
Stéphane Demri
Deepak Kapur
Christoph Weidenbach (Eds.)

 123

LN
AI

 8
56

2

7th International Joint Conference, IJCAR 2014
Held as Part of the Vienna Summer of Logic, VSL 2014
Vienna, Austria, July 19–22, 2014, Proceedings

Automated Reasoning

Lecture Notes in Artificial Intelligence 8562

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

Stéphane Demri Deepak Kapur
Christoph Weidenbach (Eds.)

Automated Reasoning
7th International Joint Conference, IJCAR 2014
Held as Part of the Vienna Summer of Logic, VSL 2014
Vienna, Austria, July 19-22, 2014
Proceedings

13

Volume Editors

Stéphane Demri
New York University
Courant Institute of Mathematical Sciences
250 Mercer Street, New York, NY 10012, USA
E-mail: demri@lsv.ens.cachan.fr

Deepak Kapur
University of New Mexico
Department of Computer Science
Albuquerque, NM 87131-0001, USA
E-mail: kapur@cs.unm.edu

Christoph Weidenbach
Max Planck Institute for Informatics
Campus E1 4, 66123 Saarbrücken, Germany
E-mail: weidenbach@mpi-inf.mpg.de

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-08586-9 e-ISBN 978-3-319-08587-6
DOI 10.1007/978-3-319-08587-6
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014941780

LNCS Sublibrary: SL 7 – Artificial Intelligence

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

In the summer of 2014, Vienna hosted the largest scientific conference in the
history of logic. The Vienna Summer of Logic (VSL, http://vsl2014.at) con-
sisted of twelve large conferences and 82 workshops, attracting more than 2000
researchers from all over the world. This unique event was organized by the Kurt
Gödel Society and took place at Vienna University of Technology during July
9 to 24, 2014, under the auspices of the Federal President of the Republic of
Austria, Dr. Heinz Fischer.

The conferences and workshops dealt with the main theme, logic, from three
important angles: logic in computer science, mathematical logic, and logic in
artificial intelligence. They naturally gave rise to respective streams gathering
the following meetings:

Logic in Computer Science / Federated Logic Conference (FLoC)

• 26th International Conference on Computer Aided Verification (CAV)
• 27th IEEE Computer Security Foundations Symposium (CSF)
• 30th International Conference on Logic Programming (ICLP)
• 7th International Joint Conference on Automated Reasoning (IJCAR)
• 5th Conference on Interactive Theorem Proving (ITP)
• Joint meeting of the 23rd EACSL Annual Conference on Computer Science
Logic (CSL) and the 29th ACM/IEEE Symposium on Logic in Computer
Science (LICS)

• 25th International Conference on Rewriting Techniques and Applications
(RTA) joint with the 12th International Conference on Typed Lambda Cal-
culi and Applications (TLCA)

• 17th International Conference on Theory and Applications of Satisfiability
Testing (SAT)

• 76 FLoC Workshops
• FLoC Olympic Games (System Competitions)

VIII Foreword

Mathematical Logic

• Logic Colloquium 2014 (LC)
• Logic, Algebra and Truth Degrees 2014 (LATD)
• Compositional Meaning in Logic (GeTFun 2.0)
• The Infinity Workshop (INFINITY)
• Workshop on Logic and Games (LG)
• Kurt Gödel Fellowship Competition

Logic in Artificial Intelligence

• 14th International Conference on Principles of Knowledge Representation
and Reasoning (KR)

• 27th International Workshop on Description Logics (DL)
• 15th International Workshop on Non-Monotonic Reasoning (NMR)
• 6th International Workshop on Knowledge Representation for Health Care
2014 (KR4HC)

The VSL keynote talks which were directed to all participants were given by
Franz Baader (Technische Universität Dresden), Edmund Clarke (Carnegie Mel-
lon University), Christos Papadimitriou (University of California, Berkeley) and
Alex Wilkie (University of Manchester); Dana Scott (Carnegie Mellon Univer-
sity) spoke in the opening session. Since the Vienna Summer of Logic contained
more than a hundred invited talks, it would not be feasible to list them here.

The program of the Vienna Summer of Logic was very rich, including not only
scientific talks, poster sessions and panels, but also two distinctive events. One
was the award ceremony of the Kurt Gödel Research Prize Fellowship Competi-
tion, in which the Kurt Gödel Society awarded three research fellowship prizes
endowed with 100.000 Euro each to the winners. This was the third edition of
the competition, themed Logical Mind: Connecting Foundations and Technology
this year.

The 1st FLoC Olympic Games formed the other distinctive event and were
hosted by the Federated Logic Conference (FLoC) 2014. Intended as a new FLoC
element, the Games brought together 12 established logic solver competitions
by different research communities. In addition to the competitions, the Olympic
Games facilitated the exchange of expertise between communities, and increased
the visibility and impact of state-of-the-art solver technology. The winners in
the competition categories were honored with Kurt Gödel medals at the FLoC
Olympic Games award ceremonies.

Organizing an event like the Vienna Summer of Logic was a challenge. We
are indebted to numerous people whose enormous efforts were essential in mak-
ing this vision become reality. With so many colleagues and friends working
with us, we are unable to list them individually here. Nevertheless, as rep-
resentatives of the three streams of VSL, we would like to particularly ex-
press our gratitude to all people who helped to make this event a success:
the sponsors and the Honorary Committee; the Organization Committee and

Foreword IX

the local organizers; the conference and workshop chairs and Program Commit-
tee members; the reviewers and authors; and of course all speakers and partici-
pants of the many conferences, workshops and competitions.

The Vienna Summer of Logic continues a great legacy of scientific thought
that started in Ancient Greece and flourished in the city of Gödel, Wittgenstein
and the Vienna Circle. The heroes of our intellectual past shaped the scientific
world-view and changed our understanding of science. Owing to their achieve-
ments, logic has permeated a wide range of disciplines, including computer sci-
ence, mathematics, artificial intelligence, philosophy, linguistics, and many more.
Logic is everywhere – or in the language of Aristotle, ����� ����	 �
���� ����	��

July 2014 Matthias Baaz
Thomas Eiter
Helmut Veith

Preface

This volume contains the papers presented at IJCAR’14: 7th International Joint
Conference on Automated Reasoning (IJCAR) held on July 19-22, 2014 in Vi-
enna. This year’s meeting was a merging of three leading events in automated
reasoning – CADE (International Conference on Automated Deduction), FroCoS
(International Symposium on Frontiers of Combining Systems) and TABLEAUX
(International Conference on Automated Reasoning with Analytic Tableaux and
Related Methods). IJCAR is the premier international joint conference on all
topics in automated reasoning, including foundations, implementations, and ap-
plications. Previous IJCAR conferences were held at Siena (Italy) in 2001, Cork
(Ireland) in 2004, Seattle (USA) in 2006, Sydney (Australia) in 2008, Edinburgh
(UK) in 2010 and Manchester (UK) in 2012.

IJCAR 2014 is part of Federated Logic Conference (FLoC) that is itself part
of Vienna Summer in Logic (VSL) and 24 workshops are affiliated with IJCAR.
The Vienna Summer of Logic is a unique event organized by the Kurt Gödel
Society at Vienna University of Technology from July 9 to 24, 2014.

The call for papers for IJCAR’14 invited authors to submit full papers (of
15 pages) and system descriptions (of 7 pages). There were 83 submissions (63
regular papers and 20 system descriptions) of which 37 were accepted (26 regular
papers and 11 system descriptions). Each submission was assigned to at least
three Program Committee members, who carefully reviewed the papers, with the
help of 116 external referees. We wish to thank the ProgramCommittee members
and all their reviewers for their works and efforts in evaluating the submissions. It
was a pleasure to work with all of them. The EasyChair conference management
system was a great help in dealing with all aspects of putting our program and
the proceedings together.

IJCAR 2014 had invited talks by Rajeev Goré (The Australian National Uni-
versity) and Ken McMillan (Microsoft Research). In addition, IJCAR together
with other FLoC conferences, had two invited plenary talks by Véronique Cortier
(Centre National de la Recherche Scientifique) and by Orna Kupferman (Hebrew
University). These proceedings contain three papers and an abstract of these in-
vited talks. We want to thank the invited speakers for contributing to the success
of the IJCAR 2014.

Many people helped to make IJCAR 2014 a success. We want to thank the
the conference co-chairs and the organizing committee consisting of Christian
Fermüller, Stefan Hetzl and Giselle Reis, the publicity chair Morgan Deters and
the workshop chair Matthias Horbach. We are also indebted to the FLoC and
VSL organization committees.

XII Preface

Most importantly, we would like to thank all the authors for submitting their
work to IJCAR 2014: we believe the outcome is an exciting technical program.

May 2014 Stéphane Demri
Deepak Kapur

Christoph Weidenbach

Organization

Program Committee

Franz Baader TU Dresden, Germany
Peter Baumgartner National ICT Australia
Bernhard Beckert Karlsruhe Institute of Technology, Germany
Jasmin Christian

Blanchette TU München, Germany
Bernard Boigelot University of Liège, Belgium
Maria Paola Bonacina Universita‘ degli Studi di Verona, Italy
Agata Ciabattoni TU Wien, Austria
Koen Claessen Chalmers University of Technology, Sweden
Leonardo De Moura Microsoft Research, USA
Stéphanie Delaune CNRS, LSV, France
Stéphane Demri CNRS, France and NYU, USA
Stephan Falke Karlsruhe Institute of Technology (KIT),

Germany
Christian Fermüller TU Wien, Austria
Pascal Fontaine Loria, INRIA, University of Nancy, France
Silvio Ghilardi Università degli Studi di Milano, Italy
Jürgen Giesl RWTH Aachen, Germany
Valentin Goranko Technical University of Denmark
Radu Iosif Verimag/CNRS/University of Grenoble, France
Deepak Kapur University of New Mexico, USA
Boris Konev The University of Liverpool, UK
Konstantin Korovin Manchester University, UK
Daniel Kroening Oxford University, UK
Viktor Kuncak EPFL, Switzerland
Martin Lange University of Kassel, Germany
Stephan Merz Inria Lorraine, France
Aart Middeldorp University of Innsbruck, Austria
Enric Rodŕıguez Carbonell Technical University of Catalonia, Spain
Renate A. Schmidt University of Manchester, UK
Carsten Schuermann IT University of Copenhagen, Denmark
Roberto Sebastiani DISI, University of Trento, Italy
Viorica

Sofronie-Stokkermans University Koblenz-Landau, Germany

XIV Organization

Geoff Sutcliffe University of Miami, USA
Cesare Tinelli The University of Iowa, USA
Uwe Waldmann MPI für Informatik, Germany
Christoph Weidenbach MPI für Informatik, Germany
Jian Zhang Institute of Software, Chinese Academy of

Sciences, China

Additional Reviewers

Alama, Jesse
Areces, Carlos
Armas, Ana
Artale, Alessandro
Atkey, Robert
Audemard, Gilles
Badban, Bahareh
Baldi, Paolo
Barrett, Clark
Bellodi, Elena
Bengtson, Jesper
Benzmüller, Christoph
Bezhanishvili, Nick
Bormer, Thorsten
Bresolin, Davide
Brock-Nannestad, Taus
Brockschmidt, Marc
Bruns, Daniel
Bruse, Florian
Bucheli, Samuel
Chen, Hong-Yi
Conchon, Sylvain
Cyriac, Aiswarya
De Nivelle, Hans
Della Monica, Dario
Demri, Stephane
Dietl, Werner
Dyckhoff, Roy
Eades Iii, Harley
Ehlers, Rüdiger
Enea, Constantin
Erbatur, Serdar
Ferreira, Francisco
Fiorino, Guido
Franconi, Enrico
Galmiche, Didier

Gimenez, Stéphane
Gladisch, Christoph
Graham-Lengrand, Stéphane
Grebing, Sarah
Greco, Giuseppe
Griggio, Alberto
Herda, Mihai
Heule, Marijn
Hoder, Krystof
Horbach, Matthias
Hou, Zhe
Huang, Guan-Shieng
Hustadt, Ullrich
Jacobs, Swen
Jovanović, Dejan
Kapur, Deepak
King, Timothy
Koopmann, Patrick
Kop, Cynthia
Kuraj, Ivan
Lammich, Peter
Leitsch, Alexander
Lellmann, Bjoern
Lisitsa, Alexei
Liu, Jun
Liu, Wanwei
Lozes, Etienne
Ludwig, Michel
Lutz, Carsten
Madhavan, Ravichandhran
Marchi, Jerusa
Mccabe-Dansted, John
Mclaughlin, Sean
Metcalfe, George
Momigliano, Alberto
Nagele, Julian

Organization XV

Neufeld, Eric
Nieuwenhuis, Robert
Papacchini, Fabio
Park, Sungwoo
Pelletier, Francis Jeffry
Peltier, Nicolas
Pelzer, Björn
Penczek, Wojciech
Perrussel, Laurent
Peñaloza, Rafael
Poggiolesi, Francesca
Popeea, Corneliu
Popescu, Andrei
Quaas, Karin
Ramanayake, Revantha
Reynolds, Andrew
Ringeissen, Christophe
Rubio, Albert
Schrammel, Peter
Seylan, Inanc
Simari, Gerardo
Spendier, Lara
Sternagel, Christian

Straccia, Umberto
Strassburger, Lutz
Szeider, Stefan
Tessaris, Sergio
Toman, David
Tsarkov, Dmitry
Ulbrich, Mattias
Vescovi, Michele
Walther, Dirk
Wand, Daniel
Wandelt, Sebastian
Wang, Kewen
Weller, Daniel
Wiedijk, Freek
Winkler, Sarah
Woltzenlogel Paleo, Bruno
Xu, Ke
Zankl, Harald
Zarrieß, Benjamin
Zhan, Naijun
Zhang, Heng
Zhang, Wenhui

Invited Talks
(Abstracts)

From Reachability to Temporal Specifications

in Cost-Sharing Games

Guy Avni1, Orna Kupferman1, and Tami Tamir2

1 School of Computer Science and Engineering, The Hebrew University, Jerusalem,
Israel

2 School of Computer Science, The Interdisciplinary Center, Herzliya, Israel

Abstract. Multi-agents cost-sharing games are commonly used for mod-
eling settings in which different entities share resources. For example,
the setting in which entities need to route messages in a network is mod-
eled by a network-formation game: the network is modeled by a graph,
and each agent has to select a path satisfying his reachability objective.
In practice, the objectives of the entities are often more involved than
reachability. The need to specify and reason about rich specifications
has been extensively studied in the context of verification and synthesis
of reactive systems. This paper suggests and analyzes a generalization
of cost-sharing games that captures such rich specifications. In particu-
lar, we study network-formation games with regular objectives. In these
games, the edges of the graph are labeled by alphabet letters and the
objective of each player is a regular language over the alphabet of la-
bels. Thus, beyond reachability, a player may restrict attention to paths
that satisfy certain properties, referring, for example, to the providers
of the traversed edges, the actions associated with them, their quality
of service, or security. Our results show that the transition to regular
objectives makes the game considerably less stable.

Electronic Voting: How Logic Can Help�

Véronique Cortier

LORIA - CNRS, France

Abstract. Electronic voting should offer at least the same guarantees
than traditional paper-based voting systems. In order to achieve this,
electronic voting protocols make use of cryptographic primitives, as in
the more traditional case of authentication or key exchange protocols. All
these protocols are notoriously difficult to design and flaws may be found
years after their first release. Formal models, such as process algebra,
Horn clauses, or constraint systems, have been successfully applied to au-
tomatically analyze traditional protocols and discover flaws. Electronic
voting protocols however significantly increase the difficulty of the analy-
sis task. Indeed, they involve for example new and sophisticated crypto-
graphic primitives, new dedicated security properties, and new execution
structures.

After an introduction to electronic voting, we describe the current
techniques for e-voting protocols analysis and review the key challenges
towards a fully automated verification.

� The research leading to these results has received funding from the European
Research Council under the European Union’s Seventh Framework Programme
(FP7/2007-2013)/ERC grant agreement no 258865, project ProSecure.

And-Or Tableaux for Fixpoint Logics

with Converse: LTL, CTL, PDL and CPDL

Rajeev Goré

Logic and Computation Group
Research School of Computer Science
The Australian National University

rajeev.gore@anu.edu.au

Abstract. Over the last forty years, computer scientists have invented
or borrowed numerous logics for reasoning about digital systems. Here,
I would like to concentrate on three of them: Linear Time Temporal
Logic (LTL), branching time Computation Tree temporal Logic (CTL),
and Propositional Dynamic Logic (PDL), with and without converse.
More specifically, I would like to present results and techniques on how
to solve the satisfiability problem in these logics, with global assump-
tions, using the tableau method. The issues that arise are the typical
tensions between computational complexity, practicality and scalability.
This is joint work with Linh Anh Nguyen, Pietro Abate, Linda Postniece,
Florian Widmann and Jimmy Thomson.

Structured Search and Learning

Kenneth L. McMillan

Microsoft Research

Abstract. Most modern Boolean satisfiability (SAT) solvers use conflict-
driven clause learning (CDCL). In this approach, search for a model and
search for a refutation by resolution are tightly coupled in a way that
helps to focus search on relevant decisions and resolution on relevant
deductions. Decision making narrows the search by applying arbitrary
constraints. When a contradiction is reached, a “learned” fact is deduced
in response. This fact generalizes the conflict and constrains future deci-
sions. The learned fact can also be viewed as a Craig interpolant. As we
will see this view allows us to generalize the notion of conflict learning
in useful ways.

Satisfiability Module Theories (SMT solvers) of the lazy type apply
the same paradigm to first-order decision problems with certain back-
ground theories, such as linear arithmetic or the theory of arrays. In
this case, the interpolants may be validities of the theory generated by
“theory solvers”, but the basic conflict-driven mechanism remains the
same.

A common shortcoming of these procedures, successful though they
are, is that model search and conflict learning are essentially unstruc-
tured. That is, they do not take into account any modular structure that
may be present in the decision problem. Decisions are made on variables
regardless of their structural relationship, and consequently learned facts
do not reflect the problem structure. This is in contrast to a saturation
approach, in which we might order resolution so as to exploit, say, narrow
tree width of the problem.

In this talk we will consider structured approaches to conflict learning.
These techniques have been developed in the context of model checking,
an area in which the need to exploit structure is acute. Structured learn-
ing can produce facts about reachable states of a system or summaries of
procedures, which in turn can be combined to form inductive invariants.
Examples of such techniques include IC3 [1] and Lazy Annotation [2].

These techniques have similar search strategies, differing primarily
in their approach to computing interpolants. The approaches make dif-
ferent trade-offs between cost and generality, which in turn determine
the usefulness of the resulting generalizations. We observe, for example,
that more specialized decisions can make the learning problem easier,
but possibly at the cost of reduced generality or relevance of the learned
facts. Moreover, a substantial effort in generalizing the interpolants can
be justified by the corresponding reduction in search.

Structured Search and Learning XXIII

The net effect of structured learning can be a dramatic improvement
in performance, as we observe by comparing with unstructured SMT
solvers on bounded software model checking problems.

References

1. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R., Schmidt,
D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidelberg (2011)

2. McMillan, K.L.: Lazy annotation for program testing and verification. In: Touili,
T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 104–118. Springer,
Heidelberg (2010)

Table of Contents

Invited Papers

From Reachability to Temporal Specifications in Cost-Sharing
Games . 1

Guy Avni, Orna Kupferman, and Tami Tamir

Electronic Voting: How Logic Can Help . 16
Véronique Cortier

And-Or Tableaux for Fixpoint Logics with Converse: LTL, CTL,
PDL and CPDL . 26

Rajeev Goré

HOL

Unified Classical Logic Completeness: A Coinductive Pearl 46
Jasmin Christian Blanchette, Andrei Popescu, and Dmitriy Traytel

A Focused Sequent Calculus for Higher-Order Logic 61
Fredrik Lindblad

SAT and QBF

SAT-Based Decision Procedure for Analytic Pure Sequent Calculi 76
Ori Lahav and Yoni Zohar

A Unified Proof System for QBF Preprocessing . 91
Marijn J.H. Heule, Martina Seidl, and Armin Biere

The Fractal Dimension of SAT Formulas . 107
Carlos Ansótegui, Maria Luisa Bonet, Jesús Giráldez-Cru, and
Jordi Levy

SMT

A Gentle Non-disjoint Combination of Satisfiability Procedures 122
Paula Chocron, Pascal Fontaine, and Christophe Ringeissen

Equational Reasoning

A Rewriting Strategy to Generate Prime Implicates in Equational
Logic . 137

Mnacho Echenim, Nicolas Peltier, and Sophie Tourret

XXVI Table of Contents

Finite Quantification in Hierarchic Theorem Proving 152
Peter Baumgartner, Joshua Bax, and Uwe Waldmann

Computing All Implied Equalities via SMT-Based Partition
Refinement . 168

Josh Berdine and Nikolaj Bjørner

Proving Termination of Programs Automatically with AProVE 184
Jürgen Giesl, Marc Brockschmidt, Fabian Emmes,
Florian Frohn, Carsten Fuhs, Carsten Otto, Martin Plücker,
Peter Schneider-Kamp, Thomas Ströder, Stephanie Swiderski, and
René Thiemann

Verification

Locality Transfer: From Constrained Axiomatizations to Reachability
Predicates . 192

Matthias Horbach and Viorica Sofronie-Stokkermans

Proving Termination and Memory Safety for Programs with Pointer
Arithmetic . 208

Thomas Ströder, Jürgen Giesl, Marc Brockschmidt, Florian Frohn,
Carsten Fuhs, Jera Hensel, and Peter Schneider-Kamp

QBF Encoding of Temporal Properties and QBF-Based Verification 224
Wenhui Zhang

Proof Theory

Introducing Quantified Cuts in Logic with Equality 240
Stefan Hetzl, Alexander Leitsch, Giselle Reis, Janos Tapolczai, and
Daniel Weller

Quati: An Automated Tool for Proving Permutation Lemmas 255
Vivek Nigam, Giselle Reis, and Leonardo Lima

A History-Based Theorem Prover for Intuitionistic Propositional Logic
Using Global Caching: IntHistGC System Description 262

Rajeev Goré, Jimmy Thomson, and Jesse Wu

MleanCoP: A Connection Prover for First-Order Modal Logic 269
Jens Otten

Modal and Temporal Reasoning

Optimal Tableaux-Based Decision Procedure for Testing Satisfiability
in the Alternating-Time Temporal Logic ATL+ . 277

Serenella Cerrito, Amélie David, and Valentin Goranko

Table of Contents XXVII

dTL2: Differential Temporal Dynamic Logic with Nested Temporalities
for Hybrid Systems . 292

Jean-Baptiste Jeannin and André Platzer

Axioms vs Hypersequent Rules with Context Restrictions: Theory and
Applications . 307

Björn Lellmann

Clausal Resolution for Modal Logics of Confluence 322
Cláudia Nalon, João Marcos, and Clare Dixon

Implementing Tableau Calculi Using BDDs: BDDTab System
Description . 337

Rajeev Goré, Kerry Olesen, and Jimmy Thomson

SMT and SAT

Approximations for Model Construction . 344
Aleksandar Zeljić, Christoph M. Wintersteiger, and Philipp Rümmer

A Tool That Incrementally Approximates Finite Satisfiability in Full
Interval Temporal Logic . 360

Rüdiger Ehlers and Martin Lange

StarExec: A Cross-Community Infrastructure for Logic Solving 367
Aaron Stump, Geoff Sutcliffe, and Cesare Tinelli

Skeptik: A Proof Compression System . 374
Joseph Boudou, Andreas Fellner, and Bruno Woltzenlogel Paleo

Modal Logic

Terminating Minimal Model Generation Procedures for Propositional
Modal Logics . 381

Fabio Papacchini and Renate A. Schmidt

Cool – A Generic Reasoner for Coalgebraic Hybrid Logics
(System Description) . 396

Daniel Goŕın, Dirk Pattinson, Lutz Schröder,
Florian Widmann, and Thorsten Wißmann

Complexity

The Complexity of Theorem Proving in Circumscription and Minimal
Entailment . 403

Olaf Beyersdorff and Leroy Chew

XXVIII Table of Contents

Visibly Linear Temporal Logic . 418
Laura Bozzelli and César Sánchez

Description Logics

Count and Forget: Uniform Interpolation of SHQ-Ontologies 434
Patrick Koopmann and Renate A. Schmidt

Coupling Tableau Algorithms for Expressive Description Logics with
Completion-Based Saturation Procedures . 449

Andreas Steigmiller, Birte Glimm, and Thorsten Liebig

EL-ifying Ontologies . 464
David Carral, Cristina Feier, Bernardo Cuenca Grau,
Pascal Hitzler, and Ian Horrocks

Knowledge Representation and Reasoning

The Bayesian Description Logic BEL . 480
İsmail İlkan Ceylan and Rafael Peñaloza

OTTER Proofs in Tarskian Geometry . 495
Michael Beeson and Larry Wos

NESCOND: An Implementation of Nested Sequent Calculi for
Conditional Logics . 511

Nicola Olivetti and Gian Luca Pozzato

Knowledge Engineering for Large Ontologies with Sigma KEE 3.0 519
Adam Pease and Stephan Schulz

Author Index . 527

From Reachability to Temporal Specifications
in Cost-Sharing Games

Guy Avni1, Orna Kupferman1, and Tami Tamir2

1 School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel
2 School of Computer Science, The Interdisciplinary Center, Herzliya, Israel

Abstract. Multi-agents cost-sharing games are commonly used for modeling
settings in which different entities share resources. For example, the setting in
which entities need to route messages in a network is modeled by a network-
formation game: the network is modeled by a graph, and each agent has to select
a path satisfying his reachability objective. In practice, the objectives of the en-
tities are often more involved than reachability. The need to specify and reason
about rich specifications has been extensively studied in the context of verification
and synthesis of reactive systems. This paper suggests and analyzes a generaliza-
tion of cost-sharing games that captures such rich specifications. In particular,
we study network-formation games with regular objectives. In these games, the
edges of the graph are labeled by alphabet letters and the objective of each player
is a regular language over the alphabet of labels. Thus, beyond reachability, a
player may restrict attention to paths that satisfy certain properties, referring, for
example, to the providers of the traversed edges, the actions associated with them,
their quality of service, or security. Our results show that the transition to regular
objectives makes the game considerably less stable.

1 Introduction

The classical definition of a computation in computer science uses to the model of a
Turing machine that recognizes a decidable language: once an input word is received,
the machine operates on it, and eventually terminates, accepting or rejecting the word.
Such a mode of operation corresponds to the use of computers for the solution of decid-
able problems, and there is no need to elaborate on the extensive research in theoretical
computer science about this model and issues like decidability and complexity. The
specification of a Turing machines is done by means of the language it recognizes.
Indeed, the specification of hardware and software systems that are input-output trans-
formers refers to the transformation they perform, for example “z = x·y” or “the vector
of strings is alphabetically sorted”.

The classical definition of a computation does not capture the mode of operation of
reactive systems [23]. Such systems maintain an on-going interaction with their envi-
ronment. Operating systems, ATMs, elevators, satellites – these are all reactive systems.
The computations of reactive systems need not terminate, and their specifications refer
to the on-going interaction of the system with its environment, for example “every re-
quest is eventually granted” or “two requests are never granted simultaneously”. Formal
methods for specification, verification, and design of reactive systems have been a very
active research area since the 80s.

S. Demri, D. Kapur, and C. Weidenbach (Eds.): IJCAR 2014, LNAI 8562, pp. 1–15, 2014.
c© Springer International Publishing Switzerland 2014

2 G. Avni, O. Kupferman, and T. Tamir

The classical definition of a computation is prevalent in many areas in computer
science, where users need to calculate a function or reach a certain desired goal. In par-
ticular, the classical setting in game theory is such that payoffs are being determined
and paid after some finitely (often one) many rounds [32]. In recent years, we see ex-
change of ideas between formal methods and game theory. In one direction, the setting
of a system interacting with its environment is naturally modeled by a game, where a
correct system corresponds to a winning strategy for the system [35]. Beyond the rel-
evancy of fundamental concepts from game theory, like partial observability [38] or
different types of strategies [33], this gives rise also to the adoption of ideas like stabil-
ity and anarchy in the context of reasoning about reactive systems. For example, [17]
studies synthesis in the presence of rational environments, [7,11] study non-zero-sum
games in formal methods. In the second direction, rich specification formalisms, espe-
cially quantitative ones, enables the extension of classical games to ones that consider
on-going behavior. For example, [9] studies Nash Equilibria in games with ω-regular
objectives, [3,10] introduce logics for specifying multi-agent systems, and [26] consid-
ers selfish on-going behaviors. Our work here belongs to this second direction, of lifting
ideas from formal methods to game theory, and we focus on games corresponding to
network design and formation.

Network design and formation is a fundamental well-studied problem that involves
many interesting combinatorial optimization problems. In practice, network design is
often conducted by multiple strategic users whose individual costs are affected by the
decisions made by others. Early works on network design focus on analyzing the effi-
ciency and fairness properties associated with different sharing rules (e.g., [24,31]). Fol-
lowing the emergence of the Internet, there has been an explosion of studies employing
game-theoretic analysis to explore Internet applications, such as routing in computer
networks and network formation [1,2,13,18]. In network-formation games (for a sur-
vey, see [40]), the network is modeled by a weighted graph. The weight of an edge
indicates the cost of activating the transition it models, which is independent of the
number of times the edge is used. Players have reachability objectives, each given by
sets of possible source and target nodes. Players share the cost of edges used in order
to fulfill their objectives. Since the costs are positive, the runs traversed by the players
are simple. Under the common Shapley cost-sharing mechanism, the cost of an edge is
shared evenly by the players that use it.

The players are selfish agents who attempt to minimize their own costs, rather than
to optimize some global objective. In network-design settings, this would mean that the
players selfishly select a path instead of being assigned one by a central authority. The
focus in game theory is on the stable outcomes of a given setting, or the equilibrium
points. A Nash equilibrium (NE) is a profile of the players’ strategies such that no
player can decrease his cost by an unilateral deviation from his current strategy, that is,
assuming that the strategies of the other players do not change.1

Reachability objectives enable the players to specify possible sources and targets.
Often, however, it is desirable to refer also to other properties of the selected paths.
For example, in a communication setting, edges may belong to different providers,

1 Throughout this paper, we focus on pure strategies and pure deviations, as is the case for the
vast literature on cost-sharing games.

From Reachability to Temporal Specifications in Cost-Sharing Games 3

and a user may like to specify requirements like “all edges are operated by the same
provider” or “no edge operated by AT&T is followed by an edge operated by Verizon”.
Edges may also have different quality or security levels (e.g., “noisy channel”, “high-
bandwidth channel”, or “encrypted channel”), and again, users may like to specify their
preferences with respect to these properties. In planning or in production systems, nodes
of the network correspond to configurations, and edges correspond to the application of
actions. The objectives of the players are sequences of actions that fulfill a certain plan,
which is often more involved than just reachability [14]; for example “once the arm is
up, do not put it down until the block is placed”.

We extend network-formation games to a setting in which the players can specify
regular objectives. This involves two changes of the underlying setting: First, the edges
in the network are labeled by letters from a designated alphabet. Second, the objective
of each player is specified by a language over this alphabet. Each player should se-
lect a path labeled by a word in his objective language. Thus, if we view the network
as a nondeterministic weighted finite automaton (WFA) A, then the set of strategies
for a player with objective L is the set of accepting runs of A on some word in L.
Accordingly, we refer to our extension as automaton-formation games. As in classical
network-formation games, players share the cost of edges they use. Unlike the classical
game, the runs selected by the players need not be simple, thus a player may traverse
some edges several times. Edge costs are shared by the players, with the share being
proportional to the number of times the edge is traversed. This latter issue is the main
technical difference between automaton-formation and network-formation games, and
as we shall see, it is very significant.

Many variants of cost-sharing games and congestion games have been studied. A
generalization of the network-formation game of [2] in which players are weighted
and a player’s share in an edge cost is proportional to its weight is considered in [12],
where it is shown that the weighted game does not necessarily have a pure NE. In
a different type of congestion games, players’ payments depend on the resource they
choose to use, the set of players using this resource, or both [19,27,28,30]. In some of
these variants a NE is guaranteed to exist while in others it is not. All these variants are
different from automaton-formation games, where a player needs to select a multiset of
resources (namely, the edges he is going to traverse) rather than a single one.

We study the theoretical and practical aspects of automaton-formation games. In
addition to the general game, we consider classes of instances that have to do with the
network, the specifications, or their combination. Recall that the network can be viewed
as a WFA A. We consider the following classes of WFAs: (1) all-accepting, in which
all the states of A are accepting, thus its language is prefix closed (2) uniform costs, in
which all edges have the same cost, and (3) single letter, in which A is over a single-
letter alphabet. We consider the following classes of specifications: (1) single word,
where the language of each player is a single word, (2) symmetric, where all players
have the same objective. We also consider classes of instances that are intersections of
the above classes.

Each of the restricted classes we consider corresponds to a real-life variant of the
general setting. Let us elaborate below on single-letter instances. The language of an
automaton over a single letter {a} induces a subset of IN, namely the numbers k ∈ IN

4 G. Avni, O. Kupferman, and T. Tamir

such that the automaton accepts ak. Accordingly, single-letter instances correspond to
settings in which a player specifies possible lengths of paths. Several communication
protocols are based on the fact that a message must pass a pre-defined length before
reaching its destination. This includes onion routing, where the message is encrypted
in layers [37], or proof-of-work protocols that are used to deter denial of service attacks
and other service abuses such as spam (e.g., [16]).

We provide a complete picture of the following questions for various classes of the
game (for formal definitions, see Section 2): (i) Existence of a pure Nash equilibrium.
That is, whether each instance of the game has a profile of pure strategies that constitutes
a NE. As we show, unlike the case of classical network design games, a pure NE might
not exist in general automaton-formation games and even in very restricted instances
of it. (ii) The complexity of finding the social optimum (SO). The SO is a profile that
minimizes the total cost of the edges used by all players; thus the one obtained when
the players obey some centralized authority. We show that for some restricted instances
finding the SO can be done efficiently, while for other restricted instances, the com-
plexity agrees with the NP-completeness of classical network-formation games. (iii)
An analysis of equilibrium inefficiency. It is well known that decentralized decision-
making may lead to solutions that are sub-optimal from the point of view of society
as a whole. We quantify the inefficiency incurred due to selfish behavior according
to the price of anarchy (PoA) [25,34] and price of stability (PoS) [2] measures. The
PoA is the worst-case inefficiency of a Nash equilibrium (that is, the ratio between the
worst NE and the SO). The PoS is the best-case inefficiency of a Nash equilibrium
(that is, the ratio between the best NE and the SO). We show that while the PoA in
automaton-formation games agrees with the one in classical network-formation games
and is equal to the number of players, the PoS also equals the number of players, again
already in very restricted instances. This is in contrast with classical network-formation
games, where the PoS tends to log the number of players. Thus, the fact that players
may choose to use edges several times significantly increases the challenge of finding a
stable solution as well as the inefficiency incurred due to selfish behavior. We find this
as the most technically challenging result of this work. We do manage to find structural
restrictions on the network with which the social optimum is a NE.

The technical challenge of our setting is demonstrated in the seemingly easy instance
in which all players have the same objective. Such symmetric instances are known to be
the simplest to handle in all cost-sharing and congestion games studied so far. Specifi-
cally, in network-formation games, the social optimum in symmetric instances is also a
NE and the PoS is 1. Moreover, in some games [21], computing a NE is PLS-complete
in general, but solvable in polynomial time for symmetric instances. Indeed, once all
players have the same objective, it is not conceivable that a player would want to deviate
from the social-optimum solution, where each of the k players pays 1

k of the cost of the
optimal solution. We show that, surprisingly, symmetric instances in AF-games are not
simple at all. First, we answer negatively a question we left open in [5] and show that
not only the social optimum might not be a NE, a symmetric instance need not have a
NE at all. Also, the PoS is at least k

k−1 , and for symmetric two-player AF games, we
have that PoS = PoA = 2. We also show that the PoA equals the number of players
already for very restricted instances.

From Reachability to Temporal Specifications in Cost-Sharing Games 5

The paper is based on our paper “Network-Formation Games with Regular Objec-
tives” [5]. Due to the lack of space, some proofs and examples are missing and can be
found in the full version.

2 Preliminaries

2.1 Automaton-Formation Games

A nondeterministic finite weighted automaton on finite words (WFA, for short) is a tuple
A = 〈Σ,Q,Δ, q0, F, c〉, where Σ is an alphabet, Q is a set of states, Δ ⊆ Q× Σ × Q
is a transition relation, q0 ∈ Q is an initial state, F ⊆ Q is a set of accepting states, and
c : Δ → IR is a function that maps each transition to the cost of its formation [29]. A
run of A on a word w = w1, . . . , wn ∈ Σ∗ is a sequence of states π = π0, π1, . . . , πn

such that π0 = q0 and for every 0 ≤ i < n we have Δ(πi, wi+1, π
i+1). The run π is

accepting iff πn ∈ F . The length of π is n, whereas its size, denoted |π|, is the number
of different transitions in it. Note that |π| ≤ n.

An automaton-formation game (AF game, for short) between k selfish players is a
pair 〈A, O〉, where A is a WFA over some alphabet Σ and O is a k-tuple of regular
languages over Σ. Thus, the objective of Player i is a regular language Li, and he needs
to choose a word wi ∈ Li and an accepting run of A on wi in a way that minimizes
his payments. The cost of each transition is shared by the players that use it in their
selected runs, where the share of a player in the cost of a transition e is proportional to
the number of times e is used by the player. Formally, The set of strategies for Player i
is Si = {π : π is an accepting run of A on some word in Li}. We assume that Si is not
empty. We refer to the set S = S1 × . . .× Sk as the set of profiles of the game.

Consider a profile P = 〈π1, π2, . . . , πk〉. We refer to πi as a sequence of transitions.
Let πi = e1i , . . . , e

�i
i , and let ηP : Δ → IN be a function that maps each transition in Δ

to the number of times it is traversed by all the strategies in P , taking into an account
several traversals in a single strategy. Denote by ηi(e) the number of times e is traversed
in πi, that is, ηi(e) = |{1 ≤ j ≤ �i : e

j
i = e}|. Then, ηP (e) =

∑
i=1...k ηi(e). The cost

of player i in the profile P is

costi(P) =
∑
e∈πi

ηi(e)

ηP (e)
c(e). (1)

For example, consider the WFA A depicted in Fig. 1. The label e1 : a, 1 on the
transition from q0 to q1 indicates that this transition, which we refer to as e1, traverses
the letter a and its cost is 1. We consider a game between two players. Player 1’s ob-
jective is the language is L1 = {abi : i ≥ 2} and Player 2’s language is {ab, ba}.
Thus, S1 = {{e1, e2, e2}, {e1, e2, e2, e2}, . . .} and S2 = {{e3, e4}, {e1, e2}}. Con-
sider the profile P = 〈{e1, e2, e2}, {e3, e4}〉, the strategies in P are disjoint, and
we have cost1(P) = 2 + 2 = 4, cost2(P) = 1 + 3 = 4. For the profile P ′ =
〈{e1, e2, e2}, {e1, e2}〉, it holds that η1(e1) = η2(e1) and η1(e2) = 2 · η2(e2). There-
fore, cost1(P ′) = 1

2 + 2 = 2 1
2 and cost2(P

′) = 1
2 + 1 = 1 1

2 .
We consider the following instances of AF games. Let G = 〈A, O〉. We start with

instances obtained by imposing restrictions on the WFA A. In one-letter instances,

6 G. Avni, O. Kupferman, and T. Tamir

q1q0q2q3
e1 : a, 1

e2 : b, 3
e3 : a, 2e4 : b, 2

Fig. 1. An example of a WFA

A is over a singleton alphabet, i.e., |Σ| = 1. When depicting such WFAs, we omit the
letters on the transitions. In all-accepting instances, all the states in A are accepting; i.e.,
F = Q. In uniform-costs instances, all the transitions in the WFA have the same cost,
which we normalize to 1. Formally, for every e ∈ Δ, we have c(e) = 1. We continue to
restrictions on the objectives in O. In single-word instances, each of the languages in O
consists of a single word. In symmetric instances, the languages in O coicide, thus the
players all have the same objective. We also consider combinations on the restrictions.
In particular, we say that 〈A, O〉 is weak if it is one-letter, all states are accepting, costs
are uniform, and objectives are single words. Weak instances are simple indeed – each
player only specifies a length of a path he should patrol, ending anywhere in the WFA,
where the cost of all transitions is the same. As we shall see, many of our hardness
results and lower bounds hold already for the class of weak instances.

2.2 Nash Equilibrium, Social Optimum, and Equilibrium Inefficiency

For a profile P , a strategy πi for Player i, and a strategy π, let P [πi ← π] denote the
profile obtained from P by replacing the strategy for Player i by π. A profile P ∈ S
is a pure Nash equilibrium (NE) if no player i can benefit from unilaterally deviating
from his run in P to another run; i.e., for every player i and every run π ∈ Si it holds
that cost i(P [πi ← π]) ≥ cost i(P). In our example, the profile P is not a NE, since
Player 2 can reduce his payments by deviating to profile P ′.

The (social) cost of a profile P , denoted cost(P), is the sum of costs of the players
in P . Thus, cost(P) =

∑
1≤i≤k costi(P). Equivalently, if we view P as a set of tran-

sitions, with e ∈ P iff there is π ∈ P for which e ∈ π, then cost(P) =
∑

e∈P c(e).
We denote by OPT the cost of an optimal solution; i.e., OPT = minP∈S cost(P).
It is well known that decentralized decision-making may lead to sub-optimal solutions
from the point of view of society as a whole. We quantify the inefficiency incurred
due to self-interested behavior according to the price of anarchy (PoA) [25,34] and
price of stability (PoS) [2] measures. The PoA is the worst-case inefficiency of a Nash
equilibrium, while the PoS measures the best-case inefficiency of a Nash equilibrium.
Formally,

Definition 1. Let G be a family of games, and let G ∈ G be a game in G. Let Υ (G) be
the set of Nash equilibria of the game G. Assume that Υ (G)
= ∅.

– The price of anarchy of G is the ratio between the maximal cost of a NE and the
social optimum of G. That is, PoA(G) = maxP∈Υ (G) cost(P)/OPT (G). The
price of anarchy of the family of games G is PoA(G) = supG∈GPoA(G).

– The price of stability of G is the ratio between the minimal cost of a NE and the so-
cial optimum of G. That is, PoS(G) = minP∈Υ (G) cost(P)/OPT (G). The price
of stability of the family of games G is PoS(G) = supG∈GPoS(G).

From Reachability to Temporal Specifications in Cost-Sharing Games 7

Uniform Sharing Rule: A different cost-sharing rule that could be adopted for
automaton-formation games is the uniform sharing rule, according to which the cost
of a transition e is equally shared by the players that traverse e, independent of the
number of times e is traversed by each player. Formally, let κP (e) be the number of
runs that use the transition e at least once in a profile P . Then, the cost of including a
transition e at least once in a run is c(e)/κP (e). This sharing rule induces a potential
game, where the potential function is identical to the one used in the analysis of the clas-
sical network design game [2]. Specifically, let Φ(P) =

∑
e∈E c(e) ·H(κP (e)), where

H0 = 0, and Hk = 1 + 1/2 + . . . + 1/k. Then, Φ(P) is a potential function whose
value reduces with every improving step of a player, thus a pure NE exists and BRD is
guaranteed to converge2. The similarity with classical network-formation games makes
the study of this setting straightforward. Thus, throughout this paper we only consider
the proportional sharing rule as defined in (1) above.

3 Properties of Automaton-Formation Games

In this section we study the theoretical properties of AF games: existence of NE and
equilibrium inefficiency. We show that AF games need not have a pure Nash equilib-
rium. This holds already in the very restricted class of weak instances, and is in contrast
with network-formation games. There, BRD converges and a pure NE always exists. We
then analyze the PoS in AF games and show that there too, the situation is significantly
less stable than in network-formation games.

Theorem 1. Automaton-formation games need not have a pure NE. This holds already
for the class of weak instances.

Proof. Consider the WFA A depicted in Fig. 2 and consider a game with k = 2 players.
The language of each player consists of a single word. Recall that in one-letter instances
we care only about the lengths of the objective words. Let these be �1 and �2, with
�1 � �2 � 0 that are multiples of 12. For example, �1 = 30000, �2 = 300. Let C3

and C4 denote the cycles of length 3 and 4 in A, respectively. Let D3 denote the path
of length 3 from q0 to q1. Every run of A consists of some repetitions of these cycles
possibly with one pass on D3.

We claim that no pure NE exists in this instance. Since we consider long runs, the
fact that the last cycle might be partial is ignored in the calculations below. We first
show that the only candidate runs for Player 1 that might be part of a NE profile are

π1 = (C4)
�1
4 and π′1 = D3 · (C3)

�1
3 −1. If Player 1 uses both C3 and C4 multiple times,

then, given that �1 � �2, he must almost fully pay for at least one of these cycles, thus,
deviating to the run that repeats this fully-paid cycle is beneficial.

When Player 1 plays π1, Player 2’s best response is π2 = (C4)
�2
4 . In the profile

〈π1, π2〉, Player 1 pays almost all the cost of C4, so the players’ costs are (4 − ε, ε).
This is not a NE. Indeed, since �2 � 0, then by deviating to π′1, the share of Player 1

2 Best-response-dynamics (BRD) is a local-search method where in each step some player is
chosen and plays his best-response strategy, given that the strategies of the other players do
not change.

8 G. Avni, O. Kupferman, and T. Tamir

q0 q1

Fig. 2. A weak instance of AF games with no NE

in D3 reduces to almost 0, and the players’ costs in 〈π′1, π2〉, are (3 + ε, 4 − ε). This

profile is not a NE as Player 2’s best response is π′2 = D3 · (C3)
�2
3 −1. Indeed, in the

profile 〈π′1, π′2〉, the players’ costs are (4.5 − ε, 1.5 + ε) as they share the cost of D3

and Player 1 pays almost all the cost of C3. This is not a NE either, as Player 1 would
deviate to the profile 〈π1, π

′
2〉, in which the players’ costs are (4−ε, 3+ε). The latter is

still not a NE, as Player 2 would head back to 〈π1, π2〉. We conclude that no NE exists
in this game. �

The fact that a pure NE may not exist is a significant difference between standard cost-
sharing games and AF games. The bad news do not end here and extend to equilibrium
inefficiency. We first note that the cost of any NE is at most k times the social optimum
(as otherwise, some player pays more than the cost of the SO and can benefit from
migrating to his strategy in the SO). Thus, it holds that PoS ≤ PoA ≤ k. The following
theorem shows that this is tight already for highly restricted instances.

Theorem 2. The PoS in AF games equals the number of players. This holds already for
the class of weak instances.

Proof. We show that for every k, δ > 0 there exists a simple game with k players
for which the PoS is more than k − δ. Given k and δ, let r be an integer such that
r > max{k, k−1

δ −1}. Consider the WFA A depicted in Fig. 3. Let L = 〈�1, �2, . . . , �k〉
for �2 = . . . = �k and �1 � �2 � r denote the lengths of the objective words. Thus,
Player 1 has an ‘extra-long word’ and the other k − 1 players have words of the same,
long, length. Let Cr and Cr+1 denote, respectively, the cycles of length r and r + 1 to
the right of q0. Let Dr denote the path of length r from q0 to q1, and let Dkr denote the
‘lasso’ consisting of the kr-path and the single-edge loop to the left of q0.

q0 q1

. . .
(r + 1)-edge cycle

. . .
r-edge cycle. . .

k · r edges

Fig. 3. A weak instance of AF games for which PoS = k

The social optimum of this game is to buy Cr+1. Its cost is r + 1. However, as we
show, the profile P in which all players use Dkr is the only NE in this game. We first
show that P is a NE. In this profile, Player 1 pays r + 1− ε and each other player pays
r + ε/(k − 1). No player will deviate to a run that includes edges from the right side
of A. Next, we show that P is the only NE of this game: Every run on the right side
of A consists of some repetitions of Cr+1 and Cr, possibly with one traversal of Dr.

From Reachability to Temporal Specifications in Cost-Sharing Games 9

Since we consider long runs, the fact that the last cycle might be partial is ignored in
the calculations below.

In the social optimum profile, Player 1 pays r + 1− ε and each of the other players
pays ε/(k − 1). The social optimum is not a NE as Player 1 would deviate to Dr · C∗r
and will reduce his cost to r+ε′. The other players, in turn, will also deviate to Dr ·C∗r .
In the profile in which they are all selecting a run of the form Dr · C∗r , Player 1 pays
r + r/k − ε > r + 1 and prefers to return to C∗r+1. The other players will join him
sequentially, until the non-stable social optimum is reached. Thus, no NE that uses the
right part of A exists. Finally, it is easy to see that no run that involves edges from both
the left and right sides of A or includes both Cr+1 and Cr can be part of a NE.

The cost of the NE profile is kr+1 and the PoS is therefore kr+1
r+1 = k− k−1

r+1 > k−δ.
�

4 Computational Complexity Issues in AF Games

In this section we study the computational complexity of two problems: finding the
cost of the social optimum and finding the best-response of a player. Recall that the
social optimum (SO) is a profile that minimizes the total cost the players pay. It is well-
known that finding the social optimum in a network-formation game is NP-complete.
We show that this hardness is carried over to simple instances of AF games. On the
positive side, we identify non-trivial classes of instances, for which it is possible to
compute the SO efficiently. The other issue we consider is the complexity of finding the
best strategy of a single player, given the current profile, namely, the best-response of a
player. In network-formation games, computing the best-response reduces to a shortest-
path problem, which can be solved efficiently. We show that in AF games, the problem
is NP-complete.

The proofs of the following theorems can be found in the full version. The reductions
we use are from the set-cover problem, where choice of sets are related to choice of
transitions.

Theorem 3. Finding the value of the social optimum in AF games is NP-complete.
Moreover, finding the social optimum is NP-complete already in single-worded in-
stances that are also uniform-cost and are either single-lettered or all-accepting.

The hardness results in Theorem 3 for single-word specification use one of two prop-
erties: either there is more than one letter, or not all states are accepting. We show that
finding the SO in instances that have both properties can be done efficiently, even for
specifications with arbitrary number of words.

For a language Li over Σ = {a}, let short(i) = minj{aj ∈ Li} denote the length
of the shortest word in Li. For a set O of languages over Σ = {a}, let �max(O) =
maxi short(i) denote the length of the longest shortest word in O. Clearly, any solution,
in particular the social optimum, must include a run of length �max(O). Thus the cost of
the social optimum is at least the cost of the cheapest run of length �max(O). Moreover,
since the WFA is single-letter and all-accepting, the other players can choose runs that
are prefixes of this cheapest run, and no additional transitions should be acquired. We
show that finding the cheapest such run can be done efficiently.

10 G. Avni, O. Kupferman, and T. Tamir

Theorem 4. The cost of the social optimum in a single-letter all-accepting instance
〈A, O〉 is the cost of the cheapest run of length �max(O). Moreover, this cost can be
found in polynomial time.

We turn to prove the hardness of finding the best-response of a player. Our proof is
valid already for a single player that needs to select a strategy on a WFA that is not used
by other players (one-player game).

Theorem 5. Finding the best-response of a player in AF games is NP-complete.

5 Tractable Instances of AF Games

In the example in Theorem 1, Player 1 deviates from a run on the shortest (and cheapest)
possible path to a run that uses a longer path. By doing so, most of the cost of the
original path, which is a prefix of the new path and accounts to most of its cost, goes
to Player 2. We consider semi-weak games in which the WFA is uniform-cost, all-
accepting, and single-letter, but the objectives need not be a single word. We identify a
property of such games that prevents this type of deviation and which guarantees that
the social optimum is a NE. Thus, we identify a family of AF games in which a NE
exists, finding the SO is easy, and the PoS is 1.

Definition 2. Consider a semi-weak game 〈A, O〉. A lasso is a path u · v, where u is a
simple path that starts from the initial state and v is a simple cycle. A lasso ν is minimal
in A if A does not have shorter lassos. Note that for minimal lassos u · v, we have that
u ∩ v = ∅. We say that A is resistant if it has no cycles or there is a minimal lasso
ν = u · v such that for every other lasso ν′ we have |u \ ν′|+ |v| ≤ |ν′ \ ν|.

Consider a resistant weak game 〈A, O〉. In order to prove that the social optimum is
a NE, we proceed as follows. Let ν be the lasso that is the witness for the resistance
of A. We show that the profile S∗ in which all players choose runs that use only the
lasso ν or a prefix of it, is a NE. The proof is technical and we go over all the possible
types of deviations for a player and use the weak properties of the network along with
its resistance. By Theorem 4, the cost of the profile is the SO. Hence the following. The
full proof can be found in full version.

Theorem 6. For resistent semi-weak games, the social optimum is a NE.

A corollary of Theorem 6 is the following:

Corollary 1. For resistant semi-weak games, we have PoS= 1.

We note that resistance can be defined also in WFAs with non-uniform costs, with
cost(ν) replacing |ν|. Resistance, however, is not sufficient in the slightly stronger
model where the WFA is single-letter and all-accepting but not uniform-cost. Indeed,
given k, we show a such a game in which the PoS is kx, for a parameter x that can be
arbitrarily close to 1. Consider the WFA A in Fig. 5. Note that A has a single lasso and
is thus a resistant WFA. The parameter �1 is a function of x, and the players’ objec-
tives are single words of lengths �1 � �2 � . . . � �k � 0. Similar to the proof of

From Reachability to Temporal Specifications in Cost-Sharing Games 11

Theorem 2, there is only one NE in the game, which is when all players choose the left
chain. The social optimum is attained when all players use the self-loop, and thus for
a game in this family, PoS = k·x

1 . Since x tends to 1, we have PoS = k for resistant
all-accepting single-letter games. The proof can be found in the full version.

q0 q1 . . . q�1−2 q�1−1q′
1

q′
2

. . .q′
�1−1

q′
�1

1

x 0 0 0k · x0000

Fig. 4. A resistant all-accepting single-letter game in which the PoS tend to k

6 Surprises in Symmetric Instances

In this section we consider the class of symmetric instances, where all players share
the same objective, that is, there exists a language L, such that for all 1 ≤ i ≤ k, we
have Li = L. In such instances it is tempting to believe that the social optimum is also
a NE, as all players evenly share the cost of the solution that optimizes their common
objective. While this is indeed the case in all known symmetric games, we show that,
surprisingly, this is not valid for AF-games, in fact already for the class of one-letter, all
accepting, unit-cost and single-word instances.

We start, however, with general symmetric instances, and show that a NE need not
exist.

Theorem 7. Symmetric instances of AF-games need not have a pure NE.

Proof. Consider a WFA A consisting of a single accepting state with two self loops,
labeled (a, 1) and (b, 5

14 − ε). Let �1 and �2 be such that 0 � �2 � �1. We define
L = a6 + ab�1 + aab�2 + aaab. We denote the 4 strategies available to each of the
players by A,B,C, and D, with A = (6, 0) indicating 6 uses of the a transition and 0
uses of the b transition, B = (1, �1), C = (2, �2), and D = (3, 1).

In order to show that there is no NE, we only have to show that the four profiles in
which the players follow the same strategy are not a NE. Indeed, it is easy to see that
for every other profile, one of the players would deviate to one of these profiles. Now,
in profile 〈A,A〉 both players pay 1

2 as they split the cost of the a-transition evenly. This
is not a NE as Player 1 (or, symmetrically, Player 2) would deviate to 〈B,A〉, where he
pays 1

7 for the a-transition and the full price of the b-transition, which is 5
14 − ε, thus he

pays 1
2 − ε.

In profile 〈B,B〉, both players pay 1
2 for the a-transition plus 5

2·14 − ε for the b-
transition, which sums to 0.678 − ε. This is not a NE, as Player 1 would deviate to
〈C,B〉, where he pays 2

3 for the a-transition and, as �2 � �1, only ε for the b-transition.
In profile 〈C,C〉, again both players pay 0.678− ε. By deviating to 〈D,C〉, Player

1 reduces his payment to 3
5 + ε. Finally, in profile 〈D,D〉, both players pay 0.678 − ε

and when deviating to 〈A,D〉, Player 1 reduces his payment to 6
9 .

We continue to study the PoS. Before we show that the PoS can be larger than 1, let us
elaborate on the PoA. It is easy to see that in symmetric AF games, we have PoA = k.

12 G. Avni, O. Kupferman, and T. Tamir

This bound is achieved, as in the classic network-formation game, by a network with
two parallel edges labeled by a and having costs k and 1. The players all have the same
specification L = {a}. The profile in which all players select the expensive path is a
NE. We show that PoA = k is achieved even for weak symmetric instances.

Theorem 8. The PoA equals the number of players, already for weak symmetric in-
stances.

Proof. We show a lower bound of k. The example is a generalization of the PoA in cost
sharing games [2]. For k players, consider the weak instance depicted in Fig. 6, where
all players have the length k. Intuitively, the social optimum is attained when all players
use the loop 〈q0, q0〉 and thus OPT = 1. The worst NE is when all players use the run
q0q1 . . . qk, and its cost is clearly k. Formally, there are two NEs in the game:

– The cheap NE is when all players use the loop 〈q0, q0〉. This is indeed a NE because
if a player deviates, he must buy at least the transition 〈q0, q1〉. Thus, he pays at least
1, which is higher than 1

k , which is what he pays when all players use the loop.
– The expensive NE is when all players use the run q0, q1, . . . , qk. This is a NE be-

cause a player has two options to deviate. Either to the run that uses only the loop,
which costs 1, or to a run that uses the loop and some prefix of q0, q1, . . . , qk, which
costs at least 1 + 1

k . Since he currently pays 1, he has no intention of deviating to
either runs.

Since the cheap NE costs 1 and the expensive one costs k, we get PoA = k. �

q0 q1 q2 · · · qk

Fig. 5. The WFA A for which a symmetric game with |L| = 1 achieves PoA = k

We now turn to the PoS analysis. We first demonstrate the anomaly of having
PoS > 1 with the two-player game appearing in Fig. 6. All the states in the WFA
A are accepting, and the objectives of both players is a single long word. The social
optimum is when both players traverse the loop q0, q1, q0. Its cost is 2 + ε, so each
player pays 1 + ε

2 . This, however, is not a NE, as Player 1 (or, symmetrically, Player 2)
prefers to deviate to the run q0, q1, q1, q1, . . ., where he pays the cost of the loop q1, q1
and his share in the transition from q0 to q1. We can choose the length of the objective
word and ε so that this share is smaller than ε

2 , justifying his deviation. Note that the
new situation is not a NE either, as Player 2, who now pays 2, is going to join Player 1,
resulting in an unfortunate NE in which both players pay 1.5.

It is not hard to extend the example from Fig. 6 to k > 2 players by changing
the 2-valued transition to k, and adjusting ε and the lengths of the players accordingly.
The social optimum and the only NE are as in the two-player example. Thus, the PoS
in the resulting game is 1 + 1

k .
A higher lower bound of 1+ 1

k−1 is shown in the following theorem. Although both
bounds tend to 1 as k grows to infinity, this bound is clearly stronger. Also, for k = 2,
the bound PoS = 1+ 1

k−1 = 2 is tight. We conjecture that k
k−1 is tight for every k > 2.

From Reachability to Temporal Specifications in Cost-Sharing Games 13

q0 q1

2

ε

1

Fig. 6. The WFA A for which the SO in a symmetric game is not a NE

Theorem 9. In a symmetric k-player game, the PoS is at least k
k−1 .

Proof. For k ≥ 2, we describe a family of symmetric games for which the PoS tends
to k

k−1 . For n ≥ 1, the game Gε,n uses the WFA that is depicted in Figure 7. Note
that this is a one-letter instance in which all states are accepting. The players have an
identical specification, consisting of a single word w of length � � 0. We choose �
and ε = ε0 > . . . > εn−1 as follows. Let C0, . . . , Cn denote, respectively, the cycles
with costs (kn + ε0), (k

n−1 + ε1), . . . , (k + εn−1), 1. Let r0, . . . , rn be lasso-runs on
w that end in C0, . . . , Cn, respectively. Consider 0 ≤ i ≤ n − 1 and let Pi be the
profile in which all players choose the run ri. We choose � and εi so that Player 1
benefits from deviating from Pi to the run ri+1, thus Pi is not a NE. Note that by
deviating from ri to ri+1, Player 1 pays the same amount for the path leading to Ci.
However, his share of the loop Ci decreases drastically as he uses the kn−i-valued
transition only once whereas the other players use it close to � times. On the other hand,
he now buys the loop Ci+1 by himself. Thus, the change in his payment change is
1
k · (kn−i + εi)− (ε′ + kn−(i+1) + εi+1). We choose εi+1 and � so that εi

k > ε′ + εi+1,
thus the deviation is beneficial.

kn

ε0

kn−1

ε1

. . .

kn−2

ε2

k2

εn−2

k

εn−1

1

Fig. 7. The network of the identical-specification game Gε,n, in which PoS tends to k
k−1

We claim that the only NE is when all players use the run rn. Indeed, it is not hard to
see that every profile in which a player selects a run that is not from r0, . . . , rn cannot
be a NE. Also, a profile in which two players select runs ri and rj , for 1 ≤ i < j ≤ n,
cannot be a NE as the player using ri can decreases his payment by joining the other
player in rj . Finally, by our selection of ε1, . . . , εn, and �, every profile in which all the
players choose the run ri, for 0 ≤ i ≤ n− 1, is not a NE.

Clearly, the social optimum is attained when all players choose the run r0, and its
cost is kn + ε. Since the cost of the only NE in the game is

∑
0≤i≤n kn−i, the PoS in

this family of games tends to k
k−1 as n grows to infinity and ε to 0. �

Finally, we note that our hardness result in Theorem 5 implies that finding the social
optimum in a symmetric AF-game is NP-complete. Indeed, since the social optimum
is the cheapest run on some word in L, finding the best-response in a one-player game

14 G. Avni, O. Kupferman, and T. Tamir

is equivalent to finding the social optimum in a symmetric game. This is contrast with
other cost-sharing and congestion game (e.g. [21], where the social optimum in sym-
metric games can be computed using a reduction to max-flow).

References

1. Albers, S., Elits, S., Even-Dar, E., Mansour, Y., Roditty, L.: On Nash Equilibria for a Network
Creation Game. In: Proc. 17th SODA, pp. 89–98 (2006)

2. Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, É., Wexler, T., Roughgarden, T.: The
Price of Stability for Network Design with Fair Cost Allocation. SIAM J. Comput. 38(4),
1602–1623 (2008)

3. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Journal of the
ACM 49(5), 672–713 (2002)

4. Aminof, B., Kupferman, O., Lampert, R.: Reasoning about online algorithms with weighted
automata. ACM Transactions on Algorithms 6(2) (2010)

5. Avni, G., Kupferman, O., Tamir, T.: Network-formation games with regular objectives. In:
Muscholl, A. (ed.) FOSSACS 2014 (ETAPS). LNCS, vol. 8412, pp. 119–133. Springer, Hei-
delberg (2014)

6. Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Distributed Computing 2, 117–
126 (1987)

7. Brihaye, T., Bruyère, V., De Pril, J., Gimbert, H.: On subgame perfection in quantitative
reachability games. Logical Methods in Computer Science 9(1) (2012)

8. Chatterjee, K.: Nash equilibrium for upward-closed objectives. In: Ésik, Z. (ed.) CSL 2006.
LNCS, vol. 4207, pp. 271–286. Springer, Heidelberg (2006)

9. Chatterjee, K., Henzinger, T.A., Jurdzinski, M.: Games with secure equilibria. Theoretical
Computer Science 365(1-2), 67–82 (2006)

10. Chatterjee, K., Henzinger, T.A., Piterman, N.: Strategy logic. In: Caires, L., Vasconcelos,
V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 59–73. Springer, Heidelberg (2007)

11. Chatterjee, K., Majumdar, R., Jurdziński, M.: On Nash equilibria in stochastic games. In:
Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 26–40. Springer, Hei-
delberg (2004)

12. Chen, H., Roughgarden, T.: Network Design with Weighted Players. Theory of Computing
Systems 45(2), 302–324 (2009)

13. Correa, J.R., Schulz, A.S., Stier-Moses, N.E.: Selfish Routing in Capacitated Networks.
Mathematics of Operations Research 29, 961–976 (2004)

14. Daniele, M., Giunchiglia, F., Vardi, M.Y.: Improved automata generation for linear temporal
logic. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 249–260.
Springer, Heidelberg (1999)

15. Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata. Springer (2009)
16. Dwork, C., Naor, M.: Pricing via Processing or Combatting Junk Mail. In: Brickell, E.F. (ed.)

CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg (1993)
17. Fisman, D., Kupferman, O., Lustig, Y.: Rational synthesis. In: Esparza, J., Majumdar, R.

(eds.) TACAS 2010. LNCS, vol. 6015, pp. 190–204. Springer, Heidelberg (2010)
18. Fabrikant, A., Luthra, A., Maneva, E., Papadimitriou, C., Shenker, S.: On a network creation

game. In: Proc. 22nd PODC, pp. 347–351 (2003)
19. Feldman, M., Tamir, T.: Conflicting Congestion Effects in Resource Allocation Games. Jour-

nal of Operations Research 60(3), 529–540 (2012)
20. von Falkenhausen, P., Harks, T.: Optimal Cost Sharing Protocols for Scheduling Games. In:

Proc. 12th EC, pp. 285–294 (2011)

From Reachability to Temporal Specifications in Cost-Sharing Games 15

21. Fabrikant, A., Papadimitriou, C., Talwar, K.: The Complexity of Pure Nash Equilibria. In:
Proc. 36th STOC, pp. 604–612 (2004)

22. de Giacomo, G., Vardi, M.Y.: Automata-Theoretic Approach to Planning for Temporally
Extended Goals. In: Biundo, S., Fox, M. (eds.) ECP 1999. LNCS, vol. 1809, pp. 226–238.
Springer, Heidelberg (2000)

23. Harel, D., Pnueli, A.: On the development of reactive systems. In: LMCS. NATO Advanced
Summer Institutes, vol. F-13, pp. 477–498. Springer (1985)

24. Herzog, S., Shenker, S., Estrin, D.: Sharing the “Cost” of Multicast Trees: An Axiomatic
Analysis. IEEE/ACM Transactions on Networking (1997)

25. Koutsoupias, E., Papadimitriou, C.: Worst-case Equilibria. Computer Science Review 3(2),
65–69 (2009)

26. Kupferman, O., Tamir, T.: Coping with selfish on-going behaviors. Information and Compu-
tation 210, 1–12 (2012)

27. Mavronicolas, M., Milchtaich, I., Monien, B., Tiemann, K.: Congestion Games with Player-
specific Constants. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp.
633–644. Springer, Heidelberg (2007)

28. Milchtaich, I.: Weighted Congestion Games With Separable Preferences. Games and Eco-
nomic Behavior 67, 750–757 (2009)

29. Mohri, M.: Finite-state transducers in language and speech processing. Computational Lin-
guistics 23(2), 269–311 (1997)

30. Monderer, D., Shapley, L.: Potential Games. Games and Economic Behavior 14, 124–143
(1996)

31. Moulin, H., Shenker, S.: Strategyproof Sharing of Submodular Costs: Budget Balance Versus
Efficiency. Journal of Economic Theory 18, 511–533 (2001)

32. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory. Cam-
bridge University Press (2007)

33. Nerode, A., Yakhnis, A., Yakhnis, V.: Concurrent programs as strategies in games. In: Proc.
Logic from Computer Science, pp. 405–480 (1992)

34. Papadimitriou, C.: Algorithms, games, and the internet (Extended abstract). In: Orejas, F.,
Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 1–3. Springer,
Heidelberg (2001)

35. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Automata, Languages and
Programming, vol. 372, pp. 652–671. Springer, Heidelberg (1989)

36. Paes Leme, R., Syrgkanis, V., Tardos, E.: The curse of simultaneity. In: Innovations in The-
oretical Computer Science (ITCS), pp. 60–67 (2012)

37. Reed, M.G., Syverson, P.F., Goldschlag, D.M.: Anonymous Connections and Onion Routing.
IEEE J. on SAC, Issue on Copyright and Privacy Protection (1998)

38. Reif, J.H.: The complexity of two-player games of incomplete information. Journal of Com-
puter and Systems Science 29, 274–301 (1984)

39. Rosenthal, R.W.: A Class of Games Possessing Pure-Strategy Nash Equilibria. International
Journal of Game Theory 2, 65–67 (1973)

40. Tardos, E., Wexler, T.: Network Formation Games and the Potential Function Method. In:
Algorithmic Game Theory. Cambridge University Press (2007)

41. Vöcking, B.: In: Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V. (eds.) Algorithmic
Game Theory: Selfish Load Balancing, ch. 20. Cambridge University Press (2007)

Electronic Voting: How Logic Can Help�

Véronique Cortier

LORIA - CNRS, France

Abstract. Electronic voting should offer at least the same guarantees than tra-
ditional paper-based voting systems. In order to achieve this, electronic voting
protocols make use of cryptographic primitives, as in the more traditional case
of authentication or key exchange protocols. All these protocols are notoriously
difficult to design and flaws may be found years after their first release. For-
mal models, such as process algebra, Horn clauses, or constraint systems, have
been successfully applied to automatically analyze traditional protocols and dis-
cover flaws. Electronic voting protocols however significantly increase the diffi-
culty of the analysis task. Indeed, they involve for example new and sophisticated
cryptographic primitives, new dedicated security properties, and new execution
structures.

After an introduction to electronic voting, we describe the current techniques
for e-voting protocols analysis and review the key challenges towards a fully
automated verification.

1 Context

Electronic voting promises a convenient and efficient way for collecting and tallying
votes, avoiding human counting errors. Several countries now use electronic voting for
politically binding elections. This is for example the case of Argentina, United States,
Norway, Canada, or France. However electronic voting also causes controversy. Indeed
these systems have been shown to be vulnerable to attacks. For example, the Diebold
machines as well as the electronic machines used in India have been attacked [44,58].
Consequently, some countries like Germany, Netherlands, or the United Kingdom have
stopped electronic voting, at least momentarily [47].

Electronic voting covers two distinct families of voting systems: voting machines and
Internet voting. Voting machines are computers placed at polling stations. They provide
an interface for the voters to cast their vote and they process the ballots. Internet voting
do not need physical polling stations: voters may simply vote using their own device
(computers, smartphones, etc.) from home. In this paper we focus on Internet voting.

Internet voting raises several security challenges. Firstly, since votes need to be sent
through the Internet, they obviously cannot be sent in clear. A simple solution would
therefore to have all the voters encrypt their votes with the key of the voting server. At
the end of the election, the server can then simply decrypt all the votes and announce the
result. This is however not at all satisfactory since voters have no privacy with respect

� The research leading to these results has received funding from the European Research Council
under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant
agreement no 258865, project ProSecure.

S. Demri, D. Kapur, and C. Weidenbach (Eds.): IJCAR 2014, LNAI 8562, pp. 16–25, 2014.
c© Springer International Publishing Switzerland 2014

Electronic Voting: How Logic Can Help 17

to the voting authority who could easily learn the vote of everyone. Moreover, such a
solution offers no transparency: voters have no way to check that the announced out-
come corresponds to the votes casted by voters. Therefore, two main security properties
are put forward in the context of Internet voting: confidentiality and verifiability.

– Confidentiality or vote privacy ensures that no one can learn someone else’ vote.
Stronger than vote privacy is receipt-freeness: a voter should not be able to prove
how she voted, even if she is willing to. In particular, she should not be given a re-
ceipt that can prove to a third-party for who she voted. This is to prevent vote buying
for example. Even stronger than receipt-freeness is coercion resistance: even if a
voter is temporarily under the control of a coercer, she should be able to cast the
vote of her choice. This is typically achieved by letting voters re-vote (without the
coercer being able to notice it).

