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Preface

This volume contains the proceedings of the 7th International Conference on
Trust and Trustworthy Computing (TRUST), held in Heraklion, Crete, Greece,
during June 30-July 2, 2014. TRUST 2014 was hosted by the Institute of Com-
puter Science of the Foundation for Research and Technology-Hellas (FORTH-
ICS), Greece, and was sponsored by Trusted Computing Group, Intel, and
Microsoft.

Continuing the tradition of the previous conferences, held in Villach (2008),
Oxford (2009), Berlin (2010), Pittsburgh (2011), Vienna (2012), and London
(2013), TRUST 2014 provided a unique interdisciplinary forum for researchers,
practitioners, and decision makers to explore new ideas and discuss experiences
in building, designing, using, and understanding trustworthy computing systems.

The conference program of TRUST 2014 shows that research in trust and
trustworthy computing is active, at a high level of competency, and that it
spans a wide range of areas and topics. Papers dealt, for example, with topics
such as a large-scale security analysis of the Web, hiding transaction amounts
and balances in bitcoins, a security evaluation of specific physical unclonable
functions, security aspects of mobile systems, security considerations of TPM 2.0,
and location privacy.

In total, 40 papers were submitted in response to the Call for Papers. All
submissions were carefully reviewed by at least three Program Committee mem-
bers or external experts according to the criteria of scientific novelty, importance
to the field, and technical quality. After an online discussion of all reviews, ten
papers and three short papers were selected for presentation and publication in
the conference proceedings. This amounts to an acceptance rate of 32.5%. We
also encouraged people to report on work in progress by submitting two page
abstracts describing ongoing research. A panel of experts reviewed these sub-
mitted abstracts. Nine of these abstracts were selected to be included in these
conference proceedings. We hope that these abstracts will convey a sense of the
vibrancy and current themes of research in trusted and trustworthy computing.
Authors of these abstracts also presented posters of their work at the conference.
Furthermore, the conference program contained several keynotes and a panel by
leaders in academia, industry, and government agencies.

We would like to express our gratitude to those people without whom TRUST
2014 would not have been this successful, and whom we mention now in no par-
ticular order: the general chair Ioannis Askoxylakis, the publicity chair Manolis
Stamatogiannakis, the members of the Steering Committee (where Ahmad-Reza
Sadeghi deserves a special mention for his continued and valuable advice during
the preparation of this conference), the local Organizing Committee, the keynote
speakers, and the panel speakers (Jean-Pierre Seifert, Ingrid Verbauwede, and
Christian Wachsmann). We also want to thank all Program Committee members
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and their sub-reviewers; their hard work made sure that the scientific program
was of high quality and reflected both the depth and breadth of research in this
area. Our special thanks goes to all those who submitted papers, and to all those
who presented posters and papers at the conference.

June 2014 Sotiris Ioannidis
Thorsten Holz



Organization

TRUST 2014 was organized by the Institute of Computer Science of the Foun-
dation for Research and Technology-Hellas (FORTH-ICS), Greece.

Steering Committee

Alessandro Acquisti Carnegie Mellon University, USA
Boris Balacheff Hewlett Packard, UK
Paul England Microsoft, USA
Michael Huth Imperial College London, UK
Andrew Martin University of Oxford, UK
Chris Mitchel Royal Holloway, University of London, UK
Sean Smith Dartmouth College, USA
Ahmad-Reza Sadeghi TU Darmstadt/Fraunhofer SIT, Germany
Claire Vishik Intel, UK

General Chair

Ioannis Askoxylakis FORTH-ICS, Greece

Program Chairs

Thorsten Holz Ruhr University Bochum, Germany
Sotiris Ioannidis FORTH, Greece

Publicity Chair

Manolis Stamatogiannakis Vrije Universiteit Amsterdam, The Netherlands

Local Organizing Committee

Nikolaos Petroulakis FORTH-ICS, Greece
Theodosia Bitzou FORTH-ICS, Greece

Program Committee

Magnus Almgren Chalmers University of Technology, Sweden
Elias Athanasopoulos FORTH, Greece



VIII Organization

Francesco di Cerbo SAP, France
Liqun Chen HP Labs, UK
Xuhua Ding Singapore Management University, Singapore
Sascha Fahl Leibniz Universitt Hannover, Germany
Peter Gutmann University of Auckland, New Zealand
Limin Jia Carnegie Mellon University, USA
Ghassan Karame NEC Laboratories, Germany
Engin Kirda NorthEastern University, USA
Michael Locasto University of Calgary, Canada
Federico Maggi Politecnico di Milano, Italy
Mohammad Mannan Concordia, Canada
Jonathan McCune Google, USA
Aziz Mohaisen Verisign, USA
Sachar Paulus Fachhochschule Brandenburg, Germany
Milan Petkovi Philips Research Europe, The Netherlands
Vassilis Prevelakis Technische Universitt Braunschweig, Germany
Christian Rossow Ruhr-University Bochum, Germany
Matthias Schunter Intel, Germany
Martin Vechev ETH Zurich, Switzerland



Table of Contents

TPM 2.0

DAA-Related APIs in TPM 2.0 Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Li Xi, Kang Yang, Zhenfeng Zhang, and Dengguo Feng

Continuous Tamper-Proof Logging Using TPM 2.0 . . . . . . . . . . . . . . . . . . . 19
Arunesh Sinha, Limin Jia, Paul England, and Jacob R. Lorch

Trust in Embedded and Mobile Systems

Affordable Separation on Embedded Platforms: Soft Reboot Enabled
Virtualization on a Dual Mode System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Oliver Schwarz, Christian Gehrmann, and Viktor Do

Owner-Centric Protection of Unstructured Data on Smartphones . . . . . . 55
Yajin Zhou, Kapil Singh, and Xuxian Jiang

On Usable Location Privacy for Android with
Crowd-Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Benjamin Henne, Christian Kater, and Matthew Smith

Physical Unclonable Functions

Lightweight Anti-counterfeiting Solution for Low-End Commodity
Hardware Using Inherent PUFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
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DAA-Related APIs in TPM 2.0 Revisited

Li Xi, Kang Yang, Zhenfeng Zhang, and Dengguo Feng

Trusted Computing and Information Assurance Laboratory
Institute of Software, Chinese Academy of Sciences

Beijing 100080, China
{xili,yangkang,zfzhang,feng}@tca.iscas.ac.cn

Abstract. In TPM 2.0, a single signature primitive is proposed to sup-
port various signature schemes including Direct Anonymous Attesta-
tion (DAA), U-Prove and Schnorr signature. This signature primitive
is implemented by several APIs which can be utilized as a static Diffie-
Hellman (SDH) oracle. In this paper, we measure the practical impact
of the SDH oracle in TPM 2.0 and show the security strength of these
signature schemes can be weakened by 13-bit. We propose a novel prop-
erty of DAA called forward anonymity and show how to utilize these
DAA-related APIs to break forward anonymity. Then we propose new
APIs which not only remove the SDH oracle but also support the for-
ward anonymity, thus significantly improve the security of DAA and the
other signature schemes supported by TPM 2.0. We prove the security
of our new APIs under the discrete logarithm assumption in the ran-
dom oracle model. We prove that the proposed DAA schemes satisfied
the forward anonymity property using the new APIs under the Decision
Diffie-Hellman assumption. Our new APIs are almost as efficient as the
original APIs in TPM 2.0 specification and can support LRSW-DAA and
SDH-DAA together with U-Prove as the original APIs.

1 Introduction

Direct Anonymous Attestation (DAA) is a special group signature scheme that
enables remote authentication of a trusted platform which contains a valid TPM
[1] while preserving the platform’s privacy. Basically, DAA protocol allows a
trusted platform called signer to sign arbitrary message and convince a verifier
that the message is indeed signed by a valid TPM without leaking the signer’s
identity. A RSA-based DAA is proposed by Brickell et al. [2]. This RSA-based
DAA is adopted by TCG and included in TPM 1.2 specification [3]. Since then
several ECC-based DAA [4–8] are proposed to achieve better performance and
shorter signature length. Some of them are now supported by the latest TPM
2.0 specification [1]. In TPM 2.0, a single TPM signature primitive [9] which can
support various signature schemes including DAA and U-Prove is implemented
by several DAA-related application programming interfaces (APIs).

An interesting feature of DAA is to provide differing degrees of privacy. While
DAA signatures can be totally anonymous, a pseudonymous DAA signature can
be linked to another signature by using a specific basename. A DAA signature

T. Holz and S. Ioannidis (Eds.): TRUST 2014, LNCS 8564, pp. 1–18, 2014.
c© Springer International Publishing Switzerland 2014



2 L. Xi et al.

signed by a trusted platform contains a ticket t = (J ,K = Jk) ∈ G ×G, where
G is a cylic group, k is the DAA secret key of the trusted platform and J =
hash(basename) if basename �=⊥. This ticket is used for linking and rogue
tagging: given two signatures, if the two tickets in signatures are the same, then
these two signatures are linked.

In some DAA schemes, including the scheme adopted by the TPM 1.2 spec-
ification, the TPM simply gets input J and output Jk to the host, thus can be
used as a static Diffie Hellman oracle which significantly reduces the security
strength of DAA [10]. A security fix is proposed and is adopted by the TPM 2.0
specification [1].

Now in TPM 2.0 specification, TPM gets basename as input instead of J and
calculates J = hash(basename) by itself. It is believed that there is no obvious
way that TPM can be used as a static DH oracle even though the security proof of
the DAA-related APIs in TPM 2.0 specification is still based on the static DH
assumption [9]. Unfortunately, Tolga Acar et al. [11] show these DAA-related
APIs can still be used as a static DH oracle. Moreover, we find the security
proof [9] is not correct either, which is rather disturbing as DAA is one of the
few complex cryptographic protocols deployed in real life. Hundreds of millions
of computers have been equipped with TPM.

Another important feature of DAA is that the signer, i.e., the trusted plat-
form, is split into two parts: the TPM part and the host part. The TPM is a
low speed hardware chip with high security; the host normally is a X86-based
PC equipped with powerful CPU but is easy to corrupt. While the security
definitions of user-controlled traceability and non-frameability of DAA give the
adversary the ability to compromise the host, all the previous definitions and
analyses of anonymity of DAA [12, 13] consider a setting that the host and TPM
are both honest. This is easy to understand, because if the host of a trusted plat-
form is already corrupted when signing, it can easily reveal its identity together
with the signature, so anonymity of the platform can not be preserved.

However, as host is easier to compromise than TPM, the host part of a trusted
platform which is honest when signing can be controlled by the adversary later.
The adversary can then utilize the APIs provided by the TPM to find out if a
given signature was signed by this TPM previously, thus breaks the anonymity.
For example, consider an adversary who has gathered DAA signatures sent to a
service provider (this is quite reasonable as DAA signatures are not confidential,
moreover the adversary can be a malicious service provider itself), by corrupt-
ing the host part of a specific user, he may be able to trace all the previous
actions of this user, even if the DAA signatures produced by this user are totally
anonymous.

1.1 Contribution

In this paper, we provide the following main contributions:

1. We measure the practical impact of the SDH oracle in TPM 2.0. We analyze
the Barreto-Naehrig (BN) elliptic curves [14] defined in ISO/IEC 15946-5
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[15] which are recommended by the TPM 2.0 specification and show the
security strength of DAA can be significantly reduced by about 13-bit in
practice.

2. We propose a new property called forward anonymity of DAA. This property
assures that even if the host of a trusted platform is corrupted, the anonymity
of DAA signatures signed by the platform previously will not be broken.
We propose a security definition of forward anonymity based on interactive
game and shows attacks against forward anonymity both in the original DAA
schemes and in the implementations of these DAA schemes using APIs in
TPM 2.0 specification.

3. We propose new APIs which not only remove the static Diffie-Hellman or-
acle but also support the forward anonymity thus significantly improve the
security of DAA. We present security proof of our new APIs under the dis-
crete logarithm assumption in the random oracle model. We prove that both
LRSW-DAA [7] and SDH-DAA [16] satisfy forward anonymity using the
new APIs under the Decision Diffie-Hellman assumption. Our new APIs are
almost as efficient as the original APIs in TPM 2.0 specification and can
still support LRSW-DAA and SDH-DAA together with U-Prove [17] as the
original APIs.

2 Background

In this section, we briefly introduce the static Diffie Hellman assumption and
the DAA-related APIs in TPM 2.0.

2.1 Static DH Assumption

Definition 1. Static DH oracle. Let G be a cyclic group of prime order n, x is
a value in Z∗

n. Given any p ∈ G as input, the static DH oracle on x outputs px.

Definition 2. Static DH problem. Let G be a cyclic group of prime order n, x
is a value Z∗

n. Given g, h = gx ∈ G, the static DH problem is to compute x given
access to a static DH oracle on x.

The static DH assumption is that for large n, it is computational infeasible to
solve the static DH problem. While the static DH problem is still believed as a
computational hard problem, the study of Brown and Gallant [18] shows that
static DH problem is easier to solve than the discrete log problem:

Theorem 1. [18] Given a cyclic group G = 〈g〉, the order of which is n = uv+1,
a group member h = gx, there is an algorithm that (1) asks the static DH oracle
on x u times, (2) performs at most 2(

√
u+

√
v) scalar multiplications in G and

10 simple arithmetic operations on numbers no larger than n and (3) outputs x.
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2.2 The DAA-Related APIs in TPM 2.0

We briefly recall the DAA protocol and DAA-related APIs in TPM 2.0, more
details can be found in [9]. The DAA protocol consists of two subprotocols: the
join protocol and the sign protocol. The TPM has an asymmetric endorsement
key and a certificate cert associated with the public part of the endorsement key
epk, the secret part of the endorsement key is esk.

In the join protocol, 1) the host use TPM2 Create to create the DAA secret
key tsk, the public key is tpk. 2) The host send tpk and epk to the issuer. The
issuer verifies epk and responses with an encryption blob a of a nonce c using tpk
and epk. The host loads tsk and calls TPM2 ActivateCredential(epk, tpk, a) to
get c. 3)The host calls TPM2 Sign to generate the schnorr signature on c using
tsk, and sends the signature to the issuer. The issuer verifies the signature and
the nonce c, then generates the DAA credential cred corresponds to tsk using
tpk. The issuer generates a symmetric key k, encrypts the DAA credential cred
using k and encrypts k using tpk and epk, then sends the ciphertexts to the host.
4)The host retrieves the symmetric key k using TPM2 ActivateCredential then
decrypts the credential.

In the sign protocol, given a basename bsn, the host works together with the
TPM by calling TPM2 Commit and TPM2 Sign to generate the DAA signature. In
high level, the final DAA signature can be seen as consists of two parts: a ticket
(J,K) = (HG(bsn), HG(bsn)

tsk) which is used for linking, and the information
that proves (1) the trusted platform has a valid DAA credential and (2) the
ticket and the credential are bound with the same DAA secret key tsk. Notice in
complex signatures such as DAA, the computation which needs the secret key is
only a small part. This part which is generate by TPM2 Commit and TPM2 Sign

is actually a self-contained signature primitive.
Now we introduce the DAA-related APIs in TPM 2.0. Let G be a cyclic group

of prime order p and g be a generator. H : {0, 1}∗ → Zp and HG : {0, 1}∗ → G
are two collision-resistant hash functions.

TPM2 Create: The TPM generates a random number k and computes y = gk.
The secret key is k, the public key is y.

TPM2 ActivateCredential: Given epk, pk, eblob as input, epk is the public part
of endorsement key, pk is a public key, eblob = encepk(pk, k) is a blob encrypt
under epk, the secret part of the endorsement key is esk:
1. verify that pk is loaded in TPM, if true then
2. decrypt eblob using esk and check that k is bound with pk.
3. output k.

TPM2 Commit: Given P1 ∈ G, str ∈ {0, 1}∗ as input:
1. Verify that P1 ∈ G.
2. If str = ∅, set P2 = 1, otherwise, compute P2 := HG(str).
3. Choose a random integer r ← Zp.
4. Compute R1 = P r

1 ,R2 = P r
2 , and R2 = P k

2 where k is the private key.
5. Output R1, R2, K2 and a counter ctr which is used for the TPM to find

the corresponding random number r in TPM2 Sign, as TPM2 Commit can
be execute many times before TPM2 Sign is executed. The counter value
is then increased by 1.
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TPM2 Sign : Given ch,m and a counter ctr as input:
1. compute c := H(ch,m).
2. According to the counter ctr finds the corresponding r, compute s :=

r + ck mod p, delete r.
3. Output(c, s).

The signature (P1, P2, R1, R2,K2, c, s) produce by TPM2 Commit and TPM2 Sign

is a signature of knowledge SPK{(k) : K1 = P k
1 ∧K2 = P k

2 }(m). Given m,K1 =
P k
1 , the verification of the signature (P1, P2, R1, R2,K2, c, s) proceeds as follows:

1. Verify P1 �= 1.
2. Verify H(R1, R2,m) = c.
3. Verify R1 = P s

1 ·K−c
1 and R2 = P s

2 ·K−c
2 .

3 Static DH Oracle in TPM 2.0

Tolga Acar et al. [11] show these DAA-related APIs can be used as a static DH
oracle. In TPM2 Commit API, the input are a group member P1 ∈ G, where G

is a cyclic group with prime order p, and a string str ∈ {0, 1}∗ that represents
the basename, TPM calculates P2 = HG(str), the output is R1 = P r

1 , R2 = P r
2 ,

K2 = P x
2 , x is the DAA secret key. In TPM2 Sign API, the TPM get a input

ch,m from the host, calculate c = H(ch,m), and output (c, s), s = r + cx.
Notice that there is no restriction on the first input P1, if the host is corrupted,

he can send whatever he wants. Now the host (adversary) can get R1 = P r
1 from

TPM2 Commit and he can then get (c, s = r + cx) from TPM2 Sign. Thus he can
calculate Mid = P cx

1 = P s
1 /P

r
1 , then he can calculate P x

1 = Mid1/c (1/c mod p
is easy to calculate as p is a public prime number). Thus TPM can still be used
as a static DH oracle.

3.1 Practical Impact of the Static DH Oracle

Theoretically, according to result of [18], for p = uv + 1, in the worst case,
when there exists u ≈ p1/3, the adversary who controls the host can query TPM
u times and uses about 2(

√
u +

√
v) ≈ O(p1/3) group operations to solve the

static DH problem. For a 256-bit p, the adversary can query the TPM about 285

times then solve the discrete log problem with O(285) computations instead of
O(2128) computations. However, as TPM is a low speed device, and according
to the algorithm in [18], the static DH query should be asked sequentially, i.e.

the adversary has to obtain gk
n

then ask the static DH oracle for gk
n+1

, where
k is the DAA key, it may be impractical for the adversary to ask for too many
static DH oracles using the known technology.

According to preliminary performance figures in [9], on a discrete 40MHz
TPM 2.0 chip, a scalar multiplication operation on a 256-bit prime curve takes
only 125ms, and according to our benchmark, a scalar multiplication on a 256-
bit prime curve takes less than 1 ms on a X86-based PC equipped with an Intel
i7-3770M CPU at 4x3.4GHz, so it takes less than 130ms to get the answer to a
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static DH query using the method described in above subsection. The adversary
can then ask the static DH oracle about 1.22×108 > 226 times in half a year. So
the security strength can be significantly weakened by about 13-bit, which means
given a 256-bit BN curve, the security strength is now only 115-bit instead of
the assumed 128-bit.

Notice that in order to utilize the Brown-Gallant algorithm, the adversary
has to find a large u|p − 1, p is the order of the elliptic curve group. In the
TPM 2.0 specification, it is recommended that DAA be implemented using the
Barreto-Naehrig (BN) elliptic curve [14] as defined in ISO/IEC 15946-5 [15]. We
present the factorizations of p− 1 for the BN curves given in ISO/IEC 15946-5
[15] in table 1.

Table 1. Factorizations of p− 1 for BN curves, where p is the group order

BN256 2 · 2 · 3 · 7 · 7 · 189239 · 24818737 · 6192533153 · 53176290319 ·
127328277910133303695654392417046642892297

BN224 2 · 2 · 3 · 13 · 43 · 3539 · 3099193 · 118621 · 21529517 · 105380711 · 247994786597 ·
5490314800167041813327

BN192 2 · 2 · 3 · 269 · 124427 · 923526871 · 15942266405279489963 ·
1061479012505267222401

BN160 2 · 2 · 3 · 12132793 · 164442871007 · 448873741399 · 135993458106516349

As shown by the Table 1, every BN curve in the international standard
ISO/IEC 15946-5 which is adopted by TPM 2.0 specification has a large u|p− 1
which is close to 226. For example, the 160-bit BN curve which is supposed to
provide 80-bit security strength now only provides poorly 67-bit security strength
which may be easy to break in nowadays. Moreover, as static DH assumption is
a non-standard assumption and has not been studied enough, we do not have the
confidence that more efficient algorithms will not be found. If a more efficient
algorithm is found, the firmware of TPM may need to be updated which is hard
to implement. So obviously, the safest solution is to design new DAA-related
APIs that can be proved secure under a weaker assumption, for example, the
discrete logarithm assumption.

4 Forward Anonymity

In this section we introduce the notion of forward anonymity and show how the
adversary can break forward anonymity both in the original DAA schemes and
the implementation of DAA using APIs in TPM 2.0.

All the previous definitions and analyses of anonymity of DAA consider a set-
ting that the host and TPM are both honest. However, we find a DAA protocol
which is proved to be secure under former definitions of anonymity may not be
able to resist the following attack: the whole platform is honest when signing a
signature, after the signature is signed, the adversary wants to find out whether
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this signature is signed by the platform, so he corrupts the host and gains in-
formation stored in the host and the ability to directly communicate with the
TPM. Of course, we assume an honest trusted platform will wipe out all the
one-time information used in signing after the signature is produced, including
the random number and the signature. With these capabilities, the adversary
may be able to find out whether the signature was signed by the platform before.

As we know, the host is easier to corrupt than TPM, thus it is not enough
to rely on the security of host to achieve anonymity under high level security
requirement. It is promising to guarantee anonymity of signatures only under
the assumption that the TPM is honest which is reasonable because TPM is
designed to resist software attacks and some kinds of physic attacks.

So we propose forward anonymity. Informally, the notion of forward anonymity
requires that the following property holds in the DAA scheme: even after an ad-
versary compromised the host of a trusted platform, he finds it hard to find out
whether a previous signed anonymous DAA signature (with basename =⊥) is
signed by this trusted platform as long as the TPM is not corrupted. Notice
that generally we can not expect a pseudonymous signature to remain anony-
mous after the host is compromised, because the adversary with the ability to
communicate with TPM can always generate a new signature using the same
basename as the pseudonymous signature. Thus by checking whether these two
signatures contain the same ticket, the adversary can decide if this pseudony-
mous signature is generate by the platform.

The notion of forward anonymity is defined via a game played by a challenger
C and an adversary A as follows, for simplicity, we assume that for each trusted
platform there will be only one DAA secret key:

Initial: C runs Setup and gives the resulting issuer’s secret key isk to A. C
publishes the public parameters on a public channel.

Phase 1: The adversary makes the following requests to C:
Join. A submits a TPMs identity id to C, who acts as the trusted platform

with identity id and executes Join protocol with A.
Sign. A submits a TPMs identity id, a message m and a basename bsn to

C, who acts as the trusted platform with identity id and execute Sign
protocol with A using message m and basename bsn.

API. A submits a TPMs identity id along with the name of the API he
wants to use, for example, TPM2 Commit, and the data used in calling
the API of his choice to C, who acts as the TPM with identity id and
responds with the output of the API. Also the information stored inside
the host part of this trusted platform will be output to the adversary.

Corrupt. A submits a TPMs identity id to C, who response with the DAA
secret key created by this TPM.

Challenge: At the end of Phase 1, A chooses two TPMs’ identities id0 and
id1, submits the two identities and a message m of his choice to C. A must
not have made any API query or Corrupt query on either id0 or id1. For
simplicity, we assume that A has already made Join query on id0 and id1, C
chooses a bit b uniformly at random, produce a signature as platforms with
identity idb using m and bsn = ⊥, then output signatures to the adversary.
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Phase 2: The adversary can do what he can in phase 1 except that he can not
make any Corrupt query on either id0 or id1, notice now he can make API
query using id0 and id1.

Guess: A returns a bit b′, the advantage of A is Adv(A) = |Pr(b = b′) −
1/2|. We say that a DAA scheme satisfies forward anonymity if for any
probabilistic polynomial-time adversary A, Adv(A) is negligible.

In both LRSW-DAA [7] and SDH-DAA [16], even the totally anonymous DAA
signature contains a tuple (J,K), K = Jk, which is used for rogue tagging. In
TPM 2.0, when signing a totally anonymous signature, the host will choose a
random string str, then TPM will calculate J = hash(str) and K = Jk. Notice
that it is unnecessary to include the random string str in the signature as only the
tuple (J,K) is used for rogue tagging. To achieve forward anonymity, it actually
should not be include in the signature. Otherwise after the host is compromised,
given a totally anonymous DAA signature which contains (str, J,K), where J =
hash(str), the adversary can use the string str and the API TPM2 Commit to
reconstruct the tuple (J,K), thus can decide whether the signature is signed
by this TPM. If only (J,K) is included in the signature, this approach will not
work: the adversary can not calculate bsn = hash−1(J) as hash is a one-way
function.

Note that even only consider user-controlled anonymity as in [12], for totally
anonymous DAA signatures with basename= ⊥, the random string str should
not be included in the signature either. In the challenge phase of user-controlled-
anonymity game [12], if the adversary A chooses a basename bsn = ⊥, then in
Phase 2 there is no restriction of basename used in the Sign query. Thus if
the totally anonymous DAA signature (with basename=⊥) outputted in the
challenge phase contains (str, J,K) where J = hash(str), the adversary A can
submit basename= str in phase 2, thus reconstruct (J,K) which breaks user-
controlled anonymity.

Attacks against Forward Anonymity. In the original LRSW-DAA, (c, s) =
SPK{(k) : K1 = P k

1 ∧ K2 = P k
2 }(m) is generated by a single procedure, the

random commitments R1, R2 are not output to the host. In TPM2.0, this pro-
cedure is split into two parts: TPM2 Commit and TPM2 Sign in order to support
various signatures, especially the SDH-DAA. However section 3 shows splitting
the procedure leads to the result that the TPM can be used as a static DH
oracle. In TPM 2.0, DAA protocols can not satisfy forward anonymity because
given a challenge DAA signature which contains a ticket (J,K), the adversary
can utilize the TPM as the static DH oracle and get K ′ = Jk, k is the DAA
secret key. By checking whether K ′ = K, the adversary can find out whether
the signature is signed by this TPM.

It is worth noting that in the original LRSW-DAA [7] (of course we move
the calculation J = hash(basename) inside the TPM according to [10]), even
though now there is no obvious way that TPM being used as a static DH oracle,
the forward anonymity still can not be preserved.
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To make this paragraph easy to understand, we use the same notation as
in the sign/verify protocol of [7, § 2.3]. In the sign protocol, the input to
TPM is (c, J, S, msg, bsn), where J = H1(bsn). In our analysis, we delete J
as J = H1(bsn) should be calculate by TPM (or at least verified by TPM).
So now the input to TPM is (c, S, msg, bsn). Given a TPM and a challenge
DAA signature which contains a ticket (Ĵ , K̂), K̂ = Ĵk∗

where k∗ is the DAA
secret key this signature is signed under, the adversary generates three ran-
dom values (c, msg, bsn) and output (c, S = Ĵ , msg, bsn) to the TPM. The
TPM will output (K = Jk, h, s, nT ). (h, s) actually is a signature of knowledge
SPK{(k) : K = Jk ∧K ′ = Ĵk}(c, msg), now K ′ is not known by the adversary.
Notice (h, s) = SPK{(k) : K = Jk ∧ K ′ = Ĵk} can only be verified by two
pair (J,K = Jk) and (Ĵ ,K ′ = Ĵk). The adversary can now use the ticket (J,K)
and the ticket (Ĵ , K̂) in the challenge DAA signature to verify (h, s), if (h, s) is
verified, then the challenge DAA signature is signed by this TPM.

More deeply thinking, we can see the above analysis shows a TPM in LRSW-
DAA (even the calculation J = hash(basename) is moved inside the TPM)
provides a weaker kind of Decision Diffie-Hellman oracle: let (g, h) be the DAA
public key, given arbitrary tuple (Ĵ , K̂), an adversary can utilize the TPM to
decide whether logĴK̂ = loggh.

This attack works because TPM does not check the input S ∈ G. So our
analyses of static DH oracle and forward anonymity both show there should be
restriction on the first parameter of TPM2 Commit’s input (P1 ∈ G, bsn ∈ {0, 1}∗).

5 The New DAA-Related APIs

5.1 Fix the DAA-Related APIs to Satisfy Forward Anonymity and
to Remove the Static DH Oracle

Our target is to revise the APIs without adding much cost and retain the ca-
pabilities of the APIs, i.e., the revised APIs should still support LRSW-DAA,
SDH-DAA and U-Prove. As pointed out above, there should be restriction on
the first input of the TPM2 Commit. Actually, we step a little further, we will
bind P1 ∈ G which is the first input of the TPM2 Commit with the DAA key
(g, y = gk): now P1 can only be g or a fixed group member P ∈ G1 which is
bound to the DAA key. Before using TPM2 Commit and TPM2 Sign to generate
DAA signatures, if the P1 needed by TPM2 Commit is different from g, then the
host should first output the P1 to the TPM, who will bind P1 with the DAA
key. After binding, the API TPM2 Commit can only use the same bound group
member P1 �= g or g as input.

We propose a new command TPM2 DAAbind to bind P1 ∈ G1 with the DAA
key (g, y = gk), the input of this command is a pair (P1,K1) together with
a signature of knowledge SPK{(r) : K1 = yr ∧ P1 = gr} which is generate
by the issuer (the join protocol of LRSW-DAA in TPM 2.0 is different from
the original scheme [7], it actually adopted the join protocol in [8]: the issuer
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generates a DAA credential together with a signature of knowledge). The TPM
checks the signature of knowledge SPK{(r) : K1 = yr ∧ P1 = gr} and bind P1

with the DAA key. Only after the DAA key is bound with a group member P1,
can the host call the API TPM2 Commit using the fixed P1 �= g as a input.

Now we describe the new TPM signature primitive, denoted by tpm.sign∗.

Key Generation (TPM2 Create): The TPM generates a random number k
and computes y = gk. The secret key is k, the public key is y.

DAA Binding (TPM2 DAAbind): Given a pair (P1,K1) and a signature of
knowledge SPK{(r) : P1 = gr ∧ K1 = yr}, the TPM verifies the signa-
ture of the knowledge SPK{(r) : P1 = gr ∧ K1 = yr}, if it is valid, then
bind k with P1.

Signing:
Commit Oracle (TPM2 Commit): Given P1 ∈ G, l ∈ ZP , str ∈ {0, 1}∗ as

input:
1. Verify that P1 = g or P1 has been bound with k, if both not, abort.
2. If str = ∅, set P2 = 1, otherwise, compute P2 := HG(str)
3. Choose a random integer r ← Zp.
4. Compute R1 = P lr

1 ,R2 = P r
2 , and R2 = P k

2 where k is the private
key.

5. Output R1, R2,K2 and a counter ctr. The random number r is bound
with ctr, the counter is then increased by 1.

Sign Oracle (TPM2 Sign) : Given ch,m and a counter number ctr as input.
1. Generate a nonce nT , compute c := H(ch,m, nT ).
2. According to the counter ctr finds the corresponding r, compute

s := r + ck mod p, delete r.
3. Output(c, s, nT ).
The signature on m is (P ′

1 = P l
1, P2, R1, R2,K2, c, s, nT ), it is a signature

of knowledge SPK{(k) : K1 = P ′k
1 ∧K2 = P k

2 }(m), where K1 = P ′k
1 .

Verification: Given a signature (m,P ′
1 = P l

1, P2, R1, R2,K2, c, s, nT ), K1 =
P ′k
1 , the verification proceeds as follows:
1. Verify that P1 �= 1.
2. Verify that H(R1, R2,m, nT ) = c.
3. Verify that R1 = P ′s

1 ·K−c
1 and R2 = P s

2 ·K−c
2 .

Our TPM2 Commit is slightly different from the original one, as now R1 = P lr
1 , l

is an input number. This difference guarantees that the implementations of DAA
protocols and U-Prove using our new APIs is as efficient as using the original
APIs which will be discussed thoroughly in section 6.

5.2 Security Proof of the New tpm.sign∗

We first point out the mistake in the security proof of the original DAA-related
APIs in TPM 2.0 [9] then we present security proof of our new APIs under the
discrete logarithm assumption in the random oracle model.
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Mistake in the Security Proof of DAA-Related APIs in TPM 2.0. In the
proof [9], the simulator B does not provide the hash query H for the adversary
A. Actually, after making a TPM2 Commit query, A can first query H n times
using arbitrary pairs (ch,mi), i ∈ [1, n] and gets answers hi = H(ch,mi), then
call the TPM2 Sign using one pair (ch,mj), j ∈ [1, n], however, the simulation of
TPM2 Sign have to output the (c, s) which is already fixed in the simulation of
TPM2 Commit. So now c = H(ch,mj) �= hj which means the simulation fails.

In our new API TPM2 Sign, the TPM generates a nonce nT . By adding a
nonce nT , we fix this problem: now c = H(ch,mj, nT ) and A can not obtain nT

before calling TPM2 Sign as nT is a newly-generated nonce.

Security Proof of the Our New APIs. We prove the security of our new
tpm.sign∗ using the standard security notion of signature schemes which is ex-
istential unforgeability under adaptive chosen message attacks (EUF-CMA). In
EUF-CMA model, the attacker is allowed to query the signing oracle adaptively.
In our case, it means the attacker is allowed to call the APIs adaptively, i.e., he
can call TPM2 DAAbind (bind oracle), TPM2 Commit (commit oracle), TPM2 Sign

(sign oracle) as he wishes.

Definition 3. The tpm.sign∗ scheme is said to be existentially unforgeable un-
der adaptive chosen message attacks if there is no probabilistic polynomial-time
adversary A with non-negligible advantage in the following game played with a
challenger C:

Initial: C runs Setup and call TPM2 Create to create the secret key. C sends
systems public parameters params and public key to A

Queries: The adversary A adaptively makes API queries as he wishes.
Forgery: The adversary A produces a pair (m∗, σ∗), notice m∗ should not be

called in TPM2 Sign queries. The adversary A wins if σ∗ is a valid signature.

Our security proof is based on the well-known forking lemma [19] which applies
to signatures with the form (σ1, h, σ2). Here σ1 are random commitments; h =
H(σ1,m) where H is a hash function.

Theorem 2. The new tpm.sign∗ is existentially unforgeable under adaptive
chosen message attacks in the random oracle model under the DL assumption.

Proof: If there is an adversary A that breaks the new tpm.sign∗ scheme, i.e., A
outputs a forged signature (m,P1, P2, R1, R2,K2, c, s, nT ) after given arbitrary
access to TPM2 Create, TPM2 DAAbind, TPM2 Commit and TPM2 Sign, then there
exists an algorithm B which utilize A to solve the DL assumption. B is given a
pair (g, h = gx), and B wants to compute x. Algorithm B works as follows:

key generation(TPM2 Create): B sets h as the public key and outputs it to
A and sets loggh as the corresponding private key x, although B does not
know x.
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Bind Query(TPM2 DAAbind): Given a pair (P,K) and a proof of knowledge
PK{(r) : P = gr ∧K = hr}. B verifies the proof of the knowledge PK{(r) :
P = gr ∧K = hr}, if it is right, stores (P,K). Due to the soundness of proof
of knowledge, we have K = P x.

Hash Query: There are two hash functions modelled as random oracles: HG

and H .

HG: Given a input str, if the str is not queried before, B generates a random
number r, calculated HG(str) := gr, store (HG(str) = gr, r) in the hash
list of HG, if the str has been queried, return the former answer.

H : Given a input x, if x has been queried before, return the former answer.
If x has not been queried, choose a random number r and add the (x, r)
to H ’s hash list.

Commit Query(TPM2 Commit): If A makes a commit query with (P1, l, str)
as input, B first check if P1 is equal to g or has been bound to the DAA
key using TPM2 DAAbind, if not, returns fail. B calls the HG oracle to get
P2 = HG(str) = gr and the random number r. Now B knows K1 = P x

1 and
K2 = hr = P x

2 . B chooses at random c and s and computes R1 := P ls
1 ·K−lc

1

and R2 := P s
2 · K−c

2 . B outputs (R1, R2,K2) and a counter number ctr.
B stores (c, s, ctr) Then B increases the ctr by 1. It is direct to see this
simulation of commit query is perfect.

Sign Query(TPM2 Sign ): A makes a sign query on m, the input are (ch,m)
and a counter number ctr. If ctr is not used before, B retrieves (c, s, ctr).
Then B generates a random number nT , and sets c := H(ch,m, nT ), store
((ch,m, nT ), c) into the hash list of H , then output the (c, s, nT ), ctr is
marked as used. Notice the failure only occurs if H(ch,m, nT ) has been
queried before and the answer is c′ �= c. However, it is direct to see the
chance this failure happens is negligible, because nT is a newly-generated
nonce by the TPM.

Forgery: A produces a signature (m, P̃1, P̃2, R̃1, R̃2, K̃2, c, s, nT ). According to
the forking lemma, we can useA to output two signature σ1 = (m, P̃1, P̃2, R̃1,
R̃2, K̃2, c, s, nT ) and σ2 = (m, P̃1, P̃2, R̃1, R̃2, K̃2, c

′, s′, n′
T ). We have R̃1 ·

K̃1
c
= P̃1

s
and R̃1 · K̃1

c′
= P̃1

s′
. So K̃1

c−c′
= P̃1

s−s′
, thus we can cal-

culate the discrete logarithm x = (s − s′)/(c − c′). Notice calculating x =

(s− s′)/(c− c′) does not need to know K̃1 = P̃1
x
.

Therefore, under the discrete logarithm assumption, the new tpm.sign∗ is
secure.

6 Applications and Implementation of the New
TPM.Sign∗ APIs

Now we show how to use our modified DAA APIs to implement LRSW-DAA
[7], SDH-DAA [16]and U-Prove [17]. Then we present how our APIs can be
implemented, particularly TPM2 DAAbind. Details about how to use the original
APIs to implement LRSW-DAA, SDH-DAA and U-Prove can be found in [9].
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6.1 Applications of the New APIs: DAAs and U-Prove

The LRSW-DAA Protocol

Join: The host calls TPM2 Create to get the tpk = gtk, where tk is the DAA
secret key. Then host proceeds the same as the join protocol using the original
APIs. The host gets the DAA credential (A,B,C,D) which is a CL-LRSW
signature on tk together with a proof of knowledge σI = PK{(r) : B =
gr ∧D = tpkr} from the issuer. The host binds B with the DAA key tk by
calling TPM2 DAAbind(B,D, σI) and stores the credential (A,B,C,D).

Sign: Given a nonce nV , a message m, the host generate a random number
l ∈ Zp, calls TPM2 Commit(B, l, bsn). The TPM first checks that B is bound
with tk, then outputs R1 = Blr, R2 = HG(bsn)

r,K = HG(bsn)
tk. The host

then uses the random number l to randomize the credential: (R,S, T,W ) =
(Al, Bl, Cl, Dl), notice that R1 = Sr. The host calculate ch = H3(R,S, T,W,
J = HG(bsn),K,R1, R2, nV ) and calls TPM2 Sign(ch,m) to get a TPM sig-
nature (c, sf , nT ) = PK{(k) : W = Stk∧K = J tk}. The final DAA signature
is (R,S, T,W, J,K, c, sf , nv, nT ).

The SDH-DAA Protocol

Join: The join process is almost the same as LRSW-DAA except that there is
no need for the host to execute TPM2 DAAbind because when signing the first
input of TPM2 Commit will always be g which is part of the DAA public key.

Sign: Given a nonce nV , a message m, the host calls TPM2 Commit(g, 1, bsn).
The TPM first checks that g is part of the public key, then outputs R1 =
gr, R2 = HG(bsn)

r,K = HG(bsn)
tk. The host generate random numbers

a, rx, ra, rb ← Zp, calculate b = ax mod p, T = Aha
2 , then uses R2 to

generate the random commitments used in the final proof of knowledge:R′
2 =

e(R2T
−rxhrb

2 , g2)e(h2, w)
ra . The host calculate ch = H3(J = HG(bsn),K, T,

R1, R
′
2, nV ) and calls TPM2 Sign(ch,m) to get a TPM signature (c, sf , nT ).

The host calculate sx = rx + cx, sa = ra + ca, sb = rb + cb, the final DAA
signature is (J,K, T, c, sf , sx, sa, sb, nv, nT ).

U-Prove Using the New APIs. U-Prove is a pseudonym system based on the
blind signatures and zero-knowledge proofs. In the U-Prove 1.1 specification, it
is proposed that a U-Prove token can be protected by a hardware device. By
using a hardware device, the leaked U-Prove token still can not be used unless
the hardware device is also controlled by the adversary. Moreover, the hardware
device can produce a ticket which is the same as in the DAA protocol to provide
user-controlled linkability: the tickets generated by the same device key and
basename are the same.

Using our new APIs to protect the U-Prove token is almost the same as using
the original APIs [9]. While the input of the original TPM2 Commit is (gd, str),
the input of our new API TPM2 Commit is now (gd, 1, str). There is no need to
execute TPM2 DAAbind as gd is part of the TPM public key.
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6.2 Efficiency Analysis

We have two targets: first the runtime performance of various protocols using
the new tpm.sign∗ should still be as good as using the original tpm.sign, second
the revised API should still be easy to be implemented in the TPM, as TPM is
just a cheap chip.

Notice our newly added API actually have little influence on the run time
performance of protocols including various DAA schemes and U-Prove. The host
has only to run the new command TPM2 DAAbind once after the join protocol
and then he can call TPM2 Commit and TPM2 Sign an arbitrary number of times.

The revise API TPM2 Commit is almost as efficient as the original TPM2 Commit:
in the new API TPM2 Commit(P1, l, str), the only operation added is now the
TPM need to calculate l · r first, where l, r ∈ Z∗

p . Calculating l · r takes much
less time than calculating a point multiplication in an elliptic curve. In our new
API TPM2 Sign, the only operation added is generating a nonce nT which is also
very efficient. The computational workload of the host part using our APIs is
the same as using the original APIs.

Implementing the new command TPM2 DAAbind will not add much cost to
TPM as it only uses operation in G1 which has already be implemented in
TPM for supporting TPM2 Commit. Moreover, TPM 2.0 supports ECC Schnorr
signature validation while the verification of SPK{(r) : P1 = gr ∧K1 = yr} in
TPM2 DAAbind is similar to the verification of Schnorr signature. Thus extending
the verification of Schnorr signature to support verification of SPK{(r) : P1 =
gr ∧K1 = yr} would not be hard to implement.

The binding of P1 with the DAA key is also easy to implement. Notice TPM
2.0 is able to protect the integrity of the key object by using a key hierarchy,
so what we need to do is just adding the P1 into the key object. Now the key
object contains a new entry called daabind. When the object (DAA key) is not
bound to any P1 ∈ G1, daabind equals to zero; if the object has been bound to
a P1, daabind equals to P1. The detail of TPM2 DAAbind is as follows, we adopt
the notation in [9]:

1. Given a DAA key pair tk = (tpk = (g, h), tsk), where tpk is the public key
and tsk is the secret key, before TPM2 DAAbind is executed, the key blob of
tk is tk∗ = (tsk)SK ‖ tpk ‖ MACMK((tsk)SK ‖ tpk.name). tpk.name is
a message digest of the public portion of tk. The integrity of the key object
tk is protected by a message authentication code (MAC) using a MAC key
MK and the secret key tsk is encrypted by a secret key SK, both SK and
MK are derived from the parent key of tk: (SK,MK) = KDF (parentK).
Thus the secrecy and integrity of tk is protected by the key hierarchy.

2. Given a pair (P,K) and a signature of knowledge SPK{(r) : P = gr ∧
K = hr}. TPM verifies the signature of the knowledge SPK{(r) : P =
gr ∧ K = hr}, if it is right, generates a new key blob tk∗n which binds tk

with P as follows. First TPM pads the tpk: tpkn ← tpk ‖ P , then generate
the new key name tpkn.name = hash(tpkn), finally generate the MAC for
binding: MACMK((tsk)SK ‖ tpkn.name). TPM outputs the new key blob
tk∗n = (tsk)SK ‖ tpkn ‖ MACMK((tsk)SK ‖ tpkn.name).
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7 Forward Anonymity in the New TPM.Sign∗ Scheme

In this section, we prove that both LRSW-DAA and SDH-DAA satisfy forward
anonymity using the new APIs under the Decision Diffie-Hellman assumption.
Both LRSW-DAA and SDH-DAA utilize the bilinear pairing e : G1×G2 → GT .
We prove the forward anonymity of LRSW-DAA and SDH-DAA under the G1-
Decisional Diffie-Hellman (DDH) assumption. The DDH assumption on G1 is
often known as the External Diffie-Hellman (XDH) assumption.

Theorem 3. Under the G1−DDH assumption, the implementation of LRSW-
DAA using the new tpm.sign∗ satisfies forward anonymity. More specifically, if
there is an adversary A that succeeds with a non-negligible probability to break
the forward anonymity game, then there is a polynomial-time algorithm B that
solves the G1 −DDH problem with a non-negligible probability.

Proof: If there exists a adversaryA that breaks the forward anonymity of LRSW-
DAA, thenwe can build a polynomial-time simulatorB that breaks theG1−DDH
problem as follows. The input to B is a tuple (u, v = ua, w = ub, z = uc) ∈
G1 × G1 × G1 × G1, where (a, b) are independent uniform random elements in
Zp, and either c = ab or c is also a independent uniform random element in Zp. By
interactingwithA,Bwants to findoutwhether c equals ab or c is a randomelement.

We first give a overview of the security proof. B first select a special trusted
platform S∗, the secret key f of which is a = loguv, however B does not know a.
B creates the other trusted platform by honestly executing the Join protocol with
A. B uses the pair (u, v) to simulate the answers to queries about the trusted
platform S∗. In the challenge phase, if A select S∗ as one of the two challenge
platform S1, S2, then B choose the bit b so that S∗ = Sb, and calculate the
challenge signature sigc using the pair (w, z), so if logwz = loguv then sigc is a
valid DAA signature signed by S∗ and A should have advantage in deciding b,
if logwz �= loguv then sigc is actually a valid DAA signature signed under the
DAA secret key b−1c which is independent of S1 and S2, so A can not have any
advantage guessing b or may simply abort the game. So B can utilize A to judge
whether c = ab. B works as follows:

Setup: choose (G1, G2) as a bilinear group pair of prime order p with generator
g1 = u and g2 respectively and a bilinear paring e : G1 × G2 → GT . The
gpk is G1, G2, GT , e, g1 = u, g2, p,HG, H,H3, in which HG is used by TPM
in TPM2 Commit, H is used by TPM in TPM2 Sign, H3 is used by host to
generate ch. B choose two random number x, y ← ZP as the issuer’s secret
key, and calculate X = gx2 , Y = gy2 as the issuer’s public key. B sends issuer’s
secret key and gpk to A.

Hash queries: HG and H are modeled as random oracles. B response to the
hash queries about HG and H the same as in the proof of theorem 2.

API queries:
– TPM2 Create: Given a TPM’s identity Ti, If Ti �= T ∗ then B honestly

execute this API, i.e. generates a secret key x and sets the public key
Y = ux; if Ti = T ∗, B sets v as the public key and outputs it to A
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and sets loguv as the corresponding private key x, although B does not
know x.

– TPM2 DAAbind: B act the same as in the proof of theorem 2.
– TPM2 Commit queries: Given a TPM’s identity Ti, P1 ∈ G1, bsn ∈ {0, 1}∗,

l ∈ Zp as input, If Ti �= T ∗ then B honestly execute this API using the
DAA secret key; if Ti = T ∗, B act the same as in the proof of theorem 2.

– TPM2 Sign queries: Given a TPM’s identity Ti, if Ti �= T ∗ then B honestly
execute this API using the DAA secret key; if Ti = T ∗, B act the same
as in the proof of theorem 2.

Join queries: Given a trusted platform’s identity Ti, B honestly execute the
Join protocol with A by calling (the simulated) TPM2 Create, TPM2 Commit

and TPM2 Sign queries described above, B stores the DAA credential
obtained from A.

Sign queries: Given a trusted platform’s identity Ti, a messagem, a nonce nV ,
a basename bsn, B extracts the credential (A,B,C,D) then execute the Sign
protocol by calling the TPM2 Commit query and TPM2 Sign query together to
generate a valid DAA signature

Corrupt queries: Given a trusted platform’s identity Ti, If Ti �= T ∗ then B
outputs the DAA secret key. If Ti = T ∗ then output ”Abort 1”.

Challenge: In the challenge phase, A output a message m, nonce nV , two
trusted platforms’ identities T1 and T2. If T

∗ /∈ {T1, T2}, then B quits and
outputs ”Abort 2”. Otherwise, B chooses bit b such that Tb = T ∗, and
generate the challenge signature σ∗ using w, z as follows:
1. B chooses a random r ← Zp and sets J := wr and K := zr.
2. B generate the CL-LRSW credential (A,B,C,D) ← (w,wy , wx · vxy, vy)

for (w, v). It is direct to see (A,B,C,D) is a valid CL-LRSW signature
for logwv.

3. Using a random number l ← Zp, B calculate (U, S, T,W ) =
(Al, Bl, Cl, Dl).

4. B chooses at random c and s and computes R1 := Ss ·W−c and R2 :=
Js · K−c. B calculate ch = H3(R,S, T,W, nV , R1, R2, J,K), generate a
nonce nT and set H(ch,m, nT ) = c. If H(nT , ch,m) has been queried
before, B quits and outputs ”Abort 0”.

The final challenge signature is (R,S, T,W, J,K, c, s, nT , nV ). It is direct to
see if logw(z) = logu(v) then the challenge signature is a valid signature of
trusted platform T ∗; if not, then the challenge signature is a valid signature
corresponds to DAA secret key logw(z) which is independent of {T1, T2}, so
A can not have any advantage in deciding b.

Output. In the end, A outputs b ∈ {0, 1} as the guess for b or aborts without
any output. If b = b, then B outputs 1, which means that z = uab. Otherwise
B outputs 0, which means that z is a random element in G1.

We now analysis the probability that B does not abort in the above game. There
are three case that B may abort, we discuss each case as follows:

Abort 0. The chance that this type abortion happens is O(1/p), where p is a
large prime, so the probability is negligible.
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Abort 1. Notice that A can not corrupt all the trusted platforms, so the
probability that this abortion does not happen is at least 1/qj.

Abort 2. This abortion does not happen if in the challenge phase, A chooses
T ∗ as one of the {T1, T2}, so the probability that this abortion does not
happen is at least 1/qj.

So the the probability that B does not abort in the above game is at least 1/qj,
(if the Abort 2 does not happen, then Abort 1 should not happen, as the
trusted platforms chosen in challenge phase must not be corrupted).

Let ε be the advantage of A in breaking the forward anonymity game. Assume
that B does not abort when simulating the above game, if z = uab, then B simulate
the game perfectly, soA will still have the same advantage in winning the forward
anonymity game. If z is a random member in G1, then the challenge signature is
a valid signature corresponds to DAA secret key logw(z) which is independent of
{T1, T2}, so A can not have any advantage in deciding b. So if B does not abort,
then he can break the G1 −DDH assumption with advantage at least ε/2.

Theorem 4. Under the G1 −DDH assumption, the implementation of SDH-
DAA using the new tpm.sign∗ satisfies forward anonymity. More specifically, if
there is an adversary A that succeeds with a non-negligible probability to break
the forward anonymity game, then there is a polynomial-time algorithm B that
solves the G1 −DDH problem with a non-negligible probability.

Proof: The basic idea of this proof is analogous to that of theorem 3. The key
point is that B can simulate all the queries which has been proved above. Due
to the page limit, the proof will be presented in the full version.

8 Conclusion

In TPM 2.0, a single signature primitive is proposed to support various signa-
ture schemes including DAA, U-Prove and Schnorr signature. This signature
primitive is split into two parts (TPM2 Commit and TPM2 Sign) and there is no
restriction on the input of TPM2 Commit. However, this gives too much ability to
the outside, thus these APIs can be utilized as a static Diffie-Hellman oracle and
forward anonymity can not be satisfied. We propose new APIs which not only
remove the static Diffie-Hellman oracle but also support the forward anonymity
thus significantly improve the security of DAA and the other signature schemes
supported by TPM 2.0. Our new APIs are almost as efficient as the original
APIs in TPM 2.0 specification and can still support LRSW-DAA, SDH-DAA
and U-Prove. We believe our research actually shows the importance of reducing
the potential attack surface, i.e., limiting the ability provided to the outside, the
ability should be just sufficient to be functional.
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Abstract. Auditing system logs is an important means of ensuring sys-
tems’ security in situations where run-time security mechanisms are not
sufficient to completely prevent potentially malicious activities. A fun-
damental requirement for reliable auditing is the integrity of the log
entries. This paper presents an infrastructure for secure logging that is
capable of detecting the tampering of logs by powerful adversaries re-
siding on the device where logs are generated. We rely on novel features
of trusted hardware (TPM) to ensure the continuity of the logging in-
frastructure across power cycles without help from a remote server. Our
infrastructure also addresses practical concerns including how to handle
high-frequency log updates, how to conserve disk space for storing logs,
and how to efficiently verify an arbitrary subset of the log. Importantly,
we formally state the tamper-proofness guarantee of our infrastructure
and verify that our basic secure logging protocol provides the desired
guarantee. To demonstrate that our infrastructure is practical, we im-
plement a prototype and evaluate its performance.

1 Introduction

Run-time security mechanisms often are not sufficient to completely prevent ma-
licious activities. Under such circumstances, auditing system logs is an important
means of ensuring systems’ security. A fundamental requirement for reliable au-
diting is the integrity of log entries. Adversaries may benefit significantly from
tampering with log entries; for instance, malware may erase log entries recording
its installation or presence in order to avoid detection and subsequent removal
by anti-malware software. Or, an authorized insider may view private customer
data in violation of company policy, then remove evidence of his malfeasance
from the access log so that audits do not detect it.

There has been much work on developing tamper-proof logging protocols [1–5].
These protocols aim to attest to the integrity of logs as well as detect tampering
of logs by the adversary. Some provide tamper-proofness by online commitments
of current log state [3]; others store logs in secure memory [4]. Some use the TPM
monotonic counter to attest to the integrity of every log entry [2]; others use hash
chain based approach [1]. However, these schemes do not meet the stringent
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requirements for tamper-proof logging in today’s computing environment. Next
we explain these requirements through a realistic scenario.

Consider a scenario, where the organization, by means of auditing, aims to en-
force policies such as, “confidential documents stored on company-owned devices
must never be transferred to an external USB storage device.” The organization
mandates that all employee devices, such as laptops and iPads, run an appli-
cation that monitors actions relevant to the policy. The logging infrastructure
needs to protect audit logs on these devices. Since many of these devices are
often offline, the first requirement is that the integrity of the audit log is not
dependent on continuous connectivity to a central server. Adding a log entry
should not require connection to a server. Further, the device could power off,
then restart with no connectivity to the network (e.g., the device is turned on
during flight). Consequently, a second requirement is that the logging infrastruc-
ture needs to preserve its continuity across power cycles without contacting a
remote server.

It is difficult to segregate security-relevant events from security-irrelevant
ones. The logging process is often required to capture a large variety of events
from many processes (e.g., OS, browser). Therefore, a third requirement is that
logging should be fast enough to support high-frequency log updates. Finally,
devices have only limited disk space. The last requirement is that the logging
infrastructure should work with limited disk space for storing logs.

