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Abstract. Norms are commonly understood as guides for the conduct of
autonomous agents, thereby easing their individual decision-making and
coordination. However, their study exhibits a polarity between (i) norms
as behavioural patterns emerging from repeated agents’ (inter)actions
and (ii) norms as explicit prescriptions. In this paper, we attempt to
build a bridge between these two conceptual poles of norms: it takes the
form of a mental function for prescriptive transfiguration allowing rein-
forced learning agents to express their learning experiences into prescrip-
tions. The population of transfigurative agents are then equipped with a
consensus system to build and enforce prescriptive systems to self-govern
on-line. Simple simulations suggest the pertinence of the approach and
shows its weaknesses, in particular prescriptions stalling learning, and
timeliness in norm construction.

1 Introduction

Norms are commonly understood as guides for the conduct of autonomous
agents, thereby easing their individual decision-making and coordination. How-
ever, their study exhibits a polarity in their conception. On the one hand, jurists
concentrate on norms as prescriptions promulgated by institutional powers and
enforced by explicit sanctions. On the other hand, social researchers study norms
as tacit behavioural patterns emerging from expectations and enforced by en-
twined sanctions. This polarisation is reflected by the treatment of norms by
computer scientists. Prescriptions and legal reasoning are investigated in for-
mal logics (typically deontic logics and argumentation, see e.g. [13]) to represent
and reason upon explicit norms, leading eventually to architecture for cognitive
agents (see e.g. [7]) while social norms are accounted as patterns emerging from
repeated interactions amongst agents (typically learning agents see e.g. [14]).

Scholars have thus investigated the influence of social norms and prescriptions
on each other, but the conceptual gap remains hardly explored by computer
scientists, in particular with regard to applied systems, c.f. [12]. To address it,
we propose a simple mental apparatus to perform a prescriptive transfiguration
allowing reinforced learning agents to express their learning experiences into
prescriptions.
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As to the practical relevance, our proposal regards self-organising systems
and in particular self-governing systems, specifically the on-line construction of
prescriptive systems for and by reinforced learning agents. Indeed, while rein-
forcement learning is a prevalent mean for the adaptation of autonomous agents
with incomplete information on their environment [16], norms are an attrac-
tive manner to guide the conduct of these agents. Furthermore, explicit norms
are commonly advocated to facilitate their updates, and consequently system
maintenance, improve system transparency and ease system governance. Unfor-
tunately, as remarked by [8], the manual construction of prescriptive systems
is often time-consuming and error prone, the construction at design time (i.e.
off-line construction) is computationally complex, and both are unsuited for
dynamic systems with unpredictable changes. Therefore we opt for on-line con-
struction. Since systems of multiple autonomous agents have their essence into
decentralised control and computation, this on-line construction shall occur in
a distributed manner in the sense there is no entity with complete information
taking the role of a central legislative body. We will focus on explicit primary
norms and in particular regulative norms, i.e. those guiding the ideal behaviour
of agents, leaving other primary constitutive norms (used to constitute institu-
tions) and secondary norms (managing primary norms) for future work.

The practical challenge in this paper regards thus the self-governance of learn-
ing agents, or more specifically the domain-independent construction at run-time
of explicit regulative norms from scratch, for and by learning agents, without
any agent having a complete information on the system. Our solution, inspired
by direct democracy, is a consensus system coupled with the mental function of
prescriptive transfiguration so that every agent shall propose and vote for pre-
scriptions meant to govern themselves. The overall system results thereby into
a direct self-governance taking advantage of every agents’ learning experiences.

Noting there is no obvious or immediate utility for a reinforced learning agent
to share his own experiences to influence the construction of a prescriptive sys-
tem (paradox of voting, also called Downs paradox), our proposal of direct self-
governance is imposed to the agents (i.e. hard-coded). Nevertheless, as every
agent is learning with respect to the qualities of behaviours, the construction of
norms occurs in the same spirit. Every possible proposal and vote is associated
with a probability reflecting a scalar potential and we assume that every agent
is endowed with a mental apparatus described in this paper to compute these
potentials. This apparatus is light so that it is compatible with the presumption
of agents with bounded cognition.

