
Hua Wang
Mohamed A. Sharaf (Eds.)

 123

LN
CS

 8
50

6

25th Australasian Database Conference, ADC 2014
Brisbane, QLD, Australia, July 14–16, 2014
Proceedings

Databases Theory
and Applications

Lecture Notes in Computer Science 8506
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Hua Wang Mohamed A. Sharaf (Eds.)

Databases Theory
and Applications
25thAustralasian Database Conference,ADC 2014
Brisbane, QLD, Australia, July 14-16, 2014
Proceedings

13

Volume Editors

Hua Wang
Victoria University
College of Engineering and Science
Centre for Applied Informatics (CAI)
Ballarat Road
Footscray, VIC 8001, Australia
E-mail: hua.wang@vu.edu.au

Mohamed A. Sharaf
The University of Queensland
Faculty of Engineering, Architecture and Information Technology
School of Information Technology and Electrical Engineering
Brisbane St. Lucia, QLD 4072, Australia
E-mail: m.sharaf@uq.edu.au

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-08607-1 e-ISBN 978-3-319-08608-8
DOI 10.1007/978-3-319-08608-8
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014941783

LNCS Sublibrary: SL 3 – Information Systems and Application,
incl. Internet/Web and HCI

© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

It is our pleasure to present to you the proceedings of the 25th Australasian
Database Conference (ADC2014), which took place in Brisbane, Australia.
ADC2014 is an annual forum for researchers and practitioners from Australia,
New Zealand and around the world to share the latest research progress and
novel applications of database systems, data driven applications, and data ana-
lytics. The mission of ADC is to exchange novel research solutions to problems of
today’s information society that fulfill the needs of heterogeneous applications
and environments, as well as to identify new issues and directions for future
research and development work. ADC2014 seeks papers from academia and in-
dustry presenting research on all practical and theoretical aspects of advanced
database theory and applications, as well as case studies and implementation
experiences. All topics related to databases are of interest and within the scope
of the conference. ADC gives researchers and practitioners a unique opportu-
nity to share their perspectives with others interested in the various aspects of
database systems.

The ADC 2014 Program Committee accepted those papers considered to be
of ADC quality without setting any predefined quota, and was impressed by
the quality of the submissions. The conference received 38 submissions and ac-
cepted 15 papers. The Program Committee who selected the papers consisted of
28 members from around the globe including Singapore, Bangladesh, Germany,
Ireland, Japan, Switzerland, China, and the United States. The Program Com-
mittee was thorough and dedicated to the reviewing process with each paper
peer reviewed in full by at least two independent reviewers, and in some cases
three or four referees produced independent reviews. A conscious decision was
made to select papers for which all reviews were positive and favorable. While
this challenged the determination, and some high-quality papers were finally not
included, we are confident that the results demonstrate a very solid program and
that each paper makes a strong contribution to the proceedings.

We would like to thank all our colleagues who served on the Program Com-
mittee or acted as external reviewers. We would also like to thank all the authors
who submitted papers, both accepted and rejected, as well as the conference at-
tendees. This conference is held for you, and we hope that these proceedings
provide an overview of our vibrant research community and its activities. We
encourage all database researchers to contribute and make submissions to the
next ADC conference.

July 2014 Hua Wang
Mohamed A. Sharaf

General Chair’s Welcome Message

Welcome to the 25th Australasian Database Conference (ADC2014)! ADC is a
leading Australia and New Zealand based international conference on research,
development and applications of database systems and related areas. Previous
ADC conferences were held as part of the Australasian Computer Science Week
(ACSW). In the past 10 years, ADC was held in Adelaide (2013), Melbourne
(2012), Perth (2011), Brisbane (2010), Wellington (2009), Wollongong (2008),
Ballarat (2007), Hobart (2006), Newcastle (2005), and Dunedin (2004).

Australasia has an increasingly large, very active and internationally highly
visible group of database researchers. Based on wide community consultation,
ADC 2014 departs from its tradition as part of the Australasian Computer Sci-
ence Week (ACSW) to become an independent conference with an expanded
research program, a PhD School and a community-building focus. So, in that
sense, ADC 2014 is the first of the new ADC conference series.

The conference this year had two eminent keynote speakers: Timos Sellis
from the Royal Melbourne Institute of Technology, Australia, and Divesh Sri-
vastava from AT&T, USA. In addition to 15 full papers and 6 short papers
carefully selected by the Program Committee, we were also very fortunate to
have three invited talks presented by world-leading researchers, ChengXiang
Zhai from UIUC, Lei Chen from HKUST and Jeffrey Yu from CUHK. We also
have a three-day PhD School program as part of this year’s ADC. We wish to
take this opportunity to thank all speakers, authors and organisers. I would also
specially thank the Program Committee co-chairs Hua Wang and Mohamed A.
Sharaf for their dedication and effort in ensuring a high quality program. I would
also like to thank our PhD School convenor, Heng Tao Shen, and our key local
organiser, Kath Williamson, for their contributions to making this year’s new
ADC a success.

As a member of the new ADC’s Steering Committee, I would like to sin-
cerely thank my fellow Committee members: Rao Kotagiri (The University of
Melbourne), Timos Sellis (RMIT), Gill Dobbie (University of Auckland), Alan
Fekete (The University of Sydney), Xuemin Lin (UNSW), and Yanchun Zhang
(Victoria University), for their support to set a new direction for ADC and of-
fering the opportunity to host the first new ADC conference at The University
of Queensland in Brisbane.

Brisbane is a beautiful city and UQ has one of the best university campuses
in Australia. All ADC2014 participants are sure to enjoy the conference, the
campus and the city.

General Chair Xiaofang Zhou (The University of Queensland)

Organization

General Chair

Xiaofang Zhou University of Queensland, Australia

PC Co-chairs

Hua Wang Victoria University, Australia
Mohamed A. Sharaf University of Queensland, Australia

Steering Committee

Rao Kotagiri University of Melbourne, Australia
Timos Sellis RMIT University, Australia
Gill Dobbie University of Auckland, New Zealand
Alan Fekete University of Sydney, Australia
Xuemin Lin University of New South Wales, Australia
Yanchun Zhang Victoria University, Australia

Program Committee

Ying Zhang University of New South Wales, Australia
Sebastian Maneth University of Edinburgh, UK
Junhu Wang Griffith University, Australia
Gang Li Deakin University, Australia
Mohammed Eunus Ali University of Engineering and Technology,

Bangladesh
Michael E. Houle National Institute of Informatics, Japan
Ruixuan Li Huazhong University of Science and

Technology, China
Sarana Nutanong Johns Hopkins University, USA
Shichao Zhang Guangxi Normal University, China
Panos Chrysanthis University of Pittsburgh, USA
Chaoyi Pang CSIRO, Australia
James A. Thom RMIT University, Australia
Xue Li University of Queensland, Australia
Yoshiharu Ishikawa Nagoya University, Japan
Xiangmin Zhou CSIRO, Australia

X Organization

Markus Stumptner University of South Australia, Australia
Annika Hinze University of Waikato, New Zealand
Zahir Tari RMIT University, Australia
Bing Tian Dai Singapore Management University, Australia
Jinli Cao Latrobe University, Australia
Miyuki Nakano University of Tokyo, Japan
Evaggelia Pitoura University of Ioannina, Greece
Bela Stantic Griffith University, Australia
Hye-Young Paik University of New South Wales, Australia
Ge Yu Northeastern University, China
Laurianne Sitbon Queensland University of Technology, Australia
Chengfei Liu Swinburne University of Technology, Australia

Invited Talks

Analysing Big Trajectory Data:

Theory, Algorithms and Applications

Kai Zheng

University of Queensland

Abstract. The prevalence of GPS sensors and mobile devices has en-
abled tracking the movements of almost any kind of moving objects such
as vehicles, humans and animals. As a result, in the past decade we
have witnessed unprecedented increase of trajectory data both in volume
and variety. With some attributes such as variable lengths, uncontrolled
quality, high redundancy and uncertainty and so on, trajectory data
challenge the traditional methodologies and practices in many research
areas including data storage and indexing, data mining and analytics,
information retrieve, etc. Trajectory data management has been attract-
ing numerous research interests from both academia and industry due
to its tremendous value and benefits in a variety of critical applications
like traffic analysis, fleet management, trip planning, location-based rec-
ommendation, etc. In this tutorial, we will talk about the challenges,
techniques and open problems with the focus on similarity-based analyt-
ics, the foundation of trajectory management, and covering a range of
topics from fundamental theory, algorithms to advanced applications.

Boosting Methods in Machine Learning

Chunhua Shen
University of Adelaide

Abstract. Many machine learning and data mining tasks favour fast
and yet accurate classification methods. The classification speed is not
only a matter of time-efficiency but is often crucial to achieve good accu-
racy. Standard kernel machines such as Support Vector Machine (SVM)
are slow and methods for rapid classification have been pursued. Boost-
ing classifiers have been so successful owing to its fast computation and
yet comparable or sometimes better accuracy to kernel methods, being a
standard method in many areas. Boosting as a representative ensemble
learning method, which aggregates simple weak learners, can be seen as
a flat tree structure when each learner is a decision-stump. When trees
are used as weak learners, boosting methods learn a linearly weighted
decision forest. We will overview the fundamental theory of boosting in
the first part of this course.

Recently, structured learning has found many applications in text
analysis and computer vision. Thus far it has not been clear how one can
train a boosting model that is directly optimised for predicting multi-
variate or structured outputs. To bridge this gap, inspired by structured
support vector machines, a boosting algorithm for structured output
prediction is introduced, which we refer to as StructBoost. StructBoost
supports nonlinear structured learning by combining a set of weak struc-
tured learners. As structured SVM generalises SVM, the StructBoost
generalises standard boosting approaches such as AdaBoost, or LPBoost
to structured learning. The resulting optimization problem of Struct-
Boost is more challenging than Structured SVM in the sense that it may
involve exponentially many variables and constraints. In contrast, for
Structured SVM one usually has an exponential number of constraints
and a cutting-plane method is used. In order to efficiently solve Struct-
Boost, we formulate an equivalent 1-slack formulation and solve it using
a combination of cutting planes and column generation. We show the
versatility and usefulness of StructBoost on a range of problems.

Big Data Mining on SAP HANA

Hoyoung Jeung

SAP

Abstract. This talk will cover how the theories in data mining and
machine learning are implemented and used in the state-of-the-art in-
memory computing technology, SAP HANA. In particular, Dr.Jeung will
share his extensive experience in predictive analysis on big business data,
discussing about hidden insights when dealing with complex algorithms
on extremely large data.

Statistical Methods for Mining Big Text Data

Chengxiang Zhai

University of Illinois Urbana-Champaign, USA

Abstract. Text data, broadly including all kinds of natural language
text produced by humans (e.g., web pages, social media, email mes-
sages, news articles, government documents, and scientific literature),
have been growing dramatically recently. This creates great opportuni-
ties for applying computational methods to mine large amounts of text
data to discover all kinds of useful knowledge, especially knowledge about
people’s opinions, preferences, and behavior. Due to the difficulty in pre-
cisely understanding natural language by computers, scalable text mining
algorithms tend to be based on statistical analysis and probabilistic rea-
soning. In this tutorial, I will systematically review the major statistical
methods developed for mining text data, with a focus on covering proba-
bilistic topic models for mining topics and topical patterns in text data,
and statistical methods for integrating and analyzing scattered online
opinions.

Crowdsourcing over Big Data, Are

We There Yet?

Lei Chen

Hong Kong University of Science & Technology

Abstract. Recently, the popularity of crowdsourcing has brought a new
opportunity to engage human intelligence into various data analysis tasks.
Compared with computer systems, crowds are good at handling items
with human-intrinsic values or features. Existing approaches develop so-
phisticated methods by utilizing the crowd as a new type of processor,
a.k.a. HPU (Human Processing Unit). As a consequence, tasks executed
on HPU are called HPU-based tasks. Now we are in the Big Data Era,
a nature question arises: How about crowdsourcing over Big Data, are
we there yet? In this talk, I will first briefly review the history of crowd-
sourcing and discuss the key issues related to crowdsourcing. Then, I will
demonstrate the power of crowdsourcing in solving the well-known and
very hard data integration problem, schema matching, and discuss how
to migrate the power of crowdsourcing to a social media platform whose
users can serve as a huge reservoir of workers. Finally, I will highlight
some research challenges about crowdsourcing over Big Data.

Large Graph Processing

Jeffrey Yu

Chinese University of Hong Kong

Abstract. The real applications that need graph processing techniques
to handle a large graph can be found from many real applications includ-
ing online social networks, biological networks, ontology, transportation
networks, etc. In this talk, we will discuss some selected research top-
ics on graph mining and graph query processing over large graphs. For
graph mining, we will focus on ranking nodes in a large graph. We will
discuss ranking over trust networks, random-walk domination, and di-
versified ranking. For ranking nodes over trust network, we discuss how
to take the trust score into consideration while ranking. For the random-
walk domination, we discuss the techniques for handling item-placement
in online social networks and ads-placement in advertisement networks.
For diversified ranking, we discuss how to find top-k nodes that match
the user query and are very different from each other. For graph query
processing, we will discuss top-k structural diversity search, finding the
maximal cliques in massive networks, and I/O efficient computing tech-
niques that make a large directed graph small and simple. The other
related topics may be also addressed in this talk.

Keynotes

Selecting Sources Wisely

for Integration

Xin Luna Dong1, Theodoros Rekatsinas2, Barna Saha3,
and Divesh Srivastava3

1Google Inc., Mountain View, CA 94043, USA
lunadong@google.com

2University of Maryland, College Park, MD 20742, USA
thodrek@cs.umd.edu

3AT&T Labs-Research, Bedminster, NJ 07921, USA

{barna, divesh}@research.att.com

Abstract. Data integration is a challenging task due to the large num-
bers of autonomous data sources, which necessitates the development of
techniques to reason about the costs and benefits of acquiring and inte-
grating data. Too many sources can result in a huge integration cost, and
low quality sources can be detrimental to the benefit of integration. In
this talk, we present the problem of source selection, that is, identifying
the subset of sources before integration that maximize the profit (benefit
− cost) of integration, for static and dynamic sources. To address this
problem, we propose techniques that, inspired by the marginalism prin-
ciple in economic theory, integrate a source only if its marginal benefit
is higher than its marginal cost. We quantify the integration benefit in
terms of the quality of the integrated data, which is characterized using
a set of data quality metrics, including coverage, freshness and accuracy,
and develop statistical models for estimating these metrics. Although
source selection is NP-complete, we show that for many practical cases
solutions to our problem can be found in polynomial time with approxi-
mation guarantees. Finally, we empirically establish the effectiveness and
scalability of our techniques on real-world and synthetic data.

Data Ecosystems: From Very Large Data Bases

to Big Data Infrastructures

Timos Sellis

Computer Science & Info Tech
RMIT University

timos.sellis@rmit.edu.au

Abstract. Data ecosystems involve the coexistence of one or more data
collections, typically databases, and their surrounding applications for
data entry and retrieval. For decades, both data and ecosystem man-
agement have failed to address significant, costly and labor-consuming
challenges which involve (a) the departure from databases focusing on
alphanumeric data only, (b) their inability to be integrated and provide
transparent access and composition facilities for heterogeneous data, (c)
their static querying nature, which is deprived of personal, context-aware
or interactive characteristics, (d) the enforcement of DBMS operation
over monolithic servers, and, (e) the complete indifference to problems
of evolution and adaptation over time.

In this talk we address issues around the methodologies, the theoret-
ical and modeling foundations as well as the algorithmic techniques and
the necessary software architectures that will facilitate the personaliza-
tion, integration, and evolution management facilities for data ecosys-
tems that operate over a decentralized infrastructure for a large variety
of data types.

Table of Contents

Dynamic Sorted Neighborhood Indexing for Real-Time Entity
Resolution . 1

Banda Ramadan, Peter Christen, and Huizhi Liang

Efficient Aggregate Farthest Neighbour Query Processing on Road
Networks . 13

Haozhou Wang, Kai Zheng, Han Su, Jiping Wang,
Shazia Sadiq, and Xiaofang Zhou

OSSM: The OLAP Security Specification Model . 26
Ahmad Altamimi and Todd Eavis

Scalable Gaussian Process Regression for Prediction of Material
Properties . 38

Eve Bélisle, Zi Huang, and Aimen Gheribi

Mining Differential Dependencies: A Subspace Clustering Approach 50
Selasi Kwashie, Jixue Liu, Jiuyong Li, and Feiyue Ye

A Study on the Applications of Emerging Sequential Patterns 62
Vincent Mwintieru Nofong, Jixue Liu, and Jiuyong Li

Efficient Subgraph Matching Using GPUs . 74
Xiaojie Lin, Rui Zhang, Zeyi Wen, Hongzhi Wang, and Jianzhong Qi

A Negative-Aware and Rating-Integrated Recommendation Algorithm
Based on Bipartite Network Projection . 86

Fengjing Yin, Xiang Zhao, Guangxin Zhou, Xin Zhang, and
Shengze Hu

Sentiment Analysis on Twitter through Topic-Based Lexicon
Expansion . 98

Zhixin Zhou, Xiuzhen Zhang, and Mark Sanderson

Discovering Collective Group Relationships . 110
S.M. Masud Karim, Lin Liu, and Jiuyong Li

Efficiently Retrieving Top-k Trajectories by Locations via Traveling
Time . 122

Yuxing Han, Lijun Chang, Wenjie Zhang, Xuemin Lin, and
Liping Wang

XXIV Table of Contents

Comprehensive Analytics of Large Data Query Processing on Relational
Database with SSDs . 135

Keisuke Suzuki, Yuto Hayamizu, Daisaku Yokoyama,
Miyuki Nakano, and Masaru Kitsuregawa

Fast Information-Theoretic Agglomerative Co-clustering 147
Tiantian Gao and Leman Akoglu

Semi-supervised Learning for Cyberbullying Detection in Social
Networks . 160

Vinita Nahar, Sanad Al-Maskari, Xue Li, and Chaoyi Pang

Mining the Association of Multiple Virtual Identities
Based on Multi-Agent Interaction . 172

Le Li, Weidong Xiao, Changhua Dai, Haiming Tong, and
Zhiqiang Song

Split Dictionaries for In-memory Column Stores in Mixed Workload
Environments . 180

David Schwalb, Markus Dreseler, Martin Faust,
Johannes Wust, and Hasso Plattner

A Functional Database Representation of Large Sets of Objects 189
Ratko Orlandic, John Pfaltz, and Christopher Taylor

Real-Time Exploration of Multimedia Collections . 198
Juraj Moško, Tomáš Skopal, Tomáš Bartoš, and Jakub Lokoč

XEdge: An Efficient Method for Returning Meaningful Clustered
Results for XML Keyword Search . 206

Wenxin Liang, Yuanyuan Gan, and Xianchao Zhang

Logics for Representing Data Mining Tasks in Inductive Databases 214
Hong-Cheu Liu, Millist Vincent, Jixue Liu, and Jiuyong Li

An Effective Approach to Handling Noise and Drift in Electronic
Noses . 223

Sanad Al-Maskari, Xue Li, and Qihe Liu

Author Index . 231

Dynamic Sorted Neighborhood Indexing

for Real-Time Entity Resolution�

Banda Ramadan, Peter Christen, and Huizhi Liang

Research School of Computer Science, College of Engineering and Computer Science
The Australian National University, Canberra ACT 0200, Australia

{banda.ramadan,peter.christen,huizhi.liang}@anu.edu.au

Abstract. Real-time entity resolution is the process of matching query
records in sub-second time with records in a database that represent
the same real-world entity. Indexing techniques are used to efficiently
extract a set of candidate records from the database that are similar to
a query record, and that are then compared with the query record in
more details. The sorted neighborhood indexing method, which sorts a
database and compares records within a sliding window, has successfully
been used for entity resolution of very large databases. However, be-
cause it is based on static sorted arrays, this technique is not suitable for
dynamic databases. We propose a tree-based dynamic sorted neighbor-
hood index that facilitates matching a stream of query records against a
large and dynamic database in real-time. We evaluate our approach on
two large data sets. Our results show that the times for both inserting
and querying of records stays nearly constant as the index grows, and
our approach achieves over one magnitude faster indexing and querying
times compared to an earlier real-time entity resolution technique with
comparable high matching accuracy.

Keywords: Dynamic indexing, data matching, braided tree.

1 Introduction

Massive amounts of data are being collected by most business and government
organizations. Given that many of these organizations rely on information in
their day-to-day operations, the quality of the collected data has a direct impact
on the quality of the produced outcomes [1]. Data validation and cleaning are
often employed to improve data quality [2]. One important practice in data
cleaning is entity resolution, which is the task of identifying and matching all
records that refer to the same real-world entity. An entity could be a person, a
product, a business, or any other real-world object.

Entity resolution (ER) is challenging because databases usually do not contain
unique entity identifiers. In this case identifying attribute values (such as first

� This research was funded by the Australian Research Council (ARC), Veda, and
Funnelback Pty. Ltd., under Linkage Project LP100200079.

H. Wang and M.A. Sharaf (Eds.): ADC 2014, LNCS 8506, pp. 1–12, 2014.
c© Springer International Publishing Switzerland 2014

2 B. Ramadan, P. Christen, and H. Liang

names, surnames, or addresses) need to be used for the matching process. How-
ever, such attribute values are often of low quality, as they can be incomplete,
contain errors, or change over time [1]. Therefore, approximate string matching
techniques are generally required.

As services in both the private and public sectors move online, organizations
increasingly require to perform real-time ER (with sub-second response times)
on query records that need to be matched with existing entity databases [3].
These databases are often not static, but rather dynamic as queries generally
result in a record being modified, added, or even removed.

Most current ER techniques are, however, batch algorithms only suitable for
static databases. They compare and resolve all records in one or more database(s)
rather than resolving those relating to a single query record. There is a need for
new techniques that support ER for large dynamic databases that can resolve
streams of query records in real-time. A major aspect of achieving this goal
is to develop novel indexing techniques that allow dynamic updates and facili-
tate real-time matching by generating a small number of high-quality candidate
records.

Contributions: First, we propose a braided AVL tree [4] based technique
that facilitates dynamic indexing based on the sorted neighborhood method [5].
The proposed index can be dynamically updated with query records resulting
in up-to-date candidate sets in highly dynamic environments. Second, we inves-
tigate using fixed and adaptive window sizes when retrieving candidates from
neighboring tree nodes. Third, we improve matching times for query records
by proposing a pre-calculation of attribute value similarities between neighbor-
ing tree nodes, resulting in a significant reduction in matching times. Finally,
we experimentally evaluate our approaches using two real data sets with several
million records with personal details. These experiments show that our approach
significantly outperforms previous real-time matching techniques for ER [6,7].

2 Related Work

General similarity search approaches involve finding similar entities from un-
structured databases (such as emails, news articles, or scientific publications)
based on a collection of relevant features that are represented as points in high-
dimensional attribute spaces [8,9]. However, such approaches are less suited for
structured databases that contain well defined attribute with short values, such
as personal names, addresses, or dates of birth. Records in structured databases
can be matched using SQL join statements if unique entity identifiers, such as
Medicare or social security numbers, are available. However, such identifiers are
often not available, and therefore ER approaches need to be employed [1].

The ER process encompasses several steps [1], including data pre-processing,
indexing or blocking, record pair comparison, record pair classification (into
matches and non-matches), and evaluation with regard to matching accuracy
and completeness. This paper is mostly concerned with the indexing step.

Dynamic Sorted Neighborhood Indexing for Real-Time Entity Resolution 3

Standard blocking and the sorted neighborhood method (SNM) indexing tech-
niques are commonly used in the ER process. Standard blocking [10] is based
on inserting records into blocks according to a blocking key criteria and only
comparing records that are in the same block. The SNM [5] arranges all records
in the database(s) to be matched into a sorted array using a sorting key criteria.
Then a fixed-size window is moved over the sorted records, comparing only those
records that are within the sliding window at any one time. Both blocking and
sorting keys are usually based on one or a concatenation of attribute values.

Various other indexing techniques have been used for ER, such as q-gram
indexing, suffix array indexing, canopy clustering, and mapping-based index-
ing [1]. However, all these techniques are aimed at offline batch processing of
static databases and are limited to indexing of static data. This means that once
an index is created it is difficult to change if new records need to be added, or
when the values in existing records are changing.

Only limited research has so far concentrated on real-time ER, where a stream
of query records arrive that need to be resolved in sub-seconds against the records
in a database, or on ER for dynamic databases. A first approach to query-
time ER was based on a collective clustering technique [11]. The authors stated
that the average query time was 31.28 sec on a database with around 800,000
records; this approach is therefore not suitable for real-time ER. Ioannou et
al. [12] proposed an approach based on using links between the entities in a
probabilistic database to resolve these entities. On a database of around 50,000
records the approach was reported to have an average query time of 70 msec.
This approach works with dynamic databases and can be used for real-time ER.

Christen et al. [6] proposed a similarity-aware indexing technique where sim-
ilarities between attribute values are pre-calculated when the index is built. An
average query time of 10 msec was reported by the authors on a database with
several million records. Although this index facilitates real-time ER it is only
applicable for static databases. More recently, Ramadan et al. [7] extended this
similarity-aware index to work with dynamic data. The authors stated that the
growing size of the index is not affecting the average record insertion time which
was around 0.1 msec on the same database as used in [6], and the average query
time which was about 10 msec. While this dynamic similarity-aware indexing
technique is based on standard blocking described before, we propose a novel
dynamic real-time indexing approach based on the SNM.

3 Dynamic Sorted Neighborhood Indexing

The original SNM uses a static array data structure to store sorting key values
(SKV) of all records in the database(s). Our proposed dynamic sorted neigh-
borhood index (DySNI), on the other hand, uses a braided AVL tree, which is
a data structure that combines the properties of both a height balanced binary
tree and a double-linked list [4]. Each node in the braided AVL tree has a link to
its predecessor and successor nodes according to an alphabetical sorting of the
key values in the nodes. Figure 1 illustrates a braided tree for the small example
data set shown in the same figure.

4 B. Ramadan, P. Christen, and H. Liang

ID FName SName Postcode

r1 percy smith 10007
r2 paul smith 02120
r3 robin stevens 80202
r4 pedro smith 90005
r5 abby bond 10001
r6 sally taylor 90002
r7 peter smith 90012
r8 sally taylor 98168
r9 pedro smith 02121
r10 peter smith 90002

percysmith

paulsmith

pedrosmithabbybond petersmith sallytaylor

robinstevens

next
prev

N1

N2

N4 N5 N6 N7

N3

r2

r6r10

r1

r5 r4 r9

r3

r8r7

Fig. 1. The table on the left shows a small example data set. Record r10 is assumed
to be a query record. The figure on the right represents the proposed DySNI built for
records from the table. The SKV used is a concatenation of FName and SName values.

Because the key values in the tree are the SKVs of records, the identifiers
of all records that have the same SKV will be appended to the corresponding
tree node as a list (as shown in Figure 1). Assuming there are k different SKVs
(nodes) in a tree, and n records in the database to be indexed (with k < n,
potentially even k ≥ n), searching for a SKV will be reduced from O(log(n))
to O(log(k)) compared to the array based SNM. The DySNI approach contains
two phases, a build phase and a query phase.

Build Phase: During the build phase, records are loaded from a database,
their SKVs are generated and inserted into the tree data structure, with each
unique SKV becoming a node in the tree. Each node in the tree has a link to
its alphabetically sorted predecessor node (‘prev’), a link to its successor node
(‘next’), and a list of the identifiers of all records in the database that have that
node’s key value as their SKV. If the SKV of an inserted record is new, a new
node will be created in the tree for this SKV. On the other hand, if the SKV for
a certain record already exists in the tree as a node key, then only the identifier
of this record needs to be added to the corresponding list.

After having loaded and indexed all records in a database, the index is ready
for receiving and resolving query records. The complete records with full at-
tribute values are also indexed into an inverted index or disk-based database
table D, where the actual attribute values of records can be retrieved during the
record comparison step, which is part of the query matching process.

Query Phase: In the query phase (shown in Algorithm 1), a query record q
is to be matched against the built index in real-time. We assume that query
records are added to the DySNI upon arrival. When a query record arrives, the
first step is to generate the SKV for the record (line 1) and a new unique record
identifier q.id is assigned to it. This SKV and record identifier are then inserted
into the tree in the same way as records were inserted during the build phase
(lines 3-7), and the query record is also added into D.

The window of neighboring nodes can now be generated (line 8). All record
identifiers that are stored in the nodes within the window are added to the can-
didate record set C. The query record q will be compared with the records in C
using similarity comparison functions, such as approximate string comparisons [1],

Dynamic Sorted Neighborhood Indexing for Real-Time Entity Resolution 5

Algorithm 1: DySNI – Query
Input:
- Query record: q
- Similarity functions: S
- Sorting key attributes: SK
- Window size: w
- Database table with complete records: D
Output:
- Ranked list of matches: M

1: skv = GenerateKey(SK,q)
2: nd = FindTreeNode(skv)
3: D[q.id] = q
4: if nd == NULL then
5: nd = CreateNode(skv,q.id)
6: else
7: Append q.id to nd.id list
8: C = GenerateWin(nd,w)
9: M = CompareRecords(C,S,D,q)
10: Sort M according to similarities

Algorithm 2: SimDySNI – Query
Input:
- Query record: q
- Similarity functions: S
- Sorting key attributes: SK
- Window size: w
- Database table with complete records: D
Output:
- Ranked list of matches: M

1: skv = GenerateKey(SK,q)
2: nd = FindTreeNode(skv)
3: D[q.id] = q
4: if nd == NULL then
5: nd = CreateNode(skv,q.id)
6: PreCalcNodeSimilarities(nd,w)
7: UpdateSimNextNodes(nd,w)
8: UpdateSimPreviousNodes(nd,w)
9: else
10: Append q.id to nd.id list
11: C = nd.nd id list ∪ nd.GetPrevIdList()

∪ nd.GetNxtIdList()
12: M = ComparePreCalcRecords(C,S,D,q)
13: Sort M according to similarities

appropriate to the content of each attribute (line 9). The actual attribute values are
retrieved from the index or database tableD. The compared candidate records are
returned in the listM sorted according to their overall similarities with the query
record (line 10).

3.1 Generating the Window of Neighboring Nodes

To generate the window of neighboring nodes we investigated three approaches:
the first is based on a static window with a fixed pre-defined size, while the second
and third approaches are based on adaptive window sizes that vary based on the
characteristics of tree nodes.

Fixed Window Size. The original SNM is based on using a fixed size window
w that corresponds to the number of candidate records that falls inside the
window at any one time. As our DySNI approach is a tree-based index, and
because all records that have the same SKV are inserted into one node, we set
w as the number of neighboring tree nodes in one direction (previous and next).
The following example demonstrates the query phase of DySNI.

The index tree shown in Figure 1 is built on all records from the table in the
same figure. Assuming query record r10 has just been inserted into the tree in
node N6 with key value ‘petersmith’, and assuming a fixed window size w = 1
in each direction, the record identifiers from only one neighboring node of N6
are retrieved. The previous node is N1 with key value ‘percysmith’ and record
identifier r1, while the following (next) node is N3 with key value ‘robinstevens’
and record identifier r3. The final set of candidate records for query record r10
using this fixed window size approach is the set C = {r1, r3, r7}. Note that r7
is included as it is located in the same tree node as the query record, and so it
also needs to be compared with the query record.

6 B. Ramadan, P. Christen, and H. Liang

As can be seen from this example, a fixed size window can lead to both
unnecessary comparisons with records in nodes that unlikely will have a high
enough similarity to be matching with a given query record (like r3 from node
N3), as well as missed potential true matches that are outside the window (such
as the records attached to node N5 with key value ‘pedrosmith’).

Adaptive Window Size. The aim of using an adaptive window size is to limit
the number of comparisons between the query and candidate records to only
those records that likely correspond to true matches. This issue was addressed
for static SNM by two approaches that adjust the window size according to
the characteristics of the SKVs. The first approach expands the window based
on the similarities between SKVs [13], while the second approach expand the
window based on the number of classified matches within the window [14]. Here
we propose two adaptive approaches that can work with our DySNI.

Similarity-Based Adaptive Window: This approach is based on [13]. We
adaptively expand a window on each side of a query record’s tree node indi-
vidually based on the following steps. We start from the node that contains
the query record. Then we expand the window in each direction based on the
similarity between SKVs, until the similarity between the query’s SKV and the
SKV of nodes in a direction falls below a given minimum similarity threshold θ
(0 ≤ θ ≤ 1, with θ = 1 being an exact match). The aim of this approach is to
exclude tree nodes that likely contain records that are dissimilar to the records
in the query record’s tree node.

The following example explains the approach based on Figure 1 with θ = 0.6.
After inserting r10 into the index, generating the window of candidate records
starts from the query node N6. To expand the window forwards (next), we
compare the SKV of node N6 with the SKV of its next neighbor N3 with SKV
‘robinstevens’ using the edit distance approximate string comparison function [1].
This gives us a low value of sim(‘petersmith′,‘robinstevens′) = 0.25. Because
0.25 < θ the window does not expand forward and the node N3 and its record
identifier list (r3) will not be included into the set of candidate records C.

The same process will take place in the node’s backwards (previous) direction.
We get the SKV of the previous node N1 and compare it to the SKV of the query
node, which leads to sim(‘petersmith′, ‘percysmith′) = 0.7; soN1 and its record
identifier r1 is added to the list of candidate records. The comparison process
continues in this direction until we reach a similarity that is less than θ. This
occurs at node (N4) where sim(‘abbybond′,‘petersmith′) < θ. This means all
records in the nodes N5 and N2 are included into C. The final set of candidate
records from both sides will be C = {r1, r2, r4, r7, r9}.
Candidates-Based Adaptive Window: This approach aims at getting a
certain maximum number of nearest candidate records as can be processed within
a certain period of time. In a real-time environment this approach allows for a
controlled number of candidate records to be returned for detailed comparisons.
A threshold β, which is a minimum total number of candidate records to be
returned, is used to stop window expansion regardless of the similarities between

Dynamic Sorted Neighborhood Indexing for Real-Time Entity Resolution 7

percysmith

N2
paulsmith

abbybond
N4

pedrosmith
N5

petersmith

next
prev

robinstevens

sallytaylor

N1

N6

root

r2

r5 r4 r9

N3
r3

r10r7
N7

r6 r8

r1

N5 0.0 N4 0.0 N7 0.0 N6 0.0
N3 0.2

N7 0.2N6 0.2

N3 0.2

N1 0.2

N3 0.2

N1 1.4

N6 1.4

N5 1.4N6 1.4
N1 1.4

N5 1.4
N2 1.2

N1 1.2
N5 1.2

N2 1.2N2 0.0

N4 0.0

Fig. 2. Similarity-based DySNI built for records from the table in Figure 1. The same
SKV is used, and the window size is set as w = 2.

SKVs. The initial candidate record set C is the records located in the query
record’s node. Then a decision on whether to expand the window on both sides
or not is made based on the following.

If the count of records at the query record’s node is greater or equal to the
minimum candidate threshold |C| >= β, then no expansion is needed, and only
records located at the query node are included in C. On the other hand, if
|C| < β, then the window expands on both sides of the initial node individually
until |C| >= β. The remaining number of records needed for the total candidate
records to reach β is calculated as r = β − |C|. A new expansion threshold is
set to ∈r/2∧ for each side of the query node, and the window on each side will
continue expanding as long as the total number of candidate records from that
side is smaller than or equal to ∈r/2∧.

3.2 Similarity-Based Dynamic Sorted Neighborhood Indexing

This similarity-based dynamic sorted neighborhood index (SimDySNI) is based
on the knowledge that all records allocated to the same tree node have the same
value in their SKV. As several attributes are generally used as SKV, we can
pre-calculate the similarities between these attribute values in neighboring tree
nodes at the end of the build phase of the index. To reduce the time required
for the calculation of similarities between records in the query phase, the pre-
calculated similarities are used when a query record is compared with a set of
candidate records.

In the SimDySNI, additional to the basic braided AVL tree structure of the
DySNI, each node will have two extra lists attached, as is illustrated in Figure 2.
These lists contain the pre-calculated similarities for a fixed window size w. In
the following we describe how a SimDySNI tree is built and how it is queried
using a fixed size window. Investigating the SimDySNI for the two adaptive
approaches is left for future work.

Build Phase: After the build phase is completed (as previously explained for
DySNI), a similarity calculation phase is conducted where the pre-calculated
similarities are added into the built DySNI tree. In this similarity calculation

8 B. Ramadan, P. Christen, and H. Liang

phase each node in the tree is visited and the similarities between the attributes
that are used to generate the node’s SKV and the attribute values that are used
to generate the SKV of the w neighboring nodes (in both the previous and next
direction) are calculated using an approximate string similarity function. The
calculated similarities are stored in two lists for each tree node, as is illustrated
in Figure 2 for w = 2. Both lists are ordered according to the distance of the
neighboring node from the query record’s node (i.e. the first element in these lists
is the closest neighboring node, and so on). The process of calculating similarities
is conducted for all nodes in the tree. At the end of this phase the SimDySNI
can be queried as we describe next.

Query Phase: This phase (illustrated in Algorithm 2) differs from the query
phase in the DySNI in that the similarities between the query and candidate
records only have to be calculated for those attributes that are not used in the
sorting key (SK). A query record is first inserted into the index data structure
in the same way as was done with the DySNI (lines 3-10). If the query record
has a SKV that is new (which required creating a new node for this SKV), then
we need to calculate the similarities for its w next and previous neighboring tree
nodes (as described for the similarity calculation phase above) (line 6). We also
need to update the similarity lists for the w previous and next tree nodes of the
newly inserted tree node (lines 7-8). This step ensures that the pre-calculated
similarities are up-to-date at any time.

To generate candidate records for a query record q, we retrieve all records that
are stored in the tree nodes from the next and previous lists of the node that
holds the query record (line 11). To calculate the overall similarities between the
query record and candidate records we retrieve the pre-calculated similarities
from the previous and next similarity lists, retrieve the corresponding records
from the record identifier lists of these tree nodes, and then only calculate the
similarities of those attributes that are not used in the sorting key. Therefore,
the more attributes are used in a sorting key the more similarities can be pre-
calculated, but at the cost of a larger tree (as likely more unique SKVs will be
generated). In our experimental evaluation we investigate how different sorting
keys influence both the amount of memory required as well as the reduction in
query matching time that can be achieved.

The following example describes the query phase on the small set of records
from the table in Figure 1 and the SimDySNI tree shown in Figure 2 assum-
ing w = 2. The candidate records for query record r10 are the records from
the nodes stored in the two similarity lists of node N6. These are the records
from nodes N1 and N5 (previous), and N3 and N7 (next). The total set of
candidate records for query r10 will therefore be C = {r1, r3, r4, r6, r7, r8, r9}.
To compare query record r10 with these candidate records we first retrieve the ac-
tual records fromD, and for each candidate record we retrieve the pre-calculated
similarity from the SimDySNI index. For example, the pre-calculated similarity
between query record r10 and candidate record r1 in N1 is 1.4 as retrieved from
the previous list of node N6. This similarity corresponds to the pre-calculated
edit-distance similarities of the FName and SName attributes (each is between

Dynamic Sorted Neighborhood Indexing for Real-Time Entity Resolution 9

0 0.5M 1M 1.5M 2M 2.5M 3M 3.5M

Record Insertion Number

10
5

10

10
3

Insertion Time for a Single Record

DySimII (OZ)

DySimII (NC)

DySNI (NC)

DySNI (OZ)

0 0.5M 1M 1.5M 2M 2.5M 3M 3.5M

Record Query Number

10
3

10
2

10
1

Query Time for a Single Record-OZ

DySimII

im-ada i e

cand-ada i e

fi ed- indo

0 0.5M 1M 1.5M 2M 2.5

Record Query Number

10

10
2

10
1

10
0

Query Time for a Single Record-NC

DySimII

im-ada i e

cand-ada i e

fi ed- indo

Fig. 3. Average insertion and query time of the proposed approaches compared to
DySimII using the full OZ and NC data sets [7]. The y axis shows times in seconds.

0 and 1). To get the total similarity between r10 and r1 we then only have to
calculate the similarities for the Postcode attribute on the attribute values of
these records.

4 Data Sets and Experimental Evaluation

To evaluate different aspects of our proposed DySNI we used two large data sets.
The first is a real voter registration data set from the US state of North Carolina
(named ‘NC’) [15]. We have downloaded this data set every two months since
October 2011 to build a temporal data set that contains the names, addresses,
and ages of over 2.5 million voters, as well as their voter registration numbers.
This data set contains realistic temporal information about a large number of
people. We identified 111,403 individuals with two records, 2,408 with three, and
39 with four records in this data set.

A second data set is based on an Australian telephone directory (named ‘OZ’)
which contains nearly 3.5 million records. This data set does not contain any
real duplicate entries. We therefore created duplicate records by modifying the
values in selected attributes using edits based on keying mistakes [16].

We implemented all evaluated approaches using Python (version 2.7.3) and
ran all experiments on a server with 128 GBytes of main memory and two 6-core
Intel Xeon CPUs running at 2.4 GHz.

4.1 Results and Discussion

In our first set of experiments, we evaluated whether the proposed DySNI scales
to large and dynamic databases while facilitating real-time ER, where fast query
matching response times are required. We measured the average time required to
insert a single record into an index data structure, and the average query time
required to resolve a single query record across the growing size of the index
tree structure. These experiments were conducted on both the full OZ and NC
data sets. The DySNI with the fixed-size window and the two adaptive window
approaches were compared to the dynamic indexing technique DySimII which
is based on standard blocking. [7]. The window sizes and thresholds selected

10 B. Ramadan, P. Christen, and H. Liang

Fig. 4. Recall and average query time for the proposed window generating approaches.
These plots are generated using 351,876 records (10%) from the OZ data set.

(Figure 3) for running the experiments assures having the same average number
of comparisons for all window approaches of the proposed DySNI.

As can be seen from Figure 3, the DySNI approaches (both fixed and adap-
tive) significantly outperform the earlier DySimII by up-to one magnitude faster
insertion times, and nearly two magnitudes faster query times. The average in-
sertion time is also not affected by the growing size of the index data structure,
while the query time only increases slightly as the index becomes larger. The re-
sults show that the different variations of the proposed DySNI approach achieve
very fast query times that range between 0.02 and 0.3 msec per query record.

In our second set of experiments we evaluated the three proposed window
approaches using different threshold values. The aim of this set of experiments
is to investigate the effect of using different thresholds on recall (calculated as
the ratio between identified matches and true matches over all query records),
and on average query time. These experiments were conducted using 351,876
records from the OZ data set (i.e. 10% of the full data set).

As can be seen in Figure 4, the similarity-based adaptive DySNI achieves
higher recall with slower query times compared to the fixed window and candidate-
based DySNI. We also notice that a lower similarity threshold gives better recall
but requires longer query times, because more tree nodes are included in the
window and thus more candidate records are generated. However, although the
average query time achieved by the similarity-based DySNI is larger than for
the other two approaches, the slowest time achieved is less than 0.4 sec.

For both fixed-window and candidate-based approaches larger window sizes
and larger values of the minimum number of candidate records gives better
recall results at the cost of unnecessary comparisons that increases the query
time. Since expanding the window is not dependent upon the characteristics of
the records within tree nodes, the expansion process in both approaches could
stop even if there are nearby matches outside the window.

In the last sets of experiments we investigated how the SimDySNI is able
to reduce query time. The attributes used for comparing a query record with
candidate records were first name, surname, city, and postcode from the OZ
data set. We measured the average time needed to compare a query record with a
single candidate record for DySNI, and for the SimDySNI approach with different

Dynamic Sorted Neighborhood Indexing for Real-Time Entity Resolution 11

Data set Num nodes MB DySNI MB SimDySNI

SKV: FName

OZ 167,558 101 135
NC 120,632 74 98

SKV: SName

OZ 475,934 238 333
NC 194,090 106 144

SKV: Postcode

OZ 5,598 30 34
NC 508 21 21

SKV: SName+FName

OZ 2,589,462 1,192 1,705
NC 1,634,650 754 1,079

SKV: SName+FName+Postcode

OZ 3,335,313 1,543 2,205
NC 2,237,069 1,130 1,614

0 1 2 3

Number of Pre-calculated Attributes

0 00

0 02

0 0

0 0

0 0

0 10

0 12

0 1

T
im

e
(m

s
)

Average Comparison Time for a Single Record

SimDySNI

DySNI

Fig. 5. The table shows the number of nodes in the generated trees, as well as the
memory usage in MBytes required for DySNI and SimDySNI using both the full OZ
and NC databases. The plot shows the average comparison time required for DySNI
and SimDySNI approaches using 10% of records from the OZ data set.

numbers of attributes used in the sorting key. We again ran experiments on 10%
of the OZ data set with 1, 2 and 3 attributes used as sorting keys for different
possible combinations of compared attributes. The average query times over
these combinations are shown in Figure 5. The results show that the SimDySNI
can significantly reduce the time required to compare a query record with a single
candidate record. This improvement in time is almost linear with the number of
attributes used in a sorting key. The result show that for a one-attribute sorting
key the query time reduction is around 20%, for a two-attribute sorting key it
is around 40%, and for a three-attributes sorting key it can be up-to 70%.

5 Conclusions

We have presented a tree-based sorted neighborhood indexing technique which
is suitable for real-time ER on large dynamic databases. We investigated using
both fixed and adaptive window sizes to generate the candidate records. The
proposed techniques were evaluated using two large data sets.

This evaluation showed that the growing size of the proposed DySNI has no
significant effect on the average insertion and query times. The similarity-based
adaptive DySNI showed better results than the other two approaches because
the expansion decision in this approach depends on the similarities between
SKVs. The fixed window and the candidate-based adaptive approaches showed
better timing results, but at the cost of achieving lower recall values. This is
because they only consider the number of comparisons to be conducted rather
than the similarity between values. Also, our results illustrate that using the
similarity-based SimDySNI reduces the average comparison time between 20%
to 70% (based on the number of attributes used to generate SKV), while it
increases the memory footprint by 13% to 40% for different SKVs. However, the
memory needed for the SimDySNI is still small and ranges between 34 MB and
2,205 MB for the various SKVs used to build the tree on over 3 million records.
All discussed results confirm that the proposed DySNI is well suited for use with

12 B. Ramadan, P. Christen, and H. Liang

real-time entity resolution where a stream of query records needs to be resolved
against a large and dynamic database.

As future work, we will investigate combining SimDySNI with the adaptive
window approaches [13,14]. In addition, we will investigate building a multi-
tree index using different sorting key combinations to overcome the drawback of
missing true matches because of errors and variations at the beginning of SKVs.
We also plan to investigate techniques to learn optimal tree selection for query
records, and to parallelize a multiple-tree index to improve performance.

References

1. Christen, P.: Data Matching: Concepts and Techniques for Record Linkage, Entity
Resolution, and Duplicate Detection. Springer (2012)

2. Herzog, T., Scheuren, F., Winkler, W.: Data quality and record linkage techniques.
Springer (2007)

3. Dong, X.L., Srivastava, D.: Big data integration. In: IEEE ICDE, Brisbane, AU,
pp. 1245–1248 (2013)

4. Rice, S.V.: Braided AVL trees for efficient event sets and ranked sets in the SIM-
SCRIPT III simulation programming language. In: Western MultiConference on
Computer Simulation, San Diego, pp. 150–155 (2007)

5. Hernandez, M.A., Stolfo, S.J.: The merge/purge problem for large databases. In:
ACM SIGMOD, San Jose, pp. 127–138 (1995)

6. Christen, P., Gayler, R., Hawking, D.: Similarity-aware indexing for real-time entity
resolution. In: ACM CIKM, Hong Kong (2009)

7. Ramadan, B., Christen, P., Liang, H., Gayler, R.W., Hawking, D.: Dynamic
similarity-aware inverted indexing for real-time entity resolution. In: Li, J., Cao, L.,
Wang, C., Tan, K.C., Liu, B., Pei, J., Tseng, V.S. (eds.) PAKDD 2013 Workshops.
LNCS (LNAI), vol. 7867, pp. 47–58. Springer, Heidelberg (2013)

8. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hash-
ing. In: VLDB, Edinburgh, Scotland, pp. 518–529 (1999)

9. Zhang, Z., Jiang, J., Liu, X., Lau, R., Wang, H., Zhang, R.: A real time hybrid
pattern matching scheme for stock time series. In: Australin Database Conference,
pp. 161–170. Australian Computer Society, Inc., Brisbane (2010)

10. Fellegi, I., Sunter, A.: A theory for record linkage. Journal of the American Statis-
tical Association 64(328), 1183–1210 (1969)

11. Bhattacharya, I., Getoor, L.: Query-time entity resolution. Journal of Artificial
Intelligence Research 30, 621–657 (2007)

12. Ioannou, E., Nejdl, W., Niederée, C., Velegrakis, Y.: On-the-fly entity-aware query
processing in the presence of linkage. VLDB Endowment 3(1) (2010)

13. Yan, S., Lee, D., Kan, M.Y., Giles, L.C.: Adaptive sorted neighborhood methods for
efficient record linkage. In: ACM/IEEE-CS Joint Conference on Digital Libraries,
Vancouver, Canada, pp. 185–194 (2007)

14. Draisbach, U., Naumann, F., Szott, S., Wonneberg, O.: Adaptive windows for du-
plicate detection. In: IEEE ICDE, Washington, DC, pp. 1073–1083 (2012)

15. Christen, P.: Preparation of a real voter data set for record linkage and duplicate
detection research. Technical report. Australian National University (2013)

16. Christen, P., Pudjijono, A.: Accurate synthetic generation of realistic personal
information. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.)
PAKDD 2009. LNCS (LNAI), vol. 5476, pp. 507–514. Springer, Heidelberg (2009)

Efficient Aggregate Farthest Neighbour Query

Processing on Road Networks

Haozhou Wang, Kai Zheng, Han Su, Jiping Wang, Shazia Sadiq,
and Xiaofang Zhou

School of ITEE, The University of Queensland,
St. Lucia, Brisbane, QLD 4072, Australia

{h.wang16,kevinz,h.su1,j.wnag28,shazia,zxf}@uq.edu.au

Abstract. This paper addresses the problem of searching the k aggre-
gate farthest neighbours (AkFN query in short) on road networks. Given
a query point set, AkFN is aimed at finding the top-k points from a
dataset with the largest aggregate network distance. The challenge of
the AkFN query on the road network is how to reduce the number of
network distance evaluation which is an expensive operation. In our work,
we propose a three-phase solution, including clustering points in dataset,
network distance bound pre-computing and searching. By organizing the
objects into compact clusters and pre-calculating the network distance
bound from clusters to a set of reference points, we can effectively prune
a large fraction of clusters without probing each individual point inside.
Finally, we demonstrate the efficiency of our proposed approaches by
extensive experiments on a real Point- of-Interest (POI) dataset.

1 Introduction

As one of the most important types of spatial query, efficient nearest neighbour
query processing has been investigated extensively[1,2,3]. This type of query
to find k nearest neighbors (kNN) form a given point becomes a fundamental
operation in spatial databases, leading to a number of variations. As much as the
interest in finding kNN objects, there are a large number of real-life applications
which are interested in finding farthest neighbours (FN) [4]. Another important
type of kNN variations is the so-called aggregate nearest neighbour (ANN) query
[5,2]. The difference between ANN query and NN query is that an ANN query
takes multiple query points into account and returns a point from the dataset
that minimizes the aggregated distance from the point to all given query points
using a user-specified aggregate function (e.g. max, sum). An example of ANN
query with sum function is for a number of people to find a meeting place that
can minimize their total traveling distance.

In an analogous way, aggregate farthest neighbor (AFN) query can also be
defined as an extension to the FN query: for a given set of query points Q and
a user-specified aggregate function, find a point p from a data set P such that
the aggregate distance from p to all the points in Q is the largest. AkFN can
be defined as a general case of AFN to find k such points which have larger

H. Wang and M.A. Sharaf (Eds.): ADC 2014, LNCS 8506, pp. 13–25, 2014.
c© Springer International Publishing Switzerland 2014

14 H. Wang et al.

aggregate distances than any other points in P . To illustrate its usefulness,
consider a business franchise planning to open a new store. In order to reduce
the mutual influences between the new and existing branches to maximise the
overall profit, it is desirable for the location of the new store to be far away from
all existing stores. By including the locations of all existing stores in Q, all the
available locations from a real estate database as P and max as the aggregate
function, an AkFN query can find the best candidate locations to choose from.

Despite of its importance for many applications, AkFN query has not been
well studied. Just like ANN query processing is a non-trivial extension to NN
query processing, AkFN query processing is quite different form kFN query pro-
cessing and demands new processing strategies. To the best of our knowledge,
there exists only one piece of work on AkFN query processing [6]; it, however,
considers a simpler case to use Euclidean distance (i.e., in a free space). In this
paper, we will investigate AkFN in the context of road networks. The motivation
for us to consider road networks is that, in most real applications the movement
of people and vehicles is constrained by a underlying road network. Albeit more
complex in distance calculation, it is more reasonable and accurate to use net-
work distances rather than Euclidean distances. This is because, in reality, road
network contains some properties such as bridges and one way street, which
makes the distance shortest path between two points in road network is longer
than its Euclidean distance. Therefore, the incorporation of road networks can
raise serious efficiency issues for processing AkFN query. The reasons can be
two-fold. First, there is still no effective way to index a large number of objects
in a road network. Classical hierarchical spatial access methods (e.g., R-tree [7]
based) cannot work since they are designed for Euclidean space. Second, network
distance evaluation is much more expensive than Euclidean distance evaluation
since it involves online shortest path computation.

Our paper aims to propose efficient solutions for answering the AkFN query
in road networks. More specifically, we firstly organize the objects in the whole
dataset into clusters by apply a network-based hierarchical clustering method.
Then we define a set of reference points across the entire space and pre-compute
the maximum and minimum network distances between each pair of cluster and
reference point. Lastly, we design an efficient search algorithm to spot the most
promising clusters that may contain the results and prune the rest of them
by leveraging the pre-computed information. It is worth noting that, since the
clusters are hierarchical, we can achieve good trade-off between the number of
clusters and pruning effect. In summary, we make the following major contri-
butions in this paper: 1) We are the first to investigate the aggregate farthest
neighbour query in the context of road networks. 2) We propose efficient solu-
tions for processing the AkFN query by pre-computing and pruning at cluster
level. 3) We conduct extensive experiments based on real POI dataset to verify
the efficiency of our proposals.

The rest of this paper is organized as follows. In Section 2 we will intro-
duce necessary preliminaries and formally define the AkFN query. We detail
our proposed query processing algorithms in Section 3. Section 4 presents the

Efficient Aggregate Farthest Neighbour Query Processing on Road Networks 15

experimental results for validating the efficiency of our algorithms, followed by
a brief literature review on related work in Section 5. We conclude the paper in
Section 6.

2 Problem Definition

In this section we will introduce all necessary preliminary concepts and formu-
late the AkFN query. We summarize the major symbols and notations used
throughout the paper in Table 1 for convenience of reference.

Table 1. Table of Notations

Notation Definition

(vi, vj) A road segment with two road segment nodes vi and vj
pi A point in the points dataset P

qi A query point in the query points set Q

dn(pi, pj) The network distance between pi and pj
dagg(pi, Q) The aggregate distance from a point pi to Q

ri A reference point in the reference points set R

dr(pi, qi) The shortest path distance from pi to qi via qi’s reference point

Ci A sub-cluster in hierarchical cluster structure C

dc(Ci, ri) The maximum network distance from Ci to ri
dr(Ci, qi) The network distance from Ci to qi via qi’s reference point

dragg(pi, Q) The aggregate distance from pi to Q via relate reference points

dragg(Ci, Q) The aggregate distance from Ci to Q via relate reference points

Definition 1 (Road Network and Network Distance). A road network G
is modeled as a weighted indirect graph G = (V,E) , where V is a set of road
intersection , and E is a set of road segment. The network distance dn between
pa and pb, where pa and pb are two points on G, is calculated as the sum of the
distance of the road segments along the shortest path between pa and pb.

Notice that we use the term “network distance” and “shortest path distance”
interchangeably.

Definition 2 (Aggregate Network Distance). Given a point p, a query
point set Q and road network G, the aggregate network distance between p and Q
is dagg(p,Q) = fq∪Q dn(p, q), where f is a pre-defined aggregate function (e.g.,
sum, mean, min, max, etc).

In this paper we only consider two types of aggregate functions, namely sum
and min, as they are most applicable in a farthest neighbor query. Now we are
in a position to formally define the query.

Definition 3 (AkFN query). Given a dataset P and a query point set Q, the
aggregate k farthest neighbor (AkFN) query retrieves a set S of k points from P
that have the largest aggregate network distance with Q, i.e.,

dagg(p,Q) ≥ dagg(p
′, Q), ∀p ∈ S, ∀p′ ∈ P − S

16 H. Wang et al.

Consider Figure 1 as an example, where q1, q2 is the query set Q and p1, p2...p8
is the candidate dataset P , that we want to find a point from P , such that its
minimum distance to Q is maximized. This is a special case of the AkFN query
with k = 1 and min aggregate function. By enumerating the locations in P and
simple calculation, it is easy to get that p7 is the best location suiting for the
request.

3 Query Processing Algorithm

The most straightforward approach to answer an AkFN query is to exhaustively
search all the points in dataset, calculate the aggregate distances from each point
to the query point set, and finally obtain the top k results. However, this method,
called exhaustive search algorithm, has serious efficiency issues especially on road
network, since the exhaustively searchalgorithmneed to searchthewholedatasetP
whileP is usually very large (e.g.,more than 100kpoints) in practice.Consequently,
evaluating the aggregate network distance between all points in the dataset and the
query “on-the-fly” can be extremely time consuming.

15

4
1

1 2 13 1 1

5

3
113

v1

v4

v5

v3

v2

v6p4 p5

p3
q1

p1 p2

p6q2

p8p7

Fig. 1. Example of road network

To improve the efficiency of query processing, we propose an advanced ap-
proach with two carefully designed search algorithms, which leverage the power
of hierarchical cluster and pre-computed network distance bound of each cluster
to reference points to reduce the search space extensively. The query processing
consist of three steps: clustering the points of the dataset, pre-computing the
network distance bound and searching. The first step clusters the points of the
dataset in hierarchical structure by applying the Linkage Hierarchical Clustering
algorithm [8], a network-distance-based clustering method. In the second step,
we uniformly define a set of reference points, which are mapped to road segment
nodes, and pre-compute the network distance bounds between each pair of the
clusters, generated in the first step, and reference points. This information can
be saved for further use since the numbers of both clusters and reference points
are relatively small comparing to the original dataset. The third step is searching
the hierarchical structure with two different ways by search algorithms. In the
rest of this section, we will describe each step in detail.

Efficient Aggregate Farthest Neighbour Query Processing on Road Networks 17

C9 C10

C11

C12

C13

C14

C15

C1 C2 C3 C4 C5 C6 C8C7

(a) Without point merging

C7

C1 C2 C3 C4

C5C6

(b) With point merging

Fig. 2. Example of hierarchical cluster

3.1 Linkage Hierarchical Clustering

Using Euclidean-distance-based index (i.e. R-tree [7]) to prune unnecessary points
is unsafe for AkFN query, since two points are close on Euclidean space do not
mean they are close on road network. For example, two points are located in
each side of a river and a bridge is located far away from these two points, ab-
solutely, their network distance is much longer than their Euclidean distance.
Obviously, in order to improve the performance of AkFN, a road-network-based
point organizing structure is needed.

Thus, we adopt the Linkage Hierarchical Clustering algorithm [8], a well-
known road-network-based clustering method, in our search approaches. The
motivation for us to use hierarchical clustering is the trade-off between the num-
ber of clusters and the searching performance. Though a smaller number of
bigger clusters can reduce the overhead cost incurred by storing and processing
these clusters, the pruning effect will also be harmed since the distance bound
is too loose to be useful. By organizing the objects into clusters with different
levels and sizes, we can control the level from which the search starts and thus
achieve a reasonable balance between the cluster number and pruning effect.
Fig. 1 gives an example of a point dataset P = p1, p2, · · · , p8 on road network
and its hierarchical cluster structure is shown in Fig. 2(a), which each cluster in
the bottom level is the point itself in P .

However, consider each point of dataset P as a cluster at initiating time of the
above algorithm can result in too many bottom level clusters when the size of P
is big, which may cause memory overflow in pre-computing step and inefficient
query processing in searching step. In order to reduce memory consumption and
speed up the query processing, we merge points of P before applying clustering,
if the road network distances between such points are less than a threshold θ.
Fig. 2(b) shows an example of the hierarchical cluster structure with points
merging for previous example (Fig. 1). With θ = 3, p1, p2 are merged as C3; p3
cannot be merged with other points and considered as C2. Meanwhile, p4, p5 and
p6, p7, p8 are merged as C3 and C4 respectively.

18 H. Wang et al.

3.2 Pre-computation

In the searching step, we need to calculate distance of shortest road network
path between query points and clusters many times. However, the shortest path
searching is time consuming and could not support the“on-the-fly” query pro-
cessing. Hence we deploy a reference point based pre-computing approach to
boost the query processing to the real-time level. Inspired by the reference point
generating method of [9], we split whole map area into small grids, and then for
each grid cell gc we select the road segment node v, where v is in gc and v is the
nearest road segment node to the center of gc, as a reference point of the road
network. If there is no any road segment node in a grid cell, then no reference
point will be selected in that grid cell.

Thepre-computing is to calculate themaximumshortestpathdistancedc(C, r) =
maxp∪C{dn(p, r)} between eachpair of clusterC of all the hierarchical clusters and
point r of reference points setR. Therefore, the space cost of building reference list
of pre-computed distance is O(mn), where n is the number of clusters in the bot-
tom level of the hierarchical structure, which ismuch less the total number of points
in the road network; andm is the number of reference points. Meanwhile, the dis-
tance between reference points and upper level clusters can be calculated directly
by previous information.

When a query point q is given, we find its nearest reference point r∗, that
is r∗ = argminr∪R{dn(q, r)}. Then the dr(C, q) = dc(C, r∗) + dn(q, r

∗) can
be the upper bound of the shortest path distance dn(C, q) according to the
triangle inequality. The upper bound can efficiently filter out some obviously
impossible points during farthest neighbor search, which will demonstrate in the
next section. Meanwhile, it is worthy to note that the more reference points
mapped to road network, the more tight upper bound we can have, since the
query point q could be much closer to reference point r and leads that dr(C, q)
is closer to dn(C, q). On the other hand, a lot of reference points means a heavy
memory usage and may excess the total memory usage due to all reference points
are loaded into memory during query processing. Hence, we limit the number
of reference points, which suit for system memory or user request, to map in
the road network, and we conduct a set of experiments to show the effect about
number of reference points.

3.3 Search Algorithm

We propose two advanced search algorithms, namely Flat Search (FS) and Hi-
erarchical Search (HS), which make use of the hierarchical clusters and pre-
computed network distance bounds to improve the searching efficiency. FS only
searches the bottom hierarchy of these clusters for the result; HS searches the
whole hierarchy clusters.

Flat Search. We propose the FS algorithm by using the bottom hierarchical
clusters to reduce the search space on road network. When given a query points

Efficient Aggregate Farthest Neighbour Query Processing on Road Networks 19

set Q, we can quickly find the nearest reference point ri of qi (qi ∈ Q) and the
shortest path distance between qi and ri.

Firstly, FS initializes an empty list A with a fixed length |k|, where k is the
number of top answers required by user. The elements of A are the result points
so far, and sorted by aggregate distance dagg(pc, Q). Meanwhile, we assign a
parameter kth so far which is used to record the smallest dagg(pc, Q)in A to
0 . The value of kth so far can be a lower bound of the farthest neighbour
query, that any point p′ with the aggregate distance dagg(pc, Q) < kth so far
will be filtered out. Then, the FS starts at a random cluster Ci in bottom layer
of hierarchical cluster, it calculates the aggregate distance from Ci to Q (denote
as dragg(Ci, Q)). To calculate dragg(Ci, Q), we firstly find the ri, that ri is the
nearest reference point of qi (qi ∈ Q), and the shortest path distance dn(qi, ri)
between qi and ri. Since the shortest path distances dc(Ci, ri) has already been
pre-computed, FS computes the drCi,qi , which equals dc(Ci, ri) + dn(qi, ri). If
dragg(Ci, Q) is larger than kth so far, it means that Ci may have a point which
can be a result of the query. Otherwise, this cluster Ci should be pruned and FS
selects the next cluster. Then, FS visits every point pi in Ci, and computes the
exact aggregate distance dagg(pi, Q). If there is a dagg(pi, Q) that is bigger than
kth so far, FS insert this point in to A; and update kth so far. FS searches
all of clusters in the bottom level of hierarchical cluster iteratively, and stops
when all the bottom hierarchical clusters have been selected.

Hierarchical Search (HS). Flat search algorithm starts at a random cluster,
whichmeans itmayhave to scanall of thepoints in theworst case. Inaddition, calcu-
lating aggregatedistances betweenof all clusters andquery set are time-consuming,
more important is that I/O cost of calculation aggregate distances for clusters and
the query set Q is non-trivial and needs to be minimized. Hence, we improved our
FS algorithm to implement on hierarchical clusters, which is called Hierarchical
Search algorithm to minimize calculation cost of aggregate distances.

The key idea of HS is that HS maintains a priority queue to obtain the
candidate set and adapts the best-first search. The elements of PQ are clusters
Ci or points pi and sorted by their dragg(Ci, Q) or dragg(pi, Q) in descending
order. In the first step,HS initializes a priority queue PQ. Then HS extracts the
top layer cluster of hierarchical cluster; for each cluster Ci, HS calculates their
dragg(Ci, Q) and pushes them into priority queue PQ. During second phase,
HS pops elements from PQ iteratively. For each element, HS compares its
dragg(Ci, Q) or dragg(pi, Q) with kth so far, if the dragg(Ci, Q) or dragg(pi, Q) is
larger than kth so far, this element is selected as a candidate element, therefore
HS goes to next step. In this step, if this candidate element is a cluster that
contains only one point (i.e., size of cluster is 1) or is a point, and then HS
inspects this point pi in this candidate cluster to calculate aggregate distance
dagg(pi, Q) . If not, HS extracts this cluster to get its child clusters/points set,
for each cluster Ci or point pi in child clusters set, HS calculates dragg(Ci, Q)
or dragg(pi, Q) and push these elements to PQ with their aggregate distances as
new candidate elements. After this, HS returns to the beginning of the second
loop and continue popping the elements until |A| = k.

20 H. Wang et al.

Given an example, at beginning, HS calculates cluster aggregate distance
for top level clusters C6, C5 and push them to PQ, and elements in PQ are
{(C5, 8), (C6, 4)}. Then first element (C5, 8) is popped, since kth so far is smaller
than C6’s aggregate distance and the number of points in C5 are larger than one.
Then,HS gets C5’s children clusters, which is C3 and C4, and calculates their ag-
gregate distance dragg(C3, Q) and dragg(C4, Q) , push them into PQ. After that,
the elements in PQ are {(C4, 8), (C6, 4), (C3, 3)}. Similar with previous step, C4

is popped, and elements in PQ are {(p7, 9), (p8, 8), (p6, 6), (C6, 4), (C3, 3)}. Con-
tinually, point p7 is popped, however p7 is already a point, hence we calculate
aggregate distance between p7 and Q, and we get dmin(p7, Q) = 8. After that,
kth so far is updated to 8 with p7. Return to previous step, p8 is popped from
PQ. The kth so far is not less than drmin(p8, Q) and |A| = k, therefore, HS is
stopped and report point p7 as the result of that query.

4 Experimental Evaluation

In this section, we conduct extensive empirical evaluation based on real world POI
dataset to verify the superior of our proposed solution. All the algorithms are im-
plemented in Java and running on aPCwith Intel 2.13GHzCPUand 4GBmemory.

4.1 Experimental Setup

Road Network. The road network dataset used in our evaluation is Beijing road
network, which contains 106,579 road segment nodes and 141,380 road segments.

Point Set. We use Beijing POI dataset in our experiment as point set. This
dataset contains more than 500K POIs. We align each POI onto the road network
to get its network location.

4.2 Evaluation Approach

We proposes three search algorithms, i.e, exhaustive search search, FS and hi-
erarchical searchHS. The performance, i.e., IO cost and execution time, of these
search algorithms is affected by several parameters, such as number of reference
points (denoted as n), number of query points (denoted as m) and number of
requested results (denoted as k). Table 2 lists the default value and range of all
these issues we used throughout the experiments. It is noteworthy that we adopt
the variable-control method in the experiments that in each experiment set only
one issue is adjustable and the rest issues are fixed to their default values.

Table 2. Parameter Settings

Parameter Default value Range

Number of grid cells 300 25, 50, 100, 200, 300, 400

Number of query points 9 5, 7, 9, 11, 13, 15

Number of requested results 10 5, 10, 15, 20, 25, 30

Efficient Aggregate Farthest Neighbour Query Processing on Road Networks 21

 10

 100

 1000

 10000

 100000

 1e+006

 50 100 150 200 250 300 350 400

nu
m

be
r

of
 IO

s
(lo

g
sc

al
e)

n

MIN, IO cost

Exhaustive search
FS
HS

 10

 100

 1000

 10000

 50 100 150 200 250 300 350 400

qu
er

y
tim

e(
lo

g
sc

al
e)

n

MIN, query time

Exhaustive search
FS
HS

 10

 100

 1000

 10000

 100000

 1e+006

 50 100 150 200 250 300 350 400

nu
m

be
r

of
 IO

s
(lo

g
sc

al
e)

n

SUM, IO cost

Exhaustive search
FS
HS

 1

 10

 100

 1000

 10000

 50 100 150 200 250 300 350 400
qu

er
y

tim
e(

lo
g

sc
al

e)
n

SUM, query time

Exhaustive search
FS
HS

Fig. 3. Effect of number of grid cells

4.3 Evaluation Results

Effect of the Number of Grid Cells In this set of experiments, we evaluate
how the performance of the algorithm is affected by number of grid cells. As
shown in Figure 3, for each algorithm, the performance to solve min and sum
aggregate function is similar. For both FS and HS algorithm, the IO cost and
time cost decrease rapidly with number of grid cells growing from 25 to 200.
The reason is that the more grid cells (i.e. more reference points) are deployed
on the road network, the more closely query point q is to reference point r,
which leads that dr(p, q) is closer to dn(p, q). The closer dr(p, q) to dn(p, q), in
other words, is a tighter upper bound. Thus the performance of algorithms are
improved very much. On the other hand, after deploying more than 200 grid
cells, the increasing rate of performance becomes smoothly. This is because once
the number of grid cells have reached a certain amount, the influence of adding
more reference points is weak.

The last algorithm HS dominates FS under all value of n in both IO cost and
query time aspects. This is because HS uses both hierarchical cluster structure
and priority queue to prune unnecessary clusters during searching while FS not.
Thus, the IO cost of HS is very low since it only need to search few clusters to
find the answer of AkFN query, which is verified in this experiment. Meanwhile,
this experiment also illustrates that using priority queue to sort the maximum
aggregate distances can reduce query time obviously.

Effect of the Number of Query Points. Fig 4 demonstrates how the number
of query points affects the effect of these three searching algorithms. We compare
the three algorithms by tuning the number of query points from 5 to 15 with
the step of 2. The IO cost of exhaustive search algorithm is same with previous
experiment, which is still kept at a high level. The query time of exhaustive search
algorithm increases rapidly due to calculating the aggregate distance becomes

22 H. Wang et al.

 10

 100

 1000

 10000

 100000

 1e+006

 5 7 9 11 13 15

nu
m

be
r

of
 IO

s
(lo

g
sc

al
e)

m

MIN, IO cost

Exhaustive search
FS
HS

 1

 10

 100

 1000

 10000

 5 7 9 11 13 15

qu
er

y
tim

e(
lo

g
sc

al
e)

m

MIN, query time

Exhaustive search
FS
HS

 10

 100

 1000

 10000

 100000

 1e+006

 5 7 9 11 13 15

nu
m

be
r

of
 IO

s
(lo

g
sc

al
e)

m

SUM, IO cost

Exhaustive search
FS
HS

 1

 10

 100

 1000

 10000

 5 7 9 11 13 15
qu

er
y

tim
e(

lo
g

sc
al

e)
m

SUM, query time

Exhaustive search
FS
HS

Fig. 4. Effect of number of query points

more complex when the number of query points is bigger. The FS algorithm is
stable for sum aggregate function, but grows fast on min aggregate function.
This is because the min aggregate function needs to find the maximum minimum
aggregate distance while the sum aggregate function not, which means the bound
of min aggregate function is looser than the sum aggregate function. HS shows
the best performance for both the min and the sum aggregate functions in both
IO cost and query time aspects. The reason is that the clusters in priority queue
are sorted by maximum aggregate distance, thus most of unnecessary hierarchical
clusters are pruned before HS searching in it. Hence no matter how many query
points are given, it will not affect the efficiency of HS very much.

Effect of the Number of Requested Results. In this set of experiments,
we evaluate how the performance of the algorithm is affected by number of
requested results. The result is shown in Fig 5. We compare the IO cost and
the query time of these three algorithms by tuning the number of requested
results from 5 to 30 with the step of 5. The IO cost and query time of exhaustive
search algorithm is similar with last two experiments, since it need to search
the whole dataset. The performance of FS is stable except IO cost in min
aggregate function, the reason is that the min aggregate function needs to find
the maximum minimum aggregate distance. The IO cost of HS for both min
and sum aggregate functions increases quickly, since HS needs to search more
clusters in hierarchical structure to get top-k results, but its IO cost increases
stable with the growing of the number of the requested points. However, the
query time of HS is very stable with different k value since the HS maintains
the hierarchical cluster structure and the priority queue. Hence HS can quickly
get top k records from that priority queue during searching the hierarchical
cluster. Finally, HS still outperforms other two algorithms in this experiment
set.

