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Abstract. This paper presents a lightweight anti-counterfeiting solution
using intrinsic Physically Unclonable Functions (PUFs), which are al-
ready embedded in most commodity hardware platforms. The presented
solution is particularly suitable for low-end computing devices without
on-board security features. Our anti-counterfeiting approach is based on
extracting a unique fingerprint for individual devices exploiting inher-
ent PUF characteristics from the on-chip static random-access memory
(SRAM), which in turn allows to bind software to a particular hardware
platform. Our solution does not require additional hardware, making it
flexible as well as cost efficient. In a first step, we statistically analyze the
characteristics of the intrinsic PUF instances found in two device types,
both based on a widely used ARM Cortex-M microcontroller. We show
that the quality of the PUF characteristics is almost ideal. Subsequently,
we propose a security architecture to protect the platform’s firmware by
using a modified boot loader. In a proof of concept, we embed our solu-
tion on a state-of-the-art commodity system-on-a-chip platform equipped
with an MCU similar to the ones previously analyzed.

1 Introduction

With the proliferation of mobile computing the influence of low-end devices
on our every day communication steadily grows. As their computational power
increases, such devices are embedded into many objects we are interacting with
on a daily basis. Besides their implementation in smart phones and tablets, low-
end devices are employed in Car2X communication [16] where microcontrollers
(MCUs) are used in modern cars to improve road safety, traffic efficiency or to
act as an infotainment platform [10]. Additional use cases arise with the growing
importance of sensor nodes with applications in the fields of health care, military
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and environmental monitoring [18]. Furthermore, objects in our everyday-life
(e.g. fridges, televisions, smart-metering, etc.) are increasingly equipped with
computing capabilities, which will eventually yield the Internet-Of-Things [4,12].

A high proportion of such low-end devices are not equipped with special on-
board security mechanisms such as secure memory or trusted execution environ-
ments. Devices without security features range from lightweight MCUs to more
complex system-on-a-chip (SoC) platforms. Lightweight devices are designed for
microcontroller use (e.g. ARM Cortex-M processor family). They do not imple-
ment security features due to hardware constraints and economic considerations.
For example, ARM’s Cortex-M series does not support ARM TrustZone tech-
nology1. More heavyweight SoC platforms can be found in smart phones and
tablets. Many SoCs omit hardware security mechanisms due to increased costs
and to allow for product evolution. Nevertheless, low-end devices are often used
to process sensitive data. Thus, they are a worthwhile target of cyber-criminals.
Malicious parties are gaining interest in attacking such devices to extract intel-
lectual property.

To overcome this issue, we propose a lightweight anti-counterfeiting solution
to bind a given firmware instance to a particular hardware platform providing a
strict hardware-software binding for low-end commodity hardware. Our scheme
relies on a hardware-based anchor of trust in terms of a PUF instance. It uses in-
trinsic Physical Unclonable Functions (PUFs) of the on-board SRAM to extract
a fingerprint, which is unique for individual devices. The fingerprint is further
processed to generate an ephemeral cryptographic key during an early boot
stage and to subsequently decrypt the firmware. Our scheme establishes trust
in the on-chip-hardware and in the firmware executed on the device by linking
both instances. We achieve protection against IP extraction or modification on
embedded devices without dedicated security mechanisms.

1.1 Contributions

We first analyze the quality of PUF instances extracted from two widely used
low-end devices to demonstrate the feasibility of device-dependent cryptographic
keys. The ARM Cortex-M3 is a popular example of a lightweight microcontroller,
whilst the TI OMAP 4 exemplifies more complex SoC platforms. After statisti-
cally assessing the stability and uniqueness of the derived device fingerprints we
propose a lightweight security architecture to bind a given firmware to a specific
device. Subsequently, we implement the proposed architecture on a SoC platform
and demonstrate the compatibility of our solution with off-the-shelf commodity
hardware.

1.2 Structure

In Section 2 we discuss current approaches to Physically Unclonable Functions
and in particular SRAM PUFs. The analysis of the PUF characteristics of two

1 ARM TrustZone security extension is part of most ARM Cortex-A application
processors [1].
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popular devices is given in Section 3. We describe the attacker model, present
the proposed security architecture and explain the course of usage in Section 4.
In Section 5 we describe details related to the implementation of the proof-of-
concept. Lastly, in Section 6 we conclude our work.

