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Abstract. SAT and QBF solving techniques have applications in var-
ious areas. One area of the applications of SAT-solving is formal ver-
ification of temporal properties of transition system models. Because
of the restriction on the structure of formulas, complicated verification
problems cannot be naturally represented with SAT-formulas succinctly.
This paper investigates QBF-applications in this area, aiming at the ver-
ification of branching-time temporal logic properties of transition system
models. The focus of this paper is on temporal logic properties specified
by the extended computation tree logic that allows some sort of fairness,
and the main contribution of this paper is a bounded semantics for the
extended computation tree logic. A QBF encoding of the temporal logic
is then developed from the definition of the bounded semantics, and an
implementation of QBF-based verification follows from the QBF encod-
ing. Experimental evaluation of the feasibility and the computational
properties of such a QBF-based verification algorithm is reported.

1 Introduction

SAT and QBF solving techniques have applications in various areas [10,13,9].
One area of the applications of SAT-solving is formal verification of temporal
properties of transition system models [1,14,2,15,19,12,6]. In various situations,
it can be used to quickly determine whether a property is violated and is con-
sidered as a complementary approach to the standard BDD-based verification
approaches [3,16,5]. Therefore a large number of research works has been devoted
into this direction. However, because of the restriction on the structure of for-
mulas, complicated verification problems cannot be naturally represented with
SAT-formulas succinctly. This paper investigates QBF-applications in this area,
aiming at the verification of branching-time temporal logic properties of transi-
tion system models. Branching-time temporal logic properties involve operators
that may require the existence of certain kinds of paths starting at different
states of a system model. This requires the use of quantifiers in the encoding of
such properties.
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This paper focuses on QBF encoding and QBF-based verification of temporal
properties specified by the extended computation tree logic that allows some
sort of fairness [8]. The main contribution of this paper is a bounded seman-
tics for the extended computation tree logic. A QBF encoding of the temporal
logic is then developed from the definition of the bounded semantics, and an
implementation of QBF-based verification follows from the QBF encoding. One
of the particular aspects of this implementation is that it can handle proper-
ties (branching properties combined with fairness) that are not handled by well
known model checking tools such as Spin [11] and NuSMV [4]. Finally exper-
imental evaluation of the feasibility of the QBF-based verification relative to
BDD-based verification is reported.

2 Preliminaries

We recall the definition of transition system models and that of the extended
computation tree logic.

2.1 Transition System Models

Let AP be a set of propositional symbols. A finite state system may be repre-
sented by a Kripke structure which is a quadruple M = 〈S, T, I, L〉 where S is a
set of states, T ⊆ S × S is a transition relation which is total, I ⊆ S is a set of
initial states and L : S → 2AP is a labeling function that maps each state to a
subset of propositions of AP . A Kripke structure is also called a model.

Transitions A transition from a state s to another state s′ is denoted s → s′.
s → s′ iff (s, s′) ∈ T .

Paths. An infinite path is an infinite sequence of states π = π0π1 · · · such that
πi → πi+1 for all i ≥ 0.

Computations. A computation of M is an infinite path such that the initial state
of the path is in I.

Notations. Let π = π0π1 · · · be a path. We use π(s) to denote a path π with
π0 = s. Then ∃π(s).ϕ means that there is a path π with π0 = s such that ϕ
holds, and ∀π(s).ϕ means that for every path π with π0 = s, ϕ holds.

2.2 Extended Computation Tree Logic (eCTL )

Properties of a transition system model may be specified by temporal logic for-
mulas. Extended computation tree logic [8] is a propositional branching-time
temporal logic that extends the computation tree logic (CTL) introduced by
Emerson and Clarke [7] with possibility to express simple fairness constraints.
For brevity, the extended computation tree logic is hereafter denoted eCTL .
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Syntax Let p range over AP . The set of eCTL formulas Φ over AP is defined as
follows:

Φ ::= p | ¬Φ | Φ ∧ Φ | Φ ∨ Φ |AΨ | EΨ

Ψ ::= X Φ | F Φ |G Φ |
∞
F Φ |

∞
G Φ | (Φ U Φ) | (Φ R Φ)

The formulas of Φ are eCTL formulas, and the formulas of Ψ are auxiliary
path formulas. The property of a finite state system may be specified by an
eCTL formula, and conversely, the truth of such a formula may be evaluated in
a finite state system.

Definition 1. (Semantics of eCTL ) Let p denote a propositional symbol, and
ϕ, ϕ0, ϕ1 denote eCTL formulas, ψ, ψ0 denote path formulas. Let s be a state
and π be a path of M . Let M, s |= ϕ denote the relation that ϕ holds on s of
M , and M,π |= ψ denote that ψ holds on π of M . The relation M, s |= ϕ and
M,π |= ψ are defined as follows.