All aforementioned schemes lack at least one of the features required for our
application: they lack support for either offline tamper-proofness [3, 5]; or large
logs on the order of gigabytes [4]; or continuous logging across power cycles [1, 6];
or high frequency logging [1, 2, 4, 7, 8]. In this paper, we present a logging infras-
tructure that satisfies all of these requirements. The security guarantee of our
logging infrastructure is based on a forward integrity adversary model [9], where
the adversary can obtain administrative privileges and take complete control of
the system. Our infrastructure ensures that the adversary’s actions leading up to
the action of compromising the machine will be logged and cannot be tampered
with, and therefore, can be detected.

Our logging infrastructure is mainly composed of two entities: a logger and
a verifier. Initially, the logger and the verifier share a secret key. As the system
executes, the logger generates a new key for every new log entry, and uses the
key to compute the HMAC of the log entry in order to attest to the log entry’s
integrity. The key sequence is generated as a hash chain; the initial key is known
only to the logger and verifier, similarly to the scheme by Schneier et al. [1]. At
any given time point, only the key on top of the chain is used; older keys are
deleted from memory. When an adversary takes control of the system, it cannot
find old keys in memory. The hash-chained key sequence ensures that, without
knowledge of the initial key, old keys cannot be derived from the key currently
stored in memory. Thus, the adversary cannot produce valid HMACs for earlier
log entries.

To allow high-frequency logging, our hash chain is constructed in software,
instead of the PCR registers in the TPM. This greatly reduces the time required
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to append a log entry. Furthermore, we develop mechanisms that allow trun-
cation of the log after verification and allow a verifier to efficiently verify any
subset of the log. As a result, our infrastructure works with limited disk space.

One of the main novelties of our infrastructure, compared to Schneier et al. [1],
lies in leveraging TPM 2.0 features to maintain the continuity and secrecy of the
key chain across a power cycle. Specifically, we use the ability to seal data to
values of a TPM monotonic counter, which TPM1.2 does not allow. At system
shutdown, we create a blob by sealing the last key before powering off to the
value of a TPM monotonic counter. Upon device restarts, the logger can recover
the key by unsealing the blob. Our creation of use once and discard blobs for
logging is a novel use of TPM 2.0’s sealing to a monotonic counter feature.

In addition to the design and prototype implementation of our infrastructure,
we formally verify the tamper-proofness property of the basic protocol, which
we consider as one of our key contributions. We believe this is the first formal
proof of security for a logging protocol. The analysis brings out a number of
assumptions that the system must satisfy to ensure tamper-proofness.

The rest of the paper is organized as follows. We define the adversary model
and review TPM 2.0 features in Section 2. Our logging protocols are presented
in Sections 3 and 4. Section 5 details the verification steps of the basic protocol.
We describe our prototype implementation and evaluation results in Section 6.
Section 7 discusses related work.

Due to space constraints, we omit details of several definitions and verification
steps, which can be found in our companion technical report [10].

2 Overview

Review of TPM2.0. We list features of TPM2.0 that are key to ensuring tam-
perproofness property of our protocols [11].

NV Memory. TPM 2.0 allows for a larger non-volatile memory than TPM 1.2.
Its expected size is more than a megabyte.

Monotonic NV Counter. Any memory slot in NV memory can be tagged as
a monotonic counter, which can only be incremented; it starts with a value
greater than the maximum of all counters that ever existed in this TPM.

Enhanced Authorizations. TPM 2.0 provides enhanced authorization by
defining authorization policies, which can be the conjunctions and disjunc-
tions of basic policies. Basic policies include checking whether an NV mem-
ory location stores a specified value and whether a PCR contains a specified
value. These authorization policies can be used to implement data sealing.

Power Failure Counter. TPM 2.0 has a special 32-bit NV monotonic counter
resetCount that can be modified by the TPM only. This counter is incre-
mented on a power failure, and thus provides a count of the number of power
failures.

Adversary model. We consider an adversary that controls processes that reside
on the same machine as the logging process. We assume that the adversary never
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controls the hardware, i.e., she cannot snoop on electrical signals, or conduct
side-channel attacks by observing physical signals like power consumption. We
distinguish between two phases of a system that runs our logging infrastructure.
These two phases are separated by the event that the adversary takes control
of the machine by gaining root privilege. We assume that in the first phase, the
adversary does not have root privileges.

3 The Basic Protocol (Protocol A)

In this section, we present our basic protocol (Protocol A), and provide informal
arguments for its tamper-proofness.

3.1 Protocol Description

Protocol A specifies the behavior of four entities: the logger, the verifier, the
TPM, and the OS. We call each entity a role in the protocol. We explain the log-
ger program, as it is the most complex component and uses novel TPM features.
We briefly discuss the verifier program and omit the OS and TPM.

Logger. The logger uses a sequence of keys (key(0), key(1),...key(n)) to produce
HMACs of the log data, which arrives sequentially. We annotate each key with
the index i of its position in the sequence. The key sequence is a hash chain
starting with secret key(0), which is a secret shared between the logger and
verifier. The nth key is the hash of the n−1th key: key(n) = hash(key(n− 1)).

The logger has four phases: startup, logging, shutdown, and verification.

Startup. At machine startup, a sealed key object (sealed blob containing the key)
is stored in a designated location sKeyLoc on the hard disk. This blob is sealed
to the current value of the monotonic TPM counter. Initially, the first sealed key
object for key(0) is set up by the administrator. Subsequent sealed key objects
are stored by the logger during shutdown.

The logger first acquires locks on its memory locations, the disk location
sKeyLoc storing the sealed key object, and the disk location fileLoc storing the
log. These locks prevent any attacker without root privileges from reading from
and writing to these locations. They are implemented using mechanisms such
as process memory isolation and access control in the file system. On a system
restart, these locks are released. Next, the logger unseals the sealed key object
to obtain the current key and then increments the TPM counter. At this point,
the sealed key object can no longer be unsealed.

Logging. After startup, the logger, upon receiving new log data, (1) produces
an HMAC of the data using the current key key(k), (2) writes the log data and
HMAC to disk, (3) generates key(k + 1) by computing the hash of the old key
key(k), and (4) irretrievably erases the old key from the RAM.

The logger does not use the hash chain feature that TPM offers via PCRs.
Instead, it computes the hash in software, which vastly improves the logger’s
performance, because hashing in memory is much faster than using PCRs.
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Shutdown. Upon receiving a shutdown notification, the logger finishes processing
the queue of logs, and then seals the current key to the current monotonic TPM
counter value and writes the sealed key object to disk. This phase ensures that
when the machine starts up again, there is a sealed key object stored on disk.
Protocol A requires the shutdown module of the OS to guarantee that the logger
is able to finish its shutdown phase before the machine is powered off.

Verification. The verification phase is triggered by a verification request from

an external verifier; a nonce is sent with such a request. Upon receiving such a
request, the logger sends back the log entries (log data and HMACs) stored on
disk, and the HMAC of the nonce using the current key.

Verifier. The verifier initiates the verification phase by sending a nonce along
with the verification request to the logger. Upon receiving log entries containing
both log data and its HMAC and the HMAC of the nonce using the last key, the
verifier checks the HMAC of each log entry and the HMAC of the nonce. The
verifier has the initial shared secret and can generate all the keys.

3.2 Informal Argument for Tamper-Proofness

We explain informally why Protocol A satisfies the tamper-proofness property.
Formal analysis of Protocol A is presented in Section 5.

We refer to keys that have smaller indices than the current key used by the
logger as old keys. The following two properties hold: (1) an attacker cannot
learn the old keys and (2) without the old keys, the attacker cannot tamper
with the logs generated prior to the attacker gaining root privilege, i.e., modify
entries, remove entries, and truncate the log.

Property (1) holds both before and after the attacker gains root privilege. Be-
fore the attacker gains root privilege, the memory and disk locations are properly
protected. When the attacker gains root privilege, it has access to all memory
and disk locations. However, old keys are not present in the machine’s memory
as the logger erases these keys upon generation of the next key. The sealed key
objects of these old keys cannot be used to extract keys, because these sealed key
objects are sealed to past values of the NV monotonic counter of the TPM and
there is no way to decrement the counter value. In particular, if the adversary
deletes the monotonic counter (by means of his root privilege), then any new
monotonic counter will start with the maximum value of all counters that ever
existed on the TPM. Finally, the keys form a hash chain, and, therefore, there is
no way to generate the old keys directly from the current key. (2) follows directly
from (1) and the property of HMACs: without the correct key, an attacker can-
not generate valid HMACs that pass the verification. Tamper-proofness follows
from (1) and (2).

4 Enhanced Protocol (Protocol B)

The basic protocol (Protocol A) has the tamper-proofness property, but is not
very practical. Enhanced protocol (Protocol B) uses additional mechanisms to
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satisfy the following practical requirements. (1) Hard disk space is limited, and,
thus, logs need to be periodically truncated. (2) Power failures may not per-
mit the logger’s shutdown phase to complete, leading to the loss of the current
key. The protocol needs to be able to recover from power failures. (3) For effi-
cient and modular enforcement of several policies, the protocol needs to support
verification of an arbitrary subset of the log independently.

4.1 New Mechanisms

Branched Key Chain. The enhanced protocol evolves keys in a branched
manner. Keys are divided into epochs. The initial keys of each epoch form a
hash chain staring from key(0). The initial key for epoch k is computed as:
key(k) = hash(key(k − 1) | ′′epoch′′). There is a fixed maximum number (E) of
keys within an epoch. These keys form another hash chain indexed by the epoch
number and a sub-epoch number. The ith sub-epoch key in epoch k (key(k, i))
is hash(key(k, i− 1) | ′′subepoch′′). Here, key(k, 0) = key(k).

Mapping between Keys and Log Entries. To increase the flexibility of the
verification and relieve the verifier from the burden of deriving key indices for
checking HMACs, we incorporate key index information into the log data. Each
log entry now includes the log data, the epoch and sub-epoch indices of the key
producing the HMAC, and an HMAC of the log data and the key indices.

4.2 Protocol Description

Logger. The logger in Protocol B cycles through the same phases as in Protocol
A. To maintain the branched key chain, the logger starts a new epoch either when
the previous epoch is completed or at startup. We first describe the sub-routine
that is invoked when a new epoch starts. For brevity, we omit the argument of
the location of the NV counter from seal and unseal, as this protocol uses only
a fixed monotonic counter. The pseudo code is shown in Figure 1.

New epoch. In this sub-routine, the sealed object from location sKeyLoc is un-
sealed to obtain the current epoch key. Then, the next epoch key is computed and
sealed to the next TPM counter value. Finally, the TPM counter is incremented
and the epoch and sub-epoch counters are set appropriately.

A power failure that occurs in the middle of the new epoch routine could
create a discrepancy between the TPM monotonic counter value and the value
that the sealed blob on disk is sealed to. If the power failure occurs right after
the instruction that writes the sealed blob to disk and before the TPM counter
is incremented, the TPM counter value will be one step behind the value that
the sealed blob is sealed to. The startup phase handles this situation.

Startup. Similarly to Protocol A, the logger locks critical locations in memory
and on disk (and releases them on a restart). Next, it invokes the new epoch
sub-routine. Depending on whether the previous power-off is a clean shutdown
or a power failure, the sealed blob stored on the hard disk at startup is sealed to
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NewEpoch Sub-routine

epochkey ← unseal(data in sKeyLoc)
if unseal fails then

return fail ;

nextepochkey ←
hash(epochkey | “epoch”)
n ← read TPM counter
sKeyLoc ← seal(nextepochkey, n+ 1)
increment TPM counter
key ← epochkey
epoch ← n; subepoch ← 0

Startup Phase

lock all required memory locations
start newepoch phase
if failure, increment TPM counter
start newepoch phase
if successful, notify the OS

Logging Phase

while no shutdown notification do
data ← get log data
logentry ← (data|epoch|subepoch,
hmac(data|epoch|subepoch, key))
increment subepoch
key ← hash(key | “subepoch′′)
write logentry to disk
if subepoch = E then

start newepoch phase

start shutdown phase

Shutdown Phase
wait for log producer to stop
while message queue is not empty do

process data as in logging phase

finaldata ← hash(key | shutdown)
process finaldata as in logging phase

Fig. 1. Programs for Protocol B, not including the verifier stage

either the current value of the monotonic TPM counter or that value incremented
by one. If the new epoch sub-routine fails to unseal the key, then TPM counter
is incremented and the new epoch sub-routine is called again.

Logging. The logger computes keys in the branched key chain. It computes a new
sub-epoch key for each new log entry until the maximum sub-epoch number is
reached. At this point, a new epoch key is computed by invoking the new epoch
sub-routine. For each log entry, the logger places the epoch and sub-epoch indices
in the log to build an explicit mapping between log entries and keys.

Shutdown. In the shutdown phase, all remaining log entries are processed. Unlike
protocol A, the logger does not create a sealed blob for the current key, as this
has been done inside each new epoch sub-routine during logging. Instead, it
writes a special log entry hash(key | shutdown) to disk indicating the completion
of a clean shutdown. The absence of such an entry at machine startup is the
evidence of a power failure.

Verification. The verification phase of the logger is the same as protocol A,
except for the deletion of logs after each successful verification and attestation
of the resetCount value in TPM. The verifier sends a ticket containing encrypted
information about how many epochs have been verified. The logger stores this
ticket on disk and sends this ticket back to the verifier along with log entries in
response to the next verification request.

Verifier. Differently from protocol A, the verifier starts by asking for the value
of resetCount to determine if there was a power failure. The verifier additionally
generates a ticket attesting to the successful verification up to a check point for
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Verification Phase
attest to resetCount.
nonce ← recv from verifier
fhmac ← hmac(nonce, key)
log ← read whole log
tct ← read ticket
send (fhm, log, tct) to verifier
recv. (st, tct, del) from verifier
if st = 1 then

save tct to disk
delete epochs till del

Verifier Program

ask for attestation of resetCount
powfail ← current resetCount �= old resetCount
nonce, r ← generate nonces
send nonce to logger
(fhm, log, encV (n|r′)) ← recv from logger
check r′ is nonce used in last ticket, halt if not
epochkey ← hashn(sharedsecret|“epoch′′)
logavailable ← true; idx ← 0
while logavailable do

key ← epochkey; n ← n+ 1
for j: 0 to E-1 do

if no more log entries then
logavailable ← false; break

verifyhmac(log(idx)data, log(idx)mac, key)
if log entry data is “shutdown” then

break
idx← idx+1; key ← hash(key|“subepoch′′)

epochkey ← hash(epochkey|“epoch′′)
verifyhmac(nonce, fhm, key)
if all verifyhmac pass and not powfail then

send (1, encV (n− 1|r), n− 1) to logger

Fig. 2. Verification stage programs for Protocol B

the logger. The verifier, after verification till epoch k (the last verified epoch),
sends a ticket to the logger stating that the verification till epoch k is successful.
The ticket is an encryption: encV (k | r), where k is the last verified epoch, r is
a nonce known only to the verifier and V is the public key of the verifier. The
ticket is sent to the verifier in the next verification phase along with log entries
from epoch k + 1. The verifier uses the information from the ticket sent by the
logger to jump to the appropriate epoch key to start the verification.

The verifier’s pseudo code is shown in Figure 2. The verifier, upon receiving
the log and the ticket, decrypts the ticket to obtain the epoch index. If the ticket
is valid, the verifier computes the sub-epoch key and begins verification. In the
end, the verifier generates a new ticket and sends it to the logger. It is also easy
to modify the verifier to verify any subset of the log by making use of the epoch
and subepoch indices contained in each log entry.

4.3 Improvements to the Logging Infrastructure

We highlight how the extensions to the protocol address the practical concerns
that we summarized at the beginning of this section.

Rolling Logs. Using the ticket, the logger can delete logs up to a verification
check point. Instead of sending the entire log starting from the first log entry,
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the logger only needs to send the ticket for the first k epochs and the log starting
from the k+1 epoch. To further lower the requirement of disk space for storing
the HMACs of logs, it is possible to store a hash of all HMACs in an epoch after
the completion of the epoch, instead of storing each HMAC.

Recovery from Power Failure. A power failure may prevent the logger from
completing the shutdown phase and storing the current key to disk. As a result,
the logger in Protocol A has no way of deriving the valid key at the next startup
without help from a remote server. The branched key chain used in Protocol B
offers a means to recover from such a loss. Dividing the keys into epochs allows
the logger to periodically store the sealed blob of the next epoch key to disk
without sacrificing performance. Upon rebooting after a power failure, the logger
simply increments the TPM counter to retrieve the key from disk.

Portions of the log buffered in memory that are not written to disk due to a
power failure are lost. However, a power failure can be detected by the verifier
by checking the value of TPM’s resetCount counter.

Modular Log Analysis. With the epoch and sub-epoch indices stored with
each log entry, the verifier can request the logger to send portions of the log
entries that it wants to verify. One application is enforcing multiple policies on
the same system modularly. Each policy analysis can select relevant portions of
the log and perform the verification independently; as the verifier can compute
the keys based on the epoch and subepoch information contained in each log
entry.

4.4 Design Choices and Limitations

Power Attacks. One limitation of our infrastructure is that we cannot distin-
guish genuine power failures from adversarial system crashes. An attacker can
hide malicious activities before the power failure because log entries buffered in
memory are lost. Existing logging schemes that use volatile memory for buffering
logs [1] or even work in verifiable computation [12] suffer from the same prob-
lem. Our choice of using volatile memory for log buffering is driven by the desire
to accommodate high-frequency logging. Accesses to non-volatile memory (hard
disk or TPM) are slow; thus, it is not feasible to use them to process each log
entry. Additional hardware support could mitigate this problem.

Tradeoffs between Performance and Security Guarantees. Disk write
operations are expensive, and, therefore, the bigger the size of the buffered log
entry blocks, the more efficient the logger program becomes. However, in case of
a power failure, the logger loses the log entries buffered in memory, which may
record adversary actions. Consequently, the security guarantee becomes weaker
as the block size increases. This problem is mitigated in protocol B by allowing
offline recovery from a power failure and detection of the power failure.

Another tradeoff lies in our decision to hash keys in RAM instead of the TPM
to accommodate high-frequency log updates. A potential issue is that non-root
processes may coerce a root process to write the memory to disk, e.g., by stressing
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the system memory, and thus leak the keys. Special precaution need to be taken
to protect memory regions that store the keys, which we leave for future work.

Suggested Hardware Features to Defend against Power Attacks. One
way to prevent power attacks is to rely on hardware support to allow for a clean
shutdown in spite of a power failure. One possibility is to provide a “fast” memory
interface for NV memory of the TPM with assured write on a power failure. The
logger uses the NV memory as a buffer instead of the RAM. The logger always
maintains an entry composed of a string “power failure” and its HMAC using the
current key. This last log entry is never written to disk, except after recovering
from a power failure when the TPM NV memory content is flushed to disk.
An attacker cannot generate the last entry on its own, so tampering with entries
stored in the TPM NV memory can be detected. This scheme requires the logger
to compute an additional HMAC for every log entry. However, software HMAC
is very fast and is unlikely to be a performance bottleneck.

5 Verification

We augment the modeling language and program logic from an existing work [13,
14] and formally prove that Protocol A satisfies the tamper-proofness property.
Protocol B uses similar techniques to ensure tamper-proofness, so the verification
results of Protocol A can be straightforwardly extended to Protocol B.

System Modeling. We assume the system has a set of principals P and there
is a partial order on the principals: we write X̂ � Ŷ if Ŷ is more privileged than
X̂, i.e., can access all the resources that X̂ can. We write r̂oot to denote the root
and t̂pm to denote TPM. (P ,�) is an access control lattice, where the maximal
elements are r̂oot and t̂pm.

The system is modeled as several components, which we call threads, running
concurrently. Each thread is owned by a principal. Threads share several common
data structures, which include storage (RAM and disk) and read and write locks
on storage. The logger, verifier, OS, and TPM are encoded using our modeling
language. Other threads (including adversary) in the system are modeled as
arbitrary programs interacting with the rest of the system. Their behavior is
constrained by our adversary model, which is specified by predicates stating
a principal’s knowledge based on what it has learned so far. For instance, a
principal can compute the HMAC of d using key k if it has both the data and
the key. This resembles Dolev-Yao’s network adversary.

The behavior of the system is captured by the set of traces generated by all
possible interleaving executions of the threads. The security property is specified
as a first-order logic formula that holds on every trace of the system.

Predicates. We define the predicates used in the verification. Action predicates,
summarized below, describe the semantics of actions such as read and write, with
@ u denoting the time u when the predicate holds.
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Read(i, l,m)@u : thread i reads m from location l
Write(i, l,m)@u : thread i writes m to location l
Hmac(i, d, l,m)@u : thread i produces m = hmac(d, k)

where key k is stored in location l
VerifyHmac(i,m, d, k)@u : thread i verifies m = hmac(d, k)

Other key predicates used in the verification are shown below.

Mem(l,m)@u : location l has value m
CanRead(i, l)@u : i can read location l
IsReadLocked(i, l)@u : thread i holds the read lock of l

HT(i, X̂, e)@u : thread i owned by X̂ runs expression e
Has(i, s)@u : thread i knows s

Owner(i, K̂) : principal K̂ owns thread i
Contains(m,m′, S)@u : m′ can be derived from m using S
MayDerive(e, e′, S) : e′ can be derived from e using S

The Contains(m,m′, S) predicate is true when the term m′ can be extracted
from m using elements of the set S; for instance, m is an encryption ofm′ using a
key k and S contains the key k. It is defined with respect to an inductively-defined
predicate MayDerive. One example rule is that MayDerive(e, hash(e), S) is true
without any premises: from a term e, its hash can always be computed. Predicate
Has(i, s) is true if thread i has the plain text of s. It is defined using Contains: i
has s if there exists a term m that contains s, and thread i receives m or reads
m from the storage. These predicates state the assumptions that cryptographic
functions are correct and thus capture the adversary’s capabilities.

Axioms about Actions. Our proof also uses sound axioms specifying the
semantics of actions. We show the axioms for generating and verifying HMACs
below.

Axiom A1 states that on successful verification, it is the case that someone
must have produced the HMAC with a key stored in location l. Axiom A2 states
that if a thread j computes a HMAC using a key key based on location l, it
must be the case that j can read l. Similar to the Has predicate, these axioms
also state assumptions about the correctness of cryptographic functions.

A1 ∀i,mac, d, key, u. VerifyHmac(i,mac, d, key) @ u ⊃
∃j, l, u′.(u′ < u) ∧ Hmac(j, d, l,mac) @ u′ ∧ Mem(l, key) @ u′

A2 ∀j,mac, d, key, u. Hmac(j, d, l,mac) @ u ⊃ CanRead(j, l) @ u

System Assumptions. System assumptions are specified as axioms as well. We
define three axioms for this: one specifies the capability of the forward-integrity
adversary, one specifies an assumption about the processes running during the
logger’s startup phase, and one specifies the effect of the access control lattice.
We write ua to denote the time when the adversary gains root privilege.

The following axiom specifies that before time ua, processes owned by r̂oot are
well-behaved and do not interfere with the logger. Predicate RW(i, L)@u is true
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if thread i reads from or writes to any location in the set L at time u. The axiom
states that processes owned by r̂oot do not access any of the storage locations
owned by the logger (specified as LoggerLoc), and only threads running with the
privilege of the OS can access locations shared between the OS and the logger
(specified as LoggerOSLoc).

Aadv = ∀u ≤ ua. NoAdv(u)

NoAdv(u) = ∀i. Owner(i, r̂oot) @ u ⊃ (∀L. LoggerLoc(L) ⊃ ¬RW(i, L) @ u)

∧
(
∀L.LoggerOSLoc(L) ∧ RW(i, L) @ u ⊃ HT(i, r̂oot, OS) @ u

)
Axiom ANR states that before the machine is compromised, after any reset, no

thread reads and unseals the sealed key before the logger increments the TPM
counter. Predicate Early(u) is true if u is a time point between a reset and the
logger incrementing the TPM counter and there are no other resets or counter
incrementing operations between them.

ANR = ∀u, i,m. Early(u) ∧ (u ≤ ua) ∧ ¬HT(i, L̂, LOGGER) @ u
⊃ ¬Read(i,M.disk.sKeyLoc,m) @ u

This may seem to be a strong assumption; however, verifying that it holds on a
real system is feasible. We discuss this further at the end of this section.

The protection provided by the access-control lattice to guard sensitive oper-
ations is captured using axioms similar to the one shown below, which specifies
the effects of the lattice on memory read accesses.

ARDLattice = ∀i, j, u, l, I,K. IsReadLocked(i, l) @ u ∧ Owner(i, I) ∧ I ≺ K ∧
Owner(j,K) ⊃ CanRead(j, l) @ u

If a location l is locked by a thread i owned by principal I, then any thread
j owned by a principal K higher than I on the access control lattice can read l.

Verification Goal. We define an auxiliary predicate LastLogIdx(k, u, uend) to
state that before time uend, the last log entry the logger writes is indexed by
k, and written at time u. We write γ to denote the context containing all the
axioms introduced so far. The main result of our verification is a derivation of
the following judgment:

γ �∀k, k′, ub, ue, ul, ur, uw, i, j, log, n, fhm. HT(i, V̂ , VERIFIER) on [ub, ue] ∧
(ub < uc < ur < uv < ue) ∧ Send(i,VERIFY)@ub ∧ New(i, nonce)@uc ∧
Recv(i, (log[n], n, fhm)) @ ur ∧ VerifyHmac(i, fhm, nonce, key(n+ 1))@uv ∧(
(ur ≤ ua) ⊃ LastLogIdx(k, ul, ur)

)
∧
(
(ur > ua) ⊃ LastLogIdx(k, ul, ua)

)
∧

(1 ≤ k′ ≤ k) ∧ (ul ≥ uw) ∧ Write(j, fileloc(k′), v) @ uw

∧ HT(j, L̂, LOGGER) @ uw ⊃ data(v) = data(log(k′))

It says that if the verifier completes successfully then for the log data received
by the verifier at time ur, the received data at index k′ is the same as the log
data v that was written to disk by the logger at index k′, conditional on the
assumption that k′ was written to disk by the logger before time min(ur, ua). In
other words, the log entries written before the adversary took control at time ua
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will not pass verification if they are tampered with. The formula to the right of
the � is the formal definition of the tamper-proofness property.

Derivation Steps. The proof of the tamper-proofness property relies on the
following four invariants. Predicate keyOwnerIn(u) states that at time u only the
logger, TPM, and verifier have the key. keyMemIn(u) states that at time u the
only locations that may have the key reside in the memory owned by the logger,
or the memory shared between the logger and the TPM, or the disk location
that contains the sealed key object. Predicate oldKeyAdv(u, ua) states that at
time u, no thread other than the logger, TPM, or verifier has an old key (key
used before time ua). Finally, predicate oldKeyNotInMem(u, ua) states that at
time u, no memory location contains an old key (key used before time ua).

1. ∀u.u ≤ ua ⊃ keyOwnerIn(u) 3. ∀u.u > ua ⊃ oldKeyAdv(u, ua)
2. ∀u.u ≤ ua ⊃ keyMemIn(u) 4. ∀u.u > ua ⊃ oldKeyNotInMem(u, ua)
The proofs of these invariants use transfinite induction on time; given the

invariants hold before time u, we prove that they hold at u. In particular, we
use the program logic to reason about the protocol roles to show that these
invariants are maintained when programs belonging to these roles execute in an
adversarial environment.

From (1) and (2), we can prove that the adversary does not have access to
any valid keys generated before time ua at any time prior to ua. (3) and (4)
imply that, after ua, the adversary cannot obtain keys that were generated prior
to time ua. From the above, we can conclude that at no time does the adversary
possess keys used by the logger prior to time ua. Then, it can be shown that
the adversary cannot produce valid log entries generated before time ua, which
is the desired tamper-proofness property.

Design Decisions Based on Verification. One important system assumption
that the tamper-proofness property depends on is ANR: at any time (before the
adversary gets root access) between the machine startup and the logger startup,
no process should read the sealed blob on disk. The fact that the logger starts
soon after machine startup after a reset makes the number of running threads
during that period of time small. The remote attestation feature of the TPM
can be used to check that ANR holds by verifying the code that runs on system
reset. This assumption leads to important design decisions of the logger. For
example, to satisfy this assumption, the logger cannot be implemented as a user-
level application. It would be extremely difficult to ensure the tamper-proofness
property of such a design, because the logger may not be the first user application
to start and other user applications starting before the logger cannot be trusted.

Several axioms (e.g., ARDLattice) capture the requirements of access-control
lattice. For these axioms to be sound in reality, we need to ensure that the
implemented access control mechanisms are correct and cannot be compromised
by threads not owned by r̂oot. For instance, we use process isolation to protect
logger-owned memory locations.
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Table 1. Time to log 100,000 entries
with varying block size

Block Total Disk
size time (ms) time (ms)

512 5,135 2,513
256 6,675 4,056
128 11,074 8,320
64 15,882 12,997
32 29,148 25,505
16 53,306 49,168

Table 2. Time (in seconds) to verify
logs in a serial manner

Log size #log entries Verif.
time (s)

175MB 1,211,168 27
390MB 2,684,760 61
736MB 5,075,958 116
1.48GB 10,198,014 234

6 Implementation and Evaluation

Implementation. We implement a prototype logger and verifier based on Pro-
tocol B. Our logger application is a user-level Windows service that uses the
ETW logging framework of Windows 7 to receive events from applications and
log them. Our implementation relies on the assumption that services in Win-
dows are trusted (see the discussion in Section 5). However, we need not trust
any user-level application because services start before these applications. We
use keys and HMACs of 256 bits and use SHA256 to produce keys. A 64-bit NV
memory location is designated as the monotonic counter that keys are sealed to.

We used a 2.8GHz quad core machine with 6GB of RAM. We use a TPM
2.0 simulator that opens two network ports to receive binary TPM commands
and return appropriate responses after processing those commands. The TPM
simulator is built from the TPM 2.0 specs and models all TPM 2.0 functionality.
We also use a C# TPM library that offers an easy interface to the TPM.

The most significant challenge that we faced in the implementation was that
high-level languages that use garbage collectors do not usually provide language
support for secure erasure of memory objects, because the memory manager
(garbage collector) moves objects around. Though C# offers pinning of memory
that can be used to securely erase memory, the use of C# libraries that do
not pin memory makes securely erasing keys extremely difficult. However, the
tamper-proofness property requires secure erasure of the memory objects that
store the keys. Hence, we implement an intermediate layer in C such that the
current key always lives in the memory of the C process. This C process uses
the TPM library to interact with the TPM. Also, to avoid unexpected behavior
due to compiler optimizations we used SecureZeroMemory, which is a guaranteed
way of setting memory in Microsoft’s version of C.

Our implementation relies on the process memory isolation provided by the
operating system to implement locks on volatile memory to prevent an attacker
from gaining access to the key during startup phase. We rely on user privilege
access control to implement locks on disk.
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The prototype system was stable across clean shutdowns and power failures.

Evaluation. Table 1 shows the logger’s log-processing time given different block
sizes. As the block size grows, the processing time decreases, and so does the
percentage of disk time over the total processing time. This shows that the
bigger the block size, the more efficient the logging process. However, the system
becomes less secure as block size increases; the attacker has a better chance of
hiding its activities in buffered logs that will be discarded after a power failure.

Our storage overhead for HMACs for approximately 32 million log entries is 1
GB. If we store hashes of HMACs in an epoch, then with an E value (sub-epoch
number) of 1000, the storage overhead of 32 billion log entries is 1 GB. Thus,
the storage overhead of the HMACs is not a bottleneck. Further, with periodic
verification, log entries can be removed frequently.

Table 2 shows the evaluation results of the verifier’s performance. Verification
is reasonably fast, even with simple sequential verification. We expect a huge
speed up if the verification process is parallelized using pre-computed keys.

7 Related Work

Secure Logging Schemes. Auditing has been studied extensively; for example,
in the context of detecting misconfiguration in access control policies [15, 16],
and in the context of holding agents accountable for their actions [17]. Security
guarantees provided by these systems are based on the assumption that logs are
tamper-proof.

Most closely related to our approach is work by Kelsey and Schneier [1, 18].
They also use a hash chain of keys to ensure the integrity and confidentiality of
logs. Our main improvement over theirs is that we support continuous logging
across machine restarts, which they do not. Our protocol allows truncation of
logs after verification. As we only care about integrity of log entries, our scheme
is much simpler than theirs, and therefore allows for faster log appending op-
erations. They additionally study variants of untrusted verifier, which we do
not consider. It is straightforward to extend our protocol using the ideas intro-
duced by Kelsey and Schneier to lift the assumption that the verifier is trusted.
Follow-up work [19, 20] does not tackle the issues we address in this paper, and
instead, focuses on making the encrypted log searchable [19] or implementing the
scheme [20]. Recent work addresses the issue of log deletion required by law [6]
and uses similar scheme as [1, 18], but does not work across system restarts and
lacks formal verification.

Monotonic counters have been used to ensure the tamper-proofness of logs
[2, 8, 7]. They use the monotonic counter inside the attestation of each log entry,
whereas we use a software-based hash chain of keys to generate attestations for
log entries and only use the counter on system startup/shutdown to ensure the
continuity and secrecy of the keys. More concretely, we seal the current key to the
counter value using the TPM. The sealed blob is unrecoverable after the counter
increments. Thus, we create use and discard blobs, which is a novel use of the
monotonic counter. Because we do not use the TPM in normal logging activities,
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our log appending operation is much faster than that in prior work. In the best
case, our scheme appends approximately 20, 000 log entries per second using a
Intel 2.8GHz processor with 6GB RAM (Table 1), much faster than prior similar
schemes [3, 2, 20, 1, 8, 7]. The best of these schemes can process 1750 entries per
second using Intel Core 2 Duo 2.4GHz CPU with 4GB of RAM [3]. A2M, another
work on secure logging that precedes TrInc, stores logs in trusted memory [4].
Due to the limited size of trusted memory, this scheme is not practical to be
used to protect logs on the order of gigabytes, which our work aims to support.

There has been much work on designing efficient data structures for storing
logs along with auxiliary information (such as a hash tree) to provide guarantees
of tamper-proofness [21–23, 3, 5]. For instance, the work by Crossby et al. [3]
provides a dynamic history tree data structure to store the log and capture
the history of log insertions through commitments. These structures require
publishing the updated state of the auxiliary data structure quite frequently;
e.g., after each log addition. However, in our scenario, external communication
may not be feasible given the high bandwidth requirement of logs generated at
high frequency. While these schemes are effectively online schemes, our scheme
provides the forward integrity guarantee in an offline manner, even if the verifier
does not verify before the adversary takes control. Also, our infrastructure is
able to append logs at much faster rate due to the simplicity of our approach.

Other Schemes That Use Trusted Hardware. TPMs have been used exten-
sively to design schemes that guarantee some form of trust in computing devices,
in spite of malicious software running on the device [24, 25, 12]. We use the TPM
to protect a key by producing a sealed object of the key that can only be un-
sealed when the TPM’s monotonic counter has a specific value. Incrementing
the counter makes the object unsealable by this TPM in the future.

Due to practical constraints, such as size, power consumption and cost, the
TPM is limited in its functionality, e.g., small non-volatile memory that degrades
with about 100,000 writes. An ideal hardware solution for tamper-proof logging
is trusted secure hardware that stores the whole log itself, guaranteeing not only
detection of tampering but also recovery of the tampered logs. Other hardware
like iButtons [26] has been used in secure logging [20] that implements the scheme
of Kelsey and Schneier [1]. While they provide many of the guarantees that our
scheme can, they do not address the issue of auditing across power cycles, and
their implementation is slow in appending log entries (∼1 second for an append).

The challenge of distinguishing power failures from malicious power attacks
that we face is also encountered in another work using the TPM for secure code
execution [12]. A trusted power source or a fail-safe power failure mechanism is
needed to allow TPMs to shutdown cleanly in case of a power failure.

Formal Verification of System Software. Formally verifying the security
guarantees of critical system software has become increasingly important. Several
projects have demonstrated the value of formal verification (e.g., [27, 14, 28]).
The high-level goal of our work is the same. A model of an adversary against
forward integrity was proposed by Bellare et al. [9], which is the same adversary
model in our formal verification. As far as we know, we are the first to formally
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specify the two-phase adversary model and the forward integrity property in
logic. Another semi-formal model proposed by Crossby et al. focuses on specify-
ing integrity as prefix consistency of a log and its extension [3], which essentially
requires online commitment of log entries. Therefore, that model is not relevant
to our logging scenarios. Ma et al. provide a cryptographic style definition of the
security properties of a hash chain [29, 30], much like Bellare et al. [9] However,
unlike our analysis, they cannot verify security properties of logging protocols,
as they lack the logic/language framework to reason about protocols.

Our verification technique is based on the compositional reasoning principles
developed by Garg et al. [13] We additionally allow dynamic forking of new
threads and resetting the machine, which are essential in modeling and reasoning
about the behavior of protocols across machine resets and power failures.

8 Conclusion

Our secure logging protocols use new TPM features to guarantee forward in-
tegrity of logs in an offline setting and address practical issues such as limited
disk space, high-frequency log updates, and unexpected power failures. As future
work, we are interested in investigating how to select log block sizes for opti-
mal balance between the strength of the security guarantees and performance.
One promising direction is to include an adaptive block size choice module that
takes into consideration the costs of security and performance. Another issue we
want to explore is the scheduling priority for the logger process, so that other
processes are not able to exhaust machine resources with the aim of preventing
logging and causing a system crash.
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Abstract. While security has become important in embedded systems,
commodity operating systems often fail in effectively separating pro-
cesses, mainly due to a too large trusted computing base. System vir-
tualization can establish isolation already with a small code base, but
many existing embedded CPU architectures have very limited virtual-
ization hardware support, so that the performance impact is often non-
negligible. Targeting both security and performance, we investigate an
approach in which a few minor hardware additions together with virtual-
ization offer protected execution in embedded systems while still allowing
non-virtualized execution when secure services are not needed. Bench-
marks of a prototype implementation on an emulated ARM Cortex A8
platform confirm that switching between those two execution forms can
be done efficiently.

Keywords: Dual Mode, Separation, Soft Reboot, Virtualization,
Hypervisor, Embedded Systems, Security.

1 Introduction

Embedded systems are becoming more powerful, distributed and globally con-
nected. We see a transition from classical single function embedded systems to
powerful collaborative special purpose computing devices often controlling sen-
sitive or critical infrastructure functions, so called cyber-physical systems. In the
past, software attacks were mainly targeting high performance computers such
as desktop computers, laptops, and recently also mobile devices. This is about
to change rapidly. Security threats against cyber-physical systems have become
a severe issue, requiring strong platform security protection techniques such as
separation [26] without overly increasing performance or system costs.

The need for separation of security critical data and code on mobile devices
motivated ARM to introduce the TrustZone technology [4], available for some
(but not all) ARM systems. TrustZone is a System-on-Chip (SoC) isolation tech-
nique that establishes a high degree of separation between trusted and non-
trusted execution, while keeping context switches fast. To distinguish between
trusted and non-trusted address space, TrustZone adds an additional address bit
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to the bus system. In order to not break isolation, careful SoC adaptations at
the design level of application specific integrated circuits (ASIC) are necessary
to make memory interfaces, interrupt controllers, Direct Memory Access (DMA)
devices etc. aware of that bit.

System virtualization is an alternative way to protect security critical assets
[15,16]. However, in tiny embedded systems with limited hardware virtualization
support, system virtualization implies a non-negligible performance overhead
[12]. On the other hand, security services typically do not run on the system all
the time. They can be scheduled on a regular basis to perform monitoring or be
called upon demand (e.g., for secret key operations).

In this paper we propose an alternative system virtualization enabled ap-
proach for separation, based on dual mode execution, i.e., the ability of choosing
between virtualized and non-virtualized execution mode, and switching between
the modes through soft reboots. The goal of the solution is to provide separa-
tion while keeping both performance overhead and required SoC adaptations to
a minimum. Only a few hardware adaptations to an existing architecture are
required. In one of the typical use cases, a service for proving the device’s iden-
tity to its environment wants to keep the authentication key secret from the
rest of the system. The system would run non-virtualized in the majority of the
time, but activate the trusted service domain only for the actual authentication
process. The exchange of required challenge-response-messages throughout that
process will happen via remote procedure calls (RPCs).

Different from general purpose hypervisors (also called virtual machine mon-
itors (VMM)) such as Xen [19] and KVM for ARM [12], a hypervisor with the
purpose of separation or monitoring has a more focused scope and several opti-
mizations can be made. We have developed a tiny hypervisor for ARM Cortex
A8 with focus on separation. It was recently released as open source, and isola-
tion properties of one version of this hypervisor have been formally verified on
binary level. Based on this hypervisor, FreeRTOS as main guest, and emulated
ARM Cortex A8 hardware enriched by our hardware extensions, we have imple-
mented the suggested approach for dual mode protected execution. Benchmark
figures show the feasibility of the concept. The main costs for enabling isolated
services consists of their decryption and the integrity check of those services and
of the lightweight hypervisor. Returning to non-virtualized execution does not
take much longer than the erasure of newly produced confidential data.

Contrary to other approaches, that are for example based on TrustZone or
trusted computing enabled late launch [17], the solution presented in this paper
does not require any particular CPU architecture or extensions to the CPU,
which keeps costs low and makes the concept applicable to a large set of embed-
ded systems. Summarized, our solution offers the following benefits:

1. Trusted domains can be executed with guaranteed separation without caus-
ing performance overhead in phases where their services are not required.
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2. If desired and the use case allows the resulting latency, the commodity OS
can be paused throughout the protected phase, so that trusted domains can
execute without the need of paravirtualization1 of the commodity OS.2

3. The proposed protocol includes a secure boot scheme, so that confidentiality
and integrity of hypervisor and trusted domains are maintained even in the
presence of external accesses to their non-volatile storage.

2 Hardware and Protocol

We consider a concept that relies on minor adaptations on SoC design level to
make it possible to run the system in two modes, protected mode and normal
mode. In protected mode a dedicated hypervisor runs in the most privileged level
on each CPU in the system and trusted guests (such as secret key services) can
run separated by the commodity OS, while in normal mode no hypervisor needs
to be present in the system, as depicted in Figure 1 for a single CPU system.3

Priviliged software can cause transitions between modes by requesting a soft
reboot (also referred to as soft reset or warm reboot), which is initiated by the
system’s reset signal.

Fig. 1. Dual mode operation

1 Paravirtualization [28, p. 422] describes any modification of guest operating sys-
tems, in order to enable their execution on a virtualized environment instead of bare
metal, e.g. by making them use software interrupts (hypercalls) to perform privileged
operations, according to the hypervisor’s API.

2 Depending on the scenario, interrupts would be recorded by the hypervisor or just
masked during the pause.

3 Here, we illustrate a single CPU architecture, but the principle can easily be extended
to a multicore architecture, see Section 2.1.
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The SoC contains two special purpose volatile memory registers: a mode state
register and a transition register. The mode state register states whether the
system is currently in protected or normal mode. The transition register is used
to state the intention of commodity OS or hypervisor about which mode to enter.
The mode state register can only be changed in early booting phases. Thereafter
it will be locked through a sticky bit so that it can not be modified anymore until
a chip reset (and consequently a soft reboot) occurs. The boot code responsible
for the hypervisor and OS kernel launch determines which mode to boot into -
and consequently the value to set in the mode state register. In a cold boot (full
hardware reset) the default mode value is given by a boot configuration. In a
warm/soft reboot the value is determined by the transition register, as set by
the higher level software.

When running in protected mode, the hypervisor controls sensitive appli-
cations, I/O devices and data and can protect the system from illegal access
to these units. This can be achieved using the normal Memory Management
Unit (MMU) or Memory Protection Unit (MPU) present in most systems. If
applicable, additional hardware protection support can be utilized, such as an
Input/Output MMU (IOMMU). The memory protection mechanisms are also
used to make sure that, when running in protected mode, a soft reboot to normal
mode can only be initiated by the hypervisor or hypervisor protected units, such
as a watch dog timer reset function (placed in a protected address space).4

Fig. 2. SoC system view

4 As discussed in Section 5.2, unprivileged software can at most achieve a soft reboot
to protected mode or a cold reboot.
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Figure 2 shows a SoC design according to the approach and the proof of
concept implementation we have done using emulated hardware (see Section 5).
In addition to the two special purpose registers, the SoC design includes one or
several chip unique secret key(s), stored in non-volatile registers. They are used
to decrypt and check the integrity of security critical code/data that is loaded
into the chip internal or external RAM. To prevent any usage of the chip unique
secrets in normal mode, they are tied to the mode state register and locked
to protected mode. In our proof of concept implementation we have optimized
performance with a fully functional cryptographic module, the transition crypto
module. However, cryptographic operations can be performed in software as well,
reducing the number of changes to integrated circuits, but at the prize of an
increased performance overhead. If not mentioned otherwise, we assume the
presence of a transition crypto module in the remainder of the paper.

In order to show how these SoC components are used in the suggested ap-
proach, below we describe the details of the cold boot, the transition from
protected to normal mode and the transition from normal to protected mode.

Cold Boot. The following steps are performed in a cold boot:

1. After the machine is powered on, a first stage boot code is executed. To
prevent security from being compromised, this code needs to be protected
from modifications by storing it in write-protected memory such as on-chip-
ROM.

2. The first stage boot code loads the integrity protected second stage boot code
and boot configurations into on-chip-RAM. The second stage boot code and
its configurations are protected with signatures verifiable with a public key
stored in write-protected memory, such as ROM, or hardware registers, such
as e-fuse registers.

3. The first stage boot code reads the verified boot configurations and writes
the default boot mode (normal or protected) into the mode state register,
which is then locked.

4. The first stage boot code launches the second stage boot code. Depending
on the system and use case, one or several intermediate boot stages are
processed until the boot code responsible for hypervisor or operating system
launch is reached. We call this boot stage transition boot stage.

5. The transition boot stage reads the current value of the mode state register.
If the register indicates normal mode, the operating system indicated in the
boot configurations is launched. If the register indicates protected mode, the
following steps are performed:
(a) The transition boot code loads hypervisor, trusted guest(s) and data

from external memory and verifies the integrity (e.g., by using a tran-
sition crypto module). The confidentiality of trusted guests is protected
through fast symmetric encryption with a chip unique secret key. If re-
quired, confidentiality protection can also be applied to the hypervisor
or parts thereof.

(b) If decryption and integrity verification in the previous step were success-
ful, the transition boot code hands over the execution to the hypervisor.
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Otherwise, the transition boot stage code clears all security sensitive
data on the system, writes “normal mode” into the transition register
and issues a soft reset, so that the system reboots into normal mode.
This allows the system to recover even if it could not be started into
protected mode.

Transition from Protected to Normal Mode. When the system is in protected
mode and secure services are no longer needed on the system, the hypervisor
switches the system back to normal mode, as follows:

1. All trusted guests currently running are halted by the hypervisor. If re-
quired, persistent data is stored, integrity and confidentiality protected.
Subsequently, the memory of trusted guests is cleared.

2. All confidential hypervisor data is cleared from memory.
3. The hypervisor can choose to maintain non-confidential code/data in mem-

ory to avoid reloading and reinitializing when returning to protected mode.
In that case, Message Authentication Codes (MACs) protecting the integrity
are recomputed, given that the concerned memory regions have changed.

4. The hypervisor sets the transition register to “normal” and issues a SoC-
wide (soft) reset signal. This can be done via the component containing
the two special purpose registers. The resulting soft reboot of the system
will keep the content of most volatile memories, which allows a rather quick
booting process without the need to reload all code and data from non-
volatile memories.

At reset, the system will be booted into normal mode (analogous to the previous
paragraph) running the OS kernel in the most privileged CPU mode as “usual”,
i.e., as in a non-virtualized system (see Figure 1). Before handing over execution
to the commodity OS, the boot code clears all registers to avoid that confidential
data from a protected mode phase is leaked into normal mode.

Transition from Normal to Protected Mode. When the system is in normal mode
and one or several security critical services are required, the commodity oper-
ating system writes “protected” into the transition register and issues a soft
reset signal. It can inform the hypervisor about requested services and their
parameters by writing service request values into dedicated transition memory
before the reset. Subsequently, the boot is performed in analogy to the cold boot
into protected mode, retrieving mode information from the transition register.
However, the commodity OS is not loaded again and, if chosen so, the non-
confidential parts of the hypervisor (such as code, page tables, constants) are
not either. In contrast to that, integrity verification is always performed, possi-
bly even for new memory regions used by, for example, page tables created in
the previous hypervisor session. If hypervisor memory has been compromised in
normal mode or protected mode has not been active before, a fallback option will
(re-)load the entire hypervisor from the storage as done in cold boot. Once the
system is rebooted, the hypervisor will check the requested secure service(s) by
reading the transition memory and launch them with the given parameters after
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checking that both services and parameters are valid and sound. Alternatively,
this information can be passed via a hypercall from the commodity OS, once it
is invoked by the hypervisor.

On a mode transition in either direction the commodity OS is usually aware
of the upcoming soft reboot and will pause active processes as well as store their
contexts before releasing control. Those processes (kept in memory) can then
easily be resumed in the new mode. Before the hypervisor or OS reconfigures
the peripherals, it needs to check whether interrupts (masked throughout the
soft reboot) have occurred. Depending on the use case, the boot code can also
be used to record events in a queue. In typical scenarios, the user will be aware
of the inherent latency.

2.1 Implementation Alternatives

Enforced Protected Mode through Watch Dog Timer. An alternative realization
of the presented approach connects the watch dog timer of the SoC to the mode
state register, so that the timer can only be reset if the system is in protected
mode. If not kept alive, the watch dog issues a soft reset. At soft reset, the
transition boot stage code checks the status of the watch dog timer and if it has
reached zero, the transition boot code will boot the system into protected mode,
independently of the transition register. This forces the system into protected
mode in some pre-defined time intervals, which can be useful for monitoring or
to counteract denial of other trusted services.

Soft Reboot Enabled by TrustZone. The ARM TrustZone technology for ARM11
and ARM Cortex embedded processors [4] offers support for creating two se-
curely isolated virtual cores (or worlds as they are termed) on a single real core.
Both secure world and normal world manage an own virtual MMU, as well as
an own vector table and thus own exception handlers [13]. System hardware, in-
cluding memory and peripherals, can be allotted to each world. This is realized
by an additional address bit. However, that separation requires that peripheral
devices are adapted to the setting. A transition between the worlds is initiated
by a hardware interrupt or a Secure Mode Call (SMC), both invoking the so
called monitor mode, which is responsible for context switches. The concept of
turning a hypervisor on and off on demand, as described in this paper, can also
be implemented based on TrustZone instead of the discussed hardware exten-
sions. Bootloader, hypervisor, trusted guest and the current mode would then
be kept stored in the memory of the secure world, which only executes code to
realize the soft reboot transitions. The execution of all other software (including
the hypervisor and the trusted guest) happens in the normal world. Soft resets
would be realized through SMCs. One of the advantages of this variant is that
no soft reboot specific hardware extension in form of, e.g., a mode state regis-
ter is required, something which is especially useful when TrustZone is already
present anyway. Furthermore, keeping assets in the secure world reduces the need
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for crypto operations considerably. However, a secure boot scheme would still
be needed to ensure that the hypervisor and the trusted guest(s) are loaded
into the secure world memory confidentially and integrity protected. Hardware
protected keys are therefore still required. Moreover, peripherals have to be
adapted in order to maintain separation between the two worlds. This limitation
together with the costs of the TrustZone extension makes a TrustZone driven
implementation variant only preferable to the standard one if the soft reboot
is to be enabled on an already existing system that (including its peripherals)
supports TrustZone from the beginning.

Multicore Systems. The presented solution is also applicable to multicore sys-
tems. Since the mode state is a global property to control access to the chip
unique keys, all CPUs have to agree on the mode. Consequently, when in pro-
tected mode, all CPUs need to be protected by a hypervisor, irrespectively if
they are running secure services or not. There would be some master hypervisor
on the system, which has the responsibility to coordinate, to execute trusted
services and to issue soft reboots. In order to switch from protected to normal
mode, the master hypervisor would inform its neighbors and wait until it has
received acknowledgments from all of them before issuing the actual reset sig-
nal. Likewise, when booting into protected mode, the master hypervisor will be
booted first on the main CPU and then launch all other hypervisors.

3 Hypervisor

A prototype implementation for the described solution has been established on
the basis of a type-1 hypervisor5, available as open source from [27]. Its focus lies
on providing security by MMU-supported separation and its isolation properties
have been formally verified on binary level [11]. Following the system virtualiza-
tion principle, it allows the parallel execution of multiple paravirtualized guests
in user mode. Both Linux and FreeRTOS have been ported to the hypervisor.
Isolation between guests can intentionally be relaxed by the possibility to com-
municate with well-defined and parameterizable RPCs via the hypervisor. In
addition to inter-guest-separation, the hypervisor offers introspection features
such as virtual guest modes that enable intra-guest-separation as well, for ex-
ample in order to maintain the guest OS’ kernel separation even when executing
in the processor’s non-privileged operation mode. The implementation of the
hypervisor comprises 2717 lines of C code and 942 lines of assembly, result-
ing in a compiled binary of 31 KB. The hypervisor was developed for single-core
ARMv5 and ARMv7 architectures and deployed on Beaglebone [9], Beagleboard
[7], Beagleboard-xM [8], NovaThor [29] and the Integrator development board
[3], as well as on emulated platforms within the OVP framework [24].

5 Hypervisors of type 1, also called native hypervisors, are not running on any host
OS, but on bare metal.
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4 Software Adaptions

We have implemented a single-core prototype of the solution, based on FreeR-
TOS as commodity OS and the inhouse hypervisor for ARMv7 described in
Section 3. Both FreeRTOS and the hypervisor had to be modified to support
the soft reboot functionality, as described in this section. The trusted domain
was easily implemented since it only needs to offer an entry point for receiving
RPCs and the awareness about the RPC parameter passing protocol. Three dif-
ferent interrupt vector tables were configured and are mapped according to the
mode; while the vector of the boot code is only referred to on reset, the hypervi-
sor vector is active in protected mode and FreeRTOS’ vector is either referred to
directly (in normal mode) or used to receive control from the hypervisor. Oth-
erwise, memory mapping is static and access rights only change in dependency
to the current mode. Binaries are linked/built separately for each entity and,
where required, encrypted and/or integrity protected before deployment.

Adaptations to the Commodity OS. The core adaptation in the commodity OS
consists of changes that enables it to run both as guest on top of the hypervisor
and natively on bare metal with control over the privileged operation ring of the
CPU. While in the latter setting, privileged operations are performed directly
by the corresponding privileged instructions, hypercalls have to be used in the
first setting. We added a dual API layer that selects the required implementation
for each functionality in dependency of a mode indicating configuration bit set
by the bootloader. Similarly, FreeRTOS was made able to switch between its
own kernel separation enforcement and the kernel protection provided by the
hypervisor. On startup, the commodity OS either performs its own hardware
configurations or it registers itself to the hypervisor, before creating or resuming
processes. Finally, we inserted code that makes use of the RPC functionality to
communicate with a trusted domain and that actually initiates soft reboots for
demonstration and benchmark purposes.

