lems. Using artificial societies as social laboratories, we can design and conduct
controllable experiments that are easy to manipulate and repeat. Through agent and
environmental setups and interaction rule designs, one can evaluate and quantita-
tively analyze various factors and what-if scenarios in social-computing problems.
These artificial society-based computational experiments are a natural extension to
traditional computer simulation. Basic experimental design issues related to model
calibration, analysis, and verification need to be addressed. Furthermore, design prin-
ciples such as replication, randomization, and blocking, guide these computational
experiments just as they would guide experiments in the physical world.

2.3 Control and Management Through Parallel Execution

Parallel execution refers to the fact that long-lived artificial systems can run in par-
allel and co-evolve with the actual systems they model. This is a generalization of
controllers as used in classical automation sciences, which use analytical models
to drive targeted physical processes to desired states. This parallel execution idea
provides a powerful mechanism for the control and management of complex social
systems through co-evolution of actual and artificial systems. The entire system of
systems can have three major modes of operations. In the learning and training mode,
the actual and artificial systems are disconnected. The artificial systems can be used
to train personnel. In the experimenting and evaluating mode, connections or syncing
between the actual and artificial systems take place in discrete times. Computational
experiments can be conducted between these syncs, evaluating various policies. In
the controlling and managing mode, the artificial systems are used as the generalized
controllers of the actual systems with two systems constantly connected. Social com-
puting applications, especially those involving security, control and management of
social activities, can benefit directly from parallel execution.

3 Modeling Organizational Behavior

Action knowledge has been widely used in modeling and reasoning about agent’s
behavior. Action knowledge is typically represented using plan representation, which
includes domain actions and the states causally associated with the actions (i.e., action
preconditions and effects) [3]. Action precondition is the condition that must be made
true before action execution. Action effect is the state achieved after action execution.
Since action knowledge is the prerequisite of various security-related applications
in behavior modeling, explanation, recognition and prediction, in this section, we
present a knowledge extraction approach to acquire action knowledge, making use
of the massive online data sources. The action extraction procedure includes action
data collection, raw action extraction and action refinement [7]. Below we introduce
the automatic extraction of action preconditions and effects from online data.
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3.1 Extracting Action Knowledge from the Web

Extracting causal relations has been studied in previous related research (e.g.,
[4, 6, 8]). The focus of our work is different from those of previous research in
two aspects. First, instead of finding general causal relations between two clauses
or noun phrases, our focus is to find the causal relations between actions and states
C action knowledge for behavioral modeling. Second, we need to acquire richer
knowledge types C not only causal relations, but also goals, reasons and conditions
associated with the actions. Sil et al. [9] propose a SVM-based approach to build
classifiers for identifying action preconditions and effects. As their work only tests a
small number of actions all selected from one frame in FrameNet, and all the actions
are treated as single verbs, the performance of their approach in complex and open
domain is unclear.

In extracting action preconditions, we differentiate several types of precondition:
necessity/need, permission/possibility and means/tools. We classify the patterns into
four categories based on their types and polarities. Tables 1 and 2 shows the linguistic
patterns we design for extracting action preconditions and effects. To ensure the
quality of the extracted causal knowledge, we prefer rule-based approach which can
achieve relatively high precision. On the other hand, as our work is based on the
open source data, recall rate could be compensated by the huge volume of online
resources.

3.2 Computational Experiment on Terrorist Organization

As a great amount of reports about this group and its historical events are available
online, we employ computational methods to automatically extract group actions
and causal knowledge from relevant open source textual data. The textual data
we use are the news about Al-Qaeda reported in The Times, BBC, USA TODAY,
The New York Times and The Guardian, with totally 953,663 sentences.

Among the official investigation reports, 13 real attacks perpetrated by Al −
Qaeda have relatively complete descriptions. Intelligence analyst helped us manu-
ally compose the action knowledge of each attack based on these descriptions, and
these form the basis of our experiment. We evaluate the performance of our method
by checking how many actions and states specified in each attack example are already
covered by the domain actions and causal knowledge we extract. Table 3 shows the
results of the experimental study. The average coverage rates of the actions, pre-
conditions, effects and states (preconditions plus effects) are 85.8, 74.1, 78.7 and
75.6 %, respectively. In general, the experimental results verify the effectiveness of
our approach.

After action knowledge acquisition, we collect organizational behavior knowledge
with quality. Based on the action knowledge we collect, we further employ planning
algorithm to generate attack plans about this group and construct the plan library
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Table 3 Experimental results on causal knowledge and action extraction

Attack example Action converge Precondition converge Effect converge State converge

1 0.833 0.818 0.833 0.824

2 0.800 0.778 0.800 0.786

3 0.900 0.727 0.900 0.781

4 0.889 0.737 0.778 0.750

5 0.857 0.733 0.714 0.727

6 0.833 0.727 0.833 0.765

7 0.875 0.765 0.750 0.760

8 0.833 0.667 0.833 0.722

9 0.889 0.684 0.889 0.750

10 0.900 0.800 0.800 0.800

11 0.857 0.750 0.714 0.739

12 0.857 0.692 0.714 0.700

13 0.833 0.750 0.667 0.722

Average 0.858 0.741 0.787 0.756

[7]. Plan library represents the groups strategic plans and behavioral patterns, which
are the key of organizational behavior modeling. Below is an example plan in this
groups plan library (The rectangles denote actions and the rounded rectangles denote
preconditions and effects).

4 Forecasting Group Behavior via Plan Inference

Group behavior prediction is an emergent research and application field in intelli-
gence and security informatics, which studies computational methods for the auto-
mated prediction of what a group might do. As many security-related applications
could benefit from forecasting an entitys behavior for decision making, assessment
and training, it is gaining increasing attention in recent years. Recent progress has
made it possible to automatically extract plan knowledge (i.e., actions, their pre-
conditions and effects) from online raw textual data and construct group plans by
means of planning algorithm, albeit in the restrictive security informatics domain
(see Sect. 3). On the basis of this, we present two plan-based approaches to group
behavior forecasting in this section. The first approach is based on probabilistic plan
inference, and the second approach is aimed at forecasting complex group behavior
via multiple plan recognition (Fig. 1).
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Fig. 1 An example strategic plan of the group

4.1 The Probabilistic Plan Inference Approach

Plan representations are used by many intelligent systems. In a probabilistic plan
representation, the likelihood of states is represented by probability values. To rep-
resent the success and failure of action execution, we use execution probability
Pexecution to represent the likelihood of successful action execution given action
preconditions are true. An action effect can be nondeterministic and/or conditional
nondeterministic. We use effect probability Peffect to represent the likelihood of the
occurrence of an action effect given the corresponding action is successfully exe-
cuted, and conditional probability Pconditional to represent the likelihood of the occur-
rence of its consequent given a conditional effect and its antecedents are true. The
desirability of action effects (i.e., their positive/negative significance to an agent) is
represented by utility values. Outcomes are those action effects with non-zero utility
values. We use expected utility (EU ) to represent the overall benefit or disadvantage
of a plan.
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Our approach is based on the fundamental M EU (maximum expected utility)
principle underlying decision theory, which assumes that a rational agent will adopt
a plan maximizing the expected utility. The computation of expected plan utility
captures two important factors. One is the desirability of plan outcomes. The other is
the likelihood of outcome occurrence, represented as outcome probability. We use the
observed evidence to incrementally update state probabilities and the probabilities
of action execution. The computation process is realized through recursively using
plan knowledge represented in plans.

4.1.1 Probability of States

Let E be the evidence. If state x is observed, the probability of x given E is 1.0.
Observations of actions change the probabilities of states. If action A is observed
executing, the probability of each precondition of A should be 1.0, and the proba-
bility of each effect of A is the multiplication of its execution probability and effect
probability. If A has conditional effects, the probability of a consequent of a condi-
tional effect of A is the product of its execution probability, conditional probability
and the probabilities of each antecedent of the conditional effect.

• IF x ∈ precondition(A), P(x |E) = 1.0
• IF x ∈ e f f ect (A), P(x |E) = Pexecution(A|precondition(A)) × Pef f ect (x |A)

• IF x ∈ consequent (e) ∧ e ∈ conditional − e f f ect (A),
P(x |E) = Pexecution(A|precondition(A))×Pconditional(x |antecedent (e), e)×∏

e′ ∈antecedent (e) P(e
′ |E)

Otherwise, the probability of x given E is equal to the prior probability of x .

4.1.2 Probability of Action Execution

If an action A is observed executed, the probability of successful execution of A given
E is 1.0, that is, P(A|E) = 1.0. If A is observed executing, P(A|E) equals to its
execution probability. Otherwise, the probability of successful execution of A given
E is computed by multiplying the execution probability of A and the probabilities
of each action precondition.

P(A|E) = Pexecution(A|precondition(A)) ×
∏

e∈precondition(A)

P(e|E)

4.1.3 Outcome Probability and Expected Utility of Actions

The probability changes of action execution impact the calculation of outcome prob-
abilities and expected utilities of actions. Let OA be the outcome set of action A,
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and outcome oi ∈ OA. The probability of oi given E is computed by multiplying
the probability of executing A and the effect probability of oi .

Paction(oi |E) = P(A|E) × Pef f ect (oi |A)

4.1.4 Outcome Probability of Plans and Expected Plan Utility

Let OP be the outcome set of plan P , and outcome o j ∈ OP . Let {A1, ..., Ak} be the
partially ordered action set in P leading to o j , where o j is an action effect of Ak . The
probability of o j given E is computed by multiplying the probabilities of executing
each action leading to o j and the effect probability of o j (Note that P(Ai |E) is
computed according to the partial order of Ai in P).

Pplan(o j |E) = (
∏

i=1,...,k

P(Ai |E)) × Pef f ect (o j |Ak)

The expected utility of P given E is computed using the utilities of each plan
outcome in P and the probabilities with which each outcome occurs.

EU (P|E) =
∑

o j ∈OP

(Pplan(o j |E) × Utili t y(o j ))

4.2 The Multiple Plan Recognition Approach

In real-world situations, a group often engages in complex behavior and may pursue
multiple plans/goals simultaneously. These complex group behaviors can hardly
be captured by conventional plan inference approaches as they often assume that
an agent only commits to one plan at a time. To achieve complex group behavior
forecasting, we propose a novel multiple plan recognition approach in this section.

From a computational perspective, multiple plan recognition poses great chal-
lenge. For observed group actions, the hypothesis space of multiple plan recognition
turns out to be rather huge and the computational complexity is extremely high. To
address the challenge, our approach consider using searching techniques to efficiently
find the best explanation. Intuitively, if we view the actions of plans as vertexes and
links between actions as edges, we can convert plans into a graph. We intend to
map multiple plan recognition into a graph theory problem and adopt graph search
techniques to find a near best explanation.

Below we first give the problem definition and represent the hypothesis space
of input observations as a directed graph (i.e. explanation graph). We then describe
how to compute the probability of an explanation. We finally present an algorithm
for finding the best explanation.
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4.2.1 Problem Definition

Our approach adopts the hierarchical plan representation. A hierarchical plan library,
P L , is a set of hierarchical partial plans. Each partial plan is composed of abstract
and/or primitive actions. The actions in the partial plan form a tree-like structure,
where an abstract action corresponds to an AN D node (i.e., there exists only one
way of decomposition) or an O R node (i.e., multiple ways of decomposition exist)
in the plan structure. At an AN D node, each child is decomposed from its parent
with decomposition probability 1. At an O R node, each child is a specialization of
its parent. The sum of specialization probabilities of each child is 1.

For each observation, it can be either a primitive action or a state. Given a plan
library, an explanation, SEi , for a single observation, Oi , is an action sequence
starting from a top-level goal, G0, to Oi : SEi = {G0, SG1, SG2, ..., SGm, Oi },
where SG1, SG2,..., and SGm are a set of abstract actions. There can be multiple
explanations for a single observation. An explanation, E j , for an observation set
O = {O1, O2, ..., On} is defined as E j = SE1 ∪ SE2 ∪ ... ∪ SEn , where SEi is an
explanation for the single observation Oi . If SE1 = SE2 = ... = SEn , the explana-
tion E j corresponds to a single plan. Otherwise it corresponds to multiple plans.

We define the multiple plan recognition problem as follows. Given a hierarchical
plan library P L and an observation set O , the task of multiple plan recognition is to
find the most likely explanation (best explanation), Emax , from the explanation set,
E , for O

Emax = argmax
Ei ∈E

P(Ei |O)

4.2.2 Constructing Explanation Graph

Given a set of observed actions and a plan library, the procedure of constructing
explanation graph is as follows:

Step 1. Construct an explanation graph EG which is an empty graph and add all
observations to the bottom level of EG.

Step 2. Expand the parents of each observation following a breadth-first strategy
and add these parents to EG. Decomposition/specialization links between actions are
treated as directed edges and are also added to EG. The direction of the edges denotes
decomposition or specialization relation. A decomposition/specialization probability
is attached to each edge. Duplicate actions and edges are combined during expansion.

Step 3. Apply this breadth-first expansion strategy on EG until all the actions in
EG are expanded.

Step 4. Then add a dummy node on the top of the graph and connect the dummy
node to all the top-level goals. The edges from the dummy node to top-level goals
are associated with the prior probabilities of each top-level goal.

Now our approach constructs an explanation graph which contains all the possible
explanations for the given observed actions.
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Fig. 2 Illustration of an
explanation graph

P4 P5

P6 P7

P8

P11

P9 P10

P12
P13

P14
P15

P16

P1
P2

P3

G2G1 G3

SG1 SG2 SG3 SG4

A2A1 A3

dummy

Figure 2 is an explanation graph for the observed actions A1, A2 and A3. It is
a directed graph with bold lines denoting an explanation. The symbols P1, P2,...,
P16 denote the decomposition/specialization probabilities associated with edges. An
explanation corresponds to a connected sub-graph in the explanation graph contain-
ing the dummy node, top-level goals, sub-goals, and all the observations. In the
explanation, the nodes with input degree 1 correspond to observations.

Here we define an explanation for an observation set as a tree in an explanation
graph, in which the root is a dummy node and the leaves are all the observations.
The tree exactly specifies an explanation for each observation.

4.2.3 Computing the Probability of an Explanation

Let O1:i = {O1, O2, ..., Oi } be observed actions, the probability of an explanation
E j is computed as

P(E j |O1:i ) = P(E j , O1:i )|P(O1:i ) = P(O1:i |E j )P(E j )|P(O1:i )

As 1/P(O1:i ) is a constant for each explanation, we denote it as K . P(O1:i |E j ) is
the probability that O1:i occurs given the explanation E j and is 1 for all hypotheses.
P(E j ) is the prior probability of T H explanation, i.e., the probability of entire tree
of the explanation graph. For explanation E j , let G1:m = {G1, ..., Gm} be top-level
goals and SG1:n = {SG1, ..., SGn} be sub-goals. We denote the vertex set of the tree
E j as V = dummy ∪ G1:m ∪ SG1:n ∪ O1:i . Let E = {e1 = dummy → G1, ..., es =
SGx → SG y, ..., et = SGz → Oi } be the set of edges of E j , where 1 ≤ x , y,
z ≤ n and 1 ≤ s ≤ t . Here we assume the decomposition of each action is directly
influenced by its parent node. The prior probability of the explanation E j is
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P(E j ) = P(V |E)

= P(Oi , et |V/Oi , E/et ) ∗ P(V/Oi , E/et )

= P(et ) ∗ P(V/Oi , E/et )

= ... = P(dummy) ∗
∏

edge∈E

P(edge)

P(Oi , et |V/Oi , E/et ) is the conditional probability that the decomposition rule,
et , activates and Oi is decomposed given the tree (V/Oi , E/et ). This is equal to
P(et = SGz → Oi ) according to our decomposition assumption. In addition,
P(edge) is the probability of the edge in the explanation and P(dummy) is the
prior probability that an observed agent will pursue goals. This is constant for each
explanation.

4.2.4 Finding the Best Explanation

Now the problem of finding the best explanation can be formulated as

Emax = argmax P(O1:i |E j )P(E j )|P(O1:i )

= argmax
E j ∈E

∏
edgei ∈E j

P(edgei )

= argmax
E j ∈E

∑
edgei ∈E j

ln(P(edgei ))

= argmax
E j ∈E

∑
edgei ∈E j

ln(P(
1

edgei
))

where P(edgei ) is the decomposition probability associated with edgei . We denote
ln(1/P(edgei )) as the weight of edgei . As 0 < P(edgei) < 1, we get ln(1/P
(edgei )) > 0. For explanation graph EG, we attach the weight ln(1/P(e)) to each
edge e ∈ EG (where P(e) is the probability on edge e) and then we can convert
an explanation graph to a directed weighted graph. Now the problem of finding the
most likely explanation is reformulated as finding a minimum weighted tree in the
explanation graph with the dummy node as the root and observations as leaf nodes.

Finding a minimum weight tree in a directed graph is known as the directed
Steiner tree problem in graph theory [1, 15]. It is defined as follows: given a directed
graph, G = (V, E), with weights, w(w0), on the edges, a set of terminals, S ⊆ V ,
and a root vertex, r , find a minimum weight tree, T , rooted at r , such that all the
vertices in S are included in T . A number of algorithms have been developed to solve
this problem. In our approach, we employ an approximation algorithm proposed by
Charikar et al. [1].
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4.3 Computational Experiments

4.3.1 Experimental Study 1

We still choose Al − Qaeda as the representative realistic group for our study.
Among the official investigation reports, 13 real attacks perpetrated by Al − Qaeda
have relatively complete descriptions. Based on our automatically generated plans,
intelligence analyst helped choose 13 plans that match the reported real attacks.
These plans form the plan library for our experimental study. We randomly generate
a set of evidence using the combination of actions and initial world states in the plan
library, and collect 95 lines of evidence. Each line contains either two observations
(constituting 49 % of the evidence set) or three observations (constituting 51 % of
the evidence set).

Four human raters experienced in security informatics participate in the experi-
ment. According to the plan library we construct, each rater examined the evidence
set line by line and predicted the most likely plans based on each line of evidence.
The test set is composed of each raters predictions together with the corresponding
evidence, with inter-rater agreement (K appa) 0.764. The prior state probabilities,
action execution probabilities and effect probabilities used by our approach (less than
100 items in total) were assigned by intelligence analyst. The intelligence analyst
also assigned prior and conditional probabilities for Bayesian reasoning. Mapping
plans to Bayesian networks is based on the generic method provided in [5].

Table 4 shows the experimental results using our approach and Bayesian reason-
ing. We measure the agreement of the probabilistic plan inference approach and each
rater using the K appa statistic. The average agreements between our approach and
human raters are 0.664 (for two observations) and 0.773 (for three observations),
which significantly outperform the average agreements between Bayesian reasoning
and the raters. As 0.6 < k < 0.8 indicates substantial agreement, the empirical
results show good consistency between the predictions generated by our approach
and those of human raters.

4.3.2 Experimental Study 2

We still choose Al − Qaeda as a representative group. Based on our previous work
[7], we automatically extract group actions and construct group plans from relevant
open source News (e.g., T imes Online and U S AT O D AY ). Domain experts helped
connect the hierarchical partial plans in the plan library. The plan library we use for
this experiment includes 10 top-level goals and 35 primitive and abstract actions (we
allow primitive/abstract actions to appear in multiple plans). Although large numbers
of plans are computationally feasible by our approach, we prefer a relatively small
and realistic plan library so that it is tractable by human raters in the experiment.
Figure 3 illustrates the plan structure for a top-level goal in the plan library.
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Fig. 3 Plan structure for a top-level goal in the plan library

Table 5 Agreements between MPR algorithm and human raters for various observations (obs.)

Rater P(A) K

2 obs. 3 obs. 4 obs. 2 obs. 3 obs. 4 obs.

1 0.967 0.932 0.899 0.961 0.908 0.874

2 0.978 0.913 0.869 0.974 0.887 0.837

3 0.956 0.917 0.859 0.949 0.891 0.830

4 0.906 0.924 0.902 0.856 0.899 0.877

5 0.838 0.895 0.878 0.765 0.866 0.847

We randomly generate a number of observation sets using the combination of
primitive actions in the plan library. We collect 90 lines of observation sets in total,
each line corresponding to one observation set. Among them, 30 observation sets
contain two observations each, 30 contain three observations each and 30 contain
four observations each. Five human raters who have at least 3 years experience in the
security informatics domain participated in the experiment. Based on the constructed
plan library, each rater examined the observation sets one by one and predicted the
most likely plans (single plan or multiple plans) based on each observation set.
The test set is composed of each raters predictions together with corresponding
observations (with inter-rater agreement of 0.88).

Table 5 shows the experimental results between the multiple plan recognition
approach and each human rater. We measure the agreement of the results generated
by our approach and those of the raters for two, three and four observations using
precision, P(A), and Kappa statistics, K . The agreements between our approach and
human raters for two observations, three observations, and four observations are all
above 0.8, thus the empirical results show good consistency between the predictions
generated by our M P R approach and those of human raters.
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5 Conclusion

In this chapter, we propose an ACP-based approach for behavioral modeling, analysis
and prediction in security informatics. To facilitate behavioral modeling, we present
a knowledge extraction approach to acquire behavioral knowledge from open-source
intelligence. On the basis of behavioral modeling, we propose two plan inference
approaches for group behavior forecasting. The first explicitly takes the observed
agents preferences into consideration to infer the most likely plan of groups. The
second employs a graph search algorithm to discover multiple intentions underlying
complex group behavior. Experimental results to demonstrate the effectiveness of
these computational methods we propose as well as the underlying ACP approach.
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Microfiles as a Potential Source of Confidential
Information Leakage

Oleg Chertov and Dan Tavrov

Abstract Cyber warfares, as well as conventional ones, do not only comprise direct
military conflicts involving weapons like DDoS attacks. Throughout their history,
intelligence and counterintelligence played a major role as well. Information sources
for intelligence can be closed (obtained during espionage) or open. In this chapter,
we show that such open information sources as microfiles can be considered a poten-
tially important additional source of information during cyber warfare. We illustrate
by using real data based example that ignoring issues concerning providing group
anonymity can lead to leakage of confidential information. We show that it is possible
to define fuzzy groups of respondents and obtain their distribution using appropri-
ate fuzzy inference system. We conclude the chapter with discussing methods for
protecting distributions of crisp as well as fuzzy groups of respondents, and illus-
trate them by solving the task of providing group anonymity of a fuzzy group of
“respondents who can be considered military enlisted members with the high level
of confidence.”

1 Introduction

With the development of appropriate information technologies, the role of open
information sources as a way of obtaining confidential information becomes more
and more significant. Such technologies include means of processing very large
amounts of data, text and data mining methods, hardware and software based ways
of obtaining and analyzing information from different sources, to name just a few.

According to the research conducted by the International Data Corporation [1],
about 30 % of digital information in the world need protection, and this number will
rise to roughly 40 % by 2020.
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A microfile is a collection of primary data with information about a sample
respondent set. Microfiles are constructed using census or other statistical and socio-
logical surveys data, marketing research data, social networks analysis data etc. With
the help of the primary microfile data, as opposed to aggregated ones, one can try to
obtain answers to questions not foreseen by the microfile creators.

Microfiles can be considered a potentially important source of information during
cyber warfare. With their help, it is possible to violate individual or group anonymity.
Anonymity of an object means that this object is unidentifiable among the set of
certain objects [2]. Individual data anonymity is a property of information on a single
respondent to be unidentifiable within the data set [3, p. 1]. Group data anonymity is
a condition, under which [4, p. 11] data features that cannot be distinguished while
considering individual records only are protected.

Individual anonymity can be violated even when attributes that uniquely identify
microfile respondents are removed. For instance, as L. Sweeney showed experimen-
tally in 2001, 97 % of the voters in the state of Massachusetts possess unique combi-
nation of birth date (day, month, and year) and nine-digit ZIP code [5]. Appropriate
methods for providing individual anonymity were introduced, such as randomiza-
tion [6], microaggregation [7], data swapping [8], data matrix factorization [9] and
singular value decomposition [10], wavelet transforms (WT) [11], etc.

Group anonymity can be violated by analyzing distributions of the microfile data
over certain attribute values. For example, Fig. 1 presents the regional distribution of
power engineering specialists obtained from the microfile containing results of the
1999 population census in France [12]. The higher the cylinder, the more specialists
live in a particular region. Since the French energy sector primarily consists of nuclear
stations (78 % of all energy produced in 2011 [13]), the highest number of power
engineering specialists occurred exactly in those regions where nuclear power plants
are situated (black cylinders in Fig. 1). Therefore, to conceal the site of any secret
nuclear research center, one should distort the real regional distribution of French
power engineering specialists.

In the literature, several classes of the task of providing group anonymity (TPGA)
are distinguished. The quantity TPGA defined as the task of providing anonymity
of a respondent group quantity distribution over the set of values (e.g. military per-
sonnel regional distribution) was introduced in [14]. In terms of quantity task, it is
impossible to solve the task of concealing concentration distribution of respondents.
Such tasks are called concentration group anonymity tasks [15]. One of them is
the concentration difference task [16], which implies concealing the distribution of
the difference between two concentration distributions. The problems of providing
group anonymity are most elaborately covered in [4]. The general methodology of
providing group anonymity is presented in [3].

Most of existing methods of solving the TPGA deal with the so called crisp groups
of respondents, i.e. those ones, to which a particular respondent either belongs or
not. The membership in such a group can be determined by analyzing values of
one or several specific attributes, e.g., “Occupation,” as in the case of French power
engineering specialists. To protect anonymity, one can use existing methods, or, in
the crudest case, remove appropriate attributes from the microfile.
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Fig. 1 Regional power engineering specialists distributed according to the microfile containing
results of the 1999 French population census

In some cases, however, it is possible to violate group anonymity for a fuzzy
group of respondents, i.e. the one, to which a respondent can belong only to a certain
degree. Whether a respondent belongs to a group, is determined by analyzing values
not of some special attributes, but of one or several rather general ones, such as “Age,”
“Sex,” etc. In this chapter, for instance, we discuss a real data based example, in which
the fuzzy group consists of people who can be considered military enlisted members
with the high level of confidence. The membership in such a group can be deduced
from analyzing values of such general purpose attributes as “Age,” “Sex,” “Black
or African American,” “Marital Status,” “Educational Attainment,” and “Hours per
Week in 1999.” We show that even if group anonymity is provided for a crisp group
of military personnel, it might still be possible to retrieve sensitive information from
the microfile using the concept of a fuzzy respondent group.

Importance of easily accessed data for retrieving hidden information should not
be underestimated. E.g., the famous Russian chemist D. Mendeleyev was able to
find out the secret composition of the French powder [17, pp. 353–354] by analyzing
annual shipment report of the railroad company that supplied the factory.

Since it is obviously not an option to remove important attributes like “Age,”
“Sex,” etc. from the microfile, appropriate anonymity-providing methods should be
developed.

2 General Approach to Violating Group Anonymity

2.1 Group Anonymity Basics

Microdata are the data about respondents (people, households, enterprises etc.). Let
M denote a (depersonalized) microfile with microdata collected in a file of attributive
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records, which can be viewed as a matrix with rows ui , i = 1, μ, corresponding to
respondents, and columns w j , j = 1, η, corresponding to attributes.

Let w j denote the set of all attribute w j values. The vital set is a subset V ={
V1, V2, . . . , Vlv

}
of the Cartesian product of vital attributes. The elements of V are

the vital value combinations. V enables us to define the respondent group.
We can define linguistic variables [18] Li corresponding to each microfile

attribute. Universes of discourse for Li consist of the i th microfile attribute val-
ues. Values of Li belong to its term-set T (Li ). The generalized vital set Ṽ ={

Ṽ1, Ṽ2, . . . , Ṽlṽ

}
is a subset of the Cartesian product of term-sets of all the lin-

guistic variables corresponding to the vital microfile attributes. The elements of Ṽ
are the generalized vital value combinations.

Let the parameter set P = {
P1, P2, . . . , Pl p

}
be a subset of values corresponding

to the parameter microfile attribute, which is not vital. The elements of P are para-
meter values. They enable us to split the microfile M into parameter submicrofiles
M1, . . . , Ml p with μ j , j = 1, l p, records in them.

We will denote by G (V, P) the group, i.e. the set consisting of V and P. We will

denote by G̃
(

Ṽ, P
)

the fuzzy group, i.e. the set consisting of Ṽ and P.

We can determine the membership grade μG̃ (ui ) of every respondent ui , i = 1, μ,

in G̃. We denote the set of all grades by M̃G̃ =
{
μG̃1, μG̃2, . . . , μG̃q

}
.

By goal representation �
(

M, G̃
)

of M with respect to G̃ we define a dataset of

arbitrary structure representing features of G̃ in a way proper for analyzing.

2.2 An Overview of Goal Representations

2.2.1 Goal Signals

The goal representation which is frequently used in the literature is the goal signal
θ = (

θ1, θ2, . . . , θl p

)
, which reflects such potentially sensitive properties of a group

as [4, p. 77] extreme values, statistical features, etc. For the sake of simplicity, we
assume that each goal signal value corresponds to one parameter submicrofile Mk ,
k = 1, l p. The goal signal may be treated as a function θ = θ (P, V) of parameter
values P and a term V defining the set of vital value combinations, with each θk =
θ (Pk, V).

In the literature, there are distinguished several kinds of goal signals. Among the
more popular ones is the quantity signal q = (

q1, q2, . . . , ql p

)
introduced in [14].

The elements qk , k = 1, l p, stand for the quantities of respondents with a particular
parameter value Pk and values of vital attributes belonging to V.

In many cases, absolute quantities are not representative, and should be replaced
with the relative ratios. In these cases, the concentration signal c = (

c1, c2, . . . , cl p

)
introduced in [19] is used instead of the quantity one. The elements ck , k = 1, l p, are



Microfiles as a Potential Source of Confidential Information Leakage 91

obtained by dividing qk by the overall number of respondents in a specified parameter
submicrofile:

ck = qk

μk
, k = 1, l p . (1)

Vital attributes enable us to split each parameter submicrofile M j into vital submi-

crofiles M(G)
k , k = 1, l p, which contain all microfile records with a parameter value

Pk and values of vital attributes belonging to V, and non-vital submicrofiles M
(
G

)
k ,

k = 1, l p, which contain the microfile records with a parameter value Pk and values

of vital attributes not belonging to V. Each submicrofile M(G)
k contains qk records,

each submicrofile M
(
G

)
k contains (μk − qk) records.

2.2.2 Goal Surfaces

When we need to deal with the anonymity of fuzzy groups, the goal signal is not
sufficient to embrace all the information about the microfile respondents. We need
to introduce the generalization of the goal signal called the goal surface �. It can be

treated as a function � = �
(

P, M̃G̃ , Ṽ
)

of parameter values P, membership grades

of a particular respondent in the fuzzy group M̃G̃ , and a term Ṽ defining the set of

generalized vital value combinations, with each � jk = �
(

Pk, μG̃ j , Ṽ
)

.

There can be distinguished two kinds of goal surfaces, a quantity surface Q
and a concentration surface C. To build Q, one needs to calculate the membership
grades μG̃ (ui ) in the fuzzy group G̃ for every microfile respondent ui ∈ G̃, that is,
every respondent whose vital attribute values belong to the universes of discourse
of appropriate linguistic variables. This can be carried out by applying a properly
designed fuzzy inference system (FIS). In this chapter, we will use the Mamdani FIS
[20], which typically consists of several input and output variables, the fuzzification
module, the fuzzy inference engine, the fuzzy rule base, and the defuzzification
module [21]. Each rule j in the rule base is in the form

if x1 is A1 j , . . . , xn is Anj , then y is B j ,

where x1, . . . , xn , and y are input and output variables, respectively; A1 j , . . . , Anj ,
and B j are values (fuzzy sets) of input and output variables. The inference engine
works on the basis of compositional rule of inference (CRI) [22].

To build a FIS, one needs to accomplish the following steps:

1. Choose input, output variables, define appropriate membership functions (MFs).
2. Construct the fuzzy rule base.
3. Choose methods of fuzzy intersection, implication, and aggregation.
4. Choose appropriate defuzzification algorithm.
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For the FIS for building Q, one needs to take linguistic variables L j as the
input ones. The output variable should represent the membership grade in G̃ of
a certain respondent. The generalized vital value combinations should represent the
antecedents of the fuzzy rules. In some cases, the problem at hand can impose crisp
restrictions to be considered aside from those in the fuzzy rule base.

Having calculated membership grades using FIS, one needs to count the number
of respondents with particular parameter values and membership grades in G̃:

Q jk =
∣∣∣{ui

∣∣∣ziwp = Pk, μG̃ (ui ) = μG̃ j

}∣∣∣ . (2)

However, in most cases exact values of membership grades are irrelevant and do
not shed much light on the distribution to be analyzed. The numbers of membership
grades belonging to certain intervals can provide information that is much more
useful. We need to split M̃G̃ into intervals �M̃s , s = 1, r , and count the number of
respondents with membership grades belonging to them:

Qsk = ∣∣{ui
∣∣ziwp = Pk, μG̃ (ui ) ∈ �M̃s

}∣∣ . (3)

It is wise to build (3) only for intervals with high values of membership grades.
Using (3), each parameter submicrofile Mk may be split into vital submicrofiles

of grade �M̃s M

(
G̃�M̃s

)
k and non-vital submicrofiles M

(
G̃�M̃0

)
k , k = 1, l p, s = 1, r .

Vital submicrofiles contain the microfile records ui with the parameter value Pk and
μG̃ (ui ) ∈ �M̃s . Non-vital submicrofiles contain the microfile records ui with the
parameter value Pk and the membership grade in G̃ not belonging to any interval.

Each vital submicrofile of a certain grade M

(
G̃�M̃s

)
k contains Qsk records, each non-

vital submicrofile M

(
G̃�M̃0

)
k contains

(
μk − ∑r

s=1 Qsk
)

records.
In cases when the absolute numbers of respondents are not representative, it is

better to use the concentration surface C with the elements

Csk = Qsk

μk
, k = 1, l p . (4)

2.3 The General Approach to Creating the FIS for Violating
Anonymity of a Fuzzy Group

In Sect. 2.2.2, we outlined several steps that need to be accomplished to create a FIS
for building a quantity surface Q for a fuzzy respondent group G̃. However, when
the task of violating anonymity of a fuzzy group is concerned, the group whose
anonymity needs to be violated is not precisely defined. For example, when the task
is to violate anonymity of a fuzzy group of “respondents who can be considered
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military with the high level of confidence,” it is not clear what vital attributes should
be taken, and what values the corresponding linguistic variables have.

In general, to build a FIS for classifying respondents as belonging to a given fuzzy
group with a certain grade, one needs to proceed according to such steps:

1. According to external statistical data and/or expert judgment, determine the
microfile attributes, which can be used in combination to describe respondents
belonging to the fuzzy group with a high membership grade.

2. Split, if necessary, the values of these attributes into meaningful intervals, and
obtain the distributions over the values of each attribute for the respondents
belonging to the fuzzy group with a high membership grade.

3. Define the ranges of the values of these attributes, outside which respondents
are considered (in a crisp way) as not belonging to the group.

4. Exclude from the set of the attributes defined on step 1 those ones, distribution
over which is sufficiently close to the uniform one.

5. Exclude from the set of the attributes defined on step 4 those ones, distribu-
tion over which for the respondents belonging to the fuzzy group with a high
membership grade is sufficiently close to the distribution for the respondents at
large.

6. According to external statistical data and/or expert judgment, determine the
microfile attributes which can be used in combination to describe respondents
belonging to the fuzzy group with a low membership grade, and add them to the
set defined on step 5.

7. Split, if necessary, the values of the newly added attributes into meaningful
intervals, and obtain the distributions over the values of each attribute for the
respondents belonging to the fuzzy group with a low membership grade.

8. Define the ranges of the values of the newly added attributes inside which respon-
dents are considered (in a crisp way) as not belonging to the group.

9. Define the values of all the input variables of the FIS. Variables correspond
to some or all of the attributes from the set defined on step 6, 10. Judging
from external statistical data and/or expert judgment, define values of the output
linguistic variable, and construct a meaningful set of fuzzy rules.

10. Choose appropriate methods of fuzzy union, intersection, implication, aggrega-
tion, and defuzzification.

3 Practical Results

3.1 Violating Anonymity of the Crisp Group of Military Personnel

In this section, we will show how anonymity of the crisp group of respondents can
be violated using publicly available microfile data. In particular, we want to show
how the potential sites of the military bases can be determined using the regional
distribution of the military personnel. For our purpose, we used the 5-Percent Public



94 O. Chertov and D. Tavrov

Fig. 2 The quantity signal obtained for the crisp group of active duty military personnel

Use Microdata Sample Files from the U. S. Census Bureau [23] corresponding to
the 2000 U. S. Census microfile data on the state of Florida.

In accordance with Sect. 2.1, we took “Place of Work Super-PUMA” (where
PUMA stands for “Public Use Microdata Area”) as the parameter attribute. We took
codes of all the statistical areas of Florida, i. e. each 10th value in the range 12010–
12180, as the parameter values. With the help of these parameter values, the microfile
can be split into 18 parameter submicrofiles, M1, . . . , M18, with the total number of
respondents in each of them, μ1, . . . , μ18, given as follows:

μ = (μ1, . . . , μ18) = (8375, 10759, 9683, 10860, 25753, 10153, 6916, 50680,

39892, 10453, 9392, 9016, 8784, 11523, 11158, 24124, 30666, 46177) .

(5)
We took “Military Service” as a vital attribute. Its value “1,” standing for “Active

Duty,” was chosen as the only vital value. Thus, we have defined the group G of active
duty military personnel distributed over statistical areas of Florida. The quantity
signal q is shown in Fig. 2.

As we see, there are three extreme values in the quantity signal. More precisely,
above 75 % of all the active duty military personnel work in the first, second, and fifth
statistical areas. Such disproportionate quantities may point to the sites of military
bases. Thus, anonymity can be violated relatively easily for a crisp group.

3.2 Violating Anonymity of the Fuzzy Group of Military Enlisted
Members

In the previous section, we showed that anonymity of a crisp group of military
personnel can be violated by analyzing extreme values of an appropriate quantity
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signal. One of the crudest ways to prevent such violation is to remove completely
from the microfile the “Military Service” attribute. However, as we show in this
section, anonymity can also be violated for a fuzzy group G̃ of “respondents who
can be considered military enlisted members with the high level of confidence.”

To construct a quantity surface, we need to build appropriate FIS. We decided to
use the demographic analysis of the military personnel conducted by the Office of
the Deputy under Secretary of Defense [24] in 2011 and updated in November 2012
as our main source of relevant statistical data. We also used certain expert judgments,
e.g. that the military enlisted members in majority tend to work more than 40 h per
week. We then followed along the steps outlined in Sect. 2.3:

1. We chose microfile attributes “Age,” “Sex,” “Black or African American,”
“Marital Status,” “Educational Attainment,” and “Hours per Week in 1999” as
the ones that can be used in combination to describe respondents belonging to
our fuzzy group with a high membership grade.

2. According to [24], the distributions of the active duty enlisted members over the
values of the chosen attributes are as follows:

• 49.3 % are 25 years of age or younger, 22.8 % are 26–30 years of age, 13.1 %
are 31 to 35 years of age, 9.2 % are 36–40 years of age, 5.5 % are 41 years of
age or older;

• 85.8 % are male, and 14.2 % are female;
• 16.9 % are Black or African American, whereas 83.1 % are not;
• 54.0 % are married, 41.3 % never married, and 4.6 % are divorced;
• 93.4 % have less than Bachelor’s Degree, 5.3 % have Bachelor’s or Advanced

Degree (other 1.3 % either have no High School diploma, or their educational
level is unknown).

3. Having analyzed information presented in [24], we decided to consider respon-
dents whose are younger than 18 years of age or older than 45 years of age as
those ones who do not belong to our fuzzy group in a crisp sense.

4. We excluded from the set of supposedly vital attributes “Marital Status” because
it provides the distribution, which is very close to the uniform one.

5. We decided to skip this step since all attributes provide significant information.
6. Using expert judgment that every enlisted member has to exhibit a certain level

of English, we added the attribute “English Ability” to our set of attributes.
7. We decided to skip this step as not necessary.
8. We decided to choose “English Ability” values “3” and “4” (standing for “Not

well” and “Not at all,” respectively) as those ones which correspond to respon-
dents who do not belong to the fuzzy group in the crisp sense.

9. We decided to take five input variables for the FIS, namely, “Age,” “Sex,” “Black
or African American,” “Educational Attainment,” and “Hours per Week.” Values
of “Age,” “Sex,” and “Hours per Week” are presented in Figs. 3–5, respectively
(codes for the “Educational Attainment” variable are given in Table 1). Variable
“Sex” has two values, “Male” and “Female,” with the MFs
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Fig. 3 Membership functions for the “Age” variable

Fig. 4 Membership functions for the “Educational Attainment” variable

Fig. 5 Membership functions for the “Hours per Week” variable
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Table 1 Codes for the “Educational Attainment” variable

Code Description Code Description

1 No schooling completed 9 High school graduate

2 Nursery school to 4th grade 10 Some college, but less than 1 year

3 5th grade or 6th grade 11 One or more years of college, no degree

4 7th grade or 8th grade 12 Associate degree

5 9th grade 13 Bachelor’s degree

6 10th grade 14 Master’s degree

7 11th grade 15 Professional degree

8 12th grade, no diploma 16 Doctorate degree

μMale (x) =
{

1, x = 1
0, x �= 1

, μFemale (x) =
{

1, x = 2
0, x �= 2

,

where “1” is the microfile attribute value standing for “Male,” and “2” is the
value standing for “Female.” Variable “Black or African American” has two
values, “No” and “Yes,” with the MFs

μNo (x) =
{

1, x = 0
0, x �= 0

, μYes (x) =
{

1, x = 1
0, x �= 1

,

where “0” is the value standing for “Not Black,” and “1” is the value standing
for “Black.”

10. Values of the output variable “Membership in a Fuzzy Group” are presented in
Fig. 6. The set of rules is presented in Table 2. These rules were largely deter-
mined by analyzing [24]. For instance, if almost half of all enlisted members are
young, many of them work more than 40 h per week, and the absolute majority
are “White,” “Male,” and “Lowly educated,” then respondents with such char-
acteristics can be considered enlisted members with “high” membership grade.
For less obvious vital value combinations we used expert judgment.

11. We decided to take maximum as fuzzy union and aggregation, minimum as fuzzy
intersection and implication, and centroid method for defuzzification.

Using the FIS constructed in accordance with these 11 steps, we calculated mem-
bership grades for all the respondents in the microfile that belong to the group
in a crisp sense. We decided to choose the following intervals to construct the
quantity surface Q (3): �M̃1 = (0.5; 0.6], �M̃2 = (0.6; 0.7], �M̃3 = (0.7; 0.8],
�M̃4 = (0.8; 0.9].

The quantity surface does not provide necessary information for violating ano-
nymity of the fuzzy group. To determine potential sites of military bases, it is better
to use the concentration surface C (4) obtained using (5). Surfaces Q and C are
given below (we present all the results with three decimal numbers; the calculations
throughout the chapter had been carried out with higher precision):
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Fig. 6 Membership functions for the “Membership in a Fuzzy Group” variable

QT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

204 23 56 328
218 54 94 377
159 12 46 183
179 29 53 284
438 97 151 730
160 28 41 211
116 25 34 170
834 159 238 1099
745 142 226 900
144 23 45 192
155 35 49 276
144 31 48 191
150 33 46 183
194 30 53 245
176 31 60 238
330 57 95 374
433 62 122 439
619 86 192 738

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, CT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.024 0.003 0.007 0.039
0.020 0.005 0.009 0.035
0.016 0.001 0.005 0.019
0.016 0.003 0.005 0.026
0.017 0.004 0.006 0.028
0.016 0.003 0.004 0.021
0.017 0.004 0.005 0.025
0.016 0.003 0.005 0.022
0.019 0.004 0.006 0.023
0.014 0.002 0.004 0.018
0.017 0.004 0.005 0.029
0.016 0.003 0.005 0.021
0.017 0.004 0.005 0.021
0.017 0.003 0.005 0.021
0.016 0.003 0.005 0.021
0.014 0.002 0.004 0.016
0.014 0.002 0.004 0.014
0.013 0.002 0.004 0.016

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The sum of rows of C is shown in Fig. 7 along with the superimposed quantity
signal q obtained in Sect. 3.1 (to fit the scale, we normalized both vectors by dividing
them by their maximal values). By analyzing extreme values obtained from the
concentration surface C, we can determine the same statistical areas we determined
in Sect. 3.1. It is worth noting that extreme value in the element 11 was not present
in q, however, all the extremes that actually were present in q have been successfully
determined, even though the attribute “Military Service” was removed from the
microfile.

Thus, we successfully managed to violate anonymity for the fuzzy group of
“respondents who can be considered military enlisted members with the high level
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Table 2 Fuzzy rule base for the FIS in example

Hours Educational Sex Black or Age

per week attainment Afr. Amer. Young Mid. Mid. Mid. Old

-aged 1 -aged 2 -aged 3

Low Male Yes VL VL VL VL VL

No L VL VL VL VL

Few Female Yes VL VL VL VL VL

No VL VL VL VL VL

High Male Yes VL VL VL VL VL

No VL VL VL VL VL

Female Yes VL VL VL VL VL

No VL VL VL VL VL

Low Male Yes L VL VL VL VL

No H L L L L

Average Female Yes VL VL VL VL VL

No L VL VL VL VL

High Male Yes VL VL VL VL VL

No VL VL VL VL VL

Female Yes VL VL VL VL VL

No VL VL VL VL VL

Low Male Yes L VL VL VL VL

No H M M M L

Many Female Yes VL VL VL VL VL

No L VL VL VL VL

High Male Yes VL VL VL VL VL

No VL L L L L

Female Yes VL VL VL VL VL

No VL VL VL VL VL

of confidence.” In other words, even if group anonymity is provided for a crisp group
of military personnel (Sect. 3.1), it is still possible to retrieve sensitive information
from the microfile using the concept of a fuzzy respondent group.