M, s |= p iff p ∈ L(s) .
M, s |= ¬ϕ0 iff M, s �|= ϕ0

M, s |= ϕ0 ∧ ϕ1 iff M, s |= ϕ0 and M, s |= ϕ1

M, s |= ϕ0 ∨ ϕ1 iff M, s |= ϕ0 or M, s |= ϕ1

M, s |= Aψ0 iff ∀π(s).(M,π |= ψ0)
M, s |= Eψ0 iff ∃π(s).(M,π |= ψ0)

M,π |= Xϕ0 iff M,π1 |= ϕ0

M,π |= Fϕ0 iff ∃k ≥ 0.M, πk |= ϕ0

M,π |= Gϕ0 iff ∀k ≥ 0.M, πk |= ϕ0

M,π |=
∞
Fϕ0 iff ∀i ≥ 0.∃k ≥ i.M, πk |= ϕ0

M,π |=
∞
Gϕ0 iff ∃i ≥ 0.∀k ≥ i.M, πk |= ϕ0

M,π |= ϕ0Uϕ1 iff ∃k ≥ 0.(M,πk |= ϕ1∧ ∀0 ≤ j < k.(M,πj |= ϕ0))
M,π |= ϕ0Rϕ1 iff ∀k ≥ 0.(M,πk |= ϕ1∨ ∃0 ≤ j < k.(M,πj |= ϕ0))

Definition 2. M |= ϕ iff M, s |= ϕ for all s ∈ I.

Negation Normal Form. An eCTL formula is in the negation normal form (NNF),
if the negation ¬ is applied only to propositional symbols. Every eCTL formula
can be transformed into an equivalent formula in NNF by using the following
equivalences.

¬(ϕ ∧ ψ) ≡ ¬ϕ ∨ ¬ψ
¬AX ϕ ≡ EX¬ϕ
¬AF ϕ ≡ EG¬ϕ
¬AG ϕ ≡ EF¬ϕ
¬A

∞
F ϕ ≡ E

∞
G¬ϕ

¬A
∞
G ϕ ≡ E

∞
F¬ϕ

¬A(ϕ U ψ) ≡ E(¬ϕ R ¬ψ)
¬A(ϕ R ψ) ≡ E(¬ϕ U ¬ψ)

¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ
¬EX ϕ ≡ AX¬ϕ
¬EF ϕ ≡ AG¬ϕ
¬EG ϕ ≡ AF¬ϕ
¬E

∞
F ϕ ≡ A

∞
G¬ϕ

¬E
∞
G ϕ ≡ A

∞
F¬ϕ

¬E(ϕ U ψ) ≡ A(¬ϕ R ¬ψ)
¬E(ϕ R ψ) ≡ A(¬ϕ U ¬ψ)
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Without loss of generality, we only consider formulas in NNF. Formulas not
in NNF are considered as an abbreviation of the equivalent ones in NNF.

3 Bounded Semantics

Before presenting the QBF encoding of temporal properties, we develop a
bounded semantics for eCTL. This bounded semantics extends that of the previ-
ous works for that of the existential fragment of CTL [14] and that of CTL [19].
For convenience, we fix the model under consideration to be M = 〈S, T, I, L〉 in
the rest of this paper.

Finite Paths and k-Paths. A finite path is a finite prefix of an infinite path.
Let k ≥ 0. A k-path of M is a finite path of M with length k + 1. π is a k-
path, if π = π0 · · ·πk such that πi ∈ S for i = 0, ..., k and (πi, πi+1) ∈ T for
i = 0, ..., k − 1.

Bounded Models. The k-model of M is a quadruple Mk = 〈S, Phk, I, L〉 where
Phk is the set of all k-paths of M . Mk can be considered as an approximation
of M .

Paths with Repeating States (rs-paths). An rs-path is a finite path that contains
repeating states (i.e., at least two states are the same). Let rs(π) denote that
π is an rs-path. An important property of such a path is that if π is a prefix of
π′, then rs(π) → rs(π′). For the ideas of k-paths, k-models, and rs-paths, the
reader is referred to [1,14,19].

Definition 3. (Bounded Semantics of eCTL ) Let p denote a propositional sym-
bol, and ϕ, ϕ0, ϕ1 denote eCTL formulas, ψ, ψ0 denote path formulas. Let s be a
state of M and π be a k-path of Phk. Let Mk, s |= ϕ denote the relation that ϕ
holds on s of Mk, and Mk, π |= ψ denote that ψ holds on π of Mk. The relation
Mk, s |= ϕ and Mk, π |= ψ are defined as follows.