Adaptations to the Hypervisor. The adaptations to the hypervisor were quite lim-
ited. Essentially, besides providing configuration information about commodity
OS and trusted guest, only a hypercall needed to be added, that realizes the
initiation of a soft reboot into normal mode, including the optional write back
of the trusted domain and the erasure of all confidential data. The hypervisor
makes use of the possibility to be partly kept in memory on soft reboot. In
particular, this applies to the sections for code and constants, that both do not
change throughout the system’s uptime, and the page tables, for which a new
MAC is computed after they are generated. Data section, BSS section, heap and
stack are treated confidential and cleared before soft reboot. The data section is
the only part that needs to be reloaded when coming back to protected mode,
given that no memory corruptions have occurred in normal mode. Whether the
hypervisor memory is still uncorrupted or had to be reloaded by the bootloader
is indicated as argument to the hypervisor, so that page tables can be recom-
puted if necessary. Note that we migrated the responsibility of loading guests
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from the hypervisor to the bootloader. Similarly, we decided to invoke trusted
services via RPCs by the commodity OS after a soft reboot to protected mode
instead of passing parameters about the desired service to the hypervisor. In
that way, no decisions are required by the hypervisor upon boot, but control can
simply be transfered to the guest’s entry point directly.

Bootloader. The implementation of the bootloader was carried out in a straight
forward manner according to the protocol in Section 2, using a transition crypto
module for cryptographic operations. In our implementation the bootloader is
divided into two stages. The first stage boot code checks the transition register,
loads and verifies the second stage boot code and is placed into ROM along
with its vector table. The second stage boot code loads the commodity OS, the
hypervisor and the trusted guest (depended on the mode), carries out needed
verification steps and finally calls the commodity OS or hypervisor.

5 Evaluation

The approach can be implemented on many current embedded architectures with
minor hardware changes (a few special purpose registers and hardware protected
keys), as most of the functionality relies on existing hardware features and func-
tions implemented in software, mainly the boot code and the hypervisor. To
demonstrate our solution and in order to obtain benchmarks on its performance,
we have implemented the described hardware extensions within the emulation
framework OVP [24]. It allows to implement and simulate the behavior of new
SoC hardware components with reasonable effort. The additional registers are
realized as memory mapped device connected to a SoC (emulation) with an in-
tegratorCP platform that includes a single ARM Cortex-A8 CPU. The register
extension has been wired to perform system resets when required. Furthermore,
a dedicated transition crypto module has been modelled in OVP, allowing us
to verify the required encryption/decryption and integrity check tasks. As OVP
can not provide exact simulation times, especially with respect to peripherals,
MMU and caches, the main purpose has been to test the concept as such and get
a good picture of the performance one can expect. Hence, the transition crypto
module is simplified with respect to its hardware interface and we allow direct
memory read from the transition crypto module over the bus. This allows us to
test the different boot cases and the concept, but not to simulate real transition
crypto module data transfers from the CPU or via DMA. We believe those sim-
plifications are reasonable since exact time estimates for these access forms can
not be obtained in an emulation environment such as OVP anyway.

5.1 Performance

The suggested approach allows running secure services isolated by a hypervisor
layer only when needed instead of permanently. Consequently, the secure services
can be implemented with a very small performance impact. This comes at the
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price of soft resets when the secure services are needed. The objective of our
benchmarks is thus to estimate the overall costs for a soft reboot.

The evaluation includes three factors:

– the number of bytes copied (or erased) between/from storage devices (NAND
flash, RAM),

– the number of bytes fed into the transition crypto module for en-/decryption
or integrity value calculation and integrity checks,

– the number of remaining CPU instructions not involved in any such feeding,
copying or clearing operations.

These figures together allow us to estimate the overall time for all steps of the
suggested approach, making the following assumptions about the platform:

– The CPU is clocked with 720 MHz and nominally executes 200 MIPS, as
typical on many Cortex A8 development boards such as BeagleBoard [7].

– We assume a rather conservative RAM copy speed of 150 MB/second, which
is a lower estimate from [5].

– The copy speed from NAND flash to RAM is estimated by 6 MB/second [21].
– We assume a transition crypto module supporting SHA-256 HMAC gener-

ation and AES-128 en-/decryption with a fair trade off between size and
speed, clocked at 174 MHz and with the ability to perform parallel hash-
ing/encryption or hashing/decryption with the speed of 171 MB/second.
Since hashing is the dominating work load in such parallelized operations,
the feasibility of such a speed can be concluded from, e.g., [10].

Table 1 provides an overview of the results for the single steps required, de-
pending on which transition is been considered. We distinguish between a cold
boot into protected mode (cp), a cold boot into normal mode (cn), a (warm/soft)
reboot into protected mode (wp) and a (warm/soft) reboot into normal mode
(wn). Crosses (X) indicate which step is involved in which transition. A dash (-)
indicates that the step in question is optional or does only occur in the first of
typically many soft reboots.

The benchmarks are based on a second stage boot code of 2.9 KB, FreeRTOS
as commodity operating system with a binary blob of 1 MB, the hypervisor
sections for code and constants, together 30 KB, hypervisor data of 1 KB and
a trusted domain of 380 KB. Those specifications refer to the initial volumes.
However, we allow the trusted domain to grow up to 1 MB for the usage of
stacks, data structures etc. The space reserved for the hypervisor’s heap, stack
and BSS section is 900 KB, while page table memory can be up to 64 KB.

A complete soft reboot cycle including two mode switches is with 19 millisec-
onds estimated considerably faster than any cold boot, irrespectively of the tar-
geted mode. Avoiding slow accesses to external storage is responsible for the main
share of those performance benefits. However, also the number of boot instructions
is reduced in warm reboot, in respect to both the hypervisor and the commodity
OS. In both cases this optimization ismainly due to the dispensed page table recon-
figuration. Preconfigured page tables could reduce the hypervisor’s booting phase
also in a cold boot, but that would come at the costs of an increased foot print and
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Table 1. Execution Costs per Step

step cp cn wp wn Bytes crypto other estimated
accessed module instr. time
in storage load in B in ms

configure registers and mode X X X X 29 0.0001
clean registers X 41 0.0002
load + verify 2nd stage code X X X X 2,987 2,987 26 0.4916
load FreeRTOS X X 1,043,288 19 165.8263
load + verify hypervisor code X 30,500 30,500 24 5.0181
verify hypervisor code X 30,500 22 0.1940
load + verify hypervisor data X X 960 960 22 0.1581
verify hypervisor page tables X 65,536 21 0.4168
copy encrypted trusted guest X 389,732 0 61.9562
decrypt + verify trusted guest X X 389,732 24 4.9558
boot hypervisor X 247,940 1.2397
reboot hypervisor X 27,707 0.1385
boot FreeRTOS, normal mode X 9,146 0.0457
reboot FreeRTOS, normal mode X 140 0.0007
(re-)boot FreeRTOS, protected X X 305 0.0015
compute page table MAC - 65,536 129 0.4173
(write back trusted guest) - 1,048,576 216 13.3341
erase confidential memory X 1,964,252 98 12.4889
initiate reset to protected mode X 41 0.0002

cold boot, protected mode X 248,389 239.6374
cold boot, normal mode X 9,220 166.3637
warm reboot, protected mode X 28,197 6.3566
warm reboot, normal mode X 334 12.9815

less flexibility. Since we allow the trusted guest to grow to a size of up to 1MB,writ-
ing it back (including MAC computation and encryption) is comparatively expen-
sive, and so is its deletion. In order to optimize write back and clearing, one would
need to narrow down the space actually claimed by the trusted guest. However,
writing the trusted guest back might not be needed in many cases and is therefore
listed as optional. The share of cryptographic operations on the estimated costs of
a warm reboot to protectedmode is 88%. Clearing confidential data is constituting
the main part of the costs when soft rebooting into normal mode. We believe that
the soft reboot performance is more than reasonable in settings where a hypervisor
is only needed sporadicly. Assuming the estimations from above and a hypervisor
overhead of at least 2%, an execution phase of 1 second in which secure services are
not required is already enough to make a temporarily deactivation of service and
hypervisor through a soft reboot profitable. As the soft reset, different from a full
reset, keeps all volatile memory content, soft reboots are also considerably faster
than cold reboots with full resets. In order to achieve the same functionality of en-
abling and disabling virtualization on demand with full resets, additional costs to
the ones listed above would arise, for example for storing application data before
rebooting.
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5.2 Security

Attacker Model. We assume that the attacker has full control over the com-
modity OS. However, the hypervisor is supposed to be free from vulnerabilities,
which can be assured by formal verification. Furthermore, we trust CPU, MMU
and BIOS. Hardware attacks are out of scope of this paper. Devices are as-
sumed to reset whenever a reset signal is issued.6 In particular, no previously
pending DMA operations will be performed after the reset until DMA con-
trollers are reprogrammed. We furthermore assume that the hypervisor is aware
of the specification of all present DMA devices, so it can intercept accordingly,
and that the devices’ behavior actually follows their (non-hostile) specifications.
Alternatively, an IOMMU can be used to protect against DMA attacks.

We assume that the attacker aims at obtaining confidential data about the
trusted guest and/or to affect its execution outside of the controlled communi-
cation channel provided. Denial of Service (DoS) attacks are out of scope of this
paper, since a malicious commodity OS has the ability of shutting down the ma-
chine or otherwise introducing delays anyway. However, making the watch dog
timer aware of the mode state register as described in Section 2.1 improves the
protection against DoS attacks, even though complete protection is not achieved
by this enhancement either.

Protection in Different Execution Phases. In the following, we discuss the
different aspects of the system’s security in detail.

Execution in Normal Mode. When in normal mode, the trusted guest and con-
fidential parts of the hypervisor are stored in encrypted form. Access to the
corresponding chip unique key(s) is rejected.

Entering Protected Mode. The system can only enter protected mode along with
the execution of a trusted and unmodifiable bootcode. In order to change the
mode register, it needs to be unlocked. It is guaranteed by hardware that this
unlocking is performed together with a CPU reset. The reset sets the program
counter to a fixed address pointing to the bootcode in ROM. On ARM processors,
neither this address nor the endianess or the instruction set used after reset can
be changed by the commodity OS, even when running in privileged mode, since
the values for those system parameters are copied from the System Control
Register (SCTLR) register of coprocessor 15 which in turn is set back to default
values first on reset [2, pp. B1-1202, B1-1203]. In particular, the MMU is disabled
[2, p. B3-1308], so that the used entrance point of the exception vector table can
not be translated to a different address. Standard interrupts are masked by the
reset and not unmasked before control has been transferred to the hypervisor.
Fast interrupts are disabled by the boot code, even though there are no devices
tied to fast interrupts in our setting. The remaining bits of the Current Processor

6 For functionality, the operating system or hypervisor respectively needs to wait until
devices have finished pending tasks before issuing a reset signal. However, the specific
time of a reset has no effect on the security.
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State Register (CPSR) are set to default values by the boot code. If the integrity
verification of either hypervisor or trusted guest fails, the memory is cleared and
a reset to normal mode is enforced, so that compromised software will never be
executed.

Execution in Protected Mode. The hypervisor is the first software invoked by
the boot code. It configures the system’s memory protection in such a way that
the hypervisor code and data, the trusted domain, the transition crypto module,
chip unique keys and register extensions are inaccessible to guests. All exceptions
are mapped to handlers under the control of the hypervisor.

Leaving Protected Mode. In order for the commodity OS to (re-)gain privileged
rights, a reset has to be issued, since the hypervisor is maintaining control over
the system in all other cases. From a functional perspective, this is ideally done
through the hypervisor by sending an unlock request to the mode register. How-
ever, from a security point of view we have to assume that the attacker can
establish a reset signal at any arbitrary time. In case this happens when the
transition register is (still) set to protected, the system will either get back to a
state where the hypervisor is in charge or (if integrity verification fails) all data
will be erased and the mode changed to normal before booting the commodity
OS. Even achieving one or several more reset signals during the soft reboot pro-
cess will not be of any benefit to the attacker since she has no possibility to set
the transition register to normal during that phase. In the other case that the
transition register is set to normal before reset, the system has either been in
normal mode anyway (and confidential data is not present) or the hypervisor has
already erased all confidential data (as required by the protocol before setting
the transition register back to normal). The MMU is preventing unprivileged
access to the transition register. Multiple randomized overwriting of confidential
memory regions can be used instead of single overwriting, if deleted information
must to not be retrievable in hardware forensics. Before handing over execution
to the commodity OS, the boot code clears all registers to avoid that confidential
data from a protected mode phase is leaked to normal mode.

Further Aspects
DMA Devices. In normal mode, devices do not have any more privileges than
the commodity OS. In protected mode, the hypervisor is able to intercept all at-
tempts to program DMA devices or can configure an IOMMU to protect security
critical parts of the memory. On soft reboot, pending DMA tasks are canceled.
In particular, the only DMA operations performed during the booting phase are
those executed with respect to the (trusted) transition crypto module.

Proof of Mode. A design assumption of our solution was that the fact that the
system is running in protected mode will be proven to the user by functionality.
For many common applications (e.g., for secret key services such as signing) it
is impossible for the attacker to make the user believe the trusted application
was active if it was actually not. However, alternative embodiments are possible
where a secret is displayed to the user or a LED is tied to the mode register.
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6 Related Work

In [18] IBM describes a method for directing the system’s reset signal to a specific
partition in a virtualized setting. The method is therefore another suggestion on
how to make use of reset functionality in virtualized environments, but does not
address virtualization overhead.

Instead of disabling virtualization completely when it is not needed, a natural
first step is to reduce its costs to a minimum. For example, in specific I/O opera-
tions hypervisors can be bypassed [20]. However, this requires hardware support
and applies only to a subset of all (I/O) operations. Naughton et al. [23] dis-
cuss approaches to extend the Xen hypervisor dynamically by loading additional
modules on runtime. In that way, the usage of space and other resources can be
optimized. Still, a basic instance of Xen would always be active, something we
avoid in our solution.

How to turn off a hypervisor while keeping other software running has been
demonstrated for a machine with a dedicated processor mode for virtualization
[14]. However, in many embedded architectures - for example on the common
ARMv7-processor - the additional requirement of lifting the operating system
to the privileged ring needs to be accomplished as well. Furthermore, the soft
reboot approach described in the present paper allows turning on the hypervisor
(again), guaranteeing the integrity protection of both the booted hypervisor and
additional guests while the hypervisor is off.

The separation facilities provided by TrustZone (see Section 2.1) can be used
to execute trusted services isolated without suffering from the performance over-
head introduced by virtualization and without the need of paravirtualizing the
commodity OS. At the same time, other CPUs on the system stay unaffected,
which can be seen as additional advantage over the soft reboot approach, which
requires all CPUs to agree on the mode. However, even if considering a system
with a CPU already supporting TrustZone (which is not given for many em-
bedded processors, such as CPUs with ARMv5 architecture), using TrustZone
to execute software isolated requires from the SoC that peripherals are adapted
in order to respect the extended address format and thus maintain separation
between the two worlds. In contrast, the solution presented in this paper requires
only minor additions to the SoC. If the execution of several isolated services or
a symmetric protection between service(s) and commodity OS is required in a
TrustZone solution, the secure world will need to run a separation kernel, as
used in the proposed soft reboot solution as well. Note that TrustZone based ap-
proaches still need to make sure that trusted services are kept confidential before
being loaded from external storage to the secure world. To achieve this, further
hardware extensions are required in order to provide a secure boot scheme.

An alternative way to securely invoke a hypervisor at an arbitrary point of
time is provided by trusted computing technology [30]. Similar to our solution,
trusted guests (and hypervisor) would be kept encrypted and integrity protected
until a cryptographic hardware module (in that case the Trusted Platform Mod-
ule (TPM)) decrypts and verifies them. However, in this method called sealed
storage, the collaboration of the decrypting module does not depend on a mode,
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but on binaries loaded to the system. Applying the late launch technology, as
available for modern Intel and AMD processors, this check ignores already loaded
software and instead ensures that a dedicated secure load block (SLB) is exe-
cuted. Only a loaded and unmodifed SLB will enable the decryption of the
sealed data [17,1,22]. This principle is comparable to the entanglement of the
mode register’s unlocking and the reset that enforces the execution of the first
stage boot code in our approach. However, not only is the technology not avail-
able for embedded systems, it has also been demonstrated that late launch can
be circumvented and hypervisors can be modified by malicious code injected to
the system before the late launch [31,25]. Even if this attack cannot be applied to
all architectures and the vulnerability might be fixed in the future, it gives rea-
son to doubt that TPM-based solutions provide a holistic principle covering the
entire system. Furthermore, TPM-operations are comparatively expensive, due
to a slow bus connection and relatively slow asymmetric decryption algorithms.
A proper (and still simple) mode aware cryptographic module (with DMA sup-
port), which we suggest for our approach, is more efficient and cost-effective and
does not require any modifications to the CPU.

Making use of the same enablers (sealed storage and late launch), the Flicker
environment [22] focuses on the isolated execution of single trusted applications
instead of the delayed activation of a hypervisor. This decision against virtu-
alization certainly decreases the trusted computing base even more, but comes
with the drawback that the commodity operating system has to be paused while
the trusted application is being executed and that only one trusted service can
be active at a time. A similar functionality to the one of Flicker can be achieved
with the hardware extensions that we propose. However, the feature of remote
attestation is naturally reserved to platforms with trusted computing support.
Furthermore, [22] admittedly provides a stronger protection against replay at-
tacks even without further hardware extension.

SICE [6] makes use of x86’s System Management Mode (SMM) to provide an
asymmetric isolation between commodity OS and isolated software, based on a
TCB including only the hardware, the BIOS and the SMM with a software foun-
dation of 300 LoC (excluding cryptographic libraries). However, isolated software
can not access peripherals directly and - as the authors point out themselves -
since the SMM was not designed with security in mind and several attacks on
it are already known, careful security reviews are necessary before deployment.
While still seeming to be a promising approach for asymmetric isolation on x86
systems, SICE’s principle is not applicable to embedded systems.

7 Conclusion

We have presented a dual mode approach to turn the system’s hypervisor on
and off on demand. Integrity and privacy of trusted guests are maintained at all
times: while virtualization is active (in protected mode), while it is not (in normal
mode), and while the machine is powered off. The solution requires only minor
additions to an existing SoC design, namely two new registers and hardware
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protected keys. Hardware support for the cryptographic operations guarantees
efficiency. No extensions to the CPU or adaption of other devices are needed. The
performance measurements of a prototype implementation in emulated hardware
show that soft reboots can provide benefits in several scenarios for embedded
systems. In particular, the efficiency is higher than when performing a cold re-
boot or maintaining virtualization while not needed. The main costs for enabling
isolated services consists of their decryption and the integrity check of those ser-
vices and of the lightweight hypervisor. Returning to non-virtualized execution
does not take much longer than the erasure of newly produced confidential data.
Furthermore, paravirtualization is not necessary in settings where the commod-
ity OS can be paused while in protected mode. We leave the formal verification
of our approach as possible future work.

Acknowledgements. Work supported by framework grant “IT 2010” from the
Swedish Foundation for Strategic Research.

References

1. AMD: AMD64 virtualization: Secure virtualization: Secure virtual machine archi-
tecture reference manual. AMD Publication number 33047, revision 3.01 (2005)

2. ARM: ARMv7-A architecture reference manual, issue C,
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406c

3. ARM: Integrator baseboards, http://infocenter.arm.com/help/topic/
com.arm.doc.subset.boards.integratorbaseboards

4. ARM: TrustZone Technology, http://www.arm.com/products/processors/
technologies/trustzone.php/

5. ARM Technical Support Knowledge Articles: What is the fastest way to copy
memory on a Cortex-A8? (2011), http://infocenter.arm.com/help/
index.jsp?topic=/com.arm.doc.faqs/ka13544.html

6. Azab, A.M., Ning, P., Zhang, X.: SICE: a hardware-level strongly isolated com-
puting environment for x86 multi-core platforms. In: Proceedings of the 18th ACM
Conference on Computer and Communications Security, pp. 375–388 (2011)

7. BeagleBoard.org Foundation: BeagleBoard product page,
http://beagleboard.org/Products/BeagleBoard

8. BeagleBoard.org Foundation: BeagleBoard-xM product page,
http://beagleboard.org/Products/BeagleBoard-xM

9. BeagleBoard.org Foundation: BeagleBone product page,
http://beagleboard.org/Products/BeagleBone

10. Chaves, R., Kuzmanov, G., Sousa, L., Vassiliadis, S.: Improving SHA-2 hardware
implementations. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249,
pp. 298–310. Springer, Heidelberg (2006)

11. Dam, M., Guanciale, R., Khakpour, N., Nemati, H., Schwarz, O.: Formal verifi-
cation of information flow security for a simple ARM-based separation kernel. In:
Proceedings of the 2013 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS 2013 (2013)

12. Ding, J.H., Lin, C.J., Chang, P.H., Tsang, C.H., Hsu, W.C., Chung, Y.C.: ARMvi-
sor: System virtualization for ARM. In: Linux Symposium (2012)

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406c
http://infocenter.arm.com/help/topic/com.arm.doc.subset.boards.integratorbaseboards
http://infocenter.arm.com/help/topic/com.arm.doc.subset.boards.integratorbaseboards
http://www.arm.com/products/processors/technologies/trustzone.php/
http://www.arm.com/products/processors/technologies/trustzone.php/
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka13544.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka13544.html
http://beagleboard.org/Products/BeagleBoard
http://beagleboard.org/Products/BeagleBoard-xM
http://beagleboard.org/Products/BeagleBone


54 O. Schwarz, C. Gehrmann, and V. Do

13. Douglas, H., Gehrmann, C.: Secure virtualization and multicore platforms state-
of-the-art report. Tech. Report (2009), http://soda.swedish-ict.se/3800/
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Abstract. Modern smartphone apps tend to contain and use vast
amounts of data that can be broadly classified as structured and un-
structured. Structured data, such as an user’s geolocation, has predefined
semantics that can be retrieved by well-defined platform APIs. Unstruc-
tured data, on the other hand, relies on the context of the apps to reflect
its meaning and value, and is typically provided by the user directly
into an app’s interface. Recent research has shown that third-party apps
are leaking highly-sensitive unstructured data, including user’s banking
credentials. Unfortunately, none of the current solutions focus on the
protection of unstructured data.

In this paper, we propose an owner-centric solution to protect un-
structured data on smartphones. Our approach allows the data own-
ers to specify security policies when providing their untrusted data to
third-party apps. It tracks the flow of information to enforce the owner’s
policies at strategic exit points. Based on this approach, we design and
implement a system, called DataChest. We develop several mechanisms
to reduce user burden and keep interruption to the minimum, while at
the same time preventing the malicious apps from tricking the user. We
evaluate our system against a set of real-world malicious apps and a series
of synthetic attacks to show that it can successfully prevent the leakage
of unstructured data while incurring reasonable performance overhead.

Keywords: unstructured data, information flow tracking, DataChest.

1 Introduction

Smartphone apps tend to contain vast amounts of sensitive data. In many cases,
such data items have predefined structure and consistent access semantics across
different apps. These data items, such as user’s location or contact information,
are often regulated by the mobile platform that provides apps access to these
items via well-defined platform APIs. For example, apps can retrieve user’s ge-
olocation from phone’s GPS sensor and subsequently provide location-aware fea-
tures to users. We classify such data as structured data. With the need to protect
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sensitive information in structured data, a wide variety of security mechanisms
have been developed by the platform developers as well as the research commu-
nity [19][24][27][30].

At the same time, the apps also alternatively consume data collected directly
from the users using the application-controlled visual interfaces (i.e., the users act
as data owners in this environment). The underlying platform renders minimum
to no control in the collection of such data. This type of data, classified as
unstructured data, relies on the context of the app to reflect its meaning and
values. One such example is the data collected using an user input box that
can have different semantics in different apps. For instance, user can provide his
bank credentials in the user input box of one app while he can type the hobbies
in another app.

In recent years, there have been several known real-world instances in which
apps have leaked unstructured data both intentionally and unintentionally. In
January 2010, several fake banking apps that aim to collect banking credentials
were identified [4] in official Android Market. Later in the same year, a fake ver-
sion of the Netflix app was found to leak user’s Netflix credentials to adversary’s
servers [6]. Besides intentional leaks by these fake (and malicious) apps, genuine
apps with vulnerabilities can be exploited to unintentionally leak unstructured
data. Recent studies have revealed several instances of benign apps leaking sen-
sitive information, such as user’s email login identifier and password [28]. While
privacy threat to users is always a major concern, certain information when
leaked, can result in serious financial losses.

Unfortunately, all the previous efforts [19][27][30] were focusing on securing
structured data. The protection of unstructured data has been largely ignored
and left at the mercy of third-party apps. As a result, the owners of unstructured
data, i.e., users of third-party apps, have to blindly trust these apps and pro-
vide security-sensitive data to them. However, the growing number of real-world
threats and the sensitive nature of the data that have been leaked emphasize
the urgent need for a system-driven solution to protect such unstructured data.

In this work, we are concerned with protecting unstructured data in the pres-
ence of untrusted third-party apps. To this end, we propose an owner-centric
approach in which the data owners can determine the security policies for their
contributed data. Our solution is based on the insight that data owners could
best understand the semantics and sensitivity of their data and hence are best
suited to determine who can have access to the data.

Accordingly, we design and implement a system, called DataChest, that enables
data owners to associate security policies to their data being fed to the untrusted
third-party apps. Our system subsequently tracks the flow of the data and applies
data owners’ policies at strategic exit points in the system. Any policy violation
will result in immediate halting of the data transmission.

To encourage real-world acceptability of DataChest, we develop several mech-
anisms to reduce user efforts in specifying policies for user-provided data. In
particular, DataChest provides persistent policies for statically generated input
data elements. For dynamically generated elements, our system automatically
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applies the policies based on user’s intent. Furthermore, our system provides
semantic-aware tag (or policy) suggestions. All these mechanisms reduce user
burden and interruption as much as possible, while at the same time guarantee-
ing that the user’s data security is never compromised.

Many of our design choices to reduce user burden have been derived from
techniques that have been well proven to be usable in other work streams. For
example, the semantic-aware tag suggestion feature based on user’s input value
(Section 3.4) has been extensively used in search engines, albeit for suggesting
related search topics. Other choices are self-intuitive, e.g. if the GUI shown to the
user does not change, it is safe to apply previously-specified tags (Section 3.3 and
Section 3.5). Usability can be further improved by leveraging additional knowl-
edge, e.g. policies can be pre-specified by trusted authorities such as corporate
administrators, and reputation of external entities can be automatically applied
using blacklisting databases.

We demonstrate the effectiveness of DataChest in tracking unstructured data
by analyzing it against popular benign apps from multiple categories. We further
evaluate our system against real-world malicious apps and synthetic attacks to
show that our system can successfully prevent the unstructured data from being
leaked to both (malicious) remote servers and unintended third-party apps. With
a CPU-bound benchmark, the results also show that our system has a relative
low runtime overhead of 14% with respect to the unmodified Android system.
Moreover, the extra time needed to initialize the GUI interface is around 40 ms
for a representative real-world scenario, which is a negligible latency that users
can actually perceive.

In summary, the paper makes the following contributions:

– To the best our knowledge, we are the first to address the challenge of protect-
ing unstructured data on smartphones. Our system takes an owner-centric
approach and engages the data owners to explicitly specify the security poli-
cies for their data that are subsequently enforced by our system.

– To minimize user burden, we develop mechanisms to address the challenges
of distinguishing both statically- and dynamically-generated input elements,
so that they can be effectively tagged with minimum to no user intervention.

– We develop a proof-of-concept system, called DataChest, and evaluate its
protection capabilities against real-world, malicious mobile apps as well as
some synthetically-generated attacks. Our results illustrate that DataChest

can successfully prevent all such attacks. Our performance results further
demonstrate that DataChest’s protection mechanism incurs reasonable per-
formance overhead with negligible perceived latency for the end users.

2 Motivating Examples

In contrast to structured data that has well-defined semantics, the semantics of
unstructured data can vary substantially in different app contexts. One example
of unstructured data is the data entered into input boxes. The exact type of data
that users would enter into the boxes cannot be determined without knowing
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Fig. 1. High-level system architecture of DataChest

the context of apps. The APIs (EditText.getText() in Android platform) used
to retrieve the values in these input boxes cannot be directly leveraged to under-
stand their semantic meanings. In fact, these values could range anywhere from
security-sensitive data such as user’s password or SSN to less sensitive data such
as user’s hobbies.

Since the context of an app is unknown to the underlying Android framework,
it does not understand the semantics of any unstructured data entered into the
app. As a result, the framework cannot enforce any access control policies (or
permissions) that correspond to unstructured data. This further implies that an
app can freely access and leak unstructured data without any constraints from
the framework. For example, a malicious app can launch phishing attacks by
masquerading itself as a banking app [4] and consequently steal users’ banking
credentials potentially leading to financial loss for the users.

Our work is motivated by real-world threats and aims to provide protection
to user-provided unstructured data by means of an owner-centric approach.

3 Design

Figure 1 shows the high-level architecture of our DataChest system. When data
owners (i.e., the users) provide data to third-party apps, they also include policies
that specify how their data can be used and shared with other apps and remote
servers. DataChest subsequently retrieves these policies and tracks the flow of
unstructured data at runtime. Our system will enforce corresponding policies
when such data is shared with other apps (E1 in Figure 1) or remote servers
(E2 and E3 in Figure 1). In the following, we will describe the associated design
challenges and how these challenges are addressed in our system.
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3.1 Design Challenges

With an owner-centric approach, our system requires additional efforts from data
owners to specify policies. In order to make the system more user friendly and
thereby enhance its acceptability, we need to reduce the burden and interruption
for users as much as possible, while at the same time, we also need to make sure
malicious apps cannot trick users and compromise the security of their data.

Our system leverages TaintDroid [13] to track the information flow of un-
structured data. However, TaintDroid only supports limited number of taints
(32), which is not sufficient for our system. In our system, we need to track
user-provided data for each individual input element. Since these items can sig-
nificantly vary in number based on the app, we need to support a large number
of taints.

3.2 In-Context User Policies

Users can specify their security policies in the context of apps, i.e., users specify
policies at the time when they actually type their data in the input boxes of a
particular app. Since users are entering the data based on their own perception
of the app’s visual interface, they know the semantics and values of the data
they are providing and hence are the best suited to specify the policies based
on the context of user inputs. However, the major challenge here is that users
need to explicitly identify the external entities1 before data items are actually
sent out. Users may have no idea of the remote server(s) that are used in the
apps and which one should be allowed in advance.

In DataChest, we address this challenge by allowing users to specify policies in
the context of users’ inputs without explicitly providing external entities. Specif-
ically, when typing content into user input boxes that may contain sensitive
data, users can tag the content with meaningful, user-specific, labels. This can
help users maintain the context of particular user inputs. For example, user can
tag the input box that accepts his Paypal password as Paypal.password. The flow
of tagged information entered into the user input boxes is tracked in the system.
When such data is being sent out to remote servers, our system alerts users with
the destination and data labels. By showing users the data labels, they can know
the types of user inputs that are currently being sent out. Subsequently, users
can specify their policies by allowing or disallowing such data transmission tem-
porarily or permanently. For example, they can allow the data with particular
label Paypal.password to transmit to paypal.com permanently while disallowing
such data transmission to evil.com.

3.3 Persistent User Policies

In order to make our system more user-friendly, we want to reduce user’s burden
and interruption as much as possible. Note that visual elements, such as user

1 External entity in our system means remote servers or apps with the different
developer’s signature.



60 Y. Zhou, K. Singh, and X. Jiang

input boxes, can either be statically defined by XML layout files [2] or dynam-
ically generated by apps at runtime in Android. In this section, we will discuss
our approach to handle the static user input boxes and leave the dynamically
generated ones for Section 3.5.

For static user inputs, we provide persistent tags and policy settings so that
users need to tag input boxes and specify the policies only once. Subsequently, for
each user input box that has been tagged with labels and associated with policies,
the same labels and policies will be applied to this input box automatically every
time it is instantiated in the system. A malicious developer might attempt to
trick our system by first making the users to enter low-sensitive data into an
input box and subsequently tricking the user into entering high-sensitive data
into the same input box. However, our system is resistant against such attacks
as it compares visual layouts of Android apps (Section 3.5) in order to determine
if the input box in question is a mere instance of a previously-tagged box and
only applies persistent tags if the visual layout remains same. The malicious
developer would need to modify the visual screen shown to the user to make the
user enter a different value for the same input box and in such a case, persistent
tags would not be applied thus preventing the attack.

One design consideration is to decide whether we need to maintain the old
policies associated with an app when the app is upgraded. From a user-friendly
design perspective, we should keep the policies so that users do not need to
specify policies again for the app. However, apps are untrusted in our system
and blindly applying old policies opens up potential avenues for a malicious
app to trick the user into giving away sensitive information. For instance, the
malicious app can replace an input box with less restricted policies in the older
version with an input box that can accept more sensitive data in the new version,
thereby enabling the app to leak this sensitive data. In DataChest, we take a more
restrictive approach and preserve old policies for newly installed app if and only
if it has same package name and same hash as the older one. We understand that
it limits usability in case only minor changes are made between two versions of
the app and the semantics of user input boxes are the same. However, it is a
trade-off that we made between security and usability. Moreover, the semantic-
aware tag suggestion feature described in the next section can make the policy
specification for the new app version much easier.

3.4 Semantic-Aware Tag Suggestion

We further reduce user burden by providing semantic-aware tag suggestions, i.e.,
suggestions based on the value of the data being entered. Note that when users
tag an input box, they actually correlate the content of their input with the
particular label (and its corresponding policies). Therefore, it is possible to infer
a user’s choice of label for an input box based on the current content of the box.
For instance, if the user has tagged an input box with label SSN and entered
a value of 111-22-3333, we can suggest the same label to the user when he is
entering same value into another input box (in the same app). The suggestion is
displayed at the bottom of the input box. The user can accept this suggestion by
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(a) Screenshot of dynam-
ically generated GUI ele-
ments

(b) Visual layout of GUI
elements

Fig. 2. Screenshot of an activity and its visual layout

simply clicking on it and consequently this label (and its corresponding policies)
will be automatically applied to the input box.

This feature is particularly useful for the case of upgraded version of an app. In
previous section, we discussed that the old policies and tags would be discarded
after app upgrading. Users can benefit from this feature while using the new
version of the app since our system can provide accurate tag suggestions to
them based on the content they have provided in the old version.

3.5 Dynamic User Input Elements

Dynamic input elements, such as the input boxes, are created at app runtime and
are not predefined in the XML layout file of the app. We cannot assign unique
IDs to such dynamically-generated input boxes and consequently have no way
to uniquely distinguish them. Therefore, it is not possible to provide persistent
tags and policies to such elements. However, requiring users to explicitly tag the
user input boxes and specify corresponding policies every time they use the app
is a major usability limitation and might not be acceptable. We need to find a
better solution to address this challenge.

An effective solution would be to apply tags and policy settings to user input
boxes based on their visual layouts that are presented to the users, and not
solely based on their IDs. For statically-generated user input boxes, their visual
layouts are predefined and fixed, hence the IDs of the input boxes effectively
reflect their visual layouts. However, it is not the case for dynamically-generated
input boxes. If we find a way to compare two visual GUI layouts in one app in
different runs, we can automatically apply the same tag settings to them if they
are visually same.
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Fig. 3. View tree of the GUI elements in Figure 2

However, effective comparison of two visual layouts of GUI is challenging and
requires an understanding of how GUI elements are created, instanced and how
their visual positions are determined. Similar to the DOM objects in browsers,
the GUI elements in Android are organized as a tree. All the nodes in this tree are
View or ViewGroup objects [5]. The difference between View and ViewGroup objects
is that ViewGroup is the container that can embody other View or ViewGroup

objects. Therefore, all the leaf nodes in this tree are View objects while inner
nodes are ViewGroup objects.

Figure 2 shows the screenshot of an activity with dynamically-generated GUI
elements and its visual layout. The corresponding view tree is shown in Figure
3. The root node of the view tree is a special component DecorView, which is
an internal framework class and represents the top window. It contains a single
LinerLayout (subclass of ViewGroup) object, which has two FrameLayout (subclass
of ViewGroup) children. One of them holds the title of current activity while
the other holds the main content of the current activity (another LinerLayout

object). This LinerLayout object contains two TextView objects which hold the
text “Name:” and “SSN:”, two EditText objects which can receive user inputs
and another Button object. For each node in the tree, it knows the relative offset
to its parent. For example, in Figure 2(b), we can get the relative left, right, top
and bottom potion of UI elements to its parent (LinerLayout object) in dotted
lines.

When being initialized, all the objects in the view tree are drawn from the
root node to the last leaf node. All the GUI elements are subsequently laid out
and positioned on the screen. For each View and ViewGroup object, it maintains
the relative position in four dimensions, i.e., left, right, top and bottom, to its
parent. Since the view tree represents the visual layout of an activity, we can
compare the view trees of two activities to check whether the visual layouts of
them are identical. To this end, for each view tree, we generate the corresponding
signature. If the signatures of two view trees are same, then the visual layouts
rendered by these two trees are identical. The algorithm to generated the sig-
nature of a view tree is summarized in Algorithm 1. It recursively generates
the signature for each sub-tree (inner node) and leaf node and concatenates the
generated signature as a string.

One challenge here is how to generate the signature for the leaf nodes, which
are the actual UI elements such as TextView, EditText and Button. In our system,
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Algorithm 1. Signature generation for a view tree

1: procedure genTreeSignature(viewTree)
2: for all child in viewTree do
3: genNodeSignature(child)
4: if (child is inner node) then
5: genTreeSignature(child)
6: end if
7: end for
8: end procedure

we include the properties of a View object that can impact its visual layout
to generate its signature. For example, we use the actual text values and the
four dimensional relative positions to its parents to generate the signature for
TextView object.

When users specify policies for dynamically generated user inputs in an ac-
tivity at first time, our system generates and saves the signature of current view
tree along with the specified policies. After that if there is a match between the
signature of a new view tree with a saved one, our system will automatically
apply the saved policies to the dynamic user inputs in the new view tree.

Our technique to generate and compare view tree signatures ensures that if
two view trees are same, their corresponding visual layouts are identical. How-
ever, there are instances in which visual layouts could be same even when the
view trees are not identical. For example, two TextView objects with text value
“Na” and “me” placed next to each other on the screen may have same visual
layout as that of one TextView with text value “Name”. In such scenarios, we
cannot automatically apply the tag settings even the visual layouts of two activ-
ities are same. Our approach is conservative in such cases as we err on the side
of security by not allowing malicious apps to trick the users. At the same time,
we can still reduce user burden when using benign apps.

4 Implementation

We have implemented a working prototype of DataChest by extending Taint-
Droid [13] (based on Android 2.3.42) and Android framework in several signifi-
cant ways. In this section, we illustrate the details of our system implementation.

4.1 User-Provided Unstructured Data

As discussed in Section 3.2, users associate security policies with user inputs
within the app context by first tagging user input boxes with custom, user-
defined labels that reflect the semantics of the input boxes. In our current im-
plementation, we supplement the default user input method (i.e. the on-screen

2 The latest version of TaintDroid is based on Android 4.3. We leave the porting of
our prototype to this version of TaintDroid as our future work.
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keyboard) with a special tag button to allow users to provide labels to the input
boxes. We believe that it is a convenient approach for the users as they can enter
values and their corresponding labels from a single UI (input method). However,
the default UI cannot be leveraged for providing labels if the app uses its own
custom input method. In such a case, our system provides an alternate way to
enter labels using a UI that is triggered when a user keeps his finger focused on
the input box for a relatively longer period.

To support semantic-aware tag suggestions for reducing user burden, we save
the mapping between the data label and the hash value of the content entered
by the user into the input box. Note that we do not save the user’s input as
plaintext for privacy concerns. To this end, we monitor the content of the tagged
user input boxes by hooking onTextChanged() method and update the hash value
accordingly. For the untagged user input boxes, we also hook the onTextChanged()
method to compare the hash value of currently typed content with the saved
ones. If there is a match, we display the corresponding saved data label under
the current input box as a suggestion to users.

For dynamically-generated user inputs in one app, we automatically apply the
tag settings if their visual layouts do not change in different runs. When users
tag the dynamic user inputs, we save the current view tree and the tag settings,
i.e., data labels for this view tree. The saved data labels will be automatically
applied to a new activity (in the same app) if its view tree is identical to a saved
one. For this purpose, we generate the signature for the view trees by recursively
generating the signatures of both inner nodes and leaf nodes in the view tree. In
the Android platform, function ViewGroup.performTraversals() is called when
current GUI is drawn or redrawn. We hook into this function to generate the
signature for the whole view tree.

4.2 System-Wide Information Tracking

4.2.1 Taint Tag Format
Our system needs to track the flow of user-provided data. For this purpose,
we extend TaintDroid [13] in our system. Note that our system design is not
restricted to only TaintDroid and we can readily leverage other information
tracking systems if such systems are available in the future. In the following we
leverage TaintDroid as an example to describe information flow tracking in our
system.

As previously stated, one major challenge of using TaintDroid to track infor-
mation flow is that it only supports a limited number of taints. Specifically, it
encodes the taints into a 32-bit tag, in which each bit denotes a taint. However,
in our system, any user input box represents a different taint and needs to be
tracked independently. That is because during program execution, the data from
different sources (different user input boxes from different apps for example) can
be combined together and we need to know the exact source of the data (e.g.,
from which user input box in which app) and check the policies when combined
user inputs are being sent out.
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Fig. 4. The taint tag structure in DataChest

In DataChest, we extend the format of TaintDroid’s original taint tag to sup-
port large number of taints. Figure 4 shows the format of taint tag used in our
system. Instead of directly using the 32-bit taint tag to place taints, we use a
linked list to store the actual taint tags. To distinguish from the original taint
tags, we call the actual taint tag as policy tag in our system. For each policy
tag, we need to store the source information of data that our system is tracking.
Such source information is denoted as the identification of data source, such as
the ID of a user input box, and this identification is directly encoded into the
policy tag (data id field).

4.2.2 Taint Propagation
During program execution, the taints will be propagated through the whole
system. This makes sure that even the tainted data is converted to other format,
it is still being tracked. TaintDroid propagates taints by extending the Dalvik
virtual machine and applying taint propagation rules.

Because of the differences between the format of taint tags, the original rules
used to propagate taints need to be changed accordingly. Specifically, for the op-
eration of result := data1 + data2, TaintDroid can directly combine two tags
together using or operation (tag(result) = or(tag(data1), tag(data2))). How-
ever, in our system, we have to merge two linked lists of policy tags together
and place the address of new linked list into the hash map. Finally, the index of
new linked list in hash map is encoded into the taint tag.

We also extended TaintDroid to add other features that were required for
our implementation. One such example scenario is that TaintDroid propagates
taints in native methods of system libraries. In particular, TaintDroid uses a
method profile (a list of (from, to) pairs) to indicate information flow between
variables, which may be method parameters, class variables, or return values in
the same native method. However, this method profile may miss the information
flow that crosses different native methods without any use of a variable. On such
example is the Md5MessageDigest class in which the taint should propagate from
the parameters of a void function void update(byte[] input) to the return value
of byte[] digest() that has no parameters. The original method profile cannot
handle this. We extend the method profile that can propagate taints across
different methods without using variables.
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4.2.3 Taint Sources and Sinks
For user-provided unstructured data, when one input box is tagged with a par-
ticular label, our system treats this input box as a taint source and creates
corresponding taint tags (and policy tags) for the data retrieved from this input
box.

Table 1. List of apps that leak user-provided unstructured data

App/Malware Name Malware? Type of Unstructured Data

FakeNetflix Y
Netflix Login Identification

and Password
Repackaged

Paypal
Y

Paypal Username
and Password

Youdao
Dictionary

N
Netease Username

and Password

When the data with taint tags is reaching certain exit points, our system
checks and enforces the corresponding policies. In our system, we treat such
exit points as taint sinks. Similar to TaintDroid, the network interface is one
taint sink in our system. If no policy has been specified, we block the current
network operation (using Linux pipe) and display a popup window (through a
management system app) to let users make decision. Besides network interface,
there is another new taint sink in our system. That is the point where one app
is sharing the data with another app through the binder interface. By checking
and enforcing policies (see E1, E2 and E3 in Figure 1) at taint sinks, our system
can prevent the app from sharing (tainted) unstructured data with unauthorized
external entities.

5 Evaluation

In this section, we present our evaluation of the effectiveness and performance
overhead of DataChest.

5.1 Effectiveness

To demonstrate the effectiveness of DataChest, we downloaded 50 popular benign
apps from Google Play and subsequently selected 23 apps that collect sensitive
user-provided unstructured data, such as login credentials. We use these apps
to evaluate the effectiveness of our system in tracking the information flow of
sensitive user-provided unstructured data.

Our evaluation shows that all of the user-provided unstructured data to these
apps can be successfully tracked by our system. Note that even in cases where
the app does not use the default EditText class to accept user inputs, our sys-
tem still can successfully track the unstructured data provided by users. One
such example is the search input box in Amazon Mobile app that implements its
own class (SearchEditText) to accept user inputs. This class extends the de-
fault EditText class (which is a subclass of the base GUI class View) to include
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(a) Tag button to tag user
input boxes

(b) Popup to let users
make runtime access deci-
sion

Fig. 5. Our system prevents data leakage from a repackaged Paypal app

some app-specific features. Our system mainly hooks the functions in the base
framework GUI class (View) and all other classes that extend from this class
automatically inherit these hooked functions. If these hooked functions in View

class are overwritten in subclasses and not called from the subclasses, the GUI
will not be successfully initialized.

To demonstrate the capability that our system can prevent user-provided
sensitive unstructured data from being leaked by malicious apps, we evaluated
it against two malware samples that leak sensitive data to remote servers. The
first app is the FakeNetflix [6] malware that was discovered in October 2011.
It disguises itself as the real Netflix app and leaks the user’s Netflix credentials
to a remote server. This malware only masquerades the UI of the Netflix app
and does not provide any real functionality of video streaming. Another app
is a repackaged Paypal app that we developed in-house for our evaluation. In
contrast to the previous app, this repackaged Paypal app is more stealthy since it
has the same functionalities as the real Paypal app. However, in the background,
it leaks the user’s Paypal username and password to a remote server.

Moreover, besides intentional leakage of unstructured data by malicious apps,
some benign apps have been found to be vulnerable and can be exploited to
leak unstructured data. We also use one such app, Youdao Dictionary [7], for our
evaluation. This app has an open content provider that stores the username and
password of a Netease account in plain text [28]. Any malicious app on the phone
can access the stored account information through the open content provider.
The apps and the corresponding types of unstructured data that could be leaked
are shown in Table 1.

Our experiments show that DataChest can successfully prevent data leaks by
these malicious and vulnerable apps. In particular, when using these apps, we tag
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Fig. 6. Evaluation results from the Caffeine benchmark

the input boxes that accept user’s credential with specific labels (paypal.password
for example). Figure 5(a) shows our enhancements to the default on-screen key-
board to include a special tag button to tag user input boxes for the repackaged
Paypal app. The flow of data from these tagged user inputs will be tracked in
the whole system. As a result, when such tagged user inputs are being leaked
to remote servers, the user would be notified using a pop up notification. This
prompt includes the destination of this data transmission and the data label
that provides the semantics of the data. Users can make decisions to allow or
block this data transmission temporally or permanently. Figure 5(b) shows this
pop up window. Note that users only need to tag input boxes and make their
decision only once since all the tagged user inputs (with their data labels) and
users’ decisions (or policies) will be saved (see Section 3.3).

5.2 Performance Overhead

In this section, we study DataChest’s performance overhead. All the evaluations
are performed on Google Nexus S running Android 2.3.4 that is modified for
DataChest.

5.2.1 Dalvik Microbenchmark
DataChest extends TaintDroid’s internal taint tag format and taint propagation
logic in Dalvik virtual machine. Therefore, we want to study the performance
overhead introduced by this extension. To this end, we used an Android port
of the standard CaffeineMark 3.0 [1] benchmark and reported the scores of this
benchmark running on original Android, TaintDroid and our system in Figure 6.
The x-axis shows the different operations performed by this benchmark and y-
axis shows the corresponding score of each operation. These scores are useful for
relative comparisons.

The benchmark results are consistent with the results reported in TaintDroid.
The String operations of both TaintDroid and DataChest have higher perfor-
mance overhead than arithmetic and logic operations due to the additional
memory comparisons [13]. The overall score of Android is 893 while it is 798
and 760 for TaintDroid and DataChest, respectively. It basically implies that
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Table 2. The evaluation results of GUI Microbenchmark (time is in milliseconds)

#1 #2 #3 #4 #5 average

Signature generation
(Our testing app)

99 93 76 133 139 108

Signature generation
(Paypal payment library)

63 65 29 13 32 40

Signature comparison 0 0 0 0 0 0
Policy retrieval 2 3 3 1 2 2
Policy insertion 4 9 5 6 7 6

DataChest has a 14% overhead with respect to the unmodified Android system
and 5% overhead with respect to TaintDroid.

5.2.2 GUI Microbenchmark
To reduce the user burden in DataChest, we generate the signature of a view
tree and use this signature for visual layout comparison (see section 4.1). In this
section, we evaluate the performance overhead due to this signature generation
and comparison. For this purpose, we developed a testing app which dynamically
creates 40 TextView objects and 40 EditText objects in an activity. Additionally,
we used a real library (Paypal mobile payment Library [3]) which dynamically
generates its UI. We calculate the time used to generate the signature for the
view tree and the time to compare two view trees. For each evaluation, we
measure 5 times and report the results in Table 2. We find that the time used
to generate signature of a view tree is around 100 ms for our testing app and 40
ms for Paypal payment library. Note that our testing app has 80 dynamic GUI
elements that is considerably more than the number of GUI elements of a typical
app. Surprisingly, the time used to compare two signatures is nearly zero. This
is because the comparison is merely a string comparison. Moreover, in exiting
points, our system needs to retrieve the policies from another separate app which
is responsible for maintaining policies. We also evaluate the time latency that
was introduced by this operation. The experiments show that the time used
to retrieve and insert a policy is 2 ms and 6 ms, respectively. We believe that
the time latency introduced by our system is negligible that users can actually
perceive and is within the acceptable range of 50–150ms [25].

6 Discussion

In this section, we discuss the current limitations of our system and propose
possible solutions.

Although the system is effective in preventing data leaks, it might be limited
against certain advanced attacks. One possible attack would be the side-channel
attack. For example, instead of getting the contents of user input boxes and then
sending them to the remote server, the attackers continuously take a screenshot
of the current activity and send these screenshots to the remote server. The
current solution cannot handle such side-channel leaks. Another possible attack
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is the man-in-middle attack to steal data if the data is being sent out without any
encryption. In our work, we do not consider such attack and trust the network
infrastructure.

The current policies in our system use the host name as an identifier for
external entity, which may be ineffective for a proxied network connection. In
this case, all the connections will go to this proxy first, not the real remote
servers. In the presence of a proxy, users have no idea of the real destination
of the data transmission and hence cannot make an informed decision. Users
may have similar situation in the case of remote servers without meaningful
domain names. Nevertheless, users can still protect their data by blocking all
transmissions of the tagged user inputs, though this may break the legitimate
functionalities of some benign apps.

For user-provided data, our system requires users to specify the policies. How-
ever there are some potential ways to reduce user’s burden when specifying poli-
cies. For instance, one user’s policies of one app could be shared online with
other users so that other users do not need to specify the policies for that app
again. In the scenario of BYOD, all the policies could be specified and pushed by
enterprise device management platform, instead of users. From the perspective
of usability, our system provides several ways to reduce user burden (Section 3.3,
Section 3.4 and Section 3.5). We believe that there is still potential room for im-
provement by better understanding the system’s usability (e.g. via user studies)
and we plan to explore this as part of our future work.

Since we extend TaintDroid to track the flow of unstructured data, our sys-
tem is also limited by some of TaintDroid’s inherent limitations. First of all,
TaintDroid only tracks data flows (i.e., explicit flows) and does not track control
flows (i.e., implicit flows) as demonstrated in ScrubDroid [23]. As a result, it is
possible that malicious app may use implicit flow to leak unstructured data to
remote servers. To solve this problem, static analysis may be deployed to ana-
lyze the apps. Secondly, the taint propagation between different apps and files
is still coarse-grained. For example, the whole IPC message between different
apps shares one taint tag, which may cause data to be over tainted. Thirdly,
TaintDroid does not support native code in third-party apps. To prevent mali-
cious apps from using native code to leak unstructured data, we do not execute
the third-party apps with native libs and thus may cause compatibility issues.
Fortunately, the number of apps with native code is only around 5% [29]. We
leave the work of extending TaintDroid to provide information flow tracking in
native code as our future work. As mentioned before, our system design is not
bound to TaintDroid and we can leverage advanced information tracking system
on Android if such system is available in the future.

7 Related Work

Smartphone privacy issues have attracted a lot of interest in recent times. Pre-
vious research works reveal that third-party apps [12, 13] along with in-app ad-
vertisement libraries [15] are actively leaking user’s private information. To deal
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with this problem, researchers propose solutions to provide fine-grained con-
trol of private information on smartphones. Such solutions include TISSA [30],
Apex [21], Aurasium [27], AdDroid [22] and AdSplit [24]. Our work has a differ-
ent focus from these works since their main focus is to protect structured data
while our work is dedicated to the protection of unstructured data.

At the same time, the classic confused-deputy [18] problem or capability leaks
are identified on Android. Examples include ComDroid [10], CHEX [20] and
Woodpecker [16]. They employ static analysis to identify such problems in third-
party apps and pre-loaded apps. Accordingly, possible solutions [8][11][14] are
proposed to mitigate such threats. Our work does not intend to detect such
problems. But our system can be used to prevent the unintentional data leak by
the apps with this problem.

Among the most related ones, AppFence [19] leverages TaintDroid to track in-
formation flow and protects private data from being leaked. However, AppFence’s
focus is on structured data, while our system is protecting unstructured data.
TaintEraser [31] shares a similar design to prevent unwanted information ex-
posure, including user inputs. Our system provides more fine-grained polices to
let data owners specify the external entities that the data can be shared with.
D2Taint [17] expands TaintDroid to track the information coming from Internet
sources. Our system tracks and protects unstructured data coming from users.

A recent system called DataSafe [9] allows data owners to specify particu-
lar policies to protect their data. Our system has several key differences from
DataSafe. First, the target platforms are different. Our system is concerned with
the protection of unstructured data on smartphones while DataSafe aims to pro-
tect sensitive data on desktop or cloud computing servers. Second, our system
addresses the challenge of user-friendly policy specification and provides several
mechanisms to reduce user burden, which is critical for smartphone platforms,
while DataSafe does not address this challenge. Third, DataSafe is based on
hardware-assisted information flow tracking while ours is software-based track-
ing. The requirement of custom hardware is a challenge for deployment. Another
system CleanOS [26] evicts the sensitive data such as user-provided password,
from the phone and keeps a clean environment all the time. Our system in-
stead ensures that such sensitive data cannot be obtained by unintended (and
potentially malicious) external entities.

8 Conclusions

We presented the design of a system, called DataChest, that offers protection of
unstructured data in the presence of untrusted third-party apps. Our system
develops an owner-centric approach in which data owners (i.e., users) can deter-
mine the security policies of their contributed data. We enhance the usability
of the system by developing several mechanisms to reduce user burden, while
ensuring the security of the system is never compromised. Our evaluation shows
DataChest is effective in preventing leakage of unstructured data against a variety
of attacks and incurs reasonable performance overhead.
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Abstract. The boom of smart devices with location capabilities has
also led to a boom of apps that use location data for many different pur-
poses. While there are of course apps that require users’ precise locations,
such as navigation apps, many apps would work equally well with less
precision. Currently, apps that request location information are granted
access to location data with maximum precision or not at all. In this
work we present a location obfuscation approach for Android devices,
which focuses on the usability aspects. Based on results of focus group
discussions (n=19) we designed and implemented a solution that can
be used by even unskilled users. When an app requests for location data
the first time, the user configures accuracy of location data that is to
be revealed to the app by selecting one of five precision levels. Unskilled
users are supported by crowd-based recommendations.

Keywords: mobile, usable security and privacy, location, crowd-sourcing.

