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Preface

This volume of Lecture Notes in Bioinformatics (LNBI) contains the papers
presented at DILS 2014: the 10th International Conference on Data Integra-
tion in the Life Sciences, held during July 16–17, 2014 in Lisbon, Portugal.
In its 10th year, DILS was hosted at Instituto Superior Técnico, University of
Lisbon (http://dils2014.inesc-id.pt) and chaired by Erhard Rahm and Helena
Galhardas.

The first edition of DILS took place in 2004 in Leipzig, Germany. Over the
years, the conference continued to foster discussion, exchange, and innovation
in research and development in the areas of data integration and data manage-
ment in the life sciences. These topics have become more and more important
due to the increasing availability of Big Data, coming from high-throughput
analytical techniques, large clinical data repositories, biomedical literature and
online resources, that offer exciting opportunities and challenges to researchers
and professionals from biology, medicine, computer science, and engineering. So
far the conference took place in five European countries (Germany, UK, France,
Sweden, Portugal), in the USA (three times) and in Canada making DILS a
truly international forum.

This year, DILS was a forum that put together invited keynote presenta-
tions, oral presentations of peer-reviewed research, application and systems pa-
pers, poster and demo presentations. Each submission was reviewed by three
Program Committee members. After a careful evaluation process, the Program
Committee decided to accept 14 long and short papers that are included in this
volume. The accepted papers cover interesting and current topics: data inte-
gration platforms and applications, biodiversity data management methods and
applications, biomedical ontologies, linked data integration, visualization tech-
niques, and scientific data retrieval and querying. DILS 2014 also included several
poster and demo contributions on work-in-progress and system prototypes. The
accepted poster and demo papers are published on the conference website.

DILS 2014 featured two distinguished keynote speakers: Dr. Alfonso Valen-
cia and Prof. Jonas S. Almeida. Dr. Alfonso Valencia, vice-director of Basic
Research and director of the Structural Biology and Biocomputing Program of
the Spanish National Cancer Research Center (CNIO), is an expert in applying
computational methods and tools to the analysis of large collections of genomic
information, in particular to study protein families and protein interaction net-
works. His recent research focus is in the domain of cancer (epi)genomics, tumor
evolution and precision medicine. In his talk, Dr. Valencia presented the chal-
lenges and opportunities of Computational Biology and Big Data. Specifically,
he pointed out how technology has influenced the development of Biomedicine
and Ecology areas and the current limitations for dealing with large, complex,
heterogeneous and low quality data sets and the urge for additional knowledge
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to interpret the results obtained. Prof. Jonas S. Almeida, Director of the division
in Informatics of the Department of Pathology of the University of Alabama at
Birmingham (UAB), is specialized on integrative personalized medicine applica-
tions. Prof. Almeida has a strong background on all components of quantitative
Biology ranging from experimentation, engineering and mathematical modeling
to computational statistics and software engineering. His current research inter-
ests are on the synergy obtained by combining Semantic Web abstractions and
Distributed Cloud Computing approaches to Bioinformatics applications. In his
talk, Prof. Almeida overviewed recent solutions in Biomedicine with a particular
emphasis on Semantic Web frameworks and code distribution.

As the event co-chairs and editors of this volume, we would like to thank all
authors who submitted papers, as well as the Program Committee members and
additional referees for their excellent contribution in evaluating the submissions.
Special thanks go to INESC-ID and Instituto Superior Técnico, University of
Lisbon for providing us with the facilities to organize and run the event. We
would also like to thank FCT (Fundação para a Ciência e Tecnologia) for the
financial support provided, in particular through the excellence research network
“DataStorm - Large-Scale Data Management in Cloud Environments”.We would
also like to thank Alfred Hofmann and his team at Springer for their continued
cooperation and help in putting this volume together. We also thank the Easy-
Chair team for having developed this tool that enabled us to smoothly manage
submissions, reviews and proceedings. Finally, our thanks go to the local Orga-
nizing Committee, Ana Teresa Freitas, José Borbinha, José Leal, Mário J. Silva
and Pedro T. Monteiro, our Webmaster, João L.M. Pereira, and our administra-
tive staff from INESC-ID, Manuela Sado and Sandra Sá.

July 2014 Helena Galhardas
Erhard Rahm
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Computational Biology and Big Data:

Challenges and Opportunities

Alfonso Valencia

Spanish National Cancer Research Center

valencia@cnio.es

Abstract. Technology is influencing the development of all areas from
Biomedicine to Ecology and transforming Biology in a quantitative
science. This accelerated technical progression is reflected in the rapid
succession of keywords that went in the 20 years from “genomics” to
“proteomics”, “systems biology” and “synthetic biology” to the current
“big data”. All of them paving the way to deciphering the function bio-
logical systems, from cells to ecosystems, based on the integration of data
on genomes, proteomes, metabolomes, environments and conditions.

A promising future that is limited by: a) the current computational
technologies for handling large, complex and heterogeneous and in many
cases low quality data, and b) very important, the insufficiency of the
biological knowledge necessary to interpret the results. In this scenario
Bioinformatics and Computational Biology play a central rôle. A partic-
ularly good example is the complex task of individual genomes analy-
sis, which involves data organization, integration and interpretation. A
challenge that touches many areas of computation and informatics and
requires a blend of engineering and scientific developments.

Genome projects are a good example of projects that deal with large
scale data, that can be considered part of the Big Data movement. Based
on the experience of my group in these projects I will review both the
technical framework for handling genomic information and the methods
required for the interpretation of the information. In particular, I will
focus discuss some of the key scientific problems in the analysis of high-
throughput genotype-phenotype information oriented to the prediction
of genomics basis of disease conditions.

References

1. Valencia, A., Hidalgo, M.: Getting personalized cancer genome analysis into the
clinic: the challenges in Bioinformatics. Genome Medicine, 461 (2012)
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Valencia, A., Tress, M.L.: APPRIS: annotation of principal and alternative splice
isoforms. Nucleic Acids Res. 41, D110–D117 (2013)
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(2014)



The Emergence of the Web Computer:

An Hands-on View from the Trenches of
Computational Pathology

Jonas S. Almeida

Div. Informatics, Dept. Pathology, Univ. Birmingham at Birmingham
jalmeida@uab.edu

Abstract. The need to contextualize data about an experiment or a pa-
tient is increasingly achieved with reference to Big Data resources such
as The Cancer Genome Atlas (TCGA). This exercise faces numerous
obstacles, from the logistics of traversing a very large and constantly
growing data set (the number of files hosted by TCGA doubles every 7
months [1]) to the protection of patient privacy. It also includes an abso-
lute need for “weak AI” to reach domain experts increasingly immersed
in mobile platforms. These challenges are not unique to Biomedicine but
are, in many regards, particularly difficult to meet in this domain [2].
Correspondingly, the pursuit of solutions is part of the core mission of
the new sub-discipline of Computational Pathology [3]. This presentation
will overview early stage solutions with applications ranging from image
analysis in cytology [4] and sequence analysis [5] to the personalization
of cancer treatment. These illustrative applications will be used as part
of an argument for the central role played by Web Technologies, with
particular emphasis on Semantic Web frameworks and code distribution
directly to the ubiquitous Web Platform supported by the modern web
browser.

References
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An Asset Management Approach to Continuous 
Integration of Heterogeneous Biomedical Data 

Robert E. Schuler, Carl Kesselman, and Karl Czajkowski 

Information Sciences Institute, University of Southern California 
{schuler,carl,karlcz}@isi.edu 

Abstract. Increasingly, advances in biomedical research are the result of com-
bining and analyzing heterogeneous data types from different sources, spanning 
genomic, proteomic, imaging, and clinical data. Yet despite the proliferation of 
data-driven methods, tools to support the integration and management of large 
collections of data for purposes of data driven discovery are scarce, leaving 
scientists with ad hoc and inefficient processes. The scientific process could 
benefit significantly from lightweight methods for data integration that allow 
for exploratory, incrementally refined integration of heterogeneous data. In this 
paper, we address this problem by introducing a new asset management based 
approach designed to support continuous integration of biomedical data. We de-
scribe the system and our experiences using it in the context of several scientific 
applications. 

1 Introduction 

Biomedical advances are driven at the intersections of data: combining imaging, ge-
netic, clinical, and other sources in cross cutting analytic methods. It is not uncom-
mon to see a dozen different types of biomedical data, spanning genetics, multiple 
imaging modalities, proteomics, and clinical elements, being used in a single explora-
tion or discovery process, each data with its own unique representation. A logical 
prerequisite for analysis is that the necessary data has been integrated into a formal, 
standard, clean, consistent, accessible, and linked representation prior to analysis. 
However, the vast majority of scientific data in daily use does not exist in a manner 
that meets even a few, if any, of the above characteristics. It is widely understood that 
“data wrangling” is often the most resource intensive activity in data analysis – a 
time-consuming process of data selection, transformation, and cleansing. All too often 
it is only at the very end of the scientific discovery process, while preparing data for 
submission into online repositories that data is integrated, organized, and annotated 
according to overarching standard dictionaries, ontologies, and open formats. Instead 
throughout most of the scientific processes, the vast majority of research data exist in 
semistructured, locally coded sources and formats. One consequence is that scientists 
often spend significant amounts of their research time managing, combining, and 
manipulating data, with self-reported values of 90% being common [1]. With the 
increasing proliferation of large biomedical data (e.g. big data), the problems will 
only grow worse. 
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In spite of this situation, it is remarkable that there is little support for scientists to 
integrate and organize data for purposes of exploration, analysis, and ultimate publi-
cation. Shared file systems with data organized in directory hierarchies and with me-
tadata coded into “meaningful” file names are the common practice. Idiosyncratic 
methods are used to capture and unify pertinent metadata such as phenotype, experi-
ment details, preparation methods, and quality control flags. All too often spread-
sheets, which are hard to maintain and offer limited query ability, are the preferred 
means of describing and tracking data. Cloud based services such as Dropbox and 
Google Drive can provide some relief with respect to sharing, but do little to address 
the fundamental issues of integration and organization. 

This paper presents a system that fills this gap by enabling continuous integration 
of heterogeneous biomedical data throughout the research and discovery lifecycle. 
This “pay-as-you-go” approach, influenced by the concept of Dataspaces [2], uses a 
process of incremental refinement to promote flexible, use-case driven data integra-
tion, which can mesh with the requirements of the data task at hand. To maximize the 
use of these methods by scientists, we have incorporated them into a digital asset 
management system for biomedical data (BDAM) that resembles cloud based tools 
and services with which investigators are already familiar. The structure of this paper 
is as follows. In Section 2, we introduce the concept of digital asset management and 
continuous integration to build a unified view over heterogeneous life science data 
collections. In Section 3, we discuss related work. Section 4, presents design of a 
biomedical digital asset management system whose application in a range of use cases 
is discussed in Section 5. Finally we describe future plans and conclusions . 

2 Asset Management Method for Continuous Integration 

Digital asset management (DAM) “consists of management tasks and decisions sur-
rounding the ingestion, annotation, cataloguing, storage, retrieval and distribution of 
digital assets” [3]. DAM systems are designed to streamline free-form “creative” 
processes rather than enforce predefined business processes. DAM is nearly ubiquit-
ous for many varieties and applications of data, from text and document management 
to multimedia to specialized systems for marketing and the web. For example, DAM 
systems for photo management like iPhoto or Picasa will discover and catalog digital 
images on one’s hard disk drive, extract metadata from the imported media, cleanse 
(fix or add missing) metadata, allow user annotations (typically in the form of tags), 
organize pictures into virtual collections (i.e. photo albums), support browsing and 
search, support data export for data manipulation by external photo editing tools, and 
support publication for cloud based sharing or printing by online services.  

Surprisingly, in spite of the fact that there would seem to be a good alignment be-
tween the data management requirements for biomedical discovery and the functions 
provided by DAM systems, DAM approaches have not been generally applied to 
biomedical data management. Building on the success of DAM in other creative 
fields, we claim that an approach to data integration that assists scientists throughout 
the research lifecycle based on a biomedical digital asset management system 
(BDAM) would significantly streamline the process of data driven scientific discov-
ery in the life sciences. However, it is also the case that simply applying an existing 
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DAM technology will be insufficient to meet the needs of life sciences where the data 
are both large and significantly more diverse. 

2.1 Continuous Integration of Biomedical Data 

As discussed above, a core requirement of BDAM is the ability to manage a hetero-
geneous collection of asset types, each with their own characteristics, descriptive 
metadata, and storage representation (i.e. file format). Within the overall function of 
asset management, one can take a broad perspective of what it means to provide inte-
gration based on the management operations under consideration: i.e. search, organi-
zation, or export for analysis. We may limit integration to the descriptive metadata 
associated with each asset (or collection of assets) or we may want to provide a uni-
form rendering of the structure of the asset itself. For example, assets of diverse types 
can be integrated simply by being grouped into logical collections, assets may be 
collected based on shared common attributes and criteria (i.e. faceted search [4]), or 
the underlying structure of the assets themselves may be transformed, transcoded, or 
reformatted into a uniform representation.  

Common approaches to data integration, which depend on tight semantic integra-
tion of traditional database Extraction-Transformation-Loading (ETL), upfront se-
mantic alignment and schema mapping (e.g., query mediation [5]) are problematic 
when the descriptive data is not known beforehand, or may change during the discov-
ery process, which is often the case in life sciences application. Consequently, an 
incremental model which assumes that metadata is incomplete [6] or evolving [7], 
that assumes loose semantic integration, no upfront semantic alignment, loose admin-
istrative proximity, and loose consistency with sources will have broader applicability 
than a non-incremental approach. Building on the axiom of “integrate early and often” 
approaches such as Dataspaces [2] or MAD [8] seek to accelerate the use of data by 
deferring integration until required. We embrace this model as a core aspect of 
BDAM by providing functions for editing, augmenting, and refining metadata de-
scriptions incrementally over the lifetime of the discovery process. This is not to say 
that established models cannot be used, even in early phases of data use. With BDAM 
we take a hybrid approach where structured metadata is ingested into the system and 
augmented with incrementally defined descriptions. 

3 Related Work 

Digital repository systems (e.g. DSpace [9]) provide capabilities aimed at long-term 
preservation and archiving of scholarly works. They are primarily concerned with 
document management (Word, PDF, JPEG, etc.), whereas a DAM system for life 
sciences must support diverse biomedical file formats and very large file sizes and 
overall file volumes. Digital repositories support publication and archiving, thus they 
should be viewed as an endpoint for the scientific data assets produced by researchers. 
Plale et al [7] have proposed the SEAD Virtual Archive for federating institutional 
repositories along with automated workflows to assist researchers in the data publica-
tion process. The asset management approach proposed here takes this a significant 
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step further by pushing deeper and earlier into the scientific discovery process so that 
data curation is not an overhead but an integral part of the discovery processes. 

SQLShare [1] is a system that has many elements in common with the BDAM cat-
alog including the concepts of schema evolution and incremental refinement. Howev-
er, SQLShare differs from our work in several significant ways. It focuses on SQL as 
the primary interface by which users interact and assumes that the data of interest is 
primarily stored in the SQLShare database. Metadata catalogs, such as Globus Meta-
data Catalog Service were proposed [10], with an extensible schema as a general pur-
pose tool to support data management in e-sciences. The asset management approach 
argues that metadata catalogs must be coupled with semi-automated methods for me-
tadata ingest and complementary asset management services.  

Picture Archiving and Communications Systems (PACS) based on the DICOM 
standard for medical imaging interoperability offer clinical image management ser-
vices with interfaces to store, query, and retrieve radiology images. Related are  
research systems such as XNAT [11]. These systems, however, are focused almost 
exclusively on radiology imaging rather than other imaging modalities or data types, 
and they do not offer schema evolution, as described later. 

Finally, storage management systems, including SRM [12], and iRODS [13], pro-
vide facilities for lower-level data storage operations and storage resource manage-
ment. They generally operate on data at a semantically lower level than digital asset 
management and offer limited facilities for metadata management.  

4 BDAM Design and Implementation 

The core elements of any DAM system include: 1) a catalog for tracking, managing 
and organizing assets, 2) ingest methods for incorporating data assets into the system 
 

 

Fig. 1. The architecture of a biomedical digital asset management service. BDAM services are 
loosely coupled via connectors to local storage and they facilitate import and export pipelines 
with extensible functions. 
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and extracting basic descriptive metadata, 3) storage services for storing and moving 
assets, and 4) methods for extracting assets from the system for analysis and publica-
tion. Pervasive across all these functions must be methods for specifying and enforcing 
policy for access and use. The relationship between these functions is shown in Fig 1. 

4.1 Design Requirements 

The heterogeneity of data assets and scientific processes means that the semantic and 
syntactic models for metadata and data are often not known a priori. Furthermore, the 
metadata characterizing a particular asset and its relationship to the research or dis-
covery task at hand is not a simple functional product of the data content but may 
vary depending on the research questions being posed and the kind of data discovery 
that will be performed. We adopt a relaxed consistency model in which a data asset 
continually evolves, rather than entering the system fully formed and with all metada-
ta predetermined. We allow incremental refinement of content and schema, through-
out scientific discovery.  

The disparate sources of data assets are not always under one administrative do-
main. Scientific discovery may involve assets located in a combination of local, en-
terprise and cloud based storage. In many cases restricted access data covered by 
Institutional Review Boards, government regulations such as Health Insurance Porta-
bility and Accountability Act, and other Data Use Agreements may not permit the use 
of clouds for storage of sensitive data. We adopt a hybrid design [14] with loose 
coupling, in which core components are operated in a software-as-a-service (SaaS) 
platform while user data may reside in local storage services (see Fig. 1). The com-
plexities of managing the core services are reduced by operating in a hosted environ-
ment, while institutional data access controls are preserved and storage costs are  
lowered. 

In addition to schema evolution, the BDAM must support schema introspection. 
Given the dynamic nature of schema evolution, the applications and user interfaces 
must be able to inspect the catalog’s schema and present interfaces for the user to 
query and manipulate content. Often, useful metadata that characterizes data assets 
may contain private information, and it is not enough to assume access control for 
data assets while having unrestricted access to metadata. A BDAM must support fine-
grain access control to restrict access to metadata about specific assets (e.g. rows or 
resources), to attributes (e.g.  columns or property types) of the any asset, or to whole 
collection of metadata (e.g.  tables or graphs). Data storage services should support 
complementary access control to the data. 

Finally, if a BDAM is offered as a shared service it must support multi-tenancy to 
allow each scientific application to operate at its own pace and with its own content 
and access policies. All these design characteristics (loose coupling, relaxed consis-
tency, incremental refinement, fine-grain access control, and multi-tenancy) comple-
ment one another. The BDAM is able to capture the evolving state of the scientific 
discovery process as data assets are acquired, summarized, queried, processed, and 
analyzed by researchers. 
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4.2 Data Catalog  

The BDAM data catalog allows individual data assets or other relevant resources to 
be recorded along with meaningful metadata descriptions. As one of the loosely 
coupled components of the BDAM, the catalog may receive input from multiple 
sources including direct, user-authored metadata and machine-driven metadata extrac-
tion tools. These catalog contents can be browsed or searched to find assets matching 
certain criteria. The catalog schema can be queried and amended as per our schema 
evolution and introspection design requirements. Metadata concepts must be defined 
before first use, but these definitions can be incrementally added to the running cata-
log at any point during its operation. 

In keeping with the SaaS model, interactions with the catalog are via a RESTful 
web services protocol. The catalog contains metadata records as resources which can 
be manipulated by the client. The defined interface includes functions for retrieving 
and amending the metadata schema; creating, destroying, updating, and retrieving 
whole metadata records; updating or retrieving individual metadata properties for 
specific records; or performing queries of the records by metadata criteria and associ-
ations to other contextual records. The metadata update and retrieval interfaces also 
allow bulk operations to efficiently manipulate many records in a single request. 

We have developed and evaluated two distinct catalog implementations, both pre-
senting a web service access protocol on top of a relational database management 
system (RDBMS). Based on the widespread appeal of graph-base query in data inte-
gration, we initially explored sparse data storage models with a graph-based query 
interface, which we called Tagfiler (described later). However, we found that in prac-
tice, many investigations use a handful of dominant resource models where many 
assets were annotated with the same subset of metadata concepts. In such an envi-
ronment, it is desirable to use a more compact representation of metadata. Conse-
quently, we developed an alternative catalog interface which supports more structured 
modeling of data. ERMrest, a portmanteau of ERM (Entity Relationship Model) and 
REST (REpresentational State Transfer) exposes a table-like concept of typed entities 
with type-specific properties and is tuned for dense metadata by storing entities and 
their properties as rows in conventional tables. 

In both ERMrest and Tagfiler, the catalog model exposes not only individually 
named metadata records, but also complex record sets. Both also support complex 
query patterns where assets can be found not only by their direct metadata but also by 
their relationships to other matching assets. In each, the web access model defines a 
structured naming scheme (i.e. URI) to denote computed record sets based on 
attribute matching patterns. However, the two catalogs do not implement the same 
naming scheme. In Tagfiler, the naming scheme was tuned for encoding arbitrary 
graph-query patterns, where one computed set of assets could be derived from another 
by traversing an arbitrarily chosen linking property.  

In ERMrest the relationships between entity types are also captured in the typed 
schema, corresponding to the underlying RDBMS concept of foreign-key references 
between tables. ERMrest defines a compact URI naming scheme to traverse such 
linked entities as a psuedo-hierarchy of related entity sets. A URI denoting one set of 
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typed entities can be extended with the name of another linked entity type to denote a 
set of related entities of that other type. Either URI may also be extended with filter 
expressions to denote a subset of entities of the same type. 

To see how ERMrest exposes related entities, consider a catalog with entity types 
experiment, slide, and scan (i.e. image file from a microscope) with simple nesting 
relationships such that experiments may be associated with zero or more slides which 
are associated with zero or more scans. The URL: 

https://bdam.example.org/ermrest/catalog/42/entity/ 
   experiment/id=123/slide/year=2014/scan  

is anchored in a particular multi-tenant ERMrest server, selects catalog 42, selects the 
entity API (for entity access), selects experiments, subsets the experiments by an 
identifier constraint, selects related slides, subsets the slides by a year constraint, and 
finally selects related scans.  

ERMrest and Tagfiler support complex, ad hoc, declarative query languages in the 
URL itself by using tokenizers and “look ahead left-to-right” (LALR) parsers normal-
ly used to develop new programming languages.  We first defined a formal language 
grammar for the new query languages and then used the Python Lex-Yacc library 
(PLY; http://www.dabeaz.com/ply/) to generate LALR parsers for the languages. The 
flexibility of this approach means that the URL scheme (shown in the examples in 
this section) is not merely a template-based URL pattern but a bona fide declarative 
query language in its own right. Furthermore, we have avoided the “escape hatch” 
syndrome in which a native query language (i.e., SPARQL, SQL, etc.) is simply 
passed as an URL argument or in the message body of a HTTP operation. This results 
in a true RESTful interface that allows not only HTTP GET but also POST, PUT,  
and DELETE operations to query, create, update, and delete entries in the catalog, 
respectively. 

With ERMrest, a significant distinction from our earlier Tagfiler approach was  
that it assists the user with querying across related entities in the system (that is, it 
simplifies database joins). This is achieved through database introspection. Relational 
databases such as PostgreSQL, used here, support a standard view called the “infor-
mation_schema” that allows clients to discover the tables, columns, and foreign key 
relationships in the database. ERMrest uses this information to automatically detect 
foreign key relationships that can then be traversed through a pseudo-hierarchical 
URL, as shown in our above example. For instance, ERMrest can detect that the 
“scan” table has a foreign key column that references the primary key of the “slide” 
table. Then, the “syntactic sugar” of the query language is that this relationship can 
simply be expressed hierarchically in the URL (…slide/<filter>/scan…) without ex-
plicitly joining the entities in the filter. 

Unlike ERMrest, Tagfiler exposes a triple-like interface for “tagging” assets such 
as data files and hence was named Tagfiler. Tagging represents a compromise be-
tween the frequently fluid and evolving nature of human representations and the bene-
fits of strict schema [15] and our initial catalog focused on this highly flexible method 
of annotation. Use of tags within the catalog were structured by requiring that all tags 
be defined before use and by providing fine grain access control at the object and 
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attribute level. Tagfiler allows assets to be identified based on patterns constraining 
arbitrary sets of attributes. Tagfiler is tuned for sparse data by using a Decomposi-
tional Storage Model (DSM) [6] to store triples in property-specific tables and to gen-
erate complex joining queries when searching. In Tagfiler the type of a metadata 
record is determined by the properties it has (sometimes referred to as “duck-typed”), 
with arbitrary combinations of properties allowed on each resource.  

To denote the same set of scans in a Tagfiler catalog, consider a catalog where the 
same three entity types are represented by tagging them with properties to indicate their 
relationships and local properties. The admittedly cumbersome graph-query URL:  

https://bdam.example.org/tagfiler/catalog/42/subject/ 
   slideref= 
       @(/year=2014;experimentref=@(/id=123)) 
        (id;year;fileurl;slideref) 

is anchored in a multi-tenant Tagfiler server, selects catalog 42, selects the subject 
API (for graph subject access), and selects subjects tagged with “slideref” referencing 
other subjects matching a subquery which is wrapped inside “@(...)” and reuses the 
same search path notation as the subject API. Since Tagfiler subjects are duck-typed, 
the end of the URL must specify a list of desired scan properties to return (id, year, 
fileurl, and slideref). The first subquery denotes a set of subjects tagged with “year” 
2014 and “experimentref” referencing other subjects matching a second nested sub-
query. The second subquery denotes a subject with a identifier 123. 

The complexity of mapping idiomatic conceptual hierarchies to a Tagfiler graph-
query was the motivation for ERMrest’s type-aware URL scheme. By being aware of 
entity types, ERMrest is able to choose the reference and response properties automat-
ically; ERMrest can also follow references in either direction, e.g. given a specific 
scan it can find the corresponding experiment as: 

https://bdam.example.org/ermrest/catalog/42/entity/scan/i
d=456/slide/experiment.  

For complex models with multiple possible reference paths between the same enti-
ty types, ERMrest also supports other more verbose URL schemes where a desired 
reference path is selected explicitly. Thus, the model aware resolution scheme permits 
idiomatic URLs for typically simple models, while still being able to adapt to com-
plex domain models when necessary. 

4.3 Metadata Ingest 

There are significant challenges to gaining wide adoption of data repositories [16]. 
Manual metadata entry is among the most significant barriers to creating data reposi-
tories, as it places too much burden on researchers, and is time consuming and error 
prone. As noted by Plale et al [7], metadata entry into an institutional repository must 
place a minimal overhead on researchers’ time and effort, and must be able to support 
the wide variety of heterogeneous data, which certainly applies to life sciences. 

The two dominant methods for automatically populating metadata catalogs  
are known as metadata extraction and harvesting [17]. Metadata harvesting is the 
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approach to generating metadata by inspecting source data for known metadata fields, 
which may be found in file format headers, such as NIfTI data format headers for 
Neuroimaging, or interleaved throughout files, such as comment fields in Variable 
Call Format (VCF) files for genomics. Harvesting methods are assisted by human 
experts and authors, for instance on the web this is achieved through the usage of 
META tags in HTML documents, but it applies equally to the well-defined metadata 
fields of biomedical data formats. The Open Archives Initiative (OAI) has proposed a 
standard protocol for metadata harvesting (OAI-PMH) [18] in order to support institu-
tional repositories. Metadata extraction, on the other hand, uses algorithmic methods 
that analyze the contents of files to automatically generate metadata. Research has 
also shown the efficacy of using automated extraction methods to assist human ex-
perts and authors in extracting metadata from data sources [19]. 

We believe that a blending of these techniques will be most effective for biomedi-
cal data, since data sources in this domain are often unstructured or semi-structured. 
Motivating our approach, we note the following characteristics (see Section 5 for 
more details on application experiences): the data are not altered once created (i.e. 
instruments create the primary data which are not edited after creation), the data are 
stored as flat files and do not support query interfaces (file formats as noted, and oc-
casionally XML repositories), metadata comprise a small subset of the data files (e.g. 
a 10GB image file may contain only 10KB of metadata), and new files are incremen-
tally added to the system (e.g. when new subjects are scanned or samples are se-
quenced) throughout the different phases of projects. For these reasons, our metadata 
ingest framework operates close to the data sources, incrementally harvests and ex-
tracts metadata from source files, and uploads only the transformed metadata to the 
repository along with links back to the source data. 

  

  

Fig. 2. The ingest pipeline implemented in the IOBox framework. Each processing stage 
(shown in gray) is checkpointed so that the system can restart efficiently when processing large 
datasets. Third-party parsers are “plugged into” the framework to support the wide variety of 
formats for biomedical data. User-defined rules can be specified for transformation during the 
ingest. 
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The ingest framework (called IOBox and shown in Fig. 2) includes a series of 
event-driven stages to integrate data into the catalog and its virtual repository. The 
IOBox checkpoints the state of the ingest pipeline at each stage in a local, embedded 
database. The first stage is a file scanning stage that generates a manifest of the source 
directory. Following the file scan, the IOBox reads basic file statistics, such as the file 
size, last modified date, etc. New files are then parsed and descriptive metadata ex-
tracted. 

Biomedical data come in a wide variety of formats with several common formats 
each for genomics, microscopy, and radiology and many less common formats. The 
IOBox has a pluggable architecture for integrating third-party parsers, so that the 
system can be expanded to handle virtually any existing or new file format. Presently, 
we have developed adapters for HDF5, NetCDF, DICOM, NIfTI, Microsoft Excel, 
proprietary image formats including Olympus SVI, Aperio SVS, and Hamamatsu 
NDPI, open microscopy formats OME-XML and OME-TIFF, and text formats such 
as SAM, VCF, and Comma-Separated Values (CSV) files. 

After extracting the raw metadata, the IOBox runs a set of user-defined rules to 
transform the raw metadata into the user-defined metadata model of the user’s BDAM 
catalog. A rules condition and action are specified using regular expression syntax to 
allow rules to match a raw metadata field and transform the field into the user model 
of their catalog. The output of the rules is then collated to associate the metadata 
fields with the appropriate item in the catalog and then stored in the catalog using the 
bulk update interface. 

4.4 Storage Services 

Within BDAM, assets need to be accessed, moved from location to location, and ex-
ported for purposes of analysis and publication. Export may involve transformation of 
the entity, which could range from simple renaming and restructuring of the directory 
structures, to transcribing the data into a different file format, to combining and trans-
forming the actual data values. Current efforts focus on the simplest of these methods: 
transfer and renaming. 

We have pursued two approaches to manipulation of the actual data assets. Initial-
ly, we leveraged a commodity cloud storage service (i.e. Dropbox) to manage the 
access and distribution of the data assets. The interface to this service is trivial as it 
transparently replicates locally stored files. However, this service does not scale well 
to large data sets and setting up the appropriate folder sharing between users is cum-
bersome. Our current BDAM implementation uses Globus Transfer, a widely used 
high performance, high-reliability cloud hosted transfer agent [20]. These facilities 
provide a capability analogous to the consumer experience of using download manag-
ers to ensure that data are successfully downloaded from a server to a client machine, 
retry on transient network failures, and restart at the last transfer checkpoint after an 
interruption in the download process. Unlike consumer download managers, Globus 
Transfer has been tuned specifically for moving very large datasets (large volumes of 
data and/or large numbers of files) over long-haul networks. 
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4.5 Group Management and Access Control 

Throughout the BDAM system, role-based access control policies may be used to 
grant or restrict access to data, metadata, or to subsets of either. We use Globus Nexus 
[21] a SaaS identity and group management platform for managing access control in 
BDAM. These collaboration services (IdP, federation, group management) coupled 
with fine-grain access control to metadata and data storage services provide the ne-
cessary ingredients for creating scientific collaboratories that may span institutional 
boundaries. 

5 Application Experiences 

We have applied BDAM configured with both Tagfiler and ERMrest to a number of 
different use cases. In the following, we provide a high-level overview of some of 
these with the objective of illustrating how the BDAM concepts have been applied as 
a means of integrating biomedical digital assets across collaborative projects involv-
ing multiple institutions in many cases. These experiences have informed the design 
and features of the system and allowed us a real-world environment in which to vali-
date our assumptions. 
 

 

Fig. 3. BDAM solution created for management of digital scans from high-resolution slides 
scanner at the Center for Regenerative Medicine and Stem Cell Research (CIRM). Left panel 
provides a browsing interface. The center panel lists the assets that are associated with the 
selected collection and the right panel displays and enables editing of the attributes of a selected 
asset.  
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Center for Regenerative Medicine and Stem Cell Research (CIRM). CIRM oper-
ates a microscopy data core with multiple labs sharing slide scanners and networked 
storage servers. With the acquisition of new high-throughput slide scanners, CIRM 
was faced with a challenge of creating an integrated view of data from the slides 
across labs, across different microscopes, and across collaborations that share data 
beyond the boundaries of the local institute. This environment was typical in that 1) 
there were no tools available to the researchers, 2) the researchers were being inun-
dated with data and 3) researchers are highly sensitive to any overhead placed on 
them to document metadata. We have integrated BDAM into their research workflow 
which includes attaching barcode labels to slides which the slide scanner can read and 
inserts its contents into metadata within the vendor specific file format as well as 
encoding it in the scan’s file name. Using IOBox the system is able to capture meta-
data by harvesting data from slide barcodes. A hybrid integration model was devel-
oped in which a predefined ERMrest model was used to capture the relationship  
between a slide, scans of that slide from different microscopes and specific experi-
ments that use those slides while schema editing elements of the BDAM allows the 
model to be extended with experiment specific attributes. A user interface modeled 
after familiar photo management solutions (Fig. 3) was developed to minimize the 
startup overhead. Deployment of the BDAM is in its early phases, however, the  
response to date from the scientists has been very positive. 

USC Physical Sciences Oncology Center (USC PSOC). USC PSOC performs mul-
ti-scale research into the biology and physics of cancer. Our data catalog and reposito-
ry were used to support collection, discovery, and reuse of data products from  
disparate research teams involving genetics, proteomics, in vitro and in vivo experi-
ments, and computer simulation [22]. The kinds of data products collected include 
spreadsheets, text and binary files from various instruments, multiple microscopy and 
gross anatomical image formats, and derived byproducts such as animations, charts, 
and papers. Several forms of data collection were used including browser-based data 
submission and automatic replication of content added to shared Dropbox file reposi-
tories. A browser-based, faceted search UI was developed to allow search of the cata-
log by basic metadata properties such as the researcher involved, the kind of file, or 
the cancer cell-line or drugs being tested in the experiment. 

Doheny Eye Institute's Image Reading Center (DIRC). DIRC provides expert 
ophthalmic image evaluation in support of clinical trials. Our RESTful data catalog 
and repository was augmented with a browser-based GUI agent to securely collect 
imaging studies from internationally distributed ophthalmology clinics, annotate them 
with trial study metadata, and track studies through a workflow involving image qual-
ity assurance and diagnostic grading. Two integration modes were explored: a brows-
er-based GUI to securely download data sets from the repository to an imaging 
workstation, and a local trial management system configured to automatically retrieve 
study metadata and images using the RESTful API. Role-based access control was 
used to protect image and metadata confidentiality and integrity, providing write-once 
capability to submitting clinics and limited read-only access to studies for only the 
original submitting clinic and the appropriate DIRC staff.  
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Leonard D. Schaeffer Center for Health Policy and Economics. The Schaeffer 
Center conducts econometric analyses on a variety of data sets representing health 
events over large populations of patients. Due to the scope and complexity of the data 
sets, the analyses often involve a large number of files and non-trivial data storage 
resources. Tagfiler was used to store an index of a data and program library contain-
ing hundreds of thousands of files. This index was populated by IOBox using a set of 
heuristic annotation rules to extract metadata from deeply structured file path names. 
A browser-based, faceted search UI was used to allow search of the index by basic 
metadata properties such as the researcher involved, the kind of file content, the 
project or source dataset involved, and file metadata such as ownership, size, and 
timestamp information. After ingest, bulk update operations were used to further or-
ganize data by domain specific concepts such as source of the data, disease type, etc.  

6 Discussion 

The schema-neutral nature of our system made it easier to adjust the metadata scope 
on the fly, allowing incremental refinement of metadata within a catalog. Very hete-
rogeneous data assets can be tracked, reducing the metadata on those assets to a core 
set of opaque file-container attributes. However, user investment is necessary to aug-
ment this with enough descriptive metadata to support data discovery. In projects 
where data-producing users did not see the value in this investment, the minimalist 
metadata was not sufficient to support discovery. Instead, potential collaborators had 
to be identified by other human processes and directed to coordinate with one another; 
in those cases, the BDAM approach was still useful to archive content or facilitate 
transfer of large files. 

We often encounter user communities who specify semantic web standards such as 
RDF as one of their feature requirements. However, in our data sharing pilot studies, 
we found that most users actually did not find triple-based metadata to be intuitive nor 
practical. The most common reasons they identified for requesting RDF were that: 1) 
they had heard of an ontology specific to their domain that might be useful, 2) they 
had heard the idea of a shared ontology and liked the idea of shared vocabulary in 
general, 3) they had been told that RDF was the way to make data interoperable, D) 
they believed RDF was more flexible than SQL in allowing schema change. 

In our experience, most non-computer scientist data users seem to find it easier to 
think about entity-relational models; most importantly, they can start with naive un-
derstanding of flat tables, and only learn more sophisticated concepts such as typing, 
keys, and references later as their understanding of the problem develops. As Tagfiler 
evolved, we found the table-like access APIs to be the most embraced capability, and 
indeed we found it easiest to explain it to users as a catalog containing "one large, 
wide table" where the user did not have to be worried about lots of missing values in a 
particular row. We also had users asking for more SQL-like constraints so that  
they could enforce certain data structuring conventions in a community catalog. Our 
shift to explicit entity-relational models in ERMrest is largely motivated by these 
observations. 
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7 Future Work 

There are a number of directions we hope to take BDAM in the future. These include: 

Optimized Storage. Our web services catalog interfaces place a clean separation 
between the service model and the underlying storage model used to store the descrip-
tive metadata. We plan to provide mechanisms that will support a hybrid storage 
model that supports both the decomposed storage optimized for sparse representations 
with the dense table oriented model that is better suited for more dense descriptive 
element 

Improved User Interfaces. To date, we have explored two classes of generic inter-
face: a facet based search and the three-pane interface used by CIRM. Both of which 
require some significant configuration prior to use in a specific application. However, 
the web services based introspection interface in the BDAM catalog makes it possible 
to perform a significant amount of auto configuration  

Data Extraction and Analytics Integration. Current BDAM file management can 
only perform simple renaming operations. In general, we will require more extensive 
file consolidation, extraction and transformation operations. Of specific interest is 
providing the extraction methods and interfaces necessary to hand data assets off to 
external tools and used for biomedical data analysis and general purpose analytic 
frameworks. 