Mk, s |= p iff p ∈ L(s) .
Mk, s |= ¬p iff p �∈ L(s)
Mk, s |= ϕ0 ∧ ϕ1 iff (Mk, s |= ϕ0) and (Mk, s |= ϕ1)
Mk, s |= ϕ0 ∨ ϕ1 iff (Mk, s |= ϕ0) or (Mk, s |= ϕ1)
Mk, s |= Aψ iff ∀π(s).(Mk, π |= ψ)
Mk, s |= Eψ iff ∃π(s).(Mk, π |= ψ)
Mk, π |= Xϕ0 iff k ≥ 1 ∧ (Mk, π1 |= ϕ0)
Mk, π |= Fϕ0 iff ∃i ≤ k.(Mk, πi |= ϕ0)
Mk, π |= Gϕ0 iff rs(π)∧ (∀i ≤ k.(Mk, πi |= ϕ0))

Mk, π |=
∞
Fϕ0 iff rs(π)∧ ∀i < l ≤ k.(πi = πl → ∃i < j ≤ l.(Mk, πj |= ϕ0))

Mk, π |=
∞
Gϕ0 iff rs(π)∧ ∀i < l ≤ k.(πi = πl → ∀i < j ≤ l.(Mk, πj |= ϕ0))

Mk, π |= ϕ0Uϕ1 iff ∃i ≤ k.(Mk, πi |= ϕ1∧ ∀j < i.(Mk, πj |= ϕ0))
Mk, π |= ϕ0Rϕ1 iff
∀i ≤ k.(Mk, πi |= ϕ1∨ ∃j < i.(Mk, πj |= ϕ0)) ∧ (∃j ≤ k.(Mk, πj |= ϕ0) ∨ rs(π))
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Definition 4. Mk |= ϕ iff Mk, s |= ϕ for all s ∈ I.

Let |M | denote the number of states of M .

Lemma 1. If M, s |= ϕ, then there is a k ≥ 0 such that Mk, s |= ϕ.

Proof: The proof is done by structural induction. For brevity (due to the page

limit), we prove the two cases where ϕ is respectively A
∞
Gϕ0 and A

∞
Fϕ0, and

omit the rest of the cases. Let k = |M |.

– Suppose that M, s |= A
∞
Gϕ0 holds.

Since k = |M | and the transition relation is total, the length of every k-path
is greater than |M |. Then for every k-path π, rs(π) holds. We only need to
show for every k-path π starting at s the following holds.

∀i < l ≤ k.(πi = πl → ∀i < j ≤ l.(Mk, πj |= ϕ0)).

Assume πi = πl for a k-path π. Then π′ = π0 · · ·πi(πi+1 · · ·πl)
ω is an infinite

path starting at s = π0. Since π′ satisfies
∞
Gϕ0, we have ∀i < j ≤ l.(M,πj |=

ϕ0). Then according to the induction hypothesis, ∀i < j ≤ l.(Mk, πj |= ϕ0).

– Suppose that M, s |= A
∞
Fϕ0 holds.

Since k = |M |, for every k-path π, rs(π) holds. We only need to show for
every k-path π starting at s the following holds.

∀i < l ≤ k.(πi = πl → ∃i < j ≤ l.(Mk, πj |= ϕ0)).

Assume πi = πl for a k-path π. Then π′ = π0 · · ·πi(πi+1 · · ·πl)
ω is an infinite

path starting at s = π0. Since π′ satisfies
∞
Fϕ0, we have ∃i < j ≤ l.(M,πj |=

ϕ0). Then according to the induction hypothesis, ∃i < j ≤ l.(Mk, πj |= ϕ0).

Lemma 2. If Mk, s |= ϕ for k ≥ |M |, then M, s |= ϕ.

Proof: The proof is done by structural induction. For brevity, we prove the

two cases where ϕ is respectively A
∞
Gϕ0 and A

∞
Fϕ0, and omit the rest of the

cases.

– Suppose that Mk, s |= A
∞
Gϕ0 holds for k.

Then for every k-path π′ starting at s, we have Mk, π
′ |=

∞
Gϕ0, i.e.,

rs(π′) ∧ ∀i < l ≤ k.(π′
i = π′

l → ∀i < j ≤ l.(Mk, π
′
j |= ϕ0)).

Assume that M, s |= A
∞
Gϕ0 does not hold. We show that this is a contra-

diction. According to this assumption, there is an infinite path starting at s

such that M,π |=
∞
Gϕ0 does not hold. Then we can construct an infinite path

π′ = π′
0 · · ·π′

i(π
′
i+1 · · ·π′

l)
ω starting at s such that l ≤ |M |, π′

x �= π′
y for all

x < y < l, π′
i = π′

l, and M,π′
j �|= ϕ0 for some i < j ≤ l. Let π′′ be a k-path
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with π′
0 · · ·π′

iπ
′
i+1 · · ·π′

l as its prefix (this is possible, since l ≤ |M | ≤ k).

Then according to the premise of the lemma, Mk, π
′′ |=

∞
Gϕ0 holds. Then we

have Mk, π
′
j |= ϕ0, and by the induction hypothesis, M,π′

j |= ϕ0. This is a
contradiction, which proves the lemma.

– Suppose that Mk, s |= A
∞
Fϕ0 holds for k.