Efficient Aggregate Farthest Neighbour Query Processing on Road Networks 23

 1

 10

 100

 1000

 10000

 100000

 1e+006

 5 10 15 20 25 30

nu
m

be
r

of
 IO

s
(lo

g
sc

al
e)

k

MIN, IO cost

Exhaustive search
FS
HS

 1

 10

 100

 1000

 10000

 5 10 15 20 25 30

qu
er

y
tim

e(
lo

g
sc

al
e)

k

MIN, query time

Exhaustive search
FS
HS

 1

 10

 100

 1000

 10000

 100000

 1e+006

 5 10 15 20 25 30

nu
m

be
r

of
 IO

s
(lo

g
sc

al
e)

k

SUM, IO cost

Exhaustive search
FS
HS

 1

 10

 100

 1000

 10000

 5 10 15 20 25 30
qu

er
y

tim
e(

lo
g

sc
al

e)
k

SUM, query time

Exhaustive search
FS
HS

Fig. 5. Effect of number of requested results

5 Related Work

The problem investigated in our paper is combined with aggregate function
and farthest neighbor search. We review the previous work related to these two
categories in this section.

5.1 Aggregate Nearest Neighbor (ANN) Query

Papadias et al. [3] studied earlier version of ANN query, which is called GNN
query. Three algorithms, which are called MQM, SPM and MBM, are proposed
in their work to solve GNN query. Papadias et al. extended their work [5] and
applied these algorithms to ANN query for solving min and max aggregate
functions. There are several different types of GNN query have been recently
studied in [10]. Yiu et al. studied the ANN query in road networks [2] from
Papadias et al [1]’s work. They proposed three algorithms, which are called
IER, TA and CE, to process sum and min aggregate functions with all data
objects are index by R-tree.

All the above work focus on NN query, which are not applicable to our ag-
gregate farthest neighbor query settings, where our query target to the farthest
neighbor on the road network.

5.2 Farthest Neighbour (FN) Query

Yao et al. defined reverse farthest neighbour (RFN) query [11] problem. They
proposed furthest Voronoi diagram based algorithms, which are called progres-
sive farthest cell (PFC) algorithm and convex hull farthest cell (CHFC) algo-
rithm to process RFN query with R-tree indexing. Moreover Tran et al. [12]

24 H. Wang et al.

studied top-k RFN query by using Network Voronoi Diagram (NVD),However,
these works only focus on the reverse farthest neighbour problem, where are not
applicable to solve AkFN query.

Gao et al. study aggregate farthest neighbour query [6] in Euclidean space,
and they the minimum bounding (MB) algorithm and best first (BF) algorithm,
which all use R-tree [7] based indexing method. The main idea of their algorithms
is using the maximum distance between query set and R-tree node as an upper
bound to prune unnecessary nodes. However, it is different with our work, since
our AkFN query is processed on the road network.

6 Conclusion

In this work, we investigate the AkFN problem on road network with min and
sum aggregate functions. We have proposed two algorithms, flat search and hi-
erarchical search, to associate with hierarchical clustering and pre-computing
methods. Finally, the experimental results show that the flat search algorithm
and the hierarchical search algorithm boost the searching efficiency compared
with naive algorithm.

Acknowledgement. This research is partially supported by Natural Science
Foundation of China (Grant No.61232006), and the Australian Research Council
(Grants No. DP110103423, No. DP120102829 and No. DE140100215).

References

1. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing in spatial network
databases. In: PVLDB. VLD 2003, pp. 802–813 (2003)

2. Yiu, M., Mamoulis, N., Papadias, D.: Aggregate nearest neighbor queries in road
networks. TKDE 17(6), 820–833 (2005)

3. Papadias, D., Shen, Q., Tao, Y., Mouratidis, K.: Group nearest neighbor queries.
In: ICDE, pp. 301–312 (2004)

4. Cheong, O., Su Shin, C., Vigneron, A.: Computing farthest neighbors on a convex
polytope. Theoretical Computer Science 296(1), 47–58 (2003)

5. Papadias, D., Tao, Y., Mouratidis, K., Hui, C.K.: Aggregate nearest neighbor
queries in spatial databases. ACM Trans. Database Syst. 30(2), 529–576 (2005)

6. Gao, Y., Shou, L., Chen, K., Chen, G.: Aggregate farthest-neighbor queries over
spatial data. In: Yu, J.X., Kim, M.H., Unland, R. (eds.) DASFAA 2011, Part II.
LNCS, vol. 6588, pp. 149–163. Springer, Heidelberg (2011)

7. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: SIG-
MOD 1984, pp. 47–57 (1984)

8. Yiu, M.L., Mamoulis, N.: Clustering objects on a spatial network. In: SIGMOD
2004, pp. 443–454 (2004)

9. Jagadish, H.V., Ooi, B.C., Tan, K.L., Yu, C., Zhang, R.: idistance: An adaptive
b+-tree based indexing method for nearest neighbor search. ACM Trans. Database
Syst. 30(2), 364–397 (2005)

Efficient Aggregate Farthest Neighbour Query Processing on Road Networks 25

10. Xu, H., Li, Z., Lu, Y., Deng, K., Zhou, X.: Group visible nearest neighbor queries
in spatial databases. In: Chen, L., Tang, C., Yang, J., Gao, Y. (eds.) WAIM 2010.
LNCS, vol. 6184, pp. 333–344. Springer, Heidelberg (2010)

11. Yao, B., Li, F., Kumar, P.: Reverse furthest neighbors in spatial databases. In:
ICDE, pp. 664–675 (2009)

12. Tran, Q.T., Taniar, D., Safar, M.: Reverse k nearest neighbor and reverse farthest
neighbor search on spatial networks. In: Hameurlain, A., Küng, J., Wagner, R.
(eds.) Trans. on Large-Scale Data- & Knowl.-Cent. Syst. I. LNCS, vol. 5740, pp.
353–372. Springer, Heidelberg (2009)

OSSM: The OLAP Security Specification Model

Ahmad Altamimi and Todd Eavis

Concordia University, Montreal, Canada
a alta@encs.concordia.ca, eavis@cs.concordia.ca

Abstract. Security policies in Online Analytical Processing (OLAP)
systems are designed to protect sensitive data from unauthorized access
while, at the same time, ensuring that legitimate requests can be consis-
tently satisfied. Ultimately, such policies allow administrators to define
a series of restrictions and/or exceptions that can be associated with the
components of the OLAP data model, including elements such as dimen-
sions, cells, and aggregation hierarchies. A primary limitation of many
current systems is that security policies are generally constructed on top
of very granular privilege models that can produce complex and error
prone mappings to the elements of the OLAP domain. In this paper, we
present an Object Oriented Security Model (OSSM) that has been specif-
ically designed for the specification of security policies within OLAP
environments. In addition to explicit support for components of the con-
ceptual data model, the OSSM can be used by the associated security
policy engine to transparently and consistently propagate constraints
across all relevant levels of dimension hierarchies. We discuss the core
elements of the OSSM, as well as the integration with the policy engine
that supports the language interfaces.

Keywords: OLAP, Security Languages, Authorization policy.

1 Introduction

One of the most important features of any OLAP system is the protection of
data against unauthorized disclosure (privacy), while at the same time ensuring
accessibility by authorized users whenever needed (availability). Considerable
effort has been devoted to addressing various aspects of privacy and availability.
Two main objectives are considered in this context. The first is the identification
and specification of suitable security policies. The second is the development of
a suitable access control mechanism implementing the stated policies.

With respect to the former, a number of researchers have investigated more
powerful access control systems, including those designed specifically for OLAP
domains [1,2]. Policy specification has also been considered though, in this case,
the target has typically been large scale distributed computing and network
environments [3,4]. We note that existing approaches to specification are not
as efficient as those natively developed for OLAP. Specifically, policies in such
environments define access privileges that are correlated with physical objects

H. Wang and M.A. Sharaf (Eds.): ADC 2014, LNCS 8506, pp. 26–37, 2014.
c© Springer International Publishing Switzerland 2014

OSSM: The OLAP Security Specification Model 27

such as tables, files, or servers. In contrast, policies in OLAP domains are ul-
timately associated with abstract conceptual entities such as dimensions and
hierarchical aggregation levels. Mapping these conceptual entities to the phys-
ical elements of the storage layer (i.e., tables, rows, columns) can, however, be
a significant technical challenge for administrators. Furthermore, the existence
of aggregation hierarchies provides opportunities for malicious users to subvert
the intended protection layers. For example, one might work around a restric-
tion on the summation of provincial sales totals by “rolling up” municipal sales
results instead. Failure to protect all such possibilities would introduce potential
vulnerabilities into the system.

In this paper, we propose a policy specification model that borrows from the
feature set of the object-oriented paradigm. The OLAP Security Specification
Model (OSSM) relies on the concepts of classes and objects to create instances of
various policy constructs such as Subjects, Roles, and Protected Objects. These
instances/objects are then combined together to create more expressive policies.
A primary objective of this approach is to allow policy designers to identify
security/privacy constructs at the level of the conceptual data model, without
regard for the complexity of the underlying logical or physical implementation.

To support the evaluation of the OSSM approach, we provide a prototype im-
plementation developed specifically for this environment. The framework consists
of three main components. The User Interface Tool allows end users to design
policies either by using an Object Oriented programmatic API or through a
more conventional SQL-style interface that directly interacts with the DBMS.
The Policy Repository, in turn, stores the policies generated by the interface tool.
Finally, the Policy Manager retrieves policies from the repository and delivers
them to the access control module for enforcement.

The remainder of the paper is organized as follows. In Section 2, we present
an overview of related work. Section 3 discusses the terminology relevant to the
policy specification domain. The OSSM model is then presented in detail in
Section 4. The implementation framework, including language/API mappings is
discussed in Section 5 and Section 6. Final conclusions are offered in Section 7.

2 Related Work

Early work in the area of policy specification tended to focus on networked and
distributed environments. The Ponder model, for example, targets networked
domains and represents policies as entries in a table consisting of multiple at-
tributes [5]. This model was extended to fully distributed environments with
Ponder2, an XML-based language that specifies security and management poli-
cies in a subject-action-target (SAT) format [6]. SecPAL, on the other hand,
expresses security credentials using predicates defined by logical clauses, in the
style of constraint logic programming [4]. We note, however, that while these
approaches are efficient when used on large-scale networks and distributed sys-
tems, they are not well-suited to OLAP domains as they are often fragmented,
dependent on infrastructure, and lack any native understanding of OLAP’s mul-
tidimensional data model.

28 A. Altamimi and T. Eavis

The ubiquitous Unified Modelling Language (UML) has also been used to
formulate security policies. For example, Alam et al. propose a security language
called SECTET-PL, and show how to express trust policies by using predicate
expressions whose grammar is expressed in UML [7]. In [8], the authors present a
Trust Management Framework that supports policy life cycle management using
UML diagrams. However, none of this work specifically focuses on the OLAP
domain; instead, it targets the policy model design itself.

Policy specification in web-based applications has also been proposed. SELinks,
for instance, targets web apps and provides a uniform programming model (in
the style of LINQ and Ruby on Rails), with language syntax for accessing objects
residing either in the database or at the server [9]. Other frameworks investigate
the association of security policies with client side code, with protection provided
by the interception and analysis of queries [11].

Modifications to SQL have been discussed as well, including extensions to
the SELECT and REVOKE statements in order to define a purpose driven
authorization model [12]. SQL to XML transformations have also been studied.
It is possible, for example, to employ control expression languages to map policies
from relational environments to those represented in XML [13]. Apart from the
fact that the model has not been implemented and its efficiency is unknown
even for small databases, the model is not applicable to multidimensional models
where millions of records may be materialized.

Finally, we note that while language extensions to specifically support OLAP
have not been addressed, a number of researchers have investigated more general
design issues for the data warehousing context, including both early requirement
targets such as agents, decisional goals, and quality goals [2], as well as late
stage conceptual-to-logical model mappings for authorization and auditing pur-
poses [14]. A survey of objectives, features, and limitations of warehouse security
modelling was provided in [15].

3 Preliminaries

Before discussing the semantics and syntax of the OSSM, we first provide an
introduction to the conceptual data model upon which OSSM is based and give
a brief overview of the basic terminology and structures relevant to policy spec-
ification in general.

3.1 The Conceptual Data Model

We consider multidimensional environments to consist of one or more data cubes
[16]. Each cube is composed of a series of d dimensions — sometimes called
feature attributes — and one or more measures. The dimensions can be visu-
alized as delimiting a d -dimensional hyper-cube, with each axis identifying the
members of the parent dimension (e.g., the months of the year). Cell values,
in turn, represent the aggregated measure of the associated members. Figure 1
provides an illustration of a very simple three dimensional cube on Store, Time
and Product.

OSSM: The OLAP Security Specification Model 29

Fig. 1. A Simple three dimensional data cube

Note, as well, that each dimension can be associated with a distinct aggre-
gation hierarchy. Products, for instance, are organized in Category ≥ Type ≥
Product number groupings. Product number is the lowest or base level in the
Product dimension. In practice, data is physically stored at the base level so
as to support run-time aggregation to coarser hierarchy levels. In this sense, we
may consider the attributes of each dimension to be partially ordered by the de-
pendency relation ≤ into a dependency lattice [17]. We could therefore define the
hierarchical relationships within the Product Dimension as Product number ≤
Type ≤ Category. The dependency lattice is formally expressed in Definition 1.

Definition 1. A dimension hierarchy Hi of a dimension Di, can be defined as
Hi = (L0, L1, . . . , Lj) where L0 is the lowest level and Lj is the highest. There
is a functional dependency between Lh−1 and Lh such that Lh−1 ≤ Lh where (0
∈ h ∈ j).

3.2 Subjects, Objects, Roles, and Policies

Security considerations in the data cube context range from simple authenti-
cation to the complex data authorization that provides protection for sensitive
data. Such considerations can be achieved by using policies. Policies determine
which subjects or users have access to a specific data object. For example, the
policy could establish that a user is restricted from accessing a specific level of
aggregation within a dimension but not the coarser levels.

Policies are typically based upon a combination of three basic components.
The first, Subjects, represents users to which authorizations are granted. A Sub-
ject can be a single user or a group of users within the system. Objects, on the
other hand, refer to the data to be protected. An object can be any partition
of a data cube defined along one or more dimensions in order to give an addi-
tional opportunity for finer authorization. Finally, Roles are named collections

30 A. Altamimi and T. Eavis

of privileges and represent organizational agents intended to perform certain job
functions within an organization. Constraints are subsequently assigned to spe-
cific roles based on the requirements of these functions. Subjects in turn are then
assigned appropriate roles.

Ultimately, because roles within an organization typically have overlapping
permissions, the roles themselves may be organized into a hierarchy which, in
turn, defines a partial ordering, denoted as ≤. More formally, given a role domain
R, we let ri, rj ∧ R define individual roles. If ri precedes rj in the hierarchy
ordering (ri ≤ rj), we say that ri is partially ordered relative to rj . This implies
that ri inherits all constraints that are assigned to rj , and that all users who are
mapped to ri are affected by the rj constraints. This notion is formally expressed
in Definition 2.

Definition 2. A role ri in a role hierarchy R inherits all constraints of roles L
= (rj, . . . , rz), where ri ≤ rj and rj ≤ rx ≤ rz for a role rx ∧ R. We say that
ri inherits all constraints of roles reachable from ri to the Root role of R.

4 The OLAP Security Specification Model (OSSM)

OSSM is a high-level OLAP security specification model designed to support the
development of intuitive policy schemas mapping directly to the OLAP domain.
The formal semantics for OSSM are based on the well-established typing and in-
heritance features of the Object Oriented paradigm. Specifically, OSSM defines
basic policy components as a set of cooperative classes. Each such class focuses
on a specific concept and defines all related functionality, including object instan-
tiation and management, property specification, core operations and associated
data structures. Objects can be re-used and combined in order to represent more
sophisticated policies. The core OSSM classes are the Subject Class (SC), Ob-
ject Class (OC), Role Class (RC), and Policy Class (PC). Before discussing the
classes themselves, we first introduce several supporting definitions.

Definition 3. Let A be a set of attributes shared by the objects of a specific class.
A is defined as the union of the object’s identifier OI and the object’s attributes
OA, where OA is a n-tuple of fields (a1, a2, . . . , an) that characterizes the object,
and OI is an identifier that explicitly defines every object of that particular class
for its entire life. We say that A = OI ∪OA.

Definition 4. For any protect object O, M is a set of methods allowed on O.
These methods are classified into two broad categories: Control Methods that are
used to create, update, and destroy objects, and Manipulation Methods that are
used to maintain objects memberships and obtain objects information.

Definition 5. Let C be a set of conditions that specifies protected values. C is
defined as an n-tuple (c1, . . . , cn) that may be connected by logical operators
(AND, OR) to define complex predicates protecting a cube element. We say that
C forms a general representation of any criteria/condition that may restrict any
element in a data cube by applying both arithmetic and logical operators.

OSSM: The OLAP Security Specification Model 31

Definition 6. Let E be a set of conditions (e1, . . . , em) that specifies exception
values. E defines a subset of the protected values as an exception, such that
E ⊂ C.

We will use following example throughout this section to illustrate the func-
tionality of the above classes.

Example 1. Given the data cube depicted in Figure 1, we assume the the fol-
lowing two restrictions should be satisfied. Due to privacy concerns, the sales
totals of all cities in the province of Quebec should not be accessed by the user
Bob, except for the sales of the city of Montreal. Second, assume that any sale
completed before 2005 should not be used for analysis.

4.1 The Subject Class (SC)

The Subject Class (SC) provides a template, or blueprint, to define the properties
and the operations common to all of the system’s users. These properties and
operations are represented within a class as fields and methods, and are defined
as a tuple (A, M). By applying the previous definitions to Example 1, we have
a Subject (e.g., Bob) with the following elements:

– A = OI ∪OA, where OI is the Bob identifier, and OA is the set of attributes
that describes Bob (e.g., subject name, password, and role identifiers).

– M = A method set (e.g., createSubject(), updateSubject(), dropSubject()).

4.2 The Object Class (OC)

The Object class (OC) provides a template to describe the protected data. We
note, however, that while the information within the cube is aggregated at dis-
tinct levels of granularity, the underlying physical data may in fact be distributed
across multiple tables. Moreover, we must be aware that protected data can be
computed from its more granular levels. Thus, any level below the protected
data must also be identified as protected. As such, the OC class must expose the
conceptual features of the OLAP data model, while transparently mapping these
entities to the logical schema. In practice, OSSM utilizes the XML-based gram-
mar of the open source Mondrian OLAP server for the conceptual-to-relational
mapping [18]. Note that this mapping is a one-time operation (carried out by the
database schema designer) and is entirely hidden from the policy administrator.

We now turn to the declaration of the OC itself. The OC consists of a tuple
(A, C, E, M), where A is a set of attributes describing the data object to be
protected, C is a set of conditions that specifies the protected values, E is a set of
conditions that specifies the exception, if one exists, and M is the set of methods
allowed on the class objects. For instance, recall the restrictions of Example 1,
whereby the sales of Quebec cities are restricted except for the city of Montreal.
A protected object Protected-Stores might be defined as follows:

32 A. Altamimi and T. Eavis

– A = OI ∪ OA.
– C = The restriction (e.g., Stores.Province = “Quebec”).
– E = The exception (e.g., Stores.City = “Montreal”).
– M = A set of methods (e.g., createObject(), dropObject(), updateObject()).

4.3 The Role Class (RC)

A role regulates the activities of its members through a set of restrictions. In-
stead of specifying such restrictions for each user, the OSSM specifies constraints
via data objects representing shared roles. In other words, restrictions are as-
sociated with the data objects that are grouped together or encapsulated into
Role objects, as formally stated in Definition 7.

Definition 7. Let OC1, OC2, . . . , OCn be n objects of Object Class (OC). We
define a Role class from these n objects as a tuple (O,A,M), where O is the set
of protected objects created by OC.

Example 2. Suppose a role (e.g., Analysis) is defined with the protected object
Protected-Stores . The Analysis role would be defined as:

– O = {Protected-Stores}.
– A = OI ∪OA, where OI is the role identifier, and OA is the set of attributes

to describes the role (e.g., role name, role description).
– M = A set of methods (e.g., createRole(), dropRole(), addObjects()).

4.4 The Policy Class (PC)

We now proceed to the definition of the composite policy class (PC). The PC
allows administrators to specify the requirements of the organization’s security
policies relative to the various cube elements. These requirements outline the
association between Subjects, Protected Data Objects, and Roles. We formally
define of PC below, and then provide an example to illustrate its construction.

Definition 8. Let SC be a Subject Class and RC be a Role Class. We define a
Policy Class (PC) as a tuple (SO,RO,A,M), where SO and RO are the Subject
and Role objects that have been instantiated from SC and RC.

Example 3. By applying the class definition of PC to the policy of Example 1,
the following policy (e.g., Policy1) can be constructed.

– SO = {Bob} — the subject.
– RO = {Analysis} — the protected object.
– A = Policy Identifier ∪ an attribute set, used to describe the policy and

the association between its components (e.g., role name, role description,
Subjects Roles Assignment).

– M = A set of methods (e.g., Assign(), Withdraw(), and Select()).

OSSM: The OLAP Security Specification Model 33

5 The OSSM Policy Engine

While the proposed security model provides the logic and syntax for defining
security policies, it is important to note that without an appropriate server-side
engine to support the client-side language interfaces, the process of defining,
storing, and managing security policies would not be possible. In this section, we
discuss the OSSM policy management engine and provide a brief description of
its structure and functions. The engine itself consists of three major components:

1. The User Interface is the means by which an administrator actually de-
fines policies. It is an important component of the framework since it hides
low-level policy details and permits the administrator to define the policy
classes using either a declarative syntax or an OOP interface. Details of the
options for language interfaces are discussed in Section 6.

2. The Policy Repository is used to store the policies generated by the
language interface. It acts as a bridge between the interface software and the
policy management component. The Policy Repository itself consists of a set
of tables (Subjects, Objects, Roles, and Policies) that collectively represent
the meta data required to define security measures. A slightly simplified
depiction of its schema is provided in Figure 2(a).

3. The Policy Manager is a bidirectional component. The access control
module requests policies that are associated with a specific user when it re-
ceives his/her query. The policy manager, in turn, contacts the policy repos-
itory and retrieves the applicable policies, which are then sent to the access
control module that ultimately permits or rejects requests for a particular
data item. The basic architecture is depicted in Figure 2(b).

(a) (b)

Fig. 2. (a) The Policy Repository (b) The Policy Engine

6 Integration Options

Policies that have been specified as per the OSSM model must eventually be en-
tered into a policy repository in some way. Typically, this would be done in two

34 A. Altamimi and T. Eavis

distinct, but cooperative forms. On the one hand, the conceptual representation
can be exposed directly within an Object Oriented programmatic API. On the
other, a more conventional SQL-style interface can be provided for direct inter-
action with the DBMS in a manner consistent with conventional approaches.
We note that the current prototype contains proof-of-concept versions of both.
Because the OO approach ultimately “piggy backs” on top of the SQL model,
we begin the discussion of the integration options with this more conventional
implementation.

6.1 Declarative Language Extensions

Existing access policies are typically specified via SQL statements, most notably
the GRANT/REVOKE commands of the Data Control (sub) Language (DCL).
Here, basic privileges (e.g., INSERT, SELECT, UPDATE, EXECUTE) can be
associated with the elements of the logical schema (e.g., tables, views, proce-
dures). For convenience, privileges can in turn be organized into simple Roles.
For example, the testing Role can be created by the database designer, with
the ability to create new tables then assigned to this role.

The more sophisticated security constraints described in this paper can in
fact be integrated into this specification environment. In particular, the OO
characteristics of the conceptual model can be “flattened” to suit the simple
declarative structure of the DCL without sacrificing expressibility. Below, we
list the core command categories that can be used to extend the conventional
SQL/DCL language. Figure 3 then illustrates basic syntax, along with a series
of simple examples.

– The Create commands instantiate Subjects, Roles, and Protected Objects
and store them in the server side repository.

– The Drop commands remove data objects and associated dependencies, if
necessary.

– The Update commands modify the properties of an existing protected object
or its associated restriction(s).

– The Role membership commands maintain subject-role information through
Assign and Revoke commands.

– The Object manipulation commands are used to manage the policy’s pro-
tected objects.

– The Select commands retrieve an object’s details or its membership infor-
mation.

6.2 Programmatic API

While SQL has been the de facto standard for general database interaction for
the past several decades, programmatic APIs have also been developed. Perhaps
most significantly, ODBC and JDBC have become the standard means by which
to deliver query statements to the DBMS and, subsequently, receive results. More

OSSM: The OLAP Security Specification Model 35

Create Subject

The Command The Command Syntax and Examples Description

Syntax: Create Subject userName With password

Example: Create User Sue with SOK92
Creates a new user account identified by a password.

Create Role
Syntax: Create Role roleName Child? parentName?

Example: Create Role Marketing Child Administering

Defines a new role that can be a child of another

existing role.

Create Restriction

Syntax: Create Restriction restrictName On cubeElement

Except exception

Example: Create Restriction RegionRest On Customer.Region

Except Customer.Nation

Creates a restriction on accessing a specified data cube

element with exception(s).

Update Restriction
Syntax: Update restrictionName Set Restriction newRestriction

Example: Update RegionRest Set Restricion Customer.Region=Asia
Updates the restriction itself.

Update Exception
Syntax: Update restrictionName Set Exception newException

Example: Update RegionRest Set Exception Customer.Nation=China
Updates the Exception if it is exits.

Assign
Syntax: Assign subjectName To roleName

Example: Assign Sue To Marketing

Assigns an existing subject to one or more existing roles

according to the subject duties.

Revoke
Syntax: Revoke subjectName From roleName

Example: Revoke Sue From Marketing
Revoke a subject from a specific role.

Add
Syntax: Add restrictionName To roleName

Example: Add RegionRest To Marketing

Adds a restriction to a specific role. All subjects

assigned to that role will be affected by this restriction.

Remove
Syntax: Remove Restriction restrictionName From roleName

Example: Remove Restriction RegionRest From Marketing

Removes a restriction and/or its exception from a

specific role to make it less restrictive.

Drop Subject
Syntax: Drop Subject subjectName

Example: Create User Sue with SOK92

Removes a user account permanently. Consequently, its

roles memberships will also be removed automatically.

Drop Role
Syntax: Drop Role roleName

Example: Drop Role Marketing

Removes a specific role. Consequently, any user

membership for the specified role is revoked.

Drop Restriction
Syntax: Drop Restriction restrictionName

Example: Drop Restriction RegionRest

Removes a defined restriction and consequently

removes it from all associated roles.

Select Subject’s

Restrictions

Select Role’s

Restrictions

Select Subjects
Syntax: Select Subjects Of Role roleName

Example: Select Subjects Of Role Marketing
Gets all subjects assigned to a specific role.

Select Roles
Syntax: Select Roles Of Subject subjectName

Example: Select Roles Of Subject Sue
Gets all roles of a specific subject.

Syntax: Select Restrictions On Subject subjectName

Example: Select Restrictions On Subject Sue
Gets all restrictions on a specific subject.

Syntax: Select Restrictions Of Role roleName

Example: Select Restrictions Of Role Marketing
Gets all restrictions of a specific role.

Fig. 3. Delarative OSSM commands

recently, Object Relational Mapping (ORM) frameworks such as Hibernate [19]
have been developed to minimize the impact of the impedance mismatch caused
by Object-to-Table mapping logic.

In such cases, of course, it is important to note that the queries encapsulated
by the API methods are typically data queries. In other words, such queries are
interactively retrieving and updating dynamic operational data. Strictly speak-
ing, it is possible for an OO implementation of the security classes previously
discussed to be used directly against the DBMS. However, in most situations
it would be cumbersome to specify and maintain policy specifications program-
matically (i.e., writing application code to view and maintain policy objects). In
fact, a more likely scenario would be the use of graphical tools to allow intuitive
modelling and maintenance of complex enterprise policies.

It is in this context that an OO API would be utilized. Specifically, the de-
sign of modelling applications would be significantly simplified by a direct proxy
interface. Here, the policy classes discussed in the preceding sections are ex-
posed as wrappers to the backend repository. Policy objects would then be ac-
cessible within the graphical interface so as to provide security specialists with
an intuitive, point-and-click mechanism for setting and modifying authorization
constraints.

36 A. Altamimi and T. Eavis

�������	�
� 	������	�
�

 Graphical Modeling Tool

�������	

������	�
�������

��������������

��������������

��������������

�����������

��������������������

�������������������

���

�������	
�

���������	�
����

��������������

��������	
���	��

�
�
��

���������

��������
�	���	����

�
����	�������	

���������	������	�

��
��	
��
��
�

Fig. 4. OSSM API logic

Figure 4 provides a simple illustration of the model. Here a client side Object
(i.e., OC) houses data related to a given Policy Object specification. The imple-
mentation exposes an OO API to the privacy specialist who can then manipulate
the object graphically. It terms of the class implementation itself, it would func-
tion as a proxy in the sense that it would relay data (e.g., object instantiation
and updates) to the DBMS repository. To do so, it would utilize the low level
JDBC/ODBC API to transmit the extended SQL statements described in the
previous subsection. All of this logic would be transparent to the user as he/she
would simply work with the graphical representation of the policy objects.

7 Conclusions

In this paper, we have introduced a security policy design model called OSSM
that is directly associated with the OLAP domain. Building on an Object
Oriented paradigm, OSSM allows administrators to intuitively model complex
OLAP-specific policies at the level of the conceptual data model. As a conse-
quence, the multi-level aggregation hierarchies inherent in the data model can
be secured without concern for the complexities or idiosyncrasies of the under-
lying logical or physical schema. Subjects, Roles and Protected Objects can be
combined and re-used as required. We have also discussed the associated policy
engine, as well as options for integrating the OSSM approach into conventional
data management systems. Given the size of the OLAP market, and the im-
portance of properly protecting analytics/warehouse data, we believe that this
kind of domain-specific approach represents a significant improvement relative
to current alternatives.

References

1. Altamimi, A., Eavis, T.: Securing Access to Data in Business Intelligence Domains.
J. International Journal on Advances in Security 5, 94–111 (2012)

2. Khajaria, K., Kumar, M.: Modeling of security requirements for decision informa-
tion systems. J. SIGSOFT Softw. Eng. Notes 36, 1–4 (2011)

3. Dell’Amico, M., Serme, G., Idrees, M.S., Santana de Olivera, A., Roudier, Y.:
HiPoLDS: A security policy language for distributed systems. In: Askoxylakis, I.,
Pöhls, H.C., Posegga, J. (eds.) WISTP 2012. LNCS, vol. 7322, pp. 97–112. Springer,
Heidelberg (2012)

OSSM: The OLAP Security Specification Model 37

4. Becker, M., Fournet, C., Gordon, A.: SecPAL: Design and semantics of a decen-
tralized authorization language. J. Comput. Secur. 18, 619–665 (2010)

5. Damianou, N., Dulay, N., Lupu, E.C., Sloman, M.: The Ponder Policy Specification
Language. In: Sloman, M., Lobo, J., Lupu, E.C. (eds.) POLICY 2001. LNCS,
vol. 1995, pp. 18–38. Springer, Heidelberg (2001)

6. Twidle, K., Dulay, N., Lupu, E., Sloman, M.: Ponder2: A Policy System for Au-
tonomous Pervasive Environments. In: IEEE Workshop on Policies for Distributed
Systems and Networks, pp. 330–335. IEEE Computer Society, Washington (2009)

7. Alam, M., Breu, R., Hafner, M.: Model-Driven Security Engineering for Trust
Management in SECTET. J. Journal of Software 2, 47–59 (2007)

8. Halvard, S., Hamid, M., Boualem, B., Fabio, C.: Modeling Trust Negotiation for
Web Services. J. Journal of Computer 42, 54–61 (2009)

9. Corcoran, B., Swamy, N., Hicks, M.: Cross-tier, label-based security enforcement
for web applications. In: ACM SIGMOD, pp. 269–282. ACM, New York (2009)

10. Jacobi, I., Kagal, L., Khandelwal, A.: Rule-Based Trust Assessment on the Seman-
tic Web. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) RuleML 2011 -
Europe. LNCS, vol. 6826, pp. 227–241. Springer, Heidelberg (2011)

11. Felt, A., Finifter, M., Weinberger, J., Wagner, D.: Diesel: applying privilege sep-
aration to database access. In: 6th ACM Symposium on Information, Computer
and Communications Security, pp. 416–422. ACM, New York (2011)

12. Van Staden, W., Olivier, M.: SQL’s revoke with a view on privacy. In: South African
Institute of Computer Scientists and Information Technologists on IT Research in
Developing Countries, pp. 181–188. ACM, New York (2007)

13. Leighton, G.: Preserving SQL access control policies over published XML data. In:
EDBT/ICDT Workshops, pp. 185–192. ACM, New York (2009)

14. Soler, E., Trujillo, J., Fernandez-Medina, E., Piattini, M.: Application of QVT for
the Development of Secure Data Warehouses: A case study. In: Int. Conference on
Availability, Reliability and Security, pp. 829–836 (2007)

15. Singh, I., Kumar, M.: Evaluation of approaches for designing secure data ware-
house. In: Int. Conference on Advances in Computing, Communications and Infor-
matics, pp. 69–73. ACM, New York (2012)

16. Jim, G., Adam, B., Andrew, L., Don, R., Hamid, P.: Data cube: A relational aggre-
gation operator generalizing group-by, cross-tab, and sub-totals. J. Data Mining
and Knowledge Discovery. 1, 29–53 (1997)

17. Harinarayan, V., Rajaraman, A., Ullman, J.: Implementing data cubes efficiently.
In: ACM SIGMOD, pp. 205–216. ACM, New York (1996)

18. Mondrian. Pentaho Analysis Services, http://mondrian.pentaho.com
19. Linwood, J., Minter, D.: Beginning Hibernate, 2nd edn. Apress (2010)

http://mondrian.pentaho.com

Scalable Gaussian Process Regression

for Prediction of Material Properties

Eve Bélisle1, Zi Huang1, and Aimen Gheribi2

1 University of Queensland, Brisbane, Australia
2 École Polytechnique de Montréal, Montréal, Canada

{uqzhuang,e.belisle}@uq.edu.au, aimen.gheribi@polymtl.ca

Abstract. Gaussian process regression (GPR) is a non-parametric ap-
proach that can be used tomake predictions based on a set of known points.
It has been widely employed in recent years on a variety of problems. How-
ever the Gaussian process regression algorithm performs matrices inver-
sions and the computational time can be extensive when accessing large
training datasets. This is of critical importance when on-line learning and
regression analyses are carried out on real-time applications. In this pa-
per we propose a novel strategy, utilizing batch query processing and co-
clustering, to achieve a scalable and efficient Gaussian process regression.
The proposed strategy is applied to a real application involving the pre-
diction of materials properties. Comprehensive tests have been conducted
on two published properties data sets and the results demonstrate the high
accuracy and efficiency of our new approach.

1 Introduction

The Gaussian Process Regression (GPR) is a well-known and highly reliable re-
gression model in Machine Learning. Its non-parametric nature makes it flexible
and particularly adaptable to various types of data. It has been widely used in
scientific data analysis, such as prediction of materials properties, microstructure
evolution prediction in thermo-mechanically processed metals, robot control, etc.
For example, given a set of known chemical compounds with their correspond-
ing measured Electrical Conductivity (EC), the EC of an unknown material of
known chemical composition (ex. x1SiO2 + x2CaO + x3MnO + x4Al2O3) can
be predicted by GPR, where SiO2, CaO, MnO, and Al2O3 are considered as
the multiple variables in this regression model.

Our work illustrated in this paper is inspired by an application on the pre-
diction of material properties, more specifically, by the optimisation of these
predictions, which require a large number of single predictions to be performed
sequentially. Each prediction request from users is considered as a query in our
work, which is represented as a single vector of real numbers, corresponding to
the values of composition for each input component. The result of a query is a
predicted value for the studied property. Though GPR has proven to be supe-
rior to other existing regression models in terms of reliability, it suffers from high
computational cost caused by matrix inversion operations in both the learning

H. Wang and M.A. Sharaf (Eds.): ADC 2014, LNCS 8506, pp. 38–49, 2014.
c© Springer International Publishing Switzerland 2014

Scalable Gaussian Process Regression for Prediction of Material Properties 39

and regression steps. In some cases, the learning step is only required to be pre-
formed once, as the learned hyperparameters of the model can be repeatedly
used for subsequent queries. However, applications such as material property
predictions are generally for more than one query. Scientists may upload a large
number of chemical compounds with different xi constraints in order to make
EC predictions. The low efficient regression step in the conventional GPR is not
capable of dealing with the streaming queries on large scale. For a growing num-
ber of real-time applications such as robot dynamic control, on-line learning is
also required. It is extremely time consuming when applying the conventional
GPR, which makes real-time responses impractical.

In this paper, we propose a novel approach to perform the conventional GPR
efficiently with a three-step strategy. With this so-called Scalable GPR, the size
of the training data used for learning and regression is significantly reduced,
resulting in a promising efficiency improvement. Meanwhile, the intrinsic infor-
mation embedded in the training data is kept in the reduced data set, which
guarantees a high accuracy of the regression. Two real applications are studied
in this paper: prediction of Martensite start temperature and Electrical Con-
ductivity. The comprehensive experiments on these two materials datasets show
the outstanding performance of the proposed method compared with the conven-
tional GPR and other existing popular machine learning methods for predictions.
To be more specific, we make the following contributions.

– We propose a fast batch query processing algorithm to handle large numbers
of queries by grouping them by similar characteristics. It is an essential step
for the real-time predictions and also the foundation of the further training
data condensation.

– We analyze the structure of the training data and condense it by removing
the redundant information and preserving embedded intrinsic information.

– A query-aware training data selection strategy is designed to further enhance
the efficiency of the model by taking into account the relationship between
the query and the training data.

– We conduct extensive performance studies on two real-life materials datasets,
which are large scale from the perspective of machine learning. The results
demonstrate the high accuracy and the significant efficiency improvement of
our proposal over existing methods.

The rest of the paper is organized as follows. After discussing the related work,
we present a brief definition of the Gaussian Process Regression method. We
then describe the strategy developed in order to reduce the computational cost,
followed by the performance study on both Martensite Temperature prediction
and Electrical Conductivity prediction. Finally, a general discussion and analysis
of the results is presented.

2 Related Work

Predicting the martensite start temperature (Ms) has been reported by several
authors. While some had good results using a neural network model [14] [10],

40 E. Bélisle, Z. Huang, and A. Gheribi

others preferred a thermodynamic framework [11] or a purely empirical approach
[4][5]. These methods have been thoroughly investigated by Soumail et al. in 2006
[9]. Their conclusion was that although the thermodynamic approach provides
satisfying results, there is a strict limitation in the query points, based on the
fundamental assumptions upon which the model was based. They found that
the neural network approach performs as well as other methods, however some
wild predictions were obtained and they recommended the use of a Bayesian
framework.

The problem of high-dimensionality and large amount of data for Gaussian
processes has been studied by E. Snelson et al. [8] and R. Urtasun [12]. They
both proposed partitioning the data, which is the approach we adopt in this
present study.

In the area of clustering of high-dimensional and large amount of data, Huang
et al. [3] introduced an effective co-clustering approach, this method was used
for multimedia similarity search and was not fully compatible with databases
containing chemical compositions but we took inspiration from both ideas.

3 Gaussian Process Regression

In this section we give a brief description of the Gaussian process regression ap-
proach for machine learning. A Gaussian process (GP) is a generalisation of the
Gaussian probability distribution [6]. It is essentially an extension of multivari-
ate Gaussian, which considers Gaussian distribution to be not only over random
vectors but also over random functions. A stationary Gaussian process regres-
sion (GPR) is the canonical statistical model for data arising from computer
experiments. Like other Bayesian regression algorithms, the GPR computes a
posterior distribution based on a prior distribution (training data). The GPR
has been recognised as a superior method for the accurate function approxima-
tion in high-dimensional space [6]. For a detailed description of the GPR, please
refer to Rasmussen and Williams [6].

In this work we consider the the covariance matrix as in previous work of
Gibbs and MacKay[2]:

K(
−→
X,

−→
X ∪) = θ2

f exp

⎧
⎨

⎩
−1

2

n∑

j=1

(xi − x∪
j)

2

dj

⎫
⎬

⎭
+ θ2

nβ(
−→
X,

−→
X ∪) (1)

Where β is the Kronecker delta function, θ2
f denotes the function variance and

d represents the width of the Gaussian kernel.
From the above equation, we can see that to perform a GPR, we need to

generate the covariance matrix K, whose elements are covariance functions on

all possible combinations of training data point pairs. To calculate KT∗ for the

regression part, we also need to process all training data points. Thus, the com-
putational cost of a GPR heavily depends on the training data size. Though the
GPR is a highly accurate regression method, it suffers from a high computational
cost and is not practical for real-time applications.

Scalable Gaussian Process Regression for Prediction of Material Properties 41

4 Our Approach

The standard GPR algorithm has two main components: the optimisation of the
hyperparameters to be used in the covariance matrix and the actual regression
with the query points. Both require matrices inversions, and the computational
cost is therefore heavily linked to the size of the training database. Typically,
the computational complexity of performing the necessary matrices inversions
is proportional to n3 where n is the number of training data points. A scalable
GPR is highly desirable because of the following two issues. Firstly, when given
a fixed training data set, the optimisation step only needs to be performed once,
since the hyperparameters can be saved and reused. However, to achieve accurate
predictions for different kinds of query points, the training set has to contain as
much information as possible, which results in a very large scale training data set.
For this reason, the existing methods generally suffer from loading the training
set with large amounts of data points. Secondly, in many real-time applications,
such as robot control, on-line learning and regression are required. Since the
computational cost of GPR is highly associated with the training data size, in
the present study, we aim to design a scalable GPR algorithm by reducing the
training data size while maintaining the intrinsic information embedded in it.
The proposed algorithm has three stages: 1 - Batch query processing, 2 - Training
data condensation and 3 - Query-aware training data selection. In the following
sections we refer to our strategy as the Scalable GPR.

4.1 Batch Query Processing

While typical materials optimisation calculations are performed sequentially as
they are dependent on the previous result, we will be considering large amounts
of input queries in our application. In order to reduce the computational cost on
on-line regression for streaming queries, we conduct batch query processing by
considering the similarities between query points. According to their different
characteristics, the query points are clustered into groups, each of which will
be represented by a summarized representative point. The representatives will
be passed to the regression model and be used for the training data selection.
We apply an agglomerative clustering approach to first group points in pairs of
closest points using the Euclidean distance. It then groups pairs together and so
on until a target number of points per group is obtained. The function used to
measure the Euclidean distance between two points and two groups of points is
as follows:

√
√
√
√

n∑

i=1

(qi − pi)2 (2)

Where p and q are two points in an Euclidean space of dimension n. This
method for clustering data in high-dimensional space has proven to be a simple
but efficient one [13].

42 E. Bélisle, Z. Huang, and A. Gheribi

When comparing two groups of points, the geometrical mean on each dimen-
sion is used to calculate the Euclidean distance. Given a data set {−→x1,−→x2, ...−→xn},
the definition of geometrical mean on dimension d is as follows:

(
n∏

i=1

xdi

) 1
n

(3)

The geometrical mean of a set is based on the product of the values instead of
a sum. This type of mean is particularly useful when attempting to minimise the
impact of data with different ranges, which could occur with data for prediction
of material, where different scales might be found in the set of points.

4.2 Training Data Condensation

The second step consists of a pre-filtering of the entire training data. This is done
to condense redundant observations, and therefore acts as a first dimensionality
reduction step. Inspired by the co-reduction approach introduced by Huang et al.
[3], we reorganise the rows by similarity and then combine them together using a
reduction function Θ. Our reduction function Θ consists of computing the mean
values on each dimension of the two merged rows. A reduction on the number of
columns will be achieved in the final selection of data (section 4.3). Here a simple
Euclidean distance function between the points is not enough, because we want
to avoid a situation where two points would be far on one dimension and identical
in every other dimensions. We want the clustered points to be close to each other
on every dimension, due to the nature of the data. With chemical compositions,
it can be the case that one of the components makes a very big difference on the
value of the physical property, as there could be possible interactions with the
other components present. For this same reason, we could not fully apply the
co-reduction technique and introduce a column reduction function. For example,
let us consider the following three points in a 4 dimensional space:

⎛

⎝

C Si N Mo

A 20 3 0 1
B 15 3 4 1
C 26 5 0 4

⎞

⎠

Using equation 5, the Euclidean distance between A and B gives a value of
approximately 6.4, while the Euclidean distance between A and C gives a value
of 7. According to our previous reasoning, we wish to favour the clustering of A
and C because they have actual data in the same dimensions, thus reducing the
risk of component interaction affecting the physical property. Therefore, we use
the following rule to compare two points p and q:

∀i ∈ N :

(
|qi − pi|
∑N

j=1 qj
< Σ

)

∧
(
|qi − pi|
∑N

j=1 pj
< Σ

)

∧ ((pi = 0) ↔ (qi = 0))

Scalable Gaussian Process Regression for Prediction of Material Properties 43

Where N is the total number of columns (dimensions) and Σ is an arbitrary
condensation constraint, we tested with values of 0.5, 1, and 5%. If the above
predicate is true, then the two rows can be merged together applying Θ. The
algorithm is executed recursively until no more merges are possible.

4.3 Query-Aware Training Data Selection

Before calculating the actual predictions, we perform the final selection of the
training points by considering the relation between the representative query
points generated from the first stage and the condensed training set created in
the second stage. This is done by first calculating the geometrical mean (i.e.,
Equation 3) on each dimension of the batch query. Once the geometrical mean
(g) is found, we compare this value to each point (p) in the condensed training
set obtained, using a modified Euclidean distance formula:

√
√
√
√

n∑

i=1

(
gi

∑n
j=1 gj

− pi
∑n

j=1 pj

)2

(4)

In other words, we calculate the Euclidean distance on normalised values.
It is because we want to measure the distance using proportions of chemical
compositions instead of the actual values. We keep an arbitrary number of results
in the final training set, the ones with the closest distance to the geometrical
mean (Fig. 4.3). A number of K similar points from the training data set will
be selected for each batch query to be considered as its local or specific training
data. The parameter K for each batch query is determined by the acceptable
predicted error bound. That means the value of K is decided depending on the
accuracy of the prediction. As you can see on Fig. 4.3, some points can be present
in more than one training set, this will ensure consistency for each batch query.

If the target error bound can not be reached using the selected number of
training data, the number of training points is increased and the regression is
calculated again until the target error bound is reached. The reduced number
of training points allows us to do a further clustering of the data, eliminating
the dimensions where there is no composition available, therefore reducing the
number of columns in the training matrix.

5 Application on Martensite Start Temperature
Prediction

Martensite is a crystalline structure formed in the process of cooling carbon
steels at high rates (quenching). Controlling the amount of martensite in a given
steel is critical as it has an important effect on the physical and mechanical
properties of the steel. One of the variables engineers have to take into account
is the Martensite Start (Ms) Temperature, which can be predicted by giving the
amount of each chemical component contained in a query steel. To evaluate the
performance of the proposed Scalable GPR, we conduct a series of experiments
on Ms temperature predictions.

44 E. Bélisle, Z. Huang, and A. Gheribi

Fig. 1. Final selection of the training points: K-NN of the geometrical mean

100 200 300 400 500 600 700 800
100

200

300

400

500

600

700

800

Measured

P
r
e
d
i
c
t
e
d

Using conventional GPR

(a)

100 200 300 400 500 600 700 800
100

200

300

400

500

600

700

800

Measured

P
r
e
d
i
c
t
e
d

Using Scalable GPR

(b)

Fig. 2. Predicted vs Measured Ms Temperature (K)

5.1 Dataset

A database of approximately 1,100 entries collected from the literature, available
for download on the Thomas-Sourmail website [10] is used in our experiment.
It covers a wide variety of compositions of steels with measured Ms tempera-
tures. Each entry represents a composition of the steel and its corresponding Ms
temperature observed. The database is a table of 15 columns, where the first 14
columns represent the values in weight percent of 14 chemical components (C,
Mn, etc.) and the last one is the Ms temperature value.

We randomly take 80% of the available points for training and the remaining
20% for testing the predictions. Thus, the numbers of training points and testing
points are 870 and 220 respectively. This procedure is repeated 10 times to get
the final prediction performance.

5.2 Performance Study

Conventional GPR: To illustrate the superiority of the proposed Scalable
GPR, we first test the conventional GPR by using the training and testing data
described in Section 5.1. The prediction values obtained in our experiment are

Scalable Gaussian Process Regression for Prediction of Material Properties 45

Table 1. Conventional GPR vs Scalable GPR for predicting Ms

AE (%) RMS (K)
Total training
time (sec)

Average
prediction
time per

testing point
(sec)

Average time
cost per

testing point
(sec)

GPR 3.08 21.6 969.40 5.52 9.92

Scalable GPR 5.02 42.6 26.5 0.13 0.25

Table 2. Batch query performances for prediction of Ms

Batch
Size of the
training
matrix

Training time for
each batch query

(sec)

Average
prediction time
per testing point

(sec)

1 95×13 4.35 0.14

2 93×12 5.29 0.17

3 96×13 3.06 0.10

4 95×11 2.48 0.08

5 108×14 4.99 0.14

6 165×12 7.09 0.14

as consistent as those of Bailer-Jones, Bhadeshia and MacKay [1] (Fig. 2(a)).
Two performance indicators average error (AE) and root mean square (RMS)
are used to evaluate the accuracy of the testing method, which are defined as
follows:

AE =
1

Nt
×

Nt∑

i=1

|pi − ai|
ai

(5)

RMS =

√
∑Nt

i=1 |pi − ai|2
Nt

(6)

Where Nt is the number of testing points, p is the predicted value and a is
the actual value.

As reported in Table 1, the AE and RMS produced by the conventional GPR
are 3.08% and 21.6 degrees respectively. The average prediction time in the
regression step for each testing point is 5.52 seconds, on an Intel i7 3.4GHz
with 16 GB of RAM and the time cost to calculate the hyperparameters in
the training step is 969.40 seconds. As we mentioned earlier, on-line training is
required in many real-time applications. Taking into account both the training
and prediction time costs, GPR averagely spends 9.92 seconds on each testing
point to make a prediction. The time cost at this scale is certainly impractical.

Scalable GPR: Our proposed Scalable GPR offers a significant efficiency im-
provement. Compared with GPR, the training time is heavily reduced from 969.4

46 E. Bélisle, Z. Huang, and A. Gheribi

seconds to 26.5 seconds and the average prediction time in the regression step
is reduced from 5.52 seconds to 0.13 seconds. It makes the real-time predic-
tion realistic where the total cost including both training and prediction for an
individual query point is 0.25 seconds.

As described in section 4, batch query processing is performed in the Scalable
GPR to achieve efficient query predictions. Here we choose one round of testing
as an example to describe the batch query details. As illustrated in Table 2,
a total of 6 batch queries are created in this testing round. We choose to set
a condensation constraint of Σ = 5% which allows us to condense the training
data from 870 points to 416 points in the second stage. The final selection of
training points for each batch query is then performed using this condensed
dataset, as explained in section 4.3. When trying to further condense the data,
we observe that using an Σ > 5% leads to too much compression of the data,
producing values in every dimensions for too many data points. In addition to
a loss of information, this means that further vertical condensation is virtually
impossible and therefore there is no further gain on the computational cost.
In this example we set a target error of 10% or less, increasing the number of
training points and using a lower condensation (Σ) if not reached. The time cost
to optimise the hyperparameters in the training step for each batch is reported
in Table 2. We can observe that reducing the size of the training matrix is of
critical importance to improve the speed of the GPR.

It is always a trade off between efficiency and accuracy. To achieve scalable
and efficient predictions, the accuracy of the Scalable GPR is sacrificed, where
the AE and RMS are 5.02% and 42.6 degrees respectively (Table 1). However,
from a chemistry point of view, an average error of 10-20% or less is considered
acceptable for predicting Ms. Thus the Scalable GPR delivers a fairly acceptable
accuracy (Fig. 2(b)) with significant efficiency improvement. Using our Scalable
GPR, 95% of predictions had an error of 20% or less.

Other Comparisons: Besides the conventional GPR, we also compare our
method with Neural Network and SVM, which are widely used in scientific data
prediction. However the Neural Network method takes more than 5 hours on
training step for 870 training points and SVM delivers fairly poor predictions
with low efficiency. The performances of both methods are not comparable with
the Scalable GPR in terms of either efficiency or accuracy. In 2011, S�loński also
showed the computational cost superiority of the GPR compared to Bayesian
and standard Neural Network [7].

6 Application on Prediction of Electrical Conductivity

The efficiency and the accuracy of the Scalable GPR have been demonstrated
in Ms temperature prediction. To further test the scalability of the proposed
method, we conduct the second series of experiments on electrical conductivity
predictions by involving a much larger scientific dataset. In this group of exper-
iments, the conventional GPR is not able to deal with the large scale training
dataset due to the extremely expensive computational cost.

Scalable Gaussian Process Regression for Prediction of Material Properties 47

6.1 Dataset

The database for Electrical Conductivity has a total of approximately 15,700
entries over 29 dimensions. This is considered to be very large as far as exper-
imental points databases are concerned. As per the previous case study, each
row has a set of chemical compositions in mol % with an associated logarithmic
value of electrical conductivity in Siemens/meter. We have collected this data
from the literature. In addition to the set of chemical compositions, the tem-
perature in Celsius is also provided for each data point. The range of chemical
compositions varies between 0 and 100 while the temperature varies between
approximately 90 and 3,000. We rescaled the temperature by a factor of 200
to make the data more uniform and thus obtaining better predictions. In the
following performance study, we will focus on the scalability our approach and
discuss the effect of the batch query processing in the proposed Scalable GPR.

6.2 Performance Study

Conventional GPR: The experiments are conducted on a regular desktop
computer, therefore attempting a standard GPR using a training dataset with
the size of 2000×29 has proven to be very tedious and extremely slow. Thus
we only randomly sample 2000 entries from the original dataset to build up the
training data to test GPR. With this setting, it costs 9.28 hours for training
and 5.67 minutes per prediction in the regression step. Clearly, the conventional
GPR is not capable to handle real-time applications.

Scalable GPR: With the training data condensation described in Section 4,
the proposed Scalable GPR can easily handle the large scale training data by
capturing the intrinsic information embedded in and removing the redundant
entries. We randomly select 80% entries (i.e., 12,560 entries) from the entire
database to build up the initial training data set and use the remaining 20%
entries as the testing points pool. Following the training data condensation de-
scribed in Section 4.2, we condense the size of the training data from 12,560
points to 8,654 points by setting Σ = 0.5%, which performs the best compared
with Σ = 1% and 5%. We incrementally select 100, 500, 1000, 1500, 2000 and
3000 number of entries from the testing points pool as testing data to show the
scalability, efficiency and accuracy of the Scalable GPR and also the effect of
batch query processing on the performance. As reported in Table 3, the perfor-
mance of the batch query processing is quite stable. With the size increment of
the testing data from 100 to 3,000 points, the number of batch queries generated
is increased from 25 to 750. The average time to create a batch query was 0.06
seconds. With different numbers of batch queries, the average training time cost,
prediction (regression) time cost, and the total time cost for each testing point
is very stable. With the error bound of 15%, we can always achieve the real-time
prediction response averagely within 0.9 seconds.

48 E. Bélisle, Z. Huang, and A. Gheribi

Table 3. Scalable GPR for predicting Electrical Conductivity (target error of 15%)

Number of
testing
points

Number of
batches

Average
training
time per
testing
point

Average
prediction
time per
testing
point

Average
total time
per testing

point

AE
(%)

100 25 0.688 0.044 0.732 14.5

500 124 0.885 0.045 0.928 14.9

1000 250 0.966 0.042 1.008 14.8

1500 375 0.741 0.043 0.784 14.2

2000 500 1.01 0.042 1.06 14.8

3000 750 0.715 0.042 0.758 14.7

7 General Discussion and Conclusion

In this paper, we propose a scalable approach to make predictions of material
properties using a Gaussian process regression machine learning approach. As
expected, our experiments showed that the size of the training matrix influences
the calculation time exponentially. While it is clear that a very small training set
would lead to poor prediction and that a large set would necessarily produce more
accurate predictions, our results with Ms and Electrical Conductivity predictions
show that there is no general correlation between the size of the training matrix
and the predicted error when using training matrices between 102.7 and 104.7.
We believe that the variation in prediction error is related to the quality of the
data in the training matrix. In other words, closely related data in the training
set will lead to better prediction. Also, since both sets of data we work with
are experimental values, there is a high chance of human error in entire sets of
points that could lead to variations in the results. A further analysis of the data
and testing on specific systems would be required in order to create a reliable
and accurate database. This would also improve the computational time as less
iterations would be required to obtain the targeted error.

In summary, our approach has proven to be fast while maintaining a good
prediction error. Results on prediction of Martensite Start Temperature as well
as Electrical Conductivity demonstrate that the proposed Scalable GPR outper-
forms the other existing methods significantly in terms of efficiency and scala-
bility.

References

1. Bailer-Jones, C., Bhadeshia, H., MacKay, D.: Gaussian process modelling of
austenite formation in steel. Materials Science and Technology 15(3) (1999)

2. Gibbs, M.N., MacKay, D.J.C.: Efficient implementation of gaussian processes.
Submitted to Statistics and Computing

Scalable Gaussian Process Regression for Prediction of Material Properties 49

3. Huang, Z., Shen, H., Liu, J., Zhou, X.: Effective data co-reduction for multimedia
similarity search. In: Proceedings of the 2011 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD 2011, pp. 1021–1032. ACM, New York
(2011)

4. Lee, S.-J., Park, K.-S.: Prediction of martensite start temperature in alloy steels with
different grain sizes. Metallurgical and Materials Transactions A 44(8), 3423–3427
(2013)

5. Payson, P., Savage, C.: Martensite reactions in alloy steels. Transactions ASM 33,
261–275 (1944)

6. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning
(Adaptive Computation and Machine Learning). MIT Press (2005)

7. Sloński, M.: Bayesian neural networks and gaussian processes in identification of
concrete properties. Computer Assisted Mechanics and Engineering Sciences 18(4),
291–302 (2011)

8. Snelson, E.: Local and global sparse gaussian process approximations. In: Proceed-
ings of Artificial Intelligence and Statistics, AISTATS (2007)

9. Sourmail, T., Garcia-Mateo, C.: Critical assessment of models for predicting the
ms temperature of steels. Computational Materials Science 34(4), 323–334 (2005)

10. Sourmail, T., Garcia-Mateo, C.: A model for predicting the ms temperatures of
steels. Computational Materials Science 34(2), 213–218 (2005)

11. Stormvinter, A., Borgenstam, A., Ågren, J.: Thermodynamically based prediction
of the martensite start temperature for commercial steels. Metallurgical and Ma-
terials Transactions. A 43A(10), 3870–3879 (2012), QC 20121029

12. Urtasun, R., Darrell, T.: T.: Sparse probabilistic regression for activity-independent
human pose inference. In: IEEE Conference on Computer Vision and Pattern
Recognition, CVPR (2008)

13. Weber, R., Schek, H.-J., Blott, S.: A quantitative analysis and performance study
for similarity-search methods in high-dimensional spaces. In: Gupta, A., Shmueli,
O., Widom, J. (eds.) VLDB 1998, Proceedings of 24th International Conference on
Very Large Data Bases, New York City, USA, August 24-27, pp. 194–205. Morgan
Kaufmann (1998)

14. de Weijer, A.P., Vermeulen, W.G., Morris, P.F., van der Zwagg, S.: Prediction
of martensite start temperature using artificial neural network. Ironmaking and
Steelmaking 23(5) (1996)

Mining Differential Dependencies: A Subspace

Clustering Approach

Selasi Kwashie1, Jixue Liu1, Jiuyong Li1, and Feiyue Ye2

1 School of Information Technology & Mathematical Sciences
University of South Australia, SA 5095

2 College of Computer Science and Engineering
Jiangsu University of Technology, Changzhou, China

selasi.kwashie@mymail.unisa.edu.au, {jixue.liu,jiuyong.li}@unisa.edu.au
yfy@jstu.edu.cn

Abstract. The discovery of differential dependencies (DDs) is the prob-
lem of finding a minimal cover set of DDs that hold in a given relation.
This paper proposes a novel subspace-clustering-based approach to mine
DDs that exist in a given relation. We study and reveal a link between
δ-nClusters and differential functions (DFs). Based on this relationship,
we adopt and co-opt techniques for mining δ-nClusters to find the set
of candidate antecedent DFs of DDs efficiently, based on a user-specified
distance threshold. Furthermore, we define an interestingness measure
for DDs to aid the discovery of essential DDs and avoid the mining of an
extremely large set. Finally, we demonstrate the scalability and efficiency
of our solution through experiments on real-world benchmark datasets.

Keywords: Data dependency discovery, differential dependency, func-
tional dependency, subspace clustering, δ-nCluster.

1 Introduction

Data dependency is a well-studied subject in the database community. The most-
fundamental data dependency theory, functional dependency (FD), is a type of
constraint often used to heighten data quality. The recent need for high data
quality has necessitated the extension of FDs for data management applications.
These extensions relax the otherwise strict equality constraint of FDs to capture
different data semantics.Differential dependency (DD) [14] is one such extension.

A DD, denoted by X [WX] ≥ A[wa], defined over a relation r states that any
two tuples close on the set X of attributes ought to be close on another attribute
A. The closeness is in terms of distance intervals WX and wa respectively. For
example, given the relation in Table 1, the DD Age[0, 2]Gen[0] ≥ Sal[0, 3] indi-
cates that if any two employees have the same gender and their age difference is
within two years, then the difference of their salaries should be within $3K.

Mining data dependencies is a long-standing research problem due to the use-
fulness of the discoveries in real life. Over the last decades, many algorithms were
developed for mining FDs and its various extensions. For instance, the works in:

H. Wang and M.A. Sharaf (Eds.): ADC 2014, LNCS 8506, pp. 50–61, 2014.
c© Springer International Publishing Switzerland 2014

Mining Differential Dependencies: A Subspace Clustering Approach 51

Table 1. Instance of relation r

TID Age Gen Edu Sal ($K)
1 25 2 4 15
2 25 1 3 18
3 28 1 3 15
4 32 2 2 12
5 30 1 1 15

Edu: 1=Dip.; 2=BSc.; 3=M.Phil; 4=PhD.

Gen: 1=Male; 2=Female

[6,11,12,16] propose methods for FD
discovery; [4,5,8] present conditional
FD mining techniques; [7] and [13]
propose algorithms for finding soft
FDs and matching dependencies re-
spectively. The general goal of data
dependency discovery is to find a min-
imal cover set of all dependencies that
hold in the entire search space of a
given relation. That is, only the irreducible set of dependencies are of interest
since the number of dependencies in a given relation may be extremely large.

Unfortunately, mining even a minimal cover set of DDs for a given relation is
often infeasible. This is the case because, even though the task of finding DDs
has the same combinatorial explosion of attribute set as other data dependencies,
the search space of DDs is significantly larger as several distance functions may
be defined over each attribute.

In this work, we propose the exploration of a subset of the search space of
the determinant (antecedent/LHS) functions to finding DDs. Precisely, given a
user-specified distance threshold, θ, we consider the sections of the search space
where the upper-limits of the distance intervals of the LHS functions are bound
by θ. This approach reduces the search space and increases the efficiency of
our algorithm as well as produces fewer and interesting DDs. More specifically,
the contributions of this paper are summarized as follows. (1) We investigate
the relationship between DFs and β-nClusters. This presents the opportunity to
adopt, co-opt and utilise β-nClusters mining algorithms to find the antecedents
of DDs more efficiently. (2) Based on the derived relationship, we propose a new
approach to DD discovery and present a novel algorithm for mining interesting
DDs based on a user-specified distance threshold θ.

At the moment, the DD discovery method in [14] is the most related work
to ours. The discovery algorithm in [14] is based on reduction algorithms : for a
fixed RHS DF of each attribute in the given relation, the set of left-reduced (ir-
reducible) LHS DFs are found to form DDs. Pruning of the search space is done
based on the subsumption order of DFs, implication of DDs, and instance exclu-
sion. The minimal set of DDs is then generated by the elimination of redundant
DDs from the set of all left-reduced DDs.

2 Preliminaries

In this section, we introduce some preliminary concepts and definition of DDs
and subspace β-nClusters.

2.1 Differential Dependency

Let r be an instance of the relation R(A1, · · · , An), dom(Ai) represent the do-
main of an attribute Ai ≤ R, and X,Y ∈ R be subsets of attributes in R.

52 S. Kwashie et al.

A distance metric dA of an attribute A returns the distance between any two
values a1, a2 of A in r. dA is assumed non-negative and symmetric.

A differential function (DF) of an attribute A w.r.t. the distance interval
w = [x, y]1 returns a boolean value indicating whether dA(a1, a2) is within/on
w or not for any two values a1, a2 of A. It is denoted as A[w]. A DF on
X = {A1, · · · , Am}, denoted X [WX] is: X [WX] = A1[w1] ∧ · · · ∧Am[wm] where
Ai ≤ X ∧ wi ≤ WAi . WAi is the set of distance intervals of Ai. Given any
two DFs X [WX] and Y [WY], X [WX] is said to subsume Y [WY] denoted as
X [WX] ∪ Y [WY] iff: ⊂ Ai[wi] ≤ X [WX], ∃ Ai[w

∪
i] ≤ Y [WY] such that w∪

i ⊆ wi.
Let T (X [W]) be the set of all tuple pairs that agree on (satisfy) X [W].

Definition 1 (Differential Dependency (DD)). A DD is a statement Θ :
X [WL] ≥ Y [WR] between two DFs X [WL], Y [WR]. Θ holds over r of R if and
only if for any two tuples t1, t2 ≤ r, if X [WL] returns true, Y [WR] returns
true. X [WL], Y [WR] are termed the LHS (determinant/antecedent) and RHS
(dependent/consequent) of Θ respectively.

Definition 2 (Minimal DD, Cover & Minimal Cover). Let Σ be a set of
DDs in r. A DD X [WL] ≥ Y [WR] ≤ Σ is minimal if and only if the following
conditions are satisfied: (a) there does not exist any DD X ∪[Wa] ≥ Y [WR] ≤
Σ ∧ X ∪[Wa] ∪ X [WL]. (b) there does not exist any DD X [WL] ≥ Y ∪[Wa] ≤
Σ ∧ Y [WR] ∪ Y ∪[Wa]. The set Σ1 is a cover of the set Σ if each DD in Σ
exists in or is implied by a DD in Σ1. That is, Σ1 ≡ Σ. A minimal cover set
Σc is a cover set of Σ such that there does not exist a cover Σ∪ ∈ Σc.

Example 1. Given the relation in Table 1, let dA(a1, a2) = |a1−a2| for all A ≤
R. The DD Age[0] ≥ Edu[1] holds since all tuple pairs that satisfy the DF Age[0]
also satisfy Edu[1]. If Σ = {Age[0, 5]Gen[0] ≥ Edu[0]; Age[0, 5] ≥ Edu[0, 2];
Age[0, 7] ≥ Edu[0]; Gen[0]Sal[0] ≥ Age[3, 5]; Gen[0]Sal[0] ≥ Age[3, 7]}, then
the minimal set of Σ is Σc = {Age[0, 7] ≥ Edu[0];Gen[0]Sal[0] ≥ Age[3, 5]}.

2.2 Subspace δ-nCluster

In the following, we present the concepts and definition of a distance-based
subspace clustering model, β-nCluster, in [9].

Let R(A1, · · · , An) be a feature/attribute space. The set of all tuples under R
represents an instance r of R. Subspace clustering is the task of finding groups
of tuples (objects) T ⊆ r that are comparable/homogeneous in a subspace (set
of attributes) X ⊆ R. Let dA(t1[A], t2[A]) measure the distance of two tuples
t1, t2 ≤ r on A ≤ R. The tuple pair t1, t2 are said to be neighbours on A if
dA(t1[A], t2[A]) ≤ β × range(A), where β ≤ [0, 1] is a user-specified threshold;
range(A) is the range of distance values of A.

Given X ⊆ R and a user-specified threshold β, if t1, t2 are neighbours on every
A ≤ X , then t1, t2 are said to be δ-neighbours of each other in the subspace
X . For example, tuples 2 and 3 of the relation in Table 1 are 0-neighbours of
each other in the subspace {Gen,Edu}.
1 If x = y, w = [x] for brevity.

Mining Differential Dependencies: A Subspace Clustering Approach 53

Definition 3 (Subspace β-nCluster). For the pair (T,X), if for any pair of
tuples ti, tj ≤ T and every attribute A ≤ X, tuples ti, tj form a β-neighbour on
A, then the pair (T,X) is a subspace δ-nCluster.

3 Problem Formulation

Given a relation r, the discovery of DDs is the problem of finding a minimal cover
set Σ of valid DDs that hold in r. This problem inherits the inherent challenges
of any dependency discovery from data, unfortunately, to a higher magnitude;
due to the extremely large search space of candidate DFs. Consequently, DD
discovery is not only computationally expensive, but also returns an enormously
large minimal cover set, adversely affecting the utility of DDs.

In this section, we employ the semantics of DD to define an interestingness
measure for DDs. This allows the mining of a smaller set of DDs that capture
interesting patterns of data, as well as, enhances the efficiency of discovery. Next,
we present the formal problem definition.

3.1 Interestingness of a DD

A DD Θ : X [WX] ≥ A[wa] models how the closeness (WX) of a set X of
attributes dictates the closeness (wa) of a different attribute A. Hence, three in-
tuitive factors that show the significance of Θ include: (a) the closeness conveyed
by WX amongst the values of X ; (b) the similarity revealed by wa amongst the
values of A; and (c) the proportion of instances that support Θ.

The strength of any DD, Θ : X [WX] ≥ A[wa], is determined by its LHS DF
X [WX]. If WX consists of narrow intervals, then the RHS DF, A[wa], strongly
depends on X and vice versa. For instance, if for each DF B[wb] ≤ X [WX], wb

covers the entire distance space of B, then A[wa] is not dependent on X . Thus,
if a DD X [WX] ≥ A[wa] holds, then for any B /≤ X , X [WX]B[wb] ≥ A[wa] is
implied if wb covers all w ≤ WB.

The RHS DF, A[wa], of Θ captures the relationship amongst the values of A.
Therefore, if wa discloses a high similarity, the more useful the DD it forms, and
contrariwise. For example, whereas any DD formed by the RHS DF Age[0, 7] in
Table 1 is trivial, those formed by Age[0], Age[2] are non-trivial and potentially
more useful. This is because, the DF Age[0, 7] covers the entire distance space of
Age, therefore, satisfied by any tuple-pair. The DFs Age[0] and Age[2], however,
describe specific sections of the distance space, hence, do not have trivial tuple-
pair satisfaction.

The support of Θ represents the proportion of the relation that agree on it.
We define the interestingness of a DD to capture all three factors as follows,
where the functions up(w) and |w| on w = [x, y] of a single-attribute DF A[w]
return y, and |y − x| respectively.

54 S. Kwashie et al.

Definition 4 (Interestingness of a DD). The interestingness of a DD Θ :
X [WX] ≥ A[wa] in r for X [WX] = B1[w1] · · ·Bm[wm] is given by:

intr(Θ) =
Σm

i=1prox(Bi[wi])

m
× depQ(A[wa])× supp(Θ), (1)

where prox(Bi[wi]) = 1
|wi|+1 reflects of the closeness requirement of LHS DF

Bi[wi]; depQ(A[wa])
2 = |wd|−|wa|

|wd| measures the dependent quality of RHS DF

A[wa]; wd = [ua1 , uad
], ua1 , uad

are the minimum and maximum distance values
in WA respectively; and supp(Θ) = |T (X [WX]) ∪ T (A[wa])| = |T (A[wa])|.

The definition of intr(Θ) favours DDs with fewer LHS attributes, and narrow
distance interval DFs (both RHS and LHS). LHS DFs with less attributes are
usually satisfied by more tuples and therefore DDs of such LHS DFs tend to
have high support (hence, high intr(Θ)) than DDs with more LHS attributes.
However, it is noteworthy that high support is not per se an indicator of high
interestingness. This is because although DFs with wide distance intervals usu-
ally have more support than DFs with narrow intervals, DDs of the latter DFs
may be more interesting since they have higher prox and depQ values.

3.2 Problem Statement

On account of the huge search space of candidate DFs and the fact that the
strength of DDs is determined by LHS DFs, we propose a user-specified distance
constraint on the upper-limit y of the distance interval w = [x, y] of LHS DFs.
This reduces the search space of DFs while guaranteeing the discovery of inter-
esting DDs. Specifically, the set of candidate LHS DFs is limited to those that
have the upper-limit of their distance interval bound by a set threshold, θ. We
term such DFs θ-DFs, defined formally as follows.

Definition 5 (An θ-DF). A DF X [WX] = A1[w1] ∧ · · · ∧ Am[wm] on the set
X of attributes is said to be an ε-DF if for all Ai[wi] ≤ X [W], up(wi) ≤ θ ×
range(Ai), where θ ≤ [0, 1] is user-specified; range(Ai) is the range of distance
values of Ai.

Definition 6 (Problem Definition). Given a relation r of R, a user-specified
distance threshold, θ, and a minimum support value, ms, we find a minimal cover
set Σρ of DDs in r such that ⊂ Θ ≤ Σρ, intr(Θ) is highest for the given ms and
LHS(Θ) is an θ-DF.

4 Relationship between ε-DFs and δ-nClusters

To aid the efficient mining of θ-DFs for DD discovery, we study and derive a link
between θ-DFs and β-nClusters. More importantly, this relationship enables us
to co-opt and utilise β-nCluster mining algorithms to mine LHS DFs.

2 Similar to the dependent quality measure in [15].

Mining Differential Dependencies: A Subspace Clustering Approach 55

By Definition 3, β-nClusters exhibit the anti-monotone property. Thus, for
any given subspace X , there may exits many β-nClusters, unfortunately, many
are redundant, in that, they are implied by others. To avoid redundancy, we
define our clusters of interest, namely: β-nClusters that are maximal w.r.t. tuple
containment and free w.r.t. attribute containment.

Definition 7 (Maximal β-nCluster, Free set of β-nClusters). A β-nCluster
(T,X) is maximal iff: � (T ∪, X) such that T ∈ T ∪. Let ΨX be the set of all
maximal β-nClusters of a subspace X. ΨX is free iff: � ΨY such that for all
(T,X) ≤ ΨX, there exist (T ∪, Y) ≤ ΨY such that T ∪ = T , where Y ∈ X.