– Verifiability ensures that anyone can check that the final result corresponds to the
votes. In the literature, verifiability is typically split into sub-properties: individual
verifiability states that a voter can check that her ballot appears on the bulletin
board while universal verifiability states that the announced result corresponds to
the ballots on the bulletin board. An additional property is eligible verifiability:
only legitimate voters can vote, at most once. Of course, all these three properties
are highly desirable.

A voting system should ensure all these properties despite the presence of attackers who
may intercept communications and control some of the voters. Ideally, these properties
should also hold when some voting authorities are corrupted too since it is desirable
that voters can trust the result without having to trust all the authorities.

There is therefore a need for rigorous foundations for formalizing and reasoning
about security of voting systems. In a slightly different context, formal methods have
shown their usefulness in the analysis of security protocols. This line of research has
started in the late 70’s with the seminal work of Dolev and Yao [42] and Even and
Goldreich [43]. Since then, many decision procedures have been developed to auto-
matically analyse security properties such as authentication or confidentiality. Current
leading tools include e.g. ProVerif [20,21], Avispa [11], and Scyther [36]. They have
been successfully applied to protocols of the literature as well as well-deployed proto-
cols such as SSL and Kerberos, yielding the discoveries of flaws. A famous flaw is the
“man-in-the-middle” attack found by Lowe [51] on the Needham-Schroeder asymmet-
ric key protocol. More recently, an automated analysis [23] proved most of the secure
tokens implementing the PKCS#11 standard to be broken. Similarly, a flaw was dis-
covered using the Avispa tool on the Single-Sign-On protocol [12], used by many sites
including Google.

Despite the similarities between standard security protocols and voting protocols,
the current analysis techniques for standard protocols do not apply very well to voting
systems. This is due to two main reasons. First, the cryptographic primitives used in
e-voting are often ad-hoc and more complex than standard encryption and signatures.
Second, privacy properties such as vote privacy or coercion-resistance are typically ex-
pressed as equivalence properties while the techniques developed so far mostly apply
to reachability properties. We survey here the particularities of Internet voting and de-
scribe the current limitations of existing techniques.

18 V. Cortier

2 Existing Systems for Internet Voting

We first start by a short overview of some existing voting systems. This list is not meant
to be exhaustive. Many systems used by companies are proprietary and there is few
information available. We focus here on publicly available Internet voting systems, de-
signed for achieving both privacy and verifiability.

Helios [8] is based on a protocol proposed by Cramers et al [35] with a variant pro-
posed by Benaloh [16]. It has been used at the University of Louvain-la-Neuve to elect
its president (recteur) and also in student elections. The IACR (International Associ-
ation for Cryptologic Research) now uses Helios to elect its board, since 2010 [1]. It
makes use of homomorphic encryption and zero-knowledge proofs. Helios has been
proved to offer ballot privacy [33,17,18] (provided some fix is implemented [33]) and
verifiability [32]. Several variants of Helios have then been proposed to enforce more
properties. For example, [37] is a variant of Helios that guarantees everlasting privacy,
that is, vote privacy is guaranteed even if the keys of the election get broken after the
election. Belenios [32] offers better verifiability, in particular even if the election server
is corrupted. However, Helios is not receipt-free (nor its variants): a voter may prove
how she voted. It should therefore be used in low-coercion environment only.

Civitas [29] is one of the only implemented scheme (if not the only one) that offers
both verifiability and coercion-resistance. It makes use of plaintext equivalence tests,
re-encryption and mixnets. Civitas is still quite complex, both in terms of usability and
computational complexity. It is therefore still unclear whether it is scalable to large
elections.

Norwegian Protocol [46]. Norway has conducted Internet voting trials during the par-
liamentary election of 2013 and 2011. For the last election in 2013, about 250 000 voters
of twelve selected municipalities were offered the possibility to use Internet voting [2].
The underlying voting protocol is developed by Scytl [3,4] and is designed for both
privacy and verifiability: voters are given a receipt that allow them to check that their
vote has been counted, under some rather strong trust assumptions.

Several more academic voting protocols have been proposed in the literature such as
the FOO protocol [45] or the Okamoto protocol [53].

3 Cryptographic Primitives

Different formal models have been designed to reason about security protocols. Most
popular ones include process algebra (e.g. CSP [55], applied-pi [5], spi-calculus [7]),
strand spaces [56], Horn clauses [19], or constraint systems [52,30]. They all have in
common the fact that messages are represented by terms.

3.1 Terms

Given a signature F , that is, a finite set of function symbols with their arity, given a set
of variables X , the set of terms T (F ,X) is defined by the following grammar:

t, t1, . . . , tn ::= x | f(t1, . . . , tn) x ∈ X

Electronic Voting: How Logic Can Help 19

For example, a typical signature for security protocols is

Fenc = {enc, dec, pair, proj1, proj2}

The function symbol enc represents encryption with associated decryption operator
dec while pair represents concatenation with associated projectors proj1 and proj2. The
properties of the primitives are then expressed through an equational theory. For (sym-
metric) encryption and concatenation, the usual equations are the following ones:

dec(enc(x, y), y) = x
proj1(pair(x, y)) = x
proj2(pair(x, y)) = y

For example, proj2(dec(enc(pair(a, n), k), k) = n.
The equational theories are rather simple and belong to the class of subterm conver-

gent theories [6]: they are convergent and the right member of an equational is always a
subterm of the left member, or a constant. Deciding secrecy or authentication properties
have been shown to be decidable both for passive [6] and active adversaries [15], for a
bounded number of sessions. Some tools such as ProVerif [20] or Akiss [25] can handle
arbitrary theories (with no termination guarantee of course) and typically behave well
for subterm convergent theories.

3.2 Equational Theories for e-voting

Cryptographic primitives for e-voting systems are however more complex than standard
primitives such as encryption or signatures. We review here some examples.

A rather standard primitive is blind signature, used for example in the FOO proto-
col [45]. While signatures are typically designed to be non malleable, blind signatures
support some form of malleability. In FOO, voters send a blinded version of their vote
to the voting authority, get it signed and then retrieve the signature of the authority on
their (unblinded) vote. This property can be formalised as follows [41]:

unblind(sign(blind(x, z), y), z) = sign(x, y)

This equation means intuitively that knowing the blinding factor and the signature of
a blinded message, anyone can compute the signature of the original message.

Another example comes from the Helios protocol described in Section 2. This proto-
col involves homomorphic encryption, that is, the combination of two encrypted votes
yields the encryption of the sum of the votes. This property is at the heart of the Helios
protocol since anyone can combine the votes to obtain the result (in an encrypted form).
This homomorphic property can be expressed by the following equation:

aenc(v1, r1, pk) ∗ aenc(v2, r2, pk) = aenc(v1 + v2, r1.r2, pk)

where ∗, +, and . are associative and commutative functional symbols. Note that aenc is
a ternary symbol that represents (randomized) asymmetric encryption. The second ar-
gument r represents the randomness used for encrypting. Using randomized encryption

20 V. Cortier

proj1(pair(x, y)) = x (1)

proj2(pair(x, y)) = y (2)

dec(aenc(xplain, xrand, pk(xsk)), xsk) = xplain (3)

dec(blind(aenc(xplain, xrand, pk(xsk)), xblind), xsk) = blind(xplain, xblind) (4)

aenc(xpl, xrand, xpub) ◦ aenc(ypl, yrand, xpub) =

aenc(xpl � ypl,xrand ∗ yrand, xpub) (5)

renc(aenc(xplain, xrand, pk(xsk)), ysk) =

aenc(xplain,xrand, pk(xsk + ysk)) (6)

unblind(blind(xplain, xblind), xblind) = xplain (7)

Checksign(xplain, vk(xid), sign(xplain, xid)) = ok (8)

Checkpfk(vk(xid), ball, pfk(xid, xrand, xplain, ball)) = ok

where ball = aenc(xplain, xrand, xpub) (9)

Checkpfkk(vk(xid), ball, pfkk(vk(xid), xbk, xplain, ball)) = ok

where ball = renc(xplain, xbk) or ball = blind(xplain, xbk) (10)

The symbols +, ∗, �, and ◦ are assumed to be commutative and associative.

Fig. 1. Equations used in [34] to model the protocol used in Norway

is crucial in e-voting to prevent an attacker to compare encrypted votes. However, as-
sociativity and commutativity are typically not supported by existing tools for security
protocols.

Other examples of primitives used in e-voting are trapdoor commitments schemes,
zero-knowledge proofs, designated verifier zero-knowledge proofs, or plaintext equiva-
lence tests. Of course, voting systems may mix several of those primitives. For the sake
of illustration, we display in Figure 1 the complete equational theory used in [34] to
model the protocol used in Norway. It is clearly out of reach of existing tools.

4 Security Properties

Most existing techniques developed so far for security protocols focus on reachability
properties, that is, properties of the form: “for any execution trace, nothing bad hap-
pens”. Confidentiality of keys or nonces as well as authentication properties are typical
security properties that fall into the category of reachability properties. Ballot secrecy is
however not expressed as a reachability property. Indeed, ballot privacy does not mean
that the value of the vote remains secret. On the contrary, all the possible values of a
vote (for example 0 or 1 in case of a referendum) are well-known by anyone. Therefore
ballot secrecy is typically stated as an indistinguishability property [41]: an attacker
should not notice any difference when Alice is voting 0 and Bob is voting 1 from the
converse scenario where votes are swapped (Alice votes 1 and Bob votes 0). This can be
easily expressed in process algebra calculus that has a notion of behavioral equivalence
≈.

Electronic Voting: How Logic Can Help 21

VAlice(0) | VBob(1) ≈ VAlice(1) | VBob(0)

where the process Vα represents voter α.
Coercion-resistance and receipt-freeness are also stated using equivalence proper-

ties [40].
ProVerif is one of the only tools that can check equivalence properties. It actually

tries to prove a stronger property than behavioral equivalence [21] for couple of proto-
cols that have a very similar structure. However ProVerif does not work very well on
vote privacy, although it has recently improved [27]. Several recent (and preliminary)
tools have been proposed to check equivalence of protocols, for a bounded number
of sessions. AKiSs [25] can check (trace) equivalence for arbitrary (convergent) the-
ories but is not guaranteed to terminate. APTE [26] checks (trace) equivalence for a
large family of standard primitives (encryption, signatures, hashes, concatenation) and
can handle non determinism and else branches. SPEC [38] implements a procedure for
open bisimulation, a notion of equivalence stronger than the standard notion of trace
equivalence.

Verifiability has not yet reached the same level of maturity than ballot privacy in
terms of modeling. A first proposal has been made in [49] that provides formal def-
initions of both individual, universal, and eligibility verifiability. A much simpler yet
probably weaker definition [48,32] states that the final outcome should contain:

– the votes of all voters that have voted and performed appropriate checks;
– a subset of the votes of the voters that did vote but did not check anything;
– at most k arbitrary valid votes where k is the number of voters under the control of

the attacker.

Another approach [50] proposes a very general framework to define verifiability and
also accountability, a notion that captures that a system should not only be verifiable
but in case something wrong happened, it should be possible to blame who misbehaved.
Due to its generality, the approach developed in [50] does not provide with a unique
definition of verifiability. Instead one has to instantiate the framework for each voting
system.

It is likely that new alternative definitions will still emerge to formally define verifi-
ability.

5 Conclusion

Voting systems raise challenging issues to the area of formal verification of security
protocols. First, tools and techniques need to shift from reachability to equivalence-
based properties. The interest of equivalence-based properties is not confined to voting
systems. Indeed behavioural equivalences are used more generally to formalize privacy
properties such as anonymity or unlinkability in many different contexts (RFIDs [24,10],
passports [28], mobile telephony systems[9]). They may also express security proper-
ties closer to game-based definitions used in cryptography. For example, learning even
a single bit of a key is considered as an attack in cryptography. The fact that not even

22 V. Cortier

a bit of the secret shall be linked is called strong secrecy in symbolic models and is
defined through the equivalence of two processes. More generally, game-based cryp-
tographic definitions can be defined in symbolic models through equivalences [31,39].
New tools have been designed to automatically check equivalence of security proto-
cols, for a bounded number of sessions. This is in particular the case of AKiSs [25],
APTE [26], and SPEC [38]. For an unbounded number of sessions, the only available
tool is ProVerif [20,21] which can check equivalence for pairs of protocols that have
the same structure and for reasonably general equational theories.

Another major issue of e-voting systems is the complexity and variety of crypto-
graphic primitives that include homomorphic encryption, re-encryption mixnets, zero-
knowledge proofs, and trapdoor commitments. These primitives may be formalized
through equational theories. However, most of them include associative and commu-
tative symbols and are out of reach of existing tools, even for reachability properties.

Moreover, the primitives used in e-voting challenge the abstractions made in sym-
bolic models: although the resulting equational theories are already quite complex,
some equations may still be missed. In cryptography, more accurate models are used:
instead of using process algebra with terms, protocols and attackers are simply any
(polynomial) Turing machines. While cryptographic and symbolic models largely dif-
fer, symbolic models were shown to be sound with respect to cryptographic ones, that is,
any protocol proved to be secure in symbolic models is deemed secure in cryptographic
ones. Such a soundness result holds for most standard primitives [13,22] but very few
results exist outside these standard primitives ([54] being one of the few exceptions).
Some primitives like the Exclusive Or were even shown to be impossible to soundly
abstract [57]. It may be therefore preferable in some cases to analyse e-voting protocols
directly in cryptographic models, possibly using recently developed techniques that as-
sist and partially automate the proof (see for example the line of research developed on
EasyCrypt [14]).

To conclude, we expect e-voting to continue to foster the development of new tech-
niques and tools in both symbolic and cryptographic approaches.

References

1. International association for cryptologic research. Elections page at,
http://www.iacr.org/elections/

2. Web page of the Norwegian government on the deployment of e-voting,
http://www.regjeringen.no/en/dep/krd/prosjekter/
e-vote-2011-project.html

3. Documentations of the code used for the 2013 parlementary election in Norway (2013),
https://brukerveiledning.valg.no/Dokumentasjon/Dokumentasjon/
Forms/AllItems.aspx

4. KRD - evalg2011 platform - update for 2013 parliamentary elections (2013),
https://brukerveiledning.valg.no/Dokumentasjon/Dokumentasjon/
Norway-2013_BulletinBoard_v1.2.pdf

5. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In: 28th
ACM Symposium on Principles of Programming Languages, POPL 2001 (2001)

6. Abadi, M., Cortier, V.: Deciding knowledge in security protocols under equational theories.
Theoretical Computer Science 367(1-2), 2–32 (2006)

http://www.iacr.org/elections/
http://www.regjeringen.no/en/dep/krd/prosjekter/e-vote-2011-project.html
http://www.regjeringen.no/en/dep/krd/prosjekter/e-vote-2011-project.html
https://brukerveiledning.valg.no/Dokumentasjon/Dokumentasjon/Forms/AllItems.aspx
https://brukerveiledning.valg.no/Dokumentasjon/Dokumentasjon/Forms/AllItems.aspx
https://brukerveiledning.valg.no/Dokumentasjon/Dokumentasjon/Norway-2013_BulletinBoard_v1.2.pdf
https://brukerveiledning.valg.no/Dokumentasjon/Dokumentasjon/Norway-2013_BulletinBoard_v1.2.pdf

Electronic Voting: How Logic Can Help 23

7. Abadi, M., Gordon, A.D.: A Calculus for Cryptographic Protocols: The Spi Calculus. In:
CCS 1997: 4th ACM Conference on Computer and Communications Security, pp. 36–47.
ACM Press (1997)

8. Adida, B., de Marneffe, O., Pereira, O., Quisquater, J.-J.: Electing a university president
using open-audit voting: Analysis of real-world use of Helios. In: Proceedings of the 2009
Conference on Electronic Voting Technology/Workshop on Trustworthy Elections (2009)

9. Arapinis, M., Mancini, L., Ritter, E., Ryan, M.: Privacy through pseudonymity in mobile
telephony systems. In: 21st Annual Network and Distributed System Security Symposium,
NDSS 2014 (2014)

10. Arapinis, M., Chothia, T., Ritter, E., Ryan, M.: Analysing Unlinkability and Anonymity Us-
ing the Applied Pi Calculus. In: CSF 2010: 23rd Computer Security Foundations Sympo-
sium, pp. 107–121. IEEE Computer Society (2010)

11. Armando, A., et al.: The AVISPA Tool for the automated validation of internet security pro-
tocols and applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576,
pp. 281–285. Springer, Heidelberg (2005)

12. Armando, A., Carbone, R., Compagna, L., Cuellar, J., Abad, L.T.: Formal analysis of saml
2.0 web browser single sign-on: Breaking the saml-based single sign-on for google apps. In:
Proceedings of the 6th ACM Workshop on Formal Methods in Security Engineering (FMSE
2008), pp. 1–10 (2008)

13. Backes, M., Pfitzmann, B.: Symmetric encryption in a simulatable Dolev-Yao style cryp-
tographic library. In: Proc. 17th IEEE Computer Science Foundations Workshop (CSFW
2004), pp. 204–218 (2004)

14. Barthe, G., Grégoire, B., Heraud, S., Béguelin, S.Z.: Computer-aided security proofs for the
working cryptographer. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 71–90.
Springer, Heidelberg (2011)

15. Baudet, M.: Deciding security of protocols against off-line guessing attacks. In: Proceedings
of the 12th ACM Conference on Computer and Communications Security (CCS 2005), pp.
16–25. ACM Press (November 2005)

16. Benaloh, J.: Ballot casting assurance via voter-initiated poll station auditing. In: Proceedings
of the Second Usenix/ACCURATE Electronic Voting Technology Workshop (2007)

17. Bernhard, D., Cortier, V., Pereira, O., Smyth, B., Warinschi, B.: Adapting Helios for provable
ballot secrecy. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 335–354.
Springer, Heidelberg (2011)

18. Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: Pitfalls of the Fiat-
Shamir heuristic and applications to helios. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 626–643. Springer, Heidelberg (2012)

19. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules. In: Proc. of
the 14th Computer Security Foundations Workshop (CSFW 2001). IEEE Computer Society
Press (June 2001)

20. Blanchet, B.: An automatic security protocol verifier based on resolution theorem proving
(invited tutorial). In: 20th International Conference on Automated Deduction (CADE-20)
(July 2005)

21. Blanchet, B., Abadi, M., Fournet, C.: Automated verification of selected equivalences for
security protocols. In: 20th IEEE Symposium on Logic in Computer Science (LICS 2005),
pp. 331–340. IEEE Computer Society (June 2005)

22. Böhl, F., Cortier, V., Warinschi, B.: Deduction soundness: Prove one, get five for free. In: 20th
ACM Conference on Computer and Communications Security (CCS 2013), Berlin, Germany
(2013)

23. Bortolozzo, M., Centenaro, M., Focardi, R., Steel, G.: Attacking and fixing PKCS#11 secu-
rity tokens. In: Proceedings of the 17th ACM Conference on Computer and Communications
Security (CCS 2010), pp. 260–269. ACM Press (October 2010)

24 V. Cortier

24. Brusó, M., Chatzikokolakis, K., den Hartog, J.: Formal verification of privacy for RFID sys-
tems. In: CSF 2010: 23rd Computer Security Foundations Symposium, pp. 75–88. IEEE
Computer Society (2010)

25. Chadha, R., Ciobâcă, Ş., Kremer, S.: Automated verification of equivalence properties of
cryptographic protocols. In: Seidl, H. (ed.) Programming Languages and Systems. LNCS,
vol. 7211, pp. 108–127. Springer, Heidelberg (2012)

26. Cheval, V.: Apte: an algorithm for proving trace equivalence. In: Ábrahám, E., Havelund, K.
(eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 587–592. Springer, Heidelberg (2014)

27. Cheval, V., Blanchet, B.: Proving more observational equivalences with ProVerif. In: Basin,
D., Mitchell, J.C. (eds.) POST 2013 (ETAPS 2013). LNCS, vol. 7796, pp. 226–246. Springer,
Heidelberg (2013)

28. Cheval, V., Cortier, V., Plet, A.: Lengths may break privacy – or how to check for equiv-
alences with length. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
708–723. Springer, Heidelberg (2013)

29. Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: Toward a secure voting system. In: Proc.
IEEE Symposium on Security and Privacy, pp. 354–368 (2008)

30. Comon-Lundh, H., Shmatikov, V.: Intruder deductions, constraint solving and insecurity de-
cision in presence of Exclusive Or. In: Proc. of 18th Annual IEEE Symposium on Logic in
Computer Science (LICS 2003), pp. 271–280. IEEE Computer Society (2003)

31. Comon-Lundh, H., Cortier, V.: Computational soundness of observational equivalence. In:
Proceedings of the 15th ACM Conference on Computer and Communications Security (CCS
2008), Alexandria, Virginia, USA, pp. 109–118. ACM Press (October 2008)

32. Cortier, V., Galindo, D., Glondu, S., Izabachene, M.: A generic construction for voting cor-
rectness at minimum cost - application to helios. Cryptology ePrint Archive, Report 2013/177
(2013)

33. Cortier, V., Smyth, B.: Attacking and fixing helios: An analysis of ballot secrecy. Journal of
Computer Security 21(1), 89–148 (2013)

34. Cortier, V., Wiedling, C.: A formal analysis of the norwegian e-voting protocol. In: Degano,
P., Guttman, J.D. (eds.) Principles of Security and Trust. LNCS, vol. 7215, pp. 109–128.
Springer, Heidelberg (2012)

35. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-authority
election scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 103–118.
Springer, Heidelberg (1997)

36. Cremers, C.J.F.: The Scyther Tool: Verification, falsification, and analysis of security pro-
tocols. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 414–418. Springer,
Heidelberg (2008)

37. Cuvelier, É., Pereira, O., Peters, T.: Election verifiability or ballot privacy: Do we need to
choose? In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134,
pp. 481–498. Springer, Heidelberg (2013)

38. Dawson, J., Tiu, A.: Automating open bisimulation checking for the spi-calculus. In: Pro-
ceedings of IEEE Computer Security Foundations Symposium, CSF 2010 (2010)

39. Delaune, S., Kremer, S., Pereira, O.: Simulation based security in the applied pi calculus. In:
Proceedings of the 29th Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS 2009). Leibniz International Proceedings in Informatics, vol. 4,
pp. 169–180 (December 2009)

40. Delaune, S., Kremer, S., Ryan, M.: Coercion-Resistance and Receipt-Freeness in Electronic
Voting. In: CSFW 2006: 19th Computer Security Foundations Workshop, pp. 28–42. IEEE
Computer Society (2006)

41. Delaune, S., Kremer, S., Ryan, M.D.: Verifying privacy-type properties of electronic voting
protocols. Journal of Computer Security 17(4), 435–487 (2009)

Electronic Voting: How Logic Can Help 25

42. Dolev, D., Yao, A.C.: On the security of public key protocols. In: Proc. of the 22nd Symp.
on Foundations of Computer Science, pp. 350–357. IEEE Computer Society Press (1981)

43. Even, S., Goldreich, O.: On the security of multi-party ping-pong protocols. Technical Re-
port. IEEE Computer Society Press (1983)

44. Feldman, A.J., Halderman, J.A., Felten, E.W.: Security analysis of the diebold accuvote-ts
voting machine (2006), http://itpolicy.princeton.edu/voting/

45. Fujioka, A., Okamoto, T., Ohta, K.: A Practical Secret Voting Scheme for Large Scale Elec-
tions. In: Zheng, Y., Seberry, J. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp. 244–251.
Springer, Heidelberg (1993)

46. Gjøsteen, K.: Analysis of an internet voting protocol. Cryptology ePrint Archive, Report
2010/380 (2010), http://eprint.iacr.org/

47. Esteve, J.B., Goldsmith, B., Turner, J.: International experience with e-voting. Technical re-
port, Norwegian E-Vote Project (2012)

48. Juels, A., Catalano, D., Jakobsson, M.: Coercion-Resistant Electronic Elections. In: Chaum,
D., Jakobsson, M., Rivest, R.L., Ryan, P.Y.A., Benaloh, J., Kutylowski, M., Adida, B. (eds.)
Towards Trustworthy Elections. LNCS, vol. 6000, pp. 37–63. Springer, Heidelberg (2010)

49. Kremer, S., Ryan, M., Smyth, B.: Election verifiability in electronic voting protocols. In:
Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp.
389–404. Springer, Heidelberg (2010)

50. Küsters, R., Truderung, T., Vogt, A.: Clash Attacks on the Verifiability of E-Voting Systems.
In: 33rd IEEE Symposium on Security and Privacy (S&P 2012), pp. 395–409. IEEE Com-
puter Society (2012)

51. Lowe, G.: Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In:
Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 147–166. Springer, Hei-
delberg (1996)

52. Millen, J., Shmatikov, V.: Constraint solving for bounded-process cryptographic protocol
analysis. In: Proc. of the 8th ACM Conference on Computer and Communications Security,
CCS 2001 (2001)

53. Okamoto, T.: Receipt-Free Electronic Voting Schemes for Large Scale Elections. In: Chris-
tianson, B., Crispo, B., Lomas, M., Roe, M. (eds.) Security Protocols 1997. LNCS, vol. 1361,
pp. 25–35. Springer, Heidelberg (1998)

54. Sakurada, H.: Computational soundness of symbolic blind signatures under active attacker.
In: Danger, J.-L., Debbabi, M., Marion, J.-Y., Garcia-Alfaro, J., Heywood, N.Z. (eds.) FPS
2013, vol. 8532, pp. 247–263. Springer, Heidelberg (2014)

55. Schneider, S.: Verifying authentication protocols with CSP. In: Proc. of the 10th Computer
Security Foundations Workshop (CSFW 1997). IEEE Computer Society Press (1997)

56. Thayer, J., Herzog, J., Guttman, J.: Strand spaces: proving security protocols correct. IEEE
Journal of Computer Security 7, 191–230 (1999)

57. Unruh, D.: The impossibility of computationally sound xor, Preprint on IACR ePrint
2010/389 (July 2010)

58. Wolchok, S., Wustrow, E., Halderman, J.A., Prasad, H.K., Kankipati, A., Sakhamuri, S.K.,
Yagati, V., Gonggrijp, R.: Security analysis of india’s electronic voting machines. In: 17th
ACM Conference on Computer and Communications Security, CCS 2010 (2010)

http://itpolicy.princeton.edu/voting/
http://eprint.iacr.org/

And-Or Tableaux for Fixpoint Logics

with Converse: LTL, CTL, PDL and CPDL

Rajeev Goré

Logic and Computation Group
Research School of Computer Science
The Australian National University,

Canberra, Australia

Abstract. Over the last forty years, computer scientists have invented
or borrowed numerous logics for reasoning about digital systems. Here,
I would like to concentrate on three of them: Linear Time Temporal
Logic (LTL), branching time Computation Tree temporal Logic (CTL),
and Propositional Dynamic Logic (PDL), with and without converse.
More specifically, I would like to present results and techniques on how
to solve the satisfiability problem in these logics, with global assump-
tions, using the tableau method. The issues that arise are the typical
tensions between computational complexity, practicality and scalability.
This is joint work with Linh Anh Nguyen, Pietro Abate, Linda Postniece,
Florian Widmann and Jimmy Thomson.

1 Introduction and Credits

Over the last forty years, computer scientists have invented or borrowed nu-
merous logics for reasoning about digital systems [1]. Here, I would like to con-
centrate on three of them: Linear Time Temporal Logic (LTL), branching time
Computation Tree temporal Logic (CTL), and Propositional Dynamic Logic
(PDL). More specifically, I would like to present results and techniques on how
to solve the satisfiability problem in these logics, with global assumptions, using
the tableau method. The issues that arise are the typical tensions between com-
putational time-complexity, space-complexity, practicality and scalability. This
overview is based on joint work with Linh Anh Nguyen [2, 3], Linda Postniece [4]
and Florian Widmann [5–7]. Some of the implementations have been refined by
Jimmy Thomson. The current best account with full algorithmic details and
proofs is Widmann’s doctoral dissertation [8].

I have deliberately concentrated on tableaux methods, but the satisfiability
problem for some of these fixpoint logics can also be solved using resolution
methods and automata methods. These are beyond my expertise.

I assume that the reader is familiar with the syntax and semantics of proposi-
tional modal, description and fixpoint logics, the notion of global logical conse-
quence in these logics, the associated notions of being satisfiable with respect to
a set of global assumptions (TBox) and with basic tableau methods for classical
propositional logic. I assume that all formulae are in negation normal form since

S. Demri, D. Kapur, and C. Weidenbach (Eds.): IJCAR 2014, LNAI 8562, pp. 26–45, 2014.
c© Springer International Publishing Switzerland 2014

And-Or Tableaux for Fixpoint Logics with Converse 27

this reduces the number of rules. It is well-known that, in all the logics I consider,
a formula can be put into negation normal form with only a polynomial increase
in size, while preserving validity. I also assume that we are given a finite set T
of “global assumptions” (TBox) and asked to solve the problem of whether φ is
satisfiable with respect to the global assumptions T in the logic under consid-
eration. Thus a formula φ is a global logical consequence of T iff the formula
nnf (¬φ) is unsatisfiable with respect to T , where nnf (.) is the function that
returns the negation normal form of its argument.

The tableau method is a very general method for automated reasoning and
has been widely applied for modal logics [9] and description logics [10]. Tableau
methods usually come in two flavours as we explain shortly. Both methods build
a rooted tree with some leaves duplicating ancestors, thereby giving cycles. Be-
cause the same node may be explored on multiple branches, tableau algorithms
are typically suboptimal w.r.t. the known theoretical bounds for many logics. For
example, the traditional tableau method for ALC can require double-exponential
time even though the decision problem is known to be exptime-complete.

For fixpoint logics like LTL, CTL and PDL, optimal tableau methods are
possible if we proceed in stages with the first stage building a cyclic graph,
and subsequent passes pruning nodes from the graph until no further pruning is
possible or until the root node is pruned [11]. Optimality can also be obtained
if we construct the set of all subsets of the Fischer-Ladner closure of the given
initial formula [12]. But these methods can easily require exponential time even
when it is not necessary. Indeed, the method of Fischer and Ladner will always
require exponential time since it must first construct the set of all subsets of a
set whose size is usually linear in the size of the given formula.

Thus a long-standing open problem in tableau methods for modal, description,
and fixpoint logics has been to find a complexity-optimal and “on the fly” method
for checking satisfiability which only requires exponential time when it is really
necessary. We describe such tableau methods for each of the logics K, Kt (i.e. K
with converse) and PDL. The resulting methods necessarily build graphs rather
than trees. The various components can be combined non-trivially to give an
on-the-fly and complexity-optimal tableau method for CPDL (i.e. PDL with
converse) but we omit details. We also describe sub-optimal tableaux methods
for these logics which build one single tree tableau and determine satisfiability
in one pass by exploring this tree one branch at a time, reclaiming the space
of previous branches. We describe such a method for the logic CTL, and give
pointers to how to adapt such one-pass methods to LTL and PDL.

2 Traditional Modal and Description Logic Tree Tableaux

A tableau is a tree of nodes where the children of a node are created by applying
a tableau rule to the parent and where each node contains a finite set of formulae.
We refer to these formulae as the “contents” of a node, noting that the term
“label” is also used to mean the same thing. Thus a label is not a name for a
Kripke world as in some formulations of “labelled tableaux”. The ancestors of a
node are simply the nodes on the unique path from the root to that node.

28 R. Goré

(id)
Γ ; ¬p ; p

(∧)Γ ; ϕ ∧ ψ

Γ ; ϕ ; ψ
(∨) Γ ; ϕ ∨ ψ

Γ ; ϕ | Γ ; ψ

(∃) Δ ; []Γ ; 〈〉ϕ1 ; · · · ; 〈〉ϕn

Γ ; ϕ1 ; T || · · · || Γ ; ϕn ; T
Δ contain only atoms and negated atoms

Fig. 1. AND/OR Tableaux Rules for Modal Logic with Global Assumptions T

A leaf node is “closed” when it can be deemed to be unsatisfiable, usually
because it contains an obvious contradiction like p and ¬p. A leaf is “open”
when it can be deemed to be satisfiable, usually when no rule is applicable to
it, but also when further rule applications are guaranteed to give an infinite
(satisfiable) branch. A branch is closed/open if its leaf is closed/open. The aim
of course is to use these classifications to determine whether the root node is
satisfiable or unsatisfiable. But the tableau used in modal logics and those used
in description logics are dual in a sense which is explained next.

Traditional modal tableaux a là Beth [13] are or-trees in that branches are
caused by disjunctions only. Each “diamond” formula in a node causes the cre-
ation of a “successor world”, fulfilling that formula. But such successors of a
given node are created and explored one at a time, using backtracking, until one
of them is closed, meaning that there is no explicit trace of previously explored
“open” successors in any single tableau.

Traditional description logic tableaux are usually and-trees in that branches
are caused by existential/diamond formulae only. Each disjunctive formula causes
the creation of a child, one at a time, using backtracking, until one child is open,
meaning that there is no explicit trace of previously explored “closed” or-children
in any single tableau.

Thus, in both types of tableaux, the overall search space is really an and-
or tree: traditional modal (Beth) tableaux display only the or-related branches
and explore the and-related branches using backtracking while description logic
tableaux do the reverse.

In all such methods, termination is obtained by “blocking” a node from expan-
sion if the node that would be created already exists. For a detailed discussion
of the various blocking methods, and the various notions of “caching” see [2].

3 And-Or Graph and Tree Tableaux for K

We unify these two views by taking a global view which considers tableaux
as And-Or trees or And-Or graphs rather than as or-trees or and-trees. In
particular, since the non-determinism in both traditional tableaux methods is
determinised in And-Or tableaux, we need to build one and only one And-Or
tableau!

Thus the And-Or tableau rules for modal logic K can be written as shown in
Figure 1 where Γ and Δ are finite sets of formulae in negation normal form and
Γ ; ϕ stands for the set Γ ∪ {ϕ}.

And-Or Tableaux for Fixpoint Logics with Converse 29

The (∨)-rule creates or-branching, indicated by “|” while the ∃-rule creates
and-branching, indicated by “||”. These are dual in the following senses:

(∨): if the set Γ ;ϕ∨ψ is satisfiable w.r.t. T then the set Γ ;ϕ is satisfiable w.r.t.
T or the set Γ ;ψ is satisfiable w.r.t. T

(∨): if both sets Γ ;ϕ and Γ ;ψ are unsatisfiable w.r.t. T then so is Γ ;ϕ ∨ ψ
(∃): if the set Δ; []Γ ; 〈〉ϕ1; · · · ; 〈〉ϕn is satisfiable w.r.t. T then the set Γ ;ϕ1; T

is satisfiable w.r.t. T and the set Γ ;ϕ2; T is satisfiable w.r.t. T and . . . and
the set Γ ;ϕn; T is satisfiable w.r.t. T .

(∃): if there is some integer 1 ≤ i ≤ n, such that the set Γ ;ϕi; T is unsatisfiable
w.r.t. T then the set Δ; []Γ ; 〈〉ϕ1; · · · ; 〈〉ϕn is unsatisfiable w.r.t. T .

We now give a non-algorithmic description of the procedure to create an and-
or tableau. We have chosen this format over the more algorithmic description in
[2, 14] to highlight its simplicity.

1. start with a root node and repeatedly try to apply exactly one of the rules in
the order (id), (∧), (∨), (∃) to each node but if a rule application to node x
will create a copy y′ of an existing node y then make y the child of x instead

2. if we apply the (∨)-rule to x then x is an or-node and if we apply the rule
(∧) or (∃) to x then it is an and-node

3. whenever we apply the (id) rule to x then set the status of x to unsat, and
if we cannot apply any rule to x then set its status to sat, and propagate
this status through the current graph as follows:
or-node: unsat if all its children have status unsat and sat if some child

has status sat
and-node: sat if all its children have status sat and unsat if some child has

status unsat
4. when every node has been expanded in this way then set the status of all

nodes with undefined status to sat and propagate as above.

A little more formally but still non-algorithmically. Given a TBox T and a
formula φ, both in negation normal form, our method searches for a model which
satisfies φ w.r.t. T by building an and-or graph G with root node τ containing
T ∪{φ}. A node in the constructed and-or graph is a record with three attributes:

content: the set of formulae carried by the node
status: {unexpanded, expanded, sat, unsat}
kind: {and-node, or-node, leaf-node}

The root node has initial status unexpanded and our method constructs the
and-or graph using a traditional strategy explained shortly. But we interleave
this generation strategy with a propagation phase which propagates the status
of a node throughout the graph. We explain each in turn.

Our strategy for building the and-or graph applies the rules for decomposing
∧ and ∨ repeatedly until they are no longer applicable to give a “saturated” node
x, and then applies the ∃-rule which creates a child node for x containing T ∪
{ϕ} ∪ {ψ | []ψ ∈ x} for each 〈〉ϕ ∈ x. The addition of the TBox T to such a

30 R. Goré

rt

done

�����
���

���
���

��

���
�
�

todo

��z

������
��
��
��

todo

��·

������
��
��
��

��

todo

��u

������
��
��
��

y

��

x

��

��

todo

		w

· v

����������
y′

Fig. 2. Graph constructed by our algorithm for K using global caching

child is a naive way to handle global assumption (TBoxes) but suffices for our
needs. We now saturate any such child to obtain a saturated node y, then apply
the ∃-rule to y, and so on, until we find a contradiction, or find a repeated node,
or find a saturated node which contains no 〈〉 -formulae. For uniformity with our
method for the extensions to converse and PDL, we explore/expand children in
a left to right depth-first manner, although any search strategy can be used for
K (or ALC) [2]. All nodes are initially given a status of unexpanded.

An application of (∨) to a node v causes v to be an or-node, while an applica-
tion of (∧) or (∃) to a node v causes v to be an and-node. Notice that our method
uses the (∨) and (∃) rules which use both or-branching and and-branching as
summarised in Section 2. The crucial difference from traditional tableau meth-
ods is that we create an and-or graph rather than an and-tree or an and-tree,
and we create the required child in the graph G only if it does not yet exist in the
graph: this step therefore uses global caching [2]. Notice that the required child
need not be an ancestor but can exist on any previous branch of the tableau. For
example, as shown in Figure 2, suppose the current node is x and that the rule
applied to x generates a node y′ which duplicates y. The node y′ is not put into
G, but y becomes the child of x instead. Thus, G is really a rooted and-or tree
with cross-branch edges to nodes on previously created branches like that from
x to y or from v to u, or edges to ancestors like that from w to z. The problem
of course is to show that this remains sound.

The propagation phase begins whenever we determine the status of a node as
either unsat or sat as explained next.

A generated node that contains both p and ¬p for some atomic formula p
becomes a leaf-node with status unsat (i.e. unsatisfiable w.r.t. T). A generated
node to which no tableau rule is applicable becomes a leaf-node with status
sat (i.e. satisfiable w.r.t. T). Both conclusions are irrevocable because each
relies only on classical propositional principles and not on modal principles.
We therefore propagate this information to the parent node v using the kind
(or-node/and-node) of v and the status of the children of v, treating unsat as

And-Or Tableaux for Fixpoint Logics with Converse 31

irrevocably f and sat as irrevocably t. That is, an or-node gets status sat as
soon as one of its children gets status sat, and gets status unsat when all of
its children get status unsat. Dually for and-nodes. In particular, it does not
matter whether the parent-child edge is a cross-branch edge or whether it is a
traditional top-down edge. If these steps cannot determine the status as sat or
unsat, then the rule application sets the status to expanded and we return to
the generation phase.

The main loop ends when the status of the initial node τ becomes sat or
unsat, or when no node has status unexpanded. In the last case, all nodes
with status
= unsat are given status sat (effectively giving the status “open”
to tableau branches which loop to an ancestor) and this status is propagated
through the graph to obtain the status of the root node as either unsat or sat.

Theorem 1 (Soundness and Completeness). The root node of the And-Or
graph for T ∪ {φ} has status sat iff φ is K-satisfiable with respect to T .

Theorem 2 (Complexity of And-Or graph tableaux). If the sum of the
sizes of the formulae in T ∪ {φ} is n then the algorithm requires O(2n) space
and O(2n) time.

This algorithms thus uses both caching and propagation techniques and runs
in exptime [2].

3.1 And-Or Tree Tableaux

The method described above creates an And-Or graph as shown in Figure 2
which means that we have to keep previous branches in memory. An alternative
is to only allow “loops” to ancestors. Using this strategy gives an And-Or tree
which can be explored one branch at a time, and there is no need to keep previous
branches in memory. We use the term And-Or tree tableaux for the resulting
tableau method.

The soundness and completeness is not affected by this change, but the ability
to reclaim previous branches saves memory but leads to sub-optimality.

Theorem 3 (Complexity of And-Or tree tableaux). If the sum of the sizes
of the formula in T ∪ {φ} is n then the tree-tableaux algorithm requires O(2n)
space and O(22

n

) time.

There are n subformulae of T ∪{φ} and hence 2n subsets which might appear
on a branch before a node repeats, hence a branch can require O(2n) space.
We explore the And-Or tree one branch at a time, so we require at most this
much space. An and-or tree of depth O(2n) may have O(22

n

) or-branches. In the
worse case, we have to close each branch, hence we may require O(22

n

) time.
Thus And-Or tree tableaux are sub-optimal: the satisfiability problem for K is
known to be exptime-complete, but our algorithm has worst-case complexity of
2exptime.

The soundness shows that an ancestor loop always represents a “good loop”
in which every node is satisfiable. It is this property that fails for fixpoint logics.

32 R. Goré

(a)

x

〈〉ϕ
��

ps0

��
psk

��
z

toosmall

({ξ | � ξ ∈ z} \ x) ∈ altx

(b)

x

〈〉ϕ
��

ps0

��
psk

��
z

��
y

(c)

x

〈〉ϕ
��

ps0

��
psk

��
z

�� ���
��

��

				
					

				
				

y y+
1 /z1 · · · y+

n /zn

Fig. 3. The use of special node z to handle in/compatibility between states x and y.
Scenario (a) occurs when x and y are incompatible. Scenario (b) occurs when x and y
are compatible. Scenario (c) occurs when x and y are compatible, but y is/becomes
toosmall.

4 And-Or Graph Tableaux for Adding Converse

Recall that the standard strategy for rule applications in tableau algorithms is
to apply the rules for decomposing ∧ and ∨ repeatedly until they are no longer
applicable, giving a “saturated” node which contains only atoms, negated atoms,
[] -formulae and 〈〉 -formulae. Let us call such a “saturated” node a state and
call the other nodes prestates. Thus the only rule applicable to a state x is the
∃-rule which creates a node containing T ∪{ϕ}∪{ψ | []ψ ∈ x} for each 〈〉ϕ ∈ x.
The standard strategy will now saturate any such child to obtain a state y, then
apply the ∃-rule to y, and so on, until we find a contradiction, or find a repeated
node, or find a state which contains no ∃-formulae. Let us call x the parent state
of y since all intervening nodes are not states.

When converse modalities � /� (inverse roles) present, we require that {ξ |
� ξ ∈ y} ⊆ x, since y is then compatible with being an R-successor of x in the
putative model under construction. If some � ξ ∈ y has ξ /∈ x then x is “too
small”, and must be enlarged into an alternative node x+ by adding all such ξ. If
any such ξ is a complex formula then the alternative node x+ is not “saturated”,
and hence not a state. So we must saturate it using the ∧/∨-rules until we reach
a state. That is, a state x may conceptually be “replaced” by an alternative
prestate x+ which is an enlargement of x, and which may have to be saturated
further in order to reach a state.

Our algorithm handles these “alternatives” by introducing a new type of node
called a special node, introducing a new type of status called toosmall, allowing
states to contain a field alt for storing these alternatives, and ensuring that a
state always has a special node as its parent. When we need to replace a state x
by its alternatives, the special node above x extracts these alternatives from
the altx field and creates the required alternative nodes as explained next.

And-Or Tableaux for Fixpoint Logics with Converse 33

Referring to Fig. 3, suppose state x has an R-successor prestate ps0, and
further saturation of ps0 leads to prestate psk, and an application of an ∧/∨-
rule to pk will give a state y. Instead of directly creating y, we create a special
node z which carries the same set of formulae as would y, and make z a child
of psk. We now check whether z is compatible with its parent state x by checking
whether {ξ | � ξ ∈ z} ⊆ x. If z is not compatible then we mark z as toosmall,
and add {ξ | � ξ ∈ z} \x to the set of alternative sets contained in altx, without
creating y, as shown in Fig. 3(a). If z is compatible with x, we create a state y
if it does not already exist, and make the new/old y a child of z, as in Fig. 3(b).

Suppose that y is compatible with x and that either y is already toosmall

or becomes so later because of some descendant state w of y. In either case,
the attribute alty then contains a number of sets y1, y2, . . . , yn (say), and the
toosmall status of y is propagated to the special node z. In response, z will
create the alternatives y+1 , y+2 , . . . , y+n for y with y+i := y ∪ yi. If y+i is a state
then our algorithm will create a special node zi below z, and if zi is compatible
with x then y+i will be created or retrieved and will become the child of zi
as in (b) else y+i will not be created and zi will be marked as toosmall as
in (a). If y+i is not a state then it will be created as a direct prestate child of z.
Figure 3(c) captures this by using y+i /zi to stand for either y+i or zi. Each of
these new non-special nodes will eventually be expanded by our algorithm but
now the “lapsed” special node z will be treated as a ∨-node.

Global State Caching. The complexities introduced by alternative nodes makes
it difficult to use global caching so instead we use “global state caching”: that
is, the saturation phase is allowed to re-create prestates that occur on previous
branches, but states cannot be duplicated so we must use cross-branch edges to
their previous incarnations. The resulting algorithm runs in exptime [6].

5 Traditional Tableaux Methods for Fixpoint Logics

As we have seen, modal and description logic tableaux require some form of
“loop check” to guarantee termination, but fix-point logics require a further test
to distinguish a “good loop” that represents a path in a model from a “bad loop”
that represents an infinite branch with no hope of ever giving a model.

Most tableau-based methods for fix-point logics solve this problem using a
multi-pass graph procedure [11, 15–17]. The first pass applies the tableau rules
to construct a finite rooted cyclic graph. The subsequent passes prune nodes
that are unsatisfiable because they contain contradictions like {p,¬p}, and also
remove nodes which give rise to “bad loops”. The main practical disadvantage
of such multi-pass methods is that the cyclic graph built in the first pass has a
size which is always exponential in the size of the initial formula. So the very
act of building this graph immediately causes exptime behaviour even in the
average case.

34 R. Goré

6 One-Pass And-Or Tree Tableaux for Fixpoint Logics

One-pass And-Or tableaux avoid this bottle-neck by building a rooted cyclic
tree (where all cyclic edges loop back to ancestors) one branch at a time, us-
ing backtracking. The experience from one-pass tableaux for very expressive
description logics [18] of similar worst-case complexity shows that their average
case behaviour is often much better since the given formulae may not contain
the full complexity inherent in the decision problem, particularly if the formula
arises from real-world applications. Of course, there is no free lunch, since in the
worst case, these one-pass methods may have significantly worse behaviour than
the known optimal behaviour: 2exptime than exptime in the case of CTL for
example. Moreover, the method for separating “good loops” from “bad loops”
becomes significantly more complicated since it cannot utilise the global view
offered by a graph built during a previous pass. Ideally, we want to evaluate
each branch on its own during construction, or during backtracking, using only
information which is “local” to this branch since this allows us to explore these
branches in parallel using multiple processors.

Implemented one-pass [19, 20] and multi-pass [21] tableau provers already
exist for LTL. A comparison between them [22] shows that the median running
time for Janssen’s highly optimised multi-pass prover for LTL is greater than the
median running time for Schwendimann’s not-so-optimised one-pass prover for
LTL [20] for problems which are deliberately constructed to be easy for tableau
provers, indicating that the multi-pass prover spends most of its time in the first
pass building the cyclic graph. There is also a one-pass “tableau” method for
propositional dynamic logic (PDL) [23] which constructs a rooted cyclic tree and
uses a finite collection of automata, pre-computed from the initial formula, to
distinguish “good loops” from “bad loops”.

7 One-Pass And-Or Tree Tableaux for CTL

For simplicity, we ignore global assumptions (TBoxes) and concentrate on only
the satisfiability problem since global assumptions can be added by a simple
modification of the rules that create modal successors.

A tableau algorithm is a systematic search for model for a formula φ. The
algorithm stores additional information with each node of the tableau using
histories and variables [20]. A history is a mechanism for collecting extra infor-
mation during proof search and passing it from parents to children. A variable
is a mechanism to propagate information from children to parents.

In the following, we restrict ourselves to the tableau algorithm for CTL.

Definition 1. A tableau node x is of the form (Γ :: HCr :: mrk, uev) where:

Γ is a set of formulae;
HCr is a list of the formula sets of some designated ancestors of x;
mrk is a Boolean valued variable indicating whether the node is marked; and
uev is a partial function from formulae to IN>0.

And-Or Tableaux for Fixpoint Logics with Converse 35

The list HCr is the only history since its value in a node is determined by the
parent node, whereas mrk and uev are variables since their values in a node are
determined by the children. In the following we call tableau nodes just nodes
when the meaning is clear.

Informally, the value of mrk at node x is true if x is “closed”. Since repeated
nodes cause “cycles” or “loops”, a node that is not “closed” is not necessarily
“open” as in traditional tableaux. That is, although we have enough information
to detect that further expansion of the node will cause an infinite branch, we may
not yet have enough information to determine the status of the node. Informally,
if a node x lies on such a “loop” in the tableau, and an “eventuality” EU - or AU -
formula ϕ appears on this loop but remains unfulfilled, then uev of x is defined
for ϕ by setting uev(ϕ) = n, where n is the height of the highest ancestor of x
which is part of the loop.

We postpone the definition of a rule for a moment and proceed with the
definition of a tableau.

Definition 2. A tableau for a formula set Γ and a list of formula sets HCr is
a tree of tableau nodes with root (Γ :: HCr :: mrk, uev) where the children of a
node x are obtained by a single application of a rule to x (i.e. only one rule can
be applied to a node). A tableau is expanded if no rules can be applied to any of
its leaves.

Note that mrk and uev in the definition are not given but are part of the result
as they are determined by the children of the root.

Definition 3. The partial function uev⊥ : Fml ⇀ IN>0 is the constant function
that is undefined for all formulae (i.e. uev⊥(ψ) = ⊥ for all ψ).

Note 1. In the following, we use Λ to denote a set containing only propositional
variables or their negations (i.e. ϕ ∈ Λ ⇒ ϕ = p or ϕ = ¬p for some atom p).
To focus on the “important” parts of the rule, we use “· · · ” for the “unimportant”
parts which are passed from node to node unchanged (e.g. (Γ :: · · · :: · · ·)). We
define ∼ϕ := nnf (¬ϕ).

7.1 The Rules

Terminal Rule

(id)
(Γ :: · · · :: mrk, uev) {p,¬p} ⊆ Γ for some atomic formula p

with mrk := true and uev := uev⊥. The intuition is that the node is “closed”
so we pass this information up to the parent by putting mrk to true, and
putting uev as undefined for all formulae.

36 R. Goré

Linear (α) Rules

(∧) (ϕ ∧ ψ ; Γ :: · · · :: · · ·)
(ϕ ; ψ ; Γ :: · · · :: · · ·) (D)

(AXΔ ; Λ :: · · · :: · · ·)
(EX(p0 ∨ ¬p0) ; AXΔ ; Λ :: · · · :: · · ·)

(EB)
(E(ϕB ψ) ; Γ :: · · · :: · · ·)

(∼ψ ; ϕ ∨EXE(ϕB ψ) ; Γ :: · · · :: · · ·)

(AB)
(A(ϕB ψ) ; Γ :: · · · :: · · ·)

(∼ψ ; ϕ ∨ AXA(ϕB ψ) ; Γ :: · · · :: · · ·)

The ∧-rule is standard and the D-rule captures the fact that the binary relation
of a model is total by ensuring that every potential dead-end contains at least
one EX-formula. The EB- and AB-rules capture the fix-point nature of the
corresponding formulae according to the valid formulae E(ϕB ψ) ↔ ¬ψ ∧ (ϕ ∨
EXE(ϕB ψ)) and A(ϕB ψ) ↔ ¬ψ ∧ (ϕ ∨ AXA(ϕB ψ)).

These rules do not modify the histories or variables at all.

Universal Branching (β) Rules

(∨) (ϕ ∨ ψ ; Γ :: · · · :: mrk, uev)

(ϕ ; Γ :: · · · :: mrk1, uev1) | (ψ ; Γ :: · · · :: mrk2, uev2)

(EU)
(E(ϕU ψ) ; Γ :: · · · :: mrk, uev)

(ψ ; Γ :: · · · :: mrk1, uev1) | (ϕ ; EXE(ϕU ψ) ; Γ :: · · · :: mrk2, uev2)

(AU)
(A(ϕU ψ)) ; Γ :: · · · :: mrk, uev)

(ψ ; Γ :: · · · :: mrk1, uev1) | (ϕ ; AXA(ϕU ψ) ; Γ :: · · · :: mrk2, uev2)

with:

mrk := mrk1 & mrk2

exclφ(f)(χ) :=

{
⊥ if χ = φ
f(χ) otherwise

uev′1 :=

⎧⎨⎩
uev1 for the ∨-rule
exclE(ϕU ψ)(uev1) for the EU -rule
exclA(ϕU ψ)(uev1) for the AU -rule

min⊥(f, g)(χ) :=

{
⊥ if f(χ) = ⊥ or g(χ) = ⊥
min(f(χ), g(χ)) otherwise

uev :=

⎧⎪⎪⎨⎪⎪⎩
uev⊥ if mrk1 & mrk2
uev′1 if mrk2 & not mrk1
uev2 if mrk1 & not mrk2
min⊥(uev

′
1, uev2) otherwise

The ∨-rule is standard except for the computation of uev. The EU - and AU -rules
capture the fix-point nature of the EU - and AU -formulae, respectively, according

And-Or Tableaux for Fixpoint Logics with Converse 37

to the valid formula E(ϕU ψ) ↔ ψ ∨ (ϕ ∧ EXE(ϕU ψ)) and A(ϕU ψ) ↔ ψ ∨
(ϕ∧AXA(ϕU ψ)). The intuitions of the definitions of the histories and variables
are:

mrk: the value of the variable mrk is true if the node is “closed”, so the definition
of mrk just captures the “universal” nature of these rules whereby the parent
node is closed if both children are closed.

excl: the definition of exclφ(f)(ψ) just ensures that exclφ(f)(φ) is undefined.
uev′1: the definition of uev′1 ensures that its value is undefined for the principal

formulae of the EU - and AU -rules.
min⊥: the definition of min⊥ ensures that we take the minimum of f(χ) and g(χ)

only when both functions are defined for χ.
uev: if both children are “closed” then the parent is also closed via mrk so we

ensure that uev is undefined in this case. If only the right child is closed,
we take uev′1, which is just uev1 modified to ensure that it is undefined for
the principal EU - or AU -formula. Similarly if only the left child is closed.
Finally, if both children are unmarked, we define uev for all formulae that
are defined in the uev of both children but map them to the minimum of
their values in the children, and undefine the value for the principal formula.

Existential Branching Rule

(EX)

EXϕ1 ; . . . ;EXϕn ; EXϕn+1 ; . . . ;EXϕn+m ; AXΔ ; Λ
:: HCr :: mrk, uev

ϕ1 ; Δ
:: HCr1 :: mrk1, uev1

| · · · | ϕn ; Δ
:: HCrn :: mrkn, uevn

where:

(1) {p,¬p}
⊆ Λ
(2) n+ m ≥ 1
(3) ∀i ∈ {1, . . . , n}. ∀j ∈ {1, . . . , len(HCr)}. {ϕi} ∪ Δ
= HCr[j]
(4) ∀k ∈ {n+ 1, . . . , n + m}. ∃j ∈ {1, . . . , len(HCr)}. {ϕk} ∪Δ = HCr[j]

with:

HCri := HCr @ [{ϕi} ∪ Δ] for i = 1, . . . , n

mrk :=
∨n

i=1 mrki or
∃i ∈ {1, . . . , n}. ∃ψ ∈ {ϕi} ∪ Δ.⊥
= uevi(ψ) > len(HCr)

uevk(·) := j ∈ {1, . . . , len(HCr)} such that {ϕk} ∪ Δ = HCr[j]
for k = n+ 1, . . . , n+ m

uev(ψ) :=

⎧⎪⎪⎨⎪⎪⎩
uevj(ψ) if ψ ∈ FmlEU & ψ = ϕj (j ∈ {1, . . . , n + m})
l if ψ ∈ FmlAU ∩ Δ &

l = max{uevj(ψ)
= ⊥ | j ∈ {1, . . . , n + m}}
⊥ otherwise

(where max(∅) := ⊥)

38 R. Goré

Some intuitions are in order:

(1) The EX-rule is applicable if the parent node contains no α- or β-formulae
and Λ, which contains propositional variables and their negations only, con-
tains no contradictions.

(2) Both n and m can be zero, but not together.
(3) If n > 0, then each EXϕi for 1 ≤ i ≤ n is not “blocked” by an ancestor, and

has a child containing ϕi;Δ, thereby generating the required EX-successor;
(4) If m > 0, then each EXϕk for n+1 ≤ k ≤ m is “blocked” from creating its

required child ϕk;Δ because some ancestor does the job;
HCri: is just the HCr of the parent but with an extra entry to extend the

“history” of nodes on the path from the root down to the ith child.
mrk: captures the “existential” nature of this rule whereby the parent is marked

if some child is closed or if some child contains a formula whose uev is defined
and “loops” lower than the parent. Moreover, if n is zero, then mrk is set
to false to indicate that this branch is not “closed”.

uevk: for n + 1 ≤ k ≤ n+ m the kth child is blocked by a proxy child higher in
the branch. For every such k we set uevk to be the constant function which
maps every formula to the level of this proxy child. Note that this is just a
temporary function used to define uev as explained next.

uev(ψ): for an EU -formula ψ = E(ψ1 U ψ2) such that there is a principal for-
mula EXϕi with ϕi = ψ, we take uev of ψ from the child if EXψ is “un-
blocked”, or set it to be the level of the proxy child higher in the branch if
it is “blocked”. For an AU -formula ψ = A(ψ1 U ψ2) ∈ Δ, we put uev to be
the maximum of the defined values from the real children and the levels of
the proxy children. For all other formulae, we put uev to be undefined. The
intuition is that a defined uev(ψ) tells us that there is a “loop” which starts
at the parent and eventually “loops” up to some blocking node higher up on
the current branch. The actual value of uev(ψ) tells us the level of the proxy
because we cannot distinguish whether this “loop” is “good” or “bad” until
we backtrack up to that level.

Note that the EX-rule and the id-rule are mutually exclusive since their side-
conditions cannot be simultaneously true.

Proposition 1 (Termination). Let φ ∈ Fml be a formula in negation normal
form. Any tableau T for a node ({φ} :: · · · :: · · ·) is a finite tree, hence the
procedure that builds a tableau always terminates [24].

Let φ ∈ Fml be a formula in negation normal form and T an expanded tableau
with root r = ({φ} :: [] :: mrk, uev): that is, the initial formula set is {φ} and
the initial HCr is the empty list.

Theorem 4 (Soundness and Completeness). The root r is marked iff φ is
not satisfiable [24].

Theorem 5 (Complexity). The tableau algorithm runs in double exponential
deterministic time and needs exponential space [24]..

And-Or Tableaux for Fixpoint Logics with Converse 39

(1) ∧-node
E(p1U p2) ∧ A(⊥B p2)

[] :: true,uev⊥

α ��
(2) AB-node
E(p1 U p2) ; A(⊥B p2)

[] :: true,uev⊥

α

��
(3a) ∧-node
E(p1 U p2) ; ¬p2 ; ¬p0 ∧ p0

[] :: true,uev⊥

α

��

(3) ∨-node
E(p1U p2) ; ¬p2 ; ⊥ ∨AXA(⊥B p2)

[] :: true,uev⊥

β1��

β2

��
(3a’) id-node
E(p1 U p2) ; ¬p2 ; ¬p0 ; p0

[] :: true,uev⊥

(3b) EU -node
E(p1 U p2) ; ¬p2 ; AXA(⊥B p2)

[] :: true,uev⊥

β1

��

β2

��
(4a) id-node
p2 ; ¬p2 ; AXA(⊥B p2)

[] :: true,uev⊥

(4b) EX-node
p1 ; EXE(p1 U p2) ; ¬p2 ; AXA(⊥B p2)

[] :: true, · · ·

��
(5) AB-node
E(p1 U p2) ; A(⊥B p2)
HCR :: false, UEV

Fig. 4. An example: a tableau for E(p1 U p2) ∧A(⊥B p2)

7.2 A Fully Worked Example

As an example, consider the formula E(p1 U p2) ∧ ¬E(�U p2) which is obvi-
ously not satisfiable. Converting the formula into negation normal form gives
us E(p1 U p2)∧A(⊥B p2). Hence, any expanded tableau with root E(p1 U p2)∧
A(⊥B p2) should be marked.

Figure 4 and Fig. 5 show such a tableau where the root node is node (1)
in Fig. 4 and where Fig. 5 shows the sub-tableau rooted at node (5). Each
node is classified as a ρ-node if rule ρ is applied to that node in the tableau.
The unlabelled edges go from states to pre-states. Dotted frames indicate that
the sub-tableaux at these nodes are not shown because they are very simi-
lar to sub-tableaux of other nodes: that is node (6a) behaves the same way
as node (3a). Dots “· · · ” indicate that the corresponding values are not im-
portant because they are not needed to calculate the value of any other his-
tory or variable. The partial function UEV maps the formula E(p1 U p2) to 1
and is undefined otherwise as explained below. The history HCR is defined as
HCR := [{E(p1 U p2), A(⊥B p2)}].

40 R. Goré

(5) AB-node
E(p1U p2) ; A(⊥B p2)
HCR :: false, UEV

α ��
(6) ∨-node
E(p1U p2) ; ¬p2 ; ⊥ ∨AXA(⊥B p2)

HCR :: false, UEV

β1

��

β2

��
(6a) ∧-node
E(p1 U p2) ; ¬p2 ; ¬p0 ∧ p0

HCR :: true,uev⊥

(6b) EU -node
E(p1 U p2) ; ¬p2 ; AXA(⊥B p2)

HCR :: false, UEV

β1

��

β2

��
(7a) id-node
p2 ; ¬p2 ; AXA(⊥B p2)

HCR :: true,uev⊥

(7b) EX-node
p1 ; EXE(p1 U p2) ; ¬p2 ; AXA(⊥B p2)

HCR :: false, UEV

��
blocked by node (5)

Fig. 5. An example: a tableau for E(p1 U p2) ∧ A(⊥B p2) (continued)

The marking of the nodes (1) to (4a) in Fig. 4 with true is straightfor-
ward. Note that ⊥ is just an abbreviation for ¬p0 ∧ p0 to save some space
and make things easier for the reader; the tableau procedure as described in
this paper does not know about the symbol ⊥. It is, however, not a problem to
adapt the rules so that the tableau procedure can handle � and ⊥ directly. For
node (5), our procedure constructs the tableau shown in Fig. 5. The leaf (7b)
is an EX-node, but it is “blocked” from creating the desired successor contain-
ing {E(p1 U p2), A(⊥B p2)} because there is a j ∈ IN such that HCr7b[j] =
HCR[j] = {E(p1 U p2), A(⊥B p2)}: namely j = 1. Thus the EX-rule com-
putes UEV (E(p1 U p2)) = 1 as stated above and also puts mrk7b := false. As
the nodes (7a) and (6a) are marked, the function UEV is passed on to the
nodes (6b), (6), and (5) according to the corresponding β- and α-rules.

The crux of our procedure happens at node (4b) which is an EX-node with
HCr4b = [] and hence len(HCr4b) = 0. The EX-rule therefore finds a child
node (5) and a formula E(p1 U p2) in it such that 1 = UEV (E(p1 U p2)) =
uev5(E(p1 U p2)) > len(HCr4b) = 0. That is, node (4b) “sees” a child (5) that
“loops lower”, meaning that node (5) is the root of an “isolated” subtree which
does not fulfil its eventuality E(p1 U p2). Thus the EX-rule sets mrk4b = true,
marking (4b) as “closed”. The propagation of true to the root is then just via
simple β- and α-rule applications.

And-Or Tableaux for Fixpoint Logics with Converse 41

7.3 One-Pass And-Or Tree Tableaux for Other Fixpoint Logics

One-pass And-Or tree tableaux were first given by Schwendimann [20] for LTL.
There is a slight bug in the original formulation but a correct version can be ob-
tained from our method for CTL by using the appropriate α/β-rules for LTL in-
stead of CTL in our description and by changing the (EX)-rule to be linear since
the premise of this rule becomes ©ϕ;©Δ;Λ and the conclusion just becomes
ϕ;Δ. A correct implementation can be found here: http://users.cecs.anu.
edu.au/~rpg/PLTLProvers/. A recent experimental comparison of it also ex-
ists [25].

One-pass And-Or tree tableaux for PDL also exist [6] and a correct implemen-
tation can be found here: http://users.cecs.anu.edu.au/~rpg/PDLProvers/

The method has been extended to the logic of common knowledge (LCK) [26].

8 On-the-Fly And-Or Graph Tableaux for PDL

The one-pass tableau given in the previous section are complexity-suboptimal:
2exptime rather than exptime. Next we show how to regain complexity opti-
mality. Again, we ignore global assumptions (TBoxes) for simplicity.

Our algorithm starts at a root containing a given formula φ and builds an
and-or tree in a depth-first and left to right manner to try to build a model
for φ. The rules are based on the semantics of PDL and either add formulae
to the current world using Smullyan’s α/β rules from Table 1, or create a new
world in the underlying model and add the appropriate formulae to it. For a
node x, the attribute Γx carries this set of formulae.

The strategy for rule applications is the usual one where we “saturate” a node
using the α/β-rules until they are no longer applicable, giving a “state” node s,
and then, for each 〈a〉ξ in s, we create an a-successor node containing {ξ} ∪ Δ,
where Δ = {ψ | [a]ψ ∈ s}. These successors are saturated to produce new states
using the α/β-rules, and we create the successors of these new states, and so on.

Our strategy can produce infinite branches as the same node can be created
repeatedly on the same branch. We therefore “block” a node from being created
if this node exists already on any previous branch, thereby using global caching
again, but now nodes are required to contain “focused sets of formulae” [6].
For example, in Fig. 6, if the node y′ already exists in the tree, say as node y,
then we create a “backward” edge from x to y (as shown) and do not create y′.
If y′ does not duplicate an existing node then we create y′ and add a “forward”
edge from x to y′. The distinction between “forward” and “backward” edges
is important for the proofs. Thus our tableau is a tree of forward edges, with
backward edges that either point upwards from a node to a “forward-ancestor”,
or point leftwards from one branch to another. Cycles can arise only via backward
edges to a forward-ancestor.

Our tableau must “fulfil” every formula of the form 〈δ〉ϕ in a node but only
eventualities, defined as those where δ contains ∗-connectives, cause problems.
If 〈δ〉ϕ is not an eventuality, the α/β-rules reduce the size of the principal for-
mula, ensuring fulfilment. If 〈δ〉ϕ is an eventuality, the main problem is the

http://users.cecs.anu.edu.au/~{}rpg/PLTLProvers/
http://users.cecs.anu.edu.au/~{}rpg/PLTLProvers/
http://users.cecs.anu.edu.au/~rpg/PDLProvers/

42 R. Goré

rt

done

�����
���

���
���

��

���
�
�

todo

��z

f

��

f

����
��
��
��

todo

��·

f

��

f

����
��
��
��

f

��

todo

��u

f

��

f

����
��
��
��

y

f

��

x

f

��

b
��

todo

		w

b

· v

b

����������
y′

Fig. 6. Graph constructed by our algorithm using forward (f) and backward edges (b)

β-rule for formulae of the form 〈γ∗〉ϕ. Its left child reduces 〈γ∗〉ϕ to a strict sub-
formula ϕ, but the right child “reduces” it to 〈γ〉〈γ∗〉ϕ. If the left child is always
inconsistent, this rule can “procrastinate” an eventuality 〈γ∗〉ϕ indefinitely and
never find a world which makes ϕ true. This non-local property must be checked
globally by tracking eventualities.

Consider Fig. 6, and suppose the current node x contains an eventuality ex. We
distinguish three cases. The first is that some path from x fulfils ex in the existing
tree. Else, the second case is that some path from x always procrastinates the
fulfilment of ex and hits a forward-ancestor of x on the current branch: e.g. the
path x, y, v, u, w, z. The forward-ancestor z contains some “reduction” ez of ex.
The path from the root to the current node x contains the only currently existing
nodes which may need further expansion, and may allow z to fulfil ez at a later
stage, and hence fulfil ex. We call the pair (z, ez) a “potential rescuer” of ex
in Γx. The only remaining case is that ex ∈ Γx is unfulfilled, has no potential
rescuers, and hence can never become fulfilled later, so x can be “closed”. The
machinery to distinguish these three cases and compute, if needed, all currently
existing potential rescuers of every eventuality in Γx is described next.

A tableau node x also contains a status stsx. The value of stsx is the constant
closed if the node x is closed. Otherwise, the node is “open” and stsx contains a

Table 1. Smullyan’s α- and β-notation to classify formulae

α ϕ ∧ ψ [γ ∪ δ]ϕ [γ∗]ϕ 〈ψ?〉ϕ 〈γ; δ〉ϕ [γ; δ]ϕ

α1 ϕ [γ]ϕ ϕ ϕ 〈γ〉〈δ〉ϕ [γ][δ]ϕ

α2 ψ [δ]ϕ [γ][γ∗]ϕ ψ

β ϕ ∨ ψ 〈γ ∪ δ〉ϕ 〈γ∗〉ϕ [ψ?]ϕ

β1 ϕ 〈γ〉ϕ ϕ ϕ

β2 ψ 〈δ〉ϕ 〈γ〉〈γ∗〉ϕ ∼ψ

And-Or Tableaux for Fixpoint Logics with Converse 43

function prs which maps each eventuality ex ∈ Γx to ⊥ or to a set of pairs (v, e)
where v is a forward-ancestor of x and e is an eventuality. The status of a node is
determined from those of its children once they have all been processed. A closed
child’s status is propagated as usual, but the propagation of the function prs from
open children is more complicated. The intuition is that we must preserve the
following invariant for each eventuality ex ∈ Γx:

if ex is fulfilled in the tree to the left of the path from the root to the
node x then prsx(ex) := ⊥, else prsx(ex) is exactly the set of all potential
rescuers of ex in the current tableau.

An eventuality ex ∈ Γx whose prsx(ex) becomes the empty set can never become
fulfilled later, so stsx := closed, thus covering the three cases as desired.

Whenever a node n gets a status closed, we interrupt the depth-first and left-
to-right traversal and invoke a separate procedure which explicitly propagates
this status transitively throughout the and-or graph rooted at n. For example,
if z gets closed then so will its backward-parent w, which may also close u and
so on. This propagation (update) may break the invariant for some eventuality e
in this subgraph by interrupting the path from e to a node that fulfils e or to a
potential rescuer of e. We must therefore ensure that the propagation (update)
procedure re-establishes the invariant in these cases by changing the appropriate
prs entries. At the end of the propagation (update) procedure, we resume the
usual depth-first and left-to-right traversal of the tree by returning the status
of n to its forward-parent. This “on-the-fly” nature guarantees that unfulfilled
eventualities are detected as early as possible.

Our algorithm terminates, runs in exptime, and formula φ is satisfiable iff
the root is open [6].