The simulations of reinforced learning agents equipped with such legislative
apparatus suggest the pertinence of such approach but also its weaknesses, in
particular prescriptions stalling learning and timeliness in norm construction.

The remainder of this paper is organised as follows. In the next Section 2,
we base our system of learning agents on the model of stochastic games and
we define the problem of self-governance we are interested in. Our proposal for
direct self-governance is given in Section 3. It is illustrate in Section 4 with some
simulation results and related with other work in Section 5, before concluding.
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2 Stochastic Games

We base our framework on the common model of stochastic games. A stochas-
tic game can be considered as an extension of a Markov decision process with
multiple agents with possibly conflicting goals, and where the joint actions of
agents determine state transitions and payoffs. A stochastic game consists of a
tuple < G,S,A, T, R > where:

– G is a set of N agents indexed by i;

– S = {s1, . . . sn} is a finite non-empty set of global states;

– A =
∏

i Ai is a set of joint actions. Ai is a set of individual actions available
to agent i.

– T : S × A × S → [0, 1] is a function of transition, T (sr, A, sq) = p(st+1 =
sr|A, st = sq) is the probability of resulting in a state sr at time t+ 1 when
attempting the joint action A in a state sq at time t.

– R : S×A×S → R
N is a payoff function, Ri(sr, A, sq) = ri(st+1 = sr, st = sq)

is the payoff of agent i upon transition from a state sq at time t to state sr
at time t+ 1 under joint action A.

Though this setting implies that the possible states, transition and payoff func-
tions are known by the investigator when specifying a game, it offers nevertheless
a setting where we assume they are unknown by the agents.

The control of behaviours of agent i is described by a policy denoted πi. It is
a mapping from agent i’s state history to individual behaviours. The objective
of any agent i is to maximize the infinite horizon discounted return:

Ri,t = ri(st, st+1) + γ.ri(st+1, st+2) + γ2.ri(st+2, st+3) + . . .

where γ is a discount rate.
Since the probabilities and payoffs are unknown by the agents, and sanctions

play an important role in normative multi-agent systems, we consider individual
reinforced learning agents [16] meant to pursue the best policies. At each time
step, every agent senses its environment, and, given the observed state, every
agent simultaneously selects the best behaviour on the basis of past experiences
(exploitation) and also by trying new options (exploration). No agent is informed
about the actions performed and payoffs received by the other agents.

A behaviour j of an agent i, denoted by a pair state-action (s, ai,j), is asso-
ciated with a real number Q(s, ai,j) representing the quality of this behaviour
over time. The quality Q(s, ai,j) is the discounted moving average of the payoffs
associated to the individual action ai,j in state s. Let ai,t = ai,j be an action j
selected by agent i at time t in a state st, the quality Q(st, ai,t) is updated as
follows:

Q(st, ai,t) ← Q(st, ai,t) + αi.[δ + γi.Q(st+1, ai,t+1)]

with δ = ri(st, st+1) − Q(st, ai,t), where αi is a learning rate, and γi a dis-
count factor trading off the importance of recent versus later payoffs. For each



180 R. Riveret et al.

agent, the selection of a behaviour at time t, is simulated by a Gibbs-Boltzmann
probability distribution over all the behaviours available for the agent i:

πt
i(st, ai,t) =

eQ(st,ai,t)/τi

∑
ai,j

eQ(st,ai,j)/τi

where τi is a positive real number balancing the exploitation and the exploration
of behaviours.

A stochastic game can have diverse objectives. A very popular is to find a
behavioural profile (a set of policies πi) for which no agent can benefit from
unilaterally changing its behaviour, i.e. a Nash equilibrium. Stochastic games
can have several Nash equilibria thus those maximising social measures such as
welfare or fairness shall be preferred.