Then for every k-path π′ starting at s, we have Mk, π
′ |=

∞
Fϕ0, i.e.,

rs(π′) ∧ ∀i < l ≤ k.(π′
i = π′

l → ∃i < j ≤ l.(Mk, π
′
j |= ϕ0)).

Assume that M, s |= A
∞
Fϕ0 does not hold. We show that this is a con-

tradiction. According to this assumption, there is an infinite path start-

ing at s such that M,π |=
∞
Fϕ0 does not hold. Then we can construct an

infinite path π′ = π′
0 · · ·π′

i(π
′
i+1 · · ·π′

l)
ω starting at s such that l ≤ |M |,

π′
x �= π′

y for all x < y < l, π′
i = π′

l, and M,π′
j �|= ϕ0 for all i < j ≤ l. Let

π′′ be a k-path with π′
0 · · ·π′

iπ
′
i+1 · · ·π′

l as its prefix (this is possible, since

l ≤ |M | ≤ k). Then according to the premise of the lemma, Mk, π
′′ |=

∞
Fϕ0

holds. Then we have ∃i < j ≤ l.(Mk, π
′
j |= ϕ0), and by the induction hy-

pothesis, ∃i < j ≤ l.(M,π′
j |= ϕ0). This is a contradiction, which proves the

lemma.

Lemma 3. If Mk, s |= ϕ, then Mk+1, s |= ϕ.

Proof: The proof is done by structural induction. For brevity, we prove the case

where ϕ is A
∞
Gϕ0, and omit the rest of the cases. Suppose that Mk, s |= A

∞
Gϕ0

holds for k.

Then for every k-path ζ starting at s, we have Mk, ζ |=
∞
Gϕ0, i.e.,

rs(ζ) ∧ ∀i < l ≤ k.(ζi = ζl → ∀i < j ≤ l.(Mk, ζj |= ϕ0)).

Then according to the induction hypothesis, we have

rs(ζ) ∧ ∀i < l ≤ k.(ζi = ζl → ∀i < j ≤ l.(Mk+1, ζj |= ϕ0)).

The goal is to prove that Mk+1, s |= A
∞
Gϕ0 holds, i.e., for every (k + 1)-path

π of Mk+1 starting at s, the following two properties hold.

(1) rs(π)
(2) ∀i < l ≤ k + 1.(πi = πl → ∀i < j ≤ l.(Mk+1, πj |= ϕ0))

Let π = π0 · · ·πkπk+1 be a (k + 1)-path starting at s. Since π′ = π0 · · ·πk is
a k-path, we have the following fact.

rs(π′) ∧ ∀i < l ≤ k.(πi = πl → ∀i < j ≤ l.(Mk+1, πj |= ϕ0))

Since rs(π′) implies property (1), and the cases of property (2) where l ≤ k
are covered by the fact, we only need to show

∀i < k + 1.(πi = πk+1 → ∀i < j ≤ k + 1.(Mk+1, πj |= ϕ0)).
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Since rs(π′) holds, there is x < y ≤ k such that πx = πy.
Assume πi = πk+1. We divide the rest of the proof into two cases:

– x < i < y:
Let π′′ be the concatenation of π0 · · ·πx, πy+1 · · ·πk+1, πi+1 · · ·πy .
Then π′′ is a prefix of a k-path starting at s and, since πx = πy , every state
s′ between πx and πy satisfies ϕ0 (Mk, s

′ |= ϕ0 according to the premise and
Mk+1, s

′ |= ϕ0 according to the induction hypothesis).
Therefore ∀i < j ≤ k + 1.(Mk+1, πj |= ϕ0).

– i ≤ x or y ≤ i:
Let π′′ be the path obtained by removing πx+1 · · ·πy from π.
Then π′′ is a prefix of a k-path starting at s and, therefore every state
between πi and πk+1 (of π′′) satisfies ϕ0, according to the premise and the
induction hypothesis.
In addition, every state in the partial-path πx+1 · · ·πy also satisfies ϕ0 (this
is needed in case i ≤ x). Therefore we have ∀i < j ≤ k+1.(Mk+1, πj |= ϕ0).

Theorem 1 (Soundness and Completeness). M, s |= ϕ iff Mk, s |= ϕ for
some k ≥ 0.

The soundness and completeness of the bounded semantics follows from
Lemma 1, Lemma 2 and Lemma 3.

Corollary 1. M |= ϕ iff Mk |= ϕ for some k ≥ 0.

4 QBF Encoding and QBF-Based Verification

From the bounded semantics, a QBF-based characterization of eCTL formulas,
extending that of CTL formulas [20], can be developed as follow. Let k ≥ 0. Let
u0, ..., uk be a finite sequence of state variables. The sequence u0, ..., uk (denoted

by
→
u) is intended to be used as a representation of a path ofMk. This is captured

by the following definition of Pk(
→
u ).

