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Abstract. Modern SAT solvers have experienced a remarkable progress
on solving industrial instances. Most of the techniques have been devel-
oped after an intensive experimental process. It is believed that these
techniques exploit the underlying structure of industrial instances. How-
ever, there is not a precise definition of the notion of structure.

Recently, there have been some attempts to analyze this structure in
terms of complex networks, with the long-term aim of explaining the
success of SAT solving techniques, and possibly improving them.

We study the fractal dimension of SAT instances with the aim of com-
plementing the model that describes the structure of industrial instances.
We show that many industrial families of formulas are self-similar, with
a small fractal dimension. We also show how this dimension is affected
by the addition of learnt clauses during the execution of SAT solvers.

1 Introduction

The SAT community has been able to come up with successful SAT solvers
for industrial applications. However, nowadays we can hardly explain why these
solvers are so efficient working on industrial SAT instances with hundreds of
thousands of variables and not on random instances with hundreds of variables.
The common wisdom is that the success of modern SAT/CSP solvers is corre-
lated to their ability to exploit the hidden structure of real-world instances [13].
Unfortunately, there is no precise definition of the notion of structure.

Parallelly, the community of complex networks has produced tools for de-
scribing and analyzing the structure of social, biological and communication
networks [1] which can explain some interactions in the real-world. Preferen-
tial attachment (where the probability that a new edge is attached to a node
is proportional to its degree) has been proposed as the responsible of scalefree
structure in real-world graphs [5]. Thus, in the web, the probability of a web
page to get new connections is proportional to its popularity (the number of
connections it already has). In cite [9], it is proposed similarity (where nodes
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tend to get connected to similar nodes, according to some topological distance)
as a mechanism that, together with preferential attachment or popularity, ex-
plains the structure of some real-world graphs. This explains the self-similarity
property observed in many real-world graphs [11].

Representing SAT instances as graphs, we can use some of the techniques
from complex networks to characterize the structure of SAT instances. Recently,
some progress has been made in this direction. It is known that many industrial
instances have the small-world property [12], exhibit high modularity [4], and
have a scale-free structure [2]. In this later work, it is shown that in many
formulas the number of occurrences of a variable (i.e. the degree of graph nodes)
follows a powerlaw distribution with hub variables having a huge number of
occurrences. A method to generate scale-free random instances is proposed in [3].
They show that SAT solvers specialized on industrial formulas perform better
than random-specialized solvers on these scale-free random instances. In [7], the
eigenvector centrality of variables in industrial instances is analyzed. They show
that it is correlated with some aspects of SAT solvers. For instance, decision
variables selected by the SAT solvers are usually the most central variables in
the formula. However, how these analyses may help to improve the performance
of SAT solvers is not known at this stage.

The contribution of this paper is to analyze the existence of self-similarity in
industrial SAT instances. The existence of a self-similar structure would mean
that after rescaling (replacing groups of nodes by a single node, for example), we
would observe the same kind of structure. It would also mean that the diameter
dmax of the graph grows as dmax ∼ n1/d, where d is the fractal dimension of
the graph, and not as dmax ∼ logn, as in random graphs or small-world graphs.
Therefore, actions in some part of the graph (like variable instantiation) may not
propagate to other parts as fast as in random graphs. Our analysis shows that
many industrial formulas are self-similar. We think that the self-similarity, as well
as the scale-free structure, is already present in many of the problems encoded
as SAT instances. Thus, for instance, hardware-verification instances may have
this structure because the circuits they encode already have this structure.

Studying graph properties of formulas has several direct applications. One of
them, is the generation of industrial-like random SAT instances. Understand-
ing the structure of industrial instances is a first step towards the development
of random instance generators, reproducing the features of industrial instances.
This would allow us to generate industrial-like random instances of a prede-
fined size and structure to support the testing of industrial SAT solvers under
development. Related work in this direction can be found in [3].