4 Providing Anonymity for Crisp and Fuzzy Respondent Groups

4.1 The Generic Scheme of Providing Group Anonymity

The task of providing group anonymity in a microfile is the task of modifying it for a
group G̃(Ṽ, P), so that sensitive (for the task solved) data features become confided.
The generic scheme of providing group anonymity goes as follows:
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Fig. 7 The quantity signal (solid line) and the sum of the rows of the concentration surface (dashed
line) for the example

1. Prepare a depersonalized microfile M.
2. Define groups G̃i (Ṽi , P), i = 1, k, representing respondents to be protected.
3. For each i from 1 to k:

• choose data goal representation �i (M, G̃i ) representing particular features
of the group in a way appropriate for its further modification;

• define the goal mapping function ϒi : M → �i (M, G̃i ) and obtain the goal
representation;

• define the modifying functional �i : �i (M, G̃i ) → �∗
i (M, G̃i ) and obtain

the modified goal representation;
• define the inverse goal mapping function ϒ−1

i : �∗
i (M, G̃i ) → M∗ and obtain

the modified microfile.

4. Prepare the modified microfile M∗ for publishing.

The first three operations at step 3 constitute the first stage of solving the TPGA.
Obtaining the modified microfile using the inverse goal mapping function at step 3
is the only operation constituting the second stage of solving the TPGA.

4.2 Wavelet Transforms as the Modifying Functional

4.2.1 One-Dimensional Wavelet Transforms as the Modifying Functional
for the Goal Signals

We will introduce wavelet transforms (WT) to the extent necessary for applying them
to modifying the goal signal. For more information on wavelets, consult [25]. For a
detailed discussion of applying WT to solving the TPGA, refer to [4].
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Let h = (h1, h2, . . . , hn) and l = (l1, l2, . . . , ln) denote the high-frequency
and low-frequency wavelet filter, respectively. To perform the goal signal one-level
wavelet decomposition, we need to perform the following operations:

a1 = θ ∗↓2l , d1 = θ ∗↓2h , (6)

where ∗↓2 denotes the convolution with the follow-up dyadic downsampling, array
a1 (d1) consists of level one approximation (detail) coefficients.

To simplify the notation, let us introduce the following operations:

z = ((
θ ∗↓2f

) ∗↓2f
)
. . . ∗↓2 f︸ ︷︷ ︸

k−1 times

=
k∏

i=1

(
θ ∗↓2f

)
, (7)

z = ((
θ ∗↑2f

) ∗↑2f
)
. . . ∗↑2 f︸ ︷︷ ︸

k−1 times

=
k∏

i=1

(
θ ∗↑2f

)
, (8)

where ∗↑2 denotes the dyadic upsampling with the follow-up convolution.
To obtain decomposition coefficients of arbitrary level k, we need to perform (6)

with the goal signal replaced by the approximation coefficients of level k − 1:

ak =
k∏

i=1

(
θ ∗↓2l

)
, dk =

(
k−1∏
i=1

(
θ ∗↓2l

)) ∗↓2 h . (9)

To obtain the goal signal approximation and details of level k, we need to perform
the following operations:

Ak =
k∏

i=1

(
ak ∗↑2 l

)
, Dk =

k−1∏
i=1

((
dk ∗↑2 h

) ∗↑2 l
)

. (10)

The goal signal can be decomposed into the following sum:

θ = Ak +
k∑

i=1

Di . (11)

Wavelet approximation Ak of the signal represents its smoothed version. Wavelet
details of all levels Di , i = 1, k, represent high-frequency fluctuations in it.

To protect such properties of the goal signal as its extreme values, two different
approaches may be proposed [4]. According to the extremum transition approach, the
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goal signal has to be modified in such way that its new extreme values differ from
the initial ones. The other approach called the Ali Baba’s wife approach implies
not eliminating existing extreme values but adding several new alleged ones, which
makes it impossible to discriminate between real and fake extreme values.

Aside from protecting signal properties, it is important to guarantee that the over-
all data utility is not reduced very much. WT can be successfully applied in order to
achieve both goals. To mask extreme values, we can modify the goal signal approxi-
mation, whereas leaving the signal details intact (or modifying them at most propor-
tionally) preserves important properties of the initial data.

However, mere modifying the approximation will not do much good, because
internal structure of the signal will be tampered with. The better way of modifying
the signal approximation is to modify its approximation coefficients. To do this, we
need to know the explicit dependence of the approximation values on the approx-
imation coefficients. This dependence can be retrieved from the so called wavelet
reconstruction matrix (WRM) Mrec introduced in [14]:

Ak = Mrec · ak . (12)

With the help of the WRM, we can represent each approximation element as the
linear combination of approximation coefficients and Mrec elements. The latter ones
are dependent on wavelet filter elements and the size of the goal signal. Using (12),
we can construct restrictions for the linear programming problem, whose solution
yields modified approximation coefficients ãk . These coefficients can be used to
obtain modified approximation Ãk according to (10).

Using (11), we can obtain the signal θ̆ = Ãk + ∑k
i=1 Di . If any of its elements

are negative, we need to add to the signal a sufficiently great number γ to make all
the signal entries non-negative. To preserve the mean value of the goal signal after
this operation, we need to multiply it by an appropriate coefficient:

θ
∗ = (

θ̆ + γ
) ·

l p∑
k=1

θk

l p∑
k=1

(
θ̆k + γ

) . (13)

When the goal signal is the concentration signal, it is necessary to apply (13) not
only to the signal itself, but to the corresponding quantity signal as well, so that the
overall number of respondents in the microfile does not change.

4.2.2 Separable Two-Dimensional Wavelet Transforms as the Modifying
Functional for the Goal Surfaces

To perform one-level wavelet decomposition of the goal surface �, we need to carry
out the following calculations:
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a1 =
column−wise︷ ︸︸ ︷(
� ∗↓2 l

)
︸ ︷︷ ︸
row−wise

∗↓2l , dh1 =
column−wise︷ ︸︸ ︷(

� ∗↓2 l
)

︸ ︷︷ ︸
row−wise

∗↓2h ,

dv1 =
column−wise︷ ︸︸ ︷(

� ∗↓2 h
)

︸ ︷︷ ︸
row−wise

∗↓2l , dd1 =
column−wise︷ ︸︸ ︷(

� ∗↓2 h
)

︸ ︷︷ ︸
row−wise

∗↓2h .

(14)

These operations are the generalized versions of (6). However, instead of one
array of detail coefficients, we obtain three of them, i.e. horizontal detail coefficients
dh1, vertical detail coefficients dv1, and diagonal detail coefficients dd1.

The goal surface can be decomposed into the sum of its approximation and three
types of details:

� = Ak +
k∑

i=1

Dhi +
k∑

i=1

Dvi +
k∑

i=1

Ddi . (15)

To modify the goal surface using WT, we can use the method similar to the one
described in Sect. 4.2.1. Each element of the two-dimensional approximation can
be presented as the linear combination of the approximation coefficients and some
values dependent on the wavelet filter elements and the size of the goal surface.
This representation is useful for constructing restrictions of a linear programming
problem, whose solution yields modified approximation coefficients ãk .

Applying (15), we can obtain the surface �̆ = Ãk + ∑k
i=1 Dhi + ∑k

i=1 Dvi +∑k
i=1 Ddi , which can be amended if necessary using the procedure described in

Sect. 4.2.1 yielding the modified goal surface �∗:

�∗ =
(
�̆ + γ

)
·

r∑
s=1

l p∑
k=1

�sk

r∑
s=1

l p∑
k=1

(
�̆sk + γ

) . (16)

When the goal surface is the concentration surface, it is necessary to apply (16)
not only to the surface itself, but to the corresponding quantity surface as well. In the
latter case, the surface needs to be rounded afterwards. If the sum of all the surface
elements differs from the initial one after such rounding by a small number ε, it is
permissible to add ε to the greatest element of the rounded surface.
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4.3 Inverse Goal Mapping Functions for Minimizing Microfile
Distortion

4.3.1 Inverse Goal Mapping Functions for Crisp Respondent Groups

Modifying the microfile in order to adjust it to the modified goal representation by
applying inverse goal mapping function implies introducing into it a certain level
of distortion, whose overall amount has to be minimized. In general, it is a good
practice to modify the microfile by applying the inverse goal mapping function to
the modified quantity signal (or surface), even when the goal representation is the
concentration signal (or surface). In this section, we will assume that the inverse goal
mapping function is applied to the modified quantity signal q∗.

To modify the microfile in order to adjust it to the modified quantity signal q∗, one
needs to alter values of the parameter attribute for certain respondents. To make sure
that the number of respondents in each parameter submicrofile remains the same,
respondents should be altered in pairs. One of the respondents in a pair has to belong
to the group G, whereas the other one has to lie outside the group. We call this
operation the swapping of the respondents between the submicrofiles (SRBS).

Let influential attributes [3] be the ones, whose distribution plays a great role for
researchers. To minimize overall microfile distortion, one needs to search for pairs of
respondents to swap between submicrofiles that are close to each other. To determine
how “close” respondents are, one can use the influential metric [3]:

InfM (u1, u2) =
nord∑
l=1

ωl

(
u1 (Il) − u2 (Il)

u1 (Il) + u2 (Il)

)2

+
nnom∑
k=1

γkχ
2 (u1 (Jk) , u2 (Jk)) , (17)

where Il stands for the lth ordinal influential attribute (their total number is nord );
Jk stands for the kth nominal influential attribute (their total number is nnom); u (·)
returns respondent u’s specified attribute value; χ (v1, v2) is equal to χ1 if values v1
and v2 fall into one category, and χ2 otherwise; ωl and γk are non-negative weighting
coefficients to be taken judging from the importance of a certain attribute (the more
important is the attribute, the greater is the coefficient).

To organize the process of the pairwise SRBS, let us introduce the notion of the
valence δi

k of the submicrofile Mi
k as a number, whose absolute value determines how

many respondents need to be added to or removed from the submicrofile, and whose
sign shows whether the respondents need to be added (negative valence) or removed
(positive valence) from the submicrofile. The valences of the vital submicrofiles
M(G)

k , k = 1, l p, are equal to the values of the so called difference signal

δ
(G) = q − q∗ . (18)

The valences of the non-vital submicrofiles M
(
G

)
k , k = 1, l p, are determined to

ensure that the number of respondents in each parameter submicrofile is the same:
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Table 3 The valence matrix
for anonymizing crisp
respondent groups

P1 P2 . . . Pl p

G δ
(G)
1 δ

(G)
2 . . . δ

(G)
l p

G δ

(
G

)
1 δ

(
G

)
2 . . . δ

(
G

)
l p

δ
(G) = (μk − qk) − (

μk − q∗
k

) = − δ
(G) , k = 1, l p . (19)

Valences of submicrofiles can be arranged into the valence matrix � (Table 3).
Performing the swapping is expressed with the help of the swapping cycle:

C = ((i1, j1) , (i1, j2) , (i2, j2) , (i2, j1)) , (20)

where (i1, j1) determines the positive valence of the vital submicrofile: Δi1 j1 > 0,
i1 = 1; (i1, j2) determines the negative valence of the vital submicrofile: Δi1 j2 < 0,
i1 = 1; (i2, j2) determines the positive valence of the non-vital submicrofile:
Δi2 j2 > 0, i2 = 2; (i2, j1) determines the negative valence of the non-vital sub-
microfile: Δi2 j1 < 0, i2 = 2; i1 �= i2, j1 �= j2. Cycle entries are called cycle
vertices.

To define the swapping cycle, it is sufficient to specify its first two vertices.
Respondents to be swapped over C have to belong to the submicrofiles with

positive valences and be close with respect to (17). The swap is a triplet

S = 〈C, I1, I2〉, (21)

where C is the cycle (20); I1 is the index of the respondent (the first candidate to
be swapped, FCS) in the vital submicrofile with the valence defined by the first C
vertex; I2 is the index of the respondent (the second candidate to be swapped, SCS)
in the non-vital submicrofile with the valence defined by the third C vertex.

The SRBS over C is interpreted as the transferring of the FCS from the submicro-
file defined by the vertex 1 to the one defined by the vertex 2, and the simultaneous
transferring of the SCS from the submicrofile defined by the vertex 3 to the one
defined by the vertex 4. After performing the SRBS according to S, one needs to
reduce by one Δi1 j1 and Δi2 j2 , and add one to Δi1 j2 and Δi2 j1 .

The cost of the swap c (S) is a value of (17) calculated for the FCS and SCS.
The task of modifying the microfile at the second stage of solving the TPGA lies
in determining such an ordered sequence of swaps called the swapping plan S =(
S1, . . . , Snswap

)
that satisfies two conditions:

1. After performing all the swaps, Δik = 0 ∀i = 1, r ∀k = 1, l p.
2. The overall cost of the swapping plan c (S) = ∑nswap

i=1 c (Si ) has to be minimal.

This task is the one that can be solved using only exhaustive search, so heuris-
tic strategies need to be developed for constructing the swapping plan that yields
results acceptable from both the computational complexity and the minimal swap-
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Table 4 The valence matrix
for anonymizing fuzzy
respondent groups

P1 P2 . . . Pl p

G̃�M̃1
δ

(
G̃�M̃1

)
1 δ

(
G̃�M̃1

)
2 . . . δ

(
G̃�M̃1

)
l p

. . . . . . . . . . . . . . .

G̃�M̃r
δ

(
G̃�M̃r

)
1 δ

(
G̃�M̃r

)
2 . . . δ

(
G̃�M̃r

)
l p

G̃�M̃0
δ

(
G̃�M̃0

)
1 δ

(
G̃�M̃0

)
2 . . . δ

(
G̃�M̃0

)
l p

ping plan cost points of view. Several strategies that meet these requirements have
been proposed in [26].

4.3.2 Inverse Goal Mapping Functions for Fuzzy Respondent Groups

In this section, we will assume that the inverse goal mapping function is applied to
the modified quantity surface Q∗.

The valences of the vital submicrofiles of different grades M

(
G̃�M̃s

)
k , k = 1, l p,

s = 1, r , are equal to the values of the so-called difference surface

δ
(G) = Q − Q∗ . (22)

Valences of non-vital submicrofiles M

(
G̃�M̃0

)
k , k = 1, l p, are determined to ensure

that the number of respondents in each parameter submicrofile is the same:

δ

(
G̃�M̃0

)
k =

(
μk −

r∑
i=1

Qik

)
−

(
μk −

r∑
i=1

Q∗
ik

)
, k = 1, l p . (23)

Valences of submicrofiles can be arranged into the valence matrix � (Table 4).
Because of the procedure for obtaining Q∗ using the two-dimensional WT

(Sect. 4.2.2), it is impossible to modify the microfile by performing only the
SRBS. However, it is possible to modify M by performing the transferring of the

respondents from one submicrofile M

(
G̃�M̃s1

)

k , s1 ≥ 0, to another M

(
G̃�M̃s2

)

k , s2 ≥ 0,

s1 �= s2. To transfer respondent u from M

(
G̃�M̃s1

)

k to M

(
G̃�M̃s2

)

k means to modify
its vital attributes values so that its membership grade in G̃ μG̃ (u) belongs to the
interval �M̃s2

. The interval �M̃0 may be viewed as the interval containing all the

values from [0, 1], which don’t belong to any other interval �M̃s , s = 1, r .
Performing the transferring is expressed with the help of the transferring cycle:
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CT = ((i1, j1) , (i2, j1)) , (24)

where (i1, j1) determines the negative valence of the submicrofile: Δi1 j1 < 0; (i2, j1)
determines the positive valence of the submicrofile: Δi2 j1 > 0; i1 �= i2.

We propose to determine the respondent to be transferred in the following way:

1. Randomly choose a respondent from the submicrofile defined by the first cycle
vertex (we will call this record the representative respondent, RR).

2. Choose the respondent from the submicrofile defined by the second vertex closest
to the RR with respect to (17) (we will call this respondent the candidate to be
transferred, CT).

We will perform the transferring of the CT by equating its vital attribute values
to the ones taken from the RR. The transfer can be represented as a triplet

T = 〈CT , I1, I2〉 , (25)

where CT is the cycle (24); I1 is the index of the RR; I2 is the index of the CT. After
performing the transferring according to T , one needs to reduce by one the absolute
values of Δi1 j1 and Δi2 j1 .

The cost of the transfer c (T ) is a value of (17) calculated for the RR and CT.
The task of modifying the microfile at the second stage of solving the TPGA can be
reduced to determining such an ordered sequence of transfers called the transferring
plan T = (

T1, . . . , Tntrans

)
that satisfies two conditions:

1. After performing all the transfers, Δi j = 0 ∀i = 1, r ∀ j = 1, l p.
2. The overall cost of the transferring plan c (T) = ∑ntrans

i=1 c (Ti ) has to be minimal.

It is possible to solve the TPGA by performing only transfers, but such approach
is not acceptable since it implies perturbing microfile records. We propose to reduce
the overall number of the transfers by performing the SRBS beforehand.

The overall number of the transfers to perform in the microfile M is equal to

Ntrans =
l p∑

j=1

(
1

2

r∑
i=1

∣∣Δi j
∣∣
)

. (26)

After performing the SRBS over the cycle with vertices 1 and 3 corresponding
to the positive valences in �, and the vertices 2 and 4 corresponding to the negative
ones, Ntrans is reduced by two. Such cycles are called the full swapping cycles (FSC).
We will denote them by CF . FSCs are analogous to the ones defined by (20). After
performing the SRBS over the cycle with vertices 1, 3, and 4 corresponding to the
positive valences in �, and the vertex 2 corresponding to the negative one, Ntrans is
reduced by one. Such cycles are called the partial swapping cycles (PSC):

CP = ((i1, j1) , (i1, j2) , (i2, j2) , (i2, j1)) , (27)
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where (i1, j1), (i2, j2), and (i2, j1) determine the positive valences of the submicro-
file: Δi1 j1 > 0, Δi2 j2 > 0, Δi2 j1 > 0; (i1, j2) determines the negative valence of the
submicrofile: Δi1 j2 < 0; i1 �= i2, j1 �= j2.

To define the swapping cycle, it is sufficient to specify its first three vertices.
Respondents to be swapped over FSC or PSC have to belong to the submicrofiles

with the positive valences and be close with respect to (17). The full swap can be
represented as a triplet

SF = 〈CF , I1F , I2F 〉 , (28)

where CF is the cycle (20); I1F is the index of the respondent (the first candidate to
be fully swapped, FCFS) from the vital submicrofile with the positive valence defined
by the first CF vertex; I2F is the index of the respondent (the second candidate to
be fully swapped, SCFS) from the non-vital submicrofile with the positive valence
defined by the third CF vertex.

The partial swap can be represented as a triplet

SP = 〈CP , I1P , I2P 〉 , (29)

where CP is the cycle (27); I1P is the index of the respondent (the first candidate to
be partially swapped, FCPS) from the submicrofile with the positive valence defined
by the first CP vertex; I2P is the index of the respondent (the second candidate to be
partially swapped, SCPS) from the submicrofile with the positive valence defined
by the third CP vertex.

The cost of the swap c (SF ) (c (SP )) is a value of (17) calculated for the FCFS
(FCPS) and SCFS (SCPS) from appropriate submicrofiles. The task of modifying
the microfile at the second stage of solving the TPGA for fuzzy respondent groups
lies in determining three ordered sequences:

1. The sequence of full swaps called the full swapping plan SF = (S1F , . . . ,

SnswapF

)
. The overall cost of the plan c (SF ) = ∑nswapF

i=1 c (Si F )has to be minimal.
After performing all the swaps from SF it is impossible to build full swapping
cycles.

2. The sequence of partial swaps called the partial swapping plan SP = (S1P , . . . ,

SnswapP

)
. The overall cost of the plan c (SP ) = ∑nswapP

i=1 c (SiP) has to be minimal.
After performing all the swaps from SP it is impossible to build partial swapping
cycles.

3. The transferring plan T = (
T1, . . . , Tntrans

)
that has to satisfy two conditions

expressed earlier.

The tasks of determining each of three plans are the ones that can be solved using
only exhaustive search, so heuristic strategies need to be developed for constructing
plans that yield results acceptable from both the computational complexity and the
minimal swapping plan cost points of view.

Let �(0) denote the initial valence matrix, which is obtained according to Table 4.
The generic scheme of all the heuristic strategies for determining the full swapping
plan boils down to performing the following steps:
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1. Equate the current valence matrix to the initial one; set i = 1. Perform steps 2–8
while it is possible to build full swapping cycles.

2. Assign �temp = �(i).
3. By analyzing �temp, choose the first vertex of CiF ; if it is impossible, stop.
4. Choose the FCFS from the submicrofile defined by the first CiF vertex.
5. By analyzing �temp, choose the second vertex of CiF ; if it is impossible, equate

�temp element corresponding to the first CiF vertex to zero and go to 3.
6. By analyzing �temp, choose the third vertex of CiF ; if it is impossible, equate

�temp element corresponding to the second CiF vertex to zero and go to 5; oth-
erwise, finish the cycle.

7. Choose the SCFS from the submicrofile defined by the third vertex, which is
closest to the first one with respect to (17).

8. Perform the swapping; obtain the current valence matrix �(i) by reducing by one
the absolute values of the valences from �(i−1) corresponding to the submicrofiles
defined by CiF ; set i = i + 1; go to 2.

All the strategies differ in particular implementations of steps 3, 4, 5, and 6.
Heuristic strategies for determining the partial swapping plans have the same

generic scheme, with several slight differences. Firstly, the first cycle vertex in the
case of the partial swapping plans does not necessarily represent the vital microfiles.
Secondly, analysis on steps 3, 5, and 6 is carried out using �(i−1), not �temp. In
addition, the initial valence matrix should be taken as the last current matrix obtained
after applying heuristic strategies for determining the full swapping plans.

Since the transferring of the respondents in a parameter submicrofile Mk , k ∈{
1, 2, . . . , l p

}
, does not depend on the transferring in any other parameter submicro-

file Ml , l �= k, let us discuss the strategies for determining the part of the transferring
plan T corresponding to the kth parameter submicrofile, k ∈ {

1, 2, . . . , l p
}
.

Let �
(0)
:k denote the initial valence matrix column k, which is the kth column of

the valence matrix obtained after performing all swaps. The scheme of the strategies
for determining the transferring plan boils down to performing such steps:

1. Equate the current valence matrix column k to the initial one; set i = 1. Perform
steps 2–6 while ∃l Δ

(i)
lk �= 0.

2. Choose the first vertex of the cycle CT .
3. Randomly choose the RR from the submicrofile defined by the first CT vertex.
4. Choose the second vertex of the cycle CT .
5. Choose the CT closest to the RR with respect to (17).
6. Perform the transferring of the CT; obtain the current valence matrix column k

�
(i)
:k by reducing by one the absolute values of the valences from �

(i−1)
:k corre-

sponding to the submicrofiles defined by CT ; set i = i + 1; go to 2.

All the strategies differ in particular implementations of steps 2 and 4. In this
chapter, we decided to use four heuristic strategies for determining swapping cycles
by choosing the following implementations of the steps 3, 4, 5, and 6:

1. On step 3, for strategies No. 1 and No. 2 we choose the microfile with the greatest
valence, for strategies No. 3 and No. 4—with the smallest one.
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2. On step 4, for all strategies we try out all the possible candidates, and choose the
one that guarantees the minimum values of (17) on step 8.

3. On step 5, for all strategies we try out all the possible vertices, and choose the
one that guarantees the minimum values of (17) on step 8.

4. On step 6, for strategies No. 1 and No. 3 we choose the third vertex from the
valence matrix row closest to the row with the first vertex, for strategies No. 2
and No. 4—the third vertex from the last valence matrix row, if possible, or from
the row closest to the row with the first vertex, otherwise.

We also chose the following implementations of the steps 2 and 4 of heuristic
strategies for determining transferring cycles:

1. On step 2, for strategies No. 1 and No. 2 we choose the microfile with the greatest
negative valence, for strategies No. 3 and No. 4—with the smallest negative one.

2. On step 4, for all strategies we try out all the possible vertices, and choose the
one that guarantees the minimum values of (17) on step 6.

4.4 Practical Results of Providing Anonymity for the Fuzzy Group
of Military Enlisted Members

To solve the TPGA for the group of military enlisted members (Sect. 3.2) at the
first stage, we need to obtain the modified concentration surface according to the
procedure described in Sect. 4.2.2. We chose the Daubechies tenth-order wavelet
decomposition filters [27] to perform WT. Applying (14) to C from Sect. 3.2, we
obtain the following approximation coefficients of the first decomposition level:

a1 =
(

0.016 0.019 0.007 0.022 0.021 0.019 0.018 0.015 0.019
0.029 0.033 0.018 0.037 0.035 0.031 0.031 0.030 0.030

)
.

As we recall from Sect. 3.2, there are extreme values in the first, second, and fifth
columns of C. One of the ways to mask them is to use such modified coefficients
(we present them with two decimal points due to space limitations):

ã1 =
(

54.72 −134.57 85.97 118.03 213.19 −106.42 −7.61 42.90 253.79
−7.71 113.88 227.45 −83.60 −15.03 28.54 280.46 28.82 −106.33

)
.

Applying the generalized version of (10), we obtain the new surface approximation
Ã1. By adding this approximation to the old surface details Dh1, Dv1, and Dd1
according to (15), we obtain the surface C̆. Since this surface contains negative

values, we apply to it (16) (γ =
∑4

i=1
∑18

j=1 Ci j

(4×18)
− min

(
C̆

)
), and obtain the modified

concentration surface C∗
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(
C∗)T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.001 0.008 0.017 0.010
0.004 0.010 0.019 0.012
0.011 0.014 0.018 0.015
0.013 0.011 0.008 0.011
0.015 0.008 0.000 0.007
0.021 0.013 0.003 0.011
0.024 0.018 0.011 0.017
0.015 0.014 0.013 0.014
0.004 0.009 0.014 0.010
0.001 0.010 0.021 0.012
0.004 0.013 0.024 0.015
0.008 0.012 0.016 0.012
0.012 0.009 0.006 0.009
0.017 0.010 0.001 0.008
0.019 0.012 0.004 0.011
0.020 0.015 0.009 0.014
0.017 0.016 0.016 0.016
0.008 0.013 0.018 0.014

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Its details are equal to the details of the initial surface C multiplied by the factor
of 11, 736.620, i.e. are modified proportionally, which totally suits our purposes of
preserving data utility.

Using the inverse of (4) with (5), we obtain the surface Q̆, applying (16) (with
γ = 0) with the subsequent rounding to which yields the modified surface Q∗:

(
Q∗)T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

7 64 134 77
35 103 186 118
98 125 159 131
136 113 85 108
358 197 0 161
198 122 28 104
152 115 70 107
714 673 622 664
143 317 531 356
7 93 199 113

34 112 207 129
64 97 137 104

100 75 46 70
177 105 16 88
195 125 40 110
439 337 212 314
479 466 450 463
351 541 772 584

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The sum of rows of C∗ is shown in Fig. 8 along with the superimposed quantity
signal q from Sect. 3.1 (to fit the scale, we once again normalized each of two vectors
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Fig. 8 The initial quantity signal (solid line) and the sum of the rows of the modified concentration
surface (dashed line) for the example

Table 5 Results of applying heuristic strategies to modifying the microfile

Strategy Cost of full and partial Cost of transferring

number swapping plans plan

1 1,931 14,466

2 2,112 14,306

3 1,931 14,535

4 2,116 14,347

by dividing them by their maximal values). As we can see, extreme values in the
first, second, and fifth signal elements have been successfully masked.

Now we need to modify the microfile in order to adjust it to the modified quantity
surface Q∗. To perform microfile modification according to Sect. 4.3.2, we took
microfile attributes “Sex,” “Age,” “Black of African American,” “Marital Status,”
“Educational Attainment,” “Citizenship Status,” “Person’s Total Income in 1999,”
and “Hours per Week in 1999” as the influential ones. For the sake of simplicity, we
considered every attribute to be nominal, and we assumed γk = 1 ∀k = 1, 8, χ1 = 1,
χ2 = 0. In this case, (17) shows the overall number of attribute values to be changed
in order to provide group anonymity.

The results of applying strategies No. 1–4 to the modified quantity surface are
presented in Table 5. Since there are 278,337 respondents that have a positive grade
of membership in the fuzzy group of the military enlisted members, and we took 8
influential attributes, we see that to provide anonymity we need to alter at most only
(1931+14535)
(8×278337)

= 0.007 of all microfile attribute values.
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5 Conclusion and Future Research

In the chapter, we showed that microfiles could be considered an important source
of information during cyber warfare. We proposed a generic approach to violating
anonymity of crisp and fuzzy groups of respondents, and illustrated the importance
of such problems with the real data based example concerning violating anonymity
of the fuzzy group of “respondents who can be considered military enlisted members
with the high level of confidence.” We showed that the group anonymity in this case
could be provided by modifying values of about 0.7 % of all the microfile attribute
values, which is an acceptable cost in most practical situations.

We believe the research can be continued in the direction of developing efficient
algorithms for the second stage of solving the TPGA, including evolutionary com-
putation methods. In addition, it is important to enhance the proposed method for
constructing FIS for defining fuzzy respondent groups by applying neural network
technologies for defining parameters of membership functions.

References

1. Gantz, J., Reinsel, D.: Big data, bigger digital shadows, and biggest growth in
the Far East. http://www.emc.com/leadership/digital-universe/iview/executive-summary-a-
universe-of.htm (2012)

2. Pfitzmann, A., Hansen, M.: A terminology for talking about privacy by data minimization:
anonymity, unlinkability, undetectability, unobservability, pseudonymity, and identity man-
agement, Version v0.34, http://dud.inf.tu-dresden.de/Anon_Terminology.shtml (2010)

3. Chertov, O., Tavrov, D.: Data group anonymity: general approach. Int. J. Comput. Sci. Inf.
Secur. 8(7), 1–8 (2010)

4. Chertov, O. (ed.): Group Methods of Data Processing. Lulu.com, Raleigh (2010)
5. Sweeney, L.: Computational Disclosure Control: A Primer on Data Privacy. Ph.D. thesis,

Massachusetts Institute of Technology, Cambridge (2001)
6. Evfimievski, A.: Randomization in privacy preserving data mining. ACM SIGKDD Explor.

Newslett. 4(2), 43–48 (2002)
7. Domingo-Ferrer, J., Mateo-Sanz, J.M.: Practical data-oriented microaggregation for statistical

disclosure control. IEEE Trans. Knowl. Data Eng. 14(1), 189–201 (2002)
8. Fienberg, S.E., McIntyre, J.: Data swapping: variations on a theme by Dalenius and Reiss. In:

Domingo-Ferrer, J., Torra, V. (eds.) Privacy in Statistical Databases, PSD 2004. LNCS, vol.
3050, pp. 14–29. Springer, Berlin (2004)

9. Wang, J., Zhong, W., Zhang, J.: NNMF-based factorization techniques for high-accuracy
privacy protection on non-negative-valued datasets. The 6th IEEE International Conference
on Data Mining Workshops. ICDM Workshops 2006, Hong Kong, December 2006, pp. 513–
517. IEEE Computer Society Press, Washington (2006)

10. Xu, S., Zhang, J., Han, D., Wang, J.: Singular value decomposition based data distortion
strategy for privacy protection. Knowl. Inf. Syst. 10(3), 383–397 (2006)

11. Liu, L., Wang, J., Zhang, J.: Wavelet-based data perturbation for simultaneous privacy-
preserving and statistics-preserving. In: 2008 IEEE International Conference on Data Mining
Workshops, Pisa, December 2008, pp. 27–35. IEEE Computer Society Press (2008)

12. National Institute of Statistics and Economic Studies. Minnesota Population Center. Inte-
grated Public Use Microdata Series, International: Version 6.2 [Machine-readable database].
University of Minnesota, Minneapolis, https://international.ipums.org/international/ (2013)

http://www.emc.com/leadership/digital-universe/iview/executive-summary-a-universe-of.htm
http://www.emc.com/leadership/digital-universe/iview/executive-summary-a-universe-of.htm
http://dud.inf.tu-dresden.de/Anon_Terminology.shtml
https://international.ipums.org/international/


114 O. Chertov and D. Tavrov

13. Nuclear Power in France, World Nuclear Association, http://www.world-nuclear.org/info/
inf40.html

14. Chertov, O., Tavrov, D.: Group anonymity. In: Hllermeier, E., Kruse, R., Hoffmann, F. (eds.)
Information Processing and Management of Uncertainty in Knowledge-Based Systems. Appli-
cations. CCIS, vol. 81, pp. 592–601. Springer, Berlin (2010)

15. Chertov, O., Tavrov, D.: Group anonymity: problems and solutions. Lviv Polytechnic Natl.
Univ. J. Info. Syst. Netw. 673, 3–15 (2010)

16. Chertov, O., Tavrov, D.: Providing data group anonymity using concentration differences.
Mathe. Mach. Syst. 3, 34–44 (2010)

17. Tishchenko, V., Mladientsev, M.: Dmitrii Ivanovich Miendielieiev, yego zhizn i dieiatielnost.
Univiersitietskii pieriod 1861–1890 gg. Nauka, Moskva (1993) (In Russian)

18. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning.
Inf. Sci. 8, 199–249 (1975)

19. Chertov, O., Tavrov, D.: Providing Group Anonymity Using Wavelet Transform. In: MacK-
innon, L.M. (ed.) Data Security and Security Data. LNCS, vol. 6121, pp. 25–36. Springer,
Berlin (2012)

20. Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller.
Int. J. Man-Mach. Stud. 7(1), 1–13 (1975)

21. Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice Hall,
Upper Saddle River (1995)

22. Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision
processes. IEEE Trans. Syst. Man Cybern. SMC-3(1), 28–44 (1973)

23. U. S. Census 2000. 5-Percent Public Use Microdata Sample Files, http://www.census.gov/
main/www/cen2000.html

24. Demographics. Profile of the Military Community. Office of the Deputy under Secretary of
Defense (Military Community and Family Policy), http://www.militaryonesource.mil/12038/
MOS/Reports/2011_Demographics_Report.pdf (2012)

25. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, New York (1999)
26. Chertov, O.R.: Minimizatsiia spotvoren pry formuvanni mikrofailu z zamaskovanymy danymy.

Visnyk Skhid-noukrainskoho Natsionalnoho Universytetu imeni Volodymyra Dalia, 8(179),
256–262 (2012) (In Ukrainian)

27. Daubechies, I.: Ten lectures on wavelets. Soc. Ind. Appl. Math. (1992)

http://www.world-nuclear.org/info/inf40.html
http://www.world-nuclear.org/info/inf40.html
http://www.census.gov/main/www/cen2000.html
http://www.census.gov/main/www/cen2000.html
http://www.militaryonesource.mil/12038/MOS/Reports/2011_Demographics_Report.pdf
http://www.militaryonesource.mil/12038/MOS/Reports/2011_Demographics_Report.pdf


Decision Support in Open Source Intelligence

Daniel Ortiz-Arroyo

Abstract This chapter describes a decision support system specially designed for
applications in open source intelligence. The decision support system was devel-
oped within the framework of the FP7 VIRTUOSO project. Firstly, we describe the
overall scope and architecture of the VIRTUOSO platform. Secondly, we describe
with detail some of most representative components of the DSS. The components
employ computational intelligence techniques such as knowledge representation,
soft-fusion and fuzzy logic. The DSS together with other tools developed for the
VIRTUOSO platform will help intelligence analysts to integrate diverse sources of
information, visualize them and have access to the knowledge extracted from these
sources. Finally, we describe some applications of decision support systems in cyber-
warfare.

1 Introduction

Decision support systems (DSS) comprise a set of computational tools whose purpose
is to support better decision making processes within organizations.

DSS allow decision makers to visualize, analyze, process and mine data of var-
ious types. Data is collected from a diversity of sources and integrated to create a
knowledge base repository. The knowledge base is then used by decision makers to
help them in reasoning about some possible scenarios.

DSS are increasingly used in a variety of fields such as business intelligence and
criminal intelligence. In the area of business intelligence, DSSs help companies to
asses their competitor’s position in the market, additionally to determining market
trends, and in planning future investments.

In criminal intelligence, DSS help intelligence agencies to tackle organized crime,
detect crime patterns and analyze the structure of criminal organizations.
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DSS have become more sophisticated in the internet era. The internet has eased
the communication and sharing of information by people, organizations and the IT
systems of companies. Moreover, social media is increasingly used by hundreds of
millions of people, including government, media and business organizations, but also
by organized crime.

The internet is used by traditional mass media for distributing news and infor-
mation in digital format. For instance, some of the most common sources are RSS
feeds, blogs, and specialized web portals that include video, audio and text about
events or persons.

The internet has also eased the distribution of specialized technologies. Computer
code be found on the internet that may be used to exploit the weaknesses of IT systems
and/or to perform malicious or criminal activities. The easy access to specialized code
has allowed hackers and organized crime to carry out cyber-attacks against specific
servers of government institutions or to the whole computer network of a country.
These attacks are carried out using a botnet of “zombies” computers distributed
around the world [1].

In the case of intelligence applications, traditionally, the data sources used to
track down organized crime were classified. Classified, secret data about individuals
or organizations is kept in secure data repositories isolated from the internet.

However, intelligence agencies have recognized the value that the information
publicly available on the web has in their investigations. In many criminal cases the
usage of social media by organized crime and its associates may leave intended or
unintended traces that can be collected for analysis [2].

Information collected from open sources on the web is being used not only in
criminal investigations but also in a variety of areas such as, situation monitoring
and assessment, and to produce early warnings of possible crisis.

The collection of methods used in collecting, managing and analyzing publicly
available data is called Open Source Intelligence (OSINT).

The data sources employed in OSINT are varied. Some of these data sources are
electronic media such as newspapers and magazines, web-based social media such as
social networks, or specialized web portals and blogs, public data from government
sources, professional and academic literature, geospatial data, scanned documents,
video and data streams, among the most common sources.

OSINT creates important technical, legal and ethical challenges. One of the main
technical challenges is to collect relevant meaningful information from reliable
sources, among the huge amount of data sources available on the web. This is a
critical issue since information may be of low reliability or bogus, obsolete, dupli-
cated and/or available only in certain languages. Information may be of different
types and being available in different formats.

Once reliable data sources are found, the relevant information contained in them
must be identified and extracted. The extraction of relevant information from a cor-
pora of documents is also technically challenging, because entities expressed in
natural language such as events, individuals, organization and places must be
recognized and disambiguated.



Decision Support in Open Source Intelligence 117

After the extraction process, information should be stored in knowledge bases, a
step that coverts raw information into knowledge. The knowledge stored in knowl-
edge bases is commonly represented in the form of ontologies and semantic networks.
These ontologies contain specialized and general domain knowledge about entities
such as type of crimes, individuals, organizations and events.

The knowledge bases allow analysts to reasoning about entities and their relation-
ships.

One important feature of DSS is their visualization tools. These tools allow the
analyst to look at summaries of data from different perspectives, using for instance
dashboards, graph viewers, maps, and plots of different types.

All the technical aspects that have been briefly described in previous paragraphs
are very important in DSSs for OSINT applications, but they are not the only chal-
lenge that must be addressed when such systems are developed.

There other non-technical challenges in OSINT are related to legal and ethical
aspects. In OSINT, relevant information must be collected in a way that respects the
privacy of individuals and a the same time, that does not violate the existing national
and international laws in this regard.

The collection of personal information about individuals and organizations from
the numerous open (and proprietary) sources on the internet has opened up the
possibility for using such data not only to target specific organizations but also for
mass surveillance purposes.1

This issue has created a debate on the ethical and legal aspects involved in the use
of OSINT-based technologies.

In the case of the VIRTUOSO project, these issues were addressed since the
inception of the project. One of the tasks continuously performed during the whole
development process of VIRTUOSO, was to make sure that privacy was respected
and that no laws (for instance copyright) were violated when collecting and storing
data.

The VIRTUOSO platform was developed and implemented, addressing all the
technical and ethical challenges described above.

As is described later in this chapter, VIRTUSO consists of several software com-
ponents The DSS in VIRTUOSO is one of the its key components. The DSS employs
computational intelligence techniques that allow analysts to reason under uncertainty,
represent and fuse knowledge, among other tasks.

This chapter describes the overall architecture of the VIRTUOSO system and the
main components that comprise VIRTUOSO’s DSS.

This chapter is organized as follows. Section 2 describes the architecture of the
VIRTUOSO platform. Section 3 describes some representative components of the
decision support system in VIRTUOSO. Section 4 describes some possible appli-
cations of decision support systems in cyberwarfare. Finally, Sect. 5 presents some
conclusions.

1 The recent revelations by E. Snowden about the mass surveillance programs deployed by US
intelligence agencies has revived the debate within Europe and in other parts of the world about
this issue.



118 D. Ortiz-Arroyo

2 VIRTUOSO’s Architecture

In summary, the goal of the VIRTUOSO project is to retrieving unstructured data
from open sources available on the web and converting it automatically into structured
actionable knowledge. To achieve this goal a flexible architecture for the whole
system was designed.

The architecture of VIRTUOSO is based on a Service Oriented Architecture
(SOA). SOA is a recommendation for how to structure component systems based
on web services. SOA was proposed to ease communicating, synchronizing and
integrating diverse software components that implement these services. This feature
was an extremely important issue in VIRTUOSO, because software components
could be developed by different partners participating in the project, using different
languages and technologies.

In VIRTUOSO the SOA model was implemented using the Weblab2 platform.
Weblab is a platform, whose main purpose is to build software systems specifically
for OSINT applications based on the SOA specification.

The architecture of VIRTUOSO consists of three main processing stages: (a) data
acquisition, (b) data processing, and (c) decision support. A special portal allows
users to configure and monitor the different processing stages.

In the data acquisition stage, data from unstructured open sources is retrieved
using web crawling techniques. Web crawlers acquire different types of data from a
wide diversity of sites on the web i.e. electronic-text data, multimedia content, and
even from scanned papers. These multiple types of data come from web sites, blogs,
tweets, RSS feeds, trends, video streaming sites, and paper documents.

Regarding electronic-text data, at the current state of the project more than 500,000
documents are processed every day, written in 39 different languages from 188
countries. These documents are retrieved from 28,000 open sources.

The data acquisition stage is continuously connected to the Internet to retrieve
all relevant data. Additionally, at this stage some pre-processing is performed. For
instance, normalization, object recognition, entity naming, event extraction, image
and video classification, source assessment, and speech recognition.

Normalization of different types of media and documents is performed by repre-
senting them in a single XML based format that contains pointers to the real location
of data. The source assessment stage attempts to evaluate the reliability of a data
source.

The number of pre-processing steps performed by VIRTUOSO platform can be
configured.

After the pre-processing stage, a special data repository is created, containing all
the results of all pre-processing steps that may have been performed.

Both, the data acquisition and preprocessing stages were implemented by inte-
grating all its components on the SOA model. Figure 1 shows the SOA platform with
the tree main processing stages of VIRTUOSO together with the crawlers required
to download data from open sources on the web.

2 Weblab is available at weblab-project.org.
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Fig. 1 Data acquisition, preprocessing and data repository

Contrarily, the data processing stage of VIRTUOSO is not connected directly to
the internet. This is mainly done for security reasons.

The data processing stage contains several components, among which are: a full
text and multimedia search engine, a summarization component, automatic transla-
tion of documents, determination of document similarity, and query translation.

The knowledge base is one of the key components in VIRTUOSO. The knowledge
base is created apriori with general domain knowledge and is updated with knowledge
extracted in the data pre-processing stage.

To being able to use the data repository created in the pre-processing stage, an
import/export component is available at the processing stage. During importing, data
may be manually or semi-manually validated to ensure that no irrelevant or dubious
data is introduced in the knowledge base.

3 The Decision Support System

The decision support system of VIRTUOSO is one of its key components. The pur-
pose of the DSS is to provide intelligence analysts with a set of software components
that can be used to extract and store knowledge and to visualize, analyze, process
and mine data of various types.

One of the main benefits of using DSS in applications such as VIRTUOSO is
to improve the decision making process of analysts in making more informed and
effective decisions. For instance, DSS provide analysts with apriori knowledge about
certain types of crimes and organizations. Using this knowledge, and the data avail-
able for a current situation or event, analysts can look a different views of the data
and look for patterns and trends that may help them to asses the importance of the
situation or event. Analysts can also look at how participants in an event are related
to each other (i.e. their social network) to determine how important these individuals
are within the social network.
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Fig. 2 Data processing, knowledge base and decision support system

However, given that domain scenarios for criminal investigations are different,
expert analysts must decide which components of a DSS should be applied in each
particular case.

VIRTUOSO’s decision support system consists of a variety of software compo-
nents. Figure 2 shows a high level view of the data processing and decision support
components of VIRTUOSO on the SOA platform.

The portal allows users to interact with the DSS. The knowledge base stores
apriori knowledge in the form of ontologies and knowledge extracted from open
source documents. The knowledge base is also part of the decision support system
contained in VIRTUOSO. The data processing stage and the decision support system,
share the same SOA-based Weblab infrastructure.

Some of the components that are part of the processing stage in the DSS, can be
applied to process documents, directly to data or to both data and documents. For
instance, the components that can be applied to documents are: metadata viewer,
source assessment, geographical search, multimedia and text search, trend analysis,
social media topic, sentiment monitor and semantic search.

The components that can be applied to data are: graph viewer, tabular viewer,
graphical SPARQL querying, rule editor, entity editor, similarity of entities, similarity
of strings, semantic analysis, and social network analysis component.

Finally, the components that can be applied to both data and documents are:
dashboard visualization, knowledge browser, centipede and traceability component.

All these components allow the analyst to perform a wide variety of tasks, from
querying semantic knowledge bases, to the visualization and processing of different
types of graphs, data and documents. Some of the software components available
in VIRTUOSO’s decision support system are not used directly by the analyst, but
instead, they provide services to other components in the system.

All the components work seamlessly together on Weblab’s SOA platform.
Due to the wide variety of components that are available in the DSS of VIR-

TUOSO, it is not possible to describe all of them in detail. Thus, in the rest of the
chapter we will describe a few of the most representative components in the DSS.
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The documentation of the VIRTUOSO project contains a detailed description of the
rest of the components [3] that were briefly mentioned in previous paragraphs.