Definition 5

Pk(
→
u) :=

k−1∧

j=0

T (uj, uj+1)

Every assignment to the set of state variables {u0, ..., uk} satisfying Pk(
→
u)

represents a valid k-path of M . Let rsk(
→
u ) denote that the k-path represented

by
→
u is an rs-path. Formally, we have the following definition of rsk(

→
u).

Definition 6

rsk(
→
u ) :=

k−1∨

x=0

k∨

y=x+1

ux = uy.
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Let p ∈ AP be a proposition symbol and p(v) be the propositional formula
such that p(v) is true whenever v is assigned the truth value representing a state
s in which p holds.

Definition 7 (Transformation of eCTL Formulas). Let k ≥ 0. Let v be a
state variable and ϕ be an eCTL formula. The encoding [[ϕ, v]]k is defined as
follows.

[[p, v]]k = p(v)
[[¬p, v]]k = ¬p(v)
[[ϕ ∨ ψ, v]]k = [[ϕ, v]]k ∨ [[ψ, v]]k
[[ϕ ∧ ψ, v]]k = [[ϕ, v]]k ∧ [[ψ, v]]k

[[Aϕ, v]]k = ∀→u.(P (
→
u ) ∧ v = u0 → [[ϕ,

→
u ]]k)

[[Eϕ, v]]k = ∃→u.(P (
→
u ) ∧ v = u0 ∧ [[ϕ,

→
u ]]k)

[[Xϕ,
→
u ]]k = k ≥ 1 ∧ [[ϕ, u1]]k

[[Fψ,
→
u ]]k =

∨k
j=0[[ψ, uj ]]k

[[Gψ,
→
u ]]k =

∧k
j=0[[ψ, uj ]]k ∧ rsk(

→
u))

[[
∞
Fψ,

→
u ]]k = rsk(

→
u) ∧∧k

i=0(
∧k

l=i+1(ui = ul →
∨l

j=i+1[[ψ, uj ]]k))

[[
∞
Gψ,

→
u ]]k = rsk(

→
u) ∧∧k

i=0(
∧k

l=i+1(ui = ul →
∧l

j=i+1[[ψ, uj ]]k))

[[ϕUψ,
→
u ]]k =

∨k
j=0([[ψ, uj ]]k ∧∧j−1

t=0 [[ϕ, ut]]k)

[[ϕRψ,
→
u ]]k =

∧k
j=0([[ψ, uj ]]k ∨∨j−1

t=0 [[ϕ, ut]]k) ∧ (
∨k

t=0[[ϕ, ut]]k ∨ rsk(
→
u))

Note that the transition relation of M is total, and therefore every finite path
either can be extended to a k-path or has a k-path as its prefix. Let v(s) denote
that the state variable v has been assigned a value corresponding to the state s.
The following theorem follows from the transformation scheme.

Theorem 2. Let ϕ be an eCTL formula. Mk, s |= ϕ iff [[ϕ, v(s)]]k holds.

Let I(v) denote the propositional formula that restricts potential values of v
to the initial states of M .

Corollary 2. Let ϕ be an eCTL formula. M |= ϕ iff there is a k ≥ 0 such
that ∀v.(I(v) → [[ϕ, v]]k), and M �|= ϕ iff there is a k ≥ 0 such that ∃v.(I(v) ∧
[[¬ϕ, v]]k).

Following from Theorem 1, we have M |= ϕ iff there is a k ≥ 0 such that
Mk |= ϕ. According to Theorem 2, we have M |= ϕ iff there is a k ≥ 0 such that
∀v.(I(v) → [[ϕ, v]]k). The second part of the corollary is shown as follows.

– Suppose that M �|= ϕ.
Then (∃s ∈ I,M, s �|= ϕ), and therefore (∃s ∈ I,M, s |= ¬ϕ).
According to Theorem 1, (∃s ∈ I, ∃k ≥ 0,Mk, s |= ¬ϕ).
Therefore there is a k ≥ 0 such that ∃s ∈ I, Mk, s |= ¬ϕ holds, and then
there is a k ≥ 0 such that ∃v.(I(v) ∧ [[¬ϕ, v]]k), according to Theorem 2.
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– On the other hand, suppose that M |= ϕ.
Then ∀s ∈ I,M, s |= ϕ, and therefore ¬(∃s ∈ I,M, s |= ¬ϕ).
According to Theorem 1, ¬(∃s ∈ I, ∃k ≥ 0,Mk, s |= ¬ϕ).
Therefore ¬(∃k ≥ 0, ∃s ∈ I,Mk, s |= ¬ϕ).
Therefore ¬(∃k ≥ 0, ∃v.(I(v) ∧ [[¬ϕ, v]]k)), according to Theorem 2.

Bounded Correctness Checking Let ϕ be an eCTL formula. Following from Corol-
lary 2, we can formulate a bounded correctness checking algorithm for M |= ϕ,
as follows.

