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Abstract. We consider the problem of efficiently computing models for
satisfiable constraints, in the presence of complex background theories
such as floating-point arithmetic. Model construction has various ap-
plications, for instance the automatic generation of test inputs. It is
well-known that naive encoding of constraints into simpler theories (for
instance, bit-vectors or propositional logic) can lead to a drastic increase
in size, and be unsatisfactory in terms of memory and runtime needed for
model construction. We define a framework for systematic application of
approximations in order to speed up model construction. Our method is
more general than previous techniques in the sense that approximations
that are neither under- nor over-approximations can be used, and shows
promising results in practice.

1 Introduction

The construction of satisfying assignments (or, more generally, models) for a
set of given constraints is one of the most central problems in automated rea-
soning. Although the problem has been addressed extensively in research fields
including constraint programming, and more lately satisfiability modulo theories
(SMT), there are still constraint languages and background theories where effec-
tive model construction is challenging. Such theories are, in particular, arithmetic
domains such as bit-vectors, nonlinear real arithmetic (or real-closed fields), and
floating-point arithmetic (FPA); even when decidable, the high computational
complexity of such languages turns model construction into a bottleneck in appli-
cations such as bounded model checking, white-box testcase generation, analysis
of hybrid systems, and mathematical reasoning in general.

We follow a recent line of research that applies the concept of abstraction
to model construction (e.g., [3,5,10,19]). In this setting, constraints are usually
simplified prior to solving to obtain over- or under-approximations, or some com-
bination thereof (mixed abstractions); experiments show that this concept can
speed up model construction significantly. However, previous work in this area
suffers from the fact that the definition of good over- and under-approximations
can be difficult and limiting, for instance in the context of floating-point arith-
metic. We argue that the focus on over- and under-approximations is neither
necessary nor optimal: as a more flexible alternative, we present a general algo-
rithm that can integrate any form of approximation into the model construction
process, including approximations that cannot naturally be represented as a
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combination of over- and under-approximation. Our method preserves essential
properties like soundness, completeness, and termination.

For the purpose of empirical evaluation, we instantiate our model construction
procedure for the domain of floating-point arithmetic, and present an evaluation
based on an implementation thereof within the Z3 theorem prover [22]. Experi-
ments with publicly available floating-point benchmarks show a uniform speed-
up of about one order of magnitude compared to the naive bit-blasting-based
decision procedure that is built into Z3 (on satisfiable benchmarks), and perfor-
mance that is competitive with other state-of-the-art solvers for floating-point
arithmetic.

The contributions of the paper are: 1. a general method for model construction
based on approximations, 2. an instantiation of our framework for the theory of
floating-point arithmetic, and 3. an experimental evaluation of our approach.

We would like to emphasize that the present paper focuses on the construction
of models for satisfiable constraints. Although our framework can in principle
show unsatisfiability of constraints, this is neither the goal, nor within the scope
of the paper; we believe that further research is necessary to improve reasoning
in the unsatisfiable case.

1.1 Motivating Example

We first illustrate our approach by considering a (strongly simplified) PI con-
troller operating on floating-point data:

double Kp=1.0 ; double Ki =0.25 ; double s e t p o i n t =20.0 ;
double i n t e g r a l = 0 . 0 ; double e r r o r ;
f o r ( i n t i = 0 ; i < N; ++i ) {

i n = r e a d i n p u t ( ) ;
e r r o r = s e t p o i n t − i n ;
i n t e g r a l = i n t e g r a l + e r r ;
out = Kp∗ e r r + Ki∗ i n t e g r a l ;
s e t o u t p u t ( out ) ;

}
All variables in this example range over double precision (64-bit) IEEE-

754 floating-point numbers. The PI controller is initialized with the set point
value and the constants Kp and Ki. The controller reads input values via func-
tion read input, and computes output values which control the system using the
function set output. The controller computes the control values (out) so that the
input values are as close to set point as possible. For simplicity, we assume that
there is a bounded number N of control iterations.

Suppose we want to prove that if the input values stay within the range
18.0 ≤ in ≤ 22.0, then the control values will stay within a range that we
consider safe, e.g., −3.0 ≤ out ≤ +3.0. This property is true of our controller
only for two control iterations, but it can be violated within three iterations.