The set ΨX of β-nClusters inX is described as being free-maximal if it is both
maximal (w.r.t. tuple-containment) and free (w.r.t. attribute-set-containment).
Let Iα = (Tα, X) denote a maximal β-nCluster inX ; where α ≤ [1, 2, · · · , d] and d
is the total number of maximal β-nClusters inX .

Lemma 1 If ΨX = {I1, I2, · · · , Id} is a free-maximal set of β-nClusters of X in
r, then the θ-DF X [W] = A1[w1] ∧ · · · ∧ Am[wm] holds in r; where A1, · · · , Am

are the attributes in X and θ = β. Specifically,

T (X [W]) = pr(T1) ∪ · · · ∪ pr(Td), (2)

where pr(Tα) is the set of all tuple pairs of Iα. ⇒
Example 2. Given that β = 0.6 for the relation in Table 1, let X = {Edu, Sal}.
ΨX = {I1, I2}, where I1 = {1, 2, 3} and I2 = {3, 4, 5}. The DF Edu[0, 1]Sal[0, 3]
holds with T (Edu[0, 1]Sal[0, 3]) = {{1, 2}, {1, 3}, {2, 3}, {3, 4}, {3, 5}, {4, 5}}.

Lemma 1 enables us to find θ-DFs and their agree tuple sets from the set of
free-maximal β-nClusters. This is the foundation for the DD discovery approach
presented in the next section. Our work has shown that the mapping stated in
Lemma 1 misses some DDs namely, those that do not have θ-DF LHSs. Because
of page limit, the details of this result are omitted from this paper.

5 The Algorithm

In this section, we introduce a new DD mining approach that incorporates the
β-nCluster model in [9] from data mining into the context of DD discovery. The
pseudo-code of our algorithm is presented in Algorithm 13. It consists of four
major steps namely: finding the set of all free-maximal β-nClusters; forming
candidate LHS DFs; finding valid RHS DFs and forming DDs; and pruning of
derived set of DDs. In the following subsections, we elaborate each step.

5.1 Finding Free-Maximal δ-nClusters

This step finds all free-maximal β-nClusters in the given relation, r, using Algo-
rithm 2. It is an adaptation of the β-nClusters mining framework in [10].

3 SCAMDD: Subspace Clustering-based Approach to Mining DD.

56 S. Kwashie et al.

Algorithm 1. SCAMDD(r, θ,ms)

Input: The relation r of R, user-specified
threshold ρ, minimum support, ms.
Output: A minimal cover set Σε of DDs.

1: Find all free-maximal δ-nClusters in r
2: Form candidate LHS DFs
3: Find valid RHSs for candidate LHSs

and form DDs
4: Prune the set Σ of DDs
5: return Σε (Pruned Σ)

In lines 2–3 of Algorithm 2, we em-
ploy the approach used in [9,10] to
find the maximal β-nClusters of sin-
gle attributes. For each A ≤ R, let rA
be the sorted (in an ascending order)
instance values of A in r. Let p1, p2 be
two positions in rA such that p1 < p2.
The set T12 of tuples (from p1 to p2)
form a maximal β-nCluster in A if
and only if: (a) dA(p1[rA], p2[rA]) ≤
θ; (b) dA((p1 − 1)[rA], p2[rA]) > θ ∧
dA(p1[rA], (p2 + 1)[rA]) > θ, where θ = β × range(A) ∧ β = θ.

Algorithm 2. freeMax(r, β)

Input: r, δ = ρ.
Output: The set C of ΨX δ-nClusters
1: function freeMax(r, δ)
2: for each A ∈ R do
3: find all maximal δ-nClusters in A
4: create database D of attribute-lists
5: mine all free-maximal δ-nClusters in

D
6: create a Hash-table C = 〈X,ΨX∪
7: return C

Next, a database D, of attribute-
lists is generated from the single-
attribute maximal β-nClusters (line
4). An attribute-list of a tuple t is
the list of clusters in which t has no
less than (mr − 1) β-neighbours. The
minimum number of tuples mr that
are allowed to form a cluster in our
case is two. The multiple-attribute β-
nClusters are then mined from the
collection of all attribute-lists as frequent patterns (line 5) using an efficient
implementation of the frequent pattern mining algorithm, FPGrowth in [3]. In
line 6, a hash-table C = 〈X,ΨX〉, of all free-maximal β-nClusters is created,
where X ∈ R and ΨX is the set of free-maximal β-nClusters in X .

5.2 Forming Candidate LHS DFs

Algorithm 3. formCandLHSs(C)
Input: C
Output: Lattice L of candidate LHS DFs
1: for Level-i = 1 → n− 1 do
2: if (i == 1) then
3: for each attribute A ∈ R do
4: if (∃ ΨA ∈ C) then
5: create node, NA(A,A[w], T (A[w]))

by Lemma 1 add NA to L1

6: add L1 to L
7: else
8: for l = 1, · · · , |Li−1| do
9: for k = l + 1, · · · , |Li−1| do
10: if (|(Nl).e ∩ (Nk).e| == (i − 2) ∧

(∃ ΨX ∈ C)) then
11: form Li node with Nl, Nk ∈ Li−1

12: add Li to L
13: return L

Here, the set of candidate LHS DFs
are derived from the sets of free-
maximal β-nClusters, C, in Algo-
rithm 3. We use the attribute lat-
tice structure [1] to generate the set
of candidate LHSs as follows. Each
node N in the lattice is a triplet
N = (e, f, g) where e = X , a sub-
set of R; f = X [W], an θ-DF of X ;
and g = T (X [W]), the list of all
tuple pairs that satisfy X [W].

At the first level (lines 2–6), for
every A ≤ R, given that there ex-
ists the set ΨA of free-maximal β-
nClusters of A in C (line 4), then A[wa]

4 and T (A[wa]) are generated according

4 wa = [x, y] where x, y are the min. and max. distance of values in ΨA respectively.

Mining Differential Dependencies: A Subspace Clustering Approach 57

to Lemma 1 to form the node NA(A,A[wa], T (A[wa])) (line 5). The nodes at
level–1 form the first level, L1, of the lattice L (line 6).

Nodes of any level-i (2 ≤ i < n), Li, are formed from Li−1 nodes (lines 7–
12). Any two nodes Nl, Nk ≤ Li−1 are parent to a node Nc of Li iff: Nl, Nk

have up to (i − 2) preceding single-attributes in common on their first-triplet e
(set of attribute, sorted in lexicographical order) and their remaining attributes
in e are different (condition 1 of line 10). If this condition is satisfied, then
(Nc).e = X = {(Nl).e} ∪ {(Nk).e}. If there exists ΨX ≤ C (condition 2 of line
10), then node Nc(X,X [WX], T (X [W])) of Li is formed (by Lemma 1) with
Nl, Nk ≤ Li−1 as parents (line 11).

Fig. 1. The lattice of a 4 attribute relation

For example, the lattice of a rela-
tion with 4 attributes is show in Fig.
1, assuming there exist free-maximal
β-nCllusters for all X ∈ R. Each at-
tribute forms a node in the first level
(L1). L2 nodes are combination of all
L1 nodes; at L3, the L2 pair AB,AC
for instance, can form a node N.e =
ABC. The lattice ends at L3 since
n = 4. Unlike the FD lattice, at each node N , assuming each A ≤ R has d dis-

tinct distance values, there exists km possible DFs; where k = d! = d(d+1)
2 ∧m =

|{(N).e}|.

5.3 Finding Valid RHS DFs to form DDs

Algorithm 4. findRHSs(L)
1: function findRHSs(L)
2: for Li ∈ L; i = 1 → n do
3: for each node N ∈ Li do
4: if N.f is valid then
5: R = {} and Y = {R/X}
6: for each A ∈ Y do
7: calculate wa using (N.g,A)
8: if depQ(A[wa]) ⊆= 0 then
9: add A[wa] to R
10: if R ⊆= ∅ then
11: for each A[wa] ∈ R do
12: form DD σ : N.f → A[wa]
13: Add σ to Σ
14: return Σ

Given a LHS DF X [WL], a candidate
RHS A[wa] is valid iff: (1) X ∩ {A} =
∅; (2) T (X [WL]) ⊆ T (A[wa]); (3)
� A[w∪

a] such that A[wa] ∪ A[w∪
a] ∧

T (A[w∪
a]) ⊆ T (X [WL]). The first re-

quirement ensures thatA[wa] has only
one attribute A, and A /≤ X to avoid
the generation of redundant and im-
plied DDs. Conditions 2 and 3 require
that A[wa] forms a valid DD with
X [WL] in r (by Definition 1) and no
implied DD is found respectively.

The function findRHSs in Algo-
rithm 4 captures the search strategy for the set of valid RHSs for all candidate
LHS DFs in L. For each level i (1 ≤ i ≤ n) in L, for every node N ≤ Li, if there
exists no DD amongst the θ-DF, (N).f , of N , (line 4), then we find the set R
of valid RHS DFs for (N).f (line 5–9). Let Y be the set of candidate attributes
to form a valid RHS DF with (N).f . Y = {R/X}, where X = (N).e. For each
A ≤ Y , the projection of values of A with respect to the set of agree tuples (N).g
of the node N is generated (line 7). The minimum and maximum distance values
in the projection forms the distance interval wa of A. If wa does not cover the

58 S. Kwashie et al.

distance space of A (line 8), it is added to the set R (line 9). If valid RHSs are
found (line 10), they form DDs with (N).f (lines 11–13).

5.4 Pruning

The final stage of the discovery process is the generation of the minimal set
Σρ of DDs from the set Σ of valid DDs. We discus in the following pruning
operations on the set of valid DDs Σ to ensure Algorithm 1 returns Σρ according
to Definition 2. The first pruning operation is based on condition (a) of Definition
2. The set Σ of valid DDs is partitioned into subsets of DDs with common RHSs.
In each set, only DDs with irreducible LHSs are added to the set Σρ. Condition
(b) of Definition 2 already holds since Algorithm 4 finds RHSs with the most
minimum intervals. To ensure that there exists no cover Σ1 of Σ such that
Σ1 ∈ Σρ, we eliminate all transitively-implied DDs. That is, given that the DDs
X [Wx] ≥ A[wa], A[wa] ≥ B[wb] ≤ Σρ, then any DD of the form X [wx] ≥ B[wb]
is implied by the property of transitivity, hence removed from Σρ.

To reduce the set of DDs to only those that capture essential knowledge in
data, we utilise the support and interestingness measures to prune candidate
LHSs DFs and DDs respectively. Given a minimum support ms, all candidate
LHS DFs with support less than ms are pruned out. The reason is that, if
support(X [WX]) < ms, then all DDs with X [WX] as LHS DF have support
less than ms since support(X [WX] ∪ A[wa]) < ms for any RHS DF A[wa].
Furthermore, for a specified minimum interestingness value min-intr, we prune
any DD Θ with intr(Θ) < min-intr. Where no min-intr is given, we mine DDs
with highest interestingness for the given ms.

6 Experimental Evaluations

All the proposed algorithms in this paper are implemented in Java. The

Table 2. Description of data sets

Data sets Size No. of Attributes
Adult 26690 15 (6 N; 9 C)

Red-wine 1599 12 (12 N; 0 C)
Breast Cancer 569 31 (30 N; 1 C)

Thoracic 470 17 (3 N; 14 C)
Iris 150 5 (4 N; 1 C)
N = numeric, C = categorical

experiments were conducted on an In-
tel Core i5-2520M CPU @ 2.5GHz
processor computer with 4.0 GB of
memory running Windows 8 OS. The
data sets used in the experiments are
briefly described in Table 2, down-
loaded from the UCL Machine Learn-
ing data repository [2].

For any data set, various distance
functions can be defined for each attribute based on domain-knowledge. For our
experiments, we use the absolute values of difference as distance metric for all
numeric attributes. For categoric attributes, we use the equality function.

6.1 Time Performance and Scalability

We conduct experiments to show: (a) the practical infeasibility of mining DDs
in the entire search space of all possible DFs in relation; (b) how our algorithm

Mining Differential Dependencies: A Subspace Clustering Approach 59

Fig. 2. Time performance on varying tuples and attribute sizes

performs w.r.t. varying number of tuples and attributes of a relation. The results
are displayed in Fig. 2.

To show point (a) above, we implement the proposed algorithm in [14] (Split5

algorithm), which does not require constraint on LHS DFs. In this experiment,
whereas we allow the Split algorithm to mine DDs in the entire search space of
DFs for various instance sizes of the Adult and Red-wine datasets, we employ
the SCAMDD algorithm to find DDs with the strictest constraint on LHS DFs
(set θ = 0). Figure 2 (a) shows the plot of the time performance (on y-axis) of
the two algorithms against various instance sizes (on x-axis) of the two datasets.
From the graphs, it is clear that, finding DDs in the entire search space quickly
becomes infeasible with increasing tuple sizes. We note that, the plot is not a
comparison of time performance of the two methods (since they find different
DDs) but a demonstration of the practical infeasibility of mining DDs in the
entire search space of DFs. Furthermore, Fig. 2 (a) shows how the SCAMDD
algorithm responds to increasing relation size of different datasets (for θ = 0).
SCAMDD performs generally well.

In the next set of experiments, we show how the SCAMDD algorithm performs
on increasing attribute size of relations. For this experiment, we used the whole
instances of the Breast Cancer and Thoracic datasets and 600 tuples of the
Adult dataset for fair comparison of results among the datasets. Figure 2 (b)
displays the results. From the plots of the three datasets, it is clear that the
number of attributes alone per se does not determine the time performance. A
look Table 2 reveals that datasets with more categorical attributes have higher
time performance. This is the case, mainly because the set of instance values of
categorical attributes is usually less than that of numeric attributes. Therefore,
the size of tuple sets that form any cluster is generally larger, hence the higher
execution time for finding associated θ-DFs and DDs.

6.2 Effect of the Parameters

SCAMDD uses two parameters namely, user-specified distance threshold, θ, and
minimum support, ms. The next category of experiments examine the effect of
these parameters.

5 we name it Split since it ’splits’ the search space.

60 S. Kwashie et al.

Fig. 3. Effect of support on time performance and number of DDs

As discussed earlier in subsection 5.4, ms and min-intr are used to prune
candidate LHS DFs and DDs respectively. The effect of ms on time performance
and number of discovered DDs is shown in Fig. 3 (a) and (b) respectively. As
expected, time performance improves with increasing support as more candidate
LHS DFs get pruned, leading to fewer DDs that represent persistent patterns in
the datasets.

For a given θ, only DDs with their LHS DF X [W] having prox(X [W]) ≥
1/wid([0, θ]) are of interest. Furthermore, since DFs with highest depQ values
are found for all LHS DFs for any ms value, it is clear that SCAMDD returns
only the most interesting DDs. For all experiments, θ is set to minimum (0).
Thus, the prox (intr(Θ)) values for all candidate LHS DFs (Θ) are maximum for
any ms.

Fig. 4. Effect of relaxing ρ on time

Increasing θ relaxes the constraint
on the LHS DFs. This increases
the search space of DFs and signif-
icantly affects the time performance
adversely. Figure 4 shows how time
performance (on y-axis) quickly in-
creases w.r.t. increasing θ (on x-axis)
for even the least dataset in Table 2,
Iris. From this demonstration, we note
that SCAMDD is sensitive to high θ.

7 Conclusion

This paper proposes an algorithm, SCAMDD, for mining DDs based on a user-
specified distance threshold, θ. SCAMDD uses techniques similar to finding β-
nClusters to discover candidate LHS DFs of DDs. Results from experiments show
that SCAMDD is very efficient when constraint on LHS DFs is at its strictest.

The proposition is sensitive to relaxed constraints on LHS DFs due to the
gigantic nature of the search space of possible LHS DFs. In our next studies, we
will investigate further pruning strategies to enable efficient discovery of DDs
for relaxed constraints (high θ values) as well as the utilization of DDs in data
management application fields like data quality repair.

Mining Differential Dependencies: A Subspace Clustering Approach 61

Acknowledgement. This work was partially supported by Australian Research
Council Discovery grant DP130104090.

References

1. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules in Large
Databases. In: 20th InternationalConference onVeryLargeDataBases, pp. 487–499.
Morgan Kaufmann Publishers Inc. (1994)

2. Bache, K., Lichman, M.: UCI Machine Learning Repository (2013),
http://archive.ics.uci.edu/ml

3. Borgelt, C.: Frequent Item Set Mining. Wiley Interdisciplinary Reviews: Data Min-
ing and Knowledge Discovery 2(6), 437–456 (2012)

4. Fan, W., Geerts, F., Li, J., Xiong, M.: Discovering Conditional Functional Depen-
dencies. IEEE Trans. on Knowledge and Data Engineering 23, 683–698 (2011)

5. Golab, L., Karloff, H., Korn, F., Srivastava, D., Yu, B.: On Generating Near-optimal
Tableaux for Conditional Functional Dependencies. Proc. VLDB Endow. 1(1),
376–390 (2008)

6. Huhtala, Y., Krkkinen, J., Porkka, P., Toivonen, H.: Tane: An Efficient Algorithm
for Discovering Functional and Approximate Dependencies. The Computer Jour-
nal 42(2), 100–111 (1999)

7. Ilyas, I.F., Markl, V., Haas, P.J., Brown, P., Aboulnaga, A.: CORDS: Automatic
Discovery of Correlations and Soft Functional Dependencies. In: International Con-
ference on Management of Data, pp. 647–658 (2004)

8. Li, J., Liu, J., Toivonen, H., Yong, J.: Effective Pruning for the Discovery of Con-
ditional Functional Dependencies. Computer Journal 56(3), 378–392 (2013)

9. Liu, G., Li, J., Sim, K., Wong, L.: Distance Based Subspace Clustering with Flexible
Dimension Partitioning. In: 23rd International Conference on Data Engineering,
pp. 1250–1254 (2007)

10. Liu, G., Li, J., Sim, K., Wong, L.: Efficient Mining of Distance-based Subspace
Clusters. Statistical Analysis and Data Mining 2(5-6), 427–444 (2009)

11. Liu, J., Ye, F., Li, J., Wang, J.: On Discovery of Functional Dependencies from
Data. Data & Knowledge Engineering 86, 146–159 (2013)

12. Novelli, N., Cicchetti, R.: FUN: An Efficient Algorithm for Mining Functional and
Embedded Dependencies. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001.
LNCS, vol. 1973, pp. 189–203. Springer, Heidelberg (2000)

13. Song, S., Chen, L.: Discovering Matching Dependencies. In: 18th ACM Conference
on Information and Knowledge Management, pp. 1421–1424 (2009)

14. Song, S., Chen, L.: Differential Dependencies: Reasoning and Discovery. ACM
Trans. Database Syst. 16, 1–16 (2011)

15. Song, S., Chen, L., Cheng, H.: Parameter-Free Determination of Distance Thresh-
olds for Metric Distance Constraints. In: 28th International Conference on Data
Engineering, pp. 846–857. IEEE Computer Society (2012)

16. Wyss, C., Giannella, C., Robertson, E.: FastFDs: A Heuristic-Driven, Depth-First
Algorithm for Mining Functional Dependencies from Relation Instances Extended
Abstract. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK 2001.
LNCS, vol. 2114, pp. 101–110. Springer, Heidelberg (2001)

http://archive.ics.uci.edu/ml

A Study on the Applications of Emerging

Sequential Patterns

Vincent Mwintieru Nofongρ, Jixue Liu, and Jiuyong Li

School of Information Technology and Mathematical Science,
University of South Australia

vincent.nofong@mymail.unisa.edu.au,
{Jixue.Liu,Jiuyong.Li}@unisa.edu.au

Abstract. This article presents a study on the techniques for detect-
ing Emerging Sequential Patterns (ESPs) and the effectiveness of pre-
dictions made by ESPs in time-stamped datasets. ESPs are sequential
patterns whose frequencies increase from one time-stamp dataset to an-
other. ESPs capture emerging trends with time in sequential datasets
and they are proposed for trend prediction. This work presents a study
on the effectiveness of such predictions made by ESPs. Our experimental
results show that, ESPs improve patterns’ re-occurrence prediction than
frequent patterns, but the improvements are marginal. Further more, we
note that both ESPs and frequent patterns do not fare well in predicting
the continuous emergence of patterns with time. Hence, we conclude with
suggestions on future works that will improve current ESPs definition to
enable detect non-trivial and interesting ESPs which can help increase
the precision of predicting future emerging patterns with ESPs.

Keywords: Data mining, Sequential Patterns, Emerging Patterns, Pat-
tern matching, Trend Prediction, Decision making.

1 Introduction

Emerging pattern mining is a well-studied subject in the data mining commu-
nity. Emerging Patterns (EPs), are defined as patterns whose frequencies change
significantly from one dataset to another. EPs in static datasets such as those
with classes (male vs. female, cured vs. not cured), reveal useful and hidden
contrast patterns between datasets for various decision making, for instance, in
constructing accurate classifiers [7,13,14], in disease likelihood prediction [12],
discovering patterns in gene expression data [15], and so on.

Emerging Sequential Patterns (ESPs), are sequential patterns whose frequen-
cies increase with time from one sequential dataset to another (in this work
time-stamped datasets and sequential datasets are used interchangeably). ESPs
capture emerging trends with time in sequential datasets that can be easily un-
derstood and used in various decisions making. For example, ESPs in sequential
transactions of a shop, indicating the emerging trends in customers’ interest can

� Corresponding author.

H. Wang and M.A. Sharaf (Eds.): ADC 2014, LNCS 8506, pp. 62–73, 2014.
c© Springer International Publishing Switzerland 2014

A Study on the Applications of Emerging Sequential Patterns 63

be exploited by management to understand customers’ behaviours [10,22,23] and
predict future purchases.

Mining emerging sequential patterns to the best of our knowledge, was intro-
duced recently by Tsai et al in [23]. They proposed a framework for detecting
changes and ESPs in customers’ behaviour (transactions) mined as crisp (gen-
eral) sequential patterns. Their approach was later adapted in [22] to detect
changes and ESPs in customers’ transactions mined as time-interval sequential
patterns. Huang et. al in [10] also modified the technique proposed in [23] to de-
tect changes and ESPs in customers’ transactions mined as fuzzy time-interval
sequential patterns. ESPs detected by these works provide valuable references
to retail management in understanding emerging trends in customers’ behaviour
(purchases), and for predicting future customer behaviours.

This work presents a study on the techniques for detecting ESPs in time-
stamped datasets and the effectiveness of predictions made by detected ESPs.
The objective of this study is to assess ESPs based on current definition through
an evaluation on the effectiveness of predictions made by ESPs versus those
made by frequent patterns.

This study contributes to research by providing an in-depth understanding of
the definition and applications of ESPs in time-stamped datasets. Additionally,
it outlines future works based on experimental results that can help users and
researchers discover non-trivial and useful ESPs for effective decision making in
time-stamped datasets.

The rest of the paper is organized as follows. The basic concepts of sequential
pattern mining in time-stamped datasets are presented in Section 2. A review of
the definition for ESPs in sequential datasets, the processes for detecting ESPs
and their usefulness are presented in Section 3. Based on the implications of ESPs
in time-stamped datasets, Section 4 presents an experimental evaluation on the
effectiveness of predictions made by ESPs versus that of frequent patterns. From
the experimental results, Section 5 presents conclusions, recommendations, and
an outline of future works on detecting non-trivial and more useful emerging
sequential patterns in time-stamped datasets.

2 Basic Concepts

2.1 Sequential Patterns

The problem of mining sequential patterns and its associated notation can be
given as follows.

Let I = ≥i1, i2,..., in≤ be a set of literals, termed items, which comprise the
alphabet. An event is a nonempty unordered collection of items. It is assumed
without loss of generality that items of an event are sorted in lexicographic order.
A sequence is an ordered list of events. An event is denoted as ≥i1, i2,..., ik≤,
where ij is an item. A sequence S is denoted as ≥(a1), (a2), (a3), . . . , (an)≤,
where ai is an event. A sequence with k-items, where k =

∑
j |aj |, is termed a

k-sequence. For example, ≥a, b, c≤ is a 3-sequence. A sequence S1 = ≥b1, b2, ..., bk≤

64 V.M. Nofong, J. Liu, and J. Li

is a subsequence of S2 = ≥β1, β2, ..., βn≤ and S2 is a super-sequence of S1 if there
exist integers 1 ∈ i1 < i2, . . . , < ik ∈ n such that b1 ∧ βi1 , b2 ∧ βi2 , ..., bn ∧ βin .

Given a database D of input sequences where each input sequence has the
fields: sequence-id, event-time, and the items of events. Assuming that no se-
quence has more than one event with the same time-stamp, the time-stamp can
be used as the event identifier. The support of a sequence S, denoted sup(S),
is defined as the number of input sequences in the database D of which S is a
subsequence.

Given a set of data sequences, sequential pattern mining is the process of
discovering all subsequences that are frequent, that is, finding all subsequences
in the database whose supports exceeds a user specified minimum support [8].

3 Emerging Sequential Patterns

3.1 Definition

Given two time-stamped datasets, Dt and Dt+1. If St and St+1 are sets contain-
ing sequential patterns mined from Dt and Dt+1 respectively, such that patterns
sti ∪ St and st+1

j ∪ St+1, for i = 1, 2, 3, . . . |St|; j = 1, 2, 3, . . . |St+1|:

Definition 1. [ESP [10,22,23]] A sequential pattern sj ∪ Dt+1 is an emerging
sequential pattern if for a given minimum support:

1. sj occurs as a sequential pattern in both Dt and Dt+1, and

2.
sup(st+1

j)−sup(stj)

sup(stj)
>δ.

where δ is a user defined minimum support increment.

3.2 Discovering Emerging Sequential Patterns

Given a number of time-stamped datasets, Dt(i), Dt(i+1), Dt(i+2), Dt(i+3) . . . ,
Dt(i+n) | i>0, to discover ESPs in any two consecutive time-stamped datasets,
the following three processes are involved:

1. Sequential patterns are mined with a specified minimum support from the
two consecutive time-stamped datasets for example, Dt(i) and Dt(i+1) | i>0.

2. All patterns in Dt(i) are compared with the patterns in Dt(i+1) to identify
their respective identical patterns in Dt(i+1) (that is, satisfying condition 1
of Definition 1).

3. For any two identical patterns, for example, sa ∪ Dt(i) and sb ∪ Dt(i+1),
condition 2 of Definition 1 is tested. If the support change between sa and
sb is greater than δ, the pattern sb ∪ Dt(i+1) is classified as an emerging
sequential pattern of sa ∪ Dt(i).

A Study on the Applications of Emerging Sequential Patterns 65

3.3 Usefulness of ESPs

ESPs are very useful in various decision making, for example, given a set of

emerging sequential patterns E
t(i+1)
t(i) , detected from Dt(i) to Dt(i+1):

1. A prediction of a sequential pattern sa ∪ Dt(i+2) can be made from the

inference that sa ∪ E
t(i+1)
t(i) .

2. A prediction of the set of emerging sequential patterns E
t(i+2)
t(i+1) from Dt(i+1)

to Dt(i+2) can also be made.

For any two time-stamped datasets, emerging sequential patterns provide quick
and valuable references about the datasets which can be used in various decision
making. For example, in time-stamped datasets of customers’ transactions, ESPs
in customers’ behaviour have been employed in [5,6,10,20,22,23] to understand
and/or predict customer behaviours with time.

In this study, we assess the effectiveness of predictions made by ESPs (based
on current definition) versus same predictions made with frequent patterns on
real-world datasets. To reduce the number of redundant patterns in our experi-
ments, we mine sequential patterns as:

1. Closed sequential patterns: A closed sequential pattern Sn, is a frequent
sequence mined from a sequence database such that there exist no super-
pattern Sm with the same support as Sn. The technique proposed in [9] is
employed in this study to mine this pattern variant for our experiments.

2. Closed and Maximal sequential patterns: A closed and maximal sequential
pattern Si, is a frequent sequence mined from a sequence database such
that there exist no super-pattern Sj that is either frequent or have the same
support as Si. We employ the technique proposed in [21] to mine this pattern
variant for our experiments.

4 Empirical Assessments

4.1 Datasets

The following datasets were used in the study:

1. Sales Fact 1997 & Sales Fact 1998 Datasets: These datasets were ob-
tained from the FoodMart2000 transaction database provided by Microsoft
SQL Server 2000. Sales Fact 1997 contains 20522 transactions from 5581 cus-
tomers in year 1997 and Sales Fact 1998 contains 34015 transactions from
7824 customers in year 1998. Each dataset has 1559 unique items with 110
product classes and 47 product categories. Eight consecutive seasons are
available from both datasets combined. To avoid trivial mining results, prod-
uct items were aggregated to product categories for all transactions.

66 V.M. Nofong, J. Liu, and J. Li

2. TaFeng Retail Dataset.
This dataset obtained from AIIA Lab (http://aiia.iis.sinica.edu.tw)
comprises of customer transactions from TaFeng Warehouse. It contains
23812 unique items, 817741 transactions from 32266 unique customers within
a four month period (Nov & Dec 2000, and Jan & Feb 2001). Only four con-
secutive time-periods are available from this dataset.

3. Belgium Retail Dataset.
This is a retail basket data of by an anonymous Belgium retail supermar-
ket obtained from FIMI repository (http://fimi.ua.ac.be). Collected over
three non-consecutive periods, (first half of December 1999 to first half Jan-
uary 2000, beginning of May 2000 to the beginning of June 2000, and from
the end of August 2000 to the end of November 2000). No data exists between
these periods. 5133 unique customers purchased at least one product from
the supermarket within the 5 months period of data collection amounting to
88162 total transactions. This dataset was divided into eight time-stamped
datasets.

4.2 Experimental Design

To assess the effectiveness of predictions made by ESPs (detected based on
current definition) in time-stamped datasets, four main objectives, listed as the
following were investigated:

1. Objective 1:
– How effective are ESPs detected from two consecutive time-stamped

datasets in predicting the frequent patterns of the next immediate time-
stamped dataset?

2. Objective 2:
– How effective are ESPs from two consecutive time-stamped datasets

Dt(i) to Dt(i+1) | i>0, in predicting the emerging sequential patterns
from Dt(i+1) to Dt(i+2)?

3. Objective 3:
– How effective are ESPs from two consecutive seasons in predicting the

frequent patterns of the next recurring seasons?
4. Objective 4:

– How effective are ESPs from two consecutive seasons in predicting the
ESPs of the next recurring seasons?

These objectives were investigated by carrying out the following experimental
steps:

1. Objective 1:
(a) For any three consecutive time-stamped datasets; Dt(i), Dt(i+1) and

Dt(i+2) | i>0, sequential patterns are mined with a minimum support.
(b) The set of ESPs in sequential patterns from Dt(i) to Dt(i+1) are detected.
(c) With the detected ESPs, the frequent patterns in Dt(i+2) are predicted

[predicted patterns = set of detected ESPs].

http://aiia.iis.sinica.edu.tw
http://fimi.ua.ac.be

A Study on the Applications of Emerging Sequential Patterns 67

(d) The predicted patterns, are then compared with the actual patterns in
Dt(i+2).

(e) The precision of pattern prediction by ESPs, Pr1, is evaluated [Table 1
shows the precision evaluation formulas].

(f) With the frequent patterns mined from Dt(i+1), the frequent patterns
in Dt(i+2) are predicted and precision of pattern prediction by frequent
patterns, Pr2, evaluated.

(g) Steps (a), (b), (c), (d), (e) and (f) are repeated on the same datasets
with different sets of minimum supports: {0.1, 0.01, 0.001}, {0.1, 0.08,
0.064} and {0.1, 0.04, 0.008}. The process is repeated for all sets of three
consecutive time-stamped datasets in each dataset.

2. Objective 2:

(a) Same processes as in Objective 1, however instead of predicting frequent
patterns, emerging patterns are predicted in steps (c), and (f). Precisions
Pr3, and Pr4 are evaluated in steps (e) and (f) for the predictions made
by ESPs and frequent patterns respectively.

3. Objective 3:

(a) For any two consecutive seasons (e.g. 1st winter and 1st spring) and
their recurring seasons (2nd winter and 2nd spring) sequential patterns
are mined from each dataset with a given minimum support.

(b) The set of ESPs in the first consecutive seasons are detected. With the
ESPs, the frequent patterns in the next recurring seasons are predicted.

(c) The predicted patterns are compared with the actual patterns at the
recurred seasons to evaluate their prediction precisions Pr1,1 and Pr1,2
respectively.

(d) With frequent patterns mined from the first seasons, the frequent pat-
terns in the next recurring seasons are predicted and the prediction pre-
cision Pr2,2 evaluated.

(e) Steps (a), (b), (c) and (d) are repeated with different sets of minimum
supports: {0.1, 0.01, 0.001}, {0.1, 0.08, 0.064} and {0.1, 0.04, 0.008}. The
process is repeated for all two consecutive seasons and their recurring
seasons.

4. Objective 4:

(a) Same processes as in Objective 3, however instead predicting frequent
patterns, emerging patterns are predicted in steps (b) and (d). Precisions
Pre,1 and Pre,2 are evaluated in steps (c) and (f) for the predictions made
by ESPs and frequent patterns respectively.

4.3 Results and Discussions

Results and Discussion for Objectives 1 and 2. Tables 2 and 3 show
the experimental results on one set of minimum supports {0.1, 0.04, 0.008}
with δ = 0 for objectives 1 and 2 on the Sales Fact and TaFeng retail datasets
respectively. Similar results were obtained for the other two sets of minimum
supports ({0.1, 0.01, 0.001} and {0.1, 0.08, 0.064}) with varying values for δ.

68 V.M. Nofong, J. Liu, and J. Li

1. Objective 1
The prediction precisions made by ESPs are slightly higher than that by
frequent patterns but the increase is marginal, on the average, only +2.66%
for the Sales Fact dataset and +3.45% for the TaFeng dataset as shown in
columns Δ1 of Tables 2 and 3 respectively. ESPs thus do not make signifi-
cantly better predictions of patterns’ re-occurrence in time-stamped datasets
compared to same predictions made with frequent patterns.

2. Objective 2
The prediction precisions made by ESPs are lower than that by frequent
patterns by marginal averages of -8.05% in the Sales Fact dataset and -
1.48% in the TaFeng dataset as shown in columns Δ2 of Tables 2 and 3
respectively. ESPs thus make slightly lower precise predictions of emerging
patterns in time-stamped datasets compared to the precisions of randomly
guessing emerging patterns from the set of frequent patterns.

Results and Discussions for Objectives 3 and 4. The results of these
experiments are shown in Table 4 for Sales Fact dataset with one set of minimum
support {0.1, 0.04, 0.008} and δ = 0. Similar results were obtained for the other
two sets of minimum supports with varying values for δ.

1. Objective 3
The prediction precisions made by ESPs are again slightly higher than that
of frequent patterns with a marginal average of only +0.31% as shown in
column Δ1,2 of Table 4. Hence ESPs do not make significantly better pre-
dictions for the cyclic or seasonal re-occurrence of patterns than randomly
guessing their re-occurrence with frequent patterns.

2. Objective 4 The prediction precisions made by ESPs are lower than that
by frequent patterns by a marginal average of -3.97% as shown in column
Δe of Table 4. ESPs thus make slightly lower precise predictions of emerging
patterns in the next recurring seasons compared to the precisions of ran-
domly guessing emerging patterns in the next recurring season from the set
of frequent patterns.

4.4 General Conclusions

From the study, the following general conclusions were made:

1. For predicting the occurrence of patterns in the following time-stamp, ESPs
make high precise prediction. However, the precisions are not significantly
higher than those made by frequent patterns. In other words, frequent pat-
terns can make nearly as good pattern predictions as ESPs.

2. For predicting the continuous emergence of a pattern in the following time-
stamp, ESPs make very low precise precisions. Randomly guessing emerging
patterns in the following time-stamp with frequent patterns in the previous
time-stamp results in slightly higher precise predictions than those made
by ESPs. Hence predicting emerging patterns with ESPs will result in less

A Study on the Applications of Emerging Sequential Patterns 69

precise predictions compared to their prediction precisions with frequent
patterns.

3. For predicting the cyclic re-occurrence of patterns from a season in its next
recurring season, ESPs make high precise predictions though not significantly
higher than that made by frequent patterns. As such frequent patterns can
make nearly as good seasonal pattern re-occurrence predictions as ESPs.

4. For predicting the cyclic emergence of patterns, ESPs make low precise pre-
dictions, much lower than the precisions of randomly guessing the cyclic
(seasonal) emergence of patterns with frequent patterns from previously oc-
curred seasons. Hence predicting the cyclic emergence of patterns with ESPs
will result in less precise predictions compared to their prediction precisions
with frequent patterns.

Table 1. Notations

Notation Meaning and/or Formula

St(i) Set containing sequential patterns mined from Dt(i)

|St(i)| Number of sequential patterns in St(i)

E
t(i)

t(j) Set containing ESPs from Dt(j) to Dt(i) | i > j

|Et(i)
t(j)| Number of ESPs in the set E

t(i)
t(j)

Pr1 Precision of predicting St(i+2) with E
t(i+1)
t(i) , Pr1 =

|Et(i+1)
t(i)

∩St(i+2)|
|Et(i+1)

t(i)
|

× 100%

Pr2 Precision of predicting St(i+2) with St(i+1), Pr2 = |St(i+1)∩St(i+2)|
|St(i+1)| × 100%

Pr3 Precision of predicting E
t(i+2)
t(i+1) with E

t(i+1)
t(i) , Pr3 =

|Et(i+1)
t(i)

∩E
t(i+2)
t(i+1)

|
|Et(i+1)

t(i)
|

× 100%

Pr4 Precision of predicting E
t(i+2)
t(i+1) with St(i+1), Pr4 =

|St(i+1)∩E
t(i+2)
t(i+1)

|
|St(i+1)| × 100%

Δ1 Pr1 − Pr2
Δ2 Pr3 − Pr4
Dx,i x ∈ {w=winter, sp=spring, sm=summer, a=autumn} set of seasons

i ∈ {1, 2}, seasons 1st and 2nd occurrence, D is a dataset

Pr1,1 Precision of predicting Sx,2 with Ey,1
x,1 , Pr1,1 =

|Ey,1
x,1∩Sx,2|
|Ey,1

x,1|
× 100%

Pr1,2 Precision of predicting Sy,2 with Ey,1
x,1, Pr1,2 =

|Ey,1
x,1∩Sy,2|
|Ey,1

x,1|
× 100%

Pr2,2 Precision of predicting Sx,2 with Sx,1, Pr2,2 = |Sx,1∩Sx,2|
|Sx,1| × 100%

Δ1,2 Pr1,2 − Pr2,2

Pre,1 Precision of predicting Ey,2
x,2 with Ey,1

x,1 , Pre,1 =
|Ey,1

x,1∩E
y,2
x,2|

|Ey,1
x,1|

× 100%

Pre,2 Precision of predicting Ey,2
x,2 with Sy,1, Pre,2 =

|Sy,1∩E
y,2
x,2 |

|Sy,1| × 100%

Δe Pre,1 − Pre,2

70 V.M. Nofong, J. Liu, and J. Li

Table 2. Patterns’ Trend Re-occurrence Prediction

Sales Fact Dataset

Periods Pattern MinSup Patterns mined ESPs Pattern Prediction ESPs Prediction

|St(i)| |St(i+1)| |St(i+2)| |Et(i+1)
t(i) | |Et(i+2)

t(i+1) | Pr1 Pr2 Δ1 Pr3 Pr4 Δ2

Closed
0.1 16 15 15 6 4 100 93.3 6.7 0.0 26.7 -26.7
0.04 55 55 53 29 22 96.6 92.7 3.9 34.5 40 -5.5

i = 1 0.008 390 380 377 186 157 90.9 86.8 4.1 33.3 41.3 -8.0
t1, t2 Closed and 0.1 13 13 13 5 3 100 92.3 7.7 0.0 23.1 -23.1

Maximal 0.04 37 40 40 23 15 87.0 85.0 2.0 39.1 37.5 1.6
0.008 248 248 239 98 90 83.7 73.4 10.3 31.6 36.3 -4.7

Closed
0.1 15 15 15 4 8 100 100 0.0 50.0 53.3 -3.3
0.04 55 53 56 22 24 95.5 96.2 -0.7 27.3 45.3 -18.0

i = 2 0.008 380 377 379 157 178 93.6 87.5 6.1 29.3 47.2 -17.7
t2, t3 Closed and 0.1 13 13 13 3 8 100 100 0.0 66.7 61.5 5.2

Maximal 0.04 40 40 42 15 17 93.3 92.5 0.8 26.7 42.5 -15.8
0.008 248 239 256 90 101 86.7 78.7 8.0 26.7 42.3 -15.6

Closed
0.1 15 15 18 8 15 100 100 0.0 100 100 0.0
0.04 53 56 72 24 56 100 100 0.0 100 100 0.0

i = 3 0.008 377 379 565 178 362 97.5 97.6 -0.1 95.5 95.5 0.0
t3, t4 Closed and 0.1 13 13 15 8 12 87.5 92.3 -4.8 87.5 92.3 -4.8

Maximal 0.04 40 42 49 17 33 82.4 78.6 3.8 82.4 92.3 -9.9
0.008 239 256 351 101 163 62.3 68.4 -6.1 56.4 68.4 -12.0

Closed
0.1 15 18 21 15 14 93.3 94.4 -1.1 73.3 77.8 -4.5
0.04 56 72 78 56 62 100 98.6 1.4 87.5 86.1 1.4

i = 4 0.008 379 565 638 362 399 98.6 93.1 5.5 bf 79.3 70.6 8.7
t4, t5 Closed and 0.1 13 15 16 12 10 83.3 86.7 -3.4 58.3 86.7 -28.4

Maximal 0.04 42 49 51 33 39 87.9 89.8 -1.9 78.8 89.8 -11.0
0.008 256 351 382 163 182 73.0 77.8 -4.8 47.9 77.8 -29.9

Closed
0.1 18 21 19 14 6 100 90.5 9.5 21.4 28.6 -7.2
0.04 72 78 77 62 20 100 97.4 2.6 21.0 25.6 -4.6

i = 5 0.008 565 638 606 399 199 95.7 91.8 3.9 25.8 31.2 -5.4
t5, t6 Closed and 0.1 15 16 15 10 3 100 87.5 12.5 20.0 18.8 1.2

Maximal 0.04 49 51 49 39 14 100 96.1 3.9 23.1 27.5 -4.4
0.008 351 382 380 182 113 87.9 76.4 11.5 22.0 29.6 -7.6

Closed
0.1 21 19 20 6 8 100 100 0.0 66.7 42.1 24.6
0.04 78 77 74 20 36 95 94.8 0.2 30.0 46.8 -16.8

i = 6 0.008 638 606 607 199 290 96.5 90 6.5 30.7 47.8 -17.1
t6, t7 Closed and 0.1 16 15 16 3 7 100 100 0.0 66.7 46.7 20.0

Maximal 0.04 51 49 47 14 24 92.9 93.9 -1.0 21.4 49.0 -27.6
0.008 382 380 387 113 174 89.4 80.8 8.6 23.0 45.8 -22.8

Av Δ1 +2.66 Av Δ2 -8.05

A Study on the Applications of Emerging Sequential Patterns 71

Table 3. Patterns’ Trend Re-occurrence Prediction

TaFeng Retail Dataset

Periods Pattern MinSup Patterns mined ESPs Pattern Prediction ESPs Prediction

|St(i)| |St(i+1)| |St(i+2)| |Et(i+1)
t(i) | |Et(i+2)

t(i+1) | Pr1 Pr2 Δ1 Pr3 Pr4 Δ2

Closed
0.1 2 1 0 1 0 0.0 NA 0.0 0.0 NA 0.0
0.04 55 54 53 19 31 94.7 92.6 2.1 52.6 57.4 -4.8

i = 1 0.008 187 167 201 63 100 98.4 92.2 6.2 57.1 59.9 -2.8
t1, t2 Closed and 0.1 2 1 0 0 0 0.0 NA 0.0 NA 0.0 0.0

Maximal 0.04 37 36 38 15 18 93.3 88.9 4.4 46.7 50.0 -3.3
0.008 136 127 143 43 60 90.7 87.4 3.3 46.5 47.2 -0.7

Closed
0.1 1 0 1 1 0 0.0 NA 0.0 0.0 NA 0.0
0.04 54 53 50 31 6 93.5 88.7 4.8 12.9 11.3 1.6

i = 2 0.008 167 201 163 100 42 91.0 81.1 9.9 20.0 20.9 -0.9
t2, t3 Closed and 0.1 1 0 1 0 0 0.0 NA 0.0 0.0 NA 0.0

Maximal 0.04 36 38 32 17 9 93.8 84.2 9.6 23.5 23.7 -0.2
0.008 127 143 123 78 37 80.8 79.7 1.1 19.2 25.9 -6.7

Av Δ1 +3.45 Av Δ2 -1.48

Table 4. Patterns’ Cyclic Re-occurrence Prediction

Periods Pattern MinSup Patterns mined ESPs Pattern Prediction ESPs Prediction

|Sw,1| |Ssp,1| |Sw,2| |Ssp,2| |Esp,1
w,1 | |Esp,2

w,2 | Pr1,1 Pr1,2 Pr2,2 Δ1,2 Pre,1 Pre,2 Δe

Closed

0.1 16 15 18 21 6 14 100 100 100 0.0 66.7 82.1 -15.4
Dw,1 0.04 55 55 72 78 29 62 100 100 100 0.0 82.8 89.0 -6.2
Dsp,1 0.008 390 380 379 565 186 399 100 100 100 0.0 74.7 78.6 -3.9
Dw,2 0.1 13 13 15 16 5 10 100 100 100 0.0 60.0 77.0 -17.0
Dsp,2 Closed and 0.04 37 40 49 51 23 39 100 100 100 0.0 87.0 90.0 -3.0

Maximal 0.008 248 248 351 382 98 182 100 100 100 0.0 86.7 73.4 13.3

|Ssp,1| |Ssm,1| |Ssp,2| |Ssm,2| |Esm,1
sp,1 | |Esm,2

sp,2 |

Closed

0.1 15 15 18 21 4 6 100 100 100 0.0 50.0 40.0 10.0
Dsm,1 0.04 55 53 72 78 22 20 100 100 100 0.0 36.4 37.8 -1.4
Dsp,1 0.008 380 377 565 638 157 199 100 100 100 0.0 39.5 52.8 -13.3
Dsm,2 0.1 13 13 16 15 3 3 100 100 100 0.0 33.3 23.1 10.2
Dsp,2 Closed and 0.04 40 40 51 49 15 14 100 100 100 0.0 46.7 35.0 11.7

Maximal 0.008 248 239 382 380 101 113 100 100 100 0.0 44.5 47.3 -2.8

|Ssm,1| |Sa,1| |Ssm,2| |Sa,2| |Ea,1
sm,1| |Ea,2

sm,2|

Closed

0.1 15 15 19 20 8 8 100 100 100 0.0 50.0 53.3 -3.3
Dsm,1 0.04 53 56 77 74 24 36 100 100 100 0.0 41.7 64.3 -22.6
Da,1 0.008 377 379 606 607 178 290 100 98.9 96.0 2.9 50.0 76.5 -26.5
Dsm,2 0.1 13 13 15 16 8 7 100 100 100 0.0 50.0 53.8 -3.8
Da,2 Closed and 0.04 40 42 49 47 17 24 100 100 100 0.0 52.9 57.1 -4.2

Maximal 0.008 239 256 380 387 101 174 100 98.8 96.1 2.7 61.4 68.0 6.6

Av Δ1,2 +0.31 Av Δe -3.97

72 V.M. Nofong, J. Liu, and J. Li

5 Conclusion and Future Works

ESPs detected based on current definition capture emerging trends in time-
stamped datasets for decision making. Our experimental results show that ESPs
improve patterns re-occurrence prediction than frequent patterns but the im-
provements are marginal. However, in predicting the continuous emergence of
patterns, both ESPs and frequent patterns are not good predictors though the
prediction precisions obtained with ESPs are slightly lower than those made
with frequent patterns. The possible reasons ESPs are not good predictors for
predicting the continuous emergence could arise from the fact that most ESPs
detected based on current definition:

– Are not truly emerging as their emergence could be caused by noise or data
fluctuations.

– Are not significantly or statistically emerging and hence not relevant in pre-
dicting the continuous emergence of patterns with time. We believe that
ESPs that are significantly emerging are unlikely to have their emergence
caused by noise or data fluctuations and hence could be good predictors for
emerging patterns.

To help improve ESPs as good predictors of emerging patterns with time, we
suggest future works on improving the existing definition of ESPs to enable de-
tect non-trivial and more useful ESPs in time-stamped datasets. Our suggestions
on future works are:

1. Incorporating statistical and/or technical methods in existing ESP definition
that will employ inherent pattern properties in:

– Validating the true emergence of sequential patterns from one dataset
to another.

– Pruning statistically insignificant emerging sequential patterns.

2. Current ESPs definition should be extended to enable detect and report
concise representations of emerging sequential patterns that are interesting,
non-redundant, and/or self-sufficient.

Acknowledgement. This work was partially supported by Australian Research
Council Discovery grant DP130104090.

References

1. Adedoyin-Olowe, M., Gaber, M.M., Stahl, F.: TRCM: AMethodology for Temporal
Analysis of Evolving Concepts in Twitter. In: Rutkowski, L., Korytkowski, M.,
Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part
II. LNCS (LNAI), vol. 7895, pp. 135–145. Springer, Heidelberg (2013)

2. Agrawal, R., Srikant, R.: Mining Sequential Patterns. In: 11th IEEE International
Conference on Data Engineering, pp. 3–14. IEEE (1995)

A Study on the Applications of Emerging Sequential Patterns 73

3. Ayres, J., Flannick, J., Gehrke, J., Yiu, T.: Sequential Pattern Mining using
a Bitmap Representation. In: 8th ACM SIGKDD International Conference on
Knowledge Discovery, pp. 429–435. ACM (2002)

4. Boettcher, M.: Contrast and Change Mining. Wiley Interdisciplinary Reviews:
Data Min. Knowl. Disc. 1(3), 215–230 (2011)

5. Chen, M.C., Chiu, A.L., Chang, H.H.: Mining Changes in Customer Behavior in
Retail Marketing. Expert Syst. Appl. 28(4), 773–781 (2005)

6. Cho, Y.B., Cho, Y.H., Kim, S.H.: Mining Changes in Customer Buying Behavior
for Collaborative Recommendations. Expert Syst. Appl. 28(2), 359–369 (2005)

7. Dong, G., Li, J.: Efficient Mining of Emerging Patterns: Discovering Trends and
Differences. In: 5th ACM SIGKDD International Conference on Knowledge Dis-
covery, pp. 43–52. ACM (1999)

8. Garofalakis, M.N., Rastogi, R., Shim, K.: SPIRIT: Sequential Pattern Mining with
Regular Expression Constraints. In: 25th International Conference on Very Large
Data Bases, pp. 7–10. Morgan Kaufmann (1999)

9. Gomariz, A., Campos, M., Marin, R., Goethals, B.: ClaSP: An Efficient Algorithm
for Mining Frequent Closed Sequences. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H.,
Xu, G. (eds.) PAKDD 2013, Part I. LNCS (LNAI), vol. 7818, pp. 50–61. Springer,
Heidelberg (2013)

10. Huang, T.C.K.: Mining the Change of Customer Behavior in Fuzzy Time-Interval
Sequential Patterns. Appl. Soft Comput. 12(3), 1068–1086 (2012)

11. Huang, Z., Gan, C., Lu, X., Huan, H.: Mining the Changes of Medical Behaviors
for Clinical Pathways. In: 14th World Congress on Medical and Health Informatics,
pp. 117–121 (2013)

12. Li, J., Liu, H., Downing, J.R., Yeoh, A.E.J., Wong, L.: Simple Rules Underly-
ing Gene Expression Profiles of More than Six Subtypes of Acute Lymphoblastic
Leukemia (ALL) Patients. Bioinformatics 19(1), 71–78 (2003)

13. Li, J., Dong, G., Ramamohanarao, K., Wong, L.: Deeps: A New Instance-Based
Lazy Discovery and Classification System. Machine Learning 54(2), 99–124 (2004)

14. Li, J., Dong, G., Ramamohanarao, K.: Making Use of the Most Expressive Jumping
Emerging Patterns for Classification. Knowl. Inf. Syst. 3(2), 131–145 (2001)

15. Li, J., Wong, L.: Emerging Patterns and Gene Expression Data. Genome Infor-
matics, 3–13 (2001)

16. Liu, B., Hsu, W., Han, H.S., Xia, Y.: Mining Changes for Real-Life Applications. In:
Kambayashi, Y., Mohania, M., Tjoa, A.M. (eds.) DaWaK 2000. LNCS, vol. 1874,
pp. 337–346. Springer, Heidelberg (2000)

17. Mooney, C.H., Roddick, J.F.: Sequential Pattern Mining–Approaches and Algo-
rithms. ACM Comput. Surv. 45(2), 19:1–19:39 (2013)

18. Shih, M.J., Liu, D.R., Hsu, M.L.: Mining Changes in Patent Trends for Competitive
Intelligence. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD
2008. LNCS (LNAI), vol. 5012, pp. 999–1005. Springer, Heidelberg (2008)

19. Shih, M.J., Liu, D.R., Hsu, M.L.: Discovering Competitive Intelligence by Mining
Changes in Patent Trends. Trends. Expert Syst. Appl. 37(4), 2882–2890 (2010)

20. Song, H.S., Kim, S.H.: Mining the Change of Customer Behavior in an Internet
Shopping Mall. Expert Syst. Appl. 21(3), 157–168 (2001)

21. Szathmary, L.: Méthodes Symboliques de Fouille de Données avec la Plate-forme
Coron (Doctoral dissertation. Université Henri Poincaré-Nancy I) (2006)

22. Tsai, C.Y., Lo, C.C., Lin, C.W.: A Time-Interval Sequential Pattern Change De-
tection Method. International. J. Inf. Tech. Decis. 10(01), 83–108 (2011)

23. Tsai, C.Y., Shieh, Y.C.: A Change Detection Method for Sequential Patterns.
Decis. Support Syst. 46(2), 501–511 (2009)

Efficient Subgraph Matching Using GPUs

Xiaojie Lin1, Rui Zhang1, Zeyi Wen1, Hongzhi Wang2, and Jianzhong Qi1

1 University of Melbourne, Victoria, Australia
xiaojiel1@student.unimelb.edu.au,

{rui.zhang,zeyi.wen,jianzhong.qi}@unimelb.edu.au
2 Harbin Institute of Technology, Harbin, China

wangzh@hit.edu.cn

Abstract. The explosive growth of various social networks such as Face-
book, Twitter, and Instagram has brought in new needs for efficient graph
algorithms. As a basic graph operation, subgraph matching is the foun-
dation of many of these algorithms. Consequently, the efficiency of sub-
graph matching is very important and determines the speed of the whole
data mining process. The development of multi-core CPUs allows sub-
graph matching algorithms to process multiple data at a time. However,
the number of threads is still limited, which has become a bottleneck of
these CPU-based algorithms. A workaround is using clusters of powerful
servers, which normally incurs very expensive network transfer overhead.
Therefore, improving the efficiency and parallel abilities of a single com-
puter is a better idea. One of the most effective way to achieve this is
making use of GPUs. With the ability of executing thousands of threads
simultaneously, GPUs have a great potential to accelerate the subgraph
matching. In this paper, we leverage the power of GPUs and propose an
efficient subgraph matching algorithm. The experimental results show
that our algorithm outperforms the state-of-the-art algorithm by an or-
der of magnitude.

Keywords: Subgraph matching, GPU, relation join.

1 Introduction

Data in many different domains including social network, web, chemistry, bioin-
formatics etc. can be naturally modeled as graphs. These data graphs are usually
complicated and large. We need fast enough data mining methods to extract use-
ful information from them. Subgraph matching (subgraph isomorphism), which
is usually a time-consuming process, plays vital roles in many of these methods.
Improving the efficiency of subgraph matching is crucial in many applications.
Examples include using subgraph matching to 1) locate suspicious codes in the
call graphs of a program [7], 2) find protein structures that contain α-β-barrel
motif [2], [10], 3) identify a small subset of molecules for further analysis in drug
design [16] and 4) help social science researchers discover the relations between
a successful CEO and his/her friends [18].

Much work has been done to improve the efficiency of subgraph matching, For
example, the state-of-the-art STwig algorithm [14] achieves higher efficiency by

H. Wang and M.A. Sharaf (Eds.): ADC 2014, LNCS 8506, pp. 74–85, 2014.
c© Springer International Publishing Switzerland 2014

Efficient Subgraph Matching Using GPUs 75

abandoning graph structure index and combining exploration and join mecha-
nism. However, as well as other algorithms, they all subject to the limited parallel
processing ability of CPUs. Although multi-core CPUs have been developed for
a long time, the number of concurrent threads is still limited, which is normally
up to 16 or 20. The limited parallel ability has become a bottleneck for these
CPU-based algorithms. By contrast, a high-end GPU has the ability of executing
several thousand or more threads simultaneously [13], which makes it suitable
for many applications involving processing a large amount of data. Compared
with CPUs, GPUs also have a very high memory bandwidth. To further improve
the efficiency of subgraph matching, making use of GPU is a good solution.

Our GPU-based algorithm can execute thousands of threads simultaneously
to process different pieces of data. We use sophisticated memory layout in global
memory to take advantage of caches and coalesced memory access. We also make
full use of shared memory and constant memory to achieve extra acceleration.

1.1 Contributions and Organization of the Paper

To summarise, we make the following contributions in this paper.

– We analyse the state-of-the-art algorithm and identify bottleneck.
– We propose an efficient GPU-based subgraph matching algorithm which

makes use of elaborate join order and fully pipeline mechanism.
– We conduct extensive experiments to study the performance.

The rest of the paper is organized as follows. Section 2 reviews the related
work. Section 3 analyses the STwig algorithm and also briefly explains the CUDA
structure. Section 4 presents our GPU-based algorithm. Section 5 presents the
experimental results. Finally, Section 6 concludes this paper.

2 Related Work

2.1 Subgraph Matching

The simplest way to solve the problem of subgraph matching is brute-force
search, but the computation time is unacceptable even if the graph is small.
Ullmann and Julian proposed a backtracking algorithm [15] which can reduce
the size of the search space significantly. In the same spirit, Cordella et al. de-
veloped a pruning based algorithm [6]. This algorithm makes use of state space
representation (SSR) of the matching process and a set of feasibility pruning
rules. Also, a new way of organizing data is adopted to reduce the memory re-
quirements. This algorithm has a better time and spatial performance. However,
it is still too slow and can only handle graphs with several thousand nodes.

To deal with larger graphs, a lot of algorithms use indices to achieve better
performance. Systems like RDF-3X [12] and BitMat [1] create indices on distinct
edges to improve performance. SpiderMine [17] mines and indexes the top-K

76 X. Lin et al.

largest frequent patterns from the graphs. R-Join [4] uses 2-hop reachability
labels [5] as its indices, and Distance-Join [18] uses a similar reachability index.

The problem of the algorithms using complex indices is obvious: the con-
struction time or memory space for the indices are usually prohibitive. This
disadvantage becomes much more significant when the graphs are very large.

The STwig algorithm [14] solves this problem by totally abandoning graph
structure indices. The algorithm uses only a very simple index for mapping
text labels to graph nodes, which has linear size and linear construction time.
To compensate for the lack of graph structure indices, the STwig algorithm
decomposes the query graph into two-level trees by a sophisticated algorithm
and adopts an exploration mechanism, which can reduce both the number of
two-way join operations and the size of joins’ parameters. The details of STwig
algorithm are discussed in Section 3.2.

To handle very large graphs, the STwig algorithm makes use of powerful
clusters. The efficiency of STwig algorithm on such platforms is satisfactory.
However, improving the efficiency on a single computer is still necessary. On
the one hand, it is always preferable to use a single computer to get work done
in time. On the other hand, less computers in a cluster are needed if a single
computer can process data faster.

2.2 Join Algorithms on GPU

He et al. proposed a series of GPU join algorithms [9] including NLJ, INLJ,
NINLJ and HJ. The speedup ratios for these algorithm range from 1.9X to
7.0X.

Kaldewey et al. proposed an algorithm [11] making use of zero copy mecha-
nism, which allow the join operation to be processed “on the fly” as the GPU
reads the input tables from CPU memory directly at PCI-E speed.

However, the algorithms mentioned above do not address the problem of large
intermediate data produced in a multi-way join.

3 Preliminaries

3.1 Subgraph Matching

In this paper, we consider subgraph matching on a labeled graph. Let G =
(V,E, T) be a graph, where V is the vertex set, E is the edge set, and T : V ≥ Σ∪

is a labeling function assigning a label to each vertex of G. Giving a labeled query
graph q = (Vq, Eq, Tq), subgraph matching will find all occurrences of q in G.

Take the query graph and data graph shown in Fig 1(a)(c) as an example, the
matching results are (A1, B1, C1, D1, E1).

3.2 The STwig Algorithm

STwig algorithm [14] can be divided into steps as described below.

Efficient Subgraph Matching Using GPUs 77

(a) Query graph (b) Decomposition

...

(c) Data graph

Fig. 1. A data graph and a query graph

Query Graph Decomposition is the first step. a query graph will be decom-
posed into a set of basic query units called STwigs. A STwig is a two-level tree,
whose structure is very simple so that matching it in the data graph is very easy.

An example of the decomposition is shown in Fig 1(a)(b). The decomposition
algorithm tries to minimize the number of STwigs and ensure that we can find
a STwig order ≤o1, o2, · · · , on∈ which satisfies the following statement: ∧i >= 2,
∪j < i such that the root node of STwig oi is the same node as a leaf of STwig
oj . ≤q1, q2, q3∈ is such an order in the example of Fig 1. The order can be used
in the step of matching STwigs.

Matching STwigs in the data graph is simple. The system constructs a label
index at the beginning so that nodes with a specified label can be retrieved
directly. The algorithm of matching the first STwig o1 is shown in Algorithm 1.

Algorithm 1. Match the First STwig
input : Data graph G, STwig o1 = (r1, L1) where r1 is the root node and L1 is

the leave label set
output: Result set R
Fill the set S1 with all nodes with r1’s label;
for each n in S1 do

for each li in L1 do
Tli ∈ {m|m ∈ n.neighbors and m.label=li};

R = R ∪ {{n} × Tl1 × Tl2 × · · · × Tl|L1|};

The matching algorithm for other STwigs is slightly different because some
pruning mechanism can be used. Let us consider Fig 1. The matching order is
≤q1, q2, q3∈. The result sets for q1 and q2 are R1 = {(A1, B1, C1), (A2, B2, C1)}
and R2 = {(B1, C1, D1)} respectively. When q3 is being matched, the candidate
set for its root node is not {D1, D2, · · · , Dm}. R2 ensures that only node D1 in the
data graph is possible to match node D in the query graph, so the candidate set
for q3 is {D1} and R3 = {(D1, E1)}. This pruning strategy can reduce memory
usage and the workload of the following join operation significantly.

Joining STwig Results is the final step. For the example above, the final result
set is R1 � R2 � R3 = {(A1, B1, C1, D1, E1)}

78 X. Lin et al.

3.3 General Purpose Computation on GPU

A CPU invokes a GPU by calling the kernel function, then the multiprocessors
of the GPU will execute the kernel function simultaneously.

GPU threads are organized in a two-level hierarchy. The lower level is block,
where multiple threads are organized in 1D, 2D or 3D ways. Each GPU thread
has it own ID. For example, a thread ID comprises a row number and a column
number in a 2D block. The higher level is grid, which contains multiple blocks.

GPUs also have a memory hierarchy. A single thread has a private memory
space provided by registers and local memory. Registers is very fast but the
amount is limited and they cannot be used to store an array indexed with non-
constant quantities. Local memory resides in big but slow device memory and it
does not have such restriction. Threads in the same block share shared memory,
which is on-chip, small and very fast. All threads on a GPU can access to global
memory, constant memory and texture memory, all of which reside in device
memory. Constant memory and texture memory have dedicated caches to speed
up the access. GPUs with compute capability higher than 2.0 have L1 and L2
caches for global memory, which is similar to CPUs.

4 Our Proposed GPU-Based Algorithm

Not all of the 3 steps of the original STwig algorithm are perform on the GPU.
The decomposition step consumes only a very small amount of time, so there is

no need to perform it on the GPU. The step of matching STwig is also performed
on the CPU because: 1) The computation time is not as long as that of the join
step normally; 2) The data graph may occupy too many GPU memory; 3) We
can pipeline the CPU steps and the GPU steps to achieve extra speedup.

Joining STwig results is the step on which we focus. In the worst case, each
single 2-way join can produce a result set whose size is the product of input
relation sizes, so both the computation time and memory usage are problems.

We propose a GPU-based join algorithm in the following subsections to solve
these problems. The algorithm makes use of hash table to improve the efficiency.
Although the random memory access pattern of hash table will negatively affect
GPU memory bandwidth, the constant search time still makes it a good choice.

4.1 Choosing a Join Tree

We denote the result sets of all STwigs by R1, R2, · · · , Rn. A multi-way join can
be represented by a join tree. Each leaf of the join tree represents the result
set of a STwig. Each internal node represents a 2-way join. The left child of an
internal node is the build relation, which means a search data structure will be
built for it. The right child is the probe relation, whose tuples are used to matche
with those of the build relation.

Two different join trees are shown in Fig 2 (≤p1, p2, · · · , pn∈ is a permutation
of {1, 2, · · · , n}). GPU memory is limited and cannot be enlarged freely, so the
major consideration of choosing join tree is memory usage.

Efficient Subgraph Matching Using GPUs 79

(a) Left-deep join tree (b) Right-deep join tree

Fig. 2. Join tree

Let us consider the left-deep join tree. To save GPU memory, we only load
Rp1 and build the corresponding hash table H1 in the GPU at first. Then GPU
threads read tuples of Rp2 from CPU memory directly, conduct the first 2-way
join and store results in the GPU. After the join, H1 can be released and hash
table H2 will be built for the result set of Rp1 � Rp2 in the GPU. The second
2-way join (Rp1 � Rp2) � Rp3 can then begin. Consequently, only one hash
table and one intermediate result buffer reside in GPU. However, they may still
be too large. In the worst case, |Rp1 � Rp2 | may be as large as |Rp1 × Rp2 |.
Workarounds for the memory problem like using block-based mechanism exists.
However, they can slow down the process significantly. Bushy join trees (trees
that are neither left-deep or right-deep) have the same problem.

The right-deep join tree is a better idea because a fully pipeline mechanism
can be used. At the beginning, hash tables H2, H3, · · · , Hn will be constructed in
the GPU for Rp2 , Rp3 , · · · , Rpn respectively. Because of the pruning mechanism
used in matching STwigs, R2, R3, · · · , Rn are much smaller than R1. In many
cases, |∑n

i=2 Ri| is even smaller than |Rn|, so we can let R1 to be Rp1 to save a
large amount of memory. Besides, we use a fully pipeline mechanism to minimize
memory space for the intermediate data, which is described in Section 4.3.

The Order of Leaves. Further improvement can be achieved by optimizing the
order of leaves, i.e. optimizing the permutation of ≤p1, p2, · · · , pn∈. Better order
can result in less intermediate results which means less join time. To choose the
optimal order, we can predict the size of intermediate results [8].

4.2 Hash Tables on GPU

Definitions of Operators. The hash table operators defined here will be used
to explain our join algorithm later. Hi.match(x) returns the iterator point-
ing to the first record that match x. iterator.record() returns the record and
iterator.next() returns the iterator pointing to the next record that match x.

Implementation Details. We implement the hash table by chaining mech-
anism, which can be constructed in parallel easily. Data is stored together in
two arrays to avoid memory overheads. The first array is pool. Each record of
Rpi(1 < i ⊂ n) occupies li+1 successive entities of pool, where li is the size of a
Rpi ’s record. The extra entity is used to store the index of next record with the
same hash value. Another array is head. Each entity of head stores the index of
the first record in the chain with corresponding hash value.

80 X. Lin et al.

In the phase of constructing hash tables, each thread will first calculate the
hash value of a record storing in pool. Then it will link the record at the head
of the chain by two assignment atomically: 1) extra entity∃ head[hash value] 2)
head[hash value] ∃ current record index.

We use the least ⊆log |Rpi |≡ significant bits of the sum of a record’s entities
as the hash value, so the size of array head is 2�log |Rpi

|∗, and the size of array
pool is |Rpi |(li + 1). The total size of a hash table is 2�log |Rpi

|∗ + |Rpi |(li + 1).
Apparently, 2�log |Rpi

|∗ ⊂ |Rpi |, so

hash table size
data size

=
2�log |Rpi

|∗ + |Rpi |(li + 1)

li|Rpi |
⊂ 1 +

2

li

Because li ≥ 2, a hash table occupies at most 2 times memory.

4.3 Joining STwig Results

Our pipeline joining algorithm (see Algorithm 2) works like a depth-first search
and only a very small and fixed amount of intermediate data need to be stored.
The explanation of the algorithm is separated in the following subsections.

Algorithm 2. Join algorithm for each thread
Input: Probe relation Rp1 and hash tables H2,H3, · · · ,Hn

1 begin
// pos indicates this thread is processing subjoin �pos

2 pos ∈ 1;
3 itArray[1] ∈ none;
4 while true do
5 while itArray[pos] = none and pos →= 1 do
6 pos ∈ pos− 1;

7 while itArray[1] = none do
8 i ∈ GetNewRecordsOrQuit();
9 set imResult based on Rp1 [i];

10 itArray[1] ∈ H2.match(imResult);

11 set imResult based on pos and itArray[pos].record();
12 itArray[pos] ∈ itArray[pos].next();
13 if pos = n− 1 then
14 output imResult as a final result;
15 else
16 itArray[pos+ 1] ∈ Hpos+2.match(imResult);
17 pos ∈ pos+ 1;

Efficient Subgraph Matching Using GPUs 81

Definitions of Variables and Functions. Each thread of the GPU has two
arrays. One is imResult[1, 2, · · · , qn], which stores the intermediate result. Each
entity corresponds to one query graph node, so a final joining result is produced
when all entities are set. Another is itArray[1, 2, · · · , n − 1]. When a thread is
processing subjoin �i (see the join tree in Fig 2(b)), it stores an iterator of
Hi+1 in itArray[i]. Both imResult and itArray are frequently accessed and
small enough, so we put them in shared memory. Each thread has a variable pos
which is used to indicate the subjoin being processed. For example, the thread
will be processing �1 if pos = 1.

The function GetNewRecordsOrQuit() is used to retrieve the first unhandled
record of Rp1 . If there is no unhandled record, this function will terminate the
thread.

A DFS-Like Procedure. The strategy of our algorithm is to “consume” the
intermediate results as soon as possible. In the whole process of the join, a GPU
thread will move forward to process next subjoin whenever possible and only
moves backward when the current subjoin fails. The manner is similar to that
of a depth-first search algorithm.

An Example. We use an example to illustrate how our algorithm works.
Let us consider the data graph and query in Fig 1 again. The result sets

of STwigs and the final result set are R1 = {(A1, B1, C1), (A2, B2, C1)}, R2 =
{(B1, C1, D1)}, R3 = {(D1, E1)} and R1 � R2 � R3 = {(A1, B1, C1, D1, E1)}
respectively.

In this example, the probe relation is R1 and we first join R2 with R1, so
�1= R2 � R1 and �2= R3 � (R2 � R1). We assume imResult[1] corresponds
to node A of query graph; imResult[2] corresponds to node B . . .

At the beginning, the GPU constructs hash tables H2 and H3 for R2 and
R3 respectively. Then the join process starts. To simplify the explanation, we
assume there is only one thread.

When Algorithm 2 starts, the thread will first initialize pos to 1 and itArray[1]
to none. Then it starts the first round of the outermost block of while.

In line 8, it calls GetNewRecordsOrQuit() to get the index of the first unhan-
dled record of R1. Then imResult is set to (A1, B1, C1,−,−) (line 9). The match
operator ofH2 checks the second and third entities of imResultand returns an iter-
ator pointing to record (B1, C1, D1) of R2 to set itArray[1] (line 10). Based on the
value of itArray[1].record(), imResult is further updated to (A1, B1, C1, D1,−)
(line 11). itArray[1] is updated again to point to next record in line 12. It is actu-
ally updated to none because there is no other record in R2 whose first two entities
are B1 and C1. Preparing for next round, itArray[2] is set to an iterator pointing
to the only matching record of R3, (D1, E1), in line 16, and pos is increased to 2 in
line 17.

In the second round, imResult[5] will be set to E1 in line 11. At this point, all
entities of imResult are set properly, so the thread will output the final result
(A1, B1, C1, D1, E1) contained in imResult in line 14.

82 X. Lin et al.

Atthe third round,poswill bedecreased to 1 again in thewhile blockbeginning in
line 5. Then in the while block beginning in line 7, it calls GetNewRecordsOrQuit()
to get a new record ofR1, i.e., (A2, B2, C1), to set imResult. However, no record of
R2 match imResult this time and itArray[1] is set to none (line 10). The thread
calls GetNewRecordsOrQuit() again and terminates itself because no record is
unhandled.

4.4 Storage

Storage of Rp1 . The result set Rp1 can be stored in either CPU or GPU and
both solutions require the memory access to be coalesced, so we store Rp1 in a
well-padding 2D array. Each record of Rp1 will be stored in one column.

The Shared Memory. imResult and itArray cannot be stored in registers
because they are not indexed with constant quantities, so we store them in shared
memory as mentioned above. To avoid serializing access due to bank conflicts, 32
imResults of all threads in the same warp are stored together in a 2D array. Each
imResult occupies one column so that each thread can always access imResult
via its own bank. itArray is stored in the same way.

5 Experimental Study

All the experiments were conducted on a computer with 8GB RAM, a 3.30GHz
Intel(R) Xeon(R) E5-2643 CPU and a Tesla C2075 GPU. Tesla C2075 has 5GB
global memory and its compute capability is 2.0.

We use synthetic data in the following experiments to study how the properties
of data graphs and query graphs affect our speedup ratio. The data graphs in
this section are generated by using R-MAT [3] model. The graphs are undirected
and the parameters of R-MAT model are a = 0.4, b = c = d = 0.2. A query
graph with N nodes is generated by adding 2N edges randomly.

