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Abstract. We identify a wide family of analytic sequent calculi for
propositional non-classical logics whose derivability problem can be uni-
formly reduced to SAT. The proposed reduction is based on interpreting
these calculi using non-deterministic semantics. Its time complexity is
polynomial, and, in fact, linear for a useful subfamily. We further study
an extension of such calculi with Next operators, and show that this
extension preserves analyticity and is subject to a similar reduction to
SAT. A particular interesting instance of these results is a HORNSAT-
based linear-time decision procedure for Gurevich and Neeman’s primal
infon logic and several natural extensions of it.

1 Introduction

Sequent calculi provide a flexible well-behaved proof-theoretic framework for a
huge variety of different logics. Usually, they allow us to perform proof-search
for the corresponding logic. The fundamental property of cut-elimination is tra-
ditionally proven, as it often guarantees the adequacy of a given sequent calculus
for this task. Nevertheless, a great deal of ingenuity is required for developing
an efficient proof-search algorithms for cut-free sequent calculi (see, e.g., [12]).

In this work we identify a general case in which it is possible to replace proof-
search by SAT solving. While SAT is NP-complete, it is considered “easy” when
it comes to real-world applications. Indeed, there are many off-the-shelf SAT
solvers, that, despite an exponential worst-case time complexity, are considered
extremely efficient (see, e.g., [14]).

We focus on a general family of relatively simple sequent calculi, called pure
sequent calculi. Roughly speaking, these are propositional fully-structural calculi
(calculi that include the structural rules: exchange, contraction and weakening),
whose derivation rules do not enforce any limitations on the context formu-
las (following [1], the adjective “pure” stands for this requirement). We do not
assume that the calculi enjoy cut-elimination. Instead, we formulate an analyt-
icity property, that generalizes the usual subformula property, and show that
the derivability problem in each analytic pure calculus can be reduced to (the
complement of) SAT. This result applies to a wide range of sequent calculi for
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different non-classical logics, including important three and four valued logics
and various paraconsistent logics.

To achieve this result we utilize an alternative semantic view of pure sequent
calculi. For that, we have extended the correspondence between sequent calculi
and their bivaluation semantics from [7], so the semantics is tied to the set of
formulas allowed to be used in derivations. The derivability problem in a given
analytic sequent calculus is then replaced by small countermodel search, which
can be translated into a SAT instance. In turn, one can construct a countermodel
from a satisfying assignment given by the SAT solver in the form of a bivaluation
(or a functional Kripke model when Next operators are involved, see below).

The efficiency of the proposed SAT-based decision procedure obviously de-
pends on the time complexity of the reduction. This complexity, as we show, is
O(nk), where n is the size of the input sequent and k is determined according
to the structure of the particular calculus. For a variety of useful calculi, we
obtain a linear time reduction. This paves the way to efficient uniform decision
procedures for all logics that can be covered in this framework. In particular, we
identify a subfamily of calculi for which the generated SAT instances consist of
Horn clauses. In these calculi the derivability problem can be decided in linear
time by applying the reduction and using a linear time HORNSAT solver [13].

In Section 6 we extend this method to analytic pure calculi augmented with
a finite set of Next operators. These are often employed in temporal logics.
Moreover, in primal infon logic [11] Next operators, as we show, play the role
of quotations, which are indispensable in the application of this logic for the
access control language DKAL. We show that all analytic pure calculi, satisfying
a certain natural requirement, can be augmented with Next operators, while
retaining their analyticity. In turn, the general reduction to SAT is extended
to analytic calculi with Next operators, based on a (possibly non-deterministic)
Kripke-style semantic characterization. A HORNSAT-based decision procedure
for primal infon logic with quotations is then obtained as a particular instance.
In addition, in this general framework we are able to formulate several extensions
of primal infon logic with additional natural rules, making it somewhat “closer”
to classical logic, and still decidable in linear time.

Related Works. Our method generalizes the reduction given in [6] of quotations-
free primal infon logic to classical logic. For the case of primal infon logic with
quotations the proposed reduction produces practically equivalent outputs to the
reduction in [8] from this logic to Datalog. A general methodology for translating
derivability questions in Hilbertian deductive systems to Datalog was introduced
in [9]. However, this method may produce infinitely many Datalog premises, and
then it is difficult to use for computational purposes. In contrast, the reduction
proposed in this paper always produces finite SAT instances. This is possible
due to our focus on analytic calculi. Since Hilbertian systems are rarely analytic,
we handle Gentzen-type calculi.

Due to lack of space, some proofs are omitted, and will appear in an extended
version.
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2 Preliminaries

A propositional language L consists of a countably infinite set of atomic variables
At = {p1, p2, . . .} and a finite set ♦L of propositional connectives. The set of all
n-ary connectives of L is denoted by♦n

L. We identify L with its set of well-formed
formulas (e.g. when writing ψ ∈ L or F ⊆ L). A sequent is a pair 〈Γ,Δ〉 (denoted
by Γ ⇒ Δ) where Γ andΔ are finite sets of formulas. We employ the standard se-
quent notations, e.g. when writing expressions like Γ, ψ ⇒ Δ or ⇒ ψ. The union
of sequents is defined by (Γ1 ⇒ Δ1) ∪ (Γ2 ⇒ Δ2) = (Γ1 ∪ Γ2 ⇒ Δ1 ∪Δ2). For a
sequent Γ ⇒ Δ, frm(Γ ⇒ Δ) = Γ ∪Δ. This notation is naturally extended to
sets of sequents. Given F ⊆ L, we say that a formula ϕ is an F-formula if ϕ ∈ F
and that a sequent s is an F-sequent if frm(s) ⊆ F . A substitution is a function
from At to some propositional language. A substitution σ is naturally extended
to any propositional language by σ(	(ψ1, . . . , ψn)) = 	(σ(ψ1), . . . , σ(ψn)) for ev-
ery compound formula 	(ψ1, . . . , ψn). Substitutions are also naturally extended
to sets of formulas, sequents and sets of sequents. In what follows, L denotes an
arbitrary propositional language.

