
Efficient Aggregate Farthest Neighbour Query

Processing on Road Networks

Haozhou Wang, Kai Zheng, Han Su, Jiping Wang, Shazia Sadiq,
and Xiaofang Zhou

School of ITEE, The University of Queensland,
St. Lucia, Brisbane, QLD 4072, Australia

{h.wang16,kevinz,h.su1,j.wnag28,shazia,zxf}@uq.edu.au

Abstract. This paper addresses the problem of searching the k aggre-
gate farthest neighbours (AkFN query in short) on road networks. Given
a query point set, AkFN is aimed at finding the top-k points from a
dataset with the largest aggregate network distance. The challenge of
the AkFN query on the road network is how to reduce the number of
network distance evaluation which is an expensive operation. In our work,
we propose a three-phase solution, including clustering points in dataset,
network distance bound pre-computing and searching. By organizing the
objects into compact clusters and pre-calculating the network distance
bound from clusters to a set of reference points, we can effectively prune
a large fraction of clusters without probing each individual point inside.
Finally, we demonstrate the efficiency of our proposed approaches by
extensive experiments on a real Point- of-Interest (POI) dataset.

1 Introduction

As one of the most important types of spatial query, efficient nearest neighbour
query processing has been investigated extensively[1,2,3]. This type of query
to find k nearest neighbors (kNN) form a given point becomes a fundamental
operation in spatial databases, leading to a number of variations. As much as the
interest in finding kNN objects, there are a large number of real-life applications
which are interested in finding farthest neighbours (FN) [4]. Another important
type of kNN variations is the so-called aggregate nearest neighbour (ANN) query
[5,2]. The difference between ANN query and NN query is that an ANN query
takes multiple query points into account and returns a point from the dataset
that minimizes the aggregated distance from the point to all given query points
using a user-specified aggregate function (e.g. max, sum). An example of ANN
query with sum function is for a number of people to find a meeting place that
can minimize their total traveling distance.

In an analogous way, aggregate farthest neighbor (AFN) query can also be
defined as an extension to the FN query: for a given set of query points Q and
a user-specified aggregate function, find a point p from a data set P such that
the aggregate distance from p to all the points in Q is the largest. AkFN can
be defined as a general case of AFN to find k such points which have larger

H. Wang and M.A. Sharaf (Eds.): ADC 2014, LNCS 8506, pp. 13–25, 2014.
c© Springer International Publishing Switzerland 2014

14 H. Wang et al.

aggregate distances than any other points in P . To illustrate its usefulness,
consider a business franchise planning to open a new store. In order to reduce
the mutual influences between the new and existing branches to maximise the
overall profit, it is desirable for the location of the new store to be far away from
all existing stores. By including the locations of all existing stores in Q, all the
available locations from a real estate database as P and max as the aggregate
function, an AkFN query can find the best candidate locations to choose from.

Despite of its importance for many applications, AkFN query has not been
well studied. Just like ANN query processing is a non-trivial extension to NN
query processing, AkFN query processing is quite different form kFN query pro-
cessing and demands new processing strategies. To the best of our knowledge,
there exists only one piece of work on AkFN query processing [6]; it, however,
considers a simpler case to use Euclidean distance (i.e., in a free space). In this
paper, we will investigate AkFN in the context of road networks. The motivation
for us to consider road networks is that, in most real applications the movement
of people and vehicles is constrained by a underlying road network. Albeit more
complex in distance calculation, it is more reasonable and accurate to use net-
work distances rather than Euclidean distances. This is because, in reality, road
network contains some properties such as bridges and one way street, which
makes the distance shortest path between two points in road network is longer
than its Euclidean distance. Therefore, the incorporation of road networks can
raise serious efficiency issues for processing AkFN query. The reasons can be
two-fold. First, there is still no effective way to index a large number of objects
in a road network. Classical hierarchical spatial access methods (e.g., R-tree [7]
based) cannot work since they are designed for Euclidean space. Second, network
distance evaluation is much more expensive than Euclidean distance evaluation
since it involves online shortest path computation.

