
Quati: An Automated Tool for Proving Permutation
Lemmas

Vivek Nigam1, Giselle Reis2, and Leonardo Lima1

1 Universidade Federal da Paraı́ba, Brazil
2 Technische Universität Wien, Austria

Abstract. The proof of many foundational results in structural proof theory, such
as the admissibility of the cut rule and the completeness of the focusing disci-
pline, rely on permutation lemmas. It is often a tedious and error prone task to
prove such lemmas as they involve many cases. This paper describes the tool
Quati which is an automated tool capable of proving a wide range of inference
rule permutations for a great number of proof systems. Given a proof system
specification in the form of a theory in linear logic with subexponentials, Quati
outputs in LATEX the permutation transformations for which it was able to prove
correctness and also the possible derivations for which it was not able to do so. As
illustrated in this paper, Quati’s output is very similar to proof derivation figures
one would normally find in a proof theory book.

1 Introduction

Permutation lemmas play an important role in proof theory. Many foundational results
about proof systems rely on the fact that some rules permute over others. For instance,
permutation lemmas are used in Gentzen-style cut-elimination proofs [4], the complete-
ness proof of focusing disciplines [1,7], and the proof of Herbrand’s theorem [5].

Proving permutation lemmas, however, is often a tedious and error-prone task as
there are normally many cases to consider. As an example, consider the case of per-
muting ∨l over →l in the intuitionistic calculus LJ. In order to show whether these two
rules permute, one needs to check every possible case in which →l occurs above ∨l in
a derivation. When using a multiplicative calculus, there are four possibilities for such
derivation, two allow a permutation of the rules while the other two do not. Here’s one
of each:

ϕ1

Γ, P � F

ϕ2

Γ ′ � A

ϕ3

Γ ′′, Q, B � F

Γ ′, Γ ′′, A → B,Q � F
→l

Γ, Γ ′, Γ ′′, A → B,P ∨ Q � F
∨l �

ϕ2

Γ ′ � A

ϕ1

Γ, P � F

ϕ3

Γ ′′, B,Q � F

Γ, Γ ′′, P ∨ Q,B � F
∨l

Γ, Γ ′, Γ ′′, P ∨ Q,A → B � F
→l

ϕ1

Γ, P � F

ϕ2

Γ ′, Q � A

ϕ3

Γ ′′, B � F

Γ ′, Γ ′′, A → B,Q � F
→l

Γ, Γ ′, Γ ′′, A → B,P ∨ Q � F
∨l � ?

The combinatorial nature of proving permutation lemmas can be observed in this ex-
ample. While there are “only” four cases to consider for this pair of rules, for proving

S. Demri, D. Kapur, and C. Weidenbach (Eds.): IJCAR 2014, LNAI 8562, pp. 255–261, 2014.
c© Springer International Publishing Switzerland 2014

256 V. Nigam, G. Reis, and L. Lima

the completeness of the focusing discipline, one needs to study which permutations are
allowed and therefore all pairs of rules need to be considered [7]. Moreover, the fact
that the cases are rarely documented makes it hard for others to check the correctness
of the transformations. For instance, the cut-elimination result for bi-intuitionistic logic
given by Rauszer [14] was later found to be incorrect [2] exactly because one of the per-
mutation lemmas was not true. Therefore, an automated tool to check for these lemmas
would be of great help. This paper introduces such a tool called Quati.1

While here we will restrict ourselves to simply illustrate Quati’s functionalities and
implementation design, we observe that its underlying theory is described in the pa-
pers [8,13,9]. We briefly review this body of work.

In [13], we show how to reduce the problem of proving permutation lemmas to solv-
ing an answer-set program [3]. That is, given a proof system P satisfying some proper-
ties, we reduce the problem of checking whether a rule r1 in P always permutes over
r2 in P to solving an answer-set program. Each solution of this program corresponds to
one possible permutation case. This result sets the foundations for Quati.