9 On-the-Fly And-Or Graph Tableaux for CPDL

The methods described in the previous sections can be combined to give a
complexity-optimal on-the-fly And-Or graph tableau method for CPDL but the
extension is non-trivial and cannot really be described without giving an ac-
tual algorithm [7]. An implementation by Florian Widmann can be found here:
http://users.cecs.anu.edu.au/~rpg/CPDLTabProver/

10 Further Work

All methods described here have been implemented (http://users.cecs.anu.
edu.au/~rpg/software.html) but further work is required to add optimisations
to make these methods practical on large examples and to extend them to more
expressive logics like SHOIQ: but see [27, 28]. There is also the possibility to
marry these methods with advances from SAT and SMT [29].

Our original aim in this endeavour was to obtain tableaux algorithms for the
modal mu-calculus but we have been unable to extend our one-pass or on-the-fly

http://users.cecs.anu.edu.au/~rpg/CPDLTabProver/
http://users.cecs.anu.edu.au/~{}rpg/software.html
http://users.cecs.anu.edu.au/~{}rpg/software.html

44 R. Goré

methods to this logic. Similarly, we have been unable to extend our methods to
handle full computation tree logic CTL*. Finally, we have been unable to find a
complexity-optimal and-or graph tableaux method for CTL using our approach.

Tableaux-like methods for both CTL* and the modal mu-calculus have been
given and implemented, and are an exciting avenue for future work [30–33].

References

1. Vardi, M.Y.: From philosophical to industrial logics. In: Ramanujam, R., Sarukkai,
S. (eds.) Logic and Its Applications. LNCS (LNAI), vol. 5378, pp. 89–115. Springer,
Heidelberg (2009)

2. Goré, R., Nguyen, L.A.: EXPTIME tableaux for ALC using sound global caching.
In: Proc. of the International Workshop on Description Logics, DL 2007 (2007)

3. Goré, R.P., Nguyen, L.A.: EXPTIME tableaux with global caching for description
logics with transitive roles, inverse roles and role hierarchies. In: Olivetti, N. (ed.)
TABLEAUX 2007. LNCS (LNAI), vol. 4548, pp. 133–148. Springer, Heidelberg
(2007)

4. Goré, R.P., Postniece, L.: An experimental evaluation of global caching for ALC
(system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 299–305. Springer, Heidelberg (2008)

5. Goré, R., Widmann, F.: Sound global state caching for ALC with inverse roles.
In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS, vol. 5607, pp. 205–219.
Springer, Heidelberg (2009)

6. Goré, R., Widmann, F.: An optimal on-the-fly tableau-based decision procedure
for PDL-satisfiability. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp.
437–452. Springer, Heidelberg (2009)

7. Goré, R., Widmann, F.: Optimal and cut-free tableaux for propositional dynamic
logic with converse. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173,
pp. 225–239. Springer, Heidelberg (2010)

8. Widmann, F.: Tableaux-based Decision Procedures for Fixpoint Logics. PhD the-
sis, The Australian National University, Australia (2010)

9. Goré, R.: Tableau methods for modal and temporal logics. In: D’Agostino, M.,
Gabbay, D.M., Hähnle, R., Posegga, J. (eds.) Handbook of Tableau Methods, pp.
297–396. Kluwer (1999)

10. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P. (eds.):
The Description Logic Handbook: Theory, Implementation and Applications. Cam-
bridge University Press, Cambridge (2003)

11. Pratt, V.R.: A near-optimal method for reasoning about action. Journal of Com-
puter and System Sciences 20(2), 231–254 (1980)

12. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. Jour-
nal of Computer and Systems Science 18, 194–211 (1979)

13. Beth, E.: On Padoa’s method in the theory of definition. Indag. Math. 15, 330–339
(1953)

14. Goré, R., Nguyen, L.: ExpTime tableaux for ALC using sound global caching. In:
C., D., et al. (eds.) Proc. DL 2007, pp. 299–306 (2007)

15. Wolper, P.: Temporal logic can be more expressive. Information and Control 56,
72–99 (1983)

16. Ben-Ari, M., Manna, Z., Pnueli, A.: The temporal logic of branching time. In:
Proceedings of Principle of Programming Langauages (1981)

And-Or Tableaux for Fixpoint Logics with Converse 45

17. Emerson, E.A., Halpern, J.Y.: Decision procedures and expressiveness in the tem-
poral logic of branching time. Journal of Computer and System Sciences 30(1),
1–24 (1985)

18. Horrocks, I., Sattler, U.: A tableaux decision procedure for SHOIQ. In: IJCAI,
pp. 448–453 (2005)

19. Kesten, Y., Manna, Z., McGuire, H., Pnueli, A.: A decision algorithm for full
propositional temporal logic. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697,
pp. 97–109. Springer, Heidelberg (1993)

20. Schwendimann, S.: A new one-pass tableau calculus for PLTL. In: de Swart, H. (ed.)
TABLEAUX 1998. LNCS (LNAI), vol. 1397, pp. 277–291. Springer, Heidelberg
(1998)

21. Janssen, G.: Logics for Digital Circuit Verication: Theory, Algorithms, and Appli-
cations. PhD thesis, Eindhoven University of Technology, The Netherlands (1999)

22. Hustadt, U., Konev, B.: TRP++: A temporal resolution prover. In: Baaz, M.,
Makowsky, J., Voronkov, A. (eds.) Collegium Logicum, pp. 65–79. Kurt Gödel
Society (2004)

23. Baader, F.: Augmenting concept languages by transitive closure of roles: An alter-
native to terminological cycles. In: Proc. IJCAI 1991, pp. 446–451 (1991)

24. Abate, P., Goré, R., Widmann, F.: One-pass tableaux for computation tree logic.
In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp.
32–46. Springer, Heidelberg (2007)

25. Schuppan, V., Darmawan, L.: Evaluating LTL satisfiability solvers. In: Bultan,
T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 397–413. Springer,
Heidelberg (2011)

26. Abate, P., Goré, R., Widmann, F.: Cut-free single-pass tableaux for the logic of
common knowledge. In: Workshop on Agents and Deduction at TABLEAUX (2007)

27. Nguyen, L.A., Golinska-Pilarek, J.: An exptime tableau method for dealing with
nominals and quantified number restrictions in deciding the description logic
SHOQ. In: CS&P, pp. 296–308 (2013)

28. Nguyen, L.A.: A tableau method with optimal complexity for deciding the descrip-
tion logic SHIQ. In: Nguyen, N.T., van Do, T., Thi, H.A. (eds.) ICCSAMA 2013.
SCI, vol. 479, pp. 331–342. Springer, Heidelberg (2013)

29. Suda, M., Weidenbach, C.: A pltl-prover based on labelled superposition with par-
tial model guidance. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012.
LNCS (LNAI), vol. 7364, pp. 537–543. Springer, Heidelberg (2012)

30. Jungteerapanich, N.: A tableau system for the modal μ-calculus. In: Giese, M.,
Waaler, A. (eds.) TABLEAUX 2009. LNCS (LNAI), vol. 5607, pp. 220–234.
Springer, Heidelberg (2009)

31. Friedmann, O., Latte, M., Lange, M.: A decision procedure for CTL∗ based on
tableaux and automata. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS,
vol. 6173, pp. 331–345. Springer, Heidelberg (2010)

32. Friedmann, O., Lange, M.: A solver for modal fixpoint logics. Electr. Notes Theor.
Comput. Sci. 262, 99–111 (2010)

33. Reynolds, M.: A faster tableau for CTL*. In: GandALF, pp. 50–63 (2013)

Unified Classical Logic Completeness
A Coinductive Pearl

Jasmin Christian Blanchette1, Andrei Popescu1,2, and Dmitriy Traytel1

1 Fakultät für Informatik, Technische Universität München, Germany
2 Institute of Mathematics Simion Stoilow of the Romanian Academy, Bucharest, Romania

Abstract. Codatatypes are absent from many programming and specification
languages. We make a case for their importance by revisiting a classical result:
the completeness theorem for first-order logic established through a Gentzen sys-
tem. The core of the proof establishes an abstract property of possibly infinite
derivation trees, independently of the concrete syntax or inference rules. This sep-
aration of concerns simplifies the presentation. The abstract proof can be instan-
tiated for a wide range of Gentzen and tableau systems as well as various flavors
of first-order logic. The corresponding Isabelle/HOL formalization demonstrates
the recently introduced support for codatatypes and the Haskell code generator.

1 Introduction

Gödel’s completeness theorem [12] is a major result about first-order logic (FOL). It
forms the basis of results and techniques in various areas, including mathematical logic,
automated deduction, and program verification. It can be stated as follows: If a set of
formulas is syntactically consistent (i.e., no contradiction arises from it), then it has
a model. The theorem enjoys many accounts in the literature that generalize and sim-
plify the original proof; indeed, a textbook on mathematical logic would be incomplete
without a proof of this fundamental theorem.

Formal logic has always been a battleground between semantic and syntactic meth-
ods. Generally, mathematicians belong to the semantic school, whereas computer sci-
entists tend to take the other side of the argument. The completeness theorem, which
combines syntax and semantics, is also disputed, with the result that each school has its
own proof. In his review of Gallier’s Logic for Computer Science [11], Pfenning notes
the following [29]:

All too often, proof-theoretic methods are neglected in favor of shorter, and
superficially more elegant semantic arguments. [In contrast, in Gallier’s book]
the treatment of the proof theory of the Gentzen system is oriented towards
computation with proofs. For example, a pseudo-Pascal version of a complete
search procedure for first-order cut-free Gentzen proofs is presented.

In the context of completeness, the “superficially more elegant semantic arguments” are
proofs that rely on Hilbert systems. These systems have several axioms but only one or
two deduction rules, providing minimal support for presenting the structure of proofs or
for modeling proof search. A proof of completeness based on Hilbert systems follows
the Henkin style: It employs a heavy bureaucratic apparatus to establish facts about
deduction and conservative language extensions, culminating in a nonconstructive step:

S. Demri, D. Kapur, and C. Weidenbach (Eds.): IJCAR 2014, LNAI 8562, pp. 46–60, 2014.
c© Springer International Publishing Switzerland 2014

Unified Classical Logic Completeness 47

an application of Zorn’s lemma to extend any syntactically consistent set of formulas to
a maximally consistent one, from which a model is produced.

In contrast, a proof of completeness based on more elaborate Gentzen or tableau sys-
tems follows the Beth–Hintikka style [20]. It performs a search that builds either a finite
deduction tree yielding a proof (or refutation, depending on the system) or an infinite
tree from which a countermodel (or model) can be extracted. Such completeness proofs
have an intuitive content that stresses the tension of the argument: The deduction system
systematically tries to prove the goal; a failure yields, at the limit, a countermodel.

The intuitive appeal of the Beth–Hintikka approach comes at a price: It requires
reasoning about infinite derivation trees and infinite paths. Unfortunately, convenient
means to reason about infinite (or lazy) data structures are lacking in mainstream math-
ematics. In textbooks, at best the trees are defined rigorously (e.g., as prefix-closed
sets), but the reasoning relies on the intuitive notion of trees, as Gallier does. One could
argue that trees are intuitive and do not need a formal treatment, but the same holds for
the syntax of formulas, which is treated very rigorously in most of the textbooks.

This paper presents a rigorous Beth–Hintikka-style proof of the completeness theo-
rem, based on a Gentzen system. The potentially infinite trees are captured by codata-
types (also called coinductive datatypes or final coalgebras) [18]. Another novel aspect
of the proof is its modularity: The core tree construction argument is isolated from the
proof system and concrete formula syntax (Section 3). The abstract proof can be in-
stantiated for a wide range of Gentzen and tableau systems as well as various flavors of
FOL (Sections 4 and 5). This modularization replaces the textbook proofs by analogy.
The core of the argument amounts to reasoning about a lazy functional program.

The proof is formalized in Isabelle/HOL [28] (Section 6). The tree construction
makes use of a new definitional package for codatatypes [5], which automates the
derivation of characteristic theorems from specifications of the constructors. Through
Isabelle’s code generator [14], the corecursive construction gives rise to a Haskell pro-
gram that implements a semidecision procedure for validity instantiable with various
proof systems, yielding verified sound and complete provers.

Conventions. Isabelle/HOL is a proof assistant based on classical higher-order logic
(HOL) with Hilbert choice, the axiom of infinity, and rank-1 polymorphism. It is the
logic of Gordon’s original HOL system and of its many successors [13]. HOL notations
are a mixture of functional programming and mathematics. We refer to Nipkow and
Klein [27] for a modern introduction. In this paper, the logic is viewed as a framework
for expressing mathematics, much like set theory is employed by working mathemati-
cians. In keeping with the standard semantics of HOL, types α are identified with sets.

2 A Gentzen System for First-Order Logic

We fix a first-order language: a countably infinite set var of variables x, y, z and count-
able sets fsym and psym of function symbols f and predicate symbols p together with an
assignment ar : fsym � psym → nat of numeric arities. Terms t ∈ term are symbolic ex-
pressions built inductively from variables by application of function symbols f ∈ fsym
to tuples of arguments whose lengths respect the arities: f (t1, . . . , t ar f). Atoms a∈ atom
are expressions of the form p(t1, . . . , t ar p), where p ∈ psym and t1, . . . , t ar p ∈ term.

48 J.C. Blanchette, A. Popescu, and D. Traytel

Formulas ϕ, ψ may be atoms, negations, conjunctions, or universal quantifications.
They are defined as follows:

datatype fmla = Atm atom | Neg fmla | Conj fmla fmla | All var fmla

A structure S =
(
S, (Ff) f ∈ fsym, (Pp)p∈ psym

)
for the given language consists of

a carrier set S, together with a function Ff : Sn → S for each n-ary f ∈ fsym and a
predicate Pp : Sn → bool for each n-ary p ∈ psym. The notions of interpretation of
a term t and satisfaction of a formula ϕ by a structure S with respect to a variable
valuation ξ : var → S are defined in the standard way. For terms:

�x�Sξ = ξ x � f (t1, . . . , tn)�Sξ = Ff
(�t1�Sξ , . . . , �tn�Sξ)

For atoms: S |=ξ p(t1, . . . , tn) iff Pp
(�t1�Sξ , . . . , �tn�Sξ

)
. For formulas:

S |=ξ Atm a iff S |=ξ a S |=ξ Conj ϕ ψ iff S |=ξ ϕ ∧ S |=ξ ψ
S |=ξ Neg ϕ iff S
|=ξ ϕ S |=ξ All x ϕ iff ∀a∈S. S |=ξ[x←a] ϕ

The following substitution lemma relates the notions of satisfaction and capture-
avoiding substitution ϕ[t/x] of a term t for a variable x in a formula ϕ:

Lemma 1. S |=ξ ϕ[t/x] iff S |=ξ[x← �t�Sξ] ϕ.

A sequent is a pair Γ � Δ of finite formula sets. Satisfaction is extended to sequents:
S |=ξ Γ � Δ iff (∀ϕ∈Γ. S |=ξ ϕ) ⇒ (∃ψ∈Δ. S |=ξ ψ).

The proof system on sequents is defined inductively as follows, where the notation
Γ, ϕ abbreviates the set Γ∪{ϕ}:

AX
Γ, Atm a � Δ, Atm a

Γ � Δ, ϕ
NEGL

Γ, Neg ϕ � Δ

Γ, ϕ � Δ
NEGR

Γ � Δ, Neg ϕ

Γ, ϕ, ψ � Δ
CONJL

Γ, Conj ϕ ψ � Δ

Γ � Δ, ϕ Γ � Δ, ψ
CONJR

Γ � Δ, Conj ϕ ψ

Γ, All x ϕ, ϕ[t/x] � Δ
ALLL

Γ, All x ϕ � Δ

Γ � Δ, ϕ[y/x] ALLR
(y fresh)Γ � Δ, All x ϕ

The rules are applied from bottom to top. One chooses a formula from either side of
the sequent, the eigenformula, and applies a rule according to the topmost connective
or quantifier. For a given choice of eigenformula, at most one rule is applicable. The
aim of applying the rules is to prove the sequent by building a finite derivation tree
whose branches are closed by an axiom (AX). The completeness theorem states that
any sequent Γ � Δ either is provable (denoted by �) or has a countermodel, i.e., a
structure S and a valuation ξ that falsify it: � Γ � Δ ∨ (∃S , ξ. S
|=ξ Γ � Δ).

3 Abstract Completeness

The proof of the completeness theorem is divided in two parts. The first part, described
in this section, focuses on the core of the completeness argument in an abstract, syntax-
free manner. This level captures the tension between the existence of a proof or of an
abstract notion of countermodel; the latter is introduced through what we call an escape

Unified Classical Logic Completeness 49

path—an infinite sequence of rule applications that “escapes” the proof attempt. The
tension is distilled in a completeness result: Either there exists a finite derivation tree or
there exists an infinite derivation tree with a suitable escape path. The second part maps
the abstract escape path to a concrete, proof-system-specific countermodel. Section 4
performs this connection for the Gentzen system presented in Section 2.

Rule Systems. We abstract away the syntax of formulas and sequents and the specific
rules of the proof system. We fix countable sets state and rule for states and rules. A
state represents a formal statement in the logic. We assume that the meaning of the
rules is given by an effect relation eff : rule → state → state fset → bool, where α fset
denotes the set of finite subsets of α. The reading of eff r s ss is as follows: Starting
from state s, applying rule r expands s into the states ss. The triple R = (state, rule, eff)
forms a rule system.

Example 1. The Gentzen system from Section 2 can be presented as a rule system. The
set state is the set of sequents, and rule consists of the following: a rule AXa for each
atom a; rules NEGLϕ and NEGRϕ for each formula ϕ; rules CONJLϕ,ψ and CONJRϕ,ψ
for each pair of formulas ϕ and ψ; a rule ALLLx,ϕ,t for each variable x, formula ϕ, and
term t; and a rule ALLRx,ϕ for each variable x and formula ϕ.

The eigenformula is part of the rule. Hence we have a countably infinite number of
rules. The effect is defined as follows, where semicolons (;) separate set elements:

eff AXa (Γ,Atm a � Δ,Atm a) /0
eff NEGRϕ (Γ � Δ, Neg ϕ) {Γ, ϕ� Δ}
eff NEGLϕ (Γ,Neg ϕ� Δ) {Γ� Δ, ϕ}
eff CONJLϕ,ψ (Γ,Conj ϕ ψ� Δ) {Γ, ϕ, ψ� Δ}
eff CONJRϕ,ψ (Γ � Δ, Conj ϕ ψ) {Γ � Δ, ϕ; Γ � Δ, ψ}
eff ALLLx,ϕ,t (Γ,All x ϕ� Δ) {Γ,All x ϕ, ϕ[t/x]� Δ}
eff ALLRx,ϕ (Γ � Δ, All x ϕ) {Γ � Δ, ϕ[y/x]} where y is fresh for Γ and All x ϕ

Derivation Trees. Possibly infinite trees are represented by the following codatatype:

codatatype α tree = Node (lab: α) (sub: (α tree) fset)

This definition introduces a constructor Node : α→ (α tree) fset → α tree and two se-
lectors lab : α tree → α, sub : α tree → (α tree) fset. Trees have the form Node a Ts,
where a is the tree’s label and Ts is the finite set of its (immediate) subtrees. The
codatatype keyword indicates that, unlike for inductive datatypes, this tree formation
rule may be applied an infinite number of times.

A step combines the current state and the rule to be applied: step = state× rule.
Derivation trees are defined as trees labeled by steps, dtree = step tree, in which the
root’s label (s, r) represents the proved goal s and the first (backward) applied rule r.
The well-formed derivation trees are captured by the predicate wf : dtree→ bool defined
by the coinductive rule

eff r s (image (fst◦ lab) Ts) ∀T ∈Ts. wf T
WF

wf (Node (s, r) Ts)

50 J.C. Blanchette, A. Popescu, and D. Traytel

(Double lines distinguish coinductive rules from their inductive counterparts.) Thus, the
predicate wf is the greatest (weakest) solution to

wf (Node (s, r) Ts)⇐⇒ eff r s (image (fst◦ lab) Ts) ∧ (∀T ∈Ts. wf T)

The term image f A denotes the image of set A through function f , and fst is the left
projection operator (i.e., fst (x, y) = x).

The first assumption requires that the rule r from the root be applied to obtain the
subtrees’ labels. The second assumption requires that wellformedness hold for the im-
mediate subtrees. The coinductive nature of the definition ensures that these properties
hold for arbitrarily deep subtrees of T , even if T has infinite paths.

Proofs. The finite derivation trees—the trees that would result from an inductive data-
type definition with the same constructors—can be carved out of the codatatype dtree
using the predicate finite defined inductively (i.e., as a least fixpoint) by the rule

∀T ∈Ts. finite T
FIN

finite (Node (s, r) Ts)

A proof of a state s is a finite well-formed derivation tree with the state s at its root. An
infinite well-formed derivation tree represents a failed proof attempt.

Example 2. Given the instantiation of Example 1, Figure 1 shows a finite derivation
tree for the sequent All x (p(x)) � Conj (p(y)) (p(z)) written using the familiar syntax
for logical symbols. Figure 2 shows an infinite tree for the same sequent.

Escape Paths. An infinite path in a derivation tree can be regarded as a way to “escape”
the proof. To represent infinite paths independently of trees, we introduce the codatatype
of streams over a type α with the constructor SCons and the selectors shead and stail:

codatatype α stream = SCons (shead: α) (stail: α stream)

AXp(y)
∀x. p(x), p(y) � p(y)

ALLLx,p(x),y
∀x. p(x) � p(y)

AXp(z)
∀x. p(x), p(z) � p(z)

ALLLx,p(x),z
∀x. p(x) � p(z)

CONJRp(y), p(z)
∀x. p(x) � p(y)∧ p(z)

Fig. 1. A proof

AXp(y)
∀x. p(x), p(y) � p(y)

ALLLx,p(x),y
∀x. p(x) � p(y)

...
ALLLx,p(x),y

∀x. p(x), p(y) � p(z)
ALLLx,p(x),y

∀x. p(x), p(y) � p(z)
ALLLx,p(x),y

∀x. p(x) � p(z)
CONJRp(y), p(z)

∀x. p(x) � p(y)∧ p(z)

Fig. 2. A failed proof attempt

Unified Classical Logic Completeness 51

The coinductive predicate ipath : dtree → step stream → bool ascertains whether a
stream of steps is an infinite path in a tree:

T ∈ Ts ipath T σ
IPATH

ipath (Node (s, r) Ts) (SCons (s, r) σ)

An escape path is a stream of steps that can form an infinite path in a derivation tree.
It is defined coinductively as the predicate epath : step stream → bool, which requires
that every element in the given stream be obtained by applying an existing rule and
choosing one of the resulting states:

eff r s ss s′ ∈ ss epath (SCons (s′, r ′) σ)
EPATH

epath (SCons (s, r) (SCons (s′, r ′) σ))

The following lemma is easy to prove by coinduction.

Lemma 2. For any stream σ and tree T , if wf T and ipath σ T, then epath σ.

Example 3. The stream

(∀x. p(x)� p(y)∧ p(z)) · (∀x. p(x)� p(z)) · (∀x. p(x), p(y)� p(z))∞

where s ·σ= SCons s σ and s∞ = s · s · . . . is an escape path for the tree of Figure 2.

Since the trees are finitely branching, König’s lemma applies. Its proof allows us to
study a first simple corecursive definition.

Lemma 3. If the tree T is infinite, there exists an infinite path σ in T .

Proof. By the contrapositive of FIN, if Node (s, r) Ts is infinite, there exists an infinite
subtree T ∈ Ts. Let f : {T ∈ dtree. ¬ finite T} → {T ∈ dtree. ¬ finite T} be a func-
tion witnessing this fact—i.e., f T is an immediate infinite subtree of T . The desired
infinite path p : {T ∈dtree. ¬ finite T} → step stream can be defined by primitive co-
recursion over the codatatype of streams: p T = SCons (lab T) (p (f T)). The predicate
ipath (p T) T holds by straightforward coinduction on the definition of ipath. �

Countermodel Paths. A countermodel path is a structure that witnesses the unprov-
ability of a state s. Any escape path starting in s is a candidate for a countermodel path,
given that it indicates a way to apply the proof rules without reaching any result. For it
to be a genuine countermodel path, all possible proofs must have been attempted. More
specifically, whenever a rule becomes enabled along the escape path, it is eventually
applied later in the sequence. For FOL with sequents as states, such paths can be used
to produce actual countermodels by interpreting as true (resp. false) all statements made
along the path on the left (resp. right) of the sequents.

A rule r is enabled in a state s if it has an effect (i.e., ∃ss. eff r s ss). This is written
enabled r s. For any rule r, stream σ, and predicate P : α stream → bool:

• takenr σ iff r is taken at the start of the stream (i.e., shead σ= (s, r) for some s);
• enabledAtr σ iff r is enabled at the beginning of the stream (i.e., if sheadσ=(s, r ′),

then enabled r s);

52 J.C. Blanchette, A. Popescu, and D. Traytel

...
ALLLx,p(x),t4∀x. p(x), p(t1), p(t2), p(t3) � q(y)
ALLLx,p(x),t3∀x. p(x), p(t1), p(t2) � q(y)

ALLLx,p(x),t2∀x. p(x), p(t1) � q(y)
ALLLx,p(x),t1∀x. p(x) � q(y)

Fig. 3. A derivation tree with a countermodel path

• ev P σ (“eventually P”) iff P is true for some suffix of σ;
• alw P σ (“always P”) iff P is true for all suffixes of σ.

A stream of steps σ is saturated if, at each point, any enabled rule is taken at a later
point: ∀r∈ rule. alw (λσ′. enabledAtr σ

′ ⇒ ev takenr σ
′) σ. A countermodel path for

a state s is a saturated escape path σ starting at s (i.e., shead σ= (s, r) for some r).

Example 4. The escape path given in Example 3 is not saturated, because the rule
ALLLx,p(x),z is enabled starting from the first position but never taken.

Example 5. The escape path associated with the tree of Figure 3 is a countermodel
path for ∀x. p(x) � q(y), assuming that each possible term occurs infinitely often in the
sequence t1, t2, The only enabled rules along the path are of the form ALLLx,p(x),_,
and each is always eventually taken.

Completeness. For the proof of completeness, we assume that the set of rules satisfies
the following properties:

• Availability: At each state, at least one rule is enabled (i.e., ∀s. ∃r. enabled r s).
• Persistence: At each state, if a rule is enabled but not taken, it remains enabled (i.e.,
∀s, r, r ′, s′, ss. enabled r ′ s ∧ r′
= r ∧ eff r s ss ∧ s′ ∈ set ss ⇒ enabled r ′ s′).

(We will later remove the first condition with Theorem 6.) The above conditions are
local properties of the rules’ effect, not global properties of the proof system. This
makes them easy to verify for particular systems.

Saturation is a stronger condition than the standard properties of fairness and justice
[10]. Fairness would require the rules to be continuously enabled to guarantee that they
are eventually taken. The property of justice is stronger in that it would require the rules
to be enabled infinitely often, but not necessarily continuously. Saturation goes further:
If a rule is ever enabled, it will certainly be chosen at a later point. Saturation may seem
too strong for the task at hand; however, in the presence of persistence, the notions of
fairness, justice, and saturation all coincide.

Theorem 4. Given a rule system that fulfills availability and persistence, every state
admits a proof or a countermodel path.

Proof. The proof uses the following combinators:

• stake : α stream→ nat→ α list maps ρ and n to the list of the first n elements of ρ;
• smap : (α→ β)→ α stream → β stream maps f to every element of the stream;

Unified Classical Logic Completeness 53

• nats : nat stream denotes the stream of natural numbers: 0 ·1 ·2 ·3 · . . . ;
• flat : (α list) stream→α stream maps a stream of finite nonempty lists to the stream

obtained by concatenating those lists;
• sdropWhile : (α→ bool)→ α stream → α stream removes the maximal prefix of

elements that fulfill a given predicate from a given stream (or returns an irrelevant
default value if the predicate holds for all elements of the stream).

We start by constructing a stream of rules fenum in a fair fashion, so that ev-
ery rule occurs infinitely often in fenum. Let enum be a stream such that its ele-
ments cover the entire set rule (which is required to be countable). Take fenum =
flat (smap (stake enum) (stail nats)). Thus, if enum = r1 · r2 · r3 · . . . , then fenum =
r1 · r1 · r2 · r1 · r2 · r3 ·

Let s be a state. Using fenum, we build a derivation tree T0 labeled with s such
that all its infinite paths are saturated. Let fair be the subset of rule stream consist-
ing of the fair streams. Clearly, any suffix of an element in fair also belongs to fair.
In particular, fenum and all its suffixes belong to fair. Given ρ ∈ fair and s ∈ state,
sdropWhile (λr. ¬ enabled r s) ρ has the form SCons r ρ′, making r the first enabled
rule in ρ. Such a rule exists because, by availability, at least one rule is enabled in
s and, by fairness, all the rules occur in ρ. Since enabled r s, we can pick a state
set ss such that eff r s ss. We define mkTree : fair → state → dtree corecursively as
mkTree ρ s = Node (s, r) (image (mkTree ρ′) ss).

We prove that, for all ρ ∈ fair and s, the derivation tree mkTree ρ s is well formed
and all its infinite paths are saturated. Wellformedness is obvious because at each point
the continuation is built starting with the effect of a rule. For saturation, we show that if
rule r is enabled at state s and ipath (mkTree ρ s) σ, then r appears along σ (i.e., there
exists a state s′ such that (s′, r) is in σ). This follows by induction on the position of r
in ρ, pos r ρ—formally, the length of the shortest list ρ0 such that ρ= ρ0 @SCons r _,
where @ denotes concatenation. Let r′ be the first rule from ρ enabled at state s. If
r = r′, then mkTree ρ s has label (s, r) already. Otherwise, ρ has the form ρ1 @ [r′]@ρ′,
with r not in ρ1, hence pos r ρ′ < pos r ρ. From the definitions of ipath and mkTree, it
follows that ipath (mkTree ρ′ s′) (stail σ) holds for some s′ ∈ ss such that eff r s′ ss. By
the induction hypothesis, r appears along stailσ, hence alongσ as desired. In particular,
T0 = mkTree fenum s is well formed and all its infinite paths are saturated.

Finally, if T0 is finite, it is the desired finite derivation tree. Otherwise, by Lemma 3
(König) it has an infinite path. This path is necessarily saturated; by Lemma 2, it is the
desired countermodel path. �

Theorem 4 captures the abstract essence of arguments from the literature, although
this is sometimes hard to grasp under the thick forest of syntactic details and concrete
strategies for fair enumeration: A fair tree is constructed, which attempts a proof; in
case of failure, the tree exhibits a saturated escape path.

If we are not interested in witnessing the proof attempt closely, Theorem 4 can be
established more directly by bulding the fair path without going through an intermedi-
ate fair tree. The key observation is that if a state s has no proof and eff r s ss, there
must exist a state s′ ∈ ss that has no proof. (Otherwise, we could compose the proofs
of all s′ into a proof of s by applying rule r.) Let pick r s ss denote such an s′. We pro-
ceed directly to the construction of a saturated escape path as a corecursive predicate

54 J.C. Blanchette, A. Popescu, and D. Traytel

mkPath : fair → {s ∈ state. s has no proof}→ step stream following the same idea as
for the previous tree construction: mkPath ρ s= SCons (s, r) (mkPath ρ′ (pick r s ss)),
where again SCons r ρ′ = sdropWhile (λr. ¬ enabled r s) ρ and ss is such that eff r s ss.
Fairness of mkPath ρ s follows by a similar argument as before for fairness of the tree.

Omitting the Availability Assumption. The above result assumes availability and
persistence. Among these assumptions, persistence is essential: It ensures that the con-
structed fair path is saturated, meaning that every rule available at any point is eventually
applied. Availability can be added later to the system without affecting its behavior by
introducing a special “idle” rule.

Lemma 5. A rule system R = (state, rule, eff) that fulfills persistence can be trans-
formed into an equivalent rule system Ridle = (state, ruleidle, effidle) that fulfills both
persistence and availability, with ruleidle = rule ∪ {IDLE} and effidle behaving like eff
on rule and effidle IDLE s ss ⇐⇒ ss = {s}.

Proof. Availability for the modified system follows from the continuous enabledness of
IDLE. Persistence follows from the persistence of the original system together with the
property that IDLE is continuously enabled and does not alter the state. The modified
system is equivalent to the original one because IDLE does not alter the state. �

Theorem 6. Given a rule system R that fulfills persistence, every state admits a proof
over R or a countermodel path over Ridle.

Proof. We first apply Theorem 4 to the system Ridle to obtain that every state admits
either a proof or a countermodel path, both in this system. And since R and Ridle are
equivalent, any proof of Ridle yields one of R. �

4 Concrete Completeness

The abstract completeness proof is parameterized by a rule system. This section con-
cretizes the result for the Gentzen system from Section 2 to derive the standard com-
pleteness theorem. Example 1 recast it as a rule system; we must verify that it fulfills
persistence and interpret abstract countermodel paths as actual FOL countermodels.

The Gentzen rules are persistent because they preserve the context surrounding the
eigenformulas. For example, an application of AXa (which affects only the atom a)
leaves any potential enabledness of ALLLx,ϕ,t (which affects only formulas with All
at the top) unchanged; moreover, AXa does not overlap with AXb for a
= b. A minor
subtlety concerns ALLRx,ϕ, which requires the existence of a fresh y; but since the
sequents are finite, we can always find a fresh variable in the infinite set var.

On the other hand, availability does not hold for the proof system; for example, the
sequent p(x) � q(x) has no enabled rule. Hence, we need Theorem 6 and its IDLE rule.

Lemma 7. If Γ � Δ admits a countermodel path, there exist a structure S and a
valuation ξ : var→ S such that S
|=ξ Γ � Δ.

Proof. Let σ be a countermodel path for Γ � Δ (i.e., a saturated escape path with Γ � Δ
as the first state). Let Γ̃ be the union of the left-hand sides of sequents occurring in σ,

Unified Classical Logic Completeness 55

and let Δ̃ be the union of the corresponding right-hand sides. Clearly, Γ ⊆ Γ̃ and Δ ⊆ Δ̃.
The pair (Γ̃, Δ̃) can be shown to be well behaved with respect to all the connectives and
quantifiers in the following sense:

1. For all atoms a, Atm a /∈ Γ̃∩ Δ̃.
2. If Neg ϕ ∈ Γ̃, then ϕ ∈ Δ̃.
3. If Neg ϕ ∈ Δ̃, then ϕ ∈ Γ̃.
4. If Conj ϕ ψ ∈ Γ̃, then ϕ ∈ Γ̃ and ψ ∈ Γ̃.

5. If Conj ϕ ψ ∈ Δ̃, then ϕ ∈ Δ̃ or ψ ∈ Δ̃.
6. If All x ϕ ∈ Γ̃, then ϕ[t/x] ∈ Γ̃ for all t.
7. If All x ϕ ∈ Δ̃, there exists a variable y

such that ϕ[y/x] ∈ Δ̃.

These properties follow from the saturation ofσwith respect to the corresponding rules.
The proofs are routine. For example, if All x ϕ ∈ Γ̃ and t is a term, ALLLx,ϕ,t is enabled
in σ and hence eventually taken, ensuring that ϕ[t/x] ∈ Γ̃.

We construct the concrete (Herbrand) countermodel S = (S, F, P) as follows. Let
the domain S be the set term, and let ξ be the embedding of variables into terms. For
each n-ary f and p and each t1, . . . , tn ∈ S , we define Ff (t1, . . . , tn) = f (t1, . . . , tn) and
Pp (t1, . . . , tn)⇐⇒ p(t1, . . . , tn) ∈ Γ̃.

To prove S
|=ξ Γ � Δ, it suffices to show that ∀ϕ∈ Γ̃. S |=ξ ϕ and ∀ϕ∈ Δ̃. S
|=ξ ϕ.
These two facts follow together by induction on the depth of ϕ. In the base case, if
Atm a ∈ Γ̃, then S |=ξ Atm a follows directly from the definition of S ; moreover,
if Atm a ∈ Δ̃, then by property 1 Atm a
∈ Γ̃, hence again S
|=ξ Atm a follows from
the definition of S. The only nontrivial inductive case is All, which requires Lemma 1
(substitution). Assume All x ϕ ∈ Γ̃. By property 6, we have ϕ[t/x] ∈ Γ̃ for any t. Hence,
by the induction hypothesis, S |=ξ ϕ[t/x]. By Lemma 1, S |=ξ[x←t] ϕ for all t; that is,
S |=ξ All x ϕ. The second fact, concerning Δ̃, follows similarly from property 7. �

Theorem 8. For any sequent Γ � Δ, we have � Γ � Δ ∨ (∃S , ξ.S
|=ξ Γ � Δ).

Proof. From Theorem 6 and Lemma 7. �

The rule ALLL from Section 2 stores, in the left context, a copy of the universal formula
All x ϕ when applied backward. This is crucial for concrete completeness since a fair
enumeration should try all the t instances of the universally quantified variable x, which
requires availability of All x ϕ even after its use. If we labeled ALLL as ALLLx,ϕ instead
of ALLLx,ϕ,t , thereby delegating the choice of t to the nondeterminism of eff, the system
would still be persistent as required by the abstract completeness proof, but Lemma 7
(and hence concrete completeness) would not hold—more specifically, property 6 from
the lemma’s proof would fail.

5 Further Concrete Instances

Theorem 6 is applicable to classical FOL Gentzen systems from the literature, in several
variants: with sequent components represented as lists, multisets or sets, one-sided or
two-sided, and so on. This includes the systems G′, GCNF′, G, and G= from Gallier
[11] and the systems G1, G2, G3, GS1, GS2, and GS3 from Troelstra and Schwichten-
berg [37]. Persistence is easy to check. The syntax-independent part of the argument
is provided by Theorem 6, while an ad hoc step analogous to Lemma 7 is required to
build a concrete countermodel.

56 J.C. Blanchette, A. Popescu, and D. Traytel

Several FOL refutation systems based on tableaux or resolution are instances of
the abstract theorem, providing that we read the abstract notion of “proof” as “refuta-
tion” and “countermodel” as “model.” Nondestructive tableaux [15]—including those
presented in Bell and Machover [1] and in Fitting [9]—are usually persistent when
regarded as derivation systems. After an application of Theorem 6, the argument for
interpreting the abstract model is similar to that for Gentzen systems (Lemma 7).

Regrettably, abstract completeness is not directly applicable beyond classical logic.
It is generally not clear how to extract a specific model from a nonstandard logic from
an abstract (proof-theoretic) model. Another issue is that standard sequent systems for
nonclassical variations of FOL such as modal or intuitionistic logics do not satisfy per-
sistence. A typical right rule for the modal operator � (“must”) is as follows [37]:

� Γ � ♦ Δ, ϕ
MUSTR� Γ � ♦ Δ,� ϕ

To be applicable, the rule requires that all the formulas in the context surrounding the
eigenformula have � or ♦ at the top. Other rules may remove these operators, or intro-
duce formulas that do not have them, thus disabling MUSTR.

Recent work targeted at simplifying completeness arguments [26] organizes modal
logics as labeled transition systems, for which Kripke completeness is derived. In the
proposed systems, the above rule becomes

Γ, w R w′ � Δ, w′ : ϕ MUSTR′

(w′ fresh)Γ � Δ, w : � ϕ

The use of labels for worlds (w,w′) and the bookkeeping of the accessibility relation R
makes it possible to recast the rule so that only resilient facts are ever assumed about
the context. The resulting proof system satisfies persistence, enabling Theorem 6. The
Kripke countermodel construction is roughly as for classical FOL Gentzen systems.

6 Formalization and Implementation

The definitions, lemmas, and theorems presented in Sections 2 to 4 are formalized in
the proof assistant Isabelle/HOL. The instantiation step of Section 4 is formalized for a
richer version of FOL, with sorts and interpreted equality, as required by our motivating
application (efficient encodings of sorts in unsorted FOL [4]). The formal development
is publicly available [6, 7].

The necessary codatatypes and corecursive definitions are realized using a recently
introduced definitional package [5]. The tree codatatype illustrates the support for core-
cursion through permutative data structures (with non-free constructors) such as finite
sets, a feature that is not available in any other proof assistant.

For generating code, we make the additional assumption that the effect relation cor-
responds to a partial function eff′ : rule→ state→ (state fset) option, where the Isabelle
datatype α option enriches a copy of α with a special value None.1 From this function,

1 In the proof system from Example 1, eff is not deterministic due to the rule ALLR. It can be
made deterministic by refining the rule with a systematic choice of the fresh variable y.

Unified Classical Logic Completeness 57

we build the relational eff as the partial function’s graph. Isabelle’s code generator [14]
can then produce Haskell code for the computable part of our completeness proof—the
abstract prover mkTree, defined corecursively in the proof of Theorem 4:

data Stream a = SCons a (Stream a)

newtype FSet a = FSet [a]

data Tree a = Node a (FSet (Tree a))

fmap f (FSet xs) = FSet (map f xs)

sdropWhile p (SCons a σ) =

if p a then sdropWhile p σ else SCons a σ

mkTree eff ρ s =

Node (s, r) (fmap (mkTree eff ρ’) (fromJust (eff r s)))

where SCons r ρ’ = sdropWhile (\r -> not (isJust (eff r s))) ρ

Finite sets are represented as lists. The functions isJust :α option→ bool and fromJust :
α option→ α are the Haskell-style discriminator and selector for option. Since the Isa-
belle formalization is parametric over rule systems (state, rule, eff), the code for mkTree
explicitly takes eff as a parameter.

Although the code generator was not designed with codatatypes in mind, it is gen-
eral enough to handle them. Internally, it reduces Isabelle specifications to higher-order
rewrite systems [24] and generates functional code in Haskell, OCaml, Scala, or Stan-
dard ML. Partial correctness is guaranteed regardless of the target language’s evaluation
strategy. However, for the guarantee to be non-vacuous for corecursive definitions, one
needs a language with a lazy evaluation strategy, such as Haskell.

The verified contract of the program reads as follows: Given an available and per-
sistent rule system (state, rule, eff), a fair rule enumeration ρ, and a state s representing
the formula to prove, mkTree eff ρ s either yields a finite derivation tree of s or produces
an infinite fair derivation tree whose infinite paths are all countermodel paths. These
guarantees involve only partial correctness of ground term evaluation.

The generated code is a generic countermodel-producing semidecision procedure
parameterized by the the proof system. Moreover, the fair rule enumeration parameter ρ
can be instantiated to various choices that may perform better than the simple scheme
described in Section 3.

7 Related Work

This paper joins a series of pearls aimed at reclaiming mathematical concepts and re-
sults for coinductive methods, including streams [31, 35], regular expressions [32, 34],
and automata [33]. Some developments pass the ultimate test of formalization, usually
in Agda and Coq, the codatatype-aware proof assistants par excellence: the sieve of
Eratosthenes [3], real number basics [8], and temporal logic for red–blue trees [25].

So why write yet another formalized pearl involving coinduction? First, because we
finally could—with the new codatatype package, Isabelle has caught up with its rivals in
this area. Second, because, although codatatypes are a good match for the completeness
theorem, there seems to be no proof in the literature that takes advantage of this.

58 J.C. Blanchette, A. Popescu, and D. Traytel

While there are many accounts of the completeness theorem for FOL and related
logics, most of them favor the more mathematical Henkin style, which obfuscates the
rich structure of proof and failure. This preference has a long history. It is positively
motivated by the ability to support uncountable languages. More crucially, it is nega-
tively motivated by the lack of rigor perceived in the alternative: “geometric” reasoning
about infinite trees. Negri [26] gives a revealing account in the context of modal logic,
quoting reviews that were favorable to Kripke’s completeness result [21] but critical of
his informal argument based on infinite tableau trees.2 Kaplan [19] remarks that “al-
though the author extracts a great deal of information from his tableau constructions, a
completely rigorous development along these lines would be extremely tedious.”

A few textbooks venture in a proof-theoretic presentation of completeness, notably
Gallier’s [11]. Such a treatment highlights not only the structure, but also the algorith-
mic content of the proofs. The price is usually a lack of rigor, in particular a gap between
the definition of derivation trees and its use in the completeness argument. This lack of
rigor should not be taken lightly, as it may lead to serious ambiguities or errors: In the
context of a tableau completeness proof development, Hähnle [15] first performs an
implicit transition from finite to possibly infinite tableaux, and then claims that tableau
chain suprema exist by wrongly invoking Zorn’s lemma [15, Definition 3.16].3

The completeness theorem has been mechanized before in proof assistants. Schlöder
and Koepke, in Mizar [36], formalize a Henkin-style argument for possibly uncountable
languages. Building on an early insight by Krivine [22] concerning the expressibility of
the completeness proof in intuitionistic second-order logic, Ilik [17] analyzes Henkin-
style arguments for classical and intuitionistic logic with respect to standard and Kripke
models and formalizes them in Coq (without employing codatatypes).

At least three proofs were developed using HOL-based provers. Harrison [16], in
HOL Light, and Berghofer [2], in Isabelle, formalize Henkin-style arguments. Ridge
and Margetson [23, 30], in Isabelle, employ proof trees constructed as graphs of nodes
that carry their levels as natural numbers. This last work has the merits of analyzing the
computational content of proofs in the style of Gallier [11] and discussing an OCaml
implementation. Our formalization relates to this work in a similar way to which our
presentation relates to Gallier’s: The newly introduced support for codatatypes and
corecursion in Isabelle provides suitable abstraction mechanisms for reasoning about
infinite trees, avoiding boilerplate for tree manipulation based on numeric indexing.
Moreover, codatatypes are mapped naturally to Haskell types, allowing Isabelle’s code
generator to produce certified Haskell code. Finally, our proof is more abstract and ap-
plies to several variants of FOL and beyond.

8 Conclusion

The completeness theorem is a fundamental result about classical logic. Its proof is
presented in many variants in the literature. Few of these presentations emphasize the
algorithmic content, and none of them uses codatatypes. Gallier’s pseudo-Pascal code

2 And Kripke’s degree of rigor in this early paper is not far from today’s state of the art in proof
theory; see, e.g., Troelstra and Schwichtenberg [37].

3 This is the only error we found in this otherwise excellent chapter on tableaux.

Unified Classical Logic Completeness 59

is inspiring, but we prefer “pseudo-Haskell,” i.e., Isabelle/HOL with codatatypes. In our
view, coinduction is the key to formulate an account that is both mathematically rigor-
ous and abundant in algorithmic content. The definition of the abstract prover mkTree
is stated rigorously, is accessible to functional programmers, and replaces pages of ver-
bose descriptions.

The advantages of machine-checked metatheory are well known from programming
language research, where new results are often formalized and proof assistants are used
in the classroom. This paper, like its predecessor [4], reported on some steps we have
taken to apply the same methods to formal logic and automated reasoning.

Acknowledgment. Tobias Nipkow made this work possible. Mark Summerfield and
the anonymous reviewers suggested many textual improvements to earlier versions of
this paper. Blanchette is supported by the Deutsche Forschungsgemeinschaft (DFG)
project Hardening the Hammer (grant Ni 491/14-1). Popescu is supported by the DFG
project Security Type Systems and Deduction (grant Ni 491/13-2) as part of the program
Reliably Secure Software Systems (RS3, priority program 1496). Traytel is supported
by the DFG program Program and Model Analysis (PUMA, doctorate program 1480).
The authors are listed alphabetically.

References

1. Bell, J.L., Machover, M.: A Course in Mathematical Logic. North-Holland (1977)
2. Berghofer, S.: First-order logic according to Fitting. In: Klein, G., Nipkow, T., Paulson, L.

(eds.) Archive of Formal Proofs (2007),
http://afp.sf.net/entries/FOL-Fitting.shtml

3. Bertot, Y.: Filters on coinductive streams, an application to Eratosthenes’ sieve. In: Urzyczyn,
P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 102–115. Springer, Heidelberg (2005)

4. Blanchette, J.C., Popescu, A.: Mechanizing the metatheory of Sledgehammer. In: Fontaine,
P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS, vol. 8152, pp. 245–260.
Springer, Heidelberg (2013)

5. Blanchette, J.C., Hölzl, J., Lochbihler, A., Panny, L., Popescu, A., Traytel, D.: Truly modular
(co)datatypes for Isabelle/HOL. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, Springer
(2014)

6. Blanchette, J.C., Popescu, A., Traytel, D.: Abstract completeness. In: Klein, G., Nipkow, T.,
Paulson, L. (eds.) Archive of Formal Proofs (2014),
http://afp.sf.net/entries/Abstract_Completeness.shtml

7. Blanchette, J.C., Popescu, A., Traytel, D.: Formal development associated with this paper
(2014), http://www21.in.tum.de/~traytel/compl_devel.zip

8. Ciaffaglione, A., Gianantonio, P.D.: A certified, corecursive implementation of exact real
numbers. Theor. Comput. Sci. 351(1), 39–51 (2006)

9. Fitting, M.: First-Order Logic and Automated Theorem Proving, 2nd edn. Graduate Texts in
Computer Science. Springer (1996)

10. Francez, N.: Fairness. Texts and Monographs in Computer Science, Springer (1986)
11. Gallier, J.H.: Logic for Computer Science: Foundations of Automatic Theorem Proving.

Computer Science and Technology. Harper & Row (1986)
12. Gödel, K.: Über die Vollständigkeit des Logikkalküls. Ph.D. thesis, Universität Wien (1929)
13. Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL: A Theorem Proving Environment

for Higher Order Logic. Cambridge University Press (1993)

http://afp.sf.net/entries/FOL-Fitting.shtml
http://afp.sf.net/entries/Abstract_Completeness.shtml
http://www21.in.tum.de/~traytel/compl_devel.zip

60 J.C. Blanchette, A. Popescu, and D. Traytel

14. Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In: Blume,
M., Kobayashi, N., Vidal, G. (eds.) FLOPS 2010. LNCS, vol. 6009, pp. 103–117. Springer,
Heidelberg (2010)

15. Hähnle, R.: Tableaux and related methods. In: Robinson, A., Voronkov, A. (eds.) Handbook
of Automated Reasoning, vol. I, pp. 100–178. Elsevier (2001)

16. Harrison, J.: Formalizing basic first order model theory. In: Grundy, J., Newey, M. (eds.)
TPHOLs 1998. LNCS, vol. 1479, pp. 153–170. Springer, Heidelberg (1998)

17. Ilik, D.: Constructive Completeness Proofs and Delimited Control. Ph.D. thesis, École Poly-
technique (2010)

18. Jacobs, B., Rutten, J.: A tutorial on (co)algebras and (co)induction. Bull. Eur. Assoc. Theor.
Comput. Sci. 62, 222–259 (1997)

19. Kaplan, D.: Review of Kripke (1959) [21]. J. Symb. Log. 31(1966), 120–122 (1966)
20. Kleene, S.C.: Mathematical Logic. John Wiley & Sons (1967)
21. Kripke, S.: A completeness theorem in modal logic. J. Symb. Log. 24(1), 1–14 (1959)
22. Krivine, J.L.: Une preuve formelle et intuitionniste du théorème de complétude de la logique

classique. Bull. Symb. Log. 2(4), 405–421 (1996)
23. Margetson, J., Ridge, T.: Completeness theorem. In: Klein, G., Nipkow, T., Paulson, L. (eds.)

Archive of Formal Proofs (2004),
http://afp.sf.net/entries/Completeness.shtml

24. Mayr, R., Nipkow, T.: Higher-order rewrite systems and their confluence. Theor. Comput.
Sci. 192(1), 3–29 (1998)

25. Nakata, K., Uustalu, T., Bezem, M.: A proof pearl with the fan theorem and bar induc-
tion: Walking through infinite trees with mixed induction and coinduction. In: Yang, H. (ed.)
APLAS 2011. LNCS, vol. 7078, pp. 353–368. Springer, Heidelberg (2011)

26. Negri, S.: Kripke completeness revisited. In: Primiero, G., Rahman, S. (eds.) Acts of Knowl-
edge: History, Philosophy and Logic: Essays Dedicated to Göran Sundholm, pp. 247–282.
College Publications (2009)

27. Nipkow, T., Klein, G.: Concrete Semantics: A Proof Assistant Approach. Springer (to ap-
pear), http://www.in.tum.de/~nipkow/Concrete-Semantics

28. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidel-
berg (2002)

29. Pfenning, F.: Review of “Jean H. Gallier: Logic for Computer Science. J. Symb. Log. 54(1),
288–289 (1989)

30. Ridge, T., Margetson, J.: A mechanically verified, sound and complete theorem prover for
first order logic. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 294–
309. Springer, Heidelberg (2005)

31. Roşu, G.: Equality of streams is a Π0
2-complete problem. In: Reppy, J.H., Lawall, J.L. (eds.)

ICFP 2006. ACM (2006)
32. Roşu, G.: An effective algorithm for the membership problem for extended regular expres-

sions. In: Seidl, H. (ed.) FoSSaCS 2007. LNCS, vol. 4423, pp. 332–345. Springer, Heidelberg
(2007)

33. Rutten, J.J.M.M.: Automata and coinduction (an exercise in coalgebra). In: Sangiorgi, D.,
de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 194–218. Springer, Heidelberg
(1998)

34. Rutten, J.J.M.M.: Regular expressions revisited: A coinductive approach to streams, au-
tomata, and power series. In: Backhouse, R., Oliveira, J.N. (eds.) MPC 2000. LNCS,
vol. 1837, pp. 100–101. Springer, Heidelberg (2000)

35. Rutten, J.J.M.M.: Elements of stream calculus (an extensive exercise in coinduction). Electr.
Notes Theor. Comput. Sci. 45, 358–423 (2001)

36. Schlöder, J.J., Koepke, P.: The Gödel completeness theorem for uncountable languages. For-
malized Mathematics 20(3), 199–203 (2012)

37. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory, 2nd edn. Cambridge University
Press (2000)

http://afp.sf.net/entries/Completeness.shtml
http://www.in.tum.de/~nipkow/Concrete-Semantics

A Focused Sequent Calculus

for Higher-Order Logic

Fredrik Lindblad

University of Gothenburg, Chalmers University of Technology,
Gothenburg, Sweden

Abstract. We present a focused intuitionistic sequent calculus for high-
er-order logic. It has primitive support for equality and mixes λ-term
conversion with equality reasoning. Classical reasoning is enabled by ex-
tending the system with rules for reductio ad absurdum and the axiom
of choice. The resulting system is proved sound with respect to Church’s
simple type theory. The soundness proof has been formalized in Agda.
A theorem prover based on bottom-up search in the calculus has been
implemented. It has been tested on the TPTP higher-order problem set
with good results. The problems for which the theorem prover performs
best require higher-order unification more frequently than the average
higher-order TPTP problem. Being strong at higher-order unification,
the system may serve as a complement to other theorem provers in the
field.

1 Introduction

Benchmarking and development of automated reasoning tools for higher-order
logic has been facilitated by the introduction of a new syntax and a dedicated
set of higher-order problems at TPTP in 2009 [1,2]. However, higher-order uni-
fication, which is an important component of higher-order reasoning, is still a
challenge for several of the established theorem proving systems.

Agda [3] is an intuitionistic higher-order logical framework based on Martin-
Löf type theory. As for any interactive theorem prover, Agda users are facilitated
by local automation. Agda has a plugin for this, called Agsy [4]. In order to be
able to evaluate the performance of Agsy, an adaptation to classical higher-order
logic has been developed.

This variant of Agsy, called AgsyHOL, turned out to be competitive in the con-
text of TPTP. AgsyHOL performs well not least on problems involving higher-
order unification. Out of the problems that AgsyHOL either solves in less than 50
milliseconds or at least 100 times faster than any other system on TPTP online
(31 problems), roughly 80% of the solutions contain λ-abstractions, i.e. involve
higher-order unification. For all problems that AgsyHOL solves (1722 problems)
the percentage is 37.

A major idea behind Agsy and AgsyHOL is to take an inference system con-
structed with proof search in mind and combine it with a simple search mecha-
nism and a small layer of search control heuristics. More precisely, the semantics

S. Demri, D. Kapur, and C. Weidenbach (Eds.): IJCAR 2014, LNAI 8562, pp. 61–75, 2014.
c© Springer International Publishing Switzerland 2014

62 F. Lindblad

is represented by a proof checking algorithm defined over an explicit proof lan-
guage. Each construct in the language corresponds to one of the inference rules.
Proof search is achieved by applying narrowing [5], which lazily instantiates the
proof candidate.

The setup results in a clear separation between logic and control. It facilitates
reasoning about correctness since it is (an implementation of) the inference rules
themselves which drive the search. The implementation of AgsyHOL is also
relatively small, approximately 2000 lines of code excluding parsing, printing
and the generic narrowing search.

Both Agsy and AgsyHOL are based on focused intuitionistic sequent calculus.
Related proof search oriented inference systems include LJT [6], PTSC [7], and
focused derivations [8].

In the context of higher-order logic theorem proving proof by refutation is
the dominating approach, whereas AgsyHOL produces derivation proofs. Thus
it can fill a role when proof readability and integration with interactive systems
are of interest.

The inference system which AgsyHOL is based on includes rules for classical
reasoning and has been proved correct with respect to Church’s simple type
theory (STT). The soundness proof has been formalized in Agda, and AgsyHOL
produces derivations that can be independently checked by Agda relative to the
soundness proof.

Completeness of the inference system has not been formally addressed. Al-
though interesting on the theoretical level, we have instead focused on the per-
formance of the implementation.

Section 2 presents the inference system which forms the basis of AgsyHOL.
Section 3 discusses the heuristics which control search on top of the inference
rules. Section 4 describes some more technical details of the implementation.
Section 5 presents the empirical results of running AgsyHOL on the higher-
order problems in TPTP. Finally, section 6 concludes and gives some pointers
for future work.

2 Inference System

The system is based on sequent calculus, which is more suitable for proof search
than natural deduction. In sequent calculus right and left rules, which correspond
to introductions and eliminations, are both guided by formula deconstruction in
a backward search. In natural deduction this is only true for introduction rules,
whereas elimination rules can be arbitrarily and indefinitely applied backwards.

More precisely, the system is based on the sequent calculus for intuitionistic
logic and originates from Gentzen’s system LJ. The main reason for using an
intuitionistic system in a classical context is that the initial motivation of the
work was to evaluate the performance of Agsy, which targets intuitionistic logic.

The original system LJ suffers from significant and unnecessary nondetermin-
ism caused by the proliferation of antecedents and the arbitrary order in which
to deconstruct them. One improvement is the concept of uniform proofs [9].

A Focused Sequent Calculus for Higher-Order Logic 63

The idea is to identify a subset of the deconstructing rules for which the order
of application is unimportant. Such rules are applied in a fixed order, avoiding
the corresponding branching of the search tree. However, no restrictions cor-
responding to uniform proofs are built in to the presented calculus. Instead,
corresponding improvements were made on the search control level in the imple-
mentation, see section 3.

Another improvement over LJ is back-chaining or focused derivations [8]. This
means that the calculus has two judgment forms, one for introduction and one for
elimination. When switching, in the perspective of bottom-up proof construction,
from introduction to elimination, one antecedent is selected. It becomes the
focus of the derivation. The antecedent is then deconstructed through zero or
more eliminations. The result of the elimination steps must at the end be used
either to prove the succedent or to justify absurd or disjunctive elimination. This
technique is a fundamental part of the presented system.

Investigations using similar calculi for proof search in higher-order logic in-
clude the presentation of a focused sequent calculus for pure type systems by
Lengrand et. al. [7], called PTSC. This work is based on system LJT [6], a type
theoretic variation of system LJ due to Herbelin. In contrast to these systems,
the presented one has a full set of logical connectives, including equality, and is
extended with rules for classical reasoning.

2.1 Syntax and Judgments

The type and formula syntax is shown in figure 1. Type subscripts in formulas
will be suppressed whenever the type is clearly resolved by the context. Syntax
variables are denoted by γ, τ for types and by plain capital letters for formulas.
The inference system will be denoted FSCho

= .
As already mentioned, there are two interdependent judgments in intuition-

istic sequent calculus with focusing. They will be called the main judgment and

γ, τ ::= ı (type of individuals) A,B, . . . ::= xγ (variable)
| o (type of truth values) | Aγτ Bτ (application)
| γτ (function type) | λxτ . Aγ (abstraction)

| ιγ(oγ) (choice operator)
| ∼ Ao (negation)
| Ao ∨Bo (disjunction)
| Ao ∧Bo (conjunction)
| Ao ⊃ Bo (implication)
| ∀xγ . Ao (universal quantification)
| ∃xγ . Ao (existential quantification)
| � (truth)
| ⊥ (falsity)
| Aγ = Bγ (equality)

Fig. 1. Type and Formula Syntax

64 F. Lindblad

focusing judgment. The main and focusing judgments have the forms Γ � A and
Γ ;B � A, where Γ represents a set of antecedent formulas, A1, A2, . . . , An. An
empty set of antecedents is denoted ε. The notation essentially follows Girard
[10] and system LJT [6].

The meaning of both judgments is that the proposition represented by A
is derivable from the propositions in Γ . In addition, the rules of the focusing
judgment restrict the derivations in such a way that the focusing mechanism
described above is imposed.

Apart from this there is a conversion judgment which determines when two
formulas are equal. Instead of an axiomatic representation of equality reasoning
on the level of the main judgment, this is expressed in the conversion judg-
ment. Each step in an equality chain is justified by an antecedent. Therefore the
conversion judgment, just as the other judgments, is parameterized by a set of
antecedents, Γ . The conversion judgment has the form Γ � A ↔γ B.

Each judgment form has some variants which express search oriented restric-
tions. These variants are presented along the way in the respective sub-sections.

The inference rules rely on a few standard notions, whose definitions are
omitted. Replacing x by A in B is denoted [A/x]B. A formula A being well-
formed of type γ is denoted wfγA. A formula A being a member of a set Γ is
denoted A ∈ Γ , Reduction of a formula A to head normal form, A′, is denoted
A →β A′.

2.2 Main Judgment

A good principle to adhere to when constructing a calculus intended for proof
search in predicate logic is to inspect the structure of a formula in a lazy manner.
The rationale is that the structure of the formula may be currently unknown. By

A→β B Γ �i B

Γ � A
intro

Γ �∼∼ A
Γ � A

RAA
B ∈ Γ Γ ;B �↑ A

Γ � A
focus

Γ ;∀xoγ. (∃yγ . x y) ⊃ x (ιγ(oγ) x) �↑ A

Γ � A
AC

Γ � A
Γ �i A ∨ B

∨-Il

Γ � B
Γ �i A ∨ B

∨-Ir Γ � A Γ � B
Γ �i A ∧B

∧-I
Γ �i � �-I

Γ,A � B

Γ �i A ⊃ B
⊃ -I

Γ,A � ⊥
Γ �i∼ A

∼ -I
Γ � A

Γ �i ∀xγ . A
∀-I

wfγB Γ � [B/x]A

Γ �i ∃xγ . A
∃-I

Γ � A↔γ B

Γ �i Aγ = Bγ
= -I

Fig. 2. Inference rules for Γ � A

A Focused Sequent Calculus for Higher-Order Logic 65

waiting as long as possible until splitting search according to the different pos-
sible constructs of the formula, as much restricting judgments as possible come
into play. Therefore β-reduction of a formula is performed in direct connection
to matching against its head form.

Figure 2 shows the rules of the main judgment, including the sub-form Γ �i A,
which contains all introduction rules. The intro rule has this judgment as premise,
but with the succedent replaced by its head normal form.

In the case of equality, = -I, the introduction rule simply has a conversion
derivation as premise. In the introduction rule for universal quantification, ∀-I,
x implicitly serves as the quantified variable. In the formalized soundness proof
as well as in the implementation of AgsyHOL the judgments have an explicit
context of universally quantified variables.

The focus rule identifies an antecedent and focuses on this in the premise. The
upward arrow in the focusing judgment is explained in the next sub-section.

In order to allow a close relationship between a proof and the original problem
that it solves, FSCho

= has a rich set of logical connectives. This is also a natural
consequence of the fact that the basis of the system is intuitionistic. However, the
rules for negation corresponds to the standard representation, i.e. ∼ A ≡ A ⊃ ⊥,
and could be excluded in an intuitionistic setting.

Apart from the rules mentioned so far there are two more, which enable clas-
sical reasoning, one for reductio ad absurdum, RAA, and one for the axiom of
choice, AC. These rules could have been added as axioms except for the inability
to quantify over types in the case of AC. However, both are included as rules of
the system in order to facilitate search control. The AC rule, just like focus, has
an focusing judgment as premise. It inserts the axiom of choice as the antecedent
in focus.

2.3 Focusing Judgment

The focusing judgment has two modes, denoted Γ ;B �↑ A and Γ ;B �↓ A,
respectively. The first mode is used in the main judgment and the second in the
conversion judgment, which is presented in next sub-section.

On top of these two modes, there is a sub-form which has the same function
as the sub-form of the main judgment, but expresses elimination instead of in-
troduction rules. It is denoted Γ ;B �e A, and is used to express the restriction
of β-reduction for antecedents.

Figure 3 shows the rules for the focusing judgment. The rules in which the
turnstile is decorated with neither up nor down arrow apply to both modes of
the judgment, with the same direction of the arrow both in the premise and con-
clusion. This accounts both for the focusing judgment itself and its elimination
sub-form.

Derivations of the focusing judgment are sequences of elimination steps. An
elimination sequence for the mode Γ ;B �↑ A terminates either with using the
antecedent in focus to prove the succedent (the use rule), or the elimination of
disjunction, absurdity or negation. A sequence for the mode Γ ;B �↓ A ends

66 F. Lindblad

A→β C Γ ;C �e B

Γ ;A � B
elim

A→β A′ B →β B′ Γ �s B
′ ↔o A′

Γ ;A �↑ B
use

Γ ;A � C

Γ ;A ∧ B �e C
∧-El

Γ ;B � C

Γ ;A ∧B �e C
∧-Er

Γ � A Γ ;B � C

Γ ;A ⊃ B �e C
⊃ -E

wfγC Γ ; [C/x]A � B

Γ ;∀xγ . A �e B
∀-E

Γ ; [(ιγ(oγ) (λxγ . A))/x]A � B

Γ ;∃xγ . A �e B
∃-E

Γ ;⊥ �↑
e A

⊥-E

Γ ; (A ⊃ B) ∧ (B ⊃ A) � C

Γ ;Ao = Bo �e C
= -Ebool

Γ � A ⊃ C Γ � B ⊃ C

Γ ;A ∨ B �↑
e C

∨-E Γ � A

Γ ;∼ A �↑
e B

∼ -E

Γ ;A = B �↓
e A = B

useeq
Γ ;A = B �↓

e B = A
useeq-symm

Fig. 3. Inference rules for Γ ;A � B

either with useeq or useeq-symm, inferring an equality or its symmetric corre-
spondence.

The existential elimination rule uses the choice operator applied to the pred-
icate in order to represent the witness. In a intuitionistic setting a variable is
introduced for this purpose, or, in the type theoretic case, the first projection of
the corresponding Σ-type.

The rule = -Ebool expresses the converse of Boolean extensionality. This rule
eliminates the need to allow equality reasoning prior to head normal reduction
in the introduction and elimination rules.

When using natural deduction for proof search, introduction steps must be
constructed bottom up and elimination steps top down. In bottom-up construc-
tion of elimination steps, any rule is applicable indefinitely. A top-down construc-
tion on the other hand guides the search by deconstructing a concrete antecedent
incrementally. Focused sequent calculus inverts the structure of eliminations such
that a uniform bottom-up search effectively implements that division into an in-
troductions part at the bottom of the derivation and an eliminations part at the
top.

2.4 Conversion Judgment

The conversion judgment also has a sub-form, denoted Γ �s A ↔γ B, which
restricts derivations to top-level simplification of the formulas. Figure 4 shows
the rules for the conversion judgment.

A Focused Sequent Calculus for Higher-Order Logic 67

C ∈ Γ Γ ;C �↓ Dγ = Eγ A→β A′ D →β D′

Γ �s A
′ ↔γ D′ Γ � E ↔γ B

Γ � A↔γ B
step

A→β A′ B →β B′ Γ �s A
′ ↔γ B′

Γ � A↔γ B
simp

Γ � (A ⊃ B) ∧ (B ⊃ A)

Γ � A↔o B
extbool

Γ � Ax↔τ B x

Γ � A↔τγ B
extfun

Γ �s x↔γ x
simpvar

Γ � A↔τγ C Γ � B ↔γ D

Γ �s Aτγ Bγ ↔τ Cτγ Dγ

simpapp

Γ � A↔τ B

Γ �s λxγ . Aτ ↔τγ λxγ . Bτ

simplam

Γ � A↔o C Γ � B ↔o D

Γ �s Ao ∨Bo ↔o Co ∨Do

simpdisj · · ·

Fig. 4. Inference rules for Γ � A↔γ B (incomplete list)

In the step rule an antecedent, C, justifies, after a sequence of eliminations,
rewriting the left-hand side of the conversion. The direction of rewriting is im-
posed by restricting the conversion of the left-hand side to simplification. In other
words, the left-hand side of the succedent and one of the sides of the antecedent
must have identical heads, module β-reduction. In the subsequent conversion
judgment the opposite side of the antecedent appears as the left-hand side of
the succedent.

The simp rule terminates an equality chain by requiring the formulas of the
conversion to have identical heads. However, the premises in the simplification
rules refer back to the full conversion judgment, allowing rewriting of the sub-
formulas to take place.

As seen in the previous sub-section the rules for elimination of disjunctions,
falsity and negations are not available in the inference mode of the focusing
judgment, and therefore not allowed in equality reasoning. This restriction does
not compromise completeness and empirical results indicate that enforcing it
improves performance.

In the simplification rule for λ-abstractions, simplam, both sides are assumed
to bind the same variable, x, and it is implicitly quantified in the premise.

The rule simplam is redundant as far as completeness is concerned, due to the
presence of extfun, which also expresses η-conversion. However, using extfun when
the left- and right-hand sides are both λ-abstractions introduces unnecessary
substitutions in the formulas, which complicate proof search.

The simplification rules for the connectives have the expected form. The figure
only includes the rule for disjunction, while the rest are omitted.

68 F. Lindblad

Equality reasoning is part of conversion instead of having rules for this on the
level of the main judgment, which would be the case with an axiomatic repre-
sentation. By interleaving simplification and rewriting, equality chains appear
as locally as possible. This allows the inference system itself to guide the proof
search in terms of in what parts of formula rewriting should take place. The
setup also avoids the choice of in which order to do the rewriting steps in the
case of independent rewriting of multiple sub-formulas.

Example 1. Let h define the axiom x = z ∧w = y and the conjecture be f x y =
f z w. The solution reported by AgsyHOL is

=-I (simp-app (step <<h>> (And-El use-eq) simp-all simp-all)

(step <<h>> (And-Er use-eq-sym) simp-all simp-all))

On the top level is an equality introduction, followed by a simplification of
the application. For the first argument of f the left conjunct of h is used, and
for the second argument the symmetrical counterpart of the right conjunct is
used. The term simp-all is a shorthand for a conversion which contains no
equality steps. Thanks to the representation of equality reasoning, the positions
in the proof at which to rewrite the two sub-formulas are fixed. There is not one
proof corresponding to the equality chain f x y = f z y = f z w and another one
corresponding to f x y = f xw = f z w.

2.5 Soundness

The reference logic is STT [11]. Figure 5 shows the syntax of STT and how the
logical connectives of FSCho

= are interpreted as STT formulas.

Proposition. Assume A is a well formed Boolean formula in FSCho
= . If ε � Ao

is derivable in FSCho
= then the interpretation of a A is derivable in STT.

Proof. The proof is straightforward and conducted by induction on the structure
of proof derivations. The proof has been formalized in Agda [3] and the code can
be found at [12]. The proof uses de Bruijn indices and explicit quantification of
variables. Consequently, the inference rule for α-conversion in STT is dropped
while a new rule for adding a fresh variable is required.