A bounded model checking approach to this problem produces a series
of formulas, one for each N and checks the satisfiability of those formulas
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(usually in sequence). Today, most (precise) solvers for floating-point formulas
implement this satisfiability check by means of bit-blasting, i.e., using a bit-
precise encoding of FPA semantics as a propositional formula. Due to the com-
plexity of FPA, the resulting formulas grow very quickly, and tend to overwhelm
even the fastest SAT/SMT solvers. For example, an unrolling of the PI controller
example to 30 steps cannot be solved by Z3 within an hour of runtime:

Bound N 1 2 5 10 20 30 40 50
Clauses (millions) 0.28 0.66 1.80 3.71 7.53 11.34 15.15 18.97
Variables ” 0.04 0.09 0.25 0.51 1.04 1.57 2.10 2.63
Z3 solving time (s) 4 13 18 213 1068 >1h · · ·
The example has the property, however, that full range of FP numbers is not

required to find suitable program inputs; essentially a prover just needs to find a
sequence of inputs such that the errors add up to a sum that is greater than 3.0.
There is no need to consider numbers with large magnitude, or a large number
of significant digits/bits. We postulate that this situation is typical for many
applications. Since bit-precise treatment of FP numbers is clearly wasteful in
this setting, we might consider some of the following alternatives:

– all operations in the program can be evaluated in real instead of FP arith-
metic. For problems with only linear operations, such as the program at
hand, this enables the use of highly efficient LP solvers. However, the encod-
ing ignores the possibility of overflows or rounding errors; bounded model
checking will in this way be neither sound nor complete. In addition, little
is gained in terms of computational complexity for nonlinear constraints.

– operations can be evaluated in fixed-point arithmetic. Again, this encod-
ing does not preserve the overflow- and rounding-semantics of FPA, but it
enables solving using more efficient bit-vector encodings and solvers.

– operations can be evaluated in FPA with reduced precision: we can use
single precision numbers, or even smaller formats.

Strictly speaking, soundness and completeness are lost in all three cases, since
the precise nature of overflows and rounding in FPA is ignored. All three meth-
ods enable, however, the efficient computation of approximate models, which are
likely to be “close” to genuine double-precision FPA models. In this paper, we
define a general framework for model construction with approximations. In or-
der to establish overall soundness and completeness, the framework contains a
model reconstruction phase, in which approximate models are translated to pre-
cise models. This reconstruction may fail, in which case refinement is used to
iteratively increase the precision of approximate models.

2 Related Work

Related work to our contribution falls into two categories: general abstraction
and approximation frameworks, and specific decision procedures for FPA.
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The concept of abstraction is central to software engineering and program
verification and it is increasingly employed in general mathematical reasoning
and in decision procedures. Usually, and in contrast to our work, only under- and
over-approximations are considered, i.e., the formula that is solved either implies
or is implied by an approximated formula. Counter-example guided abstraction
refinement [7] is a general concept that is applied in many verification tools and
decision procedures (e.g., in QBF [18] and MBQI for SMT [13]).

A general framework for abstracting decision procedures is Abstract CDCL,
recently introduced by D’Silva et al. [10], which was also instantiated with great
success for FPA [11,2]. This approach relies on the definition of suitable abstract
domains for constraint propagation and learning. In our experimental evaluation,
we compare to the FPA decision procedure in MathSAT, which is an instance
of ACDCL. ACDCL could also be integrated with our framework, e.g., to solve
approximations. A further framework for abstractions in theorem proving was
proposed by Giunchiglia et al. [14]. Again, this work focusses on under- and
over-approximations, not on other forms of approximation.

Specific instantiations of abstraction schemes in related areas also include the
bit-vector abstractions by Bryant et al. [5] and Brummayer and Biere [4], as
well as the (mixed) floating-point abstractions by Brillout et al. [3]. Van Khanh
and Ogawa present over- and under-approximations for solving polynomials over
reals [19]. Gao et al. [12] present a δ-complete decision procedure for nonlinear
reals, considering over-approximations of constraints by means of δ-weakening.