3.1 Knowledge Base, Fusion and Uncertainty Management

One of the key components in VIRTUOSO’s DSS is its knowledge base. The knowl-
edge base comprises ontological knowledge (conceptual and geographic) and oper-
ational knowledge (factual).

The ontological knowledge consists of the known existing relationships among
the concepts employed in the intelligence domain. The knowledge base contains
several ontologies about general knowledge and specialized knowledge about the
domains of criminal and intelligence analysis.

Ontological knowledge is represented as triples in the form (predicate, subject,
object) or (p,s,o) for short, as specified in the resource description framework (RDF)
schema. Internally the knowledge base employs a slightly different format based on
RDF.

Semantic knowledge in VIRTUOSO may be introduced in the knowledge base
either manually for highly specialized domains or in an automatic or semiautomatic
way for other types of domains. For instance, part of the ontological knowledge
included in VIRTUOSO is imported from existing ontology resources. However, to
use these or other existing ontology resources a process of semantic disambiguation
and fusion of information is performed.

The fusion component in VIRTUOSO merges two graph structures, using an oper-
ation called “maximal joint”. This method was originally proposed to fuse conceptual
graphs in [4]. However, in VIRTUOSO the maximal joint heuristic was applied to
semantic graphs.

The joint operation was divided into two parts. First, the compatibility of the two
elements to fuse is evaluated. Two entity nodes are considered compatible if the
type of entity is the same (e.g. person, location) and if a high proportion of entities’
properties is similar. The similarity measure that will be applied depends on the type
of properties that entities may have.

In VIRTUOSO the nodes in the graph structures correspond to entities that have
properties defined as strings of characters or numbers.

The similarity of string properties, like names for instance, was evaluated using
Levensthein string edit distance. This distance basically evaluates how many inser-
tions or deletions of characters are needed to convert one string into the other.

For numerical properties, the similarity was calculated using several techniques.
For instance, in the case of date properties the number of days between the two dates
was used as the distance. For other types of numerical properties the similarity was
evaluated using the following equation:

simnum(β, x, y) = e
β(x−y)2

β−1 (1)
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where β represents the sensibility of the measure to the distance between two similar
numerical values x and y.

Two entities were considered compatible if the similarity value of the numerical
and string properties was above certain threshold value.

Once the similarity between entities was determined, the maximal join operation
was used to fused the sub graphs of two distinct but compatible graphs using the
following method. Nodes determined as being compatible were fused, creating an
extended graph that included the sub-graphs of the two compatible nodes. This pro-
cedure was repeated recursively in each node of the subgraphs until incompatibilities
were found.

The operational knowledge contained in the knowledge base consists of informa-
tion extracted from the open sources. The basic entities available in the knowledge
base are physical entities (e.g., persons, vehicles), legal entities (e.g., organizations),
non-physical entities (e.g., phone number), and event entities (meeting, travel).

The knowledge base contains also various types of metadata, such as time depen-
dencies, validity (or certainty), sensitivity, confidentiality, and provenance informa-
tion (to being able to trace back to the sources).

To manage uncertainty the RDF triples in the knowledge base were extended by
adding an extra parameter β that depending on the entity and type of uncertainty may
represent a probability distribution or a possibility distribution. RDF triplets stored
in the knowledge base were represented as {(predicate, subject, object),β}, using
that information.

3.2 Social Network Analysis Component

Social Network Analysis (SNA) comprises the study of relations, ties, patterns of
communication and behavioral performance within social groups. In SNA, a social
network is commonly modeled by a graph composed of nodes and edges. The nodes
in the graph represent social actors and the links the relationship or ties between
them [5].

Since criminal organizations are also a form of social network, they can be rep-
resented as graphs in the user interface of VIRTUOSO. The nodes in the graph
are the individual members of an organization and the links represent their known
relationships. In general, the relationships may be the known connections between
individuals (e.g. friendship) or they may represent the structure of command within
an organization. These connections may be manually introduced in the network or
extracted autoamatically from a document collection and stored in the knowledge
base.

In SNA, multiple metrics have been proposed that aim at evaluating the importance
of each of the nodes within a social network. One of the most important metrics
in SNA is centrality [6, 7]. Centrality describes a member’s relative position or
importance within the context of his/her social network.
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One of the applications of the centrality measures that are commonly used in
SNA is to discover key players [8]. Key players are these nodes in the network that
are considered “important” in regard to some criteria, such as the number of its
connections (i.e. the degree of a node), their importance regarding the diffusion of
information, their influence on the network, etc.

To process social networks, the SNA component in VIRTUOSO employs some
of the most popular centrality measures used in SNA such as degree, betweenness,
closeness, and eigenvector centrality [9].

In each particular case, the expert analyst must decide which centrality measure
should be applied. However, it is also possible that the analyst may be interested in
evaluating the overall importance of a group of nodes according to several centrality
criteria. In this case, VIRTUOSO will be able to calculate an aggregated centrality
value using all or some of the centrality measures available in the SNA component.

The aggregation of centrality measures may be also useful when the analyst is not
sure about which centrality measure should be used.

To perform the aggregation, the SNA component in VIRTUOSO employs an
ordered weighted aggregation (OWA) operator [10]. The OWA operator is defined
as:

hw(a1, a2, ... , an) = w1b1 + w2b2, ... + wnbn (2)

where wi ∈ [0, 1] are the weights and
∑n

i=1 wi = 1, (b1, b2, ... , bn) is a permutation
of the vector (a1, a2, ... , an) in which the elements are ordered bi ≥ bj if i < j for
any i, j.

The weights used in the OWA operator are normally calculated by stating first
what is andness value that is expected from the operator. The andness value of the
OWA operator is defined in terms of the weights of the operator as:

Andness(w) = 1 − α = 1 − 1

n − 1

n∑
i=1

wi(n − i), α ∈ [0, 1] (3)

where α is the orness value. This andness value represents how close the OWA
operator behaves as a fuzzy and operator i.e. how close the resulting aggregation
value is to the fuzzy AND (minimum) value produced by all the centrality measures.
For instance, with andness value of 1 the weights of the OWA will be (1,0, ... ,0),
which will produce the minimum value in the aggregation. With an andness value
of 0.5 all weights will be 1/n and the OWA will calculate the average value of all its
inputs.

When OWA operators are used, expert knowledge about a problem domain is
used to decide the most appropriate andness value. In the prototype of the SNA
component, weight values of (0.1, 0.15, 0.25, 0.5) were assigned by default to the
OWA operator. These weights produced an andness value of 0.71. Hence, this default
centrality measure produced by the OWA operator will be a value that lies between
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the average centrality of all the measures and the minimum value produced by all of
them.

One of the issues of OWA operators, is that very different values in the weights may
produce the same andness value. This is an important issue that must be considered
when OWA operators are used in decision making systems and other applications. In
decision making problems we normally want to aggregate all the input values in such
a way that all of them contribute to the final decision and not just a few of them or in
extreme cases only one. Therefore, one desirable feature of an OWA operator is to
get maximum dispersion in the weight values. The weight’s dispersion measures the
degree with which every input contributes to produce the output of an OWA operator,
and is defined as:

disp(w) = −
n∑

i=1

wiln(wi) (4)

In the case of the SNA component the weight dispersion obtained by using the
default weight values was 1.20. In general, finding the weight values for an OWA
operator is considered as an optimization problem, in which we want to get maximum
weight dispersion for a specific andness value of interest between [0, 1], subjected
to the restriction that the sum of all weights should we 1. This optimization problem
has been addressed by other aggregation operators. An example is the maximum
entropy OWA (MEOWA) operator [11] that employs Lagrange multipliers to solve
the constrained optimization problem.

Other operators like andness-directed multiplicative or implicative weighted
aggregation (AMWA or AIWA) operators [12] attempt to aggregate the importance
that each input has. All these operators have been also implemented in the SNA
component in VIRTUOSO. Thus, the analyst could experiment by aggregating the
different centrality measures with different operators to see what is their effect.

It must be noted that for some specific constant values of andness, it is possible
to use some of the analytical expressions described in [13] to calculate the weights
used in the OWA operator. As is described in [13] these expressions provide good
dispersion values in the weights’ distribution. For instance for an andness =2/3
=0.66 we could use the following equation to calculate each of the n weights used
in the OWA operator:

wi = 2i

n(n + 1)
(5)

using this expression, the OWA weights will be (2 ∗ 1/(4 ∗ 5) = 0.1, 2 ∗ 2/20 =
0.2, 2 ∗ 3/20 = 0.3, 2 ∗ 4/20 = 0.4) = (0.1, 0.2, 0.3, 0.4), which have a weight
dispersion of 1.28 and whose values are close to the values produced by the andness
of 0.71 used by default in the SNA component.

The application of the OWA, MEOWA or AMWA operators allows the analyst
to use all the centrality measures available at once, in such a way that each one
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contributes partially to the overall calculation of the centrality of every node in the
network.

The SNA component can be used used in two different ways in VIRTUOSO. One
way is as a REST web service that receives HTTP/POST requests containing the
description of the social network to be analyzed. This description is provided in a
standard format such as graphml.3 The output of the service is the calculation of the
desired centralities for each node in the network. These values are returned in JSON
format encoding.

It is also possible to use the SNA component functionality integrated as a portlet4

within the weblab platform.

4 Decision Support Systems and Cyber-Warfare

The service oriented-based architecture (SOA) of VIRTUOSO allows to reuse some
of its software components to create decision support systems that could be applied
in other domains such as cyber-warfare.

Recent studies have found that some cyber attacks have been performed when the
computer passwords of certain employees that work in companies or government
agencies have been guessed correctly by attackers. To do this, attackers analyze per-
sonal data posted by these employees in social media, to learn about the employee’s
social network [14] connections.

The employee’s social network is then used to gain access to some of the acquain-
tances’ computers that are less secure. Once this is done, attackers may use a
spearpishing attack, which consists in sending emails to the employee from one of
his/her colleagues or friends’ email accounts. The email sent may include computer
code hidden in apparently harmless attachments that is used to guess the employee’s
password in other computer systems or to determine the answer to certain security
questions asked by systems with restricted access.

In this scenario, it may be possible to use VIRTUOSO’s DSS to gather data from
social media about an employee and its social network. The social network obtained
in this way can be analyzed to determine how much public data may be available
about an employee and his/her acquaintances. Such data may be used to determine
how vulnerable certain employees may be to spearphising attacks.

The other area where some of VIRTUOSO’s DSS components could be applied,
is in the area of cognitive models of decision making for cyber defense. Specifically
in designing and applying cyber security ontologies and in scenario ontologies, in
a way similar as it is described in [14]. The knowledge base in VIRTUOSO may
be used to store these ontologies, together with knowledge extracted from closed or
open sources. This knowledge could help analysts to reason about possible cyber
attacks.

3 graphml is an XML-based format used to represent graphs or networks.
4 portlets are pluggable user interface components that are managed by web portals.
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5 Conclusion

VIRTUOSO provides a large collection of software components that help analysts
to process and visualize a large collection of open source data of various types.

These components together with the decision support system and its knowledge
base, will help analysts to reason more easily about a particular scenario.

VIRTUOSO is a complex system consisting of many software components. We
have described just a few of them and its features.

At the current stage, the decision support system and all the tools developed in
VIRTUOSO have been tested on a few scenarios and a final presentation on the results
of the project has been performed for the reviewers of the European commission in
charge of assessing the final results of the project.

At the time of writing this chapter, most of the software components available in
VIRTUOSO are at pre-release state.

One of the challenges of complex software systems like VIRTUOSO, is to use
them in the most effective way. VIRTUOSO requires a group of IT specialists, admin-
istrators and analysts that could manage the data sources, maintain the knowledge
base, define the most relevant scenarios, and analyze the results provided by the
system.

The final report on the VIRTUOSO project included some recommendations in
this regard. However, the procedures employed and the type organization that may
be needed to use effectively the whole system must be tailored to fit each specific.

As part of the project, it is planned that a demonstrator of the VIRTUOSO plat-
form will be installed at Aalborg University campus Esbjerg in Denmark. When this
happens, interested parties within the European Union will be allowed to use the
demonstrator and experiment with the system to asses its functionality.
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Information Fusion Process Design Issues
for Hard and Soft Information: Developing
an Initial Prototype

James Llinas

1 Introduction

The Data and Information Fusion (DIF) process can be argued to have three main
functions: Common Referencing (CR) (also known as “Alignment”), Data Associa-
tion (DA), and State Estimation, as shown in Fig. 1:

It can be argued that any DIF process can be architected as a network of such nodes
(see [1]). In Fig. 1, we have either data or estimates (from a prior Fusion Node) enter-
ing this process. Data Alignment or CR is a function that transforms all input data
to a common format and also, importantly, a common semantic framework. DA is a
function that associates the evidence from multiple sources to asserted entities in the
domain of interest; such entities can be not only physical objects but events, behav-
iors, situational substructures, etc. DA involves accounting for sensor and estimation
errors, and also for semantic differences and similarities; the idea is to assemble and
partition evidential sets of information so that subsequent inferencing and estima-
tion processes are applied to the most robust collections of evidence about any such
entity. DA comprises the three operations shown of Hypothesis Generation (defin-
ing feasible associations), Hypothesis Evaluation (a strategy for scoring inter-entity
associability of the collective evidence), and Hypothesis Selection (typically some
type of optimization scheme to define the best associations of all that are feasible and
of higher scores). At this point, there is thus a set of entity-evidence groupings (evi-
dence “assigned” to a given entity), and the assigned evidence is passed to whatever
estimation process is at work on the given entity for next-time-increment processing.
State Estimation (SE) follows, with various inferencing or estimation methods oper-
ating on these aligned and associated evidential sets. By a far greater proportion, the
DIF research and development community has applied such techniques to evidential
data coming from modern electromechanical sensors, i.e., what some call “physics-
based” sensors. In the military/defense domains, these are the modern sensors used
for Intelligence, Surveillance, and Reconnaissance (ISR) applications, ranging from
satellite-based sensor systems to embedded, Unattended Ground Sensors (UGS’s). In
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Fig. 1 Nominal fusion node processes

these cases, the designer of automated CR-DA-SE DIF operations enjoys the benefits
of dealing with input sources that are well-calibrated and understood, and largely if
not exclusively (in raw form at least) numerical. Data from such sources has come
to be called “hard” data in the sense of these well-understood properties. For the
type of operations involving traditional military engagements, where ISR must be
conducted covertly and at a distance, the use of such ISR sensors and hard data has
worked reasonably well.

However, subsequent to the end of the Cold War, the nature of defense and military
operations has changed dramatically, from so-called “conventional” operations to
what today are called “irregular” and “asymmetric” operations. These environments
are characterized by a number of complicating features:

• They can be quite complex, involving terrorist, criminal, insurgent, and warfighting
mixed operations

• They typically have no clearly defined or identifiable adversaries
• Hostiles/adversaries are mixed in with neutral, friendly persons or forces
• The goals involve not only destructive goals (“kinetic” actions) but establishment

of influence and indirect effects

among other factors; such definitions are controversial and it is not our intent to be
precise here but to give a flavor for these distinctions. Some of the other subtleties of
these environments are that there are now improved data sources to better understand
an “enemy” (a first principle of warfare), not only from a military point of view but
from a socio-cultural point of view. Further, as noted above, friendly forces are often
embedded in certain of these environments, which permits direct and close obser-
vation by these forces (humans, not sensors). Experiences in Iraq and Afghanistan
and other places in the world in dealing with intelligence and security problems
are typical of these new problems, and have required the (ongoing) formulation of
new paradigms of intelligence analysis and dynamic decision-making. Broadly, these
problems fall into the categories of counter-terrorism and counter-insurgency (COIN)
as well as stability operations. Depending on the phases of counter-insurgency or
other operations, the nature of decision-making ranges from conventional military-
like to socio-political (sometimes also characterized as “hard” and “soft” decisions).
Because of this wide spectrum of action, the nature of information support required
for analysis has an equally wide range. Since automated DIF processes provide
some of the support to such decision-making, requirements for DIF process design
must address these varying requirements, resulting in considerable challenges in DIF
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process design. One important driving factor for DIF process design is the new het-
erogeneity of the information supportive of DIF process design; these factors are
discussed in the Sect. 2.

2 Heterogeneity of Supporting Information

2.1 Observational Data

As remarked above, the experiences in Iraq and Afghanistan, and in other similar
involvements have also shown that some of the key observational and intelligence
data in such operations comes not only from traditional sensor systems but from
dismounted soldiers or other human observers reporting on their patrol activities.
These data are naturally communicated in language in the form of various military
and intelligence reports and messages. Such data, in textual, linguistic form, are
entirely different than hard sensor data, as they are much more ambiguous, yet they
can also be much more semantically rich; they are “soft” data in the sense that they
are both largely uncalibrated and their content is much harder to fully understand
(deep understanding begs the age-old challenge of forming automated methods for
natural language understanding). Such “Soft” data finds its way into DIF processes
as both structured and unstructured digitized text, and this input modality creates new
challenges to DIF process designs, contrasted with more traditional DIF applications
involving the use of highly-calibrated, numerically precise observational data from
sensors. Combined with the data from the usual repertoire of “hard” or sensor data
from various radio frequency (RF) sensors, video and other imaging systems, as well
as SIGINT and satellite imagery, the observational data stream is a composite of data
of highly different quality, sampling rates, content, and structure.

One main deficiency and critical path is on the soft data/human observation side,
since it is generally agreed that DIF for observational data provided by hard, physical-
science type sensors is much more mature; some have in fact argued that capabilities
for Level 1 Fusion with hard data input is rather mature and that limited research
investments should be made in this area. Although additional hard/Level 1 fusion
research remains to be done, we generally concur with these judgments and believe
that the first requirement is to define and prototype a viable processing paradigm
for soft data fusion both for single and multiple input streams, so that the critical
pre-estimation functions of Common Referencing and DA can be constructed. If we
examine a notional processing diagram for multiple streams of human observational
data expressed in linguistic terms (this is just one category of soft data), we envision
something like the process in Fig. 2 (this is similar to a prototype of this process we
have developed at our research center [2]):

In this depiction, each human observer processes the energy received from their
sensing capability into a Perception-Cognition cycle, and a mental process judges
how to express the observation in language (Linguistic Framing), resulting in a
linguistic utterance, and the chosen instance of language. This utterance may be
audio and need to be converted to digital text, and then formed into a message (that
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Fig. 2 Notional multi-message-stream soft data fusion process

may be sent over network communications channels, not shown). Today, the received
message is typically parsed by a state-of-the-art Text Extractor, yielding for example
RDF Triples of Subject-Verb-Object phrases, or some other representation (see [3]
for the “propositional graph” approach we are using in our research). In virtually
every military application, the message stream and/or the triples would be filtered
through a human observer who functions as a first-level Quality Control process.
Each filtered triples stream then comprises the raw data input into a downstream
Data Fusion process. The meta-data (time-tags, uncertainty, etc) and the semantic
content of these triples need to be framed in a normalized way by processing through
the CR function, and then associated to determine if they relate to the same Entity
in the true, unknown world, so that multisource, fusion-based estimation processes
can exploit their informational content.

2.2 Open Source and Social Media Data

Soft or Hard data can also find its way into modern DIF processes in the form of
monitored Open Source and Social Media feeds such as newswire feeds, Twitter and
Blog sources judged to be possibly helpful. Getting such data into a DIF system
will require automated web crawlers and related capabilities, and subsequent nat-
ural language processing capabilities, as much of these data are also represented in
language.

2.3 Contextual Data

Modern problems also afford (and demand) the use of additional data and information
beyond just observational data. A major category of such data and information is
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Contextual Information. Contextual Information is that information that can be said
to “surround” a situation of interest in the world (many definitions and character-
izations exist but we will not address such issues here). It is information that aids
in understanding the (estimated) situation and also aids in reacting to the situation,
if a reaction is required. Contextual Information can be relatively or fully static or
can be dynamic, possibly changing along the same timeline as the situation (e.g.,
weather). It is also likely that the full characterization and specification of Contextual
Information may not be able to be known at system/algorithm design time, except
in very closed worlds. Thus, we envision an “a priori” framework of exploitation of
Contextual Information that attempts to account for the effects on situational esti-
mation of that Contextual Information (CI henceforth) that is known at design time.
Even if such effects are known at design time, there is a question of the ease or
difficulty involved in integrating CI effects into a fusion system design or into any
algorithm designs. This issue is influenced in part by the nature of the CI and the
manner of its native representation, e.g., as numeric or symbolic, and the nature of the
corresponding algorithm; for example, cases can arise that involve integrating sym-
bolic CI into a numeric algorithm. Strategies for a priori exploitation of CI may thus
require the invention of new hybrid methods that incorporate whatever information
an algorithm normally employs in estimation (usually observational data) with an
adjunct CI exploitation process. Note too that CI may, like observational data, have
errors and inconsistencies itself, and accommodation of such errors is a consideration
for hybrid algorithm design. Similarly, we envision the need for an “a posteriori”
CI exploitation process, due to at least two factors: (1) that all relevant CI may not
be able to be known at system/algorithm design time, and may have to be searched
for and discovered at runtime, as a function of the current situation estimate, and
(2) that such CI may not be of a type that was integrated into the system/algorithm
designs at design time and so may not be able to be easily integrated into the situation
estimation process. In this case then we envision that at least part of the job of poste-
riori CI exploitation would involve checking the consistency of a current situational
hypothesis with the newly-discovered (and situationally-relevant) CI. There are yet
other system engineering issues. The first is the question of accessibility; CI must
be accessible in order to use it, but accessibility may not be a straightforward matter
in all cases. One question is whether the most-current CI is available; another may
be that some CI is controlled or secure and may have limited availability. The other
question is one of representational form. CI data can be expected to be of a type that
has been created by “native” users; for example, weather data, important in many
fusion applications as CI, is generated by meteorologists, for meteorologists (not
for fusion system designers). Thus, even if these data are available, there is likely
to be a need for a “middleware” layer that incorporates some logic and algorithms
to both sample these data and shape them into a form suitable for use in fusion
processes. In even simpler cases, this middleware may be required to reformat the
data from some native form to a useable form. In spite of some a priori mapping of
how CI influences or constrains the way in which situational inferences or estimates
can be developed, which may serve certain environments, the defense and security
type applications, with their various dynamic and uncertain types of CI, demand a
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more adaptive approach. Given a nominated situational hypothesis Hf from a fusion
process or “engine”, the first question is: what CI type information is relevant to this
hypothesis? Relevant CI is only that information that influences our interpretation
or understanding of Hf. Presuming a “relevancy filter” can be crafted, a search func-
tion would explore the available CI and make this CI available to an “posteriori”
reasoning engine. That reasoning engine would then use: (1) a CI-guided subset of
Domain Knowledge, and (2) the retrieved CI to reason over Hf to first determine
consistency of Hf with the relevant CI. If it is inconsistent, then some type of adju-
dication logic will need to be applied to reconcile this inconsistency between: (1)
the fusion process that produced Hf and (2) the posteriori reasoning process that
judges it as inconsistent. If however Hf is judged as consistent with the additional
CI, an expanded interpretation of Hf could be developed, providing a deeper sit-
uational understanding. This overall process, which can be considered a “Process
Refinement” operation, would be a so-called “Level 4” process in the context of the
JDL Data Fusion Process Model (see [1]), that is, as an adaptive operation for fusion
process enhancement. The overall ideas discussed here are elaborated in [4].

2.4 Ontological Data

DIF processes and algorithms have historically been developed in a framework that
has assumed the a priori availability of a reliable body of procedural and dynamic
knowledge about the problem domain; that is, knowledge that supports a more direct
approach to temporal reasoning about the unfolding patterns of interest in the prob-
lem domain. In COIN and other complex problems, such a priori and reliable knowl-
edge is most often not available—the Tactics, Techniques and Procedures (“TTP’s”)
of modern-day adversaries are highly adaptive and extremely hard to model with
confidence. The US DARPA COMPOEX Program [5] attempted to develop such
models but only achieved partial success, experiencing gaps in the overall modeling
space of such desired behavioral models. We label these types of problems as “weak
knowledge” problems, implying that only fragmentary a priori behavioral model type
knowledge is available to aid in DIF based reasoning, inferencing, and estimation.

Ontological information however, that does not attempt to overtly form such
comprehensive behavioral and temporal models but does include temporal prim-
itives along with structural/syntactic relations among entities, can be specified a
priori with reasonably good confidence, and thus provides a declarative knowledge
base to support DIF reasoning and estimation. Note that such knowledge is also
represented in language and is available as digital text, in the same way as data
from messages, documents, Twitter, etc. The use of ontological information in DIF
systems can be varied; ontological information can augment observed data, can aid
in asserting possible relationships, help in directing search and also in sensor man-
agement (to acquire expected information based on ontological relations), and yet
other ways. Importantly, specified ontologies can also serve as providing consistent
and grounded semantic terminology for any given system. In our current research,
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we employ ontologies primarily for augmenting observational data with asserted
ontological data whose relevance is algorithmically determined using “spreading
activation” and then integrated to enrich the evidential basis for reasoning [6]. The
broader implications of ontologies for intelligence analysis are described in [7],
that comes from our university’s National Center for Ontological Research (see
http://ncorwiki.buffalo.edu/index.php/Main_Page).

2.5 Learned Information

Finally, there is the class of information that could be learned (online) from all of
the above sources if the DIF process is designed with a Data Mining/Inductive or
Abductive Learning functional component. Very little research and prototyping of
such dual-inferencing-process type DIF systems has been done although the concep-
tualization of such DIF schemes and architectures has been put forward some time
ago by Waltz (e.g., [8]), as shown in Fig. 2. Any DIF system that incorporates such
dual-inferencing schemes will encounter the challenge of knowledge management;
whether and how any runtime learned knowledge gets integrated into runtime oper-
ations, or gets saved for later operations, or any other scheme for employment of
learned knowledge is a challenge for storing, managing, and integrating that knowl-
edge. The runtime integration of learned information raises a number of both algo-
rithmic issues as well as architectural issues. For example, if meaningful patterns
of behavior can be learned and can be measured/judged as persistent or enduring,
such patterns could be incorporated in a dynamically-modifiable knowledge base to
be reused. In Fig. 3, Waltz shows that the management of such knowledge evolving
from what he calls Data Mining operations is handled by the “Level 4”, process
refinement function of the traditional JDL DIF process.

Such learning processes will also not be perfect and have some uncertainty that
also needs to be factored into the traditional CR and DA functions of the target fusion
process.

The heterogeneity of data and information as just described also creates new
challenges and complexities for the traditional functions of DIF as depicted in Fig. 1.
In the next section, we address the impacts of these modern defense/security problems
and of data heterogeneity on the DIF functions of Data Alignment or Common
Referencing, and on DA.

3 Common Referencing and Data Association

As pointed out in Fig. 1, CR is that traditional DIF system function that is some-
time called “Alignment” and is the function that normalizes these input sources
for any given fusion application or design. CR addresses such things as coordinate
system normalization, temporal alignment issues, and uncertainty alignment issues
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Fig. 3 Notional fusion process architecture combining data mining and data fusion (from [8])

across the input streams, among other issues. With the highly-disparate input streams
described above, the design of required CR techniques is a non-trivial challenge.
There are at least two major CR issues that this heterogeneous data represent: tem-
poral alignment and uncertainty alignment. Consider a textual input message whose
free text, in just a few lines, could have past-present-future tense expressions, e.g.,
“3 days ago I saw….”, “past precedents lead me to believe that tomorrow I should
see….”, etc. Other sources can also have varied temporal structures regarding their
input. Such data lead to the issue of what the DIF community has called “OOSM:
out-of- sequence-measurements” for hard/sensor data but the issue carries over to
all sources as well. Dealing with these issues requires complex temporal alignment
techniques for CR and also raises the issue of retrospective fusion processing opera-
tions to correct for delayed inputs (if warranted; this is a design choice). For example,
such process designs impute the need to set a threshold for allowable delays (how far
back in time will we adjust for), and this also sets a requirement for memory capacity
to save all data in that window to allow undoing and redoing the inferences when
such time-late or past-referenced data arrives. Temporal alignment methods we have
used for Soft data are described in [9].

The uncertainty alignment requirement evolves due to the high likelihood that
any uncertainty in the widely disparate sources described above will be represented
in inconsistent forms. Consider the basic differences between the uncertainty in
sensor (hard) data and textual (soft) data; sensor data uncertainty is sensibly always
expressed in probabilistic form whereas, due to the problem of imprecise adjectives
and adverbs in language, linguistic uncertainty is often expressed in possibilistic
(fuzzy) terms. It can be expected that uncontrolled Open Source or Social Media
data may use yet other uncertainty formalisms to express or tag inputs (e.g., beliefs
and subjective confidence measures). Transformation and normalization of disparate
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forms of uncertainty is a specialized topic in the uncertainty/statistical literature
(e.g., [10]), and is among the high-priority issues in the DIF community [11]. It
should be noted that such transformations can only be developed by invoking some
statistical type qualities that are preserved across the transform, such as some form
of total uncertainty; that is, the transform of some probability value does not cre-
ate an “equivalent” value of a probability in, say, a possibilistic space; instead the
transformed value is one that satisfies some statistical constraint about which the
transform is structured. For the interested reader, seminal papers on the probability-
possibility transformation issue are in [12–14]. In our research, we have addressed
the probabilistic- possibilistic transformation issue in an approach that satisfies the
consistency and preference preservation principles [15], resulting in the most spe-
cific distribution for a specified portion of a probabilistic representation; this yields
a truncated triangular transformation in our case [16].

Regarding the DA function, that some consider the heart of a fusion process,
these highly-varied data raise the level of DA complexity in significant ways. The
soft data category, that inherently is reporting about Entities and (judged) Relation-
ships, and is inherently in semantic format (language/words), raises the important
issue of how to measure semantic similarity of such elements as reported in these
various input streams. Such scores are needed in the “Hypothesis Evaluation” step
of the DA process (see [17] on these DA subfunctions). But there are further DA
complications that arise due to the soft data: linguistic phrases have verbs that reflect
inter-Entity (noun) relationships; also of note is that the Natural Language Process-
ing (NLP) community has employed graphical methods for the representation of
linguistic structures. As a result, the DA process now involves inter-association of
both Entities (nouns) and Relations (verbs), and of graphical structures. This require-
ment extends to the hard data as well since that data needs to be cast in a semantic
framework in order to enable the overall DA process for the combined Hard and
Soft data. Developing DA methods for graphical structures represents an entirely
new challenge for the DA function. In such approaches for these applications, a
scoring approach also needs to be developed to assess Relational similarity as well
as Entity similarity, and a composite association scheme for these graphical sub-
structures needs to be evolved. Historical approaches to DA have often employed
solution methods drawn from assignment problems in Operations Research. When
association is required between many non-graphical data sources (i.e., among entities
and attributes, as in the multisensor-multitarget tracking DA problem), this can be
handled by such methods as the multidimensional assignment problem [18, 19]. The
main difference between the multidimensional assignment problem and graph-based
association is how topological information from the graphs is used. Our research
center has attacked this problem and has developed research prototype algorithms,
as described in [20] where the graph association problem is formulated as a binary
linear program and a heuristic for solving the multiple graph association is developed
using a Lagrangian relaxation approach to address issues involving a between-graph
transitivity requirement.

In virtually all computer applications involving the estimation or inferencing about
some state of affairs such as a “situation”, there is the issue of constructing computer-
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based processes (software) that is able to work with notions of “meaning”. Dealing
with notions of meaning becomes more difficult in DIF processes as one attempts to
build methods for so-called “high-level” fusion, involving more abstract hypotheses
such as situations and threats, etc. In modern problems and with hard and soft data
sources, these problems are aggravated; some aspects of these issues are discussed
in the next section.

4 Semantics

The introduction of linguistic information, as well as the transformation of
sensor+algorithm estimation process outputs (hard fusion outputs) into a seman-
tic frame, also adds to the complexity of DIF process design and development.
Semantic complexity is also added by the very nature of modern intelligence and
security problems wherein the situations of interest relate to both military operations
and also socio-political behaviors and entities. Clear meanings of such notions of
interest in modern intelligence or ISR problems such as “patterns of life”, “rhythm
of the city”, “radicalization” as patterns or situations of interest—to be estimated
by DIF systems—have proven difficult to specify in clear semantic terms, that is, to
specify their meaning with adequate specificity for computer-based processes. While
the use of ontologies helps in this regard, standardization issues remain when con-
sidering networked and distributed systems, which are typical in the modern era. For
example, in distributed intelligence or military systems there is typically no single
point of architectural authority that can mandate a single ontological framework for
the network. For large-scale real systems there is also the problem of large legacy
systems that were never designed with ontological formalisms in mind; this creates
a “retrofit” problem of adjusting the semantic framework of that system to some new
ontological standard, which can be a costly and complex operation.

It must also be noted that the way in which all textual/linguistic information gets
into a DIF system is through processing in some type of NLP or text extraction system.
Such systems serve as a front-end filter for the admission of fundamental entity and
relationship data, the raw Soft data of the system, and so any imperfections in such
extractions bound the capture of semantically-grounded evidential information for
the subsequent reasoning and estimation processes; that is, the meaning of the text can
be lost. While errors in hard sensor data are typically known with reasonable accuracy
due to sensor calibrations, the errors in text extraction and NLP systems are either
weakly known or unknown, sometimes as a result of proprietary constraints. Other
strategies to deal with the complexities of semantics involve the use of controlled
languages, to bound the grammatical structures and also the extent of the vocabulary
that has to be dealt with. A good example for military/intelligence applications is
the “Battle Management Language” or BML [21] that has been under development
since about 2003 for both Command and Control simulation studies but also for DIF
applications (e.g., [22, 23]).
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There is a corresponding need to better understand the nature of semantic (and
syntactic) complexity in language, and also to develop measures and metrics that aid
in developing better NLP processes and controlled languages. There is a reasonably
rich literature on these topics (e.g., [24]) that should be exploited in regard to the
integrated design of DIF systems that today have to deal with a wide range of semantic
difficulties.

As hinted at in our discussion regarding DA, many of these current problems
involve graphical data representations and therefore impose the use of graphically-
based algorithmic techniques. Some of these issues are addressed in the next section.

5 Graphical Representations and Methods

There are a number of reasons that, for COIN and asymmetric warfare-type problems,
graphs are becoming a dominant representational form for the information in and
the processes involved in DIF systems. In the information domain, many of the
components discussed in Sect. 2 are textual/linguistic and to capture this information
in digital form, graphs are the representational form of choice. The problem domain
is also described in the ontologies that are also typically couched in graphical forms.
Note that ontologies describe inter-entity relations of various types. Note too that the
inferences and estimates of interest in these problems are of the “higher-level” type
in the sense of the JDL Model of Information Fusion, that is, estimates of situations
and threat states. These higher-level states—the conditions of interest for intelligence
and security applications—are also best described as graphs, since situations can in
the most abstract sense be considered as a graph of entities and relations.

As a result, it is not unexpected to see that the core functions of DIF such as DA
as previously described, are employing graphical methods in these fusion function
operations. The U.S. Army’s primary intelligence support system, the Distributed
Common Ground Station-Army (DCGS-A) employs a “global graph” approach to
capture all of the evidentiary information that supports DIF and other intelligence
analysis operations; see [25] and Fig. 4 that shows the top-level structure of this
graphical concept.

Developing a comprehensive understanding of these problems thus involves a log-
ical synthesis of the many situational substructures or subgraphs in these problem
domains; the fusion-process-generated subgraphs can be thought of situational com-
ponents or hypotheses. The subgraphs are somewhat thematic and can be thought of
as revolving about the “PMESII” notion of the heterogeneity of the classes of infor-
mation of interest in such problems (PMESII stands for Political, Military, Economic,
Social, Infrastructure, and Information categories). Thus, it is also not surprising to
see Social Network Analysis tools—that are by the way graph-theoretic and graph-
centric—employed in support of intelligence analysis, here with the focus on the
Social and Infrastructure patterns and subgraphs of the problem space.

In our own work for such problems, we considered that it would be broadly helpful
in analysis to enable a subgraph-querying capability as a generalized analysis tool.
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Fig. 4 U.S. Army’s “Global Graph” concept for DCGS-A (from [25])

In such an approach, the analyst forms a query in text that can be transformed to
a graph (we call these “template” graphs in that they are subgraph structures of
interest—a textual/graphical question in effect) that is then searched for in the
associated-evidence graph that is formed by the DA process. This search opera-
tion is a stochastic, inexact graph-matching problem, since the nodes and arcs of the
evidential data set have uncertainty values associated with them (or perhaps the tem-
plate graph as well, if the query has stochastic/uncertain aspects), and also because
what is sought is the best match to the query, not an exact match, since there may be
no exact match in such unpredictable problem situations. Other complexities arise
in trying to realize such capability, such as executing such operations incrementally
for streaming data, and also doing them in a computationally-efficient way since the
graphs can get quite large. As a consequence of several PhD efforts, we have real-
ized today a rather mature graph-matching capability for intelligence analysis that is
implemented in a cloud-based process; see [26–28], among other of our works.

6 Analytics, Sensemaking, and Decision-Making

We have noted previously that for the problems of interest here, those so-called “irreg-
ular” and “asymmetric” problems, the amount and reliability of a priori knowledge
about the problem spaces is typically very limited. By and large, this means that
analyzing the associated, multisource evidential data involves a mixture of strategies
as has been suggested in Fig. 2. System designers and analysts must understand that
there will be no singular tool or analytical technique that provides the “answer” at
the level of abstraction desired. Such analysis environments are not entirely new to
intelligence and military ISR analyses but these modern problems impose new and
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additional difficulties in analysis methods and strategies. Commanders and analysts
do not approach these environments totally absent of knowledge, and they usually
have some type of focal topics and issues of interest. For commanders and analysts
both, it is usual to have a set of Priority Intelligence Requirements (PIR’s) that are
ideally interrelated to anticipated Course of Action (COA) decision options. How-
ever, the action space for these problems involves the range of political, economic,
military, paramilitary, psychological, and civic actions, i.e., not only “kinetic” actions
involving the use of weaponry. As remarked previously, the decision space can thus
also be labeled as “soft” in that the decision-space includes such decisions as those
resulting in the realization of desired levels of influence (e.g., onto tribal leaders
etc). It can be seen immediately from this definition that both the understanding of
a current situation and its various elements, and the space of possible decisions and
actions both have a much larger dimensionality than traditional military decision-
making in force-on-force operations. Collectively, the broad elements of this action
space can be broken into “direct” and “indirect” classes of actions, where direct
actions are those focused on adversarial structure in the traditional military sense,
and indirect actions those focused on undermining support to the adversaries while
simultaneously attacking them militarily. It can also be argued that the End States of
any decision sequence are “Effects” created by the sequence of actions (the COA).
The concepts of Effects Based Operations (EBO), not a new term but actively revis-
ited for these modern problems (e.g. [29]), shows that many references suggest that
EBO is a viable concept for irregular/asymmetric problems, in part because effects
are soft-type results, and subsume behavioral end-states, reflecting a human focus.
One simple taxonomy of Effects is shown in Fig. 5 (from [30]), a main distinction
being “Physical” versus “Behavioral”, which could be equated to “Kinetic” versus
“Non-kinetic”.

The development of an interlinked COA to create these behavioral, non-kinetic
Effects as end-states is very difficult and involves a web of interdependencies that
make EBO a process involving notions of Complex Adaptive Systems (CAS). Smith
[31] elaborates on this in various ways, and this CAS notion is also discussed in [32]
that emphasizes the non-deterministic aspect of any Course of Action producing
an intended Effect. Smith [31] has an extended development of the Effects-Based
approach for asymmetric operations, and in consideration of what Smith calls an
action-reaction cycle model (sensibly equivalent to Situation Management) puts
forward a linked process that specifically shows the influences of understanding
the Social Domain as part of the “Sensemaking” process that ultimately drives the
COA development.

A very important notion (see [33]) is that the COA development process starts
with a projected “Plausible Future” state so that actions are taken not necessarily on
the basis of the current situation but one that is expected to exist at the time actions
are taken on it, i.e., so that the situational state and actions onto it are as synchronous
as possible. Note that, ideally, the DIF system should be supportive of some type
of situational projection of such plausible future states, as part of an analysis suite.
Supported under Air Force Research Laboratory funding, we have explored the ideas
involved with, and the prototyping of automated DIF techniques for such estimation
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Fig. 5 Sample taxonomy of effects (from [30])

of plausible futures; see [34]. Additional remarks on the issues surrounding DIF,
decision-making, COA development in the counterinsurgency environment can be
seen in Llinas [35].

We see, as shown later, what today are called Sensemaking processes, as lying
between DIF and DM processes, in a stage wherein “final” situation assessments
and understandings (in the human mind) are developed. Thus, our view of this meta-
process is as a three-stage operation: DIF as an automated process that nominates
algorithmically-formed situational hypotheses (including nominations of “plausible
future situations”), Sensemaking that dynamically interacts with DIF and human
judgment in a kind of mixed-initiative operation to produce a final situational
hypotheses upon which then DM operations are triggered. While there is also a sub-
stantive literature on Sensemaking, we address here three models: those of Pirolli
and Card [36], of Klein et al. [37], and of Kurtz and Snowden [38]. The first two
have many similarities and so we will show a figure of just one. These models depict
Sensemaking as an iterative operation involving a hopefully-converging dynamic
between a supporting information-space and an evolving situation hypothesis space.
Here, the former is considered to be an automated DIF process and the latter is seen
as occurring in the human mind, possibly aided by automated utilities. In [36], the
overall Sensemaking process is “organized into two major loops of activities: (1)
a “foraging” loop that involves processes “aimed at seeking information, searching
and filtering it, and reading and extracting information, possibly into some schema,
and (2) a sensemaking loop that involves iterative development of a mental model
(a conceptualization) from the schema that best fits the evidence.” The Klein et al.
Sensemaking model [37], called a Data-Frame Model, has many similarities to the
process characteristics just described. The Kurtz and Snowden model, organized
around their framework called Cynefin [38] is really based on the idea that catego-
rizing the nature of the problem at hand, thereby partitioning it (in a “divide and
conquer” strategy) and applying appropriate solution methods, is a part of the Sense-
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Fig. 6 Pirolli and card (left) and Kurtz and Snowden (right) models of Sensemaking (from
[36, 38])

making process. Cynefin partitions problems into four categories called: Known (sol-
uble by known methods), Knowable (soluble by analytical/reductionist techniques),
Complex (soluble by what [38] calls Probe-Sense-Respond iterative discovery type
processes), and Chaos (soluble by actions to reduce disorder, sensing the results, and
responding or acting again). Cynefin takes a broader view of the states of complexity
as ranging from order-to complexity-to chaos than do the models of Pirolli, Card or
Klein; we include them because our concerns are for modern irregular, asymmet-
ric warfare applications that often can have such properties. Diagrams showing the
Pirolli/Card and Kurtz/Snowden models are provided in Fig. 6.

7 Connected Processes

So how do these processes interact, as we are asserting here? Fig. 7 shows a functional
characterization of how:

• DIF, a largely-automated inferencing/estimation providing process that offers:

– Algorithmically-developed situational estimates
– Organized raw observational data—note these are hard (sensor) and soft (lin-

guistic)
– Controllable collection management of observational data
– An Analytical Suite of useful but typically disparate tools

• Sensemaking, a semi-automated, human-on-the-loop process that:

– Considers the DIF-provided estimates
– Forages over these hypotheses as well as the data (e.g. drill-down etc)
– Assesses the “Cynefin-category” nature of the problem at hand
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Fig. 7 Interconnected/dependent DIF-Sensemaking-DM-Resource Mgmt processes

– Considers possible Policy, Authority, and Mission factors
– Culminates in a “Final Adjudicated Situation Hypothesis” that is also judged as

to acceptability; if not, this hypothesis is the starting point for decision-making
and action-taking to “manage the situation”

• Decision-making, also a semi-automated, human-on-the-loop process that:

– Operates in a System 1 (intuitive), 2 (contemplative, analytic) or “hybrid/mixed”
DM mode

– Yields a selected Course of Action
– That triggers a Resource Optimization process to define specific resources that

physically enable the selected COA onto the real-world situation

In [33], some of the issues regarding inter-process interdependencies were dis-
cussed (such as temporal dependencies), although that paper’s focus was on the
various metrics involved across these processes. Another point we will make in this
chapter is that yet another consideration related to decision-making is that most mod-
els of DM depict it as an analytical, contemplative process (analytical DM or ADM).
It is important we think to realize that the DM community also discusses intuitive
DM (IDM) that has considerably different properties than ADM. If we examine
the disparate features of ADM and IDM, shown below in Table 1, we see that DIF
process designs will need to be quite different to service the distinct functionalities
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Table 1 Comparative
features of IDM/System
1 and ADM/System 2 DM
modalities (from [43])

Intuitive Analytical

Experiential-inductive Hypothetico-
deductive

Bounded rationality Unbounded
rationality

Heuristic Normative reasoning

Gestalt effect/pattern
recognition

Robust decision
making

Modular (hard-wired)
responsivity

Acquired, critical,
logical thoght

Recognition-primed/thin
slicing

Multiple branching,
arborization

Unconscious thinking
theory

Deliberate,
purposeful thinking

for each DM mode. Thus, it can be argued that the DIF process should, ideally, be
informed of the DM modality that users are in at any moment, so that, assuming the
DIF design can be made DM-mode-sensitive, switch its operating mode to best ser-
vice any DM mode at the moment. The DIF research community has conducted very
minimal research on designing DM-mode-sensitive DIF processes; we see only two
papers in the recent literature addressing this topic (see [39, 40]). In regard to IDM in
particular, it could be argued that Case-Based Reasoning (CBR) techniques (similar
to Klein’s RPD process, that enable intuitive, experientially-based inferencing and
DM) might be a preferred inferencing mode in DIF for the IDM modality. While
there are similarities between IDM and CBR/RPD, there is an important distinction
for (probably most) modern operational domains about the notion of novelty in situ-
ations, and the true underlying capability of a human to deal with situations that are
“seriously different” from their experience base. Naturalistic decision making using
the RPD model fails in theory if there is a lack of experience or when encountering
a completely novel scenario [41]. A review of most IDM models suggests that the
inherent limits of IDM are the decision-makers personal range of situational experi-
ence combined with what has been “implicitly learned”. Any presented situation that
is not adequately similar to this body of experience requires adaptation and learning.
Boin et al. [42], state that “if the situation is radically different from those stored in
memory, a somewhat different kind of sense-making process will be necessary.”