Another potential application is to improve portfolio approaches [14,6] which
are solutions to the algorithm selection problem. State-of-the-art SAT Portfolios
compute a set of features of SAT instances in order to select the best solver from
a predefined set to be run on a particular SAT instance. It is reasonable to think
that more informative structural features of SAT instances can help to improve
portfolios.
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Our experimental investigation shows that most industrial instances are self-
similar, and their dimension ranges between 2 and 4. In the case of crafted
instances, they also exhibit a clear self-similar behaviour, but their fractal di-
mensions are bigger in some cases. On the other hand, random instances are
clearly not self-similar. We also show that using a very reduced set of complex
networks properties we are able to classify industrial instances into families quite
accurately.

Finally, we have investigated how the addition of learnt clauses during the
execution of a SAT solver affects the dimension of the working instance. The
addition of learnt clauses increases the fractal dimension, as expected. However,
we show that modern SAT solvers produce a smooth increase, that suggests
that SAT solvers tend to work locally. In contrast, the substitution of the learnt
clauses by random clauses of the same size, produces a much bigger increase in
the dimension.

The paper proceeds as follows. We introduce the fractal dimension of graphs
in Section 2. In Section 3, we define the notion of fractal dimension of a SAT
formula and compare it with the notion of diameter of a SAT formula. Then, we
analyze whether SAT instances represented as graphs have a fractal dimension
in Section 4. In Section 5, we study the effect of learnt clauses on the fractal
dimension. Section 6 contains the conclusions. All the software used in the paper
is available at http://www.iiia.csic.es/~jgiraldez.

2 Fractal Dimension of a Graph

We can define a notion of fractal dimension of a graph following the principle of
self-similarity. We will use the definition of box covering by Hausdorff [8].

Definition 1. The distance between two nodes is the minimum number of
edges we need to follow to go from one node to the other.
The diameter dmax of a graph is the maximal distance between any two nodes
of the graph.
Given a graph G, a box B of size l is a subset of nodes such that the distance
between any pair of them is strictly smaller than l.
We say that a set of boxes covers a graph, if every node of the graph is in some
box. Let N(l) be the minimum number of boxes of size l required to cover the
graph.
We say that a graph has the self-similarity property if the function N(l) de-
creases polynomially, i.e. N(l) ∼ l−d, for some value d. In this case, we call d
the dimension of the graph.

Notice that N(1) is equal to the number of nodes of G, and N(dmax + 1) is the
number of connected components of the graph.

Lemma 1. Computing the function N(l) is NP-hard.1

1 In [10] the same result is stated, but there, they prove the wrong reduction. They
reduce the computation of N(2) to the graph coloring problem.
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Proof: We prove that computing N(2) is already NP-hard by reducing the
graph coloring problem to the computation of N(2). Given a graph G, let G,
the complement of G, be a graph with the same nodes, and where any pair of
distinct nodes are connected in G iff they are not connected in G. Boxes of size
2 in G are cliques, thus they are sets of nodes of G without an edge between
them. Therefore, the minimal number of colors needed to color G is equal to the
minimal number of cliques needed to cover G, i.e. N(2).

There are several efficient algorithms that approximate N(l). They compute up-
per bounds of N(l). They are called burning algorithms (see [10]). Following
a greedy strategy, at every step they try to select the box that covers (burns)
the maximal number of uncovered (unburned) nodes. Although they are poly-
nomial algorithms, we still need to do some further approximations to make the
algorithms of practical use in very large graphs.

First, instead of boxes, we will use circles.

Definition 2. A circle of radius r and center c is a subset of nodes of G such
that the distance between any of them and the node c is strictly smaller that r.

Let N(r) be the minimum number of circles of radius r required to cover a
graph.

Notice that any circle of radius r is inside of a box of size 2 r−1 (the opposite
is in general false) and any box of size l is inside a circle of radius l (it does not
matter what node of the box we use as center). Notice also that every radius r
and center c characterizes a unique circle.