There is a long history of formalising and analysing FPA concerns using proof
assistants, among others in Coq by Melquiond [21] and HOL Light by Har-
rison [15]. Coq has also been integrated with a dedicated floating-point prover
called Gappa by Boldo et al. [1], which is based on interval reasoning and forward
error propagation to determine bounds on arithmetic expressions in programs [9].
The ASTRÉE static analyzer [8] features abstract interpretation-based analy-
ses for FPA overflow and division-by-zero problems in ANSI-C programs. The
SMT solvers MathSAT [6], Z3 [22], and Sonolar [20], all feature (bit-precise)
conversions from floating-point to bit-vector constraints.

3 Preliminaries

We establish a formal basis in the context of multi-sorted first-order logic (e.g.,
[16]). A signature Σ = (S, P, F, α) consists of a set of sort symbols S, a set
of sorted predicate symbols P , a set of sorted function symbols F , and a sort
mapping α. Each predicate p ∈ P is assigned a k-tuple α(p) of argument sorts
(with k ≥ 0); each function f ∈ F is assigned a (k + 1)-tuple α(f) of sorts.
We assume a countably infinite set X of variables, and (by abuse of notation)
overload α to assign sorts also to variables. Given a multi-sorted signature Σ
and variables X , the notions of well-sorted terms, atoms, literals, clauses, and
formulas are defined as usual. The function fv (φ) denotes the set of free variables
in a formula φ. In what follows, we assume that formulas are quantifier-free.

A Σ-structure m = (U, I) with underlying universe U and interpretation
function I maps each sort s ∈ S to a non-empty set I(s) ⊆ U , each predicate
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p ∈ P of sorts (s1, s2, . . . , sk) to a relation I(p) ⊆ I(s1) × I(s2) × . . . × I(sk),
and each function f ∈ F of sort (s1, s2, . . . , sk, sk+1) to a set-theoretic function
I(f) : I(s1) × I(s2) × . . . × I(sk) → I(sk+1). A variable assignment β under
a Σ-structure m maps each variable x ∈ X to an element β(x) ∈ I(α(x)).
The valuation function valm,β(·) is defined for terms and formulas in the usual
way. A theory T is a pair (Σ,M) of a multi sorted signature Σ and a class
of Σ-structures M . A formula φ is T -satisfiable if there is a structure m ∈ M
and a variable assignment β such that φ evaluates to true; we denote this by
m,β |=T φ, and call β a T -solution of φ.

4 The Approximation Framework

We describe a decision procedure for problems φ over a set of variables X , using
a theory T . The goal is to obtain a T -solution of φ. The main idea underlying
our method is to replace the theory T with an approximation theory T̂ , which
enables explicit control over the precision used to evaluate theory operations. In
our method, the T -problem φ is first lifted to a T̂ -problem φ̂, then solved in the
theory T̂ , and if a solution is found, it is translated back to a T -solution. The
benefit of using the theory T̂ is that different levels of approximation may be
used during computation. We will use the theory of floating-point arithmetic as
a running example for instantiation of the presented framework.

4.1 Approximation Theories

In order to formalize the approach of finding models by means of approxima-
tion, we construct the approximation theory T̂ = (Σ̂, M̂) from T , by extending
function and predicate symbols with a new argument representing the precision
of the approximation.

Syntax. We introduce a new sort for the precision sp, and a new predicate symbol
� which orders precision values. The signature Σ̂ = (Ŝ, P̂ , F̂ , α̂) is obtained from
Σ in the following manner: Ŝ = S∪{sp}; the set of predicate symbols is extended

with the new predicate symbol �, P̂ = P ∪ {�}; the set of function symbols is
extended with the new constant ω, representing the maximum precision value,
F̂ = F ∪ {ω}; the sort function α̂ is defined in the following manner:

α̂(g) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(sp, s1, s2, . . . , sn) if g ∈ P ∪ F and α(g) = (s1, s2, . . . , sn)

(sp, sp) if g = �
(sp) if g = ω

α(g) otherwise

Semantics. Σ̂-structures (Û , Î) enrich the original Σ-structures by providing ap-
proximate versions of function and predicate symbols. The resulting operations
can be under- or over-approximations, but they can also be approximations that
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are close to the original operations’ semantics by some other metric. The de-
gree of approximation is controlled with the help of the precision argument. We
assume that the set M̂ of Σ̂-structures satisfies the following properties:

– for every structure (Û , Î) ∈ M̂ , the relation Î(�) is a partial order on Î(sp)
that satisfies the ascending chain condition (every ascending chain is finite),
and that has the unique greatest element Î(ω) ∈ Î(sp);