5.1 Computation Time of Each Steps

To analyze the efficiency of each step, we conducted an experiment and recorded
the computation time. The data graph we used in this experiment has 16K nodes
and 16 labels. The average degree is 32. We generated 100 query graphs whose
numbers of nodes range from 5 to 10. The results are shown in Fig 3a.

The total time is the sum of “(Copy &) Hash” time, join time and other
time consumed by common operations which are the same both CPU-based and
GPU-based algorithms. We can see that the join time normally dominates the
total time, so our approach of optimizing the join operation achieves an overall
speedup of an order of magnitude. Actually, if we only consider the join time,
the speedup ratio reaches to 26.0. On the other hand, the GPU takes more time
to finish the step of “(Copy &) Hash”, but this time is relatively small and will

Efficient Subgraph Matching Using GPUs 83

 1

 10

 100

 1000

 10000

 100000

Total (Copy &) Hash Join

R
un

 ti
m

e(
m

s)

CPU
GPU

(a) Computation time of each step

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 14 16 18 20

 5

 10

 15

 20

 25

R
un

 ti
m

e(
m

s)

S
pe

ed
up

 r
at

io

Label count

CPU
GPU

Speedup

(b) Label count effect

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 28 32 36 40

 5

 10

 15

 20

 25

R
un

 ti
m

e(
m

s)

S
pe

ed
up

 r
at

io

Averager degree

CPU
GPU

Speedup

(c) Average degree effect

 0

 2

 4

 6

 8

 10

 12

 14

 16

 5 6 7 8 9 10

S
pe

ed
up

 r
at

io

Query size(# of nodes)

(d) Query size effect

Fig. 3. Experiment Results

not affect the overall speedup ratio. The major reasons for this phenomenon are
1) the GPU has to copy data from CPU memory before building hash tables,
which can consume considerable time, 2) our GPU algorithm uses lots of atomic
operations in the step of building hash tables and 3) the uncoalesced memory
access pattern of this step can slow down GPU algorithm.

5.2 The Effect of Data Graph Size

To verify the performance of GPU algorithm with different size of data graph,
we conducted some experiments in which only the numbers of nodes of data
graphs are changed. The numbers of labels and the average degrees for all data
graphs are 16 and 32 respectively. The numbers of data graph nodes are 16K,
32K, 64K and 128K. Our GPU algorithm outperforms CPU in all cases, and the
speedup ratios range from 7.8 to 16.7.

5.3 The Effect of Label Count

In this experiment, we study the effect of the number of labels. We used several
data graphs with the same node counts (16K) and average degrees (32). Only
the label counts are different.

84 X. Lin et al.

As shown in Fig 3b, the run times of both CPU and GPU decrease as the
label count increases. The reason is higher label count normally results in fewer
number of nodes in a data graph that match the roots of STwigs. Consequently,
the sizes of the relations to be joined are smaller and the join time decreases
rapidly. As the join time decreases, the workload of GPU decreases and the
speedup ratio also decreases.

5.4 The Effect of Average Degree

The effect of the average degree is similar to that of the label count. We generated
four data graphs with different average degrees. The same set of query graphs
are used for all the data graphs. As the average degree grows, the run time
increases because the result sets of STwigs becomes larger. Also, the speedup
ratio increases because of the rise of workload.

5.5 The Effect of Query Graph Size

Besides the properties of data graphs, we also observed a relation between the
speedup ratio and the query graph size, i.e., the number of nodes in a query
graph. The relation is shown in Fig 3d. We can see that the speedup ratio
increases as the number of query graph nodes increases from 5 to 9. How-
ever, the speedup ratio decreases when the sizes of query graphs reach 10. This
phenomenon relates to the workload and our implementation.

When the query graph is small, smaller number of STwigs and fewer edges in
each STwig results in light workload. In such cases, we cannot make full use of the
powerful computation abilities of the GPU. When the query graphs are larger,
the workload increases and each GPU thread can keep itself busy. Consequently,
the average speedup ratio for query graphs with 9 nodes reaches 15.66. However,
if a query graph is too large, the speedup ratio may decline because imResult
and itArray occupied too much shared memory and thus the number of the
concurrent threads will decline. In our experiment, concurrent thread counts
can drop from 21504 to 10752.

6 Conclusions

Subgraph matching involves a large amount of data to be processed. Conse-
quently, the computation time is very long. To alleviate this problem, parallel
technology is widely used. However, most of the approaches only try to exploit
CPUs’ parallel abilities, which is very limited. By contrast, our algorithm makes
use of GPUs. A high-end GPU has the ability of executing thousands of threads
simultaneously. This ability allows our algorithm to outperform the state-of-
the-art algorithm by an order of magnitude based on the experimental results.
Additionally, we observe that our approach can perform even better in a heavy
workload situation.

Efficient Subgraph Matching Using GPUs 85

References

1. Atre, M., Chaoji, V., Zaki, M.J., Hendler, J.A.: Matrix bit loaded: A scalable light
weight join query processor for rdf data. In: Proceedings of the 19th International
Conference on World Wide Web, pp. 41–50. ACM (2010)

2. Branden, C., Tooze, J., et al.: Introduction to protein structure, vol. 2. Garland,
New York (1991)

3. Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-mat: A recursive model for graph
mining. Computer Science Department, 541 (2004)

4. Cheng, J., Yu, J.X., Ding, B., Yu, P.S., Wang, H.: Fast graph pattern match-
ing. In: IEEE 24th International Conference on Data Engineering, ICDE 2008,
pp. 913–922. IEEE (2008)

5. Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and distance queries
via 2-hop labels. SIAM Journal on Computing 32(5), 1338–1355 (2003)

6. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (sub) graph isomorphism
algorithm for matching large graphs. IEEE Transactions on Pattern Analysis and
Machine Intelligence 26(10), 1367–1372 (2004)

7. Eichinger, F., Böhm, K., Huber, M.: Mining edge-weighted call graphs to localise
software bugs. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD
2008, Part I. LNCS (LNAI), vol. 5211, pp. 333–348. Springer, Heidelberg (2008)

8. Garcia-Molina, H., Ullman, J.D., Widom, J.: Database system implementation,
vol. 654. Prentice Hall Upper Saddle River, NJ (2000)

9. He, B., Yang, K., Fang, R., Lu, M., Govindaraju, N., Luo, Q., Sander, P.: Rela-
tional joins on graphics processors. In: Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, pp. 511–524. ACM (2008)

10. He, H., Singh, A.K.: Graphs-at-a-time: Query language and access methods for
graph databases. In: Proceedings of the 2008 ACM SIGMOD International Con-
ference on Management of Data, pp. 405–418. ACM (2008)

11. Kaldewey, T., Lohman, G., Mueller, R., Volk, P.: Gpu join processing revisited. In:
Proceedings of the Eighth International Workshop on Data Management on New
Hardware, pp. 55–62. ACM (2012)

12. Neumann, T., Weikum, G.: The rdf-3x engine for scalable management of rdf data.
The VLDB Journal 19(1), 91–113 (2010)

13. NVIDIA: CUDA C best practices guide (2013)
14. Sun, Z., Wang, H., Shao, B., Li, J.: Efficient subgraph matching on billion node

graphs. Proceedings of the VLDB . . . , 788–799 (2012)
15. Ullmann, J.R.: An algorithm for subgraph isomorphism. Journal of the ACM

(JACM) 23(1), 31–42 (1976)
16. Yan, X., Yu, P.S., Han, J.: Substructure similarity search in graph databases. In:

Proceedings of the 2005 ACM SIGMOD International Conference on Management
of Data, pp. 766–777. ACM (2005)

17. Zhu, F., Qu, Q., Lo, D., Yan, X., Han, J., Yu, P.: Mining top-k large structural
patterns in a massive network. Proceedings of the VLDB Endowment 4(11) (2011)

18. Zou, L., Chen, L., Özsu, M.T.: Distance-join: Pattern match query in a large graph
database. Proceedings of the VLDB Endowment 2(1), 886–897 (2009)

H. Wang and M.A. Sharaf (Eds.): ADC 2014, LNCS 8506, pp. 86–97, 2014.
© Springer International Publishing Switzerland 2014

A Negative-Aware and Rating-Integrated
Recommendation Algorithm Based on Bipartite

Network Projection

Fengjing Yin, Xiang Zhao, Guangxin Zhou, Xin Zhang, and Shengze Hu

National University of Defense Technology, Changsha, 410073, P.R.China
{yinfengjing,xiangzhao,gxzhou,ijunzhang,szhu}@nudt.edu.cn

Abstract. Bipartite network projection method has been recently employed for
personal recommendation. It constructs a bipartite network between users and
items. Treating as resource in the network user taste for items, it allocates the
resource via links between user nodes and item nodes. However, the taste mod-
el employed by existing algorithms cannot differentiate “dislike” and “unrated”
cases implied by user ratings. Moreover, the distribution of resource is solely
based on node degrees, ignoring the different transfer rates of the links. To
enhance the performance, this paper devises a negative-aware and rating-
integrated algorithm on top of the baseline algorithm. It enriches the current us-
er taste model to encompass “like”, “dislike” and “unrated” information from
users. Furthermore, in the resource distribution stage, we propose to initialize
the resource allocation according to user ratings, which also determines the re-
source transfer rates on links afterward. Extensive experiments conducted on
real data validate the effectiveness of the proposed algorithm.

1 Introduction

With the rapid growth of the World Wide Web, people are emerged in an overwhelm-
ing amount of information, which makes it difficult to obtain relevant information of
interest. Personal recommendation is employed to suggest products to the consumers
who may be interested in, such as news, books, music, movies, and etc. As a conse-
quence, a large number of diverse algorithms were proposed to solve the problem.
Besides the classic methods, e.g., content-based methods [1], collaborative filtering
and variants [2-4], some new paradigms have been introduced lately, including matrix
factorizations [5,6], social filtering [7] and network based [8-10].

Bipartite network projection was initially introduced in physics, but found applica-
tions in personal recommendation [8]. It relies on a resource distribution process in a
bipartite network to provide a top- n recommendation. Particularly, it considers users
and items as two types of network nodes, respectively, and treats user taste as re-
source to be allocated in the bipartite network. User rating is scaled into a numeral
(either 1 or 0), in comparison with the median of the pre-defined rating range, to indi-
cate user taste. In another word, numeral 1 means the user likes a particular item,
while numeral 0 means the user does not like or has not rated the item. Afterwards,
two rounds of resource distribution are carried out, regardless of the user ratings.

 A Negative-Aware and Rating-Integrated Recommendation Algorithm 87

Eventually, the final resource that an unrated item gets indicates its possibility to be
recommended to users. The method was shown to outperform the collaborative filter-
ing methods. Albeit, we observe that there are at least two shortcomings that limit its
further improvement. Firstly, the current user taste model does not differentiate “dis-
like” and “unrated” cases, both expressed by numeral 0, which potentially stops the
algorithm to provide a more precise recommendation. Secondly, the resource distribu-
tion process does not leverage user ratings; that is, the transfer rates on different links
are not proportional to the corresponding user ratings. Such allocation, and hence the
recommendation, can be inaccurate when a user has a biased preference among the
items. We rectify these issues in this work.

This paper first presents a negative-aware user taste model to encompass “like”
“dislike” and “unrated” cases implied by user ratings so that the user preference is
fully reflected. Instead of using the pre-defined rating range, we propose to use an
adaptive user rating range as threshold for determining user taste. While the rationale
behind is similar to the existing model, we compare a rating with the average rating
of the user. Hence, a rating above this average is considered as a “like”, expressed by
numeral 1; a rating below this average is regarded as a “dislike”, expressed by numer-
al -1; and unrated cases are noted by numeral 0. Based on this user taste model, we
initialize the resource of each item according the user taste and the proportion of the
rating to the sum of all ratings from this user, which can appropriately reflect the dis-
similarity of user interest. Similarly, when deriving the transfer rates of links in re-
source distribution, we design a rating-integrated method to allocate resource via a
link proportional to the user ratings on the corresponding item. In this way, the final
resource allocation is expected to more expressively reflect user preference. Further,
we validate the effectiveness of the model and method on real data in comparison
with four existing algorithms based on bipartite network projection.

To summarize, we make the following contributions:

 We devise a negative-aware user taste model to encompass “like” “dislike” and
“unrated” cases implied by user ratings;

 We propose a rating-integrated method to allocate initial resource and determine
transfer rates on network links according to user ratings;

 The proposed model and method constitute a new algorithm for personal recom-
mendation, which is demonstrated to outperform alternatives through extensive
experiments on public real data.

The rest of the paper is organized as follows: Section 2 introduces the preliminaries
and the baseline algorithm. Section 3 presents the new taste model and the method for
initialization and distribution of the resource. Experimental results are shown in Sec-
tion 4. We discuss the related work in Section 5, followed by conclusion in Section 6.

2 Preliminaries

The baseline algorithm for personal recommendation based on bipartite network pro-
jection relies on a bipartite network, consisting of two types of nodes - user and item
nodes, denoted by U and V , respectively. Let iu denote the i -th user in U , and

88 F. Yin et al.

jv denote the j -th item. iu has a rating (,)i jr u v on jv . All the ratings from user

iu constitute a rating set ()iR u with cardinality of | () |iR u , and all the ratings on

item jv constitute a rating set ()jR v with cardinality of | () |jR v . Links exist be-

tween different types of nodes. That is, a link always connects a user node and an
item node. Each link models a rating behavior of a user on an item. Assume every
rated item by a given user is assigned with certain quantity of resource, i.e., initial
resource allocation. The resource first flows from item nodes to user nodes, then back
to item nodes along the links. Hence, every item gets a final resource allocation after
the two-round resource distribution. The top n items with bigger resource would be
recommended to the current user then the recommendation will be executed for the
next user.

Consider the initial resource as recommendation power. The intuition behind is that
if an item gets more resource after distribution, it is more highly to be liked based on
the user’s preference. Thus, the resource distribution process is of importance. Cur-
rently, the taste of a user is determined based on a threshold equal the median of the
pre-defined rating range. Specifically, a user likes an item, expressed by numeral 1, if
she rates the item above the threshold; otherwise, the case is concluded into the un-
rated category, expressed by numeral 0. For example, the threshold is 3, if the pre-
defined rating range is [1,5] ; a user rating 4 on an item implies that she likes the

item; a user rating 2 on an item is diminished to unrated case.
After determining user tastes, the resource allocation process in the bipartite net-

work is carried out. Two rounds of resource distribution are conducted. In the first
round, resources are transferred from item nodes to user nodes, and all user nodes
having links to a particular item share its resource equally. In the second round, re-
sources are transferred back to item nodes, and all item nodes having links to a user
share its resource equally. The final resource allocated to each item indicates its prob-
ability of being recommended to the given user. For a top- n recommendation, a list
of n unrated items with largest resource allocation is created for the given user. We
refer this as “the baseline algorithm” in the rest of the paper when context is clear.

Example 1: Fig. 1 shows an example of recommendation for user 2u by the baseline

algorithm. Assume in Fig. 1(a) is the constructed bipartite network, with item nodes

in the top and user nodes in the bottom. The ratings of user 2u to items 1
v

to 5v

are 5, 0, 2, 0 and 4, respectively, and the median is 3. So the initial resource configu-
ration is 1, 0, 0, 0 and 1, respectively. The initial resource and raw rating value are
tagged above the item nodes. In the first round as in Fig. 1(b), resources are trans-
ferred from item nodes to users nodes; e.g., user 2u gets 1 / 3 from 1v , and 1 / 3
from 5v , 2 / 3 in total. Then, in the second round as in Fig. 1(c), resources are

transferred back to item nodes; e.g., item 2v receives 1/ 6 from users 1u and

1/12 from user 3u . So the final resource allocation for item 2v is 1/ 4 in total.

Similarly, item 4v gets 11/36 in total. So item 4v will be recommended to user 2u

for its allocated resource is the biggest among the unrated items of user 2u .

 A Negative-Aware and Rating-Integrated Recommendation Algorithm 89

1v 2v 3v

2u 3u 4u1u

4v 5v 1v 2v 3v

2u 3u 4u1u

4v 5v 1v 2v 3v

2u 3u 4u1u

4v 5v

Fig. 1. Example of resource distribution in baseline algorithm

3 A Negative-Aware and Rating-Integrated Algorithm

This section improves the baseline by introducing a negative-aware and rating inte-
grated algorithm for personal recommendation.

3.1 User Taste Model

Let us take a motivating example.

Example 2: Consider a pre-defined rating range [1, 5], and a user rating 1 on an
item. In the baseline algorithm, we take the median of the rating range, i.e., 3 as the
threshold. As 1 is below the threshold, the user may not like the item. Subsequently,
we use a numeral 0 in the initial resource allocation for this item. Recall that a user
taste to an item is also expressed by 0 if she has not rated the item.

The current user taste model does not distinguish the aforementioned cases, which
hinders the algorithm from reaching a higher recommendation precision. Furthermore,
it is intuitive that a rating close to the bottom of the rating range implies a low satis-
faction or preference towards an item, i.e., negative attitude towards the item. We
argue that the rating reflects the user’s taste only if it is compared with her own rating
range, rather than the pre-defined rating range. As a consequence, we distinguish the
three cases -“like” “dislike” and “unrated” - in the new adaptive user taste model.

Firstly, we adopt as the reference the user’s rating range, instead of the pre-defined
rating range. That is, we compare a user rating with respect to the user’s own rating
range; e.g., given a pre-defined rating range [1, 5], a user always rates within [2, 4],
then the latter is the user’s own rating range. This is intuitive, as users may have dif-
ferent rating habit. Some users are harsh when rating, and hence, always give ratings
across the whole pre-defined rating range; while some are soft towards the items, and
hence, usually gives ratings within a small sub domain of the pre-defined rating range.

Subsequently, it is further observed that, as to an item, even if her rating is above
some others’, this may indicate that she dislike the item, since she has a narrow rant-
ing range. Therefore, instead of using median of the pre-defined rating range, we
propose to use the average of a user’s ratings as the threshold to determine the user’s
taste towards an item. That is, we take

(,)

()
| () |

j

i j
v V

i
i

r u v

r u
R u

Î
=
å

90 F. Yin et al.

as the threshold for determining user taste, where ()iR u is the set of ratings from

iu . Consequently, we have the taste model regarding user iu and item jv :

1, (,) ()
(,)

1, otherwise
i j i

i j

r u v r u
T u v

ì ³ï= í
ï-î

. (1)

The taste model is an indicator function such that 1 means the user likes the item,
while -1 means the user dislike the item. Note that we follow the convention to denote
as 0 the user’s taste for an unrated item.

Example 3: Consider a pre-defined rating range of [1, 5], and a user rates five items
as 2, 3, 3, 4, and 5, respectively. Thus, according to the new model, we first take the
average (2 3 3 4 5) / 5 3.4+ + + + = as the threshold. Hence, rating 3 is considered as

a dislike, since it is close to the bottom of the rating range according the user’s rating
habit. On the other hand, rating 4 implies a like, since it is above the threshold.

Our user taste model is adaptive in the sense that it adjusts the threshold according
to different users so that the user’s taste can be well reflected. Introducing the taste of
dislike can make full use of user taste information. Moreover, this distinguishes the
dislike and unrated cases that are treated identically in the baseline, and hence the
recommendation performance is expected to be improved due to these improvements.
We will see shortly how this affects the resource distribution process.

3.2 Initial Resource Allocation

A higher rating implies a stronger recommendation from a user towards an item. To
reflect this information in the initial resource allocation, we weight the initial resource
for every item with a coefficient. In particular, we multiple the taste numeral with the
ratio of the user’s rating to current item to the average of the user’s ratings for all
items. For a given user iu and an item jv , the initial resource allocated to jv is

ini ˆ() () (),j i j i jR v r u v T u v= ´, , (2)

where (,)i jT u v is as the taste model formulated in Section 3.1, ˆ(,)i jr u v denotes the

weight we put on the user taste to generate the initial resource, which is

(,)
((,) ())

()
ˆ(,)=

(,)

()

i j
i j i

i
i j

i j

i

r u v
if r u v r u

r u
r u v

tr r u v
otherwise

r u

ì
ï >
ïï
í

-ï
ï
ïî

, (3)

where tr is the top of the user rating range, (,)i jtr r u v- is to make sure that a

smaller rating will get a smaller initial resource under the negative taste when the
rating is less than the average of user ratings.

This initial resource allocation tries to emphasize the distinction of user taste to dif-
ferent items that the user likes. Thus, the initial resources become more distinguisha-
ble and accordant with user taste.

 A Negative-Aware and Rating-Integrated Recommendation Algorithm 91

Example 4: In the baseline algorithm, the initial resource is the same as the user taste
for items. Since the ratings of the user to the items with same user taste are different,
we have good reasons to doubt the way of initializing resource by simply equating the
initial resource with the user taste for them. In Fig. 2(a), the numbers next to the links
are the ratings. To use the aforementioned model to allocate initial resource, we first
determine the user taste for 2u by formula (1), as 1, 0, -1, 0 and 1, respectively, for

all items. Then, we allocate initial resource by weighting 5/3.7, 2/3.7, and 4/3.7 for
the non-zero user taste respectively, as formulae (2) and (3) represented.

1v 2v 3v

2u 3u 4u1u

4v 5v 1v 2v 3v

2u 3u 4u1u

4v 5v 1v 2v 3v

2u 3u 4u1u

4v 5v

Fig. 2. Example of resource distribution in proposed algorithm

3.3 Resource Distribution

Resource distribution based degree of nodes ignores the difference of links and cannot
reflect the distinctness in the extent of user interest to the same item. We make re-
source transfer from item nodes to user nodes and back to items both aware of the
ratio of user rating to the sum of ratings from all users who have rated the given item
or the sum of ratings by the user to all items. This can improve the accuracy of re-
source distribution to make the distribution process more specific. In particular, in the
first round of transfer from item nodes to user nodes, the ratings are normalized with
each user’s average rating to avoid the influence of rating bias from different users.
Thus, for each user node iu , the resource transferred from item jv to this node is

ini

ˆ(,)
(,) ()

ˆ(,)
k

i j
i j j

k t
u U

r u v
R u v R v

r u v
Î

= ´
å

. (4)

Adding the contributions from all item nodes connecting to iu ,

() (,)
j

i i j
v V

R u R u v
Î

= å .

Example 5: Recall Example 4. In Fig. 2(b), the numbers around the edges are the
transfer rates from item nodes to user nodes. The initial resource is distributed from
item nodes to user nodes in the first round by formula (4). Particularly, the initial
resource of item 1v is distributed to users 1u , 2u and 4u according to the trans-

fer rate of each link. The resource allocation of 1u , 2u and 4u from item 1v is

0.48, 0.52 and 0.4 respectively. After the other items finish resource distribution, the
resource allocation of every user can be got. For example, 0.48 in total for user 1u

with resource 0.48 transferred from item 1v and 0 from 2v respectively.

92 F. Yin et al.

Similarly, in the second round, resource transfers from user nodes back to item
nodes according to the ratio of the rating each item got to the sum of all ratings by this
user. Nonetheless, no normalization needs to be done in the round, as these ratings are
all given by the same user. Hence, we can derive the final resource allocation to an
item jv by

fin fin() (,)
i

j i j
u

R v R u v=å ,

where fin (,)i jR u v denotes the final resource from user iu to item jv , which is

fin

()
(,) ()

()
j

i j
i j i

i j
v

r u v
R u v R u

r u v
= ´
å

,

,
. (5)

Example 6: Recall Example 4. In Fig. 2(c), the numbers around the edges are the
transfer rates from user nodes to item nodes. The resource is distributed from user
nodes to item nodes in the second round by formula (5). After every user distributes
the resource to the items with which there is a link, the final resource for every item
can be summed up. For example, the final resource is 0.19 for item 2v and 0.05 for

item 4v . So, in this bipartite network sample, the recommendation result for user 2u

in our proposed algorithm is item 2v , and this is different from the result in the

baseline algorithm which is item 4v with a resource value of 0.3.

The correctness of the method remains, since the different weighting of initial re-
source allocation and distribution only affects the volume of transferred resource but
not the distribution process. Furthermore, this rating-aware resource distribution allo-
cates the user taste resource discriminatively. Therefore, the final resource allocation
is expected to provide a more accurate suggestion on the top- n recommendation. We
verify the effectiveness of the proposed algorithm in Section 4.

4 Experiments

This section presents the experimental results and analyses.

4.1 Experiment Setup

We conducted experiments on a real dataset MovieLens (http://www.grouplens.org),
which is one of the most famous datasets for evaluating personal recommendation. It
consists of 943 users, 1682 movies and about 100,000 rating records. Users rate movies
according to their interest with discrete numerals from 1 to 5. The data is cleaned by
removing users who rated less than 50 movies. The sparsity of the dataset is about
94.6%, meaning that the ratings by users to movies are rather insufficient. Further, we
select the records if the rating exceeding the average rating of the user as primary data
set, in which there is about 54800 ratings in number. Then we pick out ratings from the
primary data set randomly by a ratio of 20% to construct the test set with a scale of
10960 records, which would be done five times for cross-validation. The rest ratings in

 A Negative-Aware and Rating-Integrated Recommendation Algorithm 93

the primary data set and the others records which are not included in the primary data
set are the members of our training set with a scale of 83640 rating records.

For top- n recommendation, hit ratio and average rank score are two popular
evaluation metrics while comparing different algorithms.

 Hit ratio counts the number that movies of the test set occur in the recommenda-
tion list and then uses the total length of recommendation list as the divisor to get
the final ratio value, i.e.,

(,)i
i M j N k T

H j k
hr

M N
Î Î Î=

*

ååå
,

where M denotes the number of users, N denotes the number of items recom-
mended for each user, T denotes the number of items in test set for each user,
and (),iH j k is an indicator function,

1, (,) (,)
(,)

0, otherwisei

rl i j tl i k
H j k

ì =ï= í
ïî

 ,

where (,)rl i j is the -j th item for user i in the recommendation list, and
(,)tl i k is the -k th item of user i in the test set.

 Average rank score measures the position of each movie of the test set in the se-
quence of all unrated movies, and smaller score value means better recommenda-
tion result. The average rank score is the average of these scores for each record in
the test set which is shown as below:

'

((,))
ik

i

loc tl i k
r

Q
= ,

here ((,))loc tl i k is the location of item (,)tl i k in the sequence for user i in the

test set, and '
iQ is the number of unrated items by user i in the sequence.

4.2 Comparing with The Baseline Algorithm on Hit Ratio

In this set of experiments, we evaluate the effects of Average-Rating Criterion and
Taste with Dislike (labeled by “ARC” and “TD”, respectively) in the user taste model,
Rating-Aware Initial Configuration and Rating-Aware Transfer (labeled by “RAIC”
and “RAT”, respectively) in the resource allocation.

Fig. 3. Effect of our user taste model and resource allocation method

94 F. Yin et al.

As Fig.3 shows, the user-specific average ratings criterion outperforms the median
one when specifying the taste of users. Median method ignores the difference of rat-
ing habits between different users while average rating method judges whether users
like an item according to more particular and personal criterions.

When the tastes of users are specified as dislike together with like, higher hit ratio
was achieved than using only like information as user tastes. The dislike information
as negative resource can spread over the bipartite network to rectify the single taste
resource allocation. A comprehensive taste considering both like and dislike of users
got a more accuracy recommendation result.

The initial configuration of resource based on comprehensive user taste model sets
the values of items which had been rated by current user as 1 or -1 representing like or
dislike. Considering the extent of a user likes or dislikes these items could still be
very different, the ratings by users to items are utilized to weight the initial resource.
This is the rating-aware initial configuration. We can tell from Fig.3 that rating-aware
initial resource configuration got better result.

The distribution based on degree considered only the relationship of user and item
nodes, but the weight for each link between item and user is not measured. The rating-
aware transfer uses the ratio of the rating by a user to an item to the sum of ratings by
the particular user to all items or all users to the given item as the importance of the
edge between this user and the item. The rating-aware transfer weights degree-based
transfer with the importance of links, so its recommendation accuracy is higher.

The proposed algorithm emphasizes the taste of dislike as much as the taste of like
which are specified according to the average rating of each user; the resource alloca-
tion and distribution are adjusted to consider the rating ratios and the transfer rates of
the edges. Compared with the uniform algorithm, which is also named Network
Based Inference (NBI), our algorithm performs obviously better with higher hit ratio.

4.3 Comparing with Baseline Algorithm on Average Rank Score

We compare the NBI and our proposed algorithm with average ranking score metric.
Avg-Rating, Com-Taste, RA-Initial and RA-Transfer denote the average rating based
coarse-graining, the comprehensive taste with both like and dislike, rating-aware ini-
tial configuration and rating-aware transfer of resource respectively. They are used to
indicate the algorithm adopted the improvements that they represent and the ones
before them. r< > denotes the average rank score.

Fig. 4. Comparison on average rank score

 A Negative-Aware and Rating-Integrated Recommendation Algorithm 95

As Fig. 4 shows, rank

is the total scale of items in the test set which are used to
validate the recommendation results while the sequence attribute is ignored tempora-
rily, r< > is the rank score. We can see that the rank scores for the five curves in-
crease exponentially while the length of rank grows, especially start around 6000.
Averaged over records in the test set, the average rank scores for the five implementa-
tions are shown respectively in the legend. It is easy to find that all the improvements
are effective, and the introducing of dislike as taste got the biggest improvement. Our
proposed algorithm achieves better performance than NBI by 16.7% using average
rank score metric, which is accordant with the conclusion using hit ratio metric.

4.4 Comparing with Other Three Variants

We compare the proposed algorithm with an algorithm based on mass diffusion and
two popular variants of bipartite network projection to further validate effectiveness
with both hit ratio and average rank score metrics.

Fig. 5. Comparisons with other three algorithms

 IMD [11] is an improvement of Mass Diffusion which takes into account the av-
erage degree of user nodes to weight the initial resource distribution;

 E-NBI [12] is a variant of uniform NBI which depresses the impact of high-
degree with a negative exponential function to improve the accuracy;

 INBI [13] combines weighted bipartite network with a tunable parameter to de-
pressing high-degree nodes for top- n recommendation.

In Fig.5, the left part demonstrates the comparison with hit ratio metric and while
the recommend list varying from 10 to 50 the proposed algorithm achieves the best
result all the time; the right part is the result of comparison with average rank score,
the proposed algorithm outperforms the other ones by 13.0%, 11.7% and 3.9% on
average, respectively.

5 Related Work

Personal recommendation has been a topic that draws much attention.
Content-Based Method extracts features for items, and a profile is created for a

user with the features, which is then utilized to find out the most similar items to those
collected. However, feature extraction is not easy, and the recommendation is re-
stricted to items very similar to those have been liked [1]. Semantic reasoning was
used to overcome the shortage of vector space model [14]. This kind of algorithms

96 F. Yin et al.

needs to describe item content and extract properties of rated items to build user pro-
files, so the cold start problem is serious.

Contrarily, collaborative filtering does not rely on item content. It utilizes rating
behavior data to select the most similar neighbor, and makes recommendation on the
assumption that who behaved similarly in the past will behave similarly in future. The
key steps of collaborative filtering are computing the similarity and generating the
recommendation from the nearest neighbors. Representative work includes [2-4]. Due
to the vast quantity of items and users but quite finite ratings, the sparsity problem
turns into the bottleneck to raise the effectiveness.

Matrix factorization [5, 6] characterizes both items and users by vectors of fac-
tors inferred from rating patterns, and high correspondence between item and user
factors leads to a recommendation. The single value decomposition [15] is the most
commonly used method to reduce the matrix dimension. The complexity of the com-
putation is so high that few practice applications adopt this kind of algorithms.

Social-based method recommenders the user with what his neighbors like accord-
ing to the link structure of social network. [7] builds an interestmap based on
co-occurring keywords for recommendation. The social relation of users was incorpo-
rated into collaborative filtering to adjust the nearest neighbor selection strategy [16].
It is suitable for processing datasets which also describe the friend relations of users.

A line of closely related work is the algorithms based on bipartite networks [8-
10], and our proposed algorithm also falls into this category. High-order correlations
were considered in [17]. There are also methods based on heat conduction [9, 18] and
random walk [19] on bipartite networks. A hybrid approach containing multi-step
random walk and k -means clustering was introduced to achieve smaller mean abso-
lute error and root mean square error [20]. It is more precise than traditional collabor-
ative filtering recommendation algorithms, yet its accuracy and efficiency could be
further improved.

6 Conclusion

In this paper, we have proposed a negative-aware and rating-integrated personal rec-
ommendation algorithm based on bipartite network projection. It takes the advantages
of the information implied by user ratings to differentiate dislike cases of user tastes,
and weight the resource distribution process. Better empirical results on real data are
obtained regarding both hit ratio and average rank score.

Acknowledgement. This research is partially supported by the National Natural
Science Foundation of China under Grant NO.61302144 and 62303062.

References

1. Marko, B., Yoav, S.: Fab: Content-based Collaborative Recommendation. Comm. of the
ACM 40(3), 66–72 (1997)

2. Konstan, J.A., Miller, B.N., Maltz, D., Herlocker, J.L., Gordon, L.R.: GroupLens: Apply-
ing Collaborative Filtering to Usenet News. Comm. of the ACM 40(3), 77–87 (1997)

 A Negative-Aware and Rating-Integrated Recommendation Algorithm 97

3. Khoshneshin, M., Street, N.W.: Collaborative Filtering via Euclidean Embedding. In:
ACM RecSys 2010, Barcelona, Spain, September 26-30 (2010)

4. Koren, Y.: Collaborative Filtering with Temporal Dynamics. In: ACM KDD 2009, Paris,
France, June 28-July 1 (2009)

5. Koren, Y., Bell, R., Volinsky, C.: Matrix Factorization Techniques for Recommender Sys-
tems. IEEE Computer 42(8), 30–37 (2009)

6. Shi, Y., Larson, M., Hanjalic, A.: Mining Contextual Movie Similarity with Matrix Facto-
rization for Context-Aware Recommendation. ACM TIST 04(01), 1601–1619 (2013)

7. Liu, H., Maes, P.: InterestMap: Harvesting Social Network Profiles for Recommendations.
In: IUI 2005, San Diego, California, USA (January 9, 2005)

8. Zhou, T., Ren, J., Medo, M., Zhang, Y.: Bipartite Network Projection and Personal Rec-
ommendation. Phys. Rev. E 76(4), 46115 (2007)

9. Zhang, Y., Blattner, M., Yu, Y.: Heat Conduction Process on Community Networks as a
Recommendation Model. Phys. Rev. Lett. 99, 154301 (2007)

10. Zhang, Y., Medo, M., Ren, J., Zhou, T., Li, T., Yang, F.: Recommendation Model Based
on Opinion Diffusion, Europhys. Europhys. Lett. 80(2008), 68003 (2008)

11. Liu, J., Zhou, T., Wang, B., Zhang, Y.: Effects of User’s Tastes on Personalized Recom-
mendation. Int. J. Mod. Phys. C 20, 1925–1932 (2009)

12. Zhou, T., Jiang, L., Su, R., Zhang, Y.: Effect of Initial Configuration on Network-Based
Recommendation. Europhys. Lett. 81(2008), 58004 (2008)

13. Xia, J., Wu, F., Xie, C., Tu, J.: INBI: An Improved Network-Based Inference Recommen-
dation Algorithm, In: IEEE NAS 2012, June 28-30 (2012)

14. Fernandez, Y.B., Arias, J.P., Solla, A.G., Cabrer, M.R., Nores, M.L.: Providing Entertain-
ment by Content-based Filtering and Semantic Reasoning in Intelligent Recommender
Systems. IEEE Tconsum. Electr. 54(2), 727–735 (2008)

15. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Incremental Singular Value Decomposition
Algorithms for Highly Scalable Recommender Systems. In: Proceedings of ICCIT, April
2-4 (2002)

16. Liu, F., Lee, H.J.: Use of Social Network Information to Enhance Collaborative Filtering
Performance. Expert Syst. Appl. 37(7), 4772–4778 (2010)

17. Liu, J., Zhou, T., Che, H., Wang, B., Zhang, Y.: Effects of High-order Correlations on Per-
sonalized Recommendations for Bipartite Networks. Physica A 389(2010), 881–886
(2010)

18. Liu, J., Zhou, T., Guo, Q.: Information Filtering via Biased Heat Conduction. Phys. Rev.
E 84, 37101 (2011)

19. Quan, J., Fu, Y.: A Novel Collaborative Filtering Algorithm Based on Bipartite Network
Projection. JDCTA 6(1), 391–397 (2012)

20. Sawant, S.: Collaborative Filtering using Weighted Bipartite Graph Projection: A Recommen-
dation System for Yelp. In: CS224W: Social and Information Network Analysis (December
10, 2013)

Sentiment Analysis on Twitter

through Topic-Based Lexicon Expansion

Zhixin Zhou, Xiuzhen Zhang, and Mark Sanderson

Department of Computer Science and IT,
RMIT University, Melbourne, VIC 3000

{zhixin.zhou,xiuzhen.zhang,mark.sanderson}@rmit.edu.au
http://www.rmit.edu.au

Abstract. Supervised learning approaches are domain-dependent and it
is costly to obtain labeled training data from different domains. Lexicon-
based approaches enjoy stable performance across domains, but often can-
not capture domain-dependent features. It is also hard for lexicon-based
classifiers to identify the polarities of abbreviations andmisspellings,which
are common in short informal social text but usually not found in general
sentiment lexicons. We propose to overcome this limitation by expanding
a general lexicon with domain-dependent opinion words as well as abbre-
viations and informal opinion expressions. The expanded terms are au-
tomatically selected based on their mutual information with emoticons.
As there is an abundant amount of emoticon-bearing tweets on Twitter,
our approach provides a way to do domain-dependent sentiment analysis
without the cost of data annotation. We show that our technique leads to
statistically significant improvements in classification accuracies across 56
topics with a state-of-the-art lexicon-based classifier. We also present the
expanded terms, and show themost representative opinion expressions ob-
tained from co-occurrence with emoticons.

1 Introduction

Both machine-learning and lexicon-based approaches have been adopted to do
sentiment analysis on Twitter. Machine-learning approaches to sentiment anal-
ysis usually require annotated text and are known to be domain-dependant.
Annotation is generally costly to obtain, but lack of labeled data in the tar-
get domain can lead to deteriorated classification performance. It has also been
shown in existing work [14] that better performance is achieved when using all
words as features. As such, the feature list of a supervised classifier often con-
tains spurious patterns which are difficult to make sense of by a human reader.
As has been indicated by Thewall et.al [17], supervised classifiers may harness
nonsentiment features and falsely identify sentiment.

Lexicon-based approaches relies on opinion lexicons to classify text. Words
from such lexicons are direct indicators of sentiment and transparent to human
readers, and the polarities of most opinion words are not domain-dependent.
As such, these approaches can achieve stable performance across domains.

H. Wang and M.A. Sharaf (Eds.): ADC 2014, LNCS 8506, pp. 98–109, 2014.
c© Springer International Publishing Switzerland 2014

http://www.rmit.edu.au

Sentiment Analysis on Twitter through Topic-Based Lexicon Expansion 99

However, for more accurate classification it is desirable to capture contextual
polarities of words [3], especially so when dealing with short social text such as
Twitter tweets, where single-sentence status updates are common and the num-
ber of features are rather limited. For example, the word “big” implies positive
emotion in “My new office is BIG!!” but negative emotion in “it’s too big to
fit into your pocket”. Another challenge for lexicon-based approaches on short
social text is to identify the polarity of informal expressions of sentiments, such
as abbreviations and misspellings. In a tweet positive expressions may include
“+1”, “hear hear”. A negative expression of opinion can be “O come on”, “lmao”
(laugh my a** off). Such informal expressions may evolve and emerge over time,
and to the best of our knowledge, no existing opinion word lexicon provides
sufficient coverage of these informal expressions.

In addition to opinion lexicons, emotions can also be expressed through emoti-
cons. Unlike literal words, emoticons usually have a stable polarity across do-
mains and have been widely used for sentiment classification. In fact, the default
twitter search allows users to add emoticons to the query to find positive or neg-
ative tweets, and the returned results usually contains emoticons. However, the
majority of tweets do not have emoticons. Our statistics show that only 9.40%
(7.37% positive and 2.03% negative) of the tweets in the Microblog Track 2011
collection have at least one emoticon 1.

Insufficient lexicon coverage and the limitations of using emoticons have mo-
tivated this study. We propose an automatic lexicon expansion technique to
improve the coverage of the sentiment lexicon employed by the classifier, by
measuring the mutual information between potentially sentiment-bearing words
and the emoticons. We specifically study the following research questions,

1. Can emoticon-aided lexicon expansion improve the performance of a senti-
ment classifier?

2. Can topic-biased emoticon-aided lexicon expansion improve the performance
of sentiment classification?

Our expansion technique is based on a simple intuition. For tweet that looks
like “+1 :)”, or “hear hear :P”, we may use the polarity implied by the emoticons
“:)” and “:P” to infer that “+1” and “hear hear” are positive. Specifically, we
use the point-wise mutual information (PMI) between each word (or symbol)
and a known set of emoticons (see Table 1) to measure the sentiment polarity
of the word. Our technique differs from Turney et.al [20] not only in that we use
positive emoticon groups and negative emoticon groups as references for PMI
calculation, but also in the way we deal with negation. In their study, negations
in the text are not handled. As such, “the online service was not excellent at
all” would be treated as evidence that online service is a positive phrase. In our
appoach we apply negation detection mechanism to flip such cases so that “I
don’t like their online service :(” would be counted as a co-occurrence of like
and :).

1 We matched all tweets against the emoticons from Table 1.

100 Z. Zhou, X. Zhang, and M. Sanderson

To answer the second research question, we use hashtags to create a collec-
tion of tweets from 56 topics. Hashtags are a type of metadata used in Twitter
community to add additional context to tweets, by prefixing a word with a hash
symbol, such as #twitter. Tweets with the same hashtag can often be consid-
ered to be about the same coarse “topic”, though in many cases not a topic in
the common sense. For instance, hashtags such as #justsaying and #nowplaying
are not typical topics. Nonetheless, a hashtag groups tweets of a similar con-
cern, thus enforcing a coarse semantic relation between the tweets. Intuitively,
topic-based lexicon expansion is more difficult when such semantic relations are
weaker. Therefore, evaluation conducted on this hashtag-based topic collections
should be more rigorous than one based on a human-labeled topic collection.
We show that per-topic expansion leads to significantly better performance than
global expansion done on the combined set of tweets from all topics.

2 Related Work

Sentiment classification models on Twitter can be broadly categorised as machine-
learning and lexicon-based approaches, though some algorithms [22] have ele-
ments of both. Machine-learning approaches typically requires labeled training
data, and often use text features as well as emoticons as features to train the
model. To reduce the cost of obtaining labeled training data, some sentiment-
bearing tokens (e.g. emoticons, sometimes even hashtags) with known sentiment
polarities have been used to automatically collect training instances. Go et.al
[8] use emoticons as “noisy labels” to obtain instances, and classify with various
classifiers, among which MaxEnt has achieved an accuracy of 83% on their test
set. Pak et.al [12] also use emoticons as labels for training data and has built a
multinomial Naive Bayes classifier based on N-gram and POS-tags as features.
Davidov et.al [6] utilize 50 Twitter tags and 15 smileys as sentiment labels. Liu
et.al [9] utilize both manually labeled data and noisy labeled data for training,
where emoticons are used to smoothen a supervised classification model.

Recently, lexicon-based approaches [16,18] have gained popularity. Lexicon-
based approaches can achieve stable performance across domains, and the
features used are more transparent to a human user. They typically employ
opinion word lexicons, such as SentiWordNet [1] and General Inquirer lexicon
[5], to match against the text to be classified. The presence of annotated (typ-
ically with opinion scores or scales) lexical items (opinion words/phrases) are
processed with linguistic rules to compute an overall semantic orientation of the
document.When such a pre-defined lexicon is not present, other unsupervised
methods [20] can be adopted to automatically construct a lexicon.

Various studies aim to solve the problem of adapting a machine-learning model
for classification in a new domain. Such techniques are often referred to as trans-
fering learning techniques2, and the majority [21,7,4] of them require at least a
small amount of labeled data from the target domain. The approaches that

2 The terminologies domain adaptation and transfer learning are often used inter-
changeably, and in this study we stick to the latter.

Sentiment Analysis on Twitter through Topic-Based Lexicon Expansion 101

do not require labeled data in the target domain include the Structural Corre-
spondence Learning (SCL) algorithm by Blitzer et.al [3] and the dimensionality
reduction approach by Pan et.al [13]. These approaches generally utilize the
common features between the source domain and the new domain to establish
a link for knowledge transfer. In [3] the link is built through the pivot features
and in [13] the link is built through a latent space that minimizes the difference
between different domain distributions.

To do domain-specific classification with lexicon-based classifiers several ap-
proaches have been developed. Ponomareva et.al [15] use a graph to model a
group of labeled and unlabeled documents, and update the sentiment scores
of unlabeled documents based on nearest documents. This approach operates
at document level, therefore the classification process is no longer transparent
to a human user. Domain-specific lexicon expansion is another way to adapt a
lexicon-based classifier to different domains. The approach by Thelwall et.al [17]
requires human intervention to annotate the corpus and do a small amount of
term selection for different domains. Choi et.al [5] adapt an existing lexicon to a
given domain through an optimization framework, where phrase-level subjectiv-
ity annotation is required. Turney et.al used two reference words, excellent and
poor, to represent the two extremes of opinions, and use pointwise mutual infor-
mation (PMI) to calculate the semantic orientation of words. Becker’s work [2]
is the most related to ours. Their study is also built around Turney’s idea [20] of
using PMI to construct a lexicon, but instead of computing PMI between a word
and reference words, they compute the PMI between a word and sentiments.
The sentiments are tagged by a polarity classifier before PMI calculation.

While emoticons have been used in sentiment analysis on twitter [8,12,6,9],
and PMI calculation has been used to construct opinion word lexicons [20,2],
no existing work uses emoticon as reference tokens to do domain-specific PMI-
based expansion. Also, when computing PMI, existing studies do not consider
negation handling, therefore the cooccurrence of a negated word/phrase and a
reference word [20] (or sentiments [2]) will give misleading information on the
polarity of the word.

3 Emoticon-Based Sentiment Lexicon Expansion

3.1 Classification Framework

While we focus on lexicon-based classifiers in this study due to the stability
of their performance across domains and the transparency of the classification
process, the classification results of a machine learning approach is also presented
as a reference.

SentiStrength [18] (SS) is a state-of-the-art lexicon-based classifier. Incorpo-
rating a booster word list, an emoticon list, an idiom list, a negation word list, a
question word list, a slang list and a general opinion word list, it further applies
linguistic rules to compute the overal sentiment polarity. The opinion word scores
are integers ranging from [-5, -1] for negative words and [1,5] for positive words,
where -1 and 1 denotes neutral words. The core of the SentiStrength lexicon is a

102 Z. Zhou, X. Zhang, and M. Sanderson

general opinion word list of 298 positive and 465 negative terms, some of which
include wild cards. For example, abandon* would match all words that starts
with abandon. For details of its algorithm please refer to [19]. SentiStrength is
designed to report binary (positive or negative), trinary (positive, negative or
neutral) and single scale(-4 to +4) results. We use its binary output, as our
collection comprise of positive and negative tweets. Before expanding the Sen-
tiStrength lexicon, linear scaling has been performed to transform the semantic
orientation score calculated from PMI to the SentiStrength scales. We merge our
expanded terms with the SentiStrength terms without further modification. We
disabled the emoticon word list in SentiStrength, since we are using the emoti-
cons as class labels. In our pilot study, SentiStrength has achieved 90.32% when
using emoticons, but its performance dropped to 76.92% when the emoticon list
was disabled.

The Naive Bayes Multinomial (NBM) classifier uses all words as features
without stemming, nor normalization to lower case. Naive Bayes has achieved
superior performance at a per-topic average of 93.15%. Despite the high accuracy,
the features used are hard to make sense of. In our experiments, NBM is confined
to use only opinion words as features to make a relative fair comparison. The
original feature list includes the words from SentiWordnet [1], which comprises
of 21109 opinion words, many times larger than the opinion lexicon used by
SentiStrength.

3.2 Lexicon Expansion

For lexicon-based classification on Twitter, a widely acknowledged problem is
the word mismatch between tweet content and general opinion word lexicons.
For example, words with repeated letters are commonly seen in tweets, such
as huuuungry. Some studies [8] replace all repeated letters with two repeated
letters in each word, and leave it to the classifier to leverage these features. While
being effective in this particular case, this approach is insufficient to tackle many
other forms of informal spellings, such as gr8t. In fact, these informal expressions
(including informal spellings and abbreviations) are evolving over time, making
it difficult for any rule-based approach to adapt to the changes.

In this study, we propose to use mutual information between sentiment to-
kens 3 and emoticons to adjust the sentiment strength scores of words in a general
sentiment lexicon and add unseen variations of sentiment words into the lexicon.
There are an abundant amount of emoticon-bearing tweets on Twitter, forming
the basis of our technique. With our expansion technique, the polarities of the
informal expressions as well as the less common emoticons can be automatically
computed.

3 A token can be a word, an abbreviation, an emoticon not found in our emoticon list
shown in Table 1, or any other text segment potentially bearing sentiment.

Sentiment Analysis on Twitter through Topic-Based Lexicon Expansion 103

Table 1. List of Emoticons used (Manually selected from
http://en.wikipedia.org/wiki/List of emoticons, based on frequency and clarity)

Emoticon Polarity Emoticon Polarity Emoticon Polarity Emoticon Polarity

:) + :-) + ;(- :/ -
:> + ;) + :(- :-(-
;-) + ;> + :[- :< -
B-) + 8-) + 8-(- :-o -
B-> + 8-> + :-& - :/) -
:-> + :-))) + :-c - :-C -
:D + :-D + :-< - ;-C -
:-P + ^_^ + :-| - :’-(-
^.^ + ^_^’ + :~-(- -_- -
D= + :p + >_< - = = -
;D +

The following formula is used to calculate the point-wise mutual information
(PMI) between any two words,

PMI(word1, word2) = log2

(
p(word1, word2)

p(word1)p(word2)

)

(1)

The semantic orientation (SO) of a word is given by Equation 2,

SO(token) = PMI(token,+ve)− PMI(token,−ve) (2)

where +ve and −ve represents positive and negative emoticons respectively.
Our lexicon expansion technique is based upon the following assumption: The

sentiment orientations of emoticons such as “:)” and “:(” are relatively stable
across all tweets. Therefore, positive and negative emoticons can then be used
to represent the two extremes of opinions. Turney’s approach also implicitly
assumes that words in the context of the reference word tend to share its polarity.
This second assumption is not valid in sentences with negations, for example,
“I don’t like this guy:(”. As such, in tweets with negation words, we flip the
polarity of the emoticon before calculating mutual information. Also, we map
all negative emoticons to “:(” and all positive emoticons to “:)”. The sentiment
orientation (SO) of any sentiment token is then calculated as,

SO(token) = log2

(
hits(token,+ve)× hits(−ve)

hits(token,−ve)× hits(+ve)

)

(3)

In Equation 3, hits(+ve) and hits(−ve) are global counts of positive and
negative emoticons respectively. hits(token,+ve) represents the number of co-
occurrences of the token and positive emoticons, or the token and negative
emoticons in the presence of negation. In the above-mentioned example, the
co-occurrence of like and :(is counted as a hit between like and :) due to the
presence of the negation word don’t. The list of regular expression patterns for
negation detection are shown in Table 2.

104 Z. Zhou, X. Zhang, and M. Sanderson

Table 2. Stats on negation patterns collected on the whole Microblog Track collection.
Column Frequency shows the percentage of tweets in which the pattern has a match.

Pattern Example Frequency

[Nn][Oo][Tt] not 3.83%
[Dd][Oo][Nn]’*[Oo]*[Tt]+ don’t 3.10%
[Cc][Aa][Nn]+’*[Oo]*[Tt]+ can’t 1.70%
[Aa][Ii][Nn]’*[Tt] ain’t 0.97%
[Ii][Ss][Nn]’*[Oo]*[Tt] isn’t 0.30%
[Hh][Aa][Vv][Ee][Nn]’*[Oo]*[Tt] haven’t 0.29%
[Ww][Oo][Uu][Ll][Dd][Nn]’*[Tt] wouldn’t 0.20%
[Cc][Oo][Uu][Ll][Dd][Nn]’*[Tt] couldn’t 0.16%
[Hh][Aa][Ss][Nn]’*[Oo]*[Tt] hasn’t 0.05%
[Bb][Aa][Rr][Ee][Ll][Yy] barely 0.03%
[Hh][Aa][Rr][Dd][Ll][Yy] hardly 0.02%
[Hh][Aa][Dd][Nn]’*[Oo]*[Tt] hadn’t 0.02%
[Ww][Uu][Dd][Nn][Tt] wudn’t 0.00%
[Cc][Uu][Dd][Nn][Tt] cudn’t 0.00%

Not all words bear sentiments. We use the part-of-speech tags of words to filter
out potential opinion words and only include nouns, adjectives, verbs, adverbs,
abbreviations emoticons and interjections. Part-of-speech tagging is done with
the TwitterNLP package [11]. This set of tags was chosen after experimenting
with differnt combinations of tag sets in preliminary experiments, and using this
set to do classification has led to high classification accuracy, while still keeping
meaningful words.

4 Experiment

4.1 Dataset

Our experiments are based on a 56-topic collection of tweets from the TREC
Microblog Track 2011 and the Stanford Sentiment140 collection.This dataset is
generated by aggregating opinion-bearing tweets with 56 popular hashtags in the
combined collection. The tweets do not come with labels – we use the emoticons
as their labels, as has been done in previous studies. In our experiments on this
dataset, 10-fold cross validation is carried out and the lexicon expansion was
done on the training set only. The emoticons used for lexicon expansion are not
used as features by any classifier in the classification process. The collection is
generated via three steps,

1. Merge all tweets from TREC Microblog Track 2011 collection [10] and the
Stanford Sentiment 140 collection [8].

2. Filter out all tweets that do not bear any emoticon from Table 1.
3. Group the remaining tweets by hashtag and keep the groups with at least

100 tweets.

The whole collection includes 16683 positive and 6099 negative tweets. Full de-
tails of the collection are shown in Table 3.

Sentiment Analysis on Twitter through Topic-Based Lexicon Expansion 105

Table 3. Statistics of the 56-topic collection

Topic # Pos # Neg Topic # Pos # Neg Topic # Pos # Neg

glee 99 17 follow 255 14 nowfollowing 165 0
2 214 152 followfriday 2529 143 agoodboyfriend 119 6
bgt 133 114 bieberd3d 484 166 neversaynever 484 74
e3 119 136 asot400 190 135 nowwatching 131 5
fb 934 1101 februarywish 228 25 oneofmyfollowers 109 51
1 425 187 followback 111 3 iranelection 79 432
f1 122 152 iphone 96 236 icantdateyou 93 79
humor 143 1 improudtosay 395 16 idontunderstandwhy 48 82
fml 10 99 iremember 153 150 jedwardlipstick 125 16
jfb 379 9 justsaying 103 13 marsiscoming 205 54
music 162 15 musicmonday 383 38 myweakness 217 52
bsb 131 164 nowplaying 590 70 neversaynever3d 456 37
fail 72 400 random 90 30 spymaster 99 70
ff 2098 130 purpleglasses 189 61 questionsidontlike 16 89
np 606 72 seb-day 428 71 shoutout 464 29
nw 139 12 squarespace 282 656 superbowl 233 58
tcot 140 34 twitteroff 152 22 teamfollowback 499 22
trackle 16 145 twitition 193 2 twitter 111 75
tfb 117 2 wheniwaslittle 120 75

4.2 General Lexicon vs. Global Expansion

In this experiment we aim to answer the first research question by contrasting
the performance of SentiStrength (SS) and Naive Bayes Multinomial (NBM)
before and after doing global expansion (GE). With GE, tweets from all topics
are merged into a single collection, on which lexicon expansion is based upon.
The expanded lexicon is then used to do per-topic classification. For NBM, words
from SentiWordNet [1] is used as the original feature list, and SS uses its own
lexicon. After expansion, the expanded terms are added to the feature list of
NBM, and also added to the lexicon of SS.

The classification results are shown in Table 4. Paired t-test was done across
the 56 topics to show statistically significant improvement with SentiStrength,
with a p value of 1.6e-5. This indicates that PMI-based lexcion expansion does
indeed lead to a better lexicon for classification with SentiStrength. With NBM
however, the classification performance after global lexicon expansion is higher
but not statistically significant.

4.3 Topic-Based Expansion vs. Global Expansion

We contrast the performance of SS and NBM with Global Expansion (GE)
against Topic-based Expansion (TE) to answer the second research question. As
is shown in Table 4, topic-based expansion has indeed lead to significantly better

106 Z. Zhou, X. Zhang, and M. Sanderson

Table 4. Classification with no lexicon expansion, Global Expansion and Topic-based
Expansion. Columns All, + and - shows the overall accuracy, positive precision and
negative precision respectively. NBM refers to Naive Bayes Multinomial, and SS refers
to SentiStrength.

No Expansion (%) With GE (%) With TE (%)

Classifier All + - All + - All + -

NBM 82.38 83.77 38.62 82.61 83.43 41.50 82.72 83.62 40.02
SS 76.92 84.33 44.77 79.99 87.51 48.99 85.24 88.29 58.03

classifcation resulst with SentiStrength. Paired t-test done across 56 topics shows
significant improvement with a p value of 3.97e-9. In fact, the performance of
SentiStrength with topic-based expansion has even exceeded NBM with statisti-
cal significance (p value = 1.69 e-45 against NBM with GE and 2.89 e-45 agaist
NBM with TE). Note though, NBM and SS are not using the same feature list.
NBM is using an opinion word lexicon of more than 21109 words while the size
of the SS’s core lexicon is only around 2000 words.

Figure 1 shows the similarity between expanded terms from different topics.
Cosine similarity was measured between each pair of topics to compare how
similar the 50 most opinionated terms are. The subjectivity of a term is evaluated
by PMI. As is shown in the heatmap, the terms are quite different. The highest
similarity was found between justsaying and agoodboyfriend, with a similarity
score of only 0.47, which indicates highly diverged extensions to the original
lexicon.

0 1

Fig. 1. Cosine similarity between the expanded terms (top 50) from each topic. The
topics on the X axis (from left to right) and Y axis (from top to bottom) are shown in
the same order as in Table 3.

Sentiment Analysis on Twitter through Topic-Based Lexicon Expansion 107

Table 5. The 10 topics that benefit most and the 10 topics that suffer most from
lexicon expansion

Topic Improvement #pos #neg Topic Improvement #pos #neg

questionsidontlike +88.97% 16 89 music -14.07% 165 15
fml +42.77% 10 99 follow -9.94% 255 14
iphone +40.78% 96 236 humor -7.69% 143 1
trackle +36.12% 16 145 musicmonday -3.62% 383 38
e3 +34.34% 119 136 tfb -3.40% 117 2
fail +31.72% 72 400 neversaynever3d -2.69% 484 74
spymaster +29.51% 99 70 idontunderstandwhy -2.17% 48 82
squarespace +26.06% 282 656 seb-day -1.04% 428 71
tcot +26.06% 140 34 random -0.71% 90 30
justsaying +24.25% 103 13 nowfollowing -0.45% 165 0

Topics on which classification performance have been affected most by topic-
based expansion, both negatively and positively, are shown in Table 5. Abbrevi-
ations like fml (f*** my life), tcot (The changing of times), tfb (teamfollowback
are not self-explanatory. Both conventional topics such as iphone and e3, and
hashbag-based topics such as questionsidontlike and fml benefit hugely from
topic-based lexicon expansion. Among the topics that suffer most, both conven-
tional topics (music) and hashtag-based topics (tfb) are found too.

Table 6 provides two samples of lexicon expansions. As is shown in the table,
our expansion technique can effectively identify the polarities of 1) abbrevia-
tions. For instance, lmao(laugh my a** off), lmfao (laugh my f***ing a** off),
smh (shaking my head) are associated with scores of the proper polarities. 2) in-
formal words such as yup, ugh. 3) topic-specific words including gay from topic
icantdateyou and making, want from topic iphone. When mentioning gay in
topic icantdateyou, people are often making jokes, for example: @MissSarahDan
hahahahaha that’s exactly what I was thinking :) or #icantdateyou cause you’re
gay! Lol XxX. The word making would be considered neutral in most cases, but
is often mentioned in the contexts such as making it hard to look at any screen
and why are you making me wait until noon for #iPhone OS 3.0? in the topic
iphone, thus having a strongly negative PMI score. Similarly, the word want is
frequently used in the pattern of I want ..., but ..., showing a need that has not
been satisfied. As such, the seemingly neutral word has been assigned a strongly
negative score, becoming a useful feature in the context of topic iphone.

Finally, we contrast our negation-aware PMI expansion to traditional PMI
expansion that does not detect negations. As is shown in Table 7, no statis-
tically significant difference have been observed between the two runs, though
the average accuracy is slightly higher when using negation handling. The num-
ber of tweets per topic in this collection is limited compared to the data that
a commercial company may own, which may be the reason why the effect of
negation-aware PMI expansion is not clearly shown.

108 Z. Zhou, X. Zhang, and M. Sanderson

Table 6. Expanded term samples. Top 50 from two topics ordered by the absolute
values of PMI.

Word PMI Word PMI Word PMI Word PMI

expanded terms for icantdateyou expanded terms for iphone

love 19.27 wear -18.83 cant 20.66 want -20.36
dont -18.50 smarter -18.50 cool 20.17 seems -19.55
haha 18.27 lmao 18.27 guess -19.55 yup 19.43
URLSTRING 18.27 talk -18.09 explain 19.43 worked 19.43
look -18.09 gay 17.85 care 19.43 finish 19.43
can’t -2.24 how -2.24 says -19.36 didn’t -19.36
go -2.24 am 2.09 being -18.87 work -18.87
don’t -1.88 have -1.82 making -18.87 said -18.55
got -1.82 call -1.82 trying -18.55 crashes -18.55
date -1.82 still -1.82 already -18.55 hmm -18.55
will 1.76 want 1.76 seriously -18.55 wants -18.55
do 1.57 know -1.56 keeps -18.55 went -18.14
being 1.35 back 1.35 gonna -18.14 oh -18.14
when -1.24 even -1.24 small -18.14 crashing -18.14
been -1.24 only -1.24 let -18.14 cut -18.14
wanna -1.24 waiting -1.24 where -18.14 looks -18.14
try -1.24 play -1.24 would -18.14 means -18.14
come -1.24 see -1.24 gone -18.14 ugh -18.14
smh -1.24 be 1.18 lost -18.14 stuck -18.14
get 1.09 not -1.01 feel -18.14 omg -18.14
are -0.97 already -0.82 not 6.00 can’t 3.76
is -0.77 then 0.76 don’t 2.88 looking 2.88
oh 0.76 cant 0.76 happy 2.88 think 2.88
lmfao 0.76 make 0.76 find 2.88 can 2.52
aint 0.76 bigger 0.76 did 2.30 again 2.30

Table 7. PMI-based expansion with and without negation detection. Columns All, +
and - shows the overall accuracy, positive precision and negative precision respectively.

Handle Negation (%) Ignore Negation (%)

Classifier All + - All + -

SS 85.24 88.29 58.03 84.95 85.73 71.91

5 Conclusions

In this study we propose a structured approach to domain-dependent senti-
ment analysis through lexicon expansion aided by emoticons. Our experiments
have shown that emoticon-aided lexicon expansion does improve the perfor-
mance of a state-of-the-art lexicon-based classifier, and topic-based expansion
outperforms global expansion. This indicates that our technique is effective in
domain-dependant sentiment classification.

It has been observed from the experiments that our technique is able to identify
the polarities of abbreviations and informal expressions, as well as topic-specific

Sentiment Analysis on Twitter through Topic-Based Lexicon Expansion 109

words,making it particularlyuseful in classifying short informal text suchas tweets.
The abundant amount of emoticon-bearing tweets forms a solid basis of the appli-
cation of our approach.With our approach, emoticons are only used in the expan-
sion phase. With the better coverage of terms and expressions in social text, our
approach is particularly useful in improving the classification of tweets that do not
contain emoticons.

References

1. Baccianella, S., et al.: SentiWordNet 3.0: An enhanced lexical resource for senti-
ment analysis and opinion mining. In: LREC (2010)

2. Becker, L., et al.: AVAYA: Sentiment analysis on twitter with self-training and
polarity lexicon expansion. In: SemEval (2013)

3. Blitzer, J., et al.: Biographies, bollywood, boom-boxes and blenders: Domain adap-
tation for sentiment classification. In: ACL (2007)

4. Bonilla, E., et al.: Multi-task gaussian process prediction (2008)
5. Choi, Y., Cardie, C.: Adapting a polarity lexicon using integer linear programming

for domain-specific sentiment classification. In: EMNLP (2009)
6. Davidov, D., et al.: Enhanced sentiment learning using twitter hashtags and smileys.

In: Coling 2010 (2010)
7. Davis, J., Domingos, P.: Deep transfer via second-order markov logic. In: ICML

(2009)
8. Go, A., et al.: Twitter sentiment classification using distant supervision. In:

CS224N Project Report, Stanford (2009)
9. Liu, K.L., et al.: Emoticon smoothed language models for twitter sentiment anal-

ysis. In: AAAI (2012)
10. Ounis, I., et al.: Overview of the trec-2011 microblog track. In: TREC 2011 (2011)
11. Owoputi, O., et al.: Improved part-of-speech tagging for online conversational text

with word clusters. In: Proceedings of NAACL-HLT (2013)
12. Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion

mining. In: LREC (2010)
13. Pan, S.J., et al.: Transfer learning via dimensionality reduction. In: AAAI (2008)
14. Pang, B., et al.: Thumbs up?: sentiment classification using machine learning tech-

niques. In: EMNLP (2002)
15. Ponomareva, N., Thelwall, M.: Do neighbours help?: An exploration of graph-based

algorithms for cross-domain sentiment classification. In: Proceedings of the 2012
Joint Conference on EMNLP and CoNLL (2012)

16. Taboada, M., et al.: Lexicon-based methods for sentiment analysis. Computational
linguistics (2011)

17. Thelwall, M., Buckley, K.: Topic-based sentiment analysis for the social web: The
role of mood and issue-related words. JASIST (2013)

18. Thelwall, M., et al.: Sentiment strength detection for the social web. JASIST (2012)
19. Thelwall, M., et al.: Sentiment strength detection in short informal text. JASIST

(2010)
20. Turney, P.D.: Thumbs up or thumbs down?: semantic orientation applied to unsu-

pervised classification of reviews. In: ACL (2002)
21. Zhang, D., et al.: Sentiment detection with auxiliary data. Information retrieval

(2012)
22. Zhang, L., et al.: Combining lexiconbased and learning-based methods for twitter

sentiment analysis. HP Laboratories, Technical Report HPL-2011 (2011)

Discovering Collective Group Relationships

S.M.Masud Karim, Lin Liu, and Jiuyong Li

School of Information Technology and Mathematical Sciences,
University of South Australia, Mawson Lakes, SA 5095, Australia

masud.karim@mymail.unisa.edu.au,

{Lin.Liu,Jiuyong.Li}@unisa.edu.au

Abstract. In many real-world situations, individual components of com-
plex systems tend to form groups to interact collectively. The grouping
effectuates collective relationships. On the other hand, collective rela-
tionshsips stimulate individual components to form groups. To gain clear
understanding of the structure and functioning of these systems, it is nec-
essary to identify both group formation and collective relationships at
the same time. In this paper, we define the notation of collective group
relationships (CGRs) between two sets of individual components and
propose a method to discover CGRs from heterogeneous datasets. The
method integrates canonical correlation analysis (CCA) with graph min-
ing to find top-k CGRs. Several experimental studies are conducted on
both synthetic and real-world datasets to demonstrate the effectiveness
and efficiency of the proposed method.

Keywords: Collective group relationships, group pair, canonical corre-
lations, quasi-cliques.

1 Introduction

Understanding the structural and functional properties of large complex systems
remains a major scientific challenge mainly due to the complicated relationships
of the individual components of the systems. The individual components of many
complex systems tend to form groups to interact collectively. The grouping makes
the collective relationships happen. On the other hand, the collective relation-
ships are likely to be a main force to drive individual components to form groups.
The group formation and collective relationships are intertwined and govern each
other. The collective relationships between groups are often more readily inter-
preted than those between individual components, and thus are more interesting.
We call this type of relationships collective group relationships (CGRs) hereafter.

One example of complex systems illustrating CGRs is gene regulatory net-
works consisting of gene regulators and their target genes. Recently, it has been
made perceptible that a disease is not simply caused by a single gene and the
expression of a gene is not controlled by just one regulator. Instead, a group
of gene regulators can collectively regulate a group of genes which may lead to
certain diseases [21]. In this case, the collective relationship between a group of
regulators and a group of genes causes the formation of the groups. Hence to gain

H. Wang and M.A. Sharaf (Eds.): ADC 2014, LNCS 8506, pp. 110–121, 2014.
c© Springer International Publishing Switzerland 2014

Discovering Collective Group Relationships 111

insight into gene regulation and their impact on cell functions, it is essential to
identify the collective relationships, and the groups of regulators and groups of
genes involved in the relationships. Similarly, CGRs exist in many other complex
systems too, such as food webs, and social collaboration networks [5].

Current research on the relationships of complex systems follows two main
streams: group discovery, and relationship discovery. The former identifies groups
of components of a system without considering the group relationships as the
motivation of group formation, while the latter concerns with discovering and
analyzing relationships between either individual components or known groups
of components without caring about how the groups are formed.

One approach towards the discovery of CGRs can be to extend group discovery
methods like clustering [9] to firstly identify ‘clusters’ of individual components,
and then find out the cluster to cluster relationships, as CGRs. However, cluster-
ing separates components into ‘natural’ groups according to their similarity, so
cluster to cluster relationships are not considered as the main factor of the clus-
tering. Therefore, this approach is not a solution to the CGR problem. If we look
back the example of gene regulation, although clustering methods can be used
to find natural groups of co-expressed genes (i.e. genes with similar expression
patterns), co-expression is not equivalent to co-regulation [24].

Alternatively, it may be possible to extend existing relationship discovery
methods to reveal CGRs. For example, we may firstly use an existing relationship
discovery method to identify pair-wise relationships to construct a graph repre-
sentation of the relationships between individual components of a system. Then
we can conduct graph mining to identify cliques or quasi-cliques of the graph
[1,12]. Although such a graph mining approach provides qualitative or structural
information of the relationships between each pair of the found groups, it cannot
quantify the relationships. Another limitation of graph mining is that in some
applications, the number of generated groups can be quite large, and there is no
efficient method to eliminate redundant groups.

Another approach can be adopted to discover CGRs is to use extensions to
Canonical Correlation Analysis (CCA) based methods via sparsity, commonly
termed as sparse CCA (sCCA) [2,10,11,15,20,22,23]. These sCCA methods iden-
tify interacting group pairs and quantify the collective relationships between
them simultaneously. The major problem associated with sCCA methods is that
they only provide a quantative measure (i.e. strength) of collective relationships,
without providing any qualitative or structural measure of the relationships.
Some work has also been reported to incorporate the ‘group effect’ into classi-
cal CCA model [3,4]. However, a prior knowledge of group structure is needed.
Recently Liu et al. [13] formulated group discovery as an optimization problem
of CCA, and extended it to the lasso problem. However, the groups discovered
by the method is too few, and the groups are disjoint while it is natural to have
overlapping groups.

It is clear from above discussion that although existing methods have their
own strengths, they are not suitable to address the proposed CGR problem
alone. By looking closely at graph mining and CCA based methods (in Table 1),

112 S.M. Masud Karim, L. Liu, and J. Li

Table 1. Comparison between the graph-mining and CCA based methods

Criteria Graph Mining methods CCA based methods

Data Binary Numeric

Measurement of relationships Qualitative Quantitative

Strength of relationships? No Yes

Links of relationships? Yes No

Number of groups Too many Too few

Nature of groups Overlapping Disjoint

it is worthy to notice that they are complementary to each other. For exam-
ple, although graph mining generates no quantative measure, CCA quantifies
collective interactions between groups of components. Therefore, to address the
research problem, it is highly desirable to obtain a suitable integration of these
two approaches (expected properties after integration are in bold-face in Table 1).

In this paper, we propose a method, GRAPE (Group relationship inscape)
to reveal CGRs from heterogeneous datasets by integrating CCA with quasi-
clique mining. This integration enriches the identification of groups with both
quantitative and qualitative measures of collective relationships. We evaluate the
effectiveness and efficiency of GRAPE by applying it to synthetic and real-world
datasets, and comparing it with other approaches.

2 Collective Group Relationship Discovery

2.1 Problem Statement and Definitions

Consider two sets of variablesX = {x1, . . . ,xp} and Y = {y1, . . . ,yq} such that
X ≥Y = φ, representing the attributes of two different types of objects. With
their given datasets, DX = {dx1, . . . ,dxp} and DY = {dy1, . . . ,dyq}, where
dxi and dyj are n-vectors representing the samples of xi and yj (1 ≤ i ≤ p, 1 ≤
j ≤ q) respectively, our goal is to identify any PX ∈ X and PY ∈ Y, such that
PX and PY are related. Hence, we define a collective group relationship (CGR)
between PX and PY as follows:

Definition 1. A triple (P , E , r) is called a CGR, where

1. P = {PX ,PY | PX ∈ X, PY ∈ Y, PX ≥ PY = φ} known as a group pair,
2. E ∈ (PX ∧ PY)× (PX ∧ PY) denotes the links among the variables of P,
3. r stands for the quantitative measure or strength of the CGR.

Not all CGRs are equally interesting, specially a CGR with very few variables,
say one variable, or a CGR of low strength (i.e. r is very small). Hence, we
introduce two thresholds to refine Definition 1 to indicate the interestingness of
CGRs as follows:

Definition 2. For a minimum size threshold θ ∪ 2 and a strength threshold
0 < ρ ≤ 1, a CGR (P , E , r) is said to be (θ, ρ)-associated if |PX | ∪ θ, |PY | ∪ θ
and r ∪ ρ.