However, the exact language in which proof systems are specified was not dealt
in [13]. It was subject of the paper [8] which shows that a great number of proof systems
for different logics (e.g., linear, intuitionistic, classical, modal logics) can be specified
as theories in linear logic with subexponentials (SELL) [11]. These specifications are
shown to have a strong adequacy, namely, on the level of derivations [12], meaning that
there is a one to one correspondence of derivations in the specified logic (object logic)
to derivations in linear logic with subexponentials. Moreover, [8] also shows how to
check whether proof systems specified in SELL admit cut-elimination. This lead to the
tool TATU2. Therefore, SELL is a suitable framework for specifying proof systems.

Finally, in the workshop paper [9], we show how to integrate the material in [13]
and [8]. Given a proof system specified in SELL, we reduce the problem of checking
whether a rule permutes over another to an answer-set program. In the same paper, we
also discuss how to extract proof derivation figures similar to those shown in a standard
proof theory book [15] from the solutions of the generated answer-set programs.

Quati is the result of this series of papers. This paper is organized as follows: Sec-
tion 2 describes Quati’s syntax and its features, while Section 3 describes its implemen-
tation. In Section 4 we end by pointing out future work.

2 Quati at Work

Throughout this section, we will use the specification for the intuitionistic logic’s multi-
conclusion calculus MLJ [6] as our running example. First we specify Quati’s syntax
and then its features.

2.1 Syntax

Quati’s underlying logic, linear logic with subexponentials (SELL) [11], is a powerful
framework for the specification of proof systems. Subexponentials, written !�, ?�, arise

1 Quati is a mammal from the raccoon family native to South America. Its name comes from the
Tupi-guarani, a language spoken by native indians in Brazil, and means “long nose”.

2 https://www.logic.at/staff/giselle/tatu/

https://www.logic.at/staff/giselle/tatu/

Quati: An Automated Tool for Proving Permutation Lemmas 257

Side ::= lft | rght CtxType ::= many | single SubType ::= unb | lin
SubSig ::= SubDecl SubSpec SubRel

SubDecl ::= subexp〈String〉〈SubType〉.
SubSpec ::= subexpctx〈String〉〈CtxType〉〈Side〉.
SubRel ::= subexprel〈String〉<〈String〉.
Bipoles ::= (not〈Atoms〉)*〈BodyPos〉.
BodyPos ::= one | BodyNeg | [〈String〉]bangBodyNeg |

BodyPos*BodyPos | BodyPos+BodyPos

BodyNeg ::= top | bot | 〈MarkAtoms〉 | 〈BodyNeg〉|〈BodyNeg〉 |
〈BodyNeg〉&〈BodyNeg〉

Atoms ::= 〈Side〉〈Form〉 MarkAtoms ::= [〈String〉]?〈Atoms〉

Fig. 1. Here Form is a term of type form

* : ⊗ + : ⊕ & : & | : � [i]bang : !i one : 1 top : � bot : ⊥ [i]? : ?i

Fig. 2. Syntax for the linear logic connectives

from the observation that the linear logic exponentials are not canonical (see [8] for
an extensive discussion). It is known that these operators greatly increase the expres-
siveness of the system when compared to linear logic. For instance, subexponentials
can be used to represent contexts of proof systems [8], to mark the epistemic state of
agents [10], or to specify locations in sequential computations [11]. The main feature of
subexponentials is that they are organized in a pre-order, �, which specifies the prov-
ability relation among them. In [8], we have shown that a great number of proof systems
for linear, classic, intuitionistic and modal logics can be specified in SELL with a strong
level of adequacy. Another important reason for using SELL as specification language
is that one can also use other available tools, such as the tool TATU which is capable of
checking whether a proof system specified in SELL admits cut-elimination.

A Quati program is a SELL theory with some more annotations. Its syntax is given in
Figure 1 and explained in detail by using our running example MLJ. A Quati program
consists of two files: (1) a type signature file, with suffix .sig and (2) a specification
file with suffix .pl consisting of two parts: (a) a subexponential signature and (b) the
rules’ specifications or bipoles.

Type signature This file contains type and kind declarations of the object logic’s ele-
ments. The kind form is built-in and represent the type of formulas of the object logic.
In general, only the connectives’ types need to be declared in this file:

%%%%%%%%%%%%%%%%%%% Signature %%%%%%%%%%%%%%%%%%%%
type imp form -> form -> form.