3 Pure Sequent Calculi

In this section we define the family of pure sequent calculi, and provide some
examples for known calculi that fall in this family.

Definition 1. A pure rule is a pair 〈S, s〉 (denoted by S / s) where S is a finite
set of sequents and s is a sequent. The elements of S are called the premises of
the rule and s is called the conclusion of the rule. An application of a pure rule
{s1, . . . sn} / s is any inference step of the form

σ(s1) ∪ c . . . σ(sn) ∪ c

σ(s) ∪ c

where σ is a substitution and c is a sequent (called a context sequent). The
sequents σ(si)∪c are called the premises of the application and σ(s) ∪ c is called
the conclusion of the application. The set S of premises of a pure rule is usually
written without set braces, and its elements are separated by “;”.

Note that we differentiate between rules and their applications, and use dif-
ferent notations for them.

Example 1. The following are pure rules:

p1 ⇒ p2 / ⇒ p1 ⊃ p2 ⇒ p1; p2 ⇒ / p1 ⊃ p2 ⇒ / ⇒ p1 ⊃ p1

Applications of these rules have respectively the forms:

Γ, ψ1 ⇒ ψ2, Δ

Γ ⇒ ψ1 ⊃ ψ2, Δ

Γ ⇒ ψ1, Δ Γ, ψ2 ⇒ Δ

Γ,ψ1 ⊃ ψ2 ⇒ Δ Γ ⇒ ψ ⊃ ψ,Δ

Note that the usual rule for introducing implication on the right-hand side in
intuitionistic logic is not a pure rule, since it allows only left context formulas.
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In turn, pure sequent calculi are finite sets of pure rules. To make them fully-
structural (in addition to defining sequents as pairs of sets), the weakening rule,
the identity axiom and the cut rule are allowed to be used in derivations.

Definition 2. A pure calculus is a finite set of pure rules. A (standard) proof
in a pure calculus G is defined as usual, where in addition to applications of the
pure rules of G, the following standard application schemes may be used:

(weak)
Γ ⇒ Δ

Γ ′, Γ ⇒ Δ,Δ′ (id)
Γ, ψ ⇒ ψ,Δ

(cut)
Γ ⇒ ψ,Δ Γ, ψ ⇒ Δ

Γ ⇒ Δ

Henceforth, we consider only pure rules and pure calculi, and may refer to
them simply as rules and calculi. By an L-rule (L-calculus) we mean a rule
(calculus) that includes only connectives from L.
Notation 1. For an L-calculus G, a set F ⊆ L of formulas, and an F -sequent
s, we write �F

G s if there is a proof of s in G consisting only of F -sequents. For
F = L, we write �G s.

Example 2. The propositional fragment of Gentzen’s fundamental sequent cal-
culus for classical logic can be directly presented as a pure calculus, denoted
henceforth by LK. It consists of the following rules:

(¬ ⇒) ⇒ p1 /¬p1 ⇒ (⇒ ¬) p1 ⇒ / ⇒ ¬p1
(∧ ⇒) p1, p2 ⇒ / p1 ∧ p2 ⇒ (⇒ ∧) ⇒ p1;⇒ p2 / ⇒ p1 ∧ p2
(∨ ⇒) p1 ⇒; p2 ⇒ / p1 ∨ p2 ⇒ (⇒ ∨) ⇒ p1, p2 / ⇒ p1 ∨ p2
(⊃⇒) ⇒ p1; p2 ⇒ / p1 ⊃ p2 ⇒ (⇒⊃) p1 ⇒ p2 / ⇒ p1 ⊃ p2

Besides LK there are many sequent calculi for non-classical logics (admitting
cut-elimination) that fall in this framework. These include calculi for well-known
three and four-valued logics, various calculi for paraconsistent logics, and all
canonical and quasi-canonical sequent systems [3,4,5,7].

Example 3. The calculus for (quotations free) primal infon logic from [11], can
be directly presented as a pure calculus, that we call P. It consists of the
rules (∧ ⇒), (⇒ ∧), (⇒ ∨) and (⊃⇒) of LK, together with the two rules
⇒ p2 / ⇒ p1 ⊃ p2 and ∅ / ⇒ �.

Example 4. The calculus from [3] for da Costa’s historical paraconsistent logic
C1 can be directly presented as a pure calculus, that we call GC1 . It consists of
the rules of LK except for (¬ ⇒) that is replaced by the following rules:

p1 ⇒ /¬¬p1 ⇒
⇒ p1;⇒ ¬p1 /¬(p1 ∧ ¬p1) ⇒ ¬p1 ⇒;¬p2 ⇒ /¬(p1 ∧ p2) ⇒
¬p1 ⇒; p2,¬p2 ⇒ /¬(p1 ∨ p2) ⇒ p1,¬p1 ⇒;¬p2 ⇒ /¬(p1 ∨ p2) ⇒
p1 ⇒; p2,¬p2 ⇒ /¬(p1 ⊃ p2) ⇒ p1,¬p1 ⇒;¬p2 ⇒ /¬(p1 ⊃ p2) ⇒

3.1 Analyticity

Our goal in this paper is to provide a general effective tool to solve the derivability
problem for a given pure calculus.
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Definition 3. The derivability problem for an L-calculus G is given by:
Input: An L-sequent s. Question: Does �G s?