According to Hausdorff’s dimension definition, N(r) ∼ r−d also characterizes
self-similar graphs of dimension d. We can approximate this fractal dimension us-
ing the Maximum-Excluded-Mass-Burning (MEMB) algorithm [10], which works
as follows: Consider a graph G and a radius r. We compute an upper bound of
the number of circles with radius r necessary to cover the graph N(r). We start
with all nodes set to unburned. At every step, for every possible node c, we
compute the number of unburned nodes covered by the circle of center c and
radius r, then select the node c that maximizes this number, and burn the new
covered nodes.

The MEMB algorithm is still too costly for our purposes. We apply the follow-
ing strategy to make the algorithm more efficient. We order the nodes according
to their degree: 〈c1, . . . , cn〉 such that degree(ci) ≥ degree(cj), when i > j. Now,
for i = 1 to n, if ci is not burned, then select the circle of center ci and radius
r (even if it does not maximizes the number of unburned covered nodes), and
burn all its unburned nodes. We call this algorithm Burning by Node Degree
(BND), and describe it in Alg. 1. After we give the definition of fractal dimen-
sion of a SAT instance, we will compare the accuracy and efficiency of algorithms
MEMB and BND in subsection 4.1 to justify the use of algorithm BND in our
experimentation.
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Algorithm 1: Burning by Node Degree (BND)

Input: Graph G = (V,E)
Output: vector[int] N

1 N [1] := |V |;
2 int i := 2;
3 while N [i− 1] > connectedComponents(G) do
4 vector[bool] burned(|V |);
5 N [i] := 0;
6 burned := {false, . . . , false};
7 while existsUnburnedNode(burned) do
8 c := highestDegreeUnburnedNode(G, burned);
9 S := circle(c, i); // circle with center c and radius i;

10 foreach x ∈ S do
11 burned[x] := true;

12 N [i] + +;

13 i := i+1;

3 The Fractal Dimension of SAT Instances

Given a SAT instance, we can build a graph from it. Here, we propose two
models.

Definition 3. Given a SAT formula, the Clause-Variable Incidence Graph
(CVIG) associated to it is a bipartite graph whose nodes are the set of variables
and the set of clauses, and its edges connect a variable and a clause whenever
that variable occurs in the clause.

The Variable Incidence Graph (VIG) associated to a formula is a graph
whose nodes represent the set of variables, and an edge between two nodes indi-
cates the existence of a clause containing both variables.

In this paper we analyze the function N(r) for the graphs obtained from a
SAT instance following the VIG and CVIG models. These two functions are
denoted N(r) and N b(r), respectively, and they relate to each other as follows.

Lemma 2. If N(r) ∼ r−d then N b(r) ∼ r−d.

If N(r) ∼ e−β r then N b(r) ∼ e−
β
2 r.

Proof: Notice that, for any formula, given a circle of radius r in the VIG model,
using the same center and radius 2 r−1 we can cover the same variable nodes in
the CVIG model. With radius 2 r we can also cover all clauses adjacent to some
covered variable. Hence N b(2 r) ≤ N(r).

Conversely, given a circle of radius 2 r in the CVIG model, we consider two
possibilities. If the center is a variable node, we cover the same variables in the
VIG model using a circle of radius r and the same center. If the center is a clause
c, to cover the same variables in the VIG model, we need a circle of radius r+1
centered in a variable node adjacent to c. Hence N(r + 1) ≤ N b(2 r).
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Therefore N(r+1) ≤ N b(2 r) ≤ N(r), and N(r) ∼ N b(2 r). From this asymp-
totic relation, we can derive the two implications stated in the lemma.

Previous lemma states that if a SAT formula is (fully) self-similar, then in both
models, VIG and CVIG, the fractal dimension is the same. In such case, if we plot
N(r) as a function of r in double-logarithmic axes, we obtain a line with slope
−d. If N(r) decays exponentially (as in random SAT formulas), then the decay
factor in the CVIG model is half of the decay factor in the VIG model. In such
case, if we plot N(r) in semi-logarithmic axes, we obtain a line with slope −β.
We will always plot N(r) in double-logarithmic axes. Thus, when N(r) decays
exponentially, we will observe a concave curve.