1 Introduction

In May 2012 the Pew Internet & American Life Project reported1 that 74% of US
smartphone owners use their device to get real-time location-based information
and that 18% of them use geo-social services to check into locations or share their
locations with friends. Many different kinds of apps implement location-based
features today. These range from classical apps for navigation, location sharing,
geo-tagging or location-based information retrieval to apps for fitness training,
location-aware games and apps that serve location-based advertisement. To get
an idea of the scale of how many Android apps request access to the location data
we crawled the Google Play Store in June 2013. We found that 17% of the paid
apps and 34% of the free apps required location permissions. In total, 27.2% of
the 20,681 most popular Android apps requested access to location data. While
some apps like navigation naturally require exact locations to work, there are
apps that would work equally or similarly well with a more rough positioning,

1 http://pewinternet.org/Reports/2012/Location-based-services.aspx
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such as geo-tagging status updates in social network services or location-based
advertisement. In these cases it would be possible to improve users’ privacy by
reducing accuracy without loss of functionality.

Location obfuscation has been a topic of privacy research for several years,
but none of the proposed systems has seen any significant level of adoption. We
argue that one of the main reasons for this is the complexity of the algorithms,
which need to be understood and configured by the users; these need to be tai-
lored to both, the users’ desired privacy/functionality trade-off as well as to the
application in question. However, obfuscation is an important topic, since it is
preferable to reduce data details before disclosure, but not disclosing it in full de-
tail and trying to solve privacy issues by complex access control rules afterwards
as done in other works [2]. In this paper, we present a usable location privacy
approach for Android that allows users to restrict the accuracy of location data
given to apps in an easy-to-understand manner. Based on findings from focus
group discussions we implemented a solution that allows users to select location
obfuscation on a per-app basis. Users are presented with a dialog in which they
can state their privacy wish when the app first tries to access the location service.
To further aid unskilled users our system offers crowd-based recommendations
for privacy settings. We also address participants’ requests for transparency of
location usage by giving insights into apps’ location access frequencies.

2 Background and Related Work

The two major mobile platforms Android and iOS deal with location permissions
in different ways: Android only allows its users to enable or disable location
services entirely. While apps must declare that they require access to the location
service, users cannot install an app without granting that permission. Users can
however specify which source Android uses to determine the location (Wi-Fi or
GPS), which gives some control about the accuracy. However, this setting is also
global. In iOS users can also activate or deactivate location services entirely,
but they can also do so on a per-app basis. When an app requests location the
first time, a pop-up dialog asks the users whether they want to allow location
access or not. Within this dialog developers can support user decisions with a
purpose description, which however is rarely used today. Since Android is an
open system, there are different tweaks to improve privacy. Cyanogenmod 10 for
instance implements Privacy Guard that can block access to private data like
location information on a per-app basis. Similar functionality is implemented
by the apps LBE Privacy Guard or PDroid 2.0. App Ops introduced similar to
Android 4.3, but recently was removed again. Likewise, different research works
[3,7] aimed at prohibiting the disclosure of private data. All these approaches
have in common that they allow an app to access the location service with full
precision or deny access entirely; or always return a single fixed position—which
from a functional perspective is worse than disallowing access. Our solution offers
a more fine-grained approach, which allows users to benefit from location-based
services without having to give apps access to their most precise location.
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Fisher et al. [5] studied the behavior of 273 iPhone users concerning which apps
they allowed access to location services. Their results indicate that there is a high
variance both between apps and users. For instance while 98% of Foursquare
users granted permission to the app, only about half did so for Shazam.

Brush et al. [4] studied with which parties users would share location traces.
They equipped 32 people with GPS loggers and tracked their movements for
two months. They then presented tracks to the participants applying different
obfuscation methods. They explained them the methods used for removing track
details and showed that users can be included in the decisions on obfuscation.

Tang et al. [9] compared sharing location based on an all-or-nothing approach
with having the choice from four location abstractions with varying granularities,
such as an address or a name of a city. In their study (n = 30) they showed that
the more abstract descriptions could lead to more open location sharing. They
also showed that participants reported a higher perceived comfort level when
they had a wider choice of different granularities.

All these studies show that users are interested in restricting the use and
accuracy of location services. However, currently no mobile operating system
allows users to use location-based services while at the same time restricting the
level of detail given to apps or services. While the above works indicate that
there is a desire for reducing the level of detail in location data offered to apps,
there is no related work examining what levels of trade-off users want in the
context of apps. More importantly, there is no work on how users could interact
with such a privacy protecting service. In the next section we present the results
from a focus group study we did to answer these questions as a basis for the
privacy service we implemented.

3 Focus Group Study

For a qualitative study on users’ needs concerning location privacy on mobile
devices, we conducted three focus group sessions on this topic. We chose this
method to identify users’ experiences, requirements, worries and wishes towards
location privacy and existing implementations as base for our work. We initially
sent invitations to 1,510 people from our university study mailing list, adver-
tising a group discussion on “daily use of mobile apps” to avoid bias caused by
mentioning privacy. 98 invitees answered the initial screening survey in which we
collected demographics, technical expertise, experience with mobile devices, and
Westin’s privacy segmentation. Based on these values we compiled 3 balanced
focus groups with 19 participants in sum: 11 female and 8 male; aged 24±4 years;
from 14 fields of study; 12 Android users and 7 iOS users; diverging technical
expertise; 9 privacy fundamentalist and 10 pragmatists. Each session took about
90 minutes. Participants were paid e 20 as compensation.

3.1 Usage Habits of Location-Aware Apps

Most of the participants reported in the screening survey that they use differ-
ent apps with location integration like public transport timetables, traffic news,
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navigation, maps, and weather reports on a daily to weekly basis. While most
of them stated that they post content in social network services, only 6 of them
stated to occasionally share their location online. When talking about using lo-
cation services on their smartphones, most of them stated that they use them
selectively. The iPhone owners utilized per-app configuration. Since Android
does not enable this, some Android users resorted to turning location services
on and off prior to using specific apps. Two female participants actually used
location features for live tracking with their partners for security reasons when
going out late. Only four of our participants stated that they never use loca-
tion services. Three of them did not want to be observed by “others” or apps,
while one iPhone user completely turned off location use, because he dislikes
being asked for location permissions for every single app. Battery drain was a
major factor for selective use of location services besides the objection of being
observed. A major factor for using location although feeling being observed that
participants often referred to was convenience.

3.2 Participants’ Experiences and Requests

When we discussed current location features, most iOS users stated to be fairly
satisfied. One of them requested to know last location usage of each app. While
such feature already exists in iOS, it only provides rough information if an app
used location “recently” or within the last 24 hours. One iOS user requested
that apps should explain why they request location data to allow an informed
decision about giving location permissions. Others of that group disagreed, since
they would not trust developers’ purpose specifications. Android users generally
had a wish for transparency of information usage. They stated, that even if they
might not regularly use it, they would like to be able to review last location usage
and usage frequencies to get a better feeling about privacy. Besides, such feature
“should make developers use location more prudently”. After having discussed
with the iOS users, over half of our Android users requested per-app location
settings. They also liked the direct feedback of the iOS permission pop-up dialog,
since Android’s Settings app was felt to be very complex.

Inaccuracy of Locations. When discussing possible improvement for privacy
control, one participant introduced the aspect of location accuracy: She stated
that a public transport app justifiably needs her exact location to determine
the nearest station, however when “looking for local shopping coupons her cur-
rent city would be entirely sufficient”. Thus, two levels of detail, i. e. precise
and imprecise as the city would be enough. While only one participants worried
about complex settings, the others of that group appreciated the “imprecise”
option. Participants stated they would prefer to select an imprecise level where
possible. However, there were different opinions—for instance when looking for
a restaurant, or geo-tagging a Facebook post—on what would be a good level
of imprecision: city, district, 1 kilometer, and so on. In another group partici-
pants appreciated the idea of imprecision, but strictly argued against manually
configuring what imprecision means to them.
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Obfuscation Methods. At the end of the focus group sessions we tried to in-
troduce participants to a set of obfuscation methods by visually outlining their
effects and giving basic explanations. Participants did not think that using fixed
self-determined locations was a good option, but for “tricking other concern-
ing their whereabouts‘”, since using a location-based service needs at least few
information about their real location. This emphasizes that prior work, which
addressed the prevention of location disclosure or faking location data [1,3,7],
does not fit users’ needs when using location-based services. Random shifting of
location was criticized by our participants, because results were random and the
resulting location could be in an absolutely unrelated place or even in an inad-
equate place like when randomly been mapped to an adult shop. This criticism
also applies to rounding or cutting coordinates’ decimal places [1]. They stated
that even if obfuscation is used, obfuscated locations should be somehow related
to real locations. For this reason participants liked the idea of mapping their
real location to geographic object, i. e. to the center of the street they currently
were on, or the center of the urban district or city where they stay. While the
participants of one focus group clearly stated that they would accept that one
service (like Google Maps), which assists them in the obfuscation process, knows
their real location, the participants from one of the other groups expressed that
they did not want that their locations are disclosed to any external (privacy) ser-
vice. When talking about basic k-anonymity, participants were interested in the
general approach of non-distinguishability out of k people, but they disliked the
fact that obfuscation results were dependent on other users. This is particularly
relevant since k-anonymity is quite popular in privacy research.

In conclusion, participants wanted to be able to control the precision of loca-
tion revealed to apps. Locations should be inaccurate, but the inaccuracy should
be predictable and understandable to them.

Uncertainty about Trust. We could not identify recurring opinions on trust
towards apps or service providers in focus group discussions, since participants’
opinions were very diverse and obviously biased by latest NSA mass surveillance
disclosures. Interestingly, when asking participants how they decide if allowing
an app location usage, one participant stated that she mainly bases her decision
on “how important an app is to herself, and how well-known the app developer
is”, while others reported to base on gut feelings. Such users could benefit from
recommendations as provided by our solution. Android users’ opinions concern-
ing Google ranged from “Google is the only one I trust” to “they know everything
about me including my location even if I try to disallowed access to them”.

4 Usable Location Obfuscation for Android

Based on the findings from the focus groups discussions we designed our usable
location privacy extension for the Android system. It was built on top of our
previous framework [6], which allows for modifying location data before handing
it to a requesting app by extending the operating system’s location services.
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Our extension introduces location permissions on a per-app basis, whereat the
user can deny location access for an app, allow access to exact location data, or
set up location obfuscation with different pre-determined levels of detail. Trans-
parency of location usage is created by access statistics. Users are supported in
decision making by integrated crowd-based recommendations.

4.1 Obfuscation

Backed by the results of the group discussions, we chose to implement two obfus-
cation methods. The geodata-based mapping was perceived as mostly intuitive
and easy to grasp by our participants. Based on the actual location of the user
and a pre-selected type of geographic object like city, it maps the location to
the coordinates of the center of the nearest geo-object of the selected type like
the center of the city the user is staying at. The mapping is achieved by reverse
geocoding current coordinates to an address, removing unwanted details like the
street name, and finally geocoding the modified address back to coordinates. In
our implementation geocoding relies in the corresponding API of the Android
system leveraging data from Google Maps. However, other map services such
as the free ones of Bing, Yahoo, or MapQuest/OpenStreetMap could be used
as well. Unlike many other obfuscation algorithms the geodata-based mapping
does not require users to configure any parameters besides the level of detail.
Related to the group discussions the obfuscation levels city, district and street
were chosen, whereat district is equivalent to the next village in rural areas.
Another benefit of this mapping is that it dynamically adapts the actual changes
to coordinates corresponding to the users’ whereabouts depending on if a user
is in a metropolis or in a provincial town.

While some of our participants agreed on sharing their location with a sin-
gle known service in order to obfuscate their location, others objected to share
their location with any online service. For this reason we implemented an offline
alternative that never requires revealing real location data. To keep the overall
extension simple from the user perspective, the offline obfuscation was designed
to approximate the service-based mapping. However, due to geodata size and the
complexity of data and queries it was impossible to run and utilize geodata ser-
vices directly on mobile devices. Since it was no option to reduce obfuscation to
city-level only, which most likely could be implemented on the devices, we chose
random shifting for the offline mode. In this case the real location is shifted in a
random direction by a random distance limited by a lower and an upper bound.
Since participants argued against handling numeric parameters, metaphors were
an easy-to-understand replacement, for instance allowing for choosing one’s lo-
cation to be “as imprecise as being somewhere in a city block”. However, there
are no basic metaphors that are valid across city or even country boundaries. For
instance the area of city blocks in the US cities Houston and Manhattan differs
by factor 3, or the size of playing fields differ between sports and sport associa-
tions. For this reason, we opted to re-use the same levels of detail as for the first
obfuscation method. In this case users have to manually enter static values for
street, district, and city once, or alternatively use a configuration wizard that
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we included. Using the wizard, a user first selects a minimum distance between
real and obfuscated locations and a “representative” city, which determines the
dimension of distances. Then the user is asked to pick three specific locations on
a map of the selected city, which are used to calculate rough sizes of the city, a
district and a street that are used for upper bounds of the different levels.

4.2 User Interface

Since most of our participants were either satisfied with the UI features of iOS,
or desired a similar interface for Android, we implemented location obfuscation
in the style of iOS. When an app requests location data the first time, a pop-
up dialog opens and asks the user for location privacy setup of that app. As
shown in Figure 1, the user can select one of the five levels of location precision
from exact to none. If a user cancels the pop-up without a selection, the unset
privacy setting is handled like denying location access. Notifications remind the
user to configure privacy setting later in this case. If a recommendation service
is used, recommendations are shown at the bottom of the dialog, either as text
or alternatively visualized as rating stars. In the Settings app users can view
or modify location privacy settings of all apps that already requested locations
as shown in Figure 2. Clicking an app allows to change its configuration. In
advanced settings users can switch between online and offline obfuscation, setup
values for the offline mode, enable or disable the use of recommendations as well
as the publication of their settings if using a social recommendation service.

Transparency. To address participants’ wish for transparency, we added usage
statistics. The statistics overview shows for each app that requested location
data the date and time of its last location data access. Additionally, details can
be viewed for each app as shown in Figure 3: The mean deviation of obfuscated
and real locations, a plot of location access count per hour for the last 24 hours
and access counts per day for the last four weeks. The access frequencies allow
the users insights into how they are tracked by apps or services.

4.3 Supporting Decision Making with Recommendations

Most of our participants stated that they feel able to judge which apps need
which location accuracy for most apps. However, some apps were considered
tricky to judge, such as the Facebook app having diverse functionality. All our
participants stated that they would not allow anyone else making privacy de-
cisions on their behalf, but stated that they would consult others for advice.
We discussed profile-based recommendation systems (profiles like privacy fun-
damentalists or unconcerned), which would make recommendations to users due
to different profiles. Though creating different profiles would be inapplicable for
such a small set of different obfuscation levels as discussed and used by our
solution. Building app categories was also proposed for reducing configuration
efforts, but it would be hard to reduce apps to distinct non-overlapping groups.
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Fig. 1. Pop-up asking for
obfuscation level of an app

Fig. 2. Privacy Settings:
app obfuscation overview

Fig. 3. Detailed location
usage of lock clock widget

We finally discussed the possibility of an online community as a supporting
entity for decisions. While some participants expressed mistrust, since such a
service might be manipulated “like Amazon ratings orWikipedia articles”, others
would look to such a source for help. About half of the participants stated that
they would provide data for recommendations, while others stated to be only
consumers. Some participants stated that they would feel confident following the
recommendation made by public non-profit organization. For instance, consumer
advice centers, consumer reports, or even IT security associations could provide
recommendation services. However, the only way to keep data of such listings up-
to-date is the restriction to some kind of top 1000 list, which excludes less popular
apps that might be even harder to configure for many users. Interestingly, our
participants indicated willingness to pay up to e 2 per year for such a service.

For our solution we decided to create a crowd-based social service for loca-
tion privacy setting recommendations. We leverage the crowd to inform users
about what others chose as their personal privacy/functionality trade-off. We do
not catch their perceptions or expectations about apps’ behavior for improving
users’ trust decisions [8]. Since the mass and diversity of apps in the Android
markets is immense, we think that such a crowd-based service is most adaptive
to the changing landscape of apps and our focus groups indicated that there
would be demand and support for this kind of service. We implemented anony-
mous sharing of obfuscation settings, whereat authentication provided by the
Google Play services is used to differentiate users and secure the service. Users
that contribute data send an app’s location privacy setting to the service after it
was configured. When another user is asked for location privacy configuration,
the service is queried for recommendation, which is then displayed to the user.
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For offline obfuscation the crowd-service additionally stores the numeric values
allocated to users’ selections, which are mapped to requesting users’ own levels
to fit recommendations to their personal settings.

5 Conclusion

The participants of our focus groups were interested in location obfuscation for
mobile devices. They rejected complex and (for them) unpredictable algorithms
like k-anonymity, preferring simple and predictable location obfuscation that
keeps locations somewhat related to their real positions. Based on these findings
we built an implementation for Android that offers such simple location obfus-
cation on a per-app basis. Besides basic obfuscation, we implemented different
features to support location usage transparency and support unskilled users with
crowd-based recommendations. We argue that crowd-based recommendation can
provide suitable support for privacy decisions of unskilled users.

The results from our focus groups suggest our service should be well received
and field tests are planed as the next step. Furthermore, we currently do not
differentiate between types of users in our service. However, it must be kept
in mind that the quality of recommendations in a crowd-based service depends
on participants’ expertise. In future work we will extend the crowd-service by
introducing quality controls. We plan to introduce a skill-based and pattern-
based classification of users and weight recommendations based on this.
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Abstract. This paper presents a lightweight anti-counterfeiting solution
using intrinsic Physically Unclonable Functions (PUFs), which are al-
ready embedded in most commodity hardware platforms. The presented
solution is particularly suitable for low-end computing devices without
on-board security features. Our anti-counterfeiting approach is based on
extracting a unique fingerprint for individual devices exploiting inher-
ent PUF characteristics from the on-chip static random-access memory
(SRAM), which in turn allows to bind software to a particular hardware
platform. Our solution does not require additional hardware, making it
flexible as well as cost efficient. In a first step, we statistically analyze the
characteristics of the intrinsic PUF instances found in two device types,
both based on a widely used ARM Cortex-M microcontroller. We show
that the quality of the PUF characteristics is almost ideal. Subsequently,
we propose a security architecture to protect the platform’s firmware by
using a modified boot loader. In a proof of concept, we embed our solu-
tion on a state-of-the-art commodity system-on-a-chip platform equipped
with an MCU similar to the ones previously analyzed.

1 Introduction

With the proliferation of mobile computing the influence of low-end devices
on our every day communication steadily grows. As their computational power
increases, such devices are embedded into many objects we are interacting with
on a daily basis. Besides their implementation in smart phones and tablets, low-
end devices are employed in Car2X communication [16] where microcontrollers
(MCUs) are used in modern cars to improve road safety, traffic efficiency or to
act as an infotainment platform [10]. Additional use cases arise with the growing
importance of sensor nodes with applications in the fields of health care, military
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and environmental monitoring [18]. Furthermore, objects in our everyday-life
(e.g. fridges, televisions, smart-metering, etc.) are increasingly equipped with
computing capabilities, which will eventually yield the Internet-Of-Things [4,12].

A high proportion of such low-end devices are not equipped with special on-
board security mechanisms such as secure memory or trusted execution environ-
ments. Devices without security features range from lightweight MCUs to more
complex system-on-a-chip (SoC) platforms. Lightweight devices are designed for
microcontroller use (e.g. ARM Cortex-M processor family). They do not imple-
ment security features due to hardware constraints and economic considerations.
For example, ARM’s Cortex-M series does not support ARM TrustZone tech-
nology1. More heavyweight SoC platforms can be found in smart phones and
tablets. Many SoCs omit hardware security mechanisms due to increased costs
and to allow for product evolution. Nevertheless, low-end devices are often used
to process sensitive data. Thus, they are a worthwhile target of cyber-criminals.
Malicious parties are gaining interest in attacking such devices to extract intel-
lectual property.

To overcome this issue, we propose a lightweight anti-counterfeiting solution
to bind a given firmware instance to a particular hardware platform providing a
strict hardware-software binding for low-end commodity hardware. Our scheme
relies on a hardware-based anchor of trust in terms of a PUF instance. It uses in-
trinsic Physical Unclonable Functions (PUFs) of the on-board SRAM to extract
a fingerprint, which is unique for individual devices. The fingerprint is further
processed to generate an ephemeral cryptographic key during an early boot
stage and to subsequently decrypt the firmware. Our scheme establishes trust
in the on-chip-hardware and in the firmware executed on the device by linking
both instances. We achieve protection against IP extraction or modification on
embedded devices without dedicated security mechanisms.

1.1 Contributions

We first analyze the quality of PUF instances extracted from two widely used
low-end devices to demonstrate the feasibility of device-dependent cryptographic
keys. The ARM Cortex-M3 is a popular example of a lightweight microcontroller,
whilst the TI OMAP 4 exemplifies more complex SoC platforms. After statisti-
cally assessing the stability and uniqueness of the derived device fingerprints we
propose a lightweight security architecture to bind a given firmware to a specific
device. Subsequently, we implement the proposed architecture on a SoC platform
and demonstrate the compatibility of our solution with off-the-shelf commodity
hardware.

1.2 Structure

In Section 2 we discuss current approaches to Physically Unclonable Functions
and in particular SRAM PUFs. The analysis of the PUF characteristics of two

1 ARM TrustZone security extension is part of most ARM Cortex-A application
processors [1].
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popular devices is given in Section 3. We describe the attacker model, present
the proposed security architecture and explain the course of usage in Section 4.
In Section 5 we describe details related to the implementation of the proof-of-
concept. Lastly, in Section 6 we conclude our work.

2 Related Work

A Physically Unclonable Function (PUF) is a complex physical structure that
generates a value y in response to a stimulus x. The response y depends on
the challenge x as well as on the micro- or nanoscale physical structure of the
PUF itself. It is assumed that the PUF is unclonable such that it can not be
reproduced, not even by the manufacturer. The challenge-response behavior of
the physical system is complex enough such that the response to a randomly
selected challenge can not be predicted. Furthermore, due to minuscule manu-
facturing variations during the production process, embedded PUFs can be used
to robustly identify a silicon chip.

Silicon-based PUFs include delay-based or memory-based PUFs. For an ex-
haustive overview of PUFs and details on their taxonomy we refer to [15]. It has
been shown that selected static random-access memory (SRAM) shows PUF-like
behavior [11]. Further research in this area support the applicability of SRAM
as a Physical Unclonable Function [13,17]. Using SRAM as PUFs exploits man-
ufacturing variations, which manifest themselves in a bias of memory cells inside
of SRAM modules. During the power-up phase these cells initialize to either the
value of zero or one. Most cells show a stable start-up behavior, which in total
creates a start-up pattern we will exploit to generate a fingerprint for the device.

Since not all of the SRAM bytes show a stable behavior in such sense that they
are always initialized to a fixed value, the SRAM start-up values include a small
amount of unstable bits, so-called noise. Since the goal is to reconstruct a reliable
cryptographic key from several noisy measurements, the noise is eliminated by
employing a Fuzzy Extractor [9], which extracts the stable part of the PUF
response and transforms it to a uniformly distributed value.

3 Finding PUFs in Commodity Hardware

To get a first impression on the feasibility to extract a PUF instance from com-
modity hardware we evaluated a popular lightweight MCU. We chose ARM’s
Cortex-M3 as it is a widely distributed low-end processor specially developed
for embedded devices. With 212 licenses it is the most popular version among
the Cortex processor family. 30% of ARM chips shipped in 2013 were Cortex-M
processors [3]. They are integrated into virtually every smart phone.

Secondly, we analyzed commodity hardware from the class of SoC platforms
to explore the feasibility to robustly extract a unique fingerprint from more
complex devices. Our main interest was to analyze whether active components
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adjacent to the SRAM influence the stability of key extraction. We chose the
PandaBoard [2] and its successor the PandaBoard ES, based on an OMAP4430
platform, respectively on an OMAP4460. They comprise two ARM Cortex-A9
and two Cortex-M3 processors. We selected the PandaBoard as it is available as
a general-purpose (GP) edition, which lacks the support for ARM’s TrustZone
extension. Furthermore, the OMAP 4 is integrated into many mobile phones
and tablets from vendors like Nokia, Motorola, Samsung and more. Thus, the
PandaBoard as a general-purpose device reflects the security and multimedia
configuration of popular smart phones like the Samsung Galaxy SI and SII,
Motorola Droid and Milestone series and several devices from LG.

In the following we briefly describe common characteristics for PUFs and later
analyze both devices using these measures.

3.1 Common Characteristics for SRAM PUFs

In general, SRAM PUF instances should show properties that mitigate the pre-
diction of correct start-up values (Hamming weight), enable a robust repeated
identification of single devices (Within-class Hamming distance) and lastly gen-
erate a unique pattern among a pool of similar devices (Between-class Hamming
distance).

The fractional Hamming Weight HW (x) of individual measurements from
the same device indicates whether the start-up values are biased to either zero
or one. This measure gives a first impression on the randomness present in the
start-up values. The ideal measure is a Gaussian distribution with a mean value
of HW (x) = 50%, representing no bias of the start-up values towards zero or
one and thus the same amount of both values.

The fractional Within-class Hamming distance gives an indication whether
the PUF results for a single device are stable when queried repeatedly. It is a
normalized count of bits that differ between two PUF measurements and thus
is a rational number between 0 and 1. The robustness of the start-up values
is required to reliably identify a given device and subsequently reconstruct the
corresponding cryptographic key. An optimal value for the within-class Hamming
distance is close to zero. However, all start-up values show a certain amount of
noise, which originates from SRAM cells that flip their initialization value across
multiple trials.

The fractional Between-class Hamming distance test expresses whether the
start-up values of different devices for the same challenge are independent. This
measure states whether start-up values can be used for identification without
enabling adversaries to predict a measurement for a second device on the basis
of a given device with known start-up values. The optimal value for between-
class Hamming distance is a Gaussian distribution with a mean value of 50%,
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which refers to a pair of independent start-up values from two different devices.
Devices with an optimal value exhibit a maximum distinguishability regarding
their PUF responses given the same challenge.

3.2 Analysis of the Cortex-M

We evaluated the PUF behavior of an STMicroelectronics STM32F100RB de-
velopment board that integrates an ARM Cortex-M3, 8 KiB on-chip SRAM and
128 KiB flash memory. To read the PUF measurement we modified the start-up
code to display the raw start-up values via UART before the RAM gets initial-
ized. The start-up code is essential to every microcontroller as it initializes the
hardware as well as the stack and interrupt vectors and calls the main function.

To assess the PUF quality of the on-chip SRAM we tested 14 devices by
extracting the 8 KiB SRAM start-up values 1000 times per device2. The devices
were triggered using a controller board to repetitively turn the devices on, query
the intrinsic PUF instance from on-chip SRAM and turn it off. In between these
queries a break of 15 seconds was introduced to give the SRAM the chance to
discharge. The summarized results in Table 1 show a decent PUF behavior that
is suitable to robustly extract a unique fingerprint. Figure 2a shows the bitmap
of an example measurement of one device.

The SRAM start-up values have a worst-case Hamming Weight of HW (x) =
49.18%. This value is close to the ideal of 50%. The STM32F100RB start-up
values contain almost the same proportion of zeros and ones as depicted in Figure
1a. The worst-case bias is negligible. The number for the Within-class Hamming
distance in the worst-case is 9.61%, see Figure 1b. The existing proportion of
noise can easily be correct by standard error correction algorithms. The minimum
Between-class Hamming distance is 46.48%, see Figure 1c. The number shows
that there is some correlation between the measurements of different devices.
This has a negative impact on the size of SRAM bytes needed to reconstruct
the device-dependent key. However, this measure is much higher then the noise
retrieved for the individual devices. Hence, the start-up values can be used to
uniquely identify devices if they are pre-processed by error correction algorithms.

The boxplots shown below can be interpreted as follows. The red line across
the central region of each box marks the data median. The blue bottom/top
indicates the 25th/75th percentile for the data set. The height of the box corre-
sponds to the inter quartile range (IQR) of the data set. The ends of the whiskers
mark the lowest and highest values of the data set that are within 1.5 times the
IQR of the box edges. The plus signs represent single values that are outside the
range of the whiskers.

2 Due to the fragile nature of the test setup, some measurements produced on-chip
SRAM values of incorrect length. We removed these obvious measurement errors
from the data set. In total 27 out of 14.000 measurements have been removed.
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Fig. 1. Detailed PUF characteristics for STM32F100RB devices: (a) Fractional Ham-
ming Weights of SRAM start-up values. (b) Within-class fractional Hamming distance
of SRAM start-up values. (c) Between-class fractional Hamming distance histogram.
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Fig. 1. (Continued.)

3.3 Analysis of the OMAP

The PandaBoard’s OMAP 4 SoC contains two Cortex-M3 processors and thus
PUF characteristics are expected, which are similar to those of the Cortex-M3.
However, an extensive analysis is necessary because of highly-integrated active
components (multimedia hardware accelerator, programmable DSP, integrated
graphics processor), which could interfere with the SRAM start-up values. The
SRAM is implemented as several instances of on-chip memory (OCM) featur-
ing (i) OCM Save-and-Restore ROM (4 KiB) (ii) OCM Save-and-Restore RAM
(8KiB) and (iii) Level-3 RAM (56 KiB).

Analysis of the OCM modules revealed that only a specific part exhibit PUF-
like behavior. In particular, the Level-3 on-chip RAM (L3 OCM RAM) can be
partially used to extract a fingerprint. The memory is shared among different
sub-modules including the Cortex-M3 subsystem. Figure 2b shows the bitmap
of the L3 OCM RAM from a PandaBoard shortly after the device gets out of
reset.

The bitmap indicates that there are repeating structures in the middle and
high address regions. As no other hardware is initialized at this early phase of
the boot process we assume that these patterns represent structures used by the
on-board ROM code shipped with every PandaBoard. The repeating structures
could be caused by the ROM code’s API interfaces. Furthermore, we assume that
the L3 OCM RAM is used in a similar way as a stack as only higher addresses
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(a) STM32F100B (b) PandaBoard

Fig. 2. (a) Bitmap of a measurement for STM32F100RB a device. (b) Bitmap of a
PUF measurement of a PandaBoard L3 OCM RAM (56 KiB). The red area (12 KiB)
is used for fingerprint extraction. The yellow area contains initialized values and does
not show PUF characteristics.

exhibit such patterns. However, in the area of the first 12 KiB (0x40300000 -

0x40303000) an apparently random distribution of zeros and ones can be seen.
This memory range refers to the part of the L3 OCM RAM we selected for
further analysis regarding its PUF behavior.

We performed measurements on a set of 5 PandaBoard instances. The test
set included two versions of the platform – an early version of the PandaBoard
equipped with an OMAP4430 and an advanced version, PandaBoard ES, based
on an OMAP4460.We were using the same experimental setup as for the STM32-
F100RB to conduct 1000 measurements per board.

The SRAM start-up values have a worst-case Hamming Weight of HW (x) =
48.53%, which is close to the ideal value of 50%. The measurement contains
almost the same amount of zeros and ones, see Figure 3a, with a negligible bias
towards 0. The OMAP SoC performs identical to the STM32F100 regarding this
characteristic. The numbers for the Within-class Hamming distance are depicted
in Figure 3b. They show a maximum within-class Hamming distance of 4.67%.
This value is well below a bit error rate of 15%. In literature, an average bit error
rate of 15% can be regarded as a reference value for SRAM PUF noise [13,14].
Compared to the STM32F100RB, the OMAP SoC exhibits less noise which leads
to a decreased false rejection rate during the key reconstruction process. The
minimum Between-class Hamming distance is 49.66%, see Figure 3c. Compared
to the STM32F100RB the results for the OMAP 4 are even better, guaranteeing
to provide a unique fingerprint for individual devices among a pool of similar
platforms. However, it should be noted that the values for this measures are not
as statistical significant as one might like. This is because we could only gather
values from five distinct devices as it was not possible for us to get sufficient
devices to provide as statistical significant results as desired for cost reasons.
Table 1 shows the summarized results.
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Fig. 3. Detailed PUF characteristics for PandaBoards devices: (a) Fractional Hamming
Weights of SRAM start-up values. (b) Within-class fractional Hamming distance of
SRAM start-up values. (c) Between-class fractional Hamming distance histogram.
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Fig. 3. (Continued.)

Table 1. PUF characteristics of the STM32F100RB and the OMAP 4 SoC

Characteristic STM32 OMAP 4

Maximum within-class Hamming distance 9.61% 4.67%
Minimum between-class Hamming distance 46.48% 49.66%

Minimum Hamming weight 49.19% 48.53%
Maximum Hamming weight 50.23% 51.18%

4 PUF-Based Anti-counterfeiting Architecture

In this section we first introduce the capabilities of the attacker. Second, we in-
troduce our proposed anti-counterfeiting architecture with respect to the attacker
model. Finally, we show in detail how PUF enrollment and reconstruction works.

4.1 Attacker Model

A malicious party has several motives to attack deployed low-end devices. The
attacker might want to extract intellectual property (IP) stored on the device
in the form of software or secrets. After successful IP extraction the attacker
would be able to use the IP on counterfeit devices or even sell self-made coun-
terfeit solutions for less money than the original product. In another scenario
the attacker might want to circumvent the vendor’s licensing model by manipu-
lating the firmware. To evade licensing restrictions the attacker could try either
to modify the firmware to unlock features reserved for higher valued product
versions or he attempts to downgrade to a previous firmware version, to exploit
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design flaws and consequently escalate privileges on the system. Another mo-
tivation to alter the firmware is to capture valuable user data like passwords,
credentials and usage data. Furthermore, the attacker might be able to actively
alter output data, as for example in the case of smart metering, to report fake
consumption data.

For the attacker to achieve one of the mentioned goals we consider him to have
the following abilities. The attacker has physical access to the device due to the
device’s ubiquitous availability or because the attacker possesses the device as a
legitimate user. The attacker can read out the contents of the external memory
(DDR or flash memory) as it is highly exposed to external accesses. Thus, we
imply that the attacker can read out and change the firmware that is stored
on external memory. Additionally, the attacker is able to inspect and modify
on-chip memory values with software of his choice after the boot process.

Besides these capabilities we assure that the attacker can not perform one of
the following actions. The attacker is not able to change the code of the boot
loader. We assume that the boot loader is stored in a masked read-only memory
(ROM), which is under control of the manufacturer. Furthermore, we consider
an attacker to not be able to replace the ROM chip with a second one of his
choice, containing boot code under his control. Especially in the case of system-
on-a-chip platforms on-chip memory is highly integrated and a replacement of a
memory module is beyond the means of the average-skilled attacker. Lastly, the
attacker is not able to read out the start-up values of the on-chip SRAM during
start-up. The start-up values are protected by the boot loader and are erased
shortly after the device gets out of reset. As soon as the device is powered the
boot loader reads the start-up values, immediately overwrites them and erases
any their instances before the firmware is called. The boot loader is assumed to
be trusted and cannot be replaced. Hence, the first possibility for the attacker
to execute code of his choice is after the boot loader finished execution.

We are aware of the fact that a physical attacker in possession of sufficient
resources in terms of time and money can circumvent virtually any security
mechanism. Nevertheless, if the attacker would succeed to extract the SRAM
start-up values, i.e. the cryptographic key, he would only able to attack this
individual device and has to perform the same attack for any other device.

4.2 General Architecture

The proposed anti-counterfeiting solution is designed for implementation on a
variety of commodity hardware without on-board security facilities ranging from
lightweight devices to more complex SoC platforms. Our solution requires hard-
ware components, which are already present in virtually any computing device.
In particular, we require the devices to be equipped with a masked ROM to
hold the modified boot loader, the processor containing the MCU itself, on-
board RAM (which is the source of the PUF instance) and external memory to
store the encrypted firmware and so-called Helper Data. Helper Data is needed
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to reliably reconstruct the key using the Fuzzy Extractor; its use will be explained
in Section 4. Furthermore, we assume that the manufacturer can modify the boot
loader to implement the key extraction and decryption functionality.

The structures of lightweight MCUs and more complex SoCs differ and require
different approaches with respect to the architecture of our proposed solution.
The general architecture of lightweight devices comprise the boot loader and the
firmware. The entire boot loader needs to be stored irreversibly in masked ROM
as it protects the SRAM start-up values and implements the functionality to
derive the cryptographic key. The key is used to decrypt the firmware that is
stored in external memory. In the case of more complex SoCs, usually a multi-
staged boot loader is used consisting of a smaller part (1st-stage boot loader)
that fits into on-chip SRAM and a larger part (2nd-stage boot loader) stored
on external memory. Such platforms operate with a rich embedded operating
system instead of a more basic firmware. Here, the 1st-stage boot loader will be
modified to perform key extraction and decryption routines and must be stored
in masked ROM. The derived key will be used to decrypt the 2nd-stage boot
loader instead of the firmware in the MCU scenario. Figure 4 illustrates the two
cases.

Fig. 4. Architecture of lightweight devices and more complex SoCs

The following paragraph explains the architecture for the SoC case in more
detail as we used an SoC for our prototype implementation. In this scenario the
1st-stage bootloader is wired programmed in a masked ROM and is executed as
the first binary after the device start-up3. It queries the SRAM PUF, deriving the
device-dependent key K. The key exists in on-chip memory only for the period
of the following two steps. K is used to decrypt the 2nd-stage boot loader, stored
on non-volatile memory (e.g. flash memory). After successful decryption the 2nd-
stage boot loader derives a second key K ′ by hashing the concatenation of K
and a salt value N : K ′ = H(K|N). Key K ′ is subsequently used to decrypt
the compressed kernel file that also resides in non-volatile memory (NVM). The
second keyK ′ is derived to impede the reconstruction of the initial key K in case
an attacker captures K ′. If the attacker captured K ′ then a new version of the

3 More precisely, on our implementation board the first code executed is vendor-
specific initialization code, which cannot be disabled and leads to a pre-initialized
part of the L3 OCM RAM.
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Fig. 5. Schematic view on the general architecture for SoC platforms

2nd-stage boot loader including a new salt must be deployed which will generate
a different K ′

new. Furthermore, a new version of the firmware, encrypted under a
new key K ′

new must be distributed to regain a secure state. This design assures
that only a 2nd-stage boot loader can be executed that was encrypted by the
correct device-depended cryptographic keyK. Since the second keyK ′ is derived
from K also only such firmware can be properly loaded and executed, which was
encrypted by the correct key as well. Thus, the operating system will only boot
properly, if the correct combination of hardware and software is in place. The
overall architecture is depicted in Figure 5.

4.3 Process of Usage

The usage of the proposed anti-counterfeiting architecture involves the enroll-
ment of the used PUF (performed by the manufacturer) and the reconstruction
phase (conducted every time the user boots the device).

Enrollment. The enrollment process is carried out by the manufacturer and
is performed once for each device. It serves two main purposes: the derivation
of key K and the generation of Helper Data W . The cryptographic key K is
derived from a randomly chosen secret S by hashing it with a hash function H :
K = H(S). The secret S is predefined by the manufacturer and must be unique
for every device. Since the start-up values always contain a certain amount of
noise the raw start-up values need to be further processed to derive a stable
output. This is done by applying a Fuzzy Extractor algorithm, to generate so-
called Helper Data W . The Helper Data is constructed by XORing the output
of the concatenated Fuzzy Extractor with the SRAM reference measurement R
(the raw SRAM start-up values).

Helper Data will be used later during the reconstruction phase to reconstruct
the secret S and to derive the key K given a noisy SRAM measurement R′. W
is stored in external memory as it does not leak information about S. To protect
the helper data from tampering several methods can be applied, such as the
approach described by Boyen [6]. The enrollment process is shown in the upper
part of Figure 6.
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Fig. 6. Illustration of the enrollment and reconstruction of the Fuzzy Extractor

Reconstruction. The reconstruction process is performed at user’s side and is
executed every time the user boots the corresponding device. After the device
gets out of reset, the 1st-stage boot loader reads and stores the noisy SRAM
start-up values R′ and immediately overwrites the start-up values to make them
inaccessible to a physical attacker. In a second step the boot loader reads the
Helper Data W from external memory. The Fuzzy Extractor XORs R′ with W
and decodes the output using the concatenated decoders to construct the secret
S′. The generated secret S′ will only be equal to the correct secret S if the Helper
Data corresponds to the respective device having SRAM start-up values R′ that
are similar to the enrollment measurement: d(R,R′) < ε. Next, the key K is
derived by hashing secret S′, which in turn is used to decrypt the firmware or
the 2nd-stage boot loader, depending on the scenario. The schematic composition
of the reconstruction processes is depicted in the lower part of Figure 6.

5 Proof of Concept

We implemented the proposed anti-counterfeiting architecture on a SoC plat-
form. We chose an SoC platform for the following reasons. Primarily, we wanted
to prove the feasibility to robustly extract a unique fingerprint also from more
complex platforms. Furthermore, the boot process is more complicated compared
to lightweight devices. Our intention was to show that the proposed solution can
be implemented into existing boot loaders. Lastly, the size of the memory avail-
able on the SoC for implementing the Fuzzy Extractor logic is comparable to
the STM32F100 and similar low-end devices as shown in Section 3. Hence, the
requirements regarding memory footprint are equal to those of low-end devices.
A successful implementation for the SoC proves the feasibility to implement the
architecture for lightweight devices as well.

We used u-boot [8,7], one of the most widely deployed boot loaders. It inte-
grates a 1st-stage boot loader (Memory Locator — MLO), which is small enough
to fit into on-chip memory and a larger 2nd-stage boot loader (u-boot.img).
The MLO performs minor hardware initialization as well as the setup of external
DDR memory. Afterwards it calls u-boot.img that is copied to DDR memory.
It initializes further hardware components and eventually calls the operating
system kernel.
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Enrollment. According to Section 4, the Helper Data W is derived from a ran-
domly chosen secret S and a reference measurement R using a Fuzzy Extractor
during the enrollment phase. The Fuzzy Extractor design is based on the con-
struction presented by Bösch et. al [5] and will be explained in more detail in
Section 5.1. We also adapted the size for the secret S (22 Byte) from Bösch’s
design. During the enrollment also the key K is generated by hashing the se-
cret S with the SHA-1 hash function to a 128 bit key such that it can be used
as input for the AES cryptosystem in the next step. Having a secret that is
larger then the generated key ensures sufficient entropy. K is used to encrypt
the u-boot.img using the AES-128 block cipher. The second key K ′ is used to
encrypt the kernel image file (uImage). The generated Helper Data is 675 bytes
in total. Eventually, the Helper Data, as well as the encrypted files are stored in
non-volatile memory (e.g. the flash card).

Reconstruction. The main part of the reconstruction logic is implemented
in the MLO, being one of the first pieces of code to be executed. As described
in Section 4 the MLO extracts the on-chip memory chip’s fingerprint R′ and
processes it using a Fuzzy Extractor to derive the device-dependent key K. The
Fuzzy extractor requires 675 bytes of L3 OCM RAM SRAM start-up values as
well as W from the external memory to reconstruct K. Subsequently, K is used
to decrypt u-boot.img. In particular, one after another 16 bytes of the decrypted
u-boot.img are read in on-chip memory, get decrypted and are written back to
external memory. Subsequently u-boot.img is called and in case of successful
decryption it is executed. If the false keyK was generated a fault handler routine
is called, displays a warning message and cancels the boot process. A detailed
scheme of the reconstruction process is depicted in Figure 7.

5.1 Fuzzy Extractor Design

To reproduce the secret key S from various noisy measurements error-correction
is required. Following the suggestions of [5] we decided to implement a concate-
nated code comprising of two linear codes – a Golay code and a repetition code
– to reconstruct the 22 byte secret. In particular, we are using a binary Golay-
(23,12,7) code in combination with a repetition code with 15 repetitions. The
false rejection rate (FRR) of the concatenated code Pe(total) can be calculated
by equation (3). It is derived from the FRR probabilities of the linear repetition
code – equation (1) – and the Golay code – equation (2).

Pe(Repetition) =

s∑
i=�s/2�

εi(1− ε)s−i

(
s

i

)
(1)

Pe(Golay) =

23∑
i=4

Pe(Repetition)
i(1− Pe(Repetition))

23−i

(
23

i

)
(2)

Pe(total) = 1− (1− Pe(Golay))g (3)
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Fig. 7. Scheme of the reconstruction process of the ephemeral key inside the anti-
counterfeiting architecture

Here, s is the number of repetitions, ε is the average bit error rate (BER) and
g is the number of Golay code words needed (g = secret length/12). With this
construction we can achieve a false rejection rate of 10−8 given an average BER
of 15% as commonly used in literature [5]. The false rejection rate of the OMAP
devices will be even lower since the measured BER is well below the reference
value of 15% used in the calculations. Thus, the Fuzzy Extractor Design is suit-
able to reliably reconstruct a cryptographic key given several noisy SRAM PUF
measurements for individual devices. The implemented Fuzzy Extractor requires
675 bytes of SRAM data to reconstruct a 22 Byte secret. The implementation
requires only 0,05% of the available on-chip SRAM memory.

6 Conclusion

In this paper we proposed an anti-counterfeiting architecture and implementa-
tion for low-end devices by using intrinsic Physically Unclonable Functions found
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in commodity hardware. Our approach does not require additional hardware and
can be implemented the on-chip memory as a PUF and modifying the boot loader
to extract a device-specific cryptographic key to decrypt the firmware with the
device-specific key. We showed that low-end devices – including lightweight de-
vices as well as System-on-a-Chip platforms – contain PUF instances that can
be used to robustly identify the device. The analysis of the extracted on-board
PUF instance showed almost optimal characteristics. Thus, our proposed solu-
tion is suitable to strengthen the security of low-end devices without on-board
security mechanisms, keeping the costs at a minimum while significantly raising
the efforts for attackers trying to extract or modify the firmware stored on such
devices.
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Abstract. This paper presents an analysis of a bistable ring physical
unclonable function (BR-PUF) implemented on a field-programmable
gate array (FPGA) using a single layer artificial neural network (ANN).
The BR-PUF was proposed as a promising circuit-based strong PUF
candidate, given that a simple model for its behaviour is unknown by now
and hence modeling-based attacks would be hard. In contrast to this, we
were able to find a strongly linear influence in the mapping of challenges
to responses in this architecture. Further, we show how an alternative
implementation of a bistable ring, the twisted bistable ring PUF (TBR-
PUF), leads to an improved response behaviour. The effectiveness and
a possible explaination of the improvements is demonstrated using our
machine learning analysis approach.

Keywords: bistable ring, twisted bistable ring, PUF, FPGA, machine
learning, artificial neural network.

1 Introduction

Physical unclonable functions (PUFs) are physical structures, which exhibit a
device-specific challenge-response behaviour. These structures are meant to be
hard or impossible to reproduce and their measurement mechanism can for ex-
ample be optical, magnetic, or electric. In this paper, we focus on so called strong
PUFs [8,4], which are designed to achieve complex challenge-response behaviour
for a large set of possible challenges in relation to the size of their design.

A possible realisation of PUFs can be achieved based on silicon integrated-
circuits, where the device-specific behaviour is caused by uncontrollable varia-
tions in the manufactoring process. Examples of silicon PUFs, which yield an
exponential number of CRPs related to their size, e. g. number of gates, and
hence can be considered as strong PUFs, are the arbiter PUF [5] together with
its variants and the bistable ring PUF (BR-PUF) [2,3].

Strong PUFs are especially useful for authentication, for which the standard
procedure works as follows. First, a trusted third party or the manufacturer of
the device reads out a large number of challenge-response pairs (CRPs) from
the PUF and saves them to a database. Afterwards, a verifier sends challenges
to the device with the PUF and compares the responses to the ones stored in
the database of the trusted third party. This can be repeated to compensate for
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inherent measurement errors of the PUF until a certain level of confidence has
been reached.

Although PUFs are designed so that every instance provides a unique be-
haviour, there is the possible attack vector of creating another hardware or
software that behaves the same way as the PUF instance and thus is able to
predict the output of the PUF for a given challenge. The security of the PUF
primitive in this scenario lies in the large amount of possible CRPs and the time
an attacker would need for a complete readout. Having gathered a complete list
of CRPs, an attacker is then able to impersonate the PUF device, because she
can answer every challenge with the response the PUF would return.

An attacker can reduce the amount of CRPs she needs to read out from the
PUF by applying machine learning techniques. The idea is to train a machine
learning model with a subset of possible CRPs to approximate the behaviour of
a PUF instance. Since the CRP behaviour of PUFs is noisy, the trained model
is indistinguishable from the PUF instance, if the learning error approaches its
noise level.

Based on the additive delay model of the arbiter PUF, Lim et al. [7] were
able to successfully model implementations on FPGAs and ASICs with a linear
support vector machine (SVM). Later, Rührmair et al. [10] analysed a set of
popular silicon PUFs based on CRPs generated by a software implementation
of the PUF model. Using logistic regression and evolutional strategies, they
concluded that those architectures where vulnerable to machine learning attacks.
Hospodar et al. confirmed those findings for actual implementations of arbiter
PUFs on 65nm ASICs [6], using a single layer artificial neural network (ANN).
The results of these work is that the behaviour of those PUF instances could be
learned with a linear machine learning model.

In this paper, we use a single layer ANN to analyse CRP data obtained from
an FPGA implementation of a BR-PUF, and a recently proposed variant called
twisted bistable ring PUF (TBR-PUF) to demonstrate the shortcomings of BR-
PUFs in a strong PUF scenario. The analysis is performed on the basic PUF
design without any special hardening against machine learning techniques, like
pre-processing of challenges or post-processing of responses [4]. Our first result is
the evaluation and comparison of the quality of this PUF design. In contrast to
previous work, we use ANNs to evaluate the behaviour of measured CRP data
without assuming a model of the PUF. This avoids that the evaluation is biased
by some model assumption based on the design. Finally, we want to suggest
machine learning techniques not only as an attack or benchmark on PUFs, but
also as a tool for improving the design and implementation of PUFs.

2 Bistable Ring and Twisted Bistable Ring PUF

The BR-PUF, as proposed by Chen et al. [2], consists of either two NAND gates
or two NOR gates per stage. The challenge bit for each stage decides which
gate will be connected to the inverter ring and thus which gate delay will be
introduced to the ring. This is achieved by a multiplexer (MUX) after each stage
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Fig. 2. Concept of a 64-bit TBR-PUF

and a demultiplexer (DEMUX) before each stage. Figure 1 shows an example
for a 64-bit BR-PUF, where 264 different ring configurations can be created by
applying different challenges. The created bistable ring will be released into an
oscillating state, which will finally settle in one of two possible stable states,
resulting in a single response bit. The BR-PUF is based on an oscillating system
and its behaviour is expected to be non-linear [2] and hence more complex than
that of constructions like the arbiter PUF. Also a simple modelling technique
has not been found [3]. However, we show that the behaviour of a BR-PUF
implemented in FPGAs can be approximated linearly by a large part.

An alternative PUF implementation, the twisted bistable ring PUF (TBR-
PUF), was proposed recently [1]. In comparison to the BR-PUF, the challenge
bits do not influence which inverters of each stage will be included in the ring.
Instead, every inverter is always included, and the challenge influences the po-
sitions of the inverters (at even or odd stages) in the ring. Figure 2 illustrates
this concept.

3 Methodology of Evaluation

Generation of CRPs. For generating the CRPs we used 20 different Digilent
NEXYS FPGA boards with Xilinx Spartan-6 FPGAs that were all configured
with the identical design in form of the same bitstream. Each board represents
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Fig. 3. A visualisation of our single layer ANN

an instance of the PUF design. We then once generated 50000 randomly chosen
challenges in order to use the same set of challenges for each instance. Because
PUF responses are inherently noisy, we measured an odd number of 11 iterations
for each challenge, and performed a simple error correction by majority voting
to compensate the PUF noise.

Analysis of CRP data. Assuming that the majority value for each challenge is
the desired value, the noise per challenge can be determined by dividing the
number of deviating responses by the number of iterations. Then, the noise
of the PUF instance is the average over the noise of all measured challenges.
The bias of an instance is the average of the responses of all challenges and all
iterations. Ideally, a PUF instance should show a balanced behaviour with an
average response of 0.5. Since we are interested only in the deviation from the
ideal value 0.5, we use the absolute value of the difference between 0.5 and the
average response value as bias deviation.

Approximation of the BR-PUF behaviour using a linear approximation. Usually,
when trying to approximate data in machine learning, it is considered benefi-
cial to integrate as much as possible prior knowledge into the machine learning
model. This is especially true for those work mentioned in Section 1, where evo-
lutional strategies where used, because a theoretical model has to be postulated
beforehand. Also, when using evolutional strategies in case of the BR-PUF, a
mathematical model of the behaviour of bistable rings has to be established.

Because there is no known model for the BR-PUF yet [2], we use a rather sim-
ple linear model for approximating the BR-PUF. Since other PUF constructions
like the arbiter PUF were also approximated with linear models, the results for
the BR-PUF using such a model enables a comparison regarding the complexity
of the behaviour of these designs in future work. In addition, we want to employ
an estimator that is not biased with our knowledge about the implementation of
the PUF. The rationale is to find relations in data from real devices, which are
not obvious for an analyst knowing the design of the PUF. Finding relations like
this might help in improving PUF designs. Further, we want to analyse to which
degree the challenge-response behaviour of BR-PUFs can be approximated by a
linear machine learning model.

We decided to use a single layer artificial neural network (ANN) as machine
learning model, which can approximate any linear function while being unbiased
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about the linear function to be approximated. Figure 3 shows our chosen neural
network, which consists of n input neurons, where n is the number of bits of the
challenges, plus one bias neuron, which is constantly set to 1. The input layer
is fully connected to the output layer with weights w, where weight wij is the
weight connecting input neuron i to output neuron j. Having a seperate set of
weights for each possible outcome makes it possible to analyse the impact of
certain challenge bits ck for each possible result bit. As the problem at hand
is a classification problem of whether the response is 0 or 1, our network has
two output neurons. This represents a one-hot encoding, where depending on
the response bit one of the output neurons should be ideally 1 and the other 0
respectively. The output function of the network is softmax, which in our case
is

softmax (outj) =
exp(outj)

exp(out0) + exp(out1)
; outj = wbias,j +

n−1∑
k=0

ck ∗ wkj

with j being the index of the output neuron and n being the number of output
neurons, so that the network yields two normalised probabilties for the two
possible outcomes. The loss used for validation of the network is a zero-one loss
function that sums up the samples which were not correctly predicted1.

Since challenge bits are zeroes and ones, one would not be able to learn
the impact of both inputs, as the output layer would only be influenced by
the challenge bits, which are set to 1. To equally allow bits set to 0 to influence
the output bits, we apply a preprocessing in which we replace zeroes in the in-
put data with −1 similar to previous work [10]. As optimisation algorithm we
employ Rprop [9] which some of the related work [10,6] showed to be the best
option for learning CRPs for many PUF architectures.

For the learning process itself, we applied 5-fold cross-validation on error
corrected CRP data.

Analysis of the trained neural network. We finally search for patterns among the
weights of the trained ANN in order to better understand the challenge-response
behaviour of the PUF.

4 Analysis of the Measured CRP Data

Using the data from the FPGA implementation of BR-PUF and TBR-PUF, we
analysed the noise of the responses, the bias deviation of the PUF instances, and
the error of fitting our ANN against them.

Bias deviation and noise. The values for bias deviation and noise of the PUF
are valuable to estimate the quality of the PUF regarding modelling attacks
independent of our learned ANN. The noise level is important, since it suffices for
an attacker to guess correctly often enough so that a verifier cannot distinguish

1 Negative cross entropy is used for training as zero-one loss is not differentiable.
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Fig. 4. Relation of bias deviation and noise for 20 instances of both PUF types

between responses from a real PUF and from the guesses of an attacker. When
considering both, bias deviation and noise combined, it becomes apparent that
it is beneficial for an attacker when the bias deviation and high noise level is
high.