Another dependency area is between the DIF and Sensemaking processes. Clearly
the Foraging function within Sensemaking implies that the DIF process will have to
be open to, and enable, a range of queries that will be in regard to: raw or processed
observational data, DIF functional operations (e.g., DA1), and nominated situational

1 The Army’s DCGS-A future system requirements for example include user-modifiable DA capa-
bilities.
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Fig. 8 Notional functional operations of the DIF-Sensemaking interactions

hypotheses, among possibly other runtime interactive operations. The notion of this
interaction is depicted in Fig. 8, showing an analyst API that allows runtime modi-
fication of either or both of the Association and Estimation functions, then followed
by IF reprocessing to generate new results that then get absorbed (possibly with
automated support, not shown) into the analyst’s schema and mental models.

8 The Human Role in DIF, Sensemaking, and DM

This general process model can be seen to have at least two human points of involve-
ment (assuming that the analyst is not the decision-maker). In our prototype hard-soft
DIF system, we also have a possible role for a human in regard to editing the auto-
mated text extraction process for the soft/message data stream due to the consider-
able difficulty in achieving high quality extraction with automated methods. It can be
appreciated that the complexity of natural language understanding, the complexities
of the problems domain and the hard-soft fusion process all impute a serious consid-
eration for placement of human intelligence in system design. The human role in DIF
processes has been discussed for some time in the DIF community, and there are some
works addressing the issues [44, 45]. In our judgment however, this general issue has
been inadequately addressed at the community level, probably as a result of the DIF
community having a quantitative bias, as can be seen in any review of community
publications. The assertions and discussion here expands the challenge of addressing
not only the human role in DIF but in Sensemaking and Decision-Making as well.
The larger issue is a meta-system design question across the DIF-Sensemaking-DM



Information Fusion Process Design Issues . . . 147

meta-process, as regards the placement of human intelligence and judgment for
interpretation, control, and decision-making. The usual issues of quality of interpre-
tation, quality of decision-making, quality of control versus timeliness need to be
dealt with in developing approaches to designing this meta-system.

9 Summary

The world is dynamic in many ways. Looking at world politics and technology, no one
should be surprised that there have been dramatic changes in the nature of security
aspects driven by world politics; over the span of a decade or so, there should similarly
not be any surprise that technology has advanced considerably. It is in this setting
that this chapter was written, to offer perspectives on what those meta-changes have
implied for the design and development of DIF systems as they sit in the interdepen-
dent environment with sensemaking and either analysis or decision-support systems.
DIF system designers need to both take a larger view of their system’s design but
also reach out to and collaborate with those designing the related major functional
capabilities for sensemaking and analysis and decision-making. DIF has always been
a multidisciplinary area of study; this larger view further complicates that aspect but
it is the opinion taken here that those interdependencies are inescapable, and that
effective and efficient DIF designs can only be realized in the context discussed
herein.
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Intrusion Detection with Type-2 Fuzzy
Ontologies and Similarity Measures

Robin Wikström and József Mezei

Abstract Intrusions carry a serious security risk for financial institutions. As new
intrusion types appear continuously, detection systems have to be designed to be
able to identify attacks that have never been experienced before. Insights provided
by knowledgeable experts can contribute to a high extent to the identification of these
anomalies. Based on a critical review of the relevant literature in intrusion detection
and similarity measures of interval-valued fuzzy sets, we propose a framework based
on fuzzy ontology and similarity measures to incorporate expert knowledge and
represent and make use of imprecise information in the intrusion detection process.
As an example we developed a fuzzy ontology based on the intrusion detection needs
of a financial institution.

1 Introduction

Intrusion detection systems are becoming more and more important in controlling
network security as the number of intrusion events is increasing rapidly due to the
widespread use of internet. A general intrusion detection system operates as deci-
sion support system by making use of the (real-time) information and event reports
describing previous intrusion cases to identify potential dangerous activities. There
are two main approaches to intrusion detection: misuse detection (known patterns of
intrusion are compared to present activities) and anomaly detection (activities that
deviate from normal system behaviour but cannot be matched to any previous cases)
[2, 56].
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As sensors and other data collection methods are evolving continuously, intrusion
detection systems are forced to constantly process increasing amounts of information.
A fair part of this information consists of imprecise and vague knowledge [41]. A
fuzzy ontology is basically an ontology that employs fuzzy logic for dealing with
imprecise knowledge [6]. Using fuzzy ontologies for analysing this knowledge is
important for identifying possible intrusions [20]. This is especially true regarding
anomalies, as it becomes possible to identify cases in a database that are similar in a
fuzzy sense. As an extension of traditional fuzzy ontologies, type-2 fuzzy ontologies
are not limited to a crisp value for defining the membership function of different
concepts therefore offering more possibilities to model uncertainty compared to
type-1 fuzzy ontologies [36].

Similarity measures have successfully been used for several anomaly detec-
tion implementations [14]. Detecting anomalies is an important method for finding
unwanted behaviour, not only in intrusion detection but also in e.g. fraud detection
and military surveillance. Kernel based similarity measures (cosine and binary [40])
together with text processing techniques were applied for example for detecting
host-based intrusion detection [51].

Ning and Xu [47] noticed that Intrusion Detection Systems (IDSs) are producing
an increasing amount of alerts, containing a fair share of false alerts, regardless, one
needs to process this data. By applying similarity measures on the collected intrusion
alerts, they generated the similarity between different attacks strategies. Their basic
assumption is that knowing the attack strategy, one can predict the coming moves
of the attacker. The use of expert knowledge can play a crucial role in identifying
anomalies and assessing the potential loss that can be caused by an intrusion. One
could even state that it is necessary to include experts in intrusion detection systems,
as fully automated systems seem to be impossible to achieve [13]. Some systems
are able to detect malware and intrusions based on behavioural patterns, however,
few come even close to automatically deciding whether the spotted abnormality is a
malware or not, and therefore depend on experts for making the final decision [29].

In this chapter, we will provide an extensive literature review concerning intrusion
detection systems in the financial context and similarity measures for interval-valued
fuzzy sets. Based on the analysis of the literature, we will address three important
issues that are not widely considered in intrusion detection systesms: (i) making
use of expert knowledge in identifying anomalies; (ii) systematic representation of
(imprecise) information concerning previous intrusion cases; (iii) identifying the
potential causes of an intrusion in the presence of these imprecise descriptions. Our
proposal is to use fuzzy ontologies to represent the available information in terms of
interval-valued fuzzy sets: the combination of similarity analysis and expert opinions
provides a promising tool to identify and measure the related risks of misuses and
also anomalies. We use financial institutions and their operating environment as the
example case to describe the model in details. The system can provide information
to the users concerning two types of decisions: (i), identifying suspicious activities
that can indicate intrusion, and (ii), recommendation on the countermeasures to be
undertaken in a given case (which requires the estimation of the possible losses
caused by the intrusion).
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The chapter is structured as follows: Sect. 2 presents relevant concepts and def-
initions of intrusion detection systems focusing on financial institutions. Section 3
discusses the role of expert (linguistic) knowledge in information systems and a
possible representation in the form of a fuzzy ontology. A discussion on the most
important similarity measures for interval-valued fuzzy sets is provided in Sect. 4.
In Sect. 5, an OWA operator-based distance is presented for interval-valued fuzzy
numbers that can be used to calculate similarities. Section 6 presents a fuzzy ontol-
ogy based on a financial institution taxonomy. Finally, some conclusions are given
in Sect. 7.

2 Intrusion Detection Systems and Financial Institutions

The following section introduces relevant concepts and definitions of Intrusion Detec-
tion Systems in financial institutions.

2.1 Intrusion Detection

Today, as roughly 1/3 of the earth’s population1 have access to the internet and
the penetration rate is rapidly increasing, naturally not only the private users are
active online, but also an increasing amount of businesses. With increased amounts
of users and business connected to the internet, the risk of intrusions and other
complications is amplified. As a consequence, in this context, intrusion detection
systems are constantly becoming more important.

Applications and software that help users to protect their devices from viruses and
malware constitute an important research topic. Ontologies have turned out to be an
useful method to be used for intrusion detection tasks, as they offer possibilities
to analyse, for instance, patterns generated by intruders; this way also previously
unknown attack methods can be detected [37].

Dai et al. [18] observe that it is a well known fact that hackers tend to be one
step ahead of systems created for protection. This results in an endless circle of data
losses and a constant demand for new software to fix previous errors. As hackers and
their methods are adaptive, behaviour-based approaches have gained an increased
interest in developing systems to protect data, as they are effective when dealing with
previously unknown attacks [29].

Malware is the common name used for the software’s that perform the attacks on
computers. They often employ anti-reverse engineering techniques to avoid being
detected by analytically-based software. Wagener et al. [59] propose a possible solu-
tion for this problem, by applying similarity and distance measures on malware
behaviour to implement a better classification of malware types. Different compar-
isons of similarity and distance measures in the context of malware have also been

1 http://www.internetworldstats.com/stats.htm

http://www.internetworldstats.com/stats.htm
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realized, e.g. by [3]. Due to the complexity of malwares, ontologies and especially
fuzzy ontologies have attracted significant interest, regarding their possibilities to
aid in these kinds of tasks, notably when dealing with imprecise knowledge.

2.2 Financial Institutions

A financial institution can be defined as an institution which offers financial services,
working as an intermediary by providing, for example: loans, deposits, currency
exchanges and investments. Banks and insurance companies are examples of financial
institutions. We chose to use financial institutions as the example case as they tend
to be an important object for cyber-attacks. These institutions own sensitive data and
also significant amount of monetary funds. It has to be noted that in this context not
every attack is conducted for personal monetary gain, e.g. stealing funds, but more
as a challenge for achieving credibility in online communities or getting noted by
the global media. Financial institutions are attractive targets also for this purpose, as
people tend to react when their savings are “in danger”. As a result, security systems
protecting the institutions are designed in a way that is difficult to break, i.e. the
one managing to break it deserves some credit. Recently, there has been a global
increase in attacks directed towards financial institutions. As these institutions can
be considered to be one of the prime targets even on an nationwide scale, the treat
of cyber-terrorism can not be overlooked [26, 48].

The risk of intrusions taking place in the financial sector is consequently increasing
steadily. Reports constantly indicate that, for instance, bank website outage hours
are increasing every month and that more online banking frauds occur. An old but
still relevant financial malware is called Zeus. It was recognized already in 2006,
but since then it has been remodelled and re-customized several times, each version
requiring more preventive work by the institutions. This malware originates from
Russian cybercrime organisations. However, the leakage of the source code in 2011
opened the door for basically anyone to modify Zeus and use it for intrusion purposes.
Before the leakage of the code, the software was available only for those willing to
pay for it, somewhat limiting the usage. Nowadays, there are communities devoted
to sharing and trading “plug-ins” for the Zeus malware. As Zeus is not the only
malware available, the risk of intrusions happening to a financial institution is far
from unlikely [50]. Recently, there have been several publications about how one
could prevent different types of attacks specifically aimed towards the financial sector
[35, 49].

3 Expert Based Knowledge in IDS

The role of the human experts in information systems has taken a slightly ambiguous
role. Wang et al. [61] and Huang et al. [29], amongst others, state that current systems
are unable to completely provide full protection against attacks and intrusions. One
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of the critical issues is the inclusion or exclusion of the human experts. The goal
seems to be to exclude the expert as much as possible, however, currently all systems
require human input at some stages of the process [13].

Experts usually express themselves using linguistic terms, i.e. “the activity is
quite low” and “one should block some of the intrusions”. These imprecise linguistic
terms, fully understandable for other experts, are hard to interpret for a computer as
it is designed for computing with precise data. Linguistic modelling [34], fuzzy logic
[66] and other methodologies have been proposed as possible solutions for making
human-computer communications feasible.

3.1 Fuzzy Ontologies For Intrusion/Malware Detection

Ontologies, in the context of the Semantic Web, provide a structure and blueprint
of the tacit data inherent in different domains. An ontology reveals the relations
and connections between the different instances, facilitating the reasoning and deci-
sion making. Furthermore, ontologies can be combined and reused by/with different
internet-based techniques, encouraging interoperability [5, 24]. This, in turn, gives
computers the possibility to reason in a more human-like way, as they can grasp
some of our tacit knowledge of the world [33]. There has been an increase in using
ontologies for the purpose of intrusion and malware detection.

Undercoffer et al. [58] constructed one of the first ontologies for intrusion detec-
tion in the context of computer attacks. They used the DAML+OIL ontology mod-
elling language (a precursor to OWL). Before this approach, mainly taxonomies were
used for this purpose. Introducing ontologies enabled better meta-data modelling
and ontologies can naturally subsume taxonomies. Simmonds et al. [52] developed
an ontology for defending against attacks aimed at networks, emphasising that one
should also prepare for what happens if the attack is successful and how the designed
system reacts in that scenario.

The rapid development of mobile devices created a completely new field vulner-
able to intrusions and malwares. Chiang and Tsaur [17] therefore took the first steps
towards extending ontologies also towards the protection of mobile devices. They
modelled an ontology based on the behaviours of known mobile malware. Hung et al.
[30] created an extensive ID ontology, which also included a feature allowing users
to model the ontology application from a conceptual level. This broadens the possi-
ble range of users, meaning that even non-expert users could contribute to intrusion
detection processes.

However, it has several times been stated that traditional, non-fuzzy, ontologies
are not suitable to deal with imprecise and vague knowledge [27, 42]. Avoiding
imprecise data in the online world is close to impossible, hence, the combination of
fuzzy logic and ontologies has recently gained an increased interest from the research
community.

In recent years, the combination of fuzzy logic and ontologies has been an
emerging topic in intrusion detection [9, 20, 56]. Huang et al. [27–29] developed a
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IT2FS-based ontology, as a novel approach for malware behavior analysis (MiT).
Using the Fuzzy Markup Language (FML) [1] and the Web Ontology Language
(OWL), they managed to create a fully operational system, able to analyse collected
data and extract behavioural information.

Tafazzoli et al. [55] created a fuzzy malware ontology for the Semantic Web. The
ontology represents relevant concepts inherent in the malware field. The relationships
between the different malwares are modelled with the help of fuzzy linguistic terms,
such as: weak relation and very good relation. Considering that it was created with
the Semantic Web in mind, it can also be used for sharing information online.

As it can be noticed, there is a fair amount of positive results that have emerged
with the fuzzy ontology approach. We believe that it is reasonable to state that more
research in how fuzzy ontologies can benefit the task of intrusion detection is needed.

The Web Ontology Language (OWL) is the main language used for creating
ontologies on the Semantic Web [25]. By settling on one standard and using it for the
Semantic Web and its ontology modelling needs, it makes the co-operation between
different domain ontologies (for instance) more straightforward and smoother, facil-
itating the expansion of OWL to the non-expert users. The fuzzy ontology created
in this chapter (and presented in more detail later on) is modelled in OWL.

4 Similarity Measures for Interval-Valued Fuzzy Sets

Similarity measures have become an important technique for handling imprecise
information in the context of information systems [60]. The easily embraceable
notion behind these measures, comparing how similar two instances are, has made
them widely used in various topics. Numerous applications and implementations
based on similarity measures exist also for intrusion detection issues.

In this section we provide an extensive overview of the existing similarity mea-
sures for interval-valued fuzzy sets. We also included the similarity measures pro-
posed for intuitionistic fuzzy sets by reformulating the definitions using the traditional
transformation between interval-valued and intuitionistic fuzzy sets. We will use the
following definitions for interval-valued fuzzy sets:

Definition 1 ([22]) An interval-valued fuzzy set A defined on X is given by

A =
{
(x, [μL

A(x), μU
A (x)])

}
, x ∈ X,

where μL
A(x), μU

A (x) : X → [0, 1]; ∀x ∈ X, μL
A(x) ≤ μU

A (x), and the ordinary
fuzzy sets μL

A(x) and μU
A (x) are called lower fuzzy set and upper fuzzy set of A,

respectively.

A starting point for evaluating different similarity measures can be a set of prede-
fined properties that are expected to be satisfied by a measure to be called as similarity.
As we will see, in many cases these properties only ensure a basic reliability of the
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measures: there are many examples for similarity measures that satisfy all the prop-
erties but provide non-intuitive values for specific fuzzy sets. In this article, we will
adopt the four properties specified in [62]:

1. Reflexivity: s(A, B) = 1 =⇒ A = B
2. Symmetry: s(A, B) = s(B, A)

3. Transitivity: If A ≤ B ≤ C than s(A, B) ≥ s(A, C)

4. Overlapping: If A ∩ B 	= ∅ than s(A, B) > 0

Additionally, we can require the similarity measure to be normalized:
0 ≤ s(A, B) ≤ 1.

The first group of similarity measures is based on the extension of traditional
distance measures (Hamming, Euclidean) to fuzzy sets. This family of similarities
has been developed for type-1 fuzzy sets before the 1990s (see [57]), and later on
to interval-valued and intuitionistic fuzzy sets. The traditional way to obtain the
similarity from a normalized distance measure d is to calculate

s(A, B) = 1 − d(A, B).

As Zeng and Guo described in a systematic analysis, there are numerous other ways
to generate similarity measures from distances.

Theorem 1 ([67]) Given a real function f : [0, 1] → [0, 1], if f is a strictly
monotone decreasing function, and d is a normalized distance on interval-valued
fuzzy sets, then

s(A, B) = f (d(A, B)) − f (1)

f (0) − f (1)

is a similarity measure.

For example if f (x) = 1

1 + x
, then s(A, B) = 1 − d(A, B)

1 + d(A, B)
and for f (x) =

1 − x2 one can obtain the similarity s(A, B) = 1 − d2(A, B).

Burillo and Bustince [10] were the first ones to extend the Hamming and Euclidean
distances to (discrete) interval-valued (and intuitionistic) fuzzy sets in the following
way (the normalized distances are presented):

• Hamming distance:

dH (A, B) = 1

n

n∑
i=1

| AL(xi ) − BL(xi ) | + | AU (xi ) − BU (xi ) |
2

;

• Euclidean distance

d2(A, B) =
[

1

2n

n∑
i=1

(AL(xi ) − BL(xi ))
2 + (AU (xi ) − BU (xi ))

2

]0.5

.
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In [4], Atannasov presented similar definitions for intuitionistic fuzzy sets. Szmidt
and Kacprzyk [53, 54] further improved the definitions for intuitionistic fuzzy sets by
incorporating the intuitionistic fuzzy index (and their proposal was extended by using
geometric distance and weights in [64]). As Grzegorzewski [23] pointed out, these
modifications are not properly motivated and result only in marginal differences and
improvements; for this reason, he used the Hausdorff metric to modify the definitions
in a natural way that is easy to use for applications. The proposed (normalized)
distances can be formulated as:

• Hamming distance:

dH (A, B) = 1

n

n∑
i=1

max(| AL(xi ) − BL(xi ) |, | AU (xi ) − BU (xi ) |);

• Euclidean distance

d2(A, B) =
[

1

n

n∑
i=1

max(AL(xi ) − BL(xi ))
2, (AU (xi ) − BU (xi ))

2)

]0.5

.

Zeng and Li [68] proposed the same definition of the Hamming-distance inde-
pendently as a result of a transformation procedure to connect entropy and similarity
measures for interval-valued fuzzy sets. They additionally defined the continuous
version of the definition as

s(A, B) = 1

2(b − a)

b∫
a

| AL(xi ) − BL(xi ) | + | AU (xi ) − BU (xi ) | dx,

with the support of the interval-valued fuzzy sets is in the [a, b] interval. Zhang
and Fu [69] introduced weight values (functions) in the two cases of the Hamming
distance and showed that it is a similarity measure in a more general sense as it can
be used for any L-fuzzy sets.

After 2002, as a different direction to extend distance measures, numerous articles
were published in the journal Patter Recognition Letters mainly originating from the
approach introduced in the article of Dengfeng and Chuntian [19]. They used the
middle points of the membership interval of the interval-valued fuzzy sets to obtain
a type-1 fuzzy set and then they calculate the distance of the resulting type-1 fuzzy
sets. Using the notation

f A(x) = AL(x) + AU (x)

2
,

the following formulas can be obtained:
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• in the discrete case

s p
d (A, B) = 1 − 1

n1/p

[
n∑

i=1

( f A(xi ) − fB(xi ))
p

]1/p

;

• in the continuous case

s p
c (A, B) = 1 − 1

(b − a)1/p

⎡
⎣

b∫
a

( f A(x) − fB(x))pdx

⎤
⎦

1/p

.

Both definitions can be used with weight functions, for example in the continuous
case

s p
cw(A, B) = 1 −

⎡
⎣

b∫
a

w(x)( f A(x) − fB(x))pdx

⎤
⎦

1/p

.

One important disadvantage of this method is that equality of the interval-valued
fuzzy sets is only a sufficient but not necessary condition for the similarity measure
to take its maximal value. After illustrating this with a simple example, Mitchell
[45] proposed an improvement to the method: instead of calculating the similarity
of type-1 fuzzy sets obtained as the average of the lower and upper membership
functions, the similarity of the two upper fuzzy sets and the two lower fuzzy sets are
computed and the overall similarity is the average of these two values.

Noticing the same problem with the Li-Cheng approach, Liang and Shi [39]
proposed new families of similarity measures by using a more complex combination
of the upper and lower membership functions:

flAB (x) = | AL(x) + BL(x) |
2

; fu AB (x) = | AU (x) + BU (x) |
2

.

Interestingly, this approach in a special case provides a formula similar to the
Euclidean-distance based approach originally proposed in [10]. Liang and Shi pro-
posed further modifications by incorporating the median of the interval membership
into the f values and showed that the new definitions provide more intuitive results.
As a summary of the proposals utilizing distance measures to calculate similarity, Li
et al. [38] provided a detailed description of the different proposals published before
2007 (focusing on intuitionistic and vague sets) and created a selection process to
identify the best method: they concluded that the measure proposed in [39] is the
only one that does not result in counter intuitive values in any case.

The second main group of similarity measures consists of definitions based on
set-theoretic measures and arithmetic operations on fuzzy sets. As discussed in [57],
for type-1 fuzzy sets, similarity measures belonging to this family are as popular
as the distance based similarities, but we can find significantly less measures when
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investigating interval-valued fuzzy sets. Probably the most general formula for sim-
ilarity measures was given by Bustince [11]. He proved that the combination of an
inclusion grade indicator and any t-norms will result in an interval-valued similarity
measure. Using a similar approach, Zhang et al. [70] defined a new inclusion measure
and combined it with a t-norm to obtain a similarity value.

An important measure of similarity in set theory is the Jaccard index. In fuzzy
set theory, one can find many different generalizations also for interval-valued fuzzy
sets. The first approach is to calculate the Jaccard index of the upper membership
values and the lower membership values separately and combine them to obtain an
overall similarity: Zheng et al. [71] calculated the average as

s(A, B) = 1

2

( ∫
X min(AU (x), BU (x))dx∫
X max(AU (x), BU (x))dx

+
∫

X min(AL(x), BL(x))dx∫
X max(AL(x), BL(x))dx

)
,

while Hwang and Yang [31] used the minimum of the Jaccard index of the lower
membership function and the Jaccard index of the complement of the upper mem-
berships as the similarity:

s(A, B) = min

( ∑
x∈X min(AUC (x), BUC (x))∑
x∈X max(AUC (x), BUC (x))

,

∑
x∈X min(AL(x), BL(x))∑
x∈X max(AL(x), BL(x))

)
.

A different approach making use of the Jaccard index is of calculating the similar-
ity directly from the interval-valued memberships and not as a combination of upper
and lower values. This method results in the following formula defined by Wu and
Mendel [62] (this is an improved version of the previously defined vector similarity
measure [63] as the authors noticed that it does not satisfy the overlapping property:)

s(A, B) =
∫

X min(AU (x), BU (x)) + min(AL(x), BL(x))dx∫
X max(AU (x), BU (x)) + max(AL(x), BL(x))dx

.

The theory of similarity for general type-2 fuzzy sets is still in the early stages,
we only mention two approaches that can naturally be applied to interval-valued
fuzzy sets (as special cases of general type-2 fuzzy sets): Zheng et al. [72] defined a
similarity measure employing the footprint of uncertainty and secondary membership
function of type-2 fuzzy sets motivated by a clustering application. McCulloh et al.
[43] created a framework to extend any similarities of interval-valued fuzzy sets to
general type-2 fuzzy sets.

Another commonly used approach is to calculate the similarity of specific type-1
fuzzy sets and aggregate them into the overall similarity of interval-valued fuzzy sets.
Mitchell [46] proposes to choose N embedded fuzzy sets randomly and calculate
the average similarity value (any type-1 similarity measure can be used). Motivated
by risk analysis problems, Chen et al. [15, 16] proposed several similarity measures
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based on arithmetic operations by comparing the upper and lower similarities. Feng
and Liu [21] used the similarity for the upper and lower membership functions and
the kernel function of interval-valued fuzzy sets to obtain a new similarity measure.

5 Similarity of Interval-Valued Fuzzy Sets Based
on the OWAD Operator

In this section we will define a similarity measure for interval-valued fuzzy numbers
(IVFN’s) based on the concept of the ordered weighted averaging distance operator
(OWAD) introduced by Xu and Chen [65]:

Definition 2 An OWAD operator of dimension n is a mapping OW AD : R
n×R

n →
[0, 1] that has an associated weighting vector W with

∑n
j=1 W j = 1 and W j ∈ [0, 1]

such that:

OW AD
(
〈μ(1)

1 , μ
(2)
1 〉, . . . , 〈μ(1)

n , μ(2)
n 〉

)
=

∑n

j=1
w j D j ,

where D j represents the j th largest of the |μ(1)
i − μ

(2)
i |.

In order to extend the definition to the family of IVFN’s, we use the mean value
of an interval-valued fuzzy number to measure the distance of IVFN’s.

Definition 3 ([12]) The mean (or expected) value of A ∈ IVFN is defined as

E(A) =
1∫

0

α(M(Uα) + M(Lα))dα, (1)

where Uα and Lα are uniform probability distributions defined on [AU ]α and [AL ]α ,
respectively, and M stands for the probabilistic mean operator.

The distance of two IVFN’s, d : IVFN × IVFN → R, is defined as

d(A, B) = |E(A) − E(B)|. (2)

The distance (2) satisfies the four properties of a distance measure:

1. Non-negativity: |E(A) − E(B)| ≥ 0
2. Commutativity: |E(A) − E(B)| = |E(B) − E(A)|
3. Reflexivity: |E(A) − E(A)| = 0
4. Triangle inequality: |E(A) − E(B)| + |E(B) − E(C)| ≥ |E(A) − E(C)|.
Definition 4 ([44]) A Quasi IVFN-IOWAD operator of dimension n is a mapping
f : IVFNn × IVFNn × IVFNn → R that has an associated weighting vector W of
dimension n with w j ∈ [0, 1] and

∑n
j=1 w j = 1, such that:
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f (〈U1, A1, B1〉, 〈U2, A2, B2〉, . . . , 〈Un, An, Bn〉) (3)

= g−1

⎛
⎝ n∑

j=1

w j g(D j )

⎞
⎠ ,

where D j is the d(Ai , Bi ) value of the triplet 〈Ui , Ai , Bi 〉 having the j th largest Ui

and g : R → R is a continuous, strictly monotone function.

Theorem 1 If f is an Quasi IVFN-IOWAD operator, then the following properties
are satisfied:

1. f is commutative:

f (〈U1, A1, B1〉, 〈U2, A2, B2〉, . . . , 〈Un, An, Bn〉)
= f (〈U ′

1, A
′
1, B

′
1〉, 〈U

′
2, A

′
2, B

′
2〉, . . . , 〈U

′
n, A

′
n, B

′
n〉),

where (〈U ′
1, A

′
1〉, 〈U

′
2, A

′
2〉, . . . , 〈U

′
n, A

′
n〉) is any permutation of the arguments.

2. f is monotone: if d(A1
i , B1

i ) ≥ d(A2
i , B2

i ) for all i , then

f (〈U1, A1
1, B1

1 〉, 〈U2, A1
2, B1

2 〉, . . . , 〈Un, A1
n, B1

n 〉)
= f (〈U1, A2

1, B2
1 〉, 〈U2, A2

2, B2
2 〉, . . . , 〈Un, A2

n, B2
n 〉).

3. f is idempotent: if d(Ai , Bi ) = d(A j , B j ) = d,∀i, j , then

f (〈U1, A1, B1〉, 〈U2, A2, B2〉, . . . , 〈Un, An, Bn〉) = d.

4. f is bounded:

min
i

{d(Ai , Bi )} ≤
f (〈U1, A1, B1〉, 〈U2, A2, B2〉, . . . , 〈Un, An, Bn〉) ≤
max

i
{d(Ai , Bi )} .

Proof The proofs are straightforward consequences of the definition and the arith-
metic operations on interval-valued fuzzy sets, we only prove the boundedness. It
can be proven by comparing the aggregated value to the minimum and maximum as
follows:

min
i

{d(Ai , Bi )} = g−1
(

g(min
i

{d(Ai , Bi )})
)

= g−1

⎛
⎝ n∑

j=1

w j g(min
i

{d(Ai , Bi )})
⎞
⎠ ≤ g−1

⎛
⎝ n∑

j=1

w j g(D j )

⎞
⎠

= f (〈U1, A1, B1〉, 〈U2, A2, B2〉, . . . , 〈Un, An, Bn〉)
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and

max
i

{d(Ai , Bi )} = g−1
(

g(max
i

{d(Ai , Bi )})
)

= g−1

⎛
⎝ n∑

j=1

w j g(max
i

{d(Ai , Bi )})
⎞
⎠ ≥ g−1

⎛
⎝ n∑

j=1

w j g(D j )

⎞
⎠

= f (〈U1, A1, B1〉, 〈U2, A2, B2〉, . . . , 〈Un, An, Bn〉).

Note 1 One special case of this definition is the generalized IVFN-IOWAD operator,
where g(x) = xα, α ∈ R, and it takes the following form:

⎛
⎝ n∑

j=1

w j Dα
j

⎞
⎠

1
α

.

Definition 5 ([44]) An IVFN-IOWAD operator of dimension n is a mapping f :
R

n × IVFNn × IVFNn → R that has an associated weighting vector W of dimension
n with w j ∈ [0, 1] and

∑n
j=1 w j = 1, such that:

f (〈u1, A1, B1〉, 〈u2, A2, B2〉, . . . , 〈un, An, Bn〉) =
n∑

j=1

w j D j , (4)

where D j is the d(Ai , Bi ) value of the triplet 〈ui , Ai , Bi 〉 having the j th largest
ui , where ui is the order inducing variable and Ai , Bi are the argument variable
represented in the form of IVFN’s.

Example 1 To illustrate the definition, we will calculate the OW A- distance of
trapezoidal-shaped IVFN’s (the upper and lower fuzzy numbers are trapezoidal
fuzzy numbers) choosing g(x) = x , which is a special case of the definition, an
IVFN-IOWAD operator. The upper and lower fuzzy numbers can be represented as
AL = (a, b, α, β) and AU = (c, d, θ, τ ) respectively, where [a, b] and [c, d] stand
for the central intervals, (α, β) and (θ, τ ) denotes the left and right width of the fuzzy
numbers. The mean value of a triangular IVFN can be expressed as

E(A) = a + b

4
+ c + d

4
+ β − α

12
+ τ − θ

12
.

In the example, we suppose that new data is available (concerning a potential
intrusion) and it is compared to two previous intrusion cases stored in the database.
One expert evaluates the cases based on three criteria, and this evaluation will be
used to calculate the distance between the new observation and the two stored cases.
The expert’s evaluation is described in Table 1.
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Table 1 The evaluation of the expert for the different cases

Criteria New case Case 1 Case 2

C1 AU
1 = (4, 6, 2, 2) B1,U

1 = (3, 6, 1, 1) B2,U
1 = (5, 5, 3, 3)

C1 AL
1 = (4, 5, 1, 1) B1,L

1 = (4, 5, 1, 1) B2,L
1 = (5, 5, 2, 2)

C2 AU
2 = (8, 10, 3, 3) B1,U

2 = (7, 8, 3, 4) B2,U
2 = (9, 11, 2, 2)

C2 AL
2 = (9, 9, 2, 1) B1,L

2 = (7, 7, 2, 4) B2,L
2 = (10, 11, 2, 2)

C3 AU
3 = (2, 4, 1, 1) B1,U

3 = (5, 7, 2, 2) B2,U
3 = (4, 6, 1, 1)

C3 AL
3 = (3, 4, 1, 1) B1,L

3 = (6, 7, 2, 1) B2,L
3 = (5, 6, 2, 1)

The corresponding order inducing variables for the criteria (we use crisp values
in this example) are u1 = 5, u2 = 7, u3 = 2. The weights are defined as W =
(0.4, 0.2, 0.4). The aggregation can be calculated as

fi (〈5, A1, B1
i 〉, 〈7, A2, B2

i 〉, 〈2, A3, B3
i 〉) = 0.4|E(A2 − B2

i )|
+ 0.2|E(A1−B1

i )|+0.4|E(A3−B3
i )|.

for i = 1, 2. The obtained values are f1 = 1.78 and f2 = 1.35, which indicate that
the new case is more similar to Case 2 from the database, as the distance between
these two instances is smaller than the distance between the new case and Case 1.

To use the distance measure for obtaining similarities, we need to normalize the
aggregated values by dividing by the factor

sup {x ∈ ∪i (supp(Ai ) ∪ supp(Bi )} − inf {x ∈ ∪i (supp(Ai ) ∪ supp(Bi )}

and compute s = 1 − d, where d stands for the Quasi IVFN-IOWAD operator.

6 The Financial Institution Ontology

With the ambition to illustrate how fuzzy ontologies and similarity measures could be
used for intrusion detection purposes, we created a simple fuzzy ontology. Although
intrusion methods are seldom limited to a specific context, our ontology was adapted
to fit relevant risks associated with financial institutions. This ontology was then
used as the base for creating a simple application, showing a practical example on
how fuzzy ontologies can aid in intrusion detection by generating the risk for certain
intrusions to occur. In Sect. 6.1 we demonstrate this by presenting a couple of sce-
narios, pointing out where the fuzzy ontology could contribute, Sect. 6.2 presents the
structure of the ontology whereas the technical parts of the application are presented
more in Sect. 6.3.
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6.1 Intrusion Scenarios

As to clarify the context and functions of the application proposed, we describe a
couple of scenarios, showing how the fuzzy ontology could aid in detecting possible
intrusions.

Scenario 1.
The first scenario addresses a malware attack, presumably from the widely used
Zeus malware. In this scenario, the advice generated by the system is assessed and
combined by human experts, whereas a final result is produced, based on both the
ontology result and the expert assessments.

As the surveillance system notices an abnormal behaviour, the recorded values
are processed by our proposed intrusion detection system. This generates a result
showing how likely the detected abnormality is an intrusion attempt. In other words,
this example would display the following result:

Value 1 is 95% similar to Zeus_Intrusion_nr45
Value 2 is 59% similar to Zeus_Intrusion_nr32
Value 3 is 67% similar to Gauss_Intrusion_nr2
Value 4 is 85% similar to Zeus_Intrusion_nr45
Value 5 is 75% similar to Zeus_Intrusion_nr5

It is Highly likely that the detected intrusion is a Zeus-based malware.

The values represent different measures relevant to the behaviour of the intrusion.
Regarding the Zeus Malware, they could represent: amount of hazardous .php files
detected; amount of hazardous .exe files detected; amount of functions reporting a
malfunction. The detected files are compared with different lists containing hazardous
files frequent in different types of intrusions.

A human expert would then asses the results generated by the ontology. The expert
does also have the option to see not only the most similar case, but also the whole list of
generated similarities. In this case, the expert could notice that Zeus_Intrusion_nr45
and Zeus_Intrusion_nr47 had a 65 and 64 % similarity to value 4, respectively. This
aids in the experts’ decision making, making it possible to embrace the whole picture
and decide in favour of the proposed analysis. The defence systems would then take
the appropriate measures, being more efficient, as the intrusion method is likely to
be known.

Scenario 2.
The second scenario is assumed to be a denial-of-service attack (Dos), conducted
with the purpose of overloading the institutions online system, creating chaos that
would consume both time and money to be sorted out. The number of Dos attacks has
increased lately, with the main goal of punishing the target by making their online
system crash. This scenario excludes the experts, as Dos require immediate action
and therefore can not wait for human input.
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Online systems can easily define what the normal range of data traffic is, using
historical data, and also defining when the crucial limits are reached. One could use
fuzzy interval values to model when the values are closing in on the critical limits.
In other words, we can use linguistic terms, such as: low risk, medium risk and
high risk for indicating how close to the critical limit the amount of data traffic is.
This means that one can observe even small risks, where several slightly suspicious
factors (which would not have been noticed in a non-fuzzy system) together can detect
possible intrusions. Risks or changes that otherwise would have been unnoticed.

For example, a bank usually registers 1000 logins per hour in their online banking
system, the record is 1500 and the minimum 500. In other words, it usually moves
between 500 and 1500. By using type-2 fuzzy sets, one can define that if the value
goes over 1500, it is considered to be “Highly trafficked” and as it reaches closer to
2000, it becomes more and more “Critical”. However, the system does not need to
shut down if the number of logins exceeds a critical limit; if several similar measures
are starting to reach a critical level, the system can conclude that a possible attack is
occurring. The fuzzy ontology then can be used to define what kind of Dos attack is
most likely taking place and adjust the counter measures according to that knowledge,
for instance, by quickly shutting down the system before it crashes and wait for human
maintenance persons to make the final decision. In this way one could avoid costly
maintenance conducted after a real crash has happened.

6.2 The Fuzzy Ontology

The ontology was created with Protégé [32], the main modelling software for
OWL ontologies. Fuzzy datatypes where added to the ontology using the Fuzzy
OWL plug-in [7]. The plug-in is an important step towards including fuzzy logic
in OWL and making fuzzy logic available for general users. The intrusion risks
included in the ontology were collected from different computer security companies
and reports, e.g. from The Kaspersky Lab2 and S2sec.3

Figure 1 shows a overview of the ontology. The ontology is structured by fuzzy
classes according to the intrusion type, e.g. Social_Engineering and Malware_and
_Viruses. Each of these general classes have more specified subclasses, such as:
Phisihing and Win32. . The subclasses are populated with individuals, representing
specific intrusions, such as the famous Zeus malware and previous recorded intrusion
attempts. All the individual instances have a set of recorded values or behaviours
showing how the intrusion was conducted. Using similarity measures these values
are compared with the new intrusions.

2 http://www.kaspersky.com/
3 http://www.s21sec.com/

http://www.kaspersky.com/
http://www.s21sec.com/
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Fig. 1 The structure of the fuzzy ontology

6.3 F.I. Application

Using the programming language Java, an application, retrieving information from
the OWL ontology, was constructed [8]. Java makes it possible to connect the struc-
ture with other techniques, for instance HTML, meaning that one can run the appli-
cation online. The application functions in the following way:

• The user decides among a couple of pre-defined example treats that have been
“registered”. The function of registering and comparing the possible intrusion
would be automatic in a real world intrusion detection system (Fig. 2a).

• The chosen intrusion is modelled with interval type-2 fuzzy sets. The previously
stored intrusions are retrieved from the ontology and the similarities to the current
intrusion are computed.

• The results of the computation, i.e. how likely the detected abnormally is an intru-
sion and in that case which previous intrusion it resembles, is presented to the user,
see Fig. 2b.

• The user has the possibility to view also other similar intrusions, screenshot shown
in Fig. 2c, offering, for instance, for the experts that should make the final decision
an opportunity to get a more comprehensive picture of the situation.
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Fig. 2 Example of a fuzzy intrusion detection user interface: a The initial choice, b First retrieved
results, c More detailed results

It has to be acknowledged that the functions in the application are only basic,
however, the structure of the application and the techniques it builds on, e.g. OWL,
fuzzyDL [7], Java and HTML to make it suitable for extending and combining with
numerous other applications.

7 Conclusion

Intrusion detection is becoming more and more essential to handle the risks associ-
ated with network activities. New intrusion detection systems should be capable of
preventing organisation not only from an increasing numbers of attacks but also from
more and more sophisticated intrusion strategies. One promising solution would be
to exercise expert insights in the detection process. As experts have accumulated an
extensive knowledge of their field, in many cases they can point out some irregulari-
ties which can indicate anomalies that otherwise could not be identified by automatic
intrusion detection systems and would result in significant losses.

In many cases, tacit knowledge of experts can be expressed only using linguistic
(imprecise) terms. In our proposal the combination of fuzzy logic and ontologies
can transform expert knowledge into a systematic description processable by com-
putational methods. The fusion of type-2 fuzzy ontologies and similarity measures
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to identify possible causes of intrusions provides benefits to organisations that are
not achievable by other methods.

To support the results of the ontology and provide additional information that
can be essential to identify anomalies, expert opinions expressed in terms of lin-
guistic information and modelled by interval-valued fuzzy numbers are employed.
As numerous intrusions can occur at the same time, the proposed system can pro-
vide estimations on the seriousness of different activities in terms of potential losses.
Based on this, the decision makers can assign the limited available resources in a way
that is optimal: by assigning more resources to the more serious cases, the poten-
tial loss can be minimized. Our proposal can be extended by incorporating more
detailed database of intrusions for testing purpose and also by using different types
of similarity measures.

References

1. Acampora, G., Loia, V.: Using FML and fuzzy technology in adaptive ambient intelligence
environments. Int. J. Comput. Intell. Res. 1(1), 171–182 (2005)

2. Anderson, J.P.: Computer security threat monitoring and surveillance. Technical Report James
P. Anderson Company, Fort Washington, Pennsylvania (1980)

3. Apel, M., Bockermann, C., Meier M.: Measuring similarity of malware behavior. In: IEEE
34th Conference on Local Computer Networks (LCN 2009), pp. 891–898 (2009)

4. Atannasov, K.: Intuitionistic Fuzzy Sets: Theory and Applications. Physica-Verlag, New York
(1999)

5. Berners-Lee, T.: Semantic web on XML. http://www.w3.org/2000/Talks/1206-xml2k-tbl/
(2000)

6. Bobillo, F.: Managing vagueness in ontologies. PhD Thesis, University of Granada, Spain
(2008)

7. Bobillo, F., Straccia, U.: Fuzzy ontology representation using OWL 2. Int. J. Approximate
Reasoning 52(7), 1073–1094 (2011)

8. Bobillo, F., Straccia, U.: Aggregation operators for fuzzy ontologies. Appl. Soft Comput. 13(9),
3816–3830 (2013)

9. Botha, M., von Solms, R.: Utilising fuzzy logic and trend analysis for effective intrusion
detection. Comput. Secur. 22(5), 423–434 (2003)

10. Burillo, P., Bustince, H.: Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets.
Fuzzy Sets Syst. 78(3), 305–316 (1996)

11. Bustince, H.: Indicator of inclusion grade for interval-valued fuzzy sets. application to approx-
imate reasoning based on interval-valued fuzzy sets. Int. J. Approximate Reasoning 23(3),
137–209 (2000)

12. Carlsson, C., Fullér, R., Mezei J.: Project selection with interval-valued fuzzy numbers. In:
IEEE 12th International Symposium on Computational Intelligence and Informatics (CINTI),
pp. 23–26 (2011)

13. Catania, C.A., Garino, C.G.: Automatic network intrusion detection: current techniques and
open issues. Comput. Electr. Eng. 38(5), 1062–1072 (2012)

14. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv.
(CSUR) 41(3), 15 (2009)

15. Chen, S.-J., Chen, S.-M.: Fuzzy risk analysis based on measures of similarity between interval-
valued fuzzy numbers. Comput. Math. Appl. 55(8), 1670–1685 (2008)

16. Chen, S.-M., Chen, J.-H.: Fuzzy risk analysis based on similarity measures between interval-
valued fuzzy numbers and interval-valued fuzzy number arithmetic operators. Expert Syst.
Appl. 36(3), 6309–6317 (2009)

http://www.w3.org/2000/Talks/1206-xml2k-tbl/


170 R. Wikström and J. Mezei

17. Chiang, H.-S., Tsaur, W.: Mobile malware behavioral analysis and preventive strategy using
ontology. In: IEEE Second International Conference on Social Computing (SocialCom), pp.
1080–1085 (2010)

18. Dai, S.-Y., Fyodor, Y., Kuo, S.-Y., Wu, M.-W., Huang Y.: Malware profiler based on innov-
ative behavior-awareness technique. In: IEEE 17th Pacific Rim International Symposium on
Dependable Computing (PRDC), pp. 314–319 (2011)

19. Dengfeng, L., Chuntian, C.: New similarity measures of intuitionistic fuzzy sets and application
to pattern recognitions. Pattern Recogn. Lett. 23(1), 221–225 (2002)

20. Dickerson, J.E., Juslin, J., Koukousoula, O., Dickerson, J.A.: Fuzzy intrusion detection. In:
IEEE 9th joint IFSA World Congress and 20th NAFIPS International Conference, vol. 3, pp.
1506–1510 (2001)

21. Feng, Z.-Q., Liua, C.-G.: On similarity-based approximate reasoning in interval-valued fuzzy
environments. Informatics 36, 255–262 (2012)

22. Gorzałczany, M.: A method of inference in approximate reasoning based on interval-valued
fuzzy sets. Fuzzy Sets Syst. 21(1), 1–17 (1987)

23. Grzegorzewski, P.: Distances between intuitionistic fuzzy sets and/or interval-valued fuzzy sets
based on the hausdorff metric. Fuzzy Sets Syst. 148(2), 319–328 (2004)

24. Hendler, J.: Agents and the semantic web. Intell. Syst. 16(2), 30–37 (2001)
25. Horridge, M., Krötzsch, M., Parsia, B., Patel-Schneider, P., Rudolph, S.: OWL 2 web ontology

language, primer. W3C Working Group (2009)
26. Hua, J., Bapna, S.: The economic impact of cyber terrorism. J. Strateg. Inf. Syst. 22(2), 175–186

(2013)
27. Huang, H.-D., Acampora, G., Loia, V., Lee,C.-S., Hagras, H., Wang, M.-H., Kao, H.-Y.,

Chang J.-G.: Fuzzy markup language for malware behavioral analysis. In: On the Power of
Fuzzy Markup Language, pp. 113–132. Springer (2013)

28. Huang, H.-D., Acampora, G., Loia, V., Lee, C.-S., Kao, H.-Y.: Applying FML and fuzzy ontolo-
gies to malware behavioural analysis. In: IEEE International Conference on Fuzzy Systems,
pp. 2018–2025 (2011)

29. Huang, H.-D., Lee, C.-S., Wang, M.-H., Kao, H.-Y.: IT2FS-based ontology with soft-computing
mechanism for malware behavior analysis. Soft Comput. 18(2), 267–284 (2014)

30. Hung, S.-S., Liu, D.S.-M.: A user-oriented ontology-based approach for network intrusion
detection. Comput. Stan. Interfaces 30(1–2), 78–88 (2008)

31. Hwang, C.-M., Yang, M.-S.: New similarity measures between interval-valued fuzzy sets. In:
Proceedings of the 15th WSEAS International Conference on Systems, pp. 66–70 (2011)

32. Knublauch, H., Fergerson, R., Noy, N., Musen, M.: The Protégé OWL plugin: an open devel-
opment environment for semantic web applications. The Semantic Web-ISWC 2004, 229–243
(2004)

33. Lau, A., Tsui, E., Lee, W.: An ontology-based similarity measurement for problem-based case
reasoning. Expert Syst. Appl. 36(3, Part 2):6574–6579 (2009)

34. Lawry, J.: A framework for linguistic modelling. Artif. Intell. 155(1–2), 1–39 (2004)
35. Leder, F.S., Martini, P.: Ngbpa next generation botnet protocol analysis. In: Emerging Chal-

lenges for Security, Privacy and Trust, pp. 307–317. Springer (2009)
36. Lee, C., Wang, M., Hagras, H.: A type-2 fuzzy ontology and its application to personal diabetic-

diet recommendation. IEEE Trans. Fuzzy Syst. 18(2), 374–395 (2010)
37. Li, W., Tian, S.: An ontology-based intrusion alerts correlation system. Expert Syst. Appl.