8 Conclusions 

The lack of tools to help researchers in the life sciences integrate, organize and man-
age their data is a significant gap that has significant impact on productivity and relia-
bility. Taking a cue from widely used systems in the consumer space, a biomedical 
digital asset management system can close this gap, providing a platform for integrat-
ing data from multiple sources and integrating that data into the daily workflow asso-
ciated with discovery in the life sciences. By focusing on ease of use and low barrier 
to entry via automated methods delivery via software as a service mechanisms, end 
users will both use and benefit from a BDAM approach to integration. 

Acknowledgments. The authors would like to acknowledge the contributions of Ser-
ban Voinea in implementing the Tagfiler catalog and several of the use cases and Ian 
Foster, Kyle Chard for their fruitful discussions on many of the topics presented in 
this paper. 

References 

1. Howe, B., Cole, G., Souroush, E., Koutris, P., Key, A., Khoussainova, N., Battle, L.: Da-
tabase-as-a-Service for Long-Tail Science. In: Bayard Cushing, J., French, J., Bowers, S. 
(eds.) SSDBM 2011. LNCS, vol. 6809, pp. 480–489. Springer, Heidelberg (2011) 



 An Asset Management Approach to Continuous Integration 15 

2. Halevy, A., Franklin, M., Maier, D.: Principles of Dataspace Systems. In: PODS 2006. 
ACM, Chicago (2006) 

3. Digital Asset Management. Wikipedia (2014) 
4. Tunkelang, D.: Faceted Search. Synthesis Lectures on Information Concepts, Retrieval, 

and Services, vol. 1, pp. 1–80 (2009) 
5. Halevy, A., Rajaraman, A., Ordille, J.: Data integration: the teenage years. In: VLDB 

2006, pp. 9–16. VLDB Endowment, Seoul (2006) 
6. Corwin, J., et al.: Dynamic tables: An architecture for managing evolving, heterogeneous 

biomedical data in relational database management systems. Journal of the American 14, 
86–93 (2007) 

7. Plale, B., et al.: SEAD Virtual Archive: Building a Federation of Institutional Repositories 
for Long-Term Data Preservation in Sustainability Science. International Journal of Digital 
Curation 8, 172–180 (2013) 

8. Hellerstein, J.M., et al.: The MADlib analytics library: or MAD skills, the SQL. In: Pro-
ceedings of the VLDB Endowment, pp. 1700–1711 (2012) 

9. Smith, M., et al.: DSpace: An Open Source Dynamic Digital Repository. D-Lib Maga-
zine 9 (2003) 

10. Singh, G., et al.: A Metadata Catalog Service for Data Intensive Applications. In: Super-
Computing (SC 2003). ACM, Phoenix (2003) 

11. Marcus, D.S., et al.: The Extensible Neuroimaging Archive Toolkit: an informatics plat-
form for managing, exploring, and sharing neuroimaging data. Neuroinformatics 5, 11–34 
(2007) 

12. Shoshani, A., Sim, A., Gu, J.: Storage resource managers: Middleware components for 
grid storage. In: NASA Conference Publication, pp. 209–224 (2002) 

13. Rajasekar, A., et al.: iRODS Primer: Integrated Rule-Oriented Data System. Synthesis 
Lectures on Information Concepts, Retrieval, and Services, vol. 2, pp. 1–143 (2010) 

14. Bittman, T.: Mind the Gap: Here Comes the Hybrid Cloud. In: Gartner Blog Network 
(2012) 

15. Cattuto, C., Loreto, V., Pietronero, L.: Semiotic dynamics and collaborative tagging. Pro-
ceedings of the National Academy of Sciences 104(5), 1461–1464 (2007) 

16. Davis, P.M., Connolly, M.J.L.: Institutional Repositories: Evaluating the Reasons for Non-
use of Cornell University’s Installation of DSpace. D-Lib Magazine 13 (2007) 

17. Greenberg, J.: Metadata Extraction and Harvesting: A Comparison of Two Automatic Me-
tadata Generation Applications. Journal of Internet Cataloging 6, 59–82 (2004) 

18. Lagoze, C., de Sompel, H.: The making of the open archives initiative protocol for metada-
ta harvesting. Library hi tech 21, 118–128 (2003) 

19. Tuchinda, R., Szekely, P., Knoblock, C.A.: Building data integration queries by demon-
stration. In: Proceedings of the 12th International Conference on Intelligent User Interfaces 
- IUI 2007, p. 170. ACM Press, New York (2007) 

20. Allen, B., et al.: Software as a service for data scientists. Communications of the ACM 55, 
81 (2012) 

21. Ananthakrishnan, R., et al.: Globus Nexus: An identity, profile, and group management 
platform for science gateways and other collaborative science applications. In: 2013 IEEE 
International Conference on Cluster Computing (CLUSTER), pp. 1–3 (2013) 

22. Agus, D.B., et al.: A physical sciences network characterization of non-tumorigenic and 
metastatic cells. Scientific Reports 3, 1449 (2013) 

 
 



Mining Linked Open Data:

A Case Study with Genes Responsible
for Intellectual Disability
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Abstract. Linked Open Data (LOD) constitute a unique dataset that
is in a standard format, partially integrated, and facilitates connections
with domain knowledge represented within semantic web ontologies. In-
creasing amounts of biomedical data provided as LOD consequently offer
novel opportunities for knowledge discovery in biomedicine. However,
most data mining methods are neither adapted to LOD format, nor
adapted to consider domain knowledge. We propose in this paper an
approach for selecting, integrating, and mining LOD with the goal of
discovering genes responsible for a disease. The selection step relies on a
set of choices made by a domain expert to isolate relevant pieces of LOD.
Because these pieces are potentially not linked, an integration step is re-
quired to connect unlinked pieces. The resulting graph is subsequently
mined using Inductive Logic Programming (ILP) that presents two main
advantages. First, the input format compliant with ILP is close to the
format of LOD. Second, domain knowledge can be added to this input
and considered by ILP. We have implemented and applied this approach
to the characterization of genes responsible for intellectual disability. On
the basis of this real-world use case, we present an evaluation of our min-
ing approach and discuss its advantages and drawbacks for the mining
of biomedical LOD.

1 Introduction

Linked Open Data (LOD) are part of a community effort to build a semantic
web, where web resources can be interpreted both by humans and machines.
LOD are available as a large and growing collection of datasets represented in a
standard format (that includes the use of RDF and URIs), partially connected to
each other and to domain knowledge represented within semantic web ontologies
[1]. For these reasons, LOD offer novel opportunities for the development of
successful data integration and knowledge discovery approaches.

H. Galhardas and E. Rahm (Eds.): DILS 2014, LNBI 8574, pp. 16–31, 2014.
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This recent availability of LOD can be particularly beneficial to the life sci-
ences, where relevant data are spread over various data resources with no agree-
ment on a unique representation of biological entities [2]. Consequently, data
integration is an initial challenge one faces if one wants to mine life science data
considering several data sources. Various initiatives such as Bio2RDF, LOD drug
data, PDBj or the EBI platform aim at pushing life sciences data into the LOD
cloud with the idea of facilitating their integration [3, 4, 5, 6]. It results from
these initiatives a large collection of life-science data unequally connected but in
a standard format and available for mining.

In addition to their integrated dimension, LOD may be connected to domain
knowledge represented within ontologies such as the Gene Ontology [7]. Ontolo-
gies provide a formal representation of a particular domain that can be used
to support automatic reasoning. We have investigated that ontologies and their
associated reasoning mechanisms can be coupled with data mining to facilitate
the process of knowledge discovery [8, 9]. We would like to extend this investiga-
tion to the context of LOD. Despite good will and emerging standard practices
for publishing data as LOD, several drawbacks make their use still challenging
[10, 11]. Among existing difficulties we can list the limited amount of links be-
tween datasets, the lack of update on published datasets, the variety of SPARQL
versions supported by systems that enable querying LOD.

Fig. 1. Outline of the methodology used for preparing and mining Linked Open Data
(LOD). a: Conceptualization in term of entities and binary relationships; b: Mapping
onto various LOD datasets; c: Retrieval of triples using SPARQL queries; d : Relational
learning with Inductive Logic Programming (ILP).
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We propose here an approach that is schematized in Figure 1 and that en-
ables to (1) select, (2) integrate and then (3) mine LOD with Inductive Logic
Programming (ILP). (1) The selection of LOD is achieved with respect to a con-
ceptualization of data related to a biomedical question. This conceptualization
is driven by a biomedical expert and, in this paper, is motivated by our will to
characterize genes responsible for intellectual disability. (2) The integration of
LOD is made possible both by the use of links present in LOD and by the manual
definition of mappings between our conceptualization and LOD. Links and map-
pings enable to automatically build SPARQL queries and subsequently retrieve
LOD triples to mine. In addition, our mappings enable the generation of unpub-
lished links between LOD entities, consequently contributing to the community
effort. (3) Finally, triples are mined using ILP that is particularly adapted to the
format of LOD and capable of taking into account domain knowledge defined in
ontologies.

The next section presents a state of the art of data mining applied to LOD
and introduces ILP. The third section presents the LOD selection and inte-
gration made in preparation for the mining. The fourth section reports about
mining experiments with ILP on selected triples. The last section concludes on
experiments and presents perspectives of this initial work.

2 State of the Art

2.1 Preparing LOD for Mining

The complexity of LOD has motivated several studies about the preparation
(i.e., selection, integration, formatting) of data before mining. For instance, we
proposed a system that guides the selection of LOD by structuring data within
a lattice that provides insight about which type of entities are related and how
[12]. Callahan et al. proposed to map LOD from various datasets to an upper-
level ontology named SIO. This ontology serves consequently as a global schema
and its terms are used to write federated queries over LOD datasets [13]. SADI
is a general framework to facilitate the discovery and use of web services [14].
Because it has been developed with semantic web technologies, SADI is well
adapted to define pipelines that can query SPARQL endpoints and integrate
their results. The COEUS platform follows a similar rationale but includes a
federation layer that facilitates data integration [15].

Any of these solutions is well adapted when either entities have a unique
URI over distinct datasets, or when links have been defined between datasets.
Unfortunately, these two prerequisites are not guaranteed in LOD. In this work,
we want to be able to use any LOD dataset, even if this requires to define novel
mappings between datasets, using various types of relationships. For this reason
we propose a simple but generic way for selecting and integrating LOD to be
mined.
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2.2 Mining LOD

The emergence of several workshops about the mining of LOD illustrates the rise
of interest for this topic, both in the semantic web and data mining communi-
ties. A first type of contribution in this domain aims at completing or correcting
the LOD. In that vein, Gangemi et al. proposed an approach to type systemati-
cally DBpedia entities using graph patterns and disambiguation techniques [16].
Other authors studied how to propose systematically missing links, particularly
between unrelated datasets [17, 18]. For example, Brenninkmeijer et al. devel-
oped a tool for proposing owl:sameAs links between unrelated drugs of LOD
datasets [19].

A second group of works explores how some peculiarities of LOD can help data
mining. For example, Percha et al. used paths between distinct drugs in linked
data to predict novel drug-drug interactions [20]. Here, the fact that relationships
and entities are typed in LOD enable to define features that characterise possible
paths between drugs and consequently to train a random forest classifier. Pathak
et al. proposed a study on how federated queries over Electronic Health Records
and drug related LOD could enable the discovery of novel drug-drug interactions
[21].

To our knowledge, only few seminal works have explored how LOD mining can
take advantages of knowledge representation [22, 23]. In this work we propose
to explore this direction using ILP.

2.3 Inductive Logic Programming

ILP Principles. Inductive Logic Programming (ILP) allows us to learn a con-
cept definition from observations, i.e., a set of positive examples (E+) and a set
of negative examples (E−), and background knowledge (B) [24]. Given E+, E−,
and B the goal is to induce a set of rules or a theory T that is consistent (T ∪B
covers or explains each positive example), and complete (T ∪ B does not cover
any negative example). In most ILP systems both B and T are represented
as definite clauses (or prolog programs) in first-order logic, i.e., a disjunction
of literals with one positive literal. A rule has the form “head :- body” and
is interpreted as: if the conditions in the body are true then the head is true
as a logical consequence. The background knowledge B includes the relational
description of the examples using a set of relevant n-ary predicates such as

protein mf(‘gpaC’, ‘receptor binding’).

which expresses the fact that the GO (Gene Ontology) term ‘receptor binding’
is one of the molecular functions of the protein ‘gpaC’ (with respect to the
annotation database GOA). B also includes a priori domain knowledge, i.e., a
set of facts and rules which do not refer to any example but express what is
known about the elements which describe the examples. For instance, the fact

subClass(‘insulin receptor binding’, ‘receptor binding’).
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expresses a is-a semantic relationship between two GO terms. Moreover, the
following inference rule1 expresses the transitivity of the subClass binary pred-
icate:

subClass(X, Z) :- subClass(X, Y), subClass(Y, Z).

The theory T is a set of rules which cover as many positive examples as
possible and the fewest negative examples. The head of each rule is the concept
to learn whereas the body contains the induced description of the concept (based
on a generalization of examples). An example of a rule when studying genes
responsible for a disease has the form

is responsible(X) :- gene protein(X, Y), protein mf(Y, ‘receptor binding’).

which expresses that if the gene X produces a protein Y and Y has ‘receptor
binding’ as a molecular function then X is responsible for the studied disease.

The rule search is performed in a clause space where the clause subsumption
allows building generalizations or specializations of the clauses [25]. As the clause
space is too large to be exhaustively explored, heuristic mechanisms exist to
reduce its size. These mechanisms (called learning biases) allow the user to define
which kind of rules (s)he wants to get by setting some parameters that influence
the rule search strategy.

The Aleph Program. The experiments reported in this paper were conducted
with the Aleph program whose basic algorithm is described in four steps [26]:

– Select a seed example to be generalized. If none exists, stop.

– Construct the most specific clause that entails the example selected, and is
compliant with the language restrictions provided. This clause is called the
”bottom clause”.

– Find a clause more general than the bottom clause. This is done by searching
for some subset of the literals in the bottom clause that has the ”best”
evaluation score.

– The clause with the best score is added as a rule to the current theory, and
all examples made redundant are removed. Return to Step 1.

Several parameters can be set for tuning the theory construction. For instance,
the rule evaluation function can be chosen and the default one is based on the
difference between the number of covered positive examples and the number
of covered negative examples. The noise parameter is the maximum number
of negative examples that an acceptable rule may cover (default value is 0).
This parameter can be set to higher values in case of noisy data. The min-pos
parameter is the minimal number of positive examples that a rule must cover.

1 In the Prolog syntax, terms starting with an uppercase letter are variables.
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3 LOD Selection and Integration

3.1 Conceptualization

In our approach, the first step is to build an entity-relationship (ER) model
decribing the entities to consider for a given study. The goal of the ER model
is to provide an abstract model of data that are relevant to mine. This step is
realized with an expert of the domain, and does not require any knowledge of
what data is available in LOD and how it is structured. An ER model consists
of a conceptualization usually made of entities, relationships and attributes. We
use only a subset of those: entities and binary relationships without attributes
(similarly to RDF properties). In our case, n-ary relationships and relationships
with attributes are represented with a composition of binary relationships using
the reification mechanism. Figure 2 presents the ER model defined for our study
of genes responsible for Intellectual Disability (ID).

Fig. 2. Entity-relationship (ER) model of data on genes responsible for Intellectual
Disability (ID). For the sake of clarity, we have not represented gene location, which is
composed of chromosome, arm, region, band, sub-band and sub-sub-band. BP, MF and
CC represent GO-term annotations of proteins (Biological Process, Molecular Function
and Cellular Component annotations respectively).
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Table 1. Sources and count of distinct collected individuals that instantiate each entity
of our ER model

Entity SPARQL endpoint #Individuals

Gene
cu.gene.bio2rdf.org/sparql

cu.kegg.bio2rdf.org/sparql
549

Protein beta.sparql.uniprot.org/sparql 1257

Pathway
cu.kegg.bio2rdf.org/sparql

www.ebi.ac.uk/rdf/services/reactome/sparql
580

Reaction cu.kegg.bio2rdf.org/sparql 433

Compound cu.kegg.bio2rdf.org/sparql 628

GOterm
cu.goa.bio2rdf.org/sparql

sparql.bioontology.org/sparql
7770

Domain cu.interpro.bio2rdf.org/sparql 262

Family cu.interpro.bio2rdf.org/sparql 781

Total 12260

3.2 Mapping the ER Model onto LOD and Individual Identification

Mapping Definition. LOD integration consists primarily in mapping our
expert-defined ER model onto LOD types of entities and of relationships. This
mapping is materialized by defining correspondances between each entity of the
model and one or many RDF entity types of LOD; and between each rela-
tionship of the model and RDF properties present in LOD. Indeed, distinct
LOD datasets may use distinct entity types to refer to a single entity of our
model. For instance, the entity Gene of the model is mapped to two entity types:
<http://bio2rdf.org/geneid:vocabulary:Gene> and http://bio2rdf.org/

kegg vocabulary:Gene respectively used in two datasets of Bio2RDF: NCBI
Gene and KEGG. Each entity is further defined by a concept definition that
can be either an RDF entity type, its negation, the domain/range of a property,
or the union/intersection of two entity types. Similarly, the relationships of the
ER model can be mapped to one property or a composition of properties (or
inverse properties), or to an artificial property subsuming them. For instance,
the relationship gene reaction between a gene and a reaction (which represents
the fact that the gene produces an enzyme that catalyzes the reaction) can be
mapped to kegg:xGene− ◦ kegg:xEnzyme−.2 Table 1 and Table 2 list entities
and relationships of our ER model and the datasets they are mapped to.

Individual Identification. Because the mapping can associate one entity with
several datasets, it can cause redundancy. To guarantee the consistency of data
related by our mapping, we need additional information on individual identity.

2 The property kegg:xGene relates genes to enzymes and kegg:xEnzyme relates en-
zymes to reactions, whereas gene reaction relates directly reactions to genes. The
latter is a composition (denoted by ◦) of the inverses (denoted by −) of kegg:xEnzyme
and kegg:xGene.

http://bio2rdf.org/geneid:vocabulary:Gene
http://bio2rdf.org/kegg_vocabulary:Gene
http://bio2rdf.org/kegg_vocabulary:Gene
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Table 2. Sources and count of distinct collected instances for each relationship of our
ER model

Relationship SPARQL endpoint #Individuals

gene protein beta.sparql.uniprot.org/sparql 819

gene reaction cu.kegg.bio2rdf.org/sparql 500

pp interaction cu.irefindex.bio2rdf.org/sparql 742

pathway protein www.ebi.ac.uk/rdf/services/reactome/sparql 767

protein domain cu.interpro.bio2rdf.org/sparql 262

pathway reaction cu.interpro.bio2rdf.org/sparql 706

substrate cu.kegg.bio2rdf.org/sparql 938

product cu.kegg.bio2rdf.org/sparql 960

protein bp cu.goa.bio2rdf.org/sparql 10242

protein cc cu.goa.bio2rdf.org/sparql 4358

protein mf cu.goa.bio2rdf.org/sparql 4063

subClass sparql.bioontology.org/sparql 12779

domain family cu.interpro.bio2rdf.org/sparql 1238

gene chromosome cu.gene.bio2rdf.org/sparql 538

gene chromosome arm cu.gene.bio2rdf.org/sparql 538

gene chromosome region cu.gene.bio2rdf.org/sparql 538

gene chromosome band cu.gene.bio2rdf.org/sparql 538

gene chromosome subband cu.gene.bio2rdf.org/sparql 311

gene chromosome subsubband cu.gene.bio2rdf.org/sparql 63

Total 40900

Individuals are identified in LOD by their URIs. The main issue in mining
LOD from several datasets is that two distinct URIs from different LOD datasets
may refer to the same real world object. Individuals’ URIs links from one LOD
dataset to another may be available, ideally using the property owl:sameAs, al-
though sometimes a less precise link, such as rdfs:seeAlso or a dataset depen-
dent predicate is used. For entity types that mapped onto several LOD datasets,
an automatic way of resolving identity of individuals needs to be established. In
our case study, this is achieved through several means:

– Using when available in LOD, links that express equivalence between alter-
native URIs of an individual, such as rdfs:seeAlso.

– Using LOD features associated with individuals to assess the identity:
• URIs themselves sometimes embed enough data to assess that two in-
dividuals are identical. For example, in some datasets, gene URIs con-
tain the NCBI Gene ID: the human gene with Gene ID 5091 is repre-
sented by the URI <http://bio2rdf.org/geneid:5091> in Bio2RDF
NCBI Gene, and <http://bio2rdf.org/kegg_vocabulary:hsa:5091>

in Bio2RDF KEGG. An obvious link between the two URIs can be made
on the basis of the Gene ID.

• Individuals can be associated with literals that identify them across
datasets, such as the HGNC gene symbol for genes, that is used to iden-
tify genes in Bio2RDF NCBI Gene and Bio2RDF OMIM datasets.

http://bio2rdf.org/geneid:5091
http://bio2rdf.org/kegg_vocabulary:hsa:5091
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Using these methods, given a URI in a given dataset, we can find the corre-
sponding URI in another dataset. Links we generated this way are available at
http://www.loria.fr/~coulet/dils14/individual_identities.html. More
sophisticated methods based on URIs or literals can be designed to compute
identity.

3.3 Triple Retrieval and Storage

For the purpose of ILP mining, a set of positive examples and a set of negative
examples must be provided. In our study, positives examples are genes respon-
sible for Intellectual Disability (ID), while negative examples are genes that are
not responsible for this type of disease. Positive examples were selected from a
state-of-the-art study about genes responsible for ID by Inlow and Restifo [27].
We selected negative examples among genes responsible for diseases other than
ID. To this aim, we first selected phenotypes in OMIM which do not contain ID
as a symptom. From this large set of phenotypes, biomedical experts advised the
selection of a subset of phenotypes clearly distinct from ID. Genes responsible
for these phenotypes were then retrieved from OMIM. The final set of negative
examples is selected from stratified sampling with respect to the overall number
of genes associated with each phenotype.3

Given the ER model and its mapping to LOD entity types and roles, SPARQL
queries can be built in a systematic way to retrieve the data from LOD. As an
illustration, for building a SPARQL query to retrieve the families of protein do-
mains (domain family relationship in Table 2) the following mapping was used:
the Domain entity is mapped to the entity type http://bio2rdf.org/interpro
vocabulary:Domain; Family is mapped to http://bio2rdf.org/interpro

vocabulary:Family; and the domain family relationship is mapped to the
<http://bio2rdf.org/interpro_vocabulary:contains>− property. On this
basis, the following query is built:

SELECT ?x ?y

WHERE {

?x a <http://bio2rdf.org/interpro_vocabulary:Domain>.

?y a <http://bio2rdf.org/interpro_vocabulary:Family>.

?y <http://bio2rdf.org/interpro_vocabulary:contains> ?x.

FILTER(?x = ...)

}

The FILTER statement of the query is used to retrieve only triples associated
with genes reponsible/not responsible for ID.

Once the SPARQL queries are generated and executed, then retrieved data
is automatically stored in a triple store. Our triple store relies on a simple re-
lational database built upon the ER model. To each entity corresponds a table
whose columns are a local identifier and URIs from each dataset mapped to that

3 The two sets of genes are available at http://www.loria.fr/~coulet/dils14/
positives and http://www.loria.fr/~coulet/dils14/negatives.

http://www.loria.fr/~coulet/dils14/individual_identities.html
http://bio2rdf.org/interpro_vocabulary:Domain
http://bio2rdf.org/interpro_vocabulary:Domain
http://bio2rdf.org/interpro_vocabulary:Family
http://bio2rdf.org/interpro_vocabulary:Family
http://bio2rdf.org/interpro_vocabulary:contains
http://www.loria.fr/~coulet/dils14/positives
http://www.loria.fr/~coulet/dils14/positives
http://www.loria.fr/~coulet/dils14/negatives.
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entity. To each relationship corresponds a table whose columns are the local
identifiers of its subject and its object. The number of individuals collected with
this method starting from a list of 549 genes (282 positive and 267 negative ex-
amples) are indicated in Table 1 and Table 2 (last column). Our method allows
to add new entity types and relationships to our model without discarding pre-
viously collected data. However, updating collected data is not possible without
recollection of all data on a given entity type or relationship.

4 ILP Mining of LOD

4.1 ILP Experiments and Results

The aim of the mining step is to learn by ILP the concept of genes responsible for
Intellectual Disability (ID) from the set of integrated triples relative to positive
and negative examples of genes. The experiments were conducted with the Aleph
program by setting the parameters rule size, minpos, noise, minacc4 respectively
to 6, 5, 3 and 85%. The noise parameter allows rules to tolerate a few exceptions
(negative examples). This constitutes an advantage when dealing with noisy data
such as LOD.

The outcome of the mining experiment is used both for predictive and de-
scriptive purposes. The predictive power of the first-order logic (FOL) rules is
evaluated by cross-validation whereas their descriptive power is analyzed quali-
tatively.

Our first experiment (G1) applies to the genes and their background knowl-
edge (i.e., proteins, pathways, etc.) including their GO annotations plus their
direct parents using the is-a relationship (denoted by subClass1) between GO-
terms. Then we wanted to assess the contribution of domain knowledge by allow-
ing 2 to 4 generalization inferences on the is-a GO structure, which is a rooted
directed acyclic graph. For n generalization steps, we add 2 × n inference rules
in the .b file (one of the three inputs of the Aleph program) as follows:

One inference rule for each i in 2 . . . n :

subClassi(X, Z) :- subClassi−1(X, Y), subClass1(Y, Z).

One inference rule for each i in 1 . . . n :

subClass(X, Y) :- subClassi(X, Y).

One rule expressing the reflexivity of the subClass relationship :

subClass(X, X) :- goterm(X).

In this study the mining experiment was executed with n varying from 1 to
4, leading to a maximum of 1 (G1 experiment), 2 (G2 experiment), 3 (G3 ex-
periment), and 4 (G4 experiment) generalization steps respectively. Examina-
tion of the resulting 4 theories revealed that the produced rules mostly contain

4 The minacc parameter is the minimum ratio of positives examples among the covered
examples.
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predicates related to GO-terms. Other predicates representing pathways or in-
teractions between proteins occur very rarely. This can be explained by the
fact that GO annotations are plethoric compared to data on pathways, protein
domains or protein-protein interactions. This motivated us to run a fifth ex-
periment (named no−GO) for analyzing all predicates excepting the GO-term
facts. Complete theories produced in the five experiments are accessible online
at http://www.loria.fr/~coulet/dils14/theories.pdf. Table 3 shows sev-
eral metrics calculated for monitoring the effect of adding GO-term facts and
increasing the number of generalization steps. The number of rules in the theory

Table 3. Statistics on the theories produced by our five experiments. avg/max/min
pos covered: Average/maximum/minimum number of positive examples covered by the
rules of each theory.

Experiment #rules avg pos covered max pos covered min pos covered

no−GO 11 8.4 15 5
G1 22 14 35 6
G2 19 15.5 38 6
G3 18 15.1 39 6
G4 16 16.2 42 5

doubles when adding GO-term facts (from no−GO to G1) and the average num-
ber of covered examples increases from 8.4 to 14, with its maximum increasing
from 15 to 35. This indicates that GO-term facts play a very positive role in
the ILP process during learning. As the number of generalization steps increases
from 1 to 4 the number of rules decreases (from 22 to 16) whereas the average
number of covered examples slightly increases from 14 to 16.2, with a increase
of the maximum (from 35 to 42). These results confirm the intuition that with
more generalization steps, theories tend to become more compact with fewer
rules, each of them covering more examples. However it is important at that
stage to assess the predictive power of each theory.

4.2 Evaluation of the Results

We evaluate the outcome of the mining step from a predictive point of view using
cross-validation. Dedicated Knime workflows were used for that purpose [28, 29].
During cross-validation, a gene is predicted as responsible for ID if it is covered
by at least one rule of the theory. Otherwise, it is predicted as not responsible
for ID.

Table 4 reports the results of the leave-one-out cross-validation of ILP learning
for the experiments no−GO and G1 to G4. The results show that without GO-
term facts (no − GO), the prediction accuracy is rather low (59.6%) with a
high specificity but a very low sensitivity. When using GO-terms the prediction
indicators are better. They improve up to an accuracy of 69.8% as we allow Aleph

http://www.loria.fr/~coulet/dils14/theories.pdf
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to use more domain knowledge (by performing more generalizations). As it is
difficult to provide comparative results, we continue with a qualitative analysis
of our results.

Table 4. Results of the leave-one-out cross-validation the theories produced by the
5 experiments. TP/FP: True/False Positives, TN/FN: True/False Negatives, Sens.:
Sensitivity, Spec.: Specificity, Acc: Accuracy.

Experiment TP FP TN FN Sens.(%) Spec.(%) Acc.(%)

no−GO 75 15 252 207 26.6 94.4 59.6
G1 135 50 217 147 47.9 81.3 64.1
G2 157 52 215 125 55.7 80.5 67.8
G3 157 49 218 125 55.7 81.7 68.3
G4 161 45 222 121 57.1 83.1 69.8

Table 5. Right parts of the rules of the no−GO theory, followed by, respectively, the
number of positive and negative examples covered by that rule

# Right part of rule

1 gene in reaction(A, ‘Ubiquinol+Acceptor⇔Ubiquinone+Reduced Acceptor’). 7 0
2 gene in reaction(A, B), gene protein(A, C), pp interaction(C,D), pp interaction(D, C). 6 0
3 gene in reaction(A, B), gene protein(A, C), pp interaction(C, P30480). 7 0
4 gene in reaction(A, B), gene ch(A, ‘1’) 14 0
5 gene in reaction(A, B), gene ch(A, x) 15 2
6 gene in pathway(A, ‘Alanine and aspartate metabolism’). 6 1
7 gene in pathway(A, ‘Valine, leucine and isoleucine degradation’). 11 1
8 gene chromosome band(A, ‘22q13’). 6 0
9 gene in pathway(A, ‘N-Glycan biosynthesis’). 8 0

10 gene in pathway(A, ‘Formation of TC-NER repair complex’). 5 0
11 gene in pathway(A, ‘Glycosaminoglycan degradation’). 8 0

4.3 Qualitative Analysis and Discussion

We analyze here the obtained theories from the descriptive point of view, i.e.,
how well do the rules characterize genes responsible for ID? Table 5 shows
the rules obtained from the no − GO experiment: in the absence of GO-term
facts (no − GO experiment), we observe several rules containing predicates re-
lated to chromosomal localization such as rule 4 and 5 pointing to chromo-
somes 1 and X as possible reservoirs of genes for ID. In addition, rule 8 points
to a more constrained location on chromosome 22. Other rules contain the
gene in pathway predicate (rules 6, 7, 9, 10, 11) in which one can mostly recog-
nize pathways involved in the metabolism of the cell. Indeed inherited metabolic
disorders are considered as an important etiology for ID [30].
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In the presence of GO-term facts (experiments G1 to G4), the repertoire of
GO-terms appearing in the rules either as direct protein annotation or as com-
mon ancestor after generalization varies with the experiment and the generaliza-
tion degree. In total we counted 47, 7 and 14 distinct GO-terms pertainining from
the Biological Process (BP), Molecular Function (MF) and Cellular Component
(CC) aspects of the GO ontology respectively. Among the BP-terms of GO we
could again recognize terms describing metabolic processes of the cell, but also
terms related to gene expression mechanisms and to nervous system develop-
ment which make sense when dealing with ID. Interesting rules are combining
protein bp and protein mf predicates such as rule 16 in the G4 theory:

is responsible(A) :- gene protein(A, B), protein mf(B, C),

subClass(C, ‘ion binding’),

protein bp(B, ‘carbohydrate metabolic process’).

Such rules suggest that the descriptive power of the theories increases when do-
main knowledge is taken into account. The value of adding generalization can
be illustrated on rules having subClass terms concerning ‘organonitrogen com-
pound metabolism’. Rules 3 from G1 and 7 from G2 theories both contain the
subClass(C, ‘organonitrogen compound metabolic process’) term and each of
them covers 23 positive examples. Rules 4 from G3 and 4 from G4 theories both
contain the subClass(C, ‘organonitrogen compound catabolic process’) term
which refers to a more specific GO-term than in G1 and G2 (’catabolism’ is one
aspect of ’metabolism’) but these rules cover 39 positive examples in the G3 and
42 positive examples in the G4 theories. Thus allowing for more generalization
steps has helped to increase the coverage of the rule but also to better specify
the feature shared by the positive examples. Several other examples similar to
this one are found across the G1 to G4 theories.

5 Conclusion and Perspectives

This paper proposes an original approach for selecting, integrating and mining
LOD, successfully applied to a real-world use case in the life sciences. The re-
sults confirm that ILP is adapted to the LOD context and actually allows to
exploit biological ontologies available in LOD. Both quantitative and qualita-
tive analyses show promising results. Obtained theories display high specificity,
thus limiting the amount of false positives. Each rule characterizes a significant
subset of positive genes (16 on average for the best theory). This illustrates the
ability of our approach to perform induction over LOD. Moreover, the approach
described here could be applied to other domains covered by LOD.

The imbalance between GO-term facts and other facts in the learning dataset
leads to a majority of predicates referring to GO-terms in the theories. One
way to avoid the overwhelming effect of the GO-term is to limit their number
on the basis of the evidence code associated with GO annotations. These codes
specify the way an annotation has been assigned to a protein. Filtering out
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annotations with IEA (Inferred from Electronic Annotation) code would decrease
the volume of GO annotations and restrain the study to well established ones.
Another solution is to run two separate experiments on two complementary
datasets composed on the one hand of GO-term facts and on the other hand, of
other predicates. This would lead to two separate theories that would then be
combined by designing and evaluating a global prediction model as proposed in
[31, 32]. This will require a selection of the best rules from each theory. Indeed, we
are currently studying methods for evaluating the statistical significance of the
theory rules, i.e., how specific they are to the genes responsible for intellectual
disability when compared to all other known genes. Such evaluation is also a
mean to assess the novelty of extracted knowledge before biological validation.
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Abstract. Linking biobank data, such as molecular profiles, with clini-
cal phenotypes is of great importance in epidemiological and predictive
studies. A comprehensive overview of various data sources that can be
combined in order to power up a study is a key factor in the design. Clin-
ical data stored in health registries and biobank data in research projects
are commonly provisioned in different database systems and governed by
separate organizations, making the integration process challenging and
hampering biomedical investigations. We here describe the integration of
data on prostate cancer from a clinical health registry with data from a
biobank, and its provisioning in the SAIL availability system. We demon-
strate the implications of using the actual raw data, data transformed
to availability data, and availability data which has been subjected to
anonymization techniques to reduce the risk of re-identification. Our re-
sults show that an availability system such as SAIL with integrated clin-
ical and biobank data can be a valuable tool for planning new studies
and finding interesting subsets to investigate further. We also show that
an availability system can deliver useful insights even when the data has
been subjected to anonymization techniques.

Keywords: Data integration, health registry, biobanks, availability sys-
tem, anonymization.

1 Introduction

Health registries containing information on patients, diseases, and treatments are
important for ensuring high quality in health care but are also gold mines for
medical and epidemiological research [1]. With the advent of new technology to
measure biomarkers, studies in molecular epidemiology have become increasingly
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more common and biobanks have emerged to store biological samples such as
blood, plasma and urine as well as record data from their analysis [2]. As a result,
there has been a growing demand to connect information in health registries with
molecular data in biobanks for example to seek insights into underlying reasons
of diseases or to improve predictions [3].

Sweden has a big advantage with a multitude of national databases, allowing
to explore e,g, how genes and the environment influence disease [4]. The country’s
national health care system gives each person an identification number at birth
(PID) and maintains health records in registries. While health registries in many
cases have been around for several years and are governed by the health care,
biobanks are recent phenomena and often form part of relatively new research
infrastructures. The difference in governing organizations is an obstacle when
aiming to combine data sources, due to differences in the underlying requirements
and data reporting standards [5]. Furthermore the actual content is sensitive
and hence there are also issues with security and privacy restrictions which also
vary from organization to organization [6]. The many challenges of integrating
biomedical data are nicely summarized by Harris et al.[7]

Linking data between registries and biobanks is in most cases done via
personal identifiers, which can be pseudonymized to reduce the chance of re-
identification. However, if gaining access to the data it can still be possible in
some cases to identify individuals using prior information [8]. For example it
has been shown that it is possible to resolve an individual in a collection with
only a fraction of their DNA made available [9,10]. Methods for statistical dis-
closure control (SDC) are aimed at protecting the confidentiality of individuals
and involves modifying data so that the risk of re-identification of individuals
is reduced to an acceptable level. This might include suppressing (removing)
information, generalizing, or perturbing values. A commonly used method is k-
anonymity [11,12] where attributes are suppressed or generalized until each row
is identical with at least k-1 other rows. At this point the data is said to be k-
anonymous. Of importance for disclosure control methods is to seek an optimal
balance between the improvement in confidentiality protection and the reduction
in data quality. SDC has been successfully applied in several bioscience projects,
such as Jerboa [13] and DataSHIELD [14].