Our paper aims to propose efficient solutions for answering the AkFN query
in road networks. More specifically, we firstly organize the objects in the whole
dataset into clusters by apply a network-based hierarchical clustering method.
Then we define a set of reference points across the entire space and pre-compute
the maximum and minimum network distances between each pair of cluster and
reference point. Lastly, we design an efficient search algorithm to spot the most
promising clusters that may contain the results and prune the rest of them
by leveraging the pre-computed information. It is worth noting that, since the
clusters are hierarchical, we can achieve good trade-off between the number of
clusters and pruning effect. In summary, we make the following major contri-
butions in this paper: 1) We are the first to investigate the aggregate farthest
neighbour query in the context of road networks. 2) We propose efficient solu-
tions for processing the AkFN query by pre-computing and pruning at cluster
level. 3) We conduct extensive experiments based on real POI dataset to verify
the efficiency of our proposals.

The rest of this paper is organized as follows. In Section 2 we will intro-
duce necessary preliminaries and formally define the AkFN query. We detail
our proposed query processing algorithms in Section 3. Section 4 presents the

Efficient Aggregate Farthest Neighbour Query Processing on Road Networks 15

experimental results for validating the efficiency of our algorithms, followed by
a brief literature review on related work in Section 5. We conclude the paper in
Section 6.

2 Problem Definition

In this section we will introduce all necessary preliminary concepts and formu-
late the AkFN query. We summarize the major symbols and notations used
throughout the paper in Table 1 for convenience of reference.

Table 1. Table of Notations

Notation Definition

(vi, vj) A road segment with two road segment nodes vi and vj
pi A point in the points dataset P

qi A query point in the query points set Q

dn(pi, pj) The network distance between pi and pj
dagg(pi, Q) The aggregate distance from a point pi to Q

ri A reference point in the reference points set R

dr(pi, qi) The shortest path distance from pi to qi via qi’s reference point

Ci A sub-cluster in hierarchical cluster structure C

dc(Ci, ri) The maximum network distance from Ci to ri
dr(Ci, qi) The network distance from Ci to qi via qi’s reference point

dragg(pi, Q) The aggregate distance from pi to Q via relate reference points

dragg(Ci, Q) The aggregate distance from Ci to Q via relate reference points

Definition 1 (Road Network and Network Distance). A road network G
is modeled as a weighted indirect graph G = (V,E) , where V is a set of road
intersection , and E is a set of road segment. The network distance dn between
pa and pb, where pa and pb are two points on G, is calculated as the sum of the
distance of the road segments along the shortest path between pa and pb.

Notice that we use the term “network distance” and “shortest path distance”
interchangeably.

Definition 2 (Aggregate Network Distance). Given a point p, a query
point set Q and road network G, the aggregate network distance between p and Q
is dagg(p,Q) = fq∈Q dn(p, q), where f is a pre-defined aggregate function (e.g.,
sum, mean, min, max, etc).

In this paper we only consider two types of aggregate functions, namely sum
and min, as they are most applicable in a farthest neighbor query. Now we are
in a position to formally define the query.

Definition 3 (AkFN query). Given a dataset P and a query point set Q, the
aggregate k farthest neighbor (AkFN) query retrieves a set S of k points from P
that have the largest aggregate network distance with Q, i.e.,

dagg(p,Q) ≥ dagg(p
′, Q), ∀p ∈ S, ∀p′ ∈ P − S

16 H. Wang et al.

Consider Figure 1 as an example, where q1, q2 is the query set Q and p1, p2...p8
is the candidate dataset P , that we want to find a point from P , such that its
minimum distance to Q is maximized. This is a special case of the AkFN query
with k = 1 and min aggregate function. By enumerating the locations in P and
simple calculation, it is easy to get that p7 is the best location suiting for the
request.