3.1 Fractal Dimension versus Diameter

The function N(r) determines the maximal radius rmax of a connected graph,
defined as the minimum radius of a circle covering the whole graph minus one:
N(rmax+1) = 1. The maximal radius and the diameter dmax of a graph are also
related, because rmax ≤ dmax ≤ 2 rmax. From these relations we can conclude
the following.

Lemma 3. For self-similar graphs or SAT formulas (where N(r) ∼ r−d), the
diameter is dmax ≈ n1/d, where d is the fractal dimension.
In graphs or SAT formulas where N(r) ∼ e−β r, the diameter is dmax ≈ logn

β .

Proof: The diameter of a graph and the maximal radius are related as rmax ≤
dmax ≤ 2 rmax. Notice that, by definition of the function N(r), we have N(1) =
n, where n is the number of nodes, and N(rmax + 1) = 1.

Assuming N(r) = C r−d and replacing r by 1 we get C = n. Then, replacing r
by rmax +1, we get 1 = N(rmax +1) = n (rmax +1)−d. Hence, rmax = n1/d− 1.

Assuming N(r) = C e−β r and replacing r by 1 we get C = n eβ. Then,
replacing r by rmax + 1, we get 1 = N(rmax + 1) = n e−β (rmax). Hence, rmax =
logn
β .

The diameter, as well as the typical distance2 L of a graph, have been widely
used in the characterization of graphs. For instance, small world graphs [12] are
characterized as those graphs with a small typical distance L ∼ logn and a large
clustering coefficient. This definition works well for families of graphs because
then we can quantify the typical distance as a function on the number of nodes.
But it is quite imprecise in the case of individual graphs, because it is difficult
to decide what is a “small” distance and a “large” clustering coefficient, for a
concrete graph. Moreover, the diameter and the typical distance of a graph are
measures quite expensive to compute in practice (for huge graphs, as the ones
representing many industrial SAT formulas), even though there is a quadratic
algorithm. In fact, our approximation to the fractal dimension can be computed
more efficiently than the diameter.

2 The typical distance of a graph is the average of the distances between any two
nodes.
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Since we are interested in characterizing the structure of formulas, the frac-
tal dimension is a better measure because it is independent of the size. Thus,
formulas of the same family (and similar structure), but very distinct size, will
have similar dimension and N(r) function shape.

4 Experimental Evaluation

We have conducted an exhaustive analysis of the 300 industrial SAT instances
and the 300 crafted instances of the SAT Competition 20133, and 90 random
3CNF formulas of 105 variables at different clause/variable ratios. We will see
that most industrial and crafted instances are self-similar and have a small frac-
tal dimension, i.e. N(r) ∼ r−d, for small d. In random instances N(r) decays
exponentially, i.e. N(r) ∼ e−β r.

Before presenting the results of this evaluation, let us justify the use of
the BND algorithm to calculate the fractal dimension, instead of the MEMB
algorithm.

4.1 The Accuracy of the BND Algorithm

In order to evaluate how accurate the algorithm BND is, we compare it to the
MEMB algorithm presented in [10].

We run both algorithms for the set of 300 industrial instances of the SAT
Competition 2013 with a timeout of 30 minutes. While the BND algorithm
finishes for all the 300 instances, MEMB is only able to approximate N b(r) in
17 instances. Moreover, while the average run-time of BND for these instances is
0.11 seconds, MEMB takes an average of 10 minutes and 7.2 seconds to compute
them. On the other hand, the approximations of N b(r) computed by MEMB and
BND are very similar (see Fig. 1).

Since the MEMB algorithm is more accurate than the BND algorithm, the
upper bounds of N b(r) that MEMB calculates are below the ones calculated by
BND. The real values of N b(r) are probably even lower in the final points (where
the approximation is less accurate).