Subexponential signature The following subexponential signature is used for specify-
ing the proof system MLJ:

%%%%%%%%%%%%%%% Subexponential Signature %%%%%%%%%%%%%%%%%
subexp l unb. subexp r unb.

258 V. Nigam, G. Reis, and L. Lima

subexpctx l many lft. subexpctx r many rght.
subexprel l > r

Intuitively, one subexponential corresponds to one context of the object logic se-
quent.3 MLJ has only two contexts, one to the left and another to the right side of the
sequent, thus we use two subexponentials l and r. Moreover, as both contexts (to the
left and right) behave classically in MLJ, we specify l and r to be unbounded, denoted
by unb. In contrast, the specification of LJ would specify the subexponential r to be
linear, as the right side of LJ’s sequents behaves linearly.

The commandssubexpctx l many lft. andsubexpctx r many rght.
are not formally needed for specifying proof systems, but as discussed in [9], they are
needed in order to improve the visualization of the proof rules. In particular, the former
specifies that the context corresponding to the subexponential l contains only formulas
of the left side of the sequent, denoted by lft, and may contain many formulas, de-
noted by many. In contrast, as the context to the right side of LJ sequents has only one
formula, the subexponential r for that system would be annotated with single.

The pre-order among the subexponentials is specified on the last line using the key-
word subexprel.

Bipoles The second part of the .pl file is composed by bipoles. The concrete syntax
for SELL connectives is depicted in Figure 2. The class of bipole formulas often appear
in proof theory literature due to its good focusing behaviour [1]. The following bipoles
specify, respectively, the left and right implication introduction rules [8]. The capital
letters are assumed to be existentially quantified.
%%%%%%%%%%%%%%%%%%%%%%%%%% Bipoles %%%%%%%%%%%%%%%%%%%%%%%%%%%
% Implication
(not (lft (imp A B))) * (([r]? (rght A)) * ([l]? (lft B))).
(not (rght (imp A B))) * [l]bang (([l]? (lft A)) | ([r]? (rght B))).

The head of these bipoles, formulas (not (lft (imp A B))) and (not
(rght (imp A B))), specify that an implication formula to, respectively, the left
and right-hand-side is introduced. The body specifies the premises of these rules. For in-
stance, the first bipole specifies that its corresponding inference rules has two premises
because of the branching caused by the tensor * appearing in the body of its rule, while
the second has only one premise as no branching is required. The interesting bit is the
!l ([l]bang) in the second bipole specifying that the context of the subexponential r
should be weakened as l > r. In fact, by using advanced proof theoretic machinery,
namely focusing [1], we can make this intuition precise in the sense. We refer to [8] for
more details on encodings.

2.2 Features

Quati has two main features: (1) It can construct the corresponding inference rule(s)
associated to a SELL formula; and (2) it can prove permutation lemmas. We illustrate
these features with the specification of MLJ implication introduction rules shown above.

3 There are some specifications where a subexponential is used to capture the structural proper-
ties of the proof system and therefore does not necessarily correspond to a context in the object
logic. See [8] for more on this.

Quati: An Automated Tool for Proving Permutation Lemmas 259

Rule Construction Proving the adequacy theorems for a given SELL specification is
also error-prone. As detailed in [8], to prove (strong) adequacy we need to show that all
the possible focused derivations that introduce a formula in the specification correspond
to an inference rule of the proof system being specified. Quati automates the proof of
such adequacy theorems by constructing from a bipole the corresponding inference
rule. To do so, Quati uses the machinery described in [13,9] reducing this problem to
the problem of solving answer-set programs.

For the MLJ specification given above, one can use the command#rule in the com-
mand line and select a SELL bipole in the loaded specification. Then Quati generates
a LATEX document containing all possible inference rules that correspond to that bipole.
If we select the bipole used to specify MLJ’s implication right rule, Quati outputs the
LATEX code for the following figure:

:
l Γ 0

l , a � :
r b

:
l Γ 0

l � :
r Δ0

r, imp(a)(b)
impR

Notice that this rule looks very similar to MLJ’s implication right introduction rule
shown in any proof theory textbook. The context Δ0

r is erased in the premise. The
:
l and

:
r are used to delimit the contexts for the subexponentials l and r, respectively. Quati
uses the subexponential specification to infer that the context for l (resp. for r) should
only be on the left-hand-side (resp. right-hand-side) of the sequent.