3 Query Processing Algorithm

The most straightforward approach to answer an AkFN query is to exhaustively
search all the points in dataset, calculate the aggregate distances from each point
to the query point set, and finally obtain the top k results. However, this method,
called exhaustive search algorithm, has serious efficiency issues especially on road
network, since the exhaustively searchalgorithmneed to searchthewholedatasetP
whileP is usually very large (e.g.,more than 100kpoints) in practice.Consequently,
evaluating the aggregate network distance between all points in the dataset and the
query “on-the-fly” can be extremely time consuming.

15

4
1

1 2 13 1 1

5

3
113

v1

v4

v5

v3

v2

v6p4 p5

p3
q1

p1 p2

p6q2

p8p7

Fig. 1. Example of road network

To improve the efficiency of query processing, we propose an advanced ap-
proach with two carefully designed search algorithms, which leverage the power
of hierarchical cluster and pre-computed network distance bound of each cluster
to reference points to reduce the search space extensively. The query processing
consist of three steps: clustering the points of the dataset, pre-computing the
network distance bound and searching. The first step clusters the points of the
dataset in hierarchical structure by applying the Linkage Hierarchical Clustering
algorithm [8], a network-distance-based clustering method. In the second step,
we uniformly define a set of reference points, which are mapped to road segment
nodes, and pre-compute the network distance bounds between each pair of the
clusters, generated in the first step, and reference points. This information can
be saved for further use since the numbers of both clusters and reference points
are relatively small comparing to the original dataset. The third step is searching
the hierarchical structure with two different ways by search algorithms. In the
rest of this section, we will describe each step in detail.

Efficient Aggregate Farthest Neighbour Query Processing on Road Networks 17

C9 C10

C11

C12

C13

C14

C15

C1 C2 C3 C4 C5 C6 C8C7

(a) Without point merging

C7

C1 C2 C3 C4

C5C6

(b) With point merging

Fig. 2. Example of hierarchical cluster

3.1 Linkage Hierarchical Clustering

Using Euclidean-distance-based index (i.e. R-tree [7]) to prune unnecessary points
is unsafe for AkFN query, since two points are close on Euclidean space do not
mean they are close on road network. For example, two points are located in
each side of a river and a bridge is located far away from these two points, ab-
solutely, their network distance is much longer than their Euclidean distance.
Obviously, in order to improve the performance of AkFN, a road-network-based
point organizing structure is needed.

Thus, we adopt the Linkage Hierarchical Clustering algorithm [8], a well-
known road-network-based clustering method, in our search approaches. The
motivation for us to use hierarchical clustering is the trade-off between the num-
ber of clusters and the searching performance. Though a smaller number of
bigger clusters can reduce the overhead cost incurred by storing and processing
these clusters, the pruning effect will also be harmed since the distance bound
is too loose to be useful. By organizing the objects into clusters with different
levels and sizes, we can control the level from which the search starts and thus
achieve a reasonable balance between the cluster number and pruning effect.
Fig. 1 gives an example of a point dataset P = p1, p2, · · · , p8 on road network
and its hierarchical cluster structure is shown in Fig. 2(a), which each cluster in
the bottom level is the point itself in P .

However, consider each point of dataset P as a cluster at initiating time of the
above algorithm can result in too many bottom level clusters when the size of P
is big, which may cause memory overflow in pre-computing step and inefficient
query processing in searching step. In order to reduce memory consumption and
speed up the query processing, we merge points of P before applying clustering,
if the road network distances between such points are less than a threshold ε.
Fig. 2(b) shows an example of the hierarchical cluster structure with points
merging for previous example (Fig. 1). With ε = 3, p1, p2 are merged as C3; p3
cannot be merged with other points and considered as C2. Meanwhile, p4, p5 and
p6, p7, p8 are merged as C3 and C4 respectively.