Figure 4 shows our results. When looking at the noise of the CRPs of the BR-
PUF, some of the instances have a rather low noise level below 10%. However,
the same instances also show a rather high bias deviation. The low noise can
hence be based upon the fact that those instances return the same response
in over 90% of all challenges and their iterations. This relation can be seen in
Figure 4, where an ideal PUF instance would be plottet at the origin. The TBR-
PUF instances show more noise in the CRP data compared to the ones of the
BR-PUF, although the highest noise level is still under 23%. However, there is
a much lower bias deviation for the majority of TBR-PUF instances.

Linear approximation. This strongly biased behaviour in the BR-PUF CRPs
should also simplify fitting our ANN to the data. Figure 5 visualises the learning
error a potential attacker using a single layer ANN would be able to achieve.
The lower the error, the better she can reproduce the behaviour. We can see in
Figure 5a that the majority of BR-PUF instances were linearily approximated
with an error below 10%.

Comparing these results to the learning error distribution for the TBR-PUF
data in Figure 5b, a positive correlation can be observed between lower bias and
higher learning error. From this, we hypothesise that the TBR-PUF might be
more resilient to attacks that are based on a linear model. Here, the majority of
instances could only be approximated by an error of at least 10%.

Analysis of the trained neural network. When analysing the influence that the
weights of the trained ANN have on each of the output neurons, we noticed
no emerging patterns except for the weights of the bias neuron. In the case
of a heavily biased PUF, these two weights were the only significant ones.
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(a) BR-PUF (b) TBR-PUF

Fig. 5. Distribution of the learning errors among all instances

This shows that, in these cases, our ANN primarily matches a naive attacker,
who simply makes use of the strongly biased response behaviour, without taking
the challenge into account. Since the softmax function in our binary classification
problem can be simplified to the decision of which output neuron gets the higher
activation, we analysed the difference between the weights for the output neuron
responsible for the response 0 and the weights for the output neuron responsible
for the response 1:

wcomb
i = wi0 − wi1

The result of the combined weight vector is shown in Figure 6. There, it is
apparent that the bias weight has a major influence over all measured BR-PUF
instances. However, there is also an emerging pattern in the weights that model
the influence of the challenges. The weights for the challenge bits are rather close
to 0 and their sign is alternating. From observation of the weight distribution
the formula of the learned decision function can be given as

d = wcomb
bias +

63∑
i=0

(−1)i ∗ wcomb
i ∗ ci; response =

{
0 : d ≥ 0
1 : d < 0

where ci are the bits of the challenge.
Figure 7 shows the weights after fitting our neural network to the TBR-PUF

CRPs, combined in the same way we used above. Here, it can be observed that,
compared to the BR-PUF results, the combined weight of the bias neurons has
less impact and that the challenge bits thus are more influential towards the
response. However, it is still possible to recognise an alternating pattern in some
of the weights of the challenge bits. This is an indicator that this alternating
pattern might be a common feature of linear behaviour in bistable ring based
constructs, which emerges depending on the actual implementation of the ring.

The decision function d, which expresses the alternating pattern in the weights,
can be interpreted as grouping the bistable ring stages that are influenced by
the challenge bits at even respectively odd positions. Subtracting their gate de-
lay values will decide with high probability what the response will be. If both
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Fig. 6. Combined weights for all instances of BR-PUF

Fig. 7. Combined weights for all instances of TBR-PUF

inverters in one stage have a similar gate delay relatively to the others, then the
bit for this stage will not be influential. This seemed to be the case for some of
our instances. However, as can be seen in Section 1, in the case of the TBR-PUF,
the challenge bit influences which gate delays are at even and odd positions in
the stages of the ring. This appears to be the reason, why the TBR-PUF shows
a better behaviour regarding the bias and is harder to approximate by a linear
machine learning model.

5 Conclusion

In this paper, we show that the challenge-response behaviour of a bistable ring
PUF implemented on FPGAs shows weaknesses. The weaknesses are related to
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the noise, bias, and linearity of the PUF. We found those weaknesses without a
known mathematical model of the BR-PUF, but only by training a single layer
artificial neural network with CRP data obtained from real devices.

Further, we demonstrate how machine learning not only can be used to to
attack strong PUFs, but also how it can contribute to improvements of PUFs
by finding weak spots in the design. The analysis of trained models helps discov-
ering and understanding previously unknown relations between challenges and
responses. Those insights can then be used to improve the PUF design. Notably,
an example of such an unexpected behaviour was the linear relation found in
the BR-PUF data as well as, in extenuated form, in the data for the TBR-PUF.
This was surprising, because one would expect that a mathematical model with
higher complexity would be necessary to explain the data generated by such an
oscillating system reasonably well [2].

We show that the twisted bistable ring PUF is an improvement to the BR-
PUF regarding bias and resistance against linear approximation and explain this
improvement with the afore mentioned machine learning analysis techniques.
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Abstract. As the web expands in size and adoption, so does the interest
of attackers who seek to exploit web applications and exfiltrate user
data. While there is a steady stream of news regarding major breaches
and millions of user credentials compromised, it is logical to assume
that, over time, the applications of the bigger players of the web are
becoming more secure. However, as these applications become resistant
to most prevalent attacks, adversaries may be tempted to move to easier,
unprotected targets which still hold sensitive user data.

In this paper, we report on the state of security for more than 22,000
websites that originate in 28 EU countries. We first explore the adoption
of countermeasures that can be used to defend against common attacks
and serve as indicators of “security consciousness”. Moreover, we search
for the presence of common vulnerabilities and weaknesses and, together
with the adoption of defense mechanisms, use our findings to estimate
the overall security of these websites. Among other results, we show how
a website’s popularity relates to the adoption of security defenses and we
report on the discovery of three, previously unreported, attack variations
that attackers could have used to attack millions of users.

1 Introduction

Over the last decade, the web has become extremely popular. Businesses heavily
depend on the web for their day-to-day operations, and billions of users in-
teract on social networking websites on a daily basis. As a consequence of this
enormous growth in popularity, the web has also drawn increased attention from
attackers. A whole range of web attacks exists in the wild, ranging from Cross-
Site Scripting (XSS), Cross-Site Request Forgery (CSRF), and SQL injection,
to the exploitation of broken authorization and session management. Moreover,
as the technologies that support the web increase in numbers and complexity,
new opportunities for exploitable vulnerabilities increase with them.

To assess a website’s security, website owners typically choose security con-
sulting firms for internal penetration testing, and code reviewing. It is difficult,
however, for outsiders like government and supervisory organizations to assess
a website’s security externally, especially when the assessment needs to be done
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at a larger scale, e.g., involving a large number of websites belonging to a coun-
try, or a specific industry sector. Such an assessment may be desirable since the
citizens of each country depend more and more on certain web applications for
their daily lives. An example of a real-world equivalent is the mandatory assess-
ment of the structural safety of buildings in order to protect people from future
disasters that could have been straightforwardly avoided.

In this paper, we investigate the feasibility of external security evaluations
through a large-scale security analysis of the web. In particular, we evaluate the
security stance of popular websites in the European Union (EU), and investigate
the differences among countries.

To evaluate a website’s security, existing approaches typically focus on the
discovery of vulnerabilities in websites. For example, WhiteHat publishes yearly
reports on website security statistics [31], highlighting the ten most common
vulnerabilities, and discussing new attack vectors. Contrastingly, our approach
not only accounts for common vulnerabilities and weaknesses, but also measures
the presence of security mechanisms deployed on the investigated websites. These
mechanisms have been developed by the security community as a response to
web application attacks, making their adoption a crucial step towards a more
secure web. The presence or absence of each of these mechanisms can be passively
detected and can be used as an indicator of the “security consciousness” of each
individual site.

In addition, in order to be able to compare websites by their security posture,
we also propose a security scoring system for assessing a website’s security level,
and based on the scoring system, we present a comparative security analysis of
European websites. Finally, because of the breadth of our analysis, we report on
the discovery of novel variations of existing web application attacks. In one of
the discovered cases, an attacker can register an expired Google Code project
and serve malicious JavaScript to millions of users of sites that once trusted that
specific project for remote code.

Our findings allow the community to assess the adoption of security mech-
anisms by websites at a large scale, and also prioritize corrective action, based
on the severity of the discovered issues. Moreover, we list the challenges that we
faced in our experiment, and provide possible directions towards future research
in the area.

2 Data Collection

2.1 Dataset

For our experiment, we selected popular websites from the EU as the targets,
to evaluate website security, and investigate the presence of potential differences
between countries. The 28 member states in the EU represent a diverse set
of communities, each with their own demographic characteristics. For each EU
country, we selected the top 1,000 websites ending with a country code top-level
domain (ccTLD) from Alexa’s list of the top 1 million sites. For example, 1,000
websites ending with the Belgian ccTLD ‘.be’ are extracted to represent the
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Belgian web. Note that several small EU countries (such as Luxembourg and
Malta) do not have 1,000 websites in Alexa’s top 1 million list, so we end up
with a few countries having less than 1,000 websites in our dataset. We then
obtained up to 200 webpage URLs for each website by querying the Bing search
engine [1] for the popular webpages of each website. In total, we analyzed more
than 3 million webpages for 22,851 EU websites with an average of 141 webpages
per website.

2.2 Crawler Setup

After the webpage URLs are obtained, PhantomJS [5], a headless browser, is used
to visit the URLs and retrieve data from webpages. By loading every webpage
within PhantomJS, we mimicked the behavior of a regular visitor using a Chrome
browser. In order to crawl a large number of webpages in reasonable time, we
run the experiment in a distributed fashion using 60 networked machines. As a
result, our crawling experiment took approximately five days.

3 Security Scoring System

In order to compare the security level among different websites, and among dif-
ferent EU countries (represented by the websites of each country), we developed
a security scoring system that gives quantitative security scores for each website.
The security scores for a website consist of two parts: a positive score to represent
the defense mechanisms adopted by the website (such as the X-Frame-Options

and Content-Security-Policy headers), and a negative score for vulnerabilit-
ies or weaknesses (such as vulnerable remote JavaScript inclusions and insecure
SSL implementations) found on it. For each defense mechanism and vulner-
ability/weakness, the security scoring system assigns a weighted positive and
negative score. The overall positive and negative score for a website, is obtained
by summing up each weighted positive and negative score respectively.

Due to our ethically-guided choice of conducting passive analysis for the ma-
jority of our tests, our search was limited to eight defense mechanisms, and ten
vulnerabilities/weaknesses for each website. In principle, however, the security
scoring system is scalable to more measurements. In the following sections, we
briefly describe these defense mechanisms and vulnerabilities/weaknesses and
elaborate on the scoring system we adopted.

3.1 Defense Mechanisms

In our security assessment for defense mechanisms, we searched whether each
website had adopted one or more of the following eight mechanisms:

– HTTP Strict-Transport-Security (HSTS): HSTS is a web security
policy mechanism where a web server can force complying browsers to inter-
act with it using only HTTPS connections [15]. By sending out the HSTS
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policy via an HTTP response header named Strict-Transport-Security,
a web server specifies a period of time during which the user’s browser is
instructed that all requests to that website need to be sent over HTTPS,
regardless of what a user requests. As a result, HSTS can effectively thwart
SSL-striping attacks and other Man-in-the-Middle (MitM) attacks [19,22].

– Secure Cookies: Website operators can make use of the Secure flag when
sending out Set-Cookie headers. By doing so, the scope of a cookie is limited
to only secure channels [10], which makes the cookie less likely to be stolen
via eavesdropping.

– Content Security Policy (CSP): To mitigate a wide range of injec-
tion vulnerabilities, such as Cross-Site Scripting (XSS), a website operator
can make use of the CSP mechanism. CSP provides a standard HTTP
header that allows website owners to declare approved sources of content that
browsers should be allowed to load on any given webpage [27]. Whenever a
requested resource originates from a source that is not defined in the policy, it
will not be loaded [28]. Hence, if the policy does not allow in-line JavaScript,
then even if an attacker is able to inject malicious JavaScript in the webpage,
the code will not be executed.

– HttpOnly Cookies: By default, cookies are accessible to JavaScript code,
which allows attackers to steal a user’s cookies in an XSS attack. To pro-
tect against the theft of cookies, a website operator can use the HttpOnly

flag on cookies. An HttpOnly cookie will be used only when transmitting
HTTP/HTTPS requests, making them unavailable to client-side JavaScript.

– X-Frame-Options (XFO): When an attacker is able to load a website,
or part of a website in a frame or iframe element, the website might be
vulnerable to ClickJacking attacks. More precisely, by redressing the user
interface, an attacker can trick the user into clicking on the framed page while
the click is intended for the bottom-level page [18]. To avoid ClickJacking
attacks, the XFO HTTP response header [24] can be used to instruct a user’s
browser whether a certain page is allowed to be embedded in a frame.

– Iframe sandboxing: The sandbox attribute for the iframe element, intro-
duced in HTML5, enables a set of extra restrictions on any content loaded
in a frame. By specifying the sandbox value, a website operator can instruct
the browser to load a specific frame’s content in a low-privilege environment,
allowing only a limited subset of capabilities to be made available to that
frame [30].

– CSRF Tokens: The most popular defense for Cross-Site Request Forgery
(CSRF) attacks is the inclusion of a secret token with each request and valid-
ation of that token at the server side [11]. This secret token, often referred to
as a “nonce”, should be pseudo-random and of a certain length so it cannot
be guessed or brute-forced by an attacker. To check for nonces, we searched
for forms that contained a hidden form element that was most likely used
as a nonce. More specifically, form elements were marked as nonces when
their name contained the keywords “token”, “nonce”, or “csrf”, and when
their value was a long alpha-numerical string. These form elements were then
manually verified in order to filter out any false positives.
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– X-Content-Type-Options: Internet Explorer has a MIME-sniffing feature
that will attempt to determine the content type for each downloaded re-
source. This feature, however, can lead to security problems for servers host-
ing untrusted content. To prevent Internet Explorer from MIME-sniffing,
thus reducing exposure to attacks, a web server can send the X-Content-

Type-Options response header with the nosniff value .

Apart from the sandboxing of frames and CSRF tokens, all the above defense
mechanisms are communicated to the browser via HTTP response headers, and
hence can be discovered straightforwardly by parsing a server’s response headers.
For the sandboxing of frames and the presence of CSRF tokens, we searched for
iframe and form elements in the response body of each crawled webpage.

3.2 Vulnerabilities and Weaknesses

For the assessment of vulnerabilities and weaknesses, we focus on the following
ten measurements:

– Vulnerable Remote JavaScript Inclusion: A website that chooses to
include JavaScript from untrustworthy third-party sources opens itself up to
a range of security issues. Recent research by Nikiforakis et al. [21], identi-
fied four different types of vulnerabilities that are related to the practice of
unsafe remote JavaScript inclusions. In our assessment, we searched for the
most dangerous of these vulnerabilities, called “Stale Domain-name-based
Inclusions”, where remote JavaScript is requested from a domain that has
expired and is available for registration, which means the attacker can buy
the domain and use it to serve malicious JavaScript.

– Mixed-content Inclusion: When migrating to HTTPS, many websites
fail to fully update their applications, resulting in mixed-content inclusions
where the main webpage is sent over a secure HTTPS channel, while some
additional content included on that page, such as images and scripts, are
delivered over non-secured HTTP connections. As a result, an active network
attacker can attack the TLS-enabled website by intercepting and modifying
any of the mixed content that is loaded over HTTP [13].

– SSL-stripping Vulnerable Form: For performance reasons, some web-
sites only implement HTTPS for certain webpages that contain sensitive
information (such as a log-in page), which may result in forms vulnerable to
SSL stripping [19]. In this scenario, the form is displayed on an HTTP page,
however the form action points to an HTTPS link. As a result, a MitM
attacker can replace all HTTPS form links on the HTTP page to HTTP
links, which will allow the attacker to intercept the form data sent from the
user’s browser.

– Insecure SSL Implementation: SSL is important for website owners since
it provides end-to-end security. At the same time, however, it turns out that
it is not easy to deploy SSL correctly. According to Qualys’ latest SSL survey
of the most popular websites in December 2013, about half of the HTTPS
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websites have security issues associated with their SSL implementations [6].
In our assessment, we use a fast SSL scanner called sslyze [7] to search for
SSL implementation issues including the support of SSL v2.0, use of weak
ciphers, and the vulnerability to the recently discovered BEAST [14] and
CRIME [23] attacks.

– Weak Browser XSS Protection: Most modern browsers include secur-
ity mechanisms to protect a user against reflected Cross-Site Scripting at-
tacks [20], and these features are, in general, enabled by default. While web
servers can instruct a user’s browser to disable this protection by means
of the X-XSS-Protection response header, we consider such behavior as a
weakness of the website, because disabling it might allow an attacker to
successfully exploit an, otherwise unexploitable, XSS vulnerability.

– HTTP Parameter Pollution (HPP): When a website fails to properly
sanitize user input, they might be vulnerable to HPP attacks. These attacks
consist of injecting encoded query string delimiters into other existing para-
meters. By doing so, an attacker is able to compromise the application logic
to perform client-side and server-side attacks. In our assessment, we searched
for HPP vulnerabilities in a manner similar to the methodology of Balduzzi
et al. [9].

– Outdated Server Software: It is important to keep web servers up-to-
date, since an outdated server usually contains vulnerabilities that may lead
to attacks. In our assessment, we searched for outdated server software for
popular web servers including Apache, Microsoft-IIS, and Nginx.

– Outdated Content Manage Systems (CMSs): Many popular websites
nowadays are built using a CMS, since CMSs allow non-technical users to
build dynamic websites, and are usually free of charge. Similar to web servers,
it is also recommended to keep a CMS up-to-date, as outdated CMSs often
contain vulnerabilities. In our assessment, we looked for outdated CMSs for
websites using WordPress, Joomla, vBulletin, and MediaWiki.

– Information Leakage: Many websites generate error messages and display
them to users, which may reveal implementation details or information that
is useful to an attacker. In our assessment, we searched for various categor-
ies of information leakage including SQL error messages, website directory
listings, IIS error messages, PHP/ASP/JSP source code and error messages.

– Sensitive Files: A website may accidentally expose sensitive files such as
configuration files and source code to the public, when moving files from
the development server to the production server. The degree of vulnerability
depends on the sensitive file that is exposed, ranging from information dis-
closure, to disclosure of source code containing credentials. In our assessment,
we searched for the following files that were most likely to contain sensitive
information: phpinfo.php or test.php, containing system information from
the phpinfo() function, website configuration files, such as Web.config, and
two version control system folders, namely .svn/ and .git/.

Most of the aforementioned vulnerabilities and weaknesses can be discovered
through passive analysis with PhantomJS visiting webpages, except for the find-
ing of HPP vulnerabilities and sensitive files, where we actively scanned a limited
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number of webpages from each website, taking the necessary precautions not to
stress or harm websites.

3.3 Scoring System Details

The scoring system used to estimate the state of security of websites is based
on the Common Weakness Scoring System (CWSS) [3]. The CWSS provides a
quantitative measurement of security weaknesses in software applications, and
is mainly used to prioritize the remediation of reported weaknesses. In essence,
the score appointed to a weakness by the CWSS aims to reflect the impact
and likelihood of exploitation by adversaries. For instance, not “escaping” user-
controlled data in an HTML document could lead to Cross-Site Scripting attacks,
and may allow an attacker to extract sensitive user information. This weakness
obviously has a high impact and is remotely exploitable; thus it will receive a
higher score than, say, an insecure SSL implementation weakness.

The reason for using the CWSS over other scoring systems as a base for
our scoring system is twofold. First, the CWSS is a well-established and com-
monly used mechanism to give a quantitative score to weaknesses. It has been
extensively reviewed, which gives, to a certain extent, a guarantee that the score
appointed to a weakness reflects the magnitude of the induced threat. Second,
the CWSS gives scores to weaknesses, rather than to actual vulnerabilities as is
done in the Common Vulnerability Scoring System (CVSS) [2]. This is import-
ant because most features we analyzed are security indicators rather than actual
vulnerabilities.

The CWSS uses 18 different factors across three metric groups to calculate
the total score for a weakness. The first group, named the “Base Finding” group,
reflects the risk of the weakness, the finding confidence and the presence of built-
in defense mechanisms. The second group, called the “Attack Surface” group,
reflects the exploitability of a weakness. A vulnerability which is easy to exploit,
such as a stale JavaScript inclusion, will consequently receive a higher score for
this group. The last group, named the “Environmental” group, indicates, among
others, the impact on the business in case the weakness is exploited, as well as
the likelihood of discovery and exploitation. Each group is appointed a subscore
which constitutes of a weighted score of its factors. The total score appointed to
a weakness is calculated by multiplying the score for the “Base Finding” group
(value between 0 and 100) by the two other groups (values between 0 and 1).

In order to give a metric to security features on a similar scale as weaknesses,
the CWSS was also used to appoint scores to these defense mechanisms. As the
CWSS only works for weaknesses, we calculated the score for security measures
by determining the metric for the vulnerability or weaknesses they attempt to
prevent. Additionally, we took the effectiveness of the countermeasure into ac-
count, as security features that completely block certain attacks should receive
a better score. For instance, the HttpOnly flag on cookies may prevent sensit-
ive cookies to be stolen in Cross-Site Scripting attacks, but it will not mitigate
all consequences of these attacks, something that a properly written Content
Security Policy may do.
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Table 1. Calculated scores for defense mechanisms and vulnerabilities

Defense Mechanism Score

Content Security Policy 58.93
X-Frame-Options 45.21
HTTP Strict-Transport-Security 33.52
CSRF tokens 32.73
Secure cookies 31.84
HttpOnly cookies 28.21
Iframe sandboxing 25.32
X-Content-Type-Options 8.02

Vulnerabilities and Weaknesses Score

Vulnerable remote JavaScript inclusion 67.50
Sensitive files 41.81
SSL-stripping Vulnerable Form 30.16
X-XSS-Protection 28.33
Outdated CMS 18.30
Insecure SSL implementation 18.10
HTTP Parameter Pollution 18.06
Mixed-content inclusions 13.42
Information leakage 9.44
Outdated Server Software 8.71

Table 2. Results from the analyzed websites that enable security features

Security mechanism # of websites % of websites
Estimated year

of adoption

HttpOnly cookie 7,658 33.51 2007
CSRF token 3,815 16.70 NA
Secure cookies 1,217 5.33 2007
X-Frame-Options 1,029 4.50 2008
X-Content-Type-Options 467 2.04 2008
Strict-Transport-Security 116 0.50 2010
Content Security Policy 13 0.06 2011
Iframe sandboxing 10 0.04 2010

Table 1 shows the score appointed to each defense mechanism and weakness.
Due to reasons of brevity, we limit the discussion of the rationale for the calcu-
lated scores to one example. As can be seen in the table, the vulnerable inclusion
of remote JavaScript received the highest score (67.50). The high impact, i.e.,
the execution of arbitrary JavaScript code on multiple web pages, and the ease of
exploitability, i.e., the registration of a stale domain name, are the main factors
that contribute to this high score. Additionally, no control mechanisms (e.g.
Content Security Policy) were found on the vulnerable websites that attempt
to mitigate this vulnerability. Consequently, a score of 90 was calculated for
the “Base Finding” group subscore. As victims will be exploited upon visiting
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the vulnerable web site, a score of 1 was appointed to the “Attack Surface”
group. The score for the “Environmental” group is 0.75. The main factor that
contributed to this score is the business impact, which is mostly case-specific.
While the execution of arbitrary JavaScript code may have a very high impact
on security-sensitive websites (e.g. a banking website), the potential impact on
a purely informational website that stores no sensitive data is considerably less.
The total score, 67.50, is then calculated by multiplying the three subscores (90
* 1 * 0.75).

4 Findings

4.1 General Findings

Out of the 22,851 analyzed websites, we found that 10,539 (46.12%) enabled at
least one security feature. As can be seen in Table 2, the most popular defense
mechanism is the HttpOnly attribute on cookies, which was present in 33.51% of
the evaluated websites. This defense mechanism is followed in popularity by the
presence of a CSRF token in forms, which was found in 16.70% of the websites.
Interestingly, these two most popular security features are mitigations for the
most critical web application flaws according to the OWASP Top 10 project [4].
This table also shows that, in general, the popularity of a defense mechanism is
related to the time it was adopted by popular browsers, i.e., the older a security
feature, the more widely it is used.

In our evaluation, we found that 12,885 (56.39%) websites contained at least
one vulnerability or weakness. Table 3 shows the distribution of the number of
websites found to be vulnerable. While only 5,113 websites provided at least one
page over HTTPS, we found that the majority (80.32%) had content originating
from an insecure channel on their website, or had SSL implementation issues.
Likewise, although we only evaluated 17,910 websites for the presence of HTTP
Parameter Pollution (HPP) vulnerabilities, we found 15.24% of these websites to
be vulnerable. As HPP is very closely related to XSS in the sense that they are
both caused by improper encoding of certain characters, we manually analyzed a
subset of the webpages vulnerable to HPP for XSS vulnerabilities. This showed
us that approximately 75% of the websites vulnerable to HPP are also vulnerable
Cross-Site Scripting attacks.

4.2 Incorrect Security-Header Usage

By making use of headers, website administrators are capable of instructing a
user’s browser to enable a certain security feature. Browsers, however, require
the value of the security-header to be correct. Values that are incorrect, for
example headers containing a typing error or headers with incorrect syntax,
will be ignored by the browser. The presence of such headers in websites is a
strong indication that the website administrator is under the impression that
he successfully secured his website. Nonetheless, if the security-header contains
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Table 3. Results from the analyzed websites that contain vulnerabilities

Vulnerability # of websites % of websites

Outdated server Software 6,412 28.06
Mixed-content inclusion 3,442 15.06
SSL-stripping Vulnerable Form 2,884 12.62
HTTP Parameter Pollution 2,731 11.95
Outdated CMS 2,041 8.93
Insecure SSL implementation 1,945 8.51
Information leakage 1,231 5.39
Sensitive files 1,068 4.67
Vulnerable remote JS inclusion 91 0.40
X-XSS-Protection 91 0.40

a syntactical or typographical error, adversaries might be able to successfully
exploit a vulnerability on a website.

In our analysis, we found several instances where the website operator tried to
protect his website against ClickJacking attacks by using the X-Frame-Options

header, but failed to do so by using an incorrect directive, for instance specifying
SAME-ORIGIN, instead of the correct SAMEORIGIN directive.

Additionally, we found that 15 out of 116 (12.93%) analyzed websites that
make use of the Strict-Transport-Security header to prevent SSL-stripping
attacks, used the header in an improper fashion. The majority of these web-
sites sent the Strict-Transport-Security header over an HTTP connection,
without referring the user to an SSL-connection. Since browsers will ignore HSTS
headers that are sent over an unencrypted channel, users of these websites can
still fall victim to SSL-stripping attacks. The remainder of websites that im-
plemented HSTS incorrectly, either forgot the max-age directive, or set this
directive to the value 0, which signals the user’s browser to delete the HSTS
policy associated with the website.

4.3 Security by Alexa Rank

As the set of evaluated websites is distributed over the Alexa’s list of the top
1 million websites, we evaluated how the rank of a website relates to the score
we appoint it. We found that on average, the rank of a website is positively
correlated with the positive score we appoint it, i.e., a high-ranked website is
more likely to have a relatively high positive score. Contrastingly, we found that
the negative score of a website is unrelated to its popularity according to Alexa.
This indicates that popular websites try to improve their security by the adoption
of defense mechanisms, rather than by tackling vulnerabilities. Figure 1 depicts
the relation between the security score and the Alexa rank. Each entry coincides
with the average positive or negative metric of the evaluated websites that fall
within a range of 10,000 Alexa ranks.
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Fig. 1. Average metric by analyzed websites grouped by 10,000 Alexa entries

Additionally, we found that, in general, there is no correlation between the
positive metric and negative score of a website, which strengthens the indication
that websites try to improve their security by adding security mechanisms in
an ad-hoc fashion. Moreover, we found that a large number of websites apply a
certain defense mechanism to a limited fraction of the URLs we visited, e.g. the
majority of websites that make use of the X-Content-Type-Options header to
prevent XSS attacks in Internet Explorer due to MIME sniffing, only add the
header to a small fraction of their pages.

4.4 Security by Country

We found that the scores for websites located in different countries were similar.
Figure 2 shows the cumulative distribution function of both the positive as well
as the negative score for websites of a set of four randomly selected countries.
From this set, Germany has more websites with a higher positive score than the
other countries. However, the same country scores worse than the rest on the
negative score. This again shows that there is no relation between the number
of enabled security features and the number of weaknesses or vulnerabilities we
were able to find on a website.

The variance of scores between different countries are most likely due to the
unequal distribution of the countries’ websites over the Alexa rank. The dis-
tribution of Alexa rank for the subset of four countries is shown in Figure 3.
Compared to the distribution of the positive score, it is clear that the countries
with the most high-ranked websites have a better positive score. This indicates
that, in general, the security of a website is unrelated to its geographical location
or the policies its hosting country may have.
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Fig. 2. Distribution of positive and negative score for several countries’ websites

4.5 Novel Attack Techniques

In the course of our analysis, we encountered a new attack technique in the Cross-
Origin Resource Sharing mechanism as well as two variations on the insecure
inclusion of remote JavaScript code on a webpage. Both are related to remote
trust relations in the sense that the website operator trusts a certain domain or
URL to be benign, which may become malicious in the future.

By sending out the Access-Control-Allow-Origin header, a website oper-
ator can instruct a browser to allow a third-party website to make XHR-requests
towards his website and read out the result. When the Access-Control-Allow-
Credentials header is included as well, these requests can be authenticated. It
is in the best interest of a website administrator to only allow trusted websites
to extract the response of an XHR-request targeting his website. Interestingly,
we found a case where a website sent out the Access-Control-Allow-Origin

containing a .local domain. This allows an attacker to trick a user on the local
network in visiting his webpage located at the .local domain. The attacker is
then able to make the victim’s browser send XHR-requests to the vulnerable
website while being able to read out CSRF-tokens from forms.

In the aforementioned work by Nikiforakis et al. [21], the authors analyzed the
inclusion of JavaScript files from expired domains. In the course of our analysis,
we encountered two variations on this type of attack. More specifically, we found
that several websites remotely include JavaScript files from domains that were
marked as “for sale” by their owner on sedo.com, a large domain marketplace.
Similar to the attack described by the authors, an attacker is able to buy such a
domain, and serve malicious JavaScript to unsuspecting users. The second vari-
ation on this type of attack occurs when websites include JavaScript files directly
from project hosting websites, such as GitHub or Google Code. The files hosted
on these services are linked to a project or a user. However, upon deletion, that
project or account, becomes again available for registration. This way, an ad-
versary is able to host malicious JavaScript, which may be included by a large
set of websites. To show the importance of this type of attack, we registered
a stale project on Google Code, and made available the last available version

sedo.com
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Fig. 3. Distribution of Alexa rank for several countries

of project’s JavaScript files, with a minor addition which allowed us to analyze
the number of including websites and affected users. During a month’s time, we
registered a total of 3,879,701 requests, originating from 1,104,497 unique IP ad-
dresses. In total, there were 3,400 websites, including a prominent Chinese news
website, which directly included JavaScript files from this Google Code project.
In every single one of these requests, an attacker could have have served mali-
cious JavaScript that steals a user’s cookies, exfiltrates private user information
and even attempts to launch a drive-by download.

4.6 Miscellaneous

In our analysis, we found that the presence of certain security features, such
as the HttpOnly attribute in the Set-Cookie header, is more common in web-
sites that are powered by frameworks which facilitate the system-wide usage of
these security features [25]. More precisely, through the X-Powered-By header
we found that although the majority (49.53%) of the analyzed websites are
powered by PHP, only 16.36% of these websites enable the HttpOnly attribute.
The second most popular framework is ASP.NET, used by 22.80% of the crawled
websites. Interestingly, we found that 54.74% of these ASP.NET websites enable
HttpOnly (three times as much as PHP sites).

5 Limitation and Challenges

5.1 Accuracy of Passive Analysis

Due to legal and ethical considerations, our analysis of vulnerabilities in websites
was limited to a passive analysis, with a few exceptions. Consequently, the results
described in the previous section only show an estimation on the state of security
of European websites. In order to assess the accuracy of these estimates, we
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compared the scores of websites likely to be insecure, to websites expected to be
secure. The set of most-likely vulnerable websites consisted of websites with a
Cross-Site Scripting vulnerability which was publicly known and had not been
patched in over one year.1 The set of websites probable to be secure, was made
up from a set of 20 respectable banking websites. This comparison showed that
the average positive score for the known-vulnerable set (35.21) was lower than
that of the set of banking websites (41.62). Also the average negative score,
which was 27.22 on the insecure set and 12.80 on the probably secure websites,
indicates that, despite the fact that only a fraction of a website’s state of security
could be assessed, we were still able to differentiate between vulnerable and
secure websites. At the same time, we are aware of the coarse-granularity of our
analysis and we highlight the antithesis between the invasiveness of an external
security assessment, and the coverage obtained by it. It would be worthwhile to
investigate whether website administrators would be willing to consent to a more
invasive security assessment, in return for obtaining the results free of charge.

5.2 Scoring System

In order to evaluate the general state of security of a website, we developed a
scoring system based on CWSS, as was described in Section 3.3. However, this
scoring system is subject to two types of limitations. Firstly, the total positive
score assigned to a website originates from an individually assigned score of eight
security features, while the total negative score is derived from a score attributed
to ten potential weaknesses and vulnerabilities. As a result, the positive score
for a website is on a different scale from the negative score. This prevents us
from being able to compare the positive score, to the negative score. Moreover,
as the total score appointed to a website originates from a limited set of factors,
the total score may not always reflect the actual state of security of a website.
However, as we evaluate diverse aspects which are highly related to a website’s
security, we believe that our scoring system provides a good estimate on the
general state of security of a website.

The metric appointed to each weakness and security measure is derived from
a list of 18 factors, some of which are subject to the opinion of the authors or are
often case-specific. For instance, the impact of exploiting a certain vulnerability
may differ based on the type of website. In order to account for these differences,
each metric was calculated for a general website. Consequently, the appointed
metrics are not website-specific and the score of one feature is relative to the other
scores. This allows us to appoint a comparable score which gives an estimation
of the state of security for each tested website.

6 Related Work

To the best of our knowledge, there exists no large-scale analysis which evaluates
security features as well as weaknesses in a broad range of websites. Nonetheless,

1 http://www.xssed.com

http://www.xssed.com
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several evaluations on the presence of specific vulnerabilities in web applications
have been carried out. For instance, WhiteHat Security evaluates, on a yearly
basis, the data on several types of vulnerabilities they collect from their custom-
ers [31]. Contrastingly to our research, their security analysis has the permission
of their clients and is thus more aggressive, which enables them to find additional
types of vulnerabilities, such as SQL Injections and XSS errors.

Another large-scale evaluation of websites in a specific demographic area is
presented in research by Alarifi et al. [8], that evaluates the security of popular
Arabic websites. Their analysis explores the presence of phishing and malware
pages in 7,000 domains. To detect malicious scripts hosted on webpages, they
make use of APIs offered by known website scanners. Kals et al. developed the
SecuBat tool, which was used for an automated detection of XSS and SQL Injec-
tion vulnerabilities in a selection of 100 security-sensitive websites [16]. Similarly,
Zeller et al. performed an analysis on the presence of CSRF vulnerabilities in
popular websites [32], finding vulnerabilities in four major websites. Nikifora-
kis et al. presented a large-scale analysis of remote JavaScript inclusions [21].
Additionally, in their paper, they also proposed a metric called Quality of Main-
tenance (QoM) to characterize a website’s security consciousness. Their QoM
adopts several features such as HttpOnly cookies, X-Frame-Options, that are
also included in our assessment. As earlier discussed, the presence of these de-
fensive mechanisms give an indication for a website’s security.

Vasek and Moore found that some website features, such as server software
and CMSs, can serve as positive risk factors for webserver compromise [29]. Their
study shows that some server types and CMS types are more risky than others
(e.g., servers running Apache and Ngnix are more likely to be compromised than
those running Microsoft IIS).

Lekies et al. performed a large-scale detection of DOM-based XSS vulnerabil-
ities in the top 5,000 Alexa websites [17]. In their evaluation, they found a total
of 6,167 unique vulnerabilities distributed over 480 domains, demonstrating that
9.6% of the evaluated websites are vulnerable to this type of attack. Son et al.
analyzed the implementation of the HTML5 postMessagemechanism in the Al-
exa top 10,000 [26]. They found that 84 popular websites were exploitable to
several attacks, including XSS and content injection, due to the lack of proper
checks in the cross-origin communication mechanism.

A feature that we did not include in our study was the security of a site’s
hosting provider. Sites situated on shared hosting environments are expected to
be at a greater risk of compromise, since a vulnerability of another co-located
tenant can be used to attack the entire server. Canali et al. recently investigated
the ability of shared hosting providers to detect compromised sites hosted on
their servers [12], finding that the vast majority of providers cannot detect even
the most straightforward attacks.

7 Conclusion

Websites have become the main target for numerous attacks originating
from adversaries who attempt to monetize a user’s sensitive data and resources.
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In order to protect themselves from this threat, website operators are provided
with several security mechanisms to defend against a wide range of vulnerabil-
ities. In this paper, we evaluated the usage of security features, as well as the
presence of vulnerabilities and weaknesses, in 22,851 EU websites. We found
that a large part of the evaluated websites showed weaknesses, and some even
contained severe vulnerabilities. Moreover, we discovered that the state of se-
curity of a website is unrelated to its demographic characteristics. In spite the
fact that popular websites are more likely to prevent attacks by implementing
security features, we found that the presence of weaknesses and vulnerabilities
is unrelated to a site’s popularity. We hope that our study can inspire similar
systems at a country- or sector-level, and help the owners of sites to discover
and prioritize the adoption of security mechanisms, and the correction of existing
vulnerabilities.
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Abstract. Cloud computing’s rapid development has favored the emer-
gence of many other technologies like OpenStack, which is the most pop-
ular open-source cloud management software. OpenStack has received a
lot of praise lately thanks to its ease of use and its vibrant community,
but it has also started garnering attention in the national vulnerability
database. Furthermore, OpenStack has a logical architecture in which,
the degree of interconnectedness within and between the components is
a source of many security concerns. To prevent the damages that can
be caused by the combination of these security issues, we proposed a
vulnerability tree security analysis of OpenStack’s logical architecture
that allowed us to generate ready-to-use vulnerability trees of the major
services or components of the architecture. We also suggested an amend-
ment of OpenStack’s vulnerability naming, because the current naming
does not cope well with our proposal.

Keywords: OpenStack, Vulnerability Tree, security.

1 Introduction

Cloud computing has burgeoned to become the dominant paradigm in Informa-
tion Technology (IT). The rapid development of cloud computing has permitted
the emergence of other important paradigms in IT like cloud management stacks.
A cloud management stack is a set of components that work together to facil-
itate the management of a cloud infrastructure system. A cloud management
stack is, at least, composed of the following components: an external applica-
tion programming interface (API) that assures the communication between the
cloud services and external users; a compute service that takes in charge the
management of the virtual machines (VMs) on the host machines in terms of
features like creation, deletion or suspension of VMs; an image service for man-
aging the deployment or registration of VM images; a volume service that maps
persistent storage used by the VMs; and a network service that helps with the
management of the networks used by the VMs. In addition to the intrinsic afore-
mentioned components, cloud management stacks rely on some external services
that are critical for functioning. Among those external services, the hypervisor is
regarded as the most important. Popular cloud computing management stacks
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include OpenStack [1], OpenNebula [3], CloudStack [4], or again Eucalyptus [2].
In this paper, our focus is on OpenStack because it is the most deployed cloud
management software, plus it has a vibrant community that provides all the
necessary documentation. People in the academia and the industry are profusely
using OpenStack to deploy their private clouds. However, with its rapid adop-
tion, OpenStack is also rapidly beginning to garner attention in the National
Vulnerability Database (NVD) [6] as its number of vulnerabilities continues to
increase as schematised in Figure 1. Elsewhere, OpenStack has an architecture
with a high dependency between the different components, which means that an
attack in a particular component could spread out to the other interconnected
components. To overcome this issue, we propose to perform a fault (or vulnera-
bility) tree security analysis of OpenStack’s logical architecture. In our study, we
were able to generate the different security vulnerability trees of the components
that compose the architecture, and we were also able to make some recommen-
dations on a better nomenclature of OpenStack’s vulnerabilities. Because with
the current nomenclature format, we are not able to fully evaluate the security
of the architecture. In other words, this research paper lays the foundations of
the security evaluation of OpenStack by providing security vulnerability trees
that are ready to be used given the right vulnerability nomenclature.

The remainder of the paper is structured as follows. In Section 2, we detail
the very few related works that we have found in this field. Section 3 contains
our motivation and the proposal. Section 4 is entirely dedicated to the security
analysis of the architecture. In Section 5, we propose a discussion of our findings
and give a hint of our future work. Section 6 concludes the paper.

2 Related Work

We have to confess that most of the work related to this study comes from
reliability system analysis. Indeed, we make use of the fault tree to perform our
security analysis, which is similar to applying fault tree in a highly critical system
like nuclear power plant system. To our knownledge, besides Fall et al. [10], we
are not aware of a similar work that has been conducted in cloud computing,
particularly in OpenStack’s architecture. Nevertheless, there is some work in
OpenStack’s security that we can cite as reference.

Zhai el al. [12] produced the closest work to this research. They proposed a
structural reliability auditing (SRA) technique that permits to quantify the vul-
nerabilities of interdependent infrastructures in a cloud platform. The operating
of the system is divided in three steps: infrastructure dependency data collection,
construction of a fault tree based on the gathered data, and analysis of the fault
tree to estimate the probability of failure of the top event. They demonstrated
the practicality of their system by implementing it, which also showed the lack
of privacy measures for the data that is being used. Xiao et al. [13] fixed the
issue by adding a privacy aspect to the SRA system. They re-engineered the
3-step process of [12]’work by adding privacy to each step and using Secure
Multi-Party Computation (SMPC). They were able to evaluate an implemented
version of their proposal on the Sharemind SecretC platform.
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Khan et al. [14] proposed an OpenId authentication mechanism for OpenStack.
in their system, OpenId provides authentication for the user solely while the cloud
provider manages the access control policies. Sasko et al. [15] performed an Open-
Stack security assessment. They set up a system running OpenStack with virtual
machines that separetely have Ubuntu, CentOS, Fedora and Windows operating
systems. After running a vulnerability scan, they concluded that the later operat-
ing system was more subject to vulnerabilities than the others.

On the same spirit, Donevski et al. [16] proposed a security assessment for
virtual machines in open source clouds. They also used openstack and performed
their assessment in two different network situations for the virtual machines:
same IP address for floating and fixed IPs, and two different IPs for both. They
were able to label out different test cases that gave different results that they
classified qualitatively and quantitatively by using the CVSS.

Aryan et al. [17] evaluated the degree of compromission of a cloud environment
knowing that, at least, one of the components is compromised.

In the other hand, despite the fact that it is out of the scope of this research,
we wanted to mention that Fault Mode and Effects Analysis (FMEA) [19] and
Root Cause Analysis (RCA) [20] compete with Fault Tree Analysis (FTA) [7] on
modeling failures in a given system. We prefere FTA because we contend that
it is more suitable for our research.

3 Motivation and Approach

OpenStack is the most popular open-source cloud computing management plat-
form. Its latest release, HAVANA whose architecture is considered in this work,
has nine different services which are as follows:

– Dashboard: also called Horizon, provides a web portal for the management
of the underlying OpenStack services.

– Compute: or Nova, facilitates the management of OpenStack’s instances;
– Networking: codenamed neutron, this service, not only permits network con-

nection between OpenStack’s services, but also allows users to configure net-
works by putting an API into their disposition;

– Object Storage: helps with the storage and retrieval of arbitrary unstructured
data objects. It is also known as Swift.

– Block Storage: or Cinder, provisions persistent block storage to running in-
stances;

– Identity Service: is responsible of the identity management (authentication,
authorization, endpoints) for the other OpenStack’s services. This service is
codenamed Keystone.

– Image Service: codenamed Glance, takes in charge the storage and the re-
trieval of virtual machine disk images;

– Telemetry: codenamed Ceilometer, helps monitoring and metering the busi-
ness aspects of OpenStack like billing or benchmarking.

– Orchestration: or Heat, facilitates the orchestration of multiple composite
cloud applications.
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OpenStack has a vibrant community that keeps on proposing new services to
further ease the management of a cloud system. Additionally, many univer-
sities and small businesses are deploying OpenStack, which reflects the good
dynamism of its adoption. However, recently we have noticed an accumulation
of OpenStack vulnerabilities in the National Vulnerability Database (NDV) [6].
Indeed, OpenStack has a total of 75 vulnerabilities that have scores ranging
from 7.5 to 1.9 in the Common Vulnerability Scoring System (CVSS) [5]. Fig-
ure 1 gives a visual describtion of the former statement. Furthermore, the logical
architecture of OpenStack, described in Figure 2, reveals a deep level of inter-
connectedness between its different components (services) and subcomponents.
We contend that these two situations, mixed together, could jeopardize the se-
curity of the cloud systems of the different adopters of OpenStack. Due to this
level of interconnectedness, a successful attack in one component can turn out
to be a successful attack on the entire architecture (Figure 2). We propose a
fault or vulnerability security analysis of OpenStack’s logical architecture. Fault
tree [7,8] is overwhelmingly used to quantify the faultiness of mission critical
systems like nuclear power plant or aircraft space systems. It is so because it
has demonstrated its effectiveness as a tool capable of generating a quantifiable
model that can help engineers to take precautionary measures to anticipate on
future catastrophes. In our paper [10], we demonstrated how useful fault tree
analysis could be once applied in a cloud infrastructure. The amendment we
made is to replace fault by vulnerability in order to be more inline with se-
curity. In a nutshell, in this research, we are intrigued to discover the results
of a fault/vulnerability tree analysis of OpenStack’s logical architecture. In the
following subsections, we describe the differents needs to accomplish our goal.

Fig. 1. OpenStack Presence in the NVD
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Fig. 2. OpenStack Logical Architechture [1]

3.1 NVD and CVSS

The National Vulnerability Database is a publicly available database for com-
puter related vulnerabilities. It is a property of the United States (US) gov-
ernment, which manages it throughout the U.S. National institute of Science
and Technology (NIST) computer security division. The NVD is also used by
the U.S. government as content repository for the Security Content Automation
Protocol (SCAP). The primary sources of the NVD are as follows: Vulnerability
Search Engine (Common Vulnerability Exposure (CVE) and CCE misconfigura-
tions), National Checklist Program (automatable security configuration guidance
in XCCDF and OVAL), SCAP and SCAP compatible tools, Product dictionary
(CPE), Common vulnerability Scoring System for impact metrics, and Common
Weakness Enumeration (CWE).

The Common Vulnerability Scoring System (CVSS) is a vendor-neutral open
source vulnerability scoring system. It was established to help organizations to
efficiently plan their responses regarding security vulnerabilities. The CVSS is
comprised of three metric groups classified as base, temporal, and environmental.
The base metric group contains the quintessential characteristics of a vulnera-
bility. The temporal metric group is used for non-constant characteristics of a
vulnerability, and the environmental metric group defines the characteristics of
a vulnerability that are tightly related to the user’s environment. The temporal
and environmental base metric groups intervene after a vulnerability is exploited,
therefore they do not feature prominently in our research. The remaining metric
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group regroups essential metrics that are used to compute the score of a vul-
nerability: Access Vector (AV), Access Complexity (AC), Authentication (Au),
Confidentiality Impact (C), Integrity Impact (I), and Availability Impact (A).

3.2 Fault Tree Analysis

A fault tree is a basic tool used as part of a quantitative analysis of a system.
It gives rise to a pictorial representation of an undesirable event in a system
in Boolean logic. The analysis of the fault tree is the process of developing a
deterministic description of the occurrence of an undesirable event, the top event,
in terms of the occurrence or non-occurrence of other events called intermediate
events. Furthermore, the intermediate events are deeply explored until the basic
events, which represent the lowest events of the tree, are reached. Each node in a
fault tree represents either an event or a logic gate. The logic gates determine the
logical relationship among the events. The events can be fundamentally different
but should belong to the same family, i.e., when the top event is a successful
attack on an infrastructure, the basics events are successful attacks on some of
the components that constitute the infrastructure. Additionally, since fault tree
is an expression in Boolean logic, its usage implies that the events are binary, that
is, true or false. Fault tree construction requires different symbols and notations,
which, some of them are illustrated in Figure 3. Practically, the use of various
gates can be helpful to construct a well-detailed fault tree but, in principle, it is
possible to construct any fault tree from the combination of AND and OR gates.
Figure 4 is an example of fault tree. Hereafter, we provide some definitions that
are necessary for a better comprehension of fault tree analysis.

Definition 1. A cut set is a collection of basic
events such that if these events oc-
cur together then the top event will
certainly occur.

Definition 2. : A minimal cut set is a collection of
basic events forming a cut set such
that if any of the basic events is re-
moved, then the remaining set is no
longer a cut set.

Definition 3. : A path set is a collection of ba-
sic events such that if none of these
events occur then the top event will
certainly not occur.

Definition 4. : A minimal path set is a path set
such that if any of the events is re-
moved then the remaining will no
longer be a path set.
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The minimal cut and path sets are primordial for quantifying the probability
of the top event. Suppose that we have a fault tree representation with a top
event T and several cut sets C1, . . . , Cn. From the aforementioned definitions,
we know that:

T = C1 ∪ C2 ∪ ... ∪ Cn. (1)

By applying the inclusion-exclusion law of probability [9] to Equation 1, we
obtain Equation 3:

P [T ] = P (C1 ∪ C2 ∪ ... ∪ Cn). (2)

P [T ] =

n∑

i=1

P [Ci]−
∑

i<j<k

P [Ci ∩ Cj ∩ Ck]− ...+ (−1)n+1P [C1 ∩ C2 ∩ ... ∩ Cn]. (3)

In the subsequent security analysis, we will use this formulation for the different
components of OpenStack’s architecture. We will also write vulnerability instead
of fault tree in order to be more in line with security but, the intrinsic concepts
of fault tree remain intacts. Finally, we will consider the CVSS score of the
vulnerabilities as P[Ci].

4 Security Analysis

This section is the quintessential part of this paper. Within it, we will elucidate
the security interconnections that exist in OpenStack’s logical architecture.

Figure 2 depicts OpenStack’s logical architecture. This architecture is com-
prised of seven main components (note that we use component instead of service
to fit more into the spirit of vulnerability tree analysis). We use that architecture
to run our security evaluation mechanism, which consists of using vulnerability
trees into the different components of OpenStack. The architecture helps us un-
derstand the degree of interconnectedness that exists between the different com-
ponents. That interconnectedness can be dangerous to the entire architecture as
it gives the possibility for an attacker, who succeeds to exploit a vulnerability
in one component, to then, as a domino effect, proceed and exploit the other
components because of the tight relations. The background of the main com-
ponents has already been clarified in Section 3. We mostly used the Boolean
operator OR to construct our vulnerability trees. That choice is made to give
ourselves more flexibility. The use of other Boolean operators like AND, as in-
stance, would suggest a very strong dependency between the subcomponents,
which implies that the failure of the entire component happens if and only if
all the subcomponents are vulnerable. Nevertheless, we consider the Boolean
operator used in our analysis to be inclusive. We made the assumption that all
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Basic Event
An initiating fault requiring no further development

Undeveloped Event
An event which is not developed further, either because it is considered
unnecessary, or because insufficient information is available

Intermediate Event
An event arising from the combination of other events

AND Gate
All input events must occur for the output to occur

OR Gate
The occurrence of one or more input events will cause the output to occur

Transfer in
The three is developed further elsewhere.

Transfer out
Indicates the place where the development takes place

INHIBIT Gate
Output fault occurs if the single input fault occurs in the presence of an 
enabling condition.

Fig. 3. Non Exhaustive List of Standard Fault Tree Symbols

the components (respectively subcomponents) that have a direct connection to
the Internet (the end users) are susceptible of being attacked. That assumption
ensued in the construction of 7 vulnerability trees that we examine hereafter.
Due to space limitations and the fact that the process of evaluation is similar,
we only provide details of the top events for two cases. A clear comprehension
of Section 3 allows a better understanding of this section.

4.1 Security Evaluation of Swift

Swift or OpenStack Object Store, is intrinsically composed of seven subcom-
ponents that are named: memcached, account, container, objetct, account DB,
container DB, and Object DB. The three last mentioned subcomponents are
respectively bound to the three other subcomponents that precede them. The
resulting vulnerability tree is described in Figure 4. As Swift is attached to
Keystone, the vulnerability tree can be developed further in respect to that
attachment.
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Swift-proxy 
vulnerable

Account 
vulnerable 

Container 
vulnerable

Object 
vulnerable

Account DB 
vulnerable

Object store 
vulnerable

Container DB 
vulnerable

Memcached 
vulnerable

Fig. 4. Swift Vulnerability Tree

4.2 Security Evaluation of Glance

Glance is very simple in its composition, consequently the vulnerability tree,
which is schematised in Figure 5, is easy to generate. Glance has connections
with Swift, Horizon, Nova, and Keystone. As a result, the tree can be further
expanded in any of those directions.

4.3 Security Evaluation of Nova

OpenStack Compute or Nova turns out to be the most complicated component
of OpenStack in terms of the high level of interconnection between its contents
plus the fact that it can be accessed from the Internet in two ways. We have
constructed one vulnerability tree that describes the former situation. The sub-
component nova-api, which we consider as the main subcomponent, is linked
to the subcomponents nova-database, Queue, and nova-cert/objectstore. Queue,
in its turn, is linked to the subcomponents nova-consoleauth, nova-scheduler,
nova-conductor, nova-compute, nova-console. The fault tree that resumes this
narrative is depicted in Figure 6. We indicate that the tree can be extrapolated
due the connections that Nova has with other components.

4.4 Security Evaluation of Cinder

The vulnerability tree of OpenStack Block Storage, also known as Cinder, is
simple to construct and is represented in FIgure 7. Cinder is composed of the
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Glance 
registry 

vulnerable

Glance 
database 

vulnerable

Glance-api 
vulnerable

Fig. 5. Glance Vulnerability Tree

subcomponents cinder-api, cinder volume, volume provider, cinder database and
cinder scheduler. The tree can be developed further as Cinder has connections
with Nova and Keystone.

4.5 Security Evaluation of Neutron

OpenStack Network Service, codenamed Neutron, also has a simple composition
that facilitates the construction of the vulnerability tree showed in Figure 8.
Neutron has connections with Horizon, Nova, and Keystone. Consequently, the
tree can be extended further towards those components.

4.6 Security Evaluation of Keystone

Keystone, which is the security guard of OpenStack, is composed of the subcom-
ponents keystone, tocken backend, catalog backend, policy backend, and identity
backend. The vulnerability tree is described in Figure 9. Keystone is connected
to all the other components thus, the three is subject to be developed further to
accomplish a deeper analysis. We denote the top event (Keystone vulnerable) K,
the basics events: Token backen vulnerable, Catalog backen vulnerable, Policy
backend vulnerable, and Identity backend vulnerable, are respectively denoted
K1, K2, K3, and K4. By following the details in Subsection 3.2, we are able to
derive the security evaluation, which is given by Equation 4.