∼ Ao ≡ NooAo A,B ::= xγ (variable)
Ao ∨Bo ≡ AoooAoBo | Noo (negation operator)
Ao ∧Bo ≡ ∼ (∼ Ao∨ ∼ Bo) | Aooo (disjunction operator)
Ao ⊃ Bo ≡ ∼ Ao ∨Bo | Πo(oγ) (quantification operator)
∀xγ . Ao ≡ Πo(oγ)(λxγAo) | ιγ(oγ) (choice operator)
∃xγ . Ao ≡ ∼ ∀xγ . ∼ Ao | Aγτ Bτ (application)

� ≡ ∀xo. (xo ⊃ xo) | λxτ . Aγ (abstraction)
⊥ ≡ ∀xo. xo

Aγ = Bγ ≡ (λxγ . λyγ . ∀zoγ . (zoγxγ ⊃ zoγyγ))Aγ Bγ

Fig. 5. STT terms and interpretation of logical connectives

A Focused Sequent Calculus for Higher-Order Logic 69

3 Proof Search

System FSCho
= is based on focused sequent calculus, which already facilitates

proof search compared to e.g. natural deduction. It also expresses some proof
search oriented details, e.g. the restrictions of where to perform β-reduction and
how equality reasoning and simplification are mixed.

Another such detail is the order of B and A in the premise Γ �s B ↔o A in the
use rule. Empirical tests indicate that replacing the judgment with Γ �s A ↔o B
gives inferior performance. This outcome depends on the exact configuration of
the conversion judgment rules. The conversion rules are devised in such a way
that backward application constructs equality chains from left to right. The di-
rection of unfolding equality chains can have an impact on performance whenever
parts of the formulas in the conversion are unknown. In the case of the use rule
the succedent is to the left and the antecedent to the right. It is reasonable to
believe that if one side of an equality is more frequently uninstantiated than
the other, the search is more restricted if rewriting from the more instantiated
side than vice versa. Using this argument to explain the empirical difference, the
succedent is presumably on average more known than the antecedent.

Although FSCho
= itself is devised with proof search in mind, some additional

restrictions and search control heuristics are needed in order to achieve an effi-
cient theorem prover. This section presents the search control mechanisms which
are part of the AgsyHOL implementation. Proof search is based on applying
the inference rules of FSCho

= backwards and constructing a complete derivation
step by step. The search state consists of a derivation tree where some of the
sub-derivations are incomplete. When no unknown parts of the derivation tree
remain, a proof has been found and the given formula is valid.

An unknown part of a derivation may be a formula. Formula and deriva-
tion refinements are handled uniformly by defining a proof language with one
construct for each inference rule. There is no separate mode of the search that
performs unification. Unification effectively takes place when applying the rules
for the conversion judgment backwards.

Unknown parts of formulas and proofs are represented by meta-variables.
They only exist on the level of the narrowing algorithm and search control.
Meta-variables that act as placeholders for formulas, e.g. B in the ∃-I rule, have
the role of existential variables.

Since the set of possible partial derivations is in general infinite, search depth
must be limited. In AgsyHOL search is limited by the size of the derivation tree.
Instead using the maximum depth of the derivation tree as the limit is inferior
according to our experience.

In section 2 it was mentioned that the concept of uniform proofs is not adopted
in AgsyHOL. The reason is that even though uniform proofs preserve complete-
ness, it does not necessarily improve the overall performance of proof search.
AgsyHOL uses proof size as the notion of search depth in order to stratify the
search. Finding the first solution at a small depth is often more important in
practice than keeping the number of solutions at a minimum. Most notably,
the adoption of a uniform application of the right rule for implication is not

70 F. Lindblad

preferable in our experience. The rule extends the set of antecedents which
increases the number of choices for elimination, so it should be invoked
conservatively.

The following sub-sections present the important aspects of search control in
AgsyHOL. The spectrum of configurations for the parameters involved has not
been explored sufficiently in order for the exact numbers to be relevant. Therefore
the presentation is not very specific, but intended to give a rough view of the
amount of and nature of search control we found necessary to include.

3.1 Customized Order of Refining Sub-derivations

When choosing which incomplete part of the derivation to refine, a system of pri-
orities is used. Different priorities are assigned to the judgments of the calculus.
At each step in the search an incomplete sub-derivation or formula, which has
an unresolved judgment with the highest priority, is chosen. The principle which
has been followed is to assign a higher priority to judgments which typically lead
to a smaller degree of branching. The judgments of FSCho

= are listed below in
decreasing order of priority in AgsyHOL.

– Simplification judgment, Γ �s A ↔γ B, flexible-rigid situation
– Conversion judgment, Γ � A ↔γ B
– Focusing judgment, Γ ;B � A
– Main judgment, Γ � A
– Simplification judgment, flexible-flexible situation

The list shows that resolving unification has top priority. Moreover, deciding
whether to proceed with or end an elimination sequence has higher priority than
the main judgment, so that how to end a sequence is explored before attacking
any of its sub-problems.

3.2 Weighted Refinement of the Derivation Tree

The proof constructs are associated with individual weights. The size of a proof is
taken to be the sum of the weights of the constructs it contains. The weights have
been chosen by trial and error aiming to maximize performance. The following
list summarizes the weights used in AgsyHOL.

– Introduction rules have a small weight, except for implication which has a
larger weight.

– The use of a hypothesis has a small weight if it has a low degree of generality
and large weight when it is highly general. The generality of a hypothesis is
measured by the portion of the statement which is constituted by variables.
This is an ad hoc mechanism but improves success rate on problems which
have a large amount of hypotheses.

– The rules RAA and AC have a large weight.
– The rules extbool, extfun have a large weight.

A Focused Sequent Calculus for Higher-Order Logic 71

– The rule step has a large weight.

– Simplification rules have a small weight.

– Refining a formula in the presence of a conversion constraint without pending
substitutions has a small weight. In such situations unification becomes first-
order and there is no real search taking place. When there are postponed
substitutions, refining the formula has a slightly larger weight.

The reader may refer to the source code [12] for the exact relation between
weights.

3.3 Unification

Applying the rules of conversion in FSCho
= effectively implements full higher-

order unification. General higher-order unification is undecidable. However, in
practice this is often, including for AgsyHOL, not very problematic. Therefore
restricting unification to some decidable fragment, like pattern unification, has
not been investigated.

Formulas which are unknown are constructed incrementally during search, just
as the derivation tree constructs. Since formulas are higher-order, substitutions
must be postponed at meta-variables and performed once they are instantiated.
This is handled by using explicit substitutions in the implementation.

How to deal with occurs checks in higher-order logic is not straightforward.
One observation is that a meta-variable may occur in a pending substitution and
that it is not in general clear whether such an occurrence will cause circularity.
A second observation is that since the formulas are constructed step by step,
a circularity check the way it is done in first-order unification will not catch
circularity caused by the interplay between several equality constraints.

AgsyHOL has the following way to deal with occurs check. For conversion
judgments the systems keeps track of which formula heads surround the current
sub-formulas. Instantiating one of the formulas to a head which is already among
the surrounding heads is discouraged by associating it with a large weight. The
following simple example should clarify this mechanism.

Assume X1, X2, . . . are meta-variables. Given the equality

X1 = f (g X1)

X1 will first be refined to f X2. The equality is then simplified to

X2 = g (f X2)

keeping in mind that the head f has been traversed. Then X2 is refined to g X3

and simplification yields

X3 = f (g X3)

where both f and g now have been traversed. Refining X3 to f X4 in this situ-
ation is assigned a large weight since f is already among the traversed heads.

72 F. Lindblad

3.4 β-Reduction

Since the search state may include partially instantiated formulas β-reduction
may take place in formulas which are not completely type checked. There is there-
fore a risk of non-termination. There are various ways to overcome this problem.
Some are theoretically appealing, such as the one based on linearity/non-linearity
discrimination, presented in e.g. Lengrand [13].

However, AgsyHOL has a very straightforward mechanism to deal with non-
termination of reduction. It simply limits the number of consecutive reduction
steps and lets this limit increase with the search depth.

4 Implementation

The source code of AgsyHOL is available at [12] and the system can be invoked
on Systems on TPTP. It is written in Haskell, and is, as already mentioned,
composed of three parts, namely a generic search algorithm, semantics and search
control. The search algorithm is an extension of lazy narrowing [5].

Lazy narrowing is a search procedure which, given a function, f , and a fixed
output, y, exploits non-strictness in f in order to efficiently find inputs, X ,
such that f(X) = y. Lazy narrowing refines the input step-wise and has meta-
variables which represent yet unknown parts of it.

The semantics of FSCho
= is represented by a proof checking algorithm unaware

of meta-variables. The proof checker takes a boolean formula and a proof, and
decides whether the proof is a valid derivation of the formula. Proof search is
achieved by applying lazy narrowing on the proof checking function with a given
formula and an unknown proof, i.e. the proof given to the proof checker is initially
a fully uninstantiated meta-variable.

The narrowing algorithm is first-order. In order to be able use it to con-
struct higher-order formulas, the formulas have a first-order representation. In
AgsyHOL de Bruijn-indices represented by integers are used. The search control
added on top of the narrowing algorithm keeps track of the size of the variable
scope.

The extensions of lazy narrowing used in AgsyHOL are concurrent conjunction
[14], and customizable depth weights and priorities for instantiation. Concurrent
conjunction enables inference rules with multiple premises to result in a collection
of simultaneously active constraints. This improves the pruning accomplished by
the narrowing algorithm. It is also a prerequisite for the mechanism of priorities,
since otherwise there would always be only one blocking meta-variable.

The search control part of the theorem prover consists of annotations in
the proof checker which specify the weights and priorities associated with each
branching point at which execution may stop because of the presence of a meta-
variable.

The lazy narrowing mechanism is implemented as an embedded library in
Haskell. It uses depth-first search with back-tracking and iterated deepening.
There are functional logic programming languages, such as Curry [15], which

A Focused Sequent Calculus for Higher-Order Logic 73

natively implement lazy narrowing. These languages however do not fit the needs
regarding the extensions for expressing priorities and costs used in AgsyHOL.

The proof checker in AgsyHOL uses a sequent calculus style, not only of
eliminations, but also applications in formulas. This means that instead of binary
application, applications are represented by a head, which is a variable, and a list
of arguments. Having this representation of application simplifies the interplay
between conversion and head normal reduction in the way that only the top level
construct has to be inspected in order to determine whether a formula is head
normal.

AgsyHOL reads the THF0 syntax [2], the basic higher-order syntax in TPTP.
When translating from THF0 to the internal representation of formulas defi-
nitions are inlined. In STT there is only one set of individuals. THF permits
multiple sets and this is reflected in the implementation of FSCho

= in AgsyHOL.
The representation of applications in AgsyHOL syntactically disallows β-redexes,
which are therefore reduced away in the translation.

The use of RAA is problematic since it is universally applicable and difficult to
know when needed. The weight of this rule is therefore high in AgsyHOL. This
has the effect that proofs that require classical reasoning can be time consum-
ing to find. In order to improve this, each problem is transformed using double
negation elimination and the de Morgan laws. The transformation done in Agsy-
HOL aims to limit the need for classical reasoning by minimizing the number
of negations. This makes it solve around 10% more problems in TPTP (within
the standard 300 seconds time limit) compared to having no transformation.
On the other hand, bringing the formulas to negation normal form does not
improve the performance on the problem set at all. Another alternative would
be to use double-negation transformation in order to avoid the need of the RAA
rule. This however substantially lowers the success rate of AgsyHOL.

5 Empirical Result

AgsyHOL has been tested on the higher-order problems in the TPTP version
6.0.0, January 2014. There are 3025 problems in total. Figure 6 shows a com-
parison between AgsyHOL and the other higher-order theorem provers available

system solutions unique

Satallax—2.7 2080 73
Isabelle—2013 1883 3
Isabelle-HOT—2013 1876 2
AgsyHOL—1.0 1722 17
LEO-II–1.6.0 1700 20
TPS—3.120601S1b 1469 25
cocATP—0.1.8 577 0

Fig. 6. AgsyHOL compared to other theorem provers in TPTP

74 F. Lindblad

on Systems on TPTP. All theorem provers had 300 seconds to solve each prob-
lem on a standard desktop computer. The table shows the number of confirmed
theorems after timeout and how many unique solutions each system has.

AgsyHOL positions itself below the two top performing systems, Satallax and
Isabelle, and gets a similar result as LEO-II. There is some distance to the best
performing system. We however consider the performance of AgsyHOL to be
surprisingly good, given its straightforward approach of searching for derivation
proofs.

Example 2. The TPTP problem NUM636^2 declares one and succ, intended
to represent the natural numbers. It then defines the axioms one_is_first,
succ_injective and induction, and conjectures that for all x, succ x
= x.
The solution produced by AgsyHOL is the following:

1 Forall-I (\#0.(elim <<induction>>

2 (Forall-E (\#1:$i.(Not (Eq $i (<<succ>> (#1)) (#1))))

3 (Implies-E (And-I

4 (Not-I (\#1.(elim <<one_is_first>> (Forall-E (<<one>>)

5 (Not-E (=-I (step #1 use-eq simp-all simp-all)))))))

6 (Forall-I (\#1.(Implies-I (\#2.(Not-I (\#3.

7 (elim #2 (Not-E (=-I (step <<succ_injective>>

8 (Forall-E (<<succ>> (#1)) (Forall-E (#1)

9 (Implies-E (=-I (step #3 use-eq simp-all simp-all)) use-eq)))

10 simp-all simp-all))))))))))

11) (Forall-E (#0) (use simp-all))))))

Although reading the details of the solution requires knowledge about the exact
formulation of the axioms and conjecture, the top-level structure of the proof
can readily be identified. On line 1 the proof starts by using induction. Line
2 contains the generated λ-term which states the induction hypothesis. Lines 4
and 5 prove the base case using one_is_first. Lines 6–10 prove the induction
step using the induction hypothesis, #2, and succ_injective.

6 Conclusions and Future Work

One weakness of AgsyHOL is how it deals with classical reasoning, the RAA
and AC rules. These rules are axiomatic and universally applicable. AgsyHOL
tends to be weak on problems that require classical reasoning. One direction for
future work would be to improve this situation, possibly by switching to classical
sequent calculus.

The empirical result shows that a calculus like the presented one, which defines
a language of derivation proofs, can be the basis of a competitive theorem prover.
The approach can appear naive and it is interesting that it works so well in
practice.

As stated in the introduction, AgsyHOL is strong on problems involving higher-
order unification. By dealing with derivation steps and formulas uniformly,
unification becomes a fully integrated part of the proof search. Being good at

A Focused Sequent Calculus for Higher-Order Logic 75

dealing with higher-order unification the technique could have an impact on the
field of automated higher-order theorem proving.

Producing derivation proofs, it could also be valuable in the area of automa-
tion of interactive theorem provers.

References

1. Sutcliffe, G.: The TPTP problem library and associated infrastructure. J. Autom.
Reason. 43(4), 337–362 (2009)

2. Sutcliffe, G., Benzmüller, C.: Automated reasoning in higher-order logic using the
TPTP THF infrastructure. Journal of Formalized Reasoning 3(1), 1–27 (2010)

3. Bove, A., Dybjer, P., Norell, U.: A brief overview of Agda — a functional language
with dependent types. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.)
TPHOLs 2009. LNCS, vol. 5674, pp. 73–78. Springer, Heidelberg (2009)

4. Lindblad, F.: Higher-order proof construction based on first-order narrowing. Elec-
tron. Notes Theor. Comput. Sci. 196, 69–84 (2008)

5. Middeldorp, A., Okui, S., Ida, T.: Lazy narrowing: Strong completeness and eager
variable elimination. Theoretical Computer Science 167, 95–130 (1995)

6. Herbelin, H.: A lambda-calculus structure isomorphic to Gentzen-style sequent
calculus structure. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933,
pp. 61–75. Springer, Heidelberg (1995)

7. Lengrand, S., Dyckhoff, R., McKinna, J.: A focused sequent calculus framework
for proof search in pure type systems. Logical Methods in Computer Science 7(1)
(2011)

8. Andreoli, J.: Logic programming with focusing proofs in linear logic. Journal of
Logic and Computation 2, 297–347 (1992)

9. Miller, D., Nadathur, G., Pfenning, F., Scedrov, A.: Uniform proofs as a foundation
for logic programming. Annals of Pure and Applied Logic 51(12), 125–157 (1991)

10. Girard, J.Y.: A new constructive logic: Classical logic. Mathematical Structures in
Computer Science 1(3), 255–296 (1991)

11. Henkin, L.: Completeness in the theory of types. J. Symb. Log. 15(2), 81–91 (1950)
12. Lindblad, F.: AgsyHOL source code and Agda formalization (2012),

https://github.com/frelindb/agsyHOL

13. Lengrand, S.: Normalisation & Equivalence in Proof Theory & Type Theory. PhD
thesis, Université Paris 7 & University of St Andrews (2006)

14. Lindblad, F.: Property directed generation of first-order test data. In: Trends in
Functional Programming. Intellect, vol. 8, pp. 105–123 (2008)

15. Hanus, M.: Curry: An integrated functional logic language. Language report
(March 2006), http://www.informatik.uni-kiel.de/~curry/report.html

https://github.com/frelindb/agsyHOL
http://www.informatik.uni-kiel.de/~curry/report.html

SAT-Based Decision Procedure for Analytic

Pure Sequent Calculi�

Ori Lahav and Yoni Zohar

School of Computer Science, Tel Aviv University, Israel
orilahav@post.tau.ac.il, yoni.zohar@cs.tau.ac.il

Abstract. We identify a wide family of analytic sequent calculi for
propositional non-classical logics whose derivability problem can be uni-
formly reduced to SAT. The proposed reduction is based on interpreting
these calculi using non-deterministic semantics. Its time complexity is
polynomial, and, in fact, linear for a useful subfamily. We further study
an extension of such calculi with Next operators, and show that this
extension preserves analyticity and is subject to a similar reduction to
SAT. A particular interesting instance of these results is a HORNSAT-
based linear-time decision procedure for Gurevich and Neeman’s primal
infon logic and several natural extensions of it.

1 Introduction

Sequent calculi provide a flexible well-behaved proof-theoretic framework for a
huge variety of different logics. Usually, they allow us to perform proof-search
for the corresponding logic. The fundamental property of cut-elimination is tra-
ditionally proven, as it often guarantees the adequacy of a given sequent calculus
for this task. Nevertheless, a great deal of ingenuity is required for developing
an efficient proof-search algorithms for cut-free sequent calculi (see, e.g., [12]).

In this work we identify a general case in which it is possible to replace proof-
search by SAT solving. While SAT is NP-complete, it is considered “easy” when
it comes to real-world applications. Indeed, there are many off-the-shelf SAT
solvers, that, despite an exponential worst-case time complexity, are considered
extremely efficient (see, e.g., [14]).

We focus on a general family of relatively simple sequent calculi, called pure
sequent calculi. Roughly speaking, these are propositional fully-structural calculi
(calculi that include the structural rules: exchange, contraction and weakening),
whose derivation rules do not enforce any limitations on the context formu-
las (following [1], the adjective “pure” stands for this requirement). We do not
assume that the calculi enjoy cut-elimination. Instead, we formulate an analyt-
icity property, that generalizes the usual subformula property, and show that
the derivability problem in each analytic pure calculus can be reduced to (the
complement of) SAT. This result applies to a wide range of sequent calculi for

� This research was supported by The Israel Science Foundation (grant no. 280-10).

S. Demri, D. Kapur, and C. Weidenbach (Eds.): IJCAR 2014, LNAI 8562, pp. 76–90, 2014.
c© Springer International Publishing Switzerland 2014

SAT-Based Decision Procedure for Analytic Pure Sequent Calculi 77

different non-classical logics, including important three and four valued logics
and various paraconsistent logics.

To achieve this result we utilize an alternative semantic view of pure sequent
calculi. For that, we have extended the correspondence between sequent calculi
and their bivaluation semantics from [7], so the semantics is tied to the set of
formulas allowed to be used in derivations. The derivability problem in a given
analytic sequent calculus is then replaced by small countermodel search, which
can be translated into a SAT instance. In turn, one can construct a countermodel
from a satisfying assignment given by the SAT solver in the form of a bivaluation
(or a functional Kripke model when Next operators are involved, see below).

The efficiency of the proposed SAT-based decision procedure obviously de-
pends on the time complexity of the reduction. This complexity, as we show, is
O(nk), where n is the size of the input sequent and k is determined according
to the structure of the particular calculus. For a variety of useful calculi, we
obtain a linear time reduction. This paves the way to efficient uniform decision
procedures for all logics that can be covered in this framework. In particular, we
identify a subfamily of calculi for which the generated SAT instances consist of
Horn clauses. In these calculi the derivability problem can be decided in linear
time by applying the reduction and using a linear time HORNSAT solver [13].

In Section 6 we extend this method to analytic pure calculi augmented with
a finite set of Next operators. These are often employed in temporal logics.
Moreover, in primal infon logic [11] Next operators, as we show, play the role
of quotations, which are indispensable in the application of this logic for the
access control language DKAL. We show that all analytic pure calculi, satisfying
a certain natural requirement, can be augmented with Next operators, while
retaining their analyticity. In turn, the general reduction to SAT is extended
to analytic calculi with Next operators, based on a (possibly non-deterministic)
Kripke-style semantic characterization. A HORNSAT-based decision procedure
for primal infon logic with quotations is then obtained as a particular instance.
In addition, in this general framework we are able to formulate several extensions
of primal infon logic with additional natural rules, making it somewhat “closer”
to classical logic, and still decidable in linear time.

Related Works. Our method generalizes the reduction given in [6] of quotations-
free primal infon logic to classical logic. For the case of primal infon logic with
quotations the proposed reduction produces practically equivalent outputs to the
reduction in [8] from this logic to Datalog. A general methodology for translating
derivability questions in Hilbertian deductive systems to Datalog was introduced
in [9]. However, this method may produce infinitely many Datalog premises, and
then it is difficult to use for computational purposes. In contrast, the reduction
proposed in this paper always produces finite SAT instances. This is possible
due to our focus on analytic calculi. Since Hilbertian systems are rarely analytic,
we handle Gentzen-type calculi.

Due to lack of space, some proofs are omitted, and will appear in an extended
version.

78 O. Lahav and Y. Zohar

2 Preliminaries

A propositional language L consists of a countably infinite set of atomic variables
At = {p1, p2, . . .} and a finite set ♦L of propositional connectives. The set of all
n-ary connectives of L is denoted by♦n

L. We identify L with its set of well-formed
formulas (e.g. when writing ψ ∈ L or F ⊆ L). A sequent is a pair 〈Γ,Δ〉 (denoted
by Γ ⇒ Δ) where Γ and Δ are finite sets of formulas. We employ the standard se-
quent notations, e.g. when writing expressions like Γ, ψ ⇒ Δ or ⇒ ψ. The union
of sequents is defined by (Γ1 ⇒ Δ1) ∪ (Γ2 ⇒ Δ2) = (Γ1 ∪ Γ2 ⇒ Δ1 ∪Δ2). For a
sequent Γ ⇒ Δ, frm(Γ ⇒ Δ) = Γ ∪ Δ. This notation is naturally extended to
sets of sequents. Given F ⊆ L, we say that a formula ϕ is an F-formula if ϕ ∈ F
and that a sequent s is an F-sequent if frm(s) ⊆ F . A substitution is a function
from At to some propositional language. A substitution σ is naturally extended
to any propositional language by σ(&(ψ1, . . . , ψn)) = &(σ(ψ1), . . . , σ(ψn)) for ev-
ery compound formula &(ψ1, . . . , ψn). Substitutions are also naturally extended
to sets of formulas, sequents and sets of sequents. In what follows, L denotes an
arbitrary propositional language.

3 Pure Sequent Calculi

In this section we define the family of pure sequent calculi, and provide some
examples for known calculi that fall in this family.

Definition 1. A pure rule is a pair 〈S, s〉 (denoted by S / s) where S is a finite
set of sequents and s is a sequent. The elements of S are called the premises of
the rule and s is called the conclusion of the rule. An application of a pure rule
{s1, . . . sn} / s is any inference step of the form

σ(s1) ∪ c . . . σ(sn) ∪ c

σ(s) ∪ c

where σ is a substitution and c is a sequent (called a context sequent). The
sequents σ(si)∪c are called the premises of the application and σ(s) ∪ c is called
the conclusion of the application. The set S of premises of a pure rule is usually
written without set braces, and its elements are separated by “;”.

Note that we differentiate between rules and their applications, and use dif-
ferent notations for them.

Example 1. The following are pure rules:

p1 ⇒ p2 / ⇒ p1 ⊃ p2 ⇒ p1; p2 ⇒ / p1 ⊃ p2 ⇒ / ⇒ p1 ⊃ p1

Applications of these rules have respectively the forms:

Γ, ψ1 ⇒ ψ2, Δ

Γ ⇒ ψ1 ⊃ ψ2, Δ

Γ ⇒ ψ1, Δ Γ, ψ2 ⇒ Δ

Γ,ψ1 ⊃ ψ2 ⇒ Δ Γ ⇒ ψ ⊃ ψ,Δ

Note that the usual rule for introducing implication on the right-hand side in
intuitionistic logic is not a pure rule, since it allows only left context formulas.

SAT-Based Decision Procedure for Analytic Pure Sequent Calculi 79

In turn, pure sequent calculi are finite sets of pure rules. To make them fully-
structural (in addition to defining sequents as pairs of sets), the weakening rule,
the identity axiom and the cut rule are allowed to be used in derivations.

Definition 2. A pure calculus is a finite set of pure rules. A (standard) proof
in a pure calculus G is defined as usual, where in addition to applications of the
pure rules of G, the following standard application schemes may be used:

(weak)
Γ ⇒ Δ

Γ ′, Γ ⇒ Δ,Δ′
(id)

Γ, ψ ⇒ ψ,Δ
(cut)

Γ ⇒ ψ,Δ Γ, ψ ⇒ Δ

Γ ⇒ Δ

Henceforth, we consider only pure rules and pure calculi, and may refer to
them simply as rules and calculi. By an L-rule (L-calculus) we mean a rule
(calculus) that includes only connectives from L.

Notation 1. For an L-calculus G, a set F ⊆ L of formulas, and an F -sequent
s, we write �FG s if there is a proof of s in G consisting only of F -sequents. For
F = L, we write �G s.

Example 2. The propositional fragment of Gentzen’s fundamental sequent cal-
culus for classical logic can be directly presented as a pure calculus, denoted
henceforth by LK. It consists of the following rules:

(¬ ⇒) ⇒ p1 /¬p1 ⇒ (⇒ ¬) p1 ⇒ / ⇒ ¬p1
(∧ ⇒) p1, p2 ⇒ / p1 ∧ p2 ⇒ (⇒ ∧) ⇒ p1;⇒ p2 / ⇒ p1 ∧ p2
(∨ ⇒) p1 ⇒; p2 ⇒ / p1 ∨ p2 ⇒ (⇒ ∨) ⇒ p1, p2 / ⇒ p1 ∨ p2
(⊃⇒) ⇒ p1; p2 ⇒ / p1 ⊃ p2 ⇒ (⇒⊃) p1 ⇒ p2 / ⇒ p1 ⊃ p2

Besides LK there are many sequent calculi for non-classical logics (admitting
cut-elimination) that fall in this framework. These include calculi for well-known
three and four-valued logics, various calculi for paraconsistent logics, and all
canonical and quasi-canonical sequent systems [3,4,5,7].

Example 3. The calculus for (quotations free) primal infon logic from [11], can
be directly presented as a pure calculus, that we call P. It consists of the
rules (∧ ⇒), (⇒ ∧), (⇒ ∨) and (⊃⇒) of LK, together with the two rules
⇒ p2 / ⇒ p1 ⊃ p2 and ∅ / ⇒ �.

Example 4. The calculus from [3] for da Costa’s historical paraconsistent logic
C1 can be directly presented as a pure calculus, that we call GC1 . It consists of
the rules of LK except for (¬ ⇒) that is replaced by the following rules:

p1 ⇒ /¬¬p1 ⇒
⇒ p1;⇒ ¬p1 /¬(p1 ∧ ¬p1) ⇒ ¬p1 ⇒;¬p2 ⇒ /¬(p1 ∧ p2) ⇒
¬p1 ⇒; p2,¬p2 ⇒ /¬(p1 ∨ p2) ⇒ p1,¬p1 ⇒;¬p2 ⇒ /¬(p1 ∨ p2) ⇒
p1 ⇒; p2,¬p2 ⇒ /¬(p1 ⊃ p2) ⇒ p1,¬p1 ⇒;¬p2 ⇒ /¬(p1 ⊃ p2) ⇒

3.1 Analyticity

Our goal in this paper is to provide a general effective tool to solve the derivability
problem for a given pure calculus.

80 O. Lahav and Y. Zohar

Definition 3. The derivability problem for an L-calculus G is given by:
Input: An L-sequent s. Question: Does �G s?

Obviously, one cannot expect to have decision procedures for the derivability
problem for all pure calculi.1 Thus we require our calculi to admit a general-
ized analyticity property. Analyticity is a crucial property of proof systems. In
the case of fully-structural propositional sequent calculi it usually implies their
decidability and consistency (the fact that the empty sequent is not derivable).
Roughly speaking, a calculus is analytic if whenever a sequent s is provable in
it, s can be proven using only the “syntactic material available inside s”. This
“material” is usually taken to consist of all subformulas occurring in s, and then
analyticity amounts to the (global) subformula property. However, weaker re-
strictions on the formulas that are allowed to appear in proofs of a given sequent
may suffice for decidability. Next we introduce a generalized analyticity prop-
erty based on an extended notion of a subformula. In what follows, � denotes
an arbitrary set of unary connectives (assumed to be a subset of ♦1

L).

Definition 4. A formula ϕ is a �-subformula of a formula ψ if either ϕ is a
subformula of ψ or ϕ = ◦ψ′ for some ◦ ∈ � and proper subformula ψ′ of ψ.

Note that the �-subformula relation is transitive.

Notation 2. sub�(ψ) denotes the set of �-subformulas of ψ. This notation is
extended to sets of formulas and sequents in the obvious way.

Example 5. sub{¬}(¬(p1 ⊃ p2)) = {p1, p2,¬p1,¬p2, p1 ⊃ p2,¬(p1 ⊃ p2)}.

Definition 5. An L-calculus G is called �-analytic if �G s implies �sub�(s)
G s

for every L-sequent s.

Note that sub∅(ϕ) is the set of usual subformulas of ϕ, and so ∅-analyticity is
the usual subformula property.

Example 6. The calculi LK, P and GC1 (presented in previous examples) admit
cut-elimination. This, combined with the structure of their rules, directly entails
that LK and P are ∅-analytic, while GC1 is {¬}-analytic. Example 10 below
shows an extension of P that does not admit cut-elimination, but is still ∅-
analytic.

Example 7. A cut-free sequent calculus for �Lukasiewicz three-valued logic was
presented in [2]. This calculus, that we call G3, can be directly presented as a
pure calculus. For example, the rules involving implication are the following:

¬p1 ⇒; p2 ⇒;⇒ p1,¬p2 / p1 ⊃ p2 ⇒ p1 ⇒ p2;¬p2 ⇒ ¬p1 / ⇒ p1 ⊃ p2
p1,¬p2 ⇒ /¬(p1 ⊃ p2) ⇒ ⇒ p1;⇒ ¬p2 / ⇒ ¬(p1 ⊃ p2)

The structure of its rules, together with the fact that this calculus admits cut-
elimination, directly entail that G3 is {¬}-analytic.
1 Any Hilbert calculus H (without side conditions on rule applications) can
be translated to a pure sequent calculus GH , by taking a rule of the form
⇒ ψ1; . . . ;⇒ ψn / ⇒ ψ for each Hilbert-style derivation rule ψ1, . . . , ψn /ψ (where
n = 0 for axioms). It is easy to show that ψ is derivable from Γ in H iff �GH

Γ ⇒ ψ.

SAT-Based Decision Procedure for Analytic Pure Sequent Calculi 81

To end this section, we point out a useful property of pure calculi. We call a
rule axiomatic if it has an empty set of premises. In turn, a calculus is axiomatic
if it consists solely of axiomatic rules. We show that every calculus is equivalent
(in the sense defined below) to an axiomatic calculus, obtained by “multiplying
out” the rules, and “moving” the formulas in the premises to the opposite side
of the conclusion.

Definition 6. A component of a sequent Γ ⇒ Δ is any sequent of the form ψ ⇒
where ψ ∈ Γ or ⇒ ψ where ψ ∈ Δ. A sequent s is called a combination of a set
S of sequents if there are distinct sequents s1, . . . , sn and respective components
s′1, . . . , s

′
n such that S = {s1, . . . , sn} and s = s′1 ∪ . . . ∪ s′n.

Definition 7. Let r = S /Γ ⇒ Δ be a rule. The set Ax(r) consists of all
axiomatic rules of the form ∅ /Γ,Δ′ ⇒ Γ ′, Δ where Γ ′ ⇒ Δ′ is a combination
of S. In turn, given a calculus G, Ax(G) denotes the calculus obtained from G
by replacing each non-axiomatic rule r of G by Ax(r).

Example 8. For r = ¬p1 ⇒; p2 ⇒;⇒ p1,¬p2 / p1 ⊃ p2 ⇒, Ax(r) consists of the
axiomatic rules ∅ / p1, p1 ⊃ p2 ⇒ ¬p1, p2 and ∅ /¬p2, p1 ⊃ p2 ⇒ ¬p1, p2.

Proposition 1. Let G be an L-calculus. For every set F ⊆ L and F-sequent s,
if �FG s then �FAx(G) s. For F = L the converse holds as well. Moreover, if G is

�-analytic then so is Ax(G).

As happens for LK, it is likely that Ax(G) does not admit cut-elimination
even when G does.

4 Semantics for Pure Sequent Calculi

In this section we present a semantic view of pure calculi, that plays a major
role in the reduction of their derivability problem to SAT. For that matter, we
follow [7] and use bivaluations – functions assigning a binary truth value to each
formula. Pure rules are naturally translated into conditions on bivaluations. In
order to have finite models, we strengthen the correspondence in [7] and consider
partial bivaluations. These correspond exactly to derivations that are confined
to a certain set of formulas.

Definition 8. A bivaluation is a function v from some set dom(v) of formulas
in some propositional language to {0, 1}. A bivaluation v is extended to dom(v)-
sequents by: v(Γ ⇒ Δ) = 1 iff v(ϕ) = 0 for some ϕ ∈ Γ or v(ϕ) = 1 for some
ϕ ∈ Δ. v is extended to sets of dom(v)-sequents by: v(S) = min {v(s) | s ∈ S},
where min ∅ = 1. Given a set F of formulas, by an F-bivaluation we refer to a
bivaluation v with dom(v) = F .

Definition 9. A bivaluation v respects a rule S / s if v(σ(S)) ≤ v(σ(s)) for
every substitution σ such that σ(frm(S / s)) ⊆ dom(v).2 v is called G-legal for
a calculus G if it respects all rules of G.

2 frm is extended to pure rules in the obvious way, i.e. frm(S / s) = frm(S) ∪ frm(s).

82 O. Lahav and Y. Zohar

Example 9. A {p1,¬¬p1}-bivaluation v respects the rule p1 ⇒ /¬¬p1 ⇒ iff
either v(p1) = v(¬¬p1) = 0 or v(p1) = 1. Note that LK-legal bivaluations are
exactly usual classical valuation functions.

Theorem 1 (Soundness and Completeness). Let G be an L-calculus, F be
a set of L-formulas, and s be an F-sequent. Then, �FG s iff v(s) = 1 for every
G-legal F-bivaluation v.

Using Theorem 1, we are able to formulate a semantic property that corre-
sponds exactly to �-analyticity:

Definition 10. An L-calculus G is called semantically �-analytic if every G-
legal bivaluation v can be extended to a G-legal L-bivaluation, provided that
dom(v) is a finite subset of L closed under �-subformulas.

Theorem 2. An L-calculus G is �-analytic iff it is semantically �-analytic.

Proof. Suppose that there is an L-sequent s such that �G s and
�sub�(s)
G s.

According to Theorem 1, there exists a G-legal sub�(s)-bivaluation v such that
v(s) = 0, but u(s) = 1 for every G-legal L-bivaluation u. Therefore, v cannot
be extended to a G-legal L-bivaluation. In addition, dom(v) = sub�(s) is finite
and closed under �-subformulas.

For the converse, suppose that v is a G-legal bivaluation, dom(v) is finite
and closed under �-subformulas, and v cannot be extended to a G-legal L-
bivaluation. Let Γ = {ψ ∈ dom(v) | v(ψ) = 1}, Δ = {ψ ∈ dom(v) | v(ψ) = 0},
and s = Γ ⇒ Δ. Then dom(v) = sub�(s) and v(s) = 0. We show that u(s) = 1
for every G-legal L-bivaluation u. Indeed, every such u does not extend v, and
so u(ψ)
= v(ψ) for some ψ ∈ dom(v). Then, u(ψ) = 0 if ψ ∈ Γ , and u(ψ) = 1 if

ψ ∈ Δ. In either case, u(s) = 1. By Theorem 1,
�sub�(s)
G s and �G s. �

The left-to-right direction of Theorem 2 is used to prove the correctness of
the reduction in the next section. The converse provides a semantic method to
prove �-analyticity, that can be used alternatively to deriving analyticity as a
consequence of cut-elimination.

Example 10. An extension of primal infon logic, that we call EP, extends the
calculus P (see Example 3) with the following classically valid axiomatic rules:

∅ / ⇒ ⊥ ⊃ p1 ∅ /p1 ∨ p1 ⇒ p1 ∅ / ⇒ p1 ⊃ p1
∅ /⊥ ⇒ ∅ /p1 ∨ p2 ⇒ p2 ∨ p1 ∅ / ⇒ (p1 ∧ p2) ⊃ p1
∅ /⊥ ∨ p1 ⇒ p1 ∅ /p1 ∨ (p1 ∧ p2) ⇒ p1 ∅ / ⇒ (p1 ∧ p2) ⊃ p2
∅ / p1 ∨ ⊥ ⇒ p1 ∅ / (p1 ∧ p2) ∨ p1 ⇒ p1 ∅ / ⇒ p2 ⊃ (p1 ⊃ p2)

Note that none of these rules is derivable in P. It is possible to prove that EP is
∅-analytic by showing that it is semantically ∅-analytic and applying Theorem 2.

5 Reduction to Classical Satisfiability

In this section we present a reduction from the derivability problem for a given
�-analytic pure calculus to the complement of SAT. SAT instances are taken to

SAT-Based Decision Procedure for Analytic Pure Sequent Calculi 83

be CNFs represented as sets of clauses, where clauses are sets of literals (that is,
atomic variables and their negations, denoted by overlines). The set {xψ | ψ ∈ L}
is used as the set of atomic variables in the SAT instances. The translation of
sequents to SAT instances is naturally given by:

Definition 11. For a sequent Γ ⇒ Δ:

SAT+(Γ ⇒ Δ) := {{xψ | ψ ∈ Γ} ∪ {xψ | ψ ∈ Δ}} .

SAT−(Γ ⇒ Δ) := {{xψ} | ψ ∈ Γ} ∪ {{xψ} | ψ ∈ Δ} .

This translation captures the semantic interpretation of sequents. Indeed,
given an L-bivaluation v and a classical assignment u that assigns true to xψ iff
v(ψ) = 1, we have that for every L-sequent s: v(s) = 1 iff u satisfies SAT+(s),
and v(s) = 0 iff u satisfies SAT−(s). Now, in order for a bivaluation to be G-legal
for some calculus G, it should satisfy the semantic restrictions arising from the
rules of G. These restrictions can be directly encoded as SAT instances (as done,
e.g., in [17] for the particular case of the classical truth tables). For this purpose,
the use of Ax(G) (see Definition 7) instead of G is technically convenient.

Definition 12. The SAT instance associated with a given L-calculus G, an
L-sequent s and a set � ⊆ ♦1

L is given by:

SAT�(G, s) :=
⋃{

SAT+(σ(s′)) | ∅ / s′ ∈ Ax(G), σ(frm(s′)) ⊆ sub�(s)
}
.

Example 11. Consider the {¬}-analytic calculusG3 for �Lukasiewicz three-valued
logic from Example 7. Following Example 8, Ax(G3) contains the axiomatic
rules ∅ /p1, p1 ⊃ p2 ⇒ ¬p1, p2 and ∅ /¬p2, p1 ⊃ p2 ⇒ ¬p1, p2. Given a sequent
s, SAT{¬}(G3, s) includes the clause {xψ1 , xψ1⊃ψ2 , x¬ψ1 , xψ2} and the clause

{x¬ψ2 , xψ1⊃ψ2 , x¬ψ1 , xψ2} for every formula of the form ψ1 ⊃ ψ2 in sub{¬}(s).

Theorem 3. Let G be a �-analytic L-calculus and s be an L-sequent. Then
�G s iff SAT�(G, s) ∪ SAT−(s) is unsatisfiable.

Proof. Suppose that
�G s. By Proposition 1,
�Ax(G) s. By Theorem 1, there ex-

ists an Ax(G)-legal L-bivaluation v such that v(s) = 0. The classical assignment
u that assigns true to a variable xψ iff v(ψ) = 1 satisfies SAT�(G, s) ∪ SAT−(s).

For the converse, let u be a classical assignment satisfying the SAT instance
SAT�(G, s) ∪ SAT−(s). Consider the sub�(s)-bivaluation v defined by v(ψ) = 1
iff u assigns true to xψ. It is easy to see that since u satisfies SAT�(G, s), v
is Ax(G)-legal. u also satisfies SAT−(s), and hence v(s) = 0. Since G is �-
analytic, so is Ax(G) (by Proposition 1). By Theorem 2, Ax(G) is semantically
�-analytic, and so v can be extended to an Ax(G)-legal L-bivaluation. Theo-
rem 1 entails that
�Ax(G) s. By Proposition 1, it follows that
�G s. �

Now, we show that the above reduction is computable in polynomial time.

Definition 13. A rule S / s is called k-�-closed if there are ϕ1, . . . , ϕk ∈ frm(s)
(calledmain formulas) such frm(S / s) consists only of �-subformulas of the ϕi’s.
A calculus is k-�-closed if each of its rules is k′-�-closed for some k′ ≤ k.

84 O. Lahav and Y. Zohar

Example 12. LK and P (see Examples 2 and 3) are 1-∅-closed. GC1 (see Exam-
ple 4) is 1-{¬}-closed. EP (see Example 10) is 2-∅-closed, because of the rule
∅ / p1 ∨ p2 ⇒ p2 ∨ p1.

Remark 1. Every axiomatic calculus is k-�-closed for some k (e.g., the maximal
number of formulas in its rules). As seen in Proposition 1, every calculus G is
equivalent to the axiomatic calculus Ax(G). Moreover, if G is k-�-closed, then
so is Ax(G).

Theorem 4. Let G be a k-�-closed L-calculus. Given an L-sequent s, the SAT
instance SAT�(G, s) ∪ SAT−(s) is computable in O(nk) time, where n is the
length of the string representing s.

Proof (sketch). The following algorithm computes SAT�(G, s) ∪ SAT−(s):

1. Build a parse tree for the input using standard techniques. As usual, every
node represents an occurrence of some subformula in s.

2. Using, e.g., the linear-time algorithm from [10], compress the parse tree into
an ordered dag by maximally unifying identical subtrees. After the compres-
sion, the nodes of the dag represent subformulas of s, rather than occur-
rences. Hence we may identify nodes with their corresponding formulas.

3. Traverse the dag. For every ◦ ∈ � and node v that has a parent, add a
new parent labeled with ◦, if such a parent does not exist. To check this
it is possible to maintain in each node v a constant-size list of all unary
connectives in � that label the parents of v. Note that after these additions,
the nodes of the dag one-to-one correspond to sub�(s).

4. SAT−(s) is obtained by traversing the dag and generating {xψ} for every ψ
on the left-hand side of s and {xψ} for every ψ on the right-hand side of s.

5. SAT�(G, s) is generated by looping over all rules in Ax(G). For each rule
∅ / s′ with main formulas ϕ1, . . . , ϕk′ (k′ ≤ k), go over all k′-tuples of nodes
in the dag. For each k′ nodes v1, . . . , vk′ check whether v1, . . . , vk′ match
the pattern given by ϕ1, . . . , ϕk′ , and if so, construct a mapping h from
the formulas in sub�(s′) to their matching nodes. Then construct a clause
consisting of a literal xh(ϕ) for every ϕ on the left-hand side of s′, and
a literal xh(ϕ) for every ϕ on the right-hand side of s′. Note that only a
constant depth of the sub-dags rooted at v1, . . . , vk′ is considered - that
is the complexity of ϕ1, . . . , ϕk′ , in addition to parents labeled with ele-
ments from �. These are independent of the input sequent s. To see that
we generate exactly all required clauses, note that a substitution σ satisfies
σ(frm(s′)) ⊆ sub�(s) iff σ({ϕ1, . . . , ϕk′}) ⊆ sub�(s). Thus a substitution σ
satisfies σ(frm(s′)) ⊆ sub�(s) iff there are k′ nodes matching the patterns
given by ϕ1, . . . , ϕk′ .

Steps 1,2,3,4 require linear time. Each pattern matching in step 5 is done in
constant time, and so handling a k′-�-closed rule takes O(nk′

) time. Thus step
5 requires O(nk) time. �

SAT-Based Decision Procedure for Analytic Pure Sequent Calculi 85

Remark 2. We employ the same standard computation model of analysis of al-
gorithms used in [11]. A linear time implementation of this algorithm cannot
afford the variables xψ to literally include a full string representation of ψ. Thus
we assume that each node has a key that can be printed and manipulated in
constant time (e.g., its memory address).

Corollary 1. For any �-analytic calculus G, the derivability problem for G is
in co-NP.

The reduction runs in linear time for 1-�-closed calculi. In such cases, it is
natural to identify calculi whose SAT instances can be decided in linear time.
This is the case, for example, for instances consisting of Horn clauses [13].

Definition 14. A rule r is called a Horn rule if #L(r) + #R(r) ≤ 1, where
#L(r) is the number of premises of r whose left-hand side is not empty, and
#R(r) is the number of formulas on the right-hand side of the conclusion of r.
A calculus is called a Horn calculus if each of its rules is a Horn rule.

Proposition 2. Let G be a Horn L-calculus and s be an L-sequent. Then
SAT�(G, s) consists solely of Horn clauses.

Corollary 2. Let G be a �-analytic, 1-�-closed Horn L-calculus. The deriv-
ability problem for G can be decided in linear time using a HORNSAT solver.

Example 13. The derivability problem for EP (see Example 10) is decidable in
quadratic time, as EP is a ∅-analytic, 2-∅-closed Horn calculus. Excluding the
rule ∅ / p1∨p2 ⇒ p2∨p1 results in a 1-∅-closed Horn calculus, whose derivability
problem can be decided in linear time. The linear time algorithm for P from [6]
is also an instance of this method.

6 Next Operators

In this section we extend the framework to accommodate Next operators, that
are often employed in temporal logics. In primal infon logic [11], they play the role
of quotations (see Example 14 below). In what follows, � denotes an arbitrary
finite set of unary connectives (Next operators), and L� denotes the propositional
language obtained by augmenting L with � (we assume that ♦L ∩ � = ∅). A
sequence ∗̄ = ∗1 . . . ∗m (m ≥ 0) of elements of � is called a �-prefix. Given a set
F ⊆ L� and a �-prefix ∗̄, we denote the set {∗̄ψ | ψ ∈ F} by ∗̄F . This notation
is extended to sequents and sets of sequents in the obvious way. We now extend
pure calculi with new rules for Next operators.

Definition 15. A �-proof in a calculus G is defined similarly to a standard
proof (see Definition 2), where in addition to (weak), (id) and (cut), the following
scheme may be used for any ∗ ∈ �:

(∗i) Γ ⇒ Δ

∗Γ ⇒ ∗Δ
For an L-calculus G, a set F ⊆ L�, and an L�-sequent s, we write �FG� s (or

�G� s if F = L�) if there is a �-proof of s in G consisting only of F -sequents.

86 O. Lahav and Y. Zohar

(∗i) is a usual rule for Next in the temporal logic LTL (i.e., for � = {X}, we
have �LK�⇒ ψ iff ψ is valid in the Next-only fragment of LTL; see, e.g., [16]). It

is also used for � (and ♦) in the modal logic KD! of functional Kripke frames.

Remark 3. Applications of L-rules in �-proofs may include L�-formulas. For
example, using the rule ⇒ p2 / ⇒ p1 ⊃ p2, it is possible to derive the sequent
∗p3 ⇒ ∗p1 ⊃ p2 from ∗p3 ⇒ p2.

Example 14. The quotations employed in primal infon logic [11] are unary con-
nectives of the form q said, where q ranges over a finite set of principals. If we
take � to include these connectives, we have that �P� Γ ⇒ ψ (see Example 3)
iff ψ is derivable from Γ in the Hilbert system for primal infon logic given in
[11]. This can be shown by induction on the lengths of the proofs.

Next, we define Kripke-style semantics for calculi with Next operators.

Definition 16. A biframe for � is a tuple W = 〈W,R,V〉 where:

1. W is a set of elements called worlds. Henceforth, we may identify W with
this set (e.g., when writing w ∈ W instead of w ∈ W).

2. R is a function assigning a binary relation on W to every ∗ ∈ �. We write
R∗ instead of R(∗), and R∗[w] denotes the set {w′ ∈ W | wR∗w′}.

3. V is a function assigning a bivaluation to every w ∈ W , such that for every
w ∈ W , ∗ ∈ � and formula ψ: if ∗ψ ∈ dom(V(w)) and ψ ∈ dom(V(w′)) for
every w′ ∈ R∗[w], then V(w)(∗ψ) = min {V(w′)(ψ) | w′ ∈ R∗[w]}. Hence-
forth, we write Vw instead of V(w).

Furthermore, if dom(Vw) = F for every w ∈ W , we refer to W as an F-biframe.

Definition 17. A biframe 〈W,R,V〉 for � is called functional if R∗ is a func-
tional relation (that is, a total function from W to W) for every ∗ ∈ �. In this
case we write R∗(w) to denote the unique element w′ ∈ W satisfying wR∗w′.

Definition 18. A biframe 〈W,R,V〉 for � is called G-legal for an L-calculus G
if Vw is G-legal for every w ∈ W (see Definition 9).

Theorem 5 (Soundness and Completeness). Let G be an L-calculus, F be
a set of L�-formulas, and s be an F-sequent. Then, �FG� s iff Vw(s) = 1 for

every G-legal functional F-biframe 〈W,R,V〉 for � and w ∈ W .

Generally speaking, soundness is proved by induction on the length of the �-
proof. The fact that the biframes are functional is essential for the soundness of
(∗i). Completeness is proved using a canonical countermodel construction.

Remark 4. Note that similar results hold for usual rules for introducing �. For
example, if we take the usual rule used in the system for the modal logic K
(which, unlike (∗i), allows only one formula on the right-hand side), we can prove
soundness and completeness as above with respect to all G-legal F -biframes.
Similarly, for other known sequent rules for � (as those of the systems for K4,

SAT-Based Decision Procedure for Analytic Pure Sequent Calculi 87

KB, S4, and S5, see [18]) it is possible to show a similar general soundness
and completeness with respect to G-legal F -biframes satisfying the correspond-
ing condition (transitivity, symmetry, etc.). Nevertheless, the reduction to SAT
proposed below applies only for (∗i).

Next we extend the reduction from Section 5 to analytic calculi with Next
operators. This is done for a large family of calculi that we call standard.

Definition 19. An atomic variable p ∈ At is called lonely in some rule r if
p ∈ frm(r), but p is not a proper subformula of any formula in frm(r). A calculus
is called standard if none of its rules has lonely atomic variables.

As before, we use {xψ | ψ ∈ L�} as the set of atomic variables in the SAT
instances. Nevertheless, while the reduction above was based on �-subformulas,
the current reduction is based on �-local formulas. This notion generalizes the
local formulas relation from [15].

Definition 20. loc�(ψ), the set of formulas that are �-local to an L�-formula
ψ, is inductively defined as follows: 1) loc�(p) = {p} for every atomic variable
p ∈ At; 2) loc�(&(ψ1, . . . , ψn)) = {&(ψ1, . . . , ψn)} ∪ {◦ψi | ◦ ∈ �, 1 ≤ i ≤ n} ∪⋃n

i=1 loc
�(ψi) for every & ∈ ♦n

L and formulas ψ1, . . . , ψn; 3) loc
�(∗ψ) = ∗loc�(ψ)

for every ∗ ∈ � and formula ψ. This definition is extended to sequents in the
obvious way, i.e. loc�(s) =

⋃
{loc�(ϕ) | ϕ ∈ frm(s)}.

Note that for � = ∅, we have loc�(ψ) = sub�(ψ) for every formula ψ.

Example 15. For � = {�, },
loc{¬}(�(p1 ⊃ p2)) = {� p1, �¬ p1, �p2, �¬p2, �(p1 ⊃ p2)}.

Definition 21. The SAT instance associated with an L-calculus G, an L�-
sequent s and a set � ⊆ ♦1

L is given by:

SAT��(G, s) :=
⋃{

SAT+(∗̄σ(s′)) | ∅ / s′ ∈ Ax(G), ∗̄σ(frm(s′)) ⊆ loc�(s)
}
.

Theorem 6. Let G be a standard �-analytic L-calculus and s be an L�-sequent.
Then �G� s iff SAT��(G, s) ∪ SAT−(s) is unsatisfiable.

Generally speaking, the main difficulty in the proof of this theorem is to
construct a countermodel for s (in the form of a G-legal functional L�-biframe
for �) out of a satisfying assignment u of SAT��(G, s)∪ SAT−(s). Thus if
�G� s,
the full proof of Theorem 6 actually provides a way to translate the classical
assignment that satisfies SAT��(G, s) ∪ SAT−(s) into a countermodel of s. This
is done in two steps. First, we translate u into a �-closed G-legal functional
biframe W which is not a model of s:

Definition 22. A set of L�-formulas is called �-closed if whenever it contains
a formula of the form &(ϕ1, . . . , ϕn) (for some & ∈ ♦L) it also contains ϕi and
◦ϕi for every 1 ≤ i ≤ n and ◦ ∈ �. A biframe 〈W,R,V〉 for � is called �-closed
if the following hold for every w ∈ W : dom(Vw) is �-closed and finite; and for
every ∗ ∈ �, if ∗ψ ∈ dom(Vw), then ψ ∈ dom(Vw′) for every w′ ∈ R∗[w].

88 O. Lahav and Y. Zohar

Given an assignment u that satisfies SAT��(G, s)∪SAT−(s), a �-closed G-legal
functional biframe W = 〈W,R,V〉 is constructed as follows:

1. W is the set of all �-prefixes.
2. For every ∗ ∈ � and ∗̄ ∈ W , R∗(∗̄) = ∗̄∗.
3. V∗̄ is defined by induction on the length of ∗̄: dom(Vε) = loc�(s) and

Vε(ψ) = 1 iff u satisfies xψ ;
3 dom(V∗1...∗n) =

{
ϕ | ∗n ϕ ∈ dom(V∗1...∗n−1)

}
and V∗1...∗n(ψ) = V∗1...∗n−1(∗nψ).

Then, the following theorem is used to extend W to a full G-legal L�-biframe.

Definition 23. A biframe 〈W,R,V〉 for � extends a biframe 〈W ′,R′,V ′〉 for �
if W = W ′, R = R′, and Vw extends V ′w for every w ∈ W .

Theorem 7. Let G be a standard semantically �-analytic L-calculus, and W
be a G-legal �-closed biframe for � with dom(Vw) ⊆ L� for every w ∈ W. Then
W can be extended to a G-legal L�-biframe for �.

For the case that � = ∅, the polynomial time algorithm from Section 5 can
be modified to accommodate Next operators.

Theorem 8. Let G be a k-∅-closed L-calculus. Given an L�-sequent s, it is
possible to compute SAT∅�(G, s) ∪ SAT−(s) in O(nk) time, where n is the length
of the string representing s.

Proof (sketch). The algorithm from the proof of Theorem 4 is reused with sev-
eral modifications. As in [11], an auxiliary trie (an ordered tree data structure
commonly used for string processing) for �-prefixes is constructed in linear time,
and every node in the input parse tree has a pointer to a node in this trie. Now
each node in the parse tree corresponds to an occurrence of a formula that is
∅-local to s. The tree is then compressed to a dag as in the proof of Theorem 4.
The nodes of the dag one-to-one correspond to the ∅-local formulas of s. The
rest of the algorithm is exactly as in the proof of Theorem 4 with � = ∅. �

For a Horn calculusG, SAT��(G, s)∪SAT−(s) consists of Horn clauses for every
sequent s. When G is 1-∅-closed and ∅-analytic, a linear time decision procedure
for the derivability problem for G with Next operators is obtained by applying
a HORNSAT solver on SAT∅�(G, s) ∪ SAT−(s).

Example 16. Example 13 works as is for the extension of P or EP with any
finite set of Next operators.

Example 17. The linear time fragment of dual-Horn clauses can be utilized as
well. For example, consider the (∅-analytic) calculus Pd that consists of the rules
(∨ ⇒), (⇒ ∨), (∧ ⇒) of LK and the following ones for “dual primal implication”:

(≺⇒) p1 ⇒ / p1 ≺ p2 ⇒ (⇒≺) ⇒ p1; p2 ⇒ / ⇒ p1 ≺ p2
For any sequent s, SAT��(Pd, s)∪SAT−(s) consists of dual-Horn clauses. Thus the
derivability problem for Pd with Next operators can be decided in linear time.

3 ε denotes the empty �-prefix.

SAT-Based Decision Procedure for Analytic Pure Sequent Calculi 89

6.1 On Analyticity of Pure Calculi with Next Operators

At this point, a natural question arises: does the extension of a calculus with
Next operators preserve the �-analyticity of the calculus? In this final section
we provide a positive answer to this question, based on Theorem 7 above that
was used to prove the correctness of the reduction.

Definition 24. An L-calculus G is called �-analytic with � if �G� s implies

�sub�(s)
G� s for every L�-sequent s.

Theorem 9. A standard L-calculus G is �-analytic iff it is �-analytic with �.

Proof. Suppose that G is �-analytic. By Theorem 2 it is also semantically �-

analytic. Let s be an L�-sequent such that
�sub�(s)
G� s. By Theorem 5, there

exists a G-legal functional sub�(s)-biframe W = 〈W,R,V〉 and w ∈ W such
that Vw(s) = 0. W is �-closed, and by Theorem 7, it can be extended to a G-
legal functional L�-biframe W ′ = 〈W,R,V ′〉 for �. After this extension, we still
have V ′w(s) = 0. Theorem 5 implies that
�G� s. For the converse, suppose that
G is �-analytic with �. Assume that �G s for some L-sequent s. Hence, �G� s.

Consequently, there is a �-proof of s in G that consists only of sub�(s)-formulas.

This proof cannot contain applications of (∗i), and therefore, �sub�(s)
G s. �

Example 18. Since P and EP are ∅-analytic and standard, they are also ∅-
analytic with �. In contrast, the Hilbert system for primal infon logic in [11]
admits a similar property that involves local formulas rather than subformulas.

Remark 5. Further to Remark 4, it can be similarly shown that the extension
of a standard pure calculus with any usual rule for � preserves analyticity. In
particular, we did not assume in Theorem 7 that the biframes are functional.

7 Conclusions and Further Research

We have identified a wide family of calculi for which the derivability problem can
be solved using off-the-shelf SAT solvers. Our method was presented for pure
calculi, and later extended to accommodate Next operators. The produced SAT
instances do not encode derivations, whose lengths might not be polynomially
bounded. Instead, they represent the (non-) existence of polynomially bounded
countermodels in the form of partial bivaluations or Kripke frames.

The proposed reduction is limited to analytic pure calculi, as it relies on
their straightforward bivaluation semantic presentation. Nevertheless, some of
the theoretic developments presented in this paper can be extended to different
families of calculi. For example, following Remark 5, the fact that analyticity
is preserved when pure calculi are augmented with Next operators, holds also
for other introduction rules for modalities. Such extensions, as well as studying
multi-ary modalities in this context, are left for future work. In addition, we plan
to extend the methods of this paper to analytic many-sided sequent calculi, that

90 O. Lahav and Y. Zohar

are more expressive than ordinary two-sided calculi. Finally, it is interesting to
study possible applications of logics (besides primal logic) that can be reduced
to efficient fragments of SAT (e.g., 2SAT).

References

1. Avron, A.: Simple consequence relations. Inf. Comput. 92(1), 105–139 (1991)
2. Avron, A.: Classical gentzen-type methods in propositional many-valued logics. In:

Fitting, M., Or�lowska, E. (eds.) Beyond Two: Theory and Applications of Multiple-
Valued Logic. Studies in Fuzziness and Soft Computing, vol. 114, pp. 117–155.
Physica-Verlag HD (2003)

3. Avron, A., Konikowska, B., Zamansky, A.: Modular construction of cut-free sequent
calculi for paraconsistent logics. In: 2012 27th Annual IEEE Symposium on Logic
in Computer Science (LICS), pp. 85–94 (2012)

4. Avron, A., Konikowska, B., Zamansky, A.: Cut-free sequent calculi for c-systems
with generalized finite-valued semantics. Journal of Logic and Computation 23(3),
517–540 (2013)

5. Avron, A., Lev, I.: Non-deterministic multiple-valued structures. Journal of Logic
and Computation 15(3), 241–261 (2005)

6. Beklemishev, L., Gurevich, Y.: Propositional primal logic with disjunction. Journal
of Logic and Computation (2012)

7. Béziau, J.-Y.: Sequents and bivaluations. Logique et Analyse 44(176), 373–394
(2001)

8. Bjørner, N., de Caso, G., Gurevich, Y.: From primal infon logic with individual
variables to datalog. In: Erdem, E., Lee, J., Lierler, Y., Pearce, D. (eds.) Correct
Reasoning. LNCS, vol. 7265, pp. 72–86. Springer, Heidelberg (2012)

9. Blass, A., Gurevich, Y.: Abstract hilbertian deductive systems, infon logic, and
datalog. Information and Computation 231, 21–37 (2013)

10. Cai, J., Paige, R.: Using multiset discrimination to solve language processing prob-
lems without hashing. Theoretical Computer Science 145(12), 189–228 (1995)

11. Cotrini, C., Gurevich, Y.: Basic primal infon logic. Journal of Logic and Compu-
tation (2013)

12. Degtyarev, A., Voronkov, A.: The inverse method. In: Handbook of Automated
Reasoning, vol. 1, pp. 179–272 (2001)

13. Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satisfiability
of propositional horn formulae. The Journal of Logic Programming 1(3), 267–284
(1984)

14. Gomes, C.P., Kautz, H., Sabharwal, A., Selman, B.: Satisfiability solvers. In: Hand-
book of Knowledge Representation. Foundations of Artificial Intelligence, vol. 3,
pp. 89–134. Elsevier (2008)

15. Gurevich, Y., Neeman, I.: Logic of infons: The propositional case. ACM Trans.
Comput. Logic 9, 1–9 (2011)

16. Kawai, H.: Sequential calculus for a first order infinitary temporal logic. Mathe-
matical Logic Quarterly 33(5), 423–432 (1987)

17. Kowalski, R.: Logic for Problem-solving. North-Holland Publishing Co., Amster-
dam (1986)

18. Wansing, H.: Sequent systems for modal logics. In: Gabbay, D.M., Guenthner, F.
(eds.) Handbook of Philosophical Logic, 2nd edn., vol. 8, pp. 61–145. Springer
(2002)

A Unified Proof System for QBF Preprocessing�

Marijn J.H. Heule1, Martina Seidl2, and Armin Biere2

1 Department of Computer Science, The University of Texas at Austin, USA
marijn@cs.utexas.edu

2 Institute for Formal Models and Verification, JKU Linz, Austria
{martina.seidl,biere}@jku.at

Abstract. For quantified Boolean formulas (QBFs), preprocessing is
essential to solve many real-world formulas. The application of a pre-
processor, however, prevented the extraction of proofs for the original
formula. Such proofs are required to independently validate correctness
of the preprocessor’s rewritings and the solver’s result. Especially for
universal expansion proof checking was not possible so far. In this paper,
we introduce a unified proof system based on three simple and elegant
quantified resolution asymmetric tautology (QRAT) rules. In combina-
tion with an extended version of universal reduction, they are sufficient
to efficiently express all preprocessing techniques used in state-of-the-art
preprocessors including universal expansion. Moreover, these rules give
rise to new preprocessing techniques. We equip our preprocessor bloqqer
with QRAT proof logging and provide a proof checker for QRAT proofs.

1 Introduction

Effectively checking the result returned by a QBF solver has been an open chal-
lenge for a long time [1,2,3,4,5,6,7]. The current state-of-the-art is to simply
dump Q-resolution proofs and to validate their structure. This approach has
two major drawbacks. On the one hand the proofs might get extremely large
and cannot be produced due to technical limitations. On the other hand, there
are solving and preprocessing techniques for which it is not known if and how
they translate to Q-resolution.

Due to the diversity of techniques in state-of-the-art preprocessors [8,9], it is
not straightforward to provide a checker which verifies the output of the pre-
processor. In fact, it would be preferable to translate the different preprocessing
techniques to a canonical representation which then can be checked easily. Some
efforts go in this direction by using Q-resolution. If a resolution proof is available,
then checking is polynomial w.r.t. the proof size. However, the proof itself might
become exponentially large and already writing down the proof might be costly.

� This work was supported by the Austrian Science Fund (FWF) through the na-
tional research network RiSE (S11408-N23), Vienna Science and Technology Fund
(WWTF) under grant ICT10-018, DARPA contract number N66001-10-2-4087, and
the National Science Foundation under grant number CCF-1153558.

S. Demri, D. Kapur, and C. Weidenbach (Eds.): IJCAR 2014, LNAI 8562, pp. 91–106, 2014.
c© Springer International Publishing Switzerland 2014

92 M.J.H. Heule, M. Seidl, and A. Biere

Furthermore, it is not known for all preprocessing techniques how to express
them in terms of resolution, what is the case for universal expansion [10].

In propositional logic, the RUP proof checking format [11] is extremely suc-
cessful because it simply logs the learnt clauses and provides an easy checking
criterion. For optimization purposes, recently, the DRUP extension has been
presented [12] which provides elimination criteria for redundant clauses. It has
been recognized that RUP and DRUP can be characterized with the resolu-
tion asymmetric tautology property (RAT) which has been originally developed
in the context of propositional preprocessing for characterizing and comparing
the strength of the various techniques. In this paper, we extend RAT [13] to
QRAT, the quantified resolution asymmetric tautology property, and introduce
novel clause addition and elimination techniques using QRAT. On this basis, we
capture the state-of-the-art preprocessing techniques in a uniform manner what
allows us to develop a checker verifying the correctness of a QBF preprocessor.
Moreover, checking QRAT proofs is polynomial in the proof size. We integrated
QRAT-based tracing in our preprocessor bloqqer [8] and implemented an efficient
checker for QRAT proofs.

2 Preliminaries

We consider QBFs in prenex conjunctive normal form (PCNF). A QBF in PCNF
has the structure Π.ψ where the prefix Π has the form Q1X1Q2X2 . . . QnXn

with disjoint variable sets Xi and Qi ∈ {∀, ∃}. The formula ψ is a propositional
formula in conjunctive normal form, i.e., a conjunction of clauses. A clause is
a disjunction of literals and a literal is either a variable (positive literal) or a
negated variable (negative literal). The variable of a literal is denoted by var(l)
where var(l) = x if l = x or l = x̄. The negation of a literal l is denoted by l̄.
The quantifier Q(Π, l) of a literal l is Qi if var(l) ∈ Xi. Let Q(Π, l) = Qi and
Q(Π, k) = Qj , then l ≤Π k if i ≤ j. We sometimes write formulas in CNF as
sets of clauses and clauses as sets of literals. We consider only closed QBFs, so
ψ contains only variables which occur in the prefix. The variables occurring in
the prefix of φ are given by vars(φ). The subformula ψl consisting of all clauses
of matrix ψ containing literal l is defined by ψl = {C | l ∈ C,C ∈ ψ}. By �
and ⊥ we denote the truth constants true and false. QBFs are interpreted as
follows: a QBF ∀xΠ.ψ is false iff Π.ψ[x/�] or Π.ψ[x/⊥] is false where Π.ψ[x/t]
is the QBF obtained by replacing all occurrences of variable x by t. Respectively,
a QBF ∃xΠ.ψ is false iff both Π.ψ[x/�] and Π.ψ[x/⊥] are false. If the matrix
ψ of a QBF φ contains the empty clause after eliminating the truth constants
according to standard rules, then φ is false. Accordingly, if the matrix ψ of QBF
φ is empty, then φ is true. Two QBFs are satisfiability equivalent iff they have
the same truth value.

Models and countermodels of QBFs can either be described intensionally in
form of Herbrand and Skolem functions [1] or extensionally in form of subtrees
of assignment trees. An assignment tree of a QBF φ is a complete binary tree
of depth |vars(φ) + 1| where the non-leaf nodes of each level are associated with

A Unified Proof System for QBF Preprocessing 93

a variable of φ. The order of the associated variables in the tree respects the
order of the variables in the prefix of φ. A non-leaf node associated with variable
x has one outgoing edge labelled with x and one outgoing edge labelled with
x̄. Each path starting from the root of the tree represents a (partial) variable
assignment. We also write a path as a sequence of literals. A path τ from the
root node to a leaf is a complete assignment and the leaf is labelled with the
value of the QBF under τ . Nodes associated with existential variables act as OR-
nodes, while universal nodes act as AND-nodes. Respectively, a node is labelled
either with � or with ⊥. A QBF is true (satisfiable) iff its root is labelled with
�. A QBF is false (unsatisfiable) iff its root is labelled with ⊥. By τx and τx
we denote the partial assignments obtained from the complete assignment τ
with τ = τxlτx where var(l) = x. A QBF φ with vars(φ) = {x1, . . . , xn} under
(partial) assignment τ is the QBF φ[x1/t1, . . . , xn/tn] where ti = � if xi ∈ τ ,
ti = ⊥ if x̄i ∈ τ , and ti = xi otherwise.

Example 1. Consider the QBF ∃a∀b∃c∀d∃e.(a∨ b∨ c̄∨ d̄∨ e) and the path from
the root τ = ab̄c̄dē. Then we have partial assignments τc = ab̄ and τc = dē.

A pre-model M of QBF φ is a subtree of the assignment tree of φ such that
(1) for each universal node in M , both children are in M ; (2) for each existential
node in M , exactly one of the children is in M ; and (3) the root of the assignment
tree is in M . A pre-model M of QBF φ is a model of φ if in addition each node
in M is labelled with �. Obviously, only a true QBF can have a model. A false
QBF has at least one countermodel, which is defined dually as follows. In a pre-
countermodel M existential nodes have two children, whereas universal nodes
have only one and the root of the assignment tree is in M . A pre-countermodel
M is a countermodel if each node is labelled with ⊥. Two QBFs are logically
equivalent iff they have the same set of (counter) models modulo variable names.

3 QRAT: Quantified Resolution Asymmetric Tautologies

The QRAT proof system, introduced below, provides the basis for satisfiability
equivalence preserving clause addition, clause deletion, and clause modification
techniques. To this end, we first have to recapitulate the notion ofQBF resolvents
(resolvents for short) and introduce the concept of asymmetric literal addition.

Definition 1 (Resolvent). Given two non-tautological clauses C and D with
x ∈ C and x̄ ∈ D, the resolvent over pivot variable x is (C\{x}) ∪ (D\{x̄}).

Note that we do not restrict the pivot element to existential variables as it is
usually done in the literature. Furthermore, for the moment, we do not consider
universal reduction rule necessary for the completeness of Q-resolution.