18 H. Wang et al.

3.2 Pre-computation

In the searching step, we need to calculate distance of shortest road network
path between query points and clusters many times. However, the shortest path
searching is time consuming and could not support the“on-the-fly” query pro-
cessing. Hence we deploy a reference point based pre-computing approach to
boost the query processing to the real-time level. Inspired by the reference point
generating method of [9], we split whole map area into small grids, and then for
each grid cell gc we select the road segment node v, where v is in gc and v is the
nearest road segment node to the center of gc, as a reference point of the road
network. If there is no any road segment node in a grid cell, then no reference
point will be selected in that grid cell.

Thepre-computing is to calculate themaximumshortestpathdistancedc(C, r) =
maxp∈C{dn(p, r)} between eachpair of clusterC of all the hierarchical clusters and
point r of reference points setR. Therefore, the space cost of building reference list
of pre-computed distance is O(mn), where n is the number of clusters in the bot-
tom level of the hierarchical structure, which ismuch less the total number of points
in the road network; andm is the number of reference points. Meanwhile, the dis-
tance between reference points and upper level clusters can be calculated directly
by previous information.

When a query point q is given, we find its nearest reference point r∗, that
is r∗ = argminr∈R{dn(q, r)}. Then the dr(C, q) = dc(C, r∗) + dn(q, r

∗) can
be the upper bound of the shortest path distance dn(C, q) according to the
triangle inequality. The upper bound can efficiently filter out some obviously
impossible points during farthest neighbor search, which will demonstrate in the
next section. Meanwhile, it is worthy to note that the more reference points
mapped to road network, the more tight upper bound we can have, since the
query point q could be much closer to reference point r and leads that dr(C, q)
is closer to dn(C, q). On the other hand, a lot of reference points means a heavy
memory usage and may excess the total memory usage due to all reference points
are loaded into memory during query processing. Hence, we limit the number
of reference points, which suit for system memory or user request, to map in
the road network, and we conduct a set of experiments to show the effect about
number of reference points.

3.3 Search Algorithm

We propose two advanced search algorithms, namely Flat Search (FS) and Hi-
erarchical Search (HS), which make use of the hierarchical clusters and pre-
computed network distance bounds to improve the searching efficiency. FS only
searches the bottom hierarchy of these clusters for the result; HS searches the
whole hierarchy clusters.

Flat Search. We propose the FS algorithm by using the bottom hierarchical
clusters to reduce the search space on road network. When given a query points

Efficient Aggregate Farthest Neighbour Query Processing on Road Networks 19

set Q, we can quickly find the nearest reference point ri of qi (qi ∈ Q) and the
shortest path distance between qi and ri.

Firstly, FS initializes an empty list A with a fixed length |k|, where k is the
number of top answers required by user. The elements of A are the result points
so far, and sorted by aggregate distance dagg(pc, Q). Meanwhile, we assign a
parameter kth so far which is used to record the smallest dagg(pc, Q)in A to
0 . The value of kth so far can be a lower bound of the farthest neighbour
query, that any point p′ with the aggregate distance dagg(pc, Q) < kth so far
will be filtered out. Then, the FS starts at a random cluster Ci in bottom layer
of hierarchical cluster, it calculates the aggregate distance from Ci to Q (denote
as dragg(Ci, Q)). To calculate dragg(Ci, Q), we firstly find the ri, that ri is the
nearest reference point of qi (qi ∈ Q), and the shortest path distance dn(qi, ri)
between qi and ri. Since the shortest path distances dc(Ci, ri) has already been
pre-computed, FS computes the drCi,qi , which equals dc(Ci, ri) + dn(qi, ri). If
dragg(Ci, Q) is larger than kth so far, it means that Ci may have a point which
can be a result of the query. Otherwise, this cluster Ci should be pruned and FS
selects the next cluster. Then, FS visits every point pi in Ci, and computes the
exact aggregate distance dagg(pi, Q). If there is a dagg(pi, Q) that is bigger than
kth so far, FS insert this point in to A; and update kth so far. FS searches
all of clusters in the bottom level of hierarchical cluster iteratively, and stops
when all the bottom hierarchical clusters have been selected.