Discovering Collective Group Relationships 113

With datasetsDX andDY, and thresholds θ and ρ, the problem of discovering
CGRs is to identify all (θ, ρ)-associated CGRs from DX and DY.

2.2 Algorithm for Discovering Collective Group Relationships

The proposed method GRAPE (Group relationship inscape) first creates a
graph representation of the relationships among the individual variables of the
given datasets using correlation test, then it applies graph mining to compute all
maximal quasi-cliques from the graph. Each of the quasi-cliques is split into two
groups (i.e. group pair) and the strength of the collective relationship between
the two groups is assessed. Finally, each of the group pairs together with its
strength is validated.

As given in Algorithm1, GRAPE takes data matrices DX and DY as input
and extracts all (θ, ρ)-associated CGRs from the graph representation of the
individual relationships of X and Y, and returns the top-k CGRs as output.
The enrite algorithm works in three phases — (i) representation into graph, (iii)
identification of CGRs from the graph, and (iii) selection of top-k CGRs.

Representation into Graph. First a graph representation of the relationships
among individual variables of merged X and Y is constructed in Algorithm1
(lines 1–6). Taking the variables as the vertices of a graph G, an edge is intro-
duced between two vertices representing significantly interacted variables. We
refer the interaction between two variables statistically significant, if the abso-
lute value of the Pearson correlation coefficient (PCC) between them is greater
than the critical value (denoted as σ in line 3) for PCC. The critical value de-
pends on the p-value used and sample size. We compute the critical value in
advance using p-value 0.05 and the given sample size. The function pcc(u, v) in
line 3 is used for calculating the absolute value of PCC between two variables u
and v using data matrices DX and DY.

Identification of CGRs from the Graph. To identify CGRs, we first detect
all maximal quasi-cliques from the graph. A γ-quasi-clique Q = (V ∪, E∪) is a
subgraph of graph G, of which each vertex shares edges with at least ⊂γ(d∪ − 1)∃
other vertices in Q, where d∪ = |V ∪| and 0 ≤ γ ≤ 1 [12]. A maximal quasi-
clique is a quasi-clique that is not contained inside any larger quasi-clique. We
use the Quick algorithm [12] to find out all maximal quasi-cliques of G (line 7).
Quick is a very fast and effective maximal quasi-cliques mining algorithm. We
use different values for γ in different runs. The minimum size of the targeted
quasi-cliques is set to 2θ, and the maximum size is set to m, where m ∪ 2θ is a
positive integer, chosen to get largest possible maximal quasi-cliques.

Each maximal quasi-clique Qi is then split into two groups: qxi and qyi (line
10). Group qxi is composed of the vertices representing the variables of X, and
similarly qyi refers to the variables of Y. We refer qxi and qyi as a group pair.
CCA [8] is then used to get the strength of the collective relationship between
a group pair (i.e. r in Definition 1). CCA is commonly used for quantifying the

114 S.M. Masud Karim, L. Liu, and J. Li

Algorithm 1. GRAPE (DX, DY, k, θ, ρ, δ, σ)

Input: DX - an (n× p) matrix representing n samples of X = {x1, . . . ,xp},
DY - an (n× q) matrix representing n samples of Y = {y1, . . . , yq},
k - top selection mark for CGRs, θ - minimum size threshold for CGRs,
ρ - strength threshold, δ - membership similarity threshold, σ - significance level.

Output: (C1, . . . , Ck) - top-k CGRs.
1: Merge: V ∈ X ∪Y, E ∈ φ
2: for all u, v ∪ V do
3: if pcc(u, v) → σ then
4: E ∈ E ∪ (u, v)
5: end if
6: end for
7: Call Quick on G = (V,E) to get all maximal quasi-cliques {Q1, . . . , Qall}, where

Qi = {(Vi, Ei)|Vi ⊆ V,Ei ⊆ E}
8: CGRall ∈ φ
9: for i = 1 to all do
10: Spilt: qxi ∈ {v | v ∪ Vi ∅ v ∪ X} and qyi ∈ {v | v ∪ Vi ∅ v ∪ Y}
11: Compute ri ∈ cca(qxi, qyi)
12: if |qxi| → θ, |qyi| → θ, and ri → ρ then
13: CGRall ∈ CGRall ∪ {Qi, ri}
14: end if
15: end for
16: Sort {C1, . . . , Ct} ∪ CGRall in descending order of ri
17: CGRrep ∈ φ
18: while there is an unmarked CGR Ci ∪ CGRall do
19: mark Ci

20: CGRrep ∈ CGRrep ∪ Ci

21: for each unmarked CGR Cj �= Ci ∪ CGRall do
22: if ms(Vi, Vj) → δ then
23: mark Cj

24: end if
25: end for
26: end while
27: return top-k CGRs (C1, ..., Ck) ∪ CGRrep

linear association between two sets of variables. Consider A = a∪X, B = b∪Y be
the corresponding linear combinations of sets of variables X and Y respectively,
where a and b are coefficient vectors. Vectors a and b are chosen such that the
correlation between A and B, i.e.,

r = Corr(A,B) = a∪ΣXY b⊆
a∪ΣXXa

⊆
b∪ΣY Y b

(1)

is maximized, where ΣXX , ΣY Y and ΣXY are variance of X , variance of Y ,
and covariance between X and Y , respectively. The correlation r between the
pair of linear combinations in (1) is called canonical correlation. In line 11, the
canonical correlations ri between qxi and qyi are computed using the function
cca(qxi, qyi). Finally, only the (θ, ρ)-associated CGRs are stored (lines 12–14).

Discovering Collective Group Relationships 115

Selection of Top-k CGRs. We select representative CGRs based on mem-
bership similarity score and canonical correlation. We compute the membership
similarity score of two sets of variables S and T using a modified version of
Jaccard Index equation: ms(S, T) = |S ≥ T |/min{|S|, |T |} (line 22). The mem-
bership similarity score ranges between 0 and 1, where 1 denotes that S and T
are the same, i.e. they contain the same members or variables. Now we define
the representative CGR for two CGRs as follows:

Definition 3. Given two CGRs (Pi, Ei, ri) and (Pj , Ej , rj), and membership
similarity threshold δ. If ms(Pi,Pj) ∪ δ and ri ∪ rj, then (Pi, Ei, ri) is referred
to as the representative CGR.

The representative CGR eliminates redundant CGRs, and thus it prevents
number of CGRs to grow large. Using Definition 3, we select a set of representa-
tive CGRs (lines 16–26). From the representative CGRs set, we take the top-k
CGRs based on canonical correlations, and return them as output (line 27).

3 Experimental Results

3.1 Experiments on Synthetic Datasets

We performed two simulation studies to investigate effectiveness of GRAPE in
CGRs identification. Although we conducted several simulated runs using dif-
ferent sample sizes and different numbers of variables, due to page limit, in this
paper we only report the more critical settings with small sample size.

In the first simulation study, we fixed sample size n = 50 and initially gener-
ated p = 100 variables for set X and q = 150 variables for set Y such that the
first 10 variables of X and the first 10 variables of Y were correlated and the rest
were independent noise. We then generated X and Y with gradually increased
variable sizes up to p = 4000 and q = 6000. For each variable size setting, we
performed 10 simulation runs.

The accuracy of identification was measured by precision and recall. Precision
is the ratio of correctly identified variables of group pairs to the total identified
variables for group pairs, while recall is the ratio of correctly identified variables
of group pairs to the total variables in correlated group pairs. More specifically,
for a cluster S, precision (denoted by P) and recall (denoted by R) are defined
as: P (S) = T+(S)/(T+(S) + F+(S)), and R(S) = T+(S)/(T+(S) + F−(S)) re-
spectively, where T+, T−, F+, and F− are true positives, true negatives, false
positives, and false negatives in S, respectively.

We used this simulation to compare the performance of GRAPE with two
sCCA methods, SCCA [15] and PMD [22]. For SCCA, we used 10-fold cross-
validation to get optimal parameter values. In case of PMD, optimal parameters
were obtained by using 10 permutations in each run.GRAPE achieved consistent
higher precision than both SCCA and PMD, shown in Fig. 1 (Left). GRAPE
suffered less in terms of recall compared to both SCCA and PMD for high
dimensional data, given in Fig. 1 (Right). As both SCCA and PMD predicted
more variables in case of high dimensional data, their recall suffered more.

116 S.M. Masud Karim, L. Liu, and J. Li

0.5

0.6

0.7

0.8

0.9

1

250 500 800 1400 2500 4000 6000 8000 10000

re
ca

ll

p+q

SCCA
PMD
GRAPE

0

0.2

0.4

0.6

0.8

1

250 500 800 1400 2500 4000 6000 8000 10000

pr
ec

is
io

n

p+q

Fig. 1. Comparison of precision and recall

In the second simulation study, we fixed n = 50 and initialized p = 100 for X
and q = 150 for Y. The variables of X were divided into 25 groups of equal size,
and similarly Y was split into 25 equal-sized groups. Then we created X and Y
with higher number of variables up to p = 4000 and q = 6000, and the number of
groups up to 500. For each variable size setting, all of the variables fromX andY
were considered to be the vertices of a graph. For each sample, edges were placed
independently at random between vertex pairs with probability more than 0.2
for an edge to fall between vertices in the same group and at best 0.1 to fall
between vertices in different groups. We executed 10 simulation runs for each
variable size setting.

In this study, we compared the effectiveness of canonical correlations as a
criterion for ranking with that of modularity [14]. Assuming a graph G, the
modularity can be expressed as a sum over the clusters as [7]:

Ω =

nc∑

c=1

[
mc

m
−
(

dc
2m

)2
]

, (2)

where nc is the number of clusters obtained by partitoning G, mc is the number
of edges joining vertices inside cluster c, and dc is the sum of the degrees1 of
the vertices of c. Each summand in (2) stands for the contribution of c to the
modularity of G. A cluster is ‘good’ if its contribution to modularity is positive.
Higher positive contribution to modularity refers to better cluster, and higher
positive modularity means better overall partition of G.

We used the number of correctly identified group pairs, and the normalized
mutual information (NMI) [6] to compare the performance of ranking as illus-
trated in Fig. 2 (Left) and Fig. 2 (Right), respectively. In these column charts,
it is evident that GRAPE constantly included more group pairs than the rank-
ing by modularity, denoted as ‘QuiM’, meaning ‘Quick+Modularity’ (modularity
metric was applied to the post-processed result of Quick algorithm to rank group
pairs). Moreover, the NMI values of the group pairs identified by GRAPE were
higher than the group pairs ranked by modularity.

1 The degree of a vertex v is the number of edges incident to v.

Discovering Collective Group Relationships 117

0
5

10
15
20
25
30
35
40
45

250 500 800 1400 2500 4000 6000 8000 10000

N
o

of
 id

en
tif

ie
d

gr
ou

p
pa

irs

p+q

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

0.9
0.95

1

250 500 800 1400 2500 4000 6000 8000 10000

N
M

I

p+q

QuiM

GRAPE

Fig. 2. Numbers of group pairs identified and NMI values for different variable sizes

3.2 Experiments on Real-World Datasets

We selected two real-world datasets: a biological NCI-60 dataset for Epithelial-
to-Mesenchymal Transition (EMT), and a bibliography DBLP dataset.

NCI-60 Dataset for EMT. An EMT is a biological process that enables ep-
ithelial cells to become migratory mesenchymal cells. The EMTs are associated
with embryonic development, wound healing, organ fibrosis, and in the initiation
of metastasis for cancer progression. The NCI-60 dataset includes microRNAs
(miRNAs) expression profiles for the NCI-60 panel of 60 cancer cell lines [16]2.
miRNAs are known to play an essential role as regulators in post-transcriptional
gene regulation. The messenger RNA (mRNA) expression profiles were down-
loaded from ArrayExpress 3. Cell lines categorized as epithelial (11 samples) and
mesenchymal (36 samples) were used for this work. The differentially expressed
gene analysis was performed using the limma package of Bioconductor [18], and
1635 mRNA probes and 43 miRNA probes were identified to be differentially
expressed with p-value < 0.05 (adjusted p-value). Bootstrapping was used to
overcome the problem of small number of samples.

The input for GRAPE was 47× 1635 matrix gene and 47× 43 matrix mirna
of the 47 samples of miRNA and mRNA expression values, respectively. Ta-
ble 2 shows the top CGR ‘NCI60gp1’ (with correlation 0.948) identified with 42
genes and 7 miRNAs for γ = 0.85. It is interesting to note that ‘NCI60gp1’ put
members of the ‘hsa-miR-200’ family together.

We used GeneGo Metacore from GeneGo Inc. to identify the pathways pre-
viously discovered in the literature that involve the genes in the identified top
ranked CGRs. A biological pathway is a group of genes that participate in a
particular biological process to perform certain functionality in a cell. To find
controlling factors to a disease, it is more meaningful to study the genes by con-
sidering their pathway information. Table 3 shows the first 12 pathways identified
for ‘NCI60gp1’ of Table 2. It confirms that ‘NCI60gp1’ is highly relevant to the
biological condition of the datasets. For instance, pathways number 1, 4, 8, 10

2 Available at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26375
3 http://www.ebi.ac.uk/arrayexpress, accession number E-GEOD-5720

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26375
http://www.ebi.ac.uk/arrayexpress

118 S.M. Masud Karim, L. Liu, and J. Li

Table 2. Top CGR ‘NCI60gp1’ identified for γ = 0.85 from NCI-60 dataset

Genes miRNAs

MSN, CDH1, CDS1, VIM, ST14, STAP2, CCDC88A, CBLC hsa-miR-141,
CLDN3, CLDN4, CLDN7, KRT19, EPCAM, F11R, LIX1L, hsa-miR-200a,
PRSS8, SLC25A4, ANPEP, MAP7, MAPK13, CGN, GRTP1, hsa-miR-200b,
LAD1, SCNN1A, LLGL2, CNKSR1, B3GNT3, ZNF165, TJP3, hsa-miR-200c,
ARHGEF16, LSR, SPINT2, ELF3, QKI, C19orf21, RBM47, hsa-miR-203,
RAB25, S100A14, BSPRY, MYO5C, MYO5B, ESRP2 hsa-miR-429

Table 3. GeneGo mapped pathways for CGR ‘NCI60gp1’ of Table 2

No Pathway Maps miRNAs and genes p-value

1 Development_miRNA-dependent inhibition of EMT hsa-miR-429, hsa-miR-200c,
hsa-miR-200b, hsa-miR-200a,
CDH1, hsa-miR-141,
hsa-miR-200a-3p

1.423E-15

2 Cell adhesion_Tight junctions TJP3, F11R, CGN, CLDN3,
CLDN4, CLDN7

1.283E-09

3 Cell adhesion_Endothelial cell contacts by junctional mechanisms F11R, CGN, VIM, CLDN3 1.320E-06
4 Development_TGF- -dependent induction of EMT via MAPK MAPK13, CDH1, VIM 4.659E-04
5 ENaC regulation in normal and CF airways SCNN1A, PRSS8, ST14 6.642E-04
6 Cell cycle_Role of 14-3-3 proteins in cell cycle regulation MAPK13, CDS1 2.303E-03
7 Cell adhesion_Gap junctions TJP3, CGN 4.268E-03
8 Development_TGF- -dependent induction of EMT via SMADs CDH1, VIM 5.779E-03
9 Cytoskeleton remodelling_Keratin filaments KRT19, VIM 6.106E-03

10 Development_TGF- -dependent induction of EMT via RhoA,
PI3K and ILK

CDH1, VIM 9.831E-03

11 Development_WNT signaling pathway. Part 2 CDH1, VIM 1.291E-02
12 Development_Regulation of EMT CDH1, VIM 1.847E-02

and 12 are direct pathways of the development of EMT, and others are impor-
tant pathways involved in the process of EMT. Moreover, pathway number 1
includes total 12 members, of which 7 were identified in ‘NCI60gp1’.

DBLP Dataset. The DBLP dataset [19] 4 consists of 1783 papers published
in 7 conferences from 1995 to 2004. The information extracted from the papers
were organized into set Author containing 3036 authors and set Terms having
2090 terms (words were extracted from the titles based on tf-idf, and then words
with low df were removed). Table 4 depicts the top 5 CGRs identified from the
DBLP dataset for γ = 0.4. The 1st CGR, gp1 covered 3 papers associated with
patterns. Again, the 5th CGR, gp5 fetched into terms from 2 different papers,
where the authors are co-authors of B. Zhang and W. Fan.

It is interesting to note that terms and authors were uniformly included in
a CGR based on collective interactions. For example, the 9th CGR, gp9 (with
correlation 0.822) in Fig. 3 combined 10 authors and 16 terms from 5 papers.
These papers were published with the contribution of total 11 co-authors, only
T. Mogawa was missed out. The reason behind the exclusion is less association
of T. Mogawa in the collective interactions of authors and terms in gp9.

4 Downloaded from http://leitang.net/data/dblp.tar.gz in October 2013.

http://leitang.net/data/dblp.tar.gz

Discovering Collective Group Relationships 119

Table 4. Top 5 CGRs identified for γ = 0.4 from DBLP dataset

No CC #A #T Authors Terms
gp1 0.9999067 12 12 T. Miyahara, D. Nauck, . . . tag, patterns, . . .
gp2 0.9991713 5 9 D. Nauck, T.P. Martin, . . . association, care, . . .
gp3 0.9834444 14 11 P. Blair, K. Sarkar, . . . distributed, automated, . . .
gp4 0.9670259 14 10 T.W. Finin, Y. Peng, . . . services, semantic, . . .
gp5 0.9398762 16 8 W. Fan, B. Zhang, . . . citation, criterion, . . .

Author (10):
K. Furukawa, T. Shoudai, K. Yamada, S. Hirokawa, Y. Nakamura, K. Takahashi, T. Miyahara, H. Ueda,
T. Uchida, Y. Suzuki

Terms (16):
characteristic, contractible, discovery, documents, extracting, frequent, irregular, maximally, patterns,
semistructured, structured, structures, tag, tree, variables, words

Papers (5):
T. Miyahara, T. Shoudai, T. Uchida, K. Takahashi, H. Ueda
Polynomial Time Matching Algorithms for Tree-Like Structured Patterns in Knowledge Discovery.
PAKDD 2000;

K. Furukawa, T. Uchida, K. Yamada, T. Miyahara, T. Shoudai, Y. Nakamura
Extracting Characteristic Structures among Words in Semistructured Documents.
PAKDD 2002;

T. Uchida, T. Mogawa, Y. Nakamura
Finding Frequent Structural Features among Words in Tree-Structured Documents.
PAKDD 2002;

T. Miyahara, Y. Suzuki, T. Shoudai, T. Uchida, S. Hirokawa, K. Takahashi, H. Ueda
Extraction of Tag Tree Patterns with Contractible Variables from Irregular Semistructured Data.
PAKDD 2003;

T. Miyahara, Y. Suzuki, T. Shoudai, T. Uchida, K. Takahashi, H. Ueda
Discovery of Maximally Frequent Tag Tree Patterns with Contractible Variables from Semistructured
Documents.
PAKDD 2004;

Fig. 3. Details of one of the top-10 CGRs identified from DBLP datasets by GRAPE

Authors (6):
Christian Borgelt, Rudolf Kruse, S. Prabhakar,
Karthik Ramani, Kuiyang Lou, David Poole.

Words (6):
regularization, maximization, expectation, size, shape,
fuzzy.

Papers (3):
Christian Borgelt, Rudolf Kruse
Shape and Size Regularization in Expectation
Maximization and Fuzzy Clustering.
PKDD 2004;

Kuiyang Lou, S. Prabhakar, Karthik Ramani
Content-based Three-dimensional Engineering Shape
Search.
ICDE 2004;

David Poole
Estimating the size of the telephone universe: a Bayesian
Mark-recapture approach.
KDD 2004;

shap

regu

maxi

expe

size fuzz

RK

SP

KR

CB

DP

KL

Fig. 4. Details of one of the top-10 groups identified from DBLP datasets by [13]

120 S.M. Masud Karim, L. Liu, and J. Li

We compared our result with that of [13], in which a smaller subset of this
dataset was used. The dataset had 2022 authors and 1650 terms extracted from
1071 papers published in 5 conferences from 2000 to 2004. The method identified
143 groups, many of which showed skewed interactions. For eaxmple, all terms of
4th group (with correlation 0.994) given in Fig. 4 (Left) were extracted from the
1st paper alone with a term each found common in other papers. The links in
Fig. 4 (Right) illustrates skewness instead of uniform smoothness in interactions
among nodes (the first 4 letters for terms and abbreviated names for authors
were used in labelling nodes). This skewness may sometimes combine unrelated
terms and authors together. Moreover, the method only allowed disjoint groups,
whereas GRAPE handled overlapping groups.

4 Conclusion

In this paper, we have defined the notation of collective group relationships
(CGRs), and have proposed a method to discover CGRs from heterogeneous
datasets. The central idea of our proposed method is to integrate CCA with
quasi-clique mining in order to enrich the identification of groups with both
structural information and strength of relationships. We have experimented on
two simulation settings as well as real-world biological NCI-60 dataset and bib-
liography DBLP dataset. The accuracy of the method is comparatively high,
and it has the ability to identify overalpping groups. The experimental results
have demonastrated that the proposed method is able to reveal correct group
information with links and the strength of collective relationships, and provide
useful insights into the structure and functionality of the systems.

Acknowledgments. This work was partially supported by Australian Research
Council Discovery grant DP130104090.

References

1. Abello, J., Resende, M.G.C., Sudarsky, S.: Massive Quasi-Clique Detection. In:
Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 598–612. Springer, Heidel-
berg (2002)

2. Cao, K.A.L., Martin, P.G.P., Granié, C.R., Besse, P.: Sparse canonical methods
for biological data integration: Application to a cross-platform study. BMC Bioin-
formatics 10, 34 (2009)

3. Chen, X., Liu, H.: An efficient optimization algorithm for structured sparse CCA,
with applications to eQTL Mapping. Statistics in Biosciences 4(1), 3–26 (2012)

4. Chen, J., Bushman, F.D., Lewis, J.D., Wu, G.D., Li, H.: Structure-constrained
sparse canonical correlation analysis with an application to microbiome data anal-
ysis. Biostatistics 14(2), 244–258 (2013)

5. Chiu, G.S., Westveld, A.H.: A unifying approach for food webs, phylogeny, social
networks, and statistics. PNAS 108(38), 15881–15886 (2011)

6. Danon, L., Dı́az-Guilera, A., Duch, J., Arenas, A.: Comparing community struc-
ture identification. Journal of Statistical Mechanics: Theory and Experiment P09008
(2005)

Discovering Collective Group Relationships 121

7. Fortunato, S.: Community detection in graphs. Physics Reports 486, 75–174 (2010)
8. Hotelling, H.: Relations Between Two Sets of Variates. Biometrika 28(3/4), 321–377

(1936)
9. Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recognition Let-

ters 31(8), 651–666 (2010)
10. Lee, W., Lee, D., Lee, Y., Pawitan, Y.: Sparse Canonical Covariance Analysis for

High-throughput Data. Statistical Applications in Genetics and Molecular Biol-
ogy 10(1): Article 30 (2011)

11. Lin, D., Zhang, J., Li, J., Calhoun, V.D., Deng, H.W., Wang, Y.P.: Group sparse
canonical correlation analysis for genomic data integration. BMC Bioinformat-
ics 14, 245 (2013)

12. Liu, G., Wong, L.: Effective Pruning Techniques for Mining Quasi-Cliques. In:
Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part II. LNCS
(LNAI), vol. 5212, pp. 33–49. Springer, Heidelberg (2008)

13. Liu, H., Li, J., Liu, L., Liu, J., Lee, I., Zhao, J.: Exploring Groups fromHeterogeneous
Data via Sparse Learning. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds.)
PAKDD 2013, Part I. LNCS (LNAI), vol. 7818, pp. 556–567. Springer, Heidelberg
(2013)

14. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in net-
works. Physical Review E 69(2), 26113 (2004)

15. Parkhomenko, E., Tritchler, D., Beyene, J.: Sparse Canonical Correlation Analysis
with Application to Genomic Data Integration. Statistical Applications in Genetics
and Molecular Biology, 8(1), Article 1 (2009)

16. Søkilde, R., Kaczkowski, B., Podolska, A., Cirera, S., Gorodkin, J., Møller, S.,
Litman, T.: Global microRNA Analysis of the NCI-60 Cancer Cell Panel. Molecular
Cancer Therapeutics 10, 375–384 (2011)

17. Soneson, C., Lilljebjörn, H., Fioretos, T., Fontes, M.: Integrative analysis of gene
expression and copy number alterations using canonical correlation analysis. BMC
Bioinformatics 11, 191 (2010)

18. Smyth, G.K.: Limma: linear models for microarray data. Statistics for Biology
and Health. Bioinformatics and Computational Biology Solutions using R and
Bioconductor. pp. 397-420. Springer (2005)

19. Tang, L., Liu, H., Zhang, J., Nazeri, Z.: Community Evolution in Dynamic Multi-
Mode Networks. In: 14th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining (KDD), Las Vegas, USA, pp. 677–685 (2008)

20. Waaijenborg, S., Zwinderman, A.H.: Sparse canonical correlation analysis for iden-
tifying, connecting and completing gene-expression networks. BMC Bioinformat-
ics 10, 315 (2009)

21. Wagner, G.P., Pavlicev, M., Cheverud, J.M.: The Road to Modularity. Nature
Reviews Genetics 8(12), 921–931 (2007)

22. Witten, D., Tibshirani, R., Hastie, T.: A Penalized Matrix Decomposition, with
Applications to Sparse Principal Components and Canonical Correlation Analysis.
Biostatistics 10(3), 515–534 (2009)

23. Yan, J.J., Zheng, W., Zhou, X., Zhao, Z.: Sparse 2-D canonical correlation analysis
via low rank matrix approximation for feature extraction. IEEE Signal Process
Letters 19(1), 51–54 (2012)

24. Yeung, K.Y., Medvedovic, M., Bumgarner, R.E.: From co-expression to co-
regulation: how many microarray experiments do we need? Genome Biology, 5(7),
Article R48 (2004)

Efficiently Retrieving Top-k Trajectories by Locations
via Traveling Time

Yuxing Han1, Lijun Chang2, Wenjie Zhang2, Xuemin Lin1,2, and Liping Wang1

1 East China Normal University, China
2 The University of New South Wales, Australia

sei.yxhan@gmail.com, {ljchang,zhangw,lxue}@cse.unsw.edu.au,
lipingwang@sei.ecnu.edu.cn

Abstract. The flourishing industry of location-based services has collected a
massive amount of users’ positions in the form of spatial trajectories, which raise
many research problems. In this paper, we study a trajectory retrieving query, k-
TLT, which aims at retrieving the top-k Trajectories by Locations and ranked by
traveling Time. Given a set Q of query locations, a k-TLT query retrieves top-k
trajectories that are close to Q with respect to traveling time. In contrast to exist-
ing works which consider only location information, k-TLT queries also consider
the traveling time information, which have many applications, such as travel route
planning and moving object study. To efficiently answer a k-TLT query, we first
online compute a list Lq of trajectories for each query location q ∈ Q, such that
trajectories in Lq are ranked by their traveling time to q. Based on the online gen-
erated lists Lq corresponding to query locations, a small set of candidate trajecto-
ries that are close to Q is selected by iteratively retrieving trajectories from lists
Lq. Then, the set of candidate trajectories is refined and pruned to determine the
top-k trajectories. We conduct extensive experiments on a real trajectory dataset
and verify the efficiency of our approach.

Keywords: Trajectory retrieving, locations, traveling time, efficiency.

1 Introduction

As a result of an abundant number of trajectory data generated by mobile devices and
global position systems, various innovative location-based applications have been stud-
ied. Among them, one prominent application is retrieving interesting trajectories. The
existing works on trajectory retrieving either query by a trajectory [2,3,10] or by lo-
cations [4,12]. The works on retrieving similar trajectories by a query trajectory focus
on defining similarities between trajectories [2,3,10]. We study querying trajectories by
locations in this paper. For querying trajectories by locations, the existing works [4,12]
compute trajectories that are geographically close to a set of query locations while ne-
glecting road conditions and traveling time information. However, in many real appli-
cations, the set of geographically close trajectories may not be the best choice due to
rough road conditions, and we should also regard traveling time information as an im-
portant factor. Imagine a person who takes his first trip to an unfamiliar city but with a
limited travel time for some personal issues. In order to save time, he chooses to travel
between attractive places by taxi, and hopes to spend less time on traveling and have

H. Wang and M.A. Sharaf (Eds.): ADC 2014, LNCS 8506, pp. 122–134, 2014.
c© Springer International Publishing Switzerland 2014

Efficiently Retrieving Top-k Trajectories by Locations via Traveling Time 123

more time enjoying himself in the places that he really likes. Here, the attractive places
that he wants to visit can be regarded as query locations, and candidate traveling routes
are existing trajectories. Historical trajectories recorded in the database could surely
provide similar routes that help him to plan this trip. This motivates us to study a new
trajectory retrieving query, k-TLT, which aims at retrieving the top-k trajectories by lo-
cations and ranked by traveling time. Given a set Q of query locations, a k-TLT query
retrieves the top-k trajectories that are close to Q with respect to traveling time.

There are two challenges in efficiently answering a k-TLT query: 1) the number of
trajectories and trajectory points is very large such that processing all trajectories is
time-consuming; 2) the existing index structure for trajectory points, R-tree [7], con-
siders only distance information. To tackle these challenges, we first study how to in-
corporate speed information of trajectory points into an R-tree, such that, given a query
location q, trajectory points can be efficiently retrieved in non-decreasing order with
respect to their traveling time to q. The traveling time (reach time) between a trajectory
and a location q (resp. a set Q of locations) is the minimum traveling time from any
trajectory point to q (resp. the sum of traveling time to locations in Q). Based on the
augmented R-tree, we online compute a list Lq of trajectories for each query location q
such that trajectories in Lq are ranked by their traveling time to q. Based on the online
generated lists Lq, one corresponding to each query location q ∈ Q, we propose tech-
niques to select a small set of candidate trajectories that are close to Q by iteratively
retrieving trajectories from lists Lq. Here, we use the bitsets technique to effectively
record statistics of trajectories. Then, we iteratively refine and prune trajectories in the
candidate set to get the top-k trajectories.

The rest of this paper is organized as follows. Section 2 gives our problem statement,
and we present our new efficient algorithm for answering k-TLT queries in Section 3.
Experimental results are reported in Section 4, followed by related work in Section 5.
We conclude the paper in Section 6.

2 Problem Definition

A spatial trajectory R is a trace generated by a moving object in geographical spaces,
and usually represented by a time-ordered sequence of location points, (t1, p1), (t2, p2),
. . . , (tN , pN), with t1 < t2 < · · · < tN . Here, N is the number of recorded points in R,
and each location point pi is represented by (longitude, latitude) corresponding to time
ti. In order to compute the traveling time between a trajectory and a location point, we
precompute an average speed at each location point pi in R, denoted as si. Therefore,
in the following, we consider a trajectory R to be represented by (t1, p1, s1), (t2, p2, s2),
. . ., (tN , pN , sN), where si is the speed at location pi, and (ti, pi, si) is referred to as a
trajectory point ei of R.

Definition 1. The reach time between a trajectory point e and a location point q, de-
noted single time(e, q), is the traveling time from e.p to q, i.e.,

single time(e, q) =
d(e.p, q)

e.s
,

where d(,) is the Euclidean distance between two location points.

124 Y. Han et al.

Definition 2. The reach time between a trajectory R and a location point q, denoted
t(R, q), is the minimum reach time between any point in R and q, i.e.,

t(R, q) = min
e∈R single time(e, q)

Here, we say that q is matched to ei.p, where ei has the minimum reach time to q among
all trajectory points in R.

Definition 3. Given a set Q of location points {q1, q2, . . . , qm}, the reach time between
R and Q, denoted T (R,Q), is the sum of reach time between R and each point in Q, i.e.,

T (R,Q) =
∑

q∈Q
t(R, q)

Fig. 1 illustrates an example of computing reach time between a trajectory R and a
set Q of three points {q1, q2, q3}. q1 and q3 are respectively matched to p2 and p5, which
are their geographically closest points in R. q2 is matched to p4 due to less traveling
time from p4 to p2. Although p3 is geographically closer to q2 than p4, it may take
more time to travel from p3 to p2 due to rough road conditions around p3. Therefore,
the reach time between R and Q is T (R,Q) = t(R, q1) + t(R, q2) + t(R, q3) = 7min.

single time(p2, q1) = 2min t(R, q1) = 2min{
single time(p3, q2) = 3min

single time(p4, q2) = 2.5min t(R, q2) = 2.5min

single time(p5, q3) = 2.5min t(R, q3) = 2.5min

p1 p2

q1

p3
q2

p4 p5

q3
p6

Fig. 1. Reach Time Computation

Problem Statement. Given a trajectory database D and a query Q consisting of m loca-
tion points, Q = {q1, . . . , qm}, we study the problem of k-TLT query, which aims at re-
trieving the top-k Trajectories by Locations and ranked by traveling Time. That is, a k-
TLT query retrieves from D a subset K consisting of k trajectories whose reach time to Q
is not more than any trajectories in (D−K), i.e., maxRi∈K T (Ri,Q) ≤ minR j∈D−K T (R j,Q).

Table 1 lists the notations and symbols used in this paper.

3 Query Processing

Naive Approach. For a k-TLT query Q, where trajectory points of trajectories in D are
stored in an R-tree [7], a naive approach would be computing the reach time between

Efficiently Retrieving Top-k Trajectories by Locations via Traveling Time 125

Table 1. List of Notations

Notations Explanation

R,D a trajectory, and a trajectory database
e a trajectory point

Q,m the set (resp. number) of query locations
d(,) Euclidean distance between two location points
t(,) reach time between a trajectory and a query location
T (,) reach time between a trajectory and a query set of locations
k, K the number k, and the top-k trajectories
C a candidate set of trajectories

Algorithm 1. Naive Approach
Input: a trajectory database D, a set of query locations Q, and k
Output: the top-k trajectories in D with respect to reach time to Q

1 foreach trajectory R in D do
2 compute the reach time T (R,Q) between R and Q;

3 sort all trajectories in D according to their reach time to Q;
4 return the top-k trajectories;

every trajectory R in D and Q, then sorting trajectories by their reach time to Q, and
returning the top-k trajectories, as shown in Algorithm 1.

The naive approach is time-consuming and impractical. This is because it needs to
compute the reach time between every trajectory in D and Q, although we are only
interested in the top-k trajectories. Usually, k is much smaller than the number of tra-
jectories in D and is furthermore much smaller than the number of trajectory points in
D. Therefore, we propose an incremental approach to computing top-k trajectories by
retrieving only a small set of trajectory points and then a small set of trajectories from
D in the following.

Incremental Approach. The general idea of our incremental approach is as follows. 1)
For each query location q in Q, we retrieve trajectory points from D in non-decreasing
order with respect to their reach time to q; therefore, trajectories are retrieved from D in
non-decreasing order with respect to their reach time to q, and we consider the sorted
trajectories according to q as a sorted list Lq. 2) Based on the online generated lists Lq,
we select a small set of candidate trajectories which contains the top-k trajectories. 3)
Finally, we refine and prune trajectories in the candidate set to get the top-k trajectories.
The pseudocode is shown in Algorithm 2.

Based on the incremental approach, we compute top-k trajectories by visiting only
a small set of trajectory points and trajectories from D, which is much more efficient
than the naive approach in Algorithm 1. We discuss the three steps of our incremental
approach in the following three subsections, respectively.

126 Y. Han et al.

Algorithm 2. Incremental Approach
Input: a trajectory database D, a set of query locations Q, and k
Output: the top-k trajectories in D with respect to reach time to Q

1 foreach query location q in Q do
2 initialize and prepare a sorted list Lq for q;

3 compute a set C of candidate trajectories based on Lq for all q ∈ Q;
4 refine and prune trajectories in C to get the top-k trajectories K;
5 return K;

3.1 Online Generating List Lq

Augmenting R-tree. In order to retrieve trajectory points from D in non-decreasing or-
der with respect to their reach time to a query location q, we need to organize trajectory
points in D in a data structure, and R-tree [7] is a good choice for retrieving points in
sorted order. However, R-tree considers only distance information, while our purpose is
to rank points with respect to their traveling time which considers both the distance and
the speed information. Therefore, we propose to also incorporate the speed information
into the R-tree data structure for fast query processing.

The key idea of R-tree [7] is to group nearby objects and represent them with their
minimum bounding rectangle (MBR) in the next higher level of the tree. In order to
retrieve trajectory points in non-decreasing order with respect to their traveling time to
a query location, we incorporate the speed information into the R-tree, such that each
rectangle is also associated with a speed information. For a rectangle at the leaf level,
the speed information is the maximum speed of the contained trajectory points; while
at higher levels the maximum speed stored in its children rectangles, or equivalently the
maximum speed of trajectory points contained by the rectangle. The construction of the
augmented R-tree � is the same as that in [7] by assigning the speed information in a
bottom-up fashion as post-processing.

Definition 4. Given a query location q, a trajectory point e in trajectory R is a match
point if q is matched to e in the reach time between R and q, i.e., e has the minimum
reach time to q among all trajectory points in R.

Online Generating List Lq. Based on the augmented R-tree�, for a query location q,
we can retrieve trajectory points from� incrementally with respect to their reach time
to q, and add the corresponding trajectory to Lq if the trajectory point is a match point.
Recall that, Lq consists of trajectories and trajectories in Lq are sorted in non-decreasing
order with respect to their reach time to q.

The algorithm to online generate list Lq is shown in Algorithm 3, which conducts a
best first search on the augmented R-tree �. We maintain a priority queue�q to store
the rectangles and trajectory points visited during the search process. For a trajectory
point in�q, its key is the reach time between the trajectory point and q; while for a rect-
angle, its key is a lower bound of the reach time between any trajectory points contained
in the rectangle and q. The lower bound of reach time is computed as min dist/speed,
where min dist is the minimum distance between the rectangle and q, and speed is

Efficiently Retrieving Top-k Trajectories by Locations via Traveling Time 127

the speed information stored at the rectangle. Initially, Hq contains the root node of�.
Then, entries r are iteratively popped from Hq (Line 4). If r is a location point, we add
the trajectory corresponding to r to Lq (Lines 5-7). Otherwise, we push to�q either the
children rectangles of r (Lines 8-10) or the location points contained in r (Lines 11-13),
depending on whether r is a leaf node or not.

Algorithm 3. Online Generating Lq

Input: a query location q, an R-tree�
1 �q ← ∅;
2 Enheap(�q ,�.root node, 0);
3 while�q is not empty do
4 r← Deheap(�q);
5 if r is a location point then
6 if r is match point of q then
7 Add the trajectory corresponding to r to Lq;

8 else if r is a non-leaf node then
9 foreach child node c of r in� do

10 Enheap(�q, c, c.min dist/c.speed);

11 else
12 foreach trajectory point e in r do
13 Enheap(�q, e, d(e.p, q)/e.s);

Note that, in our approach to answering a k-TLT query, we do not generate the entire
list Lq, but one trajectory only. That is, we construct Lq on-demand, and each time only
one trajectory is computed and added to Lq. Once Lq becomes empty, we compute the
next trajectory.

3.2 Generating Candidate Set C

Based on the online generated lists Lq, the main idea of generating candidate set C is
iteratively retrieving trajectories R from Lq and adding R to C, and terminating once
there are at least k all-covering trajectories in C. A trajectory R is called an all-covering
trajectory if it has been retrieved from all lists Lq, ∀q ∈ Q; that is, the reach time be-
tween R and Q is already computed. To achieve this, we construct a fixed-sized priority
queue �, which contains m entries, one corresponding to each query location q, i.e.,
(q, top(Lq)). top(Lq) denotes the top trajectory in Lq, and the key of (q, top(Lq)) in� is
the reach time between top(Lq) and q which is stored in Lq.

The pseudocode is shown in Algorithm 4. To construct the candidate set C, we itera-
tively pop the top entry (q,R) from Q (Line 4), i.e., R is the current top trajectory in Lq.
Then R is added to C and removed from Lq, and the next top trajectory in Lq is pushed
into � (Lines 5-6). The algorithm terminates once the AllCoverTest of C returns true
(Lines 7-8), i.e., there are at least k all-covering trajectories in C. The correctness of
Algorithm 4 directly follows from the following lemma.

128 Y. Han et al.

Algorithm 4. Generating Candidate Set C
Input: Query Q, k, and m online generated lists Lq

Output: Candidate Set C
1 C ← ∅;
2 initialize a priority queue� to contain (q, top(Lq)) for each q ∈ Q;
3 while true do
4 Pop an entry (q,R) from�;
5 Remove R from Lq, and push (q, top(Lq)) to Q;
6 C ← C ∪ {R};
7 if AllCoverTest(C) is true then
8 return C;

Lemma 1. Given a k-TLT query Q, the set C of trajectories returned by Algorithm 4
contains the top-k trajectories in D that are closest to Q with respect to their reach time
to Q.

Proof. We prove by contradiction. Assume that there is such a trajectory R in the top-k
trajectories for a query Q that is not in C. There are at least k all-covering trajectories
in C, let R′ be the one with minimum reach time to Q. Since T (R,Q) < T (R′,Q),
there must exist once query location q such that T (R, q) < T (R′, q). Then R should be
retrieved from Lq before R′, which means that R is in C. Contradiction. Thus, the lemma
holds.
�

Implementing AllCoverTest. In Algorithm 4, we need to conduct all cover test by
invoking procedure AllCoverTest. One naive approach is checking all trajectories in C
to count the number of all-covering trajectories. However, this is time consuming, since
we need to conduct the test each time when we retrieved a trajectory from any list Lq.

To efficiently count the number of all-covering trajectories, we propose a bitset-
based implementation of AllCoverTest. For each trajectory in C, we construct a bitset
with m bits, one corresponding to each query location, which are initialized to be 0.
Note that, here, we do not construct bitsets for trajectories not in C. We use a hash table
to store trajectories in C. The number of query locations is usually small in practice,
then the size of all bitsets constructed is very small. Whenever a trajectory R is added to
C (Line 6), the corresponding bit of the bitset of R is set to 1. A trajectory becomes all-
covering, if all m bits are set to be 1; that is, by regarding the bitset as a binary number,
the bitset has value (2m − 1) which can be tested in constant time. In Algorithm 4,
we incrementally maintain the number of all-covering trajectories in C, which can be
maintained in constant time by checking whether the newly added trajectory R at Line 6
is an all-covering trajectory. Then, Line 7 runs in constant time.

In addition to fast count the number of all-covering trajectories, the bitset technique
can also be used in checking match point at Line 6 of Algorithm 3. For example, we
first check whether the trajectory R corresponding to r is in C, if yes, then the bit cor-
responding to query location q of the bitset of R indicates whether r is a match of q or
not; otherwise, r is a match of q. Therefore, Line 6 of Algorithm 3 also runs in constant

Efficiently Retrieving Top-k Trajectories by Locations via Traveling Time 129

time. The bitset technique adopted here actually greatly improves the performance of
our algorithm, as shown in our experimental study (Sec 4.1).

3.3 Refining and Verifying C

A naive approach to verifying the candidate set C is computing the reach time between
every trajectory in C and Q, and then returning the top-k trajectories. However, this
is still time-consuming, especially for trajectories containing a lot of trajectory points.
Now, let’s consider the trajectories in C that are not all-covering ones. In fact, we have
already get the information of reach time between such trajectories R and certain query
locations q, such that R is retrieved from Lq. Therefore, we can use this information to
compute a lower bound of the reach time between R and Q, and then prune the trajectory
R if its lower bound reach time is not smaller than the largest reach time of the current
top-k candidate trajectories. The lower bound reach time between a trajectory R and Q
is computed following from the lemma below.

Lemma 2. For a trajectory R in C that is not an all-covering trajectory, the low bound
of its reach time to query Q is computed as:

LB(R,Q) =
∑

q∈Qc

t(R, q) +
∑

q′∈Q−Qc

t(Rq′ , q
′),

where Qc is the subset of query locations that R has been covered in the candidate set
C, and Rq′ is the last retrieved trajectory from list Lq′ .

Proof. The lemma directly follows from the definition of reach time between R and Q,
since t(R, q′) ≥ t(Rq′ , q′) for each q′ ∈ Q − Qc.
�

Algorithm 5. Refine & Verification
Input: Query locations Q, Candiate Set C, and priority queue�
Output: K: top-k trajectories

1 K ← the top-k all-covering trajectories in C;
2 θ← GetLargest(K);
3 foreach non-all-covering trajectory R in C do
4 compute LB(R,Q);
5 if LB(R,Q) < θ then
6 compute T (R,Q);
7 if T (R,Q) < θ then
8 replace the trajectory with the largest reach time in K by R;
9 θ← GetLargest(K);

10 return K;

Based on Lemma 2, the algorithm to refine and verify trajectories in C is shown
in Algorithm 5. The result set K is first initialized to contain the top-k all-covering

130 Y. Han et al.

trajectories in C (Line 1), and the largest reach time θ for trajectories in K is obtained
by the GetLargest procedure (Line 2). Then, we iteratively verify each non-all-covering
trajectory in C (Line 3-9). For each non-all-covering trajectory R, we first compute its
lower bound reach time to Q, and R is pruned if LB(R,Q) ≥ θ; otherwise, the reach time
between R and Q is computed, and K is updated by R if T (R,Q) < θ. After processing
all non-all-covering trajectories in C, the k trajectories in K are the top-k trajectories for
the k-TLT query Q.

4 Experimental Evaluation

We conduct experiments on a real taxi dataset generated by Microsoft Research Asia
(MSRA)[14,15] to verify the efficiency of our proposed algorithms. This dataset con-
tains trajectories generated by 33, 000 taxis over 3 months within Beijing. There are
total 69, 541 trajectories and 1, 644, 009 trajectory points. The query locations are gen-
erated manually by selecting a sequence of coordinates of places of interests that com-
plies with a reasonable visiting order. We do not use random generation of query loca-
tions, because random generation will cause a sudden jump from one location to another
location which rarely happens in real life. In our experiments, we vary k, the number
of returned trajectories, and |Q|, the number of query locations, and report the running
time of algorithms. All the experiments are performed on a machine with an Intel i5
CPU(3.10GHz) and 8GB main memory, running Windows 7.

4.1 Evaluating Total Running Time

We evaluate the performance of the algorithms via two metrics — Execution Time and
Node Access of R-tree. Execution Time is the total running time of algorithms, and
Node Access is the number of R-tree nodes accessed in the algorithms. We compare
two approaches: the naive approach, denoted Naive, and the incremental approach, as
discussed in Section 3. For the incremental approach, we compared two implementa-
tions of the AllCoverTest in Algorithm 4: the naive way by checking all trajectories,
denoted Incremental, and the bitset-based implementation, denoted Incremental-Bitset.

Fig. 2 shows experimental results on Execution Time for the three algorithms. Over-
all, the two incremental algorithms are much faster than the naive algorithm under dif-
ferent values of k and |Q|. When varying k, Fig. 2(a) illustrates that the bitset-based
implementation significantly improves the performance by one order of magnitude to-
wards all k values. When varying |Q|, obviously, the bitset-based implementation also
significantly outperforms the naive all cover test method as shown in Fig. 2(b). As
shown in Fig. 2(b), when |Q| becomes larger, the running time of the naive AllCoverTest
method increases almost exponentially. This is because that the search space grows
very fast as the number of query points increases. However, bitset-based implementa-
tion doesn’t need to check every trajectory for an AllCoverTest by means of bitwise
operations, which shows its advantage.

Experimental results on Node Access are given in Fig 3. Because different imple-
mentations of AllCoverTest do not affect the number of R-tree nodes accessed, we only
compare Node Access between Naive and Incremental-Bitset. When query locations

Efficiently Retrieving Top-k Trajectories by Locations via Traveling Time 131

102

103

104

105

 4 8 12 16 20

E
xe

cu
tio

n
T

im
e(

m
s)

Value of k

Naive
Incremental

Incremental-Bitset

(a)

101

102

103

104

105

 3 6 9 12 15

E
xe

cu
tio

n
T

im
e(

m
s)

Value of |Q|

Naive
Incremental

Incremental-Bitset

(b)

Fig. 2. Execution Time

Q is chosen, Node Access of Naive fixes at a very large number as shown in Fig 3(a).
When |Q| becomes larger, Node Access of Naive grows very quickly(Fig 3(b)). This
is because Naive needs to access all R-tree nodes for each query location to compute
the reach time between trajectories and a query location. As expected, our proposed
incremental approach accesses only a small subset of R-tree as shown in Fig 3, which
is benefited from our incremental manner to online generate the ranked lists Lq for each
query location q.

102

103

104

105

 4 8 12 16 20

N
od

e
A

cc
es

s

Value of k

Naive
Incremental-Bitset

(a)

102

103

104

105

106

 3 6 9 12 15

N
od

e
A

cc
es

s

Value of |Q|

Naive
Incremental-Bitset

(b)

Fig. 3. Node Access

4.2 Evaluating Refine and Verification

We compare the performances of different approaches in the refine and verification
stage of our algorithm. More specifically, we compare two approaches, No Pruning
which computes a reach time for each trajectory in the candidate set C, and Prune with
LB as discussed in Section 3.3. We show the running time in Fig. 4. As expected, the
strategy of pruning with LB runs faster than the one without pruning. Note that we have
already pruned an abundant number of un-qualified trajectories at the candidate gener-
ation stage. At the refinement stage, we only need to verify trajectories in a relatively
small candidate set C. Nevertheless, the pruning strategy effectively prunes a lot of can-
didate trajectories in C without actually computing their reach time to Q; therefore,
results in much smaller running time, as shown in Fig. 4.

132 Y. Han et al.

 40

 60

 80

 100

 120

 140

 160

 180

 200

 4 8 12 16 20

E
xe

cu
te

 o
f T

im
e(

m
s)

Value of k

No Pruning
Prune With LB

(a)

 50

 100

 150

 200

 250

 3 6 9 12 15

E
xe

cu
tio

n
T

im
e(

m
s)

Value of |Q|

No Pruning
Prune With LB

(b)
Fig. 4. Refine & Verification

5 Related Work

Many algorithms towards searching points or regions have been proposed [8,9,11], how-
ever, they cannot be applied to retrieving trajectories. The existing works towards re-
trieving trajectories can be classified into two categories: 1) trajectory retrieving by a
query trajectory; 2) trajectory retrieving by locations.

Trajectory Retrieving by a Trajectory. Here, the query is a trajectory, which finds
similar trajectories in a database to the query trajectory. To tackle the problem, several
similarity functions have been proposed in the literature. Euclidean distance is a com-
monly adopted similarity function, and it is easy to compute. However, it has the disad-
vantage that requires the two trajectories to have the same length. The first technique to
solve this problem is Dynamic Time Warping(DTW)[1] that allows stretching in time
for trajectories by replicating some points in order to get the same length. To address the
noise issue, Longest Common Subsequence(LCSS)[13] adopts a robust measurement.
Edit Distance on Real Sequence(ERP)[3] aims to provide a less coarse description than
LCSS for distance between trajectories. Recently, Frentzos et. al propose a new simi-
larity function based on the area between two trajectories [6]. Due to inherent different
problem nature, these techniques cannot be applied to solve our problem.

Trajectory Retrieving by Locations. Here, the query is a set of locations, which
aims at retrieving trajectories that are close enough to the query locations. Chen et. al
study a k-BCT query, which finds k trajectories that best connect all the query locations
geographically [4]. In [12], Tang et. al adopt a different distance measure and provide
a robust approach to processing k-NNT query in the trajectory database. However, both
of them only focus on the geographical distance between trajectory points and query
locations while ignoring the road condition and traveling time information. Therefore,
their techniques cannot be used to answer our k-TLT query.

6 Conclusion and Future Work

In this paper, we studied a new trajectory retrieving query, k-TLT, which aims at re-
trieving top-k trajectories by locations and ranked by traveling time. Different from

Efficiently Retrieving Top-k Trajectories by Locations via Traveling Time 133

previous works which only focus on the geographically connectivity of query location,
we also considered the road condition and the traveling time information. We proposed
a two-step approach to efficiently answering k-TLT query: candidate generation, and
refine-verification. In candidate generation, we took the advantage of an augmented R-
tree to retrieve trajectory points in non-decreasing order with respect their reach time
to a query location, and the advantage of bitset to efficiently generate a candidate set C,
which contains the results of k-TLT query. In refine-verification, we utilized the lower
bound reach time of trajectories in C to efficiently verify the top-k trajectories. Finally,
we validated the efficiency of our proposed algorithm by conducting experiments on a
real trajectory dataset.

As future works, we will try to adopt more appropriate speed information in the
practical context. Instead of using average speed in a certain trajectory point, we will
derive the speed according to the traffic or weather conditions of the region where the
certain point is located. Note the speed derived here is not only based on the single
trajectories, but a result obtained from the trajectories in a corresponding small region.
With these more reasonable speed information, more acceptable trajectories towards
k-TLT query can be retrieved.

Acknowledgement. The work is supported by NSFC61232006, NSFC61021004, ARC
DP120104168, ARC DP140103578 and DE120102144.

References

1. Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time series. In:
KDD Workshop, vol. 10, pp. 359–370 (1994)

2. Chen, L., Ng, R.: On the marriage of lp-norms and edit distance. In: VLDB, pp. 792–803.
VLDB Endowment (2004)

3. Chen, L., Özsu, M.T., Oria, V.: Robust and fast similarity search for moving object trajecto-
ries. In: SIGMOD, pp. 491–502. ACM (2005)

4. Chen, Z., Shen, H.T., Zhou, X., Zheng, Y., Xie, X.: Searching trajectories by locations: An
efficiency study. In: SIGMOD, pp. 255–266. ACM (2010)

5. Frentzos, E., Gratsias, K., Pelekis, N., Theodoridis, Y.: Nearest neighbor search on mov-
ing object trajectories. In: Medeiros, C.B., Egenhofer, M.J., Bertino, E. (eds.) SSTD 2005.
LNCS, vol. 3633, pp. 328–345. Springer, Heidelberg (2005)

6. Frentzos, E., Gratsias, K., Theodoridis, Y.: Index-based most similar trajectory search. In:
ICDE, pp. 816–825. IEEE (2007)

7. Guttman, A.: R-trees: A dynamic index structure for spatial searching, vol. 14. ACM (1984)
8. Hjaltason, G.R., Samet, H.: Distance browsing in spatial databases. ACM Transactions on

Database Systems (TODS) 24(2), 265–318 (1999)
9. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. ACM Sigmod

Record 24(2), 71–79 (1995)
10. Sherkat, R., Rafiei, D.: On efficiently searching trajectories and archival data for historical

similarities. Proceedings of the VLDB Endowment 1(1), 896–908 (2008)
11. Song, Z., Roussopoulos, N.: K-nearest neighbor search for moving query point. In: Jensen,

C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, pp. 79–96.
Springer, Heidelberg (2001)

134 Y. Han et al.

12. Tang, L.-A., Zheng, Y., Xie, X., Yuan, J., Yu, X., Han, J.: Retrieving k-nearest neighboring
trajectories by a set of point locations. In: Pfoser, D., Tao, Y., Mouratidis, K., Nascimento,
M.A., Mokbel, M., Shekhar, S., Huang, Y. (eds.) SSTD 2011. LNCS, vol. 6849, pp. 223–241.
Springer, Heidelberg (2011)

13. Vlachos, M., Kollios, G., Gunopulos, D.: Discovering similar multidimensional trajectories.
In: ICDE, pp. 673–684. IEEE (2002)

14. Yuan, J., Zheng, Y., Xie, X., Sun, G.: Driving with knowledge from the physical world. In:
SIGKDD, pp. 316–324. ACM (2011)

15. Yuan, J., Zheng, Y., Zhang, C., Xie, W., Xie, X., Sun, G., Huang, Y.: T-drive: Driving direc-
tions based on taxi trajectories. In: SIGSPATIAL, pp. 99–108. ACM (2010)

Comprehensive Analytics of Large Data Query

Processing on Relational Database with SSDs

Keisuke Suzuki1, Yuto Hayamizu1, Daisaku Yokoyama1,
Miyuki Nakano2, and Masaru Kitsuregawa1,3

1 University of Tokyo
{keisuke,haya,yokoyama,kitsure}@tkl.iis.u-tokyo.ac.jp

2 Shibaura Institute of technology
miyuki@sic.shibaura-it.ac.jp

3 National Institute of Informatics

Abstract. Solid-state drives (SSDs) are widely used in large data pro-
cessing applications due to their higher random access throughput than
HDDs and capability of parallel I/O processing. The I/O bottlenecks
that HDDs on database systems face can be resolved by using SSDs be-
cause of these advantages. However, access latency on cache hierarchy
may become a new bottleneck in SSD-based databases. In this study, we
quantitatively analyzed the behavior of SSD-based databases by taking
hashjoin operation. We found that cache misses in SSD-based databases
can be decreased by reducing the hashtable size to fit into the cache. This
is because the I/O cost is not increased by the high throughput of the
SSDs, even though the hashjoin partition files are fragmented. We also
observed that cache misses are not increased by taking a multi-hashjoin
query. This is because the total size of multiple hashtables can fit into the
cache size in SSD-based databases, which is in contrast to HDD-based
databases, where hashtables require almost all of the available memory.
Overall, our analytics clarify that the performance of multiple queries in
SSD-based databases can be improved by considering data access local-
ity of the hashjoin operation and determining the appropriate hashtable
size to fit into the cache.

Keywords: RDBMS, SSD, Hashjoin, OLAP.

1 Introduction

Flash solid-state disks (SSDs) are likely to improve the I/O bottleneck of data
intensive applications due to their lower latency and higher throughput than con-
ventional hard disk drives (HDDs). They are widely used in heavy I/O workload
environments as their capacity is constantly growing and the price is dropping.

SSDs offer the same block interface as HDDs, so it is easy to integrate SSDs
into a storage system that enables users to access both kinds of devices trans-
parently. We expect that the throughput of SSDs is enough to resolve the I/O
bottleneck of HDDs and even maintain their bandwidth. However, another per-
formance bottleneck may occur by fully exploiting their I/O performance in

H. Wang and M.A. Sharaf (Eds.): ADC 2014, LNCS 8506, pp. 135–146, 2014.
c© Springer International Publishing Switzerland 2014

136 K. Suzuki et al.

SSD–integrated systems. Thus, in this paper, we investigate the performance of
an SSD–integrated system and show that it is insufficient to simply treat SSDs
as a faster disk-they are also a key element offering a new paradigm for data
intensive application performance models.

The I/O costs of conventional HDD-based database systems are often larger
by an order of magnitude than memory access costs and CPU calculation costs.
Therefore, I/O bandwidth limits the total performance of queries. In contrast,
SSDs fill the gap between I/O costs and memory access and calculation costs,
especially in the case of random I/Os. If the utilization of SSDs results in re-
moving the I/O bottleneck, memory access and calculation costs may become a
new bottleneck. That means we have to consider better utilization of computing
resources such as cache and memory. We comprehensively analyzed the perfor-
mance of SSD-based databases by taking a hashjoin operation that is often used
in large data query processing. We then obtained the following information.

– The overall performance of a hashjoin is seriously affected by cache miss
penalties. These misses can be reduced by setting a small hashtable size
to fit the hashtables into the cache, but this cannot be done on HDD-
based databases because using a small memory space causes fragmentation of
hashtable partitions and decreases the I/O throughput. In contrast, SSDs im-
prove the I/O throughput even though there are many fragmented hashtable
partitions since they have no mechanical seek time and achieve a better per-
formance than HDDs.

– By processing a query of multiple hashjoins, such as queries of decision sup-
port systems, cache misses are likely to increase more than with a single
join query since multiple hashtables may exist at the same time and share
a cache. SSD-based databases can avoid such increases by reducing the in-
dividual hashtable size enough to fit some hashtables into the cache. Thus,
we have to consider data access locality of hashjoins.

The primary contributions of this paper are as follows:

– We confirm that we can shrink the size of hashtable size to obtain a good
total performance of query execution in SSD-based databases.

– We confirm that the potential of improving the performance of multiple
query execution by setting the appropriate memory size.

The remainder of this paper is organized as follows. Related work is presented
in Section 2. Section 3 explains the behavior and expected processing cost of
the hashjoin operation that is used in our analysis. Section 4 shows the basic
access performance of HDDs and SSDs. In Section 5, we discuss our experimental
analysis of the utilization of SSDs on large data query processing. We conclude
with some final insights in Section 6.

2 Related Work

Recently, there has been much research in the area of SSD-integrated database
systems. These can be roughly divided into three categories of SSD usage: buffer
pool extension, indexing, and HDD-SSD mixed hybrid storage management.

Comprehensive Analytics of Database with SSDs 137

Concerning buffer pool extension, Bhattacharjee et al. proposed a temperature-
aware caching (TAC) schema [1,2] that monitors and obtains the statistics of the
access patterns of data and then decides which data to keep in the cache on the
basis of their access frequency. The FaCE system [3], proposed by Kang et al.,
uses the multiversion FIFO cache replacement algorithm to reduce the random
write. The buffer pool extension is one of promising fields of SSD usage. How-
ever, as mentioned in [4], the buffer pool extensions are not beneficial for ad hoc
large data processing queries which we focus on in this paper.

Hybrid storage management resembles the idea of caching in that it basically
places frequently accessed data on SSDs and less accessed data on HDDs. Kolt-
sidas et al. [5] detect workloads for the pages and distribute read-intensive pages
on SSDs and write-intensive pages on HDDs, which overcomes the random write
weakness of SSDs. The hStorage-DB [6] semantically analyzes the I/O work-
load of queries from execution plans. This approach enables data placing prior
to query execution, and for that reason, cache filling up time and monitoring
overheads are not needed. Hybrid HDD-SDD usage schemes are important for
SSDs with less capacity and higher price than HDDs. Our intention is first to
elaborate upon the query processing for SSD-only databases.

As for indexing, the FD-tree [7] optimizes writing performance by aggregat-
ing write requests, while the PIO B-tree [3] exploits the internal parallelism of
SSDs. Indices are typically used on a scan whose data selectivity is low, while
a sequential scan and hashtable are likely to be used on a high-selectivity scan.
Tsirogiannis et al. [8] utilize the column-based table store to exploit the ran-
dom access performance of SSDs and propose a column store database oriented
hashjoin algorithm.

The studies above focus only on the I/O characteristics of SSDs. In this work,
we analyze not only I/O behaviors but also the entire performance improvement
of database systems and other component bottlenecks.

3 Join Operation with Hashtable

With large data processing tasks such as DSS queries, a hashtable is typically
used on several database operations such as aggregation, projection, and join.
We use a hashjoin operation to evaluate performance improvement by SSDs since
hashjoin is one of the heaviest workload operations within databases. We clarify
that the high I/O throughput of SSDs affects the entire performance of hashjoin
operation from the aspect of memory access latency.

3.1 Grace Hashjoin [9] and Hybrid Hashjoin [10]

When a hashtable cannot fit into the main memory due to its size, Grace join
divides the target data into partitions to fit each partition into memory and
stores them on a disk.

The process of Grace hashjoin is divided in two phases: build and probe.
For the sake of explanation, assume the join operation of relations R, S, and

138 K. Suzuki et al.

hashtables are created on S. First, in the build phase, both target relations are
partitioned by the same hash function and partitions are written to disk. Next, in
the probe phase, two partitions Ri and Si (1 ≤ i ≤ n, n = S/memorysize), which
have the same hash value, are selected to join. Si is loaded and its hashtable
created on memory and then the tuples of Ri are matched with the tuples of Si

by referring to the hashtable. This operation is repeated for each partition.
Grace hashjoin consumes memory space for only the write buffer of each par-

tition at the build phase. Hybrid hashjoin utilizes the rest of the memory space
to hold the hashtable of the first partition S1. The memory residing partition
(S1) and the counterpart partition R1, which have the same hash value as S1, are
processed without being stored to disk. This is how hybrid hashjoin can reduce
the I/O cost of an operation with S1 and R1.

3.2 Processing Cost of Hashjoin

An HDD-based DBMS often uses Grace hashjoin or hybrid hashjoin on large data
query processing because a vast amount of I/Os seriously decreases processing
throughput. The rest of this paper deals with hybrid hashjoin algorithms.

The I/O pattern of hashjoin depends on the size of working memory (work-
ing memory means available memory space for each hashjoin operation.). This
is because the partition size and the number of partitions are decided to fit a
respective hashtable for partitions of S into working memory. Therefore, when
the working memory space is small, many small partitions are created, which
results in the generation of many fragmented partition files. Many random I/Os
are invoked to access these fragmented partition files. The fragmentation causes
serious I/O throughput degradation on HDDs since random I/Os are 100 - 1000
times slower than sequential I/Os. For this reason, much memory space is typi-
cally assigned for hashjoin on HDDs to avoid fragmentation. Concerning SSDs,
however, the random I/Os are not slower by an order of magnitude, and there-
fore the fragmentation has less impact on the I/O throughput. This condition
enables less memory space to be used.

A hashtable generated at the probe phase is repeatedly accessed by matching
a tuple of relation R. This means that data access locality is expected and has
to be considered. The size of working memory is also related to the number of
cache misses of the probe phase. When a hashtable for partition Si fits into a
cache, cache misses do not occur after loading partitions. The hashtable size
is limited by working memory size, so a hashtable can be fit into a cache and
utilization becomes high when the working memory size is smaller than the
cache size. SSDs help keep the memory size small without much I/O throughput
degradation. Thus, SSDs are expected not only to improve the I/O bottleneck
but also to help reduce the number of cache misses on a hashjoin.

4 Basic Performance of HDDs and SSDs

The architecture of SSDs is fundamentally different from that of HDDs. Rotating
disks and moving heads to address data are the bottleneck of random accesses

Comprehensive Analytics of Database with SSDs 139

Table 1. Experimental platform setup

CPU Xeon X7560 (L3 Cache: 24 MB) @ 2.27 GHz x 4
DRAM 64 GB

Storage (SSD) ioDrive Duo x4 (8 Logical units, Software RAID0)
Storage (HDD) SEAGATE ST3146807FC x12 (Software RAID0)

Kernel linux-2.6.32-220
File system ext4

on HDDs, while SSDs are pure electronic devices so they have no seek time.
Another important characteristic is that current SSDs are composed of multiple
flash chips, which means they are able to process some I/Os simultaneously. We
took some I/Omicro-benchmark programs and measured the basic I/O behaviors
of SSDs and HDDs in actual use. We then analyzed the basic performances and
clarified the differences between SSDs and HDDs.

4.1 Experimental Setup

Table 1 shows the platform setup of our experiment. The interface of the SSDs
is PCI Express and that of the HDDs is Fibre Channel. I/O scheduler is set to
noop for both storages. The SSDs are tied up by software RAID0 with chunk
size = 64 kB and use ext4 file system. The HDDs are set up in the same way.

4.2 Throughput of Sequential and Random Access

To confirm that the random access of the SSDs was superior to the HDDs, we
ran micro-benchmark programs of sequential and random read I/Os.

Th
ro

ug
hp

ut
 [M

B/
s]

I/O size [B]

ssd seq read
ssd rand read
hdd seq read

hdd rand read

 0.1

 1

 10

 100

 1000

 10000

1k 10k 100k 1M 10M

Fig. 1. I/O throughput for sequential and random accesses on SSD and HDD

Figure 1 shows the I/O throughput of SSD and HDD by varying the size of
individual I/Os. The throughput of the sequential read (seq read) of SSD is 3.1
times faster than that of HDD and the throughput of the random read (rand
read) is 8.6 - 23.7 times faster. The difference of I/O throughput on random

140 K. Suzuki et al.

read becomes larger at smaller I/O size settings. The throughput of sequential
read does not depend on I/O sizes because of the read ahead function, while in
contrast, the throughput of random read is proportional to I/O sizes.

4.3 Throughput of Mixture Workload

The I/O workload of actual applications consists of both read and write func-
tions. The internal parallelism and high random access throughput of SSDs take
advantage of such workloads. To demonstrate this, we used a benchmark pro-
gram of a mixture of I/Os. The workload consisted of read 75% and write 25%.
The ratio of read/write was similar to our experimental hashjoin operation men-
tioned in Section 5. The benchmark executes operations as follows. (1) Open two
files: one for read operations and the other for write operations. (2) Issue I/O
operations in a specified I/O size. First three read I/Os are issued, then one write
I/O is issued, and then the process is repeated. The read operations sequentially
scan a file and write operations add data to the other empty file.

Th
ro

ug
hp

ut
 [M

B/
s]

I/O size [B]

ssd mw read
ssd mw write
hdd mw read

hdd mw write
ssd readonly
hdd readonly

 10

 100

 1000

 10000

1k 10k 100k 1M 10M

Fig. 2. I/O throughput for mixture workload of read and write accesses on SSD and
HDD

Figure 2 shows the throughputs of the mixture workload (mw) for SSD and
HDD. The results of readonly workloads (mentioned in Section 4.2) are plotted
for comparison. Read/write throughputs of the mixture workload on SSD are
both 4.2 times higher than on HDD. The difference of the read throughput of
the mixture workload between SSDs and HDDs is larger than that of readonly
workload. The read throughput of the mixture workload on SSD is the same as
that of the readonly workload. In contrast, on HDD, the read throughput on the
mixture workload is 0.74 times smaller than that of the readonly workload. This
result indicates that SSDs are capable of parallel I/O processing and suitable
for mixture I/O workloads.

5 Experimental Analysis of Hashjoin Operation

We performed experiments with hashjoin queries and analyzed the I/O through-
put improvement and access costs on the cache hierarchy of large data query
processing on an SSD-based database.

Comprehensive Analytics of Database with SSDs 141

5.1 Database Setup and Workload

We used PostgreSQL [11] for RDBMS and set shared buffer size to 8 GB. We
created the same databases on SSD and HDD by using data of TPC-H [12]
benchmark at a scale factor of 100. Hashjoin processing performance depends
on the number of partition files and hashtable size. The more the number of
partition files is increased, the smaller the hashtable size becomes. In the case
of HDD-based databases, it is preferable to decrease the number of partition
files. This is because the fragmentation of files causes serious I/O performance
degradation. There is a trade-off related to working memory size, so we handle
it as a parameter to control the workload of hashjoin and observe the processing
performance for each value. Work mem is a PostgreSQL parameter that describes
the in-memory buffer size per database operation, that is, the working mem-
ory size in a hashjoin. Since PostgreSQL uses hybrid hashjoin, when work mem

is larger than the entire hashtable size, no partitions are written to disk. We
experimented on two queries in SSD and HDD environments: (1) a single join
query, with the join part and lineitem tables on partkey, and (2) a realistic
workload query, with TPC-H query 8, which contains the join of 8 tables.

We measured the query execution time by changing the work mem size between
64 kB and 2 GB. To observe the breakdown of CPU utilization, mpstat(1) is
used, and L3 cache references and cache misses are measured by a Linux profiler
perf[13].

5.2 Single Join Query

To demonstrate that SSDs improve the throughput of query executions, we ex-
perimented with join operation on part and lineitem tables. Each tuple of a
lineitem table is joined with one tuple of a part table which has the same partkey
in this query. The table sizes of the part and the lineitem are 20 GB and 86 GB,
respectively. The hashtable is created on the part table, and its total size is about
800 MB.

0

200

400

600

800

1000

1200

1400

64k 256k 1M 4M 16M 64M 256M 1G 4G

Ti
m
e[

s]

work_mem [byte]

idle
soft
irq

iowait
sys
usr

L3 cache size

(a) SSD

0

200

400

600

800

1000

1200

1400

64k 256k 1M 4M 16M 64M 256M 1G 4G

Ti
m
e[

s]

work_mem [byte]

idle
soft
irq

iowait
sys
usr

L3 cache size

(b) HDD

Fig. 3. Single join query execution time

142 K. Suzuki et al.

Figure 3 shows the hashjoin execution time and its breakdown (usr, system,
iowait, irq, soft irq, and idle) for the respective work mem values in the SSD or
HDD environment. In the figure, usr indicates CPU operational cost and the
total of sys and iowait indicates I/O operational cost.

When work mem is smaller than L3 cache size (64 kB - 16 MB), SSD and HDD
show different trends. The smaller work mem is, the more I/O cost is stacked up
on HDD, because the I/O throughput is saturated owing to the fragmentation. In
contrast, the SSD results show that I/O costs are lower than HDDs and approx-
imately not changed in every point, which indicates remaining I/O bandwidth.

When work mem is larger than an L3 cache size (larger than 32 MB), the CPU
cost is growing in both environments and the I/O cost is no longer a bottleneck.
This is due to the increased number of cache misses because the hashtable size
is too big for the L3 cache size.

0

2e+09

4e+09

6e+09

8e+09

1e+10

1.2e+10

1.4e+10

64k 256k 1M 4M 16M 64M256M 1G 4G
0
10
20
30
40
50
60
70
80
90
100

Co
un

t

Ca
che

mi
ss

rat
e[

%]

work_mem [byte]

cache-references
cache-misses

cache-miss-rates

L3 cache size

Fig. 4. Number of cache references/misses and cache miss rates for each work mem sizes
on SSD

Figure 4 shows the number of L3 cache references, misses, and miss rates for
each work mem on the SSD measurement. For example, execution with work mem

= 1 GB has 7 × 109 larger cache misses than 4 MB, and the DRAM access la-
tency is about 100 nanoseconds in our experimental environment. Consequently,
execution with work mem = 1 GB gets a 7× 109 × 100(ns) = 700(s) larger cache
miss penalty, which is consistent with the difference of CPU cost between 4 MB
and 1 GB in Figure 3a.

When work mem is larger than the entire hashtable size (larger than about 800
MB), only one partition is created and then execution time becomes the same.
The reason for the steeply increasing cache misses from work mem = 512 MB
to 1 GB is that the average bucket length of a hashtable is larger on work mem

= 1 GB. This is the implementation dependent problem for the hashjoin of
PostgreSQL. The average bucket length for each work mem is 2.2 on 64 kB, 3.8
on 128 kB, 5.7 on 256kB − 512MB, and 10.5 on larger than 1 GB, and the
number of lineitem tuples is 6 × 108. Then, the difference of the total number
of bucket scans between 512 MB and 1 GB is (10.5− 5.7)× 6 × 108 ≈ 3 × 109,
which fits the difference of the number of cache misses in Figure 4.