Definition 2 (Asymmetric Literal Addition). Given a QBF Π.ψ and a
clause C. The clause ALA(ψ,C) is the unique clause obtained by repeatedly ap-
plying the extension rule C := C ∪{l̄} if ∃l1, . . . , lk ∈ C and (l1∨ . . .∨ lk ∨ l) ∈ ψ
called asymmetric literal addition to C until fixpoint.

94 M.J.H. Heule, M. Seidl, and A. Biere

Asymmetric literal addition is well understood for propositional logic [14]. For
QBF, a variant called hidden literal addition has been described in [8] where it
is (unnecessarily) required that the li occur to the left of l in the prefix.

The new definition for QBF used in this paper is the same in the propositional
case. Thus φ[C/C′] with C′ = ALA(ψ,C) has exactly the same (propositional)
models as φ, which lifts to QBF equivalence, since the values the leaves of as-
signment trees do not change. As consequence we have the following lemma.

Lemma 1. Let φ = Π.ψ∪{C} be a QBF and C′ = ALA(ψ,C) be obtained from
C by asymmetric literal addition. Further, let φ′ = φ[C/C′]. Then φ and φ′ are
logically equivalent.

A clause C is called an asymmetric tautology (AT) w.r.t. ψ if ALA(ψ,C) is a
tautology. ALA, AT, and resolution as introduced above are sufficient to define
the RAT proof system for propositional logic. For QBFs, we must additionally
consider quantifier dependencies which we capture by the notion of outer clauses
and outer resolvents.

Definition 3 (Outer Clause). Let C be a clause occurring in QBF Π.ψ. The
outer clause of C on literal l ∈ C, denoted by O(Π,C, l), is given by the clause
{k | k ∈ C, k ≤Π l, k
= l}.

Definition 4 (Outer Resolvent). Let C be a clause with l ∈ C and and D a
clause occurring in QBF Π.ψ with l̄ ∈ D. The outer resolvent of C with D on
literal l w.r.t. Π, denoted by R(Π,C,D, l), is given by the clause O ∪ (C\{l}) if
Q(Π, l) = ∀ and by O ∪C if Q(Π, l) = ∃ assuming O = O(Π,D, l̄).

Definition 5 (Quantified Resolution Asymmetric Tautology (QRAT)).
Given a QBF Π.ψ and a clause C. Then C has QRAT on literal l ∈ C with
respect to Π.ψ iff it holds for all D ∈ ψl̄ that ALA(ψ,R) is a tautology for the
outer resolvent R = R(Π,C,D, l).

The intuition behind these definitions is almost identical to the propositional
case [15]: consider potential resolvents of a clause on a certain literal with res-
olution candidates containing the negation of the picked literal. If all of them
are “redundant”, or more precisely asymmetric tautologies in the context of this
paper, then this clause is redundant too and can be added or removed.

The important difference to the propositional case is that inner variables,
w.r.t. the pivot variable resolved upon, might have different values for differ-
ent choices of universal literals, and thus one can not simply apply resolution
blindly before checking for redundancy of the resolvent. Inner literals in the reso-
lution candidates should be ignored. This is the same restriction as for quantified
blocked clauses [8]. As it turns out, for existential pivots, it is possible to have a
slightly more general version, i.e., the pivot literal can be included in the outer
resolvent, while in previous work this was not the case, and for universal pivots,
it is not allowed. The QRAT proof system uses this observation to establish syn-
tactical redundancy detection criteria to safely add, remove, and modify clauses.

A Unified Proof System for QBF Preprocessing 95

Lemma 2. Given a clause C which has QRAT w.r.t. a QBF Π.ψ on an exis-
tential literal l ∈ C with var(l) = x. If there is an assignment σ = τx l̄τx that
falsifies C, but satisfies ψ then the assignment τx satisfies all D ∈ ψ with l̄ ∈ D.

Proof. Let D ∈ ψ be a clause with l̄ ∈ D, σ(C) = ⊥, and O = O(Π,D, l̄). In
order to show τx(D) = � by contradiction we assume that τx(O) = ⊥. This leads
to σ(R) = ⊥ for the outer resolvent R = O∪C too (note that we do not remove l
from C). By induction on the order of literals added toR in computing ALA(ψ,R)
we show that σ(l′) = ⊥ for all literals l′ in ALA(ψ,R). This is clear for all l′ ∈ R.
Assume l1, . . . , lk−1 are from R or have been added through ALA extensions and
further assume there is a clause E = {l1, . . . , lk−1, lk} ∈ ψ which is used to add
¬lk next. Observe that σ(E) = σ(ψ) = � and by the induction hypothesis we
have σ(l1) = · · · = σ(lk−1) = ⊥, which leads to σ(lk) = �. This concludes
the induction proof resulting in σ(ALA(R)) = ⊥, which is impossible for the
tautology ALA(R). The assumption is invalid and thus τx(O) = τx(D) = �. �
Theorem 1. Given a QBF φ = Π.ψ and a clause C ∈ ψ with QRAT on an
existential literal l ∈ C with respect to QBF φ′ = Π ′.ψ′ where ψ′ = ψ \ {C}
and Π ′ is Π without the variables of C not occurring in ψ′. Then φ and φ′ are
satisfiability equivalent.

Proof. If φ is satisfiable then φ′ is also satisfiable, since all models of φ are also
models of φ′. In the following, we show that if φ′ is satisfiable then φ is also
satisfiable. Let M be a model for φ′, which is not a model for φ. Then for every
assignment τx l̄τx in M which satisfies ψ′ = ψ \ {C} and falsifies C we replace in
M ′ all assignments τx l̄ρx by τxlρx. Now we need to show that all these τxlρx
still satisfy ψ′. Since τx l̄ρx satisfies all clauses in ψ′, the only clauses in ψ′ that
can be falsified by τxlρx must contain literal l̄. Lemma 2 shows, however, that
all clauses D ∈ ψ with l̄ ∈ D are satisfied by τx and hence by τxlρx. Thus the
resulting pre-model M ′ turns out to be a model of φ. �

In order to remove or to add a clause which has QRAT on literal l requires l to
be existential. The following example illustrates that it would not be sound either
to allow for universal variables or to ignore the variable dependency restrictions.

Example 2. Consider the false QBF ∃x∀y.(x ∨ y) ∧ (x̄ ∨ ȳ). Clause (x ∨ y) has
QRAT on y w.r.t. (x̄∨ȳ), but eliminating (x∨y) does not preserve unsatisfiability.
Hence, one cannot remove clauses based on QRAT on a universal literal. If we
would drop the variable dependency restriction, then (x ∨ y) would have QRAT
on x w.r.t. (x̄ ∨ ȳ). Again, removing (x ∨ y) does not preserve unsatisfiability.

The elimination of a clause which has QRAT or AT w.r.t. a QBF φ is called

QRATE. We write QRATE also as Π.ψ ∪ {C} QRATE−−−−→ Π.ψ. Analogously, QRAT
allows the introduction of clauses. The addition of a clause which hasQRAT or AT

w.r.t. a QBF φ is called QRATA. We write QRATA also asΠ.ψ
QRATA−−−−→ Π ′.ψ∪{C}.

Note that the added clause may contain variables which do not occur in the
original QBF. Then the prefix has to be extended by these variables for getting
a closed QBF again. These variables may be quantified arbitrarily and put at
any position within the prefix.

96 M.J.H. Heule, M. Seidl, and A. Biere

Example 3. Consider the true QBF Π.ψ = ∀a ∃b, c.(a∨b)∧(ā∨c)∧(b∨ c̄). Clause
(a∨c) has QRAT on c w.r.t. Π.ψ: the only clause that contains literal c̄ is (b∨ c̄),
which produces the outer resolvent (a∨b∨c). ALA(ψ, (a∨b∨c)) = (a∨ā∨b∨b̄∨c∨c̄)
is a tautology. Therefore, QRATA can add (a ∨ c) to ψ. Now consider a new
existential variable d in the innermost quantifier block. The clause (b̄∨c∨d) has
QRAT on c (and d) w.r.t. ψ. Adding (b̄∨ c ∨ d) to ψ will result in the true QBF
∀a ∃b, c, d.(a ∨ b̄) ∧ (ā ∨ c) ∧ (b ∨ c̄) ∧ (b̄ ∨ c ∨ d).

However, as we will show below, one can remove universal literals if they have
QRAT. This is similar to the pure literal elimination rule (see next section) which
is a clause elimination technique if the pure literal is existentially quantified and
which is a literal elimination technique if the pure literal is universally quantified.

For the proof of the following theorem we need the concept of “dual assign-
ment”. The dual of an assignment σ in a model for a universal literal is the
unique τ in the same model obtained from flipping this literal in σ but keeping
all literals before l and all universal literals after l untouched, or more formally:

Definition 6. Given a model M of a QBF and σ = σxlσx ∈ M and a literal l
with σ(l) = � then τ = σx l̄τx ∈ M is the dual of σ w.r.t. l iff all universal literals
in σx are the same in τx, e.g. for all universal literals k we have σx(k) = τx(k).

Note, that existential literals in σx and τx might have opposite signs.

Theorem 2. Given QBF φ0 = Π.ψ and φ = Π.ψ ∪ {C} where C has QRAT on
a universal literal l ∈ C with respect to φ0. Further, let φ′ = Π.ψ ∪ {C′} with
C′ = C \ {l}. Then φ and φ′ are satisfiability equivalent.

Proof. We need to show that if φ is satisfiable, then φ′ is satisfiable. The reverse
is trivial. Let M be a model of φ. We are going to define a model M ′ for φ′

from M as follows. All assignments σ in M with σ(C′) = � are kept in M ′.
If σ(C′) = ⊥ and τ = σx l̄τx is the dual assignment of σ w.r.t. l in M , then
we replace σ by σ′ = σxlτx, which is the same as the dual τ of σ w.r.t. l but
with l flipped. It is apparent that the set of assignments M ′ defined this way
actually forms a tree and thus a pre-model. Further, note, that C′ is satisfied
on all paths in M ′, since either σ(C′) = � or otherwise (if σ(C′) = ⊥) we
have σ′(C′) = τ(C′) = τ(C) = �. As in the proof of Theorem 1 we assume
that the pre-model M ′ defined above is not a model. Then we have σ′ ∈ M ′,
a clause D ∈ ψ with σ′(D) = ⊥, and σ′ was obtained from σ, by replacing
σ by the dual τ of σ w.r.t. l with l flipped and σ(C′) = ⊥. Since τ(D) = �
and σ′ differs from τ only for l, we know that l̄ single satisfies D in σ′, thus
l̄ ∈ D. The outer clause O = O(Π,D, l̄) ⊂ D has the property σ′(O) = ⊥ and
since σx = σ′x we derive that σ(R) = ⊥. Observe that σ(R) = ⊥ for the outer
resolvent R = R(Π,C,D, l) = O ∪ C′ (note that l is removed, e.g., l
∈ C′).
Using similar arguments as in the proof of Lemma 2 we can show that all the
literals added to R are false under σ. This is in contradiction to the assumption
that ALA(ψ,R) is a tautology. As a consequence M ′ is a model of φ′ and φ′ is
satisfiable too. �

A Unified Proof System for QBF Preprocessing 97

In principle, a universal literal on which a clause C has QRAT w.r.t. to a QBF
φ may be safely removed from C or vice versa added. In the following, we only
need the elimination of universal literals. The elimination of a universal literal
l from a clause C which has QRAT on l w.r.t. a QBF φ is called QRATU. We

write QRATU also as Π.ψ ∪ {C} QRATU−−−−→ Π.ψ ∪ {C \ {l}}.
The definition of outer resolvent depends on quantification. QRATU is not

sound if we allow the existential variant of outer resolvent for a universal literal.

Example 4. Consider the true QBF ∀x∃y, z.(x̄∨ ȳ)∧ (x̄∨ z̄)∧ (x∨y)∧ (x∨y∨z).
Both resolution candidates for resolving (x ∨ y ∨ z) on x lead to an empty
outer clause. Incorrectly using the existential variant would keep x in the outer
resolvent which is identical to the original clause (x ∨ y ∨ z), which in turn is
subsumed. However, removing x from the original clause (x ∨ y ∨ z) makes the
QBF false and thus it is incorrect to keep a universally quantified pivot in the
outer resolvent before checking for asymmetric tautology.

4 Preprocessing for QBFs

For successfully solving quantified Boolean formulas (QBF), the introduction of
an additional preprocessing step has been shown to be extremely beneficial to
focus the search of many solvers. Frequently, preprocessing is crucial to solve a
QBF formula. In general, the preprocessed formula is not logically equivalent,
but satisfiability equivalent. Below, we introduce the most prominent techniques
for preprocessing used in state-of-the-art tools.

We can distinguish three types of rules: (1) clause elimination rules; (2) clause
modification rules; and (3) clause addition rules. Table 1 summarizes the pre-
processing techniques and their necessary preconditions. We omit showing their
soundness as this is extensively discussed in the referenced literature.

Clause Elimination Rules remove clauses while preserving unsatisfiability.
Tautology elimination (E1) removes clauses containing a positive and negative
occurrence of a variable. Subsumption (E2) removes clauses that are a super-
set of other clauses. Existential pure literal elimination (E3) removes all clauses
with an existential literal that occurs only positive or only negative in the for-
mula. Quantified blocked clause elimination (E4) removes clauses which contain
a variable producing only tautological resolvents when used as pivot.

Clause Modification Rules add, remove, and rename literals. The universal
reduction rule (M1) removes a universal literal if it is the innermost literal in
a clause. The strengthening rule (M2) relies on clauses produced by resolution
which subsume one of its antecedents. If an existential literal l occurs in a clause
of size one, then unit literal elimination (M3) allows to remove clauses containing
l and literal occurrences l̄. Universal pure literal elimination (M4) removes a uni-
versal literal if it occurs only in one polarity in the whole formula. Covered literal
addition (M5) extends a clause with literals that occur in all non-tautological
resolvents. Finally, the equivalence replacement rule (M6) substitutes the occur-
rence of a literal l (and l̄) by a literal k (and k̄) if clauses of the form (l∨ k̄) and
(l̄ ∨ k) are in the formula. Literal l must be existentially quantified and l ≥Π k.

98 M.J.H. Heule, M. Seidl, and A. Biere

Clause Addition Rules extend the formula with new clauses, while modifying
and removing old ones. The variable elimination rule (A1), also known as DP
resolution, replaces the clauses in which a certain existential variable occurs by
all non-tautological resolvents on that variable. The universal expansion rule
(A2) removes an innermost universal variable by duplicating and modifying all
clauses that contain one or more innermost existential variables.

Table 1. Preprocessing Rules

name rewriting rule precondition

E1. tautology
elimination

Π.ψ,C ∨ l ∨ l̄
Taut
===⇒ Π.ψ none

cl
a
u
se

el
im

in
a
ti
o
n

E2. subsumption Π.ψ,C,D
Subs
===⇒ Π.ψ,C C ⊆ D

E3. exist. pure
literal elim.

Π.ψ,C1 ∨ l, . . . , Cn ∨ l
Pure∃===⇒ Π.ψ

Q(Π, l) = ∃,
l̄ �∈ ψ ∧ C1 ∧ . . . ∧ Cn

E4.
blocked
clause

elimination
Π.ψ,C

QBCE
===⇒ Π.ψ

∃y ∈ C with Q(Π,y) = ∃,
∀D ∈ ψ with ȳ ∈ D:

l, l̄ ∈ C ⊗y D with l ≤Π y

M1. universal
reduction

Π.ψ,C ∨ l
URed
===⇒ Π.ψ,C

Q(Π, l) = ∀,
� ∃k ∈ C with l <Π k

cl
a
u
se

m
o
d
ifi
ca
ti
o
n

M2.strengthening Π.ψ, l ∨ C, l ∨D
Str
==⇒ Π.ψ,C, l ∨D C ⊆ D

M3. unit literal
elimination

Π.ψ, l, C1 ∨ l̄, . . . , Cn ∨ l̄,
D1 ∨ l, . . . , Dm ∨ l
Unit
==⇒ Π.ψ,C1, . . . , Cn

Q(Π, l) = ∃

M4. univ. pure
literal elim.

Π.ψ,C1 ∨ l, . . . , Cn ∨ l
Pure∀===⇒ Π.ψ,C1, . . . , Cn

Q(Π, l) = ∀,
l̄ �∈ ψ ∧ C1 ∧ . . . ∧ Cn

M5.
covered
literal
addition

Π.ψ,C
QCLA
===⇒ Π.ψ,C ∨ l

∃y ∈ C with Q(Π,y) = ∃,
∀D ∈ ψ with ȳ ∈ D:
l ∈ D or k, k̄ ∈ C ⊗y D

with k, l ≤Π y

M6. equivalence
replacement

Π.ψ, l̄ ∨ k, l ∨ k̄
Equiv
===⇒ Π.ψ[l/k] Q(Π, l) = ∃, k ≤Π l

A1. variable
elimination

Π∃y.ψ,C1 ∨ ȳ, . . . , Cn ∨ ȳ,
D1 ∨ y, . . . ,Dm ∨ y

VElim
===⇒ Π.ψ

∧
1≤i≤n
1≤j≤m

(Ci ∪Dj)
Q(Π,y) = ∃,

y �∈ vars(ψ)

cl
a
u
se

a
d
d
it
io
n

A2. universal
expansion

Π∀x∃Y.ψ,C1 ∨ x̄, . . . , Cn ∨ x̄,
D1 ∨ x, . . . , Dm ∨ x,E1, . . . , Ep

UExp
===⇒

Π∃Y Y ′.ψ, C1, . . . , Cn, D
′
1, . . . , D

′
m,

E1, . . . , Ep, E
′
1, . . . , E

′
p

Q(Π,x) = ∀,
∃yi ∈ vars(Ej), yi �∈ vars(ψ)
x �∈ vars(ψ ∧ Ci ∧Dj ∧Ek),
D′

i = Di[y1/y
′
1, . . . , yn/y

′
n],

E′
i = Ei[y1/y

′
1, . . . , yn/y

′
n]

A Unified Proof System for QBF Preprocessing 99

5 Representing Preprocessing Techniques with QRAT

The QRAT proof system as presented above provides clause elimination and
addition rules as in propositional logic when the pivot variable is existentially
quantified. Further, QRAT allows for the removal/addition of variables in the
case of universal pivots. This is almost sufficient to express the preprocessing
rules introduced in the previous section. The only missing element is universal
reduction, which also marks the difference between propositional resolution and
resolution for QBF. To this end, we introduce the concept of extended universal
resolution what is based on Theorem 4.9 of Van Gelder’s work on resolution path
dependency schemes [16]. In the following, we do not introduce the concept of
resolution path dependencies, but we describe the universal literal elimination
criterion according to the terminology used in the rest of the paper.

Definition 7 (Inner Clause). Let C be a clause occurring in QBF Π.ψ. The
inner clause of C on literal l ∈ C, denoted by I(Π,C, l), is given by the clause
{k | k ∈ C, k = l̄ or k >Π l}.

Lemma 3. Given a QBF formula Π.ψ, let E(Π,C, l) be the unique clause ob-
tained by repeatedly applying the extension rule

C := C ∪ I(Π,D, l) if exists k ∈ C,D ∈ ψ with k̄ ∈ D,Q(k) = ∃, and k >Π l

until fixpoint. Given a QBF Π.ψ ∧ {E} with a universal literal l ∈ E such that
l̄
∈ E(Π,E, l). Then, the removal of l from E is satisfiability preserving.

Lemma 3 is a generalization of the universal reduction rule which we call
extended universal reduction in the following. For the application of extended

universal reduction we write Π.ψ ∪ {C} EUR−−→ Π.ψ ∪ {C \ {l}}.
Now we are able to express the preprocessing techniques shown in Table 1

with only four rules: QRATE, QRATA, QRATU, and EUR. Table 2 shows the
translations for the clause elimination techniques, Table 3 for the clause modi-
fication techniques, and Table 4 for the clause addition techniques. We refer to
Table 1 for the preconditions for the application of the preprocessing rules.

Tautologies, subsumed clauses as well as blocked clauses have QRAT, so only
one application of QRATE is necessary for their removal. If an existential literal
is pure than all clauses in which it occurs are blocked w.r.t. this literal and
therefore can be omitted by multiple applications of QRATE.

For strengthening a clause C ∨ l, we first add the resolvent with D ∨ l̄ which
is C. Now, C ∨ l is subsumed and can, as we have discussed before, be removed
by QRATE. To express unit literal elimination, we first add clauses Ci, i.e., the
resolvents of Ci ∨ l̄ and l. Then Ci ∨ l̄ become QRAT and can be removed. Now
the literal l occurs only in one polarity and hence, the clauses containing l can
be removed by QRATE (cf., existential pure literal elimination). Universal pure
literal elimination simply maps to multiple applications of QRATU such that l
does not occur in the formula anymore. If a universal literal l is removed from a
clause C, this can naturally be expressed by extended universal resolution.

100 M.J.H. Heule, M. Seidl, and A. Biere

Table 2. Clause Elimination Rules

preprocessing rule rewriting

Π.ψ,C ∨ l ∨ l̄
Taut
===⇒ Π.ψ Π.ψ,C ∨ l ∨ l̄

QRATE−−−−→ Π.ψ

Π.ψ,C,D
Subs
===⇒ Π.ψ,C Π.ψ,C,D

QRATE−−−−→ Π.ψ,C

Π.ψ,C1 ∨ l, . . . , Cn ∨ l
Pure∃===⇒ Π.ψ Π.ψ,C1 ∨ l, . . . , Cn ∨ l

QRATE∗−−−−−→ Π.ψ

Π.ψ,C
QBCE
====⇒ Π.ψ Π.ψ,C

QRATE−−−−→ Π.ψ

Table 3. Clause Modification Rules

preprocessing rule rewriting

Π.ψ,C ∨ l, D ∨ l̄
Str
==⇒ Π.ψ,C,D ∨ l̄

Π.ψ, C ∨ l, D ∨ l̄
QRATA−−−−→Π.ψ,C,C ∨ l, D ∨ l̄

QRATE−−−−→ Π.ψ,C,D ∨ l̄

Π.ψ, C1 ∨ l̄, . . . , Cn ∨ l̄,
l, D1 ∨ l, . . . , Dm ∨ l

Unit
==⇒ Π.ψ,C1, . . . , Cn

Π.ψ,C1 ∨ l̄, . . . , Cn ∨ l̄, l, D1 ∨ l, . . . , Dm ∨ l
QRATA∗−−−−−→ Π.ψ,C1 ∨ l̄, . . . , Cn ∨ l̄,
l, D1 ∨ l, . . . , Dm ∨ l, C1, . . . , Cn

QRATE∗−−−−−→ Π.ψ, l, C1, . . . , Cn
QRATE−−−−→ Π.ψ, C1, . . . , Cn

Π.ψ,C1 ∨ l, . . . , Cn ∨ l
Pure∀===⇒ Π.ψ,C1, . . . , Cn

Π.ψ,C1 ∨ l, . . . , Cn ∨ l
QRATU∗−−−−−→ Π.ψ,C1, . . . , Cn

Π.ψ,C ∨ l
URed
===⇒ Π.ψ,C

Π.ψ,C ∨ l
EUR−−→ Π.ψ,C

Π.ψ, l̄ ∨ k, l ∨ k̄
Equiv
===⇒ Π.ψ[l/k]

Π.ψ,C1 ∨ l, . . . , Cn ∨ l, D1 ∨ l̄, . . . , Dm ∨ l̄, l̄ ∨ k, l ∨ k̄
QRATA∗−−−−−→ Π.ψ,C1 ∨ l, . . . , Cn ∨ l, D1 ∨ l̄, . . . , Dm ∨ l̄,

l̄ ∨ k, l ∨ k̄, C1 ∨ k, . . . , Cn ∨ k,D1 ∨ k̄, . . . , Dm ∨ k̄
QRATE∗−−−−−→

Π.ψ, l̄ ∨ k, l ∨ k̄, C1 ∨ k, . . . , Cn ∨ k,D1 ∨ k̄, . . . , Dm ∨ k̄
QRATE∗−−−−−→ Π.ψ,C1 ∨ k, . . . , Cn ∨ k,D1 ∨ k̄, . . . , Dm ∨ k̄

Π.ψ, C
QCLA
====⇒ Π.ψ,C ∨ l

Π.ψ, C
QRATA−−−−→ Π.ψ,C,C ∨ l

QRATE−−−−→ Π.ψ,C ∨ l

If l is a covered literal for C w.r.t. Π.ψ, then C∨ l has QRAT w.r.t. Π.ψ. After
adding C ∨ l using QRATA, C gets QRAT and can be removed using QRATE.
Quantified covered clause elimination [8] is a clause elimination procedure that
extends clauses with covered literals until clauses become blocked. To represent
this procedure, we add an intermediate clause for each covered literal addition.
When the clause is blocked, it can be eliminated using QRATE.

If a literal l shall be substituted by a literal k due to equivalence replacement,
the formula has to contain the binary clauses (l ∨ k̄) and (l̄ ∨ k). Then first the
clauses Ci ∨ k and Dj ∨ k̄ are added by resolution, i.e., by QRATA. All clauses

A Unified Proof System for QBF Preprocessing 101

containing l and l̄ are asymmetric tautologies, because k, k̄ ∈ ALA(ψ,Ci∨ l) and
can therefore be removed by QRATE.

Variable elimination is rewritten as follows. First all possible non-tautological
resolvents on elimination variable y are added with QRATA. Then all clauses
containing y or ȳ become QRAT and can be eliminated by QRATE.

Finally, we describe universal expansion using redundancy elimination and ad-
dition rules. Consider the QBF Π∀x∃Y.ψ from which we want to eliminate the
innermost universal variable x. Let E = {Ei | Ei ∈ ψY , x /∈ Ei, x̄
∈ Ei}. In the
first step, we add clauses Ei∨ x̄ (which are subsumed by Ei) using QRATA. This
is necessary, because we later need to eliminate Ei. We introduce conditional
equivalences represented by the clauses x∨ yj ∨ ȳ′j and x∨ ȳj ∨ y′j for all yj ∈ Y
and append ∃Y ′ to the prefix. Now we copy all original clauses with literal yj ,
but without x̄ and add literal x in case it is not already present. The conditional
equivalences allow to treat original and primed copies of clauses with x as al-
ternative. One version can be exchanged for the other as long the equivalence
clauses are there. We add the primed copies and afterwards remove the original
ones. Now all clauses Ei are asymmetric tautologies and can be removed. Next,
we remove the conditional equivalences x ∨ yj ∨ ȳ′j and x ∨ ȳj ∨ y′j which have
QRAT on the yj after removal of the Ei clauses. At this point, clauses containing
variables from Y do not contain x and clauses with variables from Y ′ do not
contain x̄. So extended universal reduction can remove the literals x and x̄.

Table 4. Clause Addition Rules. Clauses are added / removed in order of appearance.

preprocessing rule rewriting

Π∃y.ψ, C1 ∨ ȳ, . . . , Cn ∨ ȳ,
D1 ∨ y, . . . , Dm ∨ y

VElim
===⇒ Π.ψ

∧
1≤i≤n
1≤j≤m

(Ci ∪Dj)

Π∃y.ψ, C1 ∨ y, . . . , Cn ∨ y,D1 ∨ ȳ, . . . , Dm ∨ ȳ
QRATA∗−−−−−→ Π∃y.ψ, C1 ∨ y, . . . , Cn ∨ y,
D1 ∨ ȳ, . . . , Dm ∨ ȳ, C1 ∪ D1, . . . , Cn ∪ Dm

QRATE∗−−−−−→ Π.ψ,C1 ∪ D1, . . . , Cn ∪ Dm

Π∀x∃Y.ψ,
C1 ∨ x̄, . . . , Cn ∨ x̄,
D1 ∨ x, . . . , Dm ∨ x,

E1, . . . , Ep
UExp
===⇒ Π∃Y Y ′.ψ,
C1, . . . , Cn, E1, . . . , Ep,
D′1, . . . , D

′
m, E′1, . . . , E

′
p

Π∀x∃Y.ψ, C1 ∨ x̄, . . . , Cn ∨ x̄,
D1,∨x, . . . , Dm ∨ x,E1, . . . , Ep

QRATA∗−−−−−→ Π∀x∃Y Y ′.ψ, C1 ∨ x̄, . . . , Cn ∨ x̄,
D1∨x, . . . , Dm∨x,E1, . . . , Ep, E1∨x̄, . . . , Ep∨x̄,

x ∨ y1 ∨ ȳ′1, . . . , x ∨ y|Y | ∨ ȳ′|Y |,

x ∨ ȳ1 ∨ y′1, . . . , x ∨ ȳ|Y | ∨ y′|Y |,

D′1 ∨ x, . . . , D′m ∨ x,E′1 ∨ x, . . . , E′p ∨ x
QRATE∗−−−−−→ Π∀x∃Y Y ′.ψ, C1 ∨ x̄, . . . , Cn ∨ x̄,

E1 ∨ x̄, . . . , Ep ∨ x̄, D′1 ∨ x, . . . , D′m ∨ x,
E′1 ∨ x, . . . , E′p ∨ x

EUR∗−−−→ Π∃Y Y ′.ψ, C1, . . . , Cn, E1, . . . , Ep,
D′1, . . . , D

′
m, E′1, . . . , E

′
p

102 M.J.H. Heule, M. Seidl, and A. Biere

6 QRAT Proofs

This section describes our new proof format for QBF formulas, how to check it
and an experimental evaluation. The syntax of the proof format is very similar
to the DRUP proof format [12] for CNF formulas. We extend the DRUP syntax
to express elimination of universal literals. Furthermore, the redundancy check
is different than proofs in DRUP because we deal with QBF formulas.

6.1 The QRAT Proof Format

Proofs are sequences of clause additions, deletions, and modifications. They are
build using three kind of lines: addition (QRATA), deletion (QRATE), and uni-
versal elimination (QRATU and EUR). Addition lines have no prefix and are un-
constrained in the sense that one can add any clause at any point in the proof.
Clause deletion lines, with prefix “d”, and universal elimination lines, with prefix
“u”, are restricted. The clause after a “d” or “u” prefix must be either present
in the original formula or as a clause added earlier in the proof.

Let Π.ψ be a QBF formula and P be a QRAT proof for Π.ψ. We denote the
number of lines in a proof P by |P |. For each i ∈ {0, . . . , |P |}, we define a CNF
formula ψi

P below. Ci refers to the clause on line i of P and li refers to the first
literal on line i of P .

ψi
P :=

⎧⎪⎪⎨⎪⎪⎩
ψ if i = 0;

ψi−1
P \ {Ci} if the prefix of Ci is “d”;

ψi−1
P \ {Ci} ∪ {Ci \ {li}} if the prefix of Ci is “u”;

ψi−1
P ∪ {Ci} otherwise.

A proof P is called a satisfaction proof for QBF formula Π.ψ if the following
two properties hold. First, for all i ∈ {1, . . . , |P |}, if clause Ci has prefix “d”, then
it must have QRAT on li with respect to ψi

P . In case li is universally quantified,

we check whether ALA(ψi
P , Ci) is a tautology. Second, ψ

|P |
P must be empty.

A proof P is called a refutation proof for QBF formula Π.ψ if the following
three properties hold. First, for all i ∈ {1, . . . , |P |}, if clause Ci has no prefix, then
it must have QRAT on li with respect to ψi−1

P . In case li is universally quantified,
we check whether ALA(ψi−1

P , Ci) is a tautology. Second, for all i ∈ {1, . . . , |P |}, if
clause Ci has has prefix “u”, then li must be universally quantified. Additionally,
Ci must have either QRAT on li with respect to ψi−1

P , or li can be removed using
EUR. Third, C|P | must be the empty clause (without a prefix). Fig. 1 shows a
true and a false QBF and a QRAT proof for both.

A universal elimination line in satisfaction proofs can be replaced by a clause
addition and deletion line to obtain another satisfaction proof. Simply add the
clause without its first literal, and afterwards delete the subsumed clause. For
example, consider the line “u 1 2 3 0” in a satisfaction proof. This line can be
replaced by “2 3 0” followed by “d 1 2 3 0”. Consequently, any satisfaction
proof can be converted such that it contains only addition and deletion lines.

A Unified Proof System for QBF Preprocessing 103

true QBF formula

p cnf 3 3

a 1 0

e 2 3 0

1 2 0

-1 3 0

-2 -3 0

satisfaction proof

-1 -2 0

d 3 -1 0

d -3 -2 0

d -2 -1 0

d 2 1 0

false QBF formula

p cnf 3 3

a 1 0

e 2 3 0

1 2 0

1 3 0

-2 -3 0

refutation proof

-2 0

d -2 -3 0

1 0

u 1 0

0

Fig. 1. Two QBFs formulas and QRAT proofs. On the left a true QBF with a satis-
faction proof next to it. On the right a false QBF with a refutation next to it. The
formulas and proofs are spaced to improve readability. Proofs consist of three kind of
lines: addition (no prefix), deletion (“d ” prefix) and universal elimination (“u ” prefix).

Recall that QRATA can add clauses that contain new variables. The QRAT
proof format does not support describing the quantifier block for new variables.
For all known preprocessing techniques, newly introduced variables are placed in
the innermost active existential quantifier block. Consequently, the QRAT format
assumes this convention for all new variables.

6.2 Checking QRAT Proofs

Although the syntax for QRAT proof is identical for true and false QBFs, vali-
dating a proof is different. For true QBFs only the clause deletion lines (the ones
with a “d ” prefix) have to be checked, while for false QBFs, all the lines except
the clause deletion lines have to be checked.

The easiest, but rather expensive, method to validate proofs checks the re-
dundancy of each clause: for true QBFs all deletion lines and for false QBFs
all addition and universal elimination lines. However, one can check proofs more
efficiently my marking involved clauses during each redundancy check. That way
the checker can be restricted to validate marked clauses only. The marking pro-
cedure is a bit tricky. In short, it marks all involved clauses that were required
to compute the last unique implication point from each conflict.

Checking only marked clauses was proposed to check clausal proofs of CNF
formulas efficiently [11]. For false QBFs, the checking is similar to the SAT
case: during initialization the empty clause is marked. Refutation proofs should
be validated in reverse order, starting with the marked empty clause. For true
QBFs the procedure is different: initially all original clauses are marked and
satisfaction proofs are checked in chronological order. When a clause is deleted
that was not marked by any redundancy check, the clause can be skipped.

Example 5. Consider the true QBF Π.ψ = ∀a ∃b, c.(a ∨ b) ∧ (ā ∨ c) ∧ (b̄ ∨ c̄).
This is the same QBF as in Fig. 1 (left). Fig. 1 also shows the satisfaction proof
P := (ā ∨ b̄), d(c ∨ ā), d(c̄ ∨ b̄), d(b̄ ∨ ā), d(b ∨ a). Satisfaction proofs are checked
in chronological order. So, first, (ā ∨ b̄) is added, afterwards (c ∨ ā) is removed,
until all original clauses and all added clauses have been deleted.

104 M.J.H. Heule, M. Seidl, and A. Biere

6.3 Implementation

We equipped our preprocessor bloqqer [8] with QRAT-based tracing as described
in Section 5. In contrast to previous extensions of bloqqer [7,17] we hardly had to
modify its internal behavior. Hence, with QRAT-based tracing, we have the first
QBF preprocessor fully supporting proof generation for true and false formulas.

We implemented an efficient QRAT checker QRATtrim, which is based on
DRUPtrim [12], a clausal proof checking tool for CNF. It uses the optimizations
of Section 6.2, such as validating marked clauses only and checking satisfaction
and refutation proofs in chronological and reverse order, respectively.

Evaluations on the benchmark sets of the QBF evaluations 2010 and 2012
indicate that the power of the preprocessor is hardly reduced by enabling QRAT-
based tracing. The benchmark set of 2010 (resp. 2012) contains 64 (resp. 32) true
instances and 86 (resp. 36) false instances which can be solved by using only blo-
qqer. These formulas turn out to be extremely hard for conflict/solution-driven
clause/cube learning solvers like DepQBF [18], which can only solve 26 (resp. 2)
true formulas and 57 (resp. 14) false formulas. For the other formulas DepQBF
timed-out, given a time limit of 900 seconds. The resolution-proof producing ver-
sion of bloqqer which was presented in [7] is able to evaluate 28 (resp. 22) true
formulas and 57 (resp. 22) false formulas. Please note that the resolution-proof
producing version of bloqqer did not time out for the unsolved formulas. Less
formulas are solved because the techniques for which no translation to resolution
is presented in [7] are simply turned off. Our new QRAT-based proof producing
version of bloqqer solves 63 (resp. 32) true formulas and 86 (resp. 36) false formu-
las, i.e., only one formula less is solved. We could verify all but two QRAT proofs.
For solving these formulas, miniscoping is necessary – which is not yet supported
by our checker, but can be realized by taking dependencies into account while
computing outer clauses. If we turn off miniscoping and increase the bounds
for variable elimination, these formulas can be solved and checked as well. For
satisfiable formulas, solving is twice as fast as checking on average, in particular
we have 1.4s (2.2s) for solving and 3.2s (5.9s) for checking. For unsatisfiable for-
mulas, checking is considerably faster: we have 18.7s (30.1s) for solving and 5.2s
(8.6s) for checking. Our bloqqer extension, the proof checking tools as well as
the details on our experiments are available at http://fmv.jku.at/bloqqer.

7 Conclusion

We presented a proof system which captures recent preprocessing and solving
techniques for QBF in a uniform manner. Based on asymmetric tautologies, the
proof system consists only of four simple rules. We showed how state-of-the-art
preprocessing techniques can be represented within this proof system. Our rules
QRATE, QRATU, and QRATA may be applied as preprocessing rules themselves
similar as QBCE and we plan to integrate them in our preprocessor. We deal with
all the challenges regarding certificates and preprocessing for QBF recently listed
in [7], namely: can we (1) produce polynomially-verifiable certificates for true
QBFs in the context of preprocessing, (2) narrow the performance gap between

http://fmv.jku.at/bloqqer

A Unified Proof System for QBF Preprocessing 105

solving with and without certificate generation; and (3) develop methods to deal
with universal expansion and other techniques. First, the size of our certificates
for true QBFs is polynomial in the solving time and certificate checking can be
done in polynomial time. Second, the overhead of emitting certificates is small
and all existing preprocessing techniques are supported. Third, our proof system
can simulate universal expansion and other existing techniques. Future work will
focus on rewriting search based QBF solver techniques [18] to the QRAT proof
system and extracting Skolem functions [4] from QRAT proofs.

References

1. Benedetti, M.: Extracting Certificates from Quantified Boolean Formulas. In: IJ-
CAI, pp. 47–53. Professional Book Center (2005)

2. Kleine Büning, H., Subramani, K., Zhao, X.: Boolean Functions as Models for
Quantified Boolean Formulas. J. Autom. Reasoning 39(1), 49–75 (2007)

3. Jussila, T., Biere, A., Sinz, C., Kroning, D., Wintersteiger, C.M.: A first step
towards a unified proof checker for QBF. In: Marques-Silva, J., Sakallah, K.A.
(eds.) SAT 2007. LNCS, vol. 4501, pp. 201–214. Springer, Heidelberg (2007)

4. Niemetz, A., Preiner, M., Lonsing, F., Seidl, M., Biere, A.: Resolution-Based Cer-
tificate Extraction for QBF. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS,
vol. 7317, pp. 430–435. Springer, Heidelberg (2012)

5. Janota, M., Grigore, R., Marques-Silva, J.: On Checking of Skolem-based Models
of QBF. In: RCRA 2012 (2012)

6. Van Gelder, A.: Certificate Extraction from Variable-Elimination QBF Preproces-
sors. In: QBF, pp. 35–39 (2013),
http://fmv.jku.at/qbf2013/reportQBFWS13.pdf

7. Janota, M., Marques-Silva, J.: On QBF Proofs and Preprocessing. In: McMillan,
K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 473–
489. Springer, Heidelberg (2013)

8. Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: Bjørner,
N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 101–115.
Springer, Heidelberg (2011)

9. Giunchiglia, E., Marin, P., Narizzano, M.: sQueezeBF: An Effective Preprocessor
for QBFs Based on Equivalence Reasoning. In: Strichman, O., Szeider, S. (eds.)
SAT 2010. LNCS, vol. 6175, pp. 85–98. Springer, Heidelberg (2010)

10. Biere, A.: Resolve and expand. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004.
LNCS, vol. 3542, pp. 59–70. Springer, Heidelberg (2005)

11. Goldberg, E.I., Novikov, Y.: Verification of proofs of unsatisfiability for CNF for-
mulas. In: DATE, pp. 10886–10891 (2003)

12. Heule, M.J.H., Hunt Jr., W.A., Wetzler, N.: Trimming while checking clausal
proofs. In: FMCAD, pp. 181–188. IEEE (2013)

13. Heule, M.J.H., Hunt Jr., W.A., Wetzler, N.: Verifying refutations with extended
resolution. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 345–359.
Springer, Heidelberg (2013)

14. Heule, M.J.H., Järvisalo, M., Biere, A.: Clause elimination procedures for CNF
formulas. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp.
357–371. Springer, Heidelberg (2010)

http://fmv.jku.at/qbf2013/reportQBFWS13.pdf

106 M.J.H. Heule, M. Seidl, and A. Biere

15. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 355–370. Springer, Hei-
delberg (2012)

16. Van Gelder, A.: Variable Independence and Resolution Paths for Quantified
Boolean Formulas. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 789–803.
Springer, Heidelberg (2011)

17. Könighofer, R., Seidl, M.: Partial witnesses from preprocessed quantified boolean
formulas. Accepted for DATE 2014 (2014)

18. Lonsing, F., Biere, A.: DepQBF: A Dependency-Aware QBF Solver. JSAT 7(2-3),
71–76 (2010)

The Fractal Dimension of SAT Formulas�

Carlos Ansótegui1, Maria Luisa Bonet2, Jesús Giráldez-Cru3, and Jordi Levy3

1 DIEI, Univ. de Lleida
carlos@diei.udl.cat

2 LSI, UPC
bonet@lsi.upc.edu

3 IIIA-CSIC
{jgiraldez,levy}@iiia.csic.es

Abstract. Modern SAT solvers have experienced a remarkable progress
on solving industrial instances. Most of the techniques have been devel-
oped after an intensive experimental process. It is believed that these
techniques exploit the underlying structure of industrial instances. How-
ever, there is not a precise definition of the notion of structure.

Recently, there have been some attempts to analyze this structure in
terms of complex networks, with the long-term aim of explaining the
success of SAT solving techniques, and possibly improving them.

We study the fractal dimension of SAT instances with the aim of com-
plementing the model that describes the structure of industrial instances.
We show that many industrial families of formulas are self-similar, with
a small fractal dimension. We also show how this dimension is affected
by the addition of learnt clauses during the execution of SAT solvers.

1 Introduction

The SAT community has been able to come up with successful SAT solvers
for industrial applications. However, nowadays we can hardly explain why these
solvers are so efficient working on industrial SAT instances with hundreds of
thousands of variables and not on random instances with hundreds of variables.
The common wisdom is that the success of modern SAT/CSP solvers is corre-
lated to their ability to exploit the hidden structure of real-world instances [13].
Unfortunately, there is no precise definition of the notion of structure.

Parallelly, the community of complex networks has produced tools for de-
scribing and analyzing the structure of social, biological and communication
networks [1] which can explain some interactions in the real-world. Preferen-
tial attachment (where the probability that a new edge is attached to a node
is proportional to its degree) has been proposed as the responsible of scalefree
structure in real-world graphs [5]. Thus, in the web, the probability of a web
page to get new connections is proportional to its popularity (the number of
connections it already has). In cite [9], it is proposed similarity (where nodes

� This research has been partially founded by the MINECO research project TASSAT
(TIN2010-20967).

S. Demri, D. Kapur, and C. Weidenbach (Eds.): IJCAR 2014, LNAI 8562, pp. 107–121, 2014.
c© Springer International Publishing Switzerland 2014

108 C. Ansótegui et al.

tend to get connected to similar nodes, according to some topological distance)
as a mechanism that, together with preferential attachment or popularity, ex-
plains the structure of some real-world graphs. This explains the self-similarity
property observed in many real-world graphs [11].

Representing SAT instances as graphs, we can use some of the techniques
from complex networks to characterize the structure of SAT instances. Recently,
some progress has been made in this direction. It is known that many industrial
instances have the small-world property [12], exhibit high modularity [4], and
have a scale-free structure [2]. In this later work, it is shown that in many
formulas the number of occurrences of a variable (i.e. the degree of graph nodes)
follows a powerlaw distribution with hub variables having a huge number of
occurrences. A method to generate scale-free random instances is proposed in [3].
They show that SAT solvers specialized on industrial formulas perform better
than random-specialized solvers on these scale-free random instances. In [7], the
eigenvector centrality of variables in industrial instances is analyzed. They show
that it is correlated with some aspects of SAT solvers. For instance, decision
variables selected by the SAT solvers are usually the most central variables in
the formula. However, how these analyses may help to improve the performance
of SAT solvers is not known at this stage.

The contribution of this paper is to analyze the existence of self-similarity in
industrial SAT instances. The existence of a self-similar structure would mean
that after rescaling (replacing groups of nodes by a single node, for example), we
would observe the same kind of structure. It would also mean that the diameter
dmax of the graph grows as dmax ∼ n1/d, where d is the fractal dimension of
the graph, and not as dmax ∼ logn, as in random graphs or small-world graphs.
Therefore, actions in some part of the graph (like variable instantiation) may not
propagate to other parts as fast as in random graphs. Our analysis shows that
many industrial formulas are self-similar. We think that the self-similarity, as well
as the scale-free structure, is already present in many of the problems encoded
as SAT instances. Thus, for instance, hardware-verification instances may have
this structure because the circuits they encode already have this structure.

Studying graph properties of formulas has several direct applications. One of
them, is the generation of industrial-like random SAT instances. Understand-
ing the structure of industrial instances is a first step towards the development
of random instance generators, reproducing the features of industrial instances.
This would allow us to generate industrial-like random instances of a prede-
fined size and structure to support the testing of industrial SAT solvers under
development. Related work in this direction can be found in [3].

Another potential application is to improve portfolio approaches [14,6] which
are solutions to the algorithm selection problem. State-of-the-art SAT Portfolios
compute a set of features of SAT instances in order to select the best solver from
a predefined set to be run on a particular SAT instance. It is reasonable to think
that more informative structural features of SAT instances can help to improve
portfolios.

The Fractal Dimension of SAT Formulas 109

Our experimental investigation shows that most industrial instances are self-
similar, and their dimension ranges between 2 and 4. In the case of crafted
instances, they also exhibit a clear self-similar behaviour, but their fractal di-
mensions are bigger in some cases. On the other hand, random instances are
clearly not self-similar. We also show that using a very reduced set of complex
networks properties we are able to classify industrial instances into families quite
accurately.

Finally, we have investigated how the addition of learnt clauses during the
execution of a SAT solver affects the dimension of the working instance. The
addition of learnt clauses increases the fractal dimension, as expected. However,
we show that modern SAT solvers produce a smooth increase, that suggests
that SAT solvers tend to work locally. In contrast, the substitution of the learnt
clauses by random clauses of the same size, produces a much bigger increase in
the dimension.

The paper proceeds as follows. We introduce the fractal dimension of graphs
in Section 2. In Section 3, we define the notion of fractal dimension of a SAT
formula and compare it with the notion of diameter of a SAT formula. Then, we
analyze whether SAT instances represented as graphs have a fractal dimension
in Section 4. In Section 5, we study the effect of learnt clauses on the fractal
dimension. Section 6 contains the conclusions. All the software used in the paper
is available at http://www.iiia.csic.es/~jgiraldez.

2 Fractal Dimension of a Graph

We can define a notion of fractal dimension of a graph following the principle of
self-similarity. We will use the definition of box covering by Hausdorff [8].

Definition 1. The distance between two nodes is the minimum number of
edges we need to follow to go from one node to the other.
The diameter dmax of a graph is the maximal distance between any two nodes
of the graph.
Given a graph G, a box B of size l is a subset of nodes such that the distance
between any pair of them is strictly smaller than l.
We say that a set of boxes covers a graph, if every node of the graph is in some
box. Let N(l) be the minimum number of boxes of size l required to cover the
graph.
We say that a graph has the self-similarity property if the function N(l) de-
creases polynomially, i.e. N(l) ∼ l−d, for some value d. In this case, we call d
the dimension of the graph.

Notice that N(1) is equal to the number of nodes of G, and N(dmax + 1) is the
number of connected components of the graph.

Lemma 1. Computing the function N(l) is NP-hard.1

1 In [10] the same result is stated, but there, they prove the wrong reduction. They
reduce the computation of N(2) to the graph coloring problem.

110 C. Ansótegui et al.

Proof: We prove that computing N(2) is already NP-hard by reducing the
graph coloring problem to the computation of N(2). Given a graph G, let G,
the complement of G, be a graph with the same nodes, and where any pair of
distinct nodes are connected in G iff they are not connected in G. Boxes of size
2 in G are cliques, thus they are sets of nodes of G without an edge between
them. Therefore, the minimal number of colors needed to color G is equal to the
minimal number of cliques needed to cover G, i.e. N(2).

There are several efficient algorithms that approximate N(l). They compute up-
per bounds of N(l). They are called burning algorithms (see [10]). Following
a greedy strategy, at every step they try to select the box that covers (burns)
the maximal number of uncovered (unburned) nodes. Although they are poly-
nomial algorithms, we still need to do some further approximations to make the
algorithms of practical use in very large graphs.

First, instead of boxes, we will use circles.

Definition 2. A circle of radius r and center c is a subset of nodes of G such
that the distance between any of them and the node c is strictly smaller that r.

Let N(r) be the minimum number of circles of radius r required to cover a
graph.

Notice that any circle of radius r is inside of a box of size 2 r−1 (the opposite
is in general false) and any box of size l is inside a circle of radius l (it does not
matter what node of the box we use as center). Notice also that every radius r
and center c characterizes a unique circle.

According to Hausdorff’s dimension definition, N(r) ∼ r−d also characterizes
self-similar graphs of dimension d. We can approximate this fractal dimension us-
ing the Maximum-Excluded-Mass-Burning (MEMB) algorithm [10], which works
as follows: Consider a graph G and a radius r. We compute an upper bound of
the number of circles with radius r necessary to cover the graph N(r). We start
with all nodes set to unburned. At every step, for every possible node c, we
compute the number of unburned nodes covered by the circle of center c and
radius r, then select the node c that maximizes this number, and burn the new
covered nodes.

The MEMB algorithm is still too costly for our purposes. We apply the follow-
ing strategy to make the algorithm more efficient. We order the nodes according
to their degree: 〈c1, . . . , cn〉 such that degree(ci) ≥ degree(cj), when i > j. Now,
for i = 1 to n, if ci is not burned, then select the circle of center ci and radius
r (even if it does not maximizes the number of unburned covered nodes), and
burn all its unburned nodes. We call this algorithm Burning by Node Degree
(BND), and describe it in Alg. 1. After we give the definition of fractal dimen-
sion of a SAT instance, we will compare the accuracy and efficiency of algorithms
MEMB and BND in subsection 4.1 to justify the use of algorithm BND in our
experimentation.

The Fractal Dimension of SAT Formulas 111

Algorithm 1: Burning by Node Degree (BND)

Input: Graph G = (V,E)
Output: vector[int] N

1 N [1] := |V |;
2 int i := 2;
3 while N [i− 1] > connectedComponents(G) do
4 vector[bool] burned(|V |);
5 N [i] := 0;
6 burned := {false, . . . , false};
7 while existsUnburnedNode(burned) do
8 c := highestDegreeUnburnedNode(G, burned);
9 S := circle(c, i); // circle with center c and radius i;

10 foreach x ∈ S do
11 burned[x] := true;

12 N [i] + +;

13 i := i+1;

3 The Fractal Dimension of SAT Instances

Given a SAT instance, we can build a graph from it. Here, we propose two
models.

Definition 3. Given a SAT formula, the Clause-Variable Incidence Graph
(CVIG) associated to it is a bipartite graph whose nodes are the set of variables
and the set of clauses, and its edges connect a variable and a clause whenever
that variable occurs in the clause.

The Variable Incidence Graph (VIG) associated to a formula is a graph
whose nodes represent the set of variables, and an edge between two nodes indi-
cates the existence of a clause containing both variables.

In this paper we analyze the function N(r) for the graphs obtained from a
SAT instance following the VIG and CVIG models. These two functions are
denoted N(r) and N b(r), respectively, and they relate to each other as follows.

Lemma 2. If N(r) ∼ r−d then N b(r) ∼ r−d.

If N(r) ∼ e−β r then N b(r) ∼ e−
β
2 r.

Proof: Notice that, for any formula, given a circle of radius r in the VIG model,
using the same center and radius 2 r−1 we can cover the same variable nodes in
the CVIG model. With radius 2 r we can also cover all clauses adjacent to some
covered variable. Hence N b(2 r) ≤ N(r).

Conversely, given a circle of radius 2 r in the CVIG model, we consider two
possibilities. If the center is a variable node, we cover the same variables in the
VIG model using a circle of radius r and the same center. If the center is a clause
c, to cover the same variables in the VIG model, we need a circle of radius r+1
centered in a variable node adjacent to c. Hence N(r + 1) ≤ N b(2 r).

112 C. Ansótegui et al.

Therefore N(r+1) ≤ N b(2 r) ≤ N(r), and N(r) ∼ N b(2 r). From this asymp-
totic relation, we can derive the two implications stated in the lemma.

Previous lemma states that if a SAT formula is (fully) self-similar, then in both
models, VIG and CVIG, the fractal dimension is the same. In such case, if we plot
N(r) as a function of r in double-logarithmic axes, we obtain a line with slope
−d. If N(r) decays exponentially (as in random SAT formulas), then the decay
factor in the CVIG model is half of the decay factor in the VIG model. In such
case, if we plot N(r) in semi-logarithmic axes, we obtain a line with slope −β.
We will always plot N(r) in double-logarithmic axes. Thus, when N(r) decays
exponentially, we will observe a concave curve.

3.1 Fractal Dimension versus Diameter

The function N(r) determines the maximal radius rmax of a connected graph,
defined as the minimum radius of a circle covering the whole graph minus one:
N(rmax+1) = 1. The maximal radius and the diameter dmax of a graph are also
related, because rmax ≤ dmax ≤ 2 rmax. From these relations we can conclude
the following.

Lemma 3. For self-similar graphs or SAT formulas (where N(r) ∼ r−d), the
diameter is dmax ≈ n1/d, where d is the fractal dimension.
In graphs or SAT formulas where N(r) ∼ e−β r, the diameter is dmax ≈ logn

β .

Proof: The diameter of a graph and the maximal radius are related as rmax ≤
dmax ≤ 2 rmax. Notice that, by definition of the function N(r), we have N(1) =
n, where n is the number of nodes, and N(rmax + 1) = 1.

Assuming N(r) = C r−d and replacing r by 1 we get C = n. Then, replacing r
by rmax +1, we get 1 = N(rmax +1) = n (rmax +1)−d. Hence, rmax = n1/d− 1.

Assuming N(r) = C e−β r and replacing r by 1 we get C = n eβ. Then,
replacing r by rmax + 1, we get 1 = N(rmax + 1) = n e−β (rmax). Hence, rmax =
logn
β .

The diameter, as well as the typical distance2 L of a graph, have been widely
used in the characterization of graphs. For instance, small world graphs [12] are
characterized as those graphs with a small typical distance L ∼ logn and a large
clustering coefficient. This definition works well for families of graphs because
then we can quantify the typical distance as a function on the number of nodes.
But it is quite imprecise in the case of individual graphs, because it is difficult
to decide what is a “small” distance and a “large” clustering coefficient, for a
concrete graph. Moreover, the diameter and the typical distance of a graph are
measures quite expensive to compute in practice (for huge graphs, as the ones
representing many industrial SAT formulas), even though there is a quadratic
algorithm. In fact, our approximation to the fractal dimension can be computed
more efficiently than the diameter.

2 The typical distance of a graph is the average of the distances between any two
nodes.

The Fractal Dimension of SAT Formulas 113

Since we are interested in characterizing the structure of formulas, the frac-
tal dimension is a better measure because it is independent of the size. Thus,
formulas of the same family (and similar structure), but very distinct size, will
have similar dimension and N(r) function shape.

4 Experimental Evaluation

We have conducted an exhaustive analysis of the 300 industrial SAT instances
and the 300 crafted instances of the SAT Competition 20133, and 90 random
3CNF formulas of 105 variables at different clause/variable ratios. We will see
that most industrial and crafted instances are self-similar and have a small frac-
tal dimension, i.e. N(r) ∼ r−d, for small d. In random instances N(r) decays
exponentially, i.e. N(r) ∼ e−β r.

Before presenting the results of this evaluation, let us justify the use of
the BND algorithm to calculate the fractal dimension, instead of the MEMB
algorithm.

4.1 The Accuracy of the BND Algorithm

In order to evaluate how accurate the algorithm BND is, we compare it to the
MEMB algorithm presented in [10].

We run both algorithms for the set of 300 industrial instances of the SAT
Competition 2013 with a timeout of 30 minutes. While the BND algorithm
finishes for all the 300 instances, MEMB is only able to approximate N b(r) in
17 instances. Moreover, while the average run-time of BND for these instances is
0.11 seconds, MEMB takes an average of 10 minutes and 7.2 seconds to compute
them. On the other hand, the approximations of N b(r) computed by MEMB and
BND are very similar (see Fig. 1).

Since the MEMB algorithm is more accurate than the BND algorithm, the
upper bounds of N b(r) that MEMB calculates are below the ones calculated by
BND. The real values of N b(r) are probably even lower in the final points (where
the approximation is less accurate).

4.2 Random Formulas

Random 2SAT formulas in the VIG model correspond to Endös-Renyi graphs.
It is known that these formulas have a phase transition point at m/n = 1 where
formulas pass from satisfiable to unsatisfiable with probability one. It is also
known that at m/n = 0.5 there is a percolation threshold. Formulas below this
point have an non-connected associated VIG graph, and above this threshold
there is a major connected component. In the percolation point the formula
is self-similar with a fractal dimension d = 2. Above this point N(r) decays
exponentially. To the best of our knowledge, a result of this kind is not known
for random 3CNF formulas.

3 http://satcompetition.org/2013/

http://satcompetition.org/2013/

114 C. Ansótegui et al.

 1

 10

 100

 1000

 10000

 100000

 1 2 3 4 5 6 7 8 9 10 15

N
b (r

)

r
CRYPTO-AES

MEMB
BND

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9 10 15

N
b (r

)

r
CRYPTO-GOS

MEMB
BND

 1

 10

 100

 1000

 10000

 100000

 1 2 3 4 5 6 7 8 9 10 15

N
b (r

)

r
HARDWARE-CEC

MEMB
BND

 1

 10

 100

 1000

 10000

 100000

 1 2 3 4 5 6 7 8 9 10 15

N
b (r

)

r
TERMINATION

MEMB
BND

Fig. 1. Upper bounds for Nb(r) obtained with MEMB and BND algorithms, for the 17
industrial instances that MEMB is able to compute in 30 minutes, grouped by families

Experimentally, we observe that the function N(r) only depends on the
clause/variable ratio m/n, and not on the number of variables (this is not shown
in figures). In the phase transition point m/n = 4.25, the function has the form
N(r) ∼ e−2.3 r, i.e. it decays exponentially with β = 2.3 (see Fig. 2). Hence,
rmax = logn

2.3 + 1. For instance, for n = 105 variables, random formulas have a
radius rmax ≈ 6. For bigger values of m/n, the decay β is bigger. In the CVIG
model, we observe the same behavior. However, in this case, in the phase transi-
tion point, N(r) decays exponentially with β = 1.16 ≈ 2.3/2. Hence, the decay
is just half of the decay of the VIG model, as we expected by Lemma 2.

For random 3CNF formulas, we have experimentally found a percolation
threshold at m/n ≈ 0.17. At this point the principal connected component also
exhibits a fractal dimension d = 2.

4.3 Industrial Instances

Analyzing industrial instances, we observe that most of them are self-similar,
and most dimensions ranges between 2 and 4. In the SAT Competition 2013,
instances are grouped into families. In many of these families, all instances have
the same fractal dimension, being this dimension a characteristic of the family.
See, for instance, families crypto-sha or diagnosis in Fig. 3. Notice that the size

The Fractal Dimension of SAT Formulas 115

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 2 3 4 5 6 7 8 9 10 15

N
(r

)

r

m/n = 0.18
m/n = 1
m/n = 2
m/n = 3
m/n = 4

m/n = 4.25
m/n = 5

m/n = 7.5
m/n = 10

y = exp(-2.3 * x)
y = pow(x,-2) 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 2 3 4 5 6 7 8 9 10 15

N
b (r

)

r

m/n = 0.18
m/n = 1
m/n = 2
m/n = 3
m/n = 4

m/n = 4.25
m/n = 5

m/n = 7.5
m/n = 10

y = exp(-1.16 * x)
y = pow(x,-2)

Fig. 2. Functions N(r) for VIG (left), and Nb(r) for CVIG (right), for 3CNF random
formulas with distinct values of m/n. Formulas are generated using n = 105 variables
and taking the major connected component, except for m/n = 0.18, where n = 106.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 2 3 4 5 10 20 30 40 50

N
b (r

)

r
CRYPTO-GOS

crypto-gos
y=pow(x,-3.00)

 1 2 3 4 5 10 20 30 40 50

r
CRYPTO-SHA

crypto-sha
y=pow(x,-3.91)

 1 2 3 4 5 10 20 30 40 50

r
SCHEDULING-PESP

scheduling-pesp
y=pow(x,-2.65)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 2 3 4 5 10 20 30 40 50

N
b (r

)

r
HARDWARE-BMC-IBM

hardware-bmc-ibm
y=pow(x,-2.18)

 1 2 3 4 5 10 20 30 40 50

r
HARDWARE-CEC

hardware-cec
y=pow(x,-2.25)

y=exp(-0.80 * x)

 1 2 3 4 5 10 20 30 40 50

r
TERMINATION

termination
y=pow(x,-2.37)

y=exp(-0.27 * x)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 2 3 4 5 10 20 30 40 50

N
b (r

)

r
DIAGNOSIS

diagnosis
y=pow(x,-2.84)

 1 2 3 4 5 10 20 30 40 50

r
HARDWARE-BMC

hardware-bmc
y=pow(x,-2.39)

 1 2 3 4 5 10 20 30 40 50

r
HARDWARE-VELEV

hardware-velev
y=exp(-1.92 * x)

Fig. 3. Function Nb(r) for some industrial SAT formulas grouped by families

of the formulas does not affect the value of the dimension (in the representation
the function can be higher or lower, but with the same slope).

In general, the polynomial decay is clearer for small values of r. Moreover, in
this area, the slope is the same for all instances of the same family of formulas.

116 C. Ansótegui et al.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 2 3 4 5 6 10

N
b (r

)

r
GRAPH-ISOMORPHISM

graph-isomorphism
y=pow(x,-7.35)

 1 2 3 4 5 10 20 30 40 50 100 200

r
SOFTWARE-BIT-VERIF

software-bit-verif
y=pow(x,-1.69)

 1 2 3 4 5 10

r
RANDOM-MUS

random-mus
y=pow(x,-2.84)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 2 3 4 5 6 10

N
b (r

)

r
FACTORING

factoring
y=pow(x,-2.07)

 1 2 3 4 5 10 20 30 40 50 100 200

r
GAMES-PEBBLING

games-pebbling
y=pow(x,-2.41)

 1 2 3 4 5 6 10

r
RBSAT

rbsat
y=pow(x,-5.95)

Fig. 4. Function Nb(r) for some crafted SAT formulas grouped by families

For big values of r, we must make some considerations. First, the upper bound
on N b(r) that we calculate can be a bad approximation. Second, there are two
phenomena that we can identify. In some cases there is an abrupt decay, but the
whole function can not be approximated by an exponential function (see some
hardware-cec or termination instances, for instance). This decay in the number
of required tiles can be due to a small number of edges connecting distant areas
of the graph. These edges have no effect for small values of r, but may drop
down the number of tiles for big values of r. In some other cases (see hardware-
bmc-ibm, for instance), there is a long tail. In this case, it is due to the existence
of (small) unconnected components in the graph. If we compute N(r) only for
the major component, this tail disappears.4

Finally, all instances of the hardware-velev family have a N(r) function with
exponential decay, i.e. are not self-similar.

4.4 Crafted Instances

Studying crafted instances, we see that most of them are self-similar. However,
their fractal dimension have bigger values than the ones of the industrial formulas
(some values are even bigger than 7).

The crafted instances of the SAT Competition 2013, as well as the industrial
instances of this competition, are grouped into families. In general, we find that
many families exhibit an homogeneus curve of N(r) in all their instances. More-
over, in many of these families, N(r) has a polynomial decay (i.e., all instances
have the same fractal dimension). The fractal dimension of crafted formulas
ranges from 1.5 to 7.5. In Fig. 4 we represent some crafted families.

4 In the figures, we can subtract from N(r) the number of unconnected components,
as an approximation, since most are covered with a few tiles.

The Fractal Dimension of SAT Formulas 117

1

2

3

4
5
6
7

10

20

1.5 2 3 4 5 6 7

A
lp

ha
 (

α)

Dimension Bipartite (db)

2d-strip-packing
bio

crypto-aes
crypto-des
crypto-gos

crypto-md5
crypto-sha
diagnosis

hardware-bmc
hardware-bmc-ibm

hardware-cec
hardware-velev

planning
scheduling

scheduling-pesp
termination

Fig. 5. Distribution of families according to the exponent α of the powerlaw distribu-
tion of node degrees, and fractal dimensions db at a fine-grained scale. Heterogeneous
families (software-bit-verif and software-bmc) are not plotted.

4.5 Fractal Dimension at Fine-Grained Scale

If a graph is self-similar, then it has the same structure at all scales. We could
replace groups of nodes tiled by a box by a single node, obtaining another graph
with the same structure. In our experiments, we observe that this is the case
for small values of r (for small values of r, function N(r) ≈ C r−d). However,
this is more arguable for big values of r. Perhaps this is because the graph is
not self-similar at large scale (coarse-grained), or because our approximation of
N(r) is not precise enough. If the formula has a small refutation, this will be
visualized in our VIG or CVIG graphs as a small cycle. This means that what
is really relevant is the fractal dimension looking at the graph at small scale
(fine-grained dimension). In other words, we think that, more than whether
there exists a self-similar structure, what is important, is the value of the fractal
dimension at fine-grained, i.e. the slope of the function N(r) for small values
of r.

In our next experiment, we try to classify industrial instances according to
their fractal dimension at fine-grained, and the exponent α of the powerlaw
distribution of node degrees (see [2] for a description of how to compute exponent
α). We will also note these fine-grained dimensions as d and db for the VIG and
CVIG, respectively. We compute them as the interpolation, by linear regression,
of logN(r) vs. log r. We use the values of N(r) and N b(r), for r = 1, . . . , 6.
Experimentally, we see that these approximations are accurate enough. As we
can see in Fig. 5, just with the fractal dimension db and the powerlaw exponent
α, we are able to determine which family an instance belongs to.

118 C. Ansótegui et al.

1

2

3

4

5

1 2 3 4

(db
orig, db

learnt)
(db

orig, db
random)
f(x)=x

Fig. 6. Relation between the original fractal dimension dborig, and the dimension dblearnt

after adding learned clauses, or after adding random clauses dbrand, in random 3CNF
formulas. Learnt clauses are computed after 103 conflicts.

5 The Effect of Learning

State-of-the-art SAT solvers add learnt clauses from conflicts during their ex-
ecution. When a learnt clause is unitary, it can be propagated simplifying the
original formula. Given a unitary clause x, clauses with literal x are completely
removed, and literals ¬x are removed from the formula. Learnt clauses of bigger
length create new relations between variables, i.e., new edges in the VIG model.

Both, the addition of learnt clauses, and the simplification of formulas, due to
unitary learnt clauses, may affect the dimension of the formula. The addition of
edges in a graph (preserving the nodes) always increases its dimension, because
tiles may cover more nodes, and the number N(r) of tiles required to cover the
graph decreases, whereas N(1) is preserved. This contributes to increase the
slope of function N(r), hence the dimension. The effect of simplifications due
to unitary learnt clauses is more difficult to predict, since we remove satisfied
clauses (edges in the VIG model), but also nodes (decreasing N(1)).

We have conducted some experiments to analyze how the fractal dimension
evolves during the execution of the SAT solver. First we show the effect of intro-
ducing learnt clauses in random 3CNF instances with 105 variables and distinct
clause/variable ratios. In these instances almost all learnt clauses are not uni-
tary, hence we do not remove variable nodes. In the VIG model, the addition of
these learnt clauses introduces edges, and increases the dimension. In the CVIG
model dimension also increases due to the same reason. In Fig. 6, we plot the
dimension dblearnt after adding learnt clauses w.r.t. the original dimension dborig.
We observe that the addition of learnt clauses increases the dimension of the
formula. This increase is bigger for formulas with higher clause/variable ratio. In
order to quantify the increase in the dimension, we repeat the same experiment
replacing learnt clauses by random clauses of the same size, and computing the

The Fractal Dimension of SAT Formulas 119

2

3

4

5

6

7
8

2 3 4 5 6 7 8

db si
m

p

db
orig

simplification
f(x)=x

2

3

4

5

6

7
8

2 3 4 5 6 7 8

db le
ar

nt

db
simp

learnt clauses
f(x)=x

Fig. 7. Relation between the original fractal dimension dborig and the fractal dimension
dbsimp after simplifying the formula with the unitary learnt clauses (left), and relation
between the fractal dimension dbsimp and the fractal dimension dblearnt after simplifi-
cation and adding learnt clauses (right), for all industrial formulas. Learnt clauses are
the result of 103 conflicts.

new dimension dbrandom (results are also shown in Fig. 6). We observe that in
this second experiment the increase in the dimension is bigger than adding learnt
clauses: dbrandom ≥ dblearnt ≥ dborig. This means that learnt clauses, even in these
random formulas, tend to connect variables that were already close in the graph.
Therefore, their effect in the dimension is not as important as adding random
clauses. In industrial instances some of the learnt clauses are unitary. We have
analyzed separately the effect of simplifying the formula using these unitary
clauses, and the effect of adding non-unitary learnt clauses. In the first case,
when we learn x, and remove satisfied clauses containing x, we may remove
edges connecting pairs of variables of those clauses. This contributes to decrease
the dimension. However, we also remove the variable node x and the clauses
nodes satisfied by x (N(1) decreases). The effect of this second transformation
on the graph cannot be predicted. Experimentally, we observe that simplifying
the formula using unitary learnt clauses tends to decrease the dimension of the
VIG and CVIG graph (see Fig. 7). The only exceptions are the crypto-sha and
the crypto-gos families where a great number of variable nodes are removed.

In Fig. 8 we show the change in the dimension after 103, 104 and 105 conflicts.
We observe that at the beginning dimensions may increase or decrease slightly.
However, after 105 conflicts, the dimension clearly increases in most of the cases.
Finally, in Fig. 9 we quantify the variation of the dimension due to the addition of
learnt clauses, compared with the addition of the same number of random clauses
with the same sizes. The effect of random clauses is much more significant, i.e.,
most of learnt clauses do not contribute to make tiles bigger (i.e. to reduce the
number of needed tiles). They mainly connect nodes inside the tiles, i.e. nodes
that where already close. Therefore, learning acts quite locally in the formula.