Hierarchical Search (HS). Flat search algorithm starts at a random cluster,
whichmeans itmayhave to scanall of thepoints in theworst case. Inaddition, calcu-
lating aggregatedistances betweenof all clusters andquery set are time-consuming,
more important is that I/O cost of calculation aggregate distances for clusters and
the query set Q is non-trivial and needs to be minimized. Hence, we improved our
FS algorithm to implement on hierarchical clusters, which is called Hierarchical
Search algorithm to minimize calculation cost of aggregate distances.

The key idea of HS is that HS maintains a priority queue to obtain the
candidate set and adapts the best-first search. The elements of PQ are clusters
Ci or points pi and sorted by their dragg(Ci, Q) or dragg(pi, Q) in descending
order. In the first step,HS initializes a priority queue PQ. Then HS extracts the
top layer cluster of hierarchical cluster; for each cluster Ci, HS calculates their
dragg(Ci, Q) and pushes them into priority queue PQ. During second phase,
HS pops elements from PQ iteratively. For each element, HS compares its
dragg(Ci, Q) or dragg(pi, Q) with kth so far, if the dragg(Ci, Q) or dragg(pi, Q) is
larger than kth so far, this element is selected as a candidate element, therefore
HS goes to next step. In this step, if this candidate element is a cluster that
contains only one point (i.e., size of cluster is 1) or is a point, and then HS
inspects this point pi in this candidate cluster to calculate aggregate distance
dagg(pi, Q) . If not, HS extracts this cluster to get its child clusters/points set,
for each cluster Ci or point pi in child clusters set, HS calculates dragg(Ci, Q)
or dragg(pi, Q) and push these elements to PQ with their aggregate distances as
new candidate elements. After this, HS returns to the beginning of the second
loop and continue popping the elements until |A| = k.

20 H. Wang et al.

Given an example, at beginning, HS calculates cluster aggregate distance
for top level clusters C6, C5 and push them to PQ, and elements in PQ are
{(C5, 8), (C6, 4)}. Then first element (C5, 8) is popped, since kth so far is smaller
than C6’s aggregate distance and the number of points in C5 are larger than one.
Then,HS gets C5’s children clusters, which is C3 and C4, and calculates their ag-
gregate distance dragg(C3, Q) and dragg(C4, Q) , push them into PQ. After that,
the elements in PQ are {(C4, 8), (C6, 4), (C3, 3)}. Similar with previous step, C4

is popped, and elements in PQ are {(p7, 9), (p8, 8), (p6, 6), (C6, 4), (C3, 3)}. Con-
tinually, point p7 is popped, however p7 is already a point, hence we calculate
aggregate distance between p7 and Q, and we get dmin(p7, Q) = 8. After that,
kth so far is updated to 8 with p7. Return to previous step, p8 is popped from
PQ. The kth so far is not less than drmin(p8, Q) and |A| = k, therefore, HS is
stopped and report point p7 as the result of that query.

4 Experimental Evaluation

In this section, we conduct extensive empirical evaluation based on real world POI
dataset to verify the superior of our proposed solution. All the algorithms are im-
plemented in Java and running on aPCwith Intel 2.13GHzCPUand 4GBmemory.

4.1 Experimental Setup

Road Network. The road network dataset used in our evaluation is Beijing road
network, which contains 106,579 road segment nodes and 141,380 road segments.

Point Set. We use Beijing POI dataset in our experiment as point set. This
dataset contains more than 500K POIs. We align each POI onto the road network
to get its network location.

4.2 Evaluation Approach

We proposes three search algorithms, i.e, exhaustive search search, FS and hi-
erarchical searchHS. The performance, i.e., IO cost and execution time, of these
search algorithms is affected by several parameters, such as number of reference
points (denoted as n), number of query points (denoted as m) and number of
requested results (denoted as k). Table 2 lists the default value and range of all
these issues we used throughout the experiments. It is noteworthy that we adopt
the variable-control method in the experiments that in each experiment set only
one issue is adjustable and the rest issues are fixed to their default values.