37(10), 7138–7146 (2010)
38. Li, Y., Olson, D.L., Qin, Z.: Similarity measures between intuitionistic fuzzy (vague) sets: a

comparative analysis. Pattern Recogn. Lett. 28(2), 278–285 (2007)
39. Liang, Z., Shi, P.: Similarity measures on intuitionistic fuzzy sets. Pattern Recogn. Lett. 24(15),

2687–2693 (2003)
40. Liao, Y., Vemuri, V.R.: Using text categorization techniques for intrusion detection. In: USENIX

Security Symposium, vol. 12 (2002)
41. Liu, W.: Research of data mining in intrusion detection system and the uncertainty of the

attack. In: International Symposium on Computer Network and Multimedia Technology, pp.
1–4 (2009)



Intrusion Detection with Type-2 Fuzzy Ontologies ... 171

42. Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description logics for
the semantic web. Web Semantics: Science, Services and Agents on the World Wide Web 6(4),
291–308 (2008)

43. McCulloch, J., Wagner, C., Aickelin, U.: Extending similarity measures of interval type-2 fuzzy
sets to general type-2 fuzzy sets. In: IEEE International Conference on Fuzzy Systems, pp. 1–8
(2013)

44. Mezei J., Wikström, R.: OWAD operators in type-2 fuzzy ontologies. In: Proceedings of the
2013 Joint IFSA World Congress NAFIPS Annual Meeting, number ISBN: 978-1-4799-0347-
4, pp. 848-853 (2013)

45. Mitchell, H.: On the dengfeng-chuntian similarity measure and its application to pattern recog-
nition. Pattern Recogn. Lett. 24(16), 3101–3104 (2003)

46. Mitchell, H.B.: Pattern recognition using type-II fuzzy sets. Inf. Sci. 170(2), 409–418 (2005)
47. Ning, P., Xu, D.: Learning attack strategies from intrusion alerts. In: Proceedings of the 10th

ACM Conference on Computer and Communications Security, pp. 200–209. ACM, (2003)
48. Park, W.H.: Risk analysis and damage assessment of financial institutions in cyber attacks

between nations. Math. Comput. Model. 58(11–12), 18–45 (2012)
49. Riccardi, M., Oro, D., Luna, J., Cremonini, M., Vilanova, M.: A framework for financial botnet

analysis. In: eCrime Researchers Summit (eCrime), pp. 1–7 (2010)
50. Riccardi, M., Pietro, R.D., Palanques, M., Vila, J.A.: Titans revenge: detecting Zeus via its

own flaws. Comput. Networks 57(2):422–435 (2013) (Botnet Activity: Analysis, Detection
and Shutdown.)

51. Sharma, A., Pujari, A.K., Paliwal, K.K.: Intrusion detection using text processing techniques
with a kernel based similarity measure. Comput. Secur. 26(7–8), 488–495 (2007)

52. Simmonds, A., Sandilands, P., van Ekert, L.: An ontology for network security attacks. In:
Applied Computing, pp. 317–323. Springer (2004)

53. Szmidt, E., Kacprzyk, J.: On measuring distances between intuitionistic fuzzy sets. Notes on
IFS 3(4), 1–13 (1997)

54. Szmidt, E., Kacprzyk, J.: Distances between intuitionistic fuzzy sets. Fuzzy Sets Syst. 114(3),
505–518 (2000)

55. Tafazzoli, T., Sadjadi, S.H.: Malware fuzzy ontology for semantic web. Int. J. Comput. Sci.
Network Secur. 8(7), 153–161 (2008)

56. Tajbakhsh, A., Rahmati, M., Mirzaei, A.: Intrusion detection using fuzzy association rules.
Appl. Soft Comput. 9(2), 462–469 (2009)

57. Turksen, I., Zhong, Z.: An approximate analogical reasoning schema based on similarity mea-
sures and interval-valued fuzzy sets. Fuzzy Sets Syst. 34(3), 323–346 (1990)

58. Undercoffer, J., Joshi, A., Pinkston, J.: Modeling computer attacks: an ontology for intrusion
detection. In: Recent Advances in Intrusion Detection, pp. 113–135. Springer, (2003)

59. Wagener, G., Dulaunoy, A., et al.: Malware behaviour analysis. J. Comput. Virol. 4(4), 279–287
(2008)

60. Wang, C., Entropy, AQu: similarity measure and distance measure of vague soft sets and their
relations. Inf. Sci. 244, 92–106 (2013)

61. Wang, G., Hao, J., Ma, J., Huang, L.: A new approach to intrusion detection using artificial
neural networks and fuzzy clustering. Expert Syst. Appl. 37(9), 6225–6232 (2010)

62. Wu, D., Mendel, J.: A comparative study of ranking methods, similarity measures and uncer-
tainty measures for interval type-2 fuzzy sets. Inf. Sci. 179(8), 1169–1192 (2009)

63. Wu, D., Mendel, J.M.: A vector similarity measure for linguistic approximation: interval type-2
and type-1 fuzzy sets. Inf. Sci. 178(2), 381–402 (2008)

64. Xu, Z.: Some similarity measures of intuitionistic fuzzy sets and their applications to multiple
attribute decision making. Fuzzy Optim. Decis. Making 6(2), 109–121 (2007)

65. Xu, Z., Chen, J.: Ordered weighted distance measure. J. Syst. Sci. Syst. Eng. 17(4), 432–445
(2008)

66. Zadeh, L.A.: Fuzzy logic = computing with words. IEEE Trans. Fuzzy Syst. 4(2), 103–111
(1996)



172 R. Wikström and J. Mezei

67. Zeng, W., Guo, P.: Normalized distance, similarity measure, inclusion measure and entropy of
interval-valued fuzzy sets and their relationship. Inf. Sci. 178(5), 1334–1342 (2008)

68. Zeng, W., Li, H.: Relationship between similarity measure and entropy of interval valued fuzzy
sets. Fuzzy Sets Syst. 157(11), 1477–1484 (2006)

69. Zhang, C., Fu, H.: Similarity measures on three kinds of fuzzy sets. Pattern Recogn. Lett.
27(12), 1307–1317 (2006)

70. Zhang, H., Zhang, W.: Inclusion measure and similarity measure of intuitionistic and interval-
valued fuzzy sets. In: Proceedings of the 2007 International Conference on Intelligent Systems
and Knowledge Engineering (ISKE2007) (2007)

71. Zheng, G., Wang, J., Zhou, W., Zhang, Y.: A similarity measure between interval type-2 fuzzy
sets. In: International Conference on Mechatronics and Automation (ICMA), pp. 191–195
(2010)

72. Zheng, G., Xiao, J., Wang, J., Wei, Z.: A similarity measure between general type-2 fuzzy
sets and its application in clustering. In: IEEE 8th World Congress on Intelligent Control and
Automation (WCICA), pp. 6383–6387 (2010)



A Multi-objective Genetic Algorithm Based
Approach for Effective Intrusion Detection
Using Neural Networks
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Abstract In this paper, a novel multi-objective genetic algorithm (MOGA) based
approach is proposed for effective intrusion detection based on benchmark datasets.
The proposed approach can generate a pool of non-inferior individual solutions
and ensemble solutions thereof. The generated ensembles can be used to detect the
intrusions accurately. For intrusion detection problem, the proposed MOGA based
approach could consider conflicting objectives simultaneously like detection rate of
each attack class, error rate, accuracy, diversity etc. The proposed approach can gen-
erate a pool of non-inferior solutions and their ensemble thereof having optimized
trade-offs values of multiple conflicting objectives. In this paper, a three phase MOGA
based approach is proposed to generate solutions with a simple chromosome design
in first phase. In first phase, a Pareto front of non-inferior individual solutions is
approximated. In the second phase of the proposed approach, entire solution set is
further refined to determine effective ensemble solutions considering solution inter-
action. In this phase, another improved Pareto front of ensemble solutions over that
of individual solutions is approximated. The ensemble solutions in improved Pareto
front reported improved detection results based on benchmark datasets for intrusion
detection. In third phase, a combination method like majority voting method is used
to fuse the predictions of individual solutions for determining prediction of ensem-
ble solution. Benchmark datasets namely KDD cup 1999 and ISCX 2012 dataset
are used to demonstrate and validate the performance of the proposed approach
for intrusion detection. The proposed approach can discover individual solutions
and ensemble solutions thereof with good support and detection rate from bench-
mark datasets (in comparison with well-known ensemble methods like bagging and
boosting). In addition, the proposed approach is a generalized classification approach
that is applicable to the problem of any field having multiple conflicting objectives
and a dataset can be represented in the form of labeled instances in terms of its
features.
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1 Introduction

The industry faces the challenges of a fast changing trends of attacking the Internet
resources, inability of conventional techniques to protect the Internet resources from
a variety of attacks, and biases of individual techniques towards specific attack
class(es). Developing effecting techniques is necessary for securing valuable Internet
resources from attacks. Nowadays, conventional protection techniques such as fire-
walls, user authentication, data encryption, avoiding programming errors and other
simple boundary devices are used as the first line of defense for security of the sys-
tems. Some attacks are prevented by the first line of defense where as some bypass
them. Such attacks must be detected as soon as possible so that damage may be min-
imized and appropriate corrective measures may be taken. Several techniques from
different disciplines are being employed for the accurate intrusion detection systems
(IDSs). Detection Rate (DR) and False Positive Rate (FPR) are two key indicators
to evaluate the capability of an IDS. Many efforts are being done to improve DR and
FPR of the IDSs [47]. In beginning, the research focus was on rule based and statis-
tical IDSs. But, with large datasets, the results of these IDSs become un-satisfactory.
Thereafter, a lot of Artificial Intelligence (AI) based techniques have been introduced
to solve the problem due to their advantages over the other techniques [41, 60]. The
AI based techniques have reported certain improvements in the results to detect the
intrusions. Many researchers analyzed various AI based techniques empirically and
compared their performance for detection of intrusions. Findings of representative
empirical comparative analysis are as follows: Most of the existing techniques strive
to obtain a single solution that lacks classification trade-offs [22]; Low detection
accuracy and high false alarm rate; No single technique is capable enough to detect
all classes of attacks to an acceptable level of false alarm rate and detection accuracy
[41, 49]; Some of the existing techniques fall into local minima. For global min-
ima, these techniques are computationally expensive; The existing techniques are
not capable to model correct hypothesis space of the problem [20]; Some existing
techniques are unstable in nature such as neural networks show different results with
different initializations due to the randomness inherent in the training procedure;
Different techniques trained on the same data may not only differ in their global
performances, but they may show strong local differences also. Each technique may
have its own region in the feature space where it performs the best [30]; Delay in
the detection of intrusions due to the processing of a large size of high dimensional
data [9, 60]; and NB, MLP and SVM techniques are found to be most promising
in detecting the intrusions effectively [35]. It is also noticed from the literature of
AI based techniques that most of the existing intrusion detection techniques report
poor results in terms of DR and FPR towards some specific attack class(es). Even,
Artificial Neural Networks (ANNs), Naive Bayes (NB) and Decision Trees (DT)
have been popularly applied to intrusion detection (ID), but these techniques have
provided poor results, particularly towards the minor attack class(es) [10, 31]. The
poor results may be due to an imbalance of instances of a specific class(es) or the
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inability of techniques to represent a correct hypothesis of the problem based on
available training data.

In order to improve the low DR and high FPR, focus of the current research
community in the field of intrusion detection (ID) is on ensemble based techniques.
Because, there is a claim in the literature that ensemble based techniques generally
outperform the best individual techniques. Moreover, several theoretical and empiri-
cal reasons including statistical, representational and computational reasons exist that
also advocate the use ensemble based techniques over the single techniques [19]. This
paper aims to develop a multi-objective genetic algorithm (MOGA) based approach
for intrusion detection to generate a pool of non-inferior individuals solutions and
combine them to generate ensemble solutions for improved detection results. The
pool of solutions provides classification trade-offs to the user. Out of pool of solu-
tions, the user can select an ideal solution as per application specific requirements.

Paper Overview: Sect. 2 presents the related work and identifies the research gaps
in the field. A novel MOGA based approach for effective intrusion detection is
proposed in Sect. 3. This section also explains implementation detail of the proposed
approach including brief description of multi layer perceptron (MLP), benchmark
datasets, performance metrics followed by experimental setup, results of the proposed
approach using MLP as a base classifier. Finally, the concluding remarks along with
the scope for future work are listed at the end of this paper in Sect. 4.

2 Related Work

Ensemble techniques/classifiers have been recently applied to overcome the limita-
tions of a single classifier system in different fields [19, 34, 42]. Such attention is
encouraged by the theoretical [19] and experimental [21] studies, which illustrate
that ensembles can improve the results of traditional single classifiers. In general,
an ensemble construction of base classifiers involves generating a diverse pool of
base classifiers [6], selecting an accurate and diverse subset of classifiers [57], and
then combining their outputs [42]. These activities correspond to ensemble gen-
eration, ensemble selection and ensemble integration phases of ensemble learning
process [38]. Most of the existing ensemble classifiers aim at maximizing the over-
all detection accuracy by employing multiple classifiers. The generalizations made
concerning ensemble classifiers are predominantly suitable in the field of ID. As
Axelsson [4] notes, “In reality there are many different types of intrusions, and dif-
ferent detectors are needed to detect them”. Use of multiple classifiers is supported
by the statement that if one classifier fails to detect an attack, then another should
detect it [43]. However, to create an efficient ensemble, we are still facing numerous
difficulties: How can we generate diverse base classifiers? Then, once these base
classifiers have been generated, should we use all of them or should we select a
sub-group of them? If we decide to select a subgroup, how do we go about it? Then,
once the sub-group has been selected, how can we combine the outputs of these
classifiers?
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Previous studies in the field of intrusion detection have attempted various tech-
niques to generate effective ensembles such as bagging, boosting, and random
sub-space etc. The researchers proposed a multi classifier based system of Neural
Networks (NNs) [24]. The different neural networks were trained using different
features of KDD cup 1999 dataset. They concluded that a multi strategy combi-
nation technique like belief function outperforms other representative techniques.
Multi classifier system of NNs was also advocated by Sabhnani and Serpen [50].
The authors reported improved results over single techniques. The researchers used
weighted voting to compute the output of ensemble of CART and BN and reported
improved results for intrusion detection [1, 11]. Perdisci et al. [48] proposed a cluster-
ing based fusion method that reduces the volume of alarms produced by the IDS. The
reduced alarms provides a concise high level description of attacks to system admin-
istrator. The proposed method uses correlation between alarms and meta alarms to
reduce the volume of alarms of the IDSs. A hierarchical hybrid system was also
proposed in [61]. But, the proposed system leads to high false positive rate. Chen
et al. [12] used different features of dataset to generate ensemble solutions based on
evolutionary algorithms. Toosi and Kahani [56] proposed a neuro-fuzzy classifier
to classify instances of KDD cup 1999 dataset into five classes. But, a great time
consuming is a big problem. Hu and Damper [28] proposed a adaBoosting ensemble
method that uses different features to generate diverse set of classifiers. No doubt,
the proposed method reported improved performance but it suffers from limitation
of incremental learning. It requires continuous retraining for changing environment.
Zainal et al. [62] proposed a heterogeneous ensemble of different classifiers and used
weighted voting method for combining their predictions. Wang et al. [58] proposed
an approach based on NN and fuzzy clustering. Fuzzy clustering helps to generate
homogeneous training subsets from heterogeneous training dataset which are further
used to train NN models. They reported improved performance in terms of detection
precision and stability. Clustering based hybrid system was also advocated by Muda
et al. [45] for intrusion detection. The system was unable to detect the intrusions
of U2R and R2L attack classes. Khreich et al. [33] proposed a iterative boolean
combination (IBC) technique for efficient fusion of the responses from any crisp or
soft detector trained on fixed-size datasets in the ROC space. However, IBC does
not allow to efficiently adapt a fusion function over time when new data becomes
available, since it requires a fixed number of classifiers. The IBC technique was
further improved as incremental Boolean combination (incrBC) by the authors in
[34]. The incrBC is a ROC-based system to efficiently adapt ensemble of HMM
(EoHMMs) over time, from new training data, according to a learn-and-combine
approach without multiple iterations. Govindarajan and Chandrasekaran [26] sug-
gested a hybrid architecture of NNs for intrusion detection. They used weighted
voting method compute the final prediction of system.

However, the models developed based on these techniques attempted to obtain
a single solution. They lack in providing classification trade-offs for application
specific requirements. Most of the models provided biased results towards specific
attack class(es).
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In contrast, genetic algorithm (GA) is the most widely used technique in data min-
ing and knowledge discovery [23]. Applying GA is valuable for its robustness in per-
forming global search in search space compared with other representative techniques.
Several researchers employed single and multiple objective genetic algorithms for
finding a set of non-inferior solutions for the problem of ID. Such initiative was
carried by Parrott et al. [46] by suggesting an evaluation function which was later
known as Parrot function. They proposed to use accuracy of each target class as a
separate objective in their evaluation function for MOGA. Here, accuracy of each
class refers to correctly classified instances of that class. The Parrot function was
further adopted in [2] and [3] to generate an ensemble of base classifiers. The gen-
eration of the ensemble was completed in two stages using modified NSGA-II [18].
In the first stage, a set of base classifiers was generated. Second stage optimized the
combination of base classifiers using a fixed combining method. Both of these meth-
ods differ in their function evaluation. The former study proposed to optimize the
classifiers by minimizing the aggregated error of each class and maximize diversity
among them. Since, the error on each class is not treated as separate objectives, this
is similar to a general error measure such as MSE (mean square error), which have
the same issues as the implementation of Parrot function, being biased towards the
major class(es). In the second phase of the approach proposed in [2] and [3], the
objectives are to minimize the size of the ensemble and maximize the accuracy. Con-
sequently, the drawback of their approach is to create a single best solution based on
general performance metrics. The same concept was further extended by Engen [22]
by conducting similar experiments with different evaluation functions for creating
ensemble of ANNs as base classifiers in the presence of imbalanced datasets using
NSGA-II. He used 3-class classification by using ANNs and MOGA. He proved
that MOGA based approach is an effective way to train the ANN which works well
for minority attack classes in imbalanced datasets. He proposed two phase process
for intrusion detection. In the first phase, he generated a set of base classifiers of
ANNs by optimizing their weights assuming a fixed number of hidden layers and the
number of neurons per hidden layer in ANN. The second phase generates improved
non-dominated front of ensemble solutions based upon base ANN solutions opti-
mized in phase 1. However, the performance of NSGA-II degrades for the real world
problems having more than three objectives and large population [55].

3 MOGA Based Approach for Effective Intrusion Detection

A novel MOGA based approach for intrusion detection is proposed. The concept of
two tier fitness assignment mechanism consisting of domination rank and diversity
measure of solutions (as proposed in [53]) are used to improve the solutions from
benchmark datasets. Generally, intrusion detection problem encounters a trade-offs
between multiple conflicting criteria such as detection rate of attack classes, accuracy
and diversity etc. Considering the multiple criteria of intrusion detection problem,
GAs can be used in two ways. The first way to solve a multi-objective problem is
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to convert multiple objectives into a single objective [13]. The single objective is
further optimized by GA to produce a single solution. Generally, prior knowledge
about the problem, or some heuristics guide the GA to produce a single solution. By
changing the parameters of the algorithm and executing the algorithm repeatedly,
more solutions can be produced. This approach has several limitations for multi
objective optimization problems. The second way to solve multi objective optimiza-
tion problems by using GA produces a set of non-inferior solutions. This set of
non-inferior solutions represents trade-offs between multiple criteria which is iden-
tified as a Pareto optimum front [22, 39]. By incorporating domain knowledge,
the user can select a desired solution. Here, GA has produced a set of solutions in
Pareto front in a single run without incorporating any domain knowledge or any
other heuristic about the problem. Some of the important researches in developing
MOGAs are Strength Pareto Evolutionary Algorithm (SPEA2) [63], Pareto-Envelope
based Selection Algorithm (PESA-II) [15], Non-dominated Sorting Genetic Algo-
rithm (NSGA-II) [17], Archive based Micro Genetic Algorithm 2 [54] and many
more. A comprehensive review of various MOGAs can be further referred in
[13, 14, 16].

The proposed approach is developed with particular attention to enhance the detec-
tion rate of majority as well as minority attack class(es). A chromosome encoding
scheme is proposed to represent the individual classifiers. Further more, the pro-
posed approach is used to find an improved Pareto front consisting of ensemble
solutions. The MOGA used in this paper is Archive based Micro Genetic Algorithm
2 (AMGA2) [54], which is an effective algorithm for finding optimal trade-offs for
multiple criteria. AMGA2 is a generational algorithm that works with a very small
population size and maintains a large external archive of good solutions obtained.
Using an external archive that stores a large number of solutions provides useful
information about the search space as well as tends to generate a large number of
Pareto points at the end of the simulation. At every iteration, a small number of solu-
tions are created using the genetic variation operators. The newly created solutions
are then used to update the archive. The strategy used to update the archive relies
on the domination level and the diversity of the solutions, and the current size of the
archive, and is based on the non-dominated sorting concept borrowed from NSGA-II
[18]. This process is repeated until the allowed number of function evaluations is
exhausted. We used differential evolution (DE) operator as crossover operator for
mating the population. Because, DE has advantage of not requiring a distribution
index and it is self-adaptive in that the step size is automatically adjusted depending
upon the distribution of the solutions in the search space. After mating the population
with crossover operator, it is followed by mutation operator. Modified polynomial
mutation operator is used to mutate the offsprings solutions.

3.1 The Proposed Approach

This section describes the proposed approach based on MOGA to create a set of base
classifiers and ensembles thereof. The proposed approach follows an overproduce
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and choose approach that focus on generation of a large number of base classifiers and
later on choose the subset of the most diverse base classifiers to generate ensembles.
The proposed approach is a three phase approach as described in subsequent
paragraphs.

Phase 1 and phase 2 are multi-objective in nature and use MOGA to generate
a set of base classifiers and ensembles thereof respectively. These phases of the
proposed approach evolve a set of solutions to formulate diverse base classifiers
and ensembles thereof using MOGA. The set of base classifiers and their ensembles
exhibit classification trade-offs for the user. The diversity among individual solutions
and their ensembles is maintained implicitly. The detection rate for each class is
treated as a separate objective in both the phase. Here, the MOGA is real-coded, uses
cross-over and mutation operators and an elitist replacement strategy.

Phase 1 of the proposed approach is capable to find the optimal Pareto front of
non-dominated solutions (depicted in Fig. 1). These solutions formulate the base
classifiers as candidate solutions for the ensemble generation in Phase 2. In phase
1, the values in chromosome and its size depends upon the type of base classifier
and corresponding encoding scheme. The output of phase 1 is a set of optimized real
values for classifiers that formulate the base classifiers of ensembles. The population
size is equal to the number of desired solutions input by the user.

Phase 2 generates another improved approximation of optimal Pareto front con-
sisting of a set of non-dominated ensembles based on a set of non-dominated solutions
as base classifiers (output of phase 1) which also exhibit classification trade-offs
(depicted in Fig. 2). It takes input in the form of archive of non-dominated solu-
tions produced by phase 1 that formulates the base classifiers of the ensembles. The
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Fig. 1 Phase 1 of the proposed approach
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phase evolves ensembles by combining the Pareto front of non-dominated solutions
instead of the entire population like other studies [29]. Here, we are interested in those
solutions which are non-inferior and exhibit classification trade-offs. The predictions
of the base classifiers are combined using the majority voting method. In case of a tie,
the winner is randomly chosen. The MOGA method discussed in phase 1 is again
applied in phase 2. Here, MOGA is real coded having values from 0 to 1. Value
≥0.5 signifies the participation of base classifier in the ensemble and <0.5 signifies
non-participation concerned base classifiers in creating the ensembles. The output
of phase 2 is an archive of the ensembles of the base classifiers in terms of chro-
mosomes in the range of 0 and 1 (depicted in Fig. 2). Here, value ≥0.5 signifies the
participation of base classifier in ensemble and <0.5 signifies its non-participation.
The set of ensembles provides the classification trade-offs for the user for different
objective functions.

Phase 3 of the proposed approach integrates the predictions of base classifiers
to get prediction of the final ensemble. As depicted in Fig. 3, the phase takes two
inputs (1) archive of non-dominated base solutions (output of phase 1); and (2) one
chromosome from the archive of ensembles as chosen by the user depending on
requirements (output of Phase 2). The user may adopt static or a dynamic strategy
to choose an appropriate ensemble from a pool of ensembles (evolved in Phase 2).
Here in this work, we selected the ensemble classifier using a static strategy based
on its performance on the training data in terms of pre-defined performance metrics.
Based on the values of the chromosome, corresponding predictions of base classifiers

No

Generate random
initial population

of 1’s and 0’s

Evaluate
objective

ensemble
functions of

Selection

Yes

or designated
generation?

Stopping criteria

Best solutions

    Archive of 
nondominated

solutions

    Archive of 
nondominated

solutions
(from phase 1)

Generate
new

population
Crossover

Mutate

Fig. 2 Phase 2 of the proposed approach
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Evaluation dataset

Archive of nondominated

Archive of nondominated
ensembles

Combiner (Majority Voting Method)

Final prediction of ensemble

C1 C2 Cn· · ·

Fig. 3 Phase 3 of the proposed approach

are integrated to get a final prediction of the ensemble. In order to test the proposed
approach, test dataset is directly fed to different base classifiers. Their predictions
are combined in this phase to give the final output of the ensemble. In this work,
we computed the final prediction of ensemble by using the majority voting method
because of its popularity as depicted in Fig. 3.

The phases of the proposed approach address key issues of the current research in
the field of ensembles. The issues addressed are (1) generation of a set of non-inferior
solutions that exhibit classification trade-offs to formulate base classifiers of the
ensemble; (2) generation of a set of non-inferior ensemble solutions that exhibit
classification trade-offs; and (3) integration of predictions of the base classifiers to
get final prediction of the ensemble.

3.2 Implementation

To evaluate the proposed approach, it is implemented in VC++. MLP is used as a
base classifier as per finding of state of art literature in the field of ID. The perfor-
mance of the proposed technique is evaluated based on benchmark datasets for ID
namely KDD cup 1999 and ISCX 2012 dataset. During the optimization of multiple
criteria by AMGA2, detection rate of each attack class in the dataset is used as a
separate objective. Majority voting method is used to integrate the predictions of
base classifiers to get prediction of the final ensemble. The results of experiments are
computed on a Windows PC with Core i3-2330M 2.20 GHz CPU and 2 GB RAM.
Following sub-sections describes the details of GA, MLP, benchmark dataset, and
performance metrics used in the experiments.



182 G. Kumar and K. Kumar

3.2.1 Genetic Algorithm

GA are population based search techniques that have been identified to perform
better that than the classical heuristics or gradient approaches [25]. GAs provides
better solutions particularly for multi models, non-differentiable, or discontinuous
functions. Generally, GA experiences following steps:

1. Generate a random population of individuals that represents solution to the
underlying problem.

2. Evaluate the population by computing their fitness function of each individual.
3. Elevate high quality individuals by selecting them from entire population.
4. Generate new population containing individuals created by applying variation

operators of cross-over and mutation.
5. Repeat the above steps till termination criteria is satisfied.

A large number of methods have been developed to implement steps for GAs. How-
ever, major issues consist of representation of individuals, fitness evaluation mech-
anism, variation operators of cross-over and mutation, and deciding the termination
criteria.

3.2.2 Multi Layer Perceptron

An MLP is a network of simple neurons called perceptrons [5]. The perceptron
computes a single output from multiple real-valued inputs by forming a linear com-
bination according to its input weights and then possibly putting the output through
some non-linear activation function. In other words, MLPs are feed forward Artificial
Neural Networks (ANNs) that may be trained with the standard back propagation
algorithm [5] or by using other alternative techniques. They are supervised networks,
so they require a desired response to be trained. They learn how to transform input
data into a desired response, so they are widely used for pattern classification. With
one or two hidden layers, they can approximate virtually any input-output map. They
have been shown to approximate the performance of optimal statistical classifier in
difficult problems.

The MLP used in this paper is composed of three neuron layers, namely, the input
layer, the output layer and the hidden layer as shown in Fig. 4. Although the MLP
can have more than one hidden layer, having more than one hidden layer is rarely
beneficial and can lead to gross over parametrization [22]. For a particular instance
i of training/test dataset, the input layer of the MLP used for intrusion detection
receives the input vector T from training dataset. The input vector T has general
format

Ti = (ti,1, ti,2.......................ti,n) (1)

Here, is the j th feature of i th instance of training/test dataset. Total number of input
neurons in input layer is equal to total features of training/test dataset for intrusion
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Fig. 4 Structure of MLP

detection. The output layer contains the output neurons. The output neurons are
equals to number of classes in dataset. A hidden layer is a middle layer. This layer
adds a degree of flexibility to the performance of the ANN that enables it to deal
efficiently with complex nonlinear problems. Each neuron in the single hidden layer
receives the same input vector of N elements from the neurons of the input layer,
as defined by Eq. (1), and produces the output. The input-output transformation in
each hidden neuron is achieved by a mathematical non-linear transfer (or activation)
function. The general form of activation function is

Yi,k = f (

N∑
j=1

W j,k ∗ Ti, j + bk) (2)

where Yi,k is the output of kth neuron in hidden layer for i th instance of dataset, f()
is an activation function, is the connection weight assigned to kth hidden neuron and
j th neuron in input layer and is the bias of kth hidden neuron. In literature, many
activation functions are proposed [22]. The most widely used activation functions is
the sigmoid function which can be expressed as

Yi,k = 1

1 + exp(−∑N
j=1 W j,k ∗ Ti, j − bk)

(3)
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The neurons in output layer produce the final network output. These output neurons
receives an input array in form of Eq. 4.

Zi = (Yi,1, Yi,2.......................Yi,n) (4)

The input-output transformation for this output neuron is similar to that of the hidden
neurons

3.2.3 Benchmark Datasets

The performance of the proposed approach is measured based on benchmark datasets.
In the literature, various benchmark datasets are proposed for validation of the IDSs.
As per statistics of a survey of 276 papers published between 2000 and 2008 con-
ducted by Tavallaee [52], most of the researchers used publicly available benchmark
datasets for evaluating their network based approaches. It is observed that KDD cup
1999 [32] data set is the most widely data set used for validation of an IDS [41, 52] in
spite of many criticisms [7, 22, 44]. The raw training dataset contains about 4 GB of
TCP connection data in the form of 5 million connection records. Similarly, test data
set contains about 2 million records. KDD cup 1999 dataset utilizes TCP/IP level
information and embedded with domain-specific heuristics, to detect intrusions at the
network level. KDD dataset contains four major classes of attacks: Probe, Denial of
Service (DoS), User-to-Root (U2R) and Remote-to-Local (R2L) attacks The labeled
connection records consist of 41 features and 01 attack type. The labeled connection
records consist of 22 different attack types categorized into 04 classes whereas unla-
beled dataset consist of 20 known and 17 unknown attack types. The 41 features can
be divided into three categories viz: Basic features of individual TCP connections,
Content features within a connection suggested by domain knowledge and Traffic
features computed using a two-second time window.

In a thorough study of KDD cup 1999 dataset, Tavallaee [52] observed that there
are some inherent problems. He refined the KDD cup 1999 dataset and named it
as NSL-KDD dataset. As the number of connection records in training and test
NSL-KDD data set is very large, so it’s practically very difficult to use the whole
data set. Thus, in order to conduct unbiased learning and testing of the proposed
approach, we used subsets of the dataset containing different proportions of nor-
mal and attack instances. The statistics of selected subsets of NSL-KDD datasets
used in our experiments is as depicted in Table 1. Here, we selected 10 most promi-
nent features in ITFS data subset by applying feature selection technique described
in [36, 37].

In order to overcome the limitations of KDD cup 1999 dataset, [51] presented a
new dataset for validation of an IDS at Information Security Center of eXcellence
(ISCX). The dataset is available in the packet capture form. Features are extracted
from the packet format by using tcptrace utility (downloaded from www.tcptrace.org)
and applying the following command.

tcptrace csv −l filename1.7z > filename1.csv
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Table 1 Statistics of subsets of KDD cup 1999 dataset as Training and Test data subsets

Dataset Mode Number of features Class Number of instances Total instances

KDD 1 Training 41 Normal 1000

Probe 100

DoS 100

U2R 11

R2L 100 1311

Test 41 Normal 500

Probe 75

DoS 75

U2R 50

R2L 50 750

KDD 2 Training 41 Normal 13449

Probe 2289

DoS 9234

U2R 11

R2L 209 25192

Test 41 Normal 2152

Probe 2402

DoS 4342

U2R 200

R2L 2754 11850

ITFS Training 41, 10 Normal 10000

KDD Probe 32316

DoS 23467

U2R 52

R2L 1126 66961

Test 41, 10 Normal 5000

Probe 4166

DoS 17761

U2R 228

R2L 13448 40603

where filename is the name of the 7z (packet capture) file. From resulting csv files,
we selected features which are most widely used features in the literature as proposed
by Brugger [8]. The data instances including normal as well as attack instances are
randomly selected to create a subset of the benchmark dataset for our experiments.
The selected dataset is further preprocessed by converting discrete feature values to
numeric ones as described in [40]. The statistics of selected ISCX 2012 data subset
are depicted in Table 2.
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Table 2 Statistics of subset of ISCX 2012 dataset as Training and Test data subset

Dataset Mode Number of features Class Number of instances Total instances

ISCX Training 9 Normal 4125

2012 Attack 578 4703

Test 9 Normal 64127

Attack 577 4704

3.2.4 Performance Metrics

In order to evaluate the effectiveness of the IDS, we measure its ability to correctly
classify events as normal or intrusive along with other performance objectives, such
as economy in resource usage, resilience to stress and ability to resist attacks directed
at the IDS [27]. Measuring this ability of the IDS is important to both industry as well
as research community. It helps us to tune the IDS in a better way as well as compare
different IDSs. There exist many metrics that measure different aspects of the IDS,
but no single metric seems sufficient to objectively measure the capability of the
IDS. Most widely used metrics by intrusion detection research community are True
Positive Rate (TPR) and False Positive Rate (FPR). Or False Negative rate FNR =
1 − TPR and True Negative Rate TNR = 1 − FPR can also be used alternatively.
Based upon values of these two metrics only, it is very difficult to determine better
IDS among different IDSs. For example, one IDS reporting, TPR = 0.8; FPR = 0.1,
while at another IDS, TPR = 0.9; FPR = 0.2. If only values TPR and FPR are given,
then it is very difficult to determine the better IDS. To solve this problem, Gu et al.
[27] proposed a new objective metric called Intrusion Detection Capability (CID)
considering base rate, TPR and FPR collectively. CID possesses many important
features. For example, (1) it naturally takes into account all the important aspects of
detection capability, i.e., FPR, FNR, Positive Predictive Value (PPV) [4], Negative
Predictive Value (NPV), and base rate (the probability of intrusions); (2) it objectively
provides an essential measure of intrusion detection capability; and (3) it is very
sensitive to IDS operation parameters such as base rate, FPR and FNR. Detail of
CID can be further studied in [27]. Keeping these points in view, we computed TPR,
FPR and CID to evaluate the performance of the proposed technique and compare it
with other representative techniques in the field.

3.2.5 Design of Experiments

In this investigation, we used AMGA2 as a multi objective genetic algorithm because
of its benefits over other representative algorithms [54]. The implementation of
AMGA2 algorithm takes following input parameters.

• Number of function evaluations
• Number of desired solutions
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• Random seed
• Output file

Rest of parameter like mutation rate, crossover rate, etc. is automatically tuned by
the AMGA2 algorithm.

The proposed approach involves three phases to create the ensemble as described
in Sect. 3.1. In phase 1 (ensemble generation phase), AMGA2 optimizes an archive
of diverse base classifiers that exhibit classification trade-offs. The values in chro-
mosome represent the weights of MLP. The size of chromosome is equal to the
number of weights of MLP which is further dependent structure of the MLP (i.e.
input nodes, hidden layers, number of hidden nodes per layer and output nodes).
Each chromosome represents a MLP classifier in terms of its weights. The output of
phase 1 is a set of optimized real values of the weights of MLPs that formulate the
base classifiers for the ensembles. In phase 2 (ensemble selection phase), AMGA2
is again used to create an archive of the ensembles that also exhibits classification
trade-offs. In phase 3 (ensemble integration phase), the predictions of selected base
classifiers are combined to compute the final prediction of the ensemble using the
majority voting method. The parameters used as input by the user to AMGA2 are
depicted in Table 3. Other simulation parameters tuned automatically by AMGA2
for KDD cup 1999 dataset and the ISCX 2012 dataset are presented in Tables 4 and 5
respectively. For investigation of MLP as a base classifier, the structure of MLP used
is as depicted in Table 6.

Table 3 Parameters of
AMGA2 input by the user

Number of function evaluations 25000

Number of desired solutions 100

Random seed 0.1

Table 4 Simulation
parameters tuned by AMGA2
for KDD cup 1999 dataset

Parameter Value

Maximum allowed size
of archive

Number of desired
solutions input by the user

Size of initial population Number of desired solutions
input by the user

Size of working population 20

Maximum number of
function evaluations

Number of function
evaluations input by the user

Probability of crossover 0.1

Probability of mutation 0.01

Index for crossover 0.5

Index for mutation 15
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Table 5 Simulation parameters tuned by AMGA2 for ISCX 2012 dataset

Parameter Value

Maximum allowed size of
archive

Number of desired solutions
input by the user

Size of initial population Number of desired solutionsin-
put by the user

Size of working population 8

Maximum number of function
evaluations

Number of function evaluations
input by the user

Probability of crossover 0.1

Probability of mutation 0.111111

Index for crossover 0.5

Index for mutation 15

Table 6 Configuration of
MLP

Input nodes Number of features of dataset

Hidden layer 1

Number of hidden nodes 30

Output nodes 5

3.3 Results and Discussion

Here, for investigation of MLP as a base classifier, ensemble generation is done by
using random initial values of the weights of MLPs. As an output of this phase, we
obtained an archive of MLP having optimized values of their weights. In the ensemble
selection phase, we selected the MLP classifiers for the final ensemble based upon
their performance during the training process (overproduce-and-choose strategy).
Finally, the ensemble integration phase involves fusion strategies to combine the
predictions of the selected classifiers. We used majority voting method to solve the
purpose for its popularity.

In our experiments, we selected the solution for comparison with the other classi-
fiers having a better value of the CID. Alternate solutions from the pool may provide
different values of performance metrics. The results of the proposed intrusion detec-
tion approach using MLP as a base classifier and the other representative techniques
are computed based upon benchmark datasets in terms of confusion matrices and
other defined performance metrics. We computed average DR, Average FPR, CID
and DR of each target class from the confusion matrices. The representative tech-
niques used in this investigation are MLP trained with back propagation method,
their ensembles using bagging and boosting. We utilized WEKA software package
[59] to compute the results of MLP trained with back propagation, its ensembles
(bagging and boosting). We used default parameters of WEKA for computing the
results using MLP and its ensembles.
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3.3.1 Results of KDD Cup 1999 Dataset

The proposed approach is applied to various data subsets of KDD cup 1999 dataset
that produces a set of non-inferior MLP based ensemble solutions. The performance
of ensemble solutions for training and test data of KDD 1 dataset is depicted in Fig. 5.

The performance of ensemble solutions for training and test data of KDD 2 dataset
is shown in Fig. 6. The performance of ensemble solutions for training and test data
of ITFS-KDD (41 features and 10 features) data subsets is portrayed in Figs. 7 and 8
respectively.

The overview of the classification results of KDD subsets obtained with MLP
and its ensembles (using bagging and boosted methods) and our proposed approach
(AMGA2-MLP) with respect to different evaluation criteria is as shown in Table 7.

The results indicate that MLP and its ensembles using bagging and boosting
demonstrate comparable performance. But, these techniques are more biased towards
majority classes and reported poor performance for the minority classes like U2R and

Fig. 5 Training and Test performance of non-inferior MLP based ensembles for KDD 1 data subset
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Fig. 6 Training and Test performance of non-inferior MLP based ensembles for KDD 2 data subset

R2L. MLP trained with our proposed approach is less biased and reported improved
results than others for minority as well as majority classes. In case of KDD1 data
subset, AMGA2-NB improved the detection of R2L attack class up to 52 % which
was detected up to 2 % by the MLP and boosted MLP and 6 % by bagging based
ensemble of MLP. Similarly, detection of U2R attack class is also enhanced by 66 %
than MLP and its conventional ensemble techniques. In case of KDD2 data subset,
MLP and its ensembles based upon bagging and boosting fails to detect U2R and
R2L attack classes whereas AMGA2-MLP reported the detection of U2R and R2L
attack classes up to 16.5 and 68.5 % respectively. Whereas, detection of the other
classes is comparable with the other conventional ensemble techniques. In case of
other data sets, the performance of the proposed technique is also comparable to
the other representative techniques. Higher values of CID of our proposed technique
revealed in Table 7 (in most of the cases) indicate that it outperformed the other
techniques considered in this investigation.
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Fig. 7 Training and Test performance of non-inferior MLP based ensembles for ITFS (41 features)
data subset

3.3.2 Results of ISCX 2012 Dataset

The performance of ensemble solutions for training and test data of ISCX 2012
dataset is depicted in Fig. 9. The detection results of the techniques are presented for
the subset of ISCX 2012 dataset in Table 8. It can also be observed from the reporting
results that AMGA2-MLP (The MLP trained with the proposed approach) reported
superior performance than MLP and its bagging based ensemble and comparable
performance that of boosting based ensemble of MLP. AMGA2-MLP reported the
detection of normal and attack classes upto 96.9 and 97.7 % respectively. Higher value
of CID indicates that our proposed approach outperformed the other techniques for
the ISCX 2012 dataset considered in this investigation.
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Fig. 8 Training and Test performance of non-inferior MLP based ensembles for ITFS (10 features)
data subset

3.3.3 Discussion

The results obtained in this paper highlight clearly the benefits of training the MLP
and its ensembles by using the proposed multi-objective genetic algorithm based
approach. The proposed technique helps to improve the detection results especially
for minority attack classes than that of other conventional ensemble approaches.
The percentage improvement of the results of the proposed approach over other
approaches is depicted in Table 9. The reporting results indicate that the proposed
approach helps to enhance the average detection rate, reduce average false positive
rate and overall increase in CID values over the other approaches.