120 C. Ansótegui et al.

2

3

4

5

6
7
8
9

10
11

2 3 4 5 6 7 8

D
im

en
si

on
 a

dd
in

g
le

ar
nt

 c
la

us
es

Original dimension

after 1000 conflicts
after 10000 conflicts

after 100000 conflicts
f(x)=x

Fig. 8. Relation between the original fractal dimension and the fractal dimensions after
learning clauses, in industrial formulas

2

3

4

5

6
7
8
9

10
11
12
131415

2 3 4 5 6 7 8

After 103 conflicts

Adding learnt clauses
Adding random clauses

f(x)=x

2 3 4 5 6 7 8

After 104 conflicts

Adding learnt clauses
Adding random clauses

f(x)=x

2 3 4 5 6 7 8

After 105 conflicts

Adding learnt clauses
Adding random clauses

f(x)=x

Fig. 9. Relation between the original fractal dimension and the fractal dimensions after
adding learnt clauses, or after adding random clauses, in industrial formulas

6 Conclusions

We conclude that many industrial instances are self-similar, with most fractal
dimensions ranging between 2 and 4. Fractal dimension, typical distances and
graph diameter are related (small dimension implies big distance and diameter).
Hence, industrial SAT instances have a big diameter (intuitively, we need long
chains of implications to propagate a variable instantiation to others). We ob-
serve the same behaviour in crafted instances, although the fractal dimension is
bigger in some cases. On the other hand, random instances are not self-similar.

We have also observed that fractal dimension increases due to learnt clauses.
Moreover, the increase is specially abrupt in instances that show exponential
decays (for instance, in the family hardware-velev or random formulas). This
increase is bigger, if we substitute learnt clauses by random clauses of the same
size. Therefore, learning does not contribute very much to connect distant parts
of the formula, as one could think.

The Fractal Dimension of SAT Formulas 121

We have proved that we can determine the family an industrial instance be-
longs according to their fractal dimension at fine-grained, and the exponent α of
the powerlaw distribution of node degrees. This is of interest for the development
of portfolio solvers.

As future work, we plan to investigate how to develop industrial-like random
instance generators to produce instances whose structural graph features such
as the fractal dimension, the α exponent or the modularity are similar to the
ones of industrial instances.

References

1. Albert, R., Jeong, H., Barabási, A.-L.: The diameter of the WWW. Nature 401,
130–131 (1999)

2. Ansótegui, C., Bonet, M.L., Levy, J.: On the structure of industrial SAT instances.
In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 127–141. Springer, Heidelberg
(2009)

3. Ansótegui, C., Bonet, M.L., Levy, J.: Towards industrial-like random SAT in-
stances. In: IJCAI 2009, pp. 387–392 (2009)

4. Ansótegui, C., Giráldez-Cru, J., Levy, J.: The community structure of SAT formu-
las. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 410–423.
Springer, Heidelberg (2012)

5. Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286,
509–512 (1999)

6. Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algo-
rithm selection and scheduling. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp.
454–469. Springer, Heidelberg (2011)

7. Katsirelos, G., Simon, L.: Eigenvector centrality in industrial SAT instances. In:
Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 348–356. Springer, Heidelberg
(2012)

8. Mandelbrot, B.B.: The fractal geometry of nature. Macmillan (1983)
9. Papadopoulos, F., Kitsak, M., Serrano, M., Bogu, M., Krioukov, D.: Popularity

versus similarity in growing networks. Nature 489, 537–540 (2012)
10. Song, C., Gallos, L.K., Havlin, S., Makse, H.A.: How to calculate the fractal di-

mension of a complex network: the box covering algorithm. Journal of Statistical
Mechanics: Theory and Experiment 2007(03), P03006 (2007)

11. Song, C., Havlin, S., Makse, H.A.: Self-similarity of complex networks. Nature 433,
392–395 (2005)

12. Walsh, T.: Search in a small world. In: IJCAI 1999, pp. 1172–1177 (1999)
13. Williams, R., Gomes, C.P., Selman, B.: Backdoors to typical case complexity. In:

IJCAI 2003, pp. 1173–1178 (2003)
14. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: portfolio-based algo-

rithm selection for SAT. J. Artif. Int. Res. 32(1), 565–606 (2008)

A Gentle Non-disjoint Combination

of Satisfiability Procedures�

Paula Chocron1,3, Pascal Fontaine2, and Christophe Ringeissen3

1 Universidad de Buenos Aires, Argentina
2 INRIA, Université de Lorraine & LORIA, Nancy, France

3 INRIA & LORIA, Nancy, France

Abstract. A satisfiability problem is often expressed in a combination
of theories, and a natural approach consists in solving the problem by
combining the satisfiability procedures available for the component theo-
ries. This is the purpose of the combination method introduced by Nelson
and Oppen. However, in its initial presentation, the Nelson-Oppen com-
bination method requires the theories to be signature-disjoint and stably
infinite (to guarantee the existence of an infinite model). The notion of
gentle theory has been introduced in the last few years as one solution
to go beyond the restriction of stable infiniteness, but in the case of dis-
joint theories. In this paper, we adapt the notion of gentle theory to the
non-disjoint combination of theories sharing only unary predicates (plus
constants and the equality). Like in the disjoint case, combining two the-
ories, one of them being gentle, requires some minor assumptions on the
other one. We show that major classes of theories, i.e. Löwenheim and
Bernays-Schönfinkel-Ramsey, satisfy the appropriate notion of gentleness
introduced for this particular non-disjoint combination framework.

1 Introduction

The design of satisfiability procedures has attracted a lot of interest in the last
decade due to their ubiquity in SMT (Satisfiability Modulo Theories [4]) solvers
and automated reasoners. A satisfiability problem is very often expressed in a
combination of theories, and a very natural approach consists in solving the prob-
lem by combining the satisfiability procedures available for each of them. This is
the purpose of the combination method introduced by Nelson and Oppen [15].
In its initial presentation, the Nelson-Oppen combination method requires the
theories in the combination to be (1) signature-disjoint and (2) stably infinite
(to guarantee the existence of an infinite model). These are strong limitations,
and many recent advances aim to go beyond disjointness and stable infiniteness.
Both corresponding research directions should not be opposed. In both cases,
the problems are similar, i.e. building a model of T1 ∪T2 from a model of T1 and

� This work has been partially supported by the project ANR-13-IS02-0001-01 of the
Agence Nationale de la Recherche, by the European Union Seventh Framework Pro-
gramme under grant agreement no. 295261 (MEALS), and by the STIC AmSud
MISMT

S. Demri, D. Kapur, and C. Weidenbach (Eds.): IJCAR 2014, LNAI 8562, pp. 122–136, 2014.
c© Springer International Publishing Switzerland 2014

A Gentle Non-disjoint Combination of Satisfiability Procedures 123

a model of T2. This is possible if and only if there exists an isomorphism between
the restrictions of the two models to the shared signature [24]. The issue is to
define a framework to enforce the existence of this isomorphism. In the particular
case of disjoint theories, the isomorphism can be obtained if the domains of the
models have the same cardinality, for instance infinite; several classes of kind the-
ories (shiny [25], polite [19], gentle [9]) have been introduced to enforce a (same)
domain cardinality on both sides of the combination. For extensions of Nelson-
Oppen to non-disjoint cases, e.g. in [24,27], cardinality constraints also arise. In
this paper, we focus on non-disjoint combinations for which the isomorphism
can be simply constructed by satisfying some cardinality constraints. More pre-
cisely, we extend the notion of gentle theory to the non-disjoint combination of
theories sharing only unary predicates (plus constants and the equality). Some
major classes of theories fit in our non-disjoint combination framework.

Contributions. The first contribution is to introduce a class of P-gentle theo-
ries, to combine theories sharing a finite set of unary predicates symbols P . The
notion of P-gentle theory extends the one introduced for the disjoint case [9].
Roughly speaking, a P-gentle theory has nice cardinality properties not only for
domains of models but also more locally for all Venn regions of shared unary
predicates. We present a combination method for unions of P-gentle theories
sharing P . The proposed method can also be used to combine a P-gentle theory
with another arbitrary theory for which we assume the decidability of satisfiabil-
ity problems with cardinality constraints. This is a natural extension of previous
works on combining non-stably infinite theories, in the straight line of combi-
nation methods à la Nelson-Oppen. Two major classes of theories are P-gentle,
namely the Löwenheim and Bernays-Schönfinkel-Ramsey (BSR) classes.

We characterize precisely the cardinality properties satisfied by Löwenheim
theories. As a side contribution, bounds on cardinalities given in [8] have been
improved, and we prove that our bounds are optimal. Our new result establishes
that Löwenheim theories are P-gentle.

We prove that BSR theories are also P-gentle. This result relies on a non-
trivial extension of Ramsey’s Theorem on hypergraphs. This extension should
be considered as another original contribution, since it may be helpful as a
general technique to construct a model preserving the regions.

Related Work. Our combination framework is a way to combine theories with
sets. The relation between (monadic) logic and sets is as old as logic itself, and
this relation is particularly clear for instance considering Aristotle Syllogisms.
It is however useful to again study monadic logic, and more particularly the
Löwenheim class, and in view of the recent advances in combinations with non-
disjoint and non-stably infinite theories.

In [26], the authors focus on the satisfiability problem of unions of theories
sharing set operations. The basic idea is to reduce the combination problem into
a satisfiability problem in a fragment of arithmetic called BAPA (Boolean Alge-
bra and Presburger Arithmetic). Löwenheim and BSR classes are also considered,
but infinite cardinalities were somehow defined out of their reduction scheme,

124 P. Chocron, P. Fontaine, and C. Ringeissen

whilst infinite cardinalities are smoothly taken into account in our combination
framework. In [26], BSR was shown to be reducible to Presburger. We here give
a detailed proof. We believe such a proof is useful since it is more complicated
that it may appear. In particular, our proof is based on an original (up to our
knowledge) extension of Ramsey’s Theorem to accommodate a domain parti-
tioned into (Venn) regions. Finally, the notion of P-gentleness defined and used
here is stronger than semi-linearity of Venn-cardinality, and allows non-disjoint
combination with more theories, e.g. the guarded fragment.

In [21,22], a locality property is used to properly instantiate axioms connecting
two disjoint theories. Hence, the locality is a way to reduce (via instantiation) a
non-disjoint combination problem to a disjoint one. In that context, cardinality
constraints occur when considering bridging functions over a data structure with
some cardinality constraints on the underlying theory of elements [28,21,23].

In [12], Ghilardi proposed a very general model-theoretic combination frame-
work to obtain a combination method à la Nelson-Oppen when T1 and T2 are
two compatible extensions of the same shared theory (satisfying some proper-
ties). This framework relies on an application of the Robinson Joint Consistency
Theorem (roughly speaking, the union of theories is consistent if the intersection
is complete). Using this framework, several shared fragments of arithmetic have
been successfully considered [12,16,17]. Due to its generality, Ghilardi’s approach
is free of cardinality constraints.

It is also possible to consider a general semi-decision procedure for the un-
satisfiability problem modulo T1 ∪ T2, e.g. a superposition calculus. With the
rewrite-based approach initiated in [3], the problem reduces to proving the ter-
mination of this calculus. General criteria have been proposed to get modular
termination results for superposition, when T1 and T2 are either disjoint [2] or
non-disjoint [20]. Notice that the superposition calculus can also be used as a
deductive engine to entail some cardinality constraints, as shown in [5].

Structure of the paper. Section 2 introduces some classical notations and defini-
tions. In Section 3, we introduce the notion of P-gentle theory and we present
the related combination method for unions of theories sharing a (non-empty fi-
nite) set P of unary predicate symbols. All the theories in the Löwenheim class
and in the BSR class are P-gentle, as shown respectively in Section 4 and in
Section 5. A simple example is given in Section 6. The conclusion (Section 7)
discusses the current limitations of our approach and mentions some possible
directions to investigate. Our extension of Ramsey’s Theorem can be found in
Appendix A.

2 Notation and Basic Definitions

A first-order language is a tuple L = 〈V ,F ,P〉 such that V is an enumerable set
of variables, while F and P are sets of function and predicate symbols. Every
function and predicate symbol is assigned an arity. Nullary predicate symbols
are called proposition symbols, and nullary function symbols are called constant

A Gentle Non-disjoint Combination of Satisfiability Procedures 125

symbols. A first-order language is called relational if it only contains function
symbols of arity zero. A relational formula is a formula in a relational language.
Terms, atomic formulas and first-order formulas over the language L are defined
in the usual way. In particular an atomic formula is either an equality, or a
predicate symbol applied to the right number of terms. Formulas are built from
atomic formulas, Boolean connectives (¬, ∧, ∨, ⇒, ≡), and quantifiers (∀, ∃). A
literal is an atomic formula or the negation of an atomic formula. Free variables
are defined in the usual way. A formula with no free variables is closed, and
a formula without variables is ground. A universal formula is a closed formula
∀x1 . . .∀xn.ϕ where ϕ is quantifier-free. A (finite) theory is a (finite) set of closed
formulas. Two theories are disjoint if no predicate symbol in P or function symbol
in F appears in both theories, except constants and equality.

An interpretation I for a first-order language L provides a non empty domain
D, a total function I[f] : Dr → D for every function symbol f of arity r, a
predicate I[p] ⊆ Dr for every predicate symbol p of arity r, and an element I[x] ∈
D for every variable x. The cardinality of an interpretation is the cardinality of
its domain. The notation Ix1/d1,...,xn/dn

for x1, . . . , xn different variables stands
for the interpretation that agrees with I, except that it associates di ∈ D to
the variable xi, 1 ≤ i ≤ n. By extension, an interpretation defines a value in
D for every term, and a truth value for every formula. We may write I |= ϕ
whenever I[ϕ] = �. Given an interpretation I on domain D, the restriction I ′
of I on D′ ⊆ D is the unique interpretation on D′ such that I and I ′ interpret
predicates, functions and variables the same way on D′. An extension I ′ of I is
an interpretation on a domain D′ including D such that I ′ restricted to D is I.

A model of a formula (theory) is an interpretation that evaluates the formula
(resp. all formulas in the theory) to true. A formula or theory is satisfiable if
it has a model; it is unsatisfiable otherwise. A formula G is T -satisfiable if it is
satisfiable in the theory T , that is, if T ∪{G} is satisfiable. A T -model of G is a
model of T ∪ {G}. A formula G is T -unsatisfiable if it has no T -models. In our
context, a theory T is decidable if the T -satisfiability problem for sets of (ground)
literals is decidable in the language of T (extended with fresh constants).

Consider an interpretation I on a language with unary predicates p1, . . . , pn
and some elements D in the domain of this interpretation. Every element d ∈ D
belongs to a Venn region v(d) = v1 . . . vn ∈ {�,⊥}n where vi = I[pi](d). We
denote by Dv ⊆ D the set of elements of D in the Venn region v. Notice also
that, for a language with n unary predicates, there are 2n Venn regions. Given an
interpretation I, Dc denotes the subset of elements in D associated to constants
by I. Naturally, Dc

v denotes the set of elements associated to constants that are
in the Venn region v.

3 Gentle Theories Sharing Unary Predicates

From now on, we assume that P is a non-empty finite set of unary predicates. A
P-union of two theories T1 and T2 is a union sharing only P , a set of constants
and the equality.

126 P. Chocron, P. Fontaine, and C. Ringeissen

Definition 1. An arrangement A for finite sets of constant symbols S and unary
predicates P is a maximal satisfiable set of equalities and inequalities a = b or
a
= b and literals p(a) or ¬p(a), with a, b ∈ S, p ∈ P.

There are only a finite number of arrangements for given sets S and P .
Given a theory T whose signature includes P and a model M of T on do-

main D, the P-cardinality κ is the tuple of cardinalities of all Venn regions of
P in M (κv will denote the cardinality of the Venn region v). The following
theorem (specialization of general combination lemmas in e.g. [24,25]) states the
completeness of the combination procedure for P-unions of theories:

Theorem 1. Consider a P-union of theories T1 and T2 whose respective lan-
guages L1 and L2 share a finite set S of constants, and let L1 and L2 be sets of
literals, respectively in L1 and L2. Then L1∪L2 is T1∪T2-satisfiable if and only
if there exist an arrangement A for S and P, and a Ti-model Mi of A∪Li with
the same P-cardinality for i = 1, 2.

The spectrum of a theory T is the set of P-cardinalities of its models. The above
theorem can thus be restated as:

Corollary 1. The T1∪T2-satisfiability problem for sets of literals is decidable if,
for any sets of literals A∪L1 and A∪L2 it is possible to decide if the intersection
of the spectrums of T1 ∪ A ∪ L1 and of T2 ∪ A ∪ L2 is non-empty.

To characterize the spectrum of the decidable classes considered in this paper,
we introduce the notion of cardinality constraint. A finite cardinality constraint
is simply a P-cardinality with only finite cardinalities. An infinite cardinality
constraint is given by a P-cardinality κ with only finite cardinalities and a non-
empty set of Venn regions V , and stands for all the P-cardinalities κ′ such that
κ′v ≥ κv if v ∈ V , and κ′v = κv otherwise. The spectrum of a finite set of cardinal-
ity constraints is the union of all P-cardinalities represented by each cardinality
constraint. It is now easy to define the class of theories we are interested in:

Definition 2. A theory T is P-gentle if, for every set L of literals in the lan-
guage of T , the spectrum of T ∪ L is the spectrum of a computable finite set of
cardinality constraints.

Notice that a P-gentle theory is (by definition) decidable. To relate the above no-
tion with the gentleness in the disjoint case [9], observe that if p is a unary pred-
icate symbol not occurring in the signature of the theory T , then T ∪{∀x.p(x)}
is {p}-gentle if and only if T is gentle.

If a theory is P-gentle, then it is P ′-gentle for any non-empty subset P ′ of
P . It is thus interesting to have P-gentleness for the largest possible P . Hence,
when P is not explicitly given for a theory, we assume that P denotes the set
of unary predicates symbols occurring in its signature. In the following sections
we show that the Löwenheim theories and the BSR theories are P-gentle.

The union of two P-gentle theories is decidable, as a corollary of the following
modularity result:

Theorem 2. The class of P-gentle theories is closed under P-union.

A Gentle Non-disjoint Combination of Satisfiability Procedures 127

Proof. If we consider the P-union of two P-gentle theories with respective spec-
trums S1 and S2, then we can build some finite set of cardinality constraints
whose spectrum is S1 ∩ S2. �

Some very useful theories are not P-gentle, but in practical cases they can be
combined with P-gentle theories. To define more precisely the class of theories T ′
that can be combined with a P-gentle one, let us introduce the T ′-satisfiability
problem with cardinality constraints: given a formula and a finite set of cardinality
constraints, the problem amounts to check whether the formula is satisfiable in a
model of T whose P-cardinality is in the spectrum of the cardinality constraints.
As a direct consequence of Corollary 1:

Theorem 3. T ∪ T ′-satisfiability is decidable if the theory T is P-gentle and
T ′-satisfiability with cardinality constraints is decidable.

Notice that T -satisfiability with cardinality constraints is decidable for most
common theories, e.g. the theories handled in SMT solvers. This gives the theo-
retical ground to add to the SMT solvers any number of P-gentle theories sharing
unary predicates.

From the results in the rest of the paper, it will also follow that the non-
disjoint union (sharing unary predicates) of BSR and Löwenheim theories with
one decidable theory accepting further constraints of the form ∀x . ((¬)p1(x) ∧
. . . (¬)pn(x)) ⇒ (x = a1 ∨ . . . x = am) is decidable. For instance, the guarded
fragment with equality accepts such further constraints and the superposition
calculus provides a decision procedure [11]. Thus any theory in the guarded
fragment can be combined with Löwenheim and BSR theories sharing unary
predicates.

In the disjoint case, any decidable theory expressed as a finite set of first-
order axioms can be combined with a gentle theory [9]. Here this is not the case
anymore. Indeed, consider the theory ψ = ϕ∨∃x p(x) where p does not occur in
ϕ; any set of literals is satisfiable in the theory ψ if and only if it is satisfiable
in the theory of equality. If the satisfiability problem of literals in the theory ϕ
is undecidable, the P-union of ψ and the Löwenheim theory ∀x¬p(x) will also
be undecidable.

4 The Löwenheim Class

We first review some classical results about this class and refer to [6] for more
details. A Löwenheim theory is a finite set of closed formulas in a relational
language containing only unary predicates (and no functions except constants).
This class is also known as first-order relational monadic logic. Usually one
distinguishes the Löwenheim class with and without equality. The Löwenheim
class has the finite model property (and is thus decidable) even with equality.
Full monadic logic without equality, i.e. the class of finite theories over a lan-
guage containing symbols (predicates and functions) of arity at most 1, also has
the finite model property. Considering monadic logic with equality, the class of

128 P. Chocron, P. Fontaine, and C. Ringeissen

finite theories over a language containing only unary predicates and just two
unary functions is already undecidable. With only one unary function, however,
the class remains decidable [6], but does not have the finite model property any-
more. Since the spectrum for this last class is significantly more complicated [13]
than for the Löwenheim class we will here only focus on the Löwenheim class
with equality (only classes with equality are relevant in our context), that is,
without functions. More can be found about monadic first-order logic in [6,8].
In particular, a weaker version of Corollary 2 (given below) can be found in [8].

Previously [9,1], combining theories with non-stably infinite theories took ad-
vantage of “pumping” lemmas, allowing — for many decidable fragments — to
build models of arbitrary large cardinalities. The following theorem is such a
pumping lemma, but it considers the cardinalities of the Venn regions and not
only the global cardinality.

Lemma 1. Assume T is a Löwenheim theory with equality. Let q be the number
of variables in T . If there exists a model M on domain D with |Dv \ Dc| ≥ q,
then, for each cardinality q′ ≥ q, there is a model extension or restriction M′ of
M on domain D′ such that |D′v \ Dc| = q′ and D′v′ = Dv′ for all v′
= v.

Proof. Two interpretations I (on domainD) and I ′ (on domainD′) for a formula
ψ are similar if

– |(Dv ∩ D′v) \ Dc| ≥ q;
– Dv′ = D′v′ for each Venn region v′ distinct from v;
– I[a] = I ′[a] for each constant in ψ;
– I[x] = I ′[x] for each variable free in ψ.

Considering M as above, we can build a model M′ as stated in the theorem,
such that M and M′ are similar. Indeed similarity perfectly defines a model
with respect to another, given the cardinalities of the Venn regions.

We now prove that, given a Löwenheim formula ψ (or a set of formulas),
two similar interpretations for ψ give the same truth value to ψ and to each
sub-formula of ψ.

The proof is by induction on the structure of the (sub-)formula ψ. It is obvious
if ψ is atomic, since similar interpretations assign the same value to variables
and constants. If ψ is ¬ϕ1, ϕ1 ∨ ϕ2, ϕ1 ∧ ϕ2 or ϕ1 ⇒ ϕ2, the result holds if it
also holds for ϕ1 and ϕ2.

Assume I makes true the formula ψ = ∃xϕ(x). Then there exists some d ∈ D
such that Ix/d is a model of ϕ(x). If d ∈ D′, then I ′x/d is similar to Ix/d and, by

the induction hypothesis, it is a model of ϕ(x); I ′ is thus a model of ψ. If d /∈ D′,
then d ∈ Dv and |(Dv ∩ D′v) \ Dc| ≥ q. Furthermore, since the whole formula
contains at most q variables, ϕ(x) contains at most q − 1 free variables besides
x. Let x1, . . . , xm be those variables. There exists some d′ ∈ (Dv ∩D′v)\Dc such
that d′
= I[xi] for all i ∈ {1, . . . ,m}. By structural induction, it is easy to show
that Ix/d and Ix/d′ give the same truth value to ϕ(x). Furthermore Ix/d′ and
I ′x/d′ are similar. I ′ is thus a model of ψ. To summarize, if I is a model of ψ, I ′
is also a model of ψ. By symmetry, if I ′ is a model of ψ, I is also a model of ψ.
The proof for formulas of the form ∀xϕ(x) is dual. �

A Gentle Non-disjoint Combination of Satisfiability Procedures 129

Lemma 1 has the following consequence on the acceptable cardinalities for
the models of a Löwenheim theory:

Corollary 2. Assume T is a Löwenheim theory with equality with n distinct
unary predicates. Let r and q be respectively the number of constants and vari-
ables in T . If T has a model of some cardinality κ strictly larger than r +
2nmax(0, q − 1), then T has models of each cardinality equal or larger than
min(κ, r + q 2n).

Proof. If a model with such a cardinality exists, then there are Venn regions v
such that |Dv \ Dc| ≥ q. Then the number of elements in these Venn regions
can be increased to any arbitrary larger cardinality, thanks to Lemma 1. If
κ > r + q 2n, it means some Venn regions v are such that |Dv \Dc| > q, and by
eliminating elements in such Venn regions (using again Lemma 1), it is possible
to obtain a model of cardinality r + q 2n. �

In [8], the limit is q 2n, q being the number of constants plus the maximum
number of nested quantifiers. Now q is more precisely set to the number of
variables, and the constants are counted separately. Moreover, max(0, q − 1)
replaces the factor q.

The case where q and r are both 0 corresponds to pure propositional logic
(Löwenheim theories without variables and constants), where the size of the
domain is not relevant. With q = 1 (one variable), there is no way to compare
two elements (besides the ones associated to constants) and enforce them to be
equal. It is still possible to constrain the domain to be of size at most r, using
constraints like ∀x . x = c1 ∨ . . . ∨ x = cr, but any model with one element not
associated to a constant can be extended to a model of arbitrary cardinality
(by somehow duplicating any number of time this element). Notice also that it
is possible to set a lower bound on the size of the domain that can be r + 2n.
Consider for instance a set of sentences of the form ∃x.(¬)p1(x) ∨ . . . (¬)pn(x);
there are 2n such formulas, each enforcing one Venn region to be non-empty.

Using several variables, a Löwenheim formula can enforce upper bounds larger
than r on cardinalities. For q = 2, it is indeed easy to build a formula that has
only models of cardinality at most (q − 1) 2n = 2n:

∀x∀y .
[∧
0<i<j≤n

pi(x) = pj(y)
]
⇒ x = y.

With a larger number of variables, the following formula (q ≥ 2)

∀x1 . . .∀xq .
[∧

0<i<j≤n

0<i′<j′≤q

pi(xi′) = pj(xj′)
]
⇒

∨
0<i′<j′≤q

xi′ = xj′

enforces the cardinality of the domain to be at most (q − 1) 2n. To obtain
a formula with constants that accepts only models of cardinality up to r +
2nmax(0, q − 1), it suffices to add as a guard in the above formula the conjunc-
tive sets of atoms expressing that the variables are disjoint from the r constants.
So the above condition in Corollary 2 is the strongest one.

130 P. Chocron, P. Fontaine, and C. Ringeissen

Besides the finite model property and the decidability of Löwenheim theories,
Corollary 2 also directly entails the P-gentleness:

Theorem 4. Löwenheim theories on a language with unary predicates in P are
P-gentle.

5 The Bernays-Schönfinkel-Ramsey Class

A Bernays-Schönfinkel-Ramsey (BSR for short) theory is a finite set of formulas
of the form ∃∗∀∗ϕ, where ϕ is a first-order formula which is function-free (but
constants are allowed) and quantifier-free. Bernays and Schönfinkel first proved
the decidability of this class without equality; Ramsey later proved that it re-
mains decidable with equality. More can be found about BSR theories in [6].
Ramsey also gave some (less known) results about the spectrum of BSR theo-
ries [18]. We here give a proof that BSR theories are P-gentle.

For simplicity, we will assume that existential quantifiers are Skolemized. In
the following, a BSR theory is thus a finite set of universal function-free closed
first-order formulas.

Lemma 2. Let T be a BSR theory, and M be a model of T on domain D. Then
any restriction M′ of M on domain D′ with Dc ⊆ D′ ⊆ D is a model of T .

Proof. Consider M and M′ as above. Since M is a model of T , for each closed
formula ∀x1 . . . xn . ϕ in T (where ϕ is function-free and quantifier-free), and for
all d1, . . . , dn ∈ D′ ⊆ D, Mx1/d1,...,xn/dn

is a model of ϕ. This also means that,
for all d1, . . . , dn ∈ D′, M′

x1/d1,...,xn/dn
is a model of ϕ, and finally that M′ is a

model of ∀x1 . . . xn . ϕ. �

Intuitively, this states that the elements not assigned to ground terms (i.e. the
constants) can be eliminated from a model of a BSR theory. It is known [18,9]
that for any BSR theory T there is a computable finite number k such that if
T has a model of cardinality greater or equal to k, then it has a model of any
cardinality larger than k. Later in this section, we prove that the same occurs
locally for each Venn region.

The notion of n-repetitive models, which we now define, is instrumental for
this. Informally, a model is n-repetitive if it is symmetric for those elements of
its domain that are not assigned to constants in the theory.

Definition 3. An interpretation I on domain D for a BSR theory T is n-
repetitive for a set V of Venn regions if, for each v ∈ V , |Dv \Dc| ≥ n and there
exists a total order ≺ on elements in Dv \ Dc such that

– for every r-ary predicate symbol p in T
– for all d1, . . . , dr ∈ D, and d′1, . . . , d

′
r ∈ D with

• |{d1, . . . , dr} \ Dc| ≤ n
• d′i = di if di or d′i ∈ Dc ∪

⋃
v/∈V Dv

• v(d′i) = v(di)

A Gentle Non-disjoint Combination of Satisfiability Procedures 131

• d′i ≺ d′j iff di ≺ dj, if for some v′ ∈ V , di, dj ∈ Dv′ \ Dc

we have I[p](d1, . . . , dr) = I[p](d′1, . . . , d′r).
Notice that a same interpretation can be n-repetitive for several Venn regions at
the same time. Also, the above definition allows Dv \ Dc to be empty for every
v /∈ V . Previously [9] (without distinguishing regions) we showed that one can
decide if a BSR theory T is n-repetitive by building another BSR theory that is
satisfiable if and only if T is n-repetitive. The same occurs to n-repetitiveness
for Venn regions.

Theorem 5. Consider a BSR theory T with n variables and a model M on
domain D. If M is n-repetitive for the Venn regions V then, for any (finite or
infinite) cardinalities κv ≥ |Dv| (v ∈ V), T has a model M′ extension of M on
domain D′ such that |D′v| = κv if v ∈ V and D′v′ = Dv′ for all v′ /∈ V .

Proof. Assume that ≺ are the total orders mentioned in Definition 3. We first
build an extension M′ of M as specified in the theorem, and later prove it is a
model of T .

Let E be the set of new elements E = D′ \ D, and fix arbitrary total orders
(again denoted by≺) onD′v\Dc for all v ∈ V that extend the given orders onDv\
Dc. Since M′ is an extension ofM, the interpretation of the predicate symbols is
already defined when all arguments belong to D. When some arguments belong
to E, the truth value of an r-ary predicate p is defined as follows:

– (d′1, . . . , d
′
r)
∈ M′[p] for |{d′1, . . . , d′r} \ Dc| > n: the interpretation of p over

tuples with more than n elements outside Dc is fixed arbitrarily. Indeed, such
tuples are irrelevant for the evaluation of the formulas of T : terms occurring
as arguments of a predicate are either variables or constants, and no more
than n variables occur in any formula of T .

– otherwise, to determine M′[p](d′1, . . . , d
′
r), first choose d1, . . . dr ∈ D such

that d′1, . . . , d
′
r and d1, . . . dr are related to each other just like in Definition 3.

This is possible since, for every Venn region v for which the interpretation is
repetitive, there are at least n elements in Dv\Dc. Then (d′1, . . . , d

′
r) ∈ M′[p]

iff (d1, . . . , dr) ∈ M[p]. Observe that all possible choices of d1, . . . , dn lead
to the same definition because M is n-repetitive.

The construction is such that M′ is also n-repetitive for the same regions. It is
also a model of T : all formulas in T are of the form ∀x1 . . . xm . ϕ(x1, . . . , xm),
with m ≤ n. For all d′1 . . . , d′m ∈ D′, if {d′1, . . . , d′m} ⊆ D then

M′
x1/d′

1,...,xm/d′
m
[ϕ(x1, . . . , xm)] = Mx1/d′

1,...,xm/d′
m
[ϕ(x1, . . . , xm)]

since M′ is an extension of M. Otherwise, let d1, . . . , dm ∈ D be some elements
related to d′1, . . . , d

′
m like in Definition 3. Since M′ is n-repetitive,

M′
x1/d′

1,...,xm/d′
m
[ϕ(x1, . . . , xm)] = M′

x1/d1,...,xm/dm
[ϕ(x1, . . . , xm)]

= Mx1/d1,...,xm/dm
[ϕ(x1, . . . , xm)].

In both cases, M′
x1/d′

1,...,xm/d′
m
[ϕ(x1, . . . , xm)] evaluates to true, and therefore

M′ is a model of ∀x1 . . . xn . ϕ(x1, . . . , xm). �

132 P. Chocron, P. Fontaine, and C. Ringeissen

Now it is possible to state that the full spectrum of a BSR theory only depends
on (a finite set of) P-cardinalities κ such that, for all Venn region v, κv ≤ k for
some finite cardinality k only depending on the theory. The proof requires an
extension of Ramsey’s Theorem which can be found in the appendix A.

Theorem 6. Given a BSR theory T with n variables, there exists a number
k computable from the theory, such that, if T has a model M on domain D
such that |Dv \ Dc| ≥ k for Venn regions v ∈ V , then it has a model which is
n-repetitive for Venn regions V .

Proof. Using Lemma 2, we can assume that T has a (sufficiently large) finite
model M on domain D. We can assume without loss of generality that M is
such that, for every predicate p of the language, (d1, . . . dr) /∈ M[p] whenever
there are more than n elements in {d1, . . . dr} \Dc; indeed, these interpretations
play no role in the truth value of a formula with n variables.

Let ≺ be an order on D\Dc. Given two ordered (with respect to ≺) sequences
e1, . . . , en and e′1, . . . , e

′
n of elements in D\Dc such that v(ei) = v(e′i) (1 ≤ i ≤ n),

we say that the configurations for e1, . . . , en and e′1, . . . , e
′
n agree if for every r-

ary predicate p, and for every d1, . . . , dr ∈ Dc∪{e1, . . . , en}, (d1, . . . , dr) ∈ M[p]
iff (d′1, . . . , d

′
r) ∈ M[p], with d′i = e′j if di = ej for some j, and d′i = di otherwise.

Notice that there are only a finite number of disagreeing configurations for n
elements in D \Dc: more precisely a configuration is determined by at most b =∑

p (n+ |Dc|)arity(p) Boolean values, where the sum ranges over all predicates in

the theory. Thus the number of disagreeing configurations is bounded by C = 2b.
Interpreting configurations as colors, one can use the extension of Ramsey’s

Theorem given in Appendix A: according to Theorem 7, there is a computable
function f such that, for any N ∈ N, if |D \Dc|V ≥ f(n,N,C), then there exists
a model on D′ ⊆ D with |D′ \ Dc|V ≥ N for which configurations agree if they
have the same number of elements in each Venn region of V . Taking N = n, this
is actually building a n-repetitive restriction of M. �

The BSR class obviously has the finite model property, and is decidable. Lemma 2
and Theorems 5 and 6 above also prove that BSR theories are (gentle and) P-
gentle:

Corollary 3. BSR theories on a language including unary predicates in P are
P-gentle.

A simple constructive proof of this corollary would consider the finite number
of all P-cardinalities κ such that κv ≤ k (where k comes from Theorem 6). All
such P-cardinalities can be understood as cardinality constraints, the extendable
Venn regions being the ones for which κv > k. Of course this construction is
highly impractical, since it uses some kind of Ramsey numbers, known to be
extremely large. In practice, we believe there are much better constructions:
the important elements of the domain are basically only the ones associated to
constants, and theoretical upper bounds are not met in non-artificial cases.

A Gentle Non-disjoint Combination of Satisfiability Procedures 133

6 Example: Non-Disjoint Combination of Order and Sets

To illustrate the kind of theories that can be handled in our framework, consider
a simple yet informative example with a BSR theory defining an ordering < and
augmented with clauses connecting the ordering < and the sets p and q (we do
not distinguish sets and their related predicates):

T1 =

⎧⎪⎪⎨⎪⎪⎩
∀x. ¬(x < x)
∀x, y, z. (x < y ∧ y < z) ⇒ x < z

∀x, y. (p(x) ∧ ¬p(y)) ⇒ x < y
∀x, y. (q(x) ∧ ¬q(y)) ⇒ x < y

and a Löwenheim theory

T2 =

{
∃y∀x. (p(x) ∧ q(x)) ≡ x = y
∀x∃y. p(x) ⇒ (x
= y ∧ q(y))

Notice that T2 is not a BSR theory due to the ∀∃ quantification of its second
axiom, but both theories T1 and T2 are actually P-gentle. The theory T1 imposes
either p ∩ q or p ∩ q to be empty (we will assume that the domain is non-empty
and simplify the cardinality constraints accordingly). The theory T2 imposes the
cardinality of p ∩ q to be exactly 1, and the cardinality of p ∩ q to be at least 1.
The following table collects the cardinality constraints:

T1 T2
p ∩ q ≥ 0 ≥ 0 ≥ 0
p ∩ q 0 ≥ 0 ≥ 1
p ∩ q ≥ 0 0 ≥ 0
p ∩ q ≥ 0 ≥ 0 1

The theory T1∪T2 imposes p∩q to be empty, in other words p ⊆ q. Moreover,
the cardinality of p∩q is 1, and so it implies that the cardinality of p is 1. Hence,
the set

T1 ∪ T2 ∪ {p(a), p(b), a
= b}
is unsatisfiable. As a final comment, there could be theories using directly the
Venn cardinalities as integer variables. For instance, imagine a constraint stating
|p| > 1 in a theory including linear arithmetic on integers. This would of course
be unsatisfiable with T1 ∪ T2.

7 Conclusion

The notion of gentleness was initially presented as a tool to combine non-stably
infinite disjoint theories. In this paper, we have introduced a notion of P-
gentleness which is well-suited for combining theories sharing (besides constants
and the equality) only unary predicates in a set P . The major contributions
of this paper are that the Löwenheim theories and BSR theories are P-gentle.

134 P. Chocron, P. Fontaine, and C. Ringeissen

A corollary is that the non-disjoint union (sharing unary predicates) of
Löwenheim theories, BSR theories, and decidable theories accepting further con-
straints of the form ∀x . ((¬)p1(x) ∧ . . . (¬)pn(x)) ⇒ (x = a1 ∨ . . . x = am) is
decidable.

Our combination method is limited to shared unary predicates. Unfortunately,
the theoretical limitations are strong for a framework sharing predicates with
larger arities: for instance even the guarded fragment with two variables and
transitivity constraints is undecidable [10], although the guarded fragment (or
first-order logic with two variables) is decidable, and transitivity constraints can
be expressed in BSR. The problem of combining theories with only a shared
dense order has however been successfully solved [12,14]. In that specific case,
there is again an implicit infiniteness argument that could be possibly expressed
as a form of extended gentleness, to reduce the isomorphism construction prob-
lem into solving some appropriate extension of cardinality constraints. A clearly
challenging problem is to identify an appropriate extended notion of gentleness
for some particular binary predicates.

Also in future works, the reduction approach (Löwenheim and BSR theo-
ries can be simplified to a subset of Löwenheim) may be useful as a simplifi-
cation procedure for sets of formulas that can be seen as non-disjoint (sharing
unary predicates only) combinations of BSR, Löwenheim theories and an arbi-
trary first-order theory: this would of course not provide a decision procedure,
but refutational completeness can be preserved. More generally we also plan
to study how superposition-based satisfiability procedures could benefit from a
non-disjoint (sharing unary predicates) combination point of view. In particular,
superposition-based satisfiability procedures could be used as deductive engines
with the capability to exchange constraints à la Nelson-Oppen.

The results here are certainly too combinatorially expensive to be directly
applicable. However, this paper paves the theoretical grounds for mandatory
further works that would make such combinations practical. There are impor-
tant incentives since the BSR and Löwenheim fragments are quite expressive:
for instance, it is possible to extend the language of SMT solvers with sets and
cardinalities. Many formal methods are based on logic languages with sets. Ex-
pressive decision procedures (even if they are not efficient) including e.g. sets and
cardinalities will help proving the often small but many verification conditions
stemming from these applications.

References

1. Areces, C., Fontaine, P.: Combining theories: The Ackerman and Guarded frag-
ments. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011. LNCS (LNAI),
vol. 6989, pp. 40–54. Springer, Heidelberg (2011)

2. Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: New results on rewrite-based
satisfiability procedures. ACM Trans. Comput. Log. 10(1) (2009)

3. Armando, A., Ranise, S., Rusinowitch, M.: A rewriting approach to satisfiability
procedures. Inf. Comput. 183(2), 140–164 (2003)

A Gentle Non-disjoint Combination of Satisfiability Procedures 135

4. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories.
In: Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook of Satis-
fiability. Frontiers in Artificial Intelligence and Applications, vol. 185, ch. 26, pp.
825–885. IOS Press (February 2009)

5. Bonacina, M.P., Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Decidability and
undecidability results for Nelson-Oppen and rewrite-based decision procedures. In:
Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 513–527.
Springer, Heidelberg (2006)

6. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. In: Perspec-
tives in Mathematical Logic. Springer, Berlin (1997)

7. Chocron, P., Fontaine, P., Ringeissen, C.: A Gentle Non-Disjoint Combination of
Satisfiability Procedures (Extended Version). Research Report 8529, Inria (2014),
http://hal.inria.fr/hal-00985135

8. Dreben, B., Goldfarb, W.D.: The Decision Problem: Solvable Classes of Quantifi-
cational Formulas. Addison-Wesley, Reading (1979)

9. Fontaine, P.: Combinations of theories for decidable fragments of first-order logic.
In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS (LNAI), vol. 5749, pp.
263–278. Springer, Heidelberg (2009)

10. Ganzinger, H., Meyer, C., Veanes, M.: The two-variable guarded fragment with
transitive relations. In: Logic In Computer Science (LICS), pp. 24–34. IEEE Com-
puter Society (1999)

11. Ganzinger, H., Nivelle, H.D.: A superposition decision procedure for the guarded
fragment with equality. In: Logic In Computer Science (LICS), pp. 295–303. IEEE
Computer Society Press (1999)

12. Ghilardi, S.: Model-theoretic methods in combined constraint satisfiability. Journal
of Automated Reasoning 33(3-4), 221–249 (2004)

13. Gurevich, Y., Shelah, S.: Spectra of monadic second-order formulas with one unary
function. In: Logic In Computer Science (LICS), pp. 291–300. IEEE Computer
Society, Washington, DC (2003)

14. Manna, Z., Zarba, C.G.: Combining decision procedures. In: Aichernig, B.K.,
Maibaum, T. (eds.) Formal Methods at the Crossroads. From Panacea to Founda-
tional Support. LNCS, vol. 2757, pp. 381–422. Springer, Heidelberg (2003)

15. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM
Trans. on Programming Languages and Systems 1(2), 245–257 (1979)

16. Nicolini, E., Ringeissen, C., Rusinowitch, M.: Combinable extensions of Abelian
groups. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 51–66.
Springer, Heidelberg (2009)

17. Nicolini, E., Ringeissen, C., Rusinowitch, M.: Combining satisfiability procedures
for unions of theories with a shared counting operator. Fundam. Inform. 105(1-2),
163–187 (2010)

18. Ramsey, F.P.: On a Problem of Formal Logic. Proceedings of the London Mathe-
matical Society 30, 264–286 (1930)

19. Ranise, S., Ringeissen, C., Zarba, C.G.: Combining data structures with nonstably
infinite theories using many-sorted logic. In: Gramlich, B. (ed.) FroCos 2005. LNCS
(LNAI), vol. 3717, pp. 48–64. Springer, Heidelberg (2005)

20. Ringeissen, C., Senni, V.: Modular termination and combinability for superposition
modulo counter arithmetic. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS
2011. LNCS (LNAI), vol. 6989, pp. 211–226. Springer, Heidelberg (2011)

21. Sofronie-Stokkermans, V.: Locality results for certain extensions of theories with
bridging functions. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663,
pp. 67–83. Springer, Heidelberg (2009)

http://hal.inria.fr/hal-00985135

136 P. Chocron, P. Fontaine, and C. Ringeissen

22. Sofronie-Stokkermans, V.: On combinations of local theory extensions. In:
Voronkov, A., Weidenbach, C. (eds.) Ganzinger Festschrift. LNCS, vol. 7797, pp.
392–413. Springer, Heidelberg (2013)

23. Suter, P., Dotta, M., Kuncak, V.: Decision procedures for algebraic data types with
abstractions. In: Hermenegildo, M.V., Palsberg, J. (eds.) Principles of Program-
ming Languages (POPL), pp. 199–210. ACM (2010)

24. Tinelli, C., Ringeissen, C.: Unions of non-disjoint theories and combinations of
satisfiability procedures. Theoretical Computer Science 290(1), 291–353 (2003)

25. Tinelli, C., Zarba, C.G.: Combining non-stably infinite theories. Journal of Auto-
mated Reasoning 34(3), 209–238 (2005)

26. Wies, T., Piskac, R., Kuncak, V.: Combining theories with shared set operations.
In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS (LNAI), vol. 5749, pp.
366–382. Springer, Heidelberg (2009)

27. Zarba, C.G.: Combining sets with cardinals. J. Autom. Reasoning 34(1), 1–29
(2005)

28. Zhang, T., Sipma, H.B., Manna, Z.: Decision procedures for term algebras with
integer constraints. Inf. Comput. 204(10), 1526–1574 (2006)

A An Extension of Ramsey’s Theorem

We define an n-subset of S to be a subset of n elements of S. An n-hypergraph
of S is a set of n-subsets of S. In particular, a 2-hypergraph is an (undirected)
graph. The complete n-hypergraph of S is the set of all n-subsets of S, and its
size is the cardinality of S. An n-hypergraph G is colored with c colors if there is
a coloring function that assigns one color to every n-subset in G. In particular,
a colored 2-hypergraph (that is, a colored graph), is a graph where all edges are
assigned a color. Consider a set S of elements partitioned into disjoint regions
R = {R1, . . . Rm}. We say that a set S′ ⊆ S has region size larger than x and
note |S′|R ≥ x if |S′ ∩ Ri| ≥ x for all i ∈ {1, . . . ,m}. We also say that an n-
hypergraph is region-monochromatic if the color of each hyperedge only depends
on the number of elements belonging to each region. Two hyperedges are said
of the same kind if they have the same number of elements in each region; all
hyperedges of the same kind of a region-monochromatic hypergraph thus have
the same color. The following extension1 of Ramsey’s Theorem holds:

Theorem 7. There exists a computable function f such that,

– for every number of colors c
– for every n,N ∈ N

– for every complete n-hypergraph G on S colored with c colors

if |S|R ≥ f(n,N, c), then there exists a complete region-monochromatic n-sub-
hypergraph of G on some S′ ⊆ S with |S′|R ≥ N .

Proof. The full proof can be found in [7]. �

1 The classical Ramsey’s Theorem is the case with only one region.

A Rewriting Strategy to Generate Prime

Implicates in Equational Logic

Mnacho Echenim1,2, Nicolas Peltier1,4, and Sophie Tourret1,3

1 Grenoble Informatics Laboratory
2 Grenoble INP - Ensimag
3 Université Grenoble 1

4 CNRS

Abstract. Generating the prime implicates of a formula consists in find-
ing its most general consequences. This has many fields of application
in automated reasoning, like planning and diagnosis, and although the
subject has been extensively studied (and still is) in propositional logic,
very few have approached the problem in more expressive logics because
of its intrinsic complexity. This paper presents one such approach for flat
ground equational logic. Aiming at efficiency, it intertwines an existing
method to generate all prime implicates of a formula with a rewriting
technique that uses atomic equations to simplify the problem by remov-
ing constants during the search. The soundness, completeness and termi-
nation of the algorithm are proven. The algorithm has been implemented
and an experimental analysis is provided.

1 Introduction

The automated generation of the prime implicates of a formula (i.e. its most
general consequences, shortened as p.i. from this point on) has been a topic of
interest in automated reasoning because of its various applications (e.g. program
analysis, knowledge representation...). Generating the p.i. of a formula allows
one to extract relevant information, and is useful for instance to remove redun-
dant variables, to simplify the formula, to identify sufficient conditions, etc. The
notion of p.i. and their duals, prime implicants, were first introduced for proposi-
tional logic in 1955 [21] and from that point on, a lot of algorithms were designed
for their computation. Efficient algorithms for computing p.i. in propositional
logic use either variants of the resolution rule [5,12,13,24] or decomposition-based
approaches in the spirit of the DPLL method [3,4,10,11,15,17,22,23]. However,
most applications of automated reasoning (e.g. in program verification) require
the handling of properties and theories that cannot be expressed in propositional
logic, hence the need to extend tools such as p.i. generators to more expressive
logics (such as quantifier-free equational logic or first-order logic). One of the
strong points of the decomposition methods is that they can be applied to all
kinds of formulæ, while resolution-based methods can only deal with formulæ in
clausal normal form. On the other hand, decomposition methods are designed
to handle only finitely many propositional variables, which greatly impairs the

S. Demri, D. Kapur, and C. Weidenbach (Eds.): IJCAR 2014, LNAI 8562, pp. 137–151, 2014.
c© Springer International Publishing Switzerland 2014

138 M. Echenim, N. Peltier, and S. Tourret

possibility of extending such algorithms to more expressive logics. However, ex-
tending resolution-based methods is not a trivial task either, since crucial charac-
teristics such as completeness or termination of propositional algorithms are lost
in more expressive logics, rendering them useless. Thus, such an extension must
be designed very carefully, which explains why a domain that was extensively
studied over the past sixty years contains so few results outside of propositional
logic. Nevertheless, methods have been devised for generating p.i. in first-order
logic, based mostly either on first-order resolution [16] or the sequent calculus
[18]. These methods can handle equational reasoning, the domain targeted in
this paper, by adding equality axioms. Other techniques also exist, such as [14]
which proposes a built-in method for handling equational reasoning based on
an analysis of unification failures. These approaches are very general but not
well-suited for real-world applications since termination is not ensured (even for
standard decidable classes); furthermore they include no technique for remov-
ing equational redundancies, which is a major source of inefficiency. [27] uses
the superposition calculus [1] to generate positive and unit p.i. for specific the-
ories. However, as shown in [9,14], the superposition calculus is not complete
for non-positive or non-unit p.i. Some work has also been done on domains near
first-order logic: [2] focuses on a modal logic and presents an extensive study of
p.i. in this context. [7] devises a technique for computing some specific prime
implicants called minimum satisfying assignments in several theories, provided
there exists a decision procedure for testing the satisfiability of first-order for-
mulæ in the considered theory (e.g. Presburger arithmetic). This technique is
applied in [6] to perform a semi-automated bug detection. [25,26] propose an
approach to synthesize p.i.-like constraints ensuring that a system satisfies some
invariant or safety properties. This approach relies on external provers to check
satisfiability of first-order formulæ in some base theories. It is very generic and
modular, however no automated method is presented to simplify the obtained
constraints.

This paper focuses on the generation of p.i. in function-free equational logic:
the considered formulæ are boolean combinations of equations between con-
stants. This research stems from the design of a method for abductive reasoning
in first-order logic [8], in which a superposition-based calculus is devised to
generate function-free consequences of first-order formulæ. This superposition
procedure is sound and deduction-complete (for ground function-free implicates;
the absence of function symbols is not really restrictive, since functions can be
reduced to equalities by adding substitutivity axioms [20]) but the obtained
formulæ contain many redundancies which make them hard to analyze. The au-
tomated generation of their p.i. allows for the elimination of these redundancies
and the computation of a minimal representation of the given formulæ. Note that
in [25] a similar lack of parsimony is also identified as one of the main issues. In
[9], we designed a tool that is capable of efficiently finding the most general con-
sequences of a quantifier-free equational formula with no function symbols. The
proposed algorithm is somewhat similar to the resolution-based p.i. generation
method for propositional logic of [5] in its structure, but uses built-in techniques

A Rewriting Strategy to Generate Prime Implicates 139

to handle the properties of the equality predicate. This affects both the represen-
tation of clauses, i.e. the way they are stored and tested for redundancy, and their
generation: instead of using the resolution method, new inference rules that can
be viewed as a form of relaxed paramodulation are defined. An implementation
of this algorithm, named Kparam, was compared to state-of-the-art proposi-
tional p.i. generation tools by respectively feeding in ground equational formulæ
and equivalent propositional abstractions. The Kparam tool outperforms the
propositional one in most cases, but it performs badly on some problems. A
careful analysis of the experimental results has shown that this is due, for a
large part, to the lack of an efficient technique for handling equational simpli-
fications. Obviously, a most natural and efficient way of handling an equation
a) b is to uniformly replace one of the terms, say a, by the other, b, thus
yielding a simpler problem. It is clear that this operation preserves satisfiability,
because a formula F ∧ a) b is satisfiable iff F [b/a] is. The application of such a
strategy in the context of p.i. generation raises two important and related issues.
First, how to reconstruct the set of implicates of the original problem F ∧a) b,
from that of F [b/a]? This is not obvious, since, although rewriting preserves
satisfiability, it does not in general preserve the set of implicates, as shown later.
Second, how to intertwine the systematic application of the rewriting operation
with the overall algorithm used to handle the clauses incrementally? This last
point is important because the equational simplifications are not transparent to
the overall process of p.i. generation. Adjustments are needed, that obviously
should not counterbalance the gain of handling equations. In this paper, we in-
vestigate both issues and provide solutions for each of them, yielding a much
more efficient algorithm for generating implicates of ground equational formulæ.
This algorithm is proved to be sound, terminating and complete, thus generat-
ing all implicates of the input up to redundancy in a finite time. Experimental
comparisons show that equational propagation improves the performances of the
algorithm by several orders of magnitude.

Structure of the Paper. In Sect. 2 the original strategy from [9] is introduced
along with the notations necessary to follow the technical part of the article.
Section 3 is a presentation of the rewriting algorithm used in the first step of
the strategy and the theoretical properties (completeness and termination) of
the global algorithms are provided in Sect. 4. An experimental comparison is
conducted in Sect. 5 and the final section contains a summary of the obtained
results, along with some lines of future work. Due to space restriction, the proofs
are omitted (a technical report containing the proofs is available on the authors
web pages).

2 On Equational Logic and Prime Implicate Generation

This section contains the necessary definitions about equational logic along with
a simplified presentation of the starting point of our work, namely the p.i. gen-
eration algorithm of [9].

140 M. Echenim, N. Peltier, and S. Tourret

2.1 Equational Logic

Let Σ be a finite set of constants denoted by a,b,c... We assume a total order ≺
on Σ. We also write a * b if b ≺ a. A literal l is either an atom (or equation)
a) b (where a, b ∈ Σ and) is the symbol for semantic equality), or the negation
of an atom (or disequation) a
) b. A literal written a "# b denotes either a) b
or a
) b and by commutativity a "# b and b "# a are considered equivalent.
The literal lc denotes the complement of l, i.e. a
) b if l = a) b and a) b if
l = a
) b. A clause C is a disjunction (or multiset) of literals. C+ is the clause
composed of the atoms in C and C− is composed of the disequations in C. A
clause is positive if C− = ∅. The empty clause is denoted by � and |C| is the
number of literals in C. An atomic clause is a positive unit clause. A formula S
is a set of clauses. For every clause C, ¬C denotes the formula {{lc} | l ∈ C}.

An equational interpretation I is a partition of Σ into equivalence classes.
Given two constant symbols a and b, we write a =I b if a and b belong to the
same equivalence class in I, and in this case we say that a) b is true in I
(respectively, if a
=I b then a
) b is true in I). This notation is extended to
literals: a "# b =I c "# d means that both literals have the same sign and that
either a =I c and b =I d or a =I d and b =I c (this implies that both literals
have the same truth value in I, but the converse does not hold). A clause C
is true in I if C contains at least one literal that is true in I and a formula S
is true in I if all clauses in S are true in I. Let E represent either a literal, a
clause or a formula, then I |= E means that E is true in I and in this case I is
called a model of E. The notation E |= E′ means that all the models of E are
also models of E′. If E |= E′ and E′ |= E then we write E ≡ E′. A tautology is a
clause that is true in all equational interpretations. Unless stated otherwise, only
non-tautological clauses will be considered. A contradiction, e.g. � or a
) a, is
a clause with no model. To each clause C we associate a special interpretation
IC such that a =IC b iff ¬C |= a) b. To lighten notations we write a =C b
instead of a =IC b. Note that IC |= C iff C is a tautology. The following related

notations are also used: [a]C
def
= {b ∈ Σ | a =C b} is the equivalence class of a in

IC and a�C
def
= min�[a]C is the representative of the class [a]C .

In the original method of p.i. generation from [9], a critical point is redundancy
detection. To deal with the constraints induced by the equality axioms, we define
a redundancy criterion named eq-subsumption, essentially equivalent to semantic
entailment.

Definition 1. Let C,D be two clauses. The clause D eq-subsumes C (written
D ≤eq C) iff the two following conditions hold:

– for all a, b ∈ Σ, if ¬D |= a) b then ¬C |= a) b;
– for every positive literal l ∈ D, there exists a literal l′ ∈ C such that l =C l′.

D <eq C means that D ≤eq C and C
≤eq D. If S,S′ are formulæ, we write
S ≤eq C if ∃D ∈ S, D ≤eq C and S ≤eq S′ if ∀C ∈ S′, S ≤eq C. A clause C is
redundant in S if either C is a tautology or there exists a clause D ∈ S such that
D <eq C. A clause set S is subsumption-minimal if it contains no redundant
clause, i.e. ∀C ∈ S, C is not redundant in S.

A Rewriting Strategy to Generate Prime Implicates 141

Example 2. Let C = a
) b ∨ b
) c ∨ a) d and D = a
) c ∨ b) d. Then IC =
{{a, b, c} , {d}} and ID = {{a, c} , {b} , {d}}, thus D ≤eq C because {a, c} ⊆
{a, b, c} and a) d =C c) d. On the other hand a
) e ∨ a) d
≤eq C and
a
) b∨b) e
≤eq C, respectively because {a, e}
⊆ {a, b, c} and because b) e
=C

a) d.

This criterion offers a syntactic method to detect equational entailment.

Theorem 3. (Th. 8 of [9]) Let C and D be two clauses. If C is not a tautology
then D |= C iff D ≤eq C.

To reduce the work of the redundancy detection algorithms, a normal form is
defined for clauses which projects all equivalent clauses onto a single one, thus
drastically reducing the number of clauses to be considered.

Definition 4. The normal form of a non-tautological clause C is:

C↓
def
=

⎛⎝ ∨
a∈Σ,a =a�C

a
) a�C

⎞⎠ ∨
(∨

a�b∈C
a�C) b�C

)

and all the literals in C↓ occur only once. A formula S is in normal form (denoted
by S↓) iff all its non-tautological clauses are in normal form. The normal form
of a set of atomic clauses U = {ai) bi}i∈{1...n} is the set of atomic clauses

U↓
def
=
{
a′j) b′j

}
j∈{1...m} such that (

n∨
i=1

ai
) bi)↓ =
m∨
j=1

a′j
) b′j.

Proposition 5. (Prop. 4 of [9]) For every non-tautological clause C, C↓ is
equivalent to C. Furthermore, if D and C are equivalent and non-tautological
then C↓ = D↓.

Example 6. Let C = a
) b ∨ b
) c ∨ a
) c ∨ b) d. If a * b * c * d then the
normal form of C is C↓ = b
) c ∨ a
) c ∨ c) d.

In all algorithms, we assume that the formulæ are always subsumption-minimal.
If a formula S is described by set operations, the redundant clauses are auto-
matically removed. The process is straightforward for all operations except the
difference operation, which is defined as follows: for two formulæ S1 and S2,

S1\S2
def
= {C ∈ S1 | ∀D ∈ S2, D
|= C}. Note that if S2 ⊆ S1 then, since S1 is

subsumption-minimal, only clauses actually belonging to S2 are removed from
S1. The subject of clause manipulations is not developed further in this article
since it is not essential for the understanding of the present paper and there is
no significant change in their use w.r.t. the algorithm described in [9].

2.2 Implicate Generation

Definition 7. A clause C is an implicate of a formula S if S |= C. An implicate
C is a prime implicate of S if C is not a tautology, and for every clause D such
that S |= D, either D
|= C or C |= D. Given a formula S, PI(S) is the set of
all the p.i. of S.

142 M. Echenim, N. Peltier, and S. Tourret

Intuitively, a p.i. of a formula is a consequence that is as general as possible. If
any information is removed from it, it is no longer a consequence of the original
formula.

Example 8. Let S = {a) b ∨ d) e, a) c, d
) e}. Both c) b and c) b ∨ d) e
are implicates of S, but only c) b is a p.i., because c) b <eq c) b ∨ d) e.

A standard method for testing the satisfiability of equational clause sets is the
superposition calculus. This calculus is refutationally complete, meaning that it
generates a contradiction from every unsatisfiable set. It is however not complete
for deduction, since we may have S |= C even if C cannot be generated from S.

Example 9. Consider S = {a) b, c
) d ∨ a
) d} with a * b * c * d. By super-
position, the only new implicate that can be generated is c
) d∨ b
) d but there
are other implicates of S such as b
) c ∨ a
) d.

The implicates of an equational formula are generated using a relaxed paramod-
ulation calculus that permits the replacement of arbitrary constants (instead of
identical ones), by adding equality conditions in the resulting clause. For exam-
ple, the paramodulation rule usually applies between a clause C[a] (a clause C
containing the constant a) and a) b ∨ D, yielding the clause C[b] ∨ D. In our
setting, the clauses C[a′] where a
= a′ and a) b∨D generate a
) a′ ∨C[b]∨D
which can be understood as “if a) a′ holds then so does C[b] ∨ D”. Formally,
the following rules define the so-called K-paramodulation calculus.

Paramodulation (P):
a) b ∨ C a′) c ∨D
a
) a′ ∨ b) c ∨ C ∨ D

Factorization (F):
a) b ∨ a′) b′ ∨ C

a) b ∨ a
) a′ ∨ b
) b′ ∨C

Negative Multi-Paramodulation (M):

∨n
i=1(ai
) bi) ∨ P1 c) d ∨ P2∨n
i=1(ai
) c ∨ d
) bi) ∨ P1 ∨ P2

The rule M can be applied to one or several disequations at once.

Example 10. Let C = a
) d∨c
) e∨d) e and D = a) b. Using M, it is possible
to generate the clause (a
) a∨)b
) d ∨ c
) e ∨ d) e by selecting only a
) d in
C and the clause (a
) a∨)b
) d ∨ a
) c ∨ b
) e ∨ d) e by selecting both a
) d
and c
) e.

Theorem 11. (Th. 13 of [9]) The K-paramodulation calculus is complete for
deduction, i.e. it generates all the implicates of any formula up to redundancy.

A formula S is saturated up to redundancy iff all clauses that can be inferred from
premises in S using the rules P, F or M are either in S or redundant w.r.t. S. Note
that unlike the superposition calculus, no ordering restrictions are imposed on
the premises. This is needed for completeness, as shown in the following example.

A Rewriting Strategy to Generate Prime Implicates 143

Example 12. Let C = b) c and D = a) c, with a * b * c. Usual ordering
restrictions prevent the generation of the clause a) b because c, being the
smallest constant, cannot be replaced by b.

In the algorithms, the following additional notation related to the
K-paramodulation calculus is needed.

Definition 13. Let S be a formula, and C be a clause. S�i,C is the set of all
clauses obtained from S ∪ {C} by exactly i steps of K-paramodulation such that
at least one parent of each K-paramodulation step is C. Similarly, we denote
by S�C the set of all clauses (up to redundancy) generated by any number of
K-paramodulation steps from S ∪ {C} where C is always one of the parents.

Algorithm 1. Kparam(S)

T := ∅
S1 := S
while S1 �= ∅ do

Choose a clause C ∈ S1

if T �≤eq C then
T := T ∪ {C} \{D ∈ T | C ≤eq D}
S1 := (S1 ∪ T
1,C)\ {C}

else
S1 := S1\ {C}

end if
end while
return T

To generate only the p.i. of a formula, the redundant implicates must be deleted
as soon as possible to avoid using them to generate other redundant implicates.
For this purpose, the algorithmKparam (Algorithm 1, originally proposed in [9])
selects implicates one at a time from a waiting set S1 and uses the selected clause
in K-paramodulation inferences with previously selected clauses to generate new
implicates. The newly generated clauses are stored in the waiting set and a new
implicate can then be selected. Redundant clauses found during the process are
removed. The non-redundant used clauses are stored in the processed set T 1.
This procedure was proved to be sound, complete and terminating.

3 Atomic Rewriting

To improve the performance of the algorithm described in Sect. 2, we incor-
porate a rewriting strategy, atomic rewriting (otherwise known as equational
simplification), to the process of implicate generation. It simplifies the problem
by reducing the number of constants it contains. The underlying principle is

1 Kparam is an instance of the given clause algorithm in the Otter variant [19].

144 M. Echenim, N. Peltier, and S. Tourret

simple: assume that an atomic clause a) b is an implicate of a formula S. It
is clear that for every model M of S, necessarily a =M b. Since a and b are
always equal, they can be substituted with each other and it is actually possible
to entirely replace one of these constants with the other in the formula, storing
the atom a) b apart to avoid any loss of information. Note that the removal
of an atom can lead to the generation of new ones as shown in the following
example.

Example 14. Consider the formula S = {a) b, a
) b ∨ c
) d, a
) c ∨ a) e, b
)
c ∨ b) e, c) a ∨ c) b}. Using the atom a) b, the formula S can be rewritten
into S′ = {b) b, b
) b ∨ c
) d, b
) c ∨ b) e, b
) c ∨ b) e, c) b ∨ c) b}
and further simplified into S′′ = {c
) d, b
) c ∨ b) e, c) b}. Since S′′ contains
the atom c) b, it can in turn be rewritten in S(3) = {c
) d, b
) b ∨ b) e}, etc.,
until only c
) d remains in the formula.

We introduce the following notations:

Notation 15. Let S be a formula and U be a set of atomic clauses:

– for a and b constants with a * b, S[b/a] is the formula S where every occur-
rence of a is replaced by b,

– S[U] is the set S where every constant a is replaced by min{a′ |U |= a) a′}.
For example, if U contains a) b and a) c with a * b * c then both a and
b are replaced by c in S[U].

In what follows, we will invoke a procedure atomRewrite that recursively
removes the atomic clauses appearing in a formula and rewrites all the re-
maining clauses according to the clauses extracted, until no atom remains.
atomRewrite(S) returns the pair 〈S′, U〉 made of the rewritten formula S′

and a set U of extracted atomic clauses such that S |= U , and S′ = S[U] where
S′ contains no atomic clause. Note that U does not necessarily contain all the
atomic clauses that are logical consequences of S. However, it necessarily con-
tains all those occurring in S and those generated by atomic rewriting.

Example 16. Assume that S = {a) b, a
) b ∨ c
) d, c) d ∨ e) f}. Then in-
voking atomRewrite(S) returns S′ = {c
) d, c) d ∨ e) f} and U = {a) b},
even though it is simple to verify that S |= e) f .

New “hidden” atomic implicates like the one in the previous example can be
generated at any iteration of the strategy, hence the atomic rewriting should
be applicable not only on the initial clause set but also on the newly generated
clauses. However, in order to preserve completeness, some clauses occurring in
the processed set must then be transferred back to the waiting set (i.e. resp. T1

and S1 in Algorithms 1 and 2), otherwise some inferences involving the rewritten
clauses of the processed set can never occur. A straightforward way to ensure
completeness would be to transfer all clauses back to the waiting set, but this
yields a very inefficient algorithm. The following definition introduces a refined
criterion that strongly reduces the number of clauses that must be reprocessed.

A Rewriting Strategy to Generate Prime Implicates 145

Definition 17. A clause D is 〈a, b〉-neutral if D+[b/a] = (D[b/a]↓)
+. The

function Neutral(D, a, b) returns true iff D is 〈a, b〉-neutral.

This property means that the replacement of a by b does not affect the repre-
sentatives of the equivalence classes occurring in the positive part of a clause,
even if it contains both a and b.

Example 18. Consider the clauses C = a
) c∨b
) d∨c) e and D = a
) c∨b
)
c∨ c) d, with a * b * c * d. C is not 〈a, b〉-neutral since C+[b/a] = c) e while
(C[b/a]↓)

+
= d) e. On the other hand D is 〈a, b〉-neutral because D+[b/a] =

(D[b/a]↓)
+ = c) d.

In the procedure splitAtomRewrite (Algorithm 2) we therefore assume that
every non-〈a, b〉-neutral clause occurring in T1 is transferred back to S1 after
rewriting. This procedure takes as an input a pair (T, S) of processed set/waiting
set, and returns the new sets after rewriting every atomic clause they contain.
〈a, b〉-neutrality is the key ensuring the completeness of the algorithm. The in-
formal and intuitive justification is that, if C is 〈a, b〉-neutral, then all inferences
that can be performed on the clause C[b/a] can be “simulated” by inferences
with descendants of C. Hence the clause C[b/a] does not need to be considered
again.

Algorithm 2. splitAtomRewrite(T, S)

U1 := {a � b ∈ T ∪ S}↓
T1 := T // T1 is the processed set
S1 := S // S1 is the waiting set
U := ∅
while U1 �= ∅ do

extract a clause a � b from U1 and put it into U
T2 := {D | ∃D′ ∈ T1, D = (D′[b/a])↓ ∧Neutral(D′, a, b)}
S2 := (S1[b/a])↓ ∪

{
(T1[b/a])↓\T2

}
U1 := (U1 ∪ {u � v ∈ T2 ∪ S2})↓
T1 := T2

S1 := S2

end while
return 〈T1, S1, U〉

When initializing U1, taking atoms directly from S is possible because every
unit implicate of a non-contradictory formula is one of its p.i., since no clause
other than � and itself subsumes it. Note that the replacement of a by b implicitly
deletes the clause a) b from the sets T2 and S2.

Lemma 19. splitAtomRewrite terminates.

146 M. Echenim, N. Peltier, and S. Tourret

4 Prime Implicate Generation: A New Algorithm

The new algorithm combinesK-paramodulation with atomic rewriting to simplify
the p.i. computation on the fly. This process is presented in Subsection 4.1 and
results in the generation of the set of non-atomic p.i. of the simplified problem
together with the set of atomic clauses collected during the search. The recovery
of the p.i. of the original formula is described in Subsection 4.2. From this point
on, any clause appearing in an algorithm is assumed to be in normal form.

4.1 Integration of the Atomic Rewriting

Algorithm 3. SaturateRw(S)

〈S1, U1〉 := atomRewrite(S)
T1 := ∅
while S1 �= ∅ do

Choose a clause C ∈ S1

S2 := S1\ {C}
if T1 �≤eq C then

T2 := T1 ∪ {C}
R1 := (T2)
1,C

〈T3, S3, U2〉 := splitAtomRewrite(T2, (S2 ∪ R1))
U1 := U1 ∪ U2

T1 := T3

S1 := S3

else
S1 := S2

end if
end while
return 〈T1, U1〉

As can be seen in Algorithm 3, atomic rewritings are added to the original
procedure both during the initialization phase, where a call to atomRewrite
removes the atomic clauses occurring in the original formula, and at each iter-
ation of the main loop, where splitAtomRewrite is used. SaturateRw(S)
returns the pair 〈T, U〉 where T is the set of clauses eventually obtained by sat-
uration and U is the set of atomic clauses collected during proof search (and
deleted from the search space by atomRewrite or splitAtomRewrite).

Lemma 20. The algorithm SaturateRw terminates.

Theorem 21. Let S be a formula. If 〈T, U〉 = SaturateRw(S), then T is
saturated up to redundancy and contains no positive unit clauses while U contains
only positive unit clauses. Additionally S |= U and T ≡ S[U].

By Theorem 11, we deduce that T contains all its own p.i. These p.i. are also
implicates of S (since S |= T), but it is clear that T does not in general contain
all the p.i. of S. For instance this set also includes U and all clauses that can be
inferred from T and U . Reconstructing the set of p.i. of S is the subject of the
next section.