Comprehensive Analytics of Database with SSDs 143

Fig. 5. The query execution plan of TPC-H query 8

5.3 TPC-H Query

We measured the TPC-H query to demonstrate that the bottleneck of query
processing changes the same way as a single join in actual DSS queries. We used
query 8, which contains the join of 8 tables. Some calculation parts of the query
are removed, since we are interested in only the I/O performance behavior of the
query. The execution plan is as shown in Figure 5. For each hashjoin operation,
a hashtable is created on the bottom side node in Figure 5. At the point where
I/O is the heaviest (enclosed by a red circle in Figure 5), the total hashtable size
is about 400 MB.

 0

 200

 400

 600

 800

 1000

 1200

 1400

64k 256k 1M 4M 16M 64M 256M 1G 4G

Ti
m

e
[s

]

work_mem [byte]

idle
soft
irq

iowait
sys
usr

(a) SSD

 0

 200

 400

 600

 800

 1000

 1200

 1400

64k 256k 1M 4M 16M 64M 256M 1G 4G

Ti
m

e
[s

]

work_mem [byte]

idle
soft
irq

iowait
sys
usr

(b) HDD

Fig. 6. TPC-H query 8 execution time

Figure 6 shows the results of query measurement on SSD and HDD. The
difference of I/O cost between SSD and HDD is more conspicuous than single
join query.

Figure 7 shows the I/O throughput timeline during the execution of query 8
on SSD and HDD, which are observed under work mem = 128 kB. In the phase
of the lineitem table scan (about 90 - 550 seconds in Figure 7a, 100 - 700 seconds
in Figure 7b), the read I/O throughput is sometimes decreased by the write I/O,
which writes hashtable partitions to storage during HDD execution. This is not
observed during SSD execution, since SSDs can process multiple I/Os in parallel,
as mentioned in Section 4.3. In the phase of hashjoin probing after the lineitem

144 K. Suzuki et al.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 100 200 300 400 500 600 700

I/O
 th

ro
ug

hp
ut

 [M
B/

s]

Elapsed time [s]

Read
Write

(a) SSD

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 200 400 600 800 1000 1200

I/O
 th

ro
ug

hp
ut

 [M
B/

s]

Elapsed time [s]

Read
Write

(b) HDD

Fig. 7. The timeline of I/O throughput during query 8 execution (work mem = 128 kB)

scan (about 550 - 680 seconds in Figure 7a, 700 - 1050 seconds in Figure 7b),
the processing time on SSD is about 2.7 times faster than HDD. Since partition
files are fragmented when work mem is small, the I/O throughput of HDD is low,
which inhibits the processing performance.

The I/O cost starts to increase from work mem = 8 MB in Figure 6, even
though it is smaller than the L3 cache size. In the build phase of hybrid hashjoin,
in order to process the tuple matching of the memory residing hashtable without
temporarily writing them to storage, the join result for those tuples is directly
passed to the next operator in a pipeline style. For this reason, some hashtables
may simultaneously reside in memory when multiple hashjoins are included.
Three hashtables share a cache in this query, so setting work mem as 8 MB fills
up the L3 cache.

6 Discussion

We discussed the performance bottleneck of hashjoin in Section 3.2, that is, I/O
and cache misses. The result of a single hashjoin execution on a HDD (Figure
3b) shows that our assumption was correct: the less work mem used, the higher
the I/O cost. This is a result of the increased number of fragmented files. On
the other hand, when work mem is larger than the L3 cache size, the CPU cost
becomes large because of the increasing number of cache misses. However, the
result of multiple hashjoins on an HDD (Figure 6b) suggests that the number
of cache misses has no relation to the work mem setting at a multiple hashjoin
query. The CPU cost does not grow as in a single join query even if work mem

is much larger than the L3 cache size. For this reason, query execution time
becomes shorter when we set work mem to 512 MB or larger. This is a peculiar
case for the high data distribution locality of lineitem and orders tables, as
follows. The predicate of the third join operation, which is indicated by a red
circle in Figure 5, is orders.orderkey = lineitem.orderkey. There are four
tuples on average that have the same orderkey on the lineitem table. Tuples are
stored in ascendant order of orderkey in the lineitem table, so several tuples
with the same orderkey are concentrated in the table, that is, the data access

Comprehensive Analytics of Database with SSDs 145

locality occurs on a hashtable. Therefore, the same hash bucket is likely to be
accessed successively at the probe phase, and consequently the number of cache
misses becomes small. On the other hand, tuples with the same partkey are not
concentrated, so the number of cache misses becomes large in a single query. If
data locality is low in TPC-H query 8, the CPU cost increases when work mem

is larger than 8 MB, as in the results of a single query execution, and then near
work mem = 4 MB points would be optimal. In such a case, to avoid an increase
of cache misses, it is inevitable to get some overheads of I/O fragmentation on
the HDD-based database. These I/O cost overheads are decreased on the SSD-
based database. The measurements on SSD in Figure 3a indicate that the query
execution time is not affected by I/O fragmentation and rather is likely to be
affected by the cache miss penalties.

Considering these results, when SSDs are used, it is better to keep the working
memory size small enough to fit the hashtable into the cache. However, in the
current HDD-based hashjoin implementation, very large memory is required to
decrease the number of fragmented files. The working memory size can be re-
duced as long as the fragmentation of partitions does not cause I/O bottleneck
in SSD-based databases. In our experiments, there was no I/O bottleneck even
if work mem was 64 kB.

As a result of using less memory space for a hashjoin operation, the portion of
cache and memory space remains free. This remaining cache will help improve
the performance of complex queries and parallel multiple queries. A complex
query such as multiple hashjoin operations are executed in a pipeline manner.
For example, TPC-H query 8 deploys three hashtables at the same time. If all
hashtables can reside together in a cache, the number of cache misses becomes
small. Another case of utilization is the parallel execution of multiple queries.
The cache and other computing resources may not be fully consumed by sequen-
tial query processing. (Here, by other computing resources we mean CPU cores
(most current processors have several cores internally) and I/O bandwidth (I/O
bandwidth of SSDs becomes wider by parallel I/O processing such as mixture
I/O workload for its internal parallelism)). Parallel query execution enables us to
utilize remaining resources and improve the entire query processing performance.

7 Conclusion

In this paper, we experimentally analyzed the performance improvement and
newly observed bottlenecks of large data query processing in SSD-based
databases. Our experiments on hashjoin queries showed that cache miss penalties
seriously affected the query processing performance. We found that it is prefer-
able to set a small hashtable size to fit into the cache on SSD-based databases,
as this reduces the number of cache misses at the probe phase. Hashtable size
should be relatively large on HDD-based databases because I/O cost becomes
large in a small hashtable size on HDDs. This is due to the poor I/O throughput
of HDDs under fragmentation caused by generating many hashtable partition
files when the hashtable is small. In contrast, the I/O cost of SSDs is not in-
creased by the fragmentation. Thus, considering data access locality of hashjoin

146 K. Suzuki et al.

is more important at the query execution in SSD-based databases. Experiments
on a modern SSD-based system showed that hashtable size can be reduced to
64 kB without any increase to I/O cost by the fragmentation. As a result of
reducing hashtable size, the portion of cache and memory space that are not
used by hashtable remains free. Those remaining resources can be utilized to
improve the performance of a multiple hashjoin query such as TPC-H query 8.
Another promising way to utilize the remaining resources is parallel execution
of multiple queries. Exploring data access locality of multiple queries will be the
focus of our future work.

Acknowledgment. This work is partially supported by JSPS KAKENHI Grant
Number 24300034 and 26280130.

References

1. Bhattacharjee, B., Ross, K.A., Lang, C., Mihaila, G.A., Banikazemi, M.: Enhancing
recovery using an SSD buffer pool extension. In: DaMoN 2011, pp. 10–16. ACM
(2011)

2. Canim, M., Mihaila, G.A., Bhattacharjee, B., Ross, K.A., Lang, C.A.: SSD buffer-
pool extensions for database systems. Proc. VLDB Endow. 1435–1446 (2010)

3. Kang, W.H., Lee, S.W., Moon, B.: Flash-based extended cache for higher through-
put and faster recovery. Proc. VLDB Endow. 5(11), 1615–1626 (2012)

4. Do, J., Zhang, D., Patel, J.M., De Witt, D.J., Naughton, J.F., Halverson, A.:
Turbocharging DBMS buffer pool using SSDs. In: SIGMOD 2011, pp. 1113–1124.
ACM (2011)

5. Koltsidas, I., Viglas, S.D.: Flashing up the storage layer. Proc. VLDB Endow. 1(1),
514–525 (2008)

6. Luo, T., Lee, R., Mesnier, M., Chen, F., Zhang, X.: hStorage-DB: Heterogeneity-
aware data management to exploit the full capability of hybrid storage systems.
Proc. VLDB Endow. 5(10), 1076–1087 (2012)

7. Li, Y., He, B., Yang, R.J., Luo, Q., Yi, K.: Tree indexing on solid state drives.
Proc. VLDB Endow. 3(1-2), 1195–1206 (2010)

8. Tsirogiannis, D., Harizopoulos, S., Shah, M.A., Wiener, J.L., Graefe, G.: Query
Processing Techniques for Solid State Drives. In: SIGMOD 2009, pp. 59–72. ACM
(2009)

9. Kitsuregawa, M., Tanaka, H., Moto-Oka, T.: Relational Algebra Machine GRACE.
In: Goto, E., Furukawa, K., Nakajima, R., Nakata, I., Yonezawa, A. (eds.) RIMS
1982. LNCS, vol. 147, pp. 191–214. Springer, Heidelberg (1983)

10. Schneider, D.A., De Witt, D.J.: A performance evaluation of four parallel join
algorithms in a shared-nothing multiprocessor environment. In: SIGMOD 1989,
pp. 110–121. ACM (1989)

11. PostgreSQL, http://www.postgresql.org/
12. Transaction Processing Performance Council, An ad-hoc, decision support bench-

mark, http://www.tpc.org/tpch/
13. Perf, https://perf.wiki.kernel.org/

http://www.postgresql.org/
http://www.tpc.org/tpch/
https://perf.wiki.kernel.org/

Fast Information-Theoretic Agglomerative

Co-clustering

Tiantian Gao and Leman Akoglu

Stony Brook University
Department of Computer Science

{tiagao,leman}@cs.stonybrook.edu

Abstract. Jointly clustering the rows and the columns of large matri-
ces, a.k.a. co-clustering, finds numerous applications in the real world
such as collaborative filtering, market-basket and micro-array data anal-
ysis, graph clustering, etc. In this paper, we formulate an information-
theoretic objective cost function to solve this problem, and develop a
fast agglomerative algorithm to optimize this objective. Our algorithm
rapidly finds highly similar clusters to be merged in an iterative fash-
ion using Locality-Sensitive Hashing. Thanks to its bottom-up nature, it
also enables the analysis of the cluster hierarchies. Finally, the number
of row and column clusters are automatically determined without requir-
ing the user to choose them. Our experiments on both real and synthetic
datasets show that the proposed algorithm achieves high-quality cluster-
ing solutions and scales linearly with the input matrix size.

1 Introduction

Clustering is a widely used technique that aims to group similar objects together,
with numerous applications such as data summarization, classification, and out-
lier detection. Typically, the input data is represented as a two-mode matrix,
e.g. customer-product purchasing data, document-term occurrence data, user-
webpage browsing data, etc. Traditional clustering focuses only on one-mode,
that is, clustering one dimension of the data matrix based on similarities along
the second dimension, e.g., document clustering based on term similarity.

Another class of methods focuses on the two-mode clustering problem (a.k.a.
bi-, co-, or block clustering), which aims at simultaneously clustering both di-
mensions of the data matrix, e.g. document clusters based on term similarity
together with term clusters based on document appearance similarity. An illus-
tration of co-clustering is given in Fig. 1. Co-clustering has many applications
such as micro-array data analysis, market-basket analysis, (bi-partite) graph
clustering, to name but a few. The main advantage of co-clustering is that the
joint clustering of the rows and columns fully and succinctly summarizes the
underlying structure of relations in the data for both types of objects.

In this paper, we propose a fast agglomerative hierarchical co-clustering tech-
nique, that scales linearly with the input matrix size. Our motivation is that
agglomerative clustering techniques are known to alleviate the resolution-limit
problem in clustering [10], being able to find smaller size clusters effectively. Our
proposed algorithm, called CoClusLSH, rapidly finds the most similar objects

H. Wang and M.A. Sharaf (Eds.): ADC 2014, LNCS 8506, pp. 147–159, 2014.
c© Springer International Publishing Switzerland 2014

148 T. Gao and L. Akoglu

to merge, using ideas from Locality-Sensitive Hashing, and iteratively builds the
row and column cluster hierarchies. The two hierarchies are built in an alternat-
ing fashion, such that the clustering of both object types is intertwined.

In clustering, one of the main challenges is to determine the “correct” or a
“good” number of clusters. In hierarchical clustering, this challenge translates
to picking a level of the hierarchy to “cut”, the subtrees of which determine the
final clustering. It is often a hard task for the user to specify the number of
output clusters, especially for large datasets. We circumvent this challenge by
formulating an information-theoretic co-clustering objective cost function, based
on the number of bits needed to encode the input matrix. Our goal then is to find
a clustering that achieves as low of a cost as possible. We update this cost while
growing up our cluster hierarchies and merge wo clusters only when it yields a
lower cost. This principled way of building the clustering is exactly what guides
us in “when to stop”—stop growing the hierarchies when no further merges can
reduce the objective cost. As such, the number of sub-hierarchies at algorithm
termination automatically gives us the number of row and column clusters.

The main merits of our method over the (cited) previous proposals are that
(i) it automatically finds a good number of clusters [9,19], (ii) achieves linear
scalability [12], and (iii) provides the cluster hierarchies [7] (see §4 for details).
None of the previous approaches exhibits all three properties at the same time.
We summarize our main contributions as follows:

– We propose a new technique for agglomerative co-clustering, and formulate
an information-theoretic objective that enables us to determine the number
of row/column clusters automatically in a principled data-driven way,

– We develop a fast algorithm called CoClusLSH that rapidly finds similar
clusters to merge in order to grow the row/column hierarchies,

– We show that CoClusLSH scales linearly with the input matrix size,
– Experiments on synthetic and real datasets with ground truth cluster labels

demonstrate the effectiveness and efficiency of our method.

2 Proposed Method

2.1 Problem Definition

N
o
d
e
s−

1

Nodes−2
50 100 150

100

200

300

400

500

600

700

800

900

N
o

d
e

−
1

 C
lu

st
e

rs

Node−2 Clusters
50 100 150

100

200

300

400

500

600

700

800

900

(a) (b)

Fig. 1. (a) Example graph with n=900, and
m=180, where (b) CoClusLSH finds k=5
type-1 and l=3 type-2 clusters.

We consider the problem of co-
clustering, i.e. joint clustering the
rows and columns of a large binary
matrix (such a matrix can be thought
of as a bipartite graph). In particular,
given a bipartite graph with n type-
1 nodes, m type-2 nodes, and their
binary connectivity information, our
goal is to cluster the type-1 nodes into
k, and the type-2 nodes into l dis-
joint clusters such that the nodes in

Fast Information-Theoretic Agglomerative Co-clustering 149

the same cluster have “similar connectivity”. Intuitively, a set of nodes have
similar connectivity if their neighbors “highly” overlap (for e.g., see Fig. 1).

Given the above problem description, two main questions arise: (P1) how to
choose the number of node clusters k and l?, and (P2) how to assign the nodes to
their “proper” clusters? (P2) aims at summarizing the adjacency matrixA of the
graph with homogeneous, rectangular regions of high and low densities, while
(P1) deals with choosing the right number of clusters and hence the number
of these rectangular regions. Roughly speaking, having more clusters allows us
to obtain more homogeneous regions. At the very extreme we can have n × m
“regions” each with perfect 0 or 1 density which, however, does not provide any
summary. As such, a co-clustering algorithm should achieve a good trade-off
between homogeneity and the number of regions. Intuitively, this trade-off calls
for model selection, which brings us to the next section.

2.2 Problem Formulation

In order to achieve a proper balance between the homogeneity and the number
of the rectangular regions, we use a similar objective function to [7] founded on
the Minimum Description Length (MDL) principle [25]. MDL provides a model
selection criterion based on lossless compression principles, where the objective is
to compress/transmit/store the adjacency matrixA using as few bits as possible.
The compression cost consists of two main parts: the number of bits required
to encode (1) the clustering “summary” (model description cost), and (2) each
rectangular region (data description cost) given the model.

Next we describe each part in detail in the context of our objective function
after providing the notation.

Notation. Let k and l respectively denote the number of disjoint row- and
column-clusters, and R : {1, 2, . . . , n} ≥ {1, 2, . . . , k} and C : {1, 2, . . . ,m} ≥
{1, 2, . . . , l} denote the assignments of rows to row-clusters and columns to
column-clusters. We refer to (R,C) as a mapping. To better describe a map-
ping, let us rearrange the rows and columns of the adjacency matrix A such
that all rows corresponding to row-cluster-1 are listed first, followed by rows
in row-cluster-2, and so on. We also rearrange the columns in a similar fashion
using column-cluster assignments. One can imagine that such a rearrangement
sub-divides A into k × l two-dimensional, rectangular blocks (as in Fig. 1 (b)),
which we will refer to as Bij , i = 1, . . . , k and j = 1, . . . , l. Finally, let (ri, cj)
denote the dimensions of Bij , where ri denotes the size of row cluster i, and cj
denotes the size of column cluster j.

Objective Function. Our objective function consists of a two-part (lossless)
compression cost of the adjacency matrix A. This cost can be thought of as
the total number of bits required to encode A. The first part is the model
description cost that consists of describing the mapping (R,C). The second part
is the data description cost that consists of encoding the sub-matrices (i.e., the
Bij “blocks”), given the mapping. Intuitively, a good choice of (R,C) would
compress A well, and yield a low total description cost. In particular:

150 T. Gao and L. Akoglu

The Model Description Cost consists of encoding the number of row and column
clusters and the corresponding mapping.

– The matrix dimensions of A require logρ n+ logρ m bits, where logρ denotes
the universal code length for integers.1 This term is independent of any
particular mapping.

– The number of row and column clusters (k, l) require logρ k + logρ l bits.
– The row and column cluster assignments with arithmetic coding require

nH(P) + mH(Q) bits, where H denotes the Shannon entropy function, P
is a multinomial random variable with the probability pi =

ri
n and ri is the

size of the i-th row cluster, 1 ≤ i ≤ k. Similarly, Q is another multinomial
random variable with the probability qj =

cj
m and cj is the size of the j-th

column cluster, 1 ≤ j ≤ l.

The Data Description Cost consists of encoding the actual blocks.

– For each block Bij , i = 1, . . . , k, j = 1, . . . , l, encoding n1(Bij), i.e. the
number of 1s it contains, takes log2(ricj + 1) bits.

– To encode the actual blocks Bij , we first calculate their density Pij(1) =
n1(Bij)/n(Bij), where n(Bij) = n1(Bij)+n0(Bij) = ricj . Then, the number
of bits required to encode each block can be written as:

E(Bij) = −n1(Bij) log2(Pij(1))− n0(Bij) log2(Pij(0)) = n(Bij)H(Pij(1)).

Overall, the Total Encoding Cost (Length L(A;R,C) in bits) becomes

L(A;R,C) = logρ n+ logρ m+ logρ k + logρ l+

k∑

i=1

ri log2(
n

ri
) +

l∑

j=1

cj log2(
m

cj
) +

k∑

i=1

l∑

j=1

(

log2(ricj + 1) + E(Bij)

)

(1)

2.3 Proposed Algorithm CoClusLSH

Minimizing our objective function in Equ. (1) is intractable for very large graphs
as the number of possible orderings of rows/columns is combinatorial. Thus, we
develop an algorithm that aims at finding a fast approximate solution.

Our CoClusLSH algorithm starts by assigning each row and column in A to
their respective clusters. In the main loop, it alternates between trying to merge
candidate column and row clusters, for reduced cost. In order to rapidly find
sufficiently similar candidate clusters, it employs the LSH technique [11] and
generates a signature for each cluster which is then used to hash the clusters into
multiple hash tables. Candidate clusters hashed to the same buckets are then
tested for merge. The algorithm terminates when no more merges can be done
for lower cost. The clusters at termination constitutes the final set of clusters,
and the intermediate merge operations define the cluster hierarchies.

We provide the detailed pseudocode for CoClusLSH in Algorithm 1.

1 The optimal number of bits required to encode a positive integer x whose range is
unknown is log� x ∈ log2 x+ log2 log2 x+ . . . of the positive terms [25].

Fast Information-Theoretic Agglomerative Co-clustering 151

Algorithm 1. CoClusLSH

Input: n×m adjacency matrix A, LSH parameters r, b
Output: A heuristic solution towards minimizing total encoding L(A;R,C):

number of row and column groups (k∪, l∪), associated mapping (R∪, C∪)
1. Set R0:={1, 2, . . . , n} ≥ {1, 2, . . . , n} Set C0:={1, 2, . . . ,m} ≥ {1, 2, . . . ,m}

2. Set k0=n, l0=m. Let T denote the outer iteration index. Set T = 0.
3. repeat
4. CT+1, lT+1:=Merge-ColClus(A, CT , lT , kT , r, b)
5. RT+1, kT+1:=Merge-RowClus(A, RT , kT , lT , r, b)
6. if L(A;RT+1, CT+1) ∈ L(A;RT , CT) then
7. return (k∪, l∪)=(kT , lT), (R∪, C∪)=(RT , CT)
8. else Set T = T + 1 end if
9. until convergence

Procedure 1. Merge-ColClus (Procedure 2 Merge-RowClus is similar)
Input: n×m adjacency matrix A, CT , lT , kT , LSH parameters r, b
Output: CT+1, lT+1

1. {Step 1. Generate signatures} initialize signature matrix S[i][j] ∧ R
rb×lT

2. if T = 0 then {use Jaccard similarity // generate min-hash signatures }
3. for i = 1 to rb do
4. θi ∪ generate random permutation (1 . . . n)
5. for j = 1 to lT do S[i][j] ∪ minv∈Njθi(v) end for
6. end for
7. else {use cosine similarity //generate random-projection signatures}
8. for i = 1 to rb do
9. rndi ∪ pick a random hyperplane ∧ R

kT×1

10. for j = 1 to lT do S[i][j] ∪ sign(P:j(1) · rndi) end for
11. end for
12. end if
13. {Step 2. Generate hash tables}
14. for h = 1 to b do
15. for j = 1 to lT do hash(S[(h− 1)r + 1 : hr][j]) end for
16. end for
17. {Step 3. Merge clusters from hash tables }
18. Build candidate groups: union of elements that hash to at least one same

bucket in all hash tables, i.e. c1, c2 ∧ g if hashh(c1) = hashh(c2) for ⊂ h.
19. for each each candidate group g do
20. while more merges happen do
21. cr ∪ pick a random element (col. cluster) from g
22. for all clusters c ∧ g, CT (c) ∃= CT (cr) do
23. LU ∪ update cost when CT (c) and CT (cr) are merged by Equ. (2)
24. if LU < 0 then
25. lT = lT − 1. CT (c) = CT (cr) = min(CT (c), CT (cr)).

152 T. Gao and L. Akoglu

26. Merge Bic and Bicr ⊆i, 1 ≤ i ≤ kT .
27. end if
28. end for
29. end while
30. end for
31. lT+1 = lT , CT+1 = CT

Algorithm Details. Merge-ColClus, and similarly Merge-RowClus, con-
sists of three main steps: (1) generate LSH signatures (Line 1), (2) generate hash
tables (Line 13), and (3) merge clusters using hash buckets (Line 17).

In the first iteration of Merge-ColClus, i.e. T = 0, the clusters consist of
singleton nodes. As the similarity measure, we use Jaccard similarity which is
high for those nodes with many exclusive common neighbors. Min-hashing is
designed to capture the Jaccard similarity between binary vectors (Lines 2-6).
For T > 0, the clusters consist of multiple nodes. As the similarity measure of two
(column) clusters c1 and c2, we use the density similarity of their corresponding
row blocks Bic1 and Bic2 , ⊆i. As such, each column cluster c can be represented
by a length kT vector in which the entries denote the density Pic(1) of each
row block i. We use their cosine similarity to compare two real-value vectors. To
capture cosine similarity, we generate random-projection-based signatures (Lines
7-12). At the end of step (1), each cluster has a length-rb signature.

In step (2), we split the signature of each cluster into b length-r sub-signatures,
and hash each sub-signature using standard hashing (Lines 14-16).

Step (3) involves the main merging operations. First we construct the group
of candidate clusters to be merged. We put all clusters that hash to the same
hash bucket in at least one hash table into the same group (Line 18). Next, we
iterate over the groups to identify those clusters the merge of which will reduce
the total cost (Line 19). We pick a cluster at random from a given group and test
it against other clusters in the group, where we merge two clusters if the cost
reduces. We continue the merges until no more merges can be done for lower
cost (Lines 20-30). By focusing only on the highly similar candidate clusters
within groups, Merge-ColClus omits the consideration of merge between all
clusters; this contributes to a reduction in the running time while enabling the
merge among good candidate clusters that are highly similar.

A crucial computation in step (3) is to update the total cost when two candi-
date clusters are merged (Line 23). In the following we show that the update-cost
LU can be computed locally without requiring the re-computation of the total
cost. As such, we decide to merge two clusters if their update-cost is less than 0
(Line 24), i.e. when the merge reduces the total objective cost.

Updating the Total Objective Cost. When two column (or row) clusters are
merged, we can analyze how the encoding cost is expected to change. Without
loss of generality, assume two column clusters of sizes c1 and c2 are to be merged.

Lemma 1. If two clusters are merged, then the total cluster assignment cost,
i.e.

∑l
j=1 cj log2(

m
cj
), will decrease.

Fast Information-Theoretic Agglomerative Co-clustering 153

Proof. The assignment cost cj log2
m
cj

remains the same for cj ∃= c1, c2. We have

(c1 + c2) log2
m

(c1 + c2)
= c1 log2 m+ c2 log2 m− c1 log2(c1 + c2)− c2 log2(c1 + c2)

< c1 log2 m+ c2 log2 m− c1 log2 c1 − c2 log2 c2 = c1 log2
m

c1
+ c2 log2

m

c2
. �∪

Lemma 2. If two clusters are merged, then total cost
∑k

i=1

∑l
j=1 log2(ricj +1)

of encoding the number of 1s for blocks will decrease.

Proof. The log2(ricj + 1) cost remains the same for clusters cj ∃= c1, c2, ⊆i.
log2(ri(c1 + c2) + 1) = log2(ric1 + ric2 + 1) < log2(r

2
i c1c2 + ric1 + ric2 + 1)

= log2((ric1 + 1)(ric2 + 1)) = log2(ric1 + 1) + log2(ric2 + 1).

Lemma 3. When two clusters merge, block encoding cost
∑k

i=1

∑l
j=1 E(Bij)

will increase, i.e., if Bi = [Bi1Bi2], then E(Bi1) + E(Bi2) ≤ E(Bi), ⊆i.
Proof. E(Bij) remains the same for clusters cj ∃= c1, c2, ⊆i. We have ⊆i,

E(Bi) = n(Bi)H

(
n1(Bi)

n(Bi)

)

= n(Bi)H

(
n(Bi1)PBi1(1) + n(Bi2)PBi2(1)

n(Bi)

)

∈ n(Bi1)H(PBi1 (1)) + n(Bi2)H(PBi2 (1)) = E(Bi1) + E(Bi2)

where the inequality follows from the concavity of the entropy function H(·).
(also note that n(Bi1) + n(Bi2) = n(Bi)). ≡�

Overall, the difference between the increase in the block encoding cost
(Lemma 3) and the decrease in the cluster assignment and number of non-zeros
encoding costs (Lemma 1 & 2) will determine whether two candidate clusters
are merged or not (in Line 23 of Procedure 1). This difference can be computed
quickly without requiring the re-computation of the total cost. Specifically, the
total update-cost LU when two (column) clusters of sizes c1 and c2 are merged
(where there are totally m columns, and l column clusters) is equal to

LU = −c1 log2
m

c1
− c2 log2

m

c2
+ (c1 + c2) log2

m

(c1 + c2)
∑

i

− log2(ric1 + 1)− log2(ric2 + 1) + log2(ri(c1 + c2) + 1)

∑

i

(

− E(Bi1)− E(Bi2) + E(Bi)

)

− logρ(l) + logρ(l − 1) (2)

Table 1. Computational complexity of
CoClusLSH steps

T = 0 T ∈ 1

Step 1. O(n1(A)rb) O(klrb)
Step 2. O((n+m)rb) O((k + l)rb)
Step 3. O((n+m)M) O((k + l)M)

where the last two terms account for
the difference in encoding cost of the
number of column clusters, which will re-
duce by 1 in case of a merge.

Finally, we provide the time complex-
ity for all steps of our method in Table 1.
Details are omitted for lack of space.

3 Experiments

We next evaluate our method based on (1) clustering quality, and (2) scalability.
on both real and synthetic datasets (with/without ground truth cluster labels).

154 T. Gao and L. Akoglu

3.1 Synthetic Datasets

Data Generation. To create synthetic data matrices, we use two different
schemes. In the first scheme, we fix a cluster size s, and increase the number of
such clusters k to obtain larger and larger graphs. In the second scheme, we fix
the number of clusters, and increase the size of the clusters to obtain various
size graphs. The generated matrices are diagonally strong, i.e. the density of the
diagonal blocks is p, whereas the off-diagonal blocks are all-zeros. Next, we add
random noise by adding β fraction of non-zeros in the original matrix at random
entries, to study the effect of varying noise levels on the clustering performance.

We call the first set of synthetic graphs as CAVE1 graphs, with s = 500,
2 ≤ k ≤ 11, p = 0.9, and β = {0.1, 0.2, 0.3, 0.4}. This gives us 4 sets of 10 graphs
of various sizes, where each set of graphs have a different level of noise.

The second set of graphs are called CAVE2 graphs, with s = 50t, 1 ≤ t ≤ 10,
k = 10, and p and β as before. This way we also obtain 40 graphs. We provide
statistics of the largest CAVE1 and CAVE2 graph with 40% noise in Table 2.

Clustering Quality. We first study the effect of noise on the clustering quality.
As we work with synthetic datasets, we have the ground truth for the cluster
assignments and thus can compute the true/optimal encoding costs.

0

1

2

3

4

5

6

7

8

9

10%-ϵ 20%-ϵ 30%-ϵ 40%-ϵ

To
ta

l c
os

t (
in

 b
its

)
M

ill
io

ns

Largest CAVE1 graph
 (cluster size=500, #clusters=11)

True cost
CoClusLSH avg cost

0

1

2

3

4

5

6

7

10%-ϵ 20%-ϵ 30%-ϵ 40%-ϵ

To
ta

l c
os

t (
in

 b
its

)
M

ill
io

ns

Largest CAVE2 graph
 (cluster size=500, #clusters=10)

True cost
CoClusLSH avg cost

0

0.2

0.4

0.6

0.8

1

1.2

10%-ϵ 20%-ϵ 30%-ϵ 40%-ϵ

Cl
us

te
r q

ua
lit

y
(N

M
I)

Largest CAVE1 graph
 (cluster size=500, #clusters=11)

Best NMI CoClusLSH avg NMI

0

0.2

0.4

0.6

0.8

1

1.2

10%-ϵ 20%-ϵ 30%-ϵ 40%-ϵ

Cl
us

te
r q

ua
lit

y
(N

M
I)

Largest CAVE2 graph
 (cluster size=500, #clusters=10)

Best NMI CoClusLSH avg NMI

(a) (b) (c) (d)

Fig. 2. (a,b) True vs. CoClusLSH cost (y-axes), (c,d) Optimal vs. CoClusLSH NMI
(y-axes). (both avg. over 10 runs, bars depict δ) on the largest (a,c) CAVE1 and (b,d)
CAVE2 graph with varying noise levels 10%-40% (x-axes).

0

1

2

3

4

5

6

7

8

9

2 3 4 5 6 7 8 9 10 11

To
ta

l c
os

t (
in

 b
its

)
M

ill
io

ns

number of clusters
(cluster size=500, ϵ = 40%)

CAVE1 graphs
True cost
CoClusLSH min cost
CoClusLSH avg cost

0

1

2

3

4

5

6

7

50 100 150 200 250 300 350 400 450 500

To
ta

l c
os

t (
in

 b
its

)
M

ill
io

ns

cluster size
(#clusters=10, ϵ = 40%)

CAVE2 graphs
True cost
CoClusLSH min cost
CoClusLSH avg cost

Fig. 3. True cost vs. best and avg. CoClusLSH cost (over 10 runs, bars depict δ) on
all (left) CAVE1 and (right) CAVE2 graphs, when ρ = 40%

In Figure 2 (a,b) we show the true cost in comparison to our CoClusLSH’s
cost for the largest CAVE1 and CAVE2 graphs, for the increasing noise levels. We
observe that the gap between the optimal and CoClusLSH’s cost increases with
more noise, however CoClusLSH still finds good approximate solutions.

To assess the cluster assignment quality, we use the Normalized Mutual In-
formation (NMI), a widely used measure for evaluating the clustering accuracy
of a method against the ground truth clustering [18]. The ideal NMI score is 1.

Fast Information-Theoretic Agglomerative Co-clustering 155

Table 2. Datasets used in this work

Dataset A Dim. n×m n1(A)

US-SENATE 108 senators × 696 bills 40, 609
US-HOUSE 451 rep.s × 1, 646 bills 501, 602
POLBLOGS 362 blogs × 5, 895 words 776, 870
DBLP 1, 230 papers × 1, 230 papers 19, 267
CLASSIC 3, 893 doc.s × 4, 303 words 176, 347

NIPS 10, 617 words × 2, 864 authors 160, 059
YOUTUBE 77, 381 users × 30, 087 groups 260, 240

CAVE1–40%ρ 5, 500 × 5, 500 3, 289, 021
CAVE2–40%ρ 5, 000 × 5, 000 2, 974, 778

Figure 2 (c,d) depicts CoClusLSH’s average NMI score for the largest
CAVE1 and CAVE2 graphs, for increasing noise. As before, we observe that NMI
drops slightly with more noise, while it remains > 0.9 at all noise levels.

Next, we study the effect of increasing number of clusters (as in CAVE1 graphs)
and of increasing cluster sizes (as in CAVE2 graphs) on the performance. Figure 3
shows the true encoding cost againstCoClusLSH’s best and average cost across
all CAVE1 and CAVE2 graphs, respectively, for the most challenging case of β =
40%. We observe that CoClusLSH recovers a low cost solution in all cases.

0 0.5 1 1.5 2 2.5 3 3.5

x 10
7

0

20

40

60

80

100

120

140

160

nnz(A)+ nMg

T
o
ta

l
ti
m

e
 (

s
e
c
)

CAVE1 graphs

10%ε
20%ε
30%ε
40%ε

0 0.5 1 1.5 2 2.5 3

x 10
7

0

20

40

60

80

100

120

140

nnz(A)+ nMg

T
o

ta
l
ti
m

e
 (

s
e

c
)

CAVE2 graphs

10%ε
20%ε
30%ε
40%ε

Fig. 4. Total running time (in sec) of our CoClusLSH on
(left) CAVE1 and (right) CAVE2 graphs with varying noise

Scalability. Next,
we study the growth
in the running time
of CoClusLSH with
increasing graph size.
In §2.3 we showed
that the running time
is proportional to the
number of nonzeros,
the number of rows
and columns, and the
maximum number of clusters that hash to the same group. In Figure 4, we
show the total time w.r.t. these parameters, for all CAVE1 and CAVE2 graphs,
at varying noise levels. We observe that the run time grows linearly, and that
more noise demands more time for our algorithm to converge.

3.2 Real Datasets

Data description. Our real-world datasets include (Table 2): US-SENATE with
senators and US-HOUSE with The House representatives voting (1 ‘yes’, 0 ‘no’) on
congressional bills in the 111th US Congress; POLBLOGS with political blogs and
the words they use; DBLP with academic papers and their commonly used terms
relations; and finally CLASSIC with documents and the words they contain.

For the five datasets described above, we have the ground truth labels but
only for the rows. In particular US-SENATE and US-HOUSE both consist of two

156 T. Gao and L. Akoglu

classes; (1) liberal and (2) conservative congressmen, POLBLOGS also has two
classes; (1) liberal and (2) conservative blogs, DBLP contains papers from four
classes of venues; (1) SIGIR (information retrieval), (2) STOC+FOCS (the-
ory), (3) AAAI (artificial intelligence), and (4) TODS (database systems), and
finally CLASSIC consists of documents from three different classes; (1) MED-
LINE (medical journals), (2) CISI (information retrieval) and (3) CRANFIELD
(aero-dynamics). In addition, we used two more real datasets, namely NIPS and
YOUTUBE, with many rows and columns for our scalability experiments. Unfor-
tunately, there are no class labels for the rows or columns for these datasets.

Clustering Quality. We evaluate CoClusLSH’s clustering performance using
two clustering quality measures, purity and NMI as before [18], using the ground
truth labels of the row nodes (note that we do not have the ground truth labels
for the column nodes for our datasets, thus we cannot compute the optimal
encoding cost as for the synthetic datasets).

Purity measures the coherence of labels within each cluster. It, however, is
expected to increase with the number of output clusters—in the extreme case
where each node belongs to its own cluster, purity becomes 1. NMI can trade
off the quality of the clustering against the number of clusters.

Table 3. CoClusLSH clustering qual-
ity (purity and NMI) on real datasets
(avg. over 10 runs, all standard devia-
tions were < 0.03). Also shown is k∗,
avg. number of clusters found and k,
the true number of clusters.

Dataset Purity
(avg)

NMI
(avg)

k∗

(avg)
k

(true)

US-SENATE 0.9960 0.5569 12.0 2
US-HOUSE 0.9934 0.5172 28.9 2
POLBLOGS 0.5539 0.0142 18.9 2
DBLP 0.4723 0.0949 6.6 4
CLASSIC 0.3987 0.0241 5.0 3

We report both measures and the
number of clusters CoClusLSH out-
puts on our real datasets in Table 3.
We observe that CoClusLSH does par-
ticularly well on the US-SENATE and
US-HOUSE datasets, while clustering accu-
racy in comparison is lower for the other
datasets. Looking at the output clusters
by CoClusLSH, we realize that the clus-
ter structure in the congress datasets is
well pronounced, while the rest of the
real datasets are quite sparse with no
clear cluster structure. We show an ex-
ample output of CoClusLSH on the
US-HOUSE and DBLP datasets in Figure 5,
where CoClusLSH performs well on re-

covering salient cluster structure.

200 400 600 800 1000 1200 1400 1600

100

200

300

400

Node-2 Groups

N
o
d
e
-
1
 G

r
o
u
p
s

N
od

e
G

ro
up

s

Node Groups
200 400 600 800 1000 1200

200

400

600

800

1000

1200

Fig. 5. Adjacency matrix of (left) US-HOUSE and (right) DBLP, with rows and columns
arranged by the cluster assignments of CoClusLSH.

Fast Information-Theoretic Agglomerative Co-clustering 157

0 0.5 1 1.5 2

x 10
5

20

40

60

80

100

120

nnz(A)

T
o

ta
l t

im
e

 (
se

c)

NIPS

0 0.5 1 1.5 2 2.5 3

x 10
5

0

200

400

600

800

1000

1200

1400

1600

nnz(A)

T
o
ta

l
ti
m

e
 (

s
e
c
)

YouTube

Fig. 6. Total running time of CoClusLSH on grow-
ing (left) NIPS and (right) YOUTUBE graphs.

Scalability. Finally, we
also experimentally study
that the running time of
CoClusLSH with respect
to the input size on real
graphs. For running time
measurements, we use the
NIPS and YOUTUBE datasets
with many rows each. To
generate graphs of growing

size, we increasingly sample the rows of these matrices, and report average
running time over 10 runs in Figure 6. We observe that the running time grows
linearly with the input graph size.

4 Related Work

Clustering algorithms in the row-mode only include k-means and its parameter-
free variants [13,23], spectral [21], and (probabilistic) hierarchical cluster-
ing [15,20,27]. Our problem deals with simultaneous clustering of rows and
columns, known as bi(dimensional)-, co-, or block clustering. Information-
theoretic co-clustering [9] employs a lossy coding scheme to co-cluster a two-
dimensional joint probability distribution, however, it requires the number of
clusters as input. Conjunctive clustering [19] finds top-k largest bi-clusters in
bipartite graphs, but requires two parameters for lower-bounding cluster sizes
in each dimension, a diversity parameter controlling overlap, and a density pa-
rameter.

Hierarchical tiling [12] extracts nested tiles (or blocks) of various densities
in the adjacency matrix. While parameter-free,it involves a quadratic prepro-
cessing step for row/column re-ordering. Bi-clustering has also been explored in
bioinformatics [1,24] often requiring the number of clusters as user input.

Cross-associations [7] automatically selects the number of clusters and scales
well to large graphs. It has been used in graph partitioning [6], and extended
to time-evolving [28] and attributed graphs [4]. Our approach exhibits the same
merits as [7], while enabling the cluster hierarchies.

Other relevant work to ours include frequent itemset and association rules
mining [3,5,14], where the support parameter is critical. In information retrieval
LSI [8] uses SVD to find latent concepts in the data matrix, which requires
the number of hidden concepts. In addition, subspace clustering [2,17] aims at
finding all the dense clusters in all subspaces. These methods often take input
parameters such as density and size thresholds to quickly scan their search space
(also see [16] for a survey on subspace, correlation, and pattern-based clustering).

Finally, LSH has been used to accelerate several other problems, such as
similarity search [26], outlier detection [29], and k-nearest neighbor search [22].

158 T. Gao and L. Akoglu

5 Conclusion

We propose an approach for co-clustering large binary matrices, based on
an information-theoretic objective. To solve our objective, we develop a fast,
bottom-up clustering algorithm that rapidly finds the most similar rows/columns
to merge using locality-sensitive hashing, and determines the number of clusters
automatically. We demonstrate the effectiveness and scalability of the proposed
approach on real and synthetic datasets, where our algorithm recovers the clus-
ter structure with high accuracy, and has a running time that grows linearly
with the input matrix size. Our source code is freely available for academic use.2

Acknowledgements. This material is based upon work supported by the Army
Research Office under Contract No. W911NF-14-1-0029 and Stony Brook Uni-
versity Office of Vice President for Research. Any findings and conclusions ex-
pressed in this material are those of the author(s) and do not necessarily reflect
the views of the funding parties.

References

1. Abdullah, A., Hussain, A.: A new biclustering technique based on crossing mini-
mization. Neurocomputing 69(16-18), 1882–1896 (2006)

2. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clus-
tering of high dimensional data. In: SIGMOD, pp. 94–105 (1998)

3. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of
items in large databases. SIGMOD 22(2), 207–216 (1993)

4. Akoglu, L., Tong, H., Meeder, B., Faloutsos, C.: Pics: Parameter-free identification
of cohesive subgroups in large attributed graphs. In: SDM (2012)

5. Calders, T., Goethals, B.: Mining all non-derivable frequent itemsets. In: Elo-
maa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS (LNAI), vol. 2431,
pp. 74–86. Springer, Heidelberg (2002)

6. Chakrabarti, D.: AutoPart: Parameter-free graph partitioning and outlier detec-
tion. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD
2004. LNCS (LNAI), vol. 3202, pp. 112–124. Springer, Heidelberg (2004)

7. Chakrabarti, D., Papadimitriou, S., Modha, D.S., Faloutsos, C.: Fully automatic
cross-associations. In: ACM SIGKDD, pp. 79–88 (2004)

8. Deerwester, S., Dumais, S., Furnas, G., Landauer, T., Harshman, R.: Indexing by
latent semantic analysis. JASI 41(6), 391–407 (1990)

9. Dhillon, I., Mallela, S., Modha, D.: Information- theoretic co-clustering. In: ACM
SIGKDD (2003)

10. Fortunato, S., Barthélemy, M.: PNAS, 104(1), 36 (2007)
11. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hash-

ing. In: VLDB, pp. 518–529 (1999)
12. Gionis, A., Mannila, H., Seppänen, J.K.: Geometric and combinatorial tiles in 0-1

data. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD
2004. LNCS (LNAI), vol. 3202, pp. 173–184. Springer, Heidelberg (2004)

2 CoClusLSH code: http://www.cs.stonybrook.edu/→leman/pubs.html#code

Fast Information-Theoretic Agglomerative Co-clustering 159

13. Hamerly, G., Elkan, C.: Learning the k in k-means. In: NIPS (2003)
14. Han, J., Wang, J., Lu, Y., Tzvetkov, P.: Mining top-k frequent closed patterns

without minimum support. In: ICDM, pp. 211–218 (2002)
15. Karypis, G., Han, E.-H., Kumar, V.: Chameleon: Hierarchical clustering using dy-

namic modeling. IEEE Computer 32(8) (1999)
16. Kriegel, H.-P., Kröger, P., Zimek, A.: Clustering high-dimensional data: A survey.

TKDD 3(1), 1:1–1:58 (2009)
17. Kröger, P., Kriegel, H.-P., Kailing, K.: Density-connected subspace clustering for

high-dimensional data. In: SDM (2004)
18. Manning, C.D., Raghavan, P., Schtze, H.: Introduction to Information Retrieval.

Cambridge University Press (2008)
19. Mishra, N., Ron, D., Swaminathan, R.: On finding large conjunctive clusters. In:

Schölkopf, B., Warmuth, M.K. (eds.) COLT/Kernel 2003. LNCS (LNAI), vol. 2777,
pp. 448–462. Springer, Heidelberg (2003)

20. Newman, M.E.J.: Fast algorithm for detecting community structure in networks.
Physical Review E 69 (2004)

21. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algo-
rithm. In: NIPS (2001)

22. Pan, J., Manocha, D.: Bi-level locality sensitive hashing for k-nearest neighbor
computation. In: ICDE, pp. 378–389 (2012)

23. Pelleg, D., Moore, A.: X-means: Extending K-means with efficient estimation of
the number of clusters. In: ICML (2000)

24. Reiss, D.J., Baliga, N.S., Bonneau, R.: Integrated biclustering of heterogeneous
genome-wide datasets. BMC Bioinformatics 7, 280 (2006)

25. Rissanen, J.: A universal prior for integers and estimation by minimum description
length. The Annals of Statistics 11(2), 416–431 (1983)

26. Satuluri, V., Parthasarathy, S.: Bayesian locality sensitive hashing for fast similar-
ity search. PVLDB 5(5), 430–441 (2012)

27. Slonim, N., Tishby, N.: Agglomerative information bottleneck. In: NIPS (1999)
28. Sun, J., Faloutsos, C., Papadimitriou, S., Yu, P.S.: Graphscope: parameter-free

mining of large time-evolving graphs. In: ACM SIGKDD, pp. 687–696 (2007)
29. Wang, Y., Parthasarathy, S., Tatikonda, S.: Locality sensitive outlier detection:

A ranking driven approach. In: ICDE, pp. 410–421 (2011)

Semi-supervised Learning for Cyberbullying

Detection in Social Networks

Vinita Nahar1,ρ, Sanad Al-Maskari1, Xue Li1, and Chaoyi Pang2

1 School of Information Technology and Electrical Engineering,
The University of Queensland, Australia

{v.nahar,s.almaskari}@uq.edu.au,xueli@itee.uq.edu.au,
2 The Australian E-Health Research Center, CSIRO, Australia

Chaoyi.Pang@csiro.au

Abstract. Current approaches on cyberbullying detection are mostly
static: they are unable to handle noisy, imbalanced or streaming data
efficiently. Existing studies on cyberbullying detection are mainly su-
pervised learning approaches, assuming data is sufficiently pre-labelled.
However this is impractical in the real-world situation where only a small
number of labels are available in streaming data. In this paper, we pro-
pose a semi-supervised leaning approach that will augment training data
samples and apply a fuzzy SVM algorithm. The augmented training
technique automatically extracts and enlarges training set from the un-
labelled streaming text, while learning is conducted by utilising a very
small training set provided as an initial input. The experimental results
indicate that the proposed augmented approach outperformed all other
methods, and is suitable in the real-world situations, where sufficiently
labelled instances are not available for training. For the proposed fuzzy
SVM approach we handle complex and multidimensional data generated
by streaming text, where the importance of features are discriminated
for the decision function. The evaluation conducted on different exper-
imental scenarios indicates the superiority of the proposed fuzzy SVM
against all other methods.

Keywords: Cyberbullying Detection, Text-Stream Classification, Semi-
supervised learning, Social Networks.

1 Introduction

Current studies on cyberbullying detection are mainly focused on: i) Supervised
learning approaches, which rely on a human-intensive labelling process of data.
ii) Feature space is uniformly applied to a learner. Whereas, streaming text gen-
erated by Social Networks (SNs) is highly uncertain, noisy, and imbalanced. In
such a changing environment, different training data samples may have varying
levels of importance. Therefore, with the rapid growth of user-generated content
in SNs, existing supervised approaches become unaffordable and impractical for

� v.nahar@uq.edu.au

H. Wang and M.A. Sharaf (Eds.): ADC 2014, LNCS 8506, pp. 160–171, 2014.
c© Springer International Publishing Switzerland 2014

v.nahar@uq.edu.au

Semi-supervised Learning for Cyberbullying Detection in Social Networks 161

automatic detection of cyberbullying instances. In this paper, we focus on the
detection of cyberbullying in streaming text generated by SNs. For such detec-
tion the following challenges are identified:

(i) Insufficient training instances: Streaming text arriving from SNs, is ei-
ther seldom labelled or not labelled at all. Moreover, it is impractical to ask
users to label the messages into cyberbullying and non-cyberbullying categories.
Therefore, as an alternative to manual labelling of the entire streaming text,
only a small set of labelled instances are available for training.
(ii) Uncertain and imbalance feature distribution: All the input features
is not evenly important for the learners’ decision function. For example, the
baseline swear-keyword based feature ‘hell’ is often used in normal communica-
tion. Using such words may not increase the discriminating effectiveness of the
learner. To mimic the real-world situation, highly unstable and imbalanced data
are fed to the system.

To address above challenges, we emphasis on cyberbullying detection under
semi-supervised learning approaches. For this work, we assume that only a small
set of labelled instances are available for initial system training. We consider two
methods: i) based on augmented training by using ensemble classifiers with a
confidence voting function. A confidence voting function is defined based on the
parameter Γ to extract and enlarge training set from the unlabelled streaming
text automatically. ii) using a fuzzy SVM algorithm to cater for the uncertain or
irrelevant nature of the dynamic and multidimensional input feature space. In
FSVM there are N possible free parameters (N), where N is the total number of
training points. A degree of importance si is given to each data point providing a
greater flexibility and generalisation to the model. For each training pair (xi, yi)
a membership value si is given; the pairs with high si values will have a greater
influence in the decision surface compared to the one with lower si values.

2 Related Work

Recently, Xu et al. explored regret behaviours in bullying messages assuming
that people who posted bullying tweets may later want to delete those posts
[1]. They reported cross validation accuracy upto 60.7%. Dadvar et al. used
content-based, cyberbullying, and user-based feature sets [2]. The best recall ob-
tained (55.0% recall, 77.0% precison, and 64.0% F1 measure) with user-based
and pronoun-profanity window feature sets. Dinakar et al. deconstructed cy-
berbullying detection into sensitive-topic detection, which is likely to result in
bullying discussions, including sexuality, race, intelligence, and profanity[3]. Us-
ing SVM, the accuracy archived is 79% under the topic sexuality. Nahar et al.
utilised probabilistic features and user ranking, and achieved 99% accuracy [4].
Yin et al. utilised various features including content, sentiment, and contextual
features, showing 59.5% recall, 35.2% precision, and 44.4% F1 measure [5].

However, these methods are conducted under supervised learning by directly
applying the whole input feature space to a learner. These techniques are un-
able to handle the imbalanced and noisy data, where some features are either

162 V. Nahar et al.

irrelevant or less important for the decision function. In this paper, we introduce
semi-supervised learning for cyberbullying detection in streaming text.

3 Methodology

3.1 Feature Space Modeling

To understand the semantic structure users could have in mind while posting a
comment, various features can be helpful. An enriched feature set can be gen-
erated from the given posts. These features are commonly known as linguistic
features and are used mostly in nature language processing applications. These
features are defined as follow: (i) Keywords based features, which involve binary
representation of the keywords to see if the keywords are presented or not; (ii)
To capture the influence of malevolence within messages, we also used the nor-
malised value of the keywords. It is the number of swearwords in posts, divided
by the total number of the words in messages; (iii) Presence of pronouns such
as, ‘you’ and ‘he’ which makes the message more personal. For instance, if the
keyword appears near ‘you’, it will likely indicate that the message is more tar-
geted towards that person. Yei et al. used pronouns as sentiment features [5]
for harassment detection, where normalised values of second and third person
pronouns are used; (iv) To capture a degree of users’ emotions, emotions are
included for the feature space design. Normalised values of happy and angry
emotions are computed separately for each comment; (v) Mostly, people on the
Internet use capital letters to indicate that they are yelling or shouting. The
normalised value of capital letters within messages is used to capture the loud-
ness; (vi) Some other meta data of messages, such as special characters, are used
in their normalised form; and (vii) Users’ age and gender are also used as fea-
tures because the selection of words, usage, and language vary between people
of different age groups and gender.

In addition to above features, we also extracted location information. However
in the dataset, most users come from different places of the USA, which would
not carry ethnic or cultural differences since they are all from the same country.
Therefore, location-based features are not considered for such datasets. However,
it will be interesting to include location information to capture a certain degree
of the ethnic or cultural differences and the language styles used.

3.2 Cyberbullying Detection

Following the traditional practices for performing text-stream classification [6][7],
we assume that the unlabelled data streams Un of varying length are arriving on
the system in sessions. A very small set of positive instances and some negative
instances are available for initial training (Pn ∪ Nn). To ensure that negative
instances do not undermine the decision function for positive instances, random
under-sampling of negative instances is adopted at the initial training phase.
Every session is trained on two base classifiers. The model automatically extracts

Semi-supervised Learning for Cyberbullying Detection in Social Networks 163

strong positive and some negative instances (T ∪
n) to enlarge the training set (Tn).

The extraction and enlargement step is computed by combining the decision of
both the classifiers using voting. To combine the decisions of multiple classifiers
by voting, there are various ways such as linear combination, majority voting
etc. that can be used. Out of those linear combination is the simplest way to
combine multiple classifiers. According to the linear combination of the learners:

yi =
∑

j

αjdji where, αj ≥ 0,
∑

j

αj = 1 (1)

Another possibility to find wj is by assessing classifiers accuracy from separate
feature set and use the information to compute the weight. We define confidence
function Φ to predict the class label of the input instance given by Equation 2:

Φ =
∏

j

αjdji where, αj ≥ 0,
∑

j

αj = 1 (2)

In the confidence function (Φ) αj is the weight of the vote of the base classifier
j for class Ci and dji is the vote of base classifier j for class Ci. Φ is defined based
on the product of the probability distribution for the class Ci for the given test
instance. As we are interested in cyberbullying posts, we select the predicted
positive class based on the probability distribution of the base classifier j.

yi =

{
1 if Φ ≥ Γ
−1 if Φ < (1− Γ)

(3)

In Un, cyberbullying instances are rare compared to normal or non-cyberbullying
instances therefore, adding all the identified negative instances may results in
overfitting. Thus, for each added positive instance yi = 1, only two negative
instances yi = −1 will be augmented in the enlarged training set, T ∪

n.
We employ two base classifiers g1 and g2, which are well-known text classifiers.

g1 is a Naive Bayes multinomial text classifier, and the second base classifier g2
is a Stochastic Gradient Descent classifier. Both classifiers are extended from
WEKA1, as they are available in WEKA under function-based algorithms.

The second base classifier g2 is built using the Stochastic (or “on-line”) Gra-
dient Descent for text (SGD text) classifier [8] as an implementation in WEKA.
The SGD text algorithm is designed for the text data. It generates feature space
using an STWV filter to transform text strings into term-weight vectors based
on Vector Space Model [9]. We use default values of the SGD text i.e. support
vector machines as the loss function, learning rate of 0.01, a regularisation con-
stant of 0.01, 500 iterations without pruning the dictionary, 3 as a minimum
word frequency, default normalisation and no transformation to lower case of
the input instances. The tokenisation of text strings is performed with the to-
kenise module specified by a parameter. It is an iterative method, which builds
the learning model iteratively i.e. training is conducted in successive sessions
until the algorithm converges using a loss function.

1 http://www.cs.waikato.ac.nz/ml/weka/

http://www.cs.waikato.ac.nz/ml/weka/

164 V. Nahar et al.

Algorithm 1 : Model building using Augmented training set

Input:
Pn: Small set of positive instances for initial training;
Nn: Small set of negative instances for initial training;
Un: Set of unlabelled examples of the incoming session;
Γ : parameter;

Output:
Tn: Enlarged strong training set

1. Tn ← Pn ∪Nn;
2. //Extraction step:
3. Train C1 by Tn;
4. Train C2 by Tn;
5. T ∪

n ← {C1, C2}, Γ, using Equation 3;
6. //Enlargement step:
7. Tn ← Tn ∪ T ∪

n;
8. return Tn;

By Using Fuzzy Approach: Given that the streaming text generated from
the SNs is highly uncertain, complex, and unbalanced, we incorporate a mem-
bership generation method of the robust FSVM model. For the given array of
text features for each user’s comment, the method should have strong discrimina-
tory power capable of ranking the input feature space. There are various methods
used to generate membership values [10], [11], [12]. We use a Kernel-based Fuzzy
C-Means (K-FCM) clustering algorithm to generate memberships values for our
fuzzy classifier model owing to its ability to handle noise and outliers.

Clustering Process: The first step in K-FSVM is to cluster the incoming
pre-processed text-stream data sets. In a complex and dynamic environment such
as SNs, a range of features can be generated from single user post. Each feature
will have a different degree of information and relevance to a specific concept
therefore, calculating the total relevance of each instance from all features is
highly important for the learning model. To achieve this goal we employ a fuzzy
clustering approach, which enables us to evaluate all features and calculate their
degree of relevance to a specific group. Clustering is used to find high intra-
cluster and low inter-cluster similarities. The idea is to find natural groupings
among similar objects.

Kernel-based FCM was introduced to overcome noise and outliers sensitivity
found in FCM [13], [14] by transforming input space X to a high or infinite di-
mension feature F space (φ : X → F). For non-linearly separable problems, the
input data can be projected to a high-dimensional feature space using a kernel.
According to Cover’s theorem, projecting input data into a high dimensional
feature space is assumed to convert non-linearly separable problems into lin-
early separable in the feature space. This idea has been utilised in unsupervised

Semi-supervised Learning for Cyberbullying Detection in Social Networks 165

learning and by many algorithms including RBF Networks, SVM and other non-
linear discriminating techniques. In a Kernel FCM the input space is projected
to higher dimensional feature space using RBF, polynomial kernel or any other
kernel type.

A Kernel-based Fuzzy C-Means clustering (KFCM) algorithm has been pro-
posed by Zhang et al. [10][11]. KFCMpartitions a given data setX = {xi, ..., xn} ∈
Rp into Cfuzzy fuzzy subsets by minimising the following objective function:

Jm(U, V) =
c∑

i=1

n∑

k=1

um
ik||φ(XK)− φ(Vi)||2 (4)

Subject to:

n∑

k

uik > 0, ∀i ∈ 1, ...c (5)

c∑

i

uik > 1, ∀k ∈ 1, ...n (6)

where, c is the number of clusters determined initially (1 < c < n). According
to the condition in Equation 4 no cluster is empty; n is the number of data
points; uik is the membership of Xk in class i satisfying

∑c
i uik = 1 for all k

and uik ∈ [0, 1]; m is the quantity controlling cluster fuzziness (m > 1); V is a
set of control cluster centres or prototypes (Vi ∈ Rp); φ is an implicit nonlinear
transformation function. The Euclidean distance between points and centres in
the feature space F can be computed as:

||φ(XK)− φ(Vi)||2 = k(XK , XK) + k(Vi, Vi)− 2k(XK , Vi) (7)

where, K(X,Y) = φ(X)Tφ(y) is an inner product of the kernel function X
denotes the data space, and φ(x) ∈ F , where x ∈ X , F is the transformed
feature space and K(x, x) = 1. In our case, a Guassian Kernel was adopted,
where K(x, y) = exp(−d(x, y)2/2). Hence for K(x, x) = 1, the Gaussian Kernel
leads to dφ2(x, y) = K(x, x) + K(y, y) − 2K(x, y) = 2(1 − K(x, y)). Thus the
objective functions in Equation 4 becomes:

Jm(U, V) = 2
c∑

i=1

n∑

k=1

um
ik(1 = k(XK , Vi)) (8)

where,

k(XK , Vi) = exp(−||XK − Vi||2/σ2) (9)

The optimisation problem is solved by minimising Jm(U, V) under the con-
straints of uik.

uik =
(1/(1− k(XK , Vi)))

1/(m−1))
∑

j = 1c(1/(1− k(XK , Vi)))1/(m−1)
, ∀i ∈ 1...c and ∀k ∈ 1...n (10)

166 V. Nahar et al.

vi =

∑n
k=1 u

m
ikK(XK , Vi)XK

∑
k = 1num

ikK(XK , Vi)
(11)

One of the critical steps in Fuzzy based SVM is the membership generator
method. From the previous step the membership matrix is generated and used
by a fuzzy classifier decision function. A good membership matrix should de-
grade the effect of outlier and noise, and improve overall classification results.
The following algorithms are used to generate the membership matrix for the
fuzzy classifier:

Algorithm 2: Kernel Fuzzy C-Mean Clustering Algorithm

Input:
bn: Streaming text;
m: Set Fuzzification parameter;
c: Number of clusters;
ε1:set termination parameter;
Output:
Membership matrix
1. Select the kernel function K and its parameters;
2. Select cluster centres vi
3. Update membership matrix uik using Equation 10;
4. Compute all new clusters or prototype Vi using Equation 11;
5. Repeat step 3-4 and check the termination function Et;
6. Et = max|vnew − Vold|, if Et ≤ ε, stop;
7. return membership matrix;

Fuzzy Classifier: The enriched feature space generated in cyberbullying
context will have some training points with a varying level of importance. Con-
sequently, the training points with higher impact should be classified correctly
and the noisy points or meaningless ones will not be considered and discarded.
This indicates that one point can belong 85% to one class and the remaining
15% can be meaningless or 10% can belong to one class and 90% can be mean-
ingless. In contrast to SVM, fuzzy SVM allows each data point Xi to be assigned
a membership value, Ui where 0 < Ui ≤ 1. The membership Ui is used to de-
termine the importance or relativity of each data point Xi to one class and the
value (1 − Ui) can be used to determine the degree of meaningless.

In this section, a fuzzy classifier is used to handle unbalanced and unstable
text streams generated from social networks. The dataset is fed into the KFCM
model to extract membership values, and then a one-versus-one (OV O) fuzzy
SVM model is constructed. Each membership value is used by the FSVM for
classification. It is expected that noise will be assigned a low membership degree
and each membership value will be used by the FSVM model resulting in better
generalisation and accuracy. The following steps are performed to execute the
K-FSVM model:

Semi-supervised Learning for Cyberbullying Detection in Social Networks 167

Algorithm 3 : Fuzzy SVM Classification algorithm

Input:
bn: Streaming text;
sn: Membership matrix generated by Algorithm 2;
ε1: Set termination parameter;
Output:
Final prediction matrix;
1. Use OV O strategy to create multiple classifiers initialize all parameters

including kernel function, cluster number, termination parameter ε
and membership m;

2. Apply the memberships sn to FSVM model. Here, each data point will
have one membership value.The new training set will have x, y, u,
where u is the membership value for x data point.

3. Predict all class labels using voting by classifying which classes are
receiving most voting;

4. return final classifier;

4 Experiments Setting

4.1 Dataset

In the experiments, we utilised data provided by Fundacion Barcelona Media2

for the workshop on content analysis from the Web 2.0. The given data was
collected from the three different SNs including Myspace, Kongregate, and
Slashdot. Characteristics of data from these three sites are different from each
other. Our task was to extract cyberbullying instances from the streaming text of
any type. The raw data was available in XML file format of different structures.
A data parser was developed to extract the content, time, and user information.
During the feature space modelling, extensive pre-processing was conducted in
order to remove insignificant features.

4.2 Evaluation

The classification of cyberbullying messages is a critical issue because of different
impacts made by the false positives and the false negatives. On one hand, to
identify non-cyberbullying instances as cyberbullying itself is a sensitive issue
(the false positive). On the other hand, the system should not miss out the
cyberbullying posts (the false negatives). Though the false positive and the false
negative instances are both critical, the ideal scenario is to achieve a high recall.
That means cyberbullying-like posts should not be overlooked by the system

2 http://caw2.barcelonamedia.org/ Retrieved 10 November 2010.

http://caw2.barcelonamedia.org/

168 V. Nahar et al.

- a strict approach. Nevertheless, we present a performance metric including
precision, recall and F1 measure for evaluation. Table 1 shows the distribution
of positive instances, r in the training and testing dataset experimental setting
for various scenarios used.

4.3 Results and Discussions

Experiment 1: We employ the session scenario by sorting messages using time
information and generated N streaming sessions of varying length. For experi-
ments, we select parameters, N = 75 and Γ = 0.95. The final training set con-
structed by the augmented training method is used as a training set. To evaluate
this model on a test set (manually validated test set), we employ Random Forest,
Näıve Bayes, Logistic Regression, and Meta classifiers, and results are shown in
Figure 1(a). Expert judgement is also presented to compare the other classifiers.
The majority of feature selection methods work better if the frequency of the
positive-like features is high. From Figure 1(a), we observe that the model is able
to capture likely positive words including words that appear in the keyword list.
While detecting cyberbullying in social networks, recall is a critical evaluation
matrix as it is very important to reduce false negatives. The system should not
be able to misclassify positive cases as negative - that is, cyberbullying-like cases
are not ignored. As shown in Figure 1(a), Random Forest performed similarly
to that of the expert judgement, with 48% precision, 77% recall, and 59% F1

measure. In this experiment, the false positive is higher than the false negative.
If we try to reduce the false positive, then the false negative increases. This is
because discrimination of the positive features and the negative features is very
vague. In the training data, we observe that many likely cyberbullying words are
quite frequent in both cyberbullying and non-cyberbullying categories. Ignoring
those words on one hand reduces the false positives, while on the other hand
it increases the false negatives. Our objective is to reduce the false negatives;
therefore our system tolerates the false positives but maintains low false nega-
tives. Nevertheless, in this experiment the objective was to achieve high Recall,
which is achieved up to 79.3%.

Table 1. Positive Instance Distribution, r

Experiment r
Training Testing

Scenario 1 34.0% 13.2%
Scenario 2 42.1% 14.2%
Scenario 3 34.0% 1.5%

10-fold cross validation
Scenario 4 1.5%
Scenario 5 22.0%

Semi-supervised Learning for Cyberbullying Detection in Social Networks 169

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R-Forest Naïve
Bayes

L-Regresion Meta Vote Expert
Judgement

Precision Recall F1 measure

(a) Augmented Training Model

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

K-FSVM R-Forest NaiveBayes L-Regresion

Precision

Recall

F-Measure

Accuracy

(b) Scenario 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K-FSVM R-Forest NaiveBayes L-Regresion

Precision

Recall

F-Measure

Accuracy

(c) Scenario 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K-FSVM R-Forest NaiveBayes L-Regresion

Precision

Recall

F-Measure

Accuracy

(d) Scenario 3

Fig. 1. Results of Experiments 1 and 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K-FSVM R-Forest NaiveBayes L-Regresion

Precision

Recall

F-Measure

Accuracy

Average

(a) Scenario 4

0

0.2

0.4

0.6

0.8

1

1.2

K-FSVM R-Forest NaiveBayes L-Regresion

Precision

Recall

F-Measure

Accuracy

Average

(b) Scenario 5

Fig. 2. Results of Experiment 3

Experiment 2: In this experimental set up, experiments are conducted in three
different scenarios, when r = 13.2%, 14.2%, and 1.5% respectively. The results
are shown in Figures 1(b), 1(c), and 1(d).
In Scenario 1 (r = 13.2%), K-FSVM outperformed all other methods. Recall
is 82% while maintaining 6% precision. Nevertheless, Näıve Bayes achieved the
highest recall (83%), which is almost the same as K-FSVM, whereas, Random
Forest and Logistic Regression both performed similarly well.
In Scenario 2 (r = 14.2%), the overall performance of K-FSVM and Random
Forest are almost same, with the F1 measure at 41%. While K-FSVM achieved
higher recall, Random Forest achieved higher precision. Näıve Bayes achieved a
93% recall, which is one of the major requirements for a cyberbullying detection
system. As discussed earlier, we are interested in high recall. That means the
actual number of genuine cyberbullying cases identified by the system out of

170 V. Nahar et al.

all the genuine cyberbullying cases should be as high as possible. At this stage,
the system may have an increased number of false alarms (the false positive),
but it will not overlook cyberbullying instances. Logistic regression performed
reasonably well in this scenario when compared to all others scenarios.
In Scenario 3, when r = 1.5% only, the system has achieved a very high re-
call as shown in Figure 1(d). This indicates that the system did not let the
cyberbullying-like posts go unnoticed, although precision is poor. Though the
false positive instances are high, the false negatives have been reduced signifi-
cantly. Indeed, it is worth having a high number of the false positives identified
by the system rather than ignoring genuine or cyberbullying-like posts.

Experiment 3: In scenarios 4 (r=1.5%) and 5 (r = 20%), experiments are
conducted using 10-fold cross-validation. In this evaluation setup, the complete
dataset is partitioned ten times into 10 samples. In every round, randomly, nine
sections are selected for training and the remaining section is used for testing.
However, in such cases it is possible that the training phase may not be able
to catch positive instances. In fact, this likelihood increases when the positive
instances are rare, which is true in our case. For this reason we also decide to
compare overall performance, which is an average of precision, recall, F1 measure
and accuracy. From Figure 2(a), very interesting results are observed. Overall
K-FSVM achieved the best results in both experiments. Moreover, in Scenario
4, when the positive to negative ratio is 1.5%, Random Forest maintains a very
high precision at 93%, whereas, Näıve Bayes achieved the highest recall 92%.
Such observation opens a future direction to combine both of these classifiers to
improve the systems performance significantly. In scenario 5, K-FSVM outper-
formed all other methods in terms of precision (55%) and F1 measure (47%),
whereas, Näıve Bayes achieved 97% recall and Logistic regression achieved poor
results.

5 Conclusions

This paper proposed a semi-supervised approach for detection of cyberbullying in
SNs. Our contributions can be summarised as: (i) We devised a new framework
for automatic detection of cyberbullying for the streaming data with insuffi-
cient labels. The framework extracts reliable positive and negative instances by
augmented training methods based on the confidence voting function. (ii) The
enriched feature sets were generated based on user context, linguistic knowl-
edge, and baseline keywords were also incorporated during feature space design
in the proposed method. (iii) We also proposed a fuzzy SVM algorithm for the
effective cyberbullying detection. The proposed method effectively tackles the
dynamic and complex nature of the streaming data. (iv) The experiments con-
ducted under the different scenarios demonstrate that the proposed technique
outperformed the traditional methods use for cyberbullying detection.

Semi-supervised Learning for Cyberbullying Detection in Social Networks 171

References

1. Xu, J.M., Burchfiel, B., Zhu, X., Bellmore, A.: An examination of regret in bullying
tweets. In: The 2013 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 697–702 (2013)

2. Dadvar, M., Trieschnigg, D., Ordelman, R., de Jong, F.: Improving cyberbullying
detection with user context. In: Serdyukov, P., Braslavski, P., Kuznetsov, S.O.,
Kamps, J., Rüger, S., Agichtein, E., Segalovich, I., Yilmaz, E. (eds.) ECIR 2013.
LNCS, vol. 7814, pp. 693–696. Springer, Heidelberg (2013)

3. Dinakar, K., Reichart, R., Lieberman, H.: Modeling the detection of textual cyber-
bullying. In: AAAI Conference on Weblogs and Social Media, pp. 11–17 (2011)

4. Nahar, V., Unankard, S., Li, X., Pang, C.: Sentiment analysis for effective detection
of cyber bullying. In: Sheng, Q.Z., Wang, G., Jensen, C.S., Xu, G. (eds.) APWeb
2012. LNCS, vol. 7235, pp. 767–774. Springer, Heidelberg (2012)

5. Yin, D., Xue, Z., Hong, L., Davisoni, B.D., Kontostathis, A., Edwards, L.: Detec-
tion of harassment on web 2.0. In: Content Analysis in the Web 2.0 Workshop at
WWW (2009)

6. Zhang, Y., Li, X., Orlowska, M.: One-class classification of text streams with con-
cept drift. In: ICDMW, pp. 116–125 (2008)

7. Nahar, V., Li, X., Pang, C., Zhang, Y.: Cyberbullying detection based on text-
stream classification. In: AusDM (2013) (in press)

8. Zhang, T.: Solving large scale linear prediction problems using stochastic gradient
descent algorithms. In: ICML, pp. 919–926. ACM (2004)

9. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput-
ing Surveys 34(1), 1–47 (2002)

10. Zhang, D.Q., Chen, S., Pan, Z.S., Tan, K.R.: Kernel-based fuzzy clustering incor-
porating spatial constraints for image segmentation. 4, 2189–2192 (2003)

11. Zhang, D.Q., Chen, S.C.: A novel kernelized fuzzy c-means algorithm with appli-
cation in medical image segmentation. Artificial Intelligence in Medicine 32, 37–50
(2004)

12. Krishnapuram, R., Keller, J.M.: A possibilistic approach to clustering. IEEE Trans-
action on Fuzzy Systems 1, 98–110 (1993)

13. Wong, C.C., Chen, C.C., Yeh, S.L.: K-means-based fuzzy classifier design. 1, 48–52
(2000)

14. Gröll, L., Jäkel, J.: A new convergence proof of fuzzy c-means. 13, 717–720 (2007)

Mining the Association of Multiple Virtual

Identities Based on Multi-Agent Interaction

Le Li1,2, Weidong Xiao1, Changhua Dai1, Haiming Tong2, and Zhiqiang Song2

1 College of Information System and Management, National University of Defense
Technology, Changsha, China

2 China Satellite Maritime Tracking and Control Department, Jiangyin, China
lile10@126.com

Abstract. Abuses of online anonymity make identity tracing a critical
problem in cybercrime investigation. To solve this problem, this paper
focuses on the feature of authors’ behavior in time slices and tries to
mine the association of multiple virtual identities based on multi-agent
interaction. We propose the recognition model MVIA-K based on knowl-
edge management. In MVIA-K, agents perform distributed mining to
get candidate author groups as local knowledge in each time slice. Then
high-quality knowledge is extracted from the local knowledge and used
as priori knowledge to guide other agents’ mining process. Finally dis-
tributed knowledge is integrated on the basis of knowledge scale. Exper-
iment with real-world dataset shows that MVIA-K has a very promising
performance, which can filter the noise data effectively and outperform
Author Topic model.