In case of KDD cup 1999 dataset, MLP trained with the proposed approach helps
to enhance the detection of minority attack classes like U2R and R2L attack classes
which was very poorly detected by MLP trained using back propagation method.
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Fig. 9 Training and Test performance of non-inferior MLP based ensembles for ISCX 2012 data
subset

Table 8 Overview of classification results of ISCX 2012 subset using MLP as a base classifier

Dataset Technique Avg. DR Avg. FPR CID Normal Attack

ISCX 2012 MLP 0.906 0.660 0.049 0.998 0.248

Bagged MLP 0.906 0.660 0.049 0.999 0.246

Boosted MLP 0.947 0.083 0.560 0.952 0.912

AMGA2-MLP 0.970 0.024 0.778 0.969 0.977

MLP and its ensemble based on the conventional techniques like bagging and boost-
ing are biased towards majority classes, so reported poor results for minority attack
classes. Whereas, the findings of the proposed approach are that they are less biased
towards majority attack classes. Thus, the proposed approach is applicable where
there is class imbalance and detection of all classes especially minority attack classes
is equally important, as expected in many application domains including intrusion



A Multi-objective Genetic Algorithm Based Approach ... 195

Table 9 Percentage improvement of the results of the proposed approach using MLP as a base
classifier

Classifier MLP Bagged MLP Boosted MLP

Dataset DR FPR CID DR FPR CID DR FPR CID

KDD1 −10.42 −43.32 65.12 −12.36 −36.53 22.41 −10.42 −43.32 65.12

KDD2 28.19 −11.11 95.89 31.72 −13.04 116.67 28.19 −11.11 95.89

ITFS 41 11.76 −4.23 26.87 30.43 −84.44 – 11.76 −4.23 26.87

ITFS 10 13.62 −50.99 128.74 0.12 −0.48 1.05 13.62 −50.99 128.74

ISCX 2012 7.06 −96.36 1487.76 7.06 −96.36 1487.76 2.43 −71.08 38.93

detection. It is observed from the literature that MLPs trained with back propagation
methods are often used for classification tasks as they are universal approxima-
tion algorithms. But, the results of this investigation indicate that back propagation
method and other similar methods for training are not appropriate in all scenarios
especially where detection of majority as well as minority attack classes is equally
important. In case of ISCX 2012 dataset, results similar to KDD cup 1999 dataset
are also obtained. MLP trained with back propagation method and its bagging based
ensemble demonstrated poor results for detection of attack class. Whereas, AMGA2-
MLP enhanced average DR to 0.97 (0.906 in case of MLP) and reduced average FPR
to 0.024 (0.66 in case of MLP) approximately. It is also observed that most of the
conventional techniques provide a single solution and lacks in providing classifica-
tion trade-offs. Whereas, the proposed approach provides a pool of solutions to the
problem. Out of this pool, the user can select any one solution based on its better
value for CID and his/her application specific requirements. Other solutions with
different values of CID may offer different detection results for the same problem
that helps to exhibit the different classification trade-offs. Hence, the results depicted
above sections proved the superiority of the proposed multi-objective genetic algo-
rithm based approach and validated its applicability for proper training of the MLP
for intrusion detection.

In a nut shell, the empirical investigation and comparison of the results indicate
the following:

• The proposed approach outperforms the individual representative techniques in
terms of identified performance metrics.

• There are indications in the literature that bagging and boosting learn better from
imbalanced data. However, the experiments here have demonstrated that these
algorithms remain biased towards the majority class(es).

• Using MLP as a base classifier, the proposed approach is able to enhance DR
by 28 % , reduce FPR by 51 % approximately over the results of MLP trained
using back propagation method and its ensemble using boosting technique based
on KDD cup 1999 dataset. However, an improvement of results is noticed upto
30 % in DR and 84 % in FPR approximately over bagging based ensemble of MLP
for KDD cup 1999 dataset. For ISCX 2012 dataset, the results of the proposed
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technique are improved upto 7 % in DR and 96 % in FPR approximately over
MLP and its ensemble using bagging technique.

• The ensembles evolved with the proposed technique provides better solutions, and
also achieves a higher detection accuracy.

• Higher values of CID for the proposed technique proved the superiority over the
existing individual techniques and their ensembles using bagging and boosting.

• The proposed approach is capable to produce a pool of solutions that address the
limitations of the existing techniques, striving to obtain a single solution in which
there is no control on classification trade-offs (for application specific require-
ments).

• The proposed approach is a generalized classification approach that is applicable
to the problem of any field having multiple conflicting objectives and a dataset can
be represented in the form of labeled instances in terms of its features.

4 Concluding Remarks

In this paper, a novel multi objective genetic algorithm based approach is proposed for
effective intrusion detection. The proposed approach is capable of producing a pool
of non inferior individual solutions and ensemble solutions thereof which exhibit
classification trade-offs for the user. By using certain heuristics or prior domain
knowledge, a user can select an ideal solution as per application specific requirements.
The proposed approach attempts to tackle the issues of low DR, high FPR and
lack of classification trade-offs in the field of ID. The proposed approach consists
of encoding of chromosomes that provides optimized values of weights of MLPs.
AMGA2 is employed to build multi objective optimization model that generates
individual solutions and ensemble solutions thereof with simultaneous consideration
of detection rate of each attack class in the dataset. A three phased multi-objective
genetic algorithm based approach can rapidly generate numerous individual solutions
and ensemble solutions thereof with simple chromosome design in first phase of
the proposed approach. The entire solutions are further refined to obtain ensemble
solutions in second phase of the approach. The predictions of individual solutions
are fused together to compute final prediction of the ensemble using majority voting
method in phase 3 of proposed approach.

Benchmark datasets namely KDD cup 1999 and ISCX 2012 dataset for intru-
sion detection are used to demonstrate and validate the performance of the proposed
approach based on MLP as a base classifier. The proposed approach can discover an
optimized set of individual MLPs and ensemble of MLPs thereof with good support
and detection rate from benchmark datasets (in comparison with well-known ensem-
ble methods like bagging and boosting). The optimized set of MLPs and ensemble
of MLPs exhibit the classification tradeoffs for the users. The user may select an
ideal solution as per application specific requirements. Using MLP as a base clas-
sifier, the proposed approach is able to enhance DR by 28 % , reduce FPR by 51 %
approximately over the results of MLP trained using back propagation method and
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its ensemble using boosting technique based on KDD cup 1999 dataset. However, an
improvement of results is noticed upto 30 % in DR and 84 % in FPR approximately
over bagging based ensemble of MLP for KDD cup 1999 dataset. For ISCX 2012
dataset, the results of the proposed technique are improved upto 7 % in DR and 96 %
in FPR approximately over MLP and its ensemble using bagging technique. Higher
values of CID for the proposed approach proved the superiority over the existing
individual techniques and their ensembles using bagging and boosting.

The major issue in the proposed approach is that it takes long time to compute
fitness functions in various generations. It may be overcome by computing the func-
tion values in parallel. Here, we computed the results by limiting the population
size and number of generations of MOGA. More experiments may be conducted by
using different values of these parameters. The proposed approach is validated using
small subsets of benchmark datasets only, whereas its applicability can be tested by
conducting more experiments with real network traffic in the field of ID. The pro-
posed approach utilized static method for selecting an appropriate ensemble solution
whereas dynamic selection method may lead to more fruitful results.
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Abstract Cyber insider detection is challenging due to the difficulty in
differentiating legitimate activities from malicious ones. This chapter will begin
by providing a brief review of exiting works in the machine learning community that
offer treatments to cyber insider detection. The review will lead to our recent research
advance that focuses on early detection of ongoing insider mission instead of trying
to determine whether individual events are malicious or not. Multiple automated soft-
ware agents are assumed to possess different account privileges on different hosts, to
perform different dimensions of a complex insider mission. This work develops an
integrated approach that utilizes Hidden Markov Models to estimate the suspicious
level of insider activities, and then fuses these suspiciousness values across insider
activity dimensions to estimate the progression of an insider mission. The fusion
across cyber insider dimensions is accomplished using a combination of Fuzzy rules
and Ordered Weighted Average functions. Experimental results based on simulated
data show that the integrated approach detects the insider mission with high accuracy
and in a timely manner, even in the presence of obfuscation techniques.
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1 Introduction

Cyber insider threats have attracted much attention within the past decade [1, 3, 5,
8, 10, 11, 13], and raise concerns in various research communities including psy-
chology, criminal justice, computer science and engineering. The key challenge to
detect insider threats from the computing perspective lies in the difficulty to dif-
ferentiate observables that are individually legitimate but together cause threats to
critical information loss or operation degradation. This becomes even more challeng-
ing when multiple software agents are used in a collusive manner to execute insider
activities in different dimensions of an insider mission.

The research undertaken in the past decade on cyber insider detection, for the
most part, focuses on determining whether individual actions are malicious or not.
This focus has shown to be not successful due to the inherent limitation that insider
activities are mostly legitimate and can easily fits, or mimicked to fit, normal behavior
profiles. Recognizing this limitation, this chapter discusses an approach that focuses
on detection of the progress of an overall insider mission, instead of struggling with
finding malicious event observables. Expanding from the multi-perspective notion
discussed in Raissi-Dehkordi and Carr [11] and the colluding user roles in Kohli et al.
[5], this work assumes that an insider mission is consisted of several dimensions of
insider activities. These multi-dimensional insider activities require privileges likely
to span across multiple account types and thus a number of software agents are
needed to complete the mission. This is not an unreasonable assumption for complex
insider missions that are critical and hard to analyze. Note that the objective is not
to determine whether individual observables are caused by these insider activities;
rather, it is to elevate a threat level as early as possible when an insider mission is
likely being executed.

To accomplish the above research goal, one needs to go beyond the existing
intrusion or misuse detection techniques that either assume malicious behaviors
exhibits localized (e.g., per-process, per-user account) deviations from normal behav-
ior or rely on pattern matching against known attack signatures. This chapter will
describe an integrated approach that utilizes Hidden Markov Models (HMM) to
estimate the suspicious level of insider activities, then fuses these suspiciousness
values across insider activity dimensions using a combination of Fuzzy systems and
Ordered Weighted Average functions to project the progression of an insider mission.
The approach combines the benefits of data-driven learning and knowledge-based
fusion techniques, to provide a robust system that exhibits early warning capabilities
even in the presence of obfuscation techniques used by colluding software agents.
The timely detection of cyber insider mission is essential to enhance situation aware-
ness of the overall operation environment. Experimental results based on simulated
data show that the integrated approach detects the insider mission with high accuracy
and in a timely manner, even in the presence of obfuscation techniques.
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2 Related Work

Salem et al. [12] provided a comprehensive survey on cyber insider attack
detection in the computer security literature. They categorized the existing works
into host-based user profiling and network-based sensing approaches. Host-based
user profiling draws similarity to the techniques used for more general human insider
behavior profiling works [3, 10, 13]. This set of work is limited, particularly in the
cyber space, in that software agents can easily mimic legitimate usage. Relying on
differentiating malicious insider cyber observables from legitimate ones is simply
inconceivable and impractical.

Early work on cyber insider detection overlapped significantly with the general
anomaly-based intrusion detection systems that built upon data mining and machine
learning techniques. Singh and Silakari [14] reviewed 18 cyber attack detection
systems and identified techniques such as associative rules, Hidden Markov Model
(HMM), classification, clustering, Bayes network, Support Vector Machine (SVM),
Principle Component Analysis (PCA), neural network, decision tree, and self orga-
nizing map. Unlike traditional knowledge-extensive signature based detection tech-
niques, these data mining and machine learning techniques explored large data
and machine intelligence to expedite the speed or expand the capability of attack
detections.

Exsiting work often focuses on a single aspect of cyber attacks. For example,
Liu et al. [6] proposed a multilevel framework as a high-speed transparent network
bridge at the edge of the protected network to identify network applications, generate
and detect content signatures and detect covert communication. It classified network
traffics using statistical and signal processing techniques for signature generation
and feature extraction.

Bertino and Ghinita [2] proposed a pattern matching based mechanism to create
profiles of nominal user behavior and detect anomalous behavior with respect to
database SQL queries. They identified a number of activities that are indicative of
data exfiltration by insiders: data identification, retrieval, movement, and exfiltration.
Mathew et al. [7] argued that query syntax alone is a poor discriminator of user intent,
which is much better rendered by what is accessed. They proposed to model database
access patterns profiling the data points that users access, in contrast to analyzing
the query expressions. Statistical learning algorithms are trained and tested using a
feature-extraction method to model users’ access patterns.

Hu and Panda [4] presented a model for detecting insider malicious activities
targeted at tampering the contents of files for various purposes. It employs two-
dimensional traceability link rule mining to identify intrinsic file dependencies and
model file access patterns. Activities that modify data without complying with various
file traceability link rules will be identified as suspicious activities.

Raissi-Dehkordi and Carr [11] proposed to extend the notion of profiling by aggre-
gating statistical analysis in multiple system perspectives and performing classifica-
tion using SVM. Specifically, they analyzed metrics such as user usage behaviors,
file server access statistics, and database server access statistics, and established tens
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of SVMs to perform classification. One of their objectives was to use these multiple
SVMs to tackle the colluding insider problem. Their experiments showed a slight
improvement by missing around 25 % instead of 30 %. In terms of colluding cyber
insider attacks, Kohli et al. [5] discussed a risk assessment framework that shown
how multiple insider and even outsider roles can collude to perform attack and cause
serious risks.

Cyber insider attackers, in comparison to outsiders, are stealthier to avoid being
caught. Yang et al. [17] proposed an enhanced packet matching algorithm to detect
stepping-stone insider attacks through comparing outgoing and incoming connec-
tions. In such attacks, the insiders use compromised outside computers as stepping-
stones to launch their attacks against inside targets. This and similar techniques can
be used to detect activities in covering the trace, a dimension often overlooked by
existing works.

The notion of evaluating multiple dimensions of a cyber attacks is appealing, as
it presents an opportunity to provide a robust solution that does not rely on detecting
anomaly in a single aspect of cyber attacks, which can be error prone. Furthermore,
modern cyber defense system often implements separation of user and system priv-
ileges, and, thus, an insider attack will require multi-dimensional penetrations into,
e.g., file system, database, and web application. The approach to be described in the
next section employs such a multi-dimensional approach, where HMM is used to
generate the suspicious level, defined by a log-likelihood function, for each dimen-
sion. The suspicious level detection can be potentially further improved with other
techniques. For example, Parveen et al. [9] proposed an ensemble-based data stream
mining techniques to classify rare anomalies from dynamic data streams of unbound
length. It demonstrated substantially increased classification accuracy over tradi-
tional supervised learning methods for real insider threat streams due to automatic
adaptation of the models for evolving data. The suspicious levels across dimensions
will then be fused by a combined used of Fuzzy rules and Ordered Weighted Aver-
age to produce an insider mission score over time. This combination of data-driven
anomaly detection and knowledge-driven fusion will be shown to exhibit superior
performance.

3 Approaches and Components

The insider mission scenario investigated in this work is described as follows: the
ultimate goal of the intrusion is altering sensitive data stored in database. The targeted
victim system has an web interface to allow user to query and potentially change
the data with approval. In addition, the target system has strict security policy, every
change on the data should have a report, which is a file saved in file system. To
accomplish the intrusion task, the insider should take actions in different dimensions,
from reconnaissance (Dim A), tamper data in database (Dim B), tamper data in file
system (Dim C), tamper data in web UI (Dim E), watch for sensitive data updates
(Dim E), cover the trace (Dim F).
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The insider mission identification system has two major components, the event
to activity (E2A) module and the cross dimension mission identification (CDMI)
module. When an automated software agent, suspicious or not, performs various
activities to achieve (both suspicious insider and normal business) mission objectives,
it leaves traces, i.e., a sequence of traces staging an attack on the victim system or
network. These traces can be tracked by host-based or network-based sensors and
reported as event instances. The purpose of the E2A module is to map the events into
activity space to estimate the degree of suspiciousness by calculating the deviation
(log-likelihood) from the internal state machine that models normal behavior. The
suspicious activities are categorized into different insider dimensions based on expert
knowledge. The CDMI module fuses the output of the E2A module, i.e., possible
activities in different insider dimensions and their suspiciousness values to determine
a mission score indicating the likelihood of existence of an insider mission.

3.1 Event to Activity Module

The main purpose of the E2A module is to simplify and compress the problem space
from the event domain to the activity domain. When insider activities are performed
for achieving a mission, each activity will leave traces in the network traffic logs or file
systems. These traces will be inspected by network- or host-based security sensors
to generate events. In our target insider mission, there are hundreds or thousands
of event types, since different sensors often generates different types of events and
each sensor may generate multiple types of events. In addition, normal business
operations also leave traces and lead to observable events, especially when sensors
are tuned to capture events from insider activities that are very similar to normal
business activities. Here, the events are observable and available for our mission
identification task, but the exact underlying activities are hidden and unknown and
need to be inferred from the events.

In general, the same activity may cause multiple observed events, and different
activities may cause the same type of observed events. Hence a probabilistic model
may be used to infer activities from events. Note that an individual event (instance) by
itself usually does not provide sufficient indication of whether it is observed from an
insider activity or the normal business operation. Instead, the preceding and succeed-
ing events may provide additional context to help determine how likely a given event
is observed when a given type of activity is performed. As a result, the temporal order
of events is important in the event-to-activity inference. In the E2A module, Hidden
Markov Model (HMM) is used to perform inference for corresponding activities
from observed events and to calculate the suspiciousness of inferred activities. Each
event type is considered an observable symbol, and each activity type is considered
a hidden state in the HMM.

The HMM in the E2A module is initially specified by a group of three security
experts with experience of enterprise penetration tests and cyber analytics, and then
improved through training using historic data. Specifically, the types of events, the
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types of activities, and the emission relationship from activities to events (i.e., whether
an event can be caused by an activity), are specified based on the target insider mis-
sion and business operation environment. Security experts are often knowledgeable
and skillful enough to provide such structure knowledge, but may have difficult to
specify the exact probabilities in the HMM. The HMM training only requires his-
toric sequences of observed events (without manual labeling of activities) to tune the
probabilities. Once created and trained, the HMM can be used to calculate the for-
ward probability for a particular event using only its preceding events. This enables
us to support online mission identification as events are observed as a data stream.
In HMM inference, one can also calculate the posterior probability for a particular
event using the full sequence of events (including both its preceding events and its
succeeding events). This enables us to find the optimal probabilities in offline or
batch mode mission identification as a comparison baseline to measure the online
mission identification method.

In addition, the E2A module estimates the suspiciousness of each inferred activity.
This value is important for the CDMI module in determining whether the insider
mission exists. We use the log-likelihood to estimate the suspiciousness of a given
activity. In particular, Let ei be the i th observed event and the probability associating
ei to each activity a j is pi j . The best activity match is the activity with the maximum
probability p∗

i = max j (pi j ). The suspiciousness of ei to a j is defined as

Li � − (log(

i∏
k=1

p∗
k ))/ i = − (

i∑
k=1

log(p∗
k ))/ i,

where p∗
1 is set to 1. The suspiciousness value of an inferred activity indicates how

bad the activity fits the normal activity model given the observed events in the context.
Figure 1 is an illustrative example of an HMM used in E2A module. The nodes

labeled with A j , j ∈ {1, . . . , M} represent the (types of) activities defined in the
insider mission scenario; Ei , i ∈ {1, . . . , N } (N � M) represent the (types of)
events reported by security sensors. An edge between two activity nodes represents
the transition probability for the next activity after a given activity. On the other hand,
an edge between an activity node and an event node represent the probability for that
event being observed when the activity is performed. Note that the HMM is very
sparse, because an activity usually only causes a few types of events being observed.
Once the HMM is trained, for any given sequence of newly observed events, one can
use the HMM to infer the underlying activity for each individual observation, as well
as the suspiciousness of the inferred activity. The better the activity fits the model
(in the context of other inferred activities), the less suspicious the activity is. On the
other hand, when an activity does not fit the model well, it is considered suspicious,
but not necessarily malicious. The suspiciousness values will be used by the CDMI
module for further analysis.
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A1 A2 · · · AM

E1 E2 E3 E4 · · · EN

Fig. 1 An illustrative example of E2A hidden Markov model

3.2 Cross Dimension Mission Identification Module

The Cross-Dimension Mission Identification (CDMI) module processes the
higher-level abstraction, i.e., the dimension specific activity level information to
estimate the contribution that each set of hypothesized activities has made toward
the completion of the insider mission. It is expected that tens of activity types will
be used to represent hundreds of or more event types. CDMI aims at analyzing the
activity suspiciousness value across insider dimensions to estimate the overall insider
mission progress over time. An insider mission score, ranging between 0.0 and 1.0,
will be produced to reflect the threat level of any ongoing insider mission.

Three major algorithms are developed to determine the mission score from the
suspiciousness values of activities in different insider dimensions. Dynamic Activ-
ity Discovery (DAD) selects suspicious activities based on the E2A outputs, Intra-
Dimension Fusion (IDF) aggregates the activity scores within each insider dimension
to produce a completeness score for each dimension, and Cross-Dimension Fusion
(CDF) takes the completeness scores and generates the final mission score.

The inputs to CDMI include the probability values (pi j ) that associate each event
ei to an activity a j and the corresponding suspiciousness values (Li ) produced by the
E2A module. Note that each event observable is now treated by CDMI as a potential
insider activity with a suspiciousness value. The term ‘suspiciousness’ is emphasized
because the goal is not to determine whether an event is truly an insider activity or
not. Instead, the goal is to use the suspiciousness values to aggregate potential insider
activities in different dimensions to determine a mission score.

The suspiciousness value, which is the log-likelihood, represents how much the
corresponding individual event/activity deviates from the normal behavior given
the contexts occurring before it. DAD further calculates the exponential weighted
moving average (EWMA) of the suspiciousness values, to reflect how the sequence
has been gradually deviating from normal behavior. The EWMA of log-likelihood is
compared to a threshold derived based on the training set (i.e., the normal behavior).
The events/activities that exceed the threshold will be used to produce the activity
score for each activity type. The process of DAD is given in Algorithm 1.

The main objective of IDF is to evaluate how complete each insider dimension is
given the suspicious activity level observed in each time window. A completeness
score for a given dimension is determined by fusing the suspicious activities in the
same insider dimension. The first step of this process is to determine a Suspicious
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Algorithm 1 Dynamic Activity Discovery Algorithm
Given EWMA parameter α, log-loss threshold L , E2A probability pi j and
suspiciousness Li
Set filtered log-likelihood L f (0) = L(0)

for all Event ei in the corresponding time window do
EWMA log-likelihood L f (i) = αL(i) + (1 − α)L f (i − 1)

end for
Initialize Suspicious Activity Matrix M
for all Event ei in the corresponding time window do

if Filtered Log-likelihood L f (i) > L then
Get the probability distribution vector P = (pi1, pi2, . . . , pim);
Append P to M

end if
end for
return Suspicious Activity Matrix M

Activity Vector VA by combining the suspiciousness values of the events in an
observation window for each activity type. The combination process is based upon
the Suspicious Activity Matrix M, and used a filtering mechanism as shown in
Algorithm 2.

Algorithm 2 Suspicious Activity Vector Generation Algorithm
Given Suspicious Activity Matrix M, Threshold T , and parameters α1 < α2
for all Activity type a do

Set M′(0, a) = M(0, a)

for all Event ei that has non-zero value do
if M(i, a) < T then

Set α = α1 for less suspicious activities
else

Set α = α2 for more suspicious activities
end if
M′(i, a) = αM(i, a) + (1 − α)M′(i − 1, a)

end for
VA(a) = 1 − (

∏
i∈observation window(1 − M(i, a)))

end for
return Suspicious Activity Vector VA

The Suspicious Activity Vector VA represents the overall likeliness of an insider
activity occurring in a time window. The filtering mechanism shown in Algorithm 2
is used to capture sudden surges of suspicious activities while exhibiting slow decays
to maintain the lasting effects of insider activity across time windows. From here, the
system evaluates the ‘percent effort’ spent in each activity type as compared to the
overall effort within each dimension while accounting for the criticality of the activity
types. The higher the percent effort (with lasting effect) is observed and/or the more
critical the activity type is, the higher the ‘completeness’ score is for each dimension.
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Mission score

Reconnaissance

Pre-reconn.

Dim A

Monitoring

Dim E

Tamper sensitive data

Tamper report

Dim C

Tamper database

Dim B Dim D

Cover the trace

Dim F

f1

f2f3

f4

Fig. 2 Cross-dimension fusion structure

The design of the completeness functions for individual insider dimensions is based
on the general framework of Ordered Weighted Average (OWA) [16].

To this end, CDF utilizes a hierarchical structure of fusion algorithms to com-
bine the completeness scores of the various insider dimensions. Figure 2 shows the
specific structure for the insider mission scenario described earlier. The hierarchi-
cal fusion structure consists of four fusion functions ( f1– f4) and processes insider
dimensions that behave similarly or tend to work together. Dimensions B and D both
involve modification of the sensitive data; Fusing the two ( f1) gives an indication
of the insider actions occurring on the database containing sensitive information.
Alternative to tampering the database, the software agent can tamper the intelligence
report of the sensitive information. Fusing the two types of tampering ( f2) shows
the level of completeness with respect to the primary task of the insider mission,
i.e., tampering the sensitive information. The design of f1 and f2 utilizes OWA
framework to reflect that accomplishing either Dim B, D, or C is indicative to data
tampering, but accomplishing more dimensions should still exhibit a higher overall
mission score than just accomplishing one.

Similar concept is used to implement f3 using OWA, since Dim A and E both
reveal insider activity in learning about the sensitive data processing workflow
process and system configurations. Dim F stands alone by itself to represent insider
activities in covering evidences of data tampering. Function f4 makes use of Sugeno
Fuzzy Inference System [15] to integrate expert’s knowledge for the final fusion and
mission score generation. The Fuzzy system is designed so that not all of reconnais-
sance, data tampering and covering trace are needed to exhibit a high mission score.
Based on expert recommendations, the fuzzy system emphasizes more on data tam-
pering and covering trace. Particularly if sufficient and high confidence is shown for
covering the traces of malicious activities, a sufficiently high mission score should
be reached as activities in that dimension is not commonly observed.

The parameters used in the above DAD, IDF, and CDF algorithms are primarily
derived based on qualitative recommendations from the domain experts for the spe-
cific insider mission scenario. Particularly, the weights used in EWMA as part of
DAD, the weights used in OWA, and the fuzzy rules as part of CDF are deter-
mined by soliciting the relatively importance of and the relationship between the
different activity types and insider dimensions. The threshold T and α1/α2 used in
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IDFare designed to reflect how sensitive and how fast the system reacts to suspicious
activities, respectively.

4 Experiments and Results

4.1 Experiment Design

A key obstacle in the way to insider threat research is the lack of real world data. There
are two major challenges in obtaining such data. First, organizations are reluctant
to share insider data due to business and security concern. Insider mission data
usually contains sensitive information, such as organization security policies, sensor
deployment, firewall configurations, etc. Moreover, in order to collect real insider
data, all the network events should be monitored and logged, the process of which
can incur expense that impact business bottom line. Second, not all the ground truth
is known or tagged in real data. Users cannot tell which audit log entries are due
to insider mission behavior, especially when the mission is at an early stage. Such
knowledge is important for the analysis of insider’s motivation and attacking strategy.
In addition, it is challenging to obtain real data that reflects a variety of obfuscation
techniques and colluding behaviors with different configurations of software agents.
To address these challenges, this work elects to simulate insider mission process and
generate the insider data set.

Insider event generation involves three distinct steps: First, each activity is decom-
posed into a partial order of event types. Second, the partial order of event types is
verified to fulfill the activitys goal and to identify the corresponding constraints that
must be satisfied. These constraints would clarify the data and control dependencies
and invariants among the possible instantiations of the involved event types. Third,
based on these data and control dependencies and invariants, a set of state-machines
are used to automatically generate nondeterministic instantiations of the partial order
of event types.

Normal background events are generated by a different set of state machines,
each of which implements concurrent normal business operations. In order to build
realistic normal behavior models, each workflow is decomposed into a partial order of
activity types, which are mapped into a sequence of events. The insider mission events
and normal background events are then interleaved to satisfy reasonable causality
relationships between them, as well as taking into account that the malicious insider
may attempt to hide the malicious events as much as possible.

This work considers an example of insider mission that aims at penetrating and
potentially altering sensitive data, which involves a database managed by a DB
administrator, a web application that allows Security Analysts to access and modify
the sensitive data, and distributed file systems that store intelligence reports and
review documents. The Security Analysts have the authority to directly update the
data through the privileged accounts. The software agents could potentially possess
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the privileges to access a combination of the above victim systems. There are seven
dimensions of activity categories, including those shown in Fig. 2 and one that collects
irrelevant activities.

A number of event sequences are generated for HMM training to establish the
baseline normal behavior, and to test a variety of colluding insider software agent
behaviors. The normal background data is generated by analyzing the common busi-
ness processes for intelligence organizations. A set of state machines are developed
to reflect the business processes and used to generate such data. On the other hand,
the insider attack data is constructed based on the insider mission scenario described
above with built-in control dependencies. Both the normal business processes and
insider mission processes are then simulated, with the event instances recorded in a
sequential manner in the log files as the data sets to be used for training and test-
ing. The data generation process is kept unknown from the insider mission detection
algorithm development, so that the exact states and state transitions used to generate
the simualted data is not known by the algorithm. Only the high level insider mission
scenario and the type of business processes are known by both the data generation
team and the algorithm development team.

Figure 3 shows an example of an event instance generated. Note that many of the
attributes, e.g., activity, user-id, insider-event, and obfuscation,
provide the ground truth information for verification purposes only, and are hid-
den from the insider mission detection algorithms. The attributes, account and
OS-account provide information on whcih application accountand operating sys-
tem account are used for the observed event, respectively. In addition to the accounts,
the primary attributes used by the E2A/CDMI modules for insider mission detection
are type-id, showing the event type, and the asset-id, showing the specific
asset (e.g., a webpage, a file, an entry in the database) being accessed, along with the
time stamps and IP/Port information.

Fig. 3 An example event instance
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Each data set contains about 45,000–50,000 events. The trained HMM includes
32 states, 104 observable symbols, 466 transitions between states and 125 emissions
from states to observable symbols. Additional sets of normal behavior are also gener-
ated for testing against the data sets containing insider activities. The insider test sets
contain approximately 1,200 insider events each and are mixed with normal event
behaviors. Individual event observables for insider activity and normal activity are
not distinguishable. It is the state machines that cause the slight variation between the
insider and the normal activities. Additional eight types of obfuscation techniques
are also included in the insider test sets. They are defined as follows:

• Noise injection: inject noise into the insider mission process, such as conducting
mission irrelevant events, accessing useless assets, etc.

• Event re-timing: change the time stamp of critical insider mission events to help
disguise insider mission. One possible approach could be tampering the system
clock.

• Self-throttling: lower the pace of mission execution by increasing time intervals
between insider events.

• Event reordering: reorder insider events without dependency relationships to
disguise insider mission.

• Activity splitting: repartition the insider mission or reorganize the original activi-
ties to get a new set of activities to fool detection modules such as E2A module.

• Leveraging equivalent event sequence (event renaming/event merging): replace
a series of insider mission events with equivalent event sequence. For example,
modifying a file in the file system can be achieved in two ways: either editing the
file and saving the modified file into the file system or deleting the original file and
creating a new file with the same file name with modified content.

• Removing traces: With escalated privilege automated agents can be configured to
remove or modify mission critical event logs.

The performance of the mission identification system is evaluated based on the
following metrics:

• False Positive Rate: the number of false positives divided by the total number of
datasets each of which does not include an insider missions. The mission identi-
fication result for a dataset is false positive if it reports the detection of an insider
mission even though the dataset does not contain an insider mission.

• False Negative Rate: the number of false negative results divided by the total
number of datasets each of which does include an insider missions. The mission
identification result for a dataset is false negative if it reports that there is no insider
mission yet the dataset does include an insider mission in the ground truth.

• Precision: the number of true positive results divided by the total number of datasets
identified as dataset including an insider mission. The mission identification result
for a dataset is true positive if it reports that there is an insider mission and the
dataset does include an insider mission in the ground truth.

• Recall (a.k.a. Detection Ratio): the number of true positive results divided by the
total number of datasets that include an insider mission in the ground truth.



Cyber Insider Mission Detection for Situation Awareness 213

• Detection Time: the time period from the start of the first insider event to the time
the insider mission is detected.

4.2 Experiment Results

Consider first the performance of E2A module. Ten datasets are used for testing.
Table 1 shows the false positive rate (FPR), false negative rate (FNR), precision and
recall using the suspiciousness value to determine whether an event is observed from
an insider activity or not. In general, one would like to see high recall so that no
insider events are dropped (for later mission identification tasks) and can tolerate
a relative low precision (as later mission identification modules can mitigate this).
Using the mean suspiciousness value from the training dataset as a threshold, one
achieves very good recall but very poor precision. By adding standard deviation of
the suspiciousness value, the precision is improved at the cost of reduced recall,
while achieving reasonable false positive rate and false negative rate. On the other
hand, using the maximum suspiciousness value from the training dataset sacrifices
the recall too much. The weighted average between the maximum and the minimum
suspiciousness values becomes usable only when the weight is leaned towards the
minimum value. Indeed, the maximum value might be an outlier, and hence the
weighted average can be too large to obtain a high recall. The above results rec-
ommend using the mean plus standard deviation approach, as commonly used in
statistical control theory, to give low FNR and high Recall.

The poor performance of E2A module is expected, since this work builds upon the
premise that differentiating legitimate from insider actions is not viable. However, the
activity suspiciousness values produced by E2A help CDMI to analyze the insider
activity levels across different dimensions, and thus to assess whether an insider
mission is ongoing.

Table 1 E2A accuracy for insider event determination

Threshold FPR FNR Precision Recall

Max 0.00 0.64 0.94 0.36

Mean 0.60 0.03 0.02 0.97

Mean + stdandard 0.23 0.07 0.06 0.93

Mean + 2*standard 0.11 0.15 0.10 0.85

Mean + 3*standard 0.08 0.20 0.13 0.80

Min*0.0625+max*0.9375 0.00 0.64 0.94 0.36

Min*0.125 + max*0.875 0.00 0.64 0.94 0.36

Min*0.25 + max*0.75 0.00 0.64 0.94 0.36

Min*0.5 + max*0.5 0.02 0.49 0.25 0.51

Min*0.75 + max*0.25 0.13 0.12 0.09 0.88
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Table 2 Detection accuracy

Configuration TP FP TN FN

1 5 0 5 0

2 5 0 5 0

3 5 1 4 0

4 5 0 5 0

5 5 0 5 0

6 5 0 5 0

7 5 0 5 0

8 5 0 5 0

9 5 0 5 0

10 5 0 5 0

To measure the robustness of the overall mission identification system, ten dif-
ferent sets of configurations are used. For each configuration, two training sets and
ten testing sets, five with only normal events and five with mixed insider and normal
events, are generated. Each dataset on average includes around 50,000 events. The
detection results are shown in Table 2. True Positive (TP), False Positive (FP), True
Negative (TN), False Negative (FN) are collected. As shown in the table, all insider
missions are detected, with only one false positive reported. The false positive is due
to the conservative setting of thresholds used in CDMI.

This excellent performance is achieved due to a few reasons. First, the objective
here is to detect the existence of an overall insider mission, instead of differentiating
insider events from the normal ones. The collective evidence, even with significant
false negatives output from the E2A module, can still be indicative of the existence
of an insider mission. In addition, the proposed system is built on an integrated
data-driven and knowledge-driven approach. The definition of the activity types, the
dimensions, and their relative importance (which translates to the parameters used in
the fusion algorithms within the CDMI module) are derived by soliciting knowledge
from domain experts for the specific insider mission scenario. The specific system
developed here will not automatically work to detect a very different insider mission
on a different organization, but the framework will apply. The results shown in this
chapter suggest the promising outlook to detect insider mission using the novel
integrated data and knowledge-driven approach, which is not conceivable in other
existing works. The following shows additional results to demonstrate the robustness
of the framework in the presence of missing observables and advanced obfuscation
techniques.

For each configuration, the insider testing sets are reduced with each event inde-
pendently dropped with a fixed probability. Five fixed probabilities, 5, 10, 15, 20,
and 25 %, are used for different robustness tests. Table 3 shows the detection ratios
for the cases with increasing dropping ratio. All insider missions are detected in this
experiment even though 25 % of the events are dropped. This superior performance is
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Table 3 Detection with missing observations

Drop probability Detection ratio (%) Average # alerts generated

0 100 122.69

0.05 100 102.70

0.1 100 98.74

0.15 100 94.20

0.2 100 93.51

0.25 100 93.27

due to that CDMI examines the suspiciousness values of activities in each time win-
dow, and raise an ‘alert’ as long as there is sufficient evidence suggesting an insider
mission is ongoing in that time window. For a given test set, an insider mission is
considered detected when the first alert is raised. As a result, as long as the removed
events do not eliminate the possibility to raise alerts in ALL windows, the insider
mission can be detected. Table 3 shows the averaged number of alerts generated for
each case. While all insider sets are detected, not all time windows will generate
alerts showing insider activities due to the dropped events.

Table 4 shows the detection ratios when different obfuscation techniques are used.
As in the previous experiment, all insider missions are detected regardless of the
obfuscation techniques used. The average number of alerts (i.e., time windows with
insider mission detected) varies, however, when different obfuscation techniques are
used. One interesting observation is that the ‘event re-timing’ and ‘self-throttling’
techniques result in significant different performance in terms of average number of
alerts generated. This is because these two techniques spread the insider events over
a longer time span, and thus more time windows see raised alerts.

Table 4 also shows the detection time when different obfuscation techniques are
used. Other than ‘event re-timing’ and ‘self-throttling’, the mission identification
system detects the insider mission around the same time if there were no obfuscation
techniques. The longer detection time is due to the same reason as that for larger
average number of alerts; that is, the spreading the same number of insider events

Table 4 Mission detection against obfuscation techniques

Obfuscation Detection ratio (%) Average # alerts Average detection time

Noise-injection 100 61.9 125.5

Event-retiming 100 126.7 196.2

Self-throttling 100 126.7 196.2

Event-reordering 100 68.5 124.0

Activity-splitting 100 62.1 123.8

Equivalent-sequence 100 60.7 123.9

Trace-removing 100 53.1 124.1
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over a longer period of time makes it more challenging to gather sufficient evidence
to declare the existence of an insider mission. Obviously these types of evasion are
difficult to detect due to the event sparsity.

5 Conclusion

Going beyond the classical intrusion detection, this work developed hierarchical data
processing for insider mission identification by abstracting activities from lower level
events, estimating level of suspiciousness, all of which have been evaluated for a final
mission score that relies on both the data abstraction and domain knowledge. The
emphasis is to show how one can reveal the insider mission while activities performed
by automated software agents were hidden among the legitimate activities.

The integrated approach of data driven (E2A) and knowledge driven fusion of
insider activity (CDMI) has been shown to be highly successful to differentiate
cases where colluding autonomous agent activities are present versus those with no
insider activity. Hierarchical fusion allows to account for the completion of individual
insider dimension, driven by suspicious level of insider activities, and, thus, robust
to obfuscation techniques attempting to hide the autonomous agent activities.
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A Game Theoretic Engine for Cyber Warfare

Allen Ott, Alex Moir and John T. Rickard

Abstract The nature of the cyber warfare environment creates a unique confluence
of situational awareness, understanding of correlations between actions, and
measurement of progress toward a set of goals. Traditional fusion methods leverage
the physical properties of objects and actions about those objects. These physical
properties in many cases simply do not apply to cyber network objects. As a result,
systematic, attributable measurement and understanding of the cyber warfare envi-
ronment requires a different approach. We describe the application of a mathematical
search engine having inherent design features that include tolerance of missing or
incomplete data, virtually connected action paths, highly dynamic tactics and proce-
dures, and broad variations in temporal correlation. The ability efficiently to consider
a breadth of possibilities, combined with a chiefly symbolic computation outcome,
offers unique capabilities in the cyber domain.

1 Introduction

Game theory (1–15) is a mathematical theory of strategic behavior, in which a course
of action (COA) consists of one or more individual moves taken by each player at a
given stage of the game starting from their estimate of the current game state S(k)

at time k. A game theory engine is a computational device for advising a particular
player as to the selection of future COAs based upon their estimate of the current
state S(k), given one or more evaluation functions ε (S( j)), j = k + 1, k + 2, K
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Fig. 1 Tree structure of a game theory engine output at a particular step of the game

that measure the change in the utility of future states that would result from a set of
“moves” (i.e., actions taken) by himself and/or the other player(s).

The objective of a game theory engine is to identify for each player the set of
feasible moves by all players from a given state, and to select the COA for a player
that optimizes the sequence of future states with respect to his own assumptions at
each step as the game proceeds. This optimal COA is also referred to as a “plan”.
The output of the game theory engine at each step of the game is represented as a tree
with branches that are contingent upon the actions of all players. Figure 1 illustrates
this structure in the case of a two-player game.

In general, each player in a game may have their own evaluation function, which
in a two-player game we would denote by ε1 (S) and ε2 (S), respectively. In the
simplest case, also known as a zero-sum game, the state S is commonly agreed by
both players and assumed to represent the true state of the network, and the evaluation
functions satisfy ε1 (S) = −ε2 (S), i.e., one player’s gain (loss) in value is equal in
magnitude and opposite in sign to the other player’s gain (loss).

In more complex and realistic cases, the current true state S(k) of the network
may not be available in full detail to one or more players. In such cases, each player
may have their own unique (and perhaps only partially accurate) estimates, say Ŝ1(k)

and Ŝ2(k), respectively, of the true state, while player 1 may have an estimate Ŝ12(k)

of the state perceived by player 2, and vice versa for player 2’s estimate of the state
Ŝ21(k) perceived by player 1. Either player may assume the feasibility of certain
moves by herself or her adversary that are in fact disallowed by the true state of the
network. For example, a player may believe they know the password to a device and
thus assume they can login and perform certain actions, when in fact they do not
have the current password. The player may not be aware until a later time, if at all,
that some of their moves were actually unsuccessful.
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In addition to the potentially distinct estimates of state, the evaluation functions
for each player may be different, so that for example in a two-player game, even
if both players are in complete agreement on a common state S, the evaluation
functions ε1 (S), ε2 (S), ε12(S) and ε21(S) may all be distinct. Thus, in addition to
the true state, we may have to consider four different state estimates, as well as four
different evaluation functions, at each step of a two-player game, and even more
when additional players are involved.

Since a game theory engine is capable of considering a very large number of pos-
sible moves, it provides a natural mechanism for the modeling and analysis of cyber
warfare offensive and defensive tactics. This is not to suggest that the human analyst
can be replaced in this role. Instead, we consider this to be a useful tool to supple-
ment the expertise of the human analyst by enabling the modeling of adversaries, the
prediction of the efficacies of potential moves and the scoring of the vulnerability of
a network (either one’s own or an adversary’s) to various cyber-attacks.

In this chapter,we describe a practical game theory engine denoted Themistocles
that has been developed and employed over the past decade in cyber warfare analysis.
At each time step k, Themistocles fuses past actions into a representation of the
current state S(k) of a network and the corresponding perceived states by all players.
The latter states are functions of observed, inferred or hypothesized actions. Actions
that could changethese state estimates may be observed directly (i.e., sensor data
indicates the action), inferred indirectly from other observations, or hypothesized
(neither observed nor implied by other objective evidence). All three types of actions
involve varying degrees of uncertainty.

For each player, the feasible paths from their current state estimate and their
estimate of their opponents’ perceived state to a series of future states are constructed
and scored with respect to the corresponding evaluation functions. The challenges
are (1) to represent the evaluation functions of each player so that the scoring of each
potential future state can be performed from the perspective of that player, and (2)
to maintain a sufficient number of hypothesized future states to enable exploration
of the full spectrum of path possibilities. In numerous formal cyber war games,
Themistocles has demonstrated a capability to generate recommended COAs that
met with the approval of human experts monitoring the games as being consistent
with their best judgment of strategies and closely predicted the actions and tactics of
human agents.

The remainder of this chapter is organized as follows. Section 2 describes the struc-
ture and algorithms of Themistocles. Section 3 presents examples of Themistocles’
employment in cyber warfare scenarios. Section 4 concludes.

2 Themistocles Structure and Algorithms

Themistocles is comprised of four major software components, as illustrated in Fig. 2.
The main processing flow is contained within the Search and Move Generation
components. The Scheduler manages time within the game and initiates processing
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Fig. 2 Diagram of Themistocles components and their inputs/outputs

within the other components. The User Interface manages interaction with the user,
including user controls and displays. This section first lays out the definitions required
to specify system components and variables in Themistocles and then describes each
of these in turn.

2.1 Definitions

The following definitions further detail the structure of Themistocles as a game-
theoretic engine for modeling and analyzing cyber warfare scenarios.
Domain. The operating domain of Themistocles is a network of digital devices that
are potentially capable of communicating with one another over this network. The
devices may or may not be operable, and a given device may or may not be accessible
by one or more players in a game.
State. The state in Themistocles is defined as the set of all variables and their associ-
ated values needed to characterize the system situation at a given point in time. In all
cases, templates may be used to configure the system for ease of setting up a game.
Global state variables characterize the overall situation on the network, while local
state variables describe the situation on each device. Local state variables describe
devices’ pertinent attributes, operational status and accessibility. The number of local
state variables is device specific, but may range upwards of 100 variables of different
types. Examples of these include the on/off state of the device, whether it is a server,
the operating system (O/S), the root password, as well as subjective variables such
as the degree of belief in current suspicious activity on the device, etc. Global state
variables include subjective variables such as the work cost of each prospective move,
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Table 1 Partial list of local
state variables for a network
computer

Cyber object state variable Value type

Admin password known Boolean

BufferOverflow vulnerability Boolean

Database service Numerical

FTP service Boolean

HTTP service Boolean

Has account Boolean

Has password file Boolean

isCritical Boolean

isHostKnown Boolean

isHostUp Boolean

isServer Boolean

Patch version Numerical

Physically accessible Boolean

Physically at machine Boolean

Root kit installed Boolean

Needs investigation Boolean

Key logger installed Boolean

Suspicious activity seen Numerical

Table 2 Partial list of global
state variables for a network

Global state variable Value type

Danger level Numerical

Paranoia Numerical

Political risk Numerical

Risk Numerical

Work Numerical

Number of victims Numerical

Number of decoys Numerical

the cumulative work cost for each player, the risk of discovery for each prospective
move for a player (usually only factored into the evaluation functions ofred players)
and the cumulative paranioa of a blue player (used to determine the eligibility of
certain drastic moves such as system restores).