The challenge addressed in this paper is twofold: firstly we investigate the
problem of prescriptive transfiguration, that is the transfiguration of agents’
policies (i.e. learning experiences and thereby behavioural patterns) into pre-
scriptions (a prescription is a conditioned obligation or prohibition with an asso-
ciated sanction), secondly we consider the problem of self-governance, that is the
on-line construction of a set of prescriptions for and by agents to govern them-
selves. As a first approach, the objective of self-governing agents is to maximise
a social return possibly defined as the sum of agents’ infinite horizon discounted
social returns:

∑

i

R∗
i,t =

∑

i

r∗i (st, st+1) + γ.r∗i (st+1, st+2) + γ2.r∗i (st+2, st+3) + . . .

where r∗i is a payoff accounting for social measures, for example those catering
for the notion of justice. In a simple case, the overall social return may only deal
with the global wealth of the system, accordingly r∗i shall be a material payoff
disregarding the sanctions of violated prescriptions.

Since the essence of systems of multiple autonomous agents is to limit cen-
tralised control, we look at the problem in which there is no agent having com-
plete information about the game to design the prescriptive system. So, we base
our mechanism on the idea that every agent shall participate on the construction
of prescriptions. Prescriptions shall be constructed for and by agents. Accord-
ingly, we use a voting system: the set of messages are the possible motions
(the explicit norm to be voted) and the votes; the results of social decisions
are the enter of force (and thus reinforcement) of these explicit norms. Remark
that though the implemented system implied a central entity implementing the
voting system for accepting agent’s motions, votes and for deliberations, other
distributed consensus mechanisms could be employed.

Example 1. We will illustrate and evaluate the prescriptive transfiguration and
the proposed self-governance of learning agents with an example inspired by
accident law (we do not aim at legal precision, c.f. [10]). Consider a population of
agents acting in two possible global states: one is safe and the other is dangerous.
In any state, every agent can act with care or with negligence. Whatever the
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state, if all the agents act with care then the next state will be safe. If an agent
acts with negligence then there is a risk of an accident and the next state is
dangerous. The probability of an accident is higher when the negligent act is
performed in a dangerous state. Hence it suffices that only one agent acts with
negligence and that an accident occurs to bring the population in a dangerous
state. The Markov decision problem graph is drawn in Figure 1 for a system
populated by a single agent. The unique Nash equilibrium takes place when all
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Fig. 1. The Markov decision process graph for a system populated by a single agent.
Each transition from an action to a state is represented by an arrow labelled with its
probability and associated payoff.

agents act with care. Reinforced learning agents may or may not learn to act with
care, in any case we will investigate a system of self-governance where agents
construct prescriptions to guide themselves.

3 Direct Self-governance

To address the problem of transfiguration and self-governance as presented in the
previous section, we endow agents agents with a mental apparatus to transform
learning experiences into prescriptions and this apparatus is coupled with a
consensus mechanism so that agents make a social choice on those prescriptions
meant to govern themselves. The pseudo-code animating the population in its
environment is given in Algorithm 1.

In the remainder of this section, we describe the step regarding transfiguration,
and the steps concerning self-governance, i.e. submissions, motion selection and
voting.

3.1 Individual Prescriptive Transfiguration

Prescriptive transfiguration is based on a mapping from a learning policy to
prescriptions. In practice any behaviour B in a state s resulting in an action
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Algorithm 1. Animation of self-governed learning agents for an episode

Initialise the system;
for each step of an episode do

for each agent do
Choose an action amongst alternatives;

end for
Compute the environment;
for each agent do

Observe the individual payoffs;
Update quality of behaviours;
Individual prescriptive transfiguration;

end for
Submissions, Motion selection and Voting;

end for

a is associated with two prescriptive counterparts that we call possible self-
prescriptions and that we represent with the following rules:

rObl (B) : s ⇒ Obl a rForb (B) : s ⇒ Forb a

where rObl (B) (rForb (B)) is an identifier of the self-obligation (self-prohibition),
s represents the conditions and Obl a (Forb a) is the consequent. The identifier
may be dropped when its omission does not raise any ambiguity.