2 Related Work

A Physically Unclonable Function (PUF) is a complex physical structure that
generates a value y in response to a stimulus x. The response y depends on
the challenge x as well as on the micro- or nanoscale physical structure of the
PUF itself. It is assumed that the PUF is unclonable such that it can not be
reproduced, not even by the manufacturer. The challenge-response behavior of
the physical system is complex enough such that the response to a randomly
selected challenge can not be predicted. Furthermore, due to minuscule manu-
facturing variations during the production process, embedded PUFs can be used
to robustly identify a silicon chip.

Silicon-based PUFs include delay-based or memory-based PUFs. For an ex-
haustive overview of PUFs and details on their taxonomy we refer to [15]. It has
been shown that selected static random-access memory (SRAM) shows PUF-like
behavior [11]. Further research in this area support the applicability of SRAM
as a Physical Unclonable Function [13,17]. Using SRAM as PUFs exploits man-
ufacturing variations, which manifest themselves in a bias of memory cells inside
of SRAM modules. During the power-up phase these cells initialize to either the
value of zero or one. Most cells show a stable start-up behavior, which in total
creates a start-up pattern we will exploit to generate a fingerprint for the device.

Since not all of the SRAM bytes show a stable behavior in such sense that they
are always initialized to a fixed value, the SRAM start-up values include a small
amount of unstable bits, so-called noise. Since the goal is to reconstruct a reliable
cryptographic key from several noisy measurements, the noise is eliminated by
employing a Fuzzy Extractor [9], which extracts the stable part of the PUF
response and transforms it to a uniformly distributed value.

3 Finding PUFs in Commodity Hardware

To get a first impression on the feasibility to extract a PUF instance from com-
modity hardware we evaluated a popular lightweight MCU. We chose ARM’s
Cortex-M3 as it is a widely distributed low-end processor specially developed
for embedded devices. With 212 licenses it is the most popular version among
the Cortex processor family. 30% of ARM chips shipped in 2013 were Cortex-M
processors [3]. They are integrated into virtually every smart phone.

Secondly, we analyzed commodity hardware from the class of SoC platforms
to explore the feasibility to robustly extract a unique fingerprint from more
complex devices. Our main interest was to analyze whether active components
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adjacent to the SRAM influence the stability of key extraction. We chose the
PandaBoard [2] and its successor the PandaBoard ES, based on an OMAP4430
platform, respectively on an OMAP4460. They comprise two ARM Cortex-A9
and two Cortex-M3 processors. We selected the PandaBoard as it is available as
a general-purpose (GP) edition, which lacks the support for ARM’s TrustZone
extension. Furthermore, the OMAP 4 is integrated into many mobile phones
and tablets from vendors like Nokia, Motorola, Samsung and more. Thus, the
PandaBoard as a general-purpose device reflects the security and multimedia
configuration of popular smart phones like the Samsung Galaxy SI and SII,
Motorola Droid and Milestone series and several devices from LG.

In the following we briefly describe common characteristics for PUFs and later
analyze both devices using these measures.

3.1 Common Characteristics for SRAM PUFs

In general, SRAM PUF instances should show properties that mitigate the pre-
diction of correct start-up values (Hamming weight), enable a robust repeated
identification of single devices (Within-class Hamming distance) and lastly gen-
erate a unique pattern among a pool of similar devices (Between-class Hamming
distance).

The fractional Hamming Weight HW (x) of individual measurements from
the same device indicates whether the start-up values are biased to either zero
or one. This measure gives a first impression on the randomness present in the
start-up values. The ideal measure is a Gaussian distribution with a mean value
of HW (x) = 50%, representing no bias of the start-up values towards zero or
one and thus the same amount of both values.

The fractional Within-class Hamming distance gives an indication whether
the PUF results for a single device are stable when queried repeatedly. It is a
normalized count of bits that differ between two PUF measurements and thus
is a rational number between 0 and 1. The robustness of the start-up values
is required to reliably identify a given device and subsequently reconstruct the
corresponding cryptographic key. An optimal value for the within-class Hamming
distance is close to zero. However, all start-up values show a certain amount of
noise, which originates from SRAM cells that flip their initialization value across
multiple trials.