Keywords: Virtual identities, time slice, multi-agent, text mining.

1 Introduction

The unprecedented development of the Internet makes forum, blog and microblog
get widespread attention and become the main platforms for people to commu-
nicate. However, due to the online anonymity, it is not uncommon for people
to maintain numerous virtual identities [1]. For example, some famous people
post articles in several websites by using different accounts in order to expand
their influence. Some people take use of the online anonymity to achieve their
illegal purposes, such as mail fraud [2], improving reputation rank by creating
fake sales [8]and so on. Spammers tend to use multiple virtual identities to pub-
lish numerous articles in order to influence search engine results or affect public
opinion [7,4]. Therefore, it is valuable to recognize the association of multiple
virtual identities.

Researchers have begun to use textual traces to find the association of virtual
identities [11,1]. These methods commonly use the stable feature of the author -
writing style, but they do not concern the feature of user’s behavior. This kind of
authors has an obvious behavior feature in time slice, who tend to use multiple
virtual identities to post similar articles in multiple time slices.

H. Wang and M.A. Sharaf (Eds.): ADC 2014, LNCS 8506, pp. 172–179, 2014.
c© Springer International Publishing Switzerland 2014

Mining the Association of Multiple Virtual Identities 173

In this paper, we believe that time slice plays an important role in recognizing
the association of these virtual identities.

1. By analysis on time slice, we can find the latent association of these virtual
identities. In order to avoid inspection, spammers, who own numerous virtual
identities, will use different identities to accomplish different tasks [4]. On the
whole these virtual identities have no obviously association, but from the author’s
behavior feature, these virtual identities tend to post similar articles in the same
time slice. Only with time slice analysis can we recognize association of virtual
identities.

2. By introducing time slice, we can filter the noise data effectively. Hot topic
will attract many authors in the discussion in a period. Although these virtual
identities post similar articles to the same topic, they do not actually belong to
the same author. When time slice is introduced, we can find that the noise data
(unrelated IDs) will be only associated with target identities in just one slice,
but target identities belong to the same author will have strong association in
multiple time slices.

This paper tries to mine the association of multiple virtual identities based
on multi-agent interaction. We design a recognition model MVIA-K based on
knowledge management. Agents perform distributed mining to find the candi-
date author groups in each time slice, and then high-quality knowledge will be
extracted and transferred to other agents. Agents take use of it as priori knowl-
edge to guide the subsequent mining process, which can effectively remove the
impact of noise data. Finally we integrated distributed mining results based on
knowledge scale.

2 Related Works

In this paper, we use topic analysis method to compare the similarity of virtual
identities. LDA [3] is a widely used topic model, which can model documents to
word-topic distribution and topic-document distribution. Author Topic model
[12,15] is a probabilistic topic model to study the relationship between author
and text ,but it did not consider the authors with time information. Paper [6]
presents Temporal-Author-Topic (TAT) approach to model author’s interests
and time of documents. However, we need to focus on users’ behavior feature in
time slice, but TAT cannot capture it. Therefore, we do not create a probabilistic
model, but integrate the agent and data mining technology to build a recognition
model based on multi-agent interaction.

Authorship attribution tries to assign a text of unknown authorship to one
candidate author [13] , paper [9] concerned the potential textual traces of iden-
tity. Paper [1] developed the writeprints technique for similarity detection of
anonymous identities. These researches use writing style to identify the author.
But for spammer detection, organizers will employ good writers to prepare spe-
cific post templates for spammer [4]. Spammers just need to make appropriate
modifications, which weakens the difference of writing styles. So these methods
are not suitable for recognizing the association of these virtual identities.

174 L. Li et al.

Paper [10] tried to recognize the association of virtual identities by using the
time slice. However, in their method, only part of the local results are reported
and integrated, which may miss some valuable local knowledge; secondly, they
integrated local results by voting, but did not consider the confidence of different
results.

3 Recognition of Multiple Virtual Identities Association

In this section, we give a specific description about the problem of recogniz-
ing multiple virtual identities association, and indicate the difficulties. Then we
propose: MVIA-K, a recognition model for the association of multiple virtual
identities.

3.1 Problem Formulation

This kind of users in cyberspace usually have multiple virtual identities and they
tend to choose different identities for posting in different periods of time.

We assume the virtual identities set of a user is: Uall={ID1, ID2,. . . ,IDn}.
When the user needs to post in Ti, he will randomly choose a subset Ui ={IDk,
IDl,. . . ,IDo} ⊆ Uall for posting. Each ID in Uall publishes articles of differ-
ent topics with great randomness and we cannot find any obvious association.
However, by introducing time slice, we can find that IDs in Ui have a strong
relationship in the time slice Ti, make it relatively easy to recognize. So our goal
is to look for the subset Ui in time slice Ti, and then integrated to get Uall.
But some hot topics will attract a lot of people (including our target authors) to
participate in the discussions, which led these IDs publish similar content over a
period of time. It brings difficulty for us to recognize because of more noise data
(unrelated IDs). So sometimes we get U

′
i with noise data rather than target Ui

in Ti. How to use U
′
i to get Uall is the key point of this paper.

3.2 The Choo Sense-Making KM Model

In this paper, we use the idea of the Choo Sense-making KM Model [5] for
recognition of multiple virtual identities and design MVIA-K model from the
perspective of knowledge management.

Choo has described a model of knowledge management that stresses sense
making, knowledge creation and decision making. In the sense-making stage,
one attempts to make sense of the information streaming in from the external
environment. Knowledge creating may be viewed as the transformation of per-
sonal knowledge between individuals through dialogue, discourse, sharing, and
storytelling. Decision making is situated in rational decision-making models that
are used to identify and evaluate alternatives by processing the information and
knowledge collected to date.

Mining the Association of Multiple Virtual Identities 175

3.3 Recognition Model: MVIA-K

We have introduced the challenges in the above section. In this section, we pro-
posed MVIA-K, a recognition model based on multi-agent interaction. Guided
by the theory of knowledge management, we use knowledge extraction, flow
and integration process to achieve effectively recognition purposes. The model
is shown in Fig.1.

Fig. 1. Recognition model

In MVIA-K, first of all, sense-making agent actively perceives the dynamic
needs of users and receives user-specified tasks. According to task, agent cap-
tures relevant data and realizes data preprocessing. Then sense-making agent
decomposes the tasks according to the specific time slice size and informs other
agents to start subsequent knowledge mining.

Knowledge creating agents perform distributed data mining in their own
dataset Di to obtain the local knowledge Ki. Then high-quality knowledge HKi

can be extracted from Ki and passed to other agents. Agents received HKi will
use it as priori knowledge to guide their subsequent mining processes, which
reduce the impact of the noise data. Master agent integrates distributed mining
results based on knowledge scale di to get target group.

Decision making agent receives the results of mining process and forms group
knowledge. Then agent can extract the target author group through human-
computer interaction or user-defined thresholds.

4 Knowledge Based Multi-Agent Mining and Interaction

How to extract high-quality knowledge, how to make high-quality knowledge
flow to guide subsequent mining process, and how to integrate local knowledge
effectively, these are important factors affect the recognition ability of model. In
this section, we will introduce the specific implementation process.

176 L. Li et al.

4.1 Local Knowledge Extraction

First of all, we need to find the association of authors and topic of their articles.
AT model (Author Topic model) is an probabilistic model of Author-Topic.
By analyzing the contents, author is mapping to a probability distribution of
topic in AT model. Different topic distribution represents the author’s knowledge
structure and writing tendencies.

By using Gibbs sampling, a Markov chain Monte Carlo algorithm to calculate
the distribution, we can estimate the topic-words distribution and author-topic
distribution using equation:

φmj =
CWT

mj + β

Σm′CWT
m′ j + V β

(1)

θkj =
CAT

kj + α

Σj′C
AT
kj′ + Tα

(2)

In the equation, CWT
mj is the probability of using word m in topic j, and CAT

kj

is the probability of using topic j by author k. V is the size of the words, T is
the topic number in the dataset and A is the number of authors. α and β is the
hyperparameters of the model.

After that, distance between author p and q is measured by the symmetrized
Kullback Liebler (KL) distance between topic distributions. As in equation 3,
smaller distance value means higher correlation between the authors.

dis(p, q) =
1

2
[

T∑

j=1

pj log2
pj
qj

+

T∑

j=1

qj log2
qj
pj

] (3)

We get local knowledge K={A1,A2,. . . ,An} by calculating KL distance of
the authors. Then high-quality knowledge HK⊆K was extracted by setting a
threshold value d, where ∀A∈ HK→dis(k,l)<d. In order to improve the influence
of high-quality knowledge, we punish the virtual identities not in HK (adding
a penalty value to its KL distance). After that, agent reports K to the master
agent and passes HK to other agents.

4.2 Knowledge Flow

In the transfer stage, we use unidirectional transformation for simplicity, where
each agent transfers the knowledge to only one agent and each agent receives
priori knowledge only once. Since each agent’s individual knowledge is different,
in learning process, agent needs to check the priori knowledge priori-K to find
valuable knowledge priori-K’, and then use it to revise the preliminary mining
results (we take the mean value of both distance). Knowledge flow in the model
can expand the influence of high-quality knowledge and contribute to reducing
the influence of local noise data.

Mining the Association of Multiple Virtual Identities 177

4.3 Knowledge Integration

After local mining process, agents will negotiate with the master agent initia-
tively and cast their vote, which marked their local knowledge. Although each
agent votes only once, it does not have the same weight on the final result.
Obviously, compared to small dataset, the knowledge mining from large dataset
should be more credible. In this article, we treat the amount of documents within
each time slice as the knowledge scale. Master agent uses Equation 4 to calculate
the distance between virtual identity k and l, where Di is the amount of docu-
ments within the time slice Ti, disi(k, l) is the distance between virtual identity
k and l within the time slice Ti.

dis(k, l) =
n∑

i=1

Di
∑n

i=1 Di
disi(k, l) (4)

5 Experiments

We selected 33 famous authors from three Chinese blog website (sina, souhu,
163) and collected 12,865 articles from 2009 to 2010. There are 12 target authors
among them have more than one account in different website and post similar
articles in time slice, which accords with definition of our problem. Meanwhile,
these famous people have real-name authentication on these websites, so it will
be easy for us to verify the experiment results.

We choose the AT model as benchmark technique and use the same hyper-
parameters as [14] in the AT model, hyper-parameters α and β were set at 50/T
and 0.01, the number of topics T=20, the number of iterations is 500.

In MVIA-K, KL threshold is used to extract high-quality knowledge and select
the final target group, so we choose different KL threshold (from 0.3 to 0.7) in
the experiment. Meanwhile, time slice size also exerts an influence on the results.
If the size is too small, there will be only a few articles in same time slice, we
cannot find any association of the virtual identities. But if the size is too large,
we may lose user’s behavior feature in time slice. In this paper, the dataset is
divided into 5 and 10 time slices respectively, named MVIA-K5 and MVIA-K10.
We use precision and F1 value as criterion in the experiment. The results are
shown from Fig.2:

As can be seen, MVIA-K is significantly better than the AT model in a number
of KL thresholds. This is because some hot topics in cyberspace bring a lot of
noise data, making many authors of the similar distribution in topic. AT model
can filter noise data coarsely only relying on KL threshold (this is the reason of
its high recall). KL threshold plays an important role in the recognition ability.
Compared to AT model, our method can filter the noise data more effectively.
But if the KL threshold is too large, the local results will be of low correlation,
leading to the decrease of precision and F1 values.

We can find that different size of time slice has a certain impact on the re-
sults. MVIA-K10 performs better than MVIA-K5 in this dataset. This is because

178 L. Li et al.

Fig. 2. Experiment Results

high-quality knowledge transfers more times in MVIA-K10, which ensures that
poor local results have little effect. However, in MVIA-K5, poor local results will
have a greater impact. So we can find that, when the KL threshold increases,
downward trend of MVIA-K5 is more obvious. But it does not mean that setting
a larger time slice size is always better. When the time slice division is excessive,
the amount of articles within each time slice will be too small to extract high
quality knowledge, which will make it difficult to get the valuable results. There-
fore, in practical application, it will be more appropriate to choose multiple time
slice size and get the mean result.

6 Conclusion

This paper focuses on the recognition of multiple virtual identities association.
By using time slice to analyze user’s behavior, we propose a recognition model
based on knowledge management theory: MVIA-K. By integrating agent tech-
nology and data mining, the distributed knowledge can flow effectively in the
model. High-quality knowledge can guide the subsequent mining process to ob-
tain higher quality results. Meanwhile, knowledge scale based integration method
can overcome the impact of noise data effectively and achieve better experimen-
tal results.

Acknowledgments. This work was funded under National Science and Tech-
nology Support Program (NO.2012BAH08B01) and the National Natural Sci-
ence Foundation of China (No.61302144).

References

1. Abbasi, A., Chen, H.: Writeprints: A stylometric approach to identity-level identi-
fication and similarity detection in cyberspace. ACM Transactions on Information
Systems (TOIS) 26(2), 7 (2008)

Mining the Association of Multiple Virtual Identities 179

2. Airoldi, E., Malin, B.: Data mining challenges for electronic safety: The case of
fraudulent intent detection in e-mails. In: Proceedings of the Workshop on Privacy
and Security Aspects of Data Mining, pp. 57–66 (2004)

3. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. The Journal of
Machine Learning Research 3, 993–1022 (2003)

4. Chen, C., Wu, K., Srinivasan, V., Zhang, X.: Battling the internet water army:
Detection of hidden paid posters. arXiv preprint arXiv:1111.4297 (2011)

5. Chun, W.C.: The knowing organization: How organizations use information to
construct meaning, create knowledge, and make decisions. Oxford University Press,
Oxford (1998)

6. Daud, A., Li, J., Zhou, L., Muhammad, F.: Exploiting temporal authors inter-
ests via temporal-author-topic modeling. In: Huang, R., Yang, Q., Pei, J., Gama,
J., Meng, X., Li, X. (eds.) ADMA 2009. LNCS (LNAI), vol. 5678, pp. 435–443.
Springer, Heidelberg (2009)

7. Gao, H., Hu, J., Wilson, C., Li, Z., Chen, Y., Zhao, B.Y.: Detecting and char-
acterizing social spam campaigns. In: Proceedings of the 10th ACM SIGCOMM
Conference on Internet Measurement, pp. 35–47. ACM (2010)

8. Josang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for
online service provision. Decision Support Systems 43(2), 618–644 (2007)

9. Li, J., Zheng, R., Chen, H.: From fingerprint to writeprint. Communications of the
ACM 49(4), 76–82 (2006)

10. Li, L., Xiao, W., Dai, C., Xu, J., Ge, B.: The recognition of multiple virtual iden-
tities association based on multi-agent system. In: Cao, L., Zeng, Y., Symeonidis,
A.L., Gorodetsky, V., Müller, J.P., Yu, P.S. (eds.) ADMI 2013. LNCS(LNAI),
vol. 8316, pp. 40–50. Springer, Heidelberg (2014)

11. Pan, Y.: Id identification in online communities. Technical report. Citeseer (2006)
12. Rosen-Zvi, M., Griffiths, T., Steyvers, M., Smyth, P.: The author-topic model for

authors and documents. In: Proceedings of the 20th Conference on Uncertainty in
Artificial Intelligence, pp. 487–494. AUAI Press (2004)

13. Stamatatos, E.: A survey of modern authorship attribution methods. Journal of the
American Society for Information Science and Technology 60(3), 538–556 (2009)

14. Steyvers, M., Griffiths, T.: Probabilistic topic models. Handbook of latent Semantic
Analysis 427(7), 424–440 (2007)

15. Steyvers, M., Smyth, P., Rosen-Zvi, M., Griffiths, T.: Probabilistic author-topic
models for information discovery. In: Proceedings of the Tenth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 306–315.
ACM (2004)

Split Dictionaries for In-memory Column Stores
in Mixed Workload Environments

David Schwalb, Markus Dreseler, Martin Faust,
Johannes Wust, and Hasso Plattner

Hasso Plattner Institute, Potsdam, Germany

Abstract. Columnar in-memory databases use dictionary encoding as
a compression technique, replacing long and frequently occurring values
with short integers. Sorted dictionaries allow for more efficient query
processing as comparisons can be performed directly on the compressed
data whereas unsorted dictionaries are faster when inserting new values.

In this work, we propose a new type of dictionary compression called
Split Dictionaries. These organize their values in fixed-sized splits, en-
abling fast inserts and comparable query performance while significantly
reducing maintenance costs. We present a detailed performance analysis
regarding inserts, range queries, and the merge process as well as a mem-
ory usage model. We argue that adjusting the dictionary size allows for
a more balanced trade-off especially in mixed workload environments.

1 Introduction

Traditionally, column stores are strong in analytical scenarios where workloads
are read-only and inserts are processed in batches. Recent work proposes their
use also for mixed workloads in enterprise environments [2, 4, 8, 9, 11, 12]. A
common approach is to use a read-optimized main and a write-optimized delta
partition which are periodically combined by a merge process [5, 13].

Both use dictionary encoding to replace long values with short integer codes.
An essential difference in the organization of main and delta partitions is the
order of assigned value ids. Main partitions use dictionaries sorted by value,
whereas delta dictionaries are unsorted [5]. Sorted dictionaries allow for fast
searches as values can be compared without decompression, but are unsuitable
for single insertions due to the sort order. In contrast, unsorted dictionaries need
to decompress the encoded values for comparisons but allow for fast insertions
as no sort order has to be kept. While main/delta architectures alleviate the
mentioned tradeoff, they increase the system complexity and require background
merge processes which use system resources [12]. The required rewrites, not the
update of the dictionary itself, are the major problem of sorted dictionaries.

In this paper, we propose Split Dictionaries as an alternative. Instead of using
a single dictionary, Split Dictionaries consist of a number of fixed-sized, sorted
dictionaries and a single, unsorted dictionary. With this architecture, Split Dic-
tionaries provide a range query performance that is significantly better than that
of unsorted dictionaries. Additionally, the merge now only rewrites value ids that

H. Wang and M.A. Sharaf (Eds.): ADC 2014, LNCS 8506, pp. 180–188, 2014.
c© Springer International Publishing Switzerland 2014

Split Dictionaries for In-memory Column Stores 181

Peter
Paul
Mary
Eve

Peter

Column (Uncompressed)

Steve

0.1
0.0
1.1
1.0
0.1

Column (Compressed)

2.0

Paul

Dictionary 0 (sorted)
0

Peter1

Steve

Dictionary 2 (unsorted)
0

Index for Sorted Dictionaries
Paul

Eve Mary
1.0 1.1

Paul Peter
0.0 0.1

Eve

Dictionary 1 (sorted)
0

Mary1

Index for Unsorted Dictionary
Steve

1

Fig. 1. Layout of data in a Split Dictionary

were inserted since the last merge, reducing the merge costs. We argue that Split
Dictionaries allow for better balanced trade-offs especially for mixed workloads,
resulting in increased overall performance. Our contributions are i) the concept
of Split Dictionaries, ii) a memory usage model, and iii) a detailed performance
evaluation comparing sorted, unsorted, and Split Dictionaries.

2 Split Dictionaries

This section describes Split Dictionaries and presents a memory model compar-
ing them with sorted and unsorted dictionaries. It focuses on the implementation
of range queries and on how the merge benefits from Split Dictionaries.

These are designed to combine the advantages of sorted and unsorted dictio-
naries. The basic idea is the separation into multiple dictionaries. For efficient
insertions, new values are inserted into an unsorted dictionary. Once this dic-
tionary reaches its maximum size, it gets sorted and is then immutable for the
future. The maximum dictionary size is a power of two, thus mapping the dic-
tionary id and local value id to a single value id can use simple bit operations.

To support efficient lookups, a tree is maintained that indexes the values in
all sorted dictionaries. If a value is not found in this index, it is searched for in
the unsorted dictionary, which is a tree in itself. By updating the main index
when a dictionary is sorted, we reduce the overhead of the insert.

Figure 1 shows a column using Split Dictionaries after all insertions. We start
with an empty column and a maximum dictionary size of 2. For simplicity, a B+-
tree is shown instead of an rb-tree. We start with one dictionary with id 0. ’Peter’
is inserted with the value id 0.0, next ’Paul’ gets 0.1. As dictionary 0 is full, it is
sorted and the value ids are changed in the attribute vector by replacing old value
ids with new ones in the attribute vector, similar to the merge described in [5].
Also, the index on the sorted dictionaries is updated. ’Paul’ now has the value
id 0.0. Next, we create a new unsorted dictionary, insert the new values ’Mary’

182 D. Schwalb et al.

MA = (n · ≥log2 d≤)/8 (1)
MT (x) = x · (s+ 36) (2)
MSorted = MA + d · s (3)

MUnsorted = MA + d · s+MT (d) (4)
MSplit = MA + s · (d− u) + u · s+MT (u) +MT (d− u)

= MA + d · s+MT (d) (5)

and ’Eve’, and merge it, resulting in the value ids 1.0 and 1.1. Finally, ’Steve’ is
inserted and assigned value id 2.0 in the newly created unsorted dictionary.

2.1 Memory Usage of Split Dictionaries

Besides performance, a classic trade-off for data structures is their memory usage.
This section outlines the memory usage of Split Dictionaries. Let s denote the
size (in Bytes) of an uncompressed value, n the number of entries in the column,
d the number of distinct values, m the maximum dictionary size, and u = n
(mod m) the size of the unsorted dictionary in Split Dictionaries.

Equation 1 gives the size of a bit-packed attribute vector [14], and Equation
2 the size of an RB-Tree with x entries. The sorted dictionary (Eq. 3) is simple
vector storing each distinct value. The unsorted dictionary (Eq. 4) additionally
stores a tree on top of the unsorted vector, using additional memory. For Split
Dictionaries (Eq. 5), d − u values are stored in a sorted vector and u values in
the unsorted vector. Additionally, we have the index on the unsorted dictionary
with u values and the index on the sorted dictionaries with d− u values.

As we can see, Split Dictionaries require more memory than sorted dictionaries
due to the rb-tree and have the same memory costs as unsorted dictionaries.

2.2 Full Column Scans with Range Selections

Before we discuss range queries on Split Dictionaries, we will explain them for
sorted and unsorted dictionaries [11]. Range queries on sorted dictionaries exploit
the order of the value ids. A range of values translates to a range of value ids.
By comparing value ids from the attribute vector with the value ids of the range
boundaries, range queries can be performed with only two integer comparisons.

The naïve approach for unsorted dictionaries decompresses the column and
compares the actual values - a very expensive step. Alternatively, a bit-vector
can be used: First, for every value in the dictionary, the corresponding position
is set to 1 if the value is in the range. Second, when iterating over the attribute
vector, positions are included if the corresponding position in the bitvector is 1.

We will now describe the algorithm used for Split Dictionaries. Similar to
the algorithm for sorted dictionaries, we iterate over all sorted dictionaries
and find the bounding value ids. We end up with a list containing one tuple
(min,max) for every sorted dictionary. If we had two dictionaries, the result

Split Dictionaries for In-memory Column Stores 183

could be [(17, 25), (10, 13)]. For every value id in the attribute vector, we extract
the dictionary id and get the corresponding tuple from our auxiliary structure.
We then check if the local value id is in the specified range. For value id 1036,
the dictionary id is 1 and the local value id 12. We then get the tuple with the
index 1, which is (10, 13). Since 12 is in this range, the value id 1036 belongs to
a value in the queried range. Checks are done in constant time as tuples can be
accessed using pointer arithmetics. For value ids from the unsorted dictionary,
however, we cannot use this approach and use the bit-vector algorithm instead.

2.3 Implications on the Merge Process

When a dictionary becomes full, we sort it and rewrite its value ids in the
attribute vector. This is comparable to the merge for a column with main and
delta partitions [5]. Assuming insert-only semantics (e.g., when MVCC is used),
we reduce the number of attributes that have to be probed during the merge:
The value id of a value changes only once. We thus only need to look at value
ids in the vector that were inserted after the dictionary was created.

We also reduce the number of merges: With the current delta approach, a
merge is needed whenever the attribute vector reaches a certain size. Since with
Split Dictionaries we can append to the main attribute vector without needing
a delta attribute vector, merges are only required if the unsorted dictionary is
full. This is an advantage when dictionaries become saturated.

3 Evaluation

Our implementation uses libstdc++ vectors for the attribute vector and maps
for the dictionaries. We used GCC 4.8 with -O3. Benchmarks were executed on
a machine with 4 Intel Xeon 7560 CPUs (2.26 GHz) and 1 TB of main memory.

3.1 Insert Performance

To measure the insert performance, we inserted 100 million values with a uniform
distribution of 10 million distinct values. The maximum dictionary size was 1024.
We measured an overhead of 13% compared to unsorted dictionaries due to the
costs of merging the unsorted dictionary and maintaining the global index.

3.2 Decompression of Value ids

Decompressing a value id is a pointer calculation for all dictionaries, adding the
local value id to the beginning of the vector. Split Dictionaries need to separate
the dictionary id from the local value id. This results in an overhead of 10% on a
dictionary with 100 to 10k values. For bigger dictionaries, the cost is dominated
by the memory reads, and the overhead gets as low as 1% for 100k entries.

184 D. Schwalb et al.

Fig. 2. Cost of the merge for (a) a linearly growing dictionary and (b) with a dictionary
growing as modeled by a logistic function

3.3 Merge

We will now compare the merge costs of different dictionaries. In a first example,
we take a constantly growing number of distinct values. For sorted dictionaries,
we merge after 10k entries; for Split Dictionaries, we use a maximum dictionary
size of 1024. For different configurations, the overall results are similar.

Figure 2(a) shows that Split Dictionaries need fewer rewrites for any table size.
This, of course, is partially influenced by the merge criterion and the maximum
dictionary size. Much more important, though, is that the cost of every single
merge increases linearly with unsorted dictionaries, but remains constant with
Split Dictionaries. In fact, choosing a lower maximum dictionary size would only
add more “steps” to the graph of the Split Dictionary merge, but would not
increase the accumulated cost of the merge. This is because for every merge,
the existing approach looks at all existing entries, while the Split Dictionary can
limit the search to the ones that have not yet been merged.

In a second evaluation shown in Figure 2(b), we show the merge costs when
the dictionary is getting saturated. We store 10,000 different last names in a
database. First, most entries result in a new name being added to the dictionary.
Later, most names have already occurred. We model this using a logistic curve
(represented by the dashed line) with n(x) = ≥ 1

1+e−x/18000 ∈20000−10000≤ giving
the number of distinct names after x inserts. We see a similar result with merges
being more expensive and overall merge costs higher for sorted dictionaries.

3.4 Range Query Performance

The next experiment, shown in Figure 3, compares the range query performance.
The distinctivity of the uniformly distributed values was 10% and the query
selectivity 1% of the distinct values. We used a maximum dictionary size of 256.

Sorted dictionaries show an almost constant performance. Split Dictionaries
have some overhead for small columns (1,000 entries) due to the additional cost
of initializing the different parts of the range query. After this, their performance
is also constant for up to 100,000 entries. Towards the end, they become slightly
more expensive due to the increasing cost of building the interval vector. Once
the attribute vector becomes larger than one million entries, Split Dictionaries

Split Dictionaries for In-memory Column Stores 185

Fig. 3. Cost of Range Queries

Fig. 4. Influence of the Maximum Dictionary Size for range queries on a table with
100M rows, 20% distinct values and 1% selectivity

have a significant and growing advantage over unsorted dictionaries. This is
because for more than 262,144 distinct values, the bitvector for the unsorted
dictionary requires 32 KiB, exceeding the L1 cache. The auxiliary structure
needed for the Split Dictionary only requires 2 KiB and fits into the L1 cache.

While the algorithmic complexity is the same for all dictionaries, we get signif-
icant differences as a result of the number of steps and the cache behavior. Split
Dictionaries perform better for range queries than unsorted dictionaries in any
case, but especially for large columns. Their performance is, however, influenced
by the choice of the maximum dictionary size.

3.5 Influence of the Maximum Dictionary Size

We will now evaluate the influence of the maximum dictionary size on the perfor-
mance of range queries. The benchmark had 20% distinct values and a selectivity
of 1%. The size of the attribute vector was 100M.

Figure 4 shows another trade-off, this time between small and large dictionar-
ies. If the dictionaries are too small, the auxiliary structure becomes too large
as it has to hold many tuples. In this case, it does not fit into the L1 cache
anymore, resulting in many cache misses. If the maximum dictionary size is cho-
sen too high, too many entries point to the unsorted dictionary and require the
significantly slower bit-vector algorithm.

186 D. Schwalb et al.

4 Related Work

This section gives an overview and background information on related work
regarding in-memory column stores for mixed workload environments, followed
by work concerning the dictionary organization and the merge process.

Recent research questioned the separation of transactional and analytical sys-
tems and proposed reuniting these systems [1,2,4,8–10]. The backbone of such a
system is proposed to be a compressed in-memory column-store [1,4,9]. Column-
oriented databases have proven to be advantageous for read-intensive scenar-
ios [7, 13, 15], especially in combination with an in-memory architecture. Typi-
cally, lightweight compression techniques like dictionary encoding are used [6] as
the challenge is to find a balanced trade-off between the contradicting require-
ments of mixed workload environments.

Recent work presented a parameter analysis and performance discussion for
equality and range scans, as well as for positional lookups, inserts, and merges
[11]. In this, uncompressed, bit-compressed, and dictionary-encoded columns
with sorted and unsorted dictionaries were considered. The described merge
algorithm depends linearly on the complete table size [5], whereas Split Dictio-
naries as proposed in this paper allow for significant cost savings regarding the
merge process by only re-encoding values that were inserted since the last merge.

Sikka et al. see a major drawback of the merge in the CPU and memory costs
caused by creating a new main [12]. They propose a partial merge strategy, split-
ting the main into independent main structures and only partially merging these.
In contrast to our approach, from time to time a full merge is still necessary.

When dictionaries are shared between columns, changing sorted structures
requires a re-encoding of multiple columns. Hildenbrand proposes a dictionary
encoding scheme called Multi-Version Encoding, supporting insertions into a
sorted dictionary by versioning the dictionary and providing a mapping between
the different versions [3]. In contrast to our approach, periodic re-encodings of
the complete column are still necessary as the mapping structures add a growing
overhead for query processing. Especially for the use-case of global dictionaries,
Split Dictionaries promise to be an attractive alternative.

5 Future Work

In addition to the advantages before, there are more concepts in which Split
Dictionaries can improve in-memory databases. As of now, these have been eval-
uated theoretically. A thorough evaluation shall be subject to future work.

The current merge approach creates a new attribute vector into which the
values from both main and delta are inserted. This is problematic for large tables,
as the required memory doubles during merge processes. We argue that this is not
necessary in Split Dictionaries. A modified sorting step allows for asynchronous,
lock-free, and in-place sorting of the unsorted dictionary. The concept behind this
is to create a new dictionary with a new dictionary id instead of invalidating the
old dictionary. value ids in the attribute vector can be asynchronously changed

Split Dictionaries for In-memory Column Stores 187

from the old value id to the new one. Meanwhile, we can already insert new values
in the new unordered dictionary. This approach requires a change in basically
all operators that operate on the attribute vector. These operators have to be
aware that there might be two value ids pointing to the same value.

Our experiments further suggest that Split Dictionaries can be helpful when
using shared dictionaries to speed up the join process by sharing dictionaries
between tables. When equal values have equal value ids, creating a mapping
between value ids from one table to the other becomes obsolete. However, this
can come with a high price if sorted dictionaries are used: If a new distinct value
is inserted in either of the tables, both tables have to be rewritten. Since Split
Dictionaries reduce the merge cost significantly, they can help to make Shared
Dictionaries a more feasible approach.

6 Conclusions

In this paper, we proposed Split Dictionaries as a dictionary compression for in-
memory column stores. These split the dictionary into a number of fixed-sized
splits. Dictionaries are sorted once as they reach their capacity.

We presented a detailed performance discussion for Split Dictionaries, focus-
ing on the performance of range queries, decompression, and merge costs. Split
Dictionaries have a range query and lookup performance comparable to sorted
dictionaries. Merge costs can be reduced significantly compared to the traditional
approach which uses a sorted main and unsorted delta partitions. The cost of
this is a small overhead for inserts and when decompressing values. Furthermore,
we presented a memory usage model that shows that Split Dictionaries as much
memory as unsorted dictionaries and more than sorted dictionaries.

In summary, we argue that Split Dictionaries allow to finely adjust the trade-
offs in mixed workload environments, resulting in better overall performance and
reduced merge costs. For future work we look into auto-adjusting the maximum
dictionary size and in-place merge algorithms.

References

1. Färber, F., Cha, S.K., Primsch, J., Bornhövd, C., Sigg, S., Lehner, W.: SAP HANA
database: Data management for modern business applications. SIGMOD (2012)

2. Grund, M., Krueger, J., Plattner, H., Zeier, A., Cudre-Mauroux, P., Madden, S.:
HYRISE—A Main Memory Hybrid Storage Engine. In: VLDB (2010)

3. Hildenbrand, S.: Scaling Out Column Stores: Data, Queries, and Transactions.
PhD thesis, ETH Zurich (2012)

4. Kemper, A., Neumann, T.: HyPer: A hybrid OLTP&OLAP main memory database
system based on virtual memory snapshots. In: ICDE (2011)

5. Krüger, J., Kim, C., Grund, M., Satish, N., Schwalb, D., Chhugani, J., Plattner,
H., Dubey, P., Zeier, A.: Fast Updates on Read-Optimized Databases Using Multi-
Core CPUs. In: VLDB (2011)

6. Lemke, C., Sattler, K.-U., Faerber, F., Zeier, A.: Speeding up queries in column
stores. In: Bach Pedersen, T., Mohania, M.K., Tjoa, A.M. (eds.) DAWAK 2010.
LNCS, vol. 6263, pp. 117–129. Springer, Heidelberg (2010)

188 D. Schwalb et al.

7. MacNicol, R., French, B.: Sybase IQ Multiplex - Designed For Analytics. In: VLDB
(2004)

8. Mühe, H., Kemper, A., Neumann, T.: Executing Long-Running Transactions in
Synchronization-Free Main Memory Database Systems. In: CIDR (2013)

9. Plattner, H.: A Common Database Approach for OLTP and OLAP Using an In-
Memory Column Database. In: SIGMOD (2009)

10. Psaroudakis, I., Scheuer, T., May, N.: Task Scheduling for Highly Concurrent An-
alytical and Transactional Main-Memory Workloads. In: ADMS in Conjunction
with VLDB (2013)

11. Schwalb, D., Faust, M., Krueger, J., Plattner, H.: Physical Column Organization
in In-Memory Column Stores. In: Meng, W., Feng, L., Bressan, S., Winiwarter,
W., Song, W. (eds.) DASFAA 2013, Part II. LNCS, vol. 7826, pp. 48–63. Springer,
Heidelberg (2013)

12. Sikka, V., Färber, F., Lehner, W., Cha, S.K., Peh, T., Bornhövd, C.: Efficient
Transaction Processing in SAP HANA Database - The End of a Column Store
Myth. In: SIGMOD (2012)

13. Stonebraker, M., Abadi, D., Batkin, A., Chen, X., Cherniack, M., Ferreira, M.,
Lau, E., Lin, A., Madden, S., O’Neil, E.: C-store: A Column-oriented DBMS. In:
VLDB (2005)

14. Willhalm, T., Popovici, N., Boshmaf, Y., Plattner, H., Zeier, A., Schaffner, J.:
SIMD-Scan: Ultra Fast in-Memory Table Scan Using on-Chip Vector Processing
Units. In: VLDB (2009)

15. Zukowski, M., Boncz, P., Nes, N., Heman, S.: MonetDB/X100—A DBMS in the
CPU cache. IEEE Data Engineering Bulletin (2005)

A Functional Database Representation

of Large Sets of Objects

Ratko Orlandic1, John Pfaltz2, and Christopher Taylor3

1 FairCom Corporation, Columbia, MO
2 Dept. of Computer Science, University of Virginia

3 Dept. Microbiology, Immunology and Parasitology, LSU Health Sciences Center,
New Orleans, LA

Abstract. This paper explores a novel way of implementing set-valued
operators that are used in analysis and retrieval in large social networks.
The software we describe has been implemented and thoroughly tested
in several demanding applications.

1 Introduction

Traditionally database systems have been optimized to retrieve those sets of ob-
jects which have specified attribute values. We might seek “all men in Queens-
land who play cricket”. If an attribute is frequently used for retrieval, it may
be indexed. These traditional data sets are typically visualized as flat tables or
relations.

However, with the rise of social networks, we encounter a new kind of large
data set; one with “structure”. It is not sufficient to just retrieve individual
object, or nodes, within the network; we may have to analyze both its local and
its global structure to find what we want [15]. Very often we want to analyze the
network’s structural change over time [14].

One powerful approach to the understanding of network behavior is based on
operator theory, where an operator is a function mapping sets of elements into
other sets. Of particular interest have been closure operators. One such analytic
technique based on closure is described in Section 4. Writing efficient network
analysis software has required, first, a general method of set representation which
is briefly described in Section 2; and second, a highly effective way of implement-
ing functional access. This, the major contribution of this paper, is described in
Section 3.

2 Set Representation

Perhaps the easiest, and most effective, way of representing any set Y is as
a bit string, in which an element y ∈ Y if the corresponding bit is a 1. Let
X = {a, c, d, f} and Y = {a, b, d, e} with corresponding bit strings X = [101101]
and Y = [110110]. The logical and, or X&&Y, is [100100] = {a, d} = X ∩ Y , and

H. Wang and M.A. Sharaf (Eds.): ADC 2014, LNCS 8506, pp. 189–197, 2014.
c© Springer International Publishing Switzerland 2014

190 R. Orlandic, J. Pfaltz, and C. Taylor

the logical or, X||Y, is [111111] = {a, b, c, d, e, f} = X ∪ Y . Subset comparison,
X ⊆ Y can then be expressed as “if X && Y = X”.

These logical operators are O(1). And even though longer bit strings may
be needed to represent potentially unbounded element sets, in practice their
theoretical linear performance becomes insignificant relative to other algorithmic
operations. So effectively, these binary set operators are still O(1) in practice.

Every universe is dynamic; as new objects are created, or encountered, they
are entered into the universe and assigned a corresponding bit position, called
its “index”. If necessary, this integer index can be passed between procedures
as a surrogate of the corresponding object. Set procedures, whether the binary
operations of ∪, ∩, and −, or unary operations such as “insert x into Y ” are all
index based. Given an index integer we must be able to access the corresponding
set element; and given a set element, we must be able to retrieve its index. The
O-trees of the next section can do this rather nicely because they are key type
independent.

All of the set-valued operator procedures described in Section 4 have been
implemented as these kinds of templated C++ procedures operating over binary
bit string representations of sets. It has been quite satisfactory, and we have
tested our all codes with artificial sets of 20,000 elements.

3 O-Trees

A fundamental component of object-oriented databases is the ability to access
an object, or set of objects, given a “key”. The key may be unique, as an object
name, or it may be an attribute shared by many objects. This access process is
often called “information retrieval” and its associated literature is immense, c.f.
[9]. We prefer the term “functional lookup” where the key is treated as the argu-
ment to the “lookup” function. Given an argument, or key, the function returns
its corresponding value, which is often a pointer to an object. Basic techniques
include linear arrays, when the argument is numeric, sequential search, hashing,
tree search, among many others. Some are scalable; some are effective in dis-
tributed environments. In this section we describe a variant of B+-tree search,
called O-trees, which we have found to be very effective in the parallel execution
of our functional database system, ADAMS [17].

O-trees, [11,13], behave much like the better known B+-tree except that they
have the following remarkable property. Any argument, which can be of arbitrary
type and length (up to 254 bits, or 31 bytes), can be represented by a single 8
bit key.

An O-tree treats all operator arguments, or keys, as if they were just binary
strings. Conceptually then, an O-tree is just a 0-complete trie1 as shown in Figure
1, where its edges have been labelled with 0 or 1. A trie is said to be 0-complete
if every 1-node has a corresponding 0-node. The empty dashed leaf of Figure 1

1 The term “trie” (from “retrieval”), where a prefix search key is encoded by edge
labels, was first coined by Fredkin [5]. Many variants have appeared in the literature.

A Functional Database Representation of Large Sets of Objects 191

01010100

10101101

10101010

00110100

10000001

00011101

00110100

f

f

f

f

f

f

f

000

0011

0010

01

100

0

0

0

0

1
0

1

1

1

0

1
0

1

0

0

1

101011

101010

Fig. 1. A 0-complete trie

must be included in the trie to make it 0-complete. A node is a 1-node (0-node)
if its incoming edge is labelled with a 1 (or a 0).

In Figure 1, seven functional values, fkey have been associated with 7 binary
keys in such a way that these values constitute the leaves whose access paths
are prefixes of their respective keys. A straightforward representation of such a
binary trie would be most inefficient.

However, it can be shown that in any preorder traversal of a 0-complete tree,
every leaf (except the last) must be followed by a 1-node. In the compact repre-
sentation of an O-tree, the key of each leaf is denoted by the depth of the 1-node
that follows it in the preorder sequence of the conceptual 0-complete tree, as
shown in Figure 1. Observe, that while the leaf (00110100, f0011) is at depth 4 in
the trie of Figure 1, the entry in the index block is 2, the depth of the following
1-leaf (01010100, f01). The last leaf which has no following 1-leaf is always asso-
ciated with an imaginary depth 0. We let D[] denote this sequence of depths in
an index block.

Surprisingly, there is a very simple algorithm that uses this compact O-tree
structure for search and retrieval. Given a keyK, we begin any search by creating
an integer vector B[] that indicates the position of all 1 bits in K. For example

3

4

2

1

3

5

6

0

00011101

00100101

00110100

01010100

10000001

10101010

10101101

f

f

f

f

f

f

f

101011

101010

100

01

0011

0010

000

Fig. 2. The compact O-tree representation of the 0-complete trie of Figure 1

192 R. Orlandic, J. Pfaltz, and C. Taylor

if K = 00110100, BK [] would be < 3, 4, 6, 9 >. To ensure termination of the
search algorithm, a final integer which exceeds the length of any key in the key
space, in this case 9, must be appended to the sequence BK []. In our actual
code, we use 255, and restrict keys to be no longer than 254 bits.2 The following
simple algorithm compares the sequence BK [] of one bits in the key against
the sequence D[] of 1-node depths in the index block to determine which entry
(returned as depth j) points to the leaf in which fK will be found — if it exists
at all.

procedure SEARCH (B, D, bit_i)

short B[], D[], bit_i;

// B is an array denoting the position of 1 bits in the key K,

// D is the sequence of 1-node depths in the index block

{

int depth_j;

depth_j = 1;

while (B[bit_i] <= D[depth_j])

{

if (B[bit_i] = D[depth_j])

bit_i += 1;

depth_j += 1;

}

return depth_j;

}

The argument bit i denotes which 1 bit in BK [] is to be used to begin the
comparisons in the block. Initially bit i will be 1. Note that search through
an index block using this procedure is sequential, as are many B+-tree search
procedures, except that the comparison at each entry is always between short 8
bit entries, regardless of the initial key type, or length.

The index block in the O-tree representation of Figure 2 has 8 entries. The 5th

entry, with a null pointer, denotes the empty 0-leaf of Figure 1 which is needed
to make it 0-complete. A more typical index block will have 200, or more, entries.
But still, index blocks must have finite capacity. As the domain, or key space, of
the function increases, these blocks can be split in the same manner a B+-tree
index blocks. Figure 3 illustrates a hierarchical O-tree representation over the
same set of functional keys. Observe, that as with all B+-trees, all leaves are at
the same depth from the root. Depending on the depth of the O-tree, depth j
either denotes the pointer to the next index block or the desired leaf — usually
an object. The reader may verify that the search procedure given above still
works.

Using the 1 byte depth to compress the size of key entries in index blocks has
an important consequence. These shorter index entries permit greater fan out at
each level of the index tree. Table 1 compares the performance of B+-trees and
O-trees under the assumptions that

2 This provides for 2254 distinct possible key, or argument, values.

A Functional Database Representation of Large Sets of Objects 193

3

4

2

2

0

1

3

6

0

5 5

10101101 f

10101010 f

10000001 f

01010100 f

00110100 f

00100101 f

00011101 f

101011

101010

100

01

0011

0010

000

Fig. 3. A hierarchical O-tree representation of the 0-complete trie of Figure 1

Table 1. Comparison of B+-trees and O-trees

Number of items indexed

number B+-tree O-tree
of levels Maximal Expected Maximal Expected

1 256 177.4 409 334.8

2 65,536 45,414.4 167,281 94,915.8

3 16,777,216 8,056,514.5 68,417,929 26,908,629.3

(1) all index blocks are 2048 bytes in length,
(2) all pointers are 4 bytes, and
(3) B+-tree keys are 4 byte integers, while O-tree depths are 1 byte

shorts.

Using formulas found in [12], one can calculate The maximal, and expected,
numbers of items indexed by a one level, two level and a three level B+-tree and
O-tree respectively is indicated. There is little reason to consider 4-level O-trees,
because the expected 7,628,596,406.5 accessible nodes far exceeds the maximum
4-byte pointer value, which is 232 = 4, 294, 967, 296. If the keys are multi-byte
strings, the contrast between traditional B+-trees and O-trees becomes more
striking.

The biggest drawback of tree search for functional (or indexed) lookup ver-
sus other methods, such as extensible hashing [4,8], has always been the cost
of descending through the tree. Even though its performance is theoretically
O(log n), pointer chasing is expensive, so that in practice linear O(n) search
is often preferable. That a three level O-tree with only small 2048 byte index
blocks can be expected to handle 26.9 M functional (arg, value) pairs makes this
an effective technique for implementing functional lookup and operator evalua-
tion. It has been thoroughly tested as the core of the object-oriented ADAMS
database system [17], especially in parallel, distributed environments [10].

194 R. Orlandic, J. Pfaltz, and C. Taylor

4 Representing Networks as an Operator System

Much of our current research has been focused on applying operator theory
to the analysis of large graphs, or networks. In this section we show how the
implemented code of the preceding two sections can be applied in practice. To
do this we will have to develop some of the formal notation needed to explain our
operator approach, and why we chose not to represent networks as large sparse
matrices. None of this is essential to the thrust of our paper. Its sole purpose
is to assert that the mechanisms we have presented actually have value. If the
reader already accepts this, the section can be skipped.

It is customary to regard a network N as comprised of a set N of nodes,
together with a set E of edges, or connections. That is, N = (N,E). Although
this approach is quite viable, we have found it preferable to model networks in
terms of the set N of nodes and a collection of operators. An operator is a
single-valued function, say α, which for all subsets Y ⊆ N yields a unique set
Y.α ⊆ N .3 Thus operators map the subsets of N into N .

A fundamental operator is the domination operator, ρ, which is defined to be
Y together with all nodes to which Y is “connected” or “related”. The set Y.ρ is
said to be the region dominated by Y .4 For all singleton sets {y} ⊂ N , {y}.ρ
is stored in the database. By definition,

Y.ρ =
⋃

y∪Y

{y}.ρ. (1)

These sets, Y.ρ, can be either calculated using (1) or explicitly stored in the
database as well and retrieved given the argument Y . Because the keys to O-
tree retrieval are type independent, it is easy to provide either a set identifier Y ,
or the set itself, as the the argument to the ρ and η operators.

A subsidiary operator is the neighborhood operator, η, is defined by

Y.η = Y.ρ−Y. (2)

Readily, this neighborhood operator is linked to a more traditional edge repre-
sentation by {y}.η = {z|(y, z) ∈ E} for all y ∈ N , or to a matrix representation
by {y}.η = the non-empty elements of row y. Observe that Y.η ⊂ ∪y∪Y {y}.η,
and so can not be easily calculated, as in (1). These sets, Y.η and Y.ρ have also
been called the “open” and “closed” neighborhoods of Y , using a N(Y) and
N̄(Y) notation.

More importantly, given the network operators η and ρ, we can define a third
operator, ϕ, by

Y.ϕ = Y ∪ {z ∈ Y.η|{z}.η ⊆ Y.ρ}. (3)

Readily, Y.η ⊆ Y.ϕ ⊆ Y.ρ. It is can be shown that ϕ is a closure operator [14].
Closure operators, which are: expansive (Y ⊆ Y.ϕ), monotone (X ⊆ Y implies

3 For reasons unrelated to this paper, we prefer to denote set-valued operators using
suffix notation rather than more usual prefix notation. Thus we write {y}.α instead
of α(y).

4 This terminology is derived from the extensive “graph domination” literature [6].

A Functional Database Representation of Large Sets of Objects 195

X.ϕ ⊆ Y.ϕ), and idempotent (Y.ϕ.ϕ = Y.ϕ), are a central mathematical con-
cept giving rise, for example, to notions of matroids (generalized independence)
[1] antimatroids (concepts of convexity, acyclicity) [3], and greedoids (greedy
algorithms) [7]. We use closure as a basic mechanism to study networks and
their dynamic properties. In particular, “continuous” transformations of social
networks can be defined in terms of closed sets [14].

Closure is not easily modelled using an edge set formalism. Yet, it can be
fundamental to an understanding of the global connectivity properties of the
network, and how they change. By way of example, the irreducible spine, I,
of a network N , is one instance of the role closure can play in the analysis of
large networks. One might expect every node of a network to be closed, that is
{y}.ϕ = {y}. But, this is seldom the case. However, for all networks N , there
exists a unique sub-network I in which for all y′ ∈ I, {y′}.ϕ′ = {y′}, where ϕ′

is ϕ restricted to I, or ϕ|I . We say I is irreducible. Moreover, there exists

a procedure R such that N R−→ I. R is a “continuous” transformation [14].
Pseudo-code for the key loop of this reduction process is:

for each y in N {
for each z in y.nbhd {

if (z.nbhd subset of y.dom {
remove (z); } } }

O-trees can provide rapid access to the sets {z}.η and {y}.ρ; the subset of
operation is a bit string comparison. As shown in [16], the entire process is
effectively O(n), i.e. the first loop over all nodes, N , but in worst case O(n2).

Besides being unique (upto isomorphism) for every network N , three impor-
tant properties of I are that: (1) global connectivity is preserved by R, that is
a path < x, . . . , y, . . . , z > from x to z through y exists in N if and only if a
path < x′, . . . , y′, . . . , z′ >, where x′ = x.R, y′ = {y}.R and z′ = z.R, exists
in I [15]; (2) if y is a “center” of N with respect to either “distance” or “be-
tweenness” [2], then y ∈ I; and (3) I is comprised of chordless cycles of length
≥ 4, which themselves have interesting properties [16]. Figure 4 illustrates such
an irreducible core I (solid lines) of a 200 node network with 320 undirected
connections and 6 connected components. The remaining reducible nodes are in
a lighter font and are connected with dashed lines. Using (3), we observe that
{161}.ϕ = {10, 22, 58, 59, 83, 93, 100, 108, 174} in N , but {161}.ϕ = {161} in I.
Most of the networks we have been analyzing have several thousands of nodes,
so as networks go, 200 nodes is rather small, but it is near the limit of what can
be effectively illustrated.

So, a functional set-valued operator view of large networks can be quite re-
warding. However, our purpose is not to justify this statement, but rather show
how a set-valued functional database can be employed in practice.

5 Conclusions

A operator approach to graph and network analysis in terms of closure opera-
tors can yield interesting formal results as suggested in Section 4. But, to yield

196 R. Orlandic, J. Pfaltz, and C. Taylor

70

44

7

200

91

9

197

20

163

119 158

32

187 39

29

161

198
117

120

113

162

131

167

56

125

111

81

176

63

27
110

124

154

33

46

51

76

17

122

180

190

106

43

10478

171

149

19

25

112

49

8

130

34

178

6

58

108

105

134

136

4

169

22

35

24

181

185

13

88
13198

16

4

23

189

55
167

94
71

96

194 45
135

36

77

123

179

140
160

145

193

144

30

74

28

152

41 166

196 50

114

79
129

143

2

109

191

97

142 141

168

174

115
18

100

12

121

98

157

182

59

10

83

93

72

84
5

76

184

3

116

64

128

38

126

54

165

186

80

59

83

93

161

Fig. 4. The irreducible 53 node core of a 200 node network

computational results, it must be supported by highly effective method of func-
tional lookup and set manipulation. In Sections 2 and 3 we have described two
implementations that we have found to work rather efficiently.

However, we believe the functionality of O-tree indexing has not yet been
fully explored. Although we have not worked with networks of more than 5,000
nodes, they are well within the capacity of a three-level O-tree according to Table
1. Nevertheless, we can easily imagine even larger networks that would require
keys of length greater than 254 bits, and more than 30,000 expected objects.
Expanding these capabilities appears to be little more than a coding exercise;
yet it should be undertaken.

The objects of our research are all well-structured; but there is considerable
interest in semi-structured information retrieval. The fact that O-tree retrieval
is key type independent makes it a prime candidate for indexing such semi-
structured data. However, we have had no experience with this. It remains a
potential area of future research.

Acknowledgements. The authors would acknowledge the very helpful sugges-
tions of three unknown referees.

A Functional Database Representation of Large Sets of Objects 197

References

1. Bonin, J.E., Oxley, J.G., Servatius, B. (eds.): Matroid Theory. Contemporary
Mathematics, p. 197. Amer. Math. Soc., Providence (1995)

2. Dekker, A.: Conceptual Distance in Social Network Analysis. J. of Social Struc-
ture 6(3), 1–31 (2006)

3. Edelman, P.H., Jamison, R.E.: The Theory of Convex Geometries. Geometriae
Dedicata 19(3), 247–270 (1985)

4. Flajolet, P.: On the performance evaluation of extendible hashing and trie search-
ing. Acta Info. 20, 345–369 (1983)

5. Fredkin, E.: Trie Memory. Comm. ACM 3(6), 490–499 (1960)
6. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in

Graphs. Marcel Dekker, New York (1998)
7. Korte, B., Lovász, L., Schrader, R.: Greedoids. Springer, Berlin (1991)
8. Kumar, V.: Concurrent operations on extendible hashing and its performance.

Comm. ACM 33(6), 681–694 (1990)
9. Manning, C.D., Raghavan, P., Schültz, H.: Introduction to Information Retrieval.

Cambridge Univ. Press (2008)
10. Mikesell, D.R., Emanuel, W.R.: Interfacing an Object-Oriented Database System

to a Global Primary Productivity Simulation. In: 12th Intern’l. Scientific and Sta-
tistical Database Conf., Berlin, Germany (July 2000)

11. Orlandic, R.: Design, Analysis and Applications of Compact 0-Complete Trees.
Ph.D. Dissertation, Univ. of Virginia (May 1989)

12. Orlandic, R., Mahmoud, H.: Storage Overhead of O-trees, B-trees, and Prefix B-
trees: A Comparative Analysis. Int. J. of Foundations of Computer Science 7(3),
209–226 (1996)

13. Orlandic, R., Pfaltz, J.L.: Compact 0-Complete Trees. In: Proc. 14th VLDB Conf.,
Long Beach, CA, pp. 372–381 (August 1988)

14. Pfaltz, J.L.: Mathematical Continuity in Dynamic Social Networks. In: Datta, A.,
Shulman, S., Zheng, B., Lin, S.-D., Sun, A., Lim, E.-P. (eds.) SocInfo 2011. LNCS,
vol. 6984, pp. 36–50. Springer, Heidelberg (2011)

15. Pfaltz, J.L.: Finding the Mule in the Network. In: Alhajj, R., Werner, B. (eds.)
Intern. Conf. on Advances in Social Network Analysis and Mining, ASONAM 2012,
Istanbul, Turkey, pp. 667–672 (August 2012)

16. Pfaltz, J.L.: The Irreducible Spine(s) of Discrete Networks. In: Lin, X., Manolopou-
los, Y., Srivastava, D., Huang, G. (eds.) WISE 2013, Part II. LNCS, vol. 8181,
pp. 104–117. Springer, Heidelberg (2013)

17. Pfaltz, J.L., French, J.C.: Scientific Database Management with ADAMS. Data
Engineering 16(1), 14–18 (1993)

Real-Time Exploration of Multimedia Collections

Juraj Moško, Tomáš Skopal, Tomáš Bartoš, and Jakub Lokoč

Charles University in Prague, Faculty of Mathematics and Physics, SIRET Research Group
Malostranské nám. 25, 118 00 Prague, Czech Republic

{mosko,skopal,bartos,lokoc}@ksi.mff.cuni.cz
http://www.siret.cz

Abstract. With the huge expansion of smart devices and mobile applications,
the ordinary users are consistently changing the conventional similarity search
model. The users want to explore the multimedia data, so the typical query-by-
example principle and the well-known keyword searching have become just a
part of more complex retrieval processes. The emerging multimedia exploration
systems with robust back-end retrieval system based on state of the art similarity
search techniques provide a good solution. They enable interactive exploration
process and implement exploration queries tightly connected with the user inter-
face. However, they do not consider larger response times that might occur. To
overcome this, we propose a scalable exploration system RTExp that allows eval-
uating the similarity queries in the near real time depending on user preferences
(speed / precision). We describe building parts of the system and discuss various
real-time characteristics for the exploration process. Also we provide results from
the experimental evaluation of time-limited similarity queries and corresponding
exploration operations.

1 Introduction

The continuously growing multimedia collections provide generally unstructured data,
so it is almost impossible to completely understand what kind of information these
datasets contain and which data might be relevant for individual users. Since it is dif-
ficult to index such data or to query it using the traditional approaches (e.g., full-text
indexes), new techniques employing the similarity search paradigm [21] have emerged.

The similarity search concept applies the content-based comparison of multimedia
objects driven by object similarities. This approach typically leads to query-by-example
searching in which a user specifies the query with an initial object with additional con-
ditions. However, this type of targeted search (or controlled querying), with a sample
query object is not intuitive enough when compared to real user expectations.

In specific scenarios, the user does not really know what (s)he is searching for, so
(s)he cannot provide the appropriate query object. Instead, the user iteratively browses
or explores the database until spotting the right object(s). Here, we talk about indirect
searching. Recently, there appear many approaches to the interactive indirect search
for multimedia collections with the main focus put on multimedia exploration systems
[14,17], that aims at more sophisticated and faster kind of browsing.

We consider the exploration as a user-controlled (interactive) process of viewing and
browsing the multimedia collections in a way which is arbitrary, unpredictable, and not

H. Wang and M.A. Sharaf (Eds.): ADC 2014, LNCS 8506, pp. 198–205, 2014.
c© Springer International Publishing Switzerland 2014

Real-Time Exploration of Multimedia Collections 199

predefined at all. Initially, the system displays and visualizes a very small portion of the
underlying dataset. The user can pick an object, click on or zoom in/out specific parts
of the currently visualized items, so that the search becomes partly targeted during the
interactive search process.

The recently proposed engines [14,17,2] encounter real problems with processing
very large databases (millions of objects or more), because they do not consider the
most important challenge – to guarantee the worst query performance for arbitrarily
large collections which is the main objective of this paper. Unlike targeted querying,
in which the user accepts short delays for the query execution, during exploration the
process has to be smooth and instant. Hence, for multimedia exploration the underlying
routines have to operate in near real time to provide the illusion of a smooth process.

2 Related Work and Motivation

The concept of multimedia exploration systems has been recently introduced as the
combination of two major factors: (1) browsing multimedia collections, and (2) using
approximate similarity search [2,14,17]. Each of the systems introduces some novel
ideas such as the intuitive interface to a visualized collection [17], or the separated
middle layer in the system architecture [16].

The approximate similarity search arises from the idea of exchanging the query effec-
tiveness (precision) for the query efficiency (speed). Users adjust this trade-off at/before
the query time using various approximation parameters, for example a probability of an
error in the query result [22,6], the maximum number of similarity/distance computa-
tions allowed, or the threshold on the improvement of the query result [22].

The classification of approximate search scenarios [15] reveals different principles
and organizes them in a consistent way. One of the inspiring approaches is the RCES

which stands for reducing comparisons and early termination. Another relevant tech-
nique is the concept of incremental similarity search [20]. It works with tree index
structures and assigns higher priority to more promising nodes. Based on this prior-
ity, we traverse unprocessed nodes within the tree and stop the process whenever the
most promising node in the processing queue guarantees worse values than currently
the ”worst” node in the result set (e.g., smaller similarity than the kth nearest neigh-
bor). This technique was later proven to be range-optimal [11] and also optimal for disk
page accesses [4]. One of the first adoptions of this idea has been in spatial databases
[10] and afterwards also in metric indexes [11].

Although we could utilize any of these systems, they have to be adopted for different
purpose (multimedia exploration) than originally designed (similarity queries). As the
crucial requirement on the multimedia exploration process is a smooth navigation in
the collection, the indexes behind providing partial similarity queries have to guarantee
real-time responses, either given a real-time constraint for execution, or even anytime
query termination when no time constraint is available. If such a guarantee is satisfied,
the entire exploration system could be designed to guarantee smooth navigation of the
user in the collection, where the underlying streams of similarity queries are scheduled
and executed such that the total real-time constraint is kept.

200 J. Moško et al.

2.1 Multimedia Exploration in Mobile Devices

There is no doubt that classical computers and notebooks are being dominated by
small, smart, touch-based mobile devices constantly connected to the Internet. As a
consequence, users can search, browse, download/upload multimedia data practically
anytime and anywhere. On the other side, small displays and limited control options
represent new challenges for mobile multimedia applications trying to provide the mul-
timedia data in the most convenient and also entertaining way such as multimedia ex-
ploration can offer [2,18].

Although multimedia exploration techniques apply index support and approximate
search to improve the efficiency of whole process, to the best of our knowledge, none
of the related methods considers the real-time responses of the exploration process in
the presence of huge multimedia datasets and mobile environment. We believe that
guaranteeing a real-time response is one of the most crucial properties of a successful
multimedia exploration system, even more important than the steadily high precision
of the retrieval. Hence, we focus on approximate search techniques guaranteeing user-
defined response time and allowing occasional inaccuracies for long running queries.
Furthermore, the response time can be controlled by users who decide the trade-off
between the precision and the efficiency. For example, for a casual exploration of an
unknown collection the user prefers fast response times, but when searching for some
specific objects, the user will wait longer for a more qualitative result.

2.2 Real-Time Similarity Queries

Before we introduce our system, we provide necessary background for similarity queries
performed in limited time frames to get results near real-time. The most popular queries
are the k nearest neighbors (kNN) queries that return k most similar objects to the query
object [21]. Our main intention for similarity exploration queries is to limit the response
time. So, we define kNN(t) as the timely limited kNN query which returns up to k most
similar objects obtained from database objects accessed by the similarity index during
query processing within the restricted time frame t. These queries occur in batches de-
noted as the query stream initiated as the result of user interaction with the system.

3 Implementing RTExp System

In this section, we provide the detailed information about the proposed RTExp
(Real-Time Exploration) system and describe the data flow with typical use cases. The
architecture consists of presentation, logic, and data layer with one extra layer which
guarantees inter-layer communication and proper data flow between individual compo-
nents (see Fig. 1a). The following list outline characteristics of individual layers:

1. The presentation layer represents intuitive and comfortable graphical user interface.
Each user action to a visualized exploration space is transformed into the sequence
of exploration operations and the corresponding query stream at the logic layer.

Real-Time Exploration of Multimedia Collections 201

(a) High-level architecture (b) iPAD prototype

Fig. 1. RTExp System overview

2. The logic layer performs two main tasks: (1) translate user exploration operations
into query streams, and (2) deliver partial/final results from the data layer back to
the user. First, we decide whether (a) we terminate the currently running query
stream, or (b) we create a new query stream (Query stream generator). The Sched-
uler schedules and controls all requests with a prioritized queue based on user set-
tings, while the Dispatcher transfers query streams to be executed and the Result
processor decides which query results are propagated to the presentation layer.

3. Data layer consists of the multimedia collection with a dedicated similarity index.
We evaluate and compare several metric access methods (MAMs) [21], results are
provided in Section 5. In the future, we also plan to involve non-metric access meth-
ods [19,1]. Two factors influence real-time capabilities and system performance:
(a) different query execution plans for computationally cheap (executed ”as is”)

and expensive (approximated in some way) similarity queries. For example, in
M-tree [7] we use the top-down search strategy for cheap queries, however for
the expensive ones we apply the bottom-up approach (fast traversing to the leaf
level followed by enhancing the first results).

(b) instant evaluation of similarity queries (instant queries). The benefits of instant
queries can be utilized when (a) preferring quick results over the relevancy, (b)
terminating obsolete queries, or (c) when a rapid increase in the number of
simultaneous queries occurs.

4 Exploration Operations and User Interface

The more intuitive and ergonomic interface the client application provides, the more
likely the end users will use the system and benefit from it. Inspired by the similarity-
based layout approaches [14], we implement two most important user actions in the

202 J. Moško et al.

(a) Zooming (b) Panning

Fig. 2. Exploration user actions

exploration process – zooming (Section 4.1) and panning (Section 4.2). We select these
two actions as ideal candidates for basic exploration operations because they are intu-
itive and have been known to billions of Internet users as web mapping operations.

4.1 Zooming

Imagine we currently have a visualized set of items from the multimedia collection rep-
resented by objects Oi (see Fig. 2a). In this case, we are interested in the context of
objects similar to the specific object O8, so we zoom in to this object. The arrows show
the zooming target which subsequently reveals previously invisible objects O10, O11

. . .O14. The newly discovered objects are typically more similar than the previously
shown objects or provide the visualization of more specific object clusters. On the con-
trary, if we apply the opposite action of zooming out, we get new objects that are less
similar to the previous ones or we obtain more general object clusters.

Whenever a user executes a zooming action, we create the adequate exploration op-
eration that consists of (a) the target zooming point, (b) the object closest to the target
zooming point, and (c) objects closest to the boundaries. Zoom in initiates a single sim-
ilarity query for which the query object is the closest object to the zooming target point,
while for zoom out the query stream consists of multiple similarity queries for which
the query objects are closest objects to the bounding rectangle.

4.2 Panning

This action advances the exploration in the specific direction (see Fig. 2b). The dotted
rectangle represents the state before we apply panning, the solid one displays the new
state, while the arrows outline the panning direction.

For panning actions, we create the appropriate exploration operation which includes
several parameters such as (a) panning direction and its volume, (b) objects closest to
visualized exploration space boundaries following the panning direction, and (c) objects
that get outside the new visualized exploration space boundaries. Then, we initiate the
query stream of similarity queries for which the query objects are objects closest to
boundaries of the visualized exploration space following the panning direction.

4.3 RTExp Presentation Layer for Mobile Devices

To validate the feasibility of the proposed exploration system, we implemented the first
prototype (called RTExp) with the user interface for iPad tablets (see Fig. 1b). The

Real-Time Exploration of Multimedia Collections 203

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CoPhIR
10NN

time of termination signal (ms, log. scale)

er
ro

r

1 2 4 8 16 32 64 128 512

PPT(30)
PT(30)
Seq
MT
PMT(30)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ALOI
10NN, alpha=0.01

time of termination signal (ms, log. scale)

er
ro

r

16 32 64 128 256 512 2048

Seq
MT
PMT(30)
PT(30)
PPT(30)

Fig. 3. kNN queries on the CoPhiR and ALOI database – inter-MAM comparison

powerful slider control at the bottom enables the user to adjust the exploration process.
Sliding to the left gives more precise (but potentially slower) results, while putting the
slider to the right returns faster (yet not necessary relevant) results.

5 Experimental Evaluations

Initially, we study the performance of RTExp system and depict the comparison of all
evaluated MAMs: M-tree (MT), PM-tree (PMT), pivot tables (PT) and ptolemaic pivot
tables (PPT) on two multimedia collections (see Fig. 3). While for subset of CoPhIR
dataset [5], consisting of 1,000,000 images with cheap distance function, PM-tree is a
clear winner (and pivot tables, behave even worse than the sequential scan (Seq)), the
ALOI database [9], composed of 70,000 images with expensive SQFD [3], suits better
for pivot tables. We also see that simple implementations of instant query termination
may not be sufficient – the fastest index on ALOI reaches some reasonable results after
100ms. Hence, we need to design more specific approaches to instant query termination
in the future.

Based on the previous experimental results, we employ instant query termination
into simulation of real user exploration scenario (see Fig. 4). As the data layer, we use
PM-tree, the best approach from the previous experiment. From results we can observe
the major benefit of instant query termination - the constantly low execution time per a
single exploration operation. Hence, the exploration process is really smooth, while the
execution of the complete non-terminated operations would lead to unwanted delays.

Next, we study the precision error of exploration operations, each consists of several
similarity queries. We join results from all (terminated) queries and compute the preci-
sion error with Jaccard distance [21] by comparing these results with joined results of
complete (non-terminated) queries. The conclusion of this experiment is that the error
correlates with the time of non-terminated query in case when all queries have the same
amount of time for evaluation. Therefore, a query analyzer and/or modification of query
evaluation is really necessary to improve the precision.

204 J. Moško et al.

● ● ● ● ● ● ● ● ● ●

5
0
0

1
5
0
0

2
5
0
0

3
5
0
0

CoPhIR
User scenario

exploration operation

ti
m

e
 (

m
s
)

ZOOM_IN
PAN

ZOOM_OUT
PAN

ZOOM_IN
PAN PAN

ZOOM_OUT

ZOOM_IN
PAN

●

Exact queries

Real−time sim. queries

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

CoPhIR
User scenario

exploration operation

e
rr

o
r

ZOOM_IN
PAN

ZOOM_OUT
PAN

ZOOM_IN
PAN PAN

ZOOM_OUT

ZOOM_IN
PAN

Fig. 4. User exploration scenario - time and precision error of exploration operations

6 Challenges and Future Work

During the development of RTExp system prototype, we experienced several issues that
we would like to highlight, suggest possible solutions, and address them afterwards.

– Continuous query evaluation. For continuous performance, we intend to adapt
the publish/subscribe data delivery [13]. Whenever a user executes an action, the
visualized exploration space is continuously updated with partial/final results, while
the system is evaluating the query stream in the background (Result processor).

– Visualization of the multimedia collection. We do not address the nontrivial prob-
lem of mapping the multimedia collection to the visualization space. We use the
physical model based on the multidimensional scaling and the simulated annealing
[8], successfully used and verified in another exploration system [12]. Later, we
intend to employ more sophisticated solution such as the one suggested in [14].

Besides the already mentioned issues, in the future we want to focus on improving
the precision of returned results while keeping the evaluation time at the same or even
shorter values (e.g., employing data annotations).

7 Conclusion

Driven by requirements of end users, such as the modern user interface or truly continuous
exploration, we propose the real-time multimedia exploration system RTExp that meets
these criteria by providing scalable multi-layered architecture, applying real-time simi-
larity exploration queries, and delivering intuitive user interface. Besides the description
of the proposed system, we also verify our ideas in practice by developing a functional
prototype with a user interface targeted for mobile devices and evaluating the system
performance which demonstrates the viability of our multimedia exploration system.

Acknowledgments. This research has been supported in part by Czech Science Foun-
dation project 202/11/0968 and by Grant Agency of Charles University projects 567312
and 910913.