A Rewriting Strategy to Generate Prime Implicates 147

Algorithm 4. ComputePI(T, U)

T1 := T
for all C ∈ U do // U is in normal form

T1 := T1 ∪ {C}
R := (T1
1,C)\T1 // R contains only newly generated clauses
while R �= ∅ do

T1 := T1 ∪R
R := (R
1,C)\T1

end while
end for
return T1

4.2 Recovery of the Main Solution

The invocation of SaturateRw on an initial clause set S generates a saturated
set of non-atomic clauses T and a normalized set of atomic clauses U . To recover
the set of p.i. of S from T and U the principle of ComputePI is to apply the
K-paramodulation calculus between the p.i. of T and all atomic clauses in U .
In this way, for each atom extracted from S by SaturateRw, ComputePI
generates the missing implicates, i.e. those containing the constants that had
been previously removed. The essential point (which ensures the efficiency of
the approach) is that it is not necessary to apply any inference between the
newly generated clauses: only the inferences involving U need to be considered.
Formally, what renders ComputePI efficient is the fact that all the implicates of
a set of clauses S ∪ {a) b} (with a * b) are eq-subsumed by clauses recursively
obtained by K-paramodulation between a) b and the p.i. of S[b/a] as stated in
Lemma 22.

Lemma 22. Let S be a formula, a) b be a literal such that a * b and S′ =
(PI(S[b/a]))�a�b . Let D be a clause such that S ∪ {a) b} |= D, then S′ ≤eq D.
Thus S′ ≡ S ∪ {a) b} and S′ is saturated up to redundancy.

Lemma 23. ComputePI terminates.

The following theorem states that the proposed algorithm, composed of succes-
sive calls to SaturateRw and ComputePI, is complete, i.e., that it computes
all the p.i. of the input formula.

Theorem 24. Let S be a formula, 〈T, U〉 = SaturateRw(S) and S′ =
ComputePI(T, U↓). Then S′ is the set of p.i. of S.

5 Experimental Results

Both Kparam and KparamRw have been implemented in Ocaml2. Below is an
experimental comparison of both tools. The benchmark is made of a thousand

2 See http://membres-lig.imag.fr/tourret/documents/kparam.tgz for the source
code.

148 M. Echenim, N. Peltier, and S. Tourret

Fig. 1. Execution Time Fig. 2. Generated Implicates

ground flat equational formulæ of a reasonable size3 that were randomly gener-
ated. All tests were conducted on a machine equipped with an Intel core i5-3470
CPU and 4x2 GB of RAM, with a timeout of 100 seconds when not explicitly
said otherwise.

A first result worth mentioning is that in KparamRw the execution time of
ComputePI is quasi-negligible no matter what the total execution time is: the
maximum is less than one second and the mean is 0.09 seconds. In general, it
always represents less that 1 percent of the total execution time. Another inter-
esting indicator of the relative superiority of KparamRw compared to Kparam
is the fact that while 15% of the benchmark reaches timeout before terminating
with Kparam, only 9% does so with KparamRw. An additional 45% of the
formulæ have no atomic p.i. and are thus of little interest to us since Kparam
and KparamRw merely coincide on such problems. Results concerning the re-
maining 46% of the benchmark are presented on Fig. 1 & 2. On Fig. 1 the
gain of going from Kparam to KparamRw with regards to the execution time
can be observed. A logarithmic scale is used for the X axis to highlight that
this graph empirically indicates an exponential gain for our benchmark. The
results on Fig. 2 were obtained with a timeout of 5 minutes and compare the
number of implicates generated by Kparam and KparamRw (for readability
issues the scales of the X and Y axis differ). There are two kinds of dots rep-
resented on the graph: filled diamonds and X’s, the latter representing tests
for which Kparam reaches the 5 minutes timeout before terminating. It shows
that some problems with atomic p.i. that Kparam cannot solve by computing
more than a million implicates can be solved by KparamRw with less than two
hundred thousand implicates generated. We also compared our algorithms with
Zres [24]4, a state-of-the-art tool for p.i. generation in propositional logic that
uses a resolution-based algorithm together with ZBDDs for storing clause sets.
This system was chosen because it outperforms all other available propositional
systems on all our examples. To the best of our knowledge, besides Kparam no

3 Each test is made of 6 clauses with a maximum of 5 literals, using 8 constants. Al-
though the size of the initial formula is small, hundreds of thousand or even millions
of implicates are often generated, leading to hundreds of them being eventually kept
as prime.

4 Many thanks to Laurent Simon for providing the executable.

A Rewriting Strategy to Generate Prime Implicates 149

Table 1. Percentage of Tests Executed Twice Faster than Zres

Number of Generated Atoms 0 1 > 1 > 0 Total

Kparam 64% 26% 23% 25% 45%

KparamRw 64% 83% 80% 82% 73%

complete p.i. computation tool is available for equational logic5. To make the
comparison possible, the equational formulæ of the benchmark were translated
into equivalent propositional formulæ by abstracting literals away and adding
suitable instances of the equality axioms. This straightforward translation is ob-
viously not the most efficient existing method, but it has the advantage of being
simple. It still gives a rough execution time reference with which to compare
the new algorithm, keeping into account that the time needed for translating
the result back to equational logic and removing the redundancies was omitted,
so as to underestimate this time. As shown in Table 1, this comparison proved
useful by giving an insight of where to improve the original algorithm. The main
observation on the line corresponding to Kparam is that Zres is a lot more
efficient than this algorithm as soon as atomic implicates appear in the formulæ
(only 25% of the tests are faster than Zres, while 64% are faster when there
are no atomic implicates), which was the motivation for designing KparamRw
in the first place. As can be seen in the second line of the table, KparamRw
is a good answer to this problem since an additional 57% of the problems with
atomic implicates turn out faster than Zres with KparamRw, for a total of 82%
of these tests being at least twice faster than the state-of-the-art tool. The re-
sults also distinguish between formulæ with a single atomic implicate (72%) and
several ones (28%). A slight improvement of the performances is noted for the
latter, but not as significant as the gap between none and one atomic implicate.

6 Conclusion

In this paper, a new algorithm for the generation of p.i. in ground flat equational
logic was presented. It is based on a previous version introduced in [9]. The main
idea of this algorithm is to isolate atomic equations to reduce the number of
constants handled by the p.i. generator. Although in some applications it may be
possible to directly use the simplified results along with the extracted equations,
we also devised a way to recover the p.i. of the original input in a efficient way.
This new algorithm is terminating, sound and complete and outperforms the
previous one when atomic implicates are present. According to our experimental
results, the gain is empirically exponential in time. This system can be used
in connection with the calculus presented in [8] to efficiently generate ground
implicates of first-order theories.

5 To our knowledge, there exists only one tool, integrated in the Mistral solver [7],
that is seemingly similar to Kparam. However, in contrast to it, the Mistral tool is
not complete (it does not compute all the p.i.) hence no comparison is possible.

150 M. Echenim, N. Peltier, and S. Tourret

An idea to improve atomic rewriting is to find a faster way to generate all
the atomic equations entailed by the input formula instead of waiting for them
to appear during the inference steps. To do so, the K-paramodulation calcu-
lus could be replaced with a more efficient calculus specifically tailored to di-
rectly generate all atomic implicates, so that, after a unique rewriting step, the
K-paramodulation calculus can be used to generate all remaining non-atomic im-
plicates. To extend further the atomic rewriting strategy, it should be possible
to apply it to any equation appearing in the formula in a “divide and conquer”
way. Any clause of the form a) b ∨ C would then lead to two recursive calls of
the strategy, one where a) b is true where the rewriting applies and the other
where only C remains. It is still unclear whether this idea is efficient because
of two problems: merging the results of the two recursive calls is by no means
a simple task, and the fact that there are two calls on formulæ that differ only
by one clause may generate a lot of redundant computation steps, thus slowing
down the whole process. These questions need a thorough investigation and are
one of our objectives for future work.

Up to now, our system has been mainly tested on randomly computed in-
stances. We now plan to apply it, in conjunction with an implementation of the
calculus described in [8], to more concrete problems in system verification, partic-
ularly for checking properties of algorithms operating on arrays or pointer-based
data-structures.

References

1. Bachmair, L., Ganzinger, H.: Rewrite-based Equational Theorem Proving with Se-
lection and Simplification. Journal of Logic and Computation 3(4), 217–247 (1994)

2. Bienvenu, M.: Prime implicates and prime implicants in modal logic. In: Proceed-
ings of the National Conference on Artificial Intelligence, p. 379. AAAI Press, MIT
Press, Menlo Park, Cambridge (1999, 2007)

3. Bittencourt, G.: Combining syntax and semantics through prime form representa-
tion. Journal of Logic and Computation 18(1), 13–33 (2008)

4. Coudert, O., Madre, J.C.: A new method to compute prime and essential prime
implicants of boolean functions. In: Knight, Savage (eds.) Advanced Research in
VLSI and Parallel Systems, pp. 113–128 (1992)

5. De Kleer, J.: An improved incremental algorithm for generating prime implicates.
In: Proceedings of the tenth National Conference on Artificial Intelligence, pp.
780–785. AAAI Press, Menlo Park (1992)

6. Dillig, I., Dillig, T., Aiken, A.: Automated error diagnosis using abductive inference.
In: ACM SIGPLAN Notices, pp. 181–192. ACM (2012)

7. Dillig, I., Dillig, T., McMillan, K.L., Aiken, A.: Minimum satisfying assignments
for SMT. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp.
394–409. Springer, Heidelberg (2012)

8. Echenim, M., Peltier, N.: A calculus for generating ground explanations. In: Gram-
lich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp.
194–209. Springer, Heidelberg (2012)

9. Echenim, M., Peltier, N., Tourret, S.: An approach to abduction in equational logic.
In: Proceeding of the 23d International Joint Conference on Artificial Intelligence,
pp. 531–538. AAAI Press (2013)

A Rewriting Strategy to Generate Prime Implicates 151

10. Errico, B., Pirri, F., Pizzuti, C.: Finding prime implicants by minimizing inte-
ger programming problems. In: AI-CONFERENCE-, pp. 355–362. World Scientific
Publishing (1995)

11. Jackson, P., Pais, J.: Computing Prime Implicants. In: Stickel, M.E. (ed.) CADE
1990. LNCS, vol. 449, pp. 543–557. Springer, Heidelberg (1990)

12. Jackson, P.: Computing prime implicates incrementally. In: Kapur, D. (ed.) CADE
1992. LNCS, vol. 607, pp. 253–267. Springer, Heidelberg (1992)

13. Kean, A., Tsiknis, G.: An incremental method for generating prime impli-
cants/implicates. Journal of Symbolic Computation 9(2), 185–206 (1990)

14. Knill, E., Cox, P.T., Pietrzykowski, T.: Equality and abductive residua for Horn
clauses. Theoretical Computer Science 120(1), 1–44 (1993)

15. Manquinho, V.M., Oliveira, A.L., Marques-Silva, J.: Models and algorithms for
computing minimum-size prime implicants. In: Proceedings of the International
Workshop on Boolean Problems (1998)

16. Marquis, P.: Extending abduction from propositional to first-order logic. In: Jor-
rand, P., Kelemen, J. (eds.) FAIR 1991. LNCS, vol. 535, pp. 141–155. Springer,
Heidelberg (1991)

17. Matusiewicz, A., Murray, N.V., Rosenthal, E.: Tri-based set operations and selec-
tive computation of prime implicates. In: Kryszkiewicz, M., Rybinski, H., Skowron,
A., Raś, Z.W. (eds.) ISMIS 2011. LNCS (LNAI), vol. 6804, pp. 203–213. Springer,
Heidelberg (2011)

18. Mayer, M.C., Pirri, F.: First order abduction via tableau and sequent calculi. Logic
Journal of IGPL 1(1), 99–117 (1993)

19. McCune, W., Wos, L.: Otter-the CADE-13 competition incarnations. Journal of
Automated Reasoning 18(2), 211–220 (1997)

20. Meir, O., Strichman, O.: Yet another decision procedure for equality logic. In:
Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 307–320.
Springer, Heidelberg (2005)

21. Quine, W.V.: A way to simplify truth functions. The American Mathematical
Monthly 62(9), 627–631 (1955)

22. Ramesh, A., Becker, G., Murray, N.V.: CNF and DNF considered harmful for
computing prime implicants/implicates. Journal of Automated Reasoning 18(3),
337–356 (1997)

23. Rymon, R.: An se-tree-based prime implicant generation algorithm. Annals of
Mathematics and Artificial Intelligence 11(1-4), 351–365 (1994)

24. Simon, L., Del Val, A.: Efficient consequence finding. In: International Joint Con-
ference on Artificial Intelligence, pp. 359–365. Lawrence Erlbaum Associates ltd.
(2001)

25. Sofronie-Stokkermans, V.: Hierarchical reasoning for the verification of parametric
systems. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp.
171–187. Springer, Heidelberg (2010)

26. Sofronie-Stokkermans, V.: Hierarchical reasoning and model generation for the
verification of parametric hybrid systems. In: Bonacina, M.P. (ed.) CADE 2013.
LNCS (LNAI), vol. 7898, pp. 360–376. Springer, Heidelberg (2013)

27. Tran, D., Ringeissen, C., Ranise, S.: al.: Combination of convex theories: Modu-
larity, deduction completeness, and explanation. Journal of Symbolic Computa-
tion 45(2), 261–286 (2010)

Finite Quantification in Hierarchic Theorem Proving

Peter Baumgartner1, Joshua Bax1, and Uwe Waldmann2

1 NICTA
 and Australian National University, Canberra, Australia
2 MPI für Informatik, Saarbrücken, Germany

Abstract. Many applications of automated deduction require reasoning in first-
order logic modulo background theories, in particular some form of integer arith-
metic. A major unsolved research challenge is to design theorem provers that are
“reasonably complete” even in the presence of free function symbols ranging into
a background theory sort. In this paper we consider the case when all variables
occurring below such function symbols are quantified over a finite subset of their
domains. We present a non-naive decision procedure for background theories ex-
tended this way on top of black-box decision procedures for the EA-fragment
of the background theory. In its core, it employs a model-guided instantiation
strategy for obtaining pure background formulas that are equi-satisfiable with the
original formula. Unlike traditional finite model finders, it avoids exhaustive in-
stantiation and, hence, is expected to scale better with the size of the domains. Our
main results in this paper are a correctness proof and first experimental results.

1 Introduction

Many applications of automated deduction require reasoning in first-order logic mod-
ulo background theories, in particular some form of integer arithmetic. A major un-
solved research challenge is to design theorem provers that are “reasonably complete”
for quantified formulas, in particular in presence of free function symbols ranging into
a background theory sort (“free BG-sorted operators”, for short). Such formulas arise
frequently when reasoning on data structures with specific properties, e.g., symmetric
arrays over integers and sorted lists over integers. Modelling such data structures is
easy when full quantification and free integer-sorted function symbols are available to
axiomatize the array access function and the list head function respectively.

Unfortunately, (refutationally) complete theorem proving in the presence of free BG-
sorted operators is intractable in general. For instance, just adding one free predicate
symbol to linear integer arithmetic results in a Π1

1 -hard validity problem [12]. Theorem
proving approaches hence have to circumvent this problem in one way or the other.
On the one hand, SMT-solvers [18] generally use instantiation heuristics [10,16] for
reducing the input problem to a quantifier-free one, and these are complete only in
rather restricted cases [11]. On the other hand, approaches rooted in first-order theorem
proving either are incomplete; do not accept free BG-sorted operators at all [13,21,9,5]
or, are complete only for certain fragments or under certain conditions [3,1,14,6,7].

 NICTA is funded by the Australian Government through the Department of Communications
and the Australian Research Council through the ICT Centre of Excellence Program.

S. Demri, D. Kapur, and C. Weidenbach (Eds.): IJCAR 2014, LNAI 8562, pp. 152–167, 2014.
c© Springer International Publishing Switzerland 2014

Finite Quantification in Hierarchic Theorem Proving 153

In practice, lack of completeness is a major concern in, e.g., software verification
applications, which frequently require disproving non-valid proof obligations. In such
cases, incomplete theorem provers run out of resources or report “unknown” instead
of detecting non-validity. We address this problem by working with quantification over
finite segments of the background sorts, e.g., the integers. Our underlying methodology
assumes that from a user’s point of view, data structures over the integers can often be
supplanted by data structures over reasonably large finite segments of the integers, say,
from −Maxint to +Maxint, as good-enough approximations. As no other restrictions
apply, our method should be widely applicable in practice. Our method is also refuta-
tionally sound wrt. the standard semantics. That is, if our algorithm determines unsat-
isfiability wrt. finite domains, the given clause set is also unsatisfiable wrt. unbounded
domains. Because of that, our approach can be seen as an extension of current quantifier
instantiation heuristics by being able to determine satisfiability wrt. finite domains.

If all quantifiers range over finite domains, decidability can be recovered in a triv-
ial way by exhaustive instantiation and calling a suitable SMT-solver afterwards. Of
course, this naive approach does not scale with the domain size and cannot be expected
to work well in practice. This problem has often been observed in the context of finite-
model finding [22,23,15,8,4,20,19]. While our method is also based on instantiation, it
is (often) far less prolific than the naive method.

More precisely, our method accepts as input a set of finitely quantified clauses. A
clause is finitely quantified if every variable occurring below a free BG-sorted opera-
tor is quantified over a finite segment of its domain. The core idea is to give the free
BG-sorted operators a default interpretation that is then stepwise refined. This default
interpretation maps every free BG-sorted operator to a constant function, and refine-
ments are done by finding exceptions to that in a conflict-driven way. After each refine-
ment, the given clause set is transformed into a certain form whose satisfiability can
be decided by existing reasoners in a black-box fashion. Suitable reasoners are, e.g.,
theorem provers implementing hierarchic superposition [3,7] and, with one more sim-
ple transformation step, SMT-solvers for the EA-fragment of the background theory.
The procedure stops after finitely many (hopefully few) refinement steps, either with a
representation of a model or a set of ground instances obtained from exceptions which
demonstrates the unsatisfiability of the given clause set.

We preview our method with an example. Let N be the following clause set:

(1) read(write(a, i, x), i) ≈ x (4) 1 ≤ m ∧m < 1000
(2) read(write(a, i, x), j) ≈ read(a, j) ∨ i ≈ j (5) read(a,m) < read(a,m + 1)
(3) read(a, i) ≤ read(a, j) ∨ ¬(i < j) ∨ i � [1..1000i] ∨ j � [1..1000 j]

where t ∈ [l..h] abbreviates the formula l ≤ t∧ t ≤ h for any integer-sorted terms t, l and
h. Variables are typeset in italics, e.g, x, and operators in sans-serif, e.g., read, a and m.
The axioms (1) and (2) are the standard axioms for integer-sorted arrays with integer
indices. The axiom (3) states that the array a is sorted within the domain [1..1000] for i
and j. Annotating the upper bounds as 1000i and 1000 j facilitates replacing them with
different values for a given variable, see below. The clauses (4) constrains the integer
constant m to the stated range. The task is to confirm that N is satisfiable.

In order to check satisfiability with hierarchic superposition, the input clause set has
to be sufficiently complete (cf. Section 2). In the example, sufficient completeness means

154 P. Baumgartner, J. Bax, and U. Waldmann

that in every model of (1)-(5) wrt. pure first-order logic every ground read-term must
be equal to some background term. With the axioms (1) and (2) every write-term inside
of a read-term can be eliminated, and so the only critical terms are applications of read
to the array constant a. The clauses (3) and (5) constrain the interpretation of terms
of the form read(a, t) but do not enforce sufficient completeness. Achieving sufficient
completeness for ground clauses like (5) is easy, one just needs to add “definitions” like
(5b) read(a,m) ≈ n0 and (5c) read(a,m + 1) ≈ n1 where n0 and n1 are fresh integer-
sorted parameters (symbolic constants) and replace the clause (5) by (5a) n0 < n1.
Indeed, our transformation does all that (and so does our earlier calculus in [7]).

The more difficult part concerns the non-ground clause (3). Our procedure gener-
alizes the above mechanism of introducing definitions and applying them to the non-
ground case (see Section 3). For that, it uses a candidate model which initially is the
default interpretation that maps all read-terms of a particular shape to the same arbi-
trary symbolic constant. This results in the following transformation of clause (3):

(3a) n3 ≤ n4 ∨ ¬(i < j) ∨ i � [1..1000i] ∨ j � [1..1000 j]
(3b) read(a, i) ≈ n3 ∨ i � [1..1000i] (3c) read(a, j) ≈ n4 ∨ j � [1..1000 j]

Clauses (3b) and (3c) are the definitions for the default interpretation, one per occur-
rence of a read-term in (3), and clause (3a) is clause (3) after applying these definitions.

The new clause set N1 = {(1), (2), (3a)−(3c), (4), (5a)−(5c)} now needs to be checked
for satisfiability. Because the clause set N1 is sufficiently complete and hierarchic su-
perposition decides the underlying fragment, we get a definite result.

The clause set N1 is in fact unsatisfiable. Because this only means that N is not
satisfied using the current model candidate, the search for a model needs to continue.
This is done by refining the default interpretation at a critical point that is responsible
for unsatisfiability. Our algorithm determines that point as an adjacent one to a maximal
sub-domain that results in satisfiability. In the example, this is the sub-domain [1..999i]
for the variable i and the point is 1000. That is, the set N2 obtained from N1 by replacing
everywhere 999i by 1000i is satisfiable, while adding back 1000 to [1..999i] makes
it unsatisfiable again. The refinement then is done by excluding the point 1000 from
the default interpretation and providing a separate definition for it. The corresponding
transformation of clause (3) hence looks as follows :

(3a1) n31 ≤ n4 ∨ ¬(i < j) ∨ i � [1..1000i] \ {1000} ∨ j � [1..1000 j]
(3a2) n32 ≤ n4 ∨ ¬(1000 < j) ∨ j � [1..1000 j]
(3b1) read(a, i) ≈ n31 ∨ i � [1..1000i] \ {1000} (3c) read(a, j) ≈ n4 ∨ j � [1..1000 j]
(3b2) read(a, 1000) ≈ n32

Clauses (3b1) and (3b2) provide the modified definitions and clauses (3a1) and (3a2)
are the correspondingly rewritten versions of (3). Let N3 = {(1), (2), (3a1) − (3c), (4),
(5a) − (5c)} be the result of the current transformation step.

The clause set N3 is still unsatisfiable. In the next round, the new upper bounds
required for the clauses in N3 to have satisfiability are 999 j and 1000i. Transforming
clause (3) wrt. the points 1000 for j and 1000 for i from the previous step gives:

Finite Quantification in Hierarchic Theorem Proving 155

(3a1) n31 ≤ n41 ∨ ¬(i < j) ∨ i � [1..1000i] \ {1000} ∨ j � [1..1000 j] \ {1000}
(3a2) n32 ≤ n41 ∨ ¬(1000 < j) ∨ j � [1..1000 j] \ {1000}
(3a3) n31 ≤ n42 ∨ ¬(i < 1000) ∨ i � [1..1000 j] \ {1000}
(3a4) n32 ≤ n42 ∨ ¬(1000 < 1000)
(3b1) read(a, i) ≈ n31 ∨ i � [1..1000i] \ {1000} (3b2) read(a, 1000) ≈ n32

(3c1) read(a, j) ≈ n41 ∨ j � [1..1000 j] \ {1000} (3c2) read(a, 1000) ≈ n42

Let N4 = {(1), (2), (3a1) − (3c2), (4), (5a) − (5c)} be the result of the current transfor-
mation step. This time, N4 is satisfiable, and so is N, with the same models. If I is any
such model we have I(m) = 999, I(read(a, i)) = k, for some integer k and all i = 1..999,
and I(read(a, 1000)) = l for some integer l > k. (We present the general model finding
procedure and its correctness results in Section 4.)

The example is solved after two iterations of transformation steps. In general, each
transformation step needs O(m · log(n)) prover calls to determine the sub-intervals and
the next point as explained above, where m is the number of variables in the given
clause set after making clauses variable-disjoint and n is the size of the largest domain.
In total, with m = 2 and n = 1000 this accounts for 2 · (m · log(n)) ≤ 40 theorem prover
calls, however each one rather simple. By contrast, the full ground instantiation of the
clauses (3)-(5) has a size of nm = 106 which, in general, grows too quickly for current
theorem provers or SMT solvers. In the worst case, though, our method also requires
full ground instantiation (but is not worse). This happens when the default interpretation
is unsuitable for the whole domain, so that separate definitions are needed for all points
to establish (un)satisfiability. In Section 5 we report on first experimental results.

Related Work

Related work comes from several directions. Procedures for computing models of first-
order logic formulas without background theories have a long tradition in automated
reasoning. MACE-style model finding [8] utilizes translation into propositional SAT
or into EPR [4] for deciding satisfiability wrt. a given candidate domain size k; SEM-
style model finding [22,23,15] utilizes constraint solving techniques, again wrt. k. The
main problem is scalability wrt. both the domain size k and the number of variables in
the input clause set, which severely limits the applicability of both styles in practice.
Recently, Reynolds, Tinelli, Goel, Krstić, Deters and Barrett proposed a finite model
finding procedure in the SMT framework that addresses this problem by on-demand
instantiation techniques [20,19]. This way, their work is conceptually related to ours,
but, unlike ours, they allow quantification only over variables ranging into the free sort.
An extension for quantifying variables over background domains such as the integers
does not seem straightforward and is left as future work in [20].

Heuristic instantiation is the state of the art technique for handling quantified formu-
las in SMT-solvers [10,16]. These heuristics perform impressively well in practice, but
in general are incomplete even for pure first-order logic. Ge and deMoura [11] propose
a technique where the ground terms used for instantiation come from solving certain set
constraints. They obtain completeness results for the fragment where every variable oc-
curs only as an argument of a free function or predicate symbol. Interestingly, they also

156 P. Baumgartner, J. Bax, and U. Waldmann

use the notion of a default interpretation in a similar way as we do. However, even with
certain extensions their approach remains incomparable to ours. For example, terms
like f(x+ y) are disallowed, but are acceptable in our approach when x and y are finitely
quantified.

Regarding related work in first-order theorem proving, the problem we are consid-
ering has been tackled in the framework of the hierarchic superposition calculus [3].
Weidenbach and Kruglow [14] consider the case when all background-sorted terms are
ground, similarly to our calculus in [7]. In [6] we have identified a certain syntactic
fragment that enables complete reasoning.

2 Hierarchic Theorem Proving

Hierarchic superposition [3,7] is a calculus for automated reasoning in a hierarchic
combination of first-order logic and some background theory, for instance some form
of arithmetic. We consider the following scenario:1

We assume that we have a background (“BG”) prover that accepts as input a set of
clauses over a BG signature ΣB = (ΞB, ΩB), where ΞB is a set of BG sorts and ΩB is
a set of BG operators. Terms/clauses over ΣB and BG-sorted variables are called BG
terms/clauses. The BG prover decides the satisfiability of ΣB-clause sets w. r. t. a BG
specification, that is, a class of term-generated ΣB-interpretations (called BG models)
that is closed under isomorphisms. We assume that ΩB contains a set of distinguished
constant symbols ΩD

B ⊆ ΩB that has the property that any two distinct d1, d2 ∈ ΩD
B are

interpreted by different elements in every BG model. We refer to these constant symbols
as (BG) domain elements. We also assume that ΣB contains infinitely many parameters,
that is, additional constants that may be interpreted freely by arbitrary elements of the
appropriate domain. In examples we use {0, 1, 2, . . . } to denote BG domain elements,
{+,−, <,≤} to denote (non-parameter) BG operators, and the possibly subscripted letters
{x, y} and {α, β} to denote variables and parameters, respectively. We assume that the BG
specification is the class of all models of linear integer arithmetic (LIA).

The foreground (“FG”) theorem prover accepts as input clauses over a signature
Σ = (Ξ,Ω), where ΞB ⊆ Ξ and ΩB ⊆ Ω. The sorts in ΞF = Ξ \ ΞB and the operator
symbols in ΩF = Ω \ΩB are called FG sorts and FG operators. The intended semantics
is that of conservative extensions of the BG specification, i. e., Σ-interpretations whose
restriction to ΣB is a model of the BG specification. Below we refer to satisfiability in
this sense as B-satisfiability.

We use {a, b, c, f, g} to denote FG operators. A Σ-term is an FG term if it is not a BG
term, that is, if it contains at least one FG operator or FG variable (and analogously for
equations, literals, or clauses). We emphasize that for an FG operator f : ξ1 . . . ξn → ξ0
inΩF any of the ξi may be a BG sort. Consequently, FG terms may have BG sorts. Every
FG operator f with a BG range sort ξ0 ∈ ΞB is called a free BG-sorted (FG) operator.

After abstracting out BG terms other than BG domain elements and variables that
occur as subterms of FG terms,2 the FG prover saturates the set of Σ-clauses using the

1 Due to a lack of space, we can only give a brief overview of the calculus and of the semantics
of hierarchic specifications. We refer to [7] for the details.

2 Abstracting out a term t that occurs in a clause C[t] means replacing C[t] by x � t ∨ C[x] for
a new variable x.

Finite Quantification in Hierarchic Theorem Proving 157

inference rules of hierarchic superposition, such as, e. g.,

Negative superposition
l ≈ r ∨C s[u] � t ∨ D

abstr((s[r] � t ∨ C ∨ D)σ)

if (i) neither l nor u is a BG term, (ii) u is not a variable, (iii) σ is an mgu of l
and u, (iv) σ maps all BG variables to BG terms, (v) rσ � lσ, (vi) (l ≈ r)σ is
strictly maximal in (l ≈ r ∨ C)σ, (vii) the first premise does not have selected
literals, (viii) tσ � sσ, and (ix) if the second premise has selected literals,
then s � t is selected in the second premise, otherwise (s � t)σ is maximal in
(s � t ∨ D)σ.

These differ from the standard superposition inference rules [2] mainly in that only the
FG parts of clauses are overlapped and that any BG clauses derived during the saturation
are instead passed to the BG prover. The BG prover implements an inference rule

Close
C1 · · · Cn

�

if C1, . . . ,Cn are BG clauses and {C1, . . . ,Cn} is
unsatisfiable w. r. t. the BG specification.

As soon as one of the two provers detects a contradiction, the input clause set has been
shown to be B-unsatisfiable.

There are two requirements for the refutational completeness of hierarchic superposi-
tion. The first one is sufficient completeness: We must be able to prove that every ground
BG-sorted FG term is equal to some BG term. Sufficient completeness of a set of Σ-
clauses is a property that is not even recursively enumerable. For certain classes of Σ-
clause sets, however, it is possible to establish a variant of sufficient completeness auto-
matically [14,7]: If all BG-sorted FG terms in the input are ground, it suffices to show
that each BG-sorted FG term in the input is equal to some BG term. This can be achieved
by adding a definition αt ≈ t for every BG-sorted FG term t occurring in a clause C[t],
where αt is a new parameter (BG constant); afterwards C[t] can be replaced by C[αt].

Since we can only pass finite clause sets to a BG prover, there is a second require-
ment for refutational completeness, namely the compactness of the BG specification. A
specification is called compact, if every set of formulas that is unsatisfiable w. r. t. the
specification has a finite unsatisfiable subset.

3 Finite Domain Transformation

We are interested in refutationally complete hierarchic theorem proving in the presence
of free BG-sorted FG operators. Unfortunately, just adding one free predicate symbol
to linear integer arithmetic results in a Π1

1 -hard validity problem. To circumvent this
problem, we work with a modified semantics and introduce a concept of finite quantifi-
cation of BG variables. This allows us to remove all free BG-sorted FG operators by a
finite domain transformation, introduced next, and use existing reasoning methods as
decision procedures on the result.

Let ξ ∈ ΞB be a BG sort. By a finite ξ-domain Δ we mean any possibly empty finite
set {d1, . . . , dn} ⊆ ΩD

B of ξ-sorted domain elements di. Set membership in Δ can be

158 P. Baumgartner, J. Bax, and U. Waldmann

expressed by a BG formula FΔ[x] in one free ξ-sorted variable x whose extension is
exactly the set Δ, in everyB-interpretation. One can always take FΔ[x] = x ≈ d1 ∨ · · · ∨
x ≈ dn, but if supported by the BG logic, as in the case of integer arithmetic, it may be
advantageous to use “compact” representations like FΔ[x] = 1 ≤ x ∧ x ≤ 20 instead.

We use set-theoretic expressions for finite ξ-domains, in particular of the form Δ \Γ,
where Γ is a finite set of domain elements of the proper sort. In the previous example,
e.g., FΔ\{3,5}[x] = 1 ≤ x ∧ x ≤ 20 ∧ x � 3 ∧ x � 5. Instead of FΔ[x] and FΔ\Γ[x]
we generally write x ∈ Δ and x ∈ Δ \ Γ, respectively, and x � Δ and x � Δ \ Γ for
their negations. We call these expressions domain predicates and treat them as literals
in clauses instead of expanding them.

Definition 3.1. A finitely quantified clause is a Σ-clause of the form D ∨ x1 � Δx1 ∨
· · · ∨ xn � Δxn such that D does not contain domain predicates, n ≥ 0, xi � x j for
1 ≤ i < j ≤ n, and every variable occurring below a free BG-sorted operator in D is
among x1, . . . , xn.

For example, f(x + 1) > α + y ∨ y > 0 ∨ x � [1..1000] is finitely quantified.

Example 3.2. Let N consist of the following two finitely quantified clauses:

(C1) f(x1) > x1 ∨ x1 � [1..1000]
(C2) f(x2 + 3) < 10 ∨ ¬(x2 > 2) ∨ x2 � [1..1000]

We formally have Δx1 = Δx2 = [1..1000], and in C1 the pseudo-literal x1 � [1..1000] is
short for ¬(1 ≤ x1 ≤ 1000). ��

Where x = (x1, . . . , xn), let Δx denote the x-indexed list (Δx1 , . . . , Δxn) of sets of
domain elements. We extend usual set operations pointwise to x-indexed lists Πx and
Δx of sets of domain elements. For instance Πx ⊆ Δx iff Πx ⊆ Δx, for each x ∈ x.

We are going to define the earlier mentioned finite domain transformation for evalu-
ating finitely quantified clauses under a given interpretation. It takes as input a finitely
quantified clause C[Δx] and sets of points Πx that provide possible exceptions to in-
terpreting the free BG-sorted operators as the constant function on the domains Δx as
specified by the default interpretation.

Definition 3.3 (Finite Domain Transformation). Let C[Δx] = D∨x1 � Δx1∨· · ·∨xn �
Δxn be a finitely quantified clause and Πx ⊆ Δx a list of sets of domain elements.

Let ClsC := ∅ and DefC := ∅ be initially empty sets of Σ-clauses. For every partition
{y1, . . . , yk} � {z1, . . . , zl} of {x1, . . . , xn} do the following:

For all substitutions γ = [z1 �→ d1, . . . zl �→ dl] such that dm ∈ Πzm :
1. Let E := Dγ
2. While E has the form E[t] where t is a minimal term with a free BG-sorted

operator at the top-level do the following:
(a) Let α be a fresh parameter
(b) Add to DefC the clause t ≈ α ∨ y1 � Δy1 \ Πy1 ∨ · · · ∨ yk � Δyk \ Πyk

(c) Set E := E[α]
3. Add to ClsC the clause E ∨ y1 � Δy1 \ Πy1 ∨ · · · ∨ yk � Δyk \ Πyk

Finite Quantification in Hierarchic Theorem Proving 159

The result is the pair FD(C, Πx) = (ClsC ,DefC), the finite domain transformation of C.

By the minimality of t in (2) we mean that no proper subterm of t is built with a free
BG-sorted operator. The finite domain transformation removes from the given finitely
quantified clause C every occurrence of a term t built with some free BG-sorted sym-
bol. Recall from Definition 3.1 that all variables in t are among x = (x1, . . . , xn). The
removal of t distinguishes whether xi is interpreted as an element of Δi \ Πi or as an
element di ∈ Πi. This is done in all possible ways by exhaustive partitioning of the
variables x and exhausting the substitution γ for all possible assignments for xi. The
set Δi \ Πi specifies those domain elements for which the interpretation of t is undistin-
guished, and the set Πi specifies those domain elements for which the interpretation of
t is distinguished, by taking different parameters α per substitution γ. In step (b) cor-
responding definitions for t are put into DefC . Step (c) applies these definitions to the
current clause E.

On complexity: the result FD(C, Πx) contains O(|x||Πx|+1) clauses. This is, because for
every xi ∈ x a choice is made for either instantiating xi exhaustively with all elements
from Πx if xi ∈ {z1, . . . , zn}, or otherwise not doing so, which explains the “ + 1”.
(Extracting out subterms does not affect the complexity.) In the worst case Πx = Δx and
all clauses stemming from the latter case are tautological. The complexity in this case
is O(|x||Πx |), which is the same as with ground-instantiation based MACE-style model
finders.

Example 3.2 (continued). Let Π(x1) = ({9}). Then FD(C1, Π(x1)) consists of the clauses

(C11) α1 > x1 ∨ x1 � [1..1000] \ {9} (C13) α2 > 9
(C12) f(x1) ≈ α1 ∨ x1 � [1..1000] \ {9} (C14) f(9) ≈ α2

where ClsC1 = {C11,C13} and DefC1 = {C12,C14}. The left clauses stem from partition-
ing {x1} as {y1} � ∅, and the right clauses from ∅ � {z1}. There are two occurrences of
Δx1 = [1..1000]. ��

There are no restrictions on nesting free BG-sorted operators, although none of our
examples shows that. For example, a literal like f(x + g(y, β)) � f (y) + y is perfectly
acceptable. The possible nesting of free BG-sorted operators necessitates the while-
loop in step (2) in Definition 3.3; removing all of them in a single step is not possible.

The sets of domain elements Δx occurring in clauses in FD(C, Πx) are all within
pseudo-literals of the form x � Δx \ Πx. Hence, both ClsC and DefC are of the form
ClsC[Δx] and DefC[Δx]. Moreover, in FD(C, Πx) , every free BG-sorted operator f occurs
only in a clause of the form f(t1, . . . , tn) ≈ α ∨ D in DefC where no ti and no literal in D
contains any free BG-sorted operator.

The finite domain transformation is generalized to clause sets by taking the union
of the finite domain transformations applied to its members. More precisely, let N =
{C1[Δx1], . . . ,Cm[Δxm]} be a finite set of finitely quantified clauses. Let us assume that
the clauses in N have been renamed apart, so that the lists of variables xi are pair-
wise disjoint, for all i = 1..m. By definition, each xi consists of pairwise different

160 P. Baumgartner, J. Bax, and U. Waldmann

variables, too. This allows us to take x as the concatenation of all xi’s and to write Δx

for the concatenation of all Δxm ’s. The clause set N hence is of the form N[Δx]. Now
let (ClsCi ,DefCi) = FD(Ci, Πx) and define FD(N, Πx) = (ClsN ,DefN) where ClsN =⋃

i=1..m ClsCi and DefN =
⋃

i=1..m DefCi .
Below, we usually denote FD(N, Πx) as a single clause set M[Δx] = ClsN ∪ DefN .

The following result follows immediately:

Proposition 3.5. Let N[Δx] be a set of finitely quantified clauses and Πx ⊆ Δx. Then
FD(N, Πx) is sufficiently complete.

Proposition 3.5 is one of the ingredients that allows us to argue for hierarchic superposi-
tion [7] as a decision procedure forB-satisfiability of the clause sets FD(C, Πx). We also
need a termination argument for derivations (compactness, cf. Section 2, is unproblem-
atic then). This is easy, for instance, in the absence of non-ground FG-sorted operators
only finitely many superposition steps exist and all of these are between the clauses in
DefC , and then only at the top-level – that is, between the literals f(t1, . . . , tn) ≈ α. Alter-
natively one can use SMT-solvers after removing all free BG-operators by exhaustive
application of a superposition-like inference rule that from premises f(t1, . . . , tn) ≈ α∨D
and f(s1, . . . , sn) ≈ β∨E derives the clause s1 � t1∨· · ·∨ sn � tn∨α ≈ β∨D∨E. In gen-
eral, hierarchic superposition can be used if it is guaranteed to terminate on FD(C, Πx).
This applies, e.g., to the example in the introduction.

The notation M[Δx] makes it easy to modify the sets Δx in pseudo-literals in clauses
in M. More precisely, if Δx = (. . . , Δx, . . .) for some x ∈ x and Γ is a set of domain
elements with the same sort as x, we denote by Δx[x �→ Γ] the update of Δx at index
x by Γ, i.e., the list (. . . , Γx, . . .). Correspondingly, C[Δx[x �→ Γ]] is the clause that is
obtained from C[Δx] be replacing Δx by Γx everywhere. For clause sets N[Δx] we define
N[Δx[x �→ Γ]] analogously.

Example 3.2 (continued). The clause set N is of the form N[Δx] where x = (x1, x2)
and Δx1 = Δx2 = [1..1000]. Now let Πx = ({9}, {6}). Then M[Πx] = FD(N, Πx) =
(ClsC1 ∪ ClsC2) ∪ (DefC1 ∪ DefC2) where ClsC2 = {C21,C23}, DefC2 = {C22,C24} and

(C21) α3 < 10 ∨ ¬(x2 > 2) ∨ x2 � [1..1000] \ {6} (C23) α4 < 10 ∨ ¬(6 > 2)
(C22) f(x2 + 3) ≈ α3 ∨ x2 � [1..1000] \ {6} (C24) f(6 + 3) ≈ α4

The clause set M[Δx[x2 �→ ∅]] = M[({9}, ∅)] is obtained by replacing the two occur-
rences of Δx2 = [1..1000] in C21 and C22 by the empty interval []. ��

We conclude this section with some lemmas that will be needed in the proof of the
main correctness result, Theorem 4.2 below. In each of them, N[Δx] is a set of finitely
quantified clauses, Πx ⊆ Δx, (ClsN ,DefN) = FD(N, Πx), and M = ClsN ∪ DefN .

Lemma 3.7. ClsN ∪ DefN is B-satisfiable iff N ∪ DefN is B-satisfiable.

Finite Quantification in Hierarchic Theorem Proving 161

Proof. For the if-direction assume that N ∪ DefN is B-satisfiable. It suffices to show
that N ∪ ClsN ∪ DefN is B-satisfiable. Observe that all clauses in ClsN can be seen
to be obtained by paramodulation inferences from clauses in N ∪ DefN , which are all
logical consequences of N ∪ DefN .

For the only-if direction assume that ClsN ∪ DefN is B-satisfiable. The definitions in
DefN are exhaustive in the sense that any instance C of a finitely quantified clause in N
obtained by ground instantiation with domain elements is congruent with some clause
in ClsN obtained by paramodulation with clauses in DefN . This entails that N ∪ ClsN ∪
DefN is B-satisfiable, and hence so is N ∪ DefN . ��

Lemma 3.8. If M[∅x] is B-unsatisfiable then N and N′ are B-unsatisfiable, where N′

is obtained from N by removing from all clauses all domain predicates.

Proof. Assume that M[∅x] is B-unsatisfiable. Every clause in M[Δx] that contains a
pseudo-literal of the form x � Δx \ Πx, for some x ∈ x, becomes a tautology in M[∅x]
after replacing x � Δx \ Πx by x � ∅ \ Πx. Deleting all these tautologies leaves us with
a (B-unsatisfiable) set M′ ⊆ M[∅x]. All clauses in M′ are either ground definitions in
DefN of the form t ≈ α (cf. Definition 3.3), or clauses in ClsN that are obtained by (re-
peated) paramodulation of the sub-clause D of a clause C ∈ N (cf. again Definition 3.3)
such that all instantiated domain predicates in the instance Cγ are satisfied. Clearly,
adding such definitions to N preservesB-satisfiability. The B-unsatisfiability of both N
and N′ then follows from the soundness of paramodulation. ��

Lemma 3.9. Let Γx be a vector of sets of domain elements of the proper sorts. For every
x ∈ x and d ∈ Πx, if M[Γx] is B-satisfiable then M[Γx[x �→ Γx ∪ {d}]] is B-satisfiable.

Proof. All occurrences of Γx in clauses in M[Γx] are within pseudo-literals of the form
x � Γx \ Πx. We are given d ∈ Πx. It follows trivially that Γx \ Πx and (Γx ∪ {d}) \ Πx

are the same sets, which immediately entails the claim. ��

Example 3.2 (continued). Let M[Δ(x1)] = FD(C1, Π(x1)) from above. Let Γ(x1) =

([5..500]) and d = 9. Then M[Γ(x1)[x1 �→ Γx1 ∪ {d}]] consists of the clauses

(C′11) α1 > x1 ∨ x1 � ([5..500] ∪ {9}) \ {9} (C13) α2 > 9
(C′12) f(x1) ≈ α1 ∨ x1 � ([5..500] ∪ {9}) \ {9} (C14) f(9) ≈ α2

Lemma 3.9 requires d ∈ Πx. Adding d to Γx does not change anything, as d is again
removed from Γx ∪ {d}: the sets ([5..500] ∪ {9})\{9} and [5..500]\{9} are the same. ��

4 Checking Satisfiability

Next we define a procedure checkSAT for checking theB-satisfiability of sets of finitely
quantified clauses. It repeatedly applies the finite domain transformation wrt. growing
sets of exception points. It stops if a transformed set has been found that is either B-
satisfiable or serves to demonstrate B-unsatisfiability.

162 P. Baumgartner, J. Bax, and U. Waldmann

1 algorithm checkSAT(N[Δx])
2 // returns ”B-satisfiable” or ”B-unsatisfiable”
3 var Πx := ∅x // The current set of exceptions
4 while true {
5 let M = FD(N, Πx)
6 if M is B-satisfiable return ”B-satisfiable” // justified by Lemma 3.7
7 if M[∅x] is B-unsatisfiable return ”B-unsatisfiable” // justified by Lemma 3.8
8 let (x, d) = find(M)
9 Πx := Πx[x �→ Πx ∪ {d}]

10 }

1 algorithm find(M[Δx])
2 // returns a pair (x, d) such that x ∈ x and d ∈ Δx \ Πx

3 let (x1, . . . , xn) = x
4 for i = 1 to n {
5 if M[∅(x1 ,...,xi) · Δ(xi+1,...,xn)] is B-satisfiable {
6 let Γ ⊆ Δxi and d ∈ Γ such that
7 M[∅(x1 ,...,xi−1) · Γxi · Δ(xi+1 ,...,xn)] is B-unsatisfiable and
8 M[∅(x1 ,...,xi−1) · (Γ \ {d})xi · Δ(xi+1 ,...,xn)] is B-satisfiable // see text
9 return (xi, d) // from Lemma 3.9 it follows d ∈ Δx \ Πx as claimed

10 }
11 }

We tacitly assume that the B-satisfiability tests in checkSAT and find are effective.
This is always the case, e.g., if there are no FG operators other than free BG-sorted
operators and the EA-fragment of the background theory is decidable.

Let us go through the run of checkSAT(N), where N = {C1,C2} from Example 3.2.
Let Π1

x = (∅, ∅) be the initially empty set of exceptions set in line 3. For M1 =

FD(N, Π1
x) in line 5 none of the termination cases applies, hence find is called. The

condition in the for-loop in find is satisfied for i = 1. In line 6, a suitable set Γ is the in-
terval [1..9] and d = 9, as M1[([1..9], Δx2)] is B-unsatisfiable and M1[([1..9] \ {9}, Δx2)]
is B-unsatisfiable. The call of find(M1) hence returns the pair (x1, 9). (In the proof of
Lemma 4.1 below we show how Γ and d ∈ Γ can be found efficiently by binary search
in the case of (linear) integer arithmetic.)

The updated set Π2
x in checkSAT now is ({9}, ∅) and we get M2[Δx] = FD(N, Π2

x) in
the next iteration. Again, the termination tests do not apply and find(M2) is called. This
time M2[(∅, Δx2)] is B-unsatisfiable and the result of find(M2) is (x2, 6).

The updated set Π3
x hence is ({9}, {6}) and M3[Δx] = FD(N, Π3

x) consists of the
clauses C11–C14 and C21–C24 already shown above. In the next iteration, the set M3[∅x]
is built, which is obtained by replacing the sets Δx1 = Δx2 = [1..1000] everywhere by
the empty interval []:

(C′11) α1 > x1 ∨ x1 � [] \ {9} (C13) α2 > 9
(C′12) f(x1) ≈ α1 ∨ x1 � [] \ {9} (C14) f(9) ≈ α2

(C′21) α3 < 10 ∨ ¬(x2 > 2) ∨ x2 � [] \ {6} (C23) α4 < 10 ∨ ¬(6 > 2)
(C′22) f(x2 + 3) ≈ α3 ∨ x2 � [] \ {6} (C24) f(6 + 3) ≈ α4

Finite Quantification in Hierarchic Theorem Proving 163

By construction, all clauses affected by the replacement are tautological. Yet, the set
M3[∅x] isB-unsatisfiable, which can be seen easily from the clauses in the right column.
The algorithm returns “B-unsatisfiable”. This is indeed correct, as, by construction, the
remaining non-tautological clauses contain and use definitions for ground instances of
the f-terms only. Because of that, our method is sound wrt. B-unsatisfiability even for
non-finitely quantified clause sets as expressed in Lemma 3.8 above.

Notice that find searches for the set Γ wrt. the whole set M = FD(N, Πx) = ClsN ∪
DefN . It would be tempting to fix DefN and search only wrt. ClsN (or vice versa) but
this would be unsound. An example for that is the clause set N = { f (x) ≥ 0 ∨ x �
Δ, f (3) ≈ 3, f (4) ≈ 4}, where Δ = [0..1000]. Using the default interpretation we
get ClsN = {α1 ≥ 0 ∨ x � Δ, α2 ≈ 3, α3 ≈ 4} and DefN = { f (x) ≈ α1 ∨ x � Δ,
f (3) ≈ α2, f (4) ≈ α3}. While ClsN[∅] ∪ DefN is B-unsatisfiable, N is B-satisfiable.
Hence the procedure in that form would be unsound.

Lemma 4.1. Whenever find is called from checkSAT on line 8 then the if-clause in the
for-loop in find is executed for some i, and find returns a pair (xi, d) such that xi ∈ x
and d ∈ Δxi \ Πxi .

Proof. Assume find(M[Δx]) is executed and that x is of the form (x1, . . . , xn). Because
the test in line 7 in checkSAT has not applied it follows that the condition in line 5 in find
is satisfied for some i in 1, . . . , n. Among all these values, the if-clause is executed for
the least one. That is, M[∅(x1,...,xi) ·Δ(xi+1,...,xn)] is B-satisfiable and M[∅(x1,...,x j) ·Δ(x j+1,...,xn)]
is B-unsatisfiable, for all j with 1 ≤ j < i ≤ n. Because i ≥ 1 we can rewrite the former
and obtain that M[∅(x1,...,xi−1) · ∅xi ·Δ(xi+1,...,xn)] is B-satisfiable. Furthermore, M[∅(x1,...,xi−1) ·
Δxi · Δ(xi+1,...,xn)] is B-unsatisfiable: if i = 1 this follows from the fact that the test in line
6 in checkSAT has not applied, and if i > 1 this follows from the minimality of i. This
shows that Γ and a d ∈ Γ exists as claimed in lines 7 and 8.

In our main application of integer arithmetic the set Γ and d ∈ Γ can be determined
efficiently, as follows: We assume the set Δxi is an interval of the form [l..u] for some
numbers l and u with l < u. From the above it follows there is a maximal number u′

with l < u′ ≤ u such that Γ := [l..u′] is as claimed. The number u′ can be determined by
binary search in the interval [l + 1..u]. By maximality, u′ is the desired element d. ��

For termination of checkSAT, instead of determining the pair (x, d) in line 11 by the
call to find, one could choose any (x, d) such that the current setΠx grows. An advantage
of using find, however, is that the relevant ground instances of the clauses C1[x1] and
C2[x2], which are C1[9] and C2[6], have been found through semantic guidance by
refining the default interpretation in only two steps.

In general terms, checkSAT/find realizes a heuristic that tries to search for a model
by deviating from the current interpretation only when a conflict arises. The conflict
is identified by the point d for the variable xi in Line 8 of find. The next round of
checkSAT continues with the correspondingly updated current interpretation by adding
d to Πxi , which may stop now with “satisfiable”, “unsatisfiable” or continue the search.

We summarize the essential properties of checkSAT in our main result as follows.

Theorem 4.2 (Correctness of checkSAT). For any set N of finitely quantified clauses,
checkSAT(N) terminates with the correct result “B-satisfiable” or “B-unsatisfiable”

164 P. Baumgartner, J. Bax, and U. Waldmann

for N. Moreover, in case of “B-unsatisfiable” the non-domain restricted version of N
is B-unsatisfiable, which is obtained from N by removing from all clauses all domain
predicates.

Proof. Termination follows from the fact that find always returns some pair (x, d) such
that x ∈ x and d ∈ Δx \ Πx, as shown in Lemma 4.1. Hence, the set Πx grows monoton-
ically in line 12 in checkSAT and there are only finitely many elements in Δx available
for that. Correctness follows from the lemmas in Section 3 as referenced in the com-
ments in checkSAT. ��

5 Experimental Results

We have implemented the checkSAT/find algorithm on top of the hierarchic superposi-
tion prover Beagle [7].3 The implementation is prototypical and currently serves only
to try out the ideas in the paper. Table 1 summarizes the experiments we carried out.

Table 1. Experimental results. Problem 4 is {f(x) � x ∨ x � Δ, f(5) ≈ 8, f(8) ≈ 5}

Problem |Δ| #Iter #TP Time
1 f(x) > 1 + y ∨ y < 0 ∨ x � Δ any 1 1 <1

2 g(x) ≈ x ∨ g(x) ≈ x + 1 ∨ ¬(x ≥ 0)
g(x) ≈ −x ∨ ¬(x < 0)
f(x) < g(x) ∨ x � Δ

10 9 32 5.5
20 20 86 55

3 f(x1, x2, x3, x4) > x1 + x2 + x3 + x4 ∨
x1 � Δ ∨ x2 � Δ ∨ x3 � Δ ∨ x4 � Δ

any 1 1 <1

4- see caption 5- see Section 1 6- see Example 3.2 6alt- see text
|Δ| #Iter #TP Time #Iter #TP Time #Iter #TP Time #Iter #TP Time
10 2 5 <1 3 15 2.3 3 12 <1 5 25 1.5
20 2 6 <1 3 17 2.6 3 14 <1 15 87 4.4
50 2 8 <1 3 19 2.8 3 19 1.1 34 239 23

100 2 9 <1 3 21 2.8 3 21 1.1 59 456 181
200 2 10 <1 3 23 2.8 3 23 1.2
500 2 11 <1 3 25 2.9 3 24 1.2

1000 2 12 <1 3 27 3.0 3 26 1.3
2000 2 13 <1 3 29 3.0 3 28 1.4
5000 2 15 <1 3 33 3.5 3 32 1.5

We have tried six problems, some of them with varying domain sizes. The problems
(1) and (6) areB-unsatisfiable, the othersB-satisfiable. The “Problem” column contains
the individual clause sets. The column “|Δ|” gives the size of the finite domains uni-
formly used in the problem clauses, e.g., |Δ| = 50 means the range [1..50]. The column
“#Iter” is the number of while-loop iterations in checkSAT needed to solve the problem
for the given Δ. The column “#TP” is the number of theorem prover calls (Beagle calls)

3 http://users.cecs.anu.edu.au/˜baumgart/systems/beagle/

http://users.cecs.anu.edu.au/~baumgart/systems/beagle/

Finite Quantification in Hierarchic Theorem Proving 165

stemming from the variousB-satisfiability checks in checkSAT/find. Finally, “Time” is
the total CPU time needed to solve the problem. All experiments were carried out on a
Linux desktop with a quad-core Intel i7 cpu running at 2.8 GHz. For comparison, we
have also run Microsoft’s SMT-solver Z3 [17], version 4.1, on our examples, using the
obvious formula representation of the domains Δ.

Some comments on the individual problems. Problem (1) is trivially solved, for any
Δ. In fact, the default interpretation is sufficient for that. Notice that the variable y is not
finitely quantified (and does not need to be). Z3 reports “unknown” on problem (1), but,
surprisingly it solves the essentially same problem f(x) > y ∨ y < 0 quickly. Problem
(2) is meant to showcase our algorithm in conjunction with Beagle’s theorem proving
capabilities. The function symbol g is “sufficiently complete” defined by the first two
clauses, and only the third clause containing the function symbol f needs finite quantifi-
cation. Z3 could not solve this problem within three minutes. We devised problem (3)
to get some insight into Z3’s capabilities on the problems we are interested in. While
it is trivial for our approach, Z3 seems to instantiate the clause in problem (3). Clearly,
there is a scalability issue here, as for about |Δ| > 60 the problem becomes unsolvable
in reasonable time.

As a side note, we found Z3s performance impressive, and it could solve problems
(4)–(6) in very short time. Indeed, we plan to integrate Z3 in our approach and expect
much better performance on many problems (Beagle’s theory reasoning component is
a rather slow implementation of Cooper’s quantifier elimination algorithm.)

Problem (4) is a simple test of the default interpretation/exception mechanism. Prob-
lem (5) is the one in the Introduction, and problem (6) is our running example.

The problems (4), (5) and (6) scale very well, as expected. The first two are proven
satisfiable using the default interpretation and a fixed number of exception points. In
problem (4) these are easily discovered from the problem and in (5) the exceptions are
quickly discovered by the search. Similarly, in problem (6) the definition for f(9) is
found quickly, which is the only one needed to establish unsatisfiability. However, this
requires to search first the domain of x1, then x2 (cf. Example 3.2). With the other way
round we obtain much worse scaling behavior, cf. the entry “6alt” in Table 1.

6 Conclusions

We have presented a method for deciding hierarchic satisfiability, or satisfiability
modulo theories, of first-order clause sets where all variables are quantified over fi-
nite subsets of background domains. The method tries to construct a model by stepwise
amending a default interpretation in a conflict-driven way by utilizing a decision proce-
dure for the EA-fragment of the background theory. It may also terminate with a set of
ground instances witnessing that no model exists. For space reasons and for clarity we
have focused in this paper on the basic principles and leave extensions for future work.
Here are some ideas.

Richer input language: One important extension concerns foreground-sorted variables
and operators, like the array-sorted variable a and the write-operator in clauses (1) and
(2) in the introduction. In the example we got away without further modifications be-
cause the axioms (1) and (2) do not pose problems for sufficient completeness and for

166 P. Baumgartner, J. Bax, and U. Waldmann

termination of hierarchic superposition. The question is under which conditions this is
possible in general. One could also try to enumerate finite segments of the foreground
domains in a Herbrand fashion, similarly as with background domains.

Our method can also be applied to certain richer syntactic fragments that require a
full-fledged theorem prover for hierarchic specifications instead of a decision procedure
for the background theory. However, this would “reverse” the common architecture by
invoking that foreground reasoner from within an outer loop. This is problematic, how-
ever, because the foreground reasoner might not terminate or be incomplete. To fix that,
it should be possible, under certain conditions, to instead integrate the checkSAT as an
inference rule into, say, hierarchic superposition and apply it only to finitely quantified
clauses as defined above. (This would directly generalize the Define-rule in [7].)

Alternative default interpretation: Taking the constant function as the default interpre-
tation for free BG-sorted operators is not always a good choice. For example, for the
clause f(x) ≈ x ∨ x � [1..1000] our method needs to amend the default interpretation
at every point. Fortunately, any interpretation can be used as a default, and the identity
function as the default interpretation for f leads immediately to a model. (On the other
hand, in this example f is already sufficiently defined and could possibly be excepted
from the transformation in the first place.)

Bernays-Schönfinkel fragment: The hierarchic superposition calculus can immediately
be instantiated with, say, an instance-based method for deciding background theories
that are given as a set of EPR-clauses. Our method, or the extensions above, could
possibly be used to integrate arithmetic reasoners, instance-based methods and super-
position in a beneficial way.

References

1. Althaus, E., Kruglov, E., Weidenbach, C.: Superposition modulo linear arithmetic SUP(LA).
In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS (LNAI), vol. 5749, pp. 84–99.
Springer, Heidelberg (2009)

2. Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and
simplification. Journal of Logic and Computation 4(3), 217–247 (1994)

3. Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational theorem proving for hierarchic
first-order theories. Appl. Algebra Eng. Commun. Comput 5, 193–212 (1994)

4. Baumgartner, P., Fuchs, A., de Nivelle, H., Tinelli, C.: Computing finite models by reduction
to function-free clause logic. Journal of Applied Logic 7(1), 58–74 (2009)

5. Baumgartner, P., Tinelli, C.: Model evolution with equality modulo built-in theories. In:
Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp.
85–100. Springer, Heidelberg (2011)

6. Baumgartner, P., Waldmann, U.: Hierarchic superposition: Completeness without compact-
ness. In: Kosta, M., Sturm, T. (eds.) MACIS (2013)

7. Baumgartner, P., Waldmann, U.: Hierarchic superposition with weak abstraction. In:
Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 39–57. Springer, Heidelberg
(2013)

8. Claessen, K., Sörensson, N.: New techniques that improve MACE-style finite model build-
ing. In: Baumgartner, P., Fermüller, C.G. (eds.) CADE-19 Workshop: Model Computation –
Principles, Algorithms, Applications (2003)

Finite Quantification in Hierarchic Theorem Proving 167

9. Ganzinger, H., Korovin, K.: Theory instantiation. In: Hermann, M., Voronkov, A. (eds.)
LPAR 2006. LNCS (LNAI), vol. 4246, pp. 497–511. Springer, Heidelberg (2006)

10. Ge, Y., Barrett, C.W., Tinelli, C.: Solving quantified verification conditions using satis-
fiability modulo theories. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603,
pp. 167–182. Springer, Heidelberg (2007)

11. Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfiabiliby mod-
ulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 306–320.
Springer, Heidelberg (2009)

12. Halpern, J.: Presburger Arithmetic With Unary Predicates is Π1
1 -Complete. Journal of Sym-

bolic Logic 56(2), 637–642 (1991)
13. Korovin, K., Voronkov, A.: Integrating linear arithmetic into superposition calculus. In: Du-

parc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 223–237. Springer, Heidel-
berg (2007)

14. Kruglov, E., Weidenbach, C.: Superposition decides the first-order logic fragment over
ground theories. In: Mathematics in Computer Science, pp. 1–30 (2012)

15. McCune, W.: Mace4 reference manual and guide. Technical Report ANL/MCS-TM-264,
Argonne National Laboratory (2003)

16. de Moura, L., Bjørner, N.S.: Efficient E-matching for SMT solvers. In: Pfenning, F. (ed.)
CADE 2007. LNCS (LNAI), vol. 4603, pp. 183–198. Springer, Heidelberg (2007)

17. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

18. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: from
an abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T). Journal of the
ACM 53(6), 937–977 (2006)

19. Reynolds, A., Tinelli, C., Goel, A., Krstić, S.: Finite model finding in SMT. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 640–655. Springer, Heidelberg (2013)

20. Reynolds, A., Tinelli, C., Goel, A., Krstić, S., Deters, M., Barrett, C.: Quantifier instantiation
techniques for finite model finding in SMT. In: Bonacina, M.P. (ed.) CADE 2013. LNCS
(LNAI), vol. 7898, pp. 377–391. Springer, Heidelberg (2013)

21. Rümmer, P.: A constraint sequent calculus for first-order logic with linear integer arithmetic.
In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp.
274–289. Springer, Heidelberg (2008)

22. Slaney, J.: Finder (finite domain enumerator): Notes and guide. Technical Report TR-ARP-
1/92, Australian National University, Automated Reasoning Project, Canberra (1992)

23. Zhang, J., Zhang, H.: SEM: a system for enumerating models. In: Mellish, C. (ed.) IJCAI
1995. Morgan Kaufmann (1995)

Computing All Implied Equalities
via SMT-Based Partition Refinement

Josh Berdine and Nikolaj Bjørner

Microsoft Research
{jjb,nbjorner}@microsoft.com

Abstract. Consequence finding is used in many applications of deduction. This
paper develops and evaluates a suite of optimized SMT-based algorithms for com-
puting equality consequences over arbitrary formulas and theories supported by
SMT solvers. It is inspired by an application in the SLAYER analyzer, where our
new algorithms are commonly 10–100x faster than simpler algorithms. The main
idea is to incrementally refine an initially coarse partition using models extracted
from a solver. Our approach requires only O(N) solver calls for N terms, but
in the worst case creates O(N2) fresh subformulas. Simpler algorithms, in con-
trast, require O(N2) solver calls. We also describe an asymptotically superior
algorithm that requires O(N) solver calls and only O(N logN) fresh subformu-
las. We evaluate algorithms which reduce the number of fresh formulas required
either by using specialized data structures or by relying on subformula sharing.

Keywords: Implied Equalities, Consequence Finding, Satisfiability Modulo
Theories, Decision Procedures, Congruence Closure, Software Verification.

1 Introduction

We define and evaluate optimized algorithms for computing all equalities between terms
of a fixed set that are implied by a fixed constraint. As a example, consider the formula

Φ : (a) b ∧ b[i]) c) ∨ (a[i]−4) d ∧ f(d)) d+3 ∧ f(d)+1) c)

where _[_] denotes array selection. Φ implies the equality a[i])c, but not a)b, a[i])b[i],
nor d) c. On the other hand, the formula

Φ′ : Φ ∨ (b[i]) c ∧ c) d)

does not imply any equality between a, b, c, d, a[i] and b[i]. We describe and evaluate
algorithms that require a number of SMT-solver calls that is at worst linear in the num-
ber of terms N, although they may potentially create quadratically-many fresh literals.
Naïve algorithms for computing all equalities implied by a formula require O(N2)
SMT-solver calls. The simplest, called Basic Partition Merging (BPM), is 10–1000x
slower than a model-based variant, Model-based Partition Merging (MPM). Starting
with Basic (BPR) and Incremental (IPR) Partition Refinement algorithms, we examine
several variants that are all significantly (1–100x) faster than MPM. In a quest of asymp-
totically better solutions, we also outline an algorithm that requires only O(N logN)
fresh subformulas.

S. Demri, D. Kapur, and C. Weidenbach (Eds.): IJCAR 2014, LNAI 8562, pp. 168–183, 2014.
© Springer International Publishing Switzerland 2014

Computing All Implied Equalities via SMT-Based Partition Refinement 169

Application and Evaluation of Equality Inference. The experimental evaluation
of the algorithms uses problem instances that the SLAYER [2] program analyzer en-
counters while attempting to verify memory safety properties of C programs. SLAYER

relies on learning implied equalities, and previously used simpler algorithms that would
sometimes exhibit catastrophic performance. This prompted the development of more
sophisticated algorithms. We evaluated both the folklore and the new algorithms in the
context of the SLAYER tool and found that the simpler algorithms are impractical be-
cause they either require a quadratic number of solver calls, or are non-incremental:
they effectively reset the solver state between several calls. The practical evaluation
demonstrates the advantages of the new algorithms.

Consequence finding is a central component of abstract interpreters. The set of reach-
able states can be approximated by the least fixed point of a predicate transformer, and
analyses based on abstract interpretation commonly develop special classes and rep-
resentations of logical formulas where approximations of the least fixed point can be
computed. For example, analyses using the octagon abstract domain [10] can be thought
of as computing consequences as a conjunction of constraints using unit coefficients and
two variables per inequality. The TVLA system [9,15] is distinguished as it produces
shape formulas as a result of bottom-up evaluation of Horn clauses.

The SLAYER tool synthesizes separation logic formulas in an approximation of the
least fixed-point semantics of programs. This approach serves as a foundation for a
verification tool for analyzing heap properties of C programs. In order to compute pre-
cise abstractions, SLAYER relies on learning all implied equalities from a formula. An
example symbolic state is the formula ∃x, y. Φ ∗ Ψ , where Φ is defined above and

Ψ : list(p, x) ∗ x+→c ∗ list(q, y) ∗ y +→a[i] .

SLAYER weakens the formula to list(p, c) ∗ list(q, c). The first step of this abstraction
is to replace list(p, x) ∗ x+→c with list(p, c), forgetting that x is on the list from p to c.
This rewrite would not be performed if x could begin a shared tail between two lists.
Checking this requires learning that neither x) q, x) y nor x) a[i] are implied, any
of which would make x begin a tail shared between p and q. Finally, list(q, y) ∗ y +→c is
rewritten to list(q, c). This inference requires learning a[i]) c, as previously discussed.

Note that the core of checking the shared-tail condition is to compare the sets of
predecessors in the transitive closure of the equivalence closure of the union of the +→
and list relations. The use of equivalence closure necessitates an eager computation of
the equality consequences of formulas.

Related Work. Classical congruence closure [6] infers equalities from conjunctions
of equalities with uninterpreted functions. In contrast, the problem addressed here is
to infer congruences modulo arbitrary formulas (e.g., clauses instead of conjunctions),
over theories supported by SMT solvers. Satisfiability Modulo Theories solvers that are
based on the DPLL(T) architecture [12] use congruence closure to check satisfiability
of a conjunction of assumed equalities with respect to assumed disequalities. Saturation
based theorem provers for classical first-order logic use superposition inference rules
to deduce new equalities from old ones. The algorithmic problems of unification and
congruence closure have received significant attention and enjoyed several celebrated

170 J. Berdine and N. Bjørner

results, such as linear time algorithms for unification [13,14] and efficient congruence
closure algorithms [6]. Saturation procedures rely on term indexing and unification al-
gorithms and higher performance saturation engines strike a trade-off between indexing
data structures and the unification algorithms that are used in practice [8]. Similarly,
SMT solvers use congruence closure algorithms that have shown to perform well in
their context of use [5,11]. For instance, Z3’s congruence closure algorithm uses a vari-
ant of union-find with eager path compression.

Equality inference of Boolean functions is a deeply studied subject in the context of
circuit verification [3,4] because when checking equality between two circuits it can be
a significant advantage to know that two sub-circuits compute the same Boolean func-
tion. Some of the main techniques use binary decision diagrams, BDDs, for identifying
sub-circuit equivalence. Note that equivalence of Boolean functions is a special case
of the problem we consider here: we are determining equivalence of not only Boolean
functions, but functions with any signature (e.g., functions over reals and integers). Ad-
ditionally, for the sub-circuit equivalence problem, it suffices to find enough equalities
to speed up the equivalence check, while we consider the problem of computing the
complete set. Detecting and using equivalences can also have profound effects on SAT
solving [7]. The use of SAT sweeping is critical for reducing the set of candidate equiv-
alences. SAT sweeping and possible generalizations to SMT provides orthogonal value
to the algorithms developed here.

Organization. Section 2 first recalls a few technical preliminaries. Section 3 discusses
the simpler algorithms and then presents the Basic and Incremental Partition Refine-
ment algorithms and variants. The practical context where the algorithms are used is
discussed in Section 4. Section 5 closes with a thorough evaluation.

2 Preliminaries

We assume some basic familiarity with SMT solving and, to a greater degree, congru-
ence closure.

SMT, Models and Formulas. We use standard notions of sorts, terms, formulas
and interpretations. Formulas are terms of Boolean sort. Terms are built using a first-
order signature where functions, such as + and _[_] can be interpreted. We assume that
interpretations, denoted M can be used to evaluate terms to values. For example, if
M |= x+2) 1, then M(x) = −1.

Union-Find. Our algorithms maintain partitions and use the well-known union and
find routines [16]. Given a domain E of nodes and a domain P of partitions of E, a
partition P of {1, . . . , N} is a set of disjoint subsets, called classes, that cover the set.
We assume the following routines:

– find : P × E → E, such that find(P, i) returns a unique representative from the
equivalence class of i. Thus, find(P, find(P, i)) = find(P, i).

– union : P×E×E → P , such that the equivalence classes of i and j are merged in
the result of union(P, i, j). Thus find(union(P, i, j), i) = find(union(P, i, j), j).

Computing All Implied Equalities via SMT-Based Partition Refinement 171

We furthermore use a nonstandard routine to split equivalence classes by removing
an element from a class and creating a new singleton class:

– remove : P × E → P , such that find(remove(P, i), j) = i if and only if i = j.