The fractional Between-class Hamming distance test expresses whether the
start-up values of different devices for the same challenge are independent. This
measure states whether start-up values can be used for identification without
enabling adversaries to predict a measurement for a second device on the basis
of a given device with known start-up values. The optimal value for between-
class Hamming distance is a Gaussian distribution with a mean value of 50%,
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which refers to a pair of independent start-up values from two different devices.
Devices with an optimal value exhibit a maximum distinguishability regarding
their PUF responses given the same challenge.

3.2 Analysis of the Cortex-M

We evaluated the PUF behavior of an STMicroelectronics STM32F100RB de-
velopment board that integrates an ARM Cortex-M3, 8 KiB on-chip SRAM and
128 KiB flash memory. To read the PUF measurement we modified the start-up
code to display the raw start-up values via UART before the RAM gets initial-
ized. The start-up code is essential to every microcontroller as it initializes the
hardware as well as the stack and interrupt vectors and calls the main function.

To assess the PUF quality of the on-chip SRAM we tested 14 devices by
extracting the 8 KiB SRAM start-up values 1000 times per device2. The devices
were triggered using a controller board to repetitively turn the devices on, query
the intrinsic PUF instance from on-chip SRAM and turn it off. In between these
queries a break of 15 seconds was introduced to give the SRAM the chance to
discharge. The summarized results in Table 1 show a decent PUF behavior that
is suitable to robustly extract a unique fingerprint. Figure 2a shows the bitmap
of an example measurement of one device.

The SRAM start-up values have a worst-case Hamming Weight of HW (x) =
49.18%. This value is close to the ideal of 50%. The STM32F100RB start-up
values contain almost the same proportion of zeros and ones as depicted in Figure
1a. The worst-case bias is negligible. The number for the Within-class Hamming
distance in the worst-case is 9.61%, see Figure 1b. The existing proportion of
noise can easily be correct by standard error correction algorithms. The minimum
Between-class Hamming distance is 46.48%, see Figure 1c. The number shows
that there is some correlation between the measurements of different devices.
This has a negative impact on the size of SRAM bytes needed to reconstruct
the device-dependent key. However, this measure is much higher then the noise
retrieved for the individual devices. Hence, the start-up values can be used to
uniquely identify devices if they are pre-processed by error correction algorithms.

The boxplots shown below can be interpreted as follows. The red line across
the central region of each box marks the data median. The blue bottom/top
indicates the 25th/75th percentile for the data set. The height of the box corre-
sponds to the inter quartile range (IQR) of the data set. The ends of the whiskers
mark the lowest and highest values of the data set that are within 1.5 times the
IQR of the box edges. The plus signs represent single values that are outside the
range of the whiskers.

2 Due to the fragile nature of the test setup, some measurements produced on-chip
SRAM values of incorrect length. We removed these obvious measurement errors
from the data set. In total 27 out of 14.000 measurements have been removed.
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Fig. 1. Detailed PUF characteristics for STM32F100RB devices: (a) Fractional Ham-
ming Weights of SRAM start-up values. (b) Within-class fractional Hamming distance
of SRAM start-up values. (c) Between-class fractional Hamming distance histogram.
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Fig. 1. (Continued.)

3.3 Analysis of the OMAP

The PandaBoard’s OMAP 4 SoC contains two Cortex-M3 processors and thus
PUF characteristics are expected, which are similar to those of the Cortex-M3.
However, an extensive analysis is necessary because of highly-integrated active
components (multimedia hardware accelerator, programmable DSP, integrated
graphics processor), which could interfere with the SRAM start-up values. The
SRAM is implemented as several instances of on-chip memory (OCM) featur-
ing (i) OCM Save-and-Restore ROM (4 KiB) (ii) OCM Save-and-Restore RAM
(8KiB) and (iii) Level-3 RAM (56 KiB).

Analysis of the OCM modules revealed that only a specific part exhibit PUF-
like behavior. In particular, the Level-3 on-chip RAM (L3 OCM RAM) can be
partially used to extract a fingerprint. The memory is shared among different
sub-modules including the Cortex-M3 subsystem. Figure 2b shows the bitmap
of the L3 OCM RAM from a PandaBoard shortly after the device gets out of
reset.