Init k = 0; .
If ∀v.(I(v) → [[ϕ, v]]k) holds, report that ϕ holds;
If ∃v.(I(v) ∧ [[¬ϕ, v]]k) holds, report that ϕ does not hold;
Increase k, go to the first “if”-test;

The correctness and the termination are guaranteed by Corollary 2. The al-
gorithm is a combination of checking whether ϕ holds directly by the bounded
semantics, and on the other hand checking whether ϕ does not hold also by
the bounded semantics. The latter part is in accordance with the traditional
bounded model checking approach [1].

5 Implementation and Experimental Evaluation

The implementation of the bounded correctness checking algorithm involves the
following functionalities:

– For the finite state program, convert the program into a Boolean program;
– Produce a Boolean formula for the initial states (i.e., I(v));
– Produce a Boolean formula for the transition relation (i.e., T (v, v′));
– For the property specified by an eCTL formula with a given k, produce a

QBF-formula according to the transformation scheme;
– Combine the QBF-formula with the Boolean formula representing the initial

states;
– Apply a QBF-solving algorithm to check the truth of the combined formula.

The proposed QBF-based approach has been implemented in a verification
tool, denoted VERDS1, and an experimental evaluation has been carried out.
We first present an example to show the application of the approach, and then
the experimental evaluation is reported.

5.1 An Illustrative Example

The example is a concurrent program representing a formulation of Peterson’s
mutual exclusion algorithm [18] as a first order transition system [17]. Let a, b
be variables of enumeration type which have respectively the domain {s0, ..., s3}
and {t0, ..., t3}. Let x, y, t be variables of Boolean type. The program consists of
two processes: A and B with the following specification:

1 http://lcs.ios.ac.cn/~zwh/verds/

http://lcs.ios.ac.cn/~zwh/verds/
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Process A:
a = s0 −→ (y, t, a) := (1, 1, s1)
a = s1 ∧ (x = 0 ∨ t = 0) −→ (a) := (s2)
a = s2 −→ (y, a) := (0, s3)
a = s2 −→ (a) := (s2)
a = s3 −→ (y, t, a) := (1, 1, s1)

Process B:
b = t0 −→ (x, t, b) := (1, 0, t1)
b = t1 ∧ (y = 0 ∨ t = 1) −→ (b) := (t2)
b = t2 −→ (x, b) := (0, t3)
b = t2 −→ (b) := (t2)
b = t3 −→ (x, t, b) := (1, 0, t1)

Let the formula specifying the set of the initial states be a = s0∧ b = t0 ∧x =
y = 0. The value of t is arbitrary at the initial state. The following explains the
meaning of some of the constants.

a = si: process A is waiting for entering the critical region
when i = 1, is in the critical region when i = 2, has left
the critical region when i = 3.

b = ti: process B is waiting for entering the critical region
when i = 1, is in the critical region when i = 2, has left
the critical region when i = 3.

Let the following be the properties of the program we want to verify.

p1: AF (a = s2 ∨ b = t2)
p2: AG(¬(a = s2 ∧ b = t2))

p3: A
∞
G(((a = s1) → AF (a = s2)) ∧ ((b = t1) → AF (b = t2)))

p4: A
∞
G(((a = s1) → EF (a = s2)) ∧ ((b = t1) → EF (b = t2)))

The first 2 properties are simple CTL properties for mutual exclusion algo-
rithms, and the last 2 properties are particular eCTL properties.

Verification The input to the verification tool VERDS must be written in the
language specified in [21]. Let the input be as follows, in which the temporal

operator A
∞
G is written as AFG.

VVM

VAR x:0..1; y:0..1; t:0..1; a:{s0,s1,s2,s3}; b:{t0,t1,t2,t3};

INIT x=0; y=0; a=s0; b=t0;

TRANS a=s0: (y,t,a):=(1,1,s1);

a=s1&(x=0|t=0): (a):=(s2);

a=s2: (y,a):=(0,s3);

a=s2: (a):=(s2);

a=s3: (y,t,a):=(1,1,s1);

b=t0: (x,t,b):=(1,0,t1);

b=t1&(y=0|t=1): (b):=(t2);

b=t2: (x,b):=(0,t3);

b=t2: (b):=(t2);

b=t3: (x,t,b):=(1,0,t1);

SPEC AF((a=s2|b=t2));

AG(!(a=s2&b=t2));

AFG((!a=s1|AF(a=s2))&(!b=t1|AF(b=t2)));

AFG((!a=s1|EF(a=s2))&(!b=t1|EF(b=t2)));
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Suppose that the input is contained in the file “tn1mutex.vvm”. For checking
the i-th property, we use the following command, where i is to be replaced by a
given number.

verds -QBF -ck i tn1mutex.vvm

The verification result for the third property (with i = 3) is shown as follows.