Data availability systems take a pragmatic approach for linking data by op-
erating on metadata level; information is provided for each entity regarding
whether a value for a given metadata term (can be a phenotype for instance)
exists or not. The value per se is not disclosed, hence many privacy issues are
avoided [15]. In other words, an availability system would give a rather accurate
estimate of how much relevant data is available at which location, based on the
prior agreement on the metadata definitions between the data providers and data
analysts. Availability systems have previously been implemented in large-scale
genetic studies but primarily been focused on integrating data from multiple
biobanks [16]. The aim of such setups has mainly been to allow researchers to
explore if larger sample sizes can be achieved by combining data from two or
more biobanks.
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Fig. 1. We show how an availability system can be used to integrate data from clinical
health registries with biobanks. The different domains of health care, research infras-
tructure, and general research makes this process challenging due to legal, political,
semantic, and privacy issues.

In this manuscript we show how availability systems can be used to integrate
data from a clinical health registry with data from a biobank (Fig. 1). We also
describe how SDC methods can be applied to strengthen privacy preservation in
such settings, and exemplify with three different scenarios with varying privacy
levels for the same data and detail their implications for querying and results.

2 Methods

2.1 Data

We used health registry data from the Swedish national prostate cancer qual-
ity registry comprising information on diagnosis, treatment, and follow-up in
prostate cancer treatment. The data was delivered as a CSV file. We used
biobank data from the Karolinska Institutet, Sweden, containing data on biospec-
imens in the form of DNA, Serum, and Blood from patients. This data was also
delivered as a CSV file. The variables in the datasets can be seen in Table 1.
Both registry and biobank data contained personal identifiers (PID) in the form
of Swedish personal number, allowing data to be linked using these.

Since the data used in this project is subject to privacy regulations it is not
possible to provide an open system with public access. For demonstration pur-
poses we simulated 1000 patients with prostate cancer with the biobank meta-
data terms as the health registry. We also simulated 1000 samples with the
biobank metadata terms and ensured a substantial overlap between the collec-
tions as linked by PIDs (Table 2). While the simulation method was based on a
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Table 1. Variables in the health registry and biobank datasets. The personal identifier
(PID) allows for linking records.

Prostate cancer registry

Name Description

PID Unique identifier for the patient
AGE Age of patient
YEAR DIAG Year of diagnosis
LKF VALUE Structured location in Sweden where patient lived
PSA Prostate-specific antigen (a biomarker for prostate cancer) [17],

value at time of diagnosis
Gleason Gleason grade [18] at time of diagnosis
T STAGE Size of the original (primary) tumor and whether it has invaded

nearby tissue [19]
N STAGE Involvement of nearby (regional) lymph nodes [19]
M STAGE Indication of distant metastasis [19]

Biobank

Name Description

PID Unique identifier for the patient
DNA 1 if DNA is stored for sample
PLASMA 1 if plasma is stored for sample
SAMPLING YEAR Year the sample was obtained
QUESTIONNAIRE 1 if patient has answered a questionnaire on lifestyle

rather simple univariate method, the resulting data was sufficient for demonstra-
tion purposes and could be put on the web with public access. From the simulated
data we then constructed three subsets: A) Actual values for the health registry
and availability data for the biobank, B) availability values for the health registry
and the the biobank, C) anonymized availability values for the health registry
and the the biobank. The simulated data is hence on the same structure as the
original data, but the values do not originate from real patients.

2.2 Data Availability System

We chose the SAIL data availability system, originally developed for integrating
data from biobanks [15] and used in the SUMMIT [http://www.imi-summit.eu/]
and ENGAGE [http://www.euengage.org/] consortia [16]. SAIL operates on
metadata level and provides an interface for harmonisation and submission of
sample and phenotype information, as well as a graphical user interface when
users can construct queries and create reports quantifying the data available at
various sources for a given set of metadata terms [20]. SAIL was chosen as it is
open source and allows for resource discovery across data archives at the level
of individual records, which is not readily available in other solutions.
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Table 2. Schematic presentation of the merged dataset of 1000 patients from the health
registry with 1000 biospecimens from the biobank. Highlighted area shows a subset of
individuals for whom records are present both in the biobank and in the registry.

PID DNA PLASMA SAMPL YEAR QUEST LKF VALUE YEAR DIAG T STAGE

1 d1 pl1 SY1 q1
2 d2 pl2 SY2 q2
3 d3 pl3 SY3 q3 LKF3 YD3 T3
4 d4 pl4 SY4 q4 LKF4 YD4 T4
5 LKF5 YD5 T5
6 LKF6 YD6 T6

2.3 Anonymization Procedure

We applied a k-anonymization algorithm implemented in the R-package sdcMi-
cro [21] to suppress the AGE and LKF columns and hence reduce the risk of
re-identification. We used k=10 and this suppressed 75 AGE entries but no LKF
entries. Having k=10 ensures that no group of patients with a certain value will
be of 9 or less individuals. The LKF, describing the location in Sweden, turned
out to already satisfy this condition and hence no entries were suppressed.

3 Results and Discussion

We set up three SAIL instances, one for each of the three datasets, providing
different views on the original integrated simulated data with implications on
data expressiveness, sensitivity, but also querying capability. Instance A with

Fig. 2. Querying capability for the parameter N-stage in the original data in instance
A (left) and the availability data in instance B (right)
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actual values for the health registry and availability data for the biobank provides
full access to querying and data. Instance B has some variables transformed into
availability type (1 or 0) which limits queries to return results on the form if data
exists or not, for example it is not possible to query on different N-stages but
rather on the form if there is N-stage information available (Fig 2). Instance C
contained the data that also was subjected for anonymization, which was set up
in order to demonstrate the implications for an availability system with respect
to details in querying and results.

In order to construct the three SAIL instances we have created one set of
metadata terms that encompasses all those characteristics for biospecimen in
biobank and in registry that were to be used for filtering (age, cancer stage,
DNA availability, etc). Once a common format was established, we used it as a
configuration for the SAIL system, i.e. created what is called vocabulary, which
is a set of standardized terms for each of which sample records can be linked and
thus when filtering a number of samples available for a chosen set of terms can
be calculated. For clarity purposes it should be noted here that the SAIL system
by the way of its design consists of two parts: a) semantic information: metadata
terms, information about the them and relatedness between; and b) biospecimen
collection per se: patient record or sample id, collection it came from etc. For
the purpose of the feasibility study that we present here, a set of metadata
terms were selected from a complete set of variables used by the Swedish Cancer
Centre [22] and from the variables recorded at the biobank. Upon completion of
the metadata definition and configuration of the SAIL system, the three SAIL
instances were populated with data. URLs to the instances are available on
the supporting web page1. The three instances allowed us to explore how much
information in fact is needed by analytics in order to make effective decisions
about study design.

In order to illustrate what we mean by different depth of information that can
constitute the content of an availability system, let us first consider the following
query: ”Select all patients in the age span 70 to 80 years which have a Gleason
score recorded in the quality registry and which have blood plasma stored in the
biobank”. The overlap between the three sets of records is 45, meaning that out
of total number of 1500 individual records, 45 satisfy the criteria and records and
biospecimen for whom can be located in the registry and the biobank (Figure 3).

Let us now compare how different the results are with the same filters but
in the case of anonymized data. Table 3 presents the results of such query run
on two different instances of the availability system: populated with availability
data (B) and populated with anonymized availability data (C). This shows that
the anonymization has suppressed a number of patients which we now are unable
to identify with the query. This is the price we pay for reducing the risk of re-
identification.

Note that an availability system can be set up at several locations with dif-
ferent views on the same data, such as on Internet with public access or on
an intranet with restricted access. The main goal of the materials that we have

1 www.ecpc.e-science.se/applications/data-availability

www.ecpc.e-science.se/applications/data-availability
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Fig. 3. Conceptual view of filtering a merged dataset by the biobank and quality
registry variables Prognosis and age are variables recorded at the registry, while tissue
type information comes from the biobank. In this query, the blue circle corresponds to
the query result ’Prognosis=Gleason score’ with 570 matching patients, the red circle
’Tissue Type=Type2’ with 750 matching patients and green circle ’Patient-AGE in
range 70-80 years’ with 221 matches. The intersection satisfying all three queries is 45
patients. The total number of patients is 1532, and there are indeed some patients that
do not fit any of the three search criteria.

presented here is to share practical experience of integrating biomedical data that
come from two very different sources and to provide guidance and suggestion for
practices in the future:

1) How much time and effort to be invested into creation of a common set of
metadata is to be weighed against how well the scope of the research studies
is defined; a graphical user interface allowing to create variables in a collegial
fashion (in consultation between experts) is an essential enhancer of the cross-
data source integration, e.g. registry data with biobank data.

2) Instead of trying to reach one-for-all resolution on the privacy and security re-
strictions create a range of instances of the same system with the same metadata
and let the stakeholders decide how much clinical, biological and medical data
can be available for querying under various security and anoymization settings.
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Table 3. Results for the query All patients in the age span 70 to 80 years which has
a Gleason score recorded and blood plasma stored in the biobank. Lower numbers in
the Result column for dataset C is due to suppressed data in the anonymization and
is the price to pay for reducing the risk of re-identification.

Instance Records AGE Gleason Plasma Result

B (availability) 1532 221 570 750 43
C (anonymized availability) 1532 190 569 750 37

4 Conclusions

We have demonstrated in this manuscript how data from biobanks and health
registries can be interlinked using availability systems. We have also considered a
complementary approach of preprocessing raw data into availability data or into
anonymized availability data which implies a trade-off between data security and
risk of re-identification against flexibility in queries and precision of results. Being
able to quantify e.g. re-identification risks can allow authorities and regulators
to establish guidelines and best-practices for data publication, and we envision
that availability system with anonymized data will play an important role in
biomedical informatics in the future.
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Abstract. Research in life sciences faces increasing amounts of cross-
domain data, also kown as “big data”. This has notable effects on
IT-departments and the dry lab desk alike. In this paper, we report
on experiences from a decade of data management in a plant research
institute. We explain the switch from personally managed files and het-
erogeneous information systems towards a centrally organised storage
management. In particular, we discuss lessons that were learned within
the last decade of productive research, data generation and software de-
velopment from the perspective of a modern plant research institute and
present the results of a strategic realignment of the data management
infrastructure. Finally, we summarise the challenges which were solved
and the questions which are still open.

1 Challenges in the Management of Research Data

The “big data” challenge has reached the life science community [10,12] and
necessitates a sustainable infrastructure for storing, exchanging and publishing
research data. The Leibniz Institute of Plant Genetics and Crop Plant Research
(IPK) is committed to the conservation and valorisation of plant genetic re-
sources. Its research agenda comprises upstream and downstream analyses in
the fields of genetics, physiology and cell biology aiming at a broad understand-
ing of plants at molecular, cellular and organismic levels. The IPK maintains
the German Federal ex situ Genebank of Agricultural and Horticultural Crop
Species, which represents the largest collection of its kind in Western Europe,
totalling over 150,000 living accessions of crop plants and their wild relatives,
predominantly as seeds. It has been continuously developed over the past 70
years and provides the basis for follow-up research. Crop plants are important
for the human nutrition. The worldwide food production faces problems like
climate change or limited water resources. However, it is necessary to increase
the food production by 70% to 100% by 2050 to keep pace with the predicted
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population growth and changes in diet. At the IPK, about 30 research groups
are conducting research as well as managing the research data. This data com-
prises mass spectroscopy data giving information about the metabolite content
of plants, Next Generation Sequencing (NGS) data providing insights into the
genotype, and high-throughput phenotyping data, amongst others.

Analysis Samples Measurement Quantification Publication 

Fig. 1. General pipeline from experiment to publication

Figure 1 shows a simplified illustration of the research data lifecycle such as
might be found anywhere around the world. After an overview about the his-
torically evolved research data management, we give recommendations from a
practical point of view. The arising infrastructural changes are discussed subse-
quently and summarised as an experience report.

1.1 File Management

Currently, the IPK’s IT stores more than 80 million files on a hierarchical storage
management (HSM) system with a data volume of more than 200 terabytes. In
consequence, data management is a major task in the daily research process, but
by far the least attractive one. Figure 2 shows the distribution of the data files
and their volume.

application
20.65%

audio/video
0.55%

image
28.33%

text
7.16%

other
43.31%

Distribution of file media types

application: exe,xls,ppt,...
audio/video: wav,mpg,avi,...

image: bmp,jpg,png,...
text: txt,html,rft,...

other: zip,gzip,pdb,...

Distribution of file size

file size in bytes

fil
e 

nu
m

be
r

100 101 102 103 104 105 106 107 108 109 1010 1011 1012

0

2 × 106

4 × 106

6 × 106

8 × 106

1 × 107

1.2 × 107

1.4 × 107

1.6 × 107

1.8 × 107

Fig. 2. Properties of HSM managed files: In January 2014, the HSM managed 231TB
data in 80 million single files of 3,185 different file types. Their distribution over 5
major MIME media types is shown in the left chart. The distribution of file sizes is
shown in the right chart, the largest single file size being 610GB.
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1.2 Databases and Information Systems

Before the first IPK bioinformatics IT infrastructure was established at the turn
of the millennium, plant-specific data was managed in heterogeneous formats by
individual research groups, using various storage systems. In subsequent years,
a strategy for data integration was developed as the fundament for cross-domain
analysis of plant biological data [7].

In order to support the great diversity of research fields at the IPK, a variety
of information systems and tools was developed over the years. Table 1 shows
a representative sample of developments. The complete list can be found at
http://bioinformatics.ipk-gatersleben.de. These systems form a valuable resource
for cross-domain data integration and analysis. However several challenges re-
main with a decentralised data storage approach within one institute. The most
critical drawback is that every application uses its own database schema and/or
storage backend. Consequently, new projects usually tend to new independent
developments. Considering the maintenance effort, it appears doubtful whether
such a strategy would prove successful over the long term. In contrast, a life
science research institute like the IPK would strongly benefit from a central
IT-infrastructure dealing with all aspects of data management, including data
storage, data retrieval and data publication.

2 A Practitioner’s View on Life Science Data
Management

In 2010, the IPK conducted a study to analyse the requirements for an institute-
wide information system and to evaluate approaches, i.e. a Laboratory
Information and Management System (LIMS). Different research groups were
interviewed and their daily labour processes were analysed. Thereby, general re-
quirements for a sustainable data management could be found (Fig. 3). Besides
functional needs, there are also several technical and infrastructural demands
that have to be met.
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Fig. 3. Cut-out of IPK’s requirement analysis for data management & lab documen-
tation.

A fundamental problem is the lack of a standardised vocabulary for the docu-
mentation of experiments and lab processes. This lack makes it difficult to reuse
or search specific data, and it complicates documentation. Furthermore, since
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Table 1. Representative sample of information systems and tools developed in-house,
sorted from genetic(1) to phenotypic(6) level

1 - CR-EST: http://pgrc.ipk-gatersleben.de/cr-est

The IPK Crop EST Database (CR-EST) [8] contains data about Expressed
Sequence Tags of barley, wheat, pea, potato, petunia and tobacco as well as
information about cDNA libraries, DNA sequences, assembly and annotation.

2 - OPTIMAS-DW: http://www.optimas-bioenergy.org/optimas_dw

OPTIMAS-DW [2] is a comprehensive data warehouse for maize allowing stor-
age and retrieval of experimental data from multiple -omics domains. It supports
systems biologists by providing data from transcriptomics to phenomics level.

3 - MetaCrop: http://metacrop.ipk-gatersleben.de

The MetaCrop information system [11] contains fine-grained data (down to
compartment level) about metabolic pathways of several major crop plant
species, including kinetic information. In order to ensure a high data quality,
all information was curated manually from the literature.

4 - GBIS/I: http://gbis.ipk-gatersleben.de

The Genebank Information System (GBIS) is the central database-driven
information system for managing the accessions of the IPK genebank. Its exter-
nally visible component GBIS/I enables public users to access information about
them and to order seed samples.

5 - GSCC: http://www.ipk-gatersleben.de/databases/gscc

The Garlic and Shallot Core Collection (GSCC) [3] contains images on
the outside view of plants, bulbs and cloves, bulb structure, field cultivation,
inflorescence and bulbils etc., passport and characterisation data, genotype
classification, and image sequences on the ontogenesis of selected accessions.

6 - Mansfeld-DB: http://mansfeld.ipk-gatersleben.de

Mansfeld’s World Database of Agricultural and Horticultural Crops [6]
comprises information on the taxonomy, cultivation regions, domestication, uses
etc. on ca. 6,100 species of agricultural and horticultural cultivated plants.

each research group has its own data management approach using CDs, USB
drives or a cloud-based storage, the risk of data loss is usually quite high. Hence,
a uniform and sustainable data management is necessary. Technical prerequi-
sites for such a solution already exist, such as a central database or a reliable
storage and backup system. Besides the large volume of produced data, also ba-
sic information important for the daily lab processes, such as information about
available hardware, chemicals and employees, has to be handled.

Considering infrastructural needs in the last few years, several national and
international organisations analysed the common research process [5,13], such
as nestor [9] or the DataCite consortium [4]. They also provide suggestions
for a good scientific practice to guarantee a long-term usability of digital ob-
jects. Consequently, a homogeneous storage system is necessary, which complies
with physical and software requirements as well as with organisational demands
(Tab. 2).

http://pgrc.ipk-gatersleben.de/cr-est
http://www.optimas-bioenergy.org/optimas_dw
http://metacrop.ipk-gatersleben.de
http://gbis.ipk-gatersleben.de
http://www.ipk-gatersleben.de/databases/gscc
http://mansfeld.ipk-gatersleben.de
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Table 2. Hardware, software & organisational requirements for a long-term archive

Storage requirements Software demands Organisational requirements

·Redundant data storage·Diverse storage media·Standard storage devices·Frequent data migration

·Long-term readability·Format migration·Format/environment
emulation

·Permanent staff·Mixed core and project funding·Central hardware procurement
process and project coordination

2.1 The Pros and Cons of LIMS Based Data Management

The IPK LIMS, introduced in 2011, has many advantages and provides a broad
functionality, but there are still shortcomings and open issues. Having evolved
over time and been adjusted to special requirements, there are several other
information systems existing beside the LIMS (see Tab. 1). The systems are co-
existing, some of them having mutual access to some data, but in general the
connection between them is still an open task.

Although the use of the different LIMS modules is very comfortable for the
various research groups, extensive training is necessary. End users have different
levels of computational skills and strong personal preferences concerning data
handling. Thus, it is challenging to convince users that using the central LIMS
offers major advantages in the long run. Therefore, it is important to involve
the users already in the process of the development, but, needless to say, this
can be very time-consuming. Here, providing a group- or even institute-wide
policy can help to define rules about how to handle data. Furthermore, it can
be a problem that the LIMS does not have an out-of-the-box module for making
stored data accessible to public users, e.g., via a web interface as in the case of
the systems described in section 1.2. Its clear advantage is the homogeneous use
of the central storage backend.

2.2 Consistent Data Publication

Another major task is to make data long-term citable. Many data resources
are too large or have no acceptable representation to put them directly into a
publication, i.e. a journal article. Usually, authors refer to external resources us-
ing different solutions; e.g., the data can be uploaded to public, domain specific
long-term archives, such as the Sequence Read Archive for NGS raw data or the
BioModels database for modeling results. Many archives need specific metadata
and provide different ways to upload the data. Thus, if permitted by the pub-
lishing journal, it is usually faster to transfer the datasets to publicly available
web servers hosted by the authors’ institutes and adding the URLs to the “ma-
terials” sections of the respective articles. In reality, after only a short time this
often leads to dead links, because resources for maintenance are lacking.

Since 2010, the IPK is registered as a data centre in the DataCite consor-
tium, which provides an alternative solution by using the persistent Digital Ob-
ject Identifier (DOI). The DataCite resolving service guarantees the long-term
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availability. By now, DOIs are not only used in life sciences, but also in social sci-
ences, bibliography, and other fields. However, in the last years we realised that
the interest in registering DOIs at the IPK was not very pronounced. Thus, we
started the development of the e!DAL-API [1] as a general software framework
for data storage and publication in order to increase the usage of this service.

3 Lessons Learned: Strategic Realignment of IPK’s
Research Data Management

Handling research data is an important task in IPK’s research strategy and
particularly a central component along the value-added chain towards scientific
publications, patents and biotechnological innovations. Furthermore, it is an eco-
nomical asset on a national and international level, which needs to be preserved.

These considerations and the experiences from a decade of research data man-
agement at the IPK were broadly discussed at management, scientific and ad-
ministration levels. On the one hand, it can be difficult to convince researchers to
follow standardised workflows and policies. On the other hand, uncontrolled and
individual data management can pose a high risk of losing valuable research data.
As a result, there was the conviction that it is essential to implement an intuitive
and seamless data storage and documentation infrastructure, which can be eas-
ily embedded into existing workflows and will be highly accepted by scientists.
Thus, a decision was made by the board of directors, which reflected the need
to find compromise solutions for a sustainable research data management. The
result was a plan for organisational and infrastructure actions (Tab. 3). The key
actions for a realignment of IPK’s data storage strategy were the establishment
of core-financed permanent positions for data management, the introduction of a

Table 3. Strategic realignment of IPK’s data management infrastructure

Organisational actions
1. Fusion of IT-service and scientific groups into a central bioinformatics service group
with a scientific administration

2. Financing of positions from both research funds and institutional budget
3. Core-financed service team for lab data management
4. Inter-departmental coordination of bioinformatics research

Infrastructure actions
1.Centrally maintained storage systems and databases as institution-wide services:·Network attached storage (NetApp NAS) for project-specific data·Hierarchical storage management (ORACLE SAM-QFS) for archiving primary data·Relational database management system (ORACLEDBMS) for information systems·Central FTP, HTTP and application servers to support proprietary data sharing
2.Combination of in-house and public data publications system (section 1.2):· In-house developed information systems mainly using ORACLE APEX·Participation in DataCite data publication infrastructure to provide citable DOIs

for FTP and HTTP shared data·Central service to submit data to public repositories
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Fig. 4. IPK’s emerging realignment of research data infrastructure. In this architecture,
data is either generated by lab experiments, analysis software or manually maintained
documentation. Self-managed files can be stored at the central NAS file server, mea-
surement values or even binary files can be stored in the LIMS. Binary files will be
uploaded transparently to the HSM system, whereas fine-grained values and meta-
data are stored in the central database system. Data publication can be performed
by downloadable data files or information systems. In-house information systems can
directly access LIMS-managed information via the central database system. Data files
are accessible by a URL or a DOI, as it is recommended for stable and metadata-aware
citation. Finally, data can also be uploaded to public information systems.

bioinformatics coordination, a mix of in-house technical staff and external service
providers for the systems operation as well as the use of commercial storage and
lab information management systems for a centrally managed service. Besides
project-funded staff, permanent positions are indispensable to preserve know-
how. Thus, data can remain accessible and software tools can be maintained
over a long period of time.

Another important aspect is the turning away from proprietary or open-source
software for data management and information systems in favour of commercial
products. The main reason is the availability of long-term support for commer-
cial software. In case of short-term funded open-source software, there is often
the problem of unsolved bugs, undocumented behaviour or simply a developer,
who is losing interest in maintaining the software. Thus, the IPK focuses on
a declarative (4th generation) programming platform, i.e. Oracle Application
Express, in order to increase the productivity and maintainability of in-house
developed information systems. Finally, the implementation of a central manage-
ment system for lab processes and research data instead of dozens of individual
project databases is another key to a sustainable data management infrastruc-
ture, thus enabling homogeneous and consistently annotated data and analysis
results. Therefore, its integration as a central element into a data and IT infras-
tructure is a prerequisite for a consistent data documentation and preservation
at all levels of the data-associated value-added chain. A combination of policies,
reliable service and contact persons can help to convince end users of the benefits
and increased efficiency for data management and publication.
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Fig. 4 shows a schematic representation of IPK’s data management infra-
structure currently under development, which is a compromise between a
self-managed, proprietary data storage and a consistently documented data man-
agement process.

4 Conclusions

In the last decade, the volume of scientific research data increased significantly,
thus leading to a growing need for effective data management and information
systems. In this paper, we described the evolution of the data management in a
leading plant research institute. We illustrated challenges that could be solved
as well as issues still open. The presentation of IPK’s point of view aims at
giving arguments and recommendations for a service-oriented data management
in research institutes. A major conclusion is to focus on sustainable solutions,
with a homogeneous but very flexible data management system in the centre.
Especially at an institute with such wide-spread research topics, resulting in
large volumes of multi-domain data, it is indispensable to be able to promptly
react to changing requirements and new types of data.
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Eine kleine Enzyklopädie der digitalen Langzeitarchivierung, Version 2.3 (2010),
http://nestor.sub.uni-goettingen.de/handbuch/index.php (accessed January
2014)

10. Schadt, E.E., Linderman, M.D., Sorenson, J., Lee, L., Nolan, G.P.: Computational
solutions to large-scale data management and analysis. Nature Reviews Genet-
ics 11(9), 647–657 (2010)

11. Schreiber, F., Colmsee, C., Czauderna, T., Grafahrend-Belau, E., Hartmann, A.,
Junker, A., Junker, B.H., Klapperstück, M., Scholz, U., Weise, S.: MetaCrop 2.0:
managing and exploring information about crop plant metabolism. Nucleic Acids
Research 40(D1), D1173–D1177 (2012)

12. Swedlow, J.R., Zanetti, G., Best, C.: Channeling the data deluge. Nat. Meth-
ods 8(6), 463–465 (2011)

13. Thaller, M.: Das Digitale Archiv NRW in der Praxis. Verlag Dr. Kovac (2013)

http://nestor.sub.uni-goettingen.de/handbuch/index.php


A Semantic Web Faceted Search System

for Facilitating Building of Biodiversity
and Ecosystems Services
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Abstract. To address biodiversity issues in ecology and to assess the
consequences of ecosystem changes, large quantities of long-term obser-
vational data from multiple datasets need to be integrated and charac-
terized in a unified way. Linked open data initiatives in ecology aim at
promoting and sharing such observational data at the web-scale. Here
we present a web infrastructure, named Thesauform, that fully exploits
the key principles of the semantic web and associated key data standards
in order to guide the scientific community of experts to collectively con-
struct, manage, visualize and query a SKOS thesaurus. The study of a
thesaurus dedicated to plant functional traits demonstrates the potential
of this approach. A point of great interest is to provide each expert with
the opportunity to generate new knowledge and to draw novel plausible
conclusions from linked data sources. Consequently, it is required to con-
sider both the scientific topic and the objects of interest for a community
of expertise. The goal is to enable users to deal with a small number of
familiar and conceptual dimensions, or in other terms, facets. In this re-
gard, a faceted search system, based on SKOS collections and enabling
thesaurus browsing according to each end-users requirements is expected
to greatly enhance data discovery in the context of biodiversity studies.

Keywords: Tool, Faceted Search, Thesaurus, Semantic annotation,
Functional diversity, Web of Data, Plant Trait, Controlled vocabulary,
Interoperability, SKOS.

1 Introduction

Resolution of key biodiversity issues goes through continued exchanges and
cooperation between related domains, such as ecology, taxonomy, genomic,
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climatology, soil sciences, etc [1]. To address biodiversity issues, it is now widely
accepted that a functional approach has strong potential. Over the last decades,
trait-based research has generated huge volumes of data, within multiple con-
texts of observations and experiments [1]. These data sets can be obtained via
very different study contexts and are often described in highly specialized terms.
Numerous traits can be measured, for instance, on plants [2]. But data generated
by functional ecology are only minimally reused or shared within the commu-
nity, or over communities, mainly due to data heterogeneity [1]. Given these
limitations, open web standards and the generation of open web standards for
functional ecology would advance the integration of heterogeneous content, with
the primary objective of the emergence of new knowledge.

Technologies developed under the Semantic Web initiative are particularly
suitable for the sharing and the dissemination of information within a community
of experts. SKOS (Simple Knowledge Organization System) [3] provides a com-
mon format to manage thesaurus adequately. The final purpose of a thesaurus
is to facilitate the integration and the navigation of the information available
in multiple data sources. Each SKOS thesaurus can be considered as a pub-
licly available relevant resource on the web and can be enriched via meaningful
navigation between thesauri. Linked Data initiatives put a strong emphasis on
representing KOS (Knowledge Organization System) for both data discovery
and data access [4]. The LOD initiative (Linked Open Data) are more and more
adopted by a large panel of data providers and make publically available each
day data from a wide range of disciplines including the Life Science field [5]. As
a result, the LOD contains more than hundred datasets [6], which can be freely
used in dozens of different contexts. The potential of each data is then fully ex-
ploited. In this regard we want to emphasize the critical importance of properly
connecting observational data with each other. Defining new vocabularies based
on the Semantic Web standards, as SKOS, makes them fully interoperable and
allows to directly benefit from data already published in this form on the Web
of Data.

In this paper, we present a complete system dedicated to the ecological com-
munity allowing it to create, manage, visualize and query a SKOS thesaurus.
In the context of biodiversity studies, the TOP (Trait of Plants) thesaurus [7]
is used to semantically annotate scientific data managed through heterogeneous
data sources, such as the TRY database [8] or the Plant Ontology (PO) [9]. The
TOP thesaurus is then exploited through a faceted search engine that reflects
community interests and preferences, to facilitate the appropriation of the TOP
thesaurus by various end-users. The facets act also as access points on the in-
terrelated data sources in guiding their navigation. In this paper, we foccussed
on how end-user points of view can be developed and implemented.

This article is organized as follow:
- Section 2 quickly introduces the approach driven with the Thesauform tool

to build the TOP thesaurus as a collaborative product, and presents how the
faceted search enhances the information retrieval in ecology and beyond this.
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- Section 3 explains how the thesaurus is used for integration purposes. The
TOP thesaurus aggregates data from disseminated datasources with the purpose
of both enriching and facilitating data interpretation.

- Finally, section 4 summarizes and discusses the strengths of our approach
and refers to future works.

2 Faceted Search to Improve Information Retrieval
in Ecology

In order to build a collective thesaurus, our previous work focused on the de-
velopment of a tool, named Thesauform, dedicated to assist domain experts in
this task. The Thesauform tool fully relies on semantic web standards, while
providing a flexible and user-friendly environment for domain experts. Twenty
different experts from the functional plant trait community has used the The-
sauform tool to describe the different functional plant traits in use in the domain.
For instance, the widely used trait “Specific Leaf Area”, also known under the
abbreviation SLA, is defined as “the one sided area of a fresh leaf divided by its
oven-dry mass” in Cornelissen et al. 2003, and its measurement unit is expressed
in meter squared by kilogram of dry mass (m2kg-1[DM]). In the thesaurus, this
trait is linked to different other traits. Indeed, it falls under the broader con-
cept of Morphology and it is related to the Leaf Blade Thickness and the Leaf
Mass per Area concepts. The TOP thesaurus can be used as a bibliographic
resource about plant traits information, since it is available as a web resource1.
The TOP thesaurus fulfills its initial role to provide a standard vocabulary avail-
able to the functional ecology community, and extends beyond the basic needs
to ease information retrieval. During the thesaurus building steps, many users
complained about the hierarchical structure of the thesaurus, arguing that the
concepts should be ordered in a different way, and even that the thesaurus should
present different hierarchies. Indeed, in some cases, users were not able to find
quickly and easily the concepts on which they wanted to work on. In this con-
text, a system considering end-user points of view has been developed and offers
a faceted search engine.

Classic semantic search engines based on controlled terms have been widely
used to query data in the life science fields. For instance, Bioportal2 is a web por-
tal providing the interrogation of multiple ontologies or controlled vocabularies
based on controlled terms. Although this kind of search mechanism offers a first
control over the terms used for the search, it suffers from limitations since it can
be difficult for an inexperienced end-user to find the relevant controlled terms
to use [10]. Indeed, with classic semantic search engines, controlled terms are
most of the time displayed through an auto-completed search field. This would
suggest that the user has a prior knowledge of the content of the data model to
query. Furthermore, information cannot always fit into a well-defined hierarchy

1 http://trait_ontology.cefe.cnrs.fr:8080/Thesauform/vizIndex.jsp

(developed as a proof of concepts).
2 http://bioportal.bioontology.org/

 http://trait_ontology.cefe.cnrs.fr:8080/Thesauform/vizIndex.jsp 
http://bioportal.bioontology.org/
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that users know how to browse [11]. To overcome these limitations, a well known
searching and filtering technique coming from the field of Information Retrieval,
the faceted search, is widely used over the web.

The faceted search is an interesting solution as it facilitates the thesaurus ap-
propriation by the end-users by helping users to define their search needs [12,10].
In this context, facets will lead to translate the vague query that a user can have,
to a precise query in the system. The MUMIA 3 web site gives a simple definition
of faceted search (also called faceted navigation or faceted browsing). Faceted
search is “a technique for accessing a collection of information, allowing users to
explore by filtering available information. A faceted classification system allows
the assignment of multiple classifications to an object, enabling the classifica-
tions to be ordered in multiple ways, rather than in a single, pre-determined,
taxonomic order”. In other terms, each facet typically corresponds to the com-
mon features shared by a set of objects. These features are used to filter the
results. Finally, in such search engines, the user is guided (no dead-end query)
as the results are filtered using relevant parameters or categories, each category
reflecting both the need of users in the thesaurus navigation environment and
structuring the information so others can find it.

In the TOP thesaurus, five facets have been defined according to users feed-
backs with the first purpose of facilitating information retrieval. In thesaurus or
in any other controlled vocabulary or ontology, concepts can be assembled into
semantically meaningful groups that will correspond to facets. Since facets are
closely linked to both thesaurus visualization and thesaurus restitution, and not
to thesaurus structure or to the information it carries, existing good practices rec-
ommend to define facets as skos:collection [13], gathering concepts with common
features. The use of skos:collection allows thus to combine concepts regarding a
specific subject independently of the hierarchical classification of concepts in the
concept scheme. An example of facets is described in Figure 1. The functional
plant trait concept Specific Leaf Area (SLA) is classified under the concept of
Morphology in the thesaurus, since this trait refers to the morphology of a plant.
In Figure 1, SLA is grouped with the concepts Leaf Phenology and Leaf Lifes-
pan, because these three concepts share the common feature of being measured
on the same plant part, the leaf. But Specific Leaf Area may also be classified
with the Xylem Area concept, because these two measurements refer to a size
measurement, the area. The categories plant organ and measurement type can
then be considered as two access points to query the thesaurus by organizing the
thesaurus in two different ways. Each user can then choose which access point to
use to query the thesaurus according to his own preferences. The organization of
the thesaurus concepts into different views corresponding to different hierarchies
makes perfect sense during the user query, the reorganization of the thesaurus
information facilitating the navigation in the thesaurus.

We conclude that a faceted search system is suitable to assist users in their
information retrieval. Developing such a system based on facets allows to guide
the consultation of datasets in an intuitive way for the user. As the TOP thesarus

3 http://www.mumia-network.eu/index.php/working-groups/wg4

http://www.mumia-network.eu/index.php/working-groups/wg4
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Fig. 1. Example of facets represented in Turtle format (RDF serialization format).
Two facets are presented. The Organ facet allows to query the thesaurus using a plant
organ. The Size facet is used to query the thesaurus according to the type of measure.
The members of the facet values (i.e. :Leaf) come directly from the concept scheme
hierarchy. The selection of Leaf from the facet Organ selects only traits measured on
Leaf (belonging to the skos:Collection Leaf). Then, by selecting Area from the Size
facet, the results are refreshed to contain only traits measured on Leaf and measuring
an Area: LeafLifespan and XylemArea are then deleted from the results list.

is used as an access point to disseminate information, data sources semantically
annotated with its concepts will be able to benefit from faceted search engines
as well.

3 Facets for Facilitating the Access to Disseminated Data

The TOP thesaurus serves as a stable reference resource by organizing traits
and their information. It extends beyond the users needs by linking informa-
tion about traits to different available data sources with the great advantage of
both enriching and facilitating the data interpretation, which requires informa-
tion from different domains. Consequently, TOP thesaurus concepts have been
linked to two different data sources, the TRY database, the biggest functional
plant traits database, and the Plant Ontology (PO), the reference controlled
vocabulary describing plant entities. A real advantage of SKOS is to provide
properties dedicated to the establishment of cross-references between thesauri.
The mappings between the TOP thesaurus and TRY and PO relies on SKOS
properties dedicated on this purpose: the exactMatch and relatedMatch prop-
erties. The mappings to both TRY and PO have been managed automatically,
based on term similarity. However, for TRY, the proposed mappings have been
then manually curated by an expert in order to be validated. For TRY, only the
exact matches has been saved in the mapping file. For PO, as plant entities are
not traits, the matches have been recorded as related matches in the mapping
file using the relatedMatch property.
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The benefit of linking TOP thesaurus concepts to TRY is twofold. First, the
mapping TOP/TRY allows to unify the access to TRY data, managing the terms’
heterogeneity used to describe TRY data. The TRY database can then take full
advantage of the different semantic search engines set up to query the TOP
thesaurus information. Secondly, such a mapping will enrich and complete the
information of the thesaurus itself by adding meta-information coming directly
from the TRY database. For instance, on the given trait information webpage,
in addition of the trait information themselves (preferred term, definition, syn-
onyms,..), the TRY observation number, the geo-referenced observation number,
the number of different species on which the given trait has been measured are
also displayed. This information can be useful for the user that will be then able
to get indications on the community interest for the given trait and the number
of available data on that specific trait.

The mappings established between the TOP concepts and the PO concepts
allow assigning a reference for the plant entities cited in most of TOP trait
definitions. For instance, the definition of the Specific Leaf Area does not need
then to explicit what is actually a leaf. This part of the definition is provided by
the PO mapping as PO clearly defined what is a leaf. Moreover, such a mapping
approach will be highly beneficial to link data used in ecology or agronomy to
data used in genomics following a Linked Data approach. As the TOP thesaurus
is mainly used by the ecology community and PO is mainly used in the genomic
field, the mapping established between PO and TOP provides the opportunity
to serve as a first unifying component between the ecological and the genomic
world, both of high interest in biodiversity studies.

The resulting semantic web-infrastructure is displayed in Fig. 2. The TOP
thesaurus addresses the need of organizing the available information in a unifying
way in a context of biodiversity studies. Indeed, the thesaurus aggregates data
from different data sources in order to build new biodiversity models where the
faceted system tied to the thesaurus plays a great role. Facets can be now used
to access information from these relevant and disseminated data through the
thesaurus, with a reorganization of the information. In fact, TRY and PO are
queried through the facets and no more through the original way the information
was structured. The ecological community has therefore a full-integrated access
to disseminated sources in a way that reflects their interests, thus facilitating
both their discovery and their reuse.