The bitmap indicates that there are repeating structures in the middle and
high address regions. As no other hardware is initialized at this early phase of
the boot process we assume that these patterns represent structures used by the
on-board ROM code shipped with every PandaBoard. The repeating structures
could be caused by the ROM code’s API interfaces. Furthermore, we assume that
the L3 OCM RAM is used in a similar way as a stack as only higher addresses



90 A. Schaller et al.

(a) STM32F100B (b) PandaBoard

Fig. 2. (a) Bitmap of a measurement for STM32F100RB a device. (b) Bitmap of a
PUF measurement of a PandaBoard L3 OCM RAM (56 KiB). The red area (12 KiB)
is used for fingerprint extraction. The yellow area contains initialized values and does
not show PUF characteristics.

exhibit such patterns. However, in the area of the first 12 KiB (0x40300000 -

0x40303000) an apparently random distribution of zeros and ones can be seen.
This memory range refers to the part of the L3 OCM RAM we selected for
further analysis regarding its PUF behavior.

We performed measurements on a set of 5 PandaBoard instances. The test
set included two versions of the platform – an early version of the PandaBoard
equipped with an OMAP4430 and an advanced version, PandaBoard ES, based
on an OMAP4460.We were using the same experimental setup as for the STM32-
F100RB to conduct 1000 measurements per board.

The SRAM start-up values have a worst-case Hamming Weight of HW (x) =
48.53%, which is close to the ideal value of 50%. The measurement contains
almost the same amount of zeros and ones, see Figure 3a, with a negligible bias
towards 0. The OMAP SoC performs identical to the STM32F100 regarding this
characteristic. The numbers for the Within-class Hamming distance are depicted
in Figure 3b. They show a maximum within-class Hamming distance of 4.67%.
This value is well below a bit error rate of 15%. In literature, an average bit error
rate of 15% can be regarded as a reference value for SRAM PUF noise [13,14].
Compared to the STM32F100RB, the OMAP SoC exhibits less noise which leads
to a decreased false rejection rate during the key reconstruction process. The
minimum Between-class Hamming distance is 49.66%, see Figure 3c. Compared
to the STM32F100RB the results for the OMAP 4 are even better, guaranteeing
to provide a unique fingerprint for individual devices among a pool of similar
platforms. However, it should be noted that the values for this measures are not
as statistical significant as one might like. This is because we could only gather
values from five distinct devices as it was not possible for us to get sufficient
devices to provide as statistical significant results as desired for cost reasons.
Table 1 shows the summarized results.
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Fig. 3. Detailed PUF characteristics for PandaBoards devices: (a) Fractional Hamming
Weights of SRAM start-up values. (b) Within-class fractional Hamming distance of
SRAM start-up values. (c) Between-class fractional Hamming distance histogram.
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Fig. 3. (Continued.)

Table 1. PUF characteristics of the STM32F100RB and the OMAP 4 SoC

Characteristic STM32 OMAP 4

Maximum within-class Hamming distance 9.61% 4.67%
Minimum between-class Hamming distance 46.48% 49.66%

Minimum Hamming weight 49.19% 48.53%
Maximum Hamming weight 50.23% 51.18%

4 PUF-Based Anti-counterfeiting Architecture

In this section we first introduce the capabilities of the attacker. Second, we in-
troduce our proposed anti-counterfeiting architecture with respect to the attacker
model. Finally, we show in detail how PUF enrollment and reconstruction works.

4.1 Attacker Model

A malicious party has several motives to attack deployed low-end devices. The
attacker might want to extract intellectual property (IP) stored on the device
in the form of software or secrets. After successful IP extraction the attacker
would be able to use the IP on counterfeit devices or even sell self-made coun-
terfeit solutions for less money than the original product. In another scenario
the attacker might want to circumvent the vendor’s licensing model by manipu-
lating the firmware. To evade licensing restrictions the attacker could try either
to modify the firmware to unlock features reserved for higher valued product
versions or he attempts to downgrade to a previous firmware version, to exploit
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design flaws and consequently escalate privileges on the system. Another mo-
tivation to alter the firmware is to capture valuable user data like passwords,
credentials and usage data. Furthermore, the attacker might be able to actively
alter output data, as for example in the case of smart metering, to report fake
consumption data.