Table 2. Parameter Settings

Parameter Default value Range

Number of grid cells 300 25, 50, 100, 200, 300, 400

Number of query points 9 5, 7, 9, 11, 13, 15

Number of requested results 10 5, 10, 15, 20, 25, 30

Efficient Aggregate Farthest Neighbour Query Processing on Road Networks 21

 10

 100

 1000

 10000

 100000

 1e+006

 50 100 150 200 250 300 350 400

nu
m

be
r

of
 IO

s
(lo

g
sc

al
e)

n

MIN, IO cost

Exhaustive search
FS
HS

 10

 100

 1000

 10000

 50 100 150 200 250 300 350 400

qu
er

y
tim

e(
lo

g
sc

al
e)

n

MIN, query time

Exhaustive search
FS
HS

 10

 100

 1000

 10000

 100000

 1e+006

 50 100 150 200 250 300 350 400

nu
m

be
r

of
 IO

s
(lo

g
sc

al
e)

n

SUM, IO cost

Exhaustive search
FS
HS

 1

 10

 100

 1000

 10000

 50 100 150 200 250 300 350 400
qu

er
y

tim
e(

lo
g

sc
al

e)
n

SUM, query time

Exhaustive search
FS
HS

Fig. 3. Effect of number of grid cells

4.3 Evaluation Results

Effect of the Number of Grid Cells In this set of experiments, we evaluate
how the performance of the algorithm is affected by number of grid cells. As
shown in Figure 3, for each algorithm, the performance to solve min and sum
aggregate function is similar. For both FS and HS algorithm, the IO cost and
time cost decrease rapidly with number of grid cells growing from 25 to 200.
The reason is that the more grid cells (i.e. more reference points) are deployed
on the road network, the more closely query point q is to reference point r,
which leads that dr(p, q) is closer to dn(p, q). The closer dr(p, q) to dn(p, q), in
other words, is a tighter upper bound. Thus the performance of algorithms are
improved very much. On the other hand, after deploying more than 200 grid
cells, the increasing rate of performance becomes smoothly. This is because once
the number of grid cells have reached a certain amount, the influence of adding
more reference points is weak.

The last algorithm HS dominates FS under all value of n in both IO cost and
query time aspects. This is because HS uses both hierarchical cluster structure
and priority queue to prune unnecessary clusters during searching while FS not.
Thus, the IO cost of HS is very low since it only need to search few clusters to
find the answer of AkFN query, which is verified in this experiment. Meanwhile,
this experiment also illustrates that using priority queue to sort the maximum
aggregate distances can reduce query time obviously.

Effect of the Number of Query Points. Fig 4 demonstrates how the number
of query points affects the effect of these three searching algorithms. We compare
the three algorithms by tuning the number of query points from 5 to 15 with
the step of 2. The IO cost of exhaustive search algorithm is same with previous
experiment, which is still kept at a high level. The query time of exhaustive search
algorithm increases rapidly due to calculating the aggregate distance becomes

22 H. Wang et al.

 10

 100

 1000

 10000

 100000

 1e+006

 5 7 9 11 13 15

nu
m

be
r

of
 IO

s
(lo

g
sc

al
e)

m

MIN, IO cost

Exhaustive search
FS
HS

 1

 10

 100

 1000

 10000

 5 7 9 11 13 15

qu
er

y
tim

e(
lo

g
sc

al
e)

m

MIN, query time

Exhaustive search
FS
HS

 10

 100

 1000

 10000

 100000

 1e+006

 5 7 9 11 13 15

nu
m

be
r

of
 IO

s
(lo

g
sc

al
e)

m

SUM, IO cost

Exhaustive search
FS
HS

 1

 10

 100

 1000

 10000

 5 7 9 11 13 15
qu

er
y

tim
e(

lo
g

sc
al

e)
m

SUM, query time

Exhaustive search
FS
HS

Fig. 4. Effect of number of query points

more complex when the number of query points is bigger. The FS algorithm is
stable for sum aggregate function, but grows fast on min aggregate function.
This is because the min aggregate function needs to find the maximum minimum
aggregate distance while the sum aggregate function not, which means the bound
of min aggregate function is looser than the sum aggregate function. HS shows
the best performance for both the min and the sum aggregate functions in both
IO cost and query time aspects. The reason is that the clusters in priority queue
are sorted by maximum aggregate distance, thus most of unnecessary hierarchical
clusters are pruned before HS searching in it. Hence no matter how many query
points are given, it will not affect the efficiency of HS very much.