– for every structure (U, I) ∈ M , an approximation structure (Û , Î) ∈ M̂
extending (U, I) exists, together with an embedding h : U 
→ Û such that,
for every sort s ∈ S, function f ∈ F , and predicate p ∈ P :

h(I(s)) ⊆ Î(s)

(a1, . . . , an) ∈ I(p) ⇐⇒ (Î(ω), h(a1), . . . , h(an)) ∈ Î(p) (ai ∈ I(α(p)i))

h(I(f)(a1, . . . , an)) = Î(f)(Î(ω), h(a1), . . . , h(an)) (ai ∈ I(α(f)i))

– vice versa, for every approximation structure (Û , Î) ∈ M̂ there is a struc-
ture (U, I) ∈ M that can be embedded in (Û , Î) in the same way.

These properties ensure that every T -model has a corresponding T̂ -model, i.e.
that no models are lost. Interpretations of function and predicate symbols under
Î with maximal precision are isomorphic to their original interpretation under
I. The interpretation Î should interpret the function and predicate symbols in
such a way that their interpretations for a given value of the precision argument
approximate the interpretations of the corresponding function and predicate
symbols under I.

Applied to FPA. The IEEE-754 standard for floating point numbers [17] defines
floating point numbers, their representation in bit-vectors, and the corresponding
operations. Most crucially, bit-vectors of various sizes are used to represent the
significand and the exponent of numbers; e.g., double-precision floating-point
numbers are represented by using 11 bits for the exponent and 53 bits for the
significand. We denote the set of floating-point numbers that can be represented
using s significand bits and e exponent bits by FPs,e. Note that FP domains
are growing monotonically when increasing e or s, i.e., FPs′,e′ ⊆ FPs,e provided
that s′ ≤ s and e′ ≤ e.

For fixed values e of exponent bits and s of significant bits, FPA can be mod-
eled as a theory in our sense. We denote this theory by TF s,e, and write sf
for the sort of FP numbers, and sr for the sort of rounding modes. The var-
ious FP operations are represented as functions and predicates of the theory;
for instance, floating-point addition turns into the function symbol ⊕ with sig-
nature α(⊕) = (sp, sr, sf , sf). The semantics of TF s,e is defined by a unique
structure (Us,e, Is,e); in particular, Is,e(sf ) = FPs,e.

We construct the approximation theory T̂F s,e, by introducing the preci-
sion sort sp, predicate symbol �, and a constant symbol ω. The function and
predicate symbols have their signature changed to include the precision argu-
ment. For example, the signature of the floating-point addition symbol ⊕ is
α̂(⊕) = (sp, sr, sf , sf ) in the approximation theory.
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The semantics of the approximation theory T̂F s,e is again defined through a

singleton set M̂ = {(Ûs,e, Îs,e)} of structures. The universe of the approximation
theory extends the original universe with a set of integers which are the domain
of the precision sort, i.e., Ûs,e = Us,e ∪ {0, 1, . . . , n}, Îs,e(sp) = {0, 1, . . . , n}, and
Îs,e(ω) = n. The embedding h is the identity mapping.

In order to use precision to regulate the semantics of FP operations, we in-
troduce the notation (s, e) ↓ p to denote the number of bits in reduced pre-
cision p ∈ {0, 1, . . . , n}; for instance, the reduced bit-widths can be defined as
(s, e) ↓ p = (�s · p

n�, �e · p
n�). The approximate semantics of functions is derived

from the FP semantics for the reduced bit-widths. For example, ⊕ in approxi-
mation theory T̂F s,e is defined as:

Îs,e(⊕)(p, r, a, b) = casts,e(I(s,e)↓p(⊕)(r, cast (s,e)↓p(a), cast (s,e)↓p(b)))

This definition uses a function casts,e to map any FP number to a number with
s significand bits and e exponent bits, i.e., casts,e(a) ∈ FPs,e for any a ∈ FPs′,e′ .
The cast performs rounding (if required) using a fixed rounding mode. Note that
many occurrences of casts,e can be eliminated in practice, if they only concern
intermediate results. For example, consider ⊕(c1,⊗(c2, a1, a2), a3). The result of
⊗(c2, a1, a2) can be directly cast to precision c1 without the need of casting up
to full precision when calculating the value of the expression.