Example 2. For every agent, there are four possible self-prescriptions:

safe ⇒ Obl care danger ⇒ Obl care
safe ⇒ Forb care danger ⇒ Forb care

safe ⇒ Obl neglect danger ⇒ Obl neglect
safe ⇒ Forbneglect danger ⇒ Forbneglect

Notice that we assume no equivalence between the obligation to act with care
and the prohibition to act with negligence. The adopted logic is thus light on
this aspect. Nevertheless a kind of quantitative equivalence shall appear when
we will introduce potentials to prescriptions (see below).

Possible self-prescriptions are not active: every agent shall propose the most
relevant amongst all them as a motion to the whole population before voting
for its enforcement. The construction of the prescriptive system occurs in three
activities:

1. Individual prescriptive transfiguration: every agent shall individually trans-
figure learning experiences into (self-)prescriptions,

2. Submissions and Motions: every agent shall submit a prescription and the
most common proposal becomes the motion,

3. Voting: every agent votes for the motion with respect to its self-prescriptive
background (the set of agent’s self-prescriptions).
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In each activity, every agent has to make a choice about (self-)prescriptions
(self-prescribe, make a proposal, vote for the motion). Since we have learning
agents, every agent will make its choice by taking into consideration the quality
or potential of the (self-)prescriptions with a flavour of reinforcement learning,
as we will see in the remainder of this section.

Once and every time an agent observes the current state and considers the set
of alternative behaviours, this agent shall individually transfigure learning ex-
periences into submissible prescriptions. This phase is decomposed in two steps:
the agent decides or not to self-prescribe, then eventually, a submissible self-
prescription is drawn.

Self-prescribe or Not. This step is meant to avoid an agent to transfigure
learning policies when alternative behaviours have similar qualities. Indeed, there
is no advantage to oblige or prohibit a behaviour with respect to the others when
they all result in similar payoffs. There are many manners to avoid the prescrip-
tion of behaviours with similar qualities. We chose to do so by using an entropic
threshold. Every agent i computes the entropy Si of the distribution of the alter-
native behaviours in a state. If Si is less than a threshold τSi then the agent will
draw a self-prescription. We propose no calculus here to set up this threshold
τS , but we can give some basic considerations. If it set to high, then the agent
i may not gain enough experiences before considering prescriptions and thus
non-optimal prescriptions may be selected in the next phase. At the opposite, if
the threshold is set to low, then the agent may have so much experiences that
prescriptions shall appear useless.

Example 3. Suppose the agent named Tom is in a safe state. Tom has two be-
havioural alternatives: either behave with care or behave with negligence. As-
sume that the careful behaviour has a quality 4 and the negligent behaviour has
quality 2, thus their respective probability is:

p(care|safe) = e4

e4 + e2
∼ 0.88 p(neglect|safe) ∼ 0.12

The entropy is STom ∼ −0.88 · ln(0.88) − 0.12 · ln(0.12) (∼ 0.37). Consider a
threshold τSTom = 0.5, then Tom will consider alternative prescriptions to elevate
one to the rank of submissible prescription (see below). If the entropy was higher
than this threshold, then Tom would consider no prescription for the safe state.

Selection of Submissible Prescriptions. If an agent decides to transfigure
learning experiences into self-prescriptions then it will draw a self-prescription
that becomes a submissible prescription. To do so, every possible self-prescription
is associated with a scalar measure that we call the submissible potential. The
higher the quality of a behaviour with respect to the quality of other behaviours,
the higher its potential to be considered as an obligation. At the opposite, the
lower the quality of a behaviour with respect to the quality of other behaviours,
the higher its potential to be considered as a prohibition. Let’s capture formally
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these ideas. Let Q̂i denote the average quality of alternative behaviours in a
state according to agent i. For a self-obligation rObl (B), its submissible potential
according to agent i, denoted δi(rObl (B)), is the difference between the quality
for behaviour B and the average quality of alternative behaviours. For a self-
prohibition, we have the opposite:

δi(rObl (B)) = Qi(B)− Q̂i δi(rForb (B)) = Q̂i −Qi(B)

Consequently δi(rObl (B)) = −δi(rForb (B)).