4.2 Random Formulas

Random 2SAT formulas in the VIG model correspond to Endös-Renyi graphs.
It is known that these formulas have a phase transition point at m/n = 1 where
formulas pass from satisfiable to unsatisfiable with probability one. It is also
known that at m/n = 0.5 there is a percolation threshold. Formulas below this
point have an non-connected associated VIG graph, and above this threshold
there is a major connected component. In the percolation point the formula
is self-similar with a fractal dimension d = 2. Above this point N(r) decays
exponentially. To the best of our knowledge, a result of this kind is not known
for random 3CNF formulas.

3 http://satcompetition.org/2013/

http://satcompetition.org/2013/
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Fig. 1. Upper bounds for Nb(r) obtained with MEMB and BND algorithms, for the 17
industrial instances that MEMB is able to compute in 30 minutes, grouped by families

Experimentally, we observe that the function N(r) only depends on the
clause/variable ratio m/n, and not on the number of variables (this is not shown
in figures). In the phase transition point m/n = 4.25, the function has the form
N(r) ∼ e−2.3 r, i.e. it decays exponentially with β = 2.3 (see Fig. 2). Hence,
rmax = logn

2.3 + 1. For instance, for n = 105 variables, random formulas have a
radius rmax ≈ 6. For bigger values of m/n, the decay β is bigger. In the CVIG
model, we observe the same behavior. However, in this case, in the phase transi-
tion point, N(r) decays exponentially with β = 1.16 ≈ 2.3/2. Hence, the decay
is just half of the decay of the VIG model, as we expected by Lemma 2.

For random 3CNF formulas, we have experimentally found a percolation
threshold at m/n ≈ 0.17. At this point the principal connected component also
exhibits a fractal dimension d = 2.

4.3 Industrial Instances

Analyzing industrial instances, we observe that most of them are self-similar,
and most dimensions ranges between 2 and 4. In the SAT Competition 2013,
instances are grouped into families. In many of these families, all instances have
the same fractal dimension, being this dimension a characteristic of the family.
See, for instance, families crypto-sha or diagnosis in Fig. 3. Notice that the size
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Fig. 3. Function Nb(r) for some industrial SAT formulas grouped by families

of the formulas does not affect the value of the dimension (in the representation
the function can be higher or lower, but with the same slope).

In general, the polynomial decay is clearer for small values of r. Moreover, in
this area, the slope is the same for all instances of the same family of formulas.



116 C. Ansótegui et al.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1  2  3  4  5  6  10

N
b (r

)

r
GRAPH-ISOMORPHISM

graph-isomorphism
y=pow(x,-7.35)

 1  2  3  4  5  10  20  30  40 50  100  200

r
SOFTWARE-BIT-VERIF

software-bit-verif
y=pow(x,-1.69)

 1  2  3  4  5  10

r
RANDOM-MUS

random-mus
y=pow(x,-2.84)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1  2  3  4  5  6  10

N
b (r

)

r
FACTORING

factoring
y=pow(x,-2.07)

 1  2  3  4  5  10  20  30  40 50  100  200

r
GAMES-PEBBLING

games-pebbling
y=pow(x,-2.41)

 1  2  3  4  5  6  10

r
RBSAT

rbsat
y=pow(x,-5.95)

Fig. 4. Function Nb(r) for some crafted SAT formulas grouped by families

For big values of r, we must make some considerations. First, the upper bound
on N b(r) that we calculate can be a bad approximation. Second, there are two
phenomena that we can identify. In some cases there is an abrupt decay, but the
whole function can not be approximated by an exponential function (see some
hardware-cec or termination instances, for instance). This decay in the number
of required tiles can be due to a small number of edges connecting distant areas
of the graph. These edges have no effect for small values of r, but may drop
down the number of tiles for big values of r. In some other cases (see hardware-
bmc-ibm, for instance), there is a long tail. In this case, it is due to the existence
of (small) unconnected components in the graph. If we compute N(r) only for
the major component, this tail disappears.4

Finally, all instances of the hardware-velev family have a N(r) function with
exponential decay, i.e. are not self-similar.