4.2 Lifting Constraints to Approximate Constraints

In order to solve a constraint φ using an approximation theory T̂ , it is first
necessary to lift φ to an extended constraint φ̂ that includes explicit variables cl
for the precision of each operation. This is done by means of a simple traversal
of φ, using a recursive function L that receives a formula (or term) φ and a
position l ∈ �∗ as argument. For every position l, the symbol cl denotes a fresh
variable of the precision sort α(cl) = sp and we define

L(l,¬φ) = ¬L(l.1, φ)
L(l, φ ◦ ψ) = L(l.1, φ) ◦ L(l.2, ψ) (◦ ∈ {∨,∧})

L(l, x) = x (x ∈ X)

L(l, g(t1, . . . , tn)) = g(cl, L(l.1, t1), . . . , L(l.n, tn)) (g ∈ F ∪ P )

Then we obtain the lifted formula φ̂ = L(ε, φ), where ε denotes an empty word.
Since T -structures can be embedded into T̂ -structures, it is clear that no models
are lost as a result of lifting:

Lemma 1 (Completeness). If a T -constraint φ is T -satisfiable, then the lifted

constraint φ̂ = L(ε, φ) is T̂ -satisfiable as well.

An approximate model that chooses full precision for all operations induces a
model for the original constraint:
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Approximate
Model Construction

Model-guided
Approximation
Refinement

Proof -guided
Approximation
Refinement

Precise Model
Reconstruction

Model Proof

Sat Unsat

failed

Reconstruction No
refinement
possible

Fig. 1. The model construction process

Lemma 2 (Fully precise operations). Let m̂ = (Û , Î) be a T̂ -model, and β̂ be

a variable assignment. If m̂, β̂ |=T̂ φ̂ for an approximate constraint φ̂ = L(ε, φ),
then m,β |=T φ, provided that: 1. there is a T -structure m embedded in m̂ via h,

and a variable assignment β such that h(β(x)) = β̂(x) for all variables x ∈ fv(φ),

and 2. β̂(cl) = Î(ω) for all precision variables cl introduced by L.

The fully precise case however, is not the only case in which an approximate
model is easily translated to a precise model. For instance, approximate oper-
ations might still yield a precise result for some arguments. Examples of this
are constraints in floating-point arithmetic that have small integer solutions or
fixed-point arithmetic solutions.

Theorem 1 (Precise evaluation). Suppose m̂, β̂ |=T̂ φ̂ for an approximate

constraint φ̂ = L(ε, φ), such that all operations in φ̂ are performed exactly with

respect to T . Then m̂, β̂ |=T φ.

5 Model Refinement Scheme

In the following sections, we will use the approximation framework to successively
construct more and more precise solutions of given constraints, until eventually
either a genuine solution is found, or the constraints are determined to be unsat-
isfiable. We fix a partially ordered precision domain (Dp,�p) (where, as before,
�p satisfies the ascending chain condition, and has a greatest element), and

consider approximation structures (Û , Î) such that Î(sp) = DP and Î(�) = �p.

Given a lifted constraint φ̂ = L(ε, φ), let Xp ⊆ X be the set of precision vari-
ables introduced by the function L. A precision assignment γ : Xp → Dp maps
the precision variables to precision values. We write γ �p γ′ if for all variables
cl ∈ Xp we have γ(cl) �p γ′(cl). Precision assignments are partially ordered by
�p. There is a greatest precision assignment, which maps each precision variable
to the greatest element of the precision domain Dp.
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The proposed procedure is outlined in Fig. 1. First, an initial precision
assignment γ is chosen, depending on the theory T . In Approximate Model Con-
struction, the procedure tries to find (m̂, β̂), a model of the approximated con-

straint φ̂. If (m̂, β̂) is found, Precise Model Reconstruction tries to translate it
to (m,β), a model of the original constraint φ. If this succeeds, the procedure
stops and returns a model. Otherwise, Model-guided Approximation Refinement
uses (m,β) and (m̂, β̂) to increase the precision assignment γ. If Approximate

Model Construction cannot find any model (m̂, β̂), then Proof-guided Approx-
imation Refinement decides how to modify the precision assignment γ. If the
precision assignment is maximal and cannot be further increased, the procedure
has determined unsatisfiability. In the following sections we provide additional
details for each of the components of our procedure.