At every step, every agent will consider a set of self-prescriptions compatible
with the prescriptions in force regulating the states. A self-obligation is compat-
ible with the prescriptions in force if:

– there is no prohibited alternative,
– there is no obliged alternative.

A self-prohibition is compatible if:

– there is another alternative not being prohibited,
– there is no obliged alternative.

As a matter of compactness of the prescriptive system, the above items as-
sume we won’t oblige an action and explicitly prohibit one of its alternative. On
this basis, every agent i shall draw a self-prescription r amongst n compatible
self-prescriptions {r1, . . . , rn} with a probability pδi (r) using a Boltzmann-Gibbs
distribution over the submissible potentials:

pδi (r) =
eδi(r)/τ

δ
i

∑n
i=1 e

δi(ri)/τδ
i

where τδi is a parameter balancing the exploitation and exploration for submis-
sions. If this parameter tends to 0, then the agent shall pick up the prescription
with the highest submissible potential. In this case, the potential of the selected
prescription shall be positive, 0 ≤ δi(r). The choice of this distribution is meant
to pave the way for learning prescriptive agents, in particular for frameworks
where the repeal of prescriptions is possible.

Example 4. Table 1 illustrates Tom’s measure of submissible potentials and the
associated probabilities. We suppose in the remainder that Tom has selected two
submissible prescriptions: the obligation to act with care when the state is safe,
and the prohibition to act with negligence when the state is dangerous.

3.2 Submissions and Motions

Once some agents have transfigured some learning experiences into a set of sub-
missible prescriptions, these agent shall submit each a prescription. The most
common submission becomes a motion, and agents vote for its enforcement.
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Table 1. Illustration of submissible qualities δi and associated probabilities pδi to
consider the prescription as submissible. The qualities of corresponding behaviours
(QTom) are arbitrary given (its average is 3) and the parameter τ δ

Tom balancing the
exploitation and exploration for submissions is set at 0.1.

Prescription QTom δTom pδTom

safe ⇒ Obl care 4 1 0.5
safe ⇒ Forb care 4 - 1 0

safe ⇒ Oblneglect 2 -1 0
safe ⇒ Forb neglect 2 1 0.5

A submitted prescription is a submission. Every agent will draw a submission
from the set of submissible prescriptions using again a Boltzmann-Gibbs distri-
bution. Let {r1, . . . , rn} be the set of submissible prescriptions of agent i (drawn
in the previous step), the agent i will draw a submission r from this set with
a probability pDi (r) from a Gibbs-Boltzmann distribution over the potentials
δi(r) with a temperature τDi balancing the exploitation and exploration of sub-
missions amongst submissible self-prescriptions. Amongst all the submissions
within a population of agents, the most common submission becomes a motion,
and in the next phase every agent will vote or not for this motion.

Example 5. Amongst the obligation to act with care when the state is safe, and
the prohibition to act with negligence when the state is dangerous, we assume
that Tom draws the obligation to act with care. We further assume that the most
common proposals by the population is the prohibition to act with negligence
when the state is safe. Consequently, this proposal becomes a motion.

At this stage, the prescription of a motion is not associated to any sanc-
tion. There is a well-accepted principle in retributive justice according which
the level of the sanction should be scaled relative to the severity of the offend-
ing behaviour. In our framework, a simple mean to evaluate the severity of an
offending behaviour is to consider the potential δi of the proposals meant to
guide this behaviour. Thus, the higher the potential of a proposal, the higher
the severity of a violation, the higher the sanction.

So, we associate any motion m with a potential δ̂(m) which is the average of
the potentials of the proposals unifying with m. This average potential is meant
to feature the value of a scalar sanction. Accordingly, we choose in this paper
to define the sanction as δ̂(m).μ where μ is a positive real number (typically set
superior to 1).