Effect of the Number of Requested Results. In this set of experiments,
we evaluate how the performance of the algorithm is affected by number of
requested results. The result is shown in Fig 5. We compare the IO cost and
the query time of these three algorithms by tuning the number of requested
results from 5 to 30 with the step of 5. The IO cost and query time of exhaustive
search algorithm is similar with last two experiments, since it need to search
the whole dataset. The performance of FS is stable except IO cost in min
aggregate function, the reason is that the min aggregate function needs to find
the maximum minimum aggregate distance. The IO cost of HS for both min
and sum aggregate functions increases quickly, since HS needs to search more
clusters in hierarchical structure to get top-k results, but its IO cost increases
stable with the growing of the number of the requested points. However, the
query time of HS is very stable with different k value since the HS maintains
the hierarchical cluster structure and the priority queue. Hence HS can quickly
get top k records from that priority queue during searching the hierarchical
cluster. Finally, HS still outperforms other two algorithms in this experiment
set.

Efficient Aggregate Farthest Neighbour Query Processing on Road Networks 23

 1

 10

 100

 1000

 10000

 100000

 1e+006

 5 10 15 20 25 30

nu
m

be
r

of
 IO

s
(lo

g
sc

al
e)

k

MIN, IO cost

Exhaustive search
FS
HS

 1

 10

 100

 1000

 10000

 5 10 15 20 25 30

qu
er

y
tim

e(
lo

g
sc

al
e)

k

MIN, query time

Exhaustive search
FS
HS

 1

 10

 100

 1000

 10000

 100000

 1e+006

 5 10 15 20 25 30

nu
m

be
r

of
 IO

s
(lo

g
sc

al
e)

k

SUM, IO cost

Exhaustive search
FS
HS

 1

 10

 100

 1000

 10000

 5 10 15 20 25 30
qu

er
y

tim
e(

lo
g

sc
al

e)
k

SUM, query time

Exhaustive search
FS
HS

Fig. 5. Effect of number of requested results

5 Related Work

The problem investigated in our paper is combined with aggregate function
and farthest neighbor search. We review the previous work related to these two
categories in this section.

5.1 Aggregate Nearest Neighbor (ANN) Query

Papadias et al. [3] studied earlier version of ANN query, which is called GNN
query. Three algorithms, which are called MQM, SPM and MBM, are proposed
in their work to solve GNN query. Papadias et al. extended their work [5] and
applied these algorithms to ANN query for solving min and max aggregate
functions. There are several different types of GNN query have been recently
studied in [10]. Yiu et al. studied the ANN query in road networks [2] from
Papadias et al [1]’s work. They proposed three algorithms, which are called
IER, TA and CE, to process sum and min aggregate functions with all data
objects are index by R-tree.

All the above work focus on NN query, which are not applicable to our ag-
gregate farthest neighbor query settings, where our query target to the farthest
neighbor on the road network.

5.2 Farthest Neighbour (FN) Query

Yao et al. defined reverse farthest neighbour (RFN) query [11] problem. They
proposed furthest Voronoi diagram based algorithms, which are called progres-
sive farthest cell (PFC) algorithm and convex hull farthest cell (CHFC) algo-
rithm to process RFN query with R-tree indexing. Moreover Tran et al. [12]

24 H. Wang et al.

studied top-k RFN query by using Network Voronoi Diagram (NVD),However,
these works only focus on the reverse farthest neighbour problem, where are not
applicable to solve AkFN query.