General Properties. Since �p has the ascending chain property, our procedure is
guaranteed to terminate and either produce a genuine precise model, or detect
unsatisfiability of the constraints. The potential benefits of this approach are
that it often takes less time to solve multiple smaller (approximate) problems
than to solve the full problem straight away. The candidate models provide useful
hints for the following iterations. The downside is that it might be necessary to
solve the whole problem eventually anyway, which is the case, for instance, for
unsatisfiable problems. Therefore, our approach is mainly useful when the goal
is to obtain a model, e.g., when searching for counter-examples.

5.1 Approximate Model Construction

Once a precision assignment γ has been fixed, existing solvers for the operations
in the approximation theory can be used to construct a model m̂ and a variable
assignment β̂ s.t. m̂, β̂ |=T̂ φ̂. It is necessary that β̂ and γ agree on Xp. As an
optimisation, the model search can be formulated in various theory-dependent
ways which heuristically benefit the Precise Model Reconstruction. For example,
search can prefer models with small values of some error criterion, or first attempt
to find models that are similar to models found in earlier iterations.

Applied to FPA. Since our FP approximations are again formulated using FP
semantics, any solver for FPA can be used for Approximate Model Construc-
tion. In our implementation, the lifted constraints φ̂ of ˆTF s,e are encoded in
bit-vector arithmetic, and then bit-blasted and solved using a SAT solver. The
encoding of a particular function or predicate symbol uses the precision argu-
ment to determine the floating-point domain of the interpretation. This kind of
approximation reduces the size of the encoding of each operation, and results in
smaller problems handed over to the SAT solver. An example of theory-specific
optimisation of the model search is to look for models where no rounding occurs
during the calculation.
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Algorithm 1. Model reconstruction

1 (m,h) := extract Tstructure(m̂);

2 lits := extract asserted literals(m̂, β̂, φ̂);
3 for l ∈ lits do

4 (m,β) := extend model(l, β, h, β̂, m̂) ;
5 end

6 complete(β, β̂);
7 return (m,β);

5.2 Reconstructing Precise Models

In the model reconstruction phase, our procedure attempts to produce a model
(m,β) for the original formula φ from an approximate model (m̂, β̂) obtained by
solving φ̂. Since we consider arbitrary approximations (which might be neither
over- nor under-), this translation is non-trivial; for instance, approximate and
precise operations might exhibit different rounding behavior. In practice, it might
still be possible to ‘patch’ approximate models that are close to real models,
avoiding further refinement iterations.

First, note that by definition it is possible to embed a T -structurem in m̂; the
structure m and the embedding h are retrieved from m̂ via extract Tstructure

in Alg. 1. The structure m and h will be used to evaluate φ using values from β̂.
The function extract asserted literals determines a set lits of literals in

φ̂ that are true under (m̂, β̂), such that the conjunction
∧
lits implies φ̂. For

instance, if φ̂ is in CNF, one literal per clause can be selected that is true under
(m̂, β̂). Any pair (m,β) that satisfies the literals in lits will be a T -model of φ.

The procedure then iterates over lits , and successively constructs a valua-
tion β : X → U such that (m,β) satisfies all selected literals, and therefore is a
model of φ (extend model). During this loop, we assume that β is a partial valu-
ation and only defined for some of the variables in X . We use the notation β ↑ h
to lift β from m to m̂, setting all precision variables to greatest precision, defined
by

(β ↑ h)(x) =

{
Î(ω) if x ∈ Xp

h(β(x)) otherwise .

The precise implementation of extend model is theory-specific. In general,
the function first attempts to evaluate a literal l as valm̂,β↑h(l). If this fails,
the valuation β has to be extended, for instance by including values β̂(x) for
variables x not yet assigned in β.

After all literals have been successfully asserted, β may be incomplete, so we
complete it by mapping value assignments from β̂ and return the model (m,β).
Note, that if all the asserted literals already have maximum precision assigned
then, by Lemma 2, model reconstruction cannot fail.