Obviously, one cannot expect to have decision procedures for the derivability
problem for all pure calculi.1 Thus we require our calculi to admit a general-
ized analyticity property. Analyticity is a crucial property of proof systems. In
the case of fully-structural propositional sequent calculi it usually implies their
decidability and consistency (the fact that the empty sequent is not derivable).
Roughly speaking, a calculus is analytic if whenever a sequent s is provable in
it, s can be proven using only the “syntactic material available inside s”. This
“material” is usually taken to consist of all subformulas occurring in s, and then
analyticity amounts to the (global) subformula property. However, weaker re-
strictions on the formulas that are allowed to appear in proofs of a given sequent
may suffice for decidability. Next we introduce a generalized analyticity prop-
erty based on an extended notion of a subformula. In what follows, � denotes
an arbitrary set of unary connectives (assumed to be a subset of ♦1

L).

Definition 4. A formula ϕ is a �-subformula of a formula ψ if either ϕ is a
subformula of ψ or ϕ = ◦ψ′ for some ◦ ∈ � and proper subformula ψ′ of ψ.

Note that the �-subformula relation is transitive.

Notation 2. sub�(ψ) denotes the set of �-subformulas of ψ. This notation is
extended to sets of formulas and sequents in the obvious way.

Example 5. sub{¬}(¬(p1 ⊃ p2)) = {p1, p2,¬p1,¬p2, p1 ⊃ p2,¬(p1 ⊃ p2)}.
Definition 5. An L-calculus G is called �-analytic if �G s implies �sub�(s)

G s
for every L-sequent s.

Note that sub∅(ϕ) is the set of usual subformulas of ϕ, and so ∅-analyticity is
the usual subformula property.

Example 6. The calculi LK, P and GC1 (presented in previous examples) admit
cut-elimination. This, combined with the structure of their rules, directly entails
that LK and P are ∅-analytic, while GC1 is {¬}-analytic. Example 10 below
shows an extension of P that does not admit cut-elimination, but is still ∅-
analytic.

Example 7. A cut-free sequent calculus for �Lukasiewicz three-valued logic was
presented in [2]. This calculus, that we call G3, can be directly presented as a
pure calculus. For example, the rules involving implication are the following:

¬p1 ⇒; p2 ⇒;⇒ p1,¬p2 / p1 ⊃ p2 ⇒ p1 ⇒ p2;¬p2 ⇒ ¬p1 / ⇒ p1 ⊃ p2
p1,¬p2 ⇒ /¬(p1 ⊃ p2) ⇒ ⇒ p1;⇒ ¬p2 / ⇒ ¬(p1 ⊃ p2)

The structure of its rules, together with the fact that this calculus admits cut-
elimination, directly entail that G3 is {¬}-analytic.
1 Any Hilbert calculus H (without side conditions on rule applications) can
be translated to a pure sequent calculus GH , by taking a rule of the form
⇒ ψ1; . . . ;⇒ ψn / ⇒ ψ for each Hilbert-style derivation rule ψ1, . . . , ψn /ψ (where
n = 0 for axioms). It is easy to show that ψ is derivable from Γ in H iff �GH

Γ ⇒ ψ.



SAT-Based Decision Procedure for Analytic Pure Sequent Calculi 81

To end this section, we point out a useful property of pure calculi. We call a
rule axiomatic if it has an empty set of premises. In turn, a calculus is axiomatic
if it consists solely of axiomatic rules. We show that every calculus is equivalent
(in the sense defined below) to an axiomatic calculus, obtained by “multiplying
out” the rules, and “moving” the formulas in the premises to the opposite side
of the conclusion.

Definition 6. A component of a sequent Γ ⇒ Δ is any sequent of the form ψ ⇒
where ψ ∈ Γ or ⇒ ψ where ψ ∈ Δ. A sequent s is called a combination of a set
S of sequents if there are distinct sequents s1, . . . , sn and respective components
s′1, . . . , s′n such that S = {s1, . . . , sn} and s = s′1 ∪ . . . ∪ s′n.

Definition 7. Let r = S /Γ ⇒ Δ be a rule. The set Ax(r) consists of all
axiomatic rules of the form ∅ /Γ,Δ′ ⇒ Γ ′, Δ where Γ ′ ⇒ Δ′ is a combination
of S. In turn, given a calculus G, Ax(G) denotes the calculus obtained from G
by replacing each non-axiomatic rule r of G by Ax(r).

Example 8. For r = ¬p1 ⇒; p2 ⇒;⇒ p1,¬p2 / p1 ⊃ p2 ⇒, Ax(r) consists of the
axiomatic rules ∅ / p1, p1 ⊃ p2 ⇒ ¬p1, p2 and ∅ /¬p2, p1 ⊃ p2 ⇒ ¬p1, p2.
Proposition 1. Let G be an L-calculus. For every set F ⊆ L and F-sequent s,
if �F

G s then �F
Ax(G) s. For F = L the converse holds as well. Moreover, if G is

�-analytic then so is Ax(G).

As happens for LK, it is likely that Ax(G) does not admit cut-elimination
even when G does.