Example 6. Suppose that 3 agents proposed the prohibition to act with negli-
gence when the state is safe (the motion), and they proposed it with the potential
2, 3 and 4. The average potential is 3 and thus the quality of the motion m is
δ̂(m) = 3. Assuming μ = 10 the associated scalar sanction associated to this
motion is 30.
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3.3 Voting

Once there is a motion about a prescription with its sanction, every agent is
invited to vote for it. The cognitive process resulting in a vote against or in
favour is not trivial to model. In a utilitarian setting, we could argue that an
agent shall vote for a globally useful motion and vote against a useless motion.
We assumed that the ‘global potential’ of a motion m is measured by its average
potential |δ̂(m)| (featuring its associated sanction - see previous section). Since

agents have to vote about the motion and the associated sanction |δ̂(m)|.μ, then
we suppose that agents are communicated δ̂(m). We further assume that an
agent shall vote in favour or against a motion by comparing the average potential
of this motion δ̂(m), with the potential of this motion according to this agent
δi(m). The lower the difference between the potential δi(m) of the motion and

the average potential δ̂(m), the higher the probability for agent i to vote in
favour of the motion m. In punishment terms, an agent shall vote in favour of
a motion if the associated sanction corresponds to a sanction “as it should be”
according to this agent. Furthermore, an agent shall vote in favour of the motion
m only if its corresponding individual potential δi(m) matches the positive or

minus sign of the average potential δ̂(m), in other words an agent will not vote in
favour of a motion with a positive average potential if this agent holds that this
motion has a negative potential. Accordingly, we capture these considerations
with a scalar measure called the individual potential of the motion. The agent
i’s individual potential of the motion m is denoted Δi(m):

Δi(m) =
|δi(m)− δ̂(m)|
τΔi .|δ̂(m)|+ ε

· 2

1 + sgn(δi(m) · δ̂(m)) + ε

where ε tends towards 0 and τΔi is a strictly positive real number. An agent i will
vote in favour of a motion m with a probability pΔi (m) using a folded sigmoid
function:

pΔi (m) =
1

1 +Δi(m)

The higher τΔi , the higher the probability for agent i to vote in favour of the
motion m. If τΔi is large then agents shall vote for any motion (the most common
proposal) at the risk of being ruled by a minority.

Example 7. Recall the most common submitted prescription by the population is
the prohibition to act with negligence when the state is safe. Hence every agent is
invited to vote about this motion. We computed that the average agents’ quality
over this motion is 3, δ̂(m) = 3. Let τΔTom = 0.1, the individual potential of Tom
for this motion is thus: ΔTom(m) ∼ |1 − 3|/0.1 · 3. Tom will vote in favour of
this motion with a probability pΔTom(m) ∼ 0.01.

The consensus can take many different forms, it can be distributed or cen-
tralised for example, but for our purposes we arbitrary considered a majority
rule. Accordingly a prescription and its enforcement voted by the majority enters
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in force. The abrogation of a prescriptions shall be possible but we reserve its
presentation in another work. Any prescription in force is enforced by applying
its associated sanction to any non-compliant agent (modifying thus the payoffs
of the underlying stochastic game).

4 Simulation Results

To evaluate and get more insights into the proposed prescriptive transfiguration
and associated self-governance, we animated the stochastic game of Example 1
with a homogeneous population of reinforced learning agents with no initial pre-
scriptions. The environment, the agents, their interactions and the prescriptions
were implemented as a development of the platform based on a probabilistic
rule-based argumentation and machine learning [11], so that the system speci-
fications were directly executed. The results are averaged over 100 runs of 250
time steps of a population of 50 agents.

The probability of careful behaviours in the safe and dangerous state with or
without self-governance is shown in the figures 2 and 3. When self-governance is
deactivated, agents learn to behave with care in both states, but the convergence
is slower in the safe state as the careful and negligent behaviours in this state
have closer expected utilities. When self-governance is activated, the enforce-
ment of careful behaviours guided the agents towards careful behaviours with
a higher speed of convergence in both states. The possible prescriptions and