Applied to FPA. The function extract Tstructure is trivial for our FPA ap-
proximations, since m and m̂ coincide for the sort sf of FP numbers. Further,
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by approximating FPA using smaller domains of FP numbers, all of which are
subsets of the original domain, reconstruction of models is easy in some cases
and boils down to padding the obtained values with zero bits. The more diffi-
cult case concerns literals with rounding in approximate FP semantics, since a
significant error emerges when the literal is re-interpreted using higher-precision
FP numbers. A useful optimization is special treatment of equalities x = t in
which one side is a variable x not assigned in β, and all right-hand side variables
are assigned. In this case, the choice β(x) := val m̂,β↑h(t) will satisfy the equa-
tion. Use of this heuristic partly mitigates the negative impact of rounding in
approximate FP semantics, since the errors originating in the (m̂, β̂) will not be
present in (m,β). The heuristic is not specific to the floating-point theory, and
can be carried over to other theories as well.

5.3 Approximation Refinement

The overall goal of the refinement scheme outlined in Fig. 1 is to find a model
of the original constraints using a series of approximations defined by precision
assignments γ. We usually want γ to be as small as possible in the partial order
of precision assignments, since approximations with lower precision can be solved
more efficiently. During refinement, the precision assignment is adjusted so that
the approximation of the problem in the next iteration is closer to full semantics.
Intuitively, this increase in precision should be kept as small as possible, but as
large as necessary. Note that two different refinement procedures are required,
depending on whether an approximation is satisfiable or not. We refer to these
procedures as Model- and Proof-guided Approximation Refinement, respectively.

Model-Guided Approximation Refinement is performed after obtaining a
model (m̂, β̂) of φ̂, together with a reconstructed model (m,β) that does not sat-
isfy φ. We use the procedure described in Alg. 2 for adjusting γ in this situation.
Since the model reconstruction failed, there are literals in φ̂ which are critical
for (m̂, β̂), in the sense that they are satisfied by (m̂, β̂) and required to satisfy
φ̂, but are not satisfied by (m,β). Such literals can be identified through evalu-
ation with both (m̂, β̂) and (m,β) (choose critical literals), and can then
be traversed, evaluating each sub-term under both structures. If a term g(cl, t̄)
is assigned different values in the two models, it witnesses discrepancies between
precise and approximate semantics; in this case, an error is computed using the
error function, mapping to some suitably defined error domain (e.g., the real
numbers � for errors represented numerically). The computed errors are then
used to select those operations whose precision argument cl should be assigned
a higher value.

Depending on refinement criteria, the rank terms function can be imple-
mented in different ways. For example, terms can be ordered according to the
absolute error which was calculated earlier; if there are too many terms to refine,
only a certain number of them will be selected for refinement. An example of a
more complex criterion follows:
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Algorithm 2. Model-guided Approximation Refinement

1 lits := choose critical literals(m̂, β̂, β, φ̂);
2 for l ∈ lits do
3 for g(cl, t̄) ∈ ordered subterms(l) do
4 if valm̂,β̂(g(cl, t̄)) �= val m̂,β↑h(g(ω, t̄)) then
5 Δ(cl) := error(val m̂,β̂(g(cl, t̄)), valm̂,β↑h(g(ω, t̄));
6 end

7 end

8 end
9 chosenTerms := rank terms(Δ);

10 γ := refine(γ, chosenTerms);

Error-based selection aims at refining the terms introducing the greatest im-
precision first. The absolute error of an expression is determined by the errors
of its sub-terms, and the error introduced by approximation of the operation
itself. By calculating the ratio between output and input error, refinement tries
to select those operations that cause the biggest increase in error. If we assume
that theory T is some numerical theory (i.e., it can be mapped to reals in a
straightforward manner), then we can define the error function (in Alg. 2) as
absolute difference between its arguments. Then Δ(cl) represents the absolute
error of the term g(cl, t̄). This allows us to define the relative error δ(cl) of the
term g(cl, t̄) in the following way:

δ(cl) =
Δ(cl)

|val m̂,β↑h(g(ω, t̄))|
Similar measures can be defined for non-numeric theories.

Since a term can have multiple sub-terms, we calculate the average relative
input error; alternatively, minimum or maximum input errors could be used. We
obtain a function characterizing increase in error caused by an operation:

errInc(cl) =
δ(cl)

1 + 1
kΣ

k
i=1δ(cl.i)

,

where g(cl, t̄) represents the term being ranked. The function rank terms then
selects terms g(cl, t̄) with maximum error increase errInc(cl).