Under the hood, Quati is constructing the focused derivation [1] that introduces
such a SELL bipole as described in [8]. This can be observed by using the command
#bipole. For the same SELL bipole used above, Quati returns the LATEX code for the
following figure, corresponding to its focused derivation:

Γ 4
gamma;Γ

4
r ;Γ 3

l
; Γ 1

infty
;⇓ ¬rght(imp(a)(b))

Γ 5
gamma;Γ

7
r ;Γ 5

l ;Γ 1
infty ;⇑

Γ 5
gamma ;Γ

5
r ; Γ

5
l ;Γ

1
infty ;⇑?rrght(b)

Γ 5
gamma;Γ

5
r ;Γ 3

l ;Γ 1
infty ;⇑?llft(a) ::?rrght(b)

Γ 5
gamma; Γ

5
r ;Γ

3
l ;Γ 1

infty ;⇑?llft(a)�?rrght(b)

Γ 5
gamma;Γ

4
r ;Γ 3

l
;Γ 1

infty
;⇓!l?llft(a)�?rrght(b)

Γ 3
gamma;Γ

4
r ;Γ 3

l ; Γ
1
infty ;⇓ ¬rght(imp(a)(b))⊗!l?llft(a)�?rrght(b)

Γ 3
gamma;Γ

4
r ;Γ 3

l ;Γ 1
infty ;⇑

Rule Permutation. As described in the Introduction, Quati can be used to prove per-
mutation lemmas. The command #permute checks whether the permutation of two
selected rules is always allowed or not. Quati outputs, again in LATEX, the cases for
which it was able to find the permutation and the cases for which it was not able to find
a permutation. For example, when Quati checks whether MLJ’s implication left intro-
duction rule permutes over MLJ’s implication right introduction, it correctly finds two
possible permutation cases and it cannot find one of the cases for which is indeed not
possible. We show one of the cases (reformatted to fit the page margins):

260 V. Nigam, G. Reis, and L. Lima

:
l Γ0

l , imp(a)(b), c � :
r d

:
l Γ0

l
, imp(a)(b) � :

r Δ0
r , imp(c)(d), a

impR
:
l Γ0

l , imp(a)(b), b � :
r Δ0

r , imp(c)(d)

:
l Γ0

l
, imp(a)(b) � :

r Δ0
r , imp(c)(d)

impL

�

:
l Γ7

l , imp(a)(b), c � :
r a, d

:
l Γ7

l , imp(a)(b), c, b � :
r d

:
l Γ7

l
, imp(a)(b), c � :

r d
impL

:
l Γ7

l
, imp(a)(b) � :

r Δ9
r, imp(c)(d)

impR

Once again, this proof figure is very similar to the proof figure that one would find
in a standard proof theory textbook. Notice that it uses the fact that the contexts are
unbounded, i.e. formulas can be contracted or weakened, to infer the permutation above
(see [13] for more discussion on how this works).

3 Implementation Details

Quati is implemented in OCaml4 and makes use of DLV5 externally to compute mini-
mal models for the answer-set programs generated. It is part of a bigger project, called
sellf6 which also includes the machinery for TATU mentioned above. The follow-
ing diagram provides an overview of the main modules in sellf used by Quati for
checking permutations.