The trait information coming from the TOP thesaurus will be mainly accessed
by experts from the ecology domain. Considering this, as a proof of concepts,
we based our work on a user-friendly and easy to use interface, to assist experts
in their access and retrieval of pertinent information. We implemented a thin-
client/application server architecture using the J2EE platform, with the system
application server being deployed on Apache Tomcat. We used the Jena API
to manage the aspects related to the manipulation of the SKOS thesaurus. A
unique aspect of our work is the implementation of a faceted search engine based
on skos collections. This enhances the semantic search of trait by providing the
opportunity to the user to choose his own filters.
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Fig. 2. Unifying system of plant trait modelling, based on Semantic Web technologies.
The TOP thesaurus aggregates data from the TRY database and the Plant Ontology
with the purpose of both enriching and facilitating data interpretation. The faceted
search system is used to query the linked data and filter the results according to users
preferences.

4 Conclusion and Perspectives

Recent studies highlight the crucial need to dispose thesaurus in the field of
biodiversity and more precisely in the field of plant diversity [14,15]. Plant trait
research is complex and requires information from different domains to fully
exploit plant trait data. Consequently, we propose a complete system designed
to the needs of the plant trait community. Such a system provides a tool to
build a SKOS thesaurus and assists any community of experts to manage their
datasets, and to interconnect them with data and data standards from related
communities. In this regard we have emphasized the critical importance of prop-
erly connecting observational data with each other. The construction of a SKOS
vocabulary facilitates the definition of clear semantic bridges between different
data sources. The participation of experts, not only for the construction of the-
sauri, but also to validate the work related to semantic annotations, strengthens
the proposed approach.

We argue that the end-user preferences have to be of prime importance in data
access and retrieval. In this context, a faceted search engine demonstrates its full
capabilities. First, facets ensure flexibility by playing an assistance role to users
by reorganizing the thesaurus terms into meaningful groups. The faceted system
supports users to specify their queries and then to drill down to results. Second,
data sources semantically annotated with concepts coming from the TOP the-
saurus can benefit from faceted search engine traits as well. As a consequence,
facets are be used to discover and access disseminated information from hetero-
geneous data sources. A next step will be to propose mappings to more external
resources, numerous relevant ontologies can be found on the NCBO BioPortal
website. The approach championed in this paper has been to base our work on
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the continuity of the Open Linked Data initiative, based on Semantic Web tech-
niques. Future work will be focused on how these facets could be automatically
built from both existing literature and ontologies.
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Abstract. Scientific research has become data-intensive and data-depen-
dent, with distributed, multidisciplinary, teams creating and sharing their
findings. Graph databases are being increasingly considered as a compu-
tational means to loosely integrate such data, in particular when relation-
ships among data and the data itself are at the same importance level.
However, a problem to be faced in this context is that of multiple foci –
where a focus, here, is a perspective on the data, for a particular research
team and context. This paper describes a conceptual framework for the
construction of arbitrary foci on graph databases, to help solve this prob-
lem. The framework, under construction, is illustrated using examples
based on needs of teams involved in biodiversity research.

Keywords: eScience, Graph Database, Focus, Views.

1 Introduction and Motivation

eScience, sometimes used as a synonym for data-intensive science [9], is charac-
terized by joint research in computer science and other fields to support the whole
research cycle – from data collection, mining, and visualization to data sharing.
Biodiversity research – our target domain – is a good example of eScience. It
is a multidisciplinary field that requires associating data about living beings
and their habitats, constructing models to describe species’ interactions and
correlating different information sources. Such data includes information on en-
vironmental and ecological factors, as well as on species, and includes images,
text, video and sound recordings [5], in multiple spatial and temporal scales.

Sharing and reuse of data are hampered by the heterogeneity of data and user
requirements inherent to such domains. Each community applies different data
extraction and processing methodologies and has distinct research perspectives
and vocabularies. Several researchers have adopted graph representations (and
graph database systems) as a computational means to deal with such integration
challenges [11], especially in situations where relations among data and the data
itself are at the same importance level [1].

However, graph database systems present limitations when it comes to cre-
ating and processing multiple perspectives of the underlying data. This paper
presents our approach to these issues, which consists of a conceptual framework
that allows experts to specify and construct arbitrary perspectives on top of
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graph databases. This framework, under construction, takes advantage of some
of our previous implementation work, in particular concerning ontology manage-
ment [6]. Informally, the idea is to support a notion similar to that of database
views, constructed on top of graph databases. However, our constructs go beyond
standard database views.

Here, we follow the terminology we introduced in [13], and use the term focus
for such views. Intuitively, a focus is a perspective of study of a given problem,
where data can be restricted to one specific scale/representation, or put together
objects from distinct scales. Moreover, given the same set of data, distinct foci
will arise when the data is analyzed under different models, processed using
focus-specific algorithms, or even visualized with particular means.

This paper has two main contributions. The first is to explore the notion of
views on graph database systems, which is not yet supported in such systems.
This requires extending the traditional specification of views, while at the same
time maintaining the same principles. The second contribution is to show, via
the running example, how to model and create multiple foci, for biodiversity
research, thereby allowing experts to manage and analyze the same underlying
datasets under arbitrary perspectives.

2 Theoretical Foundations and Related Work

2.1 Graph Databases

Graph databases allow to represent information about the connectivity of un-
structured data – a recurrent scenario in scientific research. The interpretation of
scientific data usually requires the understanding about linked data, interactions
with other data and topological properties about data organization.

The formal foundation of all graph data structures is based on the mathe-
matical definition of graphs and, on top of this basic layer, several graph data
structures were proposed [1,12], including features such as directed or undirected
edges, labeled or unlabeled edges and hypernodes. One of the most popular struc-
tures supported by many graph database systems is the property graph. It tries
to arrange all the features that these graph types express in a single and flexible
structure through key-value pairs to describe vertex and edge characteristics,
such as type, label or direction.

To manipulate these data, graph query languages can be used to [14]: (i) find
vertices that satisfy a pattern; (ii) find pairs (x, y) of vertices such that there is
a path from x to y whose sequence of edge labels matches some pattern; (iii)
express relations among paths; (iv) compute aggregate functions based on graph
properties; and (v) create new elements. Each query language has its own syntax
and considers its own data structure to represent a graph.

2.2 Views

In the context of relational databases, a view can be regarded as a temporary
relation against which database requests may be issued [7]. Views are widely
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used to restrict, protect or reorganize relational data. Views are built by a com-
bination of operations applied on the underlying relations, creating alternative
or composite representations of existing database objects. The sequence of op-
erations that creates a particular view is called view generating function.

The concept of view is used in many data management contexts. A view of
an ontology is a subset of the original ontology, built by the extraction of some
relevant parts thereof. Tools and languages for ontologies usually take advantage
of their graph structure; vertices represent classes and instances and edges rep-
resent properties, relations and class hierarchies. There are different approaches
to create ontology views [10]. Some are based on query languages and others are
based on guidelines to navigate through ontology concepts, using the notion of
central concept – a class around which the view is built and that defines which
elements must be part of a view. Different from databases in which a query al-
ways results in an instance set, a query on an ontology can result in a partial
schema (classes, relations), an instance set or a combination of both [6].

2.3 Multifocus Research

The notion of focus (a perspective of study of a given problem) appears naturally
in eScience. The idea behind a focus is similar to the idea of an application
– each application has its own perception of the world, goal, complexity and
specific requirements. For the same underlying datasets, each focus represents a
perception of the data, how it can be analyzed, visualized and interpreted.

A focus allows to restrict data, manage spatial and temporal scales thereof
(multiple representations) and create distinct scenarios, including the vocabu-
lary, constraints, process and rules that should be applied to the dataset [13,15].
The same data item can be interpreted in distinct ways – a species observation,
for example, could represent an organism to be analyzed in a small level of detail
or, in a macro perspective, a feature of a biome.

One important problem in focus-related research is how to improve data se-
mantics, increasing its understanding and removing ambiguity. The use of on-
tologies has been pointed out as a means to deal with some of these issues and
used to drive data management. This notion, known as “ontology-driven infor-
mation systems” [8], uses ontologies as a central role with impact on the main
components of the system and providing multiple perspectives of the data.

3 A Framework to Generate Foci

The goal of our research is to specify and implement a framework to build and ex-
plore arbitrary foci. To achieve this purpose, we extend the traditional definition
of views to represent a focus, providing a reorganization of the original data or
part thereof. The framework uses graph databases as the basis of data manage-
ment, taking advantage of their ability to deal with highly connected datasets, a
common scenario in eScience. Since graph databases do not implement the view
concept, the framework introduces extensions to existing systems.
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Figure 1 gives a general overview of the framework. The interface receives a
focus specification as input and provides the focus as output. Both focus and
underlying databases are represented as graphs (a focus may be built combining
one or more graphs). The focus specification is a text file whose content and for-
mat are still under definition, using existing graph query languages (e.g. Cypher,
SPARQL [12]) and the parameters of graph algorithms. Following the figure, step
(1) decomposes the focus specification to define the focus generation strategies,
operators and parameters. Next, the focus is created using either a query view
mechanism (2); a central concept view mechanism (3); or a combination of both.

Fig. 1. Overview of the Focus Generation Process

The query view approach (2) adopts concepts from relational databases. Here
we have two tasks: processing the operators that compose the query and cre-
ating new elements that do not belong to the original graph. Part of the focus
specification is used to create the “view generator function”, the sequence of
operators to be applied to the database. The traditional operators are adapted
by the framework: (i) selection: to filter parts of the graph applying predicates;
(ii) projection: to restrict parts of the original graph; (iii) join: to combine two
or more graph databases via join conditions; (iv) aggregate functions: to provide
graph summarizations, extracting vertex and edge properties.

The central concept view approach (3) is inspired by approaches to construct
views on ontologies. Here, just one task is executed: processing of graph algo-
rithms, starting from a central concept, namely a vertex defined in the focus
specification. This graph algorithm can provide, for instance, the neighborhood,
the shortest path to another vertex, the maximum clique, and so on [3]. The
combination of these approaches allows expressiveness higher than graph query
languages alone, usually untyped [4], based on triple patterns [12] and without
native graph algorithms. Besides that, graph languages have limitations to cre-
ate temporary elements without altering the original database and the result of
a query is not necessarily a graph.

Graph databases and the foci created on the top of them are stored in a persis-
tence layer, so that a focus can be reused. Moreover, since a focus is represented
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as a sub-graph, it can be used to construct other foci. We also keep the specifi-
cation that originates a focus for provenance information – e.g., to describe the
perspective materialized in the focus and to allow to update a focus when the
graph databases used to generate it are updated.

4 Running Example

Our running example concerns biodiversity studies of animal species, concen-
trating on observation metadata. In particular, we deal with observations of
animal vocalizations, motivated by the challenges faced by the Fonoteca Neotrop-
ical Jacques Vielliard (FNJV) at the University of Campinas (UNICAMP) 1.
FNJV has a large collection of animal sound recordings (about 30 thousand ob-
servations), whose metadata is stored in a relational database [5]. Observation
metadata include information about the species, the place where the sound was
recorded, the recording devices, date and time of the observation, and so on.

Although the metadata is, currently, structured as a relational database, it
can be directly converted to a property graph database [12], applying straight
formal approaches, e.g. [2,11]. Each row of each table can be modeled as a vertex,
using the column names as attributes, and each foreign key can be modeled as
an edge. Altogether, an observation has 54 metadata attributes, which can be
combined in different ways to determine the edges of the graph database. Figure
2 shows one possible graph database denoted by Gobs. In the figure, vertices 1
through 6 represent the taxonomic hierarchy of the observed species, and vertices
8 through 11 characterize an observation, represented by vertex 7.

Fig. 2. Partial Metadata Graph Database of FNJV Observations - Gobs

Gobs can be integrated with many additional information sources, such as
biological and environmental variables to describe the context in which vocal-
izations were recorded. Distinct pieces of information can be used to produce
specific analyses and to build foci. A focus may concern, for example, a geo-
graphical scale or a group of species of interest. The following examples describe
some use scenarios of foci for this graph database.

1 http://proj.lis.ic.unicamp.br/fnjv

http://proj.lis.ic.unicamp.br/fnjv
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4.1 Example Focus 1: Location and Biomes

An example of focus which changes the perspective of analysis is defined as:
“Set of all locations in which observations were made, summarizing the number
of distinct species observed at each location, and connecting the locations that
belong to the same biome”. This kind of focus can be helpful to analyze the
biological and environmental characteristics of locations that were targets of
study. To process this focus, it is necessary to aggregate the observation data to
generate new information (here, the number of distinct species) and to link the
original data with biome information (graph external to our database).

Let us first consider just the first part of the focus: “Set of all locations in which
observations were made, summarizing the number of distinct species observed
at each location”. This kind of focus can also be processed by the query view
approach (2) of the framework, combining: (i) “build new element” operator,
to create the set of vertices with type Location from the attribute location
of vertices of type Observation in Gbio; (ii) “aggregate function” operator,
to count the number of distinct species observed in each Location and store
the value in numberOfSpecies attribute; (iii) “projection” operator, to filter the
vertex and edge types that should be part of the focus (in this case, Location).

Fig. 3. Focus: (a) location and number of distinct species and (b) Partial Biome Graph
Database - Gbio

Figure 3 (a) presents a portion of Gobs and explains these steps, with the
creation of vertex 6 Campinas SP of type Location and numberOfSpecies
(here, set to value 2). To connect the locations of the same biome, it is necessary
to add biome information not available in Gobs. Figure 3 (b) shows a partial
biome graph database (here shortened to Gbio), which is used to integrate this
information, using the join operator. In this case, the focus specification com-
bines: (i) “join” operator, to link each vertex with type Location in Gobs with
the corresponding vertex of type Biome in Gbio, creating an edge (hasBiome)
between Location and Biome; (ii) “build new element” operator, to create the
set of edges with type sameBiome beetween the Locations connected to the
same Biome; (iii) “projection” operator, to filter the vertex and edge types that



64 J. Daltio and C.B. Medeiros

Fig. 4. (a) Query View Focus: Observation Locations and Biomes (b) Central Concept
Focus: species closest to Tinamus tao

should be part of the focus (vertices of types Location and Biome). A partial
view of the result focus is shown in Figure 4 (a).

4.2 Example Focus 2: Species “Closely Related” to Tinamus tao

Another possible scenario builds the focus from a central concept. Here, an
example would be: “Which are the species closest in the taxonomy to the species
Tinamus tao”. This kind of focus can be helpful to analyze the diversity of the
species observed according to the “closeness” to other species within a taxonomic
level (e.g. genus, family or order). This focus can be processed by the central
concept view approach (3) of the framework, starting from species Tinamus
tao in Gobs. The graph for this focus is built considering only edges related with
taxonomic classification levels. The notion of closeness here is defined considering
the distance between the vertices in Gobs: closest mean shortest paths.

The generating function combines: (i) “projection” operator, to filter from
Gobs the set of vertex and edge types that should be part of the focus (in this
case, vertex types related to taxonomic level); (ii) “central concept”, in this
case, the vertex of type Species that represents the species Tinamus tao; (iii)
the graph algorithm to be applied, in this case, shortest path. The focus result
contains all species vertices in the graph for which the paths to species Tinamus
tao are minimal. A partial result focus is shown in Figure 4 (b).

This focus can be further restricted to “Species closest in taxonomy to Tina-
mus tao, observed in the same locations”. This can be helpful to understand the
similarity among environments where “closely related” species are observed. In
this case, specification of focus 2 should be extended, including a “selection” op-
erator to filter only species observed in the same locations. This focus demands
a combination of all functionalities available in the focus generation module.

5 Conclusions and Ongoing Work

This paper presented the specification of a framework to to build and explore
arbitrary foci in scientific databases, using graph databases as the basis of data
management. The approach extends the traditional definition of views in rela-
tional databases to represent a focus, combining graph query languages with
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graph algorithms to build customized foci. The internals of the framework were
explained via examples in biodiversity data management, pointing out some of
challenges to be faced. The implementation of the framework will take advantage
of previous work of ours in ontology management [6].

The first challenge involves extending the concept of view of relational data-
bases to graph databases. Another challenge is related to the specification of a
focus. At the moment, we assume that a focus is specified by indicating a suite
of operations to be applied to the underling graph databases. This, however, will
need to be improved once we formalize focus construction operators.

Acknowledgements. Work partially financed by FAPESP/Cepid in Compu-
tational Engineering and Sciences, MSR FAPESP Virtual Institute (NavScales),
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Abstract. Ontologies in the biomedical domain are becoming a key element for
data integration and search. The usefulness of the applications which use on-
tologies is often directly influenced by the quality of ontologies, as incorrect or
incomplete ontologies might lead to wrong or incomplete results for the applica-
tions. Therefore, there is an increasing need for repairing defects in ontologies.
In this paper we focus on completing ontologies. We provide an algorithm for
completing the is-a structure in EL ontologies which covers many biomedical
ontologies. Further, we present an implemented system based on the algorithm as
well as an evaluation using three biomedical ontologies.

1 Introduction

With the increasing presence of biomedical data sources on the Internet more and more
research effort is put into finding possible ways for integrating and searching such often
heterogeneous sources. Semantic Web technologies such as ontologies, are becoming
a key technology in this effort. Ontologies provide a means for modelling the domain
of interest and they allow for information reuse, portability and sharing across multi-
ple platforms. Efforts such as the Open Biological and Biomedical Ontologies (OBO)
Foundry, BioPortal and Unified Medical Language System (UMLS) aim at providing
repositories for biomedical ontologies and relations between these ontologies thus pro-
viding means for annotating and sharing biomedical data sources. Many of the ontolo-
gies in the biomedical domain can be represented using the EL description logic or
small extensions thereof (e.g. [1] and the TONES Ontology Repository).

Developing ontologies is not an easy task, and often the resulting ontologies (in-
cluding their is-a structures) are not complete. In addition to being problematic for the
correct modelling of a domain, such incomplete ontologies also influence the quality of
semantically-enabled applications. Incomplete ontologies when used in semantically-
enabled applications can lead to valid conclusions being missed.

In ontology-based search, queries are refined and expanded by moving up and down
the hierarchy of concepts. Incomplete structure in ontologies influences the quality
of the search results. As an example, suppose we want to find articles in the MeSH
Database of PubMed using the term Scleral Diseases in MeSH. By default the query
will follow the hierarchy of MeSH and include more specific terms for searching, such
as Scleritis. If the relation between Scleral Diseases and Scleritis is missing in MeSH,
we will miss 922 articles in the search result, which is about 57% of the original re-
sult1. The structural information is also important information in ontology engineering

1 PubMed accessed on 21-02-2014.

H. Galhardas and E. Rahm (Eds.): DILS 2014, LNBI 8574, pp. 66–80, 2014.
c© Springer International Publishing Switzerland 2014
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research. For instance, most current ontology alignment systems use structure-based
strategies to find mappings between the terms in different ontologies (e.g. overview
in [27]) and the modeling defects in the structure of the ontologies have an important
influence on the quality of the ontology alignment results.

In this paper we tackle the problem of completing the is-a structure of ontologies.
Completing the is-a structure requires adding new correct is-a relations to the ontology.
We identify two cases for finding relations which need to be added to an ontology. In
case 1 missing is-a relations have been detected and the task is to find ways of mak-
ing these detected is-a relations derivable in the ontology. There are many approaches
to detect missing is-a relations, e.g., using linguistic or logical patterns or by using
knowledge intrinsic to an ontology network (see Section 6). However, in general, these
approaches do not detect all missing is-a relations and in several cases even only few.
Therefore, we assume that we have obtained a set of missing is-a relations for a given
ontology (but not necessarily all). In the case where our set of missing is-a relations
contains all missing is-a relations, completing the ontology is easy. We just add all
missing is-a relations to the ontology and a reasoner can compute all logical conse-
quences. However, when the set of missing is-a relations does not contain all missing
is-a relations - and this is the common case - there are different ways to complete the
ontology. The easiest way is still to just add the missing is-a relations to the ontology.
For instance, T in Figure 1 represents a small ontology inspired by Galen ontology
(http://www.co-ode.org/galen/), that is relevant for our discussions. Assume that we
have detected that Endocarditis � PathologicalPhenomenon and GranulomaProcess �
NonNormalProcess are missing is-a relations (M in Figure 1). Obviously, adding these
relations to the ontology will repair the missing is-a structure. However, there are other
more interesting possibilities. For instance, adding Carditis � CardioVascularDisease
and GranulomaProcess � PathologicalProcess also repairs the missing is-a structure.
Further, these is-a relations are correct according to the domain and constitute new is-a
relations (e.g. Carditis � CardioVascularDisease) that were not derivable from the on-
tology and not originally detected by the detection algorithm.2 We also note that from
a logical point of view, adding Carditis � Fracture and GranulomaProcess � NonNor-
malProcess also repairs the missing is-a structure. However, from the point of view of
the domain, this solution is not correct. Therefore, as it is the case for all approaches for
dealing with modeling defects, a domain expert needs to validate the logical solutions.

In case 2 no missing is-a relations are given. In this case we investigate existing
is-a relations in the ontology and try to find new ways of deriving these existing is-a
relations. This might pinpoint to the necessity of adding new missing is-a relations to
the ontology. As an example, let us assume that our ontology contains relations T ∪M
in Figure 1. If we assume now that we want to investigate new ways of deriving relations
in M then obviously adding Carditis � CardioVascularDisease and GranulomaProcess
� PathologicalProcess would be one possibility given that both are correct according
to the domain.

The basic problem underlying the two cases can be formalized in the same way
(Section 2.2).

2 Therefore, the approach in this paper can also be seen as a detection method that takes already
found missing is-a relations as input.
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C = { GranulomaProcess, CardioVascularDisease, PathologicalPhenomenon, Fracture, Endocarditis, Carditis,
InflammationProcess, PathologicalProcess, NonNormalProcess}

T = { CardioVascularDisease � PathologicalPhenomenon, Fracture � PathologicalPhenomenon,
∃hasAssociatedProcess.PathologicalProcess � PathologicalPhenomenon, Endocarditis � Carditis,
Endocarditis � ∃hasAssociatedProcess.InflammationProcess, PathologicalProcess � NonNormalProcess }

M = { Endocarditis � PathologicalPhenomenon, GranulomaProcess � NonNormalProcess }

The following is-a relations are correct according to the domain, i.e., Or returns true for:
GranulomaProcess � InflammationProcess, GranulomaProcess � PathologicalProcess,
GranulomaProcess � NonNormalProcess, CardioVascularDisease � PathologicalPhenomenon,
Fracture � PathologicalPhenomenon, Endocarditis � PathologicalPhenomenon,
Endocarditis � Carditis, Endocarditis � CardioVascularDisease, Carditis � PathologicalPhenomenon,
Carditis � CardioVascularDisease, InflammationProcess � PathologicalProcess,
InflammationProcess � NonNormalProcess, PathologicalProcess � NonNormalProcess.

Let P = GTAP(T , C , Or, M).

Fig. 1. Small example

The contributions of this paper are the following. We present an approach for com-
pleting the is-a structure of EL ontologies which aims at introducing new information
to the ontology (Section 3). Together with the algorithm for completing the is-a struc-
ture we present an implemented system (Section 4). Next, we provide an evaluation
of the system using three ontologies from the biomedical domain and discuss lessons
learned. The paper concludes with the discussion of related work and possible future
work (Sections 6 and 7). We continue with some necessary preliminaries in Section 2.

2 Preliminaries

2.1 The Description Logic EL
Concept descriptions are constructed inductively from a set NC of atomic concepts and
a set NR of atomic roles. The concept constructors are the top concept �, conjunction,
and existential restriction. The syntax of the different constructors can be found in Fig-
ure 2. An interpretation I consists of a non-empty set ΔI and an interpretation function
·I which assigns to each atomic concept A ∈ NC a subset AI ⊆ ΔI , to each atomic
role r ∈ NR a relation rI ⊆ ΔI ×ΔI . The interpretation function is straightforwardly
extended to complex concepts. An EL TBox3 is a finite set of general concept inclu-
sions (GCIs), whose syntax can be found in the lower part of Figure 2. An interpretation
I is a model of a TBox T if for each GCI in T , the conditions given in the third column
of Figure 2 are satisfied.

The main reasoning task for description logics is subsumption in which the problem
is to decide for a TBox T and concepts C and D whether T |= C � D. Subsumption
in EL is polynomial.

3 Named CBox in [1].
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Name Syntax Semantics

top � ΔI

conjunction C �D CI ∩DI

existential restriction ∃r.C {x ∈ ΔI | ∃y ∈ ΔI : (x, y) ∈ rI ∧ y ∈ CI}
GCI C 	 D CI ⊆ DI

Fig. 2. EL Syntax and Semantics

2.2 Completing is-a Structure

The problem of completing the missing is-a structure in an ontology can be formalized
as a generalized version of the TBox abduction problem [28].

We assume that our ontology is represented using a TBox T in EL. Further, we have
a set of missing is-a relations which are represented by a set M of atomic concept sub-
sumptions. In case 1 in the introduction, these missing is-a relations were detected. In
case 2 the elements in M are existing is-a relations in the ontology that are temporarily
removed, and T represents the ontology that is obtained by removing the elements in
M from the original ontology. (They can later be added again after completing the on-
tology.) To complete the is-a structure of an ontology, the ontology should be extended
with a set S of atomic concept subsumptions (repair) such that the extended ontology
entails the missing is-a relations. However, the added atomic concept subsumptions
should be correct according to the domain. In general, the set of all atomic concept sub-
sumptions that are correct according to the domain are not known beforehand. Indeed,
if this set were given then we would only have to add this to the ontology. The common
case, however, is that we do not have this set, but instead can rely on a domain expert
that can decide whether an atomic concept subsumption is correct according to the do-
main. In our formalization the domain expert is represented by an oracle Or that when
given an atomic concept subsumption, returns true or false. It is then required that for
every atomic concept subsumption s ∈ S, we have that Or(s) = true. The following
definition formalizes this.

Definition 1 (Generalized TBox Abduction). (variant of [28])
Let T be a TBox in EL and C be the set of all atomic concepts in T .
Let M = {Ai � Bi | Ai, Bi ∈ C} be a finite set of TBox assertions.
Let Or : {Ci � Di | Ci, Di ∈ C} → {true, false}.
A solution to the generalized TBox abduction problem (GTAP) (T,C,Or,M) is any
finite set S = {Ei � Fi | Ei, Fi ∈ C ∧ Or(Ei � Fi) = true} of TBox assertions,
such that T ∪ S is consistent and T ∪ S |= M .

We note that an additional condition could be enforced in the definition i.e. ∀m ∈
M : Or(m) = true. Regarding this condition, if some missing is-a relation is not
correct according to the domain, it could still be possible to find a solution. However,
in this case the domain expert makes mistakes in the judgement or T is not correct
according to the domain. In practice, it is therefore advantageous to validate whether
the missing is-a relations are correct according to the domain before repairing.
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As an example, let us consider GTAP P as defined in Figure 1. Then a possible
solution for P is {Carditis � CardioVascularDisease, InflammationProcess � Patho-
logicalProcess, GranulomaProcess � InflammationProcess}. Another possible solution
is {Carditis � CardioVascularDisease, GranulomaProcess � PathologicalProcess} as
explained in Section 1.

There can be many solutions for a GTAP and, as explained in Section 1, not all so-
lutions are equally interesting. Therefore, in [28] we proposed two preference criteria
on the solutions. The first criterion is a criterion that is not used in other abduction
problems, but that is particularly important for GTAP. In GTAP it is important to find
solutions that add to the ontology as much information as possible that is correct ac-
cording to the domain. Therefore, the first criterion prefers solutions that imply more
information.

Definition 2 (More Informative). Let S and S′ be two solutions to the GTAP (T,C,
Or,M). S is said to be more informative than S′ iff T ∪ S |= S′ and T ∪ S′ �|= S.

Further, we say that S is equally informative as S′ iff T ∪ S |= S′ and T ∪ S′ |= S.

Consider two solutions4 to P , S1 = {InflammationProcess � PathologicalProcess,
GranulomaProcess � InflammationProcess} and S2 = {InflammationProcess � Patho-
logicalProcess, GranulomaProcess � PathologicalProcess}. In this case solution S1 is
more informative than S2.

The second criterion is a classical criterion in abduction problems. It requires that no
element in a solution is redundant.

Definition 3 (Subset Minimality). A solution S to the GTAP (T,C,Or,M) is said to
be subset minimal iff there is no proper subset S′ � S such that S′ is a solution.

An example of a subset minimal solution for P is {InflammationProcess � Patho-
logicalProcess, GranulomaProcess � InflammationProcess}. On the other hand, solu-
tion {Carditis � CardioVascularDisease, InflammationProcess � PathologicalProcess,
GranulomaProcess � InflammationProcess} is not subset minimal as it contains Cardi-
tis � CardioVascularDisease which is redundant for repairing the missing is-a relations.

Three different combinations of these criteria were identified and formalized in [28].
Solutions with higher level of informativeness and no redundancy are preferred and this
is formalized by skyline optimality.

Definition 4 (Skyline Optimal). A solution S to the GTAP (T,C,Or,M) is said to
be skyline optimal iff there does not exist another solution S′ such that S′ is a proper
subset of S and S′ is equally informative as S.

4 Observe that both missing is-relations are derivable using S1. GranulomaProcess
	 NonNormalProcess is derivable as GranulomaProcess 	 InflammationPro-
cess (S1), InflammationProcess 	 PathologicalProcess (S1), and Pathological-
Process 	 NonNormalProcess (T ). Endocarditis 	 PathologicalPhenomenon is
derivable as Endocarditis 	 ∃hasAssociatedProcess.InflammationProcess (T ),
∃hasAssociatedProcess.InflammationProcess 	 ∃hasAssociatedProcess.PathologicalProcess
(S1), and ∃hasAssociatedProcess.PathologicalProcess 	 PathologicalPhenomenon (T ).
Similarly for S2.
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For example, {InflammationProcess � PathologicalProcess, GranulomaProcess �
InflammationProcess, Carditis � CardioVascularDisease} is a skyline optimal solution
for P .

3 Algorithm

In this section we present an algorithm for completing the is-a structure (solving GTAP
(T,C,Or,M)) in ontologies that are represented in EL and where the TBox is normal-
ized as described in [1]. A normalized TBox T contains only axioms of the forms A1 �
. . . � An � B, A � ∃r.B, and ∃r.A � B, where A, A1, . . ., An and B are atomic con-
cepts and r is a role. Further, based on lessons learned in [28], we require that the miss-
ing is-a relations are validated before the repairing and thus ∀m ∈ M : Or(m) = true.
This, together with the fact that EL TBoxes are always consistent, gives us that M is a
solution.

In general, we would like to find a solution for GTAP at the highest level of informa-
tiveness. However, this can only be guaranteed if we know all missing is-a relations.
One way to obtain this is using a brute-force method and ask Or for every pair in C×C
whether it is a correct is-a relation according to the domain or not. In practice, for large
ontologies this is not feasible. Therefore, the algorithm in Algorithm 1 computes ini-
tially a skyline optimal solution for GTAP (T,C,Or,M) and iteratively tries to find
other skyline optimal solutions at higher levels of informativeness. As M is a solution,
the algorithm will always return a result. The result can be a subset minimal solution
that is a subset of M or a solution that is more informative than M .

The basic step in the algorithm (RepairSingleIsa) computes a solution for a GTAP
with one missing is-a relation (i.e. GTAP (T,C,Or, {E � F}) in the following way.
First, superconcepts of E are collected in a Source set and subconcepts of F are collected
in a Target set (lines 3 and 4). Source contains expressions of the forms A and ∃r.A
while Target contains expressions of the forms A, A1 � . . . � An and ∃r.A where A,
A1, . . ., An are atomic concepts and r is a role. Adding an is-a relation between an
element in Source and an element in Target to the ontology would make E � F
derivable (and thus this gives us logical solutions, but not necessarily solutions that
are correct according to the domain). As we are interested in solutions containing is-a
relations between atomic concepts, we check for every pair (A,B) ∈ Source × Target
whether A and B are atomic concepts and Or(A � B) = true (i.e. correct according
to the domain). If so, then this is a possible solution for GTAP (T,C,Or, {E � F}).
However, if the current solution already contains is-a relations that would lead to the
entailment of A � B then we do not use A � B (8-9). Otherwise we use A � B
and remove elements from the current solution that would be entailed if A � B is used
(10-12). Further, in the case where A is of the form ∃r.N and B is of the form ∃r.O,
then making N � O derivable would also make A � B derivable (13-14). It is clear
that for the result of RepairSingleIsa, i.e. Sol, the following holds: T ∪ Sol |= E � F
and ∀s ∈ Sol : Or(s) = true. Together with the fact that EL TBoxes are consistent,
this leads to the fact that Sol is a solution of GTAP (T,C,Or, {E � F}).

In RepairMultipleIsa the algorithm collects for each missing is-a relation a solution
from RepairSingleIsa and takes the union of these. Therefore, the following holds for
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1 Procedure RepairSingleIsa begin
Input: E � F, T, Or, C
Output: Solution for GTAP (T, C, Or, {E � F})

2 Sol := ∅;
3 Source := find superconcepts of E;
4 Target := find subconcepts of F;
5 foreach A ∈ Source do
6 foreach B ∈ Target do
7 if A and B are atomic concepts & A � B ∈ Or then
8 if there exists K � L ∈ Sol such that T |= A � K and T |= L � B then
9 do nothing;

10 else
11 remove every K � L ∈ Sol s.t. T |= K � A and T |= B � L;
12 Sol := Sol ∪ {A � B};
13 else if A is of the form ∃r.N & B is of the form ∃r.O then
14 Sol := Sol ∪ RepairSingleIsa(N � O, T, Or, C);
15 return Sol;

16 Procedure RepairMultipleIsa begin
Input: M, T, Or, C
Output: Solution for GTAP (T, C, Or, M)

17 foreach Ei � Fi ∈ M do
18 SingleSoli := RepairSingleIsa(Ei � Fi, T, Or, C);
19 Solution :=

⋃
iSingleSoli ;

20 remove redundancy in Solution within same level of informativeness;
21 return Solution;

22 Procedure Repair begin
Input: M, T, Or, C
Output: Solution for GTAP (T, C, Or, M)

23 Missing := M;
24 Solution := RepairMultipleIsa(Missing, T, Or, C);
25 Final-Solution := Solution;
26 while Solution 
= Missing do
27 Missing := Solution;
28 Solution := RepairMultipleIsa(Missing, T ∪ Missing, Or, C);
29 Final-Solution := Final-Solution ∪ Solution;
30 remove redundancy in Final-Solution within same level of informativeness;
31 return Final-Solution;

Algorithm 1. Solving GTAP

Solution in line 19: T ∪ Solution |= M and ∀s ∈ Solution : Or(s) = true. Together
with the fact that EL TBoxes are consistent, this leads to the fact that Solution is a
solution of GTAP (T,C,Or,M). Further, in line 20, we remove redundancy while
keeping the same level of informativeness, and thus obtain a skyline optimal solution.
(In the case where there are several ways to remove redundancy, one is chosen, as the
extended ontologies will be equivalent in the sense that they entail the same statements.)

In Repair we try to improve the result from RepairMultipleIsa by trying to find a
skyline optimal solution at a higher level of informativeness. Given that any element in
the solution of RepairMultipleIsa that is not in M can be considered as a new missing
is-a relation (which was not detected earlier), we can try to find additional more infor-
mative ways of repairing by solving a new GTAP problem for these new missing is-a
relations (and continue as long as new missing is-a relations are detected). As a (skyline
optimal) solution for the new GTAP is also a (skyline optimal) solution of the original
GTAP, the solution found in Repair is a skyline optimal solution for the original GTAP.

As an example run consider the GTAP in Figure 1. For a given ontology and set of miss-
ing is-a relations, the algorithm will first find solutions for
repairing individual missing is-a relations using RepairSingleIsA. For the missing is-
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a relation Endocarditis � PathologicalPhenomenon the following is-a relations provide
logical solutions for repairing the missing is-a relation: Endocarditis� PathologicalPhe-
nomenon, Endocarditis � Fracture, Endocarditis � CardioVascularDisease, Carditis �
PathologicalPhenomenon, Carditis�Fracture, Carditis�CardioVascularDisease as well
as InflammationProcess � PathologicalProcess. As the first one is the missing is-a re-
lation which was already validated, only the other six is-a relations are presented to the
oracle for validation. Out of these six Endocarditis � Fracture and Carditis � Fracture
are not correct according to the domain and are therefore not included in solutions. Fur-
ther, relations Endocarditis� CardioVascularDisease, Endocarditis� PathologicalPhe-
nomenon, Carditis � PathologicalPhenomenon are removed given it is possible to entail
them from the ontology together with the remaining relations. Therefore, after valida-
tion, RepairSingleIsA returns {InflammationProcess � PathologicalProcess, Carditis �
CardioVascularDisease}. The same process is repeated for the second missing is-a rela-
tion GranulomaProcess � NonNormalProcess. In this case the following is-a relations
provide logical solutions for repairing the missing is-a relation: GranulomaProcess �
NonNormalProcess and GranulomaProcess � PathologicalProcess. GranulomaProcess
� NonNormalProcess is the missing is-a relation and was already validated as correct
according to the domain. GranulomaProcess � PathologicalProcess is presented to the
oracle and validated as correct according to the domain. As GranulomaProcess � Non-
NormalProcess can be entailed from the ontology together with GranulomaProcess �
PathologicalProcess, RepairSingleIsA returns {GranulomaProcess � PathologicalPro-
cess}. The solutions for the single is-a relations are then combined to form a solution for
the set of missing is-a relations. In our case, there are no redundant relations and there-
fore RepairMultipleIsA returns {InflammationProcess � PathologicalProcess, Carditis
�CardioVascularDisease, GranulomaProcess�PathologicalProcess}. We note that this
is a skyline optimal solution. In Repair the system tries to improve the acquired solution.
This time the oracle is presented with a total of 13 relations for validation out of which
only one is validated to be correct, i.e. GranulomaProcess� InflammationProcess. This
is added to the solution. Given this new is-a relation, GranulomaProcess� Pathological-
Proces is removed from the solution as it can now be entailed from the ontology and Gran-
ulomaProcess � InflammationProcess. The new solution is {InflammationProcess �
PathologicalProcess, Carditis � CardioVascularDisease, GranulomaProcess � Inflam-
mationProcess}. This is again a skyline optimal solution and it is more informative than
the previous solution. As new missing is-a relations were detected, the repairing is run for
the third time. However, in this run the solution is not improved and thus the algorithm
outputs the final result. We note that in this example we found a skyline optimal solu-
tion that is also solution with the highest level of informativeness. In general, however,
it is not possible to know whether the solution is of the highest level of informativeness
without checking every possible is-a relation between atomic concepts in the ontology.