4 Semantics for Pure Sequent Calculi

In this section we present a semantic view of pure calculi, that plays a major
role in the reduction of their derivability problem to SAT. For that matter, we
follow [7] and use bivaluations – functions assigning a binary truth value to each
formula. Pure rules are naturally translated into conditions on bivaluations. In
order to have finite models, we strengthen the correspondence in [7] and consider
partial bivaluations. These correspond exactly to derivations that are confined
to a certain set of formulas.

Definition 8. A bivaluation is a function v from some set dom(v) of formulas
in some propositional language to {0, 1}. A bivaluation v is extended to dom(v)-
sequents by: v(Γ ⇒ Δ) = 1 iff v(ϕ) = 0 for some ϕ ∈ Γ or v(ϕ) = 1 for some
ϕ ∈ Δ. v is extended to sets of dom(v)-sequents by: v(S) = min {v(s) | s ∈ S},
where min ∅ = 1. Given a set F of formulas, by an F-bivaluation we refer to a
bivaluation v with dom(v) = F .

Definition 9. A bivaluation v respects a rule S / s if v(σ(S)) ≤ v(σ(s)) for
every substitution σ such that σ(frm(S / s)) ⊆ dom(v).2 v is called G-legal for
a calculus G if it respects all rules of G.

2 frm is extended to pure rules in the obvious way, i.e. frm(S / s) = frm(S) ∪ frm(s).
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Example 9. A {p1,¬¬p1}-bivaluation v respects the rule p1 ⇒ /¬¬p1 ⇒ iff
either v(p1) = v(¬¬p1) = 0 or v(p1) = 1. Note that LK-legal bivaluations are
exactly usual classical valuation functions.

Theorem 1 (Soundness and Completeness). Let G be an L-calculus, F be
a set of L-formulas, and s be an F-sequent. Then, �F

G s iff v(s) = 1 for every
G-legal F-bivaluation v.

Using Theorem 1, we are able to formulate a semantic property that corre-
sponds exactly to �-analyticity:

Definition 10. An L-calculus G is called semantically �-analytic if every G-
legal bivaluation v can be extended to a G-legal L-bivaluation, provided that
dom(v) is a finite subset of L closed under �-subformulas.

Theorem 2. An L-calculus G is �-analytic iff it is semantically �-analytic.

Proof. Suppose that there is an L-sequent s such that �G s and ��sub�(s)
G s.

According to Theorem 1, there exists a G-legal sub�(s)-bivaluation v such that
v(s) = 0, but u(s) = 1 for every G-legal L-bivaluation u. Therefore, v cannot
be extended to a G-legal L-bivaluation. In addition, dom(v) = sub�(s) is finite
and closed under �-subformulas.

For the converse, suppose that v is a G-legal bivaluation, dom(v) is finite
and closed under �-subformulas, and v cannot be extended to a G-legal L-
bivaluation. Let Γ = {ψ ∈ dom(v) | v(ψ) = 1}, Δ = {ψ ∈ dom(v) | v(ψ) = 0},
and s = Γ ⇒ Δ. Then dom(v) = sub�(s) and v(s) = 0. We show that u(s) = 1
for every G-legal L-bivaluation u. Indeed, every such u does not extend v, and
so u(ψ) �= v(ψ) for some ψ ∈ dom(v). Then, u(ψ) = 0 if ψ ∈ Γ , and u(ψ) = 1 if

ψ ∈ Δ. In either case, u(s) = 1. By Theorem 1, ��sub�(s)
G s and �G s. ��

The left-to-right direction of Theorem 2 is used to prove the correctness of
the reduction in the next section. The converse provides a semantic method to
prove �-analyticity, that can be used alternatively to deriving analyticity as a
consequence of cut-elimination.

Example 10. An extension of primal infon logic, that we call EP, extends the
calculus P (see Example 3) with the following classically valid axiomatic rules:

∅ / ⇒ ⊥ ⊃ p1 ∅ /p1 ∨ p1 ⇒ p1 ∅ / ⇒ p1 ⊃ p1
∅ /⊥ ⇒ ∅ /p1 ∨ p2 ⇒ p2 ∨ p1 ∅ / ⇒ (p1 ∧ p2) ⊃ p1
∅ /⊥ ∨ p1 ⇒ p1 ∅ /p1 ∨ (p1 ∧ p2) ⇒ p1 ∅ / ⇒ (p1 ∧ p2) ⊃ p2
∅ / p1 ∨ ⊥ ⇒ p1 ∅ / (p1 ∧ p2) ∨ p1 ⇒ p1 ∅ / ⇒ p2 ⊃ (p1 ⊃ p2)

Note that none of these rules is derivable in P. It is possible to prove that EP is
∅-analytic by showing that it is semantically ∅-analytic and applying Theorem 2.

5 Reduction to Classical Satisfiability

In this section we present a reduction from the derivability problem for a given
�-analytic pure calculus to the complement of SAT. SAT instances are taken to
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be CNFs represented as sets of clauses, where clauses are sets of literals (that is,
atomic variables and their negations, denoted by overlines). The set {xψ | ψ ∈ L}
is used as the set of atomic variables in the SAT instances. The translation of
sequents to SAT instances is naturally given by:

Definition 11. For a sequent Γ ⇒ Δ:

SAT+(Γ ⇒ Δ) := {{xψ | ψ ∈ Γ} ∪ {xψ | ψ ∈ Δ}} .
SAT−(Γ ⇒ Δ) := {{xψ} | ψ ∈ Γ} ∪ {{xψ} | ψ ∈ Δ} .