Fig. 2. Average probability of careful behaviours in the safe state with self-governance
(red) and without self-governance (blue) vs. time

their empirical probability of enforcement with respect to the parameter τΔi (see
Section 3.3) are shown in Table 2. Remark that the probabilities with respect to
a state may not add up to one as few simulations did not end up with prescribed
states. The reason holds in the choice of a low value (see e.g. τΔi = 0.1) so agents
appeared quite picky in their vote. At the opposite, when this parameter was set
large, e.g. τΔi = 1, all the simulations ended with prescribed states. The benefits
of the system are thus illustrated by these simulations: an increase of global
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Fig. 3. Average probability of careful behaviours in the dangerous state with self-
governance (red) and without self-governance (blue) vs. time

Table 2. Prescriptions with their empirical probability of enforcement

τΔ
i 0.1 0.5 1 0.1 0.5 1

safe ⇒ Obl care 0.54 0.42 0.46 danger ⇒ Obl care 0.46 0.50 0.50
safe ⇒ Forb care 0 0 0 danger ⇒ Forb care 0 0 0
safe ⇒ Oblneglect 0 0.02 0.02 danger ⇒ Oblneglect 0 0 0
safe ⇒ Forb neglect 0.40 0.50 0.52 danger ⇒ Forb neglect 0.40 0.50 0.50

wealth (since careful agents shall accumulate more wealth when behaving with
care) while addressing the problem of (i) prescriptive transfiguration, that is the
transfiguration of agents’ learning experiences and thereby behavioural patterns
into prescriptions, and (ii) self-governance, that is the on-line construction of
prescriptions for and by agents to govern themselves.

Weaknesses exist as well. For instance, remark that an obligation to act with
negligence was voted in one simulation: its enforcement occurred at the time
step 41 when the probability of careful behaviour in the safe state was low
enough to let a minority of negligent agents to pass this obligation. This shows
a weakness of the present framework regarding the difficulty to appropriately
prescribe behaviours with close qualities at voting time. There is indeed a risk
of a consensus for policies enforcing undesirable behaviours when the quality of
these behaviours is close to desirable behaviours. This occurs when the expected
utilities of alternatives are close or when the dynamics is such that undesired
behaviours appear with relatively high quality for a period of time during which
a vote occurred. This later unfortunate condition emphasis the importance of
timeliness in norm construction. In conditions where accidents are sparse but
very harmful, if a vote occurs too early then there is risk that agents vote for
policies enforcing undesired behaviours. At the opposite, a late vote may imply
new explicit policies enforcing a well-established social norm; in this case policies
shall be nevertheless useful to newcomers. The good timeliness shall necessary
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occur between the ‘too early’ and the ‘could have been earlier’, but the proba-
bilistic setting implies that the vote of optimal policies cannot be ensured. This
is particularly annoying when one reckons the difficulties to get rid of policies
impeding opportunistic exploration of better behaviours.

Another weakness regards the dissonance arousing from reinforcement learn-
ing agents and norm-governed agents. On the one hand, learning agents are
supposed to pursue a maximisation of individual wealth by balancing the ex-
ploitation of promising strategies and the exploration of other options. On the
other hand, norms tend to imped opportunistic exploration. Norms stall learn-
ing, and thereby agents may get trapped into suboptimal prescriptive systems.

5 Related Work

Social norms are often studied in two extremes: in game theoretical settings of
strategic agents and in simulation of thoughtless agents like evolutionary game
theoretical investigations. In both types of approaches, the convergence to an
equilibrium is interpreted as the emergence of a social norm: norms are not
explicitly represented and agents do not have a mental representation of them.

On the contrary, formal logics (typically deontic logics and argumentation,
see e.g. [13]) are commonly investigated to represent and reason upon explicit
norms, leading eventually to architecture for cognitive agents (see e.g. [7,2]).
These architectures are usually based on a BDI template and without learning
abilities, while our agents are logic-based and reinforced learners but they have
no explicit desires or intentional features (their implicit desire is to maximize
the accumulation of payoffs). BDI frameworks usually assume that prescriptions
are built-in whereas our agents have to ability to learn best behaviours and
thereby generate new prescriptions (though prescriptions could be also built-
in). The limitation of BDI architecture with regard to norm recognition has
been addressed by Conte at al. in [12] where BDI agents recognise norms by
observing other agents, c.f. [3]. Our agents transfigure individual experiences into
prescriptions without the need to observe other agents, and the utility of these
individual experiences are the results of the (inter)actions with other agents.