4 System

We have implemented a system for completing the missing is-a structure in EL ontolo-
gies based on the algorithm in Algorithm 1. The input to the system is a an ontology
and a set of validated missing is-a relations. The output is a solution to GTAP (called
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(a) Repairing using Source and Target sets. (b) Validating is-a relations in a repairing ac-
tion.

Fig. 3. System screenshots

a repairing action). The system was implemented in Java and uses the ELK reasoner
(version 0.4.1) [21] to detect implicit entailments in the ontology. The system is semi-
automatic and requires interaction with a user which is a domain expert serving as an
oracle and who decides whether an is-a relation is correct according to the domain.

Once the ontology and the set of missing is-a relations are loaded, the user starts
the debugging process by pressing the button Generate Repairing Actions.
The system then removes redundant is-a relations and the non-redundant missing is-a
relations are shown in a drop-down list allowing the user to switch between missing
is-a relations. Additional relations acquired from lines 13 and 14 in the algorithm (Al-
gorithm 1) are also included in the drop-down list. It is also possible to scroll between
relations using the arrow buttons in the bottom part of the screen.

After selecting an is-a relation from the list, the user is presented with the Source
and the Target set for that is-a relation. The user then needs to choose relations which
are correct according to the domain for that is-a relation. Missing is-a relations are
automatically validated to be correct according to the domain while the relations that
were acquired from lines 13 and 14 in the algorithm have to be explicitly validated by
the user.

In Figure 3(a) the user is presented with the Source and the Target set for the miss-
ing is-a relation Endocarditis � PathologicalPhenomenon (concepts in the missing is-a
relation are marked in red). In this case the user has selected {Carditis � CardioVas-
cularDisease} as a repairing action for the missing is-a relation (concepts marked in
purple) and needs to confirm this by clicking the Validate button.

The user also has the option to check which relations have been validated so far
and which relations can be validated, by clicking the Validate Is-a Relations
button. In the pop-up window that appears the user can validate new relations, remove
validations from already validated relations as well as ask for a recommendation by
clicking the Recommend button (Figure 3(b)). Recommendations are acquired by
querying external sources (currently, WordNet, UMLS Methathesaurus and Uberon).
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The validation phase is ended by clicking on the Validation Done button. The
system then calculates the consequences of the chosen repairing actions and presents
the user with a new set of is-a relations that need to be repaired. The validation phase
and consequent computations represent one iteration of the Repair procedure in Algo-
rithm 1. If the repairing did not change between two iterations the system outputs the
repairing.

At any point the user can save validated relations from the ”File” menu which makes
it possible to do debugging accross multiple sessions.

5 Experiments

We have run several experiments on an Intel Core i7-2620M Processor at 3.07 GHz
with 4 GB RAM under Windows 7 Professional and Java 1.7 compiler. The experiments
cover the two cases from the introduction. In all experiments the validation phase took
the most time while the computations between iterations took less than 10 seconds.

The results are summarized in Figures 4 - 5. The ’It’ columns represent the different
iterations of Repair in Algorithm 1. The ’Missing’ rows give the number of missing
is-a relations in each iteration. Such a missing is-a relation can be repaired by adding
itself (’Repaired by itself’), by adding other is-a relations that were not derivable in
the ontology and thus represent new knowledge added to the ontology (’Repaired using
new knowledge’). The ’New relations’ row shows how many new is-a relations were
added to the ontology. When such relations were found using ∃ (lines 13 and 14 in the
algorithm), then the number of such relations is shown in parentheses. We note that
for iteration i + 1 the number of missing is-a relations is the number of new relations
from iteration i plus the number of missing is-a relations repaired by themselves from
iteration i if there are no redundant relations. We also note that in the last iteration all
missing is-a relations from that iteration are always repaired by themselves and these
represent the final repairing action.

5.1 Case 1 Experiment – OAEI Anatomy

We debugged the two ontologies from the Anatomy track at the 2013 Ontology Align-
ment Evaluation Initiative, i.e. Mouse Anatomy ontology (AMA) containing 2744
concepts and a fragment of NCI human anatomy ontology (NCI-A) containing 3304
concepts. The input missing is-a relations for these two experiments were a set of 94
and 58 missing is-a relations, respectively, for AMA and NCI-A. These missing is-a
relations were obtained by using a logic-based approach using an alignment between
AMA and NCI-A [25] to generate candidate missing is-a relations which were then
validated by a domain expert to obtain actual missing is-a relations. Therefore, this
experiment is related to case 1.

Mouse Anatomy. The results for debugging AMA are given in Figure 4(a). Three iter-
ations were required to reach the final solution. Out of 94 initial missing is-a relations
37 were repaired by repairing actions which add new knowledge to the ontology while
57 were repaired using only the missing is-a relation itself. There were no derivable
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It1 It2 It3
Missing 94 101 101
Repaired by itself 57 98 101
Repaired using new knowledge 37 3 0
New relations 44 3 0

(a) Results for debugging AMA - Mouse
Anatomy ontology.

It1 It2 It3
Missing 58 55 54
Repaired by itself 49 50 54
Repaired using new knowledge 9 5 0
New relations 6 4 0

(b) Results for debugging NCI-A - Human
Anatomy ontology.

Fig. 4. OAEI experiments

relations. In total 44 new and non-redundant relations were added to the ontology in the
first iteration. Out of 37 relations which were repaired by adding new relations, 22 had
more than 1 non-redundant relation in the repairing action. For example, the missing
is-a relation wrist joint � joint is repaired by a repairing action {limb joint � joint,
wrist joint � synovial joint}.

The set of missing is-a relations in the second iteration contains 101 relations, i.e. 57
relations which were repaired by adding the missing is-a relation itself and 44 newly
added relations. In this iteration, 3 is-a relations were repaired by adding new knowl-
edge to the ontology. All 3 of these is-a relations are is-a relations which were added in
the previous iteration. For example, is-a relation wrist joint � synovial joint is repaired
by a repairing action {wrist joint � hand joint} which is possible given that the is-a
relation metacarpo-phalangeal joint � joint from the initial set of missing is-a relations
was repaired by a repairing action {hand joint � synovial joint, limb joint � joint} in
the first iteration. Finally, the set of missing is-a relations containing 101 is-a relations
in the third iteration is also the solution for the initial set of missing is-a relations given
that no new relations were added in the third iteration.

NCI – Human Anatomy. The initial set of missing is-a relations contained 58 relations
for the NCI-A ontology. Out of these 58 relations in the first iteration 9 were repaired
by adding relations which introduce new knowledge to the ontology. In total 6 new is-a
relations were added and 4 missing is-a relations were derivable.

In the second iteration, 5 out of 55 is-a relations were repaired by adding new rela-
tions while repairing actions for the 50 other is-a relations were unchanged. All 5 is-a
relations which were repaired by adding new relations to the ontology are is-a relations
which were repaired by repairing actions containing only the missing is-a relation from
the first iteration. This exemplifies why it is beneficial to consider already repaired is-a
relations in subsequent iterations as Source and Target sets for some missing is-a rela-
tions can change and more informative solutions might be identified. The input to the
third iteration is a set of 54 is-a relations and given that no changes were made, these
relations are the final solution.

5.2 Case 2 Experiment – Biotop

This experiment relates to Case 2. In this experiment we used the Biotop ontology
from the 2013 OWL Reasoner Evaluation Workshop dataset containing 280 concepts
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It1 It2 It3 It4
Missing 47 41 42 41
Repaired by itself 19 31 38 41
Repaired using new knowledge 28 10 4 0
New relations 26(3) 11 3(1) 0

Fig. 5. Results for debugging the Biotop ontology

and 42 object properties. For the set of missing is-a relations we randomly selected 47
is-a relations. Then the ontology was modified by removing is-a relations which would
make the selected is-a relations derivable. The unmodified ontology was used as domain
knowledge in the experiment. The results for debugging Biotop ontology are presented
in Figure 5.

The debugging process took 4 iterations. In the first iteration 28 relations were re-
paired by adding new relations. In total 26 new relations were added in the first it-
eration using axioms containing ∃ expressions. For example, for missing is-a relation
GreatApe � Primate we have a repairing action {FamilyHominidaeQuality � Order-
PrimatesQuality} given that the ontology contains axioms GreatApe � ∃hasInherence.-
FamilyHominidaeQuality and ∃hasInherence.OrderPrimatesQuality � Primate.

The input to the second iteration contained 41 non-redundant is-a relations (4 redun-
dant is-a relations were removed from the solution in iteration 1). In total 10 is-a rela-
tions were repaired by adding new is-a relations. Out of these 10 repaired is-a relations,
5 are relations from the initial set of missing is-a relations while the other 5 are relations
which were added in the first iteration. For example, is-a relation Atom � Entity from
the initial set of missing relations can be repaired with {Atom � MaterialEntity} given
that MaterialEntity � Entity was added in the previous iteration.

In the third iteration, the input contained 42 is-a relations. In total 4 is-a relations (3
from the initial set of missing is-a relations and 1 from iteration 1) were repaired by
adding 3 new relations. Out of the 3 new relations 1 is acquired using axioms contain-
ing ∃ expressions. Finally, in the fourth iteration no new relations were added and the
system outputs the solution.

5.3 Lessons Learned

The experiments have shown the usefulness of our approach. In each of the cases,
whether missing is-a relations were identified, or whether we investigated existing is-a
relations, our approach identified new information to be added to the ontologies.

The experiments have also shown that the iterative approach to repairing missing is-a
relations is beneficial as in all our experiments additional relations were added to the
ontology in subsequent iterations. Running the system on already repaired is-a relations
gives the opportunity to identify new repairing actions which introduce new knowledge
to the ontology. An example of this is found in the BioTop experiment where is-a re-
lations from the initial set of missing is-a relations were repaired by more informative
solutions in the third iteration.
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Currently, the system removes redundant is-a relations from a solution after every
iteration. This step is crucial for producing skyline optimal solutions. However, in situa-
tions where an is-a relation is repaired by a relation acquired from the axioms containing
∃ expressions it might be advantageous to keep also the missing is-a relation in subse-
quent iterations even though it is redundant. The reason for this is that the Source set
and the Target set for the missing is-a relation might get updated in later iterations and
therefore new repairing actions might be identified. One way to solve this is to make it
possible in the system to show these missing is-a relations with their Source and Target
sets but not to include them in the solution unless they are repaired using new knowl-
edge. For example, let us assume that the missing is-a relation Human � Primate was
repaired in one iteration by a repairing action {Human� Primate, SpeciesHomoSapien-
sQuality � OrderPrimatesQuality} in which case the second relation was found using
∃. In the next iteration the relation GreatApe � Primate was added to the ontology.
If the system removed redundant relation Human � Primate then relation Human �
GreatApe would not be detected as a possible repairing action for Human � Primate.

6 Related Work

There is not much work on the completing of missing is-a structure. In [26,25] this was
addressed in the setting of taxonomies where the problem as well as some preference
criteria were defined. Further, an algorithm was given and an implemented system was
proposed. We note that the algorithm presented in this paper can be restricted to tax-
onomies and in that case finds more informative solutions than [26]. A later version
of the [26] system, presented in [24], also deals with semantic defects, and was used
for debugging ontologies related to a project for the Swedish National Food Agency
[15]. An extension dealing with both ontology debugging and ontology alignment is
described in [16]. In [23] the problem was formalized as an abduction problem and an
algorithm was given for finding solutions for ALC acyclic terminologies. In [28] we
extended the previous formalization by formalizing the role of the domain expert as
well as by introducing preference criteria for the solutions to the problem. There is no
other work yet on GTAP. There is some work on TBox abduction. [14] proposes an
automata-based approach to TBox abduction in EL. It is based on a reduction to the
axiom pinpointing problem which is then solved with automata-based methods.

Further, there is work that addresses related topics but not directly the problem that is
addressed in this paper. There is much work on the detection of missing (is-a) relations
in e.g. ontology learning [4] or evolution [12], using linguistic [13] and logical [6]
patterns, or by using knowledge intrinsic to an ontology network [26,15]. As mentioned
before, these approaches, in general, do not detect all missing is-a relations. There is
also much work on a dual problem to the one addressed in this paper, i.e. the debugging
of semantic defects. Most of the work on debugging semantic defects aims at identifying
and removing logical contradictions from an ontology [11,31,20,19,10], from mappings
between ontologies [29,32,17,30] or ontologies in a network [18,15].

Finally, there is also work on other abductive reasoning problems in (simple) de-
scription logics including concept abduction [5,2,7] and ABox abduction [8,22,3] as
defined in [9].
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7 Conclusions

In this paper we presented an approach for completing the is-a structure of EL on-
tologies. Many biomedical ontologies can be represented by EL or a small extension
thereof. We have also presented an implemented system and evaluated our approach on
three biomedical ontologies. The evaluation has shown the usefulness of the system as
in all experiments new is-a relations have been identified.

There are a number of directions for future work. We will investigate approaches
for more expressive representation languages as well as different preference criteria.
Further, we want to investigate methods for dealing with inconsistency and incoherence
as well as incompleteness.
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ence for financial support.

References

1. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: 19th Int. Joint Conf. on Artifi-
cial Intelligence, pp. 364–369 (2005)

2. Bienvenu, M.: Complexity of abduction in the EL family of lightweight description logics.
In: 11th Int. Conf. on Principles of Knowledge Representation and Reasoning, pp. 220–230
(2008)

3. Calvanese, D., Ortiz, M., Simkus, M., Stefanoni, G.: The complexity of explaining negative
query answers in DL-Lite. In: 13th Int. Conf. on Principles of Knowledge Representation
and Reasoning, pp. 583–587 (2012)

4. Cimiano, P., Buitelaar, P., Magnini, B.: Ontology Learning from Text: Methods, Evaluation
and Applications. IOS Press (2005)

5. Colucci, S., Di Noia, T., Di Sciascio, E., Donini, F., Mongiello, M.: A uniform tableaux-based
approach to concept abduction and contraction in ALN . In: Int. Workshop on Description
Logics, pp. 158–167 (2004)

6. Corcho, O., Roussey, C., Vilches, L.M., Pérez, I.: Pattern-based OWL ontology debugging
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18. Jiménez-Ruiz, E., Cuenca Grau, B., Horrocks, I., Berlanga, R.: Ontology integration us-
ing mappings: Towards getting the right logical consequences. In: Aroyo, L., Traverso, P.,
Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M.,
Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 173–187. Springer, Heidelberg (2009)

19. Kalyanpur, A., Parsia, B., Sirin, E., Cuenca-Grau, B.: Repairing unsatisfiable concepts in
OWL ontologies. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 170–
184. Springer, Heidelberg (2006)

20. Kalyanpur, A., Parsia, B., Sirin, E., Hendler, J.: Debugging Unsatisfiable Classes in OWL
Ontologies. J. of Web Semantics 3(4), 268–293 (2006)
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Abstract. Model repositories such as BioModels Database provide com-
putational models of biological systems for the scientific community.
These models contain rich semantic annotations that link model enti-
ties to concepts in well-established bio-ontologies such as Gene Ontology.
Consequently, thematically similar models are likely to share similar an-
notations. Based on this assumption, we argue that semantic annotations
are a suitable tool to characterize sets of models. These characteristics
can then help to classify models, to identify additional features for model
retrieval tasks, or to enable the comparison of sets of models. In this pa-
per, we present four methods for annotation-based feature extraction
from model sets. All methods have been used with four different model
sets in SBML format and taken from BioModels Database. To charac-
terize each of these sets, we analyzed and extracted concepts from three
frequently used ontologies for SBML models, namely Gene Ontology,
ChEBI and SBO. We find that three of the four tested methods are
suitable to determine characteristic features for model sets. The selected
features vary depending on the underlying model set, and they are also
specific to the chosen model set. We show that the identified features
map on concepts that are higher up in the hierarchy of the ontologies
than the concepts used for model annotations. Our analysis also reveals
that the information content of concepts in ontologies and their usage
for model annotation do not correlate.

1 Introduction

Thanks to successful standardization efforts in Systems Biology [1], modelers
today have access to high-quality, curated models in standard formats. The Sys-
tems Biology Markup Language (SBML) [2] is an XML-based standard format to
encode models as interactions between biological entities. The emerging networks
are furthermore enriched with semantic annotations [3] which link model parts
to external knowledge in domain-specific ontologies (bio-ontologies, [4]). Many
SBML models live in open model repositories such as BioModels Database [5].
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The repository offers basic functionality for model management, including model
collection, annotation, search, version control, data visualization etc.

BioModels Database implements a native, SQL-based search [5]. An alterna-
tive search, implemented in the BioModels Demo branch1, is the ranked model
retrieval [6]. Here, models and their annotations are mapped on pre-defined
model features (e. g., model organism, author, biological entity), leading to a
characteristic term vector for each model. The properties of this vector are nu-
meric values mostly describing term frequency and inverse document frequency
(TF-IDF) [7]. The ranking is determined by the comparison of search terms (i. e.
provided keywords) with the extracted characteristic term vector per model. One
drawback of this method is that standard Information Retrieval (IR) methods do
not take into consideration the information hidden in semantic annotations. The
major problem, however, is that current approaches only compare a set of key-
words against an indexed corpus of documents. The set of keywords can either
be user input, or a document transformed into a set of keywords. In both cases it
is impossible to compare a set of documents with the corpus or with another set
of documents, respectively. This is because it is problematic to identify suitable
characteristics of arbitrary sets of models. For example, a standard search for
“cell cycle” models will retrieve all models in the corpus that are relevant to the
term “cell cycle”. The result when querying BioModels Database is a large set of
models. If relevant features for this set were pre-determined computationally for
the corpus of interest, then the search results would be more specific to the topic
of cell cycle. In other words, the possibility to identify characteristic features of
a corpus at search time enables systems to only retrieve relevant models for a
given research area.

In this paper we present four methods for annotation-based feature extraction
from arbitrary sets of models. These methods rely on combinations of existing
approaches for feature extractions. As an example, we compare the characteristic
features of a set of cell cycle models to the features of arbitrary sets of models.
Concepts were extracted from three major bio-ontologies used in models (GO,
ChEBI, SBO). Our methods contribute to the determination of similarity be-
tween sets of models. They also provide statistics on the use of ontology terms
in models, and on the relation between ontology terms and models.

2 Background

2.1 Bio-ontologies

SBML is an XML format. It uses an RDF scheme to add semantic annotations to
model parts [8]. Among the ontologies that are used to enrich SBML models, we
chose here the following three ontologies, which we believe are the most relevant
in model annotation: an ontology of gene and gene product attributes, the Gene
Ontology (GO) [9]; an ontology of chemical entities, the Chemical Entities in

1 http://www.ebi.ac.uk/biomodels-demo/

http://www.ebi.ac.uk/biomodels-demo/
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BIology (ChEBI) [10]; and an ontology for modeling in biology, the Systems
Biology Ontology (SBO) [3].

The GO is proposed and maintained by the Gene Ontology Consortium. It
aims at standardizing the representation of gene and gene product attributes
across species and databases by a structured, precisely defined, common, con-
trolled vocabulary. GO covers three domains. Terms within each domain are
linked by is-a and part-of relationships. Additionally, each concept is linked to
other kinds of information, including many gene and protein keyword databases.

ChEBI is an ontology of chemical entities of biological interest. All database
entries are is a linked within the ontology. Chemical classifications of ChEBI are
aligned with the classification of chemical processes in the GO, and the majority
of chemical processes in GO are defined in terms of the ChEBI entities that
participate in them.

The SBO provides a set of controlled vocabularies of terms commonly used in
Systems Biology. It consists of seven orthogonal branches. Terms within each
branch are linked by standard is a relationships. Formal ties to SBO have
been developed for several representation formats in Systems Biology. SBML
elements2, for example, carry an optional sboTerm attribute, which allows for a
precise definition of the meaning of encoded model entities and their relation-
ships.

2.2 Feature Extraction from Ontologies

To identify annotation-based characteristics of models, we first reviewed existing
methods for feature extraction from ontologies and tree structures. We found the
following suitable for our purposes.

Document Frequency. is a text classification metric. It describes the number
of documents in which a term occurs [11,12]. It is used to reduce a vocabulary
by removing too rare or too common words. Common words may be removed,
because they are not discriminating for any particular class. Rare words may be
eliminated because they are considered non-informative for category prediction
and not influential in global performance. With respect to bio-ontologies, we keep
common concepts but remove rarely used concepts during the feature extraction
process.

Cluster Analysis. approaches of hierarchical clustering [13] can be applied to
our feature extraction task. The top-down approach starts with a cluster con-
taining all concepts and splits this cluster into smaller groups. The bottom-up
approach starts with clusters only containing one concept. Those clusters are
merged to larger clusters. Usually the path length between the concepts, the
depth of the concepts, and the local semantic density determine the distance be-
tween ontology concepts [14]. For one bio-ontology at a time, we group concepts,
i. e. terms in the ontology, based on their distance in the ontology graph.

2 Since Level 2 Version 2.
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Information Content. is proposed as another approach to determine similarity
between concepts in ontologies [15,16]: The more information two concepts have
in common, the more similar they are. The information content of a concepts
is dependent on the concepts’s probability. The probability p(c) is calculated by
the frequency freq(c) of the concept c and the count N of all concepts of the
ontology. It is formally defined by Resnik [15]:

p(c) =
freq(c)

N
(1)

If all concepts in an ontology are subordinate to one item, then this item has
the greatest probability of 1, because its classification always applies. However, the
smaller the probability of a concept is, the higher is its information content. The
information content can be calculated by the negative logarithm of the likelihood:

IC(c) = − log2 p(c) (2)

In order to determine the common information content of two concepts, one
considers the deepest element that classifies both concepts together. The infor-
mation content of this element is the degree of mutual information content.

Inter-ontology Links. have been considered by Trißl et al. [17]. They address
the problem of overgeneralization when using parent concepts as representatives
for their child concepts. The challenge of feature extraction in ontologies is to
find summarizing features that do not generalize too strongly. Concepts further
up in the ontology are less specific than concepts further down in the ontology
and thus have less “information content”. Counting the number of references
of a concept and its successor concepts would rank the general concept always
highest, as it has more references. The counting approach does not consider the
loss of specificity when moving up the ontology. Trißl et al. propose a similarity-
based scoring function where a general concept must be supported by more
references to yield a good score of representativeness.

3 Implementation

As a proof of concept, we implemented the four different methods described in
Section 4 in a prototype application, using four different test sets.

3.1 Prototype

The prototype implementation incorporates two major technologies. First, on-
tologies are imported using the OWL API3 and the JFact4 reasoner. The Web
Ontology Language (OWL) is a specification of the World Wide Web Consor-
tium (W3C) to create, publish and to distribute ontologies based on a formal
description language [18]. Most bio-ontologies are available in OWL format.

3 http://owlapi.sourceforge.net/
4 http://jfact.sourceforge.net/

http://owlapi.sourceforge.net/
http://jfact.sourceforge.net/
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Second, all relevant information about the models and the ontologies is stored
and linked in a graph database [19]. The graph database enables us to integrate
the ontologies with the SBML models, which are best represented in a graph-like
structure [20]. We imported the ontology concepts and their taxonomic relation-
ships and counted the number of annotations referring fromamodel to a particular
ontology concept. The storage approach is described in more detail in [21].

3.2 Test Sets

The test sets were built from SBML models in BioModels Database5. We only
chose models from the curated branch of the repository, because these models
are manually checked and fully annotated. The models were selected using our
previously developed retrieval algorithm [6]. The first test set is a thematic set
containing SBML encodings of published cell cycle models. We used the term
“cell cycle” to retrieve a ranked list of relevant models. To exclude possible
false positive search results we manually validated the retrieved models based
on their reference publications, resulting in the 34 given models. Additionally,
two random sets were assembled. Each set contains 34 models (Table 1).

Table 1. List of models contained in the four test sets: selection of published cell
cycle models from BioModels Database; two random sets; and all curated models from
Release 25 of BioModels Database.

Cell Cycle (CC) Random Set 1 (RS1) Random Set 2 (RS2) BioModels Database (BMDB)

BIOMD0000000003 BIOMD0000000007 BIOMD0000000005 curated
BIOMD0000000005 BIOMD0000000015 BIOMD0000000010 branch
BIOMD0000000006 BIOMD0000000016 BIOMD0000000023 BioModels
BIOMD0000000007 BIOMD0000000029 BIOMD0000000048 Database
BIOMD0000000008 BIOMD0000000050 BIOMD0000000080 Release 25
BIOMD0000000056 BIOMD0000000061 BIOMD0000000081 (490 SBML files)
BIOMD0000000064 BIOMD0000000062 BIOMD0000000087
BIOMD0000000069 BIOMD0000000075 BIOMD0000000105
BIOMD0000000087 BIOMD0000000095 BIOMD0000000112
BIOMD0000000107 BIOMD0000000107 BIOMD0000000118
BIOMD0000000109 BIOMD0000000131 BIOMD0000000139
BIOMD0000000110 BIOMD0000000173 BIOMD0000000141
BIOMD0000000111 BIOMD0000000218 BIOMD0000000158
BIOMD0000000144 BIOMD0000000225 BIOMD0000000168
BIOMD0000000150 BIOMD0000000280 BIOMD0000000223
BIOMD0000000168 BIOMD0000000290 BIOMD0000000254
BIOMD0000000169 BIOMD0000000312 BIOMD0000000281
BIOMD0000000181 BIOMD0000000314 BIOMD0000000282
BIOMD0000000186 BIOMD0000000315 BIOMD0000000301
BIOMD0000000187 BIOMD0000000324 BIOMD0000000313
BIOMD0000000193 BIOMD0000000345 BIOMD0000000314
BIOMD0000000194 BIOMD0000000361 BIOMD0000000315
BIOMD0000000195 BIOMD0000000384 BIOMD0000000320
BIOMD0000000196 BIOMD0000000391 BIOMD0000000335
BIOMD0000000207 BIOMD0000000393 BIOMD0000000376
BIOMD0000000208 BIOMD0000000425 BIOMD0000000391
BIOMD0000000216 BIOMD0000000428 BIOMD0000000412
BIOMD0000000228 BIOMD0000000433 BIOMD0000000418
BIOMD0000000242 BIOMD0000000437 BIOMD0000000426
BIOMD0000000265 BIOMD0000000455 BIOMD0000000433
BIOMD0000000297 BIOMD0000000046 BIOMD0000000076
BIOMD0000000318 BIOMD0000000117 BIOMD0000000253
BIOMD0000000370 BIOMD0000000449 BIOMD0000000260
BIOMD0000000409 BIOMD0000000471 BIOMD0000000429

5 ftp://ftp.ebi.ac.uk/pub/databases/biomodels/releases/

2013-06-18/BioModels Database-r25 pub-sbml files.tar.bz2

ftp://ftp.ebi.ac.uk/pub/databases/biomodels/releases/2013-06-18/BioModels_Database-r25_pub-sbml_files.tar.bz2
ftp://ftp.ebi.ac.uk/pub/databases/biomodels/releases/2013-06-18/BioModels_Database-r25_pub-sbml_files.tar.bz2
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4 Results

We argued in the introduction that thematically similar models share similar an-
notations, and that it is possible to extract characteristic features from semantic
annotations, both for specialized sets of models and for arbitrary ones. The fol-
lowing subsections describe four methods that identify characteristic features,
based on the aforementioned feature extraction methods (Section 4.1); discuss
their applicability to feature extraction from models (Section 4.2); show the dis-
tribution of model annotations (Section 4.3); and discuss the application of two
methods to the test sets (Section 4.4). We conclude that it is indeed possible to
identify characteristic features which then help in tasks such as model retrieval,
comparison and clustering.

4.1 Methods for Feature Extractions from Bio-Models

The goal for all feature extraction approaches was to identify a predefined num-
ber of features for all sets of models shown in Table 1. All methods incorporate
the ontology structure to group the concepts within the ontology. Parent con-
cepts represent the group containing their child concepts. Consequently, the de-
veloped methods are only applicable to taxonomy-shaped ontologies. Method 1
depends only on the chosen ontology, but not on the input set of models. All
other methods additionally consider the annotations in the given set of models.

Method 1. is a top-down clustering. To decide on the suitability of a con-
cept for characterization, the probability p of each concept in the ontology is
determined, following Resnik’s definition (Equation 1). The frequency freq(c)
is in our context the number of all concepts that are summarized by a parent
concept c.

Method 2. is a top-down clustering that considers both the ontology structure
and the annotations used in models of the given set. Consequently, the real dis-
tribution of references to ontology concepts used in models is regarded. Selected
features depend on the given set of models. For each concept in the ontology,
we count the number of annotations that refer to it. We call this number entity
frequency. Additionally, we store the sum of a concept’s entity frequency and its
descendants’ entity frequencies as aggregated entity frequency EF . All concepts
with EF > 0 provide the basis for feature extraction. Method 2 re-uses the al-
gorithm of Method 1. The algorithm is adjusted to the dynamic setting by using
the entity frequency metric instead of the probability p(c). To better compare
the balance of the branches, we will normalize EF as entity probability ep(c):

ep(c) =
EF (c)

EF (root)
(3)
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Method 3. is a bottom-up clustering relying on the same input as Method 2.
It also uses the entity probability ep(c) but begins with the individual concepts,
which are gradually merged to form greater clusters. Starting from the concepts
farthest away from the root we try to merge children and parents into groups
that are represented by the parent concept. We continue to merge concepts and
groups until we have the predefined number of groups or until we reach the root.
A group should not be represented by the root-concept for obvious reasons. If in
the end there are too many groups left and no reasonable possibility to merge
them anymore, the groups with a higher value of the aggregated entity frequency
EF are preferred over the groups with less occurrences.

Method 4. is a bottom-up clustering that addresses the problem of overgener-
alization. It uses an adaptation of the scoring function as described in [17]:

ScoreT (c) = IC(c) ·EF (c) (4)

The ScoreT (c) for a grouping represented by the concept c considers the in-
formation content and the aggregated entity frequency EF (c). The information
content IC(c) is calculated depending on the probability (see Equations 1 and
2). A group is formed by merging concepts with the ancestor that reaches the
highest possible score.

4.2 Applicability to Feature Extraction from SBML Models

We tested the applicability of all described methods to the problem of feature
extraction from sets of SBML models. Method 1 calculates the probability to
hit a certain node in an ontology with a model entity. It condenses a given
ontology to a defined number of features, based on the probability of a concept
in the ontology only. Method 1 thus does not depend on model annotation, i. e.
it does not depend on the actual ontology concepts that are referenced in the
model set. Consequently, it does not adapt to the specifics of the corpus under
study. Therefore, Method 1 is only suitable to provide a static set of features,
solely based on the underlying ontology. We thus dismissed Method 1 for the
problem of finding characteristics for arbitrary model sets. However, we find that
Method 1 can give us an idea of the distribution of concepts in bio-ontologies, as
shown in Section 4.3. Method 2 and Method 3 rely on entity probabilities. Our
evaluations show that Method 2 (top-down) and Method 3 (bottom-up) produce
almost identical results. The direction is only relevant in the rare constellation
that two concepts are subsumed to the same score. We thus consider Method 2
for the following evaluations. Method 4 is a dynamic approach that calculates the
score value by entity frequency and information content. Because of the unique
scoring and the absence of splits, Method 4 generally finds a fewer number of
features than the prior methods. However, the method selects specific features
(further down in the ontology tree) that are still representative for the model
sets. In summary, all four methods work and provide new insights.

We consider Method 2 and Method 4 most suitable for our application
scenario.
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4.3 Distribution of SBO Concepts in SBML Models

Using Method 1, it is possible to compare the distributions of concepts in a
bio-ontology (here: SBO) with the frequency of annotations as they occur in all
models from BioModels Database. Figure 1 (top) shows the unequal distributions
of concepts in SBO across the seven top-level branches. The model annotations
linking into SBO are also unbalanced, but differently (Figure 1, bottom). For
example, the branch “physical entity representation” contains only 10% of SBO
concepts, but 47% of the model annotations link to that branch.

Due to the unbalanced nature of SBO, we expect that the characteristic fea-
tures follow the distribution of the model annotations as seen in the lower part
of the figure. Section 4.4 discusses this assumption.

We also investigated for each model annotation at which depth the linked
concepts occur in the ontology tree. This knowledge helps us to decide on how
specific a model annotation is. Figure 2 shows the distribution for model annota-
tions using ChEBI, GO and SBO. Here we plotted the distribution of annotations
for the CC and the BMDB sets. As one would expect, both test sets show nor-
mal distributions. Interestingly, the number of annotations in the CC set that
refer to ChEBI is less than 1% compared to the number of annotations in the
BMDB set. This information helps us later on in Section 4.4 to decide on the
value of the extracted features.

Fig. 1. Overview of the concept distribution in the seven branches of the Systems Biol-
ogy Ontology (SBO). The size of the colored circles visualizes the number of concepts
summarized by each branch. The bottom mirrored image visualizes the distribution
of annotations from all models in the BioModels Database test set (BMDB). Figure
adapted from [3].
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Fig. 2. Distribution of annotation depth. Overview of the distribution of annotated
model entities in relation to the depth of the annotation. The x-axis shows the depth
of the annotated concepts in the corresponding ontology, the y-axis shows the number
of annotated entities on a logarithmic scale (exact values are stated at the bottom of
the figure). The figure legend states the ontology name, the model set (Table 1) and
the average depth.

4.4 Feature Extraction from Arbitrary Model Sets

We hypothesis that the vast property space of a set of models can be condensed
into a smaller, but still descriptive, number of features. To establish such “charac-
teristic features”, we collect the models’ annotations and analyze the semantics
behind the linked ontology terms. Apart from annotations, many other char-
acteristics could also be incorporated when describing an SBML model, such
as properties of the reaction networks or entity names and entity values [22].
However, we focus here on the semantics behind the model elements because
we believe that this information will be most influential for the similarity. In
BioModels Database, models carry between three and 800 annotations, with an
average of 71 annotations per model [19]. As all our methods require setting
a maximum number of features, we asked the question: “How many charac-
teristic features are necessary to describe a model set?”. Here we follow the
Pareto-principle6 and test our methods for upper limits of five and 15 features.
The resulting sets of features for all feature extraction algorithms, models, and
ontologies are shown in Table 2.

6 80/20 rule http://en.wikipedia.org/wiki/Pareto_principle

http://en.wikipedia.org/wiki/Pareto_principle
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Table 2. Extracted features for different test sets, methods and feature size. The upper
Table shows a maximum of five features, the bottom Table 15 features, respectively.
IDs are shortened (e. g. SBO:0000064 is represented by 064) and ordered ascending.
The average depth (avg) of features per ontology is emphasized for the CC and BMDB
test sets.

5 Features Method 2 Method 4
CC RS1 RS2 BMDB CC RS1 RS2 BMDB

33285 24870 24870 24870 22563 22563 26816 24870
33302 33302 33302 33302 33608 26082 33695 26082

ChEBI 33304 33304 33304 33304 33694 33241 47019 33241
35701 33582 33582 33582 37096 33695 61120 33695
36357 36357 36357 36357 37787 61120 63367 61120

avg depth 5.4 4.2 7.2 5.4
8152 3674 3674 3674 22411 3674 3674 3674
9987 8152 5575 8152 30163 5575 9987 5575

GO 44699 9987 8152 9987 51726 6810 22607 9987
65007 44699 9987 44699 65009 9987 43170 43170
71840 51234 44699 65007 71822 43170 71822 71822

avg depth 2 1.8 4.4 2.6
003 064 231 003 009 009 009 003
236 231 245 064 231 064 167 009

SBO 374 240 247 231 252 176 240 064
375 241 291 236 336 252 167
545 545 545 545 240

avg depth 2.4 2 4 3

15 Features Method 2 Method 4
CC RS1 RS2 BMDB CC RS1 RS2 BMDB

16646 18059 18059 18059 22563 22563 24875 24835
24651 24835 24835 24835 33608 24835 25107 24870
25367 24870 24870 24870 33694 25741 26816 26082
25699 25367 25367 25367 37096 26082 33252 33241
25741 25806 26082 26082 37787 33241 33620 33259
26082 26082 33259 33241 33252 33636 33636
33241 26835 33304 33259 33259 33695 33695

ChEBI 33839 33241 33581 33285 33608 35155 35155
35701 33259 33674 33304 33695 35569 35569
36358 33285 33839 33674 35701 47019 35701
36606 33674 35701 33839 61120 61120 47019
51143 33694 37577 35701 63367 63161 61120
63161 35701 50906 50906 64709 63367 63161
63299 51143 51143 51143 63367
64709 64709 64709 64709 64709

avg depth 5.9 4.8 7.2 6.3
3674 3674 3674 3674 216 3674 3674 3674
5575 5575 5575 5575 4693 5575 5834 5575
6807 6807 6807 8152 5575 6810 6826 9987
9056 9056 9056 9987 22411 9987 8943 43170
9058 9058 9058 32501 30163 16088 9987 71822

40007 44237 32501 32502 32268 43170 22607
44237 44238 44237 40007 45750 45750 43170

GO 44238 44699 44238 44699 51726 71822
44699 44710 44699 48511 65009
50896 48511 44710 50896 71822
51234 50896 50896 51234
65007 51234 51234 51704
71704 65007 65007 65007
71840 71704 71704 71840

71840 71840
avg depth 2.3 1.8 4.1 2.6

009 064 016 003 009 009 009 003
177 177 017 064 231 064 167 009
179 179 046 241 252 176 240 064
180 180 153 245 336 252 167
181 182 156 247 240
182 185 231 253
205 205 241 285

SBO 245 241 245 290
253 247 247 291
290 250 253 374
291 253 290 375
308 285 291 405
342 290 308 409
360 377 360 412
374 545 380 545

avg depth 4.6 3.3 4 3
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Specificity of Selected Ontology Concepts. Table 2 shows the average depth
of concepts in all three ontologies for all identified features in the CC and BMDB
sets. Additionally, Figure 2 contains the average depth of annotation for the CC
and BMDB sets before applying the feature extraction methods. The data con-
firms that the average depth of annotations decreases for Methods 2 and 4 (for
all three ontologies and both model sets). This means that the selected concepts
are higher up in the ontology, and thus more generic. This behavior is expected
as the feature extraction process also involves generalization. However, the fea-
tures extracted by Method 4 are more specific than the features extracted by
Method 2. This is in accordance with the design of Method 4 to prevent over-
generalization. Also, the average annotation depth for the CC set is higher than
for the corresponding BMDB set. This supports our assumption that themat-
ically similar models share more annotations, and consequently the extracted
features are more specific. For example, the concepts that were selected from
ChEBI by Method 2 with a maximum of 15 features for the CC set have an
average annotation depth of 5.9. In contrast, the concepts that were selected for
the BMDB set only have an average depth of 4.8. According to our obtained
data we can say that Method 4, in general, provides features that correspond
to deeper concepts in the ontology than the features obtained from Method 2.
We can conclude from our test data that the depth of chosen concepts decreases
with the increased randomness in the sets of models. This is not unexpected,
as a broader data basis should not be characterizable by very specific ontology
concepts. Rather, an arbitrary model set should cover many different semantic
concepts, leading to more generic features beeing extracted. This behavior is
also reflected in our data. In summary, both methods extract features that are
specific to the model set. In addition, features extracted by Method 4 are more
specific than those extracted by Method 2. Features selected for the CC set are
more specific as the models share many annotations.