This translation captures the semantic interpretation of sequents. Indeed,
given an L-bivaluation v and a classical assignment u that assigns true to xψ iff
v(ψ) = 1, we have that for every L-sequent s: v(s) = 1 iff u satisfies SAT+(s),
and v(s) = 0 iff u satisfies SAT−(s). Now, in order for a bivaluation to be G-legal
for some calculus G, it should satisfy the semantic restrictions arising from the
rules of G. These restrictions can be directly encoded as SAT instances (as done,
e.g., in [17] for the particular case of the classical truth tables). For this purpose,
the use of Ax(G) (see Definition 7) instead of G is technically convenient.

Definition 12. The SAT instance associated with a given L-calculus G, an
L-sequent s and a set � ⊆ ♦1

L is given by:

SAT�(G, s) :=
⋃{

SAT+(σ(s′)) | ∅ / s′ ∈ Ax(G), σ(frm(s′)) ⊆ sub�(s)
}
.

Example 11. Consider the {¬}-analytic calculusG3 for �Lukasiewicz three-valued
logic from Example 7. Following Example 8, Ax(G3) contains the axiomatic
rules ∅ /p1, p1 ⊃ p2 ⇒ ¬p1, p2 and ∅ /¬p2, p1 ⊃ p2 ⇒ ¬p1, p2. Given a sequent
s, SAT{¬}(G3, s) includes the clause {xψ1 , xψ1⊃ψ2 , x¬ψ1 , xψ2} and the clause

{x¬ψ2 , xψ1⊃ψ2 , x¬ψ1 , xψ2} for every formula of the form ψ1 ⊃ ψ2 in sub{¬}(s).

Theorem 3. Let G be a �-analytic L-calculus and s be an L-sequent. Then
�G s iff SAT�(G, s) ∪ SAT−(s) is unsatisfiable.

Proof. Suppose that ��G s. By Proposition 1, ��Ax(G) s. By Theorem 1, there ex-

ists an Ax(G)-legal L-bivaluation v such that v(s) = 0. The classical assignment
u that assigns true to a variable xψ iff v(ψ) = 1 satisfies SAT�(G, s) ∪ SAT−(s).

For the converse, let u be a classical assignment satisfying the SAT instance
SAT�(G, s) ∪ SAT−(s). Consider the sub�(s)-bivaluation v defined by v(ψ) = 1
iff u assigns true to xψ. It is easy to see that since u satisfies SAT�(G, s), v
is Ax(G)-legal. u also satisfies SAT−(s), and hence v(s) = 0. Since G is �-
analytic, so is Ax(G) (by Proposition 1). By Theorem 2, Ax(G) is semantically
�-analytic, and so v can be extended to an Ax(G)-legal L-bivaluation. Theo-
rem 1 entails that ��Ax(G) s. By Proposition 1, it follows that ��G s. ��

Now, we show that the above reduction is computable in polynomial time.

Definition 13. A rule S / s is called k-�-closed if there are ϕ1, . . . , ϕk ∈ frm(s)
(calledmain formulas) such frm(S / s) consists only of �-subformulas of the ϕi’s.
A calculus is k-�-closed if each of its rules is k′-�-closed for some k′ ≤ k.
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Example 12. LK and P (see Examples 2 and 3) are 1-∅-closed. GC1 (see Exam-
ple 4) is 1-{¬}-closed. EP (see Example 10) is 2-∅-closed, because of the rule
∅ / p1 ∨ p2 ⇒ p2 ∨ p1.

Remark 1. Every axiomatic calculus is k-�-closed for some k (e.g., the maximal
number of formulas in its rules). As seen in Proposition 1, every calculus G is
equivalent to the axiomatic calculus Ax(G). Moreover, if G is k-�-closed, then
so is Ax(G).

Theorem 4. Let G be a k-�-closed L-calculus. Given an L-sequent s, the SAT
instance SAT�(G, s) ∪ SAT−(s) is computable in O(nk) time, where n is the
length of the string representing s.

Proof (sketch). The following algorithm computes SAT�(G, s) ∪ SAT−(s):

1. Build a parse tree for the input using standard techniques. As usual, every
node represents an occurrence of some subformula in s.

2. Using, e.g., the linear-time algorithm from [10], compress the parse tree into
an ordered dag by maximally unifying identical subtrees. After the compres-
sion, the nodes of the dag represent subformulas of s, rather than occur-
rences. Hence we may identify nodes with their corresponding formulas.

3. Traverse the dag. For every ◦ ∈ � and node v that has a parent, add a
new parent labeled with ◦, if such a parent does not exist. To check this
it is possible to maintain in each node v a constant-size list of all unary
connectives in � that label the parents of v. Note that after these additions,
the nodes of the dag one-to-one correspond to sub�(s).

4. SAT−(s) is obtained by traversing the dag and generating {xψ} for every ψ
on the left-hand side of s and {xψ} for every ψ on the right-hand side of s.