Types
ProofTreeSchema

SequentSchema

ContextSchema Constraints
OlRule

Dlv

Bipole

Quati

Permutation

The basic data structure, defined in the module Types, is linear logic formulas with
subexponentials. The bipoles in Quati are represented by proof tree schemas, defined
in the module ProofTreeSchema, which uses the modules SequentSchema and
ContextSchema. As the name suggests, these are schematic representations of proof
trees, sequents and contexts that use generic contexts [13] to represent possibly non-
empty sets of formulas. The constraints that will later compose the answer-set program
are implemented in the module Constraints. The application of linear logic rules
with constraints is implemented in the ProofTreeSchemamodule. The computation
of possible bipoles of a formula is in the moduleBipole. The Permutationmodule
makes use of the bipole generation to construct the derivations of two rules. Given the
constraints of a derivation, module Dlv contains the code for executing DLV externally,
parsing the result and returning the minimal models. The translation of a proof tree
schema and constraints into an object logic derivation is done in the OlRule module.
It contains data structures to represent proof trees, sequents and contexts of an object
logic and the rewriting algorithm described in [13] (module Derivation).

4 http://ocaml.org/
5 http://www.dlvsystem.com/dlv/
6 https://code.google.com/p/sellf/

http://ocaml.org/
http://www.dlvsystem.com/dlv/
https://code.google.com/p/sellf/

Quati: An Automated Tool for Proving Permutation Lemmas 261

Quati was tested using some proof systems including LK, LJ, MLJ, LL, S4, G1m and
LAX. On most cases, each permutation lemma can be checked in less than one second.
The implementation can be downloaded at

http://www.logic.at/staff/giselle/quati.

4 Conclusions and Future Work

This paper introduced Quati, an automated tool for proving permutation lemmas. Be-
sides briefly commenting on its implementation, we illustrated its syntax, usage and
features. Besides MLJ, in the download one can find the specification of all proof sys-
tems tested, as well as system requirements and installation instructions.

There are several directions we are currently investigating for continuing this work.
One is to come up with more graphical ways of writing proof systems and how to trans-
late such representations into SELL specifications. Another possibility is the derivation
of completeness of focusing strategies in an automated fashion, since such theorems
rely heavily on permutation lemmas. Finally, we are investigating ways to construct
machine-readable proof objects for permutation lemmas.

References

1. Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. J. of Logic and
Computation 2(3), 297–347 (1992)

2. Crolard, T.: Subtractive logic. Theor. Comput. Sci. 254(1-2), 151–185 (2001)
3. Gelfond, M., Lifschitz, V.: Logic programs with classical negation. In: ICLP (1990)
4. Gentzen, G.: Investigations into logical deductions. The Collected Papers of Gerhard Gentzen

(1969)
5. Herbrand, J.: Recherches sur la Théorie de la Démonstration. PhD thesis (1930)
6. Maehara, S.: Eine darstellung der intuitionistischen logik in der klassischen. Nagoya Mathe-

matical Journal, 45–64 (1954)
7. Miller, D., Saurin, A.: From proofs to focused proofs: a modular proof of focalization in

linear logic. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 405–
419. Springer, Heidelberg (2007)

8. Nigam, V., Pimentel, E., Reis, G.: An extended framework for specifying and reasoning about
proof systems. Accepted to Journal of Logic and Computation,
http://www.nigam.info/docs/modal-sellf.pdf

9. Nigam, V., Reis, G., Lima, L.: Quati: From linear logic specifications to inference rules
(extended abstract). In: Brazilian Logic Conference, EBL (2014),
http://www.nigam.info/docs/ebl14.pdf

10. Nigam, V.: On the complexity of linear authorization logics. In: LICS (2012)
11. Nigam, V., Miller, D.: Algorithmic specifications in linear logic with subexponentials. In:

PPDP (2009)
12. Nigam, V., Miller, D.: A framework for proof systems. J. Autom. Reasoning 45(2), 157–188

(2010)
13. Nigam, V., Reis, G., Lima, L.: Checking proof transformations with ASP. In: ICLP (Technical

Communications) (2013)
14. Rauszer, C.: A formalization of the propositional calculus h-b logic. Studia Logica (1974)
15. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory (1996)

http://www.logic.at/staff/giselle/quati
http://www.nigam.info/docs/modal-sellf.pdf
http://www.nigam.info/docs/ebl14.pdf

	Quati: An Automated Tool for Proving Permutation Lemmas
	1 Introduction
	2 Quati at Work
	2.1 Syntax
	2.2 Features

	3 Implementation Details
	4 Conclusions and Future Work
	References