Table 1 provides a listing of some typical local state variables for a network com-
puter, while Table 2 provides a listing of some typical global state variables for the
network. Each of these state variables has a set of sub-values corresponding to its
true state and its estimated state by each player in a game, both for themselves and
for the other players. Thus in a two-player game, there will be 5 sub-values for each
state variable, i.e., truth state, player 1’s own estimate of the state values and his
estimate of player 2’s assignment of state values, and similarly for player 2.
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Table 3 Partial list of typical moves available to network defender/attacker

Defender move name Move effect Opponent observables

AnalyzeSystemLogs Logs viewed, get info such as a
login record or service
installation

None

AnalyzeDataLogs Database viewed, learn whether
data was modified, deleted,
or added

None

IP filter Blocks a given set of IP
addresses at the firewall

SYN flood stops working

InvestigateShutdown Determine if a host shutdown
was legitimate

None

NotifySecurity Security team is on alert More extreme counter moves

RestoreSystemFromBackup Deletes all data and software,
puts it back into standard
start state

Lost connection, lost malicious
services, lost backdoor

Attacker move name Move effect Opponent observables

Modify data Corrupt data in a database Tripwire alert on modified files

Port scan Determine IP’s of host’s on a
subnet and the services they
offer

TrafficAnalyzer alert (i.e.,
Snort)

SetupBot Take over a machine for later
attacks

None

SQL injection Gain root privileges by
embedding string literal
escape characters into the
login command

None

SYN flood Distributed denial of service
(DDoS) by sending
thousands of TCP SYN
packets to a single machine

Service unusable or network
slow

Move. A move is a member of a relatively small set of steps (i.e., O (10) actions)
that a player can execute on a given device (e.g., a login). Moves have prerequisites
(e.g., a device must be turned on, the player must know the login password, and the
paranoia level makes the move eligible) and effects. The effects include a work cost
associated with the move, which is expert-assigned, and changes in local or global
state variable values (which in turn can add to the cumulative work cost for a player).
Table 3 provides a listing of typical moves, along with their prerequisites and effects.
Move generation. Move generation is the process of creating a set of feasible moves
for a particular player, given the current state of the system. This set also has relatively
small cardinality in most instances, since a particular player typically has access to
only a fraction of the devices on the network. As well, the values of both local and
global state variables can further prune the set of feasible moves.
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Objective function. An objective function is one of a set of utility functions for
each player whose independent variables are local and/or global state variables of
the system. These state variable values are mapped into negative or positive integer
scores, with the sign depending upon whether a given state of the system confers
negative or positive benefit to the player. The scores are expert-assigned on a relative
scale on the interval [−5 × 104, 5 × 104], and reflect the cost/benefit of system state
variable values. Thus a score of 1000 (−1000) reflects 10 times the benefit (cost) of a
score of 100 (−100). A weighted average of these scores is calculated over all of the
objective functions for each player, and the result is mapped via a sigmoid function
to the interval [1, 105] to produce an overall score for a given system state, from
that players’ perspective. This range is chosen in order to provide adequate dynamic
range to the normalization steps that map COA state scores back into utility values,
the latter residing in the unit interval [0, 1]. Table 4 presents a typical set of objective
functions for a blue player (defender), while Table 5 presents a typical set for a red
player (attacker).

In addition to the state-related scores calculated from these objective functions,
there are also work costs (with negative values) that reflect the time and expense
associated with a given move. These costs are cumulated over sequences of moves,
and the cumulative work cost upon arriving at a given state is deducted from the
overall score associated with that state. In addition, there are scoring-related state
variables such as the danger level for the network, a number in [0, 1] that determines
how the scores of individual players’ COAs are combined into a joint COA score,
with a value of 0.5 giving equal weight, a value of 0 assigning all weight to the red
players’ score(s) and a value of 1 assigning all weight to the blue players’ score(s).
Utility. Utility is a normalized score associated with each state involved in a particular
COA, i.e., with each state resulting from a sequence of moves by the players in
the game. The normalization is with respect to all feasible moves deriving from the
current system state. Thus the utility of the successive states in a COA monotonically

Table 4 Blue player objective function descriptions

Objective function Description

Preserve availability Adds points for each host under supervision if the host is up
and working properly

Investigate suspicious activity Adds points for states that provide information about a host
that has gone down or is non-functional, even if it isn’t
fixed

DoS defense Adds points for maneuvers to stop a denial of service, such as
blocking IP addresses, ports, or applying patches

Worm defense Adds points for applying patches; deducts points for
non-critical ports being open, deducts points for each host
infected

Submit weekly report Adds points for successfully uploading data to a database on a
weekly basis

Minimize work Deducts points for executing moves that utilize administrator
time/energy
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Table 5 Red player objective function descriptions

Objective Description

Corrupt database Adds points for modifying data on any database

Corrupt web server Adds points for modifying data on any web server

Cover tracks Adds points for removing log entries, software installations, etc.
that result from an attack and could lead to being caught

DoS host Adds points for preventing network access to any host

Gain server root account Adds points for obtaining a username/password on a server

Minimize risk Deducts points for executing moves that have risk

Poison DNS Adds points for modifying host files to point to one of your own
servers

Remote reconnaissance Adds points for mapping an opponent’s network and determining
what services and vulnerabilities are there

Setup bots Adds points for getting root privileges on remote machines

Steal data Adds points for exfiltrating data from any host

Steal server data Adds points for exfiltrating data from any server

decreases as the depth of the COA increases, and a COA is terminated when the utility
of its leaf node falls below a cutoff threshold. This process is further described in the
Search component below.
Action Queue. The Themistocles Action Queue manages the execution of all moves.
It has two primary functions: (1) to test the effects of each move, and (2) to manage
the time clock of the game. When a prospective feasible move is added to the action
queue, the resulting state change is calculated and the game time is advanced to
the next interesting time. The latter time is the minimum increment of time until the
move generates an observable event, or until the move completes, or until a pass time
is reached (i.e., the maximum increment of time permitted in the game scenario).
Once a particular move has been added to the Action Queue, the overall utility of the
resulting state is calculated and stored. Following this, the move is removed from the
Action Queue and the next feasible move is added, with this process repeated until
the respective utilities of all feasible moves have been calculated.

With these definitions, we now proceed to describe the four components of
Themistocles in Fig. 2 and their interactions.

2.2 Search Component

The search engine is the core of the Themistocles software. The search engine per-
forms the selection and evaluation of prospective feasible moves recursively over
time. The output of the engine at each step in the game is data describing the pre-
scribed COA and the states corresponding to each evaluated COA.

The Themistocles search process is a tree-based search designed quickly to
produce an initial prescribed COA, using a leaf node score cutoff threshold in
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combination with a maximum tree depth, and then successively to refine the pre-
scribed COA by deepening the search via iterative reductions in the cutoff threshold,
as elaborated upon below. Each player performs his own tree search at each step of
the game, based upon his own estimates of the system state and his estimates of the
system state assumed by the adversary(s).

The root node of a player’s search tree corresponds to the current state of the
system S(k) at time step k in the game. Starting with the root node, the tree is
constructed in a partially serialized manner by considering the collection of child
nodes N n

i, j at levels n = 1, 2, K that would result from the feasible move sets of a
given player and her adversary(s), where the superscript n refers to the depth of the
tree, i indexes the child nodes at a given level n and j indexes the child nodes of
parent node i (n = 1 corresponds to the children of the root node, for which only
a single parent node exists, i.e., i = 1 only for this level). Each node in the tree
corresponds to a prospective future system state S p

i j (k + n), n = 1, 2, K for player
p, where these states are ordered in a time sequence dictated by the move effects.

A utility value V
(

S p
i j (k + n)

)
for player p is calculated for each child node,

and these values are then normalized to sum to unity by dividing each child node
value by the sum over all child node values, resulting in a normalized utility value

V ′
(

S p
i j (k + n)

)
, i.e.,

V ′ (S p
i j (k + n)

)
=

V
(

S p
i j (k + n)

)
∑

j
V

(
S p

i j (k + n)
) . (1)

For n = 1, i.e., the first level of child nodes from the root node, these values are
equated to the corresponding nodes’ game score denoted by P p

i j (k + 1), i.e., P p
1 j

(k + 1) ≡ V ′
(

S p
1 j (k + 1)

)
. For n > 1 the V ′

(
S p

i j (k + n)
)

are multiplied by the

parent node’s game score P p
i ′i (k + n − 1) (where i ′ is the index of the grandparent

node), resulting in a game score for node N n
i, j given by

P p
i j (k + n) = P p

i ′i (k + n − 1)V ′ (S p
i j (k + n)

)
(2)

If P p
i j (k + n) > Pcutoff for a given child node N n

i, j , then node N n
i, j becomes a parent

node for a follow-on set of moves that deepens the tree. Thus the score of the terminal
node for a given COA(path) through the tree decreases as the tree depth increases.
Some moves may be generated with an associated probability, in which case the child
node utility value prior to normalization is also multiplied by its (expert assigned)
probability of occurrence.

The above process is continued until no parent node has a child node with a score
above the cutoff threshold, at which point these parent nodes become the leaf nodes
of the tree. This search for a particular player is illustrated in Fig. 3, where the white
nodes represent the states resulting from that player’s move choices and the dark
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Fig. 3 Search tree from a given current state, showing projected moves by both players in a two-
player game

nodes represent the states resulting from the adversary’s move choices. Note that the
search tree admits a combination of these states in any path through the tree.

The COA is scored based upon knowledge engineering defined abstract parame-
ters specifying expected effects of moves and weights of objective functions for a
given player evaluation model. Themistocles instantiates the moves and effects of
each move and calculates the COA score at each node based upon the accrued move
effects and weighted objective functions for each player. The path terminating at the
highest scoring leaf node is selected as the prescribed COA and is then executed in
an autonomous game simulation. In an interactive game, the top three scoring COAs
are presented to the user, who then selects the one of his choice.

2.3 Move Generator

A move is defined to have the following characteristics:

• A list of preconditions.
• Effect on state upon initiation.
• Effect on state upon completion.
• A list of conditional effects during execution.
• Timing information for the entire move and each effect.
• A list of possible outcomes and probabilities for each effect.

In addition to explicitly modeling timing effects and stochastic move outcomes, the
move set differs from traditional game move sets in another fundamental way. In a
traditional game, two opposing players alternate moves. In most real-world domains
such as cyber-warfare, this is simply not the case. Each player has the option of
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Fig. 4 Snippet of partially-serialized game tree

choosing multiple moves that are executed simultaneously. In fact, both players will
frequently be executing multiple actions at the same time.

To accommodate this, the search utilizes an untraditional approach to tree con-
struction where all simultaneously chosen moves are serialized, such that they are
listed in order in the tree despite the fact that they will be executed at the same time.
This is accomplished by introducing a new move type: Pass. A pass indicates that
the player will not be choosing to begin any additional actions until the next inter-
esting time. All moves chosen before a pass are interpreted as beginning at the same
simulated time. Figure 4 shows an example of a small subset of a partially serialized
game tree.

When there are no players left to choose a move at a particular interesting time,
the serialized move tree is parsed and the scheduler is notified of the postulated move
selections for each player and the time queue entries for each action chosen.

While each move has a duration and set of possible outcomes associated with it,
both players may or may not be aware of these outcomes. Awareness of the state
of the network is based on available resources, and may be contingent on making
moves to gain information. Even when a move produces an observable, such as a
message logged by a deployed Intrusion Detection System (IDS), the players may
not be in a position to see the observable without further action. In the event that a
player can see the observable the system will give that player a chance to respond to
the observed event.

Note that both players are not necessarily given the option of moving during a
particular slice of time. Players only move if one of the defined events occurs such
that they are aware of it. Thus, if the defender completes a move, the defender will
have the option to choose more moves but the attacker will only have that option if
the event has produced an observable to the attacker.

For added realism, there are three types of dynamic environmental moves included
in any game: pure, scheduled, and consequential. Pure environmental moves include
elements of the environment that have unknown or dynamically changing attributes.
Schedule driven moves have scheduled preferential occurrence (such as circadian
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rhythm driven actions). Consequential environment effects simulate unexpected
results tied to a specific state change or move execution. The actual state effects
can be modeled that same way as player moves, using the action model. However,
the triggering effect can be different.

Pure environmental actions are simulated using a Bernoulli or Poisson distribution
tied to specific environmental factors. This technique was used effectively in training
programs for noise generation. This simulation takes into account the state context
so that the outcomes will make sense; for example, actions will not occur from an
object that isn’t capable of the proposed function.

For schedule driven factors, conditional effects are applied based upon the time of
occurrence. The time simulation can be selected based upon the particular environ-
mental factor being modeled. For example, this technique was used in space network
operations to model environmental factors such as thunderstorms, which in some
areas are highly dependent upon the time of day.

2.4 Scheduler

The Scheduler is responsible for maintaining the time queue of “interesting times”.
These interesting times are provided by move postulation, including start and end
time, sensor data input, and user input.

When a move is executed, the scheduler inserts the selected moves into the action
queue, advances time to the next interesting time, decides which player next has a
turn, and calls move generation to provide that player with all available moves. The
move start times are the times from the serialized move tree after composition of all
projected player move selections. The move completion times are the times at which
the last move effect is complete whether or not there is an observable state effect.

A move may have zero or more expected impacts to state and zero or more
observables for any player as a result of the move execution at specified times during
its execution. A Pass move has the simplest time data, having no effects on state times
but a completion time. Any time a move completes, whether or not it had an impact
on state, the Scheduler returns control to the move generator to determine whether
or not another move of any type by any player should be initiated. Move generation
augments the serialized move tree with moves selected for any player followed by a
pass move.

The Scheduler maintains two interesting time queues. The primary simulated
game time queue is the game action queue. The game action queue is maintained
for all actions derived from human or computer selected moves, environment model
moves, and sensor data reports. The secondary queue is the search action queue.
This queue is maintained for all actions derived from projected moves by the search
engine during a course of action evaluation. Any time an interesting time from the
game action queue implies a change of state, the scheduler initiates a course of action
evaluation by copying the game action queue to the search action queue, and initiating
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a search with the search action queue. The search action queue is then managed with
projected moves and state changes selected by the search engine and driven by the
search action queue.

When a course of action path has been evaluated to the point where the cutoff
score has been reached, then the scheduler will back up the search action queue to
the time of the last state that was not completely evaluated (paths with scores higher
than the cutoff still exist), and reinitiate the search engine. When all paths have
satisfied the cutoff, then the Scheduler will return to the game action queue and send
results of the latest state search to the appropriate player. A computer (automated)
player will always select the top scoring move(s), a human player can select moves
indicated by the search results and/or any other set of valid moves. This process
repeats continuously until there are no further actions in the game action queue. A
condition where no further actions exist in the game action queue occurs when the
game has been updated comprehensively but a human player has yet to finish move
selection or when a predetermined time limit has been reached.

The scheduler may run Themistocles much faster than real time or much slower
than real time. The scheduler runs Themistocles as fast as possible between the game
action queue entries. If the primary (game action queue) processing is provided solely
by computer input and not held for sensor data input, then Themistocles can run
many times real time. If the cutoff score is set very low, requiring deeper and broader
analysis (search action queue), or the moves in the primary (game action queue) are
defined in very fine grained time or with operator delay, then Themistocles can run
many times slower than real time.

The Scheduler also manages checkpoint retention, saving the state of the game
at specified times. The checkpoint initiation can be based upon a change in state
trigger, a simulation time trigger, or an operator trigger. As requested by the user, the
Scheduler restores the game to a full fidelity image at a specified time from a stored
checkpoint file.

2.5 User Interface

The User Interface (UI) leverages JAVA graphics packages to provide a graphical
representation of the state. It displays sufficient information that the observer may
understand the status of the game and the state of the target network. The UI may
present multiple views from the perspective of individual players including state,
resources, and moves available. In human mode, the player has an end turn button
that basically completes the move selections for that interesting time and triggers
the action queue to insert the pass move for the active display player. The UI also
supports configuration of the game simulation including checkpoint and rollback.

The User interface connects to the game server using JAVA Remote Method Invo-
cation (RMI) so that a client can be run on any other (potentially remote) machine.
As well, any interface could be created and connected to the game server through
the RMI.
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3 Examples

This section presents an example of Themistocles’ use in a realistic cyber warfare
game. We first describe the network environment being defended, including the
security measures and policies in place. We next present a scenario involving the red
and blue players’ objectives. We then describe the red players’ attack moves and the
resulting observables that are generated for the blue player by these actions. We step
through the sequence of top-scoring COAs generated by Themistocles in the context
of the moves undertaken by the red and blue players. We conclude with a summary
of the results.

3.1 Cyber War Game Environment

We consider a network of 10 regular workstations that are used on a daily basis, as
shown in the Themistocles screen capture of Fig. 5. Two additional workstations are
used for system administration. There is also an internal web server used for organi-
zational data sharing, an internal database server holding proprietary data shareable
only with employees and an internal email server. At the network interface, there is
a firewall with virtual private network (VPN) support. Outside the firewall, in the
network demilitarized zone (DMZ), there is a network intrusion detection system
(NIDS) machine with backup and archiving capabilities and a web server for sharing
data with remote employees. An unknown number of external machines have valid
access to the network.

Fig. 5 Themistocles screen shot showing the cyber warfare game environment
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Certain security measures and policies have been implemented on the network. To
wit, the fixed mission of the network allows the firewall to be configured to restrict
incoming and outgoing traffic only to those services needed. Source information
comes only via VPNs. The operating system (O/S) configurations have been stripped
of unneeded functionality and services. All application software on the network
machines is under configuration management. Finally the external IDS detects any
attempts to violate the firewall rules.

3.2 Attack Scenario

The objectives of the red player in the game are to steal information from any com-
puter on the network and to maintain access to the network for future attacks, while
minimizing the chance of being discovered. We assume that the red player knows
the IP address of the external web server in Fig. 5.

The objectives of the blue player are to maintain the availability of all servers
while minimizing the amount of effort and resources required to do so, and to gather
intelligence on any attacks in progress.

The attack proceeds as follows. Using a bot to help avoid attribution, the red
player scans the DMZ web server for vulnerable services running on the machine.
An exploit is used to gain root privileges on this server, ensuing with a backdoor
installation. Using this backdoor, the red player maps the internal network. From
this point, the red player attempts the exfiltration of data and the installation of root
kits on any and all network devices that are exploitable. When the red player observes
the failure of an attack against any particular host, a new host is selected for attack.

As a result of the red players’ attack, the blue player observes the following on
their control workstations:

• The IDS detects the port scan of the external web server. Due to background
network activity, this observation does not lead to any response.

• A tripwire detects that new software has been installed on the external web server
(i.e., the backdoor software).

• The IDS detects heavy download traffic to the external web server as the red player
performs data exfiltration.

• A tripwire detects the upload of the rootkit software.

With these preliminaries, the blue player employs Themistocles to aid in her selection
of moves to counter the attack in progress.

3.3 Themistocles Recommended Courses of Action

Table 6 shows the sequence of moves generated by Themistocles as the game proceeds
from attack initiation to its conclusion. To illustrate the game, we will examine the first
couple of COAs recommended by Themistocles for the blue player at the conclusion
of the preceding sequence of moves by the red player.
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Table 6 Sequence of moves by red and blue players

Move Owner Machine Function

SetupExternalProxy Attacker externalHostX

FTPScan Attacker externalHostX DMZWebserver

AnalyzeSystemLogs Defender nids1

Exploit FTP Attacker externalHostX DMZWebserver

UploadHostileSoftware Attacker externalHostX DMZWebserver

InstallBackdoor Attacker externalHostX DMZWebserver

InstallNIDS Attacker sysMgtConsole

LoginViaBackdoor Attacker externalHostX DMZWebserver

ScanSubnetForVulnerabilities Defender sysMgtConsole 10.0.1.*

PingSubnetInternal Attacker DMZWebserver 10.0.1.*

PortScanSubnetInternal Attacker DMZWebserver 10.0.1.*

ExploitFtp Attacker DMZWebserver Web server

UploadHostileSoftware Attacker DMZWebserver Web server

HardenSystem Defender Web server

InstallRootkit fails Attacker DMZWebserver Web server

ExploitFtp Attacker DMZWebserver DB server

ExfiltrateData Attacker DMZWebserver DB server

DeployHoneypot Attacker DB server

ModifyData Attacker DMZWebserver DB server

ExfiltrateData fails Attacker DMZWebserver DB server

ExploitFtp Attacker DMZWebserver e-mail server

UploadHostileSoftware Attacker DMZWebserver e-mail server

ApplyPatches Defender e-mail server

InstallRootkit fails Attacker DMZWebserver e-mail server

InstallRootkit Attacker externalHostX DMZWebserver

Quarantine Defender DMZWebserver

Given the red players’ objectives, he begins with an FTP scan on the DMZ web
server followed by a Pass. At the blue players’ first turn, she observes the FTP scan
and Themistocles analyzes the feasible subsequent moves and selects the highest-
utility COA as shown in Fig. 6. Note that this COA includes moves by both the blue
and red players, from the blue players’ perspective of their own and the red players’
scoring of these moves. The normalized utility of each successive move is shown
in the next to last column. The depth of a COA tree is limited by setting the cutoff
utility at 5 × 10−5. Thus the COA in Fig. 6 represents the deepest COA having the
highest utility above this cutoff threshold.

Referring back to the actual game moves in Table 6, the blue player elects to
analyze the system logs as recommended for the next step by Themistocles. The red
player then counters with the FTP exploit, uploading and installing the backdoor
on the DMZ web server. When the blue players’ next turn comes, Themistocles
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Fig. 6 Highest-utility COA for both players upon observation of the red FTP scan

Fig. 7 Highest-utility COA for both players upon observation of the backdoor installation

generates the highest-utility COA shown in Fig. 7, whereupon the blue player follows
the recommended next step and installs a NIDS on an internal router.

The red players’ next step is to login via the backdoor software he has installed,
as shown in Table 6. The game proceeds as shown by the moves in this table to the
final step where the blue player quarantines the DMZ web server.



236 A. Ott et al.

3.4 Analysis of the Example Game

The blue player began seeing suspicious behavior from alerts by its external NIDS
early in the game. Themistocles recommended an installation of an additional NIDS
on an internal router in order to catch malicious network activity if the red player had
gotten inside the defenses. A vulnerability scan was recommended to determine if any
unauthorized services had been installed. The backdoor installed on the DMZ web
server was detected, and this forced the blue player to make an important decision—
immediately remove the backdoor and make the DMZ web server unavailable to its
regular users, or keep the server running and use this as an opportunity to identify
the attacker. In keeping with the blue players’ mission, Themistocles recommended
the latter by deploying a “honeypot,” while making sure to turn off all unnecessary
services on the internal web server being attacked. The red player notices the web
server is no longer available to attack, so heads for the database server. This leads
the blue player to gather information on the red player, but the latter figures out that
it is a honeypot when a data corruption attempt doesn’t succeed. This is because
honeypots do not have real data on them, so modifications aren’t written to disk. The
red player moves on to the e-mail server and at this point the blue player decides this
is getting too aggressive and decides to shut out the red player by applying patches
and quarantining the server to remove all malicious software.

In the end, the red player was able to gain access to the blue players’ internal
systems and map the entire internal network, but was not successful in stealing any
data. One rootkit was successfully installed on the external DMZ web server, but that
was a risk the blue player desired to take in order to gather more information on the
red players’ identity.

4 Conclusion

The Themistocles engine represents a well-tested application of game-theoretic
principles to the cyber warfare domain. In several government-sponsored formal
cyber war games, Themistocles has been shown to generate COAs for both offensive
and defensive cyber warfare scenarios that are consistent with the move choices of
independent experts monitoring the game.

Future work in this area will include the fuzzification of move scores to both type-
1 and interval type-2 membership functions and the use of hierarchical linguistic
weighted power means for the aggregation of COA scores (16–18). This will enable
us to take account of the inherent imprecision associated with the costs/benefits of
individual moves, and to employ a perspective ranging from the most pessimistic to
the most optimistic on the aggregations of these scores.
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Mission Impact Assessment for Cyber Warfare

Jared Holsopple, Shanchieh Jay Yang and Moises Sudit

1 Introduction

Cyber networks are used extensively by not only a nation’s military to protect
sensitive information and execute missions, but also the primary infrastructure that
provides services that enable modern conveniences such as education, potable water,
electricity, natural gas, and financial transactions. Disruption of any of these ser-
vices could have widespread impacts to citizens’ well-being. As such, these critical
services may be targeted by malicious hackers during cyber warfare. Due to the
increasing dependence on computers for military and infrastructure purposes, it is
imperative to not only protect them and mitigate any immediate or potential threats,
but to also understand the current or potential impacts beyond the cyber networks or
the organization. This increased dependence means that a cyber attack may not only
affect the cyber network, but also other tasks or missions that are dependent upon the
network for execution and completion. It is therefore necessary to try to understand
the current and potential impacts of cyber effects on the overall mission of a nation’s
military, infrastructure, and other critical services. The understanding of the impact
is primarily controlled by two processes: state estimation and impact assessment.
State estimation is the process of determining the current state of the assets while
impact assessment is the process of calculating impact based on the current asset
states.
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In this chapter, we consider the case of a military computer network that could
be subjected to external and insider attacks through various physical and virtual vul-
nerabilities. The goal is to provide an estimate of the N th-order impact of cyber
threats while the missions are in operation. This is accomplished by a tree-based
structure, referred to as a Mission Tree, which models the relationships between var-
ious missions, tasks, and assets. The relationships are modeled using Order Weighted
Aggregators (OWAs),which provide for a diverse set of relationship types. The Mis-
sion Tree is different from other methods of modeling mission relationships in that it
is capable of providing a quantitative estimate of impact by propagating the impacts
“up”, from the leaves to the root, through the tree.

Another key aspect of impact assessment is that missions or tasks will change
during the course of warfare. This chapter will also explore how to dynamically
change the mission tree to account for scheduled or non-scheduled changes and how
those dynamic changes can affect how one performs impact assessment. This chapter
will present a novel approach to address all of these aspects.

To ensure consistency of vocabulary, Sect. 2 provides a set of definitions, followed
by a review of the existing methods for mission planning and assessment. Sections
4 and 5 discuss the mission tree structure and how it is used for mission impact
assessment. Several examples and simulation results will be presented in Sect. 6 to
demonstrate the utility of the mission tree.

2 Definitions

It is necessary that a state estimation process be executed first to determine asset
damage, which is then fed into the mission impact assessment process. However,
before discussing these processes in detail, it should be noted that there is no com-
mon vocabulary defined for mission impact assessment. In fact, vocabulary used
for mission planning and impact assessment within one organization can sometimes
conflict with the vocabulary used by another organization. Therefore, a set of defi-
nitions for various mission planning and impact assessment concepts is provided to
maintain consistency throughout the chapter. The reader should take careful consid-
eration of how these definitions differ from their organization’s to maximize their
understanding of the concepts presented in this chapter.

While this book focuses on computer security and cyber warfare, the concepts pre-
sented in this chapter are intended to be generic enough such that they are applicable
to other application domains. Each definition given below will also provide a short
description of how it applies specifically to cyber warfare.
Situation awareness—the state of knowledge that results from a process [1]. Situ-
ation awareness involves the detection and assessment of the threats to a computer
network.
Situation assessment—the process that provides outputs that can be analyzed to gain
situation awareness [2]. The situation assessment process is typically comprised
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of a combination of sensors and data aggregation software manually analyzed by
computer security experts.
Environment—the specific location in which events are being monitored and
assessed. The protected computer network comprises most of the environment with
respect to cyber warfare, but it can contain other physical or virtual elements such
as buildings, rooms, or other networks.
Entity—something that has a distinct, separate existence, though it need not be a
material existence [2]. Given this very general definition, it is important to define the
granularity at which an entity is being defined for an application.
Object of Interest (OOI)—an entity or mission in the environment that should be
monitored. In cyber warfare, this will generally refer to physical and virtual entities
such as hosts, switches, services, and even communication links. The actual OOIs
for a given network will depend heavily on how much is known about the network
and what is considered critical or important enough to monitor.
OOI State—the condition of the OOI defined relevant to the application domain.
An OOI may be in multiple states (e.g., damaged and limited operations).
Situation—a collection of activities and their effects on the environment at a given
time.
Activity—something done as an action or a movement. They are composed of enti-
ties/groups related by one or more events over time and/or space [2].
Event—an occurrence that affects the environment [2].
Observable—one or more attributes of an event or object from a sensor or some
form of intelligence.
Mission—a process by which a goal is intended to be achieved. It is possible that
missions can be contained within other missions. It should be noted that we use the
term mission in a very general sense throughout this chapter to represent any type of
task that must be executed to achieve a desired goal.
Asset—an OOI that supports one or more missions whose state can be determined by
a situation assessment algorithm. It should be noted that the granularities by which
assets are defined with respect to the mission tree vary by application as well as the
existing pre-processing mechanisms in place. We discuss this issue later in the paper.
Role—a function that an asset performs.
Impact—a quantitative assessment of how much a mission is affected by a given
activity or situation. For consistency throughout this chapter we will use the term
“impact” to imply “negative impact”, unless otherwise specified.
Damage—a quantitative assessment corresponding to the state(s) a given asset is in
with respect to its ability to perform a given role.

3 Mission Impact Assessment: A Brief Background Review

Mission impact assessment is not a new concept; however, it has traditionally been a
manual approach. Grimaila and Fortson [3] argue the importance of fast and accurate
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damage assessment, especially in “cyberspace where attacks can occur in millisec-
onds and may have a greater impact due to the complexity and interconnectedness
of the information infrastructure. A failure to immediately detect, contain, remedi-
ate, and assess the impact following a cyber attack may result in other unforeseen
higher order effects that may not be immediately apparent.” The approach for impact
assessment considered in this chapter can not only be used in the forensic phase of
a cyber attack (i.e., after it has already occurred), but also during the attack. The
ability to identify impacts that may not be “immediately apparent” during an attack
can greatly improve the incident reports and enhance mitigation strategies by protect-
ing assets that are not directly attacked. Grimaila and Fortson [3] also mention that
a hurdle to fast and accurate damage assessment is the lack of asset documentation.
This is problematic because the only way to estimate the direct and indirect impacts
is to have an understanding of how assets interact with each other and are used for
various missions and tasks. This understanding is also critical to the approach dis-
cussed in this chapter. In the past, the important components or concepts of a mission
have been described in written language and/or diagrams. In some cases, including
the use of cyber infrastructure to support military missions, the missions could be
“implied” or undocumented by those who are assessing the health of the networked
computing and storage systems. As such, modeling the mission in such a way that
is understood by computers has been a daunting task.

Muccio and Kropa [4] describe cyber mission assurance as a four step process:
(1) Prioritize mission essential functions, (2) map critical cyber assets, (3) vulnera-
bility assessment of mission essential functions, and (4) mitigation of vulnerabilities
and risks. This chapter will primarily focus on (2) and (3) to aid in (4). The prioritiza-
tion of assets is also critical to mission impact assessment because it will determine
the level of detail by which the models need to be developed.

Computer-aided mission impact assessment is part of a Decision Support System
(DSS), which is a computer system/application that assists an analyst in evaluating
the health of a system, task, or mission. A DSS can be traced back to 1982 when
Ben-Bassat and Freedy [5] outlined the formal requirements for a generic DSS system
that assessed the threat probabilities on various aspects of a given system.

Musman, et al. [6] discuss the evaluation of cyber attack impact on missions. They
argued how critical it is to have mission models and descriptions stronger than what is
available today. Their approach uses Business Process Modeling Notation (BPMN)
and utilizes multiple information sources to develop the models necessary for impact
assessment. Using cyber incident reports, they manually modify the mission model
to produce new estimates, though the authors admit that this is a shortfall and are
considering various alternatives to provide a faster impact estimate that is critical to
effective impact assessment.

In the past decade or so, research has focused on modeling the mission depen-
dencies to help facilitate computer-assisted analysis of current missions. D’Amico
et al. [7] focused their research specifically towards computer networks by creating
an ontology of the mission dependencies. Their approach focused on modeling how
cyber assets provide a capability for each mission. While this approach provided
the necessary modeling capability of mission relationships, it still required a graph-
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ical analysis of the events to determine what was affected since it did not provide a
numeric estimate for mission impacts.

Jakobsen [8] proposed the use of dependency graphs for cyber impact assessment.
He also proposed the use of an “Impact Factor” to represent the capability of an attack
affecting a given asset and the “Operational Capacity” that indicates the level to which
the asset is compromised. These variables are similar to the impact scores and state
estimation approaches discussed in this chapter. In addition, there has also been a
wide array of other approaches to identify cyber attacks and their effects on computer
networks, e.g., [9].

4 Asset State Estimation

The first step to determining mission impact is to determine a quantitative value of
the damage to the objects of interest (OOIs) in the environment at a given time,
which we will refer to as state estimation. The damage is calculated using inputs
from an observable correlation process, which has grouped together observables in
a meaningful way for a certain situation.

In the case of cyber warfare, the damage to an OOI corresponds indirectly to the
level at which the information from hosts, services, and communication links can be
trusted by the blue team. This section explores different ways that di(t), the damage
to an object of interest i at time t, can be calculated and used by the mission tree.

The state estimation process is not restricted to any single method of calculation.
However, the following requirements are imposed for each value of di(t):

1. Range of di(t) is [0,1]
2. di(t) = 0 indicates that the OOI is operating normally and has no damage.
3. di(t) = 1 indicates that the OOI is unable to perform or be trusted for any of its

tasks
4. di(t) ∈ (0, 1) indicates that the OOI has some damage to it, but is still able to

operate in a limited state. The extent to which the operations are limited tends
towards the appropriate end of the range.

These requirements ensure that the damage scores are as consistent as possible
across state estimation algorithms for different entity types. This in turn allows mul-
tiple state estimation algorithms to be used and potentially combined in various ways
(see multiple state-space estimation, Sect. 4.4) to estimate di(t) for a various types
of OOIs.

4.1 Simple State Estimation

Simple state estimation is a direct calculation or assignment of di(t) based on a set
of rules or equations. As long as the rules or equations have known upper and lower
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Table 1 Example rules for simple state estimation

Rule (Weight) Criteria Value

Firewall (w1 = 0.3) Traffic allowed 1 (= mx1)

Traffic forbidden 0

Attack type (w2 = 0.3) Reconnaissance 1

User privilege escalation 2

System (Root) privilege escalation 3 (= mx2)

Connectivity (w3 = 0.4) Not connected 0

Connected 1 (= mx3)

bounds to the values, it can easily be normalized into the [0,1] interval. For example,
consider three rules (Firewall, Attack Type, and Connectivity) that determine the
current damage score of the state. Based on the maximum value of the score for
each rule, each score can be normalized and combined with the other rules using
a combination function such as weighted sum. In general, for R rules, each rule, r,
will have a maximum possible value, mxr , as well as a value, vr , assigned to it. If we
assign a weight, wr , to each rule, we can calculate the weighted sum as:

di(t) =
R−1∑
r=0

Wr
vr

mxr

The rules, criterion, and values are summarized in Table 1 which can be determined
through various means applicable to each rule. For example, the firewall rule can
utilize the firewall configuration to determine if certain IP addresses, protocols, and
ports would be allowed. The attack type can be discerned by an alert aggregation
tool that categorizes observables. The connectivity can be analyzed by using a known
model of the network and routing tables to determine connectivity.

In this example, suppose a Reconnaissance observable is received and it reflects
a penetration through the firewall to a connected target. In essence, this models
a successful reconnaissance action on a target. Using a simple weighted sum, the
aggregated asset damage score is as follows:

di(t) = W1

(
1

mx1

)
+ W2

(
1

mx2

)
+ W3

(
1

mx3

)

= (0.3)

(
1

1

)
+ (0.3)

(
1

3

)
+ (0.4)

(
1

1

)
= 0.8

In the equation above, it should be noted that each rule is normalized by its maximum
value to obtain a final value on [0,1]. Also, while we have just presented the weighted
sum as an example, any method to combine the values could be acceptable provided
that the damage score calculations make sense for the rules.
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4.2 Unbounded State Estimation

Recall that di(t) must have a value on the [0,1] interval. However, some impact
equations or rules do not have an upper bound. A simple example of this would be
a score that increases by one every time a successful attack targets an OOI. In order
to resolve this, one can simply define a maximum value corresponding to a value
that is, for all intents and purposes, a value high enough that analysts would need to
act upon. Once the maximum value is known, the damage score can be normalized
into the [0,1] interval by saturating all values to a maximum then dividing by the
maximum score. It should be noted that when exponential or special polynomial
functions are used, the assessed damage scores can be close to the extreme values
given the nonlinearity nature of the functions.

4.3 Single State-Space Estimation

This is a variant of the simple state estimation where, instead of the direct calculation,
a qualitative state is determined then converted into a quantitative value. Such an
approach provides a descriptive, language-based state for each OOI.

In cyber warfare one can consider the “Red” state space for an OOI, corresponding
to the level of control or knowledge the red team may have on an OOI. To demonstrate
this approach, consider the following five mutually exclusive states in the order of
increasing severity:

• Normal—there is no indication of malicious or suspicious activity affecting the
OOI. This is the default state for each OOI.

• Attempted—there has been at least one malicious or suspicious activity targeting
the OOI, however, the targeted attacks have been unsuccessful.

• Discovered—there has been at least one successful attack targeting the OOI, how-
ever, the targeted attacks have only yielded information about the OOI.

• Partially Compromised—there have been successful attacks targeting the OOI
that have given some control of it to the red team, however, the red team does not
completely control the OOI.

• Compromised—there has been at least one successful attack targeting the OOI
which has given the red team complete control of the OOI, thus is cannot be trusted
by the blue team.

The determination of the qualitative state can be accomplished by establishing
rules using various elements in the cyber environment such as, but not limited to,
network connectivity, firewall rules, routing tables, sensor locations, and known
vulnerabilities and services.

Once the state for an OOI has been determined, one can define a simple lookup
table to calculate the damage score. An example lookup table is shown in Table 2. This
example assumes a linear increase in damage score for each given state; however,
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Table 2 Example states and
damage scores for single state
space estimation

State di(t)

Normal 0.0

Attempted 0.25

Discovered 0.50

Partially compromised 0.75

Compromised 1.00

the values can be assigned logarithmically, polynomially, exponentially, or by some
other method that adequately describes how the relative damage score increases:

4.4 Multiple State Space Estimation

This is an extension of single state-space estimation where an OOI can be eval-
uated across multiple state spaces. This method requires the combination of the
di(t)’s for each state space. For example, suppose that, in addition to the Red State
Space described above, there is an Operational State Space that defines the fol-
lowing four states: Operational (di(t) = 0.0), Maintenance (0.3), Degraded (0.7),
Non-operational (1.0). It is therefore possible for an OOI to be in both the Degraded
(0.7) and Partially Compromised (0.75) states simultaneously. Using this method, a
new index, j, is added to the damage score, di,j(t), to represent the state space the
damage score is relevant to.

A combination function is needed to combine di,j(t)′s into an overall damage
score. Specifically, let J be the set of state-spaces, acombination function,

⊕
, is

such that di(t) = ⊕
j∈J(di,j(t)).

There are a few different combination functions that can now be considered:

4.4.1 Worst State

The simplest combination method is to use the worst state, which will be indicative of
the highest damage score for a given state-space. This is defined by the max function:

di(t) = maxj∈J(di,j(t))

4.4.2 Weighted Sum

A different approach is to assign weights to each state space and combine them using
a weighted sum. This approach only tends to make sense in a situation where some
state-spaces may be more important than others when it comes to overall damage



Mission Impact Assessment for Cyber Warfare 247

Table 3 Example asset damage score combinations comparing DST with modified DST

Asset di,1(t) di,2(t) di,3(t) DST Modified DST

1 0.1 0.2 0.3 0.001 0.3

2 0.1 0.1 0.8 0.047 0.8

3 0.1 0.7 0.8 0.509 0.903

4 0.9 0.7 0.8 0.988 0.988

and when all state spaces should have high damage scores to indicate a high impact.

di(t) =
∑
j∈J

Wjdi,j(t)

4.4.3 Modified Dempster-Shafer

Dempster-Shafer Theory (DST) [10] allows one to combine evidence from different
sources to determine a degree of belief taking all pieces of evidence into account. DST
uses a frame of discernment to define the possible states and mass functions (also
referred to as basic probability assignment functions) to define the belief estimate
from a given source. If we consider a source to be synonymous with a damage
assessment for a given state space and a frame of discernment to be {D,N}, where
D represents the belief that the asset is unable to perform its role (D = di,j(t)) and
N represents the belief that the asset is able to perform its role (N = 1 − di,j(t)),
we can use DST to combine the assessments into a singular assessment of the asset
damage taking into account its damaged state for all state space.

One of the advantages of using DST to combine scores is that “high” scores can
be combined into an even higher score. Likewise, “low” scores can be combined into
an even lower score. This latter behavior is undesirable for calculating impact, so a
piece-wise combination method can be used to combine the state spaces:

di(t) =
{

maxj∈J(di,j(t)) , if all di,j(t) < 0.5⊗
j∈J,di,j(t)≥0.5(di,j(t)) , if ∃ di,j(t) ≥ 0.5, j ∈ J

With Dempster-Shafer a “high” score is greater than 0.5, and a “low” score is less
than 0.5. As such, the above combination method uses the maximum score when all
damage scores are low. This ensures that the final combined value will be at least as
bad as the worst state. If at least one score is greater than 0.5, we use Dempster-Shafer
combination to combine the high scores. This ensures that the combined score will
be even higher than any single damage score.

Table 3 illustrates various combination scores for assets assessed across three
different state spaces. It should be noted that in all cases, the modified DST score
was at least as high as the DST score. Asset 1 had all low damage scores, and
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the traditional DST calculation drove the final score even lower. This is undesirable
because at a minimum we want to consider the lowest value. The modified DST
calculation accounts for this by simply taking the maximum of the numbers, which
is 0.3. Also note the disparity in the damage scores for assets 2 and 3. Having at least
one state space with a high damage score should be of concern, so we ignore the
low estimates and only combine the high ones. Note that asset 4’s combined damage
score is higher than any single state space.

4.5 Considerations for Damage Degradation over Time

For general mission impact assessment, it may be sensible for the impact or damage
to decrease simply due to time. An example of this is an asset who was damaged, but
has not received any impact changes for such a long time that the impact or damage
is no longer relevant. As such, it may make sense to define an aggregation function
that linearly, exponentially, or logarithmically discounts the impact or damage as
time progresses, then “resets” itself once an event occurs to change the score. For
example, we can define the following linear function such that t’ is the last time state
estimation changed the damage score due to an event and λ is the rate at which the
damage degrades:

di(t) = max(0, di(t
′) − λ(t − t′)di(t

′))

However, this concept could potentially lead to false negatives in the cyber domain,
where “low and slow” attacks are very common. In a low and slow attack, a hacker
can sometimes wait months between attacks on the network. The idea is that even
if sensors or analysts do pick up their activity, the events will be too far apart to
correlate with each other. In addition, if a hacker has successfully setup a backdoor
undetected, the backdoor may be there long enough that it is also present in backups
and may continue to be present even if a server or host is restored from a backup if the
attack is detected. As such, we recommend that each “high” damage score be taken
into consideration and if it is determined to be a false positive, the state estimation
software should be able to allow for manual overrides to reduce the damage to the
correct level. Automatic degradation may unnecessarily discount the damage if it
goes unresolved over time.

5 Mission Tree Methodology

A mission tree is a tree-structure that captures the relationships between missions and
assets. The mission tree is currently implemented as the impact assessment capability
for Future Situation and Impact Awareness (FuSIA) [11]. As mentioned in Sect. 2,
a “mission” is generically defined as any sort of task that must be performed, and an
“asset” is a resource required for the execution of at least one mission. The mission
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tree takes the damage scores calculated by state estimation and propagates them
through the mission tree to provide mission impact estimates indicating the current
health of a mission. The mission tree can also be used with various predictors or
“what if scenario” interfaces to estimate future mission impact. The mission tree is
intended to provide an estimate of mission impact, which is intended to trigger a
deeper analysis for command and control activities. The intent of providing these
estimates is to make more efficient use of an analyst’s time since the impacts are a
fast indicator of whether one or more events are adversely affecting a mission.

For example, a situation assessment tool such as FuSIA [11] will be able to suggest
that a computer on a network has been compromised by a computer hacker using a
Single State-Space Estimation. However, in order to determine how that impacts the
other missions being executed, one must know not only how that computer supports
each mission, but also be able to combine that information with the current state
of other assets supporting that mission. In addition, that mission could be used to
support other missions. The mission tree models these relationships and provides
for various means of aggregating the data to provide a quick estimate of how far
reaching the impacts are across other missions.

A static Mission Tree implementation would represent the state of the missions
only at a specific point in time. In many applications, certain attacks may affect
the mission more critical than others at different timeframes. This is even more
challenging if new missions emerge over time, assets are re-assigned to assist in
other missions, certain missions must be executed within a given timeframe, or the
criticality of a mission or asset changes over time.

These dynamic and temporal changes must be taken into account in order to
perform an accurate impact assessment in a timely and accurate manner. In Sect. 6,
we will demonstrate how the mission tree is developed to incorporate dynamic and
temporal mission changes through a fictional military computer network example.

Figure 1 shows the basic Mission Tree structure. A Mission Tree consists of
three different types of nodes—assets, aggregations, and missions. Asset nodes must
always be leaf nodes. An aggregation node is a node that performs a mathematical
function to calculate the combined impact of all of the children nodes. Finally, the
third node type is a mission node, which represents any type of task that needs to be
executed either as the primary mission (the root node) or in support of another set of
missions.

5.1 Asset Nodes

An asset node is defined by a 3-tuple (i,e,c) for a role r where i is the damage score
for asset e in support of the parent mission with a criticality c. The criticality is used
to describe the importance of a given node to the parent mission. An asset node must
always be a leaf node and have an aggregation node as a parent.

Let sa,r be a vector of probabilities such that sa,r(i) = pi where pi is the probability
that the function of the asset a is in state i. with respect to its role r. For example,
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Sa,r = (pnormal, pattempted, pdiscovered, ppartially_comp, pcomp) corresponds to the set
probability that role r for asset a is in the Normal, Attempted, Discovered, Partially
Compromised and Compromised states, respectively. Sa,r should be defined for
every mutually exclusive set of states. If an asset only performs a single role, the r
index may be removed.