Multi-agent learning is an active field of research where agents are meant
to coordinate by learning joint actions, typically using individual reinforcement
learning or its extensions to collective tasks. Partalas et al. proposed in [9] to
combine reinforcement learning with voting. Their agents learn predefined strate-
gies (joint actions) while our agents learn individual actions. When their agents
are in a strategic state they vote for a common strategy: there is no transfigu-
ration and no construction of prescriptions.

With regard to norm-synthesis, the problem was pioneered by the work of
Shoham and Tennenholtz [15]. Fitoussi and Tennenholtz [6], for example, de-
scribed the synthesis of ‘minimal’ and ‘simple’ prohibitions. The rationale for
minimality is that a minimal norm provides the agents more freedom in choos-
ing their behaviour (that is, it prohibits fewer actions) while ensuring that they
conform to the system specification. The rationale for simplicity is that a simple
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norm relies less on the agents capabilities rather than a non-simple one. Agotnes
and Wooldridge [1] included the implementation costs of norms and multiple de-
sign goals with different priorities. Christelis and Rovatsos [4] proposed a first-
order planning approach to better cope with the size of the state-space. The
approaches mentioned above are typically applied off-line. However, off-line de-
sign is not appropriate for coping with open systems, that are inherently dynamic
and the state space may change over time. To address this issue, Morales et al
[8] proposed a mechanism called IRON for the on-line synthesis of norms. IRON
employs designated agents, often called ‘institutional agents’ [5], representing a
norm-governed system/institution, and observing the interactions of the mem-
bers of the system in order to synthesise conflict-free norms without lapsing into
over-regulation. Our work is fundamentally different: we target multi-agent sys-
tems without designated agents receiving updates about the system interactions
and the authority to enforce norms.

6 Conclusion and Future Directions

We tackled the challenge regarding prescriptive transfiguration and self-
governance. We proposed a simple cognitive apparatus with which learning
agents can transfigure learning policies (and thus behavioural patterns) into
prescriptions. This apparatus was coupled to a consensus system so that agents
can submit prescriptions for a vote and vote eventually for their enforcement.

The simulations of a self-governed population of learning agents suggested the
benefits of our approach with regard to the convergence to desirable behaviours.
However, simulations with large stochastic games have to confirm these benefits.
Timeliness in run-time construction with learning agent appeared of the most
importance. A vote may indeed occur when there is a risk agents consider in-
adequate prescriptions, or when useless prescriptions shall enforce behaviours
already adopted by agents. Nevertheless, these useless prescriptions shall ease
the decision-making and coordination of newcomers.

In practice, our proposal illustrates an alternative of off-line construction of
prescriptive systems: a domain-independent construction at run-time of explicit
primary regulative prescriptions from scratch, for and by learning agents, with-
out any agent having a complete information on the system.

Future directions can be multiple. They include learning of joint actions and
the transfiguration of these collective into complex prescriptive systems, dis-
tributed consensus systems (possibly in network) to avoid a central body col-
lecting the votes. An important point regards learning of norms modifications
so that agents can escape from unfortunate prescriptive systems. But how could
agents change prescriptions without having the possibility to explore and without
jeopardizing the coherence and the temporal stability of the overall system? A
solution holds in agents simulating the system to explore “without moving” but
it implies computational resources a priori incompatible with bounded agents.
Maverick agents on whose payoffs santions have a less significant effect may be
an interesting line of research.
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Eventually, we hope the reader found inspiration in a manner to bridge the gap
between social norms and prescriptions, and its use for run-time constructions
of prescriptive systems in a population of learning agents and thereby for self-
organisation and in particular self-governance.

Acknowledgements. The authors would like to thank the anonymous review-
ers. Part of this work is supported by the Marie Curie Intra-European Fellowship
PIEF-GA-2012-331472.

References
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