Distinctness of Feature Sets. Another important question is how distinct the
obtained features are for our test sets. If the methods retrieved similar concepts
for the four test sets, then the extracted features could not be regarded specific
to the set of models. Consequently, we could not assume to be able to improve
the comparison of model sets based on these features. We thus were interested
in the overlap of concepts between the different characteristic features that we
calculated from Method 2 and Method 4. Ideally, there is almost no overlap of
features selected for the CC set with any other selected set, whereas an overlap
between BMDB and the random sets can be expected. Our results are shown in
Figure 3. A good result is achieved for Method 4 using 15 features and GO. Here,
the cell cycle features have almost no overlap. The result achieved for Method 2
using 15 features and GO is not satisfiable. Here, the cell cycle features largely
overlap with at least two other sets. However, the Venn diagrams, in general,
confirm that both methods determine features that are specific to the model sets.
They contain higher numbers of overlapping features at the intersection between
arbitrary sets and very few overlapping features at the intersection between the
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M2/F5 M4/F5 M2/F15 M4/F15

SBO

GO

ChEBI

Fig. 3. Visualization of feature overlaps of the four test sets. Each diagram shows the
overlap of the results of one ontology (SBO, GO or ChEBI), method (2 or 4) and
number of features (5 or 15)

CC and the BMDB sets. This is particularly visible for the results obtained from
Method 4.

Specificity of Extracted Features. We were also interested in how char-
acteristic the sets of extracted features are for a given set of models. We first
calculate the similarity of two concepts within the same ontology, as described
by Li et al. [14]:

S(c1, c2) = e−αl · e
βh − e−βh

eβh + e−βh
(5)

The variable h is the depth of the least common subsumer of the concepts
c1 and c2, and the variable l is the length of the shortest path between both
concepts. Following [14], the parameters are set to α = 0.2 and β = 0.6. We
calculate this similarity value for each possible combination of features from two
sets of models.

Afterwards we apply an adaptation of the Hungarian method [23] to the
matrix resulting from the above calculations. The Hungarian method, a solution
for the assignment problem, assigns pairs of features, so that a global maximum
similarity is ensured. Based on this similarity of features we then calculate the
total similarity of two sets of features, which corresponds to the similarity of the
associated sets of models. The results are shown in Table 3. Desirable are low
similarities for BMDB vs CC as well as CC vs RS1. As CC is a thematic set, its
extracted features should differ from the features extracted from the BMDB and
arbitrary model sets. Higher similarity is expected for BMDB vs RS1, as both
sets represent a wide range of model topics. The results in Table 3 reflect our
expectations. Particularly, the similarity values for Method 4 using 15 features
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Table 3. Similarity between two model sets, calculated based on the similarity of their
characteristic features

model sets ontology method/number of features
M2 F5 M4 F5 M2 F15 M4 F15

BMDB vs CC ChEBI 0.82 0.57 0.75 0.20
GO 0.80 0.40 0.71 0.30
SBO 0.75 0.44 0.50 0.43

BMDB vs RS1 ChEBI 1.00 0.94 0.91 0.71
GO 0.87 0.84 0.67 0.59
SBO 0.75 0.65 0.63 0.65

CC vs RS1 ChEBI 0.82 0.63 0.77 0.29
GO 0.67 0.25 0.90 0.36
SBO 0.50 0.63 0.70 0.63

clearly distinguish the extracted features of two sets. Method 2 using 5 features
still shows the desired result, but due to the limited number of features the
selected ones are more general and thus not as distinguishable. Even though
results of Method 2 show the expected behaviour, we conclude that the results
of Method 4 are superior.

Distribution of SBO Concepts. Finally, we investigate the distribution of the
selected SBO features for the BMDB set with respect to the SBO top level en-
tries. As discussed earlier, Figure 1 shows a mismatch between available concepts
and used concepts. We assume a similar distribution of concepts after applying
our feature extraction methods. Indeed, after applying Method 4, the selected
features show a distribution in SBO that is similar to the one in Figure 1: 66.6%
SBO:236, 6.6% SBO:003, 13.3% SBO:231, 6.6% SBO:064, and 6.6% SBO:545
(see also Table 2, Method 4, SBO, 15 features).

5 Summary

This paper presents and discusses methods for the annotation-based extraction
of characteristic features from sets of SBML models. The methods consider clus-
tering and text classification techniques to extract characterizing features for sets
of annotated computational models in biology. Annotation-based feature extrac-
tion enables the comparison of sets of models, as opposed to existing methods
for model-to-keyword comparison, or model-to-model comparison.

We evaluated four different methods for feature extraction and conclude that
Method 4 is the most suitable. This method considers both, the semantic annota-
tions in a set of models, and the information content of the referenced ontologies.
We showed that these features are specific and distinct. At the same time the
features are not overgeneralized. We also showed how to assign a similarity value
to sets of models, based on the similarity of the extracted features. In summary,
our expectations have been met: A thematic set of models, for example cell cycle
models, can computationally be distinguished from an arbitrary set of models.

Our methods are format agnostic and expandable. They can be adapted to
other model representation formats such as CellML [24] or NeuroML [25]. Inter-
estingly, these extensions enable a comparison between sets of models of arbitrary
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formats. It is also possible to incorporate further bio-ontologies, e. g. BRENDA
[26]. For the near future, we plan to integrate Method 4 in our system for ranked
model retrieval [6]. We wish to test the implications of feature extraction on
model comparison and, in particular, model retrieval. We will also incorporate a
larger set of ontologies into our system and ultimately in the process of feature
extraction.
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Abstract. A large number of life science ontologies has been developed
to support different application scenarios such as gene annotation or
functional analysis. The continuous accumulation of new insights and
knowledge affects specific portions in ontologies and thus leads to their
adaptation. Therefore, it is valuable to study which ontology parts have
been extensively modified or remained unchanged. Users can monitor
the evolution of an ontology to improve its further development or ap-
ply the knowledge in their applications. Here we present REX (Region
Evolution Explorer) a web-based system for exploring the evolution of
ontology parts (regions). REX provides an interactive and user-friendly
interface to identify (un)stable regions in large life science ontologies and
is available at http://www.izbi.de/rex.

Keywords: ontologies, ontology evolution, graph vizualisation.

1 Introduction and Background

In recent years ontologies have become increasingly important for annotating,
sharing and analyzing data in the life sciences [1,8]. The heavy usage of ontolo-
gies leads to a steady modification of their content [7,9]. In particular, ontolo-
gies are adapted to incorporate new knowledge, eliminate initial design errors or
achieve changed requirements. Tools like Protégé [16] support the development
and change of ontologies. This process is usually distributed since especially large
ontologies can not be maintained by single developers, such that collaborative
work is performed [3,16]. Typically, the overall development of an ontology is co-
ordinated by a project leader or consortium, and multiple developers contribute
knowledge in their field of expertise.

Due to the ontology’s size and complexity, the problem arises that coordi-
nators, developers and users want to know whether specific parts (regions) of a
large ontology have changed or not. For instance, if a user considers the anatomy
part of the NCI Thesaurus (NCIT) [13] for annotating local data such as radi-
ology pictures, she would like to know how this part has evolved recently, i.e., is
the part unstable or stable. Unstable regions have been in the focus of develop-
ment and underlay many modifications. By contrast, a stable region might be
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already completed or was of low interest during recent ontology development.
Project coordinators are interested in the evolution of different ontology parts
(1) to see how work has progressed and (2) to detect potential for future develop-
ment. Moreover ontology-based algorithms or applications might be affected by
ontology changes. For instance, if results of a gene set enrichment analysis [15]
are located in a strongly evolving ontology part, it should be re-done based on
the newest ontology version to see how results change [2]. By contrast, results
located within stable ontology parts are likely to remain unchanged.

Currently, life science ontologies can be accessed through platforms like Bio-
Portal [10] and OBO Foundry [14]. Although it is possible to retrieve different
versions of an ontology, such platforms rarely provide information about evo-
lution, i.e., users have the problem to figure out how an ontology has evolved
compared to their version in use. Recently, some web tools offer access to infor-
mation about the evolution of the Gene Ontology (GO). GOChase [12] allows to
study the history of individual GO concepts and Park et al. [11] propose graph-
based visualization methods to view modified GO terms. In own previous work
we designed the OnEX web application [6] for quantitative and concept-based
evolution analyses in life science ontologies. Our tool CODEX [5] can be used to
determine a diff between two ontology versions covering complex changes (e.g.,
concept merge or split). For a general overview on ontology and schema evolution
including diff computation we refer to [7]. In summary, currently available tools
lack the functionality to analyze and compare evolution in different ontology
parts especially for large ontologies with several version releases. In own pre-
vious work [4] we already proposed an algorithm to detect (un)stable ontology
regions for an arbitrary number of ontology versions. However, the algorithm is
only applicable offline, i.e., the research community can not make use of it.

We therefore present the novel web application REX (Region Evolution
Explorer) based on the region discovery algorithm [4]. REX can be used (1) to
determine differently changing regions for periodically updated ontologies, and
(2) to interactively explore the change intensity of those regions. REX provides a
comparative trend analysis such that users and developers can monitor the long-
term evolution for their regions of interest, e.g., to track the work or coordinate
future development. REX is online available at http://www.izbi.de/rex.

2 Region Discovery Method

The region discovery method proposed in [4] enables the detection of changing
and stable ontology regions. The basic idea is to compute change intensities for
regions based on changes between several succeeding versions of an ontology
within a specific time interval. The algorithm consists of four main steps: (1)
change computation, (2) cost propagation, (3) cost transfer, and (4) region dis-
covery. It first computes differences between two versions to determine changes.
It then propagates change costs within the is-a hierarchy of the ontology and
transfers these costs from the first to the last considered version. Based on com-
puted change intensities we can discover differently evolving ontology regions.
First, we briefly describe the method for two input versions Oold and Onew.

http://www.izbi.de/rex
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Table 1. Change operations and change cost model used in REX

Change operation Description Change costs
addC addition of a new concept 1
delC deletion of a concept 2
addR addition of a new relationship 0.5/0.5
delR deletion of a relationship 1.0/1.0
addA addition of a new attribute 0.5
delA deletion of an attribute 0.5
chgAttValue modification / change of an attribute value 0.5

Attributes

Relationships

Concepts

In general, ontology content can be added (addition), removed (deletion) or
modified (update). Here we distinguish between the basic change operations for
ontology concepts, their attributes and relationships between concepts listed in
Table 1. Our region discovery method assigns so-called local costs lc(c) to con-
cepts to cover the impact of changes that directly influence a concept c (see
change costs in Table 1). For instance, we can assign higher costs to deletions
since they might have a higher impact on dependent applications than additions.
Note, that the cost model can be adapted according to the application scenario.
Additions are registered in the new version while deletions are covered in the
old version. Moreover, the assignment depends on which ontology element has
changed. Here we assign costs from changes on a concept or its attributes to the
concept itself. Costs for relationships are split and assigned to the source and
target concept of the relationship, respectively. The local costs are then propa-
gated along is-a paths upwards in the ontology hierarchy to obtain aggregated
costs. Due to multi-inheritance we may need to split costs during propagation.
We therefore determine aggregated costs ac(c) for a concept c as follows:

ac(c) =
∑

c′∈children(c)
ac(c′)

|parents(c′)| + lc(c)

We thus ensure that the root concept(s) of the ontology contain the overall sum
of all assigned local costs. Fig. 1 (left) shows an exemplary anatomy ontology
with local and aggregated costs. For instance, the aggregated costs of ’organ’
(ac(′organ′) = 6) are computed based on the aggregated costs of its children
ac(′lung′) = 4 and ac(′tonsil′) = 2 as well as its own local costs lc(′organ′) = 0.

In order to determine (un)stable regions in the new version, we need to transfer
aggregated costs from Oold into Onew . We therefore sum up aggregated costs

is-a 
region abs_size abs_costs avg_costs 
organ 7 6 0.86 
lung 3 4 1.33 
tonsil 3 2 0.67 

Region Measures organ 

lung 

right 
lung 

left 
lung 

tonsil 

lingual 
tonsil 

palatine 
tonsil 

lc(c) 
ac(c) 

2 2 2 2 

0 4 

0 0 1 1 

1 2 

0 6 

Fig. 1. Example anatomy ontology with regions and local (lc(c)) and aggregated (ac(c))
concept costs (left). Region measures for example ontology (right).
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which belong to the same concept in the old/new version. The new ontology
version with aggregated costs is used for further processing. The two version
method is generalized for multiple released versions O1, . . . , On by executing it
n− 1 times so that we successively determine aggregated costs (for each version
change Oi−1 �→ Oi) and transfer them to the newest version On. In On we can
apply different measures to detect ontology regions and their change intensities.
For further details about the underlying algorithms we refer to [4].

An ontology region OR consists of an ontology concept (region root rc) and
its is-a subgraph, i.e. it covers all leaf and inner concept changes within this
region. For our example in Fig. 1 we can consider the regions ’lung’ and ’tonsil’
each consisting of three concepts. Note that the complete ontology can also be
regarded as a region defined by the ontology root ’organ’. So far, REX provides
a set of measures to describe the change intensity of ontology regions. For each
OR one can determine its absolute size (abs size(OR)) w.r.t. the number of
concepts. Absolute change costs of an OR (abs costs(OR)) are represented by
the aggregated costs of its root ac(rc). The average change costs per concept
in OR can be computed as the fraction of absolute change costs and the region

size: avg costs(OR) = abs costs(OR)
abs size(OR) . Applying these measures to our example

results in the values displayed in Fig. 1 (right). The ’lung’ region changed more
intensively (avg costs(′lung′) ≈ 1.33) compared to ’tonsil’ (avg costs(′tonsil′)
≈ 0.67). The overall change intensity of the ontology is 6

7 ≈ 0.86.

Trend Discovery for Regions. Using the region discovery method one can
determine the most (un)stable regions for a specific time interval. To better
monitor region changes over long periods of time and to figure out trends in
their evolution, we propose a further method for trend discovery based on sliding
windows. The overall procedure trendDiscovery looks as follows:

Algorithm 1. trendDiscovery

Input: time interval (tstart, tend), ontology O, ontology region of interest
OR ∈ O, change costs σ, window size ω, step width Δ

Output: time-based stability values measuredCosts
1 t ← tstart; measuredCosts ← ∅;
2 while t+ ω < tend do
3 versions ← getReleasedVersions(O, (t− ω, t));
4 latestV ersion ← discoverRegions(versions, σ);
5 regionCosts ← getStabilityValuesForRegion(OR, latestV ersion);
6 measuredCosts.put((t, regionCosts));
7 t ← t+Δ;

8 return measuredCosts;

The algorithm works on an ontology O, a time interval (tstart, tend) and an
ontology region of interest OR to be monitored. We further use a sliding window
of size ω, a step width Δ and change costs σ. In particular, we successively shift
the window beginning at tstart − ω over the time interval until we reach its end
tend. In each step we first determine the released ontology versions within the
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Fig. 2. Three-layered architecture of REX

window (line 3). We then calculate and save the costs (e.g., avg costs) for OR by
calling the region discovery algorithm (discoverRegions) for the versions within
ω. We thus generate a time-based map (line 6) containing information about the
change intensity of OR at specific points in time in the defined window. The
results are visualized for end users in the Trend Analysis component of REX.

3 Infrastructure and Application

REX is based on a three-layered architecture displayed in Fig. 2. The back-end
consists of the OnEX repository [6] which currently provides access to up to
1,000 versions of 16 popular life science ontologies. Note that it supports the
import of ontologies in different formats such as OWL and OBO. Users can an-
alyze integrated versions with the offered facilities of REX. The server layer is
implemented in Java and realizes different services to access ontology versions
in OnEX. Moreover, it provides services to calculate the region measures and
to perform trend and quantitative analyses. Every service is encapsulated in its
own module, such that it is possible to change the region discovery algorithm
independently of the other modules. Results are transformed such that the ap-
plication can visualize ontologies and changing regions in graphs. Based on the
existing services we can create further interfaces like web services for program-
matic access. The front-end is a platform-independent web application based on
the Google Web Toolkit (GWT)1 and the graph library InfoVis2. In the following
we discuss the analysis facilities of REX, namely the Structural Analysis, Trend
Analysis and Quantitative Change Analysis in more detail.

Structural Analysis. The structural analysis component represents the evo-
lution of regions in an ontology for a specified time interval as a graph (Fig. 3).
The component is divided into a Browser View as well as a table to search and
filter results (Table View). First the user needs to specify the ontology name

1 Google Web Toolkit: http://developers.google.com/web-toolkit/
2 InfoVis Toolkit: http://philogb.github.io/jit/

http://developers.google.com/web-toolkit/
http://philogb.github.io/jit/
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Input 

Table View 

Browser View Change History 

Fig. 3. Structural Analysis component

and the time period to review in the Input form. The system then performs
the region discovery algorithms and generates a graph to visualize the results
(Browser View). Each node in the graph represents an ontology concept, is-a
relationships are displayed as edges between the nodes. The layout is circular
and displays a concept and its near neighborhood, i.e. its descendants and par-
ent nodes (either with or without labels). Users can easily identify interesting
sub regions by selecting a concept in the graph (Browser View) or in the Table
View. This concept is then shown as the central node in the Browser View. It
is possible to navigate in both directions through the ontology. For instance, if
one is interested in a specific sub region and its content, one clicks on the node
and the graph will display the sub region in more detail. In contrast, one can
also navigate to a more general concept (surrounded by blue circles) to see sib-
ling regions of the current one. The colors signal the measured change intensity
(avg costs) of a region. Red stays for high change intensity whereby green is
used to mark stable regions. Thus, users can easily figure out where (un)stable
regions are located. We provide two coloring schemes: (1) interval-based group-
ing or (2) equal distribution between min/max avg costs. When clicking on a
specific concept in the graph one can get further information like the accession
number, concept name/label or the measured avg costs in a pop up window.

In general the number of concepts and relationships in an ontology is very
high. Thus, it is difficult to recognize interesting regions only by browsing through
the graph especially for large ontologies. Moreover, users may be interested in
the change intensity of specific regions. The Table View therefore allows users to
filter and sort ontology regions by their accession number, name and avg costs.
In particular, search criteria can be specified in the head of the table to find re-
gions of interest. For instance, one can filter out all regions in the Adult Mouse
Anatomy Ontology containing the name ’heart’. Users can simply select their
region of interest in the table and move to the Browser View for its visualiza-
tion. To get a more detailed view of occurred changes, users can request the local
Change History of a selected concept at the bottom of the table.

Quantitative Change Analysis. To get information about how many changes
occurred in an ontology for a specific time interval REX offers the quantitative
change analysis component (Fig. 4 left). Users can generate diagrams to see
the differences between released ontology versions in statistical (quantitative)
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Quantitative Change Analysis Trend Analysis 

added concepts 

deleted concepts 

Fig. 4. Trend and Quantitative Change Analysis components

form, i.e., we count and visualize how many changes (addC, delC, addR, delR)
occurred. In particular, users can display the number of changes in one ontology
for a specific time interval, e.g., GO Biological Processes in 2011. Moreover, one
can compare the evolution of two different ontologies for a specified time interval
or compare two different time intervals for the same ontology. Users can thus
identify interesting ontologies and time periods for later region analyses.

Trend Analysis. The trend analysis component can be used to study and
compare the long-term evolution of selected regions (Fig. 4 right). Users first need
to specify the ontology, the time interval (first and last version) and the window
size and step width (number of versions). Next they are able to select regions
of their interest either by searching the respective accession number / concept
name or by choosing from top-level concepts of the ontology. REX executes the
proposed trendDiscovery algorithm to measure the avg costs for the selected
regions at different points in time. The results are converted into a line chart
which displays the trend of the measured avg costs for each region over time.
Users are thus able to compare the change intensity for different regions of
interest within one diagram. Of course, the interpretation of trend results is
up to the user and depends on the application scenario. Some regions may be
of high research interest and are thus continuously adapted (constantly high
avg costs). Other regions have been adapted heavily in the past and become
stable after a while. By contrast, some long-term stable regions might have just
been of low interest in the past and need future development.

4 Conclusion and Future Work

REX provides interactive access to information about the evolution of life science
ontologies. Users can explore (un)stable ontology regions by different workflows.
The knowledge about changing ontology regions can be used to support ontology-
based algorithms and analysis. Furthermore, the development of large life science
ontologies can be monitored with REX, i.e., developers and project coordinators
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can inform themselves about ongoing work in different ontology parts. For future,
work we plan to extend REX such that users are able to perform region analysis
on their individual ontologies and can apply different cost models. We further
like to build a web service interface such that algorithms can directly access the
region analysis algorithms.

Acknowledgment. This work is funded by the European Social Fund and the
Free State of Saxony (E-Science Network Sachsen).
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Abstract. To successfully integrate biomedical data it is crucial to es-
tablish meaningful relationships between the ontologies used to annotate
this data. Recent developments in ontology alignment techniques, includ-
ing our AgreementMakerLight system, have been successful in matching
very large biomedical ontologies. However the visualization of these align-
ments is still a challenge.

We have developed a graphical user interface for AgreementMak-
erLight that follows its core focus on computational efficiency and the
handling of very large ontologies. It allows non-expert users to easily
align biomedical ontologies, offering a wide selection of matching strate-
gies and algorithms, with a particular focus on the use of external back-
ground knowledge. The visualization of the resulting alignment is based
on linked subgraphs which are generated according to search queries
over the full graph composed by the matched ontologies and the map-
pings between them. This strategy decreases the need for computational
resources and improves the visualization experience, by letting the user
focus on selected areas of the alignment.

Keywords: Ontology Matching, Ontology Alignment, Alignment Visu-
alization, Large Ontologies, Biomedical Ontologies.

1 Introduction

Biomedical ontologies and controlled vocabularies are now a widely used tech-
nology to support the annotation of life sciences datasets. However, only by
establishing meaningful connections across the concepts from various ontolo-
gies can we fully explore the knowledge they contain. Ontology matching tech-
niques can accomplish this since they create mappings (i.e., correspondences)
between semantically related entities belonging to different ontologies [1]. On-
tology matching systems usually employ several ontology matching techniques
both at the element and structural level which are then combined to produce a
final alignment.

There are several challenges in matching biomedical ontologies, which arise
from their characteristics. For instance, one of the main components of biomed-
ical ontologies is their textual information, in the form of labels, synonyms and
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definitions. Successful ontology matching systems need to be able to handle this
richness, and also the inherent complexity of biomedical terminology. Further-
more, the domains covered by biomedical ontologies are frequently very large
and detailed, with many biomedical ontologies possessing tens of thousands of
classes dedicated to highly specific areas such as genomics, phenotypes or cellular
structures. However, there are also opportunities within the biomedical domain
such as the abundance of scientific literature or the availability of many related
biomedical ontologies. Although there is a community effort to ensure orthog-
onality between ontologies as much as possible [2], there is still a significant
overlap between many of them. In a recent visualization effort of the mappings
between BioPortal [3] ontologies it has been shown that there are 254 ontolo-
gies with at least one mapping to another ontology. These mappings have been
created through strict string matching and thus represent only a fraction of the
true overlap between ontologies. In fact, at the time of writing this paper there
were 373 ontologies in BioPortal and about 13 million mappings.

In order to address these issues, recent ontology matching systems have begun
to include more elaborate strategies, such as creating highly efficient data struc-
tures or modularization approaches to handle very large ontologies [4,5], tailoring
of string similarity metrics [6] and exploration of different synonym types [7],
ontology repair techniques to ensure the coherence of the alignments [5,4], and
the use of external resources and ontologies to increase the amount of available
knowledge to support matching [5,8].

An important feature of ontology matching systems is the ability to visualize
the alignments between the ontologies, particularly in the biomedical domain
where many of the end-users are not computer science experts. There are two
main purposes in alignment visualization: supporting the navigation and inspec-
tion of mappings; and supporting interactive matching, whereby users can mark
mappings as correct or incorrect, and even add new mappings [9,4,10]. These
tasks are usually supported by two visual paradigms: trees and graphs [11]. Trees
are particularly intuitive representations of hierarchical relations, however they
are unable to represent multiple inheritance, and have to resort to duplication
of classes, distorting the model. Graphs can handle both multiple inheritance
and non-hierarchical relations, but can be less intuitive to use, particularly if
the number of nodes shown is high. A recent evaluation of tree vs. graph based
visualization has investigated the impact of individual ontology representation
on the task of manual mapping evaluation [12]. In this study ontologies were
represented either as trees or graphs and testers were given a list of mappings to
evaluate. The results showed that trees are better suited to support list-checking
activities, such as the evaluation of mappings, but graphs are more suitable to
provide an overview, and thus better at supporting the creation of new mappings.
Furthermore, for very large ontologies, with great depth and a large number of
descendants per node, users struggle to preserve a mental model of the hierarchy
when using trees, since the number of expandable nodes can be overwhelming.
Graphs can partially circumvent this by allowing users to pan to areas of interest,
however visualization of a large number of nodes is also an issue.
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However, ontology alignment visualization systems should consider not only
how to represent the ontologies, but also the mappings between them. Further-
more, there are additional challenges posed by biomedical ontologies: (1) biomed-
ical ontologies are typically large, sometimes with tens of thousands of classes;
(2) many biomedical ontologies can have multiple inheritance or possess more
than one kind of hierarchical relation (e.g., a taxonomy as well as a partonomy);
and (3) non-hierarchical relations are also common, e.g. regulates, has substrate,
has role, participates in, etc. However, the matching of very large ontologies has
only recently begun to be addressed by systems, and as a result current ontol-
ogy matching systems with visualization capabilities are not well suited to either
match or visualize very large ontologies with these characteristics.

In previous work we have developed a novel ontology matching system, Agree-
mentMakerLight [5], derived from AgreementMaker, but specifically tailored to
match very large ontologies. Here we present a graphical user interface for Agree-
mentMakerLight, which supports the matching of large ontologies with several
distinct parameters, including the use of background knowledge. The GUI also
supports a graph-based visualization of mappings, that highlights the integration
of both ontologies in a modular fashion.

2 Related Work

Most ontology alignment visualization systems display ontologies as trees, which
the user can navigate, while mappings are shown as lines between the two on-
tologies [13,14] or displayed in a table [15]. We have surveyed three freely and
currently available ontology matching systems with visualization capabilities:
AgreementMaker, COMA 3.0 and Optima.

AgreementMaker [13] represents ontologies as indented trees on side by side
scroll-enabled panes. A mapping between two classes is represented by a straight
line indicating the similarity score of the mapping. There is support for the visu-
alization of several alignments over the same ontologies, using different colored
lines for mappings of different alignments. When clicking on a node, users can
see the properties of the corresponding class in a separate pane. However, Agree-
mentMaker is unable to handle ontologies with tens of thousands of classes.

COMA 3.0 Community Edition [14] depicts ontologies as indented graphs
in side-by-side scroll-enabled panels. When a node is clicked, the main label is
shown along with the path to the root node in the form of coma separated labels.
Mappings are colored according to their score. It is possible to compute different
matching workflows over the same input ontologies, but you can only visualize
one at a time. Different matching results can be merged or intersected, and their
differences can be also be calculated. Furthermore, the tool is not optimized to
handle large ontologies. Neither COMA 3.0 nor AgreementMaker allow for the
visualization of non-hierarchical relations, nor of multiple inheritance.

Optima [16] displays each ontology as a graph in a window without zoom capa-
bilities, which severely limits its usability for large ontologies, since all nodes need
to fit in a constrained area. Mapped nodes are highlighted, and when clicked,
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their label is shown and when double-clicked the matched node label in the
other ontology appears. There is no graphical representation of mappings, nor
any listing. Furthermore, the matching technique employed by Optima is also
unsuitable to handle large ontologies.

3 AgreementMakerLight

3.1 Framework

TheAgreementMakerLight (AML) is a lightweight framework for ontologymatch-
ing based on the AgreementMaker system, which has been optimized to handle the
matching of larger ontologies. Like AgreementMaker, the AML ontology match-
ing module was designed with flexibility and extensibility in mind, and thus allows
for the inclusion of virtually any matching algorithm. A key component of AML is
the use of background knowledge sources which have been shown to improve the
alignment of biomedical ontologies, as evidenced by AML achieving top results in
several OAEI 2013 tracks [17].

3.2 Graphical User Interface

The graphical user interface of AML is divided in two areas: a Resource Panel
where information about the ontologies and the alignment is shown (e.g.: num-
ber of classes, properties, mappings and performance metrics against a reference
alignment), and a Mapping Viewer dedicated to the graph visualization of on-
tologies and mappings (Figure 1).

AML-GUI allows the user to load ontologies in OWL or RDFS and then opt
between loading a precomputed alignment (encoded in RDF or as a simple tab-
separated text file) and matching the ontologies. There are three pre-defined
matchers to choose from: a simple Lexical Matcher, the AML matcher and the
OAEI 2013 matcher. The Lexical Matcher is based on name and synonym string
identity and is very efficient and generally precise. The AML matcher is an
ensemble of string and lexical matching algorithms, with the option to choose
several background knowledge sources to use in the matching process (see Figure
2). The OAEI 2013 matcher corresponds to the AML configuration used in OAEI
2013. All matchers have the option to set a cardinality for the alignment (strict
one-to-one, permissive one-to-one and many-to-many), and also a threshold to
select mappings to include in the final alignment. Both of the latter matchers
have the option to perform a repair of the final alignment [18]. Finally, the user
can also evaluate the produced alignment against a reference standard, and save
it either in RDF or as a tab-separated text file. Once an alignment has been
loaded or computed, the user can access a mapping in three different ways: by
iterating over all mappings, via the next/previous mapping option; by selecting
a mapping from the list of all mappings; or by querying the alignment for a
search term contained in the name of a participant ontology class. This search
is supported by an auto-complete function.
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Fig. 1. Visualization of a mapping between anatomical ontologies in AML-GUI

4 Visualizing Ontology Alignments

AML uses a graph to represent the mapped classes and their neighborhood, which
is implemented using the Gephi API [19]. Once the user has selected a mapping to
visualize, she can further specify the characteristics of its graph representation, by
indicating whether the graph should show ancestor and descendant classes, and
the distance between the classes involved in the selected mapping and their ances-
tors/descendants (from one to a maximum of five edges of distance). By default,
AML shows both ancestors and descendants at a distance of two. Both ontolo-
gies are represented in the same graph, nodes and edges of the source ontology in
red and of the target ontology in blue. Nodes are labeled with the classes main la-
bels or names. Ontology edges are labeled with their relation type, except in the
case of subsumption relations, which have no label. Directed edges are represented
as arrows. Mappings are represented as yellow edges and labeled with their con-
fidence score. Equivalence mappings are represented as double-edged arrows. All
mappings between the ontology classes in the selected neighborhood are shown.
The user can pan and zoom the graph, and at any time change the visualization
options for the selected mapping, generating a new graph.

The following example focuses on the mapping between two classes of the
Mouse and Human anatomy ontologies used in OAEI: “head/neck muscle” and
“Head and Neck Muscle”. Figure 3 shows the representation of the mapping in
AgreementMaker. Mapped classes are shown as colored nodes, and the mapping
as a line between nodes. It is possible to see the direct descendants and ancestors
of one of the mapped classes, which are also colored when they are mapped.
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Fig. 2. Configuration window for the AML matcher

Fig. 3. Visualization of a mapping between anatomical ontologies in AgreementMaker

Fig. 4. Detail of a mapping between partonomy classes in anatomical ontologies in
AML-GUI

However, it is not possible to see the neighborhood classes for both ontologies at
the same time, and likewise it is not possible to see the mappings in this area.

Figure 1 shows the same mapping in AML, with default settings. In the shown
ontology subgraphs, there are four other mappings, both between ancestors and
descendants of the selected classes. The graph representation allows the observa-
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tion of several characteristics of the neighboring region of the mapping which are
not apparent in the AgreementMaker visualization: the Human Anatomy ontol-
ogy (in blue) contains a considerably larger number of classes in the neighbor-
hood, half of the Mouse Anatomy classes can be mapped to a Human Anatomy
class, and one of the mappings is established between classes that are part of the
partonomy hierarchy (see Figure 4). This information can be valuable not only
to evaluate the correctness of mappings but also to shed light on how regions
around mapped classes are modelled.

5 Conclusions

Visualizing ontology alignments is a key feature to support user validation. In
AML we focused on addressing the challenges in visualizing biomedical ontolo-
gies alignments, particularly the large size of the ontologies and the existence of
several types of relations between classes. Instead of allowing the visualization
of full ontologies, which would be impractical in the case of very large ontolo-
gies, we have chosen to focus our visualization on the mappings. By selecting
a particular mapping, users are shown a single graph composed of modules of
both ontologies connected through their mappings. With this approach, we hope
to better support the understanding of related areas within aligned ontologies,
contrasting with the currently common approach of using linked trees in sepa-
rate panes. Furthermore, by being graph-based, AML allows the visualization
of several types of relations between ontology classes, including the cases of
multiple-inheritance, which can be crucial to evaluate the validity of mappings.

As future work, we plan to include dynamic graphs, graph color customiza-
tion, and inspection of classes properties. AML is open-source and currently
available both as a standalone executable jar file and as an Eclipse project at
https://github.com/AgreementMakerLight/AML-Project.
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Abstract. The complexity and scale of the knowledge in the biomedi-
cal domain has motivated research work towards mining heterogeneous
data from structured and unstructured knowledge bases. Towards this
direction, it is necessary to combine facts in order to formulate hypothe-
ses or draw conclusions about the domain concepts. In this work we
attempt to address this problem by using indirect knowledge connect-
ing two concepts in a graph to identify hidden relations between them.
The graph represents concepts as vertices and relations as edges, stem-
ming from structured (ontologies) and unstructured (text) data. In this
graph we attempt to mine path patterns which potentially characterize
a biomedical relation. For our experimental evaluation we focus on two
frequent relations, namely “has target”, and “may treat”. Our results
suggest that relation discovery using indirect knowledge is possible, with
an AUC that can reach up to 0.8. Finally, analysis of the results indi-
cates that the models can successfully learn expressive path patterns for
the examined relations.

Keywords: Relation Discovery, Biomedical Concepts, Text Mining.

1 Introduction

Knowledge discovery in the biomedical domain has been a subject of study for
many years; yet, the increasing complexity of the task due to the size and num-
ber of biomedical resources has been motivating the work in the area towards
efficient, scalable and interpretable, in terms of results, methodologies. Two ex-
amples of how fast the biomedical resources grow are illustrated in Figure 1.

Besides the obstacles that the scale of the data brings into the task of ex-
tracting information, combining knowledge together to cover as many aspects as
possible is also an issue. For example, typical information extraction techniques
focusing on drugs aim at extracting targets, adverse effects and indications,
which cannot be achieved by limiting the applied methods to a small fragment
of drug related information. Hence, it is necessary to combine facts in order to
formulate hypotheses or draw conclusions about the domain concepts.

In this work we address this problem by using indirect knowledge connecting
two concepts to discover hidden relations between them. To find such indirect
connections, we represent knowledge via a graph comprising concepts as vertices
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(a) Growth of PubMed indexed scien-
tific literature since 1965

(b) Growth of the UMLS Metathe-
saurus in the past decade

Fig. 1. Growth over time of two biomedical resources

and labeled edges connecting the concepts. Edges are created by either extract-
ing explicit knowledge from structured databases, or by analyzing unstructured
textual data. This provides a simple framework that is easy to interpret and con-
stitutes the integration of heterogeneous data easy. In order to perform relation
discovery on top of this representation, we are using supervised machine learning
to learn path patterns that characterize these relations. For the evaluation of our
approach we study the ability of this modeling to discover has target relations
between drugs and proteins/genes, and may treat relations drugs and diseases.
The results demonstrate the feasibility of the task using the suggested approach,
which manages to extract characteristic patterns for these relations.

2 Relation Discovery between Indirectly Connected
Biomedical Concepts

Most work on knowledge discovery in natural language text focuses on extracting
relations between two concepts mentioned in one sentence. This is very important
for many applications such as the curation of databases. However, Swanson [1]
has shown the potential of combining facts from different sources to discover
new, yet unknown knowledge.