Gao et al. study aggregate farthest neighbour query [6] in Euclidean space,
and they the minimum bounding (MB) algorithm and best first (BF) algorithm,
which all use R-tree [7] based indexing method. The main idea of their algorithms
is using the maximum distance between query set and R-tree node as an upper
bound to prune unnecessary nodes. However, it is different with our work, since
our AkFN query is processed on the road network.

6 Conclusion

In this work, we investigate the AkFN problem on road network with min and
sum aggregate functions. We have proposed two algorithms, flat search and hi-
erarchical search, to associate with hierarchical clustering and pre-computing
methods. Finally, the experimental results show that the flat search algorithm
and the hierarchical search algorithm boost the searching efficiency compared
with naive algorithm.

Acknowledgement. This research is partially supported by Natural Science
Foundation of China (Grant No.61232006), and the Australian Research Council
(Grants No. DP110103423, No. DP120102829 and No. DE140100215).

References

1. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing in spatial network
databases. In: PVLDB. VLD 2003, pp. 802–813 (2003)

2. Yiu, M., Mamoulis, N., Papadias, D.: Aggregate nearest neighbor queries in road
networks. TKDE 17(6), 820–833 (2005)

3. Papadias, D., Shen, Q., Tao, Y., Mouratidis, K.: Group nearest neighbor queries.
In: ICDE, pp. 301–312 (2004)

4. Cheong, O., Su Shin, C., Vigneron, A.: Computing farthest neighbors on a convex
polytope. Theoretical Computer Science 296(1), 47–58 (2003)

5. Papadias, D., Tao, Y., Mouratidis, K., Hui, C.K.: Aggregate nearest neighbor
queries in spatial databases. ACM Trans. Database Syst. 30(2), 529–576 (2005)

6. Gao, Y., Shou, L., Chen, K., Chen, G.: Aggregate farthest-neighbor queries over
spatial data. In: Yu, J.X., Kim, M.H., Unland, R. (eds.) DASFAA 2011, Part II.
LNCS, vol. 6588, pp. 149–163. Springer, Heidelberg (2011)

7. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: SIG-
MOD 1984, pp. 47–57 (1984)

8. Yiu, M.L., Mamoulis, N.: Clustering objects on a spatial network. In: SIGMOD
2004, pp. 443–454 (2004)

9. Jagadish, H.V., Ooi, B.C., Tan, K.L., Yu, C., Zhang, R.: idistance: An adaptive
b+-tree based indexing method for nearest neighbor search. ACM Trans. Database
Syst. 30(2), 364–397 (2005)

Efficient Aggregate Farthest Neighbour Query Processing on Road Networks 25

10. Xu, H., Li, Z., Lu, Y., Deng, K., Zhou, X.: Group visible nearest neighbor queries
in spatial databases. In: Chen, L., Tang, C., Yang, J., Gao, Y. (eds.) WAIM 2010.
LNCS, vol. 6184, pp. 333–344. Springer, Heidelberg (2010)

11. Yao, B., Li, F., Kumar, P.: Reverse furthest neighbors in spatial databases. In:
ICDE, pp. 664–675 (2009)

12. Tran, Q.T., Taniar, D., Safar, M.: Reverse k nearest neighbor and reverse farthest
neighbor search on spatial networks. In: Hameurlain, A., Küng, J., Wagner, R.
(eds.) Trans. on Large-Scale Data- & Knowl.-Cent. Syst. I. LNCS, vol. 5740, pp.
353–372. Springer, Heidelberg (2009)

	Efficient Aggregate Farthest Neighbour Query
Processing on Road Networks

	1 Introduction
	2 Problem Definition
	3 Query Processing Algorithm
	3.1 Linkage Hierarchical Clustering
	3.2 Pre-computation
	3.3 Search Algorithm

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Evaluation Approach
	4.3 Evaluation Results

	5 Related Work
	5.1 Aggregate Nearest Neighbor (ANN) Query
	5.2 Farthest Neighbour (FN) Query

	6 Conclusion
	References