Real-Time Exploration of Multimedia Collections 205

References

1. Bartoš, T., Skopal, T., Moško, J.: Towards Efficient Indexing of Arbitrary Similarity.
SIGMOD Record 42(2), 5–10 (2013)

2. Beecks, C., Skopal, T., Schöffmann, K., Seidl, T.: Towards large-scale multimedia explo-
ration. In: DBRank 2011, Seattle, WA, USA, pp. 31–33 (2011)

3. Beecks, C., Uysal, M.S., Seidl, T.: Signature quadratic form distance. In: Conference on
Image and Video Retrieval, CIVR 2010, pp. 438–445. ACM, New York (2010)

4. Böhm, C., Berchtold, S., Keim, D.A.: Searching in high-dimensional spaces: Index structures
for improving the performance of multimedia databases. ACM 33(3), 322–373 (2001)

5. Bolettieri, P., Esuli, A., Falchi, F., Lucchese, C., Perego, R., Piccioli, T., Rabitti, F.: CoPhIR:
A test collection for content-based image retrieval. CoRR abs/0905.4627v2 (2009)

6. Chávez, E., Navarro, G.: A probabilistic spell for the curse of dimensionality. In: Buchsbaum,
A.L., Snoeyink, J. (eds.) ALENEX 2001. LNCS, vol. 2153, pp. 147–160. Springer, Heidelberg
(2001)

7. Ciaccia, P., Patella, M., Zezula, P.: M-tree: An Efficient Access Method for Similarity Search
in Metric Spaces. In: VLDB 1997, pp. 426–435. Morgan Kaufmann Publishers Inc. (1997)

8. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. Softw.
Pract. Exper. 21(11), 1129–1164 (1991)

9. Geusebroek, J.M., Burghouts, G.J., Smeulders, A.W.M.: The amsterdam library of object
images. International Journal of Computer Vision 61(1), 103–112 (2005)

10. Hjaltason, G.R., Samet, H.: Distance browsing in spatial databases. ACM Trans. Database
Syst. 24(2), 265–318 (1999)

11. Hjaltason, G., Samet, H.: Incremental Similarity Search in Multimedia Databases. Computer
science technical report series, University of Maryland (2000)

12. Lokoč, J., Grošup, T., Skopal, T.: Image exploration using online feature extraction and
reranking. In: ICMR 2012, pp. 66:1–66:2. ACM, New York (2012)

13. McIlvride, B.: Nine core requirements for real-time cloud systems (January 2012),
http://real-timecloud.com/2012/01/12/
nine-core-requirements-for-real-time-cloud-systems

14. Nguyen, G.P., Worring, M.: Interactive access to large image collections using similarity-
based visualization. Journal of Visual Languages and Computing 19(2), 203–224 (2008)

15. Patella, M., Ciaccia, P.: Approximate similarity search: A multi-faceted problem. J. of Dis-
crete Algorithms 7(1), 36–48 (2009)

16. Santini, S., Jain, R.: Integrated browsing and querying for image databases. IEEE Multime-
dia 7(3), 26–39 (2000)

17. Schaefer, G.: A next generation browsing environment for large image repositories. Multi-
media Tools and Applications 47, 105–120 (2010), doi:10.1007/s11042-009-0409-2

18. Schoeffmann, K., Ahlstrom, D., Beecks, C.: 3D Image Browsing on Mobile Devices. In: ISM
2011, pp. 335–336. IEEE Computer Society, Washington, DC (2011)

19. Skopal, T.: Unified framework for fast exact and approximate search in dissimilarity spaces.
ACM Trans. Database Syst. 32(4) (November 2007)

20. Uhlmann, J.K.: Implementing Metric Trees to Satisfy General Proximity/Similarity Queries
(1991) manuscript

21. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space Approach.
Springer (2005)

22. Zezula, P., Savino, P., Amato, G., Rabitti, F.: Approximate similarity retrieval with m-trees.
The VLDB Journal 7(4), 275–293 (1998)

http://real-timecloud.com/2012/01/12/nine-core-requirements-for-real-time-cloud-systems
http://real-timecloud.com/2012/01/12/nine-core-requirements-for-real-time-cloud-systems

XEdge: An Efficient Method for Returning Meaningful
Clustered Results for XML Keyword Search�

Wenxin Liang1,ρρ, Yuanyuan Gan2, and Xianchao Zhang3

School of Software, Dalian University of Technology, Dalian 116620, China
{wxliang,xczhang}@dlut.edu.cn, roundcircle@foxmail.com

Abstract. In this paper, we investigate the problem of returning meaningful clus-
tered results for XML keyword search. We begin by presenting a multi-granularity
computing methodology, in order to make full use of the structural information
of XML trees to extract features. In this method, we first propose the concept
of Cluster Compactness Granularity (CCG) to partition the search results into
different clusters, which enable users to precisely and quickly seek their desired
answers, according to the connection compactness between LCA nodes. We then
propose the concept of Subtree Compactness Granularity (SCG) to rank individ-
ual results within clusters and measure the query result relevance. Furthermore,
we define a novel semantics of Compact LCA (CLCA), which not only improves
the accuracy by eliminating redundant LCAs that do not contribute to meaning-
ful answers, but also overcomes the shielding effects of SLCA-based methods.
Using the proposed CCG and SCG features and the CLCA semantics, we fi-
nally implement an efficient algorithm called XEdge for generating meaningful
clustered results. Comparing with the existing methods such as XSeek and XK-
LUSTER, the experimental results demonstrate the effectiveness of the proposed
multi-granularity clustering methodology and validity of the complemented rank-
ing strategy, as well as the meaningfulness of CLCA semantics.

1 Introduction

Keyword search is a proven user-friendly way to query XML databases, since users
do not have to learn query language that convey semantic meanings, and can process
queries without any prior knowledge about the structure of underlying data. Numer-
ous studies [1] [2] [3] [4] [5] and [6] on XML keyword search have been done to re-
trieve results from large document collections. However, most of them are focusing on
proximate keyword search and the results obtained are far from satisfactory. Therefore,
performing keyword searches over XML documents results in such issues as follows.

Meaningless Results. Existing methods usually return answers that are either ir-
relevant to the user’s intention, or not meaningful or informative enough. In addition,
since XML keyword search engines return XML snippets as final answers, there are

� This work was partially supported by NSFC (No. 61272374, 61300190), Program for
NCET in University of China (No. NCET-11-0056), Specialized RFDP of Higher Education
(No.20120041110046), Key Project of Chinese Ministry of Education(No. 313011) and the
Fundamental Research Funds for the Central Universities (No. DUT13JR04).

�� Corresponding author.

H. Wang and M.A. Sharaf (Eds.): ADC 2014, LNCS 8506, pp. 206–213, 2014.
c© Springer International Publishing Switzerland 2014

XEdge: An Efficient Method 207

�

�

�

�

1 bib

2 conf

3 name

4 ieee cloud computing

5 sessions

6 session

7 paper

8 title

9 QoS computing

10 author

11 Tom

12 name

13 QoS

14 paper

15 author

16 John

17 title

18 pervasive cloud

19 journal

20 title

21 distributed computing

22 issue

23 article

24 title

25 Computing Theory

26 author

27 Cloud

28 cite

29 paper

30 title

31 cloud computing explained

32 book

33 title

34 cloud computing

35 publisher

36 Springer

37 author

38 cloud

Fig. 1. Example XML tree

definitely overwhelming results containing many meaningless ones. Figure 1 shows an
example XML tree, in which the numbers are node IDs sorted by pre-order sequence,
and the nodes circled by rectangles are the candidate LCAs(Lowest Common Ances-
tors). Considering the keyword query Q = ”cloud computing”, session(6) should be
a meaningless result of this query, because matching nodes (9) and (18) do not belong
to the same paper.

Shielding Effect. Existing SLCA(Smallest Lowest Common Ancestor)-based ap-
proaches [2] proposed various strategies for identifying relevant matches by disquali-
fying certain SLCA nodes. The basic idea is that a candidate LCA node is considered
to be optimal if it is relatively lower. Considering the query Q again, node (23) and
(31) which contain the both keywords should be the correct answers. However, the re-
sult should be the lower subtree rooted at node (31), which omits upper one rooted at
article(23). Therefore, the SLCA-based methods will yield shielding effects on up-
per LCA nodes, which discard some relevant answers. Accordingly, how to obtain the
meaningful results and overcome the shielding effects of SLCA-based methods be-
comes urgent.

Results Clustering. Consider the query Q with multiple searching semantics, such
as: (i) find conferences about cloud computing; (ii) find papers whose titles contain
cloud computing; (iii) find books about cloud computing; (iiii) find papers about com-
puting written by Cloud. Users may be interested in one or more of these interpretations.
Since simple list of results is not helpful in this case, returning clustered results can be
adopted to address this issue from a different perspective.

Result Ranking. There are multiple candidate answers in one cluster. How to mea-
sure the relevance of each search intention within clusters and rank these individual
results based on relevance are challenging. The subtree rooted at article(23) should be
returned as a result because the search intentions of users are diverse. However, such
kind of results should be given a lower rank, as they are not the major search intentions.

208 W. Liang, Y. Gan, and X. Zhang

There are a number of approaches such as [3] and [6] to compute result proximity, but
they all focus on the issue of ranking the generated clusters.

The main contributions of this paper include: (1) We propose the concept of Cluster
Compactness Granularity (CCG) to partition the search results into different clusters
based on the connection compactness between LCA nodes. (2) We present the concept
of Subtree Compactness Granularity (SCG) to rank individual results within clusters
and measure the query result relevance. (3) We define a novel semantics of Compact
LCA (CLCA), which not only improves the accuracy by eliminating redundant LCAs
that do not contribute to meaningful answers, but also overcomes the shielding effects
of SLCA-based methods. (4) Using the proposed clustering algorithm based on CCG
and SCG and the ranking mechanism based on CLCA, we finally implement an effi-
cient graph-based algorithm called XEdge for generating meaningful clustered results.
(5) Comparing with the existing methods such as XSeek and XKLUSTER, the experi-
mental results demonstrate the effectiveness of our proposed methods.

2 Multi-granularity Methodology

2.1 Cluster Compactness Granularity (CCG)

Definition 1. [Link Branch(LB)]A link branch is a top-down path from the top node to
the bottom one. The length of Link Branch (LLB) between any two nodes equals to the
amount of nodes in the path.

In this paper, we utilize a simplified XPath-like representation to modelLB. For exam-
ple, the LB between journal(19) and article(23) in Fig. 1 is journal(19)/issue(22)
/article(23), and obviously LLB((19), (23)) = 3.

Definition 2. [Cluster Compactness Granularity(CCG)] Given two matching subtrees
rooted at u and v (u ≥= v), the cluster compactness granularity between them, CCGu,v

is calculated by Equation 1, where DEPTH(r) denotes the depth of a subtree’s root
node r (in particular, the depth of the root in a document tree is 1).

CCGu,v =
LLB(u, LCA(u, v)) + LLB(v, LCA(u, v))− 1

DEPTH(LCA(u, v))
(1)

By calculating the CCG between any two LCA nodes in Fig. 1, we can obtain a
CCG matrix as shown in Table 1. The CCG satisfies the actual connection relationship
between any two LCA nodes. Therefore, we can cluster the results such that the CCG of
results is as small as possible within the same cluster, and as large as possible in different
clusters. In this way, we can finally obtain three clusters, C1 = {(2), (4), (6)}, C2 =
{(19), (23), (31)} and C3 = {(32), (34)}, which represents three different matching
semantics, ”conference”, ”journal” and ”book”.

2.2 Subtree Compactness Granularity (SCG)

Definition 3. [Size of Matching Subtree(SMS)]Given a matching subtree T (r), the size
of matching subtree SMS(T (r)) is defined as the total length of Link Branch from root
r to each matching node mi, which can be calculated by the following equation.

XEdge: An Efficient Method 209

Table 1. CCG Matrix(Preorder Sequence)

Node IDs

CCG Node IDs
(2) (4) (6) (19) (23) (31) (32) (34)

(2) 0 1.5 1.5 3 5 9 3 5
(4) 1.5 0 2.5 5 7 11 5 7
(6) 1.5 2.5 0 5 7 11 5 7
(19) 3 5 5 0 1.5 3.5 3 5
(23) 5 7 7 1.5 0 1.25 5 7
(31) 9 11 11 3.5 1.25 0 9 11
(32) 3 5 5 3 5 9 0 1.5
(34) 5 7 7 5 7 11 1.5 0

SMS(T (r)) =

n∑

i=1

|LLB(r,mi)| (2)

Definition 4. [Subtree Compactness Granularity(SCG)] For a matching subtree T (r),
the subtree compactness granularity (SCG) is defined by Equation 3 as the percentage
of the size of T (r), SMS(T (r)) out of the depth of the root of T (r), DEPTH(r).

SCG(T (r)) =
SMS(T (r))

DEPTH(r)
(3)

Equation 3 indicates that a matching subtree with smaller SCG means the result is
more meaningful and should be given a higher rank. Given one LCA node l, it is obvious
that more than one matching subtree rooted at l can be retrieved during traversing the
XML tree. In order to clarify such matching subtrees, we present SCGSet that denotes
the various matching subtrees rooted at one LCA node. All the SCGSets calculated
from Fig. 1 are shown in Table 2.

Table 2. Example SCGSets

LCA nodes SCGSet LCA nodes SCGSet
conf(2) {4, 4} article(23) {1.25, 1.75, 1.75}
ieee cloud computing(4) {0.25} cloud computing explained(31) {0.125}
session(6) {1.75} book(32) {2.5}
journal(19) {3.5, 4.5} cloud computing (34) {0.25}

2.3 Combination of CCG and SCG

Given a set of LCA nodes, it is reasonable to cluster them based on CCG theory, such
that the CCG value of any two LCA nodes in the same cluster is as small as possible.
Within one cluster, the individual LCA node may have different SCGs which indicate
different matching semantics. Take cluster C1 = {(2), (4), (6)} as an example, the
subtree rooted at node (4) is top-ranked because of minimum SCG score with the

210 W. Liang, Y. Gan, and X. Zhang

semantics of ”find the conference on cloud computing”, which is considered to be a
major search intention. As for node (2), it contains two matching subtrees representing
minor search intentions, and hence they are given the lowest rank because of maximum
SCG scores. However, node (6) is not a meaningful result and should be discarded from
the result. To address this issue, we present a novel CLCA semantics in the next section.

2.4 Identifying CLCAs

Definition 5. [Summary Tree(ST)] It can be modeled as a tree, and each node g is
recognized as a group consist of a set of nodes denoted as g.pid[]. (1) g.id is denoted by
the node identifier of the first node in group g. (2) Each index value k(k ≤ 0) of g.pid[]
corresponds to one element node in group g, denoted as g : k. (3) g.pid[k] points to one
element node in group gp which is the parent node of group g, that is, gp : g.pid[k] is
the parent node of g : k.

Definition 6. [Compact LCA(CLCA)] Given a matching subtree T (r) rooted at r and
m matching nodes n1, n2, · · · , nm, CLCA(n1, n2, · · · , nm) = r, iff, for ∈1 < i ∧
j ∧ m, ni.pid[0] = nj .pid[0], that is, m matching nodes are homogenous.

(a) Sample Tree (b) Summary Tree

Fig. 2. Sample Tree and Summary Tree

An example ST shown in Fig. 2(b) is summarized from Fig. 2(a). For the query
Q = ”cloud computing”, paper(9) is actually a CLCA node as its matching nodes
satisfy that (11).pid[0] = (13).pid[0] = 1, and should be deemed meaningful re-
sults. However, paper(2) and paper(9) belong to different top-down paths, as a result,
(4).pid[0] ≥= (13).pid[0]. Thus, the LCA node bib(1) is not considered to be a CLCA
node and should be discarded.

3 XEdge Algorithm

3.1 Inferring GRCs

Definition 7. [Graph-based Result Cluster (GRC)] Given an XML document tree T,
suppose that Vclca denotes the set of CLCA nodes. The Graph-based Result Cluster
GRC is defined as a connected directed graph G(V,E) such that: 1) V ∪ Vclca; 2) For
any (u, v) ⊂ E, ∈v′ ⊂ Vclca(v

′ ≥= v) such that CCGu,v � CCGu,v′ .

XEdge: An Efficient Method 211

The basic idea is to infer GRCs while traversing data tree, and it operates like extract-
ing shortest paths. The edges form many isolated GRCs during the generating process,
and thus an individual connected GRC represents a unique cluster.

The calculation of GRCs starts from any CLCA node u ⊂ Vclca, in each step we add
the edge (u, v) with the minimum CCG score to the GRC until all the nodes u ⊂ Vclca

have been traversed. Example GRCs extracted from Fig. 1 are shown in Fig. 3.

2

4

19

23

31

32

34

1.5 1.5 1.5

5
4

5
4

1.5 1.5

Fig. 3. Example GRCs extracted from Fig. 1

3.2 Algorithm XEdge

Using the proposed CCG and SCG features and the CLCA semantics, an efficient al-
gorithm called XEdge for generating meaningful clustered results is implemented by
the following steps. Given a keyword query Q on XML document tree T , we begin by
identifying candidate matching subtrees. After that, massive matching subtrees MT (li)
(li ⊂ Vlca) contained all LCA nodes will be returned. Subsequently, for each matching
subtree MT (li), we check whether li is a CLCA node based on Definition 6. If the
node li is not a CLCA, this subtree will be removed from the result set, otherwise it
will be used to calculate the SCG. Next, we calculate CCG between any two CLCAs
and extract GRCs based on Definition 7. Then, the extracted GRCs can be ranked by
using the SCG features, and we finally obtain the ranked result clusters, which not only
improves the search accuracy, but also overcomes the shielding effects of SLCA-based
approaches.

4 Experimental Evaluation

We compared the XEdge algorithm with XSeek [2] and XKLUSTER [3] using three
real datasets: DBLP, Mondial and SigmodRecord downloaded from [7]. All algorithms
were implemented in Java and run on a 2.93GHz Pentium(R) Dual-Core machine with
2GB RAM running Windows 7. We selected 7 keyword queries with less than 5 terms
for each dataset. We employed three metrics, the number of clusters, precision and recall
to evaluate all the algorithms.

212 W. Liang, Y. Gan, and X. Zhang

4.1 Number of Clusters

We evaluated the number of clusters generated by XEdge and XKLUSTER using Sig-
modRecord dataset. Since XKLUSTER is a distance threshold-dependentalgorithm, we
used different distance threshold (0, 1.0, 2.0, 4.0, 9.0) in the experiments. The experi-
mental results are shown in Fig. 4. For such queries containing less keywords as S3 and
S4, XKLUSTER generates almost the same amount of results as XEdge does when the
threshold equals to 4.0 and 9.0. However, for such queries containing more keywords
as S1, S6, and S7, XKLUSTER is not enough efficient compared with XEdge because
it generates too much number of clusters that may include more meaningless results.
Besides, the experimental results also illustrate that the number of clusters generated by
XKLUSTER is sensitively changed when using different threshold even for the same
query. While, the number of clusters generated by XEdge is stable and much less than
those generated by XKLUSTER. Therefore, XEdge is more effective and adaptable for
the real applications than XKLUSTER.

Fig. 4. The comparison between XKLUSTER and XEdge

4.2 Effectiveness of Methodology

To evaluate the effectiveness of the proposed method, we compared XEdge with XK-
LUSTER and XSeek using precision and recall. The experimental results demonstrate
that XEdge outperforms the two baseline methods significantly in terms of precision
and recall. From Fig. 5(a) and 6(a), XEdge achieves both high recalls and precisions
on Mondial and DBLP datasets in most queries. XKLUSTER achieves high precision
except for the queries M4 ∃ M7 , D3 , D4 and D6 containing more than two key-
words, because XKLUSTER utilizes the ”OR” logic in these queries, which causes
more false-positives. XSeek achieves low precision in queries M1, M2, D1, D2, D6
and D7, because it has shielding effect towards higher LCA nodes. As observed from
Fig. 5(b) and 6(b), XKLUSTER achieves high recalls in almost all the given queries.
This is because XKLUSTER supports ”OR” logic, namely, it can capture more seman-
tics and hence possibly outputs more meaningful results. However, as analyzed before,
the high recalls may result in low precisions especially when the queries containing
more keywords.

XEdge: An Efficient Method 213

(a) Precision on Mondial (%) (b) Recall on Mondial (%)

Fig. 5. Measures on Mondial dataset for the keyword queries

(a) Precision on DBLP (%) (b) Recall on DBLP (%)

Fig. 6. Measures on DBLP dataset for the keyword queries

5 Conclusion

We have presented a multi-granularity methodology called XEdge, which makes full
use of the structural information of XML documents under different granularities. We
also address the issue of meaningful results clustering based on CCG and relevance ori-
ented ranking strategy within clusters based on SCG. Besides, we define a novel seman-
tics CLCA, which improves both the accuracy and completeness of search results. The
experimental results indicates the efficiency and effectiveness of our proposed method.

References

1. Liu, Z., Chen, Y.: Identifying meaningful return information for xml keyword search. In:
SIGMOD, pp. 329–340 (2007)

2. Liu, Z., Chen, Y.: Return specification inference and result clustering for keyword search on
xml. ACM TODS 35(2), 1–47 (2010)

3. Yang, W., Zhu, H.: Semantic-distance based clustering for xml keyword search. In: Zaki,
M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010. LNCS, vol. 6119, pp. 398–409.
Springer, Heidelberg (2010)

4. Liu, Z., Chen, Y.: Processing keyword search on xml: A survey. World Wide Web 14(5-6),
671–707 (2011)

5. Zhou, R., Liu, C., Li, J., Yu, J.X.: Elca evaluation for keyword search on probabilistic xml
data. World Wide Web 16(2), 171–193 (2013)

6. Liu, X., Wan, C., Chen, L.: Returning clustered results for keyword search on xml documents.
IEEE TKDE 23(12), 1811–1825 (2011)

7. Washington xml data repository,
http://www.cs.washington.edu/research/xmldatasets/

http://www.cs.washington.edu/research/xmldatasets/

Logics for Representing Data Mining Tasks

in Inductive Databases

Hong-Cheu Liu, Millist Vincent, Jixue Liu, and Jiuyong Li

School of Information Technology and Mathematical Sciences
University of South Australia

Mawson Lakes Campus, Adelaide 5095, Australia
{Hong-Cheu.Liu,Millist.Vincent,Jixue.Liu,Jiuyong.Li}@unisa.edu.au

Abstract. We present a logical framework for querying inductive
databases, which can accommodate a variety of data mining tasks, such
as classification, clustering, finding frequent patterns and outliers detec-
tion. We also address the important issues of the expressive power of
inductive query languages. We show that the proposed logic program-
ming paradigm has equivalent expressive power to an algebra for data
mining presented in the literature [1].

1 Introduction

The integration of data mining with the underlying databases systems has led to
the development of the concept of an inductive database which, while originally
proposed some years ago [2], remains an active research area [3,4]. The key idea of
inductive database systems is that patterns (or models) are treated in the same
way as data, i.e. as the first class citizens. In this context, an inductive database
instance contains data, patterns, models and mixture of these objects [3]. In
inductive database systems, the query language can be used to perform a number
of tasks such as specifying constraints; retrieving, manipulating and applying
interesting data, patterns, models; and matching data with specified patterns
or models. The distinctive feature of an inductive database system compared to
a general data mining system is that all knowledge discovery processes can be
seen as an extension of the query session [2].

While the topic of data mining and knowledge discovery has made important
advances over the past two decades [5], there is still a lack of a general formal
framework for representing data mining and knowledge discovery tasks. [6,3].
This issue is well recognised, and a constant theme found in data mining litera-
ture is that the knowledge discovery processes should be supported by database
technology, and that data mining methods should be integrated into a database
system [3,7,2,8]. There is no doubt that the theoretical foundations and theory-
directed system developments will have to advance significantly before it can
be claimed that data mining is a self-contained and well developed data science
similar to relational database theory.

Inductive databases will become increasingly important as the volumes of
data increase, for reasons we now outline. The problem with many stand-alone

H. Wang and M.A. Sharaf (Eds.): ADC 2014, LNCS 8506, pp. 214–222, 2014.
c© Springer International Publishing Switzerland 2014

Logics for Representing Data Mining Tasks in Inductive Databases 215

data mining algorithms is that they do not scale to very large data sets, and so
will not be useful in the coming era of ‘big data’ [9]. The advantage of inductive
databases in this context is that since previously mined knowledge patterns are
stored, these patterns can be incrementally updated when new data is added to
the database rather than having to discover the pattern from scratch. In general,
the incremental approach is much more efficient than recompilation from scratch.
Also, for new data mining tasks posed to an inductive database, they can often
be expressed as compositions and/or combinations of known mining tasks which
are already stored in an inductive database. For example, an analyst might wish
to find a collection of frequent item-sets purchased from a retail chain. The
analyst may then combine these itemsets with a decision tree which classifies
customers according to credit risk or income, which enables frequent itemsets
to be further analysed according to customer type. Such composition of data
mining tasks can be easily expressed in a logic programming framework, which
is also amenable to optimisation.

The success of inductive databases will depend on whether they can efficiently
and effectively mine complex and/or structured data/pattern/models and reason
about query evaluation and optimisation. Several projects, based on ad hoc
extensions to SQL, have made a number of contributions including exploring
and demonstrating some of the key features required in an inductive DBMS
[10,11]. However, these SQL-based extensions have a number of limitations. The
first is that the SQL language was originally designed for the retrieval of data,
not for storage of patterns and models, and so is ill suited to expressing many
data mining tasks. The second limitation is that these extensions are ad hoc and
they also lack a unifying formal framework in the way that relational databases
are founded on the relational model. Finally, the SQL extensions have been of
a declarative nature and the issue how to efficiently implement such extensions
has not been addressed.

An alternative approach to developing inductive databases is based on logic
programming. The advantage of this approach is that it is much easier to describe
and compose data mining tasks in this framework, and also some of the work
has addressed the issue how to effectively implement this logic-based approach.
Also, because of the declarative nature of logic programming it is amenable
to implementation and optimisation as already shown in logic programming
languages such as Datalog. However, the limitation of previous work using this
logic-based approach is that they are based on the flat relational model which
makes them awkward to use in data mining tasks which inherently use more
complex data such sequences and sets.

In this paper, we extend previous work on logic-based approach to inductive
databases by proposing a new approach based on the complex value data model,
as opposed to the flat relational model used in previous work. The motivation
to doing this is to overcome the limitation just discussed of the flat relational
approach in handling those data mining tasks which naturally involve complex
data, such as sequences and sets.

216 H.-C. Liu et al.

In more detail, the main results of this paper are summarised as follows.

– We adopt a complex value data model for integrating data mining into
databases which is easy to model semi-structured/complex structured data
objects to be mined.

– We demonstrate that various data mining tasks including frequent pattern
mining, decision tree induction, clustering and outliers detection application,
can be expressed in our logic programming framework. The closure property
of our language enables the composition of query results.

– We show that the expressive power of our proposed logic approach is equiva-
lent to the data mining algebra presented in [1], which is slightly different to
the nested relational algebra extended with aggregations proposed in [6]. As
there is trade-off between the expressive power of queries and data complex-
ity, in this article we only consider complex value calculus/algebra extended
with aggregations and fixpoint operator, rather than Turing machine com-
plete language. The proposed query class already can express most data
mining tasks.

2 Logic Foundations for Inductive Queries

2.1 Deductive vs Inductive Databases

There is an analogy between deductive databases and inductive databases. They
both are formalised in first-order (or Monadic second order) logic expressed
in logic programming setting. However, there exists significant difference on
semantics interpretation and data manipulation approach in these two types
of databases. In deductive databases, queries produce new tuples (facts) from
the known extensional database. For example, recall the classical logic pro-
gram for computing the transitive closure of a graph G: T (x, y) ≥ G(x, y),
T (x, y) ≥ G(x, z), T (z, y). This program produces all binary relations which
are the transitive closure of G. The set of (x, y) already exist in the originally
database.

In contrast, in inductive databases we integrate data mining with databases.
In inductive databases we are more interested in finding new patterns and/or
models and conducting data analysis in addition to data manipunation. For a
simple example, suppose that we have a database D = {aa, bb, ab}. We apply an
algorithm to generate a pattern view v1 = freq(t,D) ≤ 2, where t ∈ D, freq
denotes the frequency of t occurring in D. At this point, v1 = {a, b}. When we
update database D by inserting {abc}. Then v1 would be changed to v1∧ {ab}.
They not only store original data set but also store mined patterns/models.

2.2 Concept Learning

One of the most basic tasks in machine learning is inductive concept learning .
The task of inductive concept learning is defined as follows.

Logics for Representing Data Mining Tasks in Inductive Databases 217

Definition 1. Given U and a concept CP, find a hypothesis (classifier) H which
is able to distinguish whether x ∈ CP, for each x ∈ U .

A pattern class is a set of objects which satisfy some conditions (e.g., length,
frequency, etc). Informally, let D be a data set, P a pattern class. LP denotes
the language describing the pattern class P . A model M can be generated by
some data mining task. An inductive database I = D ∧ P ∧M.

Definition 2. Given an inductive database instance I and a pattern discovery
task can be specified as a query q such that q(I) = {p | (I,LP) |= p},
Definition 3. Given an inductive database instance I and a data set E, E ∪
I, consisting of examples of pairs (x, y). x is of type Tx and y is of type Ty.
A learning predictive model can be specified as a query qE(I) = {M | I |=
M, (x, y) ∈ E , (x, ŷ) .

= M⊂ y ∃ ŷ}, where M is a predictive model and y, ŷ are
observed and predicated values respectively.

.
= denotes an example satisfying a

model. ∃ denotes that two values match closely.

Definition 4. Given an inductive database instance I and a set of examples
E, E ∪ I. A clustering task can be specified as a query: qE(I) = {Ci | ⊆x ∈
Ci, y ∈ Cj , i ≡= j, fd(x, y) ≤ c and ⊆x, y ∈ Cl, 1 ≤ l ≤ k, fd(x, y) < c

′}, where Ci

are mined clusters and fd is a distance metric function for measuring similarity
between two objects. c and c

′
are threshold values.

2.3 Constraint-based Mining

Constraint-based mining is a core technique used in inductive query evaluation
since constraints can be used to confine the search space.

Definition 5. A constraint is a predicate formula ϕ applied to a subset of the
data set contained in an inductive database I, ϕ : Powerset(D) �→ {true, false}
or is a specific criterion which holds in P or M .

Example 1. Let D be a data set of an inductive databases with a language of
patterns LP . An association rule is an element of the set q(D) = {(A,B) | A,B ∈
LP , freq(A ∧ B,D) ≤ s and freq(A ∧ B,D)/freq(A,D) ≤ c}. Where s is the
support threshold and c is the confidence threshold. The query result (A,B)
stands for an association rule A ⇒ B.

2.4 Fixpoint Operator

We define a fixpoint operator which allows the iteration of calculus formulas
up to a fixpoint. This inductive mining loop operator is inspired by the the
viewpoint that most data mining algorithms start out with an initial set of
examples, possibly empty, then iteratively refine it until a termination condition
is satisfied. The motivation for defining a fixpoint operator in a data mining
query language is to provide an alternative way to achieve data mining tasks
and to assist the development of a logic database language with data mining
mechanisms for finding patterns, models extraction, obtaining both induced and
deduced knowledge.

218 H.-C. Liu et al.

The inflationary version of the fixpoint operator is presented as follows. Let
R be an inductive database schema, and T be a complex value relation schema
not in R. Let S denote the schema R ∧{T }. Let ϕ(T) be a formula using T and
relations in R, with some pattern mining constraints. Given an instance I over
R, μT (ϕ(T)) denotes the relation that is the limit, if it exists, of the sequences
{λn}n∪0 defined by λ0 = ∅ ; λn = λn−1∧ϕ(λn−1), n > 0. This definition ensures
that the sequence {λn}n∪0 is increasing: λi−1 ⊆ λi for each i > 0. As there are
finitely many tuples (items) that can be added, the sequence converges in all
cases. That is, there exists some k for which λk = λj for every j > k. Clearly, λk

holds the set of patterns of R. Note that λk = ϕ(λk), so λk is also a fixpoint of
ϕ(T). The relation λk thereby obtained is denoted by μT (ϕ(T)). By definition,
μT is an operator that produces a new relation (the fixpoint λk) when applied
to ϕ(T).

Example 2. Let D = (TID,List of item) be a transaction table. List of item
is a set valued attribute. The frequent itemset relations λn holding pairs of
itemset and count can be defined inductively using the following formula

μT i [G = (itemsetGcount(TID)(D) ⊂ itemset ∪ List of item ⊂ |itemset| =
i) ⊂G[count] ≤ s ⊂ T = G]

Where G denotes an aggregation function, μT i denotes the fixpoint operater
at the iteration step i.

3 A Logic Query Language

Like deductive databases, the notion of inductive databases can be specified
in logic programming languages, such as Datalog. The key idea of the model-
theoretic approach is to view the program as a set of higher-order sentences that
describes the desired answer. Thus the inductive database instance consists of
the mined patterns and models satisfying the sentences. Such an instance is also
called a model of the sentences.

3.1 Frequent Pattern Mining

We illustrate an example for the frequent pattern mining task with some con-
straint.
Example 3. Let a transaction relation be T = (ID, Items) and each item in the
transaction database has an attribute value (such as profit) stored in a separate
table Profit. The constraint Cavg ∩ avg(S) ≤ 25 requires that for each itemset
S, the average of the profits of the items in S must be equal or greater than 25.
The frequent pattern mining task is to find all frequent itemsets such that the
above constraint holds. We express it as inductive clauses as follows.

cand(J, ID) ≥ T (ID, Items), J ∪ Items
freq(J, count < ID >) ≥ cand(J, ID)
cfp(J, SUM < value >)≥ freq(J, c), c > δ, Profit(item, value), item ∈ J
Ans(Items) ≥ cfp(J, SUM), avg = SUM/|J |, avg ≤ 25

Logics for Representing Data Mining Tasks in Inductive Databases 219

3.2 Cluster Analysis: Partitioning Method

The k-means method takes the input parameter, k, and partitions a set of n
objects into k clusters. We arbitrarily choose k objects from data as the initial
cluster centers stored in table cluster(c, ∅y〉,m), wheremean is a function used to
calculate the cluster mean value. We use grouping construct mechnism adopted
from the language LDL. ∅y〉 is a set of values which belongs to class c.

For each of the remaining objects, an object is assigned to the cluster to
which it is the most similar, based on the distance between the object and the
cluster mean. It then computes the new mean for each cluster. Eventually, no
redistribution of the objects in any cluster occurs and so the process terminates.

The following shows the clustering process.

Example 4. The clustering process can be expressed as follows.

new cluster(c,∅z〉)≥r(x), cluster(c,∅y〉,m), min(distance(x,m)), ins(x,∅y〉, ∅z〉)
new cluster(c, ∅y〉)≥new cluster(c, ∅z〉) , cluster(c, ∅y〉,m), x ∈ {∅z〉} ∩ {∅y〉},

delete(x, ∅y〉)
cluster(c, ∅w〉,m) ≥new cluster(c, ∅w〉) , m = mean{∅w〉}

distance is a similarity function. ins(x, ∅y〉, ∅z〉) is interpreted as ”set ∅z〉 is
obtained by inserting x into ∅y〉”.
3.3 Decision Tree Induction

In this subsection, we give a general framework of how to formulate a logic
program for modeling decision tree induction. For simplicity, we assume that the
input of the problem is a relation D(A1, ..., An, CL). The attribute CL identifies
the class the tuple belongs to. The output will be a relation T = (branch, Label)
that holds the set of all inequalities associated with the leaves of the tree, together
with their labels. That is, for each leaf in the tree we generate the set of all
inequalities on the edges from the root to that leaf. For example, suppose that
there is a leaf in the tree which is reached via edges labeled, respectively, age <
25, student = ’yes’, and having class label ’yes’. For this leaf, the relation T will
contain the tuple < branch : {age < 25, student = ‘yes‘}, Label : ‘yes‘ >.

This approach is different from the one adopted by previous work of [12] as
we use the complex value data model and adopt fixpoint semantic approach.

3.4 Application: Outliers Detection

In this subsection, we briefly describe that outlier detection can be formalised
in logic programming paradigm by using default logic [13,14].

The major difference between our proposal stated in this subsection and pre-
vious works is that we consider the realm of first-order and monadic second order
default logic by adopting fix-point semantics. The reason is that finding outliers
is quite complex and a propositional default theory may not be sufficient.

Default logics. A default theory T is a pair (R, F) consisting of a set F of
firs-order or monadic second order logic formulas and a set R of default rules. A
default rule γ has the form ρ:ϕ1,...,ϕk

λ , where ρ, ϕi, and γ are first order or monadic

220 H.-C. Liu et al.

second order formulas. ρ is called the prerequisite, ϕi the justification, and λ the
conclusion of γ. The informal meaning of a default rule γ is the following: if
prerequisite ρ is known to hold, and if it is consistent to the justification ϕi,
then we get conclusion γ.

The semantics of a default theory is defined as a fixpoint of a Datalog program
formed by using prerequisites, justifications and conclusions. That is:

J0 = ground(F); Jn = J∗
n−1 ∧ ϕ(Jn−1), n > 0

where J∗
n−1 is the closure of Jn−1, ϕ(Jn−1) = {λ | ρ:ϕ1,...,ϕk

λ ∈ R}. The semantics
of T is a fixpoint μT (ϕ(Jn)).

Definition 6. Let T = (R,F) be a default theory and let l ∈ F be a literal.
If there exists a non-empty set of literals L ⊆ F such that (R,F) |= ¬L, and
(R,F − {l, L}) |= ¬L does not hold.

Then we say that l is an outlier in T and L is an outlier witness set for l in T .

4 Expressive Power

We investigate the expressive power of our logic-based calculus as follows.

Theorem 1. Any data mining queries expressible in logic-based calculus with
mining loop can be specified as inductive clauses in Datalogcv,¬.

Proof Sketch. A query is expressible in Datalogcv,¬ with stratified negation
if and only if it is expressible in complex value calculus CALCcv. CALCcv

is equivalent to CALCcv + fixpoint. So Datalogcv,¬ with stratified negation
is equivalent to CALCcv + fix-point. Any data mining queries expressible in
logic-based calculus with mining loop can be specified as inductive clauses in
Datalogcv,¬. �

One major factor for promising inductive database to be successful is the
formulation of an ’algebra’ for query optimisation and reasoning. We briefly
describe a data mining algebra which was proposed in [1] as follows.

4.1 A Data Mining Algebra

Let Ω = {R1, ..., Rn} be a signature, where Ri, 1 ≤ i ≤ n, are database relations.
The data mining algebra over Ω is denoted as DMA(Ω). A family of core opera-
tors of the algebra is presented as follows. Set operations: Union (∧), Cartesian
product (×), and difference (-) are binary set operations. Tuple operations:
Selection (σ) and projection (π) are defined in the natural manner. Power-
set: powerset(r) is a relation of sort {τ} where powerset(r) = {ν | ν ⊆ r}.
Tuple Creation: If A1, ..., An are distinct attributes, tup createA1,...,An(r1, ...,
rn) is of sort < A1 : τ1, ..., An : τn >, and tup createA1,...,An(r1, ..., rn) = {<
A1 : ν1, ..., An : νn >| ⊆i(νi ∈ ri)}. Set Creation: set create(r) is of sort
{τ}, and set create(r) = {r}. Tuple Destroy: If r is of sort < A : τ

′
>,

tup destroy(r) is a relation of sort τ
′
and tup destroy(r) = {ν |< A : ν >∈ r}.

Logics for Representing Data Mining Tasks in Inductive Databases 221

Set Destroy:If τ = {τ ′}, then set destroy(r) is a relation of sort τ
′
and

set destroy(r) = ∧r = {w | ∃ν ∈ r, w ∈ ν}. Aggregation: The standard
set of aggregate functions SUM, COUNT, AVG, MIN, MAX are defined in the
usual manner. For example, if r is of sort < A : τ1, B : τ2 >, Gfunction

<A> (r) is

the relation over < A,S >. Gfunction
<A> (r) = {< a, s >| ∃ < a, v >∈ r ⊂ s =

Σ{t < B >| t ∈ r, t < A,B >=< a, b >}, where Σ is one aggregate operator.

Theorem 2. The expressive power of logic-based calculus with fixpoint operator
for inductive queries is equivalent to the data mining algebra DMA.

Proof Sketch. In the complex value data model, CALCcv+μ is equivalent to
the algebra ALGcv. The aggregation operators can be expressed by composition
of primitive algebraic operators. Therefore the expressive power of logic-based
calculus with fixpoint operator for inductive queries is equivalent to the data
mining algebra DMA. �

5 Conclusion

We have presented a logical framework for querying inductive databases. The
framework would be helpful for understanding querying aspects of inductive
databases. We have also presented an inductive logic programming query lan-
guage and illustrated the use of aggregates and exploit a fixpoint operator to
model specific data mining tasks. The results provide theoretical foundations for
inductive database research and could be useful for query language design in
inductive database systems.

Acknowledgment. This work was supported by the grant DP1096523 from
the Australian Research Council.

References

1. Liu, H.-C., Ghose, A., Zeleznikow, J.: Towards an algebraic framework for querying
inductive databases. In: Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.)
DASFAA 2010, Part II. LNCS, vol. 5982, pp. 306–312. Springer, Heidelberg (2010)

2. Imielinski, T., Mannila, H.: A database perspective on knowledge discovery. Com-
munications of the ACM 39(11), 58–64 (1996)

3. Džeroski, S.: Inductive databases and constraint-based data mining. In: Jäschke,
R. (ed.) ICFCA 2011. LNCS (LNAI), vol. 6628, pp. 1–17. Springer, Heidelberg
(2011)

4. Romei, A., Turini, F.: Inductive databases languages: Requirements and examples.
Knowledge Information Systems 26, 351–384 (2011)

5. Han, J.: Data Mining: Concepts and Techniques. Morgan Kaufmann (2000)

6. Calders, T., Lakshmanan, L., Ng, R., Paredaens, J.: Expressive power of an algebra
for data mining. ACM Transactions on Database Systems 31(4), 1169–1214 (2006)

222 H.-C. Liu et al.

7. Giannotti, F., Manco, G., Turini, F.: Towards a logic query language for data
mining. In: Meo, R., Lanzi, P.L., Klemettinen, M. (eds.) Database Support for Data
Mining Applications. LNCS (LNAI), vol. 2682, pp. 76–94. Springer, Heidelberg
(2004)

8. Raedt, L.D.: A perspective on inductive databases. SIGKDD Explorations 4(2),
69–77 (2002)

9. Mayer-Schonberger, V., Cukier, K.: Big Data: A Revolution That Will Transform
How We Live, Work, and Think. Eamon Dolan/Houghton Mifflin Harcourt (2013)

10. Han, J., Fu, Y., Koperski, K., Wang, W., Zaiane, O.: Dmql: A data mining query
language for relational databases. In: Proceedings of ACM SIGMOD Workshop on
Research Issues on Data Mining and Knowledge Discovery (1996)

11. Meo, R., Psaila, G., Ceri, S.: An extension to sql for mining association rules. Data
Mining and Knowledge Discovery 2(2), 195–224 (1998)

12. Nijssen, S., De Raedt, L.: Iql: A proposal for an inductive query language. In:
Džeroski, S., Struyf, J. (eds.) KDID 2006. LNCS, vol. 4747, pp. 189–207. Springer,
Heidelberg (2007)

13. Angiulli, F., Ben-Eliyahu-Zohary, R., Palopoli, L.: Outlier detection using default
reasoning. Artificial Intelligence, Elsevier 172, 1837–1872 (2008)

14. Reiter, R.: A logic for default reasoning. Artificial Intelligence 13(1-2), 81–132
(1980)

An Effective Approach to Handling Noise

and Drift in Electronic Noses

Sanad Al-Maskariρ, Xue Li, and Qihe Liu

School of Information Technology and Electrical Engineering
The University of Queensland, Australia

Sohar University, Environmental Research Centre, Sohar PC 311, Sultanate of Oman
s.almaskari@uq.edu.au, xueli@itee.uq.edu.au, qiheliu@uestc.edu.cn

Abstract. Sensor drift and noise handling in electronic noses (E-noses)
are two different challenging problems. Sensor noise is caused by many
factors such as temperature, pressure, humidity and cross interference.
Noise can occur at any time, producing irrelevant or meaningless data.
On the other hand, drift is appeared as a long term signal variation
caused by unknown dynamic physical and chemical complex processes.
Because sensor drift is not purely deterministic, it is very hard, if not
impossible, to distinguish it from noise and vice versa. With respect to
this property of E-nose, we propose a new approach to handle noise
and sensor drift simultaneously. Our approach is based on kernel Fuzzy
C-Mean clustering and fuzzy SVM (K-FSVM). The proposed method
is compared to other currently used approaches, SVM, F-FSVM and
KNN. Experiments are conducted on publicly available datasets. As the
experimental results demonstrate, the performance of our proposed K-
FSVM is superior than all other baseline methods in handling sensor
drift and noise.

Keywords: E-nose, noise, drift , classification, Kernel Fuzzy C-Mean.

1 Introduction

Electronic nose (E-nose) is a generic name for devices capable of identifying
chemical analytes or measuring odour information in different environments [1].
E-nose systems have been used in a wide range of applications including: food
industry, agriculture, air quality and environment monitoring , odour monitoring
in a poultry shed, medicine , water and waste water quality control [2,1,3]. De-
spite their reputation, their practical values are affected by their poor stability
making them very vulnerable to drift and noise. These vulnerabilities can be re-
solved using periodic recalibration which in turn increases their cost significantly
and make them overly complex. Eliminating the need for periodic recalibration
and the ability to extend the recalibration period using machine learning will
result in resolving the main issues with these sensors.

� Corresponding author.

H. Wang and M.A. Sharaf (Eds.): ADC 2014, LNCS 8506, pp. 223–230, 2014.
c© Springer International Publishing Switzerland 2014

224 S. Al-Maskari, X. Li, and Q. Liu

Sensor drift is the gradual and unpredictable variation of the chemo-sensory
signal responseswhen exposed to the same analyte under identical conditions [4,5].
Suchvariations couldbedue to sensor poisoning, ageingandenvironmental changes
such as humidity, temperature, pressure and system sampling non-specific adsorp-
tion [6]. In the other handnoise canbe defined as anyunwanted effect that obscures
the detection measurement of the desired signal. Large noise can be generated by
E-nose due to system circuit faults, sensor poisoning, or ageing, and environmen-
tal effects. Because sensor drift is not purely deterministic, it is very hard, if not
impossible, to distinguish it from noise and vice versa [7,8].

In this paper we handle sensor drift and noise as an abnormal phenomenon
that has two different indicators mixed together. Our approach introduces a
new perspective on how E-nose sensor drift and noise should be handled. To
the best of our knowledge, this approach has not been applied in the chemi-
cal sensing community before. In our approach, a classifier with noise and drift
resistant based on Fuzzy SVM is proposed. In our proposed approach, two dif-
ferent member generation methods (FCM and KFCM) are used and compared.
Furthermore, an optimized Kernel based fuzzy clustering algorithm is proposed.
The experiments based on the UCI data set are conducted and show that our
proposed approach outperforms all other baseline approaches currently used in
E-nose data processing.

This paper is organized as follows. Section 2 gives a comprehensive overview
on the algorithms for E-nose data processing. Section 3 describes the proposed
approach. Section 4 gives the details of the experiments and the evaluation of
the results. Section 5 concludes our paper.

2 Related Work

Univariate and Multivariate methods are commonly used to deal with sensor
drift. Univariate methods are used to measure central tendency, frequency dis-
tribution, and analyse each variable output pattern. Despite their simplicity and
their low computation complexity they fail to capture complex and non-linear
drift or correlated drift effects and they required periodic recalibration [9]. One
of the best univariate methods (univariate multiplicative factor) introduced in
[9] requires recalibration every 3 months. Various multivariate methods have
been proposed to deal with sensor drift such as PLS, PCA, CCA. In some stud-
ies PCA is used to find the directions of maximum variance of data x whereas
CCA identifies directions where two variables x, y co-vary. In [10] a supervised
Orthogonal Signal Correction (OSC) method is proposed and found to perform
better than unsupervised PCA-CC for the first 100 days. All these methods as-
sume linear drift direction; where in real environment, E-noses are found to be
strongly non-linear which makes them unable to handle multiple drift directions
[11,9]. Unsupervised and supervised adaptive methods such as Self Organizing
Maps (SOMs), multiple SOM , Neural networks, local class-dependent drift es-
timation also proposed to handle sensor drift [12,5,13]. These methods do not
provide a generic and dynamic model capable of handling complex and dynamic
environmental changes due to their sensitivity to noise and over fitting.

An Effective Approach to Handling Noise and Drift in Electronic Noses 225

3 Proposed Method

Since data generated by E-nose are uncertain and unstable, a fuzzy approach is
proposed to handle such issues. When a gas mixture is detected by E-nose un-
known responses can be generated and such responses could belong to different
classes with different percentages. Therefore, some data points could have dif-
ferent levels of importance or relevance. The standard SVM is unable to handle
unknown or uncertain output generated by E-nose sensor due to its sensitivity
to noise and outlier. Furthermore, standard SVM has only one free parameter
(C) whereas in FSVM there are N possible free parameters (N is the total num-
ber of training points). A degree of importance si is given to each data point
providing a greater flexibility and generalization to the model. For each train-
ing pair (xi, yi) a membership value si is given, the pairs with high si values
will have a greater influence in the decision surface compared to the one with
lower si values. In this method we use a Kernel-based Fuzzy C-Means (K-FCM)
clustering algorithm to generate membership for our fuzzy classifier [14].

3.1 Clustering Process

The first step in our approach is to cluster the E-nose data sets. The idea is to
group similar sensor features within the same partition by clustering. Once the
optimal groupings of sensor features are found, the membership can then be used
by the fuzzy classifier. Different features can have different types of information
and calculating the total importance of each signal from the feature set is very
critical for improving the learning model. To achieve this goal we employ a fuzzy
clustering approach which enables us to create a relationship matrix between
each signal feature set and its group. Unlike hard clustering methods, in fuzzy
clustering one object can belong to different clusters with different membership
degrees. One of the most well-known fuzzy clustering algorithms is Fuzzy C-Mean
(FCM). FCM uses Euclidean norm to measure similarity between data points
making it effective in handling spherical clusters, but it is sensitive to noise,
outliers [15,14]. Kernel-based methods make it possible to handle tasks using
a richer framework than the linear ones. Kernel-based FCM was introduced to
overcome noise and outliers’ sensitivity found in FCM by transforming input
space X to a high or infinite dimension feature F space (φ : X → F). A Kernel-
based Fuzzy C-Means clustering (KFCM) algorithm has been proposed by Zhang
et al. [14]. KFCM partitions a given data set X = {xi, ..., xn} ∈ Rp into C fuzzy
subsets by minimizing the following objective function:

Jm(U, V) =
c∑

i=1

n∑

k=1

um
ik||φ(XK)− φ(Vi)||2 (1)

S.T:
n∑

k

uik > 0,∀i ∈ 1, ...c (2)
c∑

i

uik > 1,∀k ∈ 1, ...n (3)

Where, c is the number of clusters (1 < c < n). n is the number of data
points; uik is the membership of Xk in class i satisfying

∑c
i uik = 1 for all

k and uik ∈ [0, 1]; m amount of fuzziness (m > 1); V is set of control cluster

226 S. Al-Maskari, X. Li, and Q. Liu

centres (Vi ∈p); φ is an implicit nonlinear transformation function. The Euclidean
distance between points and centres in the feature space F can be computed as,

||φ(XK)− φ(Vi)||2 = k(XK , XK) + k(Vi, Vi)− 2k(XK , Vi) (4)

Because K(x, x) = 1 the Gaussian Kernel leads to dφ2(x, y) = K(x, x) +
K(y, y)− 2K(x, y) = 2(1−K(x, y)). Thus equation 1 becomes:

Jm(U, V) = 2
c∑

i=1

n∑

k=1

um
ik(1 = k(XK , Vi)) (5)

where, k(XK , Vi) = exp(−||XK − Vi||2/σ2) (6)

The optimization problem is solved by minimizing Jm(U, V) under the con-
straints of uik.

uik = (1/(1−k(XK ,Vi)))
1/(m−1))

∑
j=1c(1/(1−k(XK ,Vi)))

1/(m−1) ,

∀i ∈ 1...c and ∀k ∈ 1...n
(9) vi =

∑n
k=1 um

ikK(XK ,Vi)XK∑
k=1num

ik
K(XK ,Vi)

(10)

A kernel-based FCM algorithm is used to generate membership values for each
data point Xi in the E-nose data set.Algorithm details are as follows:

Algorithm 1. Kernel Fuzzy C-Mean Clustering Algorithm

Input:
bn:Data batches b1, b2,...bn
m:Fuzzification parameter
C:Number of clusters
ε :set termination parameter;

Output: optimal member ship matrix Uopt

1. Select the kernel function K and its parameters;
2. Compute Kernel Values;
3. Initialize membership matrix ui;
4. Select cluster centers vi;
5. Update membership matrix uik using equation 9 ;
6. Compute all new cluster centers or prototype vi using equation 10;
7. Repeat step 5-6 and check the termination function Et;

Et = max|Unew − Uold|, if Et ≤ ε, stop;
8. repeat step 3-7 until optimal membership matrix is found;
9. Select and save optimal membership matrix Uopt;

3.2 Fuzzy Classifier

SVM is widely regarded as one of the most powerful tools used for solving clas-
sification problems. However, it is prone to over fitting which makes it very
sensitive to data sets with noise. In standard SVM, a training point can belongs

An Effective Approach to Handling Noise and Drift in Electronic Noses 227

to either one class or another. Most real world applications would have some
training points with higher importance than others. Consequently, the train-
ing points with higher importance should be classified correctly and the noisy
points or meaningless ones will not be considered and therefore discarded. Fuzzy
SVM allows each data point Xi to be assigned a membership value Ui where
0 < si ≤ 1. The membership si is used to determine the importance or relativity
of each data point Xi to one class and the value 1− si can be used to determine
the degree of meaningless. Memberships is generated using FCM and KFCM.
Using one-vs-one strategy (OVO) a Fuzzy SVM model is constructed. Better
performance and generalization is expected when combining membership with
FSVM model. The optimal training model is obtained by searching through a
grid of values to find best γ and C [2−10, 2−9, ., 24, 25]and[2−5, 2−4, ., 29, 210] [5].
The following steps are performed to execute the K-FSVM model:

Algorithm 2. Fuzzy SVM Classification algorithm

Input:
bn:Data batches b1, b2,...bn
Uopt: Membership matrix Uopt from algorithm 1
σ , γ and ε Parameter

Output: final prediction matrix
1. Use OVO strategy to create multiple classifiers;
2. Generate the relationship matrix Rn from Uopt ;
3. From membership matrix Rn train FSVM using {xi, yi, Rni } .
4. predict all class labels using voting
5. return final classifier;

4 Experiments and Evaluation

The data set used in this paper is presented by Vergara et al. [5]. In their three-
year experiment they collected an extensive data set using metal-oxide gas sensor
array for six-gas/analyte. The gas was dosed at different concentrations and their
goal was to identify different analytes type regardless of their concentrations. The
experiment was designed to emulate sensor drift and it was shown by Vergara
et al. that sensor drift actually occurred. The final data set contains 13,910
samples collected over 36 months. For more details about the dataset refer to
[5]. The experiments are divided into two parts. The first part handles only
sensor drift and the second part handles sensor drift and noise simultaneously.
In our experiments two settings are considered:

Setting 1: classifier trained with data from only the previous batch (b-1)
and tested in the current batch b.

Setting 2: classifier is trained on batch1 and tested on the remaining batches.
Training SVM under setting 1 provides a strong baseline because the training

228 S. Al-Maskari, X. Li, and Q. Liu

batch is close to the testing batch which minimizes drift quantity. In order for
drift to occur, it requires more time therefore setting 2 will demonstrate the
classifier ability to handle drift.

4.1 Sensor Drift Handling

In this experiment K-FSVM with RBF kernel is trained to handle sensor drift
on E-nose data set under Setting 1 and Setting 2 . We compared K-FSVM
with F-FSVM and SVM. In this experiment the noise is not considered. Figures
1.0 and 2.0 shows the classification accuracies generated by SVM,F-SVM and
K-SVM under Setting 1 and Setting 2. Figure 1 shows that classifiers trained
under Setting 1 performed better than classifiers trained under Setting 2
as expected. The average classification accuracy of K-FSVM (82.18%) under
setting 1 is better than other classifiers. The performance of SVM and KFSVM
is comparable at batch 4,7, and 8 under setting 1 indicating that K-FSVM will
not always perform better than SVM in cases with minimal drift. K-SVM and
F-SVM performed equally at batch 4, 5, 6 and 8. Also F-SVM performed better
than SVM in most instances except (7, 8, and 10). Since F-FSVM and K-FSVM
work with a very similar concept in generating memberships they can provide
comparable results in instances with low sensor drift. This indicates that K-
FSVM will not always perform better than F-SVM in cases with low sensor
drift. Overall K-FSVM performed better than F-FSVM.

The results of the experiment under Setting 2 demonstrate sensor drift and
can be observed clearly in Figure 2. The performances of all classifiers are degrad-
ing over time due to drift. In all cases K-FSVM has performed better than SVM
classifier with average classification accuracy of 58.419%. Although K-FSVM has
performed better than other methods in all batches, the prediction accuracies
for batches 7, 8, 9, and 10 are less than 50% indicating the need for more im-
provements. Clearly using our proposed approach can improve the performance
of sensor drift but it cannot eliminate it. There are still significant windows of
enhancements to be achieved by improving our approach. Since sensor drift is

0

20

40

60

80

100

120

2 3 4 5 6 7 8 9 10

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
ie

s
in

(%
)

Batch Number

SVM

F-FSVM

K-FSVM

Fig. 1. The performance of K-FSVM
under setting 1 compared with other
classifiers

0

10

20

30

40

50

60

70

80

90

100

2 3 4 5 6 7 8 9 10

C
la

ss
ifi

ca
ti

o
n

 A
cc

u
ra

ci
es

Batch Number

SVM
F-FSVM
K-FSVM

Fig. 2. The performance of K-FSVM
under setting 2 compared with other
classifiers

An Effective Approach to Handling Noise and Drift in Electronic Noses 229

not a deterministic phenomenon, we believe a Fuzzy approach is a promising
approach for handling sensor drift.

4.2 Sensor Drift and Noise Handling

In this experiment, classifiers of K-FSVM, F-FSVM, KNN and SVM with RBF
kernel is trained to handle sensor drift on E-nose data set under Setting 1 ,
Setting 2 . Noise was introduced to the E-nose dataset to compare the abilities
of the classifiers in handling sensor drift and noise. Above 15% of normally
distributed additive white Gaussian Noise was added to the data set. Figures
3.0 and 4.0 shows the classification accuracies generated by SVM, F-SVM, K-
SVM, and KNN under Setting 1 and Setting 2 . In both settings K-FSVM has
performed better than other classifiers. Under Setting 1 SVM has performed
better only in two batches (4 and 5) and KNN performed best in batch 10. In
batch 10 KNN performed better than K-SVM with 1.06% difference and SVM
overtook K-FSVM with only 0.57% in the last batch. The ability of the fuzzy
classifier to handle noise and sensor drift is demonstrated clearly in Figure 4.0.
Under Setting 2 K-FSVM has performed much better than other classifiers.
While injecting over than 15% noise to dataset, K-FSVM only dropped 3.61%
scoring average classification accuracy of 54.77% while F-KFSVM dropped over
than 9.28% scoring 41.59%. All classifiers performed poorly on batches 7 to 10
which indicate the requirement for more improvements.

2 3 4 5 6 7 8 9 10

Batch Number

SVM

FCM_FSVM

KFCM_FSVM

KNN

0

10

20

30

40

50

60

70

80

90

100

2 3 4 5 6 7 8 9 10

 C
la

ss
ifi

ca
ti

o
n

 A
cc

u
ra

cy
 (

in
 %

)

Batch Number

svm
knn
F-FSVM
K-FSVM

Fig. 3. The performance of all classi-
fiers under setting 1

0

10

20

30

40

50

60

70

80

90

100

2 3 4 5 6 7 8 9 10

C
la

ss
ifi

ca
ti

o
n

 A
cc

u
ra

cy
 (i

n
 %

)

Batch Number

svm
KNN
F-FSVM
K-FSVM

Fig. 4. The performance of all classi-
fiers under setting 2

5 Conclusions

In this paper, a novel approach based on Fuzzy SVM is proposed and a fuzzy
membership function is introduced. We propose using Kernel Fuzzy C-Mean to
impose the membership into FSVM, enabling each of data points to be differ-
entiated for its contribution to the learning of the decision surface. Different
member generation methods (KFCM and FCM) are used and compared. The
results show that K-FSVM provides a superior performance in handling sensor
noise and drift when compared to other will-known baseline classifiers.

230 S. Al-Maskari, X. Li, and Q. Liu

References

1. AL-Maskari, S., Saini, D.O.W.: Cyber infrastructure and data quality for environ-
mental pollution control in Oman. In: Proceedings of the 2010 DAMD International
Conference on Data Analysis, Data Quality and Metada, p. 71 (2010)

2. Nimsuk, N., Nakamoto, T.: Study on the odor classification in dynamical concen-
tration robust against humidity and temperature changes. Sensors and Actuators
B: Chemical 134(1), 252–257 (2008)

3. Pan, L., Yang, S.X.: A new electronic nose for downwind livestock farm odour
measurement. In: Proceedings of the 2006 IEEE International Conference on Net-
working, Sensing and Control, ICNSC 2006, pp. 410–415 (2006)

4. Vergara, A., Vembu, S., Ayhan, T., Ryan, M.A., Homer, M.L., Huerta, R.: Chemi-
cal gas sensor drift compensation using classifier ensembles. Sensors and Actuators
B: Chemical 166-167, 320–329 (2012)

5. Zuppa, M., Distante, C., Siciliano, P., Persaud, K.C.: Drift counteraction with
multiple self-organising maps for an electronic nose. Sensors and Actuators B:
Chemical 98(2-3), 305–317 (2004)

6. Sharma, R., Chan, P., Tang, Z., Yan, G., Hsing, I., Sin, J.: Investigation of stabil-
ity and reliability of tin oxide thin-film for integrated micro-machined gas sensor
devices. Sensors and Actuators B: Chemical 81(1), 9–16 (2001)

7. Goodner, K.L., Dreher, J., Rouseff, R.L.: The dangers of creating false classifica-
tions due to noise in electronic nose and similar multivariate analyses. Sensors and
Actuators B: Chemical 80(3), 261–266 (2001)

8. Tian, F., Yang, S.X., Dong, K.: Circuit and noise analysis of odorant gas sensors
in an e-nose. Sensors 5(1), 85–96 (2005)

9. Romain, A., Nicolas, J.: Long term stability of metal oxide-based gas sensors for
e-nose environmental applications: An overview. Sensors and Actuators B: Chemi-
cal 146(2), 502–506 (2010); Selected papers from the 13th International Symposium
on Olfaction and Electronic Nose ISOEN 2009

10. Padilla, M., Perera, A., Montoliu, I., Chaudry, A., Persaud, K., Marco, S.: Drift
compensation of gas sensor array data by orthogonal signal correction. Chemomet-
rics and Intelligent Laboratory Systems 100(1), 28–35 (2010)

11. Zhang, L., Tian, F., Nie, H., Dang, L., Li, G., Ye, Q., Kadri, C.: Classification of
multiple indoor air contaminants by an electronic nose and a hybrid support vector
machine. Sensors and Actuators B: Chemical 174, 114–125 (2012)

12. Marco, S., Pardo, A., Ortega, A., Samitier, J.: Gas identification with tin oxide
sensor array and self organizing maps: Adaptive correction of sensor drifts. In: In-
strumentation and Measurement Technology Conference, IMTC 1997, Proceedings
of the Sensing, Processing, Networking, vol. 2, pp. 904–907. IEEE (May 1997)

13. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press,
Inc., New York (1995)

14. Zhang, D.Q., Chen, S.C.: A novel kernelized fuzzy c-means algorithm with applica-
tion in medical image segmentation. Artificial Intelligence in Medicine 32(1), 37–50
(2004) (in China)

15. Krishnapuram, R., Keller, J.: A possibilistic approach to clustering. IEEE Trans-
actions on Fuzzy Systems 1(2), 98–110 (1993)

Author Index

Akoglu, Leman 147
Al-Maskari, Sanad 160, 223
Altamimi, Ahmad 26

Bartoš, Tomáš 198
Bélisle, Eve 38

Chang, Lijun 122
Christen, Peter 1

Dai, Changhua 172
Dreseler, Markus 180

Eavis, Todd 26

Faust, Martin 180

Gan, Yuanyuan 206
Gao, Tiantian 147
Gheribi, Aimen 38

Han, Yuxing 122
Hayamizu, Yuto 135
Hu, Shengze 86
Huang, Zi 38

Karim, S.M. Masud 110
Kitsuregawa, Masaru 135
Kwashie, Selasi 50

Li, Jiuyong 50, 62, 110, 214
Li, Le 172
Li, Xue 160, 223
Liang, Huizhi 1
Liang, Wenxin 206
Lin, Xiaojie 74
Lin, Xuemin 122
Liu, Hong-Cheu 214
Liu, Jixue 50, 62, 214
Liu, Lin 110
Liu, Qihe 223
Lokoč, Jakub 198

Moško, Juraj 198

Nahar, Vinita 160
Nakano, Miyuki 135
Nofong, Vincent Mwintieru 62

Orlandic, Ratko 189

Pang, Chaoyi 160
Pfaltz, John 189
Plattner, Hasso 180

Qi, Jianzhong 74

Ramadan, Banda 1

Sadiq, Shazia 13
Sanderson, Mark 98
Schwalb, David 180
Skopal, Tomáš 198
Song, Zhiqiang 172
Su, Han 13
Suzuki, Keisuke 135

Taylor, Christopher 189
Tong, Haiming 172

Vincent, Millist 214

Wang, Haozhou 13
Wang, Hongzhi 74
Wang, Jiping 13
Wang, Liping 122
Wen, Zeyi 74
Wust, Johannes 180

Xiao, Weidong 172

Ye, Feiyue 50
Yin, Fengjing 86
Yokoyama, Daisaku 135

Zhang, Rui 74
Zhang, Wenjie 122
Zhang, Xianchao 206
Zhang, Xin 86
Zhang, Xiuzhen 98
Zhao, Xiang 86
Zheng, Kai 13
Zhou, Guangxin 86
Zhou, Xiaofang 13
Zhou, Zhixin 98

	Preface
	Organization
	Keynotes
	Table of Contents
	Dynamic Sorted Neighborhood Indexingfor Real-Time Entity Resolution
	1 Introduction
	2 Related Work
	3 Dynamic Sorted Neighborhood Indexing
	3.1 Generating the Window of Neighboring Nodes
	3.2 Similarity-Based Dynamic Sorted Neighborhood Indexing

	4 Data Sets and Experimental Evaluation
	4.1 Results and Discussion

	5 Conclusions
	References

	Efficient Aggregate Farthest Neighbour QueryProcessing on Road Networks
	1 Introduction
	2 Problem Definition
	3 Query Processing Algorithm
	3.1 Linkage Hierarchical Clustering
	3.2 Pre-computation
	3.3 Search Algorithm

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Evaluation Approach
	4.3 Evaluation Results

	5 Related Work
	5.1 Aggregate Nearest Neighbor (ANN) Query
	5.2 Farthest Neighbour (FN) Query

	6 Conclusion
	References

	OSSM: The OLAP Security Specification Model
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 The Conceptual Data Model
	3.2 Subjects, Objects, Roles, and Policies

	4 The OLAP Security Specification Model (OSSM)
	4.1 The Subject Class (SC)
	4.2 The Object Class (OC)
	4.3 The Role Class (RC)
	4.4 The Policy Class (PC)

	5 The OSSM Policy Engine
	6 Integration Options
	6.1 Declarative Language Extensions
	6.2 Programmatic API

	7 Conclusions
	References

	Scalable Gaussian Process Regressionfor Prediction of Material Properties
	1 Introduction
	2 Related Work
	3 Gaussian Process Regression
	4 Our Approach
	4.1 Batch Query Processing
	4.2 Training Data Condensation
	4.3 Query-Aware Training Data Selection

	5 Application on Martensite Start Temperature Prediction
	5.1 Dataset
	5.2 Performance Study

	6 Application on Prediction of Electrical Conductivity
	6.1 Dataset
	6.2 Performance Study

	7 General Discussion and Conclusion
	References

	Mining Differential Dependencies: A SubspaceClustering Approach
	1 Introduction
	2 Preliminaries
	2.1 Differential Dependency
	2.2 Subspace δ-nCluster

	3 Problem Formulation
	3.1 Interestingness of a DD
	3.2 Problem Statement

	4 Relationship between �-DFs and δ-nClusters
	5 The Algorithm
	5.1 Finding Free-Maximal δ-nClusters
	5.2 Forming Candidate LHS DFs
	5.3 Finding Valid RHS DFs to form DDs
	5.4 Pruning

	6 Experimental Evaluations
	6.1 Time Performance and Scalability
	6.2 Effect of the Parameters

	7 Conclusion
	References

	A Study on the Applications of EmergingSequential Patterns
	1 Introduction
	2 Basic Concepts
	2.1 Sequential Patterns

	3 Emerging Sequential Patterns
	3.1 Definition
	3.2 Discovering Emerging Sequential Patterns
	3.3 Usefulness of ESPs

	4 Empirical Assessments
	4.1 Datasets
	4.2 Experimental Design
	4.3 Results and Discussions
	4.4 General Conclusions

	5 Conclusion and Future Works
	References

	Efficient Subgraph Matching Using GPUs
	1 Introduction
	1.1 Contributions and Organization of the Paper

	2 Related Work
	2.1 Subgraph Matching
	2.2 Join Algorithms on GPU

	3 Preliminaries
	3.1 Subgraph Matching
	3.2 The STwig Algorithm
	3.3 General Purpose Computation on GPU

	4 Our Proposed GPU-Based Algorithm
	4.1 Choosing a Join Tree
	4.2 Hash Tables on GPU
	4.3 Joining STwig Results
	4.4 Storage

	5 Experimental Study
	5.1 Computation Time of Each Steps
	5.2 The Effect of Data Graph Size
	5.3 The Effect of Label Count
	5.4 The Effect of Average Degree
	5.5 The Effect of Query Graph Size

	6 Conclusions
	References

	A Negative-Aware and Rating-Integrated Recommendation Algorithm Based on Bipartite Network Projection
	1 Introduction
	2 Preliminaries
	3 A Negative-Aware and Rating-Integrated Algorithm
	3.1 User Taste Model
	3.2 Initial Resource Allocation
	3.3 Resource Distribution

	4 Experiments
	4.1 Experiment Setup
	4.2 Comparing with The Baseline Algorithm on Hit Ratio
	4.3 Comparing with Baseline Algorithm on Average Rank Score
	4.4 Comparing with Other Three Variants

	5 Related Work
	6 Conclusion
	References

	Sentiment Analysis on Twitterthrough Topic-Based Lexicon Expansion
	1 Introduction
	2 Related Work
	3 Emoticon-Based Sentiment Lexicon Expansion
	3.1 Classification Framework
	3.2 Lexicon Expansion

	4 Experiment
	4.1 Dataset
	4.2 General Lexicon vs. Global Expansion
	4.3 Topic-Based Expansion vs. Global Expansion

	5 Conclusions
	References

	Discovering Collective Group Relationships
	1 Introduction
	2 Collective Group Relationship Discovery
	2.1 Problem Statement and Definitions
	2.2 Algorithm for Discovering Collective Group Relationships

	3 Experimental Results
	3.1 Experiments on Synthetic Datasets
	3.2 Experiments on Real-World Datasets

	4 Conclusion
	References

	Efficiently Retrieving Top-k Trajectories by Locations via Traveling Time
	1 Introduction
	2 Problem Definition
	3 Query Processing
	3.1 Online Generating List Lq
	3.2 Generating Candidate Set C
	3.3 Refining and Verifying

	4 Experimental Evaluation
	4.1 Evaluating Total Running Time
	4.2 Evaluating Refine and Verification

	5 Related Work
	6 Conclusion and Future Work
	References

	Comprehensive Analytics of Large Data QueryProcessing on Relational Database with SSDs
	1 Introduction
	2 Related Work
	3 Join Operation with Hashtable
	3.1 Grace Hashjoin [9] and Hybrid Hashjoin [10]
	3.2 Processing Cost of Hashjoin

	4 Basic Performance of HDDs and SSDs
	4.1 Experimental Setup
	4.2 Throughput of Sequential and Random Access
	4.3 Throughput of Mixture Workload

	5 Experimental Analysis of Hashjoin Operation
	5.1 Database Setup and Workload
	5.2 Single Join Query
	5.3 TPC-H Query

	6 Discussion
	7 Conclusion
	References

	Fast Information-Theoretic AgglomerativeCo-clustering
	1 Introduction
	2 Proposed Method
	2.1 Problem Definition
	2.2 Problem Formulation
	2.3 Proposed Algorithm CoClusLSH

	3 Experiments
	3.1 Synthetic Datasets
	3.2 Real Datasets

	4 Related Work
	5 Conclusion
	References

	Semi-supervised Learning for CyberbullyingDetection in Social Networks
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Feature Space Modeling
	3.2 Cyberbullying Detection

	4 Experiments Setting
	4.1 Dataset
	4.2 Evaluation
	4.3 Results and Discussions

	5 Conclusions
	References

	Mining the Association of Multiple VirtualIdentities Based on Multi-Agent Interaction
	1 Introduction
	2 Related Works
	3 Recognition of Multiple Virtual Identities Association
	3.1 Problem Formulation
	3.2 The Choo Sense-Making KM Model
	3.3 Recognition Model: MVIA-K

	4 Knowledge Based Multi-Agent Mining and Interaction
	4.1 Local Knowledge Extraction
	4.2 Knowledge Flow
	4.3 Knowledge Integration

	5 Experiments
	6 Conclusion
	References

	Split Dictionaries for In-memory Column Stores in Mixed Workload Environments
	1 Introduction
	2 Split Dictionaries
	2.1 Memory Usage of Split Dictionaries
	2.2 Full Column Scans with Range Selections
	2.3 Implications on the Merge Process

	3 Evaluation
	3.1 Insert Performance
	3.2 Decompression of Value ids
	3.3 Merge
	3.4 Range Query Performance
	3.5 Influence of the Maximum Dictionary Size

	4 Related Work
	5 Future Work
	6 Conclusions
	References

	A Functional Database Representationof Large Sets of Objects
	1 Introduction
	2 Set Representation
	3 O-Trees
	4 Representing Networks as an Operator System
	5 Conclusions
	References

	Real-Time Exploration of Multimedia Collections
	1 Introduction
	2 Related Work and Motivation
	2.1 Multimedia Exploration in Mobile Devices
	2.2 Real-Time Similarity Queries

	3 Implementing RTExp System
	4 Exploration Operations and User Interface
	4.1 Zooming
	4.2 Panning
	4.3 RTExp Presentation Layer for Mobile Devices

	5 Experimental Evaluations
	6 Challenges and Future Work
	7 Conclusion
	References

	XEdge: An Efficient Method for Returning Meaningful Clustered Results for XML Keyword Search
	1 Introduction
	2 Multi-granularity Methodology
	2.1 Cluster Compactness Granularity (CCG)
	2.2 Subtree Compactness Granularity (SCG)
	2.3 Combination of CCG and SCG
	2.4 Identifying CLCAs

	3 XEdge Algorithm
	3.1 Inferring GRCs
	3.2 Algorithm XEdge

	4 Experimental Evaluation
	4.1 Number of Clusters
	4.2 Effectiveness of Methodology

	5 Conclusion
	References

	Logics for Representing Data Mining Tasksin Inductive Databases
	1 Introduction
	2 Logic Foundations for Inductive Queries
	2.1 Deductive vs Inductive Databases
	2.2 Concept Learning
	2.3 Constraint-based Mining
	2.4 Fixpoint Operator

	3 A Logic Query Language
	3.1 Frequent Pattern Mining
	3.2 Cluster Analysis: Partitioning Method
	3.3 Decision Tree Induction
	3.4 Application: Outliers Detection

	4 Expressive Power
	4.1 A Data Mining Algebra

	5 Conclusion
	References

	An Effective Approach to Handling Noiseand Drift in Electronic Noses
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Clustering Process
	3.2 Fuzzy Classifier

	4 Experiments and Evaluation
	4.1 Sensor Drift Handling
	4.2 Sensor Drift and Noise Handling

	5 Conclusions
	References

	Author Index