For the attacker to achieve one of the mentioned goals we consider him to have
the following abilities. The attacker has physical access to the device due to the
device’s ubiquitous availability or because the attacker possesses the device as a
legitimate user. The attacker can read out the contents of the external memory
(DDR or flash memory) as it is highly exposed to external accesses. Thus, we
imply that the attacker can read out and change the firmware that is stored
on external memory. Additionally, the attacker is able to inspect and modify
on-chip memory values with software of his choice after the boot process.

Besides these capabilities we assure that the attacker can not perform one of
the following actions. The attacker is not able to change the code of the boot
loader. We assume that the boot loader is stored in a masked read-only memory
(ROM), which is under control of the manufacturer. Furthermore, we consider
an attacker to not be able to replace the ROM chip with a second one of his
choice, containing boot code under his control. Especially in the case of system-
on-a-chip platforms on-chip memory is highly integrated and a replacement of a
memory module is beyond the means of the average-skilled attacker. Lastly, the
attacker is not able to read out the start-up values of the on-chip SRAM during
start-up. The start-up values are protected by the boot loader and are erased
shortly after the device gets out of reset. As soon as the device is powered the
boot loader reads the start-up values, immediately overwrites them and erases
any their instances before the firmware is called. The boot loader is assumed to
be trusted and cannot be replaced. Hence, the first possibility for the attacker
to execute code of his choice is after the boot loader finished execution.

We are aware of the fact that a physical attacker in possession of sufficient
resources in terms of time and money can circumvent virtually any security
mechanism. Nevertheless, if the attacker would succeed to extract the SRAM
start-up values, i.e. the cryptographic key, he would only able to attack this
individual device and has to perform the same attack for any other device.

4.2 General Architecture

The proposed anti-counterfeiting solution is designed for implementation on a
variety of commodity hardware without on-board security facilities ranging from
lightweight devices to more complex SoC platforms. Our solution requires hard-
ware components, which are already present in virtually any computing device.
In particular, we require the devices to be equipped with a masked ROM to
hold the modified boot loader, the processor containing the MCU itself, on-
board RAM (which is the source of the PUF instance) and external memory to
store the encrypted firmware and so-called Helper Data. Helper Data is needed
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to reliably reconstruct the key using the Fuzzy Extractor; its use will be explained
in Section 4. Furthermore, we assume that the manufacturer can modify the boot
loader to implement the key extraction and decryption functionality.

The structures of lightweight MCUs and more complex SoCs differ and require
different approaches with respect to the architecture of our proposed solution.
The general architecture of lightweight devices comprise the boot loader and the
firmware. The entire boot loader needs to be stored irreversibly in masked ROM
as it protects the SRAM start-up values and implements the functionality to
derive the cryptographic key. The key is used to decrypt the firmware that is
stored in external memory. In the case of more complex SoCs, usually a multi-
staged boot loader is used consisting of a smaller part (1st-stage boot loader)
that fits into on-chip SRAM and a larger part (2nd-stage boot loader) stored
on external memory. Such platforms operate with a rich embedded operating
system instead of a more basic firmware. Here, the 1st-stage boot loader will be
modified to perform key extraction and decryption routines and must be stored
in masked ROM. The derived key will be used to decrypt the 2nd-stage boot
loader instead of the firmware in the MCU scenario. Figure 4 illustrates the two
cases.

Fig. 4. Architecture of lightweight devices and more complex SoCs

The following paragraph explains the architecture for the SoC case in more
detail as we used an SoC for our prototype implementation. In this scenario the
1st-stage bootloader is wired programmed in a masked ROM and is executed as
the first binary after the device start-up3. It queries the SRAM PUF, deriving the
device-dependent key K. The key exists in on-chip memory only for the period
of the following two steps. K is used to decrypt the 2nd-stage boot loader, stored
on non-volatile memory (e.g. flash memory). After successful decryption the 2nd-
stage boot loader derives a second key K ′ by hashing the concatenation of K
and a salt value N : K ′ = H(K|N). Key K ′ is subsequently used to decrypt
the compressed kernel file that also resides in non-volatile memory (NVM). The
second keyK ′ is derived to impede the reconstruction of the initial key K in case
an attacker captures K ′. If the attacker captured K ′ then a new version of the