P [K] = P [K1] + P [K2] + P [K3] + P [K4]− P [K1]P [K2]

−P [K1]P [K3]− P [K1]P [K4]− P [K2]P [K3]

−P [K2]P [K4]− P [K3]P [K4] + P [K1]P [K2]P [K3]

+P [K1]P [K2]P [K3] + P [K1]P [K2]P [K4] +

P [K2]P [K3]P [K4]− P [K1]P [K2]P [K3]P [K4]. (4)
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Nova-api 
vulnerable

Nova-
scheduler 
vulnerable

Nova-cert / object 
store vulnerable

Queue 
vulnerable

Nova database 
vulnerable

Nova console 
vulnerable

Nova-
consoleauth 
vulnerable

Nova-
conductor 
vulnerable

Nova compute 
vulnerable

Hypervisor 
vulnerable

Fig. 6. Nova Vulnerability Tree

Let us remind that the numerical value of P[K1], as instance, is the score of the
vulnerability in question in the CVSS. Unfortunately, we can not have a use case
because of the vulnerability issue ( 5) we encountered in this study.

4.7 Security Evaluation of Horizon

Horizon or OpenStack’s dashboard is very intriguing because it does not have any
particular subcomponent but is linked to all the other major components, which
makes it one of the most critical component of the architecture. Its vulnerability
tree is depicted in Figure 10. All the events are deemed intermediate because they
could be extended further. Let’s denote the top event (Horizon vulnerable) by H.
The intermediate events Swift vulnerable, Glance vulnerable, Nova vulnerable,
Cinder vulnerable, Neutron vulnerable, and Keystone vulnerable are respectively
denoted S, G, No, C, Ne, and K. The ensuing security evaluation is given in
Equation 5. As in the previous subsection, Equation 5 can not be used with the
current naming of OpenStack’s vulnerabilities.

Let us remind that P[S], P[G], P[No], P[C], P[Ne], and P[K] respectively
represents the security evaluation of Swift, Glance, Nova, Cinder, Neutron, and
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Cinder-api 
vulnerable

Cinder-volume 
vulnerable

Volume 
provider 

vulnerable

Cinder-scheduler 
vulnerable

Cinder database 
vulnerable

i
e

Fig. 7. Cinder Vulnerability Tree

Keystone. The security evaluation of Horizon, P[H], can be seen as the security
evaluation of the entire OpenStack logical architecture.

P [H ] = P [S] + P [G] + P [No] + P [C] + P [Ne] + P [K]− P [S]P [G]−
P [S]P [No]− P [S]P [C]− P [S]P [Ne]− P [S]P [K]− P [G]P [No] −
P [G]P [C]− P [G]P [Ne]− P [G]P [K]− P [No]P [C]− P [No]P [Ne] −
P [No]P [K] − P [C]P [Ne] − P [C]P [K] − P [Ne]P [K] + P [S]P [G]P [No] +

P [S]P [G]P [C] + P [S]P [G]P [Ne] + P [S]P [G]P [K] + P [S]P [No]P [C] +

P [S]P [No]P [Ne] + P [S]P [No]P [K] + P [S]P [C]P [Ne] +

P [S]P [C]P [K] + P [S]P [Ne]P [K] + P [G]P [No]P [C] + P [G]P [No]P [Ne] +

P [G]P [No]P [K] + P [G]P [C]P [Ne] + P [G]P [C]P [K] + P [G]P [Ne]P [K] +

P [No]P [C]P [Ne] + P [No]P [C]P [K] + P [No]P [Ne]P [K] + P [C]P [Ne]P [K] −
P [S]P [G]P [No]P [C] − P [S]P [G]P [No]P [Ne] − P [S]P [G]P [No]P [K] −
P [S]P [No]P [C]P [Ne] − P [S]P [No]P [C]P [K] − P [S]P [C]P [Ne]P [K] −
P [G]P [No]P [C]P [Ne] − P [G]P [No]P [C]P [K] −
P [No]P [C]P [Ne]P [K] + P [S]P [G]P [No]P [C]P [Ne] +

P [S]P [G]P [No]P [C]P [K] + P [G]P [No]P [C]P [Ne]P [K] −
P [S]P [G]P [No]P [C]P [Ne]P [K]. (5)
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Neutron-server 
vulnerable

Neutron agent(s)
vulnerable

Queue 
vulnerable

Neutron plugin(s) 
vulnerable

Neutron 
database 

vulnerable

Network 
provider 

vulnerable

Fig. 8. Neutron Vulnerability Tree

Keystone 
vulnerable

Token 
backend 

vulnerable

Catalog 
backend 

vulnerable

Policy 
backend 

vulnerable

Identity 
backend 

vulnerable

e

Fig. 9. Keystone Vulnerability Tree

4.8 In a Nutshell

Overall, the security analysis of OpenStack’s logical architecture is a daunting
task. One must know the intricacies of each component and the different liaisons
between the components. We decided to use the Boolean operator OR to give
ourselves more room to flexibly operate the security analysis but a deeper anal-
ysis of the architecture can yield a more on-the-point security analysis by using
more precise Boolean operators. . Some components contain subcomponents that
have redundant connections with other subcomponents. That situation was hard
to design in the fault tree, and we forcibly have to ignore that redundancy while
generating the likelihood of the top event.
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Swift 
vulnerable

Glance 
vulnerable

Neutron 
vulnerable

Keystone 
vulnerable

Horizon 
vulnerable

Cinder 
vulnerable

Nova 
vulnerable

Fig. 10. Horizon Vulnerability Tree

Fig. 11. Current Vulnerability Naming of OpenStack

Fig. 12. Proposed Nomenclature for OpenStack Vulnerabilities

5 Discussion and Future Work

In the previous section, we have deployed our security analysis mechanism and
generated the different vulnerability trees that could allow someone to quantify
the security of OpenStack depending on how many components she wants to use.
One of the first issues we have noticed is the complication of the interconnect-
edness of the components. Indeed, if they are taken individually, we can affirm
that the vulnerability trees developed in the previous section are corrects. But
when we take them collectively, we have some components that come back re-
dundantly, hence compromising our vulnerability tree. The result of the security
evaluation in this case will not be optimal because we do not really know how
that redundancy is impacting the evaluation.

The other point of contention is the nomenclature of the vulnerabilities. In
our security evaluation, the equations depend heavily on the subcomponents.
Whereas the naming of the vulnerabilities in the NVD does not give any indica-
tion on which subcomponent was affected by the vulnerability. The descriptions
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of OpenStack’s vulnerabilities often only indicate the components that are vul-
nerable (Figure 11). The naming of the vulnerabilities is effectuated by using the
Naming specification of the Common Platform Enumeration (CPE) [11]. CPE is
a standard that is used for the identification and the description of classes of ap-
plications, operating systems, and hardware devices. The latest version of CPE
(CPE 2.3) uses the well-formed CPE name (WFN), which is an abstract logical
construction, to represent the name of the classes of products. There are two
methods for binding WFNs into machine-readable encodings: Uniform Resource
Identifier (URI) binding and formatted string binding. URI binding is used for
backward compatibility with CPE 2.2 [18]; that is why it has monopolistic pres-
ence in the NVD. Based on these facts, the equations for each component would
be ’mono-parametric’. Additionally, the equation of the entire architecture will
be simpler yet hiding many information i.e., it will not be accurate. Therefore, a
new way of naming OpenStack’s vulnerabilities is needed. That way should take
into account all the different subcomponents that compose OpenStack. As fu-
ture work, we will propose to use a nomenclature system that is adequate to our
security evaluation. The formatted string binding appears to be a good choice.
Figure 12 gives a hint on what a better nomenclature for OpenStack’s vulnera-
bilities, by using the formatted string binding, should look like. But, the intrinsic
definitition of the CPE forbids the usage of its binding methods to name a class
of product in a very detailed way. What means that a new binding method is
definitely needed for our proposal.

Our last discussion point revolves around the case of vulnerability masking.
Indeed, one might argue that in case of networked-system the vulnerabilities
might not factor in i.e. the security evaluation is useless in that situation. That
theory is true that is why in the introduction of section 4, we made the assump-
tion that only the Internet-facing components are considered in our security
evaluation. An Internet-facing component, in our research, is a component that
has a direct connection to the Internet there is no intermediary infrastructure
like a firewall.

Finally, the architecture we considered in this work does not contain all the
services of OpenStack. Indeed, Heat and Ceilometer are not part of the archi-
tecture consequently, we did not consider them in our security evaluation.

6 Conclusions

We proposed a vulnerability tree security evaluation of OpenStack’s logical ar-
chitecture. By applying our methology, we were able to generate ready-to-use
vulnerability trees of the main components of the architecture. Unfortunately,
we were not able to conduct the security analysis from inception to completion
due to a nomenclature issue of OpenStack’s vulnerabilities – nomenclature that
does not consider the subcomponents of the major services of OpenStack. That
issue has serendipituously opened for us doors to new research horizons on the
naming of OpenStack’s vulnerabilities.
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Abstract. Location-based services are increasingly used in our daily activities.
In current services, users however have to give up their location privacy in order
to acquire the service.

The literature features a large number of contributions which aim at enhancing
user privacy in location-based services. Most of these contributions obfuscate the
locations of users using spatial and/or temporal cloaking in order to provide k-
anonymity. Although such schemes can indeed strengthen the location privacy of
users, they often decrease the service quality and do not necessarily prevent the
possible tracking of user movements (i.e., direction, trajectory, velocity). With
the rise of Geofencing applications, tracking of movements becomes more evi-
dent since, in these settings, the service provider is not only requesting a single
location of the user, but requires the movement vectors of users to determine
whether the user has entered/exited a Geofence of interest.

In this paper, we propose a novel solution, PrivLoc, which enables the privacy-
preserving outsourcing of Geofencing and location-based services to the cloud
without leaking any meaningful information about the location, trajectory, and ve-
locity of the users. Notably, PrivLoc enables an efficient and privacy-preserving
intersection of movement vectors with any polygon of interest, leveraging func-
tionality from existing Geofencing services or spatial databases. We analyze the
security and privacy provisions of PrivLoc and we evaluate the performance of
our scheme by means of implementation. Our results show that the performance
overhead introduced by PrivLoc can be largely tolerated in realistic deployment
settings.

Keywords: Privacy, Geofencing, location tracking, location-based services.

1 Introduction

Location-based services (e.g., Foursquare [1] and Yelp [5]) are gaining increasing im-
portance recently. Several applications enable users (e.g., using mobile devices) to dis-
cover and communicate their locations to a server in the cloud; in turn, the server uses
this information to return data relevant at the users’ locations. For instance, a number
of existing services can only be acquired by users who are located within a specific
geographical area; these include banking services, Youtube, and content delivery ser-
vices, among many others. Location information also proves to be useful for a number
of security-critical services such as police investigations, e-voting, etc.
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However, while many devices (e.g., smartphones, tablets) are capable of discovering
and reporting their locations, a considerable number of users shy away from reporting
their locations in the fear of being tracked or profiled by service providers [7]. This
problem is even more evident when the service provider wishes to outsource his spatial
services to the cloud (e.g., [4]). Service providers have considerable incentives to rely on
hosted services in the cloud, since this enables them to maximize the availability of the
service while minimizing the costs for acquisition of hardware and operation. Indeed,
the cloud offers a low barrier for small and medium enterprises to offer location-based
services and enables its clients to avoid huge upfront investments to accommodate for
peak usage. However, hosting the spatial service in the cloud raises serious privacy
concerns with respect to the leakage of client location information to the cloud provider.

The literature comprises a plethora of contributions which strengthen the privacy
of users in location-based services. Most of these contributions focus on anonymizing
user locations by means of a trusted location anonymizer server [6, 15, 20, 22, 34]. Af-
ter registering with the service, users can send their exact locations to the server, which
“blurs” these location reports and sends the cloaked location to a remote database server.
The server also filters the database’s response and subsequently sends the exact answers
back to the users when needed. Existing location anonymization techniques can be cate-
gorized according to three different approaches: (i) inserting false dummies [21], where
the server sends n location updates for each location reported by the user ((n − 1) re-
ports of which are dummy), (ii) location blurring [6, 10, 15, 20, 33] where the location
of the user is blurred into a spatial area (using spatial or temporal cloaking), and (iii)
landmark obfuscation [19] where the server sends the location of a near-by landmark
instead of the location of the user.

While these techniques can provide users with k-anonymity guarantees, existing
techniques (i) often require changes to the database server in order to efficiently process
the anonymized queries, or (ii) reduce the accuracy of the location-based service (e.g.,
when relying on spatial cloaking), or (iii) do not prevent location tracking [22]. Loca-
tion tracking could be performed e.g., by inferring the direction of the movement/path
followed by the user, the velocity of the user, etc., which might de-anonymize users.
Such information leakage is particularity damaging in location-based services where
service providers are interested in the events of users entering/exiting a given area (e.g.,
Geofencing applications [2, 3, 23, 28, 29]). These applications are gaining increasing
importance for e.g., targeted advertisements, and typically take as inputs vectors of
movements performed by users and enable service providers to extract various statis-
tics about their customers, such as visit durations, start, end, etc.

In this paper, we address this problem, and we propose a novel solution, PrivLoc,
which efficiently enables the privacy-preserving use of Geofencing services in the cloud
without incurring any modifications to spatial indexing techniques, and without leak-
ing any meaningful information about the location, trajectory, and/or velocity of the
users to the cloud provider. More specifically, we consider a typical Geofencing setting,
whereby a spatial database hosted on the cloud receives regular movement vectors from
users, and checks if these movements cross a Geofenced area which has been subscribed
to within the database. If so, the provider issues a notification informing the appropri-
ate subscriber that a user has exited/entered the subscribed area of interest. Note that
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this can be achieved in existing spatial databases by querying for intersection between
the user movement vector and the Geofenced area. PrivLoc leverages the presence of
a private trusted service which performs efficient specially-crafted transformations of
location reports to interface with the cloud-hosted Geofencing service without expos-
ing the privacy of users. As such, PrivLoc can be used by companies and individu-
als to prevent information leakage towards spatial databases hosted in clouds, such as
Google, Amazon, etc. In this respect, PrivLoc enables a privacy-preserving intersection
of movement vectors with any polygon of interest, while leveraging functionality from
existing cloud-based spatial databases. We analyze the security and privacy provisions
of PrivLoc and we evaluate its performance in a realistic setting. Our results show that
our scheme scales well with the number of users and subscriptions in the system and
does not incur considerable computational overhead on the trusted server.

The remainder of the paper is organized as follows. In Section 2, we outline our
system and adversarial model. In Section 3, we introduce and analyze our solution,
PrivLoc, which efficiently enables users to acquire privacy-preserving Geofencing ser-
vices hosted in the cloud. We evaluate its performance by means of an implementation
in Section 4. In Section 5, we overview related work in the area, and we conclude the
paper in Section 6.

2 Model

In this section, we describe our system and adversarial model, and we outline the secu-
rity requirements that our solution should satisfy.

2.1 Spatial Databases

Spatial databases are instances of databases optimized to store and query data which
represents objects defined in a geometric space. Examples of spatial databases include
MongoDB, MySQL, PostgreSQL, among others. To efficiently handle and store spatial
data, spatial databases rely on a Spatial Database Management System (SDBMS) which
extends upon the capabilities of a traditional database management system. SDBMS
typically supports three types of queries: (i) set operators (e.g., disjoint, touch, con-
tains), (ii) spatial analysis (e.g., distance, intersection), and (iii) other basic functions
such as envelope, boundary, etc. This is efficiently achieved through the reliance on
spatial indices (e.g., R-tree, X-tree, GiST). For instance, R-trees [18] represent objects
with their minimum bounding rectangle in the next higher level of the tree. The main
intuition here is that a query which does not intersect the bounding rectangle also cannot
intersect any of the contained objects.

While there are a number of spatial indexing techniques, all techniques require the
database server to check a series of coordinate equalities and inequalities in order to
determine its spatial index. This clearly poses a problem when dealing with encrypted
data objects. For instance, standard encryption of the coordinate system with a seman-
tically secure cryptosystem such as AES, would not preserve any relationship (i.e., to
check for equality/inequality) between two points in the coordinate system. While this
would be ideal from a cryptographic point of view, it would not be useful for spatial
databases, since no “efficient” indexing would be possible on objects.
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2.2 System Model

We consider the following system: we assume the existence of mobile nodes M (e.g.,
mobile devices, sensors) which “publish” periodic location reports to a Geofencing ser-
vice that is hosted in the cloud and consists of multiple database servers. In the sequel,
we denote byDi the i-th database server; for clarity of presentation, we also denote byD
the “logical” database comprising the various database servers. For simplicity and with-
out loss of generality, we assume a 2D bounded area where the nodes can freely move.
Each node Mi ∈ M periodically sends location beacons to the database servers. These
beacons consist of tuples of the form 〈IDi,Loci〉, where IDi is an identifier of Mi, Loci
is a vector of the last movement performed by Mi (e.g., Loc could comprise the last and
the current coordinates of Mi). We assume that the movement of node Mi is character-
ized by a velocity distribution Vi, and a path distribution Pi. For simplicity and without
loss of generality, we assume that the movement of Mi between two reported coordi-
nates corresponds to a straight line. Current Geofencing applications require indeed that
nodes report their last and the current coordinates; by doing so, the Geofencing server
can be a stateless server which does not memorize the last coordinate of each node. As
we show in this paper, this also serves to increase the privacy of the entire system.

We assume that D offers location-based services to customers, denoted in the sequel
by S. Here, we assume that customers can “subscribe” to events that occur within a
specific sub-area of the map for instance, customers want to be notified when users
enter/exit their subscribed Geofences.

In the sequel, we denote by Si the ith subscriber in S; upon receiving a location
report from node Mi, D checks if Mi’s reported coordinates are located within a sub-
scribed area. More specifically, D relies on existing spatial database functionality which
can efficiently compute the intersection between a line and polygons. If the movement
vector of a node results in non-empty intersection, D issues a notification message to
Sk (e.g., using a URL of Sk stored at D).

2.3 Adversarial Model and Security Requirements

Throughout our analysis, we assume that the nodes are trusted to report their locations
correctly. That is, we assume that these devices cannot be compromised by the adver-
sary. Moreover, we assume that the cloud providers (operating the database servers) are
honest-but-curious. More specifically, we assume that each database server will cor-
rectly follow the protocol (i.e., authenticate the nodes, output correct notifications) but
is interested in acquiring information about the locations of the nodes in the system, and
about the queries that are issued by the customers. Ideally, different database servers do
not collude; this assumption especially holds when the database servers are hosted by
different clouds (e.g., Amazon, Google). Moreover, we assume that the adversary can-
not physically track the mobile users to acquire information about their movements.
Finally, we assume that the adversary is computationally bounded (i.e., she cannot ac-
quire secrets, break secure encryption functions, etc.).

As mentioned earlier, the main premise behind our work is to design a privacy-
preserving solution for a Geofencing service hosted in the cloud, without incurring any
modifications on the database servers, and while ensuring that D does not learn any
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meaningful information about the location of the users and subscriptions in the system.
Since the adversary can compromise a database server, we can express these security
properties using the following requirements:

Requirement 1—Confidentiality of Stored Records: Each database server should not
learn any meaningful information about the stored subscriptions. This can be ensured if
the transcript of interaction between D, M, and S is (computationally) independent of
the actual subscription coordinates.

Requirement 2—Confidentiality of Queries: Similar to Requirement (1), each data-
base server should not learn any meaningful information about the location of the nodes.
This includes the direction of the movement, the trajectory taken by each node, the
distance travelled by each node, etc.

Recall that both Requirements (1) and (2) should be achieved without compromising
the functionality of the database server, i.e., while enabling efficient geo-spatial index-
ing, search over encrypted data, etc. (cf. Section 2.1).
Note that both Requirements (1) and (2) can only ensure confidentiality of the in-

put/output, but do not prevent the possible correlation between the inputs and outputs
of the database when subject to location queries by the nodes. This is the case since D
can learn whether a given publish event matches an encrypted subscribe event. In this
work, we do not aim at preventing such information leakage. As far as we are aware,
the literature features a number of solutions for this problem. These include delaying
some queries to ensure k-anonymity [17, 31, 32], relying on bogus queries/subscription
to probabilistically provide input/output unlinkability [21], among many others.

3 PrivLoc: Privacy-Preserving Outsourced Geofencing Services

In this section, we introduce PrivLoc, our solution which enables the privacy-preserving
outsourcing of Geofencing services to the cloud and we thoroughly analyze its security
and privacy provisions.

3.1 Overview of PrivLoc

PrivLoc requires that D only implements the standard Geofencing functionality speci-
fied in Section 2.1 without any modification, given inputs from the mobile users. Thus,
we see D as a Geofencing service hosted in the cloud. Nevertheless, PrivLoc ensures
that no meaningful information about the location of the devices and subscriptions in
the system is leaked to any entity, including D.

In order to achieve these goals, PrivLoc relies on a trusted server T , which mediates
the exchange of information between the devices/subscribers on one side, and D on
the other side. More specifically, T translates both the mobile device locations, and the
subscriptions into “scrambled” inputs that are then stored and processed byD. Although
the inputs are subsequently hidden from D, PrivLoc ensures that they can be processed
using existing geo-spatial indexing algorithms and always result in a correct database
lookup. More specifically, the various operations undergone in PrivLoc are:
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Table 1. Global system parameters of PrivLoc

κ the security parameter, e.g. 128 bit
L the width and height of a tile
m the number of tiles in a column, i.e. the height of the map
n the number of tiles in a row, i.e. the width of the map

– Upon receiving each subscription request, T translates the subscription requested
by the subscribers into the appropriate coordinates and stores them at D.

– Upon receiving each sensor location beacon, T translates the location into the ap-
propriate coordinates and only forwards the transformed beacon to D.

We see T as an additional service which is run locally to prevent information leak-
age towards spatial database servers hosted in clouds, such as Google, Amazon, etc.
Clearly, for our solution to be effective, the overhead on T should be minimal. Indeed,
in PrivLoc, T simply has to apply a series of transformations on the received subscrip-
tions and location reports. We stress at this point that the role of T can be emulated
by the mobile nodes and the subscribers themselves, in case these entities pre-share
keys. Otherwise, the presence of a trusted service which orchestrates the key manage-
ment among users and subscribers of the database is required (see [6, 10, 15, 20, 33] for
similar assumptions).

PrivLoc introduces two granularity levels when encrypting locations. On the coarse-
granular level, PrivLoc relies on a pseudo-random permutation to emulate a strong en-
cryption function, while on the fine-granular level PrivLoc relies on a weaker notion—
order-preserving encryption—to preserve the relative location of closely-related points
within a sub-area—referred to as tiles —so that the spatial operations performed by D
can be applied within each tile without modification. As we describe in Section 3.2,
PrivLoc relies on multiple database servers to ensure that any two consecutive location
reports can be fitted to at least one tile. The combination of our techniques ensure that
location reports pertaining to each tile can be processed using existing functionality
of D, without revealing the location or direction of movements. In the following para-
graphs, we discuss in details the various translation operations and the load incurred by
T in PrivLoc.

3.2 PrivLoc: Protocol Specification

PrivLoc unfolds as follows. T first proceeds to dividing the original map by a regular
grid into fixed-size square tiles. For privacy reasons, the area covered by a tile should
fall above a given threshold. In the sequel, we assume the global system parameters
shown in Table 1. Furthermore, PrivLoc makes use of the following functions:

– a pseudorandom function PRF : K×{0, 1}∗×� → {0, 1}� , which can be realized
by a HMAC construction.

– a pseudorandom permutation PRP : K× {0, 1}N → {0, 1}N ,
where N = �log2(nm)�. Exemplary PRP constructions can be found in [8].
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In the setup phase, T generates key k as a uniformly random bit string of a length
depending on the intended security level κ.

As mentioned earlier, PrivLoc requires that T encrypts the coordinates reported by
devices before transmitting them to D. Besides hiding location information, one impor-
tant goal here is to hide the fine-grained user movements (i.e., direction and distance
of movement). Recall that, in our setting, the subscribers are interested in knowing
whether a device has crossed a Geofence. For the database servers to determine that,
it is therefore necessary for them to be able to compare the relative coordinates be-
tween the origin and the destination of every sensor movement segment along with the
boundaries of Geofences (or subscriptions).

PrivLoc achieves the aforementioned goals by dividing the map into tiles and distort-
ing the original coordinate system into three different variant maps (for the reasoning
why, see following paragraphs). By doing so, PrivLoc encrypts the location of each
tile within the maps, but ensures that every received location report can be fitted to at
least one full tile in one of the maps. Subscriptions that cross more than one tile are
also subsequently split to several smaller Geofences that are completely contained in
a single tile. Within that tile, PrivLoc further distorts the direction and distance of the
user movement while enabling the spatial database to find all intersections between the
movement vector and translated Geofences in the distorted tile using existing indexing
techniques.

More specifically, PrivLoc applies the encrypt procedure (Algorithm 1); encrypt
takes as input real world coordinates (x, y) and transforms them into obfuscated coor-
dinates (newx , newy). encrypt is executed on (i) movement vectors to translate the
movement end-points, and on (ii) subscriptions to translate the south-west, and the
north-east coordinates that define the minimum bounding box of each Geofence.

The algorithm encrypt consists of four main routines:

– permuteTiles is used to divide the map into equal-sized tiles and permute these
tiles. By doing so, permuteTiles hides the location of the devices within the map.

– rotateTile and flipTile are used to rotate and flip each tile in the distorted map. Both
routines serve to hide the direction of devices’ movements within the original map.

– OPE is used to hide the distance between any two locations within each tile.

Here, permuteTiles, rotateTile, and flipTile hide the location and direction of the
movement of each device from D, while OPE distorts the distances within each tile.
All four routines, however, enable D to rely on existing indexing techniques (c.f. Sec-
tion 2.1) to compare different locations within each tile.

Hiding Movements within a Tile
Recall that PrivLoc operates on movement vectors reported by the users. Upon receiv-

ing the vector from devices, T encrypts the vector, by applying the encrypt procedure
in Algorithm 1, to both the start and end-point of the movement vector. These points
are represented by 2D coordinates (x, y). The encryption function invokes the proce-
dure coordinatesOnTile, which returns the tile numberNum of the tile where the point
(x, y) lies on, and the relative coordinates (dx, dy) on the respective tile. As the map is
split in n ×m tiles, we have Num ∈ Zn×m . This coordinate translation is achieved by
means of Algorithm 2.
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Algorithm 1. Coordinate Encryption in PrivLoc
Require: Coordinates x, y, map offset z, master key k
Ensure: Encrypted location newx , newy

1: procedure ENCRYPT(x, y, z, k )
2: (Num, dx, dy) ← COORDINATESONTILE(x, y, z)
3: Num ← PRP(k ; n ×m;Num)
4: (dx, dy) ← ROTATETILE(dx, dy,Num, k)
5: (dx, dy) ← FLIPTILE(dx, dy,Num, k)
6: (dx, dy) ← OPE(dx, dy,Num, k)
7: newx ← (Num modn)× L+ dx
8: newy ← (Num div n)× L+ dy
9: return newx , newy

10: end procedure

Algorithm 2. Coordinate Translation
Require: Coordinates x, y and offset z of the respective map
Ensure: Num of the tile where x, y lies and relative coordinates dx, dy on the tile

1: procedure COORDINATESONTILE(x, y)
2: x0 ← (x− z mod L×m) div L
3: y0 ← (y − z mod L× n) div L
4: Num ← (x0 + y0 · n)
5: (dx, dy) ← xmod L, y mod L
6: return(x0, y0, dx, dy)
7: end procedure

As the first step of hiding the location of these points within the map, T permutes the
tiles using the key k by applying the pseudorandom function: PRP(k ; n × m;Num).
Note that k is only held by the trusted server T . This function computes a pseudoran-
dom permutation of the numbers in Zn×m and outputs the new position Num for the
tile T .

To further hide the linkability between two consecutive location reports (i.e., to pre-
vent leakage of movement information), T first rotates each tile using rotateTile (rota-
tion chosen at random among 0, π/2, π, 3π/4), and then (individually) flips them using
flipTile, in order to obfuscate the direction of the movement. Both operations result in
a transformation entropy of three bits per tile. When combined with permuteTile, this
results in a total of 3�log2(nm)� bits of entropy per tile.

rotateTile is described in Appendix A. rotateTile takes the output of permuteTile;
the position of the tile T is not changed in this algorithm. The rotation angle of T is
determined using the key-based pseudo-random function PRF.

T then applies tile flipping (Algorithm 3). Given the outputs of rotateTile, flipTile
outputs the newly flipped coordinates (newx , newy). Note that flipTile is analogous to
rotateTile, except that the coordinates are transformed by a mirror matrix.

In order to hide the distances of movements executed by devices, PrivLoc further re-
lies on the use of order-preserving encryption (OPE) within each tile. Order-preserving
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Algorithm 3. Tile Flipping
Require: Coordinates dx, dy and Num
Ensure: Coordinates dx, dy after flipping the tile

1: procedure FLIPTILE(x, y, k )
2: flip ← PRF(k ; “flip”, Num; 1)
3: if thenflip = ‘1′

4: dx′ ← (L− 1)− dx
5: end if
6: return(dx′, dy)
7: end procedure

encryption has the property that the relative order among coordinates is preserved after
encryption. That is, let OPE(p) denote the order-preserving encryption of plaintext p.
Then, the following holds:{

OPE(p1) ≤ OPE(p2) ifp1 ≤ p2,
OPE(p1) > OPE(p2) ifp1 > p2.

Hiding Cross-Tile Movements
Clearly, encrypt can only hide the trajectory, and distance exhibited by location reports

fromD when they fall within the same tile. However, if two consecutive location reports
cross the boundary of a single tile and are matched to different tiles, then (i) D cannot
compare the relative location advertised by these reports and (ii) D might be able to
guess that these tiles correspond to physically connected tiles in the original map.

Thus, a query for a movement which crosses the tile boundary must be avoided in
PrivLoc. To achieve that, PrivLoc relies on more than one tiling of the same map (see
Figure 1); although a movement might cross the boundary of one map tiling, PrivLoc
ensures that there is at least one tiling, in which the movement falls completely within
a single tile. Here, by different map tilings, we refer to slightly shifted variants of the
original map, which have been processed (i.e., using the encrypt routine) by means
of different keys (cf. Figure 1). As shown in Figure 1, the maximum magnitude of a
movement vector that PrivLoc accepts is bounded by l = t/3+ ε, where t is the length
of one tile. Thus, all vectors with magnitude d(x, y) < r = t/3 can be located within
one complete tile stored at least on one of the three servers. Within that tile, this enables
the comparison between all closely located points x and y, where d(x, y) < t/3, while
ensuring that the movement from location x to y does not cross the tile1. An example
of a map with three tilings is depicted in Figure 1. As shown in Figure 1, we point out
that relying on two tilings of the same map is not enough. This is the case since there
exist movement vectors which can still cross two different tiles in any two map tilings.
However, it is easy to show that given three shifted tilings of the same map, there is no
point where all boundaries intersect, thus ensuring that every movement can be fitted
to one tile pertaining to at least one tiling. This is exactly why PrivLoc requires the
presence of three database servers D1, D2, and D3, which store subscriptions pertaining
to the three map tilings.

1 Thus, this ensures that an adversary who can observe consecutive movements cannot acquire
information about the relative position of the actual tiles in each transformed map.
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Fig. 1. Example of three tilings of the original map. Notice here that the movement vector crosses
the boundaries of tiles in “Map 1” (shown in solid lines) and “Map 2” (shown in dotted lines) but
can be fitted complexity within a tile in “Map 3” (shown in dashed lines).

All received subscriptions are stored encrypted with three different keys k1, k2 and
k3 on all three servers respectively. Whenever T receives a location report, it will
choose to query the database server Di, i ∈ {1, 2, 3} for whom this report falls in a
full tile (see Appendix B for the algorithm). Here, T can efficiently find out which
server to query for each movement (by essentially performing two integer divisions, cf.
Section 4).

As a by-product, we point out that the reliance on multiple database servers in our
scheme inherently achieves load balancing of the load on the servers and increases the
load capacity of the entire system. This is the case since T only queries one server for
each received location report.

Encrypting Subscriptions
We now proceed to describing how T encrypts subscriptions and stores them at the

database servers D. Clearly, for D to be able to use existing functionality to compute the
intersections of the movements with subscriptions, the subscriptions must be encrypted
using the same routine that is used to process the location reports.

More specifically, T uses the encrypt routine to encrypt the north-east and the south-
west coordinates which define the minimum bounding box for each subscription. This
is done using the three keys k1, k2, and k3, respectively. The resulting encrypted co-
ordinates are stored in database servers D1, D2, and D3 (see Figure 2). Here, T must
ensure that:

– In case a subscription crosses the boundaries of tiles for the map tiling at a database
server, the subscription needs to be split into parts, that each completely fit within
one tile of the corresponding map tiling. This process has to be repeated for each of
the three servers independently. While this incurs additional storage overhead per
server to store the tiles, we show in Section 4 that the storage blowup incurred by
PrivLoc can be, to a large extent, tolerated in realistic settings.
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Fig. 2. Exemplary run of PrivLoc with four different movements. Each path displayed in (a) con-
sists of 20 movement reports, each of a length of 30% of the tile width. We depict the snapshots
seen by database servers D1, D2, and D3 in (b), (c) and (d), respectively. Note that the marking
of the vectors in (b)-(d) is only for visualisation, since different location reports cannot be linked
by the database.

– T batches the upload of k̄ subscriptions to the three database servers. Here, k̄
denotes a desired privacy threshold. As we show later, this ensures that database
servers cannot temporally correlate various subscriptions.

3.3 Security Analysis

Before analyzing the security of PrivLoc, we capture Requirements (1) and (2) (cf. Sec-
tion 2.3) using the following security game, PrivA, which involves a p.p.t adversary A
and a challenger C. In our game, C simulates location reports and subscription requests
and emulates the role of the trusted server T which interacts with D. More specifically,
the PrivA game unfolds as follows.

Setup. The challenger C sets up 3 database servers D1, D2 and D3 and generates the
respective master keys k1, k2 and k3 using the setup routine.

Run. The challenger C simulates location reports and subscriptions. More specifically,
C simulates the presence of N nodes with distribution (V , P), and S subscriptions.
On input a location report (x, y), C executes chooseServer and encrypt(x, y, k).

Compromise. A chooses one server DA
i , i ∈ {1, 2, 3} at time t. Starting from time t,

A acquires a trace consisting of all inputs and outputs to/from DA
i .

Challenge. A then chooses a location report r that arrived at t̃ > t and sends r as a
challenge to C.

Response. Upon reception of r, C locates the node Mk which issued r, and randomly
flips a bit b. If b = 0, then C sends to A a trajectory of movement vectors fol-
lowed by node Mk. Otherwise, if b = 1, C creates a randomly generated trajectory
comprising of movement vectors derived from the distributions Vk and Pk.

We define the advantage of A in the above game PrivA by:

AdvPrivA = Prob[b′ ← A : b = b′]

Definition 1. Location Tracking
We say that a system prevents ε-tracking if AdvPrivA = 1

2 + ε.
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Clearly, a system perfectly prevents location tracking when ε is negligible. Definition 1
captures Requirements (1) and (2) in Section 2.3. Here, A can compromise one database
server. After observing the transcript of interactions with the compromised server, our
goal is to prevent A from acquiring information about the trajectory followed by any
node Mk of her choice. This is captured by the fact that the probability that A can
distinguish the trajectory adopted by Mk from any random path is negligible. Notice
that PrivA captures the ability of the adversary to infer information about the trajec-
tory taken by users using side-information like the velocity of movement, the distance
traveled, etc.

Security Analysis: We informally analyze the security of our scheme with respect to
the aforementioned PrivA game.

Notably, our goal is to show that an adversary A which compromises one database
server Di and has access to the inputs/outputs of Di cannot acquire meaningful in-
formation about the trajectory of users. Recall that the communication between users,
subscribers, and T is performed over confidential and authenticated channels, which
does not give A any advantage in acquiring information about the (plaintext) location
reports and the subscriptions in the system.

In analyzing the advantage of A in PrivA, two cases emerge:

1) Analyzing single location reports: Having received an encrypted location vector
from T , we note that A cannot infer the location of the corresponding user whom
generated it in the original map. This is the case since the keyed PRP used in the
permuteTiles function ensures that the adversary cannot guess the actual location
of the tile which hosts the report in the original map. Moreover, OPE ensures that A
cannot acquire the actual distance travelled by the user while the keyed tile rotation
and flipping ensure that A cannot guess the direction of the user movement given
the received location vector.

2) Correlating two or more location reports: Recall that Di will only receive location
reports which correspond to a complete tile given the tiling hosted by Di. As men-
tioned earlier, the combined use of the permuted tile location of the report, the
OPE-obfuscated distance travelled by the user, and tilted/rotated movement direc-
tion does not offer any distinguisher for A to correlate two or more location reports.

Similarly, it is easy to show that A cannot acquire any meaningful information about
the subscriptions in the system. Note that when tiling and permuting tiles at each server,
each subscription might be split into a number of smaller subscriptions within each tile.
However, assuming that the system hosts a number of subscriptions, this does not give
any advantage to A in inferring information about the subscriptions. Note, here, that
A can acquire considerable information as T populates Di. For instance, it is straight-
forward for A to guess with high probability that consecutive subscriptions in Di cor-
respond to the same actual subscription which was subsequently split by T to prevent
subscriptions from crossing tile borders. This is exactly why PrivLoc requires that T
batches the processing of k̄ (genuine) subscriptions at a time. On one hand, this en-
hances the anonymity of the subscriptions, and on the other hand, this prevents A from
correlating stored encrypted subscriptions (e.g., map them to the same subscription) and
acquiring information about the tile permutation.
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As mentioned in Section 2.3, PrivLoc can only ensure confidentiality of the in-
put/output, and does not prevent the correlation among the inputs and outputs of Di.
That is, A can learn whether a given location report has triggered a response from Di

and therefore corresponds to a user entering/exiting a Geofence. The literature features
a number of solutions for this problem (see [17, 21, 31, 32]).

4 Implementation and Evaluation

In this section, we implement PrivLoc and we evaluate the performance of our imple-
mentation in comparison to the setting where the Geofencing service is not outsourced
to the cloud, but is locally offered using an existing spatial database.

4.1 Implementation Setup

We implement the PrivLoc service using Java. In our implementation, we set κ = 128,
we adapt the OPE from [9], and we use HMAC-SHA1 as the PRF in the rotateTile
and flipTile routines. The tile permutation is achieved by an array permutation given a
secure random number generator. In our setup, we deploy PrivLoc on an 8-core Intel
Xeon E3-1230 with 16 GB RAM; the various clients issuing location reports and/or
subscriptions were co-located with T on the same machine.

We chose a square 100km× 100km map in which the maximum size of a subscrip-
tion is 100m × 100m (this was also the tile size in our implementation). Conforming
with Section 3.2, we set the maximum movement distance of a user between two con-
secutive location reports to t

3 ≈ 30m. We rely on the random waypoint model to simu-
late node mobility. More specifically, for each user in the system, we assume a random
initial location in the map; for each subsequent movement, the movement vector an-
gle is chosen randomly from [0,360] degrees, while the distance of each movement is
chosen randomly from [0,30] meters. Throughout our evaluation, we assume a realistic
setting where the ratio of location reports to incoming subscription requests is 19:1.2

Based on this setup, we measure the throughput achieved by PrivLoc with respect to
the average latency incurred on T due to a location report or a subscription. To increase
the load on T , we vary the number of concurrent clients from 1 to a maximum of 256.
In our experiments, we are interested in assessing the performance of PrivLoc when the
links between T and the database servers are not the bottleneck. For that purpose, we
short-circuit the database servers and we abstract away the time to upload the location
reports by T to the database servers. Under these settings, we compare the throughput
and latency achieved by PrivLoc to the traditional case where the spatial database is en-
tirely hosted locally; here, we compare the performance of PrivLoc to (i) a stand-alone
MySQL spatial database (with R-tree indexing) and (ii) a PostgreSQL database (with
GiST indexing). Both databases were deployed within our 8-core Intel Xeon E3-1230
with 16 GB RAM; we report their performance with different subscription table sizes
(i.e., initial number of records). We also evaluated PrivLoc when compared to Mon-
goDB. Since the performance exhibited MongoDB was far inferior to that of MySQL
and PostgreSQL, we omit these measurements from our evaluation.

2 We conducted experiments where the ration between where location reports and subscriptions
is 1:1. Our results were similar to the setting featuring a ratio of 19:1.
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4.2 Evaluation Results
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Fig. 3. Comparison between PrivLoc and local
MySQL and PostgreSQL databases

We start by evaluating the performance
of PrivLoc w.r.t. to the MySQL and Post-
greSQL databases while varying the ini-
tial number of stored subscriptions. This
experiment captures the performance of
PrivLoc compared to locally hosted spa-
tial databases as the number of subscrip-
tion populating these databases increases
with time. For that purpose, we mea-
sure the peak throughout (PT) exhibited
by PrivLoc and compare it with that of
MySQL, and PostgreSQL respectively, in settings where the initial number of stored
subscriptions varies from 1,000 to 1,000,000. Our results are depicted in Figure 3. Our
findings show that the PT of PrivLoc is superior to MySQL when processing loca-
tion reports, irrespective of the number of stored subscriptions. Here, PrivLoc outper-
forms PostgreSQL as the number of subscriptions stored by the PostgreSQL database
increases beyond 50,000 records. This is also the case when processing subscription
requests. Nevertheless, our results indicate that, even when the initial number of sub-
scriptions stored in the MySQL, and PostgreSQL databases is as low as 1,000, the
relative PT achieved by PrivLoc can be easily tolerated.

In a second experiment, we evaluate the relative performance of PrivLoc in the real-
istic case where the Geofencing service has been running for some time, and has accu-
mulated the subscriptions from a large number of subscribers. To simulate this case, we
insert 1,000,000 subscription records in the databases. Figure 4 depicts the latency in-
curred in PrivLoc for the processing of location reports and subscriptions in the system
with respect to the achieved throughput (measured in the number of 1000 operations
per second). For comparison purposes, we also include the performance achieved by
a local MySQL and a PostgreSQL spatial database in the same setup. Our results (cf.
Figure 4(a)) show that PrivLoc is at least twice faster than locally processing location
reports on both spatial databases. Moreover, the peak throughput achieved in PrivLoc is
more than 2 times higher than that achieved by the MySQL and PostgreSQL databases.
However, our results in Figure 4(b) show that the latency and peak throughput achieved
by PrivLoc are modest when inserting subscriptions, compared to the local MySQL
database. This is due to the blow-up in the number of subscriptions. Notably, since T
splits the map into small tiles, a subscribed area might be further split by T if it crosses
multiple tiles. Note that each subscribed area results in an average of 6.75 subscribed ar-
eas which will be encrypted by PrivLoc and pushed to the n = 3 database servers. This
blow-up is dependent on the number of database servers, and the size of the subscribed
area with respect to the size of the tiles. More specifically, the average area of a sub-
scription in our setup is 1/4 of the area of a tile; this means that the average number of
partitions of a subscribed area on each database server is Np = 1· 14+2· 24+4· 14 = 2.25.
The total blowup in terms of subscriptions is subsequently 3Np = 6.75.

In spite of the storage blowup, our findings nevertheless show that PrivLoc consid-
erably outperforms a local PostgreSQL database.
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Fig. 4. Throughput and latency in PrivLoc. Here, we assume a subscription table size of
1,000,0000 records. Each data point in our measurements is averaged over 10 independent mea-
surements; we present the corresponding 95% confidence intervals.

5 Related Work

In what follows, we briefly overview existing contributions in the area. In [7], Barkkuus
and Dey show that users were concerned about the ability of services to track them.

Most privacy-enhancing solutions for location-based services rely on a trusted “lo-
cation anonymizer” service which hides the location of users. These services either
provide k-anonymity [13, 17, 26, 31, 32] or spatial/temporal cloaking with an area of
interest [6, 10, 15, 20, 33]. A number of solutions rely on inserting fake queries in or-
der to prevent a database server from learning the actual location reports (e.g., [21]).
While these solutions provide k-anonymity, they incur significant additional costs on
the database server. Other solutions rely on location perturbation/obfuscation; these so-
lutions map the location reports to a set of pre-defined landmarks [19] or blur the user
location into a spatial area using linear transformations [6,15,20,22,34] Such solutions
indeed hide the location of users but might affect the accuracy of the location-based
service. Moreover, these solutions can only hide the location of a user, but do not aim
at hiding the user movement.

To prevent location tracking, Gruteser and Liu [16] propose disclosure control al-
gorithms which hide users’ positions in sensitive areas and withhold path information
that indicates which areas they have visited. Other schemes rely on Private Informa-
tion Retrieval (PIR) algorithms in order to enable privacy-preserving queries in spatial
databases [14,24]. PIR schemes allow a querier to retrieve information from a database
server without revealing what is actually being retrieved from the server. However, these
solutions are computationally intensive and require modifications to the database server
in order to process the blurred location queries.

In [25], Pfitzmann et al. define unlinkability and privacy in pseudonymous systems.
Dwork [12] define differential privacy and quantify information leakage from the query
access of individuals. In [30], Shokri et al. quantify location privacy using the error
of the adversarial estimate from the ground truth. In [11, 27], various entropy-based
metrics are introduced to assess the communication privacy in anonymous networks.
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6 Conclusion

In this paper, we proposed a novel solution, PrivLoc, which enables privacy-preserving
outsourcing of location-based services to the cloud without leaking any meaningful
information to the cloud provider. PrivLoc goes one step beyond existing solutions in
the area and targets Geofencing services where users send a vector of their movements
for the service provider to detect whether a user has crossed a given Geofence. We
analyze the security and provisions of PrivLoc and show that PrivLoc does not leak
information about the location, movement, trajectory, and/or velocity of the users to the
Geofencing database. Our evaluation of PrivLoc shows that the overhead incurred by
our solution can be largely tolerated in realistic deployment settings.

Acknowledgements. This work was supported by the EU FP7 SMARTIE project
(contract no. 609062).
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A Tile Rotation in PrivLoc

Require: Coordinates dx, dy and Num
Ensure: Coordinates dx, dy after rotating the tile
1: procedure ROTATETILE(x,y, k )
2: rotation ← PRF(k ; “rotate”, Num ; 2)
3: if rotation = ‘00’ then
4: dx′ ← dx
5: dy′ ← dy
6: else if rotation = ‘01′ then
7: dx′ ← dy
8: dy′ ← (L− 1)− dx
9: else if rotation = ‘10′ then

10: dx′ ← (L− 1)− dx
11: dy′ ← (L− 1)− dy
12: else if rotation = ‘11′ then
13: dx′ ← (L− 1)− dy
14: dy′ ← dx
15: end if
16: return (dx′, dy′)
17: end procedure

B Querying the Appropriate Database Server in PrivLoc

Require: Coordinates x0, y0 and x1, y1 describing a movement
Ensure: Server where x0, y0 and x1, y1 are on the same tile or ⊥
1: procedure chooseServer(x, y)
2: for all Di, zi with i = 1, 2, 3 do � Server D with tile offset z
3: nx ← (x0− zi mod L×m) div L
4: ny ← (y0− zi mod L× n) div L
5: Num0 ← (nx+ ny · n)
6: nx ← (x1− zi mod L×m) div L
7: ny ← (y1− zi mod L× n) div L
8: Num1 ← (nx+ ny · n)
9: if Num0 = Num1 then

10: return i
11: end if
12: end for
13: return ⊥
14: end procedure
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Abstract. Bitcoin is gaining increasing adoption and popularity nowa-
days. In spite of its reliance on pseudonyms, Bitcoin raises a number of
privacy concerns due to the fact that all of the transactions that take
place in the system are publicly announced.

The literature contains a number of proposals that aim at evaluating
and enhancing user privacy in Bitcoin. To the best of our knowledge, Ze-
roCoin (ZC) is the first proposal which prevents the public tracing of coin
expenditure in Bitcoin by leveraging zero-knowledge proofs of knowledge
and one-way accumulators. While ZeroCoin hardens the traceability of
coins, it does not hide the amount per transaction, nor does it prevent
the leakage of the balances of Bitcoin addresses. In this paper, we pro-
pose, EZC, an extension of ZeroCoin which (i) enables the construction
of multi-valued ZCs whose values are only known to the sender and recip-
ient of the transaction and (ii) supports the expenditure of ZCs among
users in the Bitcoin system, without the need to convert them back to
Bitcoins. By doing so, EZC hides transaction values and address balances
in Bitcoin, for those users who opt-out from exchanging their coins to
BTCs. We performed a preliminary assessment of the performance of
EZC; our findings suggest that EZC improves the communication over-
head incurred in ZeroCoin.

Keywords: Bitcoin, ZeroCoin, user-privacy, hiding transaction amounts,
hiding Bitcoin balances.

1 Introduction

First introduced in 2008, Bitcoin is the most widely adopted digital currency
in history. Indicatively, Bitcoin is currently integrated across a number of busi-
nesses [1] and has several exchange markets (e.g., MtGox [2], Bitstamp [3]).

Bitcoin is a Proof-of-Work (PoW) based currency which allows users to gen-
erate digital coins by performing computations. Users execute payments by dig-
itally signing their transactions and are prevented from double-spending their
coins through a distributed time-stamping service [38]. This service operates on
top of the Bitcoin Peer-to-Peer (P2P) network which ensures that all transac-
tions and their order of execution are available to all Bitcoin users. In this way,
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Bitcoin transactions form chains of digital signatures, which enables the public
tracing of the expenditure of individual coins (BTCs).

The literature contains a number of proposals that analyze the privacy offered
in Bitcoin [4, 34, 37]. ZeroCoin [32] is the first proposal to enhance the privacy
in Bitcoin and has received increasing attention recently; ZeroCoin leverages
zero-knowledge proofs of knowledge (ZKPoK) protocols and cryptographic ac-
cumulators in order to hide the expenditure of coins. More specifically, ZeroCoin
transforms each single BTC in the system into a ZeroCoin (ZC); this ZC can be
proven (using zero-knowledge techniques) to originate from a valid, and unspent
BTC, but it is computationally infeasible for any adversary to trace the ZC to
the corresponding BTC.

Here, each ZC corresponds to one BTC (or a predefined number of BTCs);
transactions whose values are larger than the ZC’s would therefore result in
several back-to-back ZeroCoin transactions. This results in significant overhead
in propagating the corresponding transactions in the network and including them
in valid blocks. Moreover, it is easy to see that while ZeroCoin indeed prevents
the traceability of coins, it does not conceal the transaction amounts; multiple
ZC payments for the same transaction are likely to be linked in time and the total
amount per payment can be recovered (since each ZC corresponds to a single
BTC). Furthermore, ZeroCoin does not hide the total number of BTCs redeemed
by Bitcoin addresses, when the owners of these addresses transform their ZCs
back to BTCs. A recent study [4] has shown that tracing coin expenditure is not
the only source of information leakage in Bitcoin. More specifically, Androulaki et
al. have shown that behavior-based clustering algorithms can be used to acquire
considerable information about the user profiles in Bitcoin [4]. These algorithms
mainly leverage user spending patterns, such as transaction amounts, transaction
times, etc., in order to profile users. Clearly, ZeroCoin does not prevent such
analysis, since the transaction times, transaction amounts, and address balances
can still be derived from the block chain.

In this work, we address this problem and we propose an enhanced variant
of ZeroCoin, dubbed EZC, which builds upon ZeroCoin to hide the transaction
amount and address balances from the network. Similarly to ZeroCoin, EZC
leverages accumulators and ZKPoK protocols to construct multi-valued ZCs. The
resulting coins can be either spent as regular Bitcoins, or can be spent directly in
the network without transforming them back to the corresponding BTC coins.
Our construct ensures that the transaction amount is never revealed to any user
in the system (except for the sender and recipient). Since the coins created in
EZC do not have to be exchanged back to BTCs, our scheme also prevents the
leakage of the balances of address who opt-out from exchanging their coins to
BTCs. We analyze the security and privacy provisions of our proposal and we
show that it incurs in considerably less communication overhead when compared
to ZeroCoin, given the current usage patterns of Bitcoin.

The remainder of this paper is organized as follows. In Section 2, we briefly
overview the main operations in Bitcoin and Zerocoin. In Section 3, we introduce
our adversarial model, and the buildings blocks that we will use in the paper.
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In Section 4, we introduce and analyze our extended version of ZeroCoin, EZC.
In Section 5, we overview related work in the area and we conclude the paper in
Section 6.

2 Background and Problem Description

In this section, we overview the main operations in Bitcoin and ZeroCoin,
respectively. We also discuss the main shortcomings of ZeroCoin.

2.1 Bitcoin

Bitcoin is a P2P payment system [38] that was introduced in 2008. Electronic
payments are performed by generating transactions that transfer Bitcoin coins
(BTCs) among Bitcoin peers. These peers are referenced in each transaction by
means of virtual pseudonyms—referred to as Bitcoin addresses. Generally, each
peer has hundreds of different Bitcoin addresses that are all stored and managed
by its (digital) wallet. Each address is mapped through a transformation function
to a unique public/private key pair. These keys are used to transfer the ownership
of BTCs among addresses.

Peers transfer coins to each other by issuing a transaction. A transaction is
formed by digitally signing a hash of the previous transaction where this coin
was last spent along with the public key of the future owner and incorporating
this signature in the coin [38]. Any peer can verify the correctness of each Bitcoin
transaction by checking the chain of signatures.

Transactions are included in Bitcoin blocks that are broadcasted in the en-
tire network. To prevent double-spending of the same BTC, Bitcoin relies on a
hash-based proof-of-work (PoW) scheme. More specifically, to generate a block,
Bitcoin peers must find a nonce value that, when hashed with additional fields
(i.e., the Merkle hash of all valid and received transactions, the hash of the pre-
vious block, and a timestamp), the result is below a given target value. If such
a nonce is found, peers then include it (as well as the additional fields) in a new
block thus allowing any entity to publicly verify the PoW. This process is re-
ferred to as block mining. Upon successfully generating a block, a peer is granted
a number of BTCs. This provides an incentive for peers to continuously support
Bitcoin. The resulting block is forwarded to all peers in the network, who can
then check its correctness by verifying the hash computation. If the block is
deemed to be “valid” (that is, the block contains correctly formed transactions
that have not been previously spent, and has a correct PoW), then the peers
append it to their previously accepted blocks.

Since each block links to the previously generated block, the Bitcoin block
chain grows upon the generation of a new block in the network. Bitcoin relies
on this mechanism to resist double-spending attacks. In fact, for malicious users
to double-spend a BTC, they would not only have to redo all the work required
to compute the block where that BTC was spent, but also they would need to
recompute all the subsequent blocks in the chain. Further details on Bitcoin can
be found in [5, 6, 38].
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2.2 ZeroCoin

ZeroCoin was introduced by Miers et al. in [32] to prevent the public tracing of
coin expenditure in the Bitcoin network.

ZeroCoin is a cryptographic extension to Bitcoin and leverages ZKPoP pro-
tocols and cryptographic accumulators. More specifically, ZeroCoin transforms
each single BTC in the system into a ZeroCoin coin, referred to in the sequel by
ZC, by adding it to a cryptographic coin mixer (essentially an accumulator that
is publicly available). The resulting ZCs can be proven in zero-knowledge to have
originated from a valid and unspent BTC, i.e., that they are part of the unspent
subset of coins in the mixer. In this way an entity is prevented from linking a
transaction with the BTC (and the corresponding address) that generated the zc
used therein. In other words, ZeroCoin ensures that the origin of a zc is hidden
among all BTCs that were converted to zcs. In addition, ZeroCoin preserves the
security guarantees of Bitcoin (e.g., the doublespending resistance). That is, no
party can spend more BTCs or ZCs than the ones he/she possesses. We refer the
reader to Section 3.2 for a detailed presentation of the operations and security
provisions of ZeroCoin.

2.3 Problem Description

As mentioned earlier, ZeroCoin prevents the linking of a given coin spending (or
transaction) to the BTC associated with it; however, ZeroCoin does not entirely
prevent the possible linking of different transactions.