Recently, many studies [2,3] have been conducted on discovering hidden rela-
tions between concepts based on statistical analysis. This approach differs from
ours in that linguistic information is not exploited. Another approach was taken
with BioLiterate [4] using probabilistic inference, which may discover relations
between concepts that do not necessarily co-occur in the same abstracts. In con-
trast to this work, their approach is based on a collection of manually constructed
rules that map linguistic constructs onto a probabilistic reasoning system. Fur-
thermore, the metathesaurus and the semantic network of the UMLS resource
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have been used extensively in the past to identify relationships between con-
cepts, e.g., in [5] for the purposes of auditing associative relations. However,
most of these works rely in that the semantics of the associative relations should
be defined explicitly in order to be extracted, in contrast to our work which does
not depend on such definitions. Arguably the most similar work to ours is the
work of Lao et al. [6], as the goal and approach of their study is similar. An
open domain, web-scale corpus is used to train a classifier with a huge amount
of training examples represented in a very large feature space. However, the re-
quirements of our work, namely a limited amount of training data and a much
smaller textual corpus, require a different way of modeling and training.

2.1 Knowledge Sources and Representation

In this work we are using the Metathesaurus from the Unified Medical Lan-
guage System (UMLS) and DrugBank as our structured knowledge bases, and
MEDLINE as our unstructured knowledge resource. For the inclusion of the lat-
ter in our work, we are using an already annotated version of the MEDLINE
documents with the MetaMap program [7].

Both structured and unstructured knowledge is represented by a directed,
edge-labeled graph G = (C,R), consisting of a set of concepts as vertices C and a
set of labeled edges R. We define (ci, cj) ∈ Rl ⇔ (ci, l, cj) ∈ R, where Rl ⊆ C×C
is an l-labeled binary relation. We allow a triple to occur more than once in R,
which means that R is actually a multiset. A path P in G of length n is an
n-tuple of vertices P = (c1, ..., cn), where ∀i, 1 ≤ i < n : ∃l ∈ L : (ci, l, ci+1) ∈ R,
meaning that there must be at least one edge between the concepts ci and ci+1

for every i.
Representing the structured knowledge sources, such as UMLS and DrugBank,

in such a graph is straightforward; these sources already contain labeled relations
Rl ⊆ C × C. The information of all those Rl, i.e., their concept pairs (ci, cj)
together with their label l, can directly be inserted into the graph by adding
each ci and cj to C and all corresponding triples (ci, l, cj) as edges to R.

In contrast to the structured knowledge representation, extracting such triples
from unstructured textual data is more difficult, because it entails a series of
pre-processing steps, such as annotation of the text with biomedical concepts,
and meta-analysis and filtering of the annotations. However, since we are using
the already annotated version of MEDLINE with UMLS concepts, this task is
reduced to extracting only the relations between concepts found in one sentence.
In that respect, previous work on relation extraction, e.g., [8], has shown that
the dependency path between two concepts in a sentence typically contains all
necessary information to recognize a specific underlying relation between them. A
dependency path is a path in a dependency tree, which is a syntactic construct of
a sentence. Each node of a dependency tree represents a token (word or symbol)
of the underlying sentence and each arch represents a dependency between two
tokens of the sentence. Hence, we extract triples from sentences when we find
a pair of concepts connected by a dependency path that contains at least one
verb form. If the dependency path does not contain any verb form, we assume
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that there is no relation present in this sentence. If we find more than one
verb form on the dependency path which are part of two distinct sub-sentences
connected by a conjunction, we assume that there is no direct relation between
such concept pairs present and discard them as well. Sequences of conjunctions
and appositions are removed from the dependency paths. If there is a negated
noun or verb form present on the dependency path, the whole path will be
treated as negated as well. Once a pair of concepts (ci, cj) is extracted from
a sentence together with its (cleaned) dependency path dk, a triple (ci, dk, cj)
can be inserted into the knowledge graph G the same way as for structured
knowledge.

2.2 Methodology

Graph Path Discovery: To extract paths for a concept pair (cs, ct) to a maximum
path length m, a bidirectional search is performed. Searching is, thus, done by
starting from both vertices cs and ct until a maximum path length of

⌊
m+1
2

⌋

from each side is reached. During the search, paths are explored stochastically
in a random walk, but in most cases the number of neighbors is not very high
and, hence, every neighbor will be explored.

Modeling: Encoding a graph path P = (c1, ..., cn) requires an encoding of each
connection (ci, ci+1) in P as a feature vector f(ci,ci+1), resulting in a sequence
of feature vectors of length n − 1. The feature vector f(ci,ci+1) is defined as the
sum of all feature vectors of each relation label l occurring between ci and ci+1.

The simplest way of encoding a relation label l is the one-of-N encoding,
where only the l-dimension of the feature vector has value 1 and all others have
0. This encoding, however, is very poor because it does not take into account
semantic similarities and synonymy information between the relation labels. This
in turn leads to an explosion of the feature space. We address this problem
by encoding the relations in a much smaller semantic feature space. For this
purpose, there are several techniques that may be applied, e.g., latent semantic
analysis (LSA), reflective random indexing (RRI), the generalization of principle
component analysis (gPCA) or latent dirichlet allocation (LDA, [9]).

The basic idea for constructing a semantic space of relations is to consider a
pair of connected vertices, i.e., concepts, (ci, cj) in G as a document di,j and all
labels of all edges, i.e., relations, between them as words occurring in di,j . Using
this transformation for all connected concept pairs of G, the above mentioned
algorithms can be used natively to construct semantic feature vectors of a spec-
ified size for each relation label. In our implementation we used LDA because
its underlying model fits well to the problem. This way, fl using LDA features is
defined as the conditional probability distribution over all possible latent topics
t given label l, as shown in the following equation.

f t
l = p(t|l)

p(t|l) ∝ p(t) · p(l|t) (1)
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where f t
l is the value of the t-th dimension of fl, and p(t), p(l|t) are taken from

the trained LDA model.
Given the above, the creation of the feature vector for an indirectly connected

pair is done as follows: given a set of graph paths Pcs,ct between the concepts cs
and ct, the feature vector fcs,ct is defined as the sum of the feature vectors fP
representing all paths P ∈ Pcs,ct . The feature vector of a path P = (c1, ..., cn) is
calculated from its corresponding sequence f(ci,ci+1) ∈ RN of feature vectors by
projecting their outer product which is a (n− 1)-dimensional matrix to a vector
representation. This is described by the following equation.

fcs,ct =
∑

P∈Pcs,ct

fP (2)

fP = π(f(c1,c2) ⊗ · · · ⊗ f(cn−1,cn)) (3)

Training: Let Rl ⊂ C×C, be a relation of label l. A model for relation label l is
trained with a set of positive training examples E+

l ⊆ Rl and negative training
examples E−

l ⊂ C×C. E−
l is constructed from E+

l by pairing all source concepts
of E+

l with a random target concept of E+
l , ensuring that E+

l ∩E−
l = Ø. Training

of logistic regression is performed using gradient ascent on the likelihood function
by employing LBFGS with L2 -regularization. The LDA model is trained using
the efficient sparse stochastic inference algorithm [10].

3 Experimental Evaluation

For the purposes of evaluating experimentally the suggested approach, we con-
structed a graph as explained previously, and created two benchmark datasets
for two relations; has target and may treat . The graph is used to extract paths
between pairs of concepts in these relations, which in turn form the basis for the
feature vectors generation.

3.1 Experimental Setup

The constructed graph, resulting after pruning of infrequently occurring concepts
and relations1, contains 95, 158 vertices, which are all the UMLS concepts occur-
ring in the textual data, approximately 39 million edges created from the analysis
of the unstructured data (MEDLINE documents), and around 2.8 million edges
stemming from the structured sources. The average degree is approximately 880
considering both incoming and outgoing direction of edges. In terms of relation
labels, the graph contains approximately 104, 953 distinct labels, where each
label occurs on average 5 times, connecting around 30 million pairs of vertices.

With regards to the used datasets, the first dataset contains 410 concept pairs
of themay treat relation taken from the UMLS. It covers a wide range of diseases,

1 Concepts occurring less than 50 times and relations occurring less than 40 times
were removed.
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Table 1. Examples of highly weighted plain path features for the has target (former)
and the may treat (latter) relations

highly weighted feature explanation
( dep−−→ induce

prep←−−− in
pobj←−−− )

,
( pobj−−−→

in
prep−−−→ express

nsubjpass←−−−−−−− )
The substance is induced into something,
in which the target (gene/protein) is ex-
pressed.

( pobj−−−→ by
agent−−−−→ suppress

nsubjpass←−−−−−−− )
,

( nsubj−−−−→ increase
prep←−−− at

pobj←−−− )
The drug suppresses something that is in-
creased by the disease.

Table 2. Impact of maximum path lengths

dataset length
AUC accuracy (precision, recall)

plain lda plain lda

may treat
3-3 0.61 0.73 0.63 (0.63, 0.61) 0.69 (0.76, 0.63)
3-4 0.62 0.75 0.62 (0.67, 0.49) 0.70 (0.71, 0.69)

has target
3-3 0.78 0.72 0.75 (0.87, 0.59) 0.68 (0.74, 0.60)
3-4 0.80 0.70 0.77 (0.84, 0.66) 0.66 (0.70, 0.58)

and every concept only appears once in the dataset. The second set consists
of 740 pairs of the has target relation, extracted from DrugBank and mapped
to UMLS. Negative examples in both cases are extracted as explained in the
previous section. Finally, all models and training algorithms were implemented
using the FACTORIE toolkit ([11]).

3.2 Results and Analysis

In the following all results were obtained by evaluating our approach on the
two datasets using 10-fold cross validation. Classification performance was eval-
uated by the area under the ROC -curve (AUC ) value, and the best accuracy
achieved by the models. For the latter the focus lies on a high precision because
it can indicate that the model has learned some characteristic path patterns
which are common to at least a reasonable subset of positive training examples
(e.g., Table 1).

Impact of Path Length: Table 2 compares the impact of different path lengths
(up to 3 or 4) and feature types (plain or LDA). The table shows that the
suggested approach can achieve an AUC up to 0.75 for the may treat and up
to 0.8 for the has target relation. Especially for the has target relation we can
observe high precisions up to 0.87 at reasonable recall levels around 0.6. With
regards to the impact of the path length, the results show that using paths of
length 4 does not improve the overall performance on the classification task.
This could be due to the fact, that with increasing maximum length the number
of additional informative paths gets lower while the total number of extracted
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Fig. 2. Change of classification performance using different amounts of training data

paths gets exponentially bigger and so does the feature space. This can lead to
overfitting of the model to the training data, because data is sparse compared
to the huge feature space in these experiments.

Comparison of Feature Types: The impact of the different feature types, namely
plain and LDA, cannot directly be inferred from the performances of the classifier
on 10-fold cross validation shown in Table 2. In the may treat dataset the LDA
encoding helps, in contrast to the has target dataset, which contains about double
the amount of training examples. Therefore, in order to evaluate the impact
of the different feature types, experiments with different amounts of training
examples of the has target dataset were conducted. The results are presented in
Figure 2.

The plain line (blue) shows that using one-of-N features depends highly on the
amount of supplied training data, whereas the lda line (orange) shows that mod-
els trained on examples with LDA features do not. This shows the potential of
encoding relations with LDA, as it transfers them into a much lower-dimensional,
semantic space, which reduces the amount of necessary training data.

4 Conclusions

In this paper we have introduced a novel approach for relation discovery in the
biomedical domain. The approach is based on the combination of information
extracted from structured and unstructured data, and represented in a graph.
The constructed graph allows for the easy integration of heterogeneous informa-
tion and discovery of indirect connections between biomedical concepts. Given
a biomedical relation and example pairs, graph paths are used to create feature
vectors with which characteristic path patterns for this relation are learned. For
the experimental evaluation of the approach we used two common biomedical
relations; has target and may treat . The results are promising; primarily they
show the feasibility of discovering relations using indirect connections between
concepts. In addition they indicate that the suggested approach can discover the
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tested relations with an AUC of up to 0.8. Furthermore, the application of our
approach in these two datasets suggests that it can be applied even when the
data is sparse.

The experimental analysis also showed some limitations of the approach. First,
the problem of incomplete knowledge in the biomedical domain. For example,
the extraction of information from text does not take co-references into account.
The same problem holds for the structured data sources, where the UMLS is
missing some important relations, like protein-to-protein interactions, and the
existing relations do not cover all currently known facts. Second, the erroneous
annotation of the MEDLINE text with MetaMap, e.g., in the case of gene anno-
tation. Finally, the approach does not consider currently the wider context of a
statement extracted from an abstract. However, some important correlations be-
tween co-occurring pieces of information can be learned from the global context
of entities, which constitutes one of the greatest advantages of the current ap-
proach. Towards our future work, we will focus in addressing the aforementioned
problems, paying special attention to enriching the dependency paths with quan-
titative and qualitative information extracted from respective attributes that
appear in the sentences together with the dependency paths.
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Abstract. Linked Open Data initiatives have made available a diversity of col-
lections that domain experts have annotated with controlled vocabulary terms
from ontologies. We identify annotation signatures of linked data that associate
semantically similar concepts, where similarity is measured in terms of shared
annotations and ontological relatedness. Formally, an annotation signature is a
partition or clustering of the links that represent the relationships between shared
annotations. A clustering algorithm named AnnSigClustering is proposed to gen-
erate annotation signatures. Evaluation results over drug and disease datasets
demonstrate the effectiveness of using annotation signatures to identify patterns
among entities in the same cluster of a signature.

1 Introduction

Ontologies are developed by domain experts to capture knowledge specific to some do-
main, and they have been widely adopted in the last decade. Simultaneously, Linked
Open Data initiatives have made available a diversity of collections, and some of these
datasets have been annotated by domain experts with controlled vocabulary (CV) terms
from these ontologies. For example, the biomedical community has taken the lead in
such activities; every model organism database has genes and proteins that are widely
annotated with CV terms from the Gene Ontology (GO). The challenge is to explore
these rich and complex annotated datasets, together with the domain semantics captured
within ontologies, to discover patterns of annotations across multiple concepts that may
lead to potential discoveries. For genes, these patterns may involve cross-genome func-
tional annotations, e.g., combining the GO functional annotations of two model organ-
isms such as Arabidopsis thaliana (a plant) and C. elegans (a nematode or worm), to
predict new gene function or protein-protein interactions. As a first step to discovering
complex annotation patterns, we define an annotation signature between a pair of sci-
entific concepts, e.g., a pair of drugs or a pair of genes. The annotation signature builds
upon the shared annotations or shared CV terms between the pair of concepts. The an-
notation signature is represented by N parts or clusters of ontologically related shared
CV terms. For example, the annotation signature for a (drug, drug) pair will be a set
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of N clusters, where clusters include links among ontologically related disease terms
from NCIt.

Formally, given two sets S1 and S2 of concepts, e.g., drugs and targets, we represent
the set of links between S1 and S2 as a bi-type information network BG [9], and our
objective is to determine an annotation signature based on BG. We define the Anno-
tation Signature Partition problem as the partitioning of the edges of BG into clusters
such that the value of the aggregated cluster density is maximized. Values of density
denote how close is the number of links in a cluster to the maximal number of edges
between the nodes in the cluster. We develop AnnSigClustering, a clustering solution
that implements a greedy iterative algorithm to cluster the edges in BG. Our research
focuses on exploiting domain specific semantic knowledge. This includes both the on-
tology structure and relationship types between nodes of BG. AnnSigClustering is able
to produce clusters of closely related terms that may be useful to the domain scientist.
Further, the choice of specific relationship types allows to refine the clusters of CV
terms in the annotation signature. We perform an extensive evaluation of the effective-
ness of the annotation signature on the LinkedCT dataset of drugs and diseases from
NCIt and their associations through the clinical trials. A team of experts performed a
preliminary evaluation to determine if signatures of diseases were meaningful.

This paper is organized in five sections. Our approach and experimental results are
presented in Section 2 and 3, respectively. Related work is summarized in Section 4,
and conclusions and future work are outlined in Section 5.

2 Our Approach

Our proposed approach relies on structural knowledge encoded in an annotation graph
represented using a bi-type information network as the one illustrated in Example 1.
We use two taxonomic distance measures to compute relatedness of the ontological
annotations that comprise the graph, i.e., to decide when pairs of diseases in the graph
are similar in terms of the NCI Thesaurus where these terms have been defined.

Example 1. An antineoplastic agent is a substance that inhibits the maturation, growth
or spread of tumor cells. Monoclonal antibodies that are also antineoplastic agents have
become an important tool in cancer treatments. When used as a medication, the non-
proprietary drug name ends in -mab. Scientists are interested in studying the relation-
ships between drugs and the corresponding diseases; drugs are annotated with the NCIt
terms that correspond to the conditions that have been tested for these drugs. Figure 1
illustrates Brentuximab vedotin and Catumaxomab, and some of their annotations.
Each path between a pair of conditions, e.g., Colorectal Carcinoma and Stage IV

Rectal Cancer through the NCIt is identified using red circles which represent CV
terms from the NCIt. From Figure 1, we may conclude that the shared disease signa-
ture for this pair of drugs includes four clusters. The five terms Colon Carcinoma,
Colorectal Carcinoma, Rectal Carcinoma, Stage IV Rectal Cancer, and
Rectal Carcinoma form Cluster1. Similarly, Cluster2 includes Head and Neck

Neoplasm, Oropharyngeal Neoplasm, and Thyroid Gland Neoplasm.
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Fig. 1. Bi-type information network representing the anno-
tations of Brentuximab vedotin and Cetumaxomab. Drugs
are green rectangles; diseases are pink rectangles; NCIt
terms are red circles. The annotation signature comprises
four clusters: Cluster1, Cluster2, Cluster3, and
Cluster4.

First, we consider the mea-
sure dtax that captures the tax-
onomic distance between two
vertices with respect to the depth
of the common ancestor of
these two vertices. dtax assigns
low(er) values of taxonomic dis-
tance to pairs of vertices that
are: (1) at greater depth in the
taxonomy, and (2) are closer to
their lowest common ancestor.
A value close to 0.0 means that
the two vertices are close to
the leaves and both are close to
their lowest common ancestor.
A value close to 1.0 represents
that both vertices are general or
that the lowest common ances-
tor is close to the root of the tax-

onomy. Then, (1 - dtax) will be used as the similarity or ontological relatedness between
nodes. The taxonomic distance metric dtax is as follows, where root is the root node in
the ontology; lca is the lowest common ancestor, and pl denotes path length:

dtax(x, y) =
pl(lca(x, y), x) + pl(lca(x, y), y)

pl(root, x) + pl(root, y)
(1)

We also define an extension of dtax named dstrtax that assigns low values of ontological
similarity to pairs of terms where at least one of the terms is a general concept in the
ontology. Let MaxDepth Ontology represent the greatest depth in the ontology.

dstrtax(A,B) = dtax(A,B) ∗ (1− pFactor(A,B)) (2)

pFactor(A,B) =
max(correctedDepth(A), correctedDepth(B))

MaxDepth Ontology

correctedDepth(X) = MaxDepth Ontology −Depth(X)

Our clustering algorithm implements a greedy iterative algorithm that heuristically
assigns links to the clusters. Definition 1 outlines the conditions to be met for an edge
to belong to the semantic 1-hop of a given edge in the bi-type information network.

Definition 1 (Semantic 1-Hop). Given a bi-type information network BG=(Ai ∪ Aj ,
WE), two distance metrics di and dj for elements in Ai and Aj , respectively, and two
real numbers θi and θj in the range [0.0:1.0]. The semantic 1-hop of an edge e = (a, b)
in WE, such that a ∈ Ai, and b ∈ Aj , s-1-hop(e, θi, θj , di, dj ), is the set of all eh =
(ah, bh) edges in WE and in the neighborhood of e that meet the following conditions:

– ah and a are similar under θi, i.e., di(ah, a) ≤ θi, or
– bh and b are similar under θj , i.e., dj(bh, b) ≤ θj .
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Definition 2 (Cluster Density). Given a bi-type information network BG=(Ai ∪ Aj ,
WE), d a distance metric between elements of Ai and Aj , and a subset p of WE, the

cluster density of p corresponds to cDensity(p) =
∑

e=(a,b)∈p 1−d(a,b)

|p| .

Definition 3 (The Annotation Signature Partition Problem (AnnSig)). Given a bi-
type information network BG=(Ai ∪Aj , WE), d a distance metric between elements of
Ai and Aj , and a real number θ in the range [0.0:1.0]. For each a ∈ Ai and b ∈ Aj ,
if 1-d(a,b)> θ, then there is an edge e = (a, b) ∈ WE. For each e = (a, b) ∈ WE,
label(e)= 1-d(a,b)). The AnnSig Partition Problem identifies a (minimal) partition P of

WE s.t. the aggregate cluster density P AnnSig(P ) =
∑

p∈P (cDensity(p))

|P | is maximal.

AnnSigClustering is a greedy iterative algorithm to solve the Annotation Signa-
ture Partition Problem. AnnSigClustering adds an edge to a cluster following a greedy
heuristic to create clusters that maximize the cluster density. Given a bi-type informa-
tion network BG=(Ai∪Aj , WE), two distance metrics di and dj for elements in Ai and
Aj , respectively, and two real numbers θi and θj in the range [0.0:1.0], AnnSigCluster-
ing orders edges in WE dynamically based on the number of different clusters assigned
to the edges that are in the complement of s-1-hop(e, θi, θj , di, dj ), i.e., the edges are
chosen based on the degree of saturation on the partial clustering built so far. Only edges
that are in the complement of the semantic 1-hop of the clustered edges are considered.
Intuitively, selecting an edge with the maximum degree of saturation allows one to first
cluster the edges with more restrictions; this is one for which there is a smaller set of
potential cluster. Ties are broken based on the cardinality of the semantic 1-hop of the
tied edges. The time complexity of AnnSigClustering is O(|WE|3). To illustrate the be-
havior of AnnSigClustering, let’s consider the annotated graph in Figure 1. This graph
can be partitioned into four groups of edges. Cluster1 includes the edges between
Colon Carcinoma, Colorectal Carcinoma, and Rectal Carcinoma on the left
with the terms Stage IV Rectal Cancer and Rectal Carcinoma on the right.
Also, the edges from Thyroid Gland Neoplasm belong to Cluster2 , all the edges
from Stage IV Colon Cancer are in Cluster3 , and the edge from Malignant

Uterine Neoplasm to Malignant Ovarian Neoplasm is alone in Cluster4 .

3 Related Work

Graph data mining [4] covers a broad range of methods dealing with the identification
of (sub)structures and patterns in graphs. Popular techniques include graph clustering,
community detection, and cliques. The problem of a 1-to-1 weighted maximal bipar-
tite match has been applied to many problems, e.g., semantic equivalence between two
sentences and measuring similarity between shapes for object recognition[2]. These ap-
proaches clearly show the benefits of solving a matching problem to identify similarity
between terms or concepts. Our research advances prior research in that we consider
the relatedness of sets of annotations and identify a many-to-many bi-type match be-
tween links that relate similar concepts. A key element in finding patterns is identifying
related concepts; we consider ontological relatedness. Similarity measures can be used
to compute relatedness; we briefly describe some of the existing metrics. The first class
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of metrics are string-similarity[3]; they compare the names or labels of the concepts
using string comparison functions based on edit distances or other functions that com-
pare strings. This includes the Levenstein distance and Jaro-Winkler [5]. The next are
path-similarity metrics that compute relatedness based on the paths that connect the
concepts within some appropriate graph. Nodes in the paths can be all of the same
abstract types (e.g., PathSim [8]) or they can be heterogeneous (HeteSim [7]). Further-
more, topological-similarity metrics extend the concept of path-similarity and they look
at relationships within an ontology or taxonomy that is itself designed to capture rela-
tionships (e.g., dps [6] and dtax[1]). We propose an approach that exploits ontological
knowledge of scientific annotations to decide relatedness between annotated entities.

4 Evaluation

The goal of our evaluation is to validate if annotation signatures group together mean-
ingful terms across shared annotations. Additionally, we evaluate the impact of the
semantics encoded in the ontologies on the quality of the signature. We study an anno-
tated dataset of twelve drugs that fall within the intersection of anti-neoplastic
agents and monoclonal antibodies: Alemtuzumab, Bevacizumab, Brentuximab

vedotin, Cetuximab, Catumaxomab, Edrecolomab, Gemtuzumab, Ipilimumab,
Ofatumumab, Panitumumab, Rituximab, and Trastuzumab. The protocol to cre-
ate the dataset is as follows: Each drug was used to retrieve a set of clinical trials in
LinkedCT circa September 2011 (linkedct.org). Then each disease associated with
each trial was linked to its corresponding term in the NCI Thesaurus version 12.05d;
annotation was performed by NCIt experts. We relied on a team of experts to analyze
the annotation signatures 1. Our group of evaluators included two experts who develop
databases and tools for the NCI Thesaurus, and two bioinformatics researchers with
expertise on the NCIt and other biomedical ontologies.

Connectivity patterns within components provide insight into the ontological relat-
edness of the diseases. In Figure 2(a) Carcinoma on the left is connected to eight
terms on the right. In Figure 2(b), Sarcoma on the left is connected to nine drugs
on the right. Similarly, Breast Neoplasm on the right is connected to eight diseases
on the left. None of the other drugs has more than one incident edge. In contrast, in
Figure 2(c), we see a much more general many-to-many connection pattern between
the diseases on the left and right. Finally, Figure 2(d) shows a more complex con-
nectivity pattern where the terms are ontologically related but they are placed within
three disconnected graphs. The four terms Diffuse Intrinsic Pontine Glioma,
Spinal Cord Ependymoma, Carcinoma, and Squamous Cell Neoplasm form the
most well connected component. An evaluation of patterns is being performed, and pre-
liminary comments from the evaluators noted that while groups such as Figure 2(a) that
included generic terms such as Carcinoma were valid, they did not convey useful in-
formation. In contract, groups in Figures 2(c) and (d), that had more specific terms and
were more densely connected, having the potential to be more meaningful.

Additionally, we evaluate the impact of utilizing the ontology structure. Recall that
dstrtax extended the taxonomic distance metric dtax to consider ontology structure. Fig-

1 Results available at dynbigraph.appspot.com

dynbigraph.appspot.com
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(a) Catumaxomab-Trastuzumab Green (b) Ipilimumab-Trastuzumab Red

(c) Ipilimumab-Trastuzumab Cyan (d) Bevacizumab-Cetuximab Brown

Fig. 2. Connectivity Patterns within Each Cluster for θ = 0.5; we name the clusters with col-
ors (a) Catumaxomab-Trastuzumab Green; (b) Ipilimumab-Trastuzumab Red; (c) Ipilimumab-
Trastuzumab Cyan; (d) Bevacizumab-Cetuximab Brown

ure 3(a) illustrates an exemplar cluster of the annotations for the pair Trastuzumab and
Bevacizumab produced by dtax; the threshold θ = 0.50. There are many shortcomings.
First, it contains generic CV terms such as Adenocarcinoma and Carcinoma. Further,
it is very large and many diverse and unrelated cancers are included. Figure 3(b) shows
the result of applying the metric dstrtax to exploit ontology structure. The large cluster was
partitioned into smaller clusters. Many of the generic CV terms are no longer included
and each smaller cluster includes more closely related CV terms. For example, one has
a focus on breast cancer related terms, another has a focus on lung cancer, while a third
combines terms related to pancreatic, renal, and colorectal cancers. This example illus-
trates benefits from using ontological knowledge to eliminate generic terms from the
annotation signatures. Redundancy in patterns is reduced, and the modified annotation
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(a) Trastuzumab-Bevacizumab Cadeblue θ = 0.50

(b) Trastuzumab-Bevacizumab θ = 0.50 using dstrtax

Fig. 3. Enhancing Signatures with Semantics for θ = 0.50. (a) Signature of Trastuzumab-
Bevacizumab θ = 0.50; Similarity dtax-Figure has been truncated for readability.; (b) Three
clusters of Trastuzumab-Bevacizumab θ = 0.50 when generic terms are penalized using dstrtax.
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signatures are comprised of relationships between more specific terms, which according
to the experts have the potential to be more meaningful.

5 Conclusions and Future Work

We have defined the Annotation Signature Partitioning problem and the AnnSigCluster-
ing algorithm to develop the components of a signature based on shared annotations and
ontological relatedness. We empirically studied the effectiveness of AnnSigClustering
to identify potential meaningful signatures of annotated concepts. Further, we have an-
alyzed the effects of considering knowledge encoded in the ontologies used to annotate
Linked Data. Our results suggest that the grouping capability of our approach is en-
hanced whenever the type of relationships are considered as well as when relationships
with generic terms are eliminated. Our initial project objective was to validate correct-
ness and utility of components in a signature. Nevertheless, in the future, we will also
address performance and scalability. Additionally, we plan to conduct a deeper evalua-
tion study with our collaborators, and thus determine the potential discovery capability
of the approach. Finally, we plan to apply our techniques to other domains, e.g., to
identify patterns of viral diseases.
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Abstract. This paper introduces ConQuR-Bio which aims at assisting
scientists when they query public biological databases. Various reformu-
lations of the user query are generated using medical terminologies. Such
alternative reformulations are then used to rank the query results using
a new consensus ranking strategy. The originality of our approach thus
lies in using consensus ranking techniques within the context of query
reformulation. The ConQuR-Bio system is able to query the Entrez-
Gene NCBI database. Our experiments demonstrate the benefit of using
ConQuR-Bio compared to what is currently provided to users. ConQuR-
Bio is available to the bioinformatics community at
http://conqur-bio.lri.fr.

1 Introduction

In Biological research, findings are derived from the proper analysis of experi-
ments which involves comparing at various scales new results obtained to existing
data. Over the last three decades, scientists have had to face with an avalanche
of data, of different kinds, and reported in a myriad of databases. Public biolog-
ical databases thus contain more biological data than ever, all available to the
scientific community. Large amounts of data can be easily obtained using portals
such as Entrez NCBI1 [14] daily used by the bioinformatics community by sub-
mitting key-phrase queries (list of keywords). However, properly querying such
portals is not as easy as one may think. Two very similar queries may provide
different sets of answers leading to the need for users to try various reformu-
lations of their questions, considering synonymous terms, alternative spellings,
various levels of granularity in the concepts involved in their queries (making use
or not of the terminologies available such as MeSH [13] or SNOMED CT [16]).

1 http://www.ncbi.nlm.nih.gov/Entrez
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Results obtained should then be gathered, compared, and redundancies filtered
out... Each set of results is ranked by the portal usually using the relevance as a
ranking criteria (number of occurrences of the key-phrase in each piece of results
instance). However, when several reformulations are considered, it is not clear
how to rank the set of all the collected results, which may involve hundreds of
elements. The expected ranking should be able to emphasize answers provided
by various reformulations while putting less importance on elements classified
as “good” by only a few.

The need for on-the-fly solutions both able to reformulate automatically queries
exploiting the various terminologies available and rank answers provided to the
user is thus of paramount importance.

In this paper, we introduce the ConQuR-Bio approach, which allows users
to query public databases from NCBI while generating automatically all the
possible reformulations and provides ranked answers using consensus ranking
techniques.

The remainder of this paper is organized as follows. After a description of a set
of use cases which have driven the design of our solution (Section 2), Section 3 in-
troduces the architecture of our system.We present the original consensus ranking
strategy we follow in Section 4. Section 5 introduces the interface and the main
functionalities of the system we have implemented based on the ConQuR-Bio ap-
proach (available for use to the community at: http://conqur-bio.lri.fr). Sec-
tion 6 provides the results obtained by ConQuR-Bio on several biological queries
while Section 7 concludes the paper.

2 Use Cases

Our approach is based on one of the most popular tool for querying biological
sources, namely, the Entrez portal [15] from the National Center for Biotech-
nology Information (NCBI). More specifically, the kind of queries we consider
consists in searching the gene names associated to a given disease by consulting
the EntrezGene database [14] and focusing answers to human genes. We describe
here-after a set of four use cases that we want to consider.

Use Case 1 (equivalent reformulations): Let us consider the case of a single
user interested in genes involved in the cervical cancer. To express her query, she
may type cervix cancer in the search field of EntrezGene. As a result, 460 genes
are obtained. Interestingly, her query could have been expressed in two other
ways, namely using cervical cancer and cancer of the cervix, leading respectively
to 20 and 2 results, with 9 new genes of interest obtained (compared to the
original query).

Use Case 2 (abbreviations): Another use case is related to the use of abbre-
viations in queries. Consider searching for genes associated to Attention deficit
hyperactivity disorders also known as ADHD. While the full name of the disease
returns 144 genes, its abbreviation provides 109 genes with only 74 in common.

http://conqur-bio.lri.fr
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Use Case 3 (lexical-based reformulation): Another typical use case consists
in considering two users, one from the US the other from the UK, searching
for tumor suppressor genes associated to the breast cancer. While the first one
enters breast cancer tumor suppressor, the other enters breast cancer tumour
suppressor. This orthographic variation leads to huge differences when querying
the EntrezGene database: 681 genes are returned with tumor and 291 with
tumour, and only 246 genes are common to both queries.

Use Case 4 (narrower-term-based reformulation): In a last use case, we
consider the case of diseases presenting a variety of subtypes (usually corre-
sponding to multiple phenotypes or a gradient of phenotypes associated with
the disease). For example, when the colorectal cancer is hereditary and without
polyposis it can be described by various names, including Hereditary Nonpoly-
posis Colon Cancer, also known as Lynch syndrome. Interestingly, querying the
EntrezGene database with Hereditary Nonpolyposis Colon Cancer, and Lynch
syndrome, allows to respectively find 1, and 6 genes which were not found when
typing colorectal cancer.

From these use cases, the need for automatic reformulation of queries appears
clearly as a necessity. Even more importantly, faced with the high number of
answers obtained as result of each query (especially when several reformulations
are considered), users should be guided in the order to which consider results.
The originality of our approach lies in considering alternative reformulations of
the user query and exploiting these reformulations to rank the results by order
of interest (roughly, genes obtained by a large number of reformulations should
be ranked before genes returned by only a few).

3 The ConQuR-Bio Approach

In this section, we introduce ConQuR-Bio (Consensus ranking with Query Re-
formulation for Biological data) which aims at helping users finding genes asso-
ciated to a given disease by considering various reformulations of each user query
and exploiting such reformulations to rank the list of results. More precisely, our
approach takes in several input rankings (several lists of genes, each provided
by one reformulation) and outputs a consensus ranking, that is, a unified list
considering all the input data ordered such that the disagreements between the
list and the input rankings are minimized.

In the following, the main architecture of our approach is first presented,
then two focuses are given, on the reformulation module and queries generator
module.

3.1 General Architecture

The standard use of ConQuR-Bio consists in the user providing a key-phrase k
(i.e., a list of keywords). The key-phrase is sent (arrow in Figure 1) to the
Reformulation Module which decomposes k into a list T of terms and leverage
various terminologies to generate the set S of synonyms (cf 3.2). S is then trans-



ConQuR-Bio: Consensus Ranking with Query Reformulation for Bio Data 131

Fig. 1. Architecture of ConQuR-Bio. Solid arrows represent requests and dotted ar-
rows responses. Two headed arrows represent possibly iterative requests. When several
actions have to be done successively, their are numbered with a squared number. When
alternative actions can be done, actions are represented with a diamonded number.

mitted (through arrow ) to the Queries Generator to be expressed as a set Q

of queries (cf 3.3). Q are run online (arrow ) on the selected search engine (in
our case, the NCBI web search engine for EntrezGene which provides sets of re-
sults ranked by relevance). When all the ranked results R of queries Q have been

collected, they are sent to the Median Ranking Module which is in charge of
computing a unique consensus ranking, providing an ordering of all the answers
(cf 4). Finally, the Results Formatting module enriches the ranking of gene
identifiers with names and descriptions.

A few parameters may be tuned by users, such as the selection of the species
of interest (by default, Human) or the “Search deeper” option in which the
Reformulation Module intends to find more reformulations for each term (details
in 3.2). A default configuration is provided.

3.2 Reformulation Module

One of the two main modules of ConQuR-Bio is the Reformulation Module. It
takes the user key-phrase as input, splits it into a list of terms and returns sets
of reformulations for each term. The Reformulation Module leverages several
medical terminologies within the UMLS� [3]. The terminologies are described
here-after followed by the presentation of the process used to exploit such ter-
minologies in ConQuR-Bio.

Terminologies Used. ConQuR-Bio makes use of the Unified Medical Language
System� (UMLS)2, a terminology integration system developed at the U.S. Na-

2 Version 2013AB of the UMLS is used in the current version of ConQuR-Bio and for
the evaluation we provide in the next section
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tional Library of Medicine (NLM). ConQuR-Bio uses the UMLS API to interact
with the Metathesaurus� integrating more than 160 medical vocabularies. Our
approach particularly benefits from the use of five terminologies covering a wide
range of biomedical domains: (i) MeSH [13], developed at the U.S. NLM and
designed for indexing PubMed; (ii) SNOMED CT [16], a worldwide used clini-
cal terminology often used as a core for Electronic Health Records; (iii and iv)
The two latest versions of the International Classification of Diseases (ICD 9
CM and ICD 10 CM), developed by the World Health Organization and used
in hospitals; (v) The Online Mendelian Inheritance in Man (OMIM), cataloging
all known genetic diseases in the human genome. Each UMLS concept is catego-
rized with at least one Semantic Type (out of 150+) from the Semantic Network.
The UMLS also provides a broad categorization of Semantic Types into 15 Se-
mantic Groups (including Disorders). Using the Metathesaurus allows to access
synonymous terms from the terminologies.

From Key-Phrase to MeSH Terms. MeSH being de facto a lingua franca
for biomedical literature querying, ConQuR-Bio starts with finding the largest
recognized MeSH terms in the key-phrase provided by the user. More precisely,
the key-phrase is decomposed into a list of terms where each term belongs to one
terminology, but no concatenation of two or more consecutive terms belongs to
any terminology. For example, the query “breast cancer oncogene” matches four
MeSH terms “breast” “cancer”, “oncogene” but also “breast cancer”. The key-
phrase is thus decomposed into the two terms “breast cancer” and “oncogene”.