5. SAT�(G, s) is generated by looping over all rules in Ax(G). For each rule
∅ / s′ with main formulas ϕ1, . . . , ϕk′ (k′ ≤ k), go over all k′-tuples of nodes
in the dag. For each k′ nodes v1, . . . , vk′ check whether v1, . . . , vk′ match
the pattern given by ϕ1, . . . , ϕk′ , and if so, construct a mapping h from
the formulas in sub�(s′) to their matching nodes. Then construct a clause
consisting of a literal xh(ϕ) for every ϕ on the left-hand side of s′, and
a literal xh(ϕ) for every ϕ on the right-hand side of s′. Note that only a
constant depth of the sub-dags rooted at v1, . . . , vk′ is considered - that
is the complexity of ϕ1, . . . , ϕk′ , in addition to parents labeled with ele-
ments from �. These are independent of the input sequent s. To see that
we generate exactly all required clauses, note that a substitution σ satisfies
σ(frm(s′)) ⊆ sub�(s) iff σ({ϕ1, . . . , ϕk′}) ⊆ sub�(s). Thus a substitution σ
satisfies σ(frm(s′)) ⊆ sub�(s) iff there are k′ nodes matching the patterns
given by ϕ1, . . . , ϕk′ .

Steps 1,2,3,4 require linear time. Each pattern matching in step 5 is done in
constant time, and so handling a k′-�-closed rule takes O(nk′

) time. Thus step
5 requires O(nk) time. ��
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Remark 2. We employ the same standard computation model of analysis of al-
gorithms used in [11]. A linear time implementation of this algorithm cannot
afford the variables xψ to literally include a full string representation of ψ. Thus
we assume that each node has a key that can be printed and manipulated in
constant time (e.g., its memory address).

Corollary 1. For any �-analytic calculus G, the derivability problem for G is
in co-NP.

The reduction runs in linear time for 1-�-closed calculi. In such cases, it is
natural to identify calculi whose SAT instances can be decided in linear time.
This is the case, for example, for instances consisting of Horn clauses [13].

Definition 14. A rule r is called a Horn rule if #L(r) + #R(r) ≤ 1, where
#L(r) is the number of premises of r whose left-hand side is not empty, and
#R(r) is the number of formulas on the right-hand side of the conclusion of r.
A calculus is called a Horn calculus if each of its rules is a Horn rule.

Proposition 2. Let G be a Horn L-calculus and s be an L-sequent. Then
SAT�(G, s) consists solely of Horn clauses.

Corollary 2. Let G be a �-analytic, 1-�-closed Horn L-calculus. The deriv-
ability problem for G can be decided in linear time using a HORNSAT solver.

Example 13. The derivability problem for EP (see Example 10) is decidable in
quadratic time, as EP is a ∅-analytic, 2-∅-closed Horn calculus. Excluding the
rule ∅ / p1∨p2 ⇒ p2∨p1 results in a 1-∅-closed Horn calculus, whose derivability
problem can be decided in linear time. The linear time algorithm for P from [6]
is also an instance of this method.

6 Next Operators

In this section we extend the framework to accommodate Next operators, that
are often employed in temporal logics. In primal infon logic [11], they play the role
of quotations (see Example 14 below). In what follows, � denotes an arbitrary
finite set of unary connectives (Next operators), and L� denotes the propositional
language obtained by augmenting L with � (we assume that ♦L ∩ � = ∅). A
sequence ∗̄ = ∗1 . . . ∗m (m ≥ 0) of elements of � is called a �-prefix. Given a set
F ⊆ L� and a �-prefix ∗̄, we denote the set {∗̄ψ | ψ ∈ F} by ∗̄F . This notation
is extended to sequents and sets of sequents in the obvious way. We now extend
pure calculi with new rules for Next operators.

Definition 15. A �-proof in a calculus G is defined similarly to a standard
proof (see Definition 2), where in addition to (weak), (id) and (cut), the following
scheme may be used for any ∗ ∈ �:

(∗i) Γ ⇒ Δ

∗Γ ⇒ ∗Δ
For an L-calculus G, a set F ⊆ L�, and an L�-sequent s, we write �F

G� s (or

�G� s if F = L�) if there is a �-proof of s in G consisting only of F -sequents.
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(∗i) is a usual rule for Next in the temporal logic LTL (i.e., for � = {X}, we
have �LK�⇒ ψ iff ψ is valid in the Next-only fragment of LTL; see, e.g., [16]). It

is also used for � (and ♦) in the modal logic KD! of functional Kripke frames.

Remark 3. Applications of L-rules in �-proofs may include L�-formulas. For
example, using the rule ⇒ p2 / ⇒ p1 ⊃ p2, it is possible to derive the sequent
∗p3 ⇒ ∗p1 ⊃ p2 from ∗p3 ⇒ p2.

Example 14. The quotations employed in primal infon logic [11] are unary con-
nectives of the form q said, where q ranges over a finite set of principals. If we
take � to include these connectives, we have that �P� Γ ⇒ ψ (see Example 3)
iff ψ is derivable from Γ in the Hilbert system for primal infon logic given in
[11]. This can be shown by induction on the lengths of the proofs.

Next, we define Kripke-style semantics for calculi with Next operators.

Definition 16. A biframe for � is a tuple W = 〈W,R,V〉 where:
1. W is a set of elements called worlds. Henceforth, we may identify W with

this set (e.g., when writing w ∈ W instead of w ∈ W ).
2. R is a function assigning a binary relation on W to every ∗ ∈ �. We write

R∗ instead of R(∗), and R∗[w] denotes the set {w′ ∈ W | wR∗w′}.
3. V is a function assigning a bivaluation to every w ∈ W , such that for every

w ∈ W , ∗ ∈ � and formula ψ: if ∗ψ ∈ dom(V(w)) and ψ ∈ dom(V(w′)) for
every w′ ∈ R∗[w], then V(w)(∗ψ) = min {V(w′)(ψ) | w′ ∈ R∗[w]}. Hence-
forth, we write Vw instead of V(w).