Let d∗ be a vector of the “numerical damage” for a given state. For example, we
can define d such that d∗ = (d∗

normal, d∗
attempted, d∗

discovered, d∗
partially_comp, d∗

comp) =
(0, 0.2, 0.4, 0.6, 0.8). The d∗ vector should be defined for every mutually exclusive
set of states. We can therefore define i = da,r = sa,r • d∗ to be the damage score for
an asset’s role.

Using this definition, an entity can be represented across multiple missions by
multiple asset nodes referencing the same entity. For example, if the network service
“SSH” is an entity that supports three missions, three asset nodes referencing the
SSH service are created. As a result, any change to the damage of the entity will
trigger the recalculation of impact from each of these three asset nodes.

It is important to note that asset nodes merely reference the actual asset instance.
So in essence, an asset node represents the damage score of the asset instance with
respect to its parent mission. The reason for this distinction is to preserve a tree
structure for an easier understanding of the impact score calculation process.
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5.2 Mission Nodes

A mission node is also defined by a 3-tuple (i,e,c) such that i is the impact score
for mission e in support of the parent mission with a criticality c. The criticality is
used to describe the importance of a given node to the parent mission. Every mission
node must contain a single parent (except for the root) and a single child aggregation
node. For a mission node, i= i(child aggregation node).

Recall that we generically refer to a mission as any task that needs to be completed
to accomplish a given goal. Organizations may use strict mission structures compris-
ing of multiple layers of missions, sub-missions, tasks, etc. However, this structure
is not consistent across all organizations. So, for the sake of the mission tree, each of
these elements are considered to be a “mission” since they are functionally treated
the same for impact calculations. As a result, the depth of the mission tree can vary
between organizations. A mission type is assigned to each mission to allow the user
to distinguish which mission, sub-mission, task, etc. is being modeled.

5.3 Aggregation Nodes

Along with the tree-structure, the aggregation node enables the mission tree to not
only model various relationships between its child assets, missions, or other aggre-
gation nodes, but to also “propagate” impacts up the mission tree. The aggregation
node enables mission-asset relationships through the definition of various functions
that model various asset behaviors. An aggregation function shares mathematical
similarities to a combination function used for state estimation. However, the com-
bination of state spaces typically utilizes a single function, whereas a mission may
utilize multiple functions forming more complex relationships aggregated together
in a way meaningful to the mission-asset relationships.

Assets may have redundant behavior for missions, so “at least 1” of them may
need to be un-impacted for the parent mission to execute. Assets could also have
complementary behavior, meaning that “all” assets must be functional for mission
execution. The aggregation nodes also provide for “at least N” relationships as well
as “threshold” nodes. These various relationships all help to provide for an intelligent
propagation of impact scores “up” the mission tree based on the estimated damage
to each asset. The use of multiple aggregation nodes also allows for more complex
relationships to be modeled.

An aggregation node calculates the combined impact of all children nodes and is
defined by a 3-tuple (i,e,c) where e is an aggregation function with criticality c and
i=f(e). Every aggregation node must contain a parent that is either a mission node or
an aggregation node. While an aggregation function can be any type of function, we
adopt Yager’s aggregation functions [12] due to their flexibility in defining various
logical and mathematical relationships.
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Yager’s aggregation functions use a weighting vector multiplied with a sorted
vector to perform various mathematical functions, such as maximum, average, and
minimum. Due to their flexibility in function definition, they were chosen as the
primary calculation means for the aggregation functions.

Each aggregation node is defined by a vector of weights, w, and a sorted vector,
vs, for Yager’s aggregation calculations. The sorted vector is a vector sorted in
descending order of all i∗c(impact multiplied by criticality) values defined by each
child. The dot-product of each vector yields the impact score, i, for the aggregation
node.

True Maximum is defined such that w = [1, 0, . . .0]. A true maximum calculation
is equivalent to an “And” relationship between all of the children. This indicates that
all of the children have complementary roles and must be fully functional to complete
the mission, so the mission is “only as strong as its weakest link.”

Weighted maximum is defined such that w = [z, |ch|/(z − 1), |ch|/(z − 1), . . .],
z <= 1, where z should be close to one and |ch| is the number of children. This
can be used when it is highly desirable for all children to be fully functional, but the
mission isn’t completely non-functional when a child goes down.

True Minimum is defined such that w = [0, . . ., 0, 1]. A true minimum calculation
is equivalent to an “Or” relationship between all of the children. This indicates that
all of the children are performing redundant roles. Thus only a single child needs to
be operational for the mission to execute.

Weighted Minimum is defined such that w = [|ch|/(z − 1), . . ., |ch|/(z − 1), z].
This can be used when the degradation of the functionality of the child will minimally
impact the mission.

Average is defined with w = [1/|ch|, . . ., 1/|ch|]. The average aggregator essen-
tially captures a “consensus” between the children. However, it has not been found
to be applicable to impact assessment calculations, so the use of this aggregator is
not recommended.

It is also possible to model “At-Least-N” relationships that capture the situa-
tion where a minimum number of children are required to complete a mission.
The “At-Least-N” operator is defined such that w = [0, . . ., 0, w1, . . ., wn] where
wn > . . . > w1 and n is the minimum number of objects that must be operational.
These are the primary aggregation functions used for the mission tree, and are mostly
applicable to asset damage scores calculated by Single State Estimation. However,
other aggregation nodes may be chosen dependent upon the state estimation tech-
nique used. For example, an impact score that grows exponentially may be skewed
towards the higher end of the numbers. One could design an aggregation node that
better distributes the scores evenly between 0 and 1. Finally, the modified Dempster-
Shafer combination discussed in Sect. 4.4.3) could also be used as an aggregation
function. This will allow the impacts to “grow” if multiple assets are impacted, thus
being a good function for non-redundant assets. So in essence, the aggregation nodes
can be used not only to model asset relationships, but to also change state estimation
values as deemed necessary. Table 4 shows two examples of “at-least-2” operators.

http://dx.doi.org/10.1007/978-3-319-08624-8_4
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Table 4 Two examples for “At-Least-2” operations

Sorted input 0.9 0.9 0.1

Weight 0 0.75 0.25 Output

0 0.675 0.025 0.7

Sorted input 0.9 0.6 0.4

Weight 0 0.75 0.25 Output

0 0.45 0.1 0.55

It should be noted that each aggregation node is defined independent of the number
of its children. As such, when children are added or removed from an aggregation
node, the new calculation vectors are automatically recalculated.

The threshold aggregation node is an example of one not using OWA. It is also
a special aggregation node in that it can contain only a single child. A threshold
aggregation node is a simple function that defines a minimum threshold of an impact
value before it should be propagated upwards. This function simply returns a value if
it is greater than the threshold, but returns 0 otherwise. This function can be important
depending on the state estimation techniques used for the assets. If the “low” values
for a state estimation technique are not important enough to propagate through to the
parent missions, a thresholding node may be used.
These are the primary aggregation functions used for the mission tree, and are mostly
applicable to asset damage scores calculated by Single State Estimation. However,
other aggregation nodes may be chosen dependent upon the state estimation tech-
nique used. For example, an impact score that grows exponentially may be skewed
towards the higher end of the numbers. One could design an aggregation node that
better distributes the scores evenly between 0 and 1. Finally, the modified Dempster-
Shafer combination discussed in Sect. 4.4.3 could also be used as an aggregation
function. This will allow the impacts to “grow” if multiple assets are impacted, thus
being a good function for non-redundant assets.

So in essence, the aggregation nodes can be used not only to model asset relation-
ships, but to also change state estimation values as deemed necessary.

5.4 Calculating Impacts

A tree structure was chosen to represent the mission relationships because it natu-
rally lends itself to “bottom-up” calculations. The calculations are performed using
an optimized depth-first traversal of the mission tree to eliminate unnecessary cal-
culations. For example, if a single asset’s damage has changed, it is only necessary
to recalculate the nodes on that particular branch. In addition, if the value on a node
of that branch does not change, it is not necessary to continue the calculation since
the parent nodes will not have changed.



254 J. Holsopple et al.

After all of the calculations are performed on the mission tree, each asset and
mission node has an impact score calculated for it, which corresponds to the fused
effect the child nodes have on that node’s ability to perform its task.

Initially we will assume the calculations to be specific to a given time t. This will
ensure that the data structure is static for the analysis. For a given set of events at
time t, we have one or more state estimation algorithms to determine the states of
different assets within the environment.

When the calculated value of a node changes from its previous assessment, its
parent is notified of the change, at which time the parent recalculates its new impact
score. These recursive calculations continue until a calculated value does not change.
After all of the damage scores have been determined, the parent aggregation nodes
for all nodes whose damage scores have changed are then recalculated.

Due to the structure of the mission tree, every mission node has at most 1 child,
which is an aggregation node. The value of this aggregation node also represents the
impact score for the mission node.

5.5 Handling Mission Changes

Recall that we initially assumed the calculations for the mission tree to be performed
for a single point in time. While this assumption was initially made for simplicity,
it may not be a practical assumption in most applications, especially in the cyber
domain where the life cycle of a cyber operation can be short. Over time, missions
can be added or removed, assets may only be available at certain times, and missions
may only be able to be executed within a given timeframe. As such, the assumption
of the Mission Tree being defined for a specific time t may not be valid as temporal
considerations would need to be taken into account. Therefore, the mission tree must
be able to evolve with these changes.

In this section we will consider the different types of changes the Mission Tree
can accommodate and how they can be triggered.

5.5.1 Types of Mission Tree Changes

There are various ways in which a Mission Tree can change. At first glance, how to
handle the changes may seem as obvious as changing a node or a value within the
tree, but there are subtle considerations to properly and efficientlymake the changes.
In this sub-section, we will describe the different ways a mission tree can be modified
and the considerations when making the change.
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Adding an Asset

A new asset is typically created when a new resource becomes available for a given
mission. The physical addition of the asset is as simple as adding the node as a child
to an aggregation node. However, the following must also be taken into account:
Criticality—Determine how critical the asset is to the mission, relative to the other
assets available.
Relationship to other assets—Determine whether the asset performs the same role
as other assets supporting the mission. If it does, it should be added as a child
underneath an “Or” or “At-Least-N” aggregator to indicate that it is a redundant
asset. If the asset performs a unique and critical role to the mission, it should be
added as a child to an “And” aggregator to indicate that this is a required asset. This
is critical in ensuring that the aggregation nodes are correctly defining the mission
dependencies. The aggregation nodes may need to be re-worked if the asset introduces
a new mission dependency.

Adding a Mission

The considerations for adding a mission are very similar to adding an asset. However,
unlike asset nodes, mission nodes are not leaves, we must also consider the tree
structure “below” the mission.
When adding a mission, one must also consider which assets support the mission
and also how those assets work together to perform that mission. This analysis will
form the necessary structure for the aggregation nodes to capture these relationships.

Removing an Asset or Mission

When an asset or mission is removed, all of its children are also removed. As a
result, careful considering must be taken into account so as to not make existing
missions unable to perform their tasks. The impact of such node removals can become
immediately evident when they are removed from the mission tree, which can be
a benefit to the mission planner to assess the potential problems with removing
a mission or asset. The obvious indicators of problematic removals are aggregation
nodes with no children. Such nodes indicate that there is a specific dependency that is
no longer modeled – and thus may indicate that a mission would be unable to perform.
In addition, due to “At-Least-N” aggregators, it is possible that an aggregation node
may not have enough children. These potential problems can be brought to the
attention of the analyst so that they can be resolved immediately.
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Re-Assigning an Asset

As missions evolve, assets may need to be re-assigned for various reasons. As such,
the re-assignment of an asset is necessary to model. However, it is simply equivalent
to the removal and subsequent addition of the mission and/or asset.

5.5.2 Change Triggers

We define a change trigger, as an event that causes a change to the mission tree. When
a change is triggered, a list of actions, A, is executed to change the mission tree. The
list of available actions were described in Sect. 5.5.1. Triggers are a critical inclusion
to the mission tree in order to handle any changes to the mission tree, whether they
are unplanned or planned.
Functional Trigger—These are one-time changes to the mission tree. As business
or a particular task evolves, new missions may need to be created or existing missions
are deemed unnecessary. These triggers are typically manual changes that must be
made in order to accommodate changes that did not have a predictable time at which
they became effective.
Absolute Temporal Trigger—These are one-time changes that are triggered by a
single point in time. These changes typically represent a predictable change to the
mission tree, such as a deadline for a given mission. When deadlines for missions
have occurred, the mission is permanently removed from the mission tree. In addition,
known or planned tasks in support of a mission can be created at the given point in
time.
Cyclical Trigger—These changes are characterized by a predictable and cyclical
change in the mission definition. These changes are typically caused by a business
cycle, where certain assets may be more critical during normal business hours. In
addition, due to resource availability, assets may only be available within certain
timeframe, so there are only specific periods of time at which the assets are able to
affect the mission. These changes result in a cyclic change of the mission tree.

5.5.3 Managing Mission Tree Changes

Depending on how frequently the mission tree changes, one may need to consider
the best way to manage these changes. For a forensic analysis and to also consider
past, or future, events in a “what-if” analysis, the mission tree needs to be stored at
various points in time. While each calculation is calculated for a given time t, we
need to be able to quickly assess the estimate of the mission for various times as
events occur. As such, the proper storage of the tree is critical. There are two ways
in which we can store a Mission Tree:
Absolute—This is the most straightforward approach, but also the most data inten-
sive. In this approach, the entire mission tree is logged any time a change occurs. The
time at which the change is effective for is logged in the database. When a calculation

http://dx.doi.org/10.1007/978-3-319-08624-8_5
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is needed for a given time, the entire mission tree is defined. This storage approach
may make more sense in a mission tree that does not change frequently.
Relative—In this approach, the mission tree is stored in its entirety every so often.
Every time a mission tree changes, instead of storing the entire mission tree, only the
action is logged. When a calculation is needed for a given time, the closest complete
mission tree is first queried, followed by actions that were logged for modifying that
base tree into the tree applicable for that time.

This approach requires much less storage space, but also is slightly more inefficient
as a list of changes must be processed to determine the actual mission tree. This
approach is best suited to applications where the mission tree is frequently changing.

6 Mission Tree Example

The mission tree was originally developed as a domain-agnostic approach to
assessing mission impact to one or multiple application domains. This definition
enables the impact assessment of missions that span multiple domains. For example,
ground assets can be assessed alongside cyber assets to create a combined mission
impact estimate. However, each domain has a specific way to “map” the mission
tree. In this section, we will discuss how the idea of a mission tree is applied to cyber
networks, assets, and missions.

6.1 Input Data

As has been mentioned earlier, there has been a cornucopia of work focusing on the
identification of various types of cyber attacks, which can be leveraged as inputs to
the Mission Tree. The approaches applicable to provide input data to the Mission
Tree must be able to:

1. Correlate multiple cyber events together to represent a single cyber attack.
2. Provide a generic categorization of each event and, ideally, whether the event was

successful in its execution.
3. Identify one or more assets affected in some way by each event.

With these three capabilities, we can determine the damage to each asset on a
Mission Tree, which will then enable us to calculate mission impacts. In this example
we will use the Single State-Space Estimation technique with the following states:

1. Normal (0.0)—nothing abnormal has occurred on or to the asset, and the asset is
functioning normally.

2. Attempted (0.25)—an abnormal event has occurred on or to the asset, but the
event did not seem to have any negative effects on the asset.
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3. Discovered (0.5)—the adversary has some knowledge of the asset or attributes
thereof. However, the asset seems to be functioning normally.

4. Partially Compromised (0.75)—one or more roles on the asset are under the
adversary’s control. Therefore, while the asset may appear to be functioning
properly, the asset cannot always be trusted.

5. Compromised (1.0)—the asset is assumed to be under complete control by the
adversary, so we cannot trust the asset and will therefore have the greatest impact
to the mission.

6.2 Mission Tree Example

In this section, we will create a dynamically changing mission tree for a simple
computer network for a fictitious mission to be executed by a nation’s military. Some
of the missions can only be executed at night, while some missions can only be
executed during the day. In this example, we will demonstrate how compromised
assets can affect not only the current missions, but also missions requiring the asset
in the future.

Our example assumes that the “night” missions must be executed between 18:00
and 05:00, while the “day” missions must be executed between 05:00 and 18:00. The
time in between the missions is intended for rest and/or maintenance. In addition, the
CommServer is shared between the missions, but during the night is only exclusively
available to the night missions and exclusively available to the day missions during
the day. In addition, during the day, one of the day missions requires the use of at least
2 of the available workstations. It has also been found that the sensors monitoring
these workstations trigger many false positives for discovery attacks. So any value
less than or equal to 0.5 is most likely a false positive and should not be taken into
account. The night missions require the use of at least 2 of 3 available field units that
communicate valuable information back to the soldiers. As such, these are important
cyber assets that also need to be protected.

We can create a static mission tree as shown in Fig. 2. Note that immediately
above the “At Least 2” aggregator for the workstations is a thresholding function.
This is defined to filter out the false positives that are known to be caused by the
sensors monitoring the network. As such, only values above 0.5 will ever propa-
gate up to Day Mission 1. Also note that the CommServer is shared across all four
missions. However, this is not entirely accurate given that anything that affects the
CommServer during the day will only affect the day missions. We will be using a
modified Dempster-Shafer calculation for each of the “And” nodes.

We can define two cyclic triggers to modify the mission tree to give an accurate
assessment based on the intended availability of the CommServer.

At the respective times, each of the triggers perform their actions. Which allows for
a more accurate assessment of mission impact. The two cyclic triggers fundamentally
create two slightly different mission trees show in Figs. 3 and 4. It should be noted
that any mission or aggregation node with no children will always be assumed to have
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Fig. 2 Static mission tree for the basic day/night military operations

a zero impact. Also, the “And” aggregation nodes with singular children essentially
just act as a pass through node. This minor detail is to ensure the data structure of
the mission tree is maintained. It also allows for easier updates to the mission should
any assets be added.

Figure 5 shows how the impact scores for each mission varied over time based
on a set of cyber events defined in Table 5. Prior to the attack occurring, all missions
had a 0.0 impact score. Note that due to the “at least 2” and thresholding aggregation
nodes for the workstations, the impact to the workstations is not seen on Day Mission
1 until 13:00. It is important to note, however, that this does not imply that the events
prior to 13:00 would have been ignored. It simply implies that it was not until 13:00
that the mission was negatively affected by the actions. In a realistic environment, the
workstations would be monitored and the mitigation of workstation 1 should have
immediately started when it was compromised. The different levels of the mission
tree can be monitored by different people at the same time to try to prevent future
events from causing higher level impacts.

By 15:00, the attacks to the workstations were resolved, so the impact decreases
to 0. However, the impact spikes again when the CommServer is compromised. Note,
however, that due to the dynamic nature of the missions, the night missions are not
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Fig. 3 Mission tree effective 8:00 M-F

yet affected. If the CommServer’s compromise was mitigated prior to 18:00, there
would have been no impact to the night missions.

6.3 Cyber Security Mission Tree Considerations

The previous section gives a simple example of a dynamically changing mission tree
associated with a relatively small-scale computer network. The example demon-
strates how a mission tree can be used to not only determine current impacts but also
future impacts. Realistically, however, a typical enterprise network is comprised of
hundreds, if not thousands of physical and virtual assets, so the practicality of the
mission tree in such environments needs to be discussed.

Tools such as Snort® [13] or a more comprehensive tool such as HP’s® Network
Management Center [14] will be able to identify the states of assets which can then be
fed to a state estimation process such as the simple state estimation process provided
by FuSIA [11]. Each of these tools provides an initial data reduction to the point that
the assessments indicate the damage to computers and their services.
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Fig. 4 Mission tree effective 18:00 M-F
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Fig. 5 Mission impacts esultant from Hacker attack over time

When modeling a mission tree for cyber warfare, an understanding of the com-
puter network (e.g., the environment) is necessary for an adequate impact assessment.
In addition, careful consideration must be taken into account to ensure that the gran-
ularity of the defined assets and roles is sufficient for accurate estimates, however,
not so detailed that the provided assessments become unwieldy to manage.
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Table 5 Triggers for mission tree

Trigger type Time Action list

Cyclic 8:00 Remove commServerNM1

Remove commServerNM2

Add commServerDM1

Add commServerDM2

Cyclic 18:00 Remove commServerDM1

Remove commServerDM2

Add commServerNM1

Add commServerNM2

Fundamentally, each analyst is looking to protect certain aspects of a computer
network. Given the rapidly shifting focus to service-oriented architectures, whose
resources can span one or more physical computers, we recommend modeling the
services themselves as the assets—not the physical computers they reside on. Since
many services can be provided redundantly, that can easily be modeled in the mission
tree through the use of the “Or” aggregator where-ever that specific service is needed.
Pre-processing of the events as described in the previous sub-section and knowledge
of the computer network can help to facilitate estimates of impacts to specific services
if only the physical computer being attacked is known. To further improve scalability,
similar assets can be merged into a single asset to reduce complexity. For example,
workstations (and their subsequent services) used by people of the same working
group are often created from the same software image. Since each workstation would
essentially be able to perform the same critical services, one could merge all of the
individual workstation services into a single service on the mission tree.

If the “cyber missions” are ill-defined, the actual creation of the mission tree is not
necessarily a trivial process. We recommend first building the top of the tree to mimic
the structure of the organization, then creating specific tasks for each department and
determining which services are necessary for the successful execution of these tasks.

It should also be noted that due to how generically the mission tree is defined, non-
cyber assets can also be included on the mission tree. Although, of course, the assess-
ment of those assets would require a different suite of situation assessment tools.

Using these considerations, a useful cyber mission tree can be developed that will
allow for the quick estimate of mission impacts.

7 Challenges in Formal Evaluation of Mission Impact
Assessment for Cyber Warfare

The previous sections presented a methodology and an example for estimating
mission impact. There are, however, numerous challenges in practice to formally
design an experiment and/or scenarios to evaluate the utility of this approach. This
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Table 6 Cyber events

Time Event Damage

10:00 Discovery of Wkstn1 d(wkstn1)=0.5

11:00 Discovery of Wkstn2 d(wkstn2)=0.5

12:00 Compromise of Wkstn1 d(wkstn1)=1.0

13:00 Partial Compromise of Wkstn2 d(wkstn2)=0.75

15:00 Finished Mitigation of Wkstn1 & Wkstn2 d(wkstn1)=0.0

d(wkstn2)=0.0

16:00 Partial Compromise of CommServer d(CommServerDM1)=0.75

d(CommServerDM2)=0.75

22:00 Finished Mitigation of CommServer d(CommServerDM1)=0.75

d(CommServerDM2)=0.75

section details these challenges and suggests potential solutions so that one can work
towards a better ability to not only evaluate the utility of mission impact assessment
approaches, but also compare mission impact assessment approaches against each
other.

7.1 Lack of Mission and Network Detail in Existing Cyber
Warfare Scenarios

Perhaps the biggest challenge in evaluating mission impact assessment approaches
is the lack of appropriate data. While there are some publicly available datasets to
evaluate cyber warfare products, none of them currently provide any mission detail.
This makes defining even somewhat accurate mission trees (and more specifically
the aggregation nodes defining the relationships) impossible.Grimaila and Fortson
[3] also argue that one of the limiting factors to perform damage assessment is due
to the lack of documentation.

Even when it is available, the typical system information of an enterprise network
is insufficient for accurate state estimation. For example, most data sets may pro-
vide a simple network diagram and a general list of services (not including version
numbers). Most also do not include firewall or routing configurations. As such, state
estimation may generate a large number of false positives, leading to poor perceived
performance of the system—when in reality the poor performance is due to poor
modeling.

Cyber warfare scenarios should include more detailed information about the com-
puter networks, including (but not limited to) firewall rules, routing configurations,
sensor placement, and as detailed of a list of services (including their versions)
as possible. This information will significantly help the process of automated state
estimation, thus leading to more accurate inputs to mission impact assessment. In
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addition, a detailed mission description should be included so that the user may better
understand the goals for each part of the network. In an ideal scenario, the mission
description would be formulated in a graphical manner, however, at a minimum a
textual description would be useful to define an appropriate mission model.

7.2 Deviates Significantly from Current Cyber Defense
Approaches

Cyber warfare analysts are generally concerned with the current state of the protected
network. As soon as they identify a potential threat to any asset on the network,
they seek to mitigate it. However, cyber attacks often have effects beyond just the
computer network. These effects are often not known at the time of the attack and
require extensive forensic analysis to determine.

Defining the necessary impact assessment models such as the mission tree or the
state estimation rules may not be a trivial process given that it requires more infor-
mation than most organizations currently document and diagram. While diagrams
and other documents may be available for a network, many details are often just
known by the IT personnel or discovered on-demand, since the models described
this chapter are not necessary to maintain a reliable computer network.

Mission impact assessment could aid in the forensic analysis by providing quick
estimates of impacts to other missions that would help to better define a starting
point for a more detailed analysis, while ignoring the less likely entities to have
been impacted. In addition, mission impact assessment could also provide a similar
starting point for the mitigation strategy.

In order to alleviate this difficulty, automated discovery tools must be used to help
develop the models necessary for state estimation and impact assessment. While there
are cyber defense packages available that integrate discovery tools together to gather
some of the required information, they are often cost-prohibitive for many smaller
and medium-sized organizations. In addition, each organization would also need to
document and diagram their mission structure(s) to allow for the development of a
useful mission tree.

7.3 “Ground Truth” for Mission Impact Cannot Be Defined
Numerically

Even if a scenario provided sufficient enough detail for accurate state estimation
and the development of the mission tree, defining ground truth for the mission tree
outputs is relative and arbitrary. How is the ground truth defined for the impact
scores? Would distance metrics potentially skew results for approaches that for all
intents and purposes had equal performance (i.e., if ground truth defines an impact
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of 0.8, and mission impact tools provide scores of 0.82, 0.76, and 0.99, are any of
the scores really that much “better” than the others)? In addition, as evidenced in the
simple scenario described above, the impact can vary significantly with time—even
if no malicious or defense actions are taken in that period of time.

The nature of impact assessment often tends more towards educated opinion than
facts, so defining ground truth for the purposes of collecting measures of performance
may not be feasible due to the inability to quantitatively define the necessary values.
As such, this problem is not well-suited towards any sort of formal “benchmarking”,
but there are other approaches focusing on the utility to the analyst that could be
performed.

7.4 No Available Measures of Performance

Given that there is no ground truth that could be available for evaluating mission
impact approaches, it is necessary to design an experiment for analysts identifying the
threats and effects to the network. Such an experiment would require equally skilled
analysts protecting the same network using different tools. Measures of effectiveness
could then be collected to determine various metrics like attack response time and
attack mitigation time.

8 Conclusion

In this chapter we have reviewed mission impact assessment for cyber warfare.
Mission impact assessment can fundamentally be broken down into two processes:
state estimation and impact assessment. The state estimation provides a damage
score for each asset, and can be performed in multiple ways. The impact assessment
provides quick estimates of mission health which can be calculated using a Mission
Tree. Due to the dynamic nature of mission planning, the Mission Tree is also capable
of dynamically changing over time to account for various mission changes. A simple
military example was presented to discuss the potential utility for mission impact
assessment. However, there still remain significant challenges in formalizing and
deploying cyber warfare mission impact assessment processes due to the available
technology and current network documentation processes.
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Uncertainty Modeling: The Computational
Economists’ View on Cyberwarfare

Suchitra Abel

Abstract The current research scenario shows considerable work on the
fundamental considerations for Cybersecurity. The physical world will fuse with
the digital world in the future through enhanced technologies. However, there still
exists the problem of radical uncertainty, particularly in the form of information theft.
In this project we provide an analysis of the critical factors affecting the security of
internet-based businesses; we also present a casual model-based security system that
affects and helps the central characteristics of contemporary internet-based busi-
nesses.

1 Introduction

The internet, including the businesses that operate via Internet, can be perceived as a
contingent commodity market. However, the economy has only imperfect solutions
for situations where information purchase or theft for the sake of making explosives,
for example, is done via the Internet. In this chapter, I will present a re-formulation of
the traditional Economists’ viewpoint that can be applied to modern Cyberwarfare.
This is a systematic expression since the traditional Economists could not have
thought of the current situation of Cyberwarfare. I will show how intelligent systems
can tackle this problem and deal with the different parameters effectively.

We have to be prepared to increase the internet-based business community’s
awareness of our efforts in the form of programs designed to prevent crimes. Our work
here will make it possible for companies to have emergency escalation procedures,
mass notifications, and supporting systems.
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2 Background of Research and Brief Literature Survey

Businesses are often driven by their need to maximize their utility, thus influencing
their policies and decisions according to that need. Researchers have developed
economic and mathematical models that explore numerous aspects of businesses.
In the context of this concern, I hereby present an uncertainty model that will be
effective in advancing a method that assists such businesses.

There are researchers who facilitated the development of the foundations of our
current research on modeling for CyberWarfare. Cartwright [1, 2] and Fine [3] have
produced some of the classics. In more recent times, Pearl [4–6] has been researching
about causal models and structural models that utilize probabilistic logic. These
researchers have provided the background and the inspiration behind the current
work.

There are also practical problems of Cyber-threat that arise with companies like
Adobe and Microsoft. Adobe has recently released security updates for Adobe Flash
Player to address multiple vulnerabilities. Adobe has also released security updates
for Adobe Reader and earlier versions for Windows and Macintosh, in order to
address multiple exposures. These susceptibilities could cause a crash and potentially
allow an attacker to take control of an affected system [7].

Microsoft has released updates to address vulnerabilities in Microsoft Windows,
Microsoft Office, Internet Explorer, and Microsoft Server Software.These weak-
nesses could allow increasing code execution, elevation of privilege, denial of ser-
vice, or information exposé [8].

These problems can inspire one to do further research on finding a solution of
threat identification and consequent engagement. The following section is concerned
with these practical aspects.

3 The Cyberwarfare Scenario

There is a rational need for uncertainty models specially targeted towards cloud
computing and mobile cloud computing. In general, Cloud computing enables con-
venient, on-demand network access to a shared pool of configurable computing
resources (such as networks, servers, storage, applications, and services) that can be
rapidly provisioned and released with minimal management effort or service provider
interaction. There are businesses that rent Cloud services from Amazon [9], Google
[10]. The businesses that rent Cloud services often have Research Divisions working
on their security problems, inviting articles from outside the company too [11, 12].

Mobile Cloud security is another scenario that is becoming important. Smart
phones, tablets, and cloud computing are converging in the new, briskly growing
field of mobile cloud computing. In less than four years, there will be 1 trillion
cloud-ready devices. One should learn about the devices (smart phones, tablets,
Wi-Fi sensors, etc.), the trends (more flexible application development, changing
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work arrangements, etc.), the issues (device resource poverty, latency/bandwidth,
security, etc.), and the enabling technologies that come along with a mobile cloud
environment [13].

Companies like Nokia and Microsoft are interested in Cybersecurity issues. The
author provided an invited talk to the Nokia Research Lab, on this topic [14].

There is also emphasis, in the current research world, on finding a solution to
Cyberwarfare, in the domain of internet-based businesses in general. The focus of
the current chapter is not on overall mobile cloud security or even overall cloud
security. Even without taking direction towards the line of cloud security or mobile
security, there are many general issues concerning the computational Economists’
view on Cyberwarfare, geared towards internet-based business in general, that are
worthy of discussion. Alarming and often intimidating Cyber-attacks on internet-
based business have reached an all-time high. Cybercrime is costing corporations this
year, much more than last year. The statistics are in accordance with definitions used
by the Department of Homeland Security, which confirms that there is a significant
emergency or a dangerous situation involving an immediate peril [15].

The overall discussion of security measures using Bayesian modeling is certainly
worth researching into. The next section shows that though the traditional Econo-
mists handled uncertainty in the context of businesses, they could not anticipate the
complexities of modern businesses, for example, internet-based businesses that are
open to the public all over the world, and are vulnerable to Cyber-attacks.

4 Traditional Economists: How they Would have Handled
this Problem

This section expounds the traditional Economist’s method of handling uncertainty
in the context of businesses, and shows the shortcomings of such a method. In this
model, the Internet site owners do bear the risks of misusing their proprietary infor-
mation; they need to use subjective probabilities in determining their structures. It is
decentralized decision making. There are administrative rules, legal rules (for exam-
ple, no insider trading), etc. Of course, price of the commodity plays a vital role in
who is acquiring the products. The buyers and the sellers do not have to know each
other. The concept of free market does not mean the absence of rules, but how the
rules ensure their freedom, in the highly competitive economy.

The traditional way of approaching this problem is to pursue standard mathe-
matical methods, such as formulation of utility functions. The likely arguments of
a typical Internet business’s utility function, u, are its overall assets, a, the regular
purchases for peaceful purposes, p, and the individual actions, Ind, of the company
in trying to be persistent with such purchases. The business’s utility function has
the memorable Von Neumann-Morgenstern properties [16]. It empowers them to
formulate preferences on all the arguments of their utility function [17, 18].
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The scheme to prevent unexpected disruption-causing actions and to carry on
typical purchases is the payoff function called g(S). This scheme can be classified
according to their fundamental characteristics in the following spheres: first, one
has to consider the region of the presence or absence of individual choice. There is
individual choice if the individual actions, Ind, that compose a challenging argument
in the Utility function. This might represent a level of investment. Next, there is the
region of sequencing of moves between individual business’s actions and customer
actions. Lastly, one must not overlook the information, monitored by the scheme to
prevent the disturbance. This information state, which may be a vector, is a function
of the act of people who might interrupt the normal activities, and the actions of the
individual business.

The scheme functions by establishing the payoff—financial gain of the individual
business if the customers lead to legitimate business that one wants.

This also depends on the monitoring of the information state, such as: are the
incoming customers authentic, or do they have the possibility to be disorderly?

There should be a break-even fiscal anticipation, for example, that the interference
does not really halt the business. The scheme is to maximize the individual business’s
expected utility subject to the constraint.

We consider first a simple situation in which there is no room for individual choice.
Suppose that there is no individual choice to intervene. The scheme already

devised by the business is the one that works—and it monitors the customers’ activi-
ties. In this case, the sole determinant of the individual business’ utility is the uncer-
tainty regarding the customers’ actions, p. These are obtained from standardized data
retrieval about such actions. The distribution of p is given by the disruptive actions’
density function f (p). The notion of p can be treated as continuous or as discrete.

The scheme to deal with customer actions p monitors the possibilities of p. In
this case, the information state S = {p}. The scheme gives the individual business a
payoff, g (p). This payoff, added to the initial assets of the particular business, called
a0, gives the total current a, argument of its utility function. In a purely numerical
work, the individual business’ expected utility under this scheme will be

∫ u (a0 + g(p), p) f(p) dp (1)

It is to be interpreted as the integration of the utility u with the two arguments,
payoff added to the initial assets and the customer actions, and together with the
disruptive actions’ density function, f (p); this provides the expected utility.

The “dp” term comes from the following: the function f(p) is continuous for a
≤ p ≤ b. The interval from a to b can be divided into n equal subdivisions, each of
width �p, so that �p = (b − a)/n. The “dp” in the integral comes from the factor
�p.

The break-even constraint for this scheme is

∫ g(p) f(u) d(u) = 0 (2)
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This is the constraint, which should be obeyed, in order to maximize the individual
business’s expected utility. The “d (u)” term, with respect to the utility u, plays a role
that is similar to the dp term in Eq. 1.

The scheme‘s objective is to maximize (1) with respect to (2). The scheme can
employ the calculus of variations (calculating the maxima or minima of functional,
which are often stationary). The business can employ the calculus of variations to
derive the marginal efficiency condition for the optimal payoff function [19].

5 An Intelligent System to Address Critical Cases
of Radical Uncertainty

5.1 Description of an Intelligent System

The model described in the previous section will not succeed in the case of radical
uncertainty, since either there is not enough information available to use it as a
parameter in a utility function, or its value is close to impossible to decipher. One
can do immediate data analysis to give it some initial weight, but it really has no
place in a calculus of variations. Instead of such calculations, we provide an AI based
causal network, a solution that is well-suited to realizing the objective.

Bayesian causal networks represent independence (and dependence) relationships
between variables. Thus, the links represent conditional relationships in the proba-
bilistic sense.

My proposed system does not depend on the representative agent abstraction.
There is no single type of consumer, nor is there a single type of economist who is
analyzing the economy. Classically, models are used to generate quantitative state-
ments. But the aggregate variables of a system can number up to hundreds, and the
“representative consumer” or “representative economist” should be replaced by each
economist/user of the system being represented as an individual.

For radical uncertainty, only immediately available knowledge can be used, and
showing causal connections is critical. The cornerstone of our system is a causal
model; such models are a system of processes that can account for the generation
of the observed data. The ordering presented in the model respects the direction of
time and causation. The judgments required in the construction of the model are
meaningful, accessible and reliable. For example, we can assert that taking actions
against the threat is independent of normal users accessing the site; we can translate
this assertion into one involving causal relationships, once we know that the influence
of normal business practices is mediated by the threat of the potential explosives-
makers accessing the site. Dependencies that are not supported by causal links are
spurious.

Conditional independence relationships are byproducts of stored causal relation-
ships. So, representing these relationships directly would be a reliable way of express-
ing what we know about radical explosives-makers or material-purchasers.
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5.2 Advantages of Bayesian Networks

An important point about building Bayesian networks on causal relationships is the
ability to represent and respond to external or spontaneous changes, for example,
sudden explosives-making purchase threats. Any local configuration of the mech-
anisms in the environment can be translated with only minor modification, into an
isomorphic reconfiguration of the network topology. The use of causal relationships
allows us to define the characteristics for the network topology.

As an example, suppose that in the process of doing normal business operations,
suddenly the business schemes suspect an explosives maker’s purchase threat. In this
case, new nodes concerning suspected threat appear, with time stamp (before that,
within a certain time period, normal purchases were completed and recorded). The
previous nodes were connected to links; but now, when the abnormal nodes appear,
we delete from the network all links incident to the node and its causal connections.

To represent the policy of not selling to this threat, we add necessary links and
revise

P (buyers-nodes | requirement-nodes for purchase from this company).
Such changes would require much greater remodeling efforts if the network were

not constructed in the causal direction but just having an associational order. This
remodeling elasticity is the component that enables the agent to manage novel situ-
ations instantaneously.

It is quite conceivable to change certain node relationships without changing
others. There is a modular configuration that permits one to deal with the effect of
external interventions. The causal models are more informative than plain probability
models. A joint distribution tells us how probable events are and how probabilities
would change with subsequent observations. Causal models also tell us how these
probabilities would change as a result of external interventions. Such changes cannot
be deduced from a joint distribution, even if fully quantified.

Ideally, in the process of modeling, we need modularity. This is the ability of
being made up of separate modules that can be rearranged, replaced, combined, or
interchanged easily. The connection between modularity and involvements that are
interventions is specified here. Instead of stating a new probability function for each
of the many possible interventions, we indicate merely the immediate change implied
by the intervention. We come to know the identity of the mechanism altered by the
intervention, and the nature of the intervention.

A Bayesian network, in general, is a transporter of conditional independence
relationships along the order of construction. The following product showing the
distribution is:

P (x1. . .xn) = π P(xi/pai) (3)

pai are the select group of predecessors of xi. The x’s stand for the company
components.
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We can adjust this product’s relevant factors and use the modified product to
compute a new probability function.

If we have a distribution P defined on n discrete variables, ordered as x1, x2, x3. . ..

xn, then, utilizing the chain rule of probability calculus, we can decompose P as the
product of n conditional distributions.

Suppose that the group of x’s is independent of all other predecessors once we
know the value of a select group of predecessors called paj. Then one can write:

P (x1. . .xj−1) = P (xj/paj) (4)

This will considerably simplify the input information required. We need only the
possible realizations of the set paj. This is a minimal set of predecessors of xj that is
sufficient for determining the probability of xj.

5.3 Causal Network Models

We will examine how the sequencing of moves and the information state, described
in the previous section, interact in the determination of optimal schemes. First, let us
consider a general case displaying how a business works with the information state
and exerts its choice based on the sequences of moves. This is a case in which a certain
information state is used to increase the possibility of business without disruption
(desired result) by the sequencing of moves, but may also have direct effect on the
business, both beneficial and adverse.

Suppose that we wish to assess the total effects of the information state on the
desired result, when the following factors are present: (a) controlled experiments
are not feasible, since the individual businesses insist on deciding for themselves
which scheme to use (b) the business’s choice of schemes depends on the previously
gathered sequence of moves, a quantity though not totally known (obtained by data
mining and other forms of data analysis), but known to be correlated with the current
sequence of moves.

Let Seq-Moves-Before-Choice and Seq-Moves-after-Choice be the following: the
first is the quantity (sequence of moves) before the individual business exerted its
choice. The second is the quantity after the individual business exerted its choice. One
can assign probabilities of the total effect of the information state on the desired result,
based on the causal model. The subsequent diagram (labeled as Fig. 1) demonstrates
this process.

In order to build a complete picture, we have to note that a business needs at least
the following information: (1) Initial assets or products data (including numbers and
prices). Let us call this x1. (2) Demand appraisal that it needs to do; this is called
x2. Consequently, the business has to actually perform the act of sale to customers,
called x3. As a result of sales, the business will have profits, called x4.
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Fig. 1 A general causal model diagram showing the effect of the information state and the sequence
of moves on the business

Therefore, next, let us draw a simple causal model, by constructing a directed
acyclic graph (presented as Fig. 2). Suppose we know that two variables are depen-
dent, data and demand appraisal (x1 and x2). In the case of suspected intervention, the
arrows between x2, x3 and x4 are removed, and the joint distribution also changes,
leading to actions against the threat. y1 through yn are possible causal connections,
with probability, of possible threats under radical uncertainty. (This is presented as
Fig. 3).

As implied by our prior discussion, the principal concern in this chapter is to
examine how the sequencing of moves and the information state interact in the
determination of optimal business schemes.

In general, there often exist a set of schemes, implemented by a business, ensuring
that the business is carried on, that is, that there are proper customers. This also
includes the set of schemes to prevent the failure (built in by the business); the
schemes ensure that the mechanisms are properly achieved, for example, by credit
card monitoring, noting the buyer’s involvement in the social media, etc.
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Fig. 2 Causal network model for uncertainty where the act of sale is completed
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Fig. 3 Causal network model for uncertainty where threat is great, and therefore, no sale is generated

Next, there have to be, and indeed, there are, authentic internet based businesses.
They might be, for example, businesses that supply materials for chemistry purposes.

What are the types of customers that the internet-based business has? There are
non-disruptive customers who are using the businesses for peaceful purposes (the
system might have some uncertainty about them). However, there are also distraction-
causing customers or thieves—those that crash the system (they may be explosives
makers). These cases cause radical uncertainty. They can be people or groups who are
suspected of using these business websites to obtain material for warfare. Thus, there
may be assumed unfavorable consequences. The operation of such markets provides
the focus for our discussion. There is independence in the nature of these warfare
schemed purchases, with respect to the internet businesses. We also assume that all
such internet businesses have identical prospects, resources and utility functions.
That is, they are not preferred businesses or have some pre-determined reputations.
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We build a causal network model, of real world operations, in which the individual
user (say, the Internet company owner) can formulate their own parameters of risk
minimization and see how the values propagate to the ideal state. They all do not
want the same solution. For some, a partial set of imperfect information might be
enough.

Following are two diagrams of the causal network models. The first one represents
the case where the act of sale is executed, since the threats do not have high probability.
As a result, there are profits.

The second one represents the case of a causal network model for uncertainty
where threat is great, as determined with high probability, and thus, no sale has come
into effect. As a consequence, there are no profits from this particular action of “no
sale”.

6 Future Directions

In this section, the future directions of the current research are explored.
A new topic of research is the relevance of Bayesian modeling to Big Data.
Bayesian non-parametrics is an area in machine learning in which models grow

in size and complexity as data accrue. As such, they are particularly relevant to the
world of “Big Data”, where it may be difficult or even counterproductive to fix the
number of parameters a priori [20].

There is also a company [21] that is dealing with Big Data by producing a function
called “BigData”. The concept of Big Data is defined loosely as a data set that is
too large for computer memory (RAM). A common strategy to deal with big data is
to break it into smaller, manageable pieces, perform a function on those pieces, and
combine the results back together. For this approach, the BigData function enables
updating a model via Laplace Approximation.

The above mentioned work has been cited in several articles, such as [22].
Though Big Data is not the direct topic of this current project, it will ultimately be

relevant to the current project, and therefore, I have mentioned it here. Big data-driven
security system will be able to find the hidden patterns, the unexpected correlation,
and the unexpected connections between data points tested under real-world condi-
tions. Analyzing vast and complex data sets at high speed will allow us to spot the
fake signal of an attack. This is because at some point, no matter how clever the
attacker, they are liable to do something anomalous.

In a future direction of the work, in the new world of big data that provides cover
for cyber attackers, we will concentrate on providing answers for devising a next-
generation security system that can cope with emerging threats, The access controls
will be smart in the new big data-driven security world. They will be able to inform
or be informed by other controls [23].

My contribution in this regard will be substantial. Though the current work
does not address any “self-learning” aspect, in the future, some aspects of “mutual
learning” system have to be included. I think that the term “mutual learning” between



Uncertainty Modeling: The Computational Economists’ View on Cyberwarfare 277

the different controls is significant in this respect, rather than the traditional self-
learning, which did not have the same direction as the prevention of destructive
attacks executed through the Internet. It will be interesting to see how the payoff
function changes as a result, or whether the payoff function is replaced by some
other mathematical concept.

7 Conclusion

We need to create a system that is inspiring, persuading and enlightening. For that
purpose, we need to program and test the proposed system, using credible manifestos.
That will involve supporting real-time simulation that allows consumers to explore
the influence of a causal network model towards CyberWarfare.

As the expected immediate results of the system, we will ascertain what is required
in the current state of CyberWarfare. According to the Homeland Security report,
spanning from 2011 to 2013, [24] cybercrime is costing corporations more than the
previous year; the increase in costs is largely due to hackers using stealthier tech-
niques. There are insidious kinds of attacks like malicious code, denial of service,
stolen devices, Web-based attacks and malicious insiders. According to this report,
the strategy has to change from watching the outside wall to trying to figure out what
is happening inside the network. The current research is geared towards this goal of
strategy change.
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