4.4 Crafted Instances

Studying crafted instances, we see that most of them are self-similar. However,
their fractal dimension have bigger values than the ones of the industrial formulas
(some values are even bigger than 7).

The crafted instances of the SAT Competition 2013, as well as the industrial
instances of this competition, are grouped into families. In general, we find that
many families exhibit an homogeneus curve of N(r) in all their instances. More-
over, in many of these families, N(r) has a polynomial decay (i.e., all instances
have the same fractal dimension). The fractal dimension of crafted formulas
ranges from 1.5 to 7.5. In Fig. 4 we represent some crafted families.

4 In the figures, we can subtract from N(r) the number of unconnected components,
as an approximation, since most are covered with a few tiles.
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Fig. 5. Distribution of families according to the exponent α of the powerlaw distribu-
tion of node degrees, and fractal dimensions db at a fine-grained scale. Heterogeneous
families (software-bit-verif and software-bmc) are not plotted.

4.5 Fractal Dimension at Fine-Grained Scale

If a graph is self-similar, then it has the same structure at all scales. We could
replace groups of nodes tiled by a box by a single node, obtaining another graph
with the same structure. In our experiments, we observe that this is the case
for small values of r (for small values of r, function N(r) ≈ C r−d). However,
this is more arguable for big values of r. Perhaps this is because the graph is
not self-similar at large scale (coarse-grained), or because our approximation of
N(r) is not precise enough. If the formula has a small refutation, this will be
visualized in our VIG or CVIG graphs as a small cycle. This means that what
is really relevant is the fractal dimension looking at the graph at small scale
(fine-grained dimension). In other words, we think that, more than whether
there exists a self-similar structure, what is important, is the value of the fractal
dimension at fine-grained, i.e. the slope of the function N(r) for small values
of r.

In our next experiment, we try to classify industrial instances according to
their fractal dimension at fine-grained, and the exponent α of the powerlaw
distribution of node degrees (see [2] for a description of how to compute exponent
α). We will also note these fine-grained dimensions as d and db for the VIG and
CVIG, respectively. We compute them as the interpolation, by linear regression,
of logN(r) vs. log r. We use the values of N(r) and N b(r), for r = 1, . . . , 6.
Experimentally, we see that these approximations are accurate enough. As we
can see in Fig. 5, just with the fractal dimension db and the powerlaw exponent
α, we are able to determine which family an instance belongs to.
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Fig. 6. Relation between the original fractal dimension dborig, and the dimension dblearnt

after adding learned clauses, or after adding random clauses dbrand, in random 3CNF
formulas. Learnt clauses are computed after 103 conflicts.

5 The Effect of Learning

State-of-the-art SAT solvers add learnt clauses from conflicts during their ex-
ecution. When a learnt clause is unitary, it can be propagated simplifying the
original formula. Given a unitary clause x, clauses with literal x are completely
removed, and literals ¬x are removed from the formula. Learnt clauses of bigger
length create new relations between variables, i.e., new edges in the VIG model.

Both, the addition of learnt clauses, and the simplification of formulas, due to
unitary learnt clauses, may affect the dimension of the formula. The addition of
edges in a graph (preserving the nodes) always increases its dimension, because
tiles may cover more nodes, and the number N(r) of tiles required to cover the
graph decreases, whereas N(1) is preserved. This contributes to increase the
slope of function N(r), hence the dimension. The effect of simplifications due
to unitary learnt clauses is more difficult to predict, since we remove satisfied
clauses (edges in the VIG model), but also nodes (decreasing N(1)).