VERSION: verds 1.45 - JAN 2014
FILE: tn1mutex.vvm
PROPERTY: AFG((!(a = 1)|AF (a = 2)&(!(b = 1)|AF (b = 2)))
INFO: applying an internal QBF-solver
bound = 0
.
.
bound = 4
CONCLUSION: FALSE

The verification process for the other properties are similar. A summary of
the verification results is as follows, where the first row specifies the properties,
and 2nd and 3rd row show respectively the satisfiability of the formula and the
least k for certifying the satisfiability.

p1 p2 p3 p4
T/F T T F T
k 3 10 4 10

The above example shows that, for some problem instances, the satisfiability
or unsatisfiability may be determined when k is relatively small. In such cases,
the QBF-based verification may have advantage over the traditional symbolic
model checking approach. In the following, we present a comparison of such an
approach with the traditional model checking approach.

5.2 Experimental Evaluation

This subsection contains a summary of an experimental evaluation of QBF-based
verification implemented in VERDS (to be referred to as VERDS-QBF in the rest
of the paper). The experimental evaluation compares this QBF-based verification
with BDD-based verification implemented in NuSMV [4] version 2.5.02. The
comparison is based on the use of two types of random Boolean programs and
24 properties. A description of the programs and the properties is as follows.

Remarks. The comparison is not meant to draw a conclusion on which verifi-
cation approach is better. Rather, it will show that there is a large number of
cases on which one approach is better than the other, and vice versa, and in this
sense the two approaches may be considered complementary.

2 http://nusmv.irst.itc.it/

http://nusmv.irst.itc.it/
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Programs with Concurrent Processes. The parameters of the first set of random
Boolean programs are as follows:

a: number of processes
b: number of all variables
c: number of share variables
d: number of local variables in a process

The shared variables are initially set to a random value in {0, 1}, and the
local variables are initially set to 0. For each process, the shared variables and
the local variables are assigned the negation of a variable randomly chosen from
these variables.

Programs with Concurrent Sequential Processes. The parameters of the second
set of random Boolean programs are as follows, in addition to a, b, c, d specified
above.

t: number of transitions in a process
p: number of parallel assignments in each transition

For each concurrent sequential process, besides the b Boolean variables, there
is a local variable representing program locations, with e possible values. The
shared variables are initially set to a random value in {0, 1}, and the local vari-
ables are initially set to 0. For each transition of a process, p pairs of shared
variables and local variables are randomly chosen among the shared variables
and the local variables, such that the first element of such a pair is assigned
the negation of the second element of the pair. Transitions are numbered from
0 to t − 1, and are executed consecutively, and when the end of the sequence
of the transitions is reached, it loops back to the execution of the transition
numbered 0.

Types of Properties. The properties are specified by a subset of 24 eCTL formulas
(which are actually all CTL properties, since BDD-based CTL model checking in
NuSMV is used as the reference in the evaluation). These properties involve AG,
AF properties, and more complicated ones specified with different combinations
of operators with one or two levels of nesting (with two levels of nesting when
AX or EX is involved). Properties p01 to p12 are shown below, where vi are
global variables.

p01 : AG(
∨c

i=1 vi)
p02 : AF (

∨c
i=1 vi)

p03 : AG(v1 → AF (v2 ∧
∨c

i=3 vi))
p04 : AG(v1 → EF (v2 ∧

∨c
i=3 vi))

p05 : EG(v1 → AF (v2 ∧
∨c

i=3 vi))
p06 : EG(v1 → EF (v2 ∧

∨c
i=3 vi))

p07 : A(v1 U A(v2 U
∨c

i=3 vi)
p08 : A(v1 U E(v2 U

∨c
i=3 vi)

p09 : A(v1 U A(v2 R
∨c

i=3 vi)
p10 : A(v1 U E(v2 R

∨c
i=3 vi)

p11 : A(AXv1 R AX A(v2 U
∨c

i=3 vi)
p12 : A(EXv1 R EX E(v2 U

∨c
i=3 vi)

Properties p13 to p24 are similar to p01 to p12 where the difference is that ∧
and

∨
are replaced by respectively ∨ and

∧
.
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Experimental Setup. The comparison of advantage and disadvantage is based on
the time used for the verification problem instances. The experimental data were
obtained by running the tools on a Linux platform. For QBF-based verification,
the following command is used for running VERDS-QBF.

verds -QBF filename

For BDD-based verification, we run NuSMV (without counter-example gen-
eration) by the following command.

NuSMV -dcx filename

The option -dcx is for avoiding the generation of counter-examples. This op-
tion is used, since the corresponding use of VERDS does not generate counter-
examples.

Experimental Data for Programs with Concurrent Processes. For this type of
programs, we test different sizes of the programs with 3 processes (a = 3), and
let b vary over the set of values {12, 24, 36}, then set c = b/2, d = c/a. Each of the
24 properties is tested on 20 test cases for each value of b. For brevity, for each
type of properties, a summary of the experimental data is presented in the left
part of Fig. 1, where N is the number of test cases, T is the number of test cases
in which the property is true, F is the number of test cases in which the property
is false, adv is the number of cases in which VERDS-QBF has an advantage with
respect to the usage of time. In this part of the evaluation, VERDS-QBF has
advantage in 1190 of 1440 test cases. On the relative advantage of verification
and falsification, VERDS-QBF has better advantage in the case of falsification.