Reformulation Modes. Once the MeSH terms in the query have been identi-
fied, ConQuR-Bio may follow two modes to find reformulated terms, leveraging

the UMLS to identify synonyms of ( ) the MeSH terms from the original query

(default search mode), or ( ) more precise (i.e. narrower) terms and their syn-

onyms. In any case, alternative formulations of the query are generated. When

only one reformulation is returned by the default search mode ( ) (meaning

that the term is recognized but has no synonym) then the second mode ( ) (us-

ing narrower terms and their synonyms) is used. The second mode is also used in
complement of the first mode when the search deeper mode is enabled.

Identifying Synonyms (Arrow ( )).The default mode uses the UMLSAPI

exact match search strategy to find UMLS concepts associated with each term.
From these concepts, we extract all the synonymous terms from SNOMED CT,
ICD9, ICD10 and MeSH, associated with this UMLS concept. For example, the
term cervix carcinoma is mapped to the UMLS concept C0302592. This concept
includes several synonyms, including Cancer of cervix (from SNOMED CT) and
Uterine Cervical Cancer (from MeSH).

IdentifyingNarrowerTerms (Arrow ( )).This alternativemode provides

reformulations using narrower terms (in the sense of the organization of the hierar-
chy), which are thus more precise terms than the terms used in the original query.
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Synonyms of the narrower terms are also exploited. This mode corresponds to use
UMLS API word search strategy. For example, using the “word” search strategy
from with the term Long QT syndrome (UMLS concept C0023976) allows to iden-
tify several narrower concepts, including Long QT syndrome type 1 (UMLS con-
cept C0035828, for which Romano-Ward syndrome is a synonym).

Semantic Filtering. As searched terms are all expected to be diseases, only
mappings to concepts from the UMLS semantic group Disorders are considered.

3.3 Queries Generator Module

The Queries generator module produces queries from the synonyms found for
the terms identified in the user’s key-phrase by the Reformulation Module (see
3.2). When the key-phrase has been split into multiple terms, we consider the
Cartesian product of the reformulations of each term. Considering a key-phrase
k composed of two terms a and b such as k = ”a b” and a, resp. b, is refor-
mulated into {a, a′}, resp. {b, b′}. This module generates queries to search for
“a b”, “a′ b”, “a b′”, “a′ b′”.

4 The Median Ranking Module

In this section we present the Median Ranking module, one of the major modules
of ConQuR-Bio which provides a unique ranking to the user. This module takes
in lists of elements (here, lists of genes), each list being obtained by a given
reformulation. It outputs a consensus ranking, that is, a list of all the elements
present in the inputs, ordered such that the disagreements between the consensus
and the input rankings is minimized.

In the following, we first define the median ranking problem; we then show
that a new metric is needed for our approach, and, for this purpose, we define a
pseudometric for comparing rankings. Finally, we describe the heuristic that we
have developed and tuned to compute consensus ranking, driven by the need to
provide an on-the-fly solution.

4.1 The Median Ranking Problem

Starting with multiple rankings called input rankings, the Median Ranking
Problem consists in finding one ranking able to minimize the distance to the
input rankings. When the Kendall-τ distance is considered [12], the input rank-
ings must be over the same elements and the problem of finding an optimal
solution is known to be NP-Hard when more than 3 rankings are considered [9].
Polynomial-time approximation algorithms and heuristics have thus been pro-
posed (e.g. [11,1]). In this paper, we will call consensus the solutions proposed by
consensus algorithms (including heuristics or approximation algorithms), while
we will use the term median rankings to denote optimal solutions.

We consider here rankings with ties, that is, rankings where some elements
may be grouped into one bucket and may thus not been compared to each others.
More precisely, each bucket contains at least one element, and two elements have
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a different rank iff they are in two different buckets. For instance, in the ranking
r = [{B,A}, {C}, {D}], the elements A and B are tied in a bucket and thus
equally good, they are also better than C and D, and C is better than D.

As underlined in the use cases introduced in section 2, two reformulations may
not necessarily provide the same sets of data (i.e., sets of genes obtained may
be different from one reformulation to another). Unifying the data sets taken as
input is then the first step to achieve to compute the corresponding consensus
ranking. ConQuR-Bio makes use of the unification process introduced by [7] to
consider input rankings over different sets of elements. This treatment adds a
single bucket at the end of each ranking and places in this bucket all the ele-
ments that appear in other rankings but not in the current one. We call such
buckets unifying buckets. For example, consider r′ = [{C}, {E}] and the ranking
r introduced above. The unifying process provides the two unified input rank-
ings: r′unified = [{C}, {E}, {A,B,D}u] and runified = [{B,A}, {C}, {D}, {E}u],
leading to two input rankings over the same sets of elements (A to E). Note that
unified buckets are suffixed: {...}u.

When considering ranking with ties, the distance used in the median ranking
problem is the generalized Kendall-τ distance [11,7] defined as follows:

Definition 1. Let r and c be two ranking with ties over n elements, c being
a consensus. Let r[i] be the rank of i in ranking r. The generalized Kendall-τ
distance is:

K(p)(r, c) = #{(i, j) :r[i] < r[j] and c[i] > c[j] or

r[i] > r[j] and c[i] < c[j]}
+p ∗#{(i, j) :r[i] �= r[j] and c[i] = c[j] or

r[i] = r[j] and c[i] �= c[j]} where 0 < p ≤ 1

This distance counts 1 for each pair of elements when their order is inverted,
and counts p when two elements are tied in one ranking and not in the other.
The distance between a consensus c and a set of input rankings R is the sum of
the distances between c and the rankings in R: K(p)(R, c) =

∑
r∈R K(p)(r, c). A

median of a set of input rankings is defined as follows:

Definition 2. Let R be the set of all rankings with ties over n elements, and
let R ⊆ R be a set of rankings. A ranking c∗ is called a median ranking of R iff:

K(p)(R, c∗) ≤ K(p)(R, r), ∀r ∈ R;

Example 1. Let us consider the set of input rankings R = {r1, r2, r3} where
r1 = r2 = [{A}, {D}, {B,C}u], r3 = [{B}, {A,D}, {C}]. The median ranking is
c∗ = [{A}, {D}, {B,C}]. The disagreements are: the order inversion of B-A and
B-D (+2) plus A-D untying (+p) plus B-C tying (+p) thus K(p)(R, c∗) = 2+2p.

4.2 A New Pseudometric to Compare Rankings

The intuition behind the need for a new metric can be illustrated on the above
example. Two points should be emphasized. First, elements A and D are tied
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in r3 because the search engine ranked them at the same position, they thus
should be considered as equally relevant. Second, elements B and C are tied in
r1 and r2 due to the unification process, contrary to the previous situation, no
search engine has ever indicated any rank between such two elements (neither
one before the other, nor both at the same position).

The generalized Kendall-τ distance does not allow to make a distinction be-
tween elements tied in an unification bucket from those tied in a classical one.
A new metric taking into account the nature of buckets has thus to be defined.
In particular, the metric should consider true disagreements between elements
ranked by several reformulations while not penalizing any difference between
the relative positions of elements present in the unifying buckets: our aim is to
consider that untying elements from the unifying bucket has no cost.

Definition 3. Let r and c be two rankings with ties over n elements. Let r[i]
be the rank of i in ranking r. Let unif(r) denote the unification bucket of r.
(unif(r) = ∅ if r has no unification bucket.) Let us define M(r, c) as follows:

M(r, c) = #{(i, j) :r[i] < r[j] and c[i] > c[j] or

r[i] > r[j] and c[i] < c[j]}
+p#{(i, j) :r[i] �= r[j] and c[i] = c[j] and i /∈ unif(c) or

r[i] = r[j] and c[i] �= c[j] and j /∈ unif(r)}

Clearly M is not a distance as it may not be always possible to distinguish two
different rankings: M([{A}, {B}], [{A,B}u]) = 0. However, it is a pseudometric
[17] as the symmetry and triangular inequality properties are respected, and
any element has a metric at zero compared to itself: M(r, r) = 0. Similarly to
the generalized Kendall-τ distance, when considering a consensus c and a set of
input rankings R: M(R, c) =

∑
r∈R M(r, c).

Example 2. Let us consider a set of input rankings R = {r1, r2, r3} where
r1 = r2 = [{A}, {D}, {B,C}u], r3 = [{B}, {A,D}, {C}]. Under the generalized
Kendall-τ distance, the median ranking is c = [{A}, {D}, {B,C}] (cf. Example
1) while under the pseudometric M the median ranking is c′ = [{A}, {D}, {B},
{C}] as M(R, c) = 2+ p > M(R, c′) = 2 (note that K(p)(R, c′) = 2+ 3p). From
a user perspective, c′ is a better median than c as it still promotes A and D, but
also makes use of information provided by r3 such as the fact that B is more
relevant than C.

Other strategies have been developed in [9] in order to deal with sets of rank-
ings which are not necessarily over the same elements: the induced Kendall-τ
distance allows to compare a ranking c over all elements with a ranking r over
a subset of these elements. The idea is to consider the projection of c onto r,
by removing from c all elements that are missing in r. However, this distance is
not relevant for our purpose as it does not allow to consider missing elements
as being less relevant than the returned ones (the missing elements of r are
completely removed from c and thus do not contribute to any (dis)agreement).
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4.3 Median Ranking in the Context of Query Reformulations

BioConsert [7] is an heuristic designed in the context of biological data and
considers a distance between rankings with ties. It uses each input ranking as
starting point, and refines them by iteratively applying two edit operators (mov-
ing an element to an existing/new bucket) as long as the distance between the
current consensus obtained and the input rankings is reduced. Finally, it returns
the best consensus computed. Our approach differs from [7] by using the pseu-
dometric M, presented in §4.2, instead of the generalized Kendall-τ distance.
M is parametrized by 0 < p ≤ 1 which expresses the importance of tying and
untying elements. In our setting, tying and untying elements should be penalized
while when two elements have the same number of rankings placing one element
before and after the other, the two elements should be tied. As a consequence,
we have set p = 0.5 in ConQuR-Bio.

Tuning BioConsert. ConQuR-Bio is an on-the-fly system which intends to
quickly provide a consensus ranking from the reformulations obtained. To do
so, it requires to have a fast and good algorithm to produce the consensus of
answers. The time complexity of BioConsert depends, among other parameters,
on the number of input rankings m. In order to speed up the computation, we
consider a smaller and constant amount of rankings to start the algorithm (and
not all input rankings as in [7]). More precisely, we selected three state-of-the-
art algorithms: BordaCount [4], MEDRank [10], and Ailon’s 2-approximation
[1] which do not provide as good results as BioConsert, but provide solution
in at most complexities of nm log(nm), where n is the number of elements
to be ranked. Experiments (not shown here) performed to compare this new
strategy to the default strategy of BioConsert show that the time to compute a
consensus is reduced up to one hundred times while the quality of the results is
not significantly altered.

5 The ConQuR-Bio System

The main interface of ConQuR-Bio is provided in Figure 2 and composed of
three areas, the query area (top left panel), the running and progression details
(top right panel), and the results (bottom).

In the query area, the key-phrase provided by the user is split into MeSH terms
on-the-fly (cf. 3.2) and displayed into colored boxes next to the key-phrase field.
Colors indicate different status for a term: green when the term is recognized as
a MeSH term, red when the term is not recognized, and orange when the term is
matched with an existing MeSH term while the spelling is different. In addition
to the orange semantics, when a term is matched with an alternative spelling, a
check mark allows the user to accept the correction and update the key-phrase
field, while a cross mark forces the system to use the given spelling. Several
options are made available to the user, and are by default hidden. They can
be displayed/hidden by clicking on “[+]”/“[-]” like in Figure 2). Options are the
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Fig. 2. ConQuR-Bio interface and the window open after clicking on BRCA2

species considered, the “Search deeper” mode which allows to use reformulations

with narrower terms (cf. in 3.2), and the type of biological object ranked.

The results area presents a ranking (with ties) of genes with their official
descriptions as it can be found when browsing the NCBI website. Each gene is
linked to its associated page in the NCBI Website, allowing the user to navigate
in a familiar environment. Close to the rank of each gene, a symbol (hidden in
the default mode) allows users to know whether the rank of the gene is raised

( ), equal ( ), lowered ( ), or new ( ) in ConQuR-Bio compared to the
results returned in the NCBI ranking.

Another interesting feature is the ability of ConQuR-Bio to provide users with
information on the number of publications associated with each gene returned.
This functionality is obtained by calling the GeneValorization[6] tool able to
quickly browse PubMed.

6 Results on Medical Queries

We have tested our approach over a set of queries collected from collaborators
of the Institut Curie (France) and the Children’s Hospital of Philadelphia (PA,
USA) and linked to their respective fields of expertise. The results presented
considered 9 diseases: 7 cancers (bladder, breast, cervical, colorectal, neuroblas-
toma, prostate, retinoblastoma), one heart disease (the Long QT Syndrome),
and one psychiatric disorder (the attention deficit (with) hyperactivity disorder).
For cancers, we searched for information on the name of the cancer while also
using additional words (and reformulations of such words) to refine the query,
namely tumor suppressor and oncogene. The exact list of words used are shown
in Figure 3.
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Evaluating such an approach is a difficult task as we face the users’ perception
of the results. We have chosen to consider three criteria of evaluation, focusing
on the 20 first results returned for each key-phrase (top-20). The first criterion
is based on Gold Standards and compares the results obtained to the list of
expected genes according to our experts. We classically use the area under the
ROC curve [5] in this series of experiments. The next two criteria are biblio-
metrics ones: the second criterion is the number of publications associated with
each gene of the list and the key-phrase while the last criterion is a “freshness”
indicator, measuring the average number of days since such an article has been
published. The assumptions behind such measures is that well-studied genes are
more likely to be relevant and experts can be interested in the latest, up-to-date,
information.

6.1 Using Expertise

We constructed with our clinician collaborators the list ld of the most relevant
genes known to be associated with each disease d. The “goodness” of a consensus
ranking cd provided by ConQuR-Bio thus relies on the presence of elements of
ld in the top-ranked elements of cd. In order to compare the results returned
by ConQuR-Bio and the EntrezGene NCBI Web search engine with respect to
Gold Standards, we used the Area Under the ROC Curve [5] (ROC standing
for Receiver Operating Characteristic) or AUC (closely related to precision and
recall measures [5]). The AUC aims at differentiating the presence of expected
data versus non expected data, taking into account the place of pieces of data
(roughly, placing expected data before unexpected data increases the score of
the AUC). AUC provides numbers ranged in [0, 1], 1 being the highest score.

In Figure 3, we plot AUCs for the top-20 first results obtained for each
key-phrases with both NCBI search engine and ConQuR-Bio. Globally, using
ConQuR-Bio compared to NCBI allows to increase in average the AUC of
44.24%. More precisely, four points deserve attention.

First, when focusing on single term key-phrases (i.e., considering the name of
the disease only without adding oncogene or tumo[u]r suppressor, corresponding
to Figure 3.a and all use cases), ConQuR-Bio returns better results than the
NCBI in 88.89% of the cases and always provides as good results as the NCBI.
The average AUC is increased of 58.52% with ConQuR-Bio compared to NCBI.

Second, multi-term key-phrases (Fig 3.b,c (use case 3)) have an AUC increased
of 37.70% in average when using ConQuR-Bio compared to NCBI. This relatively
less good results (37% vs. 58% of improvement) is actually due to the fact that
the term oncogene has, in addition, one reformulation (gene transforming) less
interesting (considered as “too vague” by our experts) than others.

Third, considering ADHD and its unabbreviated name (use case 2), the AUC
is drastically increased using ConQuR-Bio. Also, as expected the complete name
and its abbreviation have different AUCs with the NCBI while remaining the
same with ConQuR-Bio (since all the reformulations are considered). In the
same spirit, lexical variations around the cervical cancer tumor suppressor (Fig
3.b) show the importance of taking into account all lexical and orthographic
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variations: ConQuR-Bio returns identical results for the four variants with an
AUC of 0.53 while NCBI results have systematically inferior and variable AUCs.

Finally, there were a few key-phrases, namely colorectal cancer and neurob-
lastoma, for which only plural reformulations were actually available (no actual
synonyms available). The results obtained for such queries are then less impres-
sive than in the previous cases while some of their respective AUCs are still
increased compared to NCBI.

Fig. 3. The Area under the ROC curve (AUC) for the 20 first genes returned by
ConQuR-Bio and the NCBI WebSearch for (a) Single-term key-phrases, (b) lexical
variation around cervix cancer tumor suppressor, and (c) the remaining key-phrases.

Our experiments have shown that all the reformulations associated to use
cases 1, 2, 3 were taken into account and that using our approach based on
consensus ranking systematically improved the answers provided to the user.
However, we have not yet provided specific information on the use case 4 which
made use of lexical narrower terms. Two points should thus be mentioned.

First, interestingly, narrower terms have actually automatically been exploited
in the previous results for the long QT syndrome as this term did not have any
synonym. Specific forms of the disease, such as the Romano Ward Syndrome,
raise the AUC from 0.51 to 0.53.

Second, the use of narrower terms can be done manually by selecting the
“search deeper” option. Back to the example illustrating the use case 4, using
narrower terms drastically change the results: among the 11 genes provided by
our experts as being very relevant for colorectal cancer, only 2 are in the top-20
results of the NCBI (AUC=0.09) while 6 are in the ConQuR-Bio first 20 answers
(AUC=0.43).

A last point that deserves attention is the time taken by ConQuR-Bio to
provide answers: While the NCBI search engine provides a ranking in at most
2s, ConQuR-Bio takes 41s in average for the 9 single term key-phrases listed
in Figure 3.a. This difference lies in the fact that the average number of syn-
onyms retrieved by ConQuR-Bio (and thus the average number of queries to be
answered and which elements should be ranked) is 17.
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6.2 Using the Number of Publications

The second measure considers the top-20 genes obtained and sums the number of
publications co-citing each gene name and the query key-phrase. As an example,
the numbers of publications associated with the top-20 first genes returned for
retinoblastoma by the NCBI and ConQuR-Bio are represented in Figure 4. It
clearly shows that the top-20 genes provided by ConQuR-Bio are associated to
more publications than the top-20 genes provided by NCBI.

Fig. 4. #publications for each of the 20 first ranked genes for retinoblastoma

More generally, over the 28 key-phrases studied, 25 provide more (or, in 2
situation equal) publications than the NCBI. Overall in average, ConQuR-Bio
returns top-20 results associated with 56% more publications.

6.3 Using Publication Freshness

While the number of publications is one important factor for determining the
level of interest associated to a result, another complementary factor is the fresh-
ness of the associated publications (i.e. how recently studies based on a given
gene have been published). The measure we consider in this subsection computes
the average number of days since the last publication co-citing the gene name
and the key-phrase has been published.

Over the 28 key-phrases studied, and when considering the top-20 genes,
ConQuR-Bio returns genes with fresher results for 22 of them. In average, the
top-20 genes returned by ConQuR-Bio have one associated article which was
published within 25% less days that the NCBI ones.

7 Discussion

With ConQuR-Bio, we made the connection between the query expansion field
and the median ranking field. We leveraged terminologies integration in the
UMLS system (an approach and system shown to be effective [8]) to propose re-
formulations. From two UMLS search modes, we provided reformulations based
on MeSH terms identified in the users key-phrases. To generate a consensus
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answer to the user emphasizing the agreements between the reformulations, we
backed its computation on a new pseudometric, extending the state-of-the-art
generalized Kendall-τ distance. With this new pseudometric, we adapted and
combined several median ranking algorithms, allowing the system to quickly
compute a consensus. We compared our approach to the main portal used to
browse gene-centric biological data, namely the EntrezGene database from the
NCBI website and its ranking function based on relevance. We showed that when
measuring the presence and order of expected results (based on Gold standards),
ConQuR-Bio outperforms the NCBI with an AUC increased of 69.30%. When
focusing on biometrics indicators and compared to the NCBI relevance sorting,
ConQuR-Bio returned genes associated with 56% more publications, published
in 25% less days. Last but not least, we made the system available and free to
use at http://conqur-bio.lri.fr as a website.

We now provide a discussion and perspectives considering the various steps
of our approach.

ConQuR-Bio starts with identifying MeSH terms from key-phrases. We have
currently chosen to follow a greedy (and naive) process enabling a very fast an-
swer rate, compatible with the on-the-fly feature of our approach. This strategy
is entirely satisfactory on evaluated key-phrases. Future work will explore the de-
tection of concepts from the users key-phrases by deploying concept recognition
software such as MetaMap [2] or BioAnnotator, enabling advanced reformulation
options (e.g. different levels of granularity). Providing results in a few seconds
while augmenting their overall quality will be the most challenging point.

The reformulation module plays a major role in the quality of the results.
This module is based on two components: the set of terminologies used and the
way such terminologies are queried and exploited.

As for the terminologies, we currently use terminology sources from the UMLS
which allowed us to have manageable and relevant amounts of reformulations.
Ongoing work includes selecting a larger and customizable number of sources
from the main two biological terminology integration systems (namely, the UMLS
and the BioPortal [18]) to cover a broader scope of biological domains. To cope
with the possibly too broad aspect of reformulations, we plan to allow (experi-
enced) users to select the reformulations to be or not to be used by our system.

As for the way terminologies are exploited, in our current version, the “search
deeper” mode provides narrower reformulations. However, work still have to be
done as the semantics of this mode is very permissive and does not exploit the
hierarchical feature of the links between concepts. The UMLS system provides
typed links for broader and narrower concepts unified between terminologies,
and their adequacy should be evaluated. Ongoing work consists in exploiting
the hierarchical relations from the sources to improve the detection of concepts
and their synonyms.

http://conqur-bio.lri.fr
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Abstract. Scientific data is stored in a wide variety of different formats. While 
much recent research and development have focused on specialized languages 
and tools to fulfill the requirements of specific domains or data structures, the 
need for more general technologies to enable data scientists to deal with various 
forms of data in a universal manner is growing. In this paper we describe data 
querying capabilities of the XQt language in order to show how it enables the 
users to author their processes in data source and format ignorant ways and to 
share and reuse their data, processes, and acquired skills. In addition, we 
describe the internals of the language, the execution pipeline, and the mapping 
between the domain level schemas and the physical structure of the data. The 
paper highlights the retrieval capabilities of XQt and illustrates some of its 
basic performance indicators. 

1 Introduction 

Data scientists deal with processing big, exploratory, and heterogeneous data. Usually 
they need to use several different tools to achieve their aim. Often these tools are not 
interoperable. Thus, it requires considerable effort to chain them into analysis 
pipelines [13]. Re-executing, documenting, or evaluating of these pipelines is also 
labor intensive. All these problems are particularly pronounced for scientific data as 
data integration from changing, heterogeneous sources across organizational 
boundaries plays such a big role.  

A language that eases these processes would be of great value to data scientists. If 
the language supported sharing and reusing of data and process independently, this 
would be considerable add to this value.  

In [4] we introduced the XQt1 language and its runtime system – it aims at 
achieving these goals. A brief introduction to the language including its requirements, 
blueprint design and main elements is recaptured in Section  2. XQt aims at a full 

                                                           
1 The language name has been changed to XQt (pronounced as execute) due to a name conflict 

with the work introduced in [11]. 
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featured data querying and manipulation language, but in this paper, building on our 
previous work, we focus on its data retrieval facilities and defer the discussion of data 
manipulation and technical implementations to future work (Section  6).  

XQt is a declarative, domain level, universal query language mainly designed to 
work with scientific data. Its declarative nature implies no ordering, no control 
statements, and immutable variables (Section  2). In order to work at the domain level, 
the language introduces the concept of “perspective”, which allows scientists to 
author the specification of their data objects independent of the physical data 
structures stored in data sources. Processes authored in XQt are translated into the 
native language of the underlying data source with the help of dynamically chosen 
and loaded adapters (Section  3). For a data scientist it means that XQt offers a 
uniform way to query and process data regardless of the underlying data source. In 
addition, the XQt API allows other data processing software applications, i.e., Kepler 
[20], R [5], and Taverna [19] to hand over their data querying and management to 
XQt.  The main features of some well-known data querying languages and systems 
that we modeled XQt upon are studied in related work (Section  5). Before 
summarizing the paper in Section  6, we present a preliminary performance evaluation 
of a CSV adapter prototype in Section  4. 

2 XQt Design 

XQt’s design promotes a uniform data access mechanism through the development of 
a declarative language and its runtime system (See Fig. 2). We provide the needed 
expressive power while ensuring translatability to other languages or systems 
summarized in Section  5. Data querying facilities of XQt support the following 
elements. 

1. Result Set Schema: defines the structure of the objects returned by the query in 
order to form a conceptual schema. Once the schema has been defined, it can be 
reused in all kinds of queries and for different underlying data sources. 

2. Source Selection: specifies the data source the data should be retrieved from. It can 
be a single or joined data container or a previously populated variable. 

3. Target Selection: Nominates an immutable variable to hold the result set of the 
query, to make it available for the following queries, functions, and visualizations. 

4. Slicing: Skips over a number of objects in the result set and takes a specific 
number afterward. 

5. Filtering: Removes the non-matching objects from the result set. 
6. Ordering: Sorts the result set based on the provided sorting keys and directions. 
7. Grouping: Groups the result set based on the grouping keys and/ or aggregation 

functions. 
8. Anchoring: In hierarchical and graph data, the anchor defines the starting and/ or 

finishing patterns, so that the query operates in the defined scope. 
9. Functions: A set of extendible functions available in filtering, grouping, and 

projection. 
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In XQt the term process script, or process for short, refers to a sequence of 
declarations and statements written in a specified order to serve as data processing 
requirements of a designated procedure. The statement is a unit of execution which 
may have a persistent effect on data. A query is a data retrieval statement without 
having any persistent (or side) effect on data. A declaration is a non-executable 
contract or a set of configuration items. 

In the current XQt grammar one query syntax and three types of declarations are 
considered. Among the declarations, a perspective forms the data object schema from 
the domain point of view. A connection models the required information to get access 
to the data, and a binding establishes a relationship between a connection and a proper 
version of the data if a versioning scheme is in place. In addition, the binding scopes 
the set of underlying data containers visible to the statements. A query retrieves the 
data using the associated bindings and perspectives. 

A perspective consists of a set of attributes defined locally, inherited from another 
perspective, or overridden the inherited ones. Each attribute describes one domain 
specific dimension of the data. The attribute’s optional forward (read) and reverse 
(write) mappings are expressions able to perform data transformations such as type, 
format, and unit of measurement conversion, and data de/composition for retrieval 
and manipulation operations, respectively. 

Fig. 12 illustrates the grammar of the query statement. The minimum query is 
constructed by a “SELECT” keyword followed by a source clause. The source 
selection clause specifies on which data the query should be executed. It can be a 
single or joined data container according to binding reference(s) or a previously 
defined variable. Target selection clause introduces a variable to keep the query 
result. 

 

Fig. 1. The syntax diagram of SELECT statement 

The projection clause explicitly nominates one of the previously declared 
perspectives as the query’s result set schema. If not introduced, the query tries to infer it 
from the variable or binding scope(s) used as source. Filtering predicates are arithmetic 
and/ or logical expressions referring to the attributes of the bound perspective and 
previously defined variables. The result set can be ordered and/ or grouped using 
ordering and grouping clauses, respectively. The anchor clause expressions allow 
starting from and/ or stopping in a set of data objects. The limit clause trims the result 
set by taking a subset after optionally skipping a specific number of items. A simple 
query example is provided as part of the evaluation in Section  4.  

                                                           
2 For space reasons, we left the description of “CONNECTION” and “BIND” out. 
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3 Query Execution 

Execution of the statements begins with parsing of the input process, which includes 
syntax tree generation, statement completion and validation, and inter-element 
dependency control. When the process is successfully parsed, an annotator creates a 
Described Syntax Tree (DST), which contains a descriptor node for each element of 
the process, as well as for some of the remarkable phrases, e.g., expressions and 
variables. Indeed, the DST is the strongly typed and fully linked representation of the 
process. It acts as the intermediate grammar and data ignorant contract between the 
language and the adapters and API clients. 

When the DST is ready, the query execution engine (QEE) executes all the 
statements. For each, using the binding information, the QEE chooses a proper 
registered adapter, passes the statement descriptor to it, and asks for execution. Upon 
receiving, the adapter transforms the descriptor from its domain level to a physical 
native counterpart if needed. The resulting native query is executed against the data. 
In cases the data source has no native query language or supporting runtime system, 
e.g., in CSV, and also if the chosen adapter does not provide all the capabilities asked 
for by the statement, a default adapter takes over partial responsibility of dealing with 
the data ensuring all the statements and their phrases are supported equally on all 
kinds of data sources. The QEE then assigns the result set to the nominated variable 
and keeps some internal tracks from the statement to the variable to the result set. 

The final result set is held in an immutable ordered collection of data objects, each 
bound to the statement’s perspective as the schema. The data types of perspective 
attributes are defined either explicitly or inferred from the mapping functions in 
accordance with the types of underlying fields. The language’s type system is a subset 
of ISO: SQL 2008 types [8]. The language provides expressiveness components such 
as grouping, aggregation, and arithmetic operations [9, 10] as well as patterns, 
negation and expressions [1, 7], but does not support nesting and sub-queries.  

4 Evaluation 

We conducted a preliminary evaluation of the language to verify whether the 
language and its default CSV adapter are able to show an acceptable and linear 
performance over different sizes of data. To achieve this, we compared XQt’s runtime 
for a set of typical sample queries to that of Postgres. Our aim was to see whether 
XQt’s runtime performance is comparable to that of Postgres. The test was done using 
a 600 Megabytes CSV file of a slightly changed biodiversity dataset containing 10 
million rows. Each row consists of timestamp, longitude (Degree), latitude (Degree), 
elevation (Meter), temperature (Celsius), and amount of soil nitrogen (microgram per 
volume unit) fields. We wanted the result set to include only rows having elevation 
between E1 and E2 Feet and temperature between T1 and T2 degree Fahrenheit, in 
that E1, E2, T1, and T2 can vary. Also in the result set, the elevation should be in 
Foot, the temperature in Fahrenheit and the soil nitrogen in Milligram per volume 
unit. 
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PERSPECTIVE soil 
{ 
  ATTRIBUTE Timestamp: DateTime MapTo=timestamp, 
  ATTRIBUTE Longitude: Real MapTo=longitude, 
  ATTRIBUTE Latitude: Real MapTo=latitude, 
  ATTRIBUTE Elevation: Real MapTo=elevation/0.3048, 
    ATTRIBUTE Temperature: Real MapTo=1.8*temp+32, 
    ATTRIBUTE SN: Double MapTo = soilNi / 1000,  
} 
CONNECTION cnn1 ADAPTER=CSV SOURCE_URI= "d:\data\" 
PARAMETERS file_extension: csv 
BIND b1 CONNECTION = cnn1 SCOPE = soildata1 
SELECT PERSPECTIVE soil FROM b1.0 WHERE (Elevation>=0 AND 
Elevation <=10 AND Temperature>=32 Temperature<=50)INTO 
var1 

Fig. 2. The process script that fetches and transforms data from a soil nitrogen observation 
dataset. It extracts the amount of soil nitrogen at different elevation/ temperatures. The adapter 
compiles the complete file name from the source_uri, scope and the file extension parameter. 
Binding b1.0 refers to the first scope, soildata1, defined in the b1 binding. 

We ran the process depicted in Fig. 2 in XQt and its equivalent SELECT statement 
in Postgres having E1, E2, T1, and T2 parameters set to different values shown in 
Table 1 and measured the queries’ execution time using the Java’s built-in timer. 
Postgres data was loaded into a single table and indexed on the elevation and 
temperature fields before the test, but no special performance tuning was conducted. 

Table 1. Performance of the XQt SELECT statement on a CSV dataset. The test has been done 
using the following configuration: CSV file size: 602 Megabytes, No. records: 10 Million, 
Operating System: Windows 7 Professional SP1, CPU: Intel Core i5/ M560/ 2.67 GHz/ 64 bits, 
Total Physical Memory: 8 GB, JVM: Java HotSpotTM 64-Bit Server VM version 25.0-b67 (Java 
8 beta), JVM Max Heap Size: 4 GB. Postgres version: 9.3.2. Both the XQt and Postgres APIs 
are called from the same application. XQt returns a java collection and Postgres a java 
ResultSet. 

E1-E2 
(M)  

T1-T2 
(F) 

No. of Returned 
Records 

PgS Time 
(Sec) 

XQt Time 
(Sec) 

00-00  32-32 0 4.93 7.89 
290-323 32-47 107029 4.56 8.24 
107-323 49-80 4061734 84.70 29.58 
00-323 32-98 8054593 173.42 79.68 
00-1200 32-122 10000000 216.60 95.24 

 
The results of the test execution on XQt and Postgres are shown in Table 1. The 

XQt execution times show a linear response time. The difference between the first 
and last rows is almost consumed by performing object materialization, as Postgres 
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executes the WHERE clause before the projection and XQt uses a two phase 
materialization.   

5 Related Work 

In order for XQt to be attractive to scientists, we need to make sure that a user can 
express virtually anything with XQt that she is used to being able to express with the 
query languages she used previously. Thus, a thorough look at a wide range of 
existing query languages was necessary. We studied query languages that are quite 
general in their respective data domains, e.g., relational, array based, XML, and graph 
data. 

The Structured Query Language, SQL, is a relational data management language 
[10], operating on tables and queries [8]. The SELECT statement specifies the result 
set. The designated SQL-implementation translates the query into a query plan and 
executes it. The statement is comprised of smaller phrases; an optional set quantifier 
to determine whether the result set eliminates duplicates, a list of columns to appear in 
the result set, the table reference(s) from which data is to be retrieved, a search 
condition to eliminate all non-matching records from the result set, a grouping clause 
to put the records having common values together, a filtering conditions on the 
groups, a WINDOW clause to partition the result set, and apply aggregate functions to 
each partition and specify their ordering. A BNF representation of SQL grammar is 
available in [12]. 

SciDB is a multidimensional array DBMS [16] that uses Array Query Language 
(AQL), an SQL-like declarative language, for working with arrays. Queries written in 
AQL get compiled into Array Functional Language (AFL) and then passed through 
the processing pipeline [16]. An AQL query consists of projection, target, source, and 
filter elements. The AQL expressions can access the attributes and dimensions of the 
array as well as calling built-in functions. It is possible to join two or more arrays and 
use the joined array as the source of the query. Nested sub queries and aggregate 
functions are also supported. 

A FLWOR, XQuery’s expression language, statement is made up of FOR, LET, 
WHERE, ORDER BY, and RETURN clauses [2]. The FOR clause binds one or more 
iterator variables to input sequences. The LET clause assigns a value to a given 
immutable variable for a specific iteration. The optional WHERE clause filters the 
iteration in order to eliminate matching tuples generated by FOR and/ or LET clauses. 
The optional ORDER BY clause then imposes an order on the remaining tuples. The 
RETURN clause is executed for each tuple resulted from the previous clause, 
generating an ordered list of, possibly formatted, outputs. There is no grouping or 
distinction functionality in the expressions. 

SPARQL [6] is a set of specifications that provide languages and protocols to 
query and manipulate RDF [3] data. It contains capabilities for querying required and 
optional graph patterns along with their conjunctions and disjunctions [7]. It also 
supports aggregation, sub queries, negation, and creating values by the use of 
expressions. Complex queries may include union, optional query parts, and filters.  
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The select query in SPARQL comprises of a SELECT clause, any number of 
DATASET clauses, a WHERE clause, and finally a solution modifier clause. The 
query executes on a set of RDF datasets [7] returning a solution set that matches 
imposed where clause conditions. It also supports function calls, union, offset and 
limit of the solution set. 

Cypher is a declarative graph query language that allows querying and updating 
Neo4J graphs. According to its documentations described in [17], the query statement 
is close to the following description: 

In Cypher, any query is describing a pattern in a graph. Patterns are expressions 
that return a collection of paths and are able to be evaluated as predicates. 
The MATCH clause allows specifying a search pattern used to match in the graph. 
The patterns can be introduced to match all nodes, nodes with a label, nodes having 
bidirectional or directed relationships, specific relationship types, calling functions 
that return patterns, and variable length relationship paths. The WITH clause divides a 
query into multiple, distinct parts, chaining subsequent query parts and forwards the 
results from one to the next [14]. Apart the MATCH clause, it is also possible to filter 
the result set using the WHERE clause. The query ends in a lazy RETURN clause 
which signals the end of the query. SKIP, LIMIT, and ORDER BY clauses are 
available after the RETURN clause. 

BigSQL is the IBM’s approach to deal with big data. It enables users to query data 
managed by Hadoop using an SQL like syntax by translating the SQL query to its 
Map-Reduce counterpart. BigSQL allows the user to import data from various sources 
into its tables in order to make them query-able. The tables’ fields can be of complex 
or array types. It has a limited support for insert and no support for delete and update 
statements [15]. 

6 Conclusion and Future Work 

In this paper we introduced the specification of the query statement of the XQt 
language and described how the runtime system accepts and executes the queries. 
Separation of schema definitions, connections, bindings, and statements increases 
process cleanness, and maintainability as well as enhancing sharing and skill transfer 
among users and tools. Perspectives provide a physical data ignorant mechanism by 
defining a domain level schema. The statements can be executed against different 
versions of the same data, in different formats, or in different storages by applying 
minimal changes in the process script. Having various viewpoints on the same data, 
e.g., for different processing or visualization purposes, is as easy as defining multiple 
perspectives. The language is implemented using EBNF3 in ANTLR 44. The runtime 
system is under active development and we are testing its integration with a CSV 
adapter developed for this purpose. The future work on the language adds adapters for 
other commonly used data sources as well as providing join, versioning support, and 
data manipulation functionalities. The language will be integrated into BExIS [18] 
and thoroughly evaluated in the context of biodiversity data. 

                                                           
3 Extended Backus–Naur Form, 
https://en.wikipedia.org/wiki/Extended_Backus-Naur_Form 

4 ANTLR Version 4, http://www.antlr.org/ 
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