We have conducted some experiments to analyze how the fractal dimension
evolves during the execution of the SAT solver. First we show the effect of intro-
ducing learnt clauses in random 3CNF instances with 105 variables and distinct
clause/variable ratios. In these instances almost all learnt clauses are not uni-
tary, hence we do not remove variable nodes. In the VIG model, the addition of
these learnt clauses introduces edges, and increases the dimension. In the CVIG
model dimension also increases due to the same reason. In Fig. 6, we plot the
dimension dblearnt after adding learnt clauses w.r.t. the original dimension dborig.
We observe that the addition of learnt clauses increases the dimension of the
formula. This increase is bigger for formulas with higher clause/variable ratio. In
order to quantify the increase in the dimension, we repeat the same experiment
replacing learnt clauses by random clauses of the same size, and computing the



The Fractal Dimension of SAT Formulas 119

2

3

4

5

6

7
8

2 3 4 5 6 7 8

db si
m

p

db
orig

simplification
f(x)=x

2

3

4

5

6

7
8

2 3 4 5 6 7 8

db le
ar

nt

db
simp

learnt clauses
f(x)=x

Fig. 7. Relation between the original fractal dimension dborig and the fractal dimension
dbsimp after simplifying the formula with the unitary learnt clauses (left), and relation
between the fractal dimension dbsimp and the fractal dimension dblearnt after simplifi-
cation and adding learnt clauses (right), for all industrial formulas. Learnt clauses are
the result of 103 conflicts.

new dimension dbrandom (results are also shown in Fig. 6). We observe that in
this second experiment the increase in the dimension is bigger than adding learnt
clauses: dbrandom ≥ dblearnt ≥ dborig. This means that learnt clauses, even in these
random formulas, tend to connect variables that were already close in the graph.
Therefore, their effect in the dimension is not as important as adding random
clauses. In industrial instances some of the learnt clauses are unitary. We have
analyzed separately the effect of simplifying the formula using these unitary
clauses, and the effect of adding non-unitary learnt clauses. In the first case,
when we learn x, and remove satisfied clauses containing x, we may remove
edges connecting pairs of variables of those clauses. This contributes to decrease
the dimension. However, we also remove the variable node x and the clauses
nodes satisfied by x (N(1) decreases). The effect of this second transformation
on the graph cannot be predicted. Experimentally, we observe that simplifying
the formula using unitary learnt clauses tends to decrease the dimension of the
VIG and CVIG graph (see Fig. 7). The only exceptions are the crypto-sha and
the crypto-gos families where a great number of variable nodes are removed.

In Fig. 8 we show the change in the dimension after 103, 104 and 105 conflicts.
We observe that at the beginning dimensions may increase or decrease slightly.
However, after 105 conflicts, the dimension clearly increases in most of the cases.
Finally, in Fig. 9 we quantify the variation of the dimension due to the addition of
learnt clauses, compared with the addition of the same number of random clauses
with the same sizes. The effect of random clauses is much more significant, i.e.,
most of learnt clauses do not contribute to make tiles bigger (i.e. to reduce the
number of needed tiles). They mainly connect nodes inside the tiles, i.e. nodes
that where already close. Therefore, learning acts quite locally in the formula.
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Fig. 8. Relation between the original fractal dimension and the fractal dimensions after
learning clauses, in industrial formulas
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6 Conclusions

We conclude that many industrial instances are self-similar, with most fractal
dimensions ranging between 2 and 4. Fractal dimension, typical distances and
graph diameter are related (small dimension implies big distance and diameter).
Hence, industrial SAT instances have a big diameter (intuitively, we need long
chains of implications to propagate a variable instantiation to others). We ob-
serve the same behaviour in crafted instances, although the fractal dimension is
bigger in some cases. On the other hand, random instances are not self-similar.

We have also observed that fractal dimension increases due to learnt clauses.
Moreover, the increase is specially abrupt in instances that show exponential
decays (for instance, in the family hardware-velev or random formulas). This
increase is bigger, if we substitute learnt clauses by random clauses of the same
size. Therefore, learning does not contribute very much to connect distant parts
of the formula, as one could think.
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We have proved that we can determine the family an industrial instance be-
longs according to their fractal dimension at fine-grained, and the exponent α of
the powerlaw distribution of node degrees. This is of interest for the development
of portfolio solvers.

As future work, we plan to investigate how to develop industrial-like random
instance generators to produce instances whose structural graph features such
as the fractal dimension, the α exponent or the modularity are similar to the
ones of industrial instances.
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