Experimental Data for Programs with Concurrent Sequential Processes. For this
type of programs, we test different sizes of the programs with 2 processes (a = 2),
and let b vary over the set of values {12, 16, 20}, and then set c = b/2, d = c/a,
t = c, and p = 4. Similarly, each property is tested on 20 test cases for each value
of b, and a summary of the experimental data is presented in the right part of Fig.
1. In this part of the evaluation, VERDS-QBF has advantage in 739 of 1440 test
cases. On the relative advantage of verification and falsification, VERDS-QBF
has also better advantage in falsification in this part of the evaluation.

Summary. Based on the total of 2880 test cases3, the experimental evaluation4

shows that the QBF-based verification does not have advantage in verifying any
of the properties that start with AG. On the other hand, the QBF-based ver-
ification may have advantages in parts (ranging from a few percent to a large
percent) of the test cases of other types of verification and falsification problems
(including falsification of AG properties). On the relative advantage of verifica-
tion and falsification, VERDS-QBF has better advantage in falsification in both

3 Available at http://lcs.ios.ac.cn/~zwh/tr/verds130ee.rar
4 Details available at http://lcs.ios.ac.cn/~zwh/tr/verds130eeq.pdf

http://lcs.ios.ac.cn/~zwh/tr/verds130ee.rar
http://lcs.ios.ac.cn/~zwh/tr/verds130eeq.pdf
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Data for Concurrent Processes:

property adv/T adv/F adv/N

p01 - 60/60 60/60
p02 60/60 - 60/60
p03 0/3 43/57 43/60
p04 0/60 - 0/60
p05 46/53 1/7 47/60
p06 53/60 - 53/60
p07 60/60 - 60/60
p08 60/60 - 60/60
p09 50/52 5/8 55/60
p10 60/60 - 60/60
p11 13/13 45/47 58/60
p12 60/60 - 60/60
p13 - 60/60 60/60
p14 3/3 55/57 58/60
p15 0/8 38/52 38/60
p16 0/60 - 0/60
p17 46/56 1/4 47/60
p18 53/60 - 53/60
p19 5/5 54/55 59/60
p20 16/21 30/39 46/60
p21 3/3 56/57 59/60
p22 3/3 56/57 59/60
p23 - 60/60 60/60
p24 24/31 11/29 35/60

sum 615/791 575/649 1190/1440

Data for Concurrent Seq. Processes:

property adv/T adv/F adv/N

p01 0/53 2/7 2/60
p02 60/60 - 60/60
p03 0/10 1/50 1/60
p04 0/60 - 0/60
p05 0/46 0/14 0/60
p06 0/60 - 0/60
p07 60/60 - 60/60
p08 60/60 - 60/60
p09 36/54 0/6 36/60
p10 53/60 - 53/60
p11 33/47 0/13 33/60
p12 52/60 - 52/60
p13 - 60/60 60/60
p14 4/4 4/56 8/60
p15 0/10 1/50 1/60
p16 0/60 - 0/60
p17 0/48 0/12 0/60
p18 0/60 - 0/60
p19 8/8 52/52 60/60
p20 13/18 27/42 40/60
p21 4/4 54/56 58/60
p22 4/4 55/56 59/60
p23 - 59/60 59/60
p24 8/16 29/44 37/60

sum 395/862 344/578 739/1440

Fig. 1. Experimental Data for the two Types of Programs

of the types of programs. In summary, QBF-based verification has advantage
in more than 50 percent of the test cases, which are well distributed among
verification and falsification of universal properties.

6 Concluding Remarks

Bounded semantics of eCTL and QBF-based characterization of eCTL based
on such a semantics have been presented. A verification algorithm of eCTL
properties based on solving QBF-formulas has then been established.

The traditional application area of SAT-based verification has mainly been on
the error detection of various universal properties such as LTL and the universal
fragments of CTL* [1,14,15]. QBF-based verification presented in this paper
applies to the set of eCTL properties (that may be specified with both universal
and existential path quantifiers), and can handle verification and falsification
problems with bounded models. Furthermore, one of the particular aspects of
this implementation is that it can handle properties, for instance, of the form
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A
∞
G(p → EFq), that are not handled by well known model checking tools such

as Spin [11] and NuSMV [4].
Experimental evaluation of such an approach has been presented. The test

cases have shown that QBF-based verification and BDD-based verification have
their own advantages and may be considered complementary in the verification
of different problem instances.

The efficiency of QBF-based verification depends very much on the QBF-
solving techniques. External QBF-solvers may be used to increase the efficiency
of the verification. Improving the efficiency by optimizing the QBF-based encod-
ing and by enhancing QBF-solving techniques remains as future works.
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