Recently, Androulaki et al. have shown that behavior-based clustering algo-
rithms leak considerable information about user profiles in Bitcoin [4] . These
algorithms mainly leverage user spending patterns, such as transaction amounts,
transaction times, etc. in order to profile users and link their addresses.

ZeroCoin does not prevent such analysis, since the transaction times and
transaction amounts can still be acquired from the block chain. In fact, since
each ZC corresponds to exactly one BTC, any payment for a value that exceeds
one BTC will incur the issuing of multiple ZC transactions. At spending time,
multiple ZC transactions will be broadcasted in the network back to back in
time which (i) can be correlated in time by a user connected to the Bitcoin P2P
network in order to acquire the actual transaction amounts and (ii) can be used
to link all the recipient addresses. Indeed, this would give the adversary A a
considerable advantage in linking two different addresses together.

In Section 4, we propose an extension to ZeroCoin which hardens behavior-
based analysis by preventing the leakage of transaction amounts. As a by-
product, our proposed extension also prevents the leakage of address balances.

3 Model and Building Blocks

In existing centralized payment systems [15, 17, 22], user privacy is often mea-
sured with respect to the honest-but-curious centralized entity (e.g., Bank of
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Mint) that maintains the accounts of individuals. In these systems, privacy typ-
ically means guaranteeing the payer/payee anonymity with respect to the bank.
However, existing privacy-preserving solutions in this area indirectly assume that
although the bank can have complete view of daily or monthly withdrawals and
deposits of individuals, it is not aware of all transactions that take place within
the system.

In an open payment system, such as Bitcoin, this model is clearly not ap-
plicable. In particular, the centralized entity is substituted by the distributed
time-stamping server which is governed by the “majority of the available com-
putation power”, and has the ability to confirm or reject transactions. This
distributed mechanism requires that participants check the validity of all trans-
actions that occur in the system. Therefore, the privacy adversary in this case
should be adjusted to account for public view of all payments, although it may
not be able to link payments to individuals. For instance, in Bitcoin, a user is
only aware of the pseudonym (address) of the person he/she sends a payment
to/receives a payment from, but does not know other addresses that pertain to
that person.

In what follows, we introduce our adversary model and we introduce the
various building blocks that we use in the paper.

3.1 Threat Model and Requirements

We observe the public log of Bitcoin, denoted by pubLog, within a period of time
Δt. During this period, a number of users participate in pubLog. We assume that
within Δt, a total of nT transactions have taken place as follows:

T = {τ1(S1 → R1), . . . , τnT(SnT → RnT)},

where τi(Si → Ri) denotes a transaction with (unique) ID i and Si and Ri denote
the sets of senders’ addresses and recipients’ addresses, respectively.

We assume that the adversary A is motivated to acquire information about
the addresses/transactions pertaining to all or to a subset of Bitcoin users. As
such,A does not only have access to pubLog, but is also part of the Bitcoin system
and can participate in one or more transactions through Bitcoin. Furthermore,
we assume that A can have access to the (public) addresses of some vendors
along with (statistical) information such as the pricing of items or the number
of their clients within a specified amount of time. We, however, assume that
A is computationally bounded and as such cannot construct ill-formed Bitcoin
blocks, double-spend confirmed transactions, or forge signatures, etc.

Given the aforementioned adversarial model, we identify the following security
notions for Bitcoin: balance, anonymity, and activity unlinkability. Informally, the
balance property requires that no p.p.t. adversary who has legitimately acquired
a set of BTCs can spend more BTCs to other users than the ones that she
possesses [32]. On the other hand, the unlinkability property refers to the fact
that an adversary A should not be able to link two different transactions that
pertain to a user of her choice. Finally, anonymity refers to the fact that the
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spending of a coin should not be linked to a particular coin. We refer the reader
to Section 4.3 for the definitions of the aforementioned security properties.

3.2 Building Blocks

In the sequel, we will make use of the following building blocks.

Zero Knowledge Proofs of Knowledge and Signatures of Knowledge:
Our protocols use zero-knowledge proofs, i.e., protocols that can be used by a
prover to prove knowledge of a committed value v, without leaking any informa-
tion on the value she proves knowledge of. We instantiate such zero-knowledge
proofs using the technique of Schnorr [39], and its extensions [16,19,24,29], and
convert them into non-interactive proofs by applying the Fiat-Shamir heuris-
tic [28]. In the latter case, we refer to the resulting non-interactive proofs as
signatures of knowledge as defined in [21].

In signatures of knowledge scheme, the knowledge of the (secret) committed
value v is used as signing key. The unforgeability property of these schemes
implies that no one but the party that has knowledge of v is able to provide a valid
signature on any message, i.e., a signature for which the signature verification
algorithm accepts.

In the following, we will use the notation of Camenisch and Stadler [11,19,21]
when referring to these proofs. Namely, NIZKPoK{(α, β) : h = gα ∧ c = gβ}
denotes a non-interactive zero-knowledge proof of knowledge of the elements α
and β that satisfy both h = gα and c = gβ. All values not enclosed in ()s are
known to the verifier. Similarly, the extension ZKSoK[m]{(α, β) : h = gα ∧ c =
gβ} indicates a signature of knowledge on message m.

Accumulators: Cryptographic accumulators basically constitute one-way mem-
bership functions; these functions can be used to answer a query whether a given
candidate belongs to a set without revealing any meaningful information about
the other set members. We make use of the accumulator by Camenisch and
Lysyanskaya [18] that supports the following operations:

– {N, u} ← ACC.Setup(k). On input a security parameter k, sample primes p,
q (with polynomial dependence on the security parameter), Setup computes
the RSA modulus N = pq, and chooses value u ∈ QRN, �= 1. Finally, Setup
outputs (N, u), which we will refer to as params.

– {Acc} ← ACC.Accumulate(params,PN). On input params and a set of prime
numbers PN = {p1, ..., pn|pi ∈ [A,B]}, where A and B can be chosen with
arbitrary polynomial dependence on k, as long as 2 < A and B < A2 (see
[20] for more details), ACC.Accumulate computes the accumulator Acc =
p1p2 · · · pn ( mod N).

– ω ← ACC.GenWitness(params, v,PN). On input params = (N, u), a set
of prime numbers PN as described above, and a value v ∈ PN, the wit-
ness ω is the accumulation of all the values in Acc besides v, i.e., ω =
ACC.Accumulate(params,Acc|v).
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– {0, 1} ← ACC.Verify(params,Acc, v, ω). On input params (N, u), an element
v, and witness ω, ACC.Verify computes Acc′ ← ωv(modN), and outputs 1 if
and only if Acc′ = Acc, v is prime, and v ∈ [A,B].

Accumulators in [18] satisfy the strong collision-resistance property if the
Strong RSA assumption is hard. Informally, this ensures that no p.p.t. adversary
can produce a pair (v,ω) such that v /∈ PN and yet ACC.Verify is satisfied.

Camenisch and Lysyanskaya [18] describe an efficient zero-knowledge proof of
knowledge which proves that a committed value is contained in an accumulator.
Similar to [32], we convert this into a non-interactive proof using the Fiat-Shamir
transform and refer to the resulting proof using the following notation:

NIZKPoK(ν, ω) : Acc.Verify((N, u),Acc, ν, ω) = 1.

ZeroCoin Operations: Our proposal, EZC, builds upon the ZeroCoin algo-
rithms, which we describe below.

ZeroCoin consists of the following operations: Setup, where the system pa-
rameters are set, the Mint operation, where a Bitcoin (BTC) is converted to a
ZeroCoin (ZC), the Spend operation, where a ZC is spent, i.e., deposited to Bit-
coin address, and (automatically) converted to a (part of) BTC, and the Verify
operation, through which the peers of Bitcoin can verify the validity of the ZC
transaction and include it in a block. More specifically,

– params ← ZC.Setup(1k), where k is the security parameter. params include
a group G of RSA modulus and of order o, and its generators g, h : 〈g〉 =
〈h〉 = G.

– {pubzc, seczc} ← ZC.Mint(params, btc), tthrough which a BTC, btc, is con-
verted to a ZeroCoin, zc of fixed value. The latter is associated to a secret
token seczc and a public token pubzc. ZC.Mint is reflected to a Bitcoin trans-
action (e.g., Mint transaction), where the converted btc is the transaction
input and pubzc that uniquely defines zc is the transaction output. Mint
transactions are broadcasted in the entire network. Upon receiving the Mint
transaction, the miners verify that the input btc is valid, i.e., that it is owned
by the address who has signed the transaction and that it has not been spent
before by that address. If btc is valid, then the Mint transaction (and thus
pubzc) is included in the next block using the same mining process as in
Bitcoin. The public ZC-coin tokens that are included in blocks of the longest
blockchain are automatically considered to be part of a public accumulator
Acc.1. The public token related to zc, pubzc is actually a Pedersen commit-
ment to a serial number s of the form zc = gs · hr, where s, r ←R Zo. The
secret information associated with zc is set to seczc = (s, r) and is partially
revealed in ZC.Spend operation.

1 Note that the accumulator value is computed by the peers locally. Given the pub-
lic parameters of the accumulator, and the confirmed ZCs, each peer can locally
compute the accumulator value at any point in time.
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– {π, s} ← ZC.Spend(params, seczc, pubzc,Acc), which is performed by the peer
who wishes to spend a ZC coin, zc, with public information pubzc. To do
so, the peer reveals s and computes a ZKPoK π that s corresponds to a
ZC-coin which has been confirmed into a block (i.e., is part of the accumu-
lator). As such, ZeroCoin Spend transactions can be integrated in existing
Bitcoin transactions as follows: (s, π) constitute the transaction input, while
the Bitcoin address(es) that will receive the spent ZC coin, will constitute
the transaction output(s). This special transaction is signed using the zero-
knowledge π, and is released to the network to be confirmed into a block.

– {π, s} ← ZC.Verify(params, s, π,Acc), which can be executed by every peer
in the Bitcoin network to verify that the ZC-coin associated to serial number
s and signature of knowledge derived from the ZKPoK π has not been spent
before, i.e., that the signature of knowledge verification accepts and that the
serial number s has not been used in another confirmed spending. Verified
pairs of (π, s) are included by the Bitcoin miners in the next generated block,
to establish the spending of the corresponding ZC-coin to all Bitcoin peers.

4 EZC: An Extension of ZeroCoin

Fig. 1. Comparison between EZC and ZC.
Each ZC corresponds to a single BTC and
can only be spent in the form of BTCs.
EZC, on the other hand, enables the con-
struction of a (multi-valued) eZC, and can
be spent in eZCs without the need to trans-
form them back to BTCs.

In what follows, we propose, EZC, an
extended variant of ZeroCoin that (i)
is not restricted to values equivalent
to 1 BTC and can thus cope with any
transaction amount v, and (ii) allows
the direct spending of the v-valued
ZCs into ZCs (i.e., without trans-
forming them to BTCs first) while
completely concealing the transaction
amounts. Figure 1 compares the main
operations of EZC to ZC.

4.1 Overview

We now start by describing the main
intuition behind EZC. In the follow-
ing, we refer to an EZC coin by eZC.

EZC supports the following oper-
ations: (i) EZC.Mint, where arbitrary
valued BTCs are converted to an EZC

coin (eZC)2, (ii) EZC.SpendEZCToBTC, where eZCs are spent in the form of
BTCs, (iii) EZC.SpendEZCToEZC, where the payment recipient receives her

2 This operation may also be thought of as a Bitcoin Spend operation where BTCs
are spent in the form of eZC(s).



Hiding Transaction Amounts and Balances in Bitcoin 169

payment in the form of eZC(s), and (iv) EZC.SpendBTCToBTC where the payer
provides BTC payments and the recipient receives its payment in the form of
BTCs. Similarly to Bitcoin, the validity of each transaction is checked by the net-
work peers, who subsequently work towards confirming valid transactions into
blocks as in Bitcoin.

As in ZeroCoin, EZC generates parameters for a dynamic public accumulator
AccEZC which absorbs all properly minted and confirmed eZCs. In particular,
an eZC is added in this accumulator whenever a Mint transaction is validated,
i.e., included in a block, while eZCs in AccEZC can be spent only once.

In EZC, the Mint transaction is constructed in a similar way to the corre-
sponding transaction in ZeroCoin, and thus consists of an input (in BTCs) and
an output which includes information related to the created eZCs. However, the
coins generated through EZC.Mint can accommodate any payment value val .
More specifically, the output of a Mint transaction in EZC, consists of a com-
mitment c to val and to a serial number ser , and a zero-knowledge proof of c’s
correctness. As we show later, val is revealed by the peer who runs EZC.Mint
to all the peers in the network but ser is kept private until the minted eZC is
spent. The Mint transaction in EZC is signed using the private keys correspond-
ing to the input Bitcoin address(es). The correctness of EZC.Mint transactions
is checked by the rest of the peers in the network and valid transactions are
included in the longest block chain, in which case the EZC.Mint transactions
are deemed confirmed. After the confirmation of an EZC.Mint transaction, the
commitment c is considered to be a valid member of AccEZC.

To spend an eZC in the form of BTCs of value val , the eZC-owner—who
knows ser and the opening of c—constructs a proof π that ser corresponds to a
commitment to a value val that is a member of AccEZC. She then constructs
an EZC.SpendEZCtoBTC transaction by providing a signature of knowledge of
π on a conventional Bitcoin transaction output where val is assigned to one or
more Bitcoin addresses. Note that for peers of the network to be able to verify
the correctness of such a transaction, the serial ser is revealed; nevertheless, no
entity is able to link it to a particular EZC.Mint transaction, and, thus, to the
btc-s that created it.

On the other hand, to spend an eZC in the form of a fresh eZC of the same
or smaller value val ′, the payer reveals ser , and engages in a similar set of opera-
tions as in EZC.SpendEZCtoBTC to construct π. However, to accommodate the
creation of the recipient’s eZC, the two parties construct a commitment c′ to a
freshly generated serial ser ′ and to the payment amount val ′. Here, π contains a
proof that the payment amount does not exceed the value of the payer’s coin. Fi-
nally, π is used to produce a signature of knowledge on the output commitment
c′ into an EZC.SpendEZCtoEZC transaction, which is released to the network
with ser . As soon as the latter is confirmed, c′ is considered by the peers to be
a member of AccEZC. Here, as opposed to EZC.SpendEZCtoBTC, where val is
revealed to the peers, val is kept private between the payer and the payment
recipient, while ser ′ and the opening of c′ is only known to the payment recipient.
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4.2 Protocol Specification

In what follows, we detail the operations in EZC. In the following, we denote
the public information (token) associated with an coin of EZC, eZC, by pubeZC,
and the corresponding private information (token) by seceZC.

Setup. The setup consists of operation EZC.Setup, which runs with input a
security parameter λ and produces the system parameters params:

{params} ← EZC.Setup(1λ)

More specifically, EZC.Setup runs ACC.Setup(λ) to obtain (N, u), and generates
primes p, q, such that p = 2f · q + 1, f ≥ 1. It then picks g, h, and w such that
G = 〈g〉 = 〈h〉 = 〈w〉 ⊂ Z∗

q . Finally, it sets params = {N, u, p, q, g, h, w}.

Coin Conversion. Coin conversion is achieved using the EZC.Mint operation,
which is executed by the owner u of a set of BTCs IBTC, that are converted into
an eZC with public information pubeZC, and private information seceZC:

{π, pubeZC, u(seceZC)} ← EZC.Mint(IBTC, params).

Here, u picks ser , r ←R G, where ser is the serial number of the generated eZC,
and computes pubeZC = gser ·hr ·wval , such that pubeZC is prime, and a ZKPoK
π asserting that pubeZC is correctly formed:

NIZKPoK(α, β) : pubeZC = gα · hval · wβ .

Note that, the EZC.Mint transaction is constructed similarly to a standard Bit-
coin transaction, where the BTCs are used as input, and 〈pubeZC, π〉 is used as
output. Subsequently, peers verify that pubeZC is correctly formed, by running
the ZKPoK verification protocol for π, and by confirming that the input BTCs
were not spent in the past, as is currently done in Bitcoin. If the transaction is
deemed valid by the majority of the computation power of the network, pubeZC
is included in the block chain, and pubeZC is considered as a valid member of the
public accumulator AccEZC. User u’s private output is seceZC = 〈ser , r〉, while
{seceZC, val } is stored in u’s local memory.

SpendingEZC(s) to BTCs:This is performed using the EZC.SpendEZCToBTC
operation, which takes as input (seceZCS

,pubeZCS
), and spends them in BTCs of

value val to a set of Bitcoin addresses, OBTC.

OBTC ← EZC.SpendToBTC[params, serS , uS(seceZCS
, pubeZCS

)].

Here, the sender uS first computes the public accumulator value AccEZC lo-
cally, by running ACC.Accumulate(N, u, {pubeZC}∀∈pubLog) for the set of EZC

commitments that have appeared in the output of a transaction in the longest
block chain. The sender retrieves seceZCS

from her local memory, and runs
ACC.GenWitness(params, {pubeZC}∀∈pubLog, pubeZCS

), to compute the witness
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wS for pubeZCS
’s membership in AccEZC. Furthermore, uS computes a ZKPoK

π to show that serS corresponds to an eZC whose public information (here,
pubeZCS

) is part of AccEZC, and that it corresponds to a value val . Finally, it
converts π to a signature of knowledge on OBTC:

ZKSoK[OBTC](α, β, γ) : α = gserShval wβ ∧ Acc.Verify(N, u,AccEZC, α, γ) = 1}.

Finally, uS announces the corresponding signature within a transaction to the
EZC network, which, after confirming the transaction’s correctness, it includes
the latter into a block. 3

SpendingEZC(s) toEZC(s).This is achieved through theEZC.SpendEZCToEZC
operation, which is an interactive process between a payment sender uS and a pay-
ment recipient uR. EZC.SpendEZCToEZC takes as input the information associ-
ated to an eZC of uS , e.g., seceZCS

, and pubeZCS
, and spends it in the form of a

new eZC that belongs to uR, eZCR; if change should be incorporated in the pay-
ment, EZC.SpendEZCToEZC outputs additionally another eZC that would belong
to uS ; we denote this eZC by eZC′

S :

{〈pub′eZCS
, pubeZCR

, uS(sec
′
eZCS

), uR(seceZCR
)〉/⊥} ← EZC.SpendEZCToEZC

(params, serS , AccEZC, uS(val R, val S , rS , ser ′S , r′S), uR(val R, serR, rR)).

Here, uR’s private input seceZCR consists of a serial number serR for her new
coin, and a random number rS ∈ Z(p−1)/2 which will be used in her new coin’s
commitment. Assuming that 〈serS , rS , val S〉 is the entry for eZCS in uS’s local
memory, uS announces the serial number serS of eZCS , and privately contributes
rS and val S to compute the eZCS validity proof as in EZC.SpendEZCtoBTC.
Finally, uS ’s private input includes the values 〈ser ′S , r

′
S〉 used for eZCS′ ’s con-

struction. We emphasize that seceZCR should be kept private even towards uS

so as the latter is not able to trace further spendings of eZCR.
In more detail, the payment sender uS and recipient uR engage in the following

sequence of actions:

1. uS proves eZCS ’s validity: uS runs ACC.Accumulate(N, u, {pubeZC}∀pubLog)
for the set of eZC-commitments that appear in the EZC-blockchain, to com-
pute the current public accumulator value AccEZC. Subsequently, uS runs
ACC.GenWitness(params, pubeZCS

, seceZCS
,AccEZC), to extract a witness wS

that eZCS has been confirmed into a block. Then, uS computes π as de-
scribed in the previous section, i.e.:

NIZKPoK(α, β, γ, δ) : α = gserS ·hβ ·wγ∧ACC.Verify(N, u,AccEZC, α, δ) = 1.

2. uS mints eZC′
S : uS picks ser ′S ←R Zp−1, and r′S ←R Zp−1, and computes

the public information associated to eZC′
S , as pub

′
eZCS

= gser ′Shval ′Swr′S , such

3 Note that, if fees are to be supported, the fee amount should be explicitly stated
within the message in the signature (transaction).
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that pub′eZCS
is prime and val ′S = val S−val R is the change value. Note that

pub′eZCS
would be part of the transaction output. Finally, uS updates π to

include a proof that pub′eZCS
is properly formed:

NIZKPoK(α, β, γ, δ, ε, ζ, η) :

α = gserS · hβ · wγ ∧ ACC.Verify(N, u, AccEZC, α, δ) = 1 ∧

pub′eZCS
= gε · hζ · wη ∧ ζ ∈ Z(p−1)/2.

3. uS enables uR to privately mint for the payment coin eZCR. Thus, uS picks
rSR ←R Zp−1, computes the auxiliary token �SR = hval RwrSR , and updates
ZKPoK π so as to include a proof of correctness of �SR:

NIZKPoK(α, β, γ, δ, ε, ζ, η, θ) : α = gserS ·hβ ·wγ∧ ACC.Verify(N, u, AccEZC,

α, δ) = 1 ∧ pub′
eZCS

= gε·hζ ·wη ∧ ζ ∈ Z(p−1)/2∧�SR·pub′
eZCS

= gε·hβ ·wθ.

Finally, uS sends 〈π, �SR, rSR〉 to uR. �SR is used by uR, for the latter to
prove that her privately minted eZC, is of value val R without revealing val R
(to a third party), or the secret token of its minted eZC to uS .

4. uR mints eZCR: uR picks serR ←R Zp−1, and rR ←R Zp−1 and computes
pubeZCR

= gserR ·hval R ·wrR as described previously; she extends π to include
proof of correctness of pubeZCR

and collaborates with uS to converts π into
a ZKSoK to sign serS and pubeZCR and pubeZC

′
S in the longest blockchain

resulting into another transaction:

ZKSoK[ser S,pub
′
eZCS

,pubeZCR
](α, β, γ, δ, ε, ζ, η, θ, ι, κ, μ, ρ) : α = gserS ·hβ ·wγ∧

ACC.Verify(N,u, AccEZC, α, δ) = 1 ∧ pub′
eZCS

= gε · hζ · wη ∧ �SR · pub′
eZCS

= gε ·hβ ·wθ∧�SR = hι ·wκ ∧ pubeZCR
= gμ ·hι ·wρ∧ζ ∈ Z(p−1)/2∧ι ∈ Z(p−1)/2.

The resulting transaction is announced to the network of EZC peers, who
upon correct verification of its correctness, work towards its inclusion into
a block. After such a transaction is included into a block, pubeZCR and
pubeZC

′
S are considered members of AccEZC.

4.3 Security Analysis

In this section, we instantiate the security properties described in Section 3.1
in the context of EZC, and we show how these properties are achieved in our
scheme.

Anonymity: We adopt the definition of anonymity as presented in Zero-
Coin, where the spending of an eZC should not be linked to a particular Mint
operation— and the BTCs—which were involved in the eZCs’ creation operation
with non-negligible advantage.

More formally, the EZC anonymity game takes place between an adversary
A and the challenger C as follows. Initially, the challenger runs EZC.Setup to
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generate the system parameters. We assume that C has correctly acquired two

sets of BTCs, I(0)
BTC, and I(1)

BTC, which he converts through EZC.Mint into eZC0

(pubeZC0
, seceZC0

), and eZC1 (pubeZC1
, seceZC1

). Challenger C sends (pubeZC0
,

pubeZC1
) to A. Then, he picks b ←R {0, 1}, and computes EZC.SpendEZCToEZC

or EZC.SpendEZCToBTC for eZCb , outputting 〈ser b , πb〉, which is sent to A. Fi-
nally, A outputs her guess b ′ on b, and wins the game if b ′ = b.

We say that EZC satisfies coin-anonymity property if and only if A has a
negligible advantage over winning in the anonymity game described above.

Claim. If the underlying commitment scheme is perfectly-hiding, and the sig-
nature of knowledge π is at least computationally zero-knowledge, then EZC
provides coin-anonymity.

Proof Sketch. If there is an adversary A who could win the coin-anonymity game
with non-negligible advantage over choosing her answer at random, then such
an adversary could be used by another adversary S to break the zero-knowledge
property of the signature scheme on a commitment of a hidden value.

Transaction Unlinkability: According to this property, it should be com-
putationally infeasible for a third party to decide whether two eZC-transactions
EZC.SpendEZCToEZC (or EZC.SpendEZCToBTC) belong to the same user or not.

More formally, we construct the eZC-transaction unlinkability game in
EZC, adapted from [4], as follows. A chooses an transaction of type
EZC.SpendEZCtoEZC from pubLog denoted by τ0. Let uS, uR denote the sender
and recipient of τ0. C picks b ←R {0, 1}; if b = 0, C randomly chooses τ1 �= τ0
from TuS ∪TuR , where Tu denotes the set of transactions in which u has partic-
ipated in; otherwise C picks τ1 randomly from {pubLog−{TS ∪TuR}} to ensure
that there are no transactions pertaining to uS or uR. C then sends τ0, τ1 to A.
The adversary responds with her guess on b, b ′, and wins if and only if b = b ′.

Claim. If the underlying commitment scheme is perfectly-hiding, and the sig-
nature of knowledge π is at least computationally zero-knowledge, then EZC
provides eZC-transaction unlinkability.

Proof Sketch. We point out that at an eZC creation, the eZC-owner contributes
random numbers. Therefore, eZCs pertaining to the same user are statisti-
cally independent. It remains to show that it is computationally infeasible for
a third party that does not know the secret token of an eZC to link the spend-
ing of the eZC (EZC.SpendEZCToEZC or EZC.SpendEZCToBTC) to another
EZC.SpendEZCToEZC transaction. As mentioned earlier, this follows from the se-
curity of the underlying signature of knowledge. In particular, the zero-knowledge
and proof-of-knowledge properties of the underlying signature of knowledge guar-
antee that as long as the signature is valid, (i) the signer of the transaction knows
the secret token of the spent eZC and to which public token it corresponds to,
and (ii) that he/she leaks no information related to the parts of the tokens that
remain concealed (i.e., the randomness r, the value incorporated in the coin val ,
and pubeZC). Given that in the EZC.SpendEZCtoEZC transaction, the signature
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of knowledge is constructed collaboratively by the sender and recipient of the
payment, the former cannot trace the spending of the payment eZC (since the
sender does not obtain the secret token of the recipient eZC). We emphasize
that our analysis does not account for any possible linking that can be per-
formed by analyzing the choice of Bitcoin addresses or of the payment amount
in an EZC.SpendEZCToBTC (since this transaction reveals the addresses and
the amounts). On the contrary, owing to the zero-knowledge property of the
signature of knowledge used within the EZC.SpendEZCtoEZC operation, it is
computationally infeasible for a third party to infer the payment amount in a
given EZC.SpendEZCtoEZC transaction.

Balance: The balance property requires that no user or coalition of users
can spend eZCs with higher value than their balance, i.e., the value of eZCs
which they possess. More formally, we consider the following game for bal-
ance. The challenger runs EZC.Setup and sets the system parameters. The
adversary participates in a set of n EZC.Mint operations, by providing Bit-

coin inputs {I(i)
BTC}i=n

i=1 that were executed correctly and receive {eZCi}i=n
i=1

({pubeZCi
, seceZCi

}i=n
i=1 ) in response. Let ser i, val i denote the serial number and

value of eZCi. The adversary A engages in a series of eZC-spendings resulting in
a set of m eZCs {eZC′

i}i=m
i=1 corresponding to {pub′eZCi

, sec′eZCi
}i=n
i=1 with values

{val ′i}i=m
i=1 . The adversary wins the game if and only if

∑n
i=1 val i <

∑i=m
i=1 val ′i.

Clearly, we require that no probabilistic polynomial time algorithm A wins the
balance game with non-negligible probability.

Claim. If the underlying zero-knowledge signature of knowledge scheme is sound,
and the construction of the dynamic accumulator used is secure, EZC satisfies
balance of payments.

Proof Sketch. Balance in EZC is satisfied by the security properties of the dy-
namic accumulator and the used ZKPoK schemes. More specifically, dynamic
accumulators guarantee that no user can produce a valid witness of a coin which
has not been previously added to the accumulator. This prevents the user from
spending a coin which has never been confirmed. Thus, to double-spend a coin,
the adversary should present the same serial number twice which would imme-
diately reveal her intentions.

On the other hand, the security of ZKPoK protocols guarantee that if the
protocol succeeds then the user indeed has knowledge of the secret values, and
that the user does not overspend the value of a given eZC. More specifically, the
ZKPoK used within our EZC guarantees, that in each transaction the amount
of the input equals the output amount (either in BTCs or in EZCs). This is
guaranteed by requiring that the amount included in the payment eZC and the

eZCused for change is of a value below (p−1)
2 . Such a requirement avoids attacks

where the sender and recipient collude and generate arbitrary payment amounts
whose sum wraps around the prime modulus p. Note that, for reasonable choices

of p, (p−1)
2 corresponds to large payment values, which never typically occur in

Bitcoin.
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4.4 Performance Comparison to ZeroCoin

By enabling the construction of multi-valued ZCs, EZC clearly results in a
smaller number of broadcasted transactions in the network when compared to
ZeroCoin. That is, for a user to spend a transaction worth v BTCs in ZeroCoin,
the user client actually broadcasts v separate Spend transactions. EZC only in-
curs, on the other hand, a single EZC.SpendZCtoZC transaction in order to
spend the eZC whose value is worth v BTCs.

To better assess the performance gains brought by EZC when compared to
ZeroCoin, we computed the average transaction amounts incurred in Bitcoin.
For that purpose, we modified the block chain parser in [7] and we parsed the
first 239,200 Bitcoin blocks (June 2013). Our results show that transactions in
Bitcoin currently spend 9.47 BTCs on average. This means that EZC results in
9.47 times less transactions broadcast in the network, on average, when compared
to ZeroCoin.

On the other hand, EZC incurs similar computational costs when compared
to ZeroCoin in both the Mint and the Setup operations. Spending coins in EZC is
more computationally expensive than ZeroCoin, since EZC requires an additional
zero-knowledge proof that the input coins amount to the output coins. We argue,
however, that this overhead is much lower than that incurred by performing ZC
spendings given the current usage patterns in Bitcoin. Indeed, since current
Bitcoin transactions transfer on average 9.47 BTCs, an average spending in ZC
will result in the need to construct and verify almost 10 zero-knowledge proofs
of knowledge.

5 Related Work

Bitcoin has received considerable attention in the literature. In [10], Elias inves-
tigates the legal aspects of privacy in Bitcoin. In [12], Babaioff et al. address the
lack of incentives for Bitcoin users to include recently announced transactions in
a block, while in [9], Syed et al. propose a user-friendly technique for managing
Bitcoin wallets. In [8], Karame et al. thoroughly investigate double-spending at-
tacks in Bitcoin and show that double-spending fast payments in Bitcoin can be
performed in spite of the measures recommended by Bitcoin developers. In [13],
Welten et al. compile countermeasures to detect double spending attacks. In [25],
Wattenhofer et al. connect to a subset of the Bitcoin network and measure the
propagation delay of blocks.

Clark et al. [23] propose the use of the Bitcoin PoW to construct verifiable
commitment schemes. Reid and Harrigan [36] analyze the flow Bitcoin transac-
tions in a small part of Bitcoin log, and show that external information, i.e.,
publicly announced addresses, can be used to link identities and organizations
to some transactions.

In [4], Androulaki et al. evaluate user privacy in Bitcoin and show that Bitcoin
leaks considerable information about the profiles of user. In an attempt to deal
with the privacy leaks in ZeroCoin, Garman et al. briefly describe a ZKPoK based
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technique which enables the construction of transactions between anonymous
coins [30]. Nevertheless, the scheme of [30] is only described at high level, and
their anonymous coins’ transactions only refer to transactions that self-spend
coins (i.e., that originate from a user to herself); in this case, the output coins
are allowed to be traced by the sender. In [37], Ron and Shamir this paper
analyze the behavior of users (i.e., how they acquire and how they spend their
BTCs) and investigate how users move BTCs between their various accounts
in order to better protect their privacy. In [34], Ober et al. studied the time-
evolution properties of Bitcoin by analyzing its transaction graph. Finally, in [33],
Moore and Christin study the economic risks that investors face due to Bitcoin
exchanges.

ECash [15,17,22] and anonymous credit cards were the first attempts to define
privacy-preserving transactions. Privacy in ECash consists of user anonymity and
transaction unlinkability; by relying on a set of cryptographic primitives ECash
ensures that payments pertaining to the same user cannot be linked to each other
or to the payer, provided that the latter does not misbehave. In [35], Pfitzmann et
al. define unlinkability and privacy in pseudonymous systems. Dwork [27] defined
differential privacy and quantified the information leakage from the query access
of individuals. In [41], Shokri et al. quantify location privacy by assessing the
error of the adversarial estimate from the ground truth. In [26, 40] the authors
further introduce entropy-based metrics to assess the communication privacy in
anonymous networks.

In [14], Belenkiy et al., introduce an ECash-based P2P payment scheme that
provides accountability at the cost of privacy. In [31], Karame et al. propose a
novel micropayment model based on verifiable microcomputations.

6 Conclusion

In this paper, we presented EZC which builds atop Bitcoin in order to hide the
transaction amounts and address balances in the system. More specifically, EZC
enables the construction of a multi-valued ZeroCoin, which can be either spent
as a regular Bitcoin, or can be spent directly in another ZC to ZC transaction.
ESZ strengthens user privacy in the system, and minimizes information leakage
that might arise from behavior based analysis.

We performed a preliminary assessment of the performance of EZC; our find-
ings suggest that EZC considerably improves the communication overhead in-
curred in ZeroCoin. In the near future, we plan to implement EZC and integrate
it within the Bitcoin system in order to better evaluate its performance.
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Abstract. Authentication and authorisation are essential ingredients for effec-
tive protection of data in distributed information systems. Currently, they are
being treated as separate components with specified input and output relations.
Traditional authorisation components require all of the users’ information that
is possibly relevant to an authorisation decision and consequently the authen-
tication components need to fully identify the users and collect all available
information about them. This destroys all the potential privacy and security ben-
efits of data-minimising authentication technologies such as private credential
systems. In this paper, we discuss different ways to address this problem. More
precisely, we sketch two possibilities of integrating data-minimising authentica-
tion into a traditional authorisation system such that the overall system becomes
data-minimising.

Keywords: authentication, authorisation, access control, privacy, XACML.

1 Introduction

In the past years we have seen a tremendous growth in the usage of digital information
processing systems in all areas of our lives, resulting in enormous amounts of data
being communicated, processed, or stored. In most cases it is in the interest of the
data owner (e.g., a private person) as well as the data holder (e.g., a company or a
government) that data is protected at all times. An important ingredient thereby are
appropriate authorisation and access control (AC).

There are different AC models that allow for the implementation of rules to enforce
that only authorised entities are able to access stored data or, more generally, any kind
of resource. Some allow for a fine-grained specification of a subject’s required attributes
for being granted access to each resource. While such detailed specification are an ideal
basis for data-minimisation authorisation, current implementations unfortunately re-
quire all potentially relevant attributes to be revealed to the authorisation system. This
poses serious security and privacy problems to users and their employers as informa-
tion systems are increasingly used for daily private and corporate tasks, on the one hand,
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and require expensive efforts to properly protecting sensitive personal information, on
the other hand. Consequently, there is a need for performing authorisation and access
control using only the strictly relevant data about a subject.

Private or anonymous credentials [7,8,10] allow for data-sparse authentication of
users. Using certified attributes contained in credentials, users are able to just prove
properties about themselves (e.g., being over 18) while hiding all other information
(such as birthdate, name, and address). Private credentials achieve (1) the goal of pro-
viding only the information relevant to a given (authentication) process, and (2) a high
level of assurance in the communicated data through the use of certification. However,
leveraging the benefits of data-minimising authentication in an authorisation system
is challenging because of a mismatch in the respective expectations: the authorisation
system requires all possibly relevant information about a subject to be present whereas
the authentication system requires a declaration of the properties a subject must fulfil
before it produces (cryptographic) evidence that proves such properties.

In this paper we provide a brief overview of data-minimising authentication (§2) as
well as authorisation systems (§3). In §4 we show two possible approaches to solve the
issues related to the integration of data-minimisation into an authorisation system. After
sketching our approaches we compare their merits with a focus on the intrusiveness
w.r.t. XACML-based access control systems.

Related Work. Access control systems differ in the policy language and model that
they use. Systems such as Role Based Access Control (RBAC) [14] aim to improve
over discretionary or mandatory access control in terms of manageability of policies
by allowing indirect specification of rights based on properties (the roles) of entities.
Systems such as the eXtensible Access Control Markup Language (XACML) [12] take
this a step further allowing specification of users, resources and rights in terms of at-
tributes. Most systems consider authentication and authorisation as distinct processes
in which the authorisation part leverages information gained through the authentication
process. Ardagna et al. [1] are an exception. They propose changes to the XACML
framework that aim at including data-minimising authentication functionality into the
XACML standard. In contrast, we do not rely on changing the XACML language.

2 Data-Minimising Authentication

Traditional authentication mechanisms have various drawbacks w.r.t. users’ privacy,
data quality, and the necessary protection of the collected data. Attribute-based authen-
tication systems [9] allow for a selective disclosure of attributes certified in credentials,
which make it possible to overcome these drawbacks. When it comes to the selection
of the underlying technology, anonymous credentials systems as introduced in [7,8,10]
offer the most comprehensive set of privacy preserving features [4]. They allow users
to merely prove properties about the attributes certified in their credentials. As sensitive
data disclosed in an authentication transaction can be reduced to a minimum, we call
the use of private credentials data-minimising authentication.

We depict the message flow of an authentication transaction as well as the compo-
nents of a data-minimising authentication system in Fig. 1. Given a user who is in pos-
session of credentials issued to her by identity providers, the process of her trying to use
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a service (e.g., access to a medical database record) hosted on a server is depicted. For
using its service, the provider requires the user to authenticate w.r.t. a service-specific
authentication policy. This policy is formulated in terms of properties of the user’s at-
tributes, e.g., a policy could specify that only medical staff according to a credential
issued by certain hospitals may use the service.

Fig. 1. User and a service provider components of a data-minimising authentication system [4]

Upon receiving an authentication request (1) for a service the server pre-evaluates
the applicable authentication policy (1a) by resolving references to static content, such
as the current date, to generate the policy that is sent to the user (2). After receiving
the policy, the user’s system determines which claims, i.e., statements about a sub-
set of attributes of one or more of the available credentials, can be made that fulfil
the given policy (2a). For example, a policy requiring the user to be medical staff of
a hospital may be fulfilled by means of a user’s employer credential. The favoured
claim is selected (2b) interactively by the user [5] or automatically by a heuristics
capable of finding the most privacy-preserving one. Based on the claim (credential
technology-specific) evidence (2c) is generated. Claim and evidence are sent to the
service provider (3), who verifies that the claim implies the policy (3a) and checks
whether the claim’s evidence is valid (3b). Note that some credential technologies re-
quire the issuer to be online and involved when evidence is created. After successful
verification, the user is authenticated (4) as someone fulfilling the authentication re-
quirements dictated in the policy. The strength of anonymous credential systems lies
in the fact that they can strictly supply the information that is requested. For example,
the only information the service provider learns about the user is the fact the she or he
is indeed a currently employed as a medical staff at one of the collaborating hospitals.
Thus, the user has minimised the information revealed about herself w.r.t. the given au-
thentication policy. Ideally, the policy also reflects the minimal information necessary
for conducting the scenario at hand.
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3 Authorisation Systems

The authorisation problem typically arises when dealing with critical sensitive and con-
fidential information. Current mechanisms [13] aim to protect resources by ensuring
only entities with the correct rights get access. Attribute-based access control is a flex-
ible model where permissions can be acquired dynamically according to actual user’s
attributes. Its capacity to accommodate real-time environmental states (such as user lo-
cation and time) as access control parameters is one of its advantages. In this paper
we focus on eXtensible Access Control Markup Language (XACML), an OASIS stan-
dard [12] which defines a flexible attribute-based framework for access control. In this
section we provide a brief summary of the XACML policy language and framework.

XACML policies are expressed in an XML syntax. A policy set may contain further
policy sets as well as policies, which in turn contain rules. Each of those elements has
targets which specify what requests it (may) apply to. For example, a policy can apply
to any read action on a medical record. If a request matches the target of a policy, policy
set, or rule, the respective element is said to apply and it is evaluated. For a policy (set)
this means its components are evaluated. For a rule its condition; e.g., ‘it is daytime and
the requester is a doctor’ is checked and if satisfied, its effect (permit or deny) is used.
As there may be multiple policy sets/policies/rules that apply, a combining algorithm
(e.g.,‘deny overwrite’, ‘first applicable’) is used at each level to resolve any conflicts
that may occur. XACML is attribute-based, i.e., each of the four components (subject,
action, resource, environment) in a target as well as the condition are expressed using
attributes. These attributes may be combined in different ways, e.g., ‘the sensitivity level
of the resource is less than the clearance level of the requester’ or ‘the time of request +
requested duration of use is less than 17:00’. XACML distinguishes subject attributes,
resources attributes, etc. and places some limitation on how, what type of attributes, can
be used where.

Optional additional components of a policy (or policy set) are obligations. An obli-
gation specifies an action that should be executed when the policy applies. For example,
the policy may permit access to a resource but have the obligation that the owner of the
resource is notified.

Policy enforcement in XACML is performed by a policy enforcement point (PEP), which
intercepts requests for a resource and enforces the relevant policies according to the
interpretation above. To enable this, the XACML framework uses the components de-
tailed in the following.

The policy decision point (PDP) is responsible for the actual evaluation of policies
relevant for the request which it obtains from the policy administration point (PAP).
The context handler is responsible for formatting the request in XACML (rather than
the application specific format the PEP intercepts) and retrieving the values of relevant
attributes (e.g., by asking the policy information point (PIP)), either on its own initiative
or when requested by the policy decision point (PDP). The PEP enforces the access
decision and gives the corresponding obligations to the obligation handler to perform.



Integration of Data-Minimising Authentication into Authorisation Systems 183

4 Integrated Architecture

As mentioned in the introduction, the integration of data-minimising authentication into
any authorisation framework poses a major challenge due to the difference in the as-
sumed information flow. While currently implemented authorisation systems expect
all possibly relevant information on the user requesting access to be present, the data-
minimisation principle requires that a user releases only the information minimally
required for the operation at hand. The integration of data-minimisation into an au-
thorisation system, consequently, requires changes of the current architecture or the
communication flow.

We propose two approaches for realising data-minimising authorisation with an
XACML-based system. The first one uses existing extension points to achieve the inte-
gration, whereas the second one diverges from the traditional XACML information flow
and requires changes in the architecture of the system. After sketching both solutions
in §4.1 and §4.2, respectively, we compare their advantages and drawbacks in §4.3.

There are some limitations to the degree to which data-minimisation can be applied.
For instance, XACML allows for negative statements which deny requests containing
certain attributes and in such cases it is essential that such attributes are always provided
for security reasons. Also, different types of access (e.g., read, write) may have different
types of requirements. For example, consider an activity program service for seniors.
It may be accessed if a person is over 65 and a member, while it may be changed by a
doctor only. Privacy is key for access, accountability is key for change.

4.1 Approach I: Use of Obligations

XACML allows for using obligations (cf. §3) in the authorisation process. One can
instruct the PEP to only authorise access to a resource if an obligation is fulfilled. In the
following we sketch a method for using this mechanism to integrate data-minimising
authentication (cf. Fig. 2).

Where data-minimised access is allowed, the XACML policy would include an obli-
gation with attributes that specify the corresponding authentication policy (or a refer-
ence to it) and its relevant arguments (e.g., the current date may be needed for an age
check). For example, a usage policy with data-minimised access would look as follows
(in explanatory shorthand notation):

<Policy><Rule Effect="Permit"/>
<Obligation Id="xacml:abc:privatecred" FullfillOn="Permit">
<AuthPolicyRef>MemberAndSenior</AuthPolicyRef>
<Date>GetCurrentDateAttribute()</Date>
<Contact>GetRequestorContactAttribute()</Contact>

</ObligationExpression></Policy>

The policy for changing programs by the doctor would not need to change (though
we could also use an authentication policy that identifies the doctor or allows for the
revocation of anonymity). The authentication policy needs to be in a format that can be
processed by the data-minimising authentication system (e.g., the ABC4Trust presen-
tation policy language [3], the language currently supporting the most comprehensive
set of privacy-preserving features).
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Fig. 2. Obligations approach: sequence of a resource request

In terms of communication flow (cf. Fig. 2) this means. First, in an authorisation op-
eration an entity (i.e., a user or a system) issues a request providing information about
the resource it wants to access as well as the action it intends to perform (1). Subject
attributes such as an identity, role or pseudonym that relate the current request to a pre-
vious one are entirely optional. Second, the authorisation system runs as usual except
that the PDP may return an obligation indicating there is not enough information about
the subject (8). The obligation contains a (pointer to an) authentication policy that needs
to be fulfilled. Of course, multiple obligations may be returned in which case all must
be satisfied. Third, the PEP receives the obligations from the context handler (9) and
relays them to the obligation component (10). Fourth, the obligation service extracts the
authentication policies referred in the obligations and requests the authorisation subject
to issue a claim as well as the accompanying evidence (called presentation token in [3])
by sending the extracted authorisation policy (11). For processing the evidence received
from the subject (12), the obligations service contacts an evidence verifier component
(13) that, given the authentication policy and the corresponding claim/evidence pair,
decides on whether the latter complies with the subject attributes required by the autho-
risation system. Finally, the obligations service forwards the result of the verification to
the PEP (14), which will either return the requested resource or deny access, depending
on the obtained result (15).

Caching of a user’s attribute values that result from an authentication query helps
improving performance for repetitive access of resources. While this can be done in
the obligations service itself, storing them in the PIP is beneficial but requires more
integration with the XACML system. Note, anonymous credentials in general, and the
Identity Mixer library [2]) in particular, support a broad range of possibilities when it
comes to revealing data about their holder. Using the most privacy-preserving setting,
e.g., only proving ownership of a certain credential in an way that several transactions
of the same user cannot be linked, does not allow the authorisation system to preserve
any knowledge about that user. However, credentials also allow one to reveal a subset
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of the attributes contained in them and to make operations w.r.t. a pseudonym that can
be used to link a set of transactions of one user.

4.2 Approach II: Policy Extraction Approach

An authorisation system may meet the requirement of requesting the minimally nec-
essary information about a subject willing to access a resource by communicating to
that entity the required access policy for a given resource/action tuple. However, such
communication is not foreseen in any authorisation system as they separate the process
of authentication (for requesting information about the subject) and authorisation. To
enable it, we introduce a server-side component, the so-called policy collection point
(PCP), which is able to extract an access policy from a specified resource/action combi-
nation. The PCP may interact with the PAP to retrieve the XACML authorisation policy
that it then converts into an authentication policy (e.g., ABC4Trust presentation pol-
icy [3], extended SAML token [1]) and returns it to the requesting entity. Using this
policy the service provider can request (tailored) authentication before taking an autho-
risation decision and we can retain the separation of authorisation and authentication to
a large extent.

Fig. 3. Policy request (AuthN request) with appropriate policy collection point before performing
a mostly standard XACML authoirisation request

Figure 3 depicts the process of requesting an authentication policy from the PCP.
It also illustrates that the PAP and the PIP require slight modification from what they
perform in a standard XACML system (we thus denote them PAP* and PIP*, respec-
tively). Concretely, the PAP* is able to output an authentication policy for a specific
resource/action combination. The derivation of such policies from the XACML format
poses challenges as some capabilities are unique to credential systems (e.g., proving
that an two attributes from distinct credentials have the same value). Further, the PIP*
is able to verify an authentication claim/evidence combination, possibly by using an
external component provided by the authentication system (as in Approach I, §4.1).
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4.3 Comparison

Our first approach, using obligations to perform authentication during the authorisation
process, requires only minor modifications to existing XACML implementations. It also
allows for incremental adoption; data minimisation can be added at chosen points while
not changing the behaviour for other existing policies. One drawback arising from this
independence is that attributes communicated to the authorising entity need to be re-
supplied on each new resource request, or the obligations service needs to implement
caching, which is already done in the PIP. A further challenge is that the described
approach requires system administrators to author XACML as well as authentication
policies. We could mitigate this problem by deriving the authentication policy from
the XACML policy, possibly relying on extensions of the specified format to support
all desirable features. Clearly, such derivation process increases the ties between the
authentication and authorisation – a property we tried to avoid in the first place. Further,
we need to verify that the delay caused by the authentication transaction is acceptable
to the entity who needs to maintain the state for the authorisation transaction.

The second approach mandates more changes to the standard XACML information
flow. Through those changes it will be possible to maintain information about the sub-
ject as traditionally done in an XACML implementation. The (possible) re-use of this
information may allow the service provider to increase the efficiency of the authori-
sation process assuming that many similar policies exist. The (required) derivation of
authentication policies from the existing XACML access policies, however, may call for
restrictions to and amendments of the latter to support the vast feature set of anonymous
credential systems.

The approach of [1] is similar to the second approach but it integrates private cre-
dential concepts into the XACML language; the authorisation policies also specify the
required authentication. Besides changing the policy language this combines drawbacks
of the obligation approach (multiple policies; though specified in one document) with
that of the policy extraction approach (changes needed to the architecture).

5 Conclusion

The data-minimisation principle allows a user to only reveal the minimal set of at-
tributes or properties about attributes required for an operation at hand. This is con-
flicting with the traditional understanding of authorisation system implementations that
require an entity that wants to access a resource to disclose all possibly relevant attribute
values. Overcoming this challenge requires amending the information flow of current
authorisation systems.

We presented two alternative approaches for integrating data-minimising authenti-
cation into an authorisation system. One method focuses on marginally changing the
specified XACML system and has its advantages mainly in the ease of integration.
The simplicity of implementation comes at the price of ending up with a system that
is more complex in maintaining and we end up with interleaving the authentication
and authorisation transaction. The second method aims at keeping those transactions
separate, which forces us to extract authentication information from a XACML.
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Future work will implement the described approaches to show their feasibility. Espe-
cially, contacting an entity during the authorisation decision may pose a problem as
such interleaved transaction is currently not expected and it will increase the expected
overall runtime. Further, the extraction of authentication information from XACML
policies may not be possible to an extent that is desirable for maximal data minimisa-
tion. Extending the XACML standard at the foreseen extension points, however, may
not allow extension with all functionality of anonymous credentials.

Another direction to be explored is the semantic interoperability between differ-
ent domains. Extensions of XACML that introduce ontologies and trust management,
e.g., [6], should be incorporated in the proposed integrated architecture.
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Abstract. This paper presents a framework for trust evaluation through
monitoring, in particular, to address the question of how to derive trust
from observations of certain properties. We propose a trust model based
on subjective logic to represent trust through the notion of an opinion
and to include aspects of uncertainty in a systematic fashion. Moreover,
we analyze requirements for opinion generators and introduce novel pa-
rameterized generators that capture the requirements for opinion gen-
erators much better than current generators do. In addition, we show
how a decision can be made based on trust monitoring within a certain
context. The proposed trust evaluation framework is demonstrated with
a case study of a Body Area Sensor Network. The results and examples
show that the opinion generators can effectively work with various types
of properties, including dependability, security and functionality related
properties.

Keywords: trustworthiness, trust evaluation, monitoring, opinion gen-
erator, body area sensor networks.

1 Introduction

Trustworthiness, in general, refers to a relation among entities, where one relies
on the other. At the user-system interaction level, trust is commonly based on
a high transparency and a clear interaction, complemented with reliable and
correct operation. When used inside the system, trust and trustworthiness refer
to relations between entities in the system itself. Trust and a trust model form
the basis of system decisions (e.g., whether or not an operating system accepts an
application, how it asserts the quality of outcomes or decides to take an action).

As an example, a Body Area Sensor Network (BASN) consists of sensors,
which record human body functions including physiological, emotional, and spa-
tial aspects. BASNs can be used for diverse applications ranging from monitoring
for medical purposes, sports coaching to computer gaming. The user acceptance
of BASNs will largely be determined by the opinion that users have about the
trustworthiness of such systems. To mention just a few examples, users trust that
their data is safe and protected or that functions of the system (e.g., warning
functions) work correctly. The doctor trusts the BASN to measure with a certain
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Evaluate trustworthiness of the
trustee with respect to property P

Trustworthiness >
threshold?

no

yes

Decision to trust on P

Monitor the trustee
behavior

yes

Try another
operation mode?

no

Decision to not trust
on P

Fig. 1. The trust management scheme of software components in a BASN given in [4],
including trust evaluation, monitoring, and the decision making processes with respect
to property P

given accuracy and for a certain time. The user trusts his system to function
within certain limits of use (e.g., duration without charging). This trust under-
lies the decisions stakeholders take. Decisions include, for example, to actually
use the BASN or to select a particular application on it.

In [4], trust and trustworthiness were introduced as generic and pervasive
concepts within a BASN. At the highest level, users of a BASN must be able to
trust it, or more precisely, to trust it to have some relevant properties. Conversely,
the BASN is said to be trustworthy with respect to those properties. Thus, the
concept of trust is used to bound and guide changes in the system: the new state
must be sufficiently trustworthy with respect to a given set of properties. Besides
functionality, such properties can be qualities, including properties dependent
on time. As an example, assume that a component is specified to use a certain
maximum utilization. The acceptance of the component depends on the trust
the system has in the truth of this. The pervasive nature comes from using this
same model at all levels in the system. Figure 1 gives a trust management scheme
to maintain the BASN as a trustworthy platform under changes in applications
such as dynamic extension and configuration of the BASN applications.

In this paper, we regard trust as subjective: it is derived from the opinion of
a trustor about a trustee1. This opinion of the trustor about whether a trustee
has a property P has contributions from three different directions. First, there
is an initial or base level of trust ranging from the trustor being credent to
being suspicious. This base level determines trust in case of lack of knowledge or
uncertainty. Second, trust derives from experience, i.e., from monitoring whether
P holds or is endangered. Third, trust is obtained from recommendations by

1 A note on terminology: we refer to trustor and trustee as the two parties under
consideration. With the name ‘trustee’ we mean the subject of the opinion that the
trustor has. We do not imply that a ‘trustee’ is automatically trusted.
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other parties and thus is a combination of trust in this third party and its
recommendation. Trust is built from composition of these three contributions,
and is based on the property P that is expected. This suggests that in the
evaluation of trust there are objective elements (facts like measurements, or
the opinion of another entity on the subject matter) and subjective elements
(the value a trustor assigns to such a fact).

This paper focuses on addressing the monitoring part, and in particular
the question of how to derive trust from observations. We use the model of
subjective logic [10,11] to represent opinions from which trust is derived, and to
include the aspect of uncertainty in a systematic fashion. In subjective logic,
deriving an opinion from observations is called opinion generation.

Contributions. We analyze requirements for opinion generators and we introduce
novel parameterized generators that capture these requirements much better
than current generators do. This work extends the work in [3] to include time;
we also add a conceptual understanding of the continuous model and we give a
general decision model, highlighted in the context of a BASN. In comparison to
the original opinion generator in [11], we add the following: a) we deal in a natural
way with the time of observation; b) we introduce parameters to define new
categories of generators corresponding to particular requirements of a trustor;
and c) we incorporate continuous observation rather than just discrete ones.

The paper is organized as follows. In Section 2, we discuss how we represent
trust using subjective logic, in the form of an opinion. We explain how we derive
a trust value and a confidence from an opinion, and how our trust-based decision
scheme works. In Section 3, we present requirements for opinion generators. We
then present and evaluate two types of opinion generators. One class is based
on discrete observations (success, failure, and unknown) while the other class
deals with continuous observations. Experiments and evaluation are discussed in
Section 4 with a case study of a BASN. Related work is presented in Section 5.
Finally, Section 6 gives conclusions and future work.