3 More precisely, on our implementation board the first code executed is vendor-
specific initialization code, which cannot be disabled and leads to a pre-initialized
part of the L3 OCM RAM.
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Fig. 5. Schematic view on the general architecture for SoC platforms

2nd-stage boot loader including a new salt must be deployed which will generate
a different K ′

new. Furthermore, a new version of the firmware, encrypted under a
new key K ′

new must be distributed to regain a secure state. This design assures
that only a 2nd-stage boot loader can be executed that was encrypted by the
correct device-depended cryptographic keyK. Since the second keyK ′ is derived
from K also only such firmware can be properly loaded and executed, which was
encrypted by the correct key as well. Thus, the operating system will only boot
properly, if the correct combination of hardware and software is in place. The
overall architecture is depicted in Figure 5.

4.3 Process of Usage

The usage of the proposed anti-counterfeiting architecture involves the enroll-
ment of the used PUF (performed by the manufacturer) and the reconstruction
phase (conducted every time the user boots the device).

Enrollment. The enrollment process is carried out by the manufacturer and
is performed once for each device. It serves two main purposes: the derivation
of key K and the generation of Helper Data W . The cryptographic key K is
derived from a randomly chosen secret S by hashing it with a hash function H :
K = H(S). The secret S is predefined by the manufacturer and must be unique
for every device. Since the start-up values always contain a certain amount of
noise the raw start-up values need to be further processed to derive a stable
output. This is done by applying a Fuzzy Extractor algorithm, to generate so-
called Helper Data W . The Helper Data is constructed by XORing the output
of the concatenated Fuzzy Extractor with the SRAM reference measurement R
(the raw SRAM start-up values).

Helper Data will be used later during the reconstruction phase to reconstruct
the secret S and to derive the key K given a noisy SRAM measurement R′. W
is stored in external memory as it does not leak information about S. To protect
the helper data from tampering several methods can be applied, such as the
approach described by Boyen [6]. The enrollment process is shown in the upper
part of Figure 6.
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Fig. 6. Illustration of the enrollment and reconstruction of the Fuzzy Extractor

Reconstruction. The reconstruction process is performed at user’s side and is
executed every time the user boots the corresponding device. After the device
gets out of reset, the 1st-stage boot loader reads and stores the noisy SRAM
start-up values R′ and immediately overwrites the start-up values to make them
inaccessible to a physical attacker. In a second step the boot loader reads the
Helper Data W from external memory. The Fuzzy Extractor XORs R′ with W
and decodes the output using the concatenated decoders to construct the secret
S′. The generated secret S′ will only be equal to the correct secret S if the Helper
Data corresponds to the respective device having SRAM start-up values R′ that
are similar to the enrollment measurement: d(R,R′) < ε. Next, the key K is
derived by hashing secret S′, which in turn is used to decrypt the firmware or
the 2nd-stage boot loader, depending on the scenario. The schematic composition
of the reconstruction processes is depicted in the lower part of Figure 6.

5 Proof of Concept

We implemented the proposed anti-counterfeiting architecture on a SoC plat-
form. We chose an SoC platform for the following reasons. Primarily, we wanted
to prove the feasibility to robustly extract a unique fingerprint also from more
complex platforms. Furthermore, the boot process is more complicated compared
to lightweight devices. Our intention was to show that the proposed solution can
be implemented into existing boot loaders. Lastly, the size of the memory avail-
able on the SoC for implementing the Fuzzy Extractor logic is comparable to
the STM32F100 and similar low-end devices as shown in Section 3. Hence, the
requirements regarding memory footprint are equal to those of low-end devices.
A successful implementation for the SoC proves the feasibility to implement the
architecture for lightweight devices as well.