We only need to call remove(P, i) in the case when i is not an equivalence class rep-
resentative. So if we implement union using eager path compression, then remove is
realized by detaching the removed node from a doubly-linked list.

3 Algorithms for Implied Equalities

The problem of computing all implied equalities can be stated as: given a formula Φ and
a set of terms t1, . . . , tN , find a partition P of {1, . . . , N}, such that for every p, q ∈ P
and s ∈ p, t ∈ q: (Φ → s) t) is valid if and only if p = q. To set the stage for our
partition refinement algorithms, we begin by discussing some simpler algorithms.

3.1 Basic Partition Merging (BPM)

The most straightforward approach for finding all implied equalities is to check whether
an equality is implied for each pair of terms. In more detail, create a partition P of the
indices {1, . . . , N} by checking whether Φ → ti)tj for each pair 1 ≤ i < j ≤ N . One
can save a redundant check if j is already merged with another index k < j. The union-
find data structure can be used to maintain the partition as it is built. Asymptotically,
this straightforward algorithm requires O(N2) solver calls in the worst case.

Example 1 Consider again the formula Φ : (a) b ∧ b[i]) c) ∨ (a[i]−4) d ∧
f(d)) d+3 ∧ f(d)+1) c). We wish to partition the terms {a, b, c, d, a[i], b[i]} in
the context of Φ. Only the formula Φ → a[i]) c is valid, so the resulting partition is
{{a}, {b}, {c, a[i]}, {d}, {b[i]}}. Other validity checks fail. Once a[i] and c are found
to be equal, it is redundant to check both Φ → a[i]) d and Φ → c) d. 	

3.2 Model-Based Partition Merging (MPM)

The previous algorithm uses very little information between solver calls. More useful
information is available when the SMT solver produces models. Whenever checking
that Φ → ti) tj is valid, we do in fact check dually whether Φ ∧ ti
) tj is unsatisfiable.
If it is satisfiable, then a model can be extracted that satisfies Φ and the disequality
ti
) tj . The model may also distinguish other terms that are not tested for equality. So
the set of potential equalities that have to be tested can be reduced by inspecting the
model after each satisfiability check, exploiting the property that if two terms evaluate
to distinct values in a model, their equality cannot be implied. While this algorithm still
requires O(N2) solver calls, all but one of them will be satisfiable, in contrast to BPM
where each merge is the result of an unsatisfiable query. This is relevant since solvers
often can solve satisfiable queries faster than unsatisfiable ones.

Example 2 Continuing with Φ, suppose that it has a model where i = 0, a[i] = b[i] =
c = 1, d = a[1] = 2, b[1] = 3. We then know that it only makes sense to check
equalities among {a[i], b[i], c} instead of the full set including {d, a, b}. 	

172 J. Berdine and N. Bjørner

3.3 Basic Partition Refinement (BPR)

We saw that models play a role dual to validity checks: they indicate what equalities
are not implied. We can take this idea to its fullest extent and develop an algorithm
that splits partitions based on models instead of merging partitions based on validity
checks. If we ensure that every satisfiability check splits at least one class, then this
approach requires at worst only a linear number of solver calls. To start with, we can
check satisfiability of Φ ∧

∨
i>1 t1
) ti. Any model of the formula must satisfy at least

one disequality. The model also produces a more refined partition: only terms that are
equal in the current model have to be compared for disequality. So suppose P is the
current partition, then we define the formula

SomeDiff :
∨

p∈P, |p|>1, i∈p

∨
j∈p, i=j

ti
) tj

such that Φ ∧ SomeDiff is satisfiable if and only if some class can be split.

Example 3 Continuing the previous example, we create the predicate SomeDiff : c
)
a[i] ∨ c
) b[i] ∨ a
) b corresponding to the partition {{c, a[i], b[i]}, {d}, {a, b}}. The
formula Φ ∧ SomeDiff is satisfiable where c
) b[i] is true, c
)a[i] is false (so c)a[i]),
and a
) b is true. The next formula Φ ∧ c
)a[i] is unsatisfiable, so we learn that c)a[i]
is implied. 	

This method only requires a linear number of solver calls. Yet, it is either non-
incremental (the SomeDiff constraint is retracted between each solver call), or it re-
quires quadratic space: it has to create fresh disequality literals between subsequent
calls and has to create new clauses at every call. That is, it is unclear whether the com-
plexity has simply been shifted around, or in other words, if O(N) solver calls which
each receive O(N2) new constraints is an improvement over O(N2) solver calls which
each receive O(N) new constraints. We will now develop algorithms that address time
and space deficiencies of BPR.

3.4 Incremental Partition Refinement (IPR)

The IPR algorithm refines BPR by allowing reuse of literals and clauses between iter-
ations. The algorithm creates a binary heap of propositional variables. The heap has a
leaf for each term, where the proposition is constrained to hold if and only if the term is
not equal to its representative. The proposition of each internal node holds if and only
if one of its children does. The root of this heap is therefore equivalent to SomeDiff .
Example 4 Consider computing the equality

�0

�2

�6 t1 W aŒi ��4

�5
�12 t7 W bŒi �

�11 t6 W aŒi �

�1

�4
�10 t5 W d

�9 t4 W c

�3
�8 t3 W b

�7 t2 W a

partition of terms {a[i]−4, a, b, c, d, a[i], b[i]}
implied, again, by the formula Φ : (a) b ∧
b[i]) c) ∨ (a[i]−4) d ∧ f(d)) d+3 ∧
f(d)+1) c). The algorithm starts with the ini-
tial partition P = {{1, . . . , 7}} and initializes
a proposition heap φ of size 12, adding the leaf
and internal node constraints. The tree structure
induced, as well as the associations between
propositions φi and nodes, and between leaves and terms, is shown in the figure. 	

Computing All Implied Equalities via SMT-Based Partition Refinement 173

The heap is used in several ways. The first use we describe is to use the truth values
of the propositions in a model M to determine what partitions to refine.

Example 5 Continued: Φ conjoined with the proposition heap constraints is satisfiable,
and suppose the extracted model M satisfies a[i]−4) d, c) a[i]) b[i], a) b, c
) d,
a
) d and a
) c. Therefore (assuming for the sake of presentation, that the find routine
returns the element ti of a class with minimal i) M will assign φ6 and φ10 to false and
the other propositions to true. This is because the term associated with φ6, t1 = a[i]−4
was the representative of the single class, and φ10 is associated to t5 = d, which is still
equal to its representative a[i]−4 in M. All other terms are no longer equal to their
existing representative. 	

The heap is only updated along paths where a model M established that candidate
equalities were found to be not implied.

Example 6 Continued: The constraints for the new partition are constructed by updat-
ing the proposition heap using a depth-first traversal starting from the root 0, excluding
sub-trees whose propositions do not hold. Since M(φi) = true for all i except 6, 10,
traversal proceeds from the root 0 to the leaf 7. To update the heap at 7, first the par-
tition is refined to remove(P, 2) by removing the associated term, t2 = a, from its
current class. Then φ7 is overwritten with a fresh proposition, and the updated parti-
tion is used to conjoin φ7 ↔ t2
) tfind(P,2) for the fresh φ7 to Φ, reestablishing the
leaf constraint. Next, 8, associated with t3 = b, is visited. This proceeds similarly to
the update for 7, except that now, since M satisfies a) b, the partition is updated to
union(remove(P, 3), 3, 2), removing b from its current class and merging it into the
class of a. The updated partition is again used to extend Φ to reestablish the leaf con-
straint for a fresh φ8. Next, to update the internal node 3, φ3 is overwritten with a fresh
proposition and Φ is extended to reestablish the internal constraint φ3 ↔ (φ7 ∨ φ8)
for the new propositions. Updating the heap proceeds similarly until reaching 10. Since
M(φ10) = false , φ10 and its existing constraints are reused. Updating then proceeds
similarly, refining the partition to P = {{1, 5}, {2, 3}, {4, 6, 7}}. 	

Note how the leaf constraints, where each term is disequal to its representative, mir-
ror an eagerly path-compressed union-find representation of the current partition. This
design is significant since it ensures that leaf propositions for representatives are always
inconsistent (representatives are their own representatives), and hence an equivalence
class representative will never be chosen for removal from its current class. Without this
guarantee, the simple implementation of the nonstandard remove routine described in
Section 2 would not suffice.

Algorithm 1 distills the examples as the IPR algorithm. The binary heap of proposi-
tional variables is represented as an array, which is initialized with fresh propositional
variables on line 3. Line 4 then adds the heap constraints described above to the in-
put formula. Following the approach illustrated by the preceding examples, the update
procedure uses the values of the φi to traverse the part of the binary heap containing
satisfied disequalities, constructing new disequalities for the leaves where the partition
changes, and rebuilding the binary heap of propositions reusing as many subformulas
as possible, so that φ0 is again equivalent to the disjunction of the disequalities be-
tween each term and its current representative. Incrementally updating the partition in

174 J. Berdine and N. Bjørner

Algorithm 1: Incremental Partition Refinement (IPR)
Input: formula Φ and set of terms {t1, . . . , tN}
Output: equality partition P of the set {1, . . . , N}

1 P ← {{1, . . . , N}}
2 foreach i = 0 . . . 2N − 2 do
3 φi ← fresh propositional variable

4 Φ← Φ ∧ φ0 ∧
N−2∧
i=0

(φi ↔ (φ2i+1 ∨ φ2i+2)) ∧
N∧
i=1

(φi+N−2 ↔ ti �� tfind(P,i))

5 while Φ is satisfiable do
6 M← interpretation satisfying Φ
7 Q← ∅
8 Procedure update(i) is
9 if M(φi) = true then

10 φi ← fresh propositional variable
11 if i < N − 1 then // i is internal
12 update(2i+ 1)
13 update(2i+ 2)
14 Φ← Φ ∧ (φi ↔ (φ2i+1 ∨ φ2i+2))

15 else // i is a leaf
16 let j = i− (N − 2) // leaf i is associated with term tj
17 let k = find(P, j)
18 assert k �= j
19 P ← remove(P, j)
20 if 〈k,M(tj)〉 /∈ dom Q then
21 Q[〈k,M(tj)〉]← j
22 else
23 let h = Q[〈k,M(tj)〉]
24 P ← union(P, j, h)

25 Φ← Φ ∧ (φi ↔ tj �� tfind(P,j))

26 update(0)
27 Φ← Φ ∧ φ0

28 return P

lines 18–24 uses a temporary map Q from pairs of (representatives of) classes of the
previous partition and values to classes of the updated partition. This map is used to
merge terms in the updated partition that are both in the same class of the previous par-
tition and given the same value by M. This is necessary to avoid the refined P breaking
more equalities than M refuted. Lines 10–25 are executed for each j that should change
class, that is, such that M satisfies tj
) tfind(P,j). First j is removed from its existing
class. (Note that since M satisfies tj
) tfind(P,j), j
= find(P, j), so the remove op-
eration is not problematic.) Then if there is not already another class for terms of j’s
previous class, k, and current value, M(tj), then record j as such a class. Otherwise,
merge j into the existing class h. Therefore, the effect of lines 26–27 is to strictly refine

Computing All Implied Equalities via SMT-Based Partition Refinement 175

P while preserving all equalities that are true in M, and to extend Φ to admit only
models which violate the new P .

Example 7 Continued: The map Q is initially empty, so when node 7, associated with
t2 = a, of the heap is updated, Q is updated with a mapping from 〈1,M(a)〉 to 2
to record that 2 is the new representative for terms currently in the class {{1, . . . , 7}}
that are also equal to a in M. Then, when 8, associated with t3 = b, is updated, since
M satisfies a) b, Q contains a mapping for 〈1,M(b)〉. So P is updated to merge the
classes of 3 and 2.

Continuing with the second iteration, P = {{1, 5}, {2, 3}, {4, 6, 7}}, and Φ is still
satisfiable. Suppose the new model M still satisfies a[i]) c, and now satisfies a
) b,
a[i]−4
) d and c
) b[i], as well as d) b[i]. Therefore M will satisfy φ8, φ10, φ12, as
well as their ancestors, but no others. The updates for 8 and 10 will proceed similarly
to the first iteration described above. The update for 12 is similar, but illustrates the
necessity of keying the map Q on pairs of the current class and value. Note that M
equates t5 = d and t7 = b[i], but t5 and t7 are in distinct classes of P . Therefore
when updating 12, the lookup at line 20 does not find an existing entry, and so does not
merge the classes of 7 and 5. Keying Q on only the term values would result in merging
classes that have already been split. This would violate the property that the partition is
monotonically refined, which is crucial to making only a linear number of solver calls.

Finally at the end of the second iteration, P = {{1}, {2}, {3}, {4, 6}, {5}, {7}}, and
Φ is unsatisfiable. 	

Compared to the BPR algorithm, Algorithm 1 constructs fewer, but still O(N2),
new disequalities. The problem is that terms may change representative many times.
Consider a case where no equalities are implied, and an execution where at iteration
i ∈ 1 . . .N the interpretation satisfies all disequalities tj
) tfind(P,j) for i < j ≤ N .

Therefore at iteration i, N − i new disequalities will be created, and overall
∑N

i=1 N −
i = 1

2N(N − 1) disequalities are created. We here use problem instances encountered
in practice to justify that this worst-case scenario is unlikely.

Assumption-Based IPR (ABIPR). We also experimented with a slight variation of
IPR that uses assumptions to control the contents of leaf nodes. The variant uses fresh
propositional variables ai and assertions of the form ai → (φi ↔ ti
) tfind(P,i)). With
these constraints conjoined to Φ, the satisfiability check is replaced with a satisfiability
check subject to also assuming the ai for each leaf. This avoids accumulating asser-
tions and is potentially more incremental. Indeed our experimental evaluation did show
improvements in performance for this alternative over IPR, yet the improvements were
not major for our evaluation suite.

Incrementality via Term Sharing (HIPR). Some solvers ensure maximal sharing of
terms, that is, if a term that occurs in an existing constraint is constructed, the existing
term is reused for the newly constructed one. For such solvers, asserting a constraint that
is, e.g., a disjunction of N disequations where most already occur in existing constraints
is not significantly more expensive than asserting only the new disequations. Native
support for n-ary disjunction is also beneficial in this situation.

176 J. Berdine and N. Bjørner

We experimented with a hybrid incremental partition refinement (HIPR) algorithm
that is a hybrid between BPR and IPR. Like BPR, it asserts a disjunction of N dise-
quations at each refinement iteration. The particular disequations are those at the leaves
of IPR’s proposition heap, thereby ensuring that many disequations will be shared with
those from the previous constraints. In this way, much of the benefit of IPR’s incre-
mentality may be realized without the overhead of manipulating the proposition heap.
Indeed, our experimental evaluation indicates that, for our evaluation suite, the over-
head of manipulating the propositions sometimes significantly outweighs the overhead
of repeatedly reconstructing existing disequations.

3.5 Space-Optimized Partition Refinement

We can do even better asymptotically. In the following we outline, omitting lower-level
details, a partition refinement based algorithm that takes O(N) iterations and has an
overhead of O(N logN) fresh sub-terms.

The idea is as follows: Similar to Algorithm 1 we will maintain a binary tree rooted
in φ0 that covers the current disjunction of disequalities. In contrast to that algorithm,
however, we represent each class of a partition as a disjunction chain of the form

t1
) t2 ∨ t2
) t3 ∨ · · · ∨ tN−1
) tN (1)

instead of a disjunction star of the form

t1
) tj ∨ t2
) tj ∨ · · · ∨ tN
) tj

where 1 ≤ j ≤ N is the equivalence class representative.
We maintain a two level binary tree where internal nodes are labeled by literals φi

and constraints of the form φi ↔ (φ2i+1 ∨ φ2i+2).
The lower level summarizes the disjunction of asserted disequalities within a current

class. The upper level summarizes the disjunction of disequalities for classes of size at
least 2. Let us consider the case where one of the classes is refined. So suppose that
Φ is satisfiable with model M and that K out of the N − 1 disequalities are satisfied
by M. The sub-tree that covers the previous class is refined into a tree that covers the
new classes. We claim that we require at most 2 · (logN + K) fresh literals for the
sub-tree. To see this, consider the sequence (1) where K out of the N − 1 literals are
true and the rest are false. If there are more than two contiguous literals that are false,
then two neighbors must be summarized by an internal literal (a literal φi). We will
reuse this summary when rebuilding the tree for the new constraints. The number of
literals it takes to cover a sequence of false literals is therefore at most logN . So we
can build a tree of size logN + K above these together with the K fresh literals in the
leaves. The total number of fresh literals required to cover the new equivalence classes
is therefore 2 · (logN +K) (half for the leaves and half for the internal nodes). We also
have to ensure that the upper and lower-level trees are balanced so that we can update

Computing All Implied Equalities via SMT-Based Partition Refinement 177

at most O(logN) literals from the root to the leaves when updating the partitions. So
consider a set of balanced trees of different heights. We extract an almost balanced tree
by eagerly joining any two trees of the same height until all trees have different heights.
Then create an almost balanced tree out of the remaining trees. �

�
�

�
��

�
��

�
�
��

�
��

�
�
��

�
The maximal depth of the resulting two-level tree is then at most
logN +1. By almost balanced we mean a binary tree (example
on the right) that satisfies the following predicate AB(n), de-
fined recursively over binary trees for nodes n: AB(n) holds
if n is a leaf, or n is balanced, or if n.right is balanced,
height(n.left) < height(n.right) and AB(n.left).

The construction ensures that the number of fresh literals introduced is at most
O(N logN). To justify this, let N0 be the original number of terms. During one it-
eration we introduce Mj new classes. The new classes have sizes a1N, . . . , aMjN ,

where
∑Mj

i=1 ai = 1 and N−1
N ≥ a1 ≥ a2 ≥ · · · ≥ aMj ≥ 1

N , so that a1 is the fraction
in the largest class. Thus, K is proportional to (1− a1)N ; the contribution logN from
the false literals is dominated by N . The cost of partitioning a class with N (N ≤ N0)
terms is bounded by

T (N,N0) ≤ O(Mj logN0) + O((1 − a1)N) +
∑Mj

i=1 T (aiN,N0), N > 1

where T (1, N0) = O(1), O(Mj logN0) is the cost of updating the upper layer tree,
O((1 − a1)N) is the number of literals introduced for updating the lower level tree
for the current class, and T (aiN,N0) is the number of fresh literals used for further
refining the new classes. Since there can be at most N classes, we have

∑
j Mj ≤ N .

We claim that the recurrence T (N,N0) is bounded by O(N logN0), so T (N0, N0) is
bounded by O(N logN). To verify this, first separate the contribution O(Mj logN0)
from T . The contribution expands into a sum

∑
j O(Mj logN0), which by the bound

on
∑

j Mj , is O(N logN0). Thus,

T (N,N0) ≤ O(N logN0)+T ′(N), where T ′(N) ≤ O((1−a1)N)+
∑Mj

i=1 T ′(aiN).

We can over-approximate the cost
∑Mj

i=2 T ′(aiN) by T ′((1− a1)N) (as the cost of the
latter includes splitting a class of size (1 − a1)N into smaller classes), so the bound to
analyze is: T ′(N) ≤ O((1−a1)N)+T ′(a1N)+T ′((1−a1)N). The upper bound for
the size contribution a1 of the largest class decreases in each unfolding because M−1

M <
N−1
N for M < N , so we will just assume that it remains fixed at a1. Thus, the depth of

unfolding T ′ is bounded by − logN/ log a1, and the contribution of O((1 − a1)N) in
each level adds up to (1− a1), so the overall cost is the product O(N logN).

Space-Optimized Partition Refinement via Term Sharing (HSOPR). Similar to
the hybrid algorithm between BPR and IPR, we experimented with an algorithm that
asserts a disjunction of N disequations at each refinement iteration, but uses chains
rather than stars of disequations following (1). This yields an algorithm with O(N2)
space complexity as there are O(N) iterations, each of which creates a disjunction of
size N . However, at most O(N logN) of the disequalities are fresh, resulting in a high
degree of incrementality.

178 J. Berdine and N. Bjørner

4 Practicalities

There are several important details that are significant in an implementation of these
algorithms. We will describe the most prolific ones here that we encountered in the
context of Z3. We believe these are generic issues.

Canonicity. The model-based algorithms all rely on a solver providing models with
the ability to evaluate terms. The requirement is that if two terms t1, t2 are the same
under an interpretation, then the evaluation under a model M is the same: M(t1) =
M(t2). We say that the interpretations are canonizing for a sort. Z3 produces canoniz-
ing interpretations for sorts Booleans, bit-vectors, integers, reals (for linear constraints),
and algebraic data types that use sorts with canonizing interpretations. An example al-
gebraic data type that is canonizing is the sort of finite lists of integers. Another example
is finite lists of finite lists of integers. Terms of sort finite lists over arrays are on the
other hand not canonizing. The implementation falls back to a version of basic partition
merging for terms of non-canonizing sorts.

Array Values. Z3 does not produce canonizing interpretations for arrays. So if we
are given terms t1, t2, t3 whose sorts are (one-dimensional) arrays, Z3’s evaluation of
these terms under M does not produce canonical values. There is a simple trick, how-
ever, that takes care of arrays in many cases: Due to extensional equality of arrays,
the equality partition for {t1, t2, t3} under Φ is the same as the equality partition for
{t1[i], t2[i], t3[i]} under Φ, where i is a fresh index variable.

Pre-partitioning Based on Sorts. SLAYER queries for partitions of several sorts
of terms at the same time. We found that the merging-based algorithms benefited sig-
nificantly from pre-partitioning the terms by sort. It was particularly important to dis-
tinguish terms in the image of the translation of array terms above from those that
genuinely have the same sort as the range of the array. In such cases, not distinguishing
by sorts leads to logically more difficult problems. The implementations of the refine-
ment algorithms include an optimization where the initial partition is not taken to be
the coarsest one, but is computed from the model generated by the first satisfiability
check. This first model will yield an initial partition which distinguishes all terms of
distinct sorts, except those produced by the array translation, which the implementation
explicitly separates from the others.

Knowing the Terms. Z3 can provide an evaluator given a model M |= Φ that
evaluates subterms in Φ. To force all terms t1, . . . , tN to be in Φ, we initialize Φ to
Φ ∧ K(t1) ∧ · · · ∧ K(tN), where K is a fresh predicate (Known).

Diversity. All algorithms that rely on models require fewer iterations if the models
are as diverse as possible. For example, if Φ is consistent with all t1, . . . , tN evaluating
to different values, we are done in a single iteration. But Z3 is not required to produce
diverse models. In the case of algebraic data types Z3 searches for models by building
small instances. So for lists, Z3 always attempts to set a term to nil (the empty list). For
arithmetic, Z3 supports a configuration,arith.random_initial_value=true,
for shaking up initial values. Otherwise values of variables default to 0.

Computing All Implied Equalities via SMT-Based Partition Refinement 179

5 Empirical Evaluation

We used SLAYER running on device driver benchmarks to evaluate the algorithms.
Statistics were gathered as SLAYER was running, to accurately reflect the actual mode
of usage, which is through Z3’s incremental programmatic interface. No individual im-
plied equalities queries exhausted time or memory resources, although there are fewer
queries for some algorithms in cases where the client analyzer exhausted resources.
SMT-LIB2 benchmark files for most queries were generated during separate runs and
are available online.1 The companion technical report [1] contains many more details.

Figs. 1–6 each compare two algorithms. Results are reported only for the instances
where the formula is satisfiable, all the algorithms behave equivalently with inconsis-
tent formulas and so those points only add clutter. The right y-axis and top x-axis are
the run times for the two algorithms. Times are reported in seconds, where query times
measured below 50ms have been reported as 50ms since such instances are uninterest-
ingly easy and accurately measuring such short times is problematic. Instances that are
quickly solved by only one algorithm appear on an axis. A solid y = x line is shown,
as well as dotted lines indicating speedup and slowdown factors of 10x, 100x, and so
on. Each plot includes a solid trend line that has been fit to the data, for what it is worth
given the very high degree of variation and delicacy of nonlinear fitting. Each plot also
includes two lines from upper-left to lower-right, associated with the left y-axis and
bottom x-axis. The solid line indicates the number of instances where the algorithm
on the right y-axis was faster than the algorithm on the top x-axis by at least the left
y-coordinate seconds, and vice versa for the dashed line. The key reports the area under
these curves, representing the cumulative speedups.

Fig. 1 compares the run times of the naïve Basic Partition Merging and semi-naïve
Model-based Partition Merging algorithms. The conclusion is extremely clear-cut: de-
spite the fact that the algorithms have the same theoretical complexity, in virtually all
cases the model-based algorithm shows 10–5000x speedups.

Fig. 2 compares the run times of the MPM and new Incremental Partition Refinement
algorithms. Here the results are still very clear-cut, though not as dramatic as with the
comparison to the most basic algorithm. There is a scattering of, generally easier, in-
stances where MPM outperforms IPR, but the bulk of the harder instances see between
10–100x speedups with IPR.

The assumption-based algorithm, ABIPR, does not offer dramatic benefits over IPR.
Fig. 3 shows that while ABIPR is slightly faster overall, and is trending to scale slightly
better on the harder instances, there are many instances on which IPR is faster. Fig. 4
compares BPR to ABIPR, showing that for our evaluation suite manipulating the propo-
sition heap results in a significant overhead. ABIPR is faster on the easier instances, but
BPR has larger speedups. So while on our benchmark suite the overall time spent by
BPR is slightly higher than ABIPR, there is a slight trend toward BPR scaling better.

Fig. 5 compares HIPR versus BPR, showing that the hybrid incremental algorithm is
overall somewhat faster than the basic version.

1 http://research.microsoft.com/en-us/um/cambridge/projects/
slayer/gie_benchmarks.tgz

http://research.microsoft.com/en-us/um/cambridge/projects/slayer/gie_benchmarks.tgz
http://research.microsoft.com/en-us/um/cambridge/projects/slayer/gie_benchmarks.tgz

180 J. Berdine and N. Bjørner

 0.1

 1

 10

 100

 1 10 100 1000 10000

 0.1

 1

 10
 0.1 1 10 100

D
if

fe
re

nc
e

in
 ru

n
tim

e

M
od

el
-b

as
ed

 P
ar

tit
io

n
M

er
gi

ng
Number of instances with at least indicated speedup

Basic Partition Merging

MPM faster (311899s)
BPM faster (0s)
97.2y1.42 = x

Fig. 1. Run time of MPM vs BPM

 0.1

 1

 10

 100

 1 10 100 1000 10000

 0.1

 1

 10

 0.1 1 10 100

D
if

fe
re

nc
e

in
 ru

n
tim

e

In
cr

em
en

ta
l P

ar
tit

io
n

R
ef

in
em

en
t

Number of instances with at least indicated speedup

Model-based Partition Merging

IPR faster (28178s)
MPM faster (84s)
12.1y1.33 = x

Fig. 2. Run time of IPR vs MPM

 0.1

 1

 10

 1 10 100 1000 10000

 0.1

 1

 0.1 1 10

D
if

fe
re

nc
e

in
 ru

n
tim

e

A
ss

um
pt

io
n-

ba
se

d
In

cr
em

en
ta

l P
ar

tit
io

n
R

ef
in

em
en

t

Number of instances with at least indicated speedup

Incremental Partition Refinement

ABIPR faster (881s)
IPR faster (219s)
1.4y1.26 = x

Fig. 3. Run time of ABIPR vs IPR

 0.1

 1

 1 10 100 1000 10000

 0.1

 1

 0.1 1

D
if

fe
re

nc
e

in
 ru

n
tim

e

B
as

ic
 P

ar
tit

io
n

R
ef

in
em

en
t

Number of instances with at least indicated speedup

Assumption-based Incremental Partition Refinement

BPR faster (649s)
ABIPR faster (773s)
1.3y1.35 = x

Fig. 4. Run time of BPR vs ABIPR

Fig. 6 shows that the HSOPR algorithm based on the O(N logN)-space algorithm
has some overhead relative to HIPR leading to slower performance on the easier in-
stances, but scales better on the harder instances.

To provide an overall picture of all the algorithms discussed, Fig. 7 shows the number
of instances solved within a given run time. From this we see that:

– BPM is much slower than the others.
– MPM is much faster than BPM but still significantly slower than the others.
– HIPR is fastest on easy instances, but is overtaken by HSOPR as it scales better.
– BPR and HSOPR are slower on easier instances, but scale better than IPR and

ABIPR, eventually overtaking them.

Computing All Implied Equalities via SMT-Based Partition Refinement 181

 0.1

 1

 1 10 100 1000 10000

 0.1

 1

 0.1 1

D
if

fe
re

nc
e

in
 ru

n
tim

e

H
yb

ri
d

In
cr

em
en

ta
l P

ar
tit

io
n

R
ef

in
em

en
t

Number of instances with at least indicated speedup

Basic Partition Refinement

HIPR faster (1030s)
BPR faster (141s)
1.4y1.06 = x

Fig. 5. Run time of HIPR vs BPR

 0.1

 1

 1 10 100 1000 10000

 0.1

 1

 0.1 1

D
if

fe
re

nc
e

in
 ru

n
tim

e

H
yb

ri
d

Sp
ac

e-
O

pt
im

iz
ed

 P
ar

tit
io

n
R

ef
in

em
en

t

Number of instances with at least indicated speedup

Hybrid Incremental Partition Refinement

HSOPR faster (405s)
HIPR faster (674s)
1.5y1.45 = x

Fig. 6. Run time of HSOPR vs HIPR

10 15 20 25 30 35 40 45 50 55

 0.1

 1

 10

 100

 1000

T
im

e
(s

ec
on

ds
)

Number of Instances Solved (thousands)

 51.5 52 52.5 53 53.5
 0.1

 1

 10
BPM
MPM
IPR
ABIPR
BPR
HIPR
HSOPR

Fig. 7. Run time vs No. instances solved

1 10 100 1000 10000

 10

 100

 1000

 10000

Model-based Partition Merging

BPM
IPR
ABIPR
BPR
HIPR
HSOPR
2y = x

Fig. 8. Analysis time relative to MPM

The implementations of BPR and HSOPR are similar. They require a little more work
outside of the SMT solver than the IPR, ABIPR and especially HIPR.

Fig. 8 compares the overall SLAYER analysis run times using each algorithm rela-
tive to using MPM. The results show that, while computing implied equalities is only
one sub-algorithm, improving it still yields considerable speedups of 10–100x or more
over BPM and an additional 2x over MPM. SLAYER hardly works with BPM, comput-
ing implied equalities is the bottleneck. With MPM, computing implied equalities is no
longer the only bottleneck, but a significant speedup is still achieved by the refinement-
based algorithms. The differences between the various refinement-based algorithms are

182 J. Berdine and N. Bjørner

not as apparent on full analysis runs, though HIPR is most often fastest, and ABIPR
and IPR have some notable wins on hard instances.

In summary, the model-based algorithms dramatically outperform BPM. Among the
model-based algorithms, partition refinement is clearly superior to the partition merging
done by MPM. Between the partition refinement algorithms, relying on sub-formula
sharing to achieve incrementality is at least as effective as using the proposition heap.
And finally, the additional reuse enabled by following the O(N logN)-space algorithm
results in noticeably-better scaling.

6 Conclusions

Prompted by benchmarks from an application in program analysis, we developed ef-
ficient algorithms for inferring implied equalities. It generalizes congruence closure
along two dimensions: from conjunctions of equations to general Boolean formulas,
and from the free theory of uninterpreted functions to the variety of theories the em-
ployed solver supports. To our knowledge, only initial basic algorithms had been pre-
viously proposed. The overall result is a drastic reduction in solver calls over simple
algorithms. An empirical evaluation using non-synthetic, but single-source and gen-
erally short-running, benchmarks shows speedups exceeding 10–100x over the im-
plementation of Model-based Partition Merging previously available in Z3, which is
already almost never less than 10x, and up to 5000x, faster than the basic algorithm.

References

1. Berdine, J., Bjørner, N.: Computing all implied equalities via SMT-based partition refine-
ment. Tech. Rep. MSR-TR-2014-57, Microsoft Research (2014)

2. Berdine, J., Cook, B., Ishtiaq, S.: SLAyer: Memory safety for systems-level code. In:
Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 178–183. Springer,
Heidelberg (2011)

3. Berman, C., Trevillyan, L.: Functional comparison of logic designs for VLSI circuits. In:
Kannan, L.N. (ed.) ICCAD, pp. 456–459. IEEE Computer Society (1989)

4. Brand, D.: Verification of large synthesized designs. In: Lightner, M.R., Jess, J.A.G. (eds.)
ICCAD, pp. 534–537. IEEE Computer Society (1993)

5. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: A theorem prover for program checking. J.
ACM 52(3), 365–473 (2005)

6. Downey, P.J., Sethi, R., Tarjan, R.E.: Variations on the common subexpression problem. J.
ACM 27(4), 758–771 (1980)

7. Heule, M., Biere, A.: Blocked clause decomposition. In: McMillan, K., Middeldorp, A.,
Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 423–438. Springer, Heidelberg
(2013)

8. Hoder, K., Voronkov, A.: Comparing unification algorithms in first-order theorem proving.
In: Mertsching, B., Hund, M., Aziz, Z. (eds.) KI 2009. LNCS (LNAI), vol. 5803, pp. 435–
443. Springer, Heidelberg (2009)

9. Lev-Ami, T., Sagiv, M.: TVLA: A system for implementing static analyses. In: SAS 2000.
LNCS, vol. 1824, pp. 280–302. Springer, Heidelberg (2000)

10. Miné, A.: The octagon abstract domain. Higher-Order and Symbolic Computation 19(1),
31–100 (2006)

Computing All Implied Equalities via SMT-Based Partition Refinement 183

11. Nieuwenhuis, R., Oliveras, A.: Fast congruence closure and extensions. Inf. Comput. 205(4),
557–580 (2007)

12. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories: From an
abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). J. ACM 53(6), 937–
977 (2006)

13. Paterson, M., Wegman, M.N.: Linear unification. J. Comput. Syst. Sci. 16(2), 158–167
(1978)

14. Robinson, J.A.: Computational logic: The unification computation. In: Meltzer, B., Michie,
D. (eds.) Machine Intelligence 6, pp. 63–72. Edinburgh University Press (1971)

15. Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3-valued logic. ACM Trans.
Program. Lang. Syst. 24(3), 217–298 (2002)

16. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. J. ACM 22(2), 215–225
(1975)

Proving Termination of Programs Automatically

with AProVE�

Jürgen Giesl1, Marc Brockschmidt2, Fabian Emmes1, Florian Frohn1,
Carsten Fuhs3, Carsten Otto6, Martin Plücker1, Peter Schneider-Kamp4,

Thomas Ströder1, Stephanie Swiderski7, and René Thiemann5

1 RWTH Aachen University, Germany
2 Microsoft Research Cambridge, UK

3 University College London, UK
4 University of Southern Denmark, Denmark

5 University of Innsbruck, Austria
6 andrena objects AG, Germany

7 Interactive Pioneers GmbH, Germany

Abstract. AProVE is a system for automatic termination and complex-
ity proofs of Java, C, Haskell, Prolog, and term rewrite systems (TRSs).
To analyze programs in high-level languages, AProVE automatically con-
verts them to TRSs. Then, a wide range of techniques is employed to
prove termination and to infer complexity bounds for the resulting TRSs.
The generated proofs can be exported to check their correctness using au-
tomatic certifiers. For use in software construction, we present an AProVE
plug-in for the popular Eclipse software development environment.

1 Introduction

AProVE (Automated Program Verification Environment) is a tool for automatic
termination and complexity analysis. While previous versions (described in [19,
20]) only analyzed termination of term rewriting, the new version of AProVE also
analyzes termination of Java, C, Haskell, and Prolog programs. Moreover, it also
features techniques for automatic complexity analysis and permits the certifica-
tion of automatically generated termination proofs. To analyze programs,AProVE
uses an approach based on symbolic execution and abstraction [11] to transform
the input program into a symbolic execution graph1 that represents all possible
computations of the input program. Language-specific features (such as sharing
effects of heap operations in Java, pointer arithmetic and memory safety in C,
higher-order functions and lazy evaluation in Haskell, or extra-logical predicates
in Prolog) are handled when generating this graph. Thus, the exact definition of
the graph depends on the considered programming language. For termination or
complexity analysis, the graph is transformed into a TRS. The success of AProVE

� Supported by the DFG grant GI 274/6-1 and the FWF grant P22767. Most of the
research was done while the authors except R. Thiemann were at RWTH Aachen.

1 In earlier papers, this was often called a termination graph.

S. Demri, D. Kapur, and C. Weidenbach (Eds.): IJCAR 2014, LNAI 8562, pp. 184–191, 2014.
c© Springer International Publishing Switzerland 2014

Proving Termination of Programs Automatically with AProVE 185

at the annual international Termination Competition demonstrates that our
rewriting-based approach is well suited for termination analysis of real-world
programming languages.2 A graphical overview of our approach is

Java

C

Haskell

Prolog

Symbolic
Execution
Graph

TRS
Termination

Complexity

Non-Termination︸ ︷︷ ︸
Front-End

︸ ︷︷ ︸
Back-End

displayed on the side.3

Technical details on the
techniques for transform-
ing programs to TRSs and
for analyzing TRSs can be
found in [5–9, 15–18, 21–23, 27, 28, 30]. In the current paper, we focus on their
implementation in AProVE, which we now made available as a plug-in for the
popular Eclipse software development environment [13]. In this way, AProVE can
already be applied during program construction (e.g., by analyzing termination
of single Java methods for user-specified classes of inputs). In addition to the
full version of AProVE, we also made AProVE’s front-ends for the different pro-
gramming languages available as separate programs. Thus, they can be coupled
with other external tools that operate on TRSs, integer transition systems, or
symbolic execution graphs. These external tools can then be used as alternative
back-ends. Finally, AProVE can also be accessed directly via a web interface [2].

We describe the use of AProVE for the different programming languages and
TRSs in Sect. 2. To increase the reliability of the generated proofs, AProVE
supports their certification, cf. Sect. 3. We end with a short conclusion in Sect. 4.

2 AProVE and Its Graphical User Interface in Eclipse

AProVE and its graphical user interface are available as an Eclipse plug-in at
[2] under “Download”. After the initial installation, “Check for Updates” in the
“Help” menu of Eclipse also checks for updates of AProVE. As Eclipse and AProVE
are written in Java, they can be used on most operating systems.

2.1 Analyzing Programming Languages

The screenshot on the next page shows the main features of our AProVE plug-
in. Here, AProVE is applied on a Java (resp. Java Bytecode (JBC)) program in
the file List.jar and tries to prove termination of the main method of the class
List, which in turn calls the method contains. (The source code is shown in the
editor window (B).) Files in an Eclipse project can be analyzed by right-clicking
on the file in Eclipse’s Project Explorer (A) and selecting “Launch AProVE”.4

When AProVE is launched, the proof (progress) can be inspected in the Proof
Tree View (C). Here, problems (e.g., programs, symbolic execution graphs, TRSs,
. . .) alternate with proof steps that modify problems, where “⇐” indicates sound

2 See http://www.termination-portal.org/wiki/Termination_Competition
3 While termination can be analyzed for Java, C, Haskell, Prolog, and TRSs, the current
version of AProVE analyzes complexity only for Prolog and TRSs.

4 An initial “ExampleProject” with several examples in different programming lan-
guages can be created by clicking on the “AProVE” entry in Eclipse’s menu bar.

http://www.termination-portal.org/wiki/Termination_Competition

186 J. Giesl et al.

A
B

C

E

D

and “⇔” indicates sound and complete steps. This information is used to propa-
gate information from child nodes to the parent node. A green (resp. red) bullet
in front of a problem means that termination of the problem is proved (resp. dis-
proved) and a yellow bullet denotes an unsuccessful (or unfinished) proof. Since
the root of the proof tree is always the input problem, the color of its bullet
indicates whether AProVE could show its termination resp. non-termination.

To handle Java-specific features, AProVE first constructs a symbolic execution
graph (D) from the program [5–7, 28]. From the cycles of this graph, TRSs are
created whose termination implies termination of the original program.5 Double-
clicking on a problem or proof step in the proof tree shows detailed information
about them. For example, the symbolic execution graph can be inspected by
double-clicking on the node JBCTerminationGraph and selecting the Graph tab in
the Problem View (D). This graph can be navigated with the mouse, allowing to
zoom in on specific nodes or edges. Similarly, one of the generated TRSs is shown
in the Problem View (E). For non-termination proofs [6], witness executions are
provided in the Problem View. In contrast to termination proofs, these analyses
are performed directly on the symbolic execution graph.

The buttons in the upper right part of the Proof Tree View (C) interact with
AProVE (e.g., aborts the analysis). When AProVE is launched, the termination
proof is attempted with a time-out of 60 seconds. If it is aborted, one can right-
click on a node in the proof tree and by selecting “Run”, one can continue the
proof at this node (here, one may also specify a new time-out).

For Java programs, there are two options to specify which parts of the program
are analyzed. AProVE can be launched on a jar (Java archive) file, and then tries

5 These TRSs are represented as dependency pair problems [21] (“QDP” in (C)).

Proving Termination of Programs Automatically with AProVE 187

to prove termination of the main method of the archive’s “main class”.6 Alter-
natively, to use AProVE during software development, single Java methods can
be analyzed. Eclipse’s Outline View (reachable via “Window” and “Show View”)
shows the methods of a class opened by a double-click in Eclipse’s Project Ex-
plorer. An initial “JavaProject” with a class List can be created via the “AProVE”
entry in Eclipse’s menu bar. Right-clicking on a method in the Outline View
and choosing “Launch AProVE” leads to the
configuration dialog on the side. It can be
used to specify the sharing and shape of the
method’s input values. Each argument can
be tree-shaped, DAG-shaped, or arbitrary
(i.e., possibly cyclic) [7]. Furthermore, one
can specify which arguments may be shar-
ing. Similarly, one can provide assumptions
about the contents of static fields. There
are also two short-cut buttons which lead
to the best- and the worst-case assumption.
Moreover, under “AProVE options”, one can
adjust the desired time-out for the termina-
tion proof and under “Problem selection”,
one has the option to replace AProVE’s de-
fault strategy with alternative user-defined
strategies (a general change of AProVE’s
strategy is possible via the “AProVE” en-
try in Eclipse’s main menu).

C [30], Haskell [22], and Prolog [23] are
handled similarly. The function, start terms, or queries to be analyzed can
be specified in the input file (as in the Termination Competition). Other-
wise the user is prompted when the analysis starts. For Prolog, AProVE can also
infer asymptotic upper bounds on the number of evaluation steps (i.e., unifica-
tion attempts) and prove determinacy (i.e., that there is at most one solution).

All our programming language front-ends first construct symbolic execution
graphs, which are then used to extract the information relevant for termination
as a TRS. Thus, analyzing implementations of the same algorithm in different
languages leads to very similar TRSs, as AProVE identifies that the reason for
termination is always the same. For example, implementations of a contains al-
gorithm in different languages all terminate for the same reason on (finite acyclic)
lists, since the length of the list decreases in each recursive call or iteration.

6 See http://www.termination-portal.org/wiki/Java_Bytecode for the conven-
tions of the Termination Competition, which also specify certain restrictions on the
Java programs. In particular, similar to many other termination provers, AProVE
treats built-in data types like int in Java as unbounded integers Z. Thus, a termi-
nation proof is only valid under the assumption that no overflows occur.

http://www.termination-portal.org/wiki/Java_Bytecode

188 J. Giesl et al.

2.2 Analyzing Term Rewrite Systems

To prove termination of TRSs, AProVE implements a combination of numerous
techniques within the dependency pair framework [21]. To deal with the pre-
defined type of integers in programming languages, AProVE also handles TRSs
with built-in integers, using extensions of the dependency pair framework pro-
posed in [16, 18]. To solve the arising search problems (e.g., for well-founded
orders), AProVE relies on SAT- and SMT-based techniques like [1, 9, 17, 29]. As
SAT solvers, AProVE uses SAT4J [24] and MiniSAT [14]. Like AProVE, SAT4J is
implemented in Java and hence, AProVE calls it for small SAT instances, where
it is very efficient. MiniSAT is used on larger SAT instances, but as it is invoked
as an external process, it leads to a small overhead. As SMT solvers, AProVE
uses Yices [12] and Z3 [25]. Non-termination of TRSs is detected by suitable
adaptions of narrowing [15].

For complexity analysis,
AProVE infers runtime comple-
xity of innermost rewriting.
Runtime complexity means
that one only considers ini-
tial terms f(t1, . . . , tm) where
t1, . . . , tm represent data (thus,
they are already in normal
form). This corresponds to the
setting in program analysis.
Similarly, the analysis of innermost rewriting is motivated by the fact that the
transformations from Sect. 2.1 yield TRSs where it suffices to consider innermost
rewriting in the back-end. (Polynomial) upper bounds on the runtime complex-
ity are inferred by an adaption of dependency pairs for complexity analysis [27].
To solve the resulting search problems, AProVE re-uses the techniques from ter-
mination analysis to generate suitable well-founded orders. As shown in the
screenshot, AProVE easily infers that the above TRS has linear asymptotic com-
plexity. More precisely, the at the root node of the proof tree means that
initial terms f(t1, . . . , tm) of size n only have evaluations of length O(n).7

3 Partial Certification of Generated Proofs

Like any large software product, AProVE had (and very likely still has) bugs.
To allow verification of its results, it can export generated termination proofs as
machine-readable CPF (Certification Problem Format)8 files by clicking on the

button of the Proof Tree View. Independent certifiers can then check the valid-
ity of all proof steps. Examples for such certifiers are CeTA [31], CiME/Coccinelle

7 Moreover, proof steps also result in complexities (e.g., or). More precisely, in each
proof step, a problem P is transformed into a new problem P ′ and a complexity c.
Then the complexity of P is bounded by the maximum of P ′’s complexity and of c.

8 See http://cl-informatik.uibk.ac.at/software/cpf/

http://cl-informatik.uibk.ac.at/software/cpf/

Proving Termination of Programs Automatically with AProVE 189

[10], and CoLoR/Rainbow [4]. Their correctness has been formally proved using
Isabelle/HOL [26] or Coq [3]. To certify a proof in AProVE’s GUI, one can also

call CeTA directly using the button of the Proof Tree View.
Some proof techniques (like the transformation of programming languages to

TRSs in AProVE) are not yet formalized in CPF. Until now, proofs with such
steps could not be certified at all. As a solution, we extended CPF by an additio-
nal element unknownProof for proof steps which are not supported by CPF. In the
certification, unknownProof is treated as an axiom of the form P0 ←− P1∧. . .∧Pn.
This allows to prove P1, . . . , Pn instead of the desired property P0. Each Pi

can be an arbitrary property such as (non-)termination of some TRS, and Pi’s
subproof can be checked by the certifier again. In this way, it is possible to certify
large parts of every termination proof generated by AProVE. For example, now
90% of AProVE’s proof steps for termination analysis of the 4367 TRSs in the
termination problem data base (TPDB)9 can be certified by CeTA.

Moreover, we added a new CPF element unknownInput for properties that can-
not be expressed in CPF, like termination of a Java program. The only applicable
proof step to such a property is unknownProof. Using unknownInput, CPF files
for every proof can be generated. Now the program transformations in AProVE’s
front-end correspond to unknown proof steps on unknown inputs, but the rea-
soning in AProVE’s back-end can still be checked by a certifier (i.e., proof steps
can transform unknownInput into objects that are expressible in CPF).

Due to this new partial certification, three bugs of AProVE have been revealed
(and fixed) which could be exploited to prove termination of a non-terminating
TRS. These bugs had not been discovered before by certification, as the errors
occurred when analyzing TRSs resulting from logic programs. If one is only
interested in completely certified proofs, the “AProVE” entry in Eclipse’s main
menu allows to change AProVE’s default strategy to a “certifiable” strategy which
tries to use proof techniques that can be exported to CPF whenever possible.

4 Conclusion

We presented a new version of AProVE to analyze termination of TRSs and pro-
grams for four languages from prevailing programming paradigms. Moreover,
AProVE analyzes the runtime complexity of Prolog programs and TRSs. We are
currently working on extending AProVE’s complexity analysis to Java as well [8].

AProVE’s power is demonstrated by its performance in the annual Termina-
tion Competition, where it won almost all categories related to termination of Ja-
va, Haskell, Prolog, and to termination or innermost runtime complexity of TRSs.
Moreover, AProVE participated very successfully in the SV-COMP competi-
tion10 at TACAS which featured a category for termination of C programs for
the first time in 2014. AProVE’s automatically generated termination proofs can
be exported to (partially) check them by automatic certifiers. Our tool is avail-
able as a plug-in of the well-known Eclipse software development environment.

9 The TPDB is the collection of examples used in the annual Termination Competition.
10 See http://sv-comp.sosy-lab.org/2014/

http://sv-comp.sosy-lab.org/2014/

190 J. Giesl et al.

Moreover, the front-ends of AProVE for the different programming languages are
also available separately in order to couple them with alternative back-ends. To
download AProVE or to access it via a web interface, we refer to [2].

References

1. Alias, C., Darte, A., Feautrier, P., Gonnord, L.: Multi-dimensional rankings, pro-
gram termination, and complexity bounds of flowchart programs. In: Cousot, R.,
Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 117–133. Springer, Heidelberg
(2010)

2. AProVE, http://aprove.informatik.rwth-aachen.de/

3. Bertot, Y., Castéran, P.: Coq’Art. Springer (2004)

4. Blanqui, F., Koprowski, A.: CoLoR: A Coq library on well-founded rewrite rela-
tions and its application to the automated verification of termination certificates.
Mathematical Structures in Computer Science 4, 827–859 (2011)

5. Brockschmidt, M., Otto, C., Giesl, J.: Modular termination proofs of recursive
Java Bytecode programs by term rewriting. In: Schmidt-Schauß, M. (ed.) RTA
2011. LIPIcs, vol. 10, pp. 155–170. Dagstuhl Publishing (2011)

6. Brockschmidt, M., Ströder, T., Otto, C., Giesl, J.: Automated detection of non-
termination and NullPointerExceptions for Java Bytecode. In: Beckert, B., Dami-
ani, F., Gurov, D. (eds.) FoVeOOS 2011. LNCS, vol. 7421, pp. 123–141. Springer,
Heidelberg (2012)

7. Brockschmidt, M., Musiol, R., Otto, C., Giesl, J.: Automated termination proofs
for Java programs with cyclic data. In: Madhusudan, P., Seshia, S.A. (eds.) CAV
2012. LNCS, vol. 7358, pp. 105–122. Springer, Heidelberg (2012)

8. Brockschmidt, M., Emmes, F., Falke, S., Fuhs, C., Giesl, J.: Alternating runtime
and size complexity analysis of integer programs. In: Ábrahám, E., Havelund, K.
(eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 140–155. Springer, Heidelberg
(2014)

9. Codish, M., Giesl, J., Schneider-Kamp, P., Thiemann, R.: SAT solving for termi-
nation proofs with recursive path orders and DPs. JAR 49(1), 53–93 (2012)

10. Contejean, E., Courtieu, P., Forest, J., Pons, O., Urbain, X.: Automated certified
proofs with CiME3. In: Schmidt-Schauß, M. (ed.) RTA 2011. LIPIcs, vol. 10, pp.
21–30. Dagstuhl Publishing (2011)

11. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Graham,
R.M., Harrison, M.A., Sethi, R. (eds.) POPL 1977, pp. 238–252. ACM Press (1977)

12. Dutertre, B., de Moura, L.M.: The Yices SMT solver (2006), tool paper at
http://yices.csl.sri.com/tool-paper.pdf

13. Eclipse, http://www.eclipse.org/

14. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

15. Emmes, F., Enger, T., Giesl, J.: Proving non-looping non-termination automati-
cally. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI),
vol. 7364, pp. 225–240. Springer, Heidelberg (2012)

16. Falke, S., Kapur, D., Sinz, C.: Termination analysis of C programs using compiler
intermediate languages. In: Schmidt-Schauß, M. (ed.) RTA 2011. LIPIcs, vol. 10,
pp. 41–50. Dagstuhl Publishing (2011)

http://aprove.informatik.rwth-aachen.de/
http://yices.csl.sri.com/tool-paper.pdf
http://www.eclipse.org/

Proving Termination of Programs Automatically with AProVE 191

17. Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.:
SAT solving for termination analysis with polynomial interpretations. In: Marques-
Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 340–354. Springer,
Heidelberg (2007)

18. Fuhs, C., Giesl, J., Plücker, M., Schneider-Kamp, P., Falke, S.: Proving termination
of integer term rewriting. In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp.
32–47. Springer, Heidelberg (2009)

19. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Automated termination
proofs with AProVE. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp.
210–220. Springer, Heidelberg (2004)

20. Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: Automatic termination
proofs in the dependency pair framework. In: Furbach, U., Shankar, N. (eds.)
IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 281–286. Springer, Heidelberg (2006)

21. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving
dependency pairs. JAR 37(3), 155–203 (2006)

22. Giesl, J., Raffelsieper, M., Schneider-Kamp, P., Swiderski, S., Thiemann, R.: Auto-
mated termination proofs for Haskell by term rewriting. TOPLAS 33(2), 7:1–7:39
(2011)

23. Giesl, J., Ströder, T., Schneider-Kamp, P., Emmes, F., Fuhs, C.: Symbolic eval-
uation graphs and term rewriting — A general methodology for analyzing logic
programs. In: De Schreye, D., Janssens, G., King, A. (eds.) PPDP 2012, pp. 1–12.
ACM Press (2012)

24. Le Berre, D., Parrain, A.: The SAT4J library, release 2.2. JSAT 7, 59–64 (2010)
25. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,

Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

26. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002)

27. Noschinski, L., Emmes, F., Giesl, J.: Analyzing innermost runtime complexity of
term rewriting by dependency pairs. JAR 51(1), 27–56 (2013)

28. Otto, C., Brockschmidt, M., von Essen, C., Giesl, J.: Automated termination anal-
ysis of Java Bytecode by term rewriting. In: Lynch, C. (ed.) RTA 2010. LIPIcs,
vol. 6, pp. 259–276. Dagstuhl Publishing (2010)

29. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear rank-
ing functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
239–251. Springer, Heidelberg (2004)

30. Ströder, T., Giesl, J., Brockschmidt, M., Frohn, F., Fuhs, C., Hensel, J., Schneider-
Kamp, P.: Proving termination and memory safety for programs with pointer arith-
metic. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI),
vol. 8562, pp. 204–218. Springer, Heidelberg (2014)

31. Thiemann, R., Sternagel, C.: Certification of termination proofs using CeTA. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 452–468. Springer, Heidelberg (2009)

Locality Transfer: From Constrained

Axiomatizations to Reachability Predicates

Matthias Horbach and Viorica Sofronie-Stokkermans

University Koblenz-Landau, Koblenz, Germany, and
Max-Planck-Institut für Informatik Saarbrücken, Germany

Abstract. In this paper, we build upon our previous work in which
we used constrained clauses in order to finitely represent infinite sets of
clauses and proved that constrained axiomatizations are local if they are
saturated under a version of resolution. We extend this result by identi-
fying situations in which locality of saturated axiomatizations is main-
tained if we enrich the base theory by introducing new predicates (often
reachability predicates) instead of using constraints for these properties.

1 Introduction

Many problems in computer science (e.g. in verification) can be reduced to check-
ing the satisfiability of conjunctions of literals with respect to a theory. For ef-
ficient and accurate reasoning it is essential to reduce the search space without
losing completeness and to make modular or hierarchical reasoning possible. In
[13], we introduced the class of local theory extensions for which (i) complete
instantiation schemes exist, and (ii) hierarchical and modular reasoning is pos-
sible. Locality is a property of an axiomatization of a theory; therefore it is very
important to recognize locality of a set of clauses, and to obtain local axiomati-
zations by transforming non-local sets of clauses into local ones. In [2, 3], a link
between (order)-locality and saturation under ordered (hyper)resolution is pre-
sented; this allows us to obtain, by saturation, local axiomatizations for a theory
from non-local ones. Sometimes, however, the saturation process may not termi-
nate. In [6] we showed that in order to obtain finite representations of possibly
infinite sets of clauses we can use constrained clauses; we used a sound and com-
plete ordered resolution and superposition calculus for constrained clauses and
established a link between saturation in our calculus and order locality.

In spite of their advantages, axiomatizations using constrained clauses are
difficult to export to standard first-order provers. In this paper we show that we
can avoid using constrained clauses if we introduce new relations which encode
the constraints. Our main contributions can be described as follows:

– We analyze possibilities of changing local sets of constrained clauses into
local sets of clauses, by encoding the constraints using additional predicates.

– We identify situations in which the properties of the new predicates (which
include reachability) can be encoded using first-order logic.

– We then identify situations in which locality results for the constrained clause
set can be transferred to the new presentation defined this way.

S. Demri, D. Kapur, and C. Weidenbach (Eds.): IJCAR 2014, LNAI 8562, pp. 192–207, 2014.
c© Springer International Publishing Switzerland 2014

Locality Transfer 193

Structure of the paper. The paper is structured as follows: In Sect. 2 we introduce
the terminology we use and present the relevant results on local theory exten-
sions. In Sect. 3 we identify a class of constrained clauses for which instantiation
can be effectively computed. In Sect. 4 we analyze possibilities of changing local
sets of constrained clauses into local sets of clauses, by encoding the constraints
using additional predicates. In Sect. 5 we identify extensions of theories of abso-
lutely free constructors for which locality is preserved after this transformation.
Sect. 6 contains an overview of possible applications and further work.

2 Preliminaries

In this section we introduce the terminology and main results used in the paper.

2.1 General Definitions

We build on the notions of [1, 7] and shortly recall here the most important
concepts concerning terms and orderings and the specific extensions (concerning
constrained clauses) needed in this article. For simplicity, we restrict to single-
sorted signatures (the many-sorted case works similarly).

Terms and Clauses. Let Π = (Σ,Pred) be a signature consisting of a set Σ
of function symbols of fixed arity and a set Pred of predicate symbols of fixed
arity, and let X be a countably infinite set of variables such that X and Σ are
disjoint. Terms s, t, equations s≈t, atoms P (%t), atoms, literals, clauses and Horn
clauses are defined as usual. We denote by TΣ(X) the set of all terms over Σ
and X and by TΣ the set of all ground terms over Σ. To improve readability,
term tuples (t1, . . . , tn) will often be denoted by %t.

Substitution Expressions. A substitution σ is a map from a finite set X ′ ⊆ X
of variables to TΣ(X). The application of σ to a term t or a term tuple %t is
denoted by tσ or %tσ, respectively. Substitution expressions are built over substi-
tutions and constructors ◦ (composition), | (disjunction), and ∗ (loop) of arity
2, 2 and 1, respectively. Substitution expressions are denoted as σ̄, τ̄ . We will
often write σ̄ ◦ τ̄ as σ̄τ̄ and σ̄σ̄∗ as σ̄+. The domain dom(σ̄) and the variable
range VRan(σ̄) of a substitution expression are defined as follows: For a sub-
stitution σ : {x1, . . . , xn} → TΣ(X), we define dom(σ) = {x1, . . . , xn} and
VRan(σ) = vars(x1σ, . . . , xnσ). For complex substitution expressions, we have
dom(σ̄ ◦ τ̄) = dom(σ̄) VRan(σ̄ ◦ τ̄) = VRan(τ̄)
dom(σ̄1|σ̄2) = dom(σ̄1) ∪ dom(σ̄2) VRan(σ̄1|σ̄2) = VRan(σ̄1) ∩ VRan(σ̄2)

dom(σ̄∗) = dom(σ̄) VRan(σ̄∗) = dom(σ̄) ∪VRan(σ̄)
These notions are only intuitive for well-formed expressions: A substitution ex-
pression σ̄ is well-formed, if (i) for each subexpression τ̄1 ◦ τ̄2 of σ̄, VRan(τ̄1) =
dom(τ̄2), (ii) for each subexpression τ̄1|τ̄2, dom(τ̄1) = dom(τ̄2) and VRan(τ̄1) =
VRan(τ̄2), and (iii) for each subexpression τ̄∗, VRan(τ̄) = dom(τ̄).

Constrained Clauses. A constrained clause α ‖C consists of a clause C and a
regular constraint α of the form (x1≈y1, . . . , xn≈yn)σ̄, also written as (%x≈%y)σ̄,

194 M. Horbach and V. Sofronie-Stokkermans

such that xi, yi are variables and σ̄ is a well-formed substitution expression
with domain {x1, y1, . . . , xn, yn}. If a regular constraint α does not contain any
equations, we call α ‖C unconstrained and identify it with its clausal part C.
If α = (%x≈%y)τ̄ is a regular constraint, then ασ is defined as (%x≈%y)τ̄σ′, where
σ′ : VRan(τ̄) → TΣ(X) maps z to zσ if z ∈ dom(σ) and to z otherwise. The
application (α ‖C)σ of a substitution to a constrained clause is then defined as
ασ ‖Cσ. The set of ground instances of a constrained clause α ‖C consists of all
ground clauses Cσ for which ασ is a satisfiable ground constraint. This means
that regular constraints are interpreted syntactically. To improve readability of
constraints, we sometimes use straightforward expansions of the substitution ex-
pressions. For example, (x≈y){x +→ x, y +→ s(y)}∗ might be written as x≈s∗(y).

Denotations and Models of Constrained Clauses. We define the denota-
tion [[σ̄]] of a substitution expression σ̄ inductively as follows:

[[σ]] = {σ} [[σ̄τ̄]] = {στ | σ ∈ [[σ̄]], τ ∈ [[τ̄]]}
[[σ̄1|σ̄2]] = [[σ̄1]] ∪ [[σ̄2]] [[σ̄∗]] =

⋃
n≥0[[σ̄

n]]

Here σ̄0 denotes the identity substitution on dom σ̄ and σ̄n+1 = σ̄ ◦ σ̄n.
The semantics of the application of substitution expressions to terms and

clauses and the semantics of constrained clause sets are defined just as one
would expect by identifying a substitution expression with its denotation and by
identifying a constrained clause (%x≈%y)σ̄ ‖C with the (potentially infinite) clause
set {%xσ≈%yσ → C | σ ∈ [[σ̄]]}. Models and satisfiability of constrained clause sets
are then defined straightforwardly using this set (cf. [7] for details).

Orderings. A (strict partial) ordering ≺ on a set S is a transitive and irreflexive
binary relation on S. It is total if s ≺ t or t ≺ s whenever s
= t. It is well-
founded if there is no infinite descending chain s1 * s2 * . . . of elements of S.
A well-founded ordering ≺ on TΣ(X) is a reduction ordering if t ≺ t′ implies
u[tσ] ≺ u[t′σ] for all t, t′, u ∈ TΣ(X) and all substitutions σ.

Let ≺T be an ordering on TΣ(X) and let ≺ be an ordering on atoms over
TΣ(X). Then ≺ is compatible with ≺T if A1 ≺ A2 whenever every term in A1

is strictly bounded by a term in A2, i.e. if for each term t1 in A1 there is a
term t2 in A2 such that t1 ≺T t2. Any ordering ≺ on atoms can be extended to
clauses in a standard way (by setting ¬A * A for all atoms A and taking the
multiset extension of ≺). Let ≺T be a term ordering and ≺ be an atom ordering.
A ground clause is reductive (w.r.t. ≺T and ≺) if all of its ≺T-maximal terms
appear in the ≺-maximal atoms. A constrained clause is reductive (w.r.t. ≺T

and ≺) if all its ground instances are reductive (cf. [3]).

Inferences. A (clausal) inference rule is a relation on (constrained) clauses. Its
elements are called inferences and written as

C1 . . . Ck

C
resp.

α1 ‖C1 . . . αk ‖Ck

α ‖C
.

The clauses C1, . . . , Ck (resp. the constrained clauses α1 ‖C1, . . . , αk ‖Ck) are
called the premises and C (α ‖C) the conclusion of the inference. An inference
system is a set of inference rules. In what follows we will use the standard

Locality Transfer 195

inference rules for ordered resolution and hyperresolution (with selection) (cf.
e.g. [1]), as well extensions to constrained clauses (cf. [7]).

Redundancy. Let N be a set of clauses. A ground clause C is redundant w.r.t.
N (and ≺) if it is entailed by ground instances of N which are smaller than
C w.r.t. ≺. A constrained clause is redundant w.r.t. a constrained clause set N
(and ≺) if all of its ground instances are redundant. An inference is redundant
w.r.t. N if its conclusion is redundant w.r.t. N or if a premise C is redundant
w.r.t. N \ {C}. A constrained clause set N is saturated (w.r.t. a given inference
system) if each inference with premises in N is redundant w.r.t. N .

2.2 Local Theories and Theory Extensions

Local Theories. The notion of local set of Horn clauses (or local Horn theory)
was introduced by Givan and McAllester in [5] A local set of Horn clauses is a
set of Horn clauses K such that, for any ground Horn clause C, K |= C only if
already K[C] |= C (where K[C] is the set of instances of K in which all terms are
subterms of ground terms in either K or C). Since the size of K[G] is polynomial
in the size of G for a fixed K and satisfiability of sets of ground Horn clauses
can be checked in linear time, the validity of ground Horn clauses w.r.t. local
Horn theories can be checked in polynomial time. In [2, 3], Basin and Ganzinger
defined order locality. Given a term ordering ≺, we say that a set K of clauses
entails a ground clause C bounded by ≺ (notation: K |=� C), iff there is a proof
of K |= C from those ground instances of clauses in K in which (under .) each
term is smaller than or equal to some term in C. A set of clauses K is local with
respect to ≺ if whenever K |= C for a ground clause C, then K |=� C.

Local Theory Extensions. In [13] the notion of locality for Horn clauses is
extended to the notion of local extension of a base theory.

Let T0 be an arbitrary theory with signature Π0 = (Σ0,Pred), where the set
of function symbols is Σ0. Let Π = (Σ0 ∪ Σ,Pred) ⊇ Π0 be an extension by
a non-empty set Σ of new function symbols and let K be a set of (implicitly
universally closed) clauses in the extended signature. We will denote by Πc the
extension of Π with a fixed countable set of fresh constants. In what follows, we
assume that all ground clauses we refer to contain symbols in Πc. We say that
an extension T0 ∪ K of T0 is local if it satisfies the following condition1:

(Loc) For every set G of ground clauses in Πc it holds that
T0 ∪ K ∪G |= ⊥ if and only if T0 ∪K[G] ∪G |= ⊥

where K[G] consists of those instances of K in which the terms starting with
extension functions are in the set est(K, G) of extension ground terms (i.e. terms
starting with a function in Σ) which already occur in G or K. (Note that the
variables in clauses in K which do not occur below extension functions will not
be instantiated in K[G].) The notion of local theory extension generalizes the
notion of local theories. In [9, 10] we generalized condition (Loc) by considering

1 It is easy to check that the formulation we give here and that in [13] are equivalent.

196 M. Horbach and V. Sofronie-Stokkermans

operators on sets of ground terms. This allows us to be more flexible w.r.t. the
instances needed. Let Ψ be a map associating with every set T of ground terms
a set Ψ(T) of ground terms. For any set G of (augmented) ground Πc-clauses we
write K[ΨK(G)] for K[Ψ(est(K, G))] (the set consists of those instances of K in
which the terms starting with extension functions are in Ψ(est(K, G))). We can

define a version of locality (LocΨ) in which the set of terms used in the instances
of the axioms is described using the map Ψ .

(Loc
Ψ
) For every set G of ground clauses in Πc it holds that

T0 ∪ K ∪ G |= ⊥ if and only if T0 ∪ K[ΨK(G)] ∪ G |= ⊥.

Extensions satisfying condition (Loc
Ψ
) are called Ψ -local. Local theory extensions

are Ψ -local, where Ψ is the identity operator. The order-local theories introduced
in [3] satisfy a Ψ�-locality condition, where for every set T of ground clauses
Ψ�(T) = {s | s ground term and s . t for some t ∈ T }, where ≺ is the order on
terms considered in [3].

Hierarchical Reasoning. Let T0 ⊆ T =T0∪K be a theory extension satisfying
(LocΨ). To check the satisfiability w.r.t. T of a formula G, where G is a set of
ground Πc-clauses, we proceed as follows:

Step 1: By locality, T ∪G |=⊥ iff T0∪K[ΨK(G)]∪G |=⊥.

Step 2: Purification. We purify K[ΨK(G)] ∪ G (by introducing, in a bottom-up
manner, new constants ct for subterms t = f(g1, . . . , gn) with f ∈ Σ, gi ground
Πc

0-terms, and corresponding definitions ct≈t) and obtain the set of formulae
K0 ∪ G0 ∪ D, where D consists of definitions ct≈f(g1, . . . , gn), where f ∈ Σ, ct
is a constant, g1, . . . , gn are ground Πc

0-terms, and K0, G0 are Πc
0-formulae.

Step 3: Reduction to testing satisfiability in T0. We reduce the problem to testing
satisfiability in T0 by replacing D with the following set of clauses:

Con0 = {
n∧

i=1

ci≈di → c≈d | f(c1, . . . , cn)≈c, f(d1, . . . , dn)≈d ∈ D}.

This yields a sound and complete hierarchical reduction to a satisfiability prob-
lem in the base theory T0:

Theorem 1 ([9]). Let K and G be as specified above. Assume that T0 ⊆ T0 ∪K
satisfies condition (LocΨ). Let K0 ∪G0 ∪Con0 be obtained from K[ΨK(G)]∪G by
purification (cf. Step 2). Then T0∪K∪G |=⊥ if and only if T0∪K0∪G0∪Con0 |=⊥.

Thus, satisfiability of ground clauses G as above w.r.t. T is decidable provided
that ΨK(G) is effective, K[ΨK(G)] is finite and K0 ∪ G0 ∪ Con0 belongs to a
decidable fragment of T0.

Locality and Embeddability. The (Ψ -)locality of an extension can be rec-
ognized by proving embeddability of partial models into total models assuming
that the extension clauses are flat and linear; for details see [13, 9, 10]. The
locality proofs given there also explain how to construct models of satisfiable
ground (extended) clauses starting from models of their instances. We used the
link between locality and embeddability for identifying various classes of local
theory extensions. Some examples are given below:

Locality Transfer 197

Theories of absolutely free data structures. Let AbsFreeΣ0 = (
⋃

c∈Σ0
(Injectivec)∪

(Acyclicc)) ∪
⋃

c,d∈Σ,c =dDisjointc,d, where:

Injectivec c(x1, . . . , xn)≈c(y1, . . . , yn) → xj≈yj for all j ∈ {1, . . . , n},
Disjointc,d c(x1, . . . , xn)
≈d(y1, . . . , ym)
Acyclicc c(t1, . . . , tn)
≈x if x occurs in some ti (an axiom schema)

Theorem 2 ([14]). The following theories are local:

(a) The theory AbsFreeΣ0 of absolutely free constructors in Σ0.

(b) Tcs = AbsFreeΣ0 ∪ Sel(Σ0), where Sel(Σ0) =
⋃

c∈Σ0

⋃a(c)
i=1 Sel(selci , c) axiom-

atizes a family of selectors selc1, . . . , sel
c
n, where a(c) is the arity of c, corre-

sponding to constructors c ∈ Σ0, where:

Sel(sci , c) ∀x, x1, . . . , xa(c) x≈c(x1, . . . , xa(c)) → selci (x)≈xi

The arguments in [14] can be used to prove locality if the axioms for selectors
contain in addition to Sel(sci , c) also the axiom:

∀x, x1, . . . , xa(d) x≈d(x1, . . . , xa(d)) → selci (x)≈x if d
= c.

Locality and Saturation. In [2, 3], Ganzinger and Basin established a link
between saturation and order locality, and used these results for automated
complexity analysis, and for obtaining local axiomatizations from non-local ones.

Theorem 3 ([2, 3]). Let ≺T be a well-founded (possibly partial) term ordering
and ≺ a compatible and total atom ordering. Let K be