Furthermore, if dom(Vw) = F for every w ∈ W , we refer to W as an F-biframe.

Definition 17. A biframe 〈W,R,V〉 for � is called functional if R∗ is a func-
tional relation (that is, a total function from W to W ) for every ∗ ∈ �. In this
case we write R∗(w) to denote the unique element w′ ∈ W satisfying wR∗w′.

Definition 18. A biframe 〈W,R,V〉 for � is called G-legal for an L-calculus G
if Vw is G-legal for every w ∈ W (see Definition 9).

Theorem 5 (Soundness and Completeness). Let G be an L-calculus, F be
a set of L�-formulas, and s be an F-sequent. Then, �F

G� s iff Vw(s) = 1 for

every G-legal functional F-biframe 〈W,R,V〉 for � and w ∈ W .

Generally speaking, soundness is proved by induction on the length of the �-
proof. The fact that the biframes are functional is essential for the soundness of
(∗i). Completeness is proved using a canonical countermodel construction.

Remark 4. Note that similar results hold for usual rules for introducing �. For
example, if we take the usual rule used in the system for the modal logic K
(which, unlike (∗i), allows only one formula on the right-hand side), we can prove
soundness and completeness as above with respect to all G-legal F -biframes.
Similarly, for other known sequent rules for � (as those of the systems for K4,
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KB, S4, and S5, see [18]) it is possible to show a similar general soundness
and completeness with respect to G-legal F -biframes satisfying the correspond-
ing condition (transitivity, symmetry, etc.). Nevertheless, the reduction to SAT
proposed below applies only for (∗i).

Next we extend the reduction from Section 5 to analytic calculi with Next
operators. This is done for a large family of calculi that we call standard.

Definition 19. An atomic variable p ∈ At is called lonely in some rule r if
p ∈ frm(r), but p is not a proper subformula of any formula in frm(r). A calculus
is called standard if none of its rules has lonely atomic variables.

As before, we use {xψ | ψ ∈ L�} as the set of atomic variables in the SAT
instances. Nevertheless, while the reduction above was based on �-subformulas,
the current reduction is based on �-local formulas. This notion generalizes the
local formulas relation from [15].

Definition 20. loc�(ψ), the set of formulas that are �-local to an L�-formula
ψ, is inductively defined as follows: 1) loc�(p) = {p} for every atomic variable
p ∈ At; 2) loc�(	(ψ1, . . . , ψn)) = {	(ψ1, . . . , ψn)} ∪ {◦ψi | ◦ ∈ �, 1 ≤ i ≤ n} ∪⋃n

i=1 loc
�(ψi) for every 	 ∈ ♦n

L and formulas ψ1, . . . , ψn; 3) loc
�(∗ψ) = ∗loc�(ψ)

for every ∗ ∈ � and formula ψ. This definition is extended to sequents in the
obvious way, i.e. loc�(s) =

⋃{loc�(ϕ) | ϕ ∈ frm(s)}.
Note that for � = ∅, we have loc�(ψ) = sub�(ψ) for every formula ψ.

Example 15. For � = {�, �},
loc{¬}(�(�p1 ⊃ p2)) = {��p1, �¬�p1, �p2, �¬p2, �(�p1 ⊃ p2)}.
Definition 21. The SAT instance associated with an L-calculus G, an L�-
sequent s and a set � ⊆ ♦1

L is given by:

SAT��(G, s) :=
⋃{

SAT+(∗̄σ(s′)) | ∅ / s′ ∈ Ax(G), ∗̄σ(frm(s′)) ⊆ loc�(s)
}
.

Theorem 6. Let G be a standard �-analytic L-calculus and s be an L�-sequent.
Then �G� s iff SAT��(G, s) ∪ SAT−(s) is unsatisfiable.

Generally speaking, the main difficulty in the proof of this theorem is to
construct a countermodel for s (in the form of a G-legal functional L�-biframe
for �) out of a satisfying assignment u of SAT��(G, s)∪ SAT−(s). Thus if ��G� s,
the full proof of Theorem 6 actually provides a way to translate the classical
assignment that satisfies SAT��(G, s) ∪ SAT−(s) into a countermodel of s. This
is done in two steps. First, we translate u into a �-closed G-legal functional
biframe W which is not a model of s:

Definition 22. A set of L�-formulas is called �-closed if whenever it contains
a formula of the form 	(ϕ1, . . . , ϕn) (for some 	 ∈ ♦L) it also contains ϕi and
◦ϕi for every 1 ≤ i ≤ n and ◦ ∈ �. A biframe 〈W,R,V〉 for � is called �-closed
if the following hold for every w ∈ W : dom(Vw) is �-closed and finite; and for
every ∗ ∈ �, if ∗ψ ∈ dom(Vw), then ψ ∈ dom(Vw′) for every w′ ∈ R∗[w].
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Given an assignment u that satisfies SAT��(G, s)∪SAT−(s), a �-closed G-legal
functional biframe W = 〈W,R,V〉 is constructed as follows:

1. W is the set of all �-prefixes.
2. For every ∗ ∈ � and ∗̄ ∈ W , R∗(∗̄) = ∗̄∗.
3. V∗̄ is defined by induction on the length of ∗̄: dom(Vε) = loc�(s) and

Vε(ψ) = 1 iff u satisfies xψ ;
3 dom(V∗1...∗n) =

{
ϕ | ∗n ϕ ∈ dom(V∗1...∗n−1)

}

and V∗1...∗n(ψ) = V∗1...∗n−1(∗nψ).
Then, the following theorem is used to extend W to a full G-legal L�-biframe.