We used u-boot [8,7], one of the most widely deployed boot loaders. It inte-
grates a 1st-stage boot loader (Memory Locator — MLO), which is small enough
to fit into on-chip memory and a larger 2nd-stage boot loader (u-boot.img).
The MLO performs minor hardware initialization as well as the setup of external
DDR memory. Afterwards it calls u-boot.img that is copied to DDR memory.
It initializes further hardware components and eventually calls the operating
system kernel.
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Enrollment. According to Section 4, the Helper Data W is derived from a ran-
domly chosen secret S and a reference measurement R using a Fuzzy Extractor
during the enrollment phase. The Fuzzy Extractor design is based on the con-
struction presented by Bösch et. al [5] and will be explained in more detail in
Section 5.1. We also adapted the size for the secret S (22 Byte) from Bösch’s
design. During the enrollment also the key K is generated by hashing the se-
cret S with the SHA-1 hash function to a 128 bit key such that it can be used
as input for the AES cryptosystem in the next step. Having a secret that is
larger then the generated key ensures sufficient entropy. K is used to encrypt
the u-boot.img using the AES-128 block cipher. The second key K ′ is used to
encrypt the kernel image file (uImage). The generated Helper Data is 675 bytes
in total. Eventually, the Helper Data, as well as the encrypted files are stored in
non-volatile memory (e.g. the flash card).

Reconstruction. The main part of the reconstruction logic is implemented
in the MLO, being one of the first pieces of code to be executed. As described
in Section 4 the MLO extracts the on-chip memory chip’s fingerprint R′ and
processes it using a Fuzzy Extractor to derive the device-dependent key K. The
Fuzzy extractor requires 675 bytes of L3 OCM RAM SRAM start-up values as
well as W from the external memory to reconstruct K. Subsequently, K is used
to decrypt u-boot.img. In particular, one after another 16 bytes of the decrypted
u-boot.img are read in on-chip memory, get decrypted and are written back to
external memory. Subsequently u-boot.img is called and in case of successful
decryption it is executed. If the false keyK was generated a fault handler routine
is called, displays a warning message and cancels the boot process. A detailed
scheme of the reconstruction process is depicted in Figure 7.

5.1 Fuzzy Extractor Design

To reproduce the secret key S from various noisy measurements error-correction
is required. Following the suggestions of [5] we decided to implement a concate-
nated code comprising of two linear codes – a Golay code and a repetition code
– to reconstruct the 22 byte secret. In particular, we are using a binary Golay-
(23,12,7) code in combination with a repetition code with 15 repetitions. The
false rejection rate (FRR) of the concatenated code Pe(total) can be calculated
by equation (3). It is derived from the FRR probabilities of the linear repetition
code – equation (1) – and the Golay code – equation (2).

Pe(Repetition) =

s∑

i=�s/2�
εi(1− ε)s−i

(
s

i

)
(1)

Pe(Golay) =

23∑

i=4

Pe(Repetition)
i(1− Pe(Repetition))

23−i

(
23

i

)
(2)

Pe(total) = 1− (1− Pe(Golay))g (3)
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Fig. 7. Scheme of the reconstruction process of the ephemeral key inside the anti-
counterfeiting architecture

Here, s is the number of repetitions, ε is the average bit error rate (BER) and
g is the number of Golay code words needed (g = secret length/12). With this
construction we can achieve a false rejection rate of 10−8 given an average BER
of 15% as commonly used in literature [5]. The false rejection rate of the OMAP
devices will be even lower since the measured BER is well below the reference
value of 15% used in the calculations. Thus, the Fuzzy Extractor Design is suit-
able to reliably reconstruct a cryptographic key given several noisy SRAM PUF
measurements for individual devices. The implemented Fuzzy Extractor requires
675 bytes of SRAM data to reconstruct a 22 Byte secret. The implementation
requires only 0,05% of the available on-chip SRAM memory.

6 Conclusion

In this paper we proposed an anti-counterfeiting architecture and implementa-
tion for low-end devices by using intrinsic Physically Unclonable Functions found
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in commodity hardware. Our approach does not require additional hardware and
can be implemented the on-chip memory as a PUF and modifying the boot loader
to extract a device-specific cryptographic key to decrypt the firmware with the
device-specific key. We showed that low-end devices – including lightweight de-
vices as well as System-on-a-Chip platforms – contain PUF instances that can
be used to robustly identify the device. The analysis of the extracted on-board
PUF instance showed almost optimal characteristics. Thus, our proposed solu-
tion is suitable to strengthen the security of low-end devices without on-board
security mechanisms, keeping the costs at a minimum while significantly raising
the efforts for attackers trying to extract or modify the firmware stored on such
devices.
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