Applied to FPA. The only difference to the general case is that we define rela-
tive error δ(cl) to be +∞ if a special value (±∞, NaN) from (m̂, β̂) turns into a
normal value under (m,β). Our rank terms function ignores terms which have
an infinite average relative error of sub-terms. The refinement strategy will pri-
oritize the terms which introduce the largest error, but in the case of special
values it will refine the first imprecise terms that are encountered (in bottom
up evaluation), because once the special values occur as input error to a term
we have no way to estimate its actual error. After ranking the terms using the
described criteria rank terms returns the top 30% highest ranked terms. The
precision of chosen terms is increased by a constant value.
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Proof-Guided Approximation Refinement. When no approximate model
can be found, some theory solvers may still provide valuable information why
the problem could not be satisfied; for instance, proofs of unsatisfiability or
unsatisfiable cores. While it may be (computationally) hard to determine which
variables absolutely need to be refined in this case (and by how much), in many
cases a tight estimate is easy to compute. For instance, it is possible to increase
the precision of all variables appearing in the literals of an unsatisfiable core.

6 Experimental Evaluation

To assess the efficacy of our method, we present results of an experimental eval-
uation obtained through an implementation of the approximation using smaller
floating-point numbers. We implemented this approach as a custom tactic [23]
within the Z3 theorem prover [22]. All experiments were performed on Intel Xeon
2.5 GHz machines with a time limit of 1200 sec and a memory limit of 2 GB. The
symbols T/O and M/O indicate that the time or the memory limit were exceeded.

Implementation Details. For the sake of reproducibility of our experiments, we
note that our implementation starts with an initial precision mapping γ that
limits the precision of all floating-point operations to s = 3 significand and
e = 3 exponent bits. Upon refinement, operations receive an increase in precision
that represents 20% of the width of the full precision. We do not currently
implement any sophisticated proof-guided approximation refinement, but simply
increase the precision of all operations by a constant when an approximation is
determined unsatisfiable.

Evaluation. Our benchmarks are taken from a recent evaluation of the ACDCL-
based MathSAT, by Brain et al. [2]. This benchmark set contains 213 bench-
marks, both satisfiable and unsatisfiable ones. The benchmarks originate from
verification problems of C programs performing numerical computations, where
ranges and error bounds of variables and expressions are verified; other bench-
marks are randomly generated systems of inequalities over bounded floating-
point variables. We compare against Z3 and MathSAT.

Table 1. Evaluation Statistics

Z3 MathSAT Approx.

SAT 76 76 86
UNSAT 56 76 46

The results we obtain are briefly
summarized in Table 1, which shows
that our approximation solves more
satisfiable instances than other solvers,
but the least number of unsatisfiable
problems. This is expected, as our ap-
proximation scheme does not yet in-
corporate any specialized refinement techniques for unsatisfiable formulas. Fig. 2
provides more detailed results, which show that on satisfiable formulas, our ap-
proach is about one order of magnitude faster than Z3. In comparison to Math-
SAT, the picture is less clear (right side of Fig. 2): while our approximation
solves a number of satisfiable problems that are hard for MathSAT, it requires
more time than MathSAT on other problems.
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Fig. 2. Comparisons of our method with other tools (on satisfiable instances)

Overall, it can be observed that our approximation method leads to significant
improvements in solver performance, especially where satisfiable formulas are
concerned. Our method exhibits complementary performance to the ACDCL
procedure in MathSAT; one of the aspects to be investigated in future work is a
possible combination of the two methods, using an ACDCL solver to solve the
constraints obtained through approximation with our procedure.

7 Conclusion

We present a general method for efficient model construction through the use
of approximations. By computing a model of a formula interpreted in suitably
approximated semantics, followed by reconstruction of a genuine model in the
original semantics, scalability of existing decision procedures is improved for
complex background theories. Our method uses a refinement procedure to in-
crease the precision of the approximation on demand. Finally, we show that
an instantiation of our framework for floating-point arithmetic shows promising
results in practice and often outperforms state-of-the-art solvers.

We plan to further extend the procedure presented here, in particular con-
sidering other theories, other approximations, and addressing the case of un-
satisfiable constraints. Furthermore, it is possible to solve approximations with
different precision assignments in parallel, and use the refinement information
from multiple models (or proofs) simultaneously. Increases in precision may then
be adjusted based on differences in precision between models, or depending on
the runtime required to solve each of the approximations.
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