Definition 23. A biframe 〈W,R,V〉 for � extends a biframe 〈W ′,R′,V ′〉 for �
if W = W ′, R = R′, and Vw extends V ′

w for every w ∈ W .

Theorem 7. Let G be a standard semantically �-analytic L-calculus, and W
be a G-legal �-closed biframe for � with dom(Vw) ⊆ L� for every w ∈ W. Then
W can be extended to a G-legal L�-biframe for �.

For the case that � = ∅, the polynomial time algorithm from Section 5 can
be modified to accommodate Next operators.

Theorem 8. Let G be a k-∅-closed L-calculus. Given an L�-sequent s, it is
possible to compute SAT∅�(G, s) ∪ SAT−(s) in O(nk) time, where n is the length
of the string representing s.

Proof (sketch). The algorithm from the proof of Theorem 4 is reused with sev-
eral modifications. As in [11], an auxiliary trie (an ordered tree data structure
commonly used for string processing) for �-prefixes is constructed in linear time,
and every node in the input parse tree has a pointer to a node in this trie. Now
each node in the parse tree corresponds to an occurrence of a formula that is
∅-local to s. The tree is then compressed to a dag as in the proof of Theorem 4.
The nodes of the dag one-to-one correspond to the ∅-local formulas of s. The
rest of the algorithm is exactly as in the proof of Theorem 4 with � = ∅. ��

For a Horn calculusG, SAT��(G, s)∪SAT−(s) consists of Horn clauses for every
sequent s. When G is 1-∅-closed and ∅-analytic, a linear time decision procedure
for the derivability problem for G with Next operators is obtained by applying
a HORNSAT solver on SAT∅�(G, s) ∪ SAT−(s).

Example 16. Example 13 works as is for the extension of P or EP with any
finite set of Next operators.

Example 17. The linear time fragment of dual-Horn clauses can be utilized as
well. For example, consider the (∅-analytic) calculus Pd that consists of the rules
(∨ ⇒), (⇒ ∨), (∧ ⇒) of LK and the following ones for “dual primal implication”:

(≺⇒) p1 ⇒ / p1 ≺ p2 ⇒ (⇒≺) ⇒ p1; p2 ⇒ / ⇒ p1 ≺ p2
For any sequent s, SAT��(Pd, s)∪SAT−(s) consists of dual-Horn clauses. Thus the
derivability problem for Pd with Next operators can be decided in linear time.

3 ε denotes the empty �-prefix.
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6.1 On Analyticity of Pure Calculi with Next Operators

At this point, a natural question arises: does the extension of a calculus with
Next operators preserve the �-analyticity of the calculus? In this final section
we provide a positive answer to this question, based on Theorem 7 above that
was used to prove the correctness of the reduction.

Definition 24. An L-calculus G is called �-analytic with � if �G� s implies

�sub�(s)
G� s for every L�-sequent s.

Theorem 9. A standard L-calculus G is �-analytic iff it is �-analytic with �.

Proof. Suppose that G is �-analytic. By Theorem 2 it is also semantically �-

analytic. Let s be an L�-sequent such that ��sub�(s)
G� s. By Theorem 5, there

exists a G-legal functional sub�(s)-biframe W = 〈W,R,V〉 and w ∈ W such
that Vw(s) = 0. W is �-closed, and by Theorem 7, it can be extended to a G-
legal functional L�-biframe W ′ = 〈W,R,V ′〉 for �. After this extension, we still
have V ′

w(s) = 0. Theorem 5 implies that ��G� s. For the converse, suppose that
G is �-analytic with �. Assume that �G s for some L-sequent s. Hence, �G� s.

Consequently, there is a �-proof of s in G that consists only of sub�(s)-formulas.

This proof cannot contain applications of (∗i), and therefore, �sub�(s)
G s. ��

Example 18. Since P and EP are ∅-analytic and standard, they are also ∅-
analytic with �. In contrast, the Hilbert system for primal infon logic in [11]
admits a similar property that involves local formulas rather than subformulas.

Remark 5. Further to Remark 4, it can be similarly shown that the extension
of a standard pure calculus with any usual rule for � preserves analyticity. In
particular, we did not assume in Theorem 7 that the biframes are functional.

7 Conclusions and Further Research

We have identified a wide family of calculi for which the derivability problem can
be solved using off-the-shelf SAT solvers. Our method was presented for pure
calculi, and later extended to accommodate Next operators. The produced SAT
instances do not encode derivations, whose lengths might not be polynomially
bounded. Instead, they represent the (non-) existence of polynomially bounded
countermodels in the form of partial bivaluations or Kripke frames.

The proposed reduction is limited to analytic pure calculi, as it relies on
their straightforward bivaluation semantic presentation. Nevertheless, some of
the theoretic developments presented in this paper can be extended to different
families of calculi. For example, following Remark 5, the fact that analyticity
is preserved when pure calculi are augmented with Next operators, holds also
for other introduction rules for modalities. Such extensions, as well as studying
multi-ary modalities in this context, are left for future work. In addition, we plan
to extend the methods of this paper to analytic many-sided sequent calculi, that
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are more expressive than ordinary two-sided calculi. Finally, it is interesting to
study possible applications of logics (besides primal logic) that can be reduced
to efficient fragments of SAT (e.g., 2SAT).
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