2 Trust Model

Trust Definition. Following the work in [4], we define trust as follows. Trust
is the degree of justifiable belief a trustor has that, in a given context, a trustee
will live up to a given set of statements about its behavior. Phrased differently,
trust is a function of trustee, trustor, context and property that the trustee is
supposed to have (i.e., the set of statements about its behavior). We put in the
word ‘justifiable’ because we want to consider trust and trust computations that
can be formalized and repeated. The codomain of trust is a scale of 0..100%; we
also speak about a trust value.

Besides trust, we introduce the notion of confidence. Confidence is the degree
of certainty a trustor has about a trust value. Its codomain is a scale of 0..100%
as well.

Formalization. According to this definition, the subject of trust is a statement
P consisting of trustee, context and behavior. Thus, a trust statement is a tuple
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P = (T, p, c, t) meaning ‘trustee T will satisfy p in context c for a time t’. Both
trust and confidence are calculated for a pair consisting of a trustor and a trust
statement. We define this through the concept of an opinion a trustor A has
about a trust statement P .

Opinions are part of a belief model defined in subjective logic [10,11]. Formally,
an opinion denoted by ωA

P = (b, d, u, a) expresses trustor A’s belief in the truth
of statement P . Here, b, d, and u represent belief, disbelief, and uncertainty
respectively, where b, d, u ∈ [0, 1] and b + d + u = 1. Uncertainty is caused by
the lack of evidence to support either belief or disbelief. Parameter a ∈ [0, 1] is
called the base rate and represents the role of uncertainty in the computation
of trust, viz., the percentage of uncertainty that is taken as belief. For a given
opinion ω we define trust and confidence as follows.

t(ω) = ω.b+ ω.a · ω.u. (1)

c(ω) = 1− ω.u. (2)

Hence, the trust contained in an opinion is the belief plus a percentage of the
uncertainty. A credent trustor has this percentage equal to 1; a suspicious trustor
has it 0; a neutral value is 0.5 which we will use most of the time.

Subjective logic defines methods to combine opinions into new ones. In this
way, for example, opinions can be constructed based on an opinion of a recom-
mender and the opinion about this recommender. Hence, the final opinion ωA

P

is the result of a series of such compositions. A discussion of this is beyond the
purpose of this paper; the reader is referred to the references.

Decision Model. For taking decisions we assume that we have computed a
number of trust values tv=(tv1, . . . , tvn) and confidence values cv=(cv1, . . . , cvn)
from correspondent opinions. We then require that these values exceed certain
given thresholds. More precisely, we assume that we are given a series of weight
vectors tw1, . . . , twm and cw1, . . . , cwm of dimension n and with a norm 1; and
thresholds tThr1, . . . , tThrm and cThr1, . . . , cThrm. Then the requirement is

twi · tv ≥ tThri, for 1 ≤ i ≤ m, (3)

cwi · cv ≥ cThri, for 1 ≤ i ≤ m. (4)

Using matrix notation with the weight vectors as rows,

TW tv ≥ tThr, (5)

CW cv ≥ cThr. (6)

By taking n = m and TW equal to unity we obtain an individual threshold
per trust value. The general case gives a series of tradeoffs using the different
weights. Thresholds may be context dependent. For example, trust thresholds
corresponding to privacy protection may be lower if the wearer of the BASN has
an acute condition.

We call a state safe if (5) and (6) hold. We can use this in a number of
ways. Through monitoring, we can observe whether the current state is still
safe, possibly leading to a decision to take action if it is not. Alternatively, an
access control decision is based on computing whether a new state is safe.
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Fig. 2. Example of the evolution of (b, d, u) based on the classic definition of opinion
generation in [11] with ε = 3. The top line shows the observations with three values:
failure, unknown (not used here), and success.

3 Opinion Generation

3.1 The Classic Generator

In this section we study the question of how to generate an opinion from ob-
servations. We assume here that we can observe the truth of a trust statement
P ; the outcomes are called success and failure. To start, the generator proposed
in [11] is defined as follows. Discrete observations of successes and failures are
collected in variables ns and nf , respectively, according to the following rules.

Upon success: ns ← ns+ 1;
Upon failure: nf ← nf + 1.

(7)

A corresponding opinion (b, d, u, a) is defined as follows.

b =
ns

ns+ nf + ε
; d =

nf

ns+ nf + ε
; u =

ε

ns+ nf + ε
. (8)

With this definition, b and d are assigned the relative fractions of successes
and failures respectively, while a number of uncertain observations, ε, is given as
an initialization parameter. Base rate a remains a free parameter. Figure 2 shows
an example. The observation sequence is plotted at the top with values ranging
as failure (lowest), unknown (middle, not used here), and success (highest). This
method, however, has the following limitations.

1. After many observations, new observations have little impact. This method
might therefore be adequate to estimate a probability that an object has
some static properties, but it does not work very well for properties that
evolve over time.
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2. Older observations get the same weight as more recent observations. The
order of the observations in the past is in fact irrelevant for the current
outcome. Other authors have observed this as well. In [14] a forgetting factor
is introduced to address this issue.

3. Successes and failures are treated in the same way. Naturally, failures count
heavier than success; sequences of failures typically decrease trust rapidly 2.

4. Although the horizontal axis in Figure 2 might be interpreted as time, it
really represents an event count. In many cases, a correspondence to time is
required. One way to achieve this is to perform periodic observations. In that
case an observation may become missing, leading to an observation with the
outcome ‘unknown’.

3.2 Requirements for an Opinion Generator

From the above observations we obtain some requirements for an opinion gen-
erator as below.

1. Observations have different weight, e.g. more recent observations count heav-
ier than older ones. This means that the observation order is relevant. Sim-
ilarly, impact of success and failure can be different.

2. A long or infinite series of successes leads, in principle, to trust converging
to 1. A property of interest is the time of convergence, which may depend
on observed behavior in the past.

3. A series of failures must lead to trust converging to 0. In addition, a relatively
frequent occurrence of failure must lead to a continuously low trust. It may
even lead to recovery being possible only through a user intervention.

4. Uncertainty increases upon observing unknown values. There are two ap-
proaches for this: decreasing knowledge (reduction of knowledge of successes
and failures) and increasing uncertainty. The latter makes recovery slower.

5. It takes time into account. While time passes without observations, uncer-
tainty increases. This reduces confidence and most often trust decreases as
well (trust decays over time).

6. Besides discrete observations, continuous observations (reflecting a ‘distance’
to failure) must be included.

7. It provides a set of parameters (a profile) can be tuned for different trust
statements (and that, in fact, address the above requirements).

3.3 Proposed Opinion Generators

We retain a model with two variables nf and ns capturing failure and success;
the definition of an opinion remains as in (8). In order to address the above
requirements we modify the update rules. We present and evaluate two types of
opinion generators as below.

2 This is reflected in the expression: ‘trust comes by foot but leaves by horse’.
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Discrete Observations. This generator is based on the discrete values of ob-
servations ‘success’, ‘failure’, and ‘unknown’. We introduce three parameters, γ,
δ, and ζ ∈ [0, 1], which are used to update the values of ns and nf using the
following rules.

Upon success: ns ← ns+ 1;nf ← γ · nf ;
Upon failure: nf ← nf + 1;ns ← δ · ns;
Upon unknown: ns ← ζ · ns;nf ← ζ · nf.

(9)

The original method in (7) is obtained with parameters3 γ, δ and ζ set to 1. The γ
and δ values indicate the level of pessimism and optimism and determine how fast
disbelief or belief are lost when faced with a success or failure, respectively. With
fluctuating successes and failures, both ns and nf remain small such that the
uncertainty term ε plays a more important role. The linear increase, exponential
decrease allows us to model the aspect of ‘trust comes by foot but leaves by
horse’.

These update rules address Requirement 1 since new observations have more
impact. A long series of successes inevitably leads to a dominating value of ns
addressing Requirement 2. A similar comment holds for a long series of failures,
giving Requirement 3. The (ε, ζ) pair controls respectively how fast uncertainty
is overcome and how fast it is introduced upon ‘unknown’ observations. For
ζ < 1, both ns and nf become small upon unknown observations. Thus, b
and d go back to zero (thus increasing u) with the effect that the system is
more or less reset. This satisfies Requirement 4. Requirement 5 is satisfied when
observations are periodic. The parameters in the method provide the capability
of customizing the trust evaluation (Requirement 7). For example, choosing δ
to be zero, represents the policy that belief drops completely after a failure. If
γ equals 1, the occurrence of failures is never forgotten (the model behaves like
an elephant that never forgets), leading to a slower recovery after each failure.
This opinion generator therefore can cope with a kind of on-off attacks, which
the classic generator cannot do (see the example in Figure 2). In these on-off
attacks, an object may alternate between periods of reporting success and failure
or try to report a series of successes in order to acquire a high trust value and
be allowed a number of successive failures without rasing an alarm. By choosing
δ to be zero, belief drops completely after a failure leading to a correspondent
drop in trust and confidence.

Figure 3 presents an example of using this method, in which the input data
set has an occurrence of a failure after a long sequence of successes. The trust
value is also shown using a = 0.5. Because the failures remain stored in nf , it
leads to increasingly longer convergence of trust. The figure shows that (1) the
observation order is relevant (more recent observations count heavier than older
ones); (2) a success influences disbelief and uncertainty as well, in contrast to
the independence in the original model; (3) the stability of long-term observation

3 Actually, we could be more precise and use ζ1 and ζ2 to discriminate between
adjustments after success or failure. We keep the parameters space limited though.



Evaluating Trustworthiness through Monitoring 195

Fig. 3. Example of the evolution of (b, d, u) and the trust value based on the update
rules (9). γ = 1, δ = 0.25, ζ = 0.7, ε = 3 and a is fixed at 0.5.

towards the average is removed; (4) the slopes and shapes can be steered through
several parameters.

One aspect is still to be improved. The figure shows that the increase of trust
after a failure is convex. Intuitively, however, trust should increase slowly after
a decrease and accelerate later. Therefore, the increase should be concave (with
derivative 0) and only later become convex. We therefore adjust the update rules
as follows.

Define: f(x) =
x · (arctan(x · β2 − β1) + arctan(β1))

π/2 + arctan(β1)
;

Upon success: sc ← sc+ 1;ns ← ns′ + f(sc);nf ← γ · nf ;
Upon failure: nf ← nf + 1;ns ← δ · ns; sc ← 0;ns′ ← ns;
Upon unknown: ns ← ζ · ns;nf ← ζ · nf ; sc ← 0;ns′ ← ns,

(10)

where sc represents the count of successes since the last failure or unknown. New
parameters β1 and β2 define the horizontal stretch (how long it takes for trust to
increase again) and the slope, respectively. Figure 4 shows the result of the same
observations as in Figure 3 with γ = 1, δ = 0.25, β1 = 7, β2 = 0.2, and ζ = 0.7.

Continuous Observations. The discrete values in the opinion generator are
not always adequate. For some trust statements, failure might be a state that
is never allowed. A possible approach is to have a safety boundary around the
failed state and to regard all observations within the boundary as failures. A
more precise approach is to let contributions to the opinion be determined by
the distance to the failed state. An example is monitoring for sufficient resources,
e.g., memory. The observation then represents how close the current memory
availability is to the failed state.
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Fig. 4. Example of the evolution of (b, d, u) and the trust value based on update rules
(10). γ = 1, δ = 0.25, β1 = 7, β2 = 0.2, ζ = 0.7, ε = 3 and a is fixed at 0.5.

C 

( , )d x F
F

x

S

Fig. 5. The space F of failed states and its complement S. The cut-off distance C
defines a border around F . The distance of an element x to F , d(x,F ), is given by the
minimal distance to elements in F . s equals 0 in F and 1 outside C.

An observation s is now a value within the range [0, 1]; we also use f = 1− s.
We propose the following rules.

Upon unknown: ns ← ζ · ns;nf ← ζ · nf ;
Otherwise: ns ← δf · ns+ s;nf ← γs · nf + f.

(11)

For (s, f) = (1, 0) and (s, f) = (0, 1), this results in Equation (9), hence it
is a true generalization of that. A correspondent generalization of (10) is not
straightforward and needs further investigation beyond the scope of this paper.

A next question is how to model the computation of this s. In the discrete
case, the space of observations O can be written as O = F + S, with F corre-
sponding to failures and S to successes (defined by the trust statement P under
consideration). In the continuous case, s is a mapping: O → [0, 1]. In order to
define it we still assume we have a set F where s equals 0 (hence, S = O\F ). We
further assume that we have a metric d(x, y) representing the distance between
two elements x, y ∈ O. This metric is generalized to sets by taking the minimum
distance over all members in the set, with the empty set having distance infinity.
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Fig. 6. Example of the actual memory usage of component T at run time. The dashed
line shows the maximum admitted memory usage for T .

Fig. 7. Results of belief and trust values with the discrete observations and the update
rules in Equation (9). γ = 1, δ = 0.25, ζ = 0.7, ε = 3 and a is fixed at 0.5.

Hence, for x ∈ S, d(x, F ) represents the distance of x to F . In addition, we as-
sume to have a cut-off distance C above which s equals 1 (see Figure 5). In this
way, we let s be a function of the distance. An example is

s(x) =

{
(d(x,F )

C )α, if d(x, F ) < C;
1, otherwise,

(12)

where α is a parameter that determines the sharpness of the curve. More classes
of functions are possible as well.

An Example. Let T be a software component running on a system. We consider
an example of statement P = (T, pmem, c, t) about a memory usage property of
T . Predicate pmem indicates that ‘MemUsed ≤ MaxAlloc’, where MemUsed and
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Fig. 8. Results of belief and trust values with the continuous observations and the
update rules in Equation (11), with C = 8, α = 1 (solid lines) and C = 15, α = 0.5
(dashed lines). γ = 1, δ = 0.25, ζ = 0.7, ε = 3 and a is fixed at 0.5.

MaxAlloc represent the memory used by the component and the given limit the
component is supposed to stay under (e.g., 120 KB), respectively. Context c
and time t are not relevant for this example. Thus, trust statement P becomes:
the trustor (system manager) trusts T to have ‘pmem : MemUsed ≤ MaxAlloc’.
Figure 6 shows the actual memory usage of component T at run time. The
dashed line shows the maximum of the memory allocation, MaxAlloc = 120
KB. We compute the trustworthiness of statement P using both discrete and
continuous observation models.

Discrete Observations: In this method, an observation gets a value of ‘failure’,
‘success’, or ‘unknown’ (not used here). When MemUsed > MaxAlloc the ob-
servation is ‘failure’, otherwise the observation is ‘success’. Figure 7 shows the
results of b and tv by applying the update rules in Equation (9). The top line
shows the observations again. At time 65 and 195, the memory usage exceeds
the value of 120 KB. Consequently, the belief b and trust value tv decrease.
Continuous Observations: In this method, the observation is represented by the
value of s ∈ [0, 1] computed using Equation (12) with C = 8 and α = 1. Figure
8 shows the results of b and tv (the solid lines) by applying the update rules
in Equation (11). The top line shows the value of s (which is added to 1 for
presentation in the figure). At time 58 and 180, the memory usage exceeds the
value of 112 KB (MaxAlloc − C) and s starts decreasing. Different from the
above method, b and tv start decreasing when the memory usage is above 112
KB and they decrease faster when the memory usage is closer to MaxAlloc. In
addition, the trust value takes a longer time to recover. This method, therefore,
responds to the trend of the observed property. The parameters C and α can be
customized for different types of quality properties. With a critical property, we
should set C to a bigger value and α to a smaller value. For example, the dashed
lines in Figure 8 show the values of s′, b′, and tv′ with parameters C = 15 and
α = 0.5.
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Fig. 9. Observations of the quality properties CPU usage, memory usage, bandwidth
usage, and privacy using the three-valued observation model. There are unknown ob-
servations of the CPU usage in the period [100, 130].

4 A Case Study of a BASN

4.1 BASN Model

We demonstrate our trust model and opinion generators with a case study of a
BASN, where the BASN platform plays the role of the trustor and a software
component plays the role of the trustee. Our goal is to investigate the effec-
tiveness of the opinion generators; for this work we focus on opinions of quality
properties, and we restrict ourselves to the discrete model. Furthermore, we show
how a decision can be made based on trust monitoring within a certain context.

We look at the example of a BASN that includes an ECG sensor, such that
a component can monitor a patient and report relevant data to a doctor. Al-
though the doctor would prefer the most accurate information (the raw ECG
signal at 250Hz), other concerns forbid this, e.g., resource sharing, a long battery
life or privacy concerns of the patient. The decision whether the system allows
the component to run depends on its trustworthiness and the system context.
For example, when a life threatening condition is detected or when the doctor
requests a daily recording of the raw ECG signal for some period, the system
context can change such that privacy and resource concerns are less important.

4.2 The Trust Model

We use the model proposed in the Trust4All framework [15] to describe the
quality properties of a component as monitored by the platform. According to
this model, a component has a quality profile, which consists of metrics of quality
properties that are asserted to hold in a certain context. Such profile is attached
to the component during development time. The quality properties can consist
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Fig. 10. Trust values of the quality properties CPU usage, memory usage, network
bandwidth usage, and privacy using opinion generator (10)

of a number of (sub) quality properties, e.g., the performance property consists
of CPU usage, memory usage, and network bandwidth usage. Moreover, the
quality profile can have one or more quality modes, which correspond to qualities
at different operational modes.

Let us assume that we are given a component T with a quality profile consist-
ing of four properties: CPU usage, memory usage, network bandwidth usage (for
which maximum values are specified), and privacy. Here, privacy is the degree to
which unauthorized parties are prevented from obtaining sensitive information.
From this profile we derive a set of trust statements {Pi}, where Pi = (T, pi, ci, ti)
(in this example, we ignore for simplicity the roles of ci and ti). Suppose that
T runs on platform A, then a trust relationship between A and T is established
through a set of opinions, {ωA

Pi
}. Predicates pi, i = 1, . . . , 4 are defined as follows.

p1: CPU usage is less than 60%.
p2: Memory usage is less than 40%.
p3: Network bandwidth usage is less than 25%.
p4: The degree of privacy is larger than 90%.

The opinion of A about statement Pi is ωA
Pi

= (bi, di, ui, ai), the trust value is
tvi = bi+aiui, and the confidence value is cvi = 1−ui. Thus, the trust and con-
fidence values of A are tv = (tv1, . . . , tv4) and cv = (cv1, . . . , cv4), respectively.

An example series of observations of the properties at run time is shown in
Figure 9, using the three-valued discrete observations. Observe that there are
unknown observations in the period [100, 130]. The memory property has only
success observations because the memory usage is always smaller than 40%.

We then apply opinion generator (10) to compute the trust and confidence
values of the above observations. The parameters γ = 1, δ = 0.25, β1 = 7, β2 =
0.2, ζ = 0.7, ε = 3, and a = 0.5 are chosen for all properties. The trust and confi-
dence values of the properties are shown in Figure 10 and Figure 11, respectively.
We observe the following:
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Fig. 11. Confidence values of the quality properties CPU usage, memory usage, net-
work bandwidth usage, and privacy using (10)

– In general, the trust value of the CPU property is low (under 0.5) since failure
observations occur frequently. The unknown observations in the period [100,
130] make the uncertainty value (u1) increase, and thus the confidence value
(cv1 = 1−u1) decrease. The trust value is then increased by the contribution
of a1 ·u1, which is controlled by parameter a1, but it cannot become greater
than 0.5 since a1 = 0.5. However, when taking a decision, this trust value
might not be considered since the corresponding confidence value is too small.

– Both trust and confidence values of the memory property go to 1 because of
the all-success observations.

– The starting trust value of the network bandwidth property is smaller than
0.5 since the first observation is a failure. With a long sequence of success
observations (e.g., in the period [160, 270]) the trust value increases signif-
icantly. The increase follows the behavior of the arctan() function of the
update rules.

– Because of few failure observations, trust and confidence values of the privacy
property are mostly high and close to 1.

4.3 Decision Making

The computed trust underlies decisions to be taken. These can be decisions to
reconfigure, to stop an application, to raise an alarm or it can be a form of
access control. The model we have introduced in Section 2 does this in the form
of a series of tradeoffs between different trust values with respect to a threshold.
These thresholds as well as these tradeoffs are dependent on the context, which
is any information that can be used to characterize the situation of involved
entities [5]. In our example this is typically a mode of operation of the system.
For example, if the system is low on energy we are more strict on energy usage
and require high trust in components staying within energy bounds. This is
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Fig. 12. Trust values are computed with the left-hand sides of Equation (13), (14),
and (15), respectively

reflected in weights and thresholds. For the sake of the example we mention two
tradeoff equations, where tvi refers to the trust value of the mentioned properties.

0.75tv1 + 0.25tv2 ≥ 0.9 (13)

0.5tv3 + 0.5tv4 ≥ 0.6 (14)

tv4 ≥ 0.8 (15)

The first equation represents a tradeoff between processing and memory usage
and the second between network bandwidth usage and privacy. The last equation
gives a minimal trust value to privacy. Figure 12 plots the left-hand sides of these
equations.

When the patient has a heart condition and an emergency occurs, the privacy
weight and threshold might be lowered. In this emergency mode, the raw ECG
signal is recorded and made accessible to the doctor, which reduces privacy
and gives intensive network communication. Trust thresholds for privacy and
bandwidth properties will be small in this mode.

5 Related Work

Many trust management models and frameworks have been proposed for various
applications, such as public key authentication [2,9], e-commerce [13], peer-to-
peer networks [12,16], ad hoc and wireless sensor networks [19,14,18], and soft-
ware systems [17,6,7]. According to the types of evidence that the trust value is
based on, they can be classified into (1) certificate-based frameworks, in which
the certificates are used as pre-deployment knowledge to establish a trust rela-
tionship; (2) behavior-based frameworks, in which a trustor continuously moni-
tors the behavior of a trustee and builds the trust; and (3) hybrid frameworks
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that combine the previous approaches [1,18]. Also, trust can be evaluated in
different ways [14], such as linguistic descriptions of trust relationships and the
continuous or discrete numerical values assigned to the level of trustworthiness.
In our work, we want to quantitatively evaluate the trustworthiness with respect
to given properties based on the behavior of the trustee. Trust is built on com-
positions of properties, typically determined through monitoring, and is related
to the service that is expected.

In [19], the concept of trustworthiness is extended to the notion of an opinion
which a node has of any other nodes in mobile ad hoc networks. The trust
value is computed as the mean of a distribution using Bayes’ rule based on
empirical observations. Besides trust, the concept of confidence is introduced
that captures a belief that the value is correct. The work, however, focuses on
developing metrics and mechanisms for establishing trust with respect to the
objective of reliable packet delivery. In contrast, our trust evaluation approach
can be applied in various applications; the trust and confidence values can be
computed for arbitrary statements about an entity. Furthermore, the opinion
generators can be customized through parameters and for the types of discrete
observation and continuous observation.

The authors of [14] present a trust evaluation framework, which is employed
in ad hoc networks for securing ad hoc routing and assisting malicious node
detection. Trust is measured as uncertainty, thus the trust metric is defined
based on entropy. Then, two trust models based on entropy and probability (the
beta function) are introduced for trust propagation. Also, a forgetting factor is
introduced to address the issue of the same weight for older and more recent ob-
servations. In our work, we further consider the unknown observations, the time,
and the different effects of success and failure observations, and we introduce a
decision model. This makes our approach more general.

In [18], a trust establishment and management framework for wireless sensor
networks (WSNs) is presented. The framework is aimed at minimizing mem-
ory, computation and communication overheads involved in trust management
in WSNs. The evaluation of the trust value is based on the successful and un-
successful interactions within a time window. The recent trust value could be
given more (or less) weight in the overall trust calculation. Similarly, paper [8]
aims to develop a lightweight trust management for medical sensor networks.
The trust value is computed based on the number of successful and failed inter-
actions between sensor nodes in a time window. An aging factor is introduced
to discriminate the importance of recent and older trust values. The work, how-
ever, supports only binary observations. Also, the trust-based operation (decision
model) is not explicitly specified.

Yan et al. [17] propose an adaptive trust control model to evaluate, establish,
and ensure the trust relationships among software system entities. The model
concerns the quality attributes of the entity and a number of trust control modes
supported by the system. During system runtime, quality attributes are mon-
itored by observing the trustee’s performance. The trust value of each quality
attribute then can be generated based on the number of positive and negative
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points of the observation. The trust value generator is based on the original opin-
ion generator of subjective logic, which has drawbacks as explained in this paper.
The work, however, focuses more on providing control mechanisms to maintain
the trust relationship than on improving the method of trust evaluation.

6 Conclusion

In this work, we have presented a framework to evaluate trustworthiness of
general properties of an entity through monitoring, based on an extension of
subjective logic. The generality implies that we can use this framework for mon-
itoring dependability, security and functionality related properties. We stated
requirements for opinion generators. Based on the requirements we have pro-
posed novel parameterized generators that can be used with both discrete and
continuous observations. It was shown that these opinion generation functions
capture the requirements much better than current opinion generators do. In
addition, the generator’s parameters give a trustor the ability of customizing
for various properties, e.g., to select an optimistic or pessimistic attitude. The
combination of trust and confidence values helps to make a more precise deci-
sion. The confidence level can be associated with the criticality of the decision:
a subject with a high trust value but with a low confidence value should not be
trusted for higher-risk decisions.

We demonstrated the trust model and opinion generators for the case study
of a Body Area Sensor Network platform, where the platform plays the role
of the trustor and the software component plays the role of the trustee. The
results show that the generation functions work effectively with various types of
quality properties, such as CPU usage, memory usage, and privacy. Based on
trust monitoring, decisions can be made according to a certain context. In future
work, we investigate mechanisms to maintain and improve the trustworthiness.
We focus on dependability related properties and decision structures that are
controlled by the observed trust. An example is changing the mode of operation
for reducing energy use in case the trust that sufficient energy remains available
is too low. Another example is providing a sandbox environment in case correct
behavior of a component is not sufficiently trusted.
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1 Introduction 

Socio-Technical Systems (STS) include humans, organizations, and the information 
systems that they use to achieve certain goals [1]. They are increasingly relevant for 
society, since advances in ICT technologies, such as cloud computing, facilitate their 
integration in our daily life. Due to the difficulty in preventing malicious attacks,  
vulnerabilities, or the misuse of sensitive information, users might not trust these sys-
tems. Trustworthiness in general can be defined as the assurance that the system will 
per-form as expected, or meets certain requirements (cf., e.g. [2]). We consider trust-
worthiness as a multitude of quality attributes. As a means of constructive quality as-
surance, development methodologies should explicitly address the different challenges 
of building trustworthy software as well as evaluating trustworthiness, which is not 
supported by development methodologies, such as User-Centered Design (UCD) [3]. 

2 Extension Approach and Application Example 

Our focus is on enhancing a broad spectrum of general software development metho-
dologies to incorporate the consideration of trustworthiness. We propose an extension 
of the Software Process Engineering Meta-model (SPEM) [4], which allows for tai-
loring certain “trustworthy” process chunks into the development methodologies. We 
utilize the SPEM concept of “Capability Patterns”, i.e., process building blocks that 
are independent of specific phases, and represent best practices [4]. The analysis re-
sults for User-Centered Design (UCD) [3] indicate that it is important to understand 
which trustworthiness characteristics of the system will enhance stakeholder trust and 
how system design can help to circumvent any distrust-related concerns. 
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(Extended Abstract)
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Developing and deploying authentication and authorization mechanisms and
policies to control the flow of sensitive confidential information being shared
between multiple organisations during a collaboration already represent techni-
cal and legal challenges.

We consider that there are three steps required to form a general trustworthy
collaboration:

1. Formulation of a collaboration agreement that specifies how information is
shared and controlled between the partners;

2. Proof of adherence of each partner against the collaboration agreement dur-
ing critical (and agreed upon) events and

3. Non-repudiable evidence kept of partner behaviour during the collaboration.

In this presentation, we examine some of the challenges faced by state, com-
monwealth and independent research organizations within the Australian con-
text in dealing with the formation of a committee in response to a biosecurity
incident. This committee is a specific instance of a trustworthy collaboration,
since inadvertent information disclosure may have significant national and in-
ternational impact. However, this trustworthy collaboration needs to not only
meet each of the three steps above, but needs to meet them with the significant
additional constraint of timeliness.

Any Australian Commonwealth level emergency committee formed through
the collaboration of multiple organizations immediately encounters the situation
where each of the partners can be expected to have their respective organizations
within separate legal (state or commonwealth) jurisdictions, each having their
own implementatons of organizational policies and procedures for the control of
sensitive information that comply with their respective jurisdiction.

Rapid resolution of inevitable differences between partners, as well as deploy-
ing technologies that are able to meet and implement enforceable collaboration
agreement between the partners, have direct impact on the performance and re-
sponsiveness of the committee. Whereas the resolution may be done a priori to
any incident, implementing a set of technologies (secure networking, storage and
computation) that can support a collaboration agreement may vary depending
on the incident and the mix of partners, the types of technologies that they
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implement in their respective organisations, and the way that they interoperate
with other.

Each of the collaborating partners will run their own security (IT) systems
that are governed by their respective policy implementations. Even though they
adhere to a standard in principle, in practice there will be differences in their
implementation and management, ranging from the preferred vendors used, to
different management policies and different levels of compliance against “stan-
dard” procedures and processes.

The challenges faced are not always technical.
For example, implementing a federated identity solution across the states,

commonwealth and independent research organisations such as that offered by
the Australian Access Federation (AAF) (http://www.aaf.edu.au) is a policy
(rather than technical) challenge because of the state-based legacy systems and
each states desire to maintain a degree of independence from the Australian
Commonwealth government. Any technical solutions must be light touch on
each state system otherwise it will not be adopted (again, partly because of the
legacy systems in place, partly because of the desire to remain independent).
Nonetheless, the adoption of an inappropriate policy will have an impact on the
timeliness and trustworthiness of the operation of the committee.

On the other hand, adoption of appropriate policies, and technologies and
system architectures that fully comply with those policies yet try to change the
fundamental operation of the committee, will also direct impact on the timeliness
of response, and the general trustworthiness of the operation of the committee
and its supporting infrastructure. The same can be said for the case where
the supporting technology infrastructure alters the workflow of the committee
- once again, having technologies and systems that fully comply with policy,
yet interfere with the workflows of the committee will inevitably lead to worse
timeliness and decreased trustworthiness of the operation of the committee.

To realise the vision of facilitating truly dynamic, real-time trustworthy col-
laborations requires an integrated approach to technologies sensitive to both
policy and work practices within the trustworthy collaboration. A range of con-
siderations needs to be examined: authentication of identity claims with high
levels of assurance; authorization and access control policies and mechanisms;
proof of integrity of information, equipment, and facilities; and finally, being
able to deal effectively with exceptional cases through judicious provenance and
compliance assurance mechanisms.

While some of these may be successfully done within a single enterprise, it is
not the case when there are complex collaborations spanning multiple jurisdic-
tions. To be truly effective in the context of managing a biosecurity incident, a
system solution will consider the integration between three components: tech-
nology, policies and workflows and practices of collaborating partners.

Removing, or not addressing, any one of these can result in a sub-optimal
solution and the failure to provide timely response to new biosecurity issues and
threats.

http://www.aaf.edu.au)
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Abstract. Biometric authentication has attracted attention because it has differ-
ent characteristics from passwords. Biometric inputs are analog data and have a 
fixed fluctuation. Digitization is one possible measure to cope with the prob-
lems. Widening the quantization in step-size fashion to discriminate a personal 
distance is another possible measure. This paper proposes a biometric authenti-
cation system integrating these two measures. As biometric data are private, 
they are encrypted and saved on a server. Even if the server is attacked and the 
data are leaked, the private information concerning the biometric data is kept 
secret.  

Keywords: biometrics, authentication, password, privacy, leakage. 

1 Introduction 

Biometric authentication has different characteristics from passwords composed of 
simple character strings. Biometric authentication has several features that need not 
be committed to memory, and one need not worry about forgetting, loss or theft of 
security information. However, the biometric technology of detecting the features of a 
human body image such as a face, fingerprints and iris is limited in that its discrimi-
nation ability is inadequate to cover the whole population. As the power of discrimi-
nation is limited, it is difficult to use solely biometric authentication, which is the first 
problem. On the other hand, a password for a specific ID has sufficient patterns that 
cannot be guessed and cracked. As the password should be memorized, many people 
use a short word or write the password down on a paper without memorizing it, which 
brings a low level of security. In this way, password authentication has the problem 
that the password can be leaked or stolen easily. 

To cope with these two problems, embedding biometric authentication into a  
conventional password system will enhance the security level. To treat biometric 
information with appropriate concern for privacy, all biometric raw data should be 
enciphered. To perform encrypted authentication, the raw biometric data should be 
clearly discrete and quantized to the same vector for all trials. To realize clear and 
robust quantization of biometric data is the major technical problem for the proposed 
system. 
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2 Related Works 

Encrypting biometric data using a symmetric key is one of the biometric authentica-
tion methods [1]. The problem is that the symmetric key can be leaked to an outsider. 
Use of error correcting codes (ECC) is another idea to reduce ambiguity of biometric 
data. The ECC keeps the difference of two biometric data before and after encryption 
into a specified interval [2,3]. But the idea of maintaining similarity between raw and 
encrypted data means that the encryption is not a real cipher. Also, the ECC does not 
contribute to improving the ability to discriminate the user from other people.  

3 Proposed System 

To improve the security, in the public key infrastructure (PKI) a public key “K” and 
decoding key “D” are generated for encryption as shown in Fig.1. At registration, the 
decoding key “D” is not used at all and is removed. The biometric data are facial fea-
ture points and are denoted as vector f. The vector f is encrypted by the key “K” and 
becomes EK(f). The encrypted biometric information EK(f) is stored in the file sys-
tem. At the time of authentication, another facial vector g is input to the system and is 
encrypted by the same key “K” as used at registration, and becomes EK(g). EK(f) and 
EK(g) are matched for verification. 

Combining this biometric authentication with the conventional password, the secu-
rity level will be improved if the password is stolen. The private encrypted biometric 
information cannot be recovered because the decoding key is removed. To design 
robust quantization of feature points is an important object of our experiments.  

 

 

Fig. 1. Biometric authentication system using encrypted personal data 

References 

1. Raith, N.K., Connell, J.H., Bolle, R.M.: Enhancing security and privacy in Biometric-based 
authentication systems. IBM SYSTEMS Journal 40(3), 614–634 (2001) 

2. Juels, A., Wattenberg, M.: A fuzzy commitment scheme. In: Proc. 6th ACM CCS, pp. 28–
36 (November 1999) 

3. Hao, F., Anderson, R., Daugman, J.: Combining Crypto with Biometrics Effectively. IEEE 
Trans on Computers 55(9), 1081–1088 (2006) 



On the Development of Automated Forensic

Analysis Methods for Mobile Devices

Panagiotis Andriotis1, Theo Tryfonas1, George Oikonomou1, Shancang Li1,
Zacharias Tzermias2, Konstantinos Xynos3, Huw Read3,

and Vassilis Prevelakis4

1 University of Bristol, MVB, Woodland Road, Clifton, Bristol BS8 1UB, UK
2 FORTH-Institute of Computer Science, N. Plastira 100, 70013, Heraklion, Greece

3 University of South Wales, Pontypridd, Wales, UK, CF37 1DL, UK
4 Technical University, Hans-Sommer-Street 66, 38106, Braunschweig, Germany

Abstract. We live in a connected world where mobile devices are used
by humans as valuable tools. The use of mobile devices leaves traces that
can be treasured assets for a forensic analyst. Our aim is to investigate
methods and exercise techniques that will merge all these valuable infor-
mation in a way that will be efficient for a forensic analyst, producing
graphical representations of the underlying data structures. We are using
a framework able to collect and merge data from various sources and em-
ploy algorithms from a wide range of interdisciplinary areas to automate
post-incident forensic analysis on mobile devices.

Keywords: Steganalysis, Smartphone, Sentiment Analysis, Post-
incident, SMS, Social Media, Forensics, Android.

1 Introduction

The basic types of data we can retrieve during a forensic analysis on devices
are text and images, the metadata for which are usually stored internally in
SQLite databases [1]. A forensic investigation deals with the problem of merging
all useful information, in order to provide evidence at a court of justice. In
this project we aim to automate this process and decrease the analysis time
using data mining methods to extract sentiment polarity from short messages.
Also, we highlight connections and interactions between entities that exist in
the Smartphone Ecosystem and in various social media communities, providing
graphical representations that demonstrate the proximity of their relationships
[3]. Finally, we propose a lightweight classification mechanism that distinguishes
suspicious JPEG images that might exist in the device’s internal memory [2].

2 Methodology

The data aggregation mechanism, called DEViSE, provides a platform where the
data from various sources can be stored in a homogeneous format using XML
files. All these information can be stored in a central database and therefore, used
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upon the request of the visualization tools. For the social media module of our
platform, we developed a crawler that can be enriched by data derived by mobile
devices. Furthermore, we extended the functionality of a graph representation of
interactions between entities by highlighting the ‘closest friends’ of the person
under investigation. The short text messages can be further analysed to produce
the Sentiment Timeline View and depict the emotional polarity between entities
for a given timeframe. Our approach to this problem is the use of a bag-of-
words schema that utilizes special features like the existence of emoticons and
the lexicon’s word valence evaluation. Finally, the automated system we propose
is able to perform steganalysis on the JPEG images that exist in the internal
memory of the mobile device, using our model for colour images derived by the
empirical Benford’s Law.

3 Results and Conclusion

Regarding the results derived from the JPEG images classification, our approach
reaches hit rates of 70% - 100%, depending on the algorithm used to create the
stego-carrier. The short text Sentiment Analysis module can correctly identify
the emotional polarity of around 69% of the messages with a false positive rate
reaching approximately an average of 25%. Finally the graphical representation
of the entity linking, results to informative graphs which can be further enhanced
by clustering algorithms that various visualization tools provide by evaluating
measures like centrality. To conclude, we have developed an analysis automa-
tion platform able to perform specific tasks based on data collected from various
sources. This system could be a helpful asset to the community of forensic an-
alysts, but of course it cannot substitute their expert judgement to a court. It
can instantly produce informative constructions derived from a wide data pool
associated with the person under investigation, but it cannot act as a judgement
tool in itself.
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1 Motivation

In recent years, we have seen a surge of cybersecurity incidents ranging from widespread
attacks (e.g., large-scale attacks against infrastructures or end points [1]) to new techno-
logical advances (i.e., new generations of malicious code are increasingly stealthy, pow-
erful and pervasive [2]). Facing these incidents, the European Union, Japan, the United
States or China have developed national cybersecurity programs, including training of
professionals, development of roadmaps for new tools and services, and organization
of national interest groups on the topic. There is thus a shared need for a better under-
standing of this kind of large-scale threats. Some of the basic requirements to better
understand these large-scale incidents include handling large volumes of data collected
from distributed probes and performing efficient cross-layer analysis.

2 System Description

In this paper, we introduce a trusted knowledge management system for multi-layer
threat analysis (tKMS). tKMS is capable of supporting a great variety of sensors rang-
ing from honeypots and spam detection systems to real-time intrusion detection systems
and online web sources. Moreover, it provides actionable information for cyberdefense
systems. Support for a wide array of sources is feasible thanks to the modular architec-
ture and a common lightweight data sharing format – the n6 API. tKMS is comprised
of two basic components: the Threat Information Sharing component and the Cross-
layer Analysis module, as shown in Figure 1. We have designed our system to meet
the following requirements: (i) provision of trusted access to multiple sources of data,
(ii) confidentiality of the security networks that provide the data, (iii) scalability, (iv)
real-time analysis and (v) uniform programmability through support of multiple data
types. What follows is a description of tKMS basic components.
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Fig. 1. Architecture of tKMS

Threat Information Sharing (TIS). This component manages threat information from
Analysis Modules, External Knowledge Systems and External Resources. Originally,
data posted by these components are unrelated and the system conjectures a relationship
among them, turning them into knowledge.

Cross-Layer Analysis Module (CAM). The CAM aims at detecting cyber threats
based on the analysis of data coming from the infrastructure and end point layers. The
CAM consists of several components. Each component serves the purpose of detecting
a certain threat or a number of threats that are somehow related. The analysis results are
pushed to the TIS component via the n6 API.

External Knowledge System (EKS). This component designates external sources of
cyber threat related information such as software vulnerabilities databases. The infor-
mation is provided through an API using the common exchange format.

External Resources (ER). This component collects cyber threat information or related
information not formatted in any standard scheme. The main difference with the EKS is
that the resources do not provide any data sharing interfaces. That kind of information
is gathered mainly by web crawlers and other automated data gathering mechanisms
which are able to extract knowledge from external sources. Acquired knowledge is
managed under the TIS.

The n6 API. n6 is a platform for processing security-related information and its API
provides a common and unified way of representing data across the different sources
that participate in our knowledge management system. n6 exposes a REST-ful API over
HTTPS with mandatory authentication via TLS client certificates, to ensure confiden-
tial and trustworthy communications. Moreover, it uses an event-based data model for
representation of all types of security information. Each event is represented as a JSON
object with a set of mandatory and optional attributes.

Access control and encryption mechanisms are used in order to preserve confiden-
tiality of data across the different components. Moreover authentication mechanisms
are used in the components’ communication to make our system resilient to hijacking.
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Abstract. Currently, the lessons learned from the security incidents are
documented in add-hoc means such as lengthy security reports, free-style
textual news letters, emails or informal meetings. This makes it difficult
to effectively communicate security lessons among peers and organisa-
tions. The diagraming approach such as the Generic Security Template
(G.S.T.) has been proposed to address this problem. This paper extends
the work by evaluating its usability using the Cognitive Dimensions and
identifies some aspects that need to be improved.

1 Introduction

Healthcare information privacy and security have been a primary concern of
the public [1]. Security incidents in healthcare happen across the world, such
as the Veterans Affairs dataloss incidents in 2006/2007 in the US, NHS Surrey
IT asset disposal incident in 2013, in UK. However, the security lessons have
not been effectively communicated using the conventional add-hoc means such
as lengthy security reports, free-style textual news letters, emails or informal
meetings. The diagraming approach, Generic Security Template (G.S.T.), has
been proposed to address this problem [2]. It presents the lessons learned in a
structured manner by mapping them to the security requirements of the ISMS.
The objective is to enhance existing techniques used to communicate lessons
from security incidents. A controlled experiment with university students shows
that it can better assist the communication of security lessons compared to the
free-style security incident report [3]. A field study in a healthcare organisation
shows that it can assist in feeding back the lessons to the improvements of
the information security management in healthcare [4]. However, those studies
have not systematically evaluate the usability of G.S.T. as graphical notations.
The Cognitive Dimensions framework provides a generic approach to measure
various usability characteristics of notations and their environments [5]. This
paper adopts this framework to evaluate the G.S.T.

2 The Evaluation and Results

As a preliminary study, twelve university students with diversified background
participated in this study voluntarily. The study lasted for approximately 40
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minutes including a tutorial of the Generic Security Template, and the evalua-
tion of the Generic Security Template. The evaluation questionnaire was based
on the Cognitive Dimensions of Notations Usability Framework [5]. There are
fourteen dimensions in the full framework. For our study, we did not ask about
the creation or modification of the notation. Therefore, we have selected five
dimensions as is shown in Table 1.

Table 1. Evaluation using Cognitive Dimensions

Dimension Suggested Improvements
CD-Visibility “might be difficult to differentiate between goals &

sub goals”; “color may help visual interpretation”
CD-Diffuseness “too many words”
CD-Closeness of Mapping “The recommendation part needs to be simplified or

separate individually (under suitable category)”.
CD-Hard Mental Opera-
tion

“the template is not generic enough”; “too many
words within one notation”

CD-Role Expressiveness “could use multiple templates”; “might be hard to
see whether the user wants to work on the high or
low level of the hierarchy”

Table 1 summarizes the representative suggestions identified during the evalu-
ation of the G.S.T. using Cognitive Dimensions. This study has identified several
aspects of the G.S.T. that need to be improved. One of the key questions for
future work is to determine an appropriate level of abstraction for G.S.T. Too
much information might affect the readers’ motivation, and ability to analyse the
causes of a previous incident. While too little information will make it difficult
to understand why an incident occurred and may provide insufficient contextual
information to focus future interventions. This provides the foundation for future
work on customising the G.S.T. to fit into the needs of particular organisaitons.
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Abstract

A security vulnerability is a programming error that introduces a potentially
exploitable weakness into a computer system. Such a vulnerability can severely
affect an organization’s infrastructure and cause significant financial damage to
it. Hence, one of the basic pursuits in every new software release should be to
mitigate such defects.

A number of tools and techniques are available for performing vulnerability
detection in software written in various programming platforms. One of the most
common approaches to identify software vulnerabilities is static analysis [1]. This
kind of analysis is performed by automated tools either on the program’s source
or object code and without actually executing it. However, since the formats
in which static analysis tools store and present their results vary wildly, it is
typically difficult to utilize many of them in the scope of a project. By automating
the process of running a variety of vulnerability detectors and collecting their
results in an efficient manner during development, the task of tracking security
defects throughout the evolution history of software projects can be simplified.

In this paper we present tracer, a framework to support the development
of secure applications by constantly monitoring software projects for vulnera-
bilities. tracer simplifies the integration of existing tools that detect software
vulnerabilities and promotes their use during development and maintenance.

Instead of designing and implementing tracer from the ground up, we built
it on top of the open source Alitheia Core [2] platform, which is designed for
facilitating large scale quantitative software engineering studies. While Alitheia
Core aims for efficient estimation of the quality of software projects, tracer
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was designed with a focus on software security. To support the specific objec-
tives of tracer, a set of new components was added at each level of the Alitheia
Core architecture. These include a model for representing software vulnerabili-
ties, a mechanism for automatic vulnerability detection triggering, a rest api
for accessing the analysis results, and an archetype for plug-ins to integrate
new vulnerability detection tools in the platform. Like Alitheia Core, tracer
monitors multiple data sources associated with the development of a software
project, such as the source code repository and bug tracking system, and au-
tomatically analyzes each revision. Therefore it can be used to track security
defects throughout the evolution of a project.

In most cases, the detection of vulnerabilities on a software artifact involves
only two steps: invoking an external tool created for this purpose with spe-
cific arguments as required, and evaluating the results it generates. There is a
vast number of software vulnerability detection tools available, each one having
different operating requirements. Such a tool can be integrated in tracer by
creating a corresponding driver that implements these two steps and stores the
results using the data model provided by the platform. Thus we can leverage the
functionality provided by existing tools, without duplicating it.

Such an external tool driver is called a vulnerability detector plug-in, and it
uses the Alitheia Core infrastructure to handle automatic activation, as well as
storage and retrieval of results. Each vulnerability detector is associated with
the set of vulnerability types it can detect and the different types of software
artifacts or programming constructs that it can analyze. This allows the platform
to automatically trigger it when needing to check if a software project or artifact
is vulnerable to a specific type of attacks or a new artifact is submitted to the
system for evaluation.

To demonstrate the efficiency and usability of the platform, we have cre-
ated plug-ins to integrate two different tools for vulnerability detection, namely:
FindBugs [3], and Frama-c [4]. The former analyzes applications written in Java,
while the latter examines applications written in c. This highlights the fact that
our platform does not depend on the programming language used to develop the
project that is being analyzed, and that the simplicity of integrating third party
tools leads to high levels of expandability of the platform.
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Abstract. Research on trusted computing focuses mainly on the
security and integrity of the execution environment, from hardware
components to software services. However, this is only one facet of the
computation, the other being the data. If our goal is to produce trusted
results, a trustworthy execution environment is not enough: we also need
trustworthy data. Provenance of data plays a pivotal role in ascertaining
trustworthiness of data. In our work, we explore how to use state-of-
the-art systems techniques to capture and reconstruct provenance, thus
enabling us to build trust on both newly generated and existing data.

1.1 Motivation

Provenance is a record that describes the sources and agents involves in pro-
ducing a piece of data [6]. This record can be analyzed e.g. to understand if
data conforms designated standards or to calculate a level of trust on the data
in order to assist decision making. Thus, knowing the provenance of data can
play a central role in the trust we put on them. On the other hand, not having
any provenance information on our data could undermine the benefits of using a
trustworthy execution environment: if we cannot trust the data we process, we
will also be unable to trust the produced results.

1.2 Capturing Provenance through Dynamic Instrumentation

We have developed a new system called DataTracker1 [7] which uses Dynamic
Taint Analysis (DTA) to capture high-fidelity provenance from unmodified pro-
grams. DataTracker is based on Intel Pin2 Dynamic Binary Instrumentation
framework and a modified version of the libdft [4] library which provides a
reusable framework for Dynamic Taint Analysis.

The architecture of DataTracker is depicted in Fig. 1a. Its main components
are a Pin tool and a converter written in Python. The former generates prove-
nance information in raw format which are converted to the W3C PROV for-
mat [6] by the latter. After converting to PROV, existing tools can be used to
further process and visualize the provenance.

Fig. 1b shows the provenance graph produced for a simple grep-like utility.
DataTracker attributes the output to only two of the four input files, which is
an improvement over state of the art techniques [3,1,2]. These treat programs
as black-boxes, tracking only program-OS interactions but not the actual use of

1 Source code available on: http://github.com/m000/dtracker
2 https://software.intel.com/articles/pintool
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Fig. 1. DataTracker architecture and output

data. Thus, they would have attributed the output to all four inputs. In addition
to eliminating such cases of false-positives, DataTracker captures provenance with
byte-level granularity vs. the file-level granularity offered by comparable systems.

1.3 Post-hoc Provenance Reconstruction

We plan to explore using DataTracker for the post-hoc reconstruction of prove-
nance. Our ultimate goal is to be able to reconstruct provenance relations be-
tween files and programs stored in a disk image. We plan to achieve this by:
a) Collecting high-fidelity provenance information from live systems. b) Ab-
stracting this information to generate “provenance behavior signatures” that
reflect provenance patterns generated by specific programs. c) Matching these
signatures with the files in the disk image. It is understood that reconstructed
provenance will be of less fidelity than provenance directly captured by Data-
Tracker during execution. We can improve the quality of this provenance by later
applying heuristic-based methods (e.g. [5]).
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1 Introduction 

Early Warning Intrusion Detection System (EWIS) is a distributed global scoped 
Internet threat monitoring system with the potential of detecting large scale malicious 
events as early as possible. 

The system’s architecture includes a network of distributed low-interaction sensors 
and a central server [1]. The sensors are small computing platforms [2] that by design 
are easy to deploy in a distributed fashion to a large number of partner organizations. 
They are preconfigured to be robust and secure and thus integrate non-intrusively to a 
network infrastructure. Each sensor collects network activity flows of potentially 
malicious intent from dark Internet address spaces and then relays this information to 
the central server for logging and further analysis. 

The system follows the design of a Network Telescope [3] which similarly to a 
visual telescope, its resolution is relative to its size. As the number of deployed sen-
sors grows, so does its resolution. EWIS’s resolution is further enhanced by deploying 
sensors to willing partner organizations. 

2 Motivation 

Proactive cyber-security tools provide basic protection as today’s cyber-criminals 
utilize legitimate traffic to perform attacks and remain concealed quite often until it is 
too late. As critical resources, hidden behind layers of cyber-defenses, can still be-
come compromised with potentially catastrophic consequences, it is of paramount 
significance to be able to identify cyber-attacks and prepare a proper defense as early 
as possible. 

While traditional Honeypots can provide extensive information regarding an at-
tack, they lack the ability of observing large scale events. Our vision was to establish 
a system that would be cost effective to implement, easy to deploy and provide us 
with sufficient data to create an Early Warning System that could potentially detect 
large scale events such as Worm(s) and Distributed Denial of Service (DDoS) attacks 
[4] on a global scale.  

Furthermore, a globally scoped Network Telescope augmented by partner organi-
zation hosted sensors will expand EWIS’s resolution beyond our national borders, 
providing an aggregate view of Internet traffic across operational boundaries. 
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3 Approach 

The deployed sensors continuously capture data from dark space Internet addresses 
spaces. As these addresses are not in use, any traffic reaching them is considered to be 
of exploiting and therefore malicious intent. The data flows captured are relayed to 
the central server on a timely basis via encrypted network tunnels. The server stores 
the sensors’ data to a local database in a way that it can be easily retrievable for anal-
ysis. A visualization interface provides several views of the collected data such as 
Historical packet traffic trends, Top 10 style statistics [Fig. 1], Protocol breakdown 
statistics and Backscatter traffic trends. Subsequent phases of the project will encom-
pass a more advanced visualization framework, automated detection procedures, as 
well as the possible integration of wireless intrusion detection sensors [5] [6]. 
  

 

Fig. 1. Top 10 style statistics captured by an EWIS sensor 

Acknowledgement. EWIS has been largely influenced by project NOAH. 

References 

1. Chatziadam, P., Askoxylakis, I., Fragkiadakis, A.: A Network Telescope for Early Warning 
Intrusion Detection. In: Proc. of the 2nd International Conference on Human Aspects of In-
formation Security, Privacy and Trust, Heraklion, Greece, June 22-27 (2014) 

2. Akram, R.N., Markantonakis, K., Mayes, K.: User centric security model for tamper-
resistant devices. In: Proceedings - 2011 8th IEEE International Conference on e-Business 
Engineering, ICEBE 2011, pp. 168–177 (2011) 

3. Irwin, B.: A framework for the application of network telescope sensors in a global IP net-
work (January 2011), http://eprints.ru.ac.za/2557/ (retrieved) 

4. Spyridopoulos, T., Karanikas, G., Tryfonas, T., Oikonomou, G.: A game theoretic defence 
framework against DoS/DDoS cyber attacks. Computers & Security 38, 39–50 (2013) 

5. Fragkiadakis, A.G., Tragos, E.Z., Tryfonas, T., Askoxylakis, I.G.: Design and performance 
evaluation of a lightweight wireless early warning intrusion detection prototype. EURASIP 
Journal on Wireless Communications and Networking 2012(1), 73 (2012) 

6. Fragkiadakis, A.G., Siris, V.A., Petroulakis, N.E., Traganitis, A.: Anomaly-based Intrusion 
Detection of Jamming Attacks, Local versus Collaborative Detection. In: Wiley Wireless 
Communications and Mobile Computing, pp. 1–19 (January 2013) 



Author Index

Andriotis, Panagiotis 212
Androulaki, Elli 161
Arul, Tolga 83
Askoxylakis, Ioannis G. 222
Ayed, Dhouha 179

Bandyszak, Torsten 206
Bichsel, Patrik 179
Blanc, Gregory 214
Bohli, Jens Mathias 143
Bos, Herbert 220
Bui, Vinh 188

Camenisch, Jan 179
Chatziadam, Panos 222
Chen, Ping 110

den Hartog, Jerry 179
Desmet, Lieven 110
Do, Viktor 37
Dobre, Dan 143

England, Paul 19
Evangelopoulou, Maria 216

Fall, Doudou 127
Feng, Dengguo 1
Fragkiadakis, Alexandros G. 222

Gehrmann, Christian 37
Groth, Paul 220

He, Ying 216
Henne, Benjamin 74
Hesselbarth, Robert 101
Hirakawa, Yutaka 210

Ioannidis, Sotiris 218

Jia, Limin 19
Jiang, Xuxian 55
Johnson, Chris 216
Joosen, Wouter 110

Kadobayashi, Youki 127
Kajihara, Masaaki 210

Karame, Ghassan O. 143, 161
Kater, Christian 74
Katsaros, Panagiotis 218
Katzenbeisser, Stefan 83

Li, Shancang 212
Li, Wenting 143
Lin, Zheng-Shuai 216
Lorch, Jacob R. 19
Lukkien, Johan 188

Meland, Per H̊akon 206
Mitropoulos, Dimitris 218
Mohammadi, Nazila Gol 206

Nikiforakis, Nick 110

Ohzeki, Kazuo 210
Oikonomou, George 212
Okada, Kazuya 214
Okuda, Takeshi 127

Papadopoulos, Panagiotis 218
Paulus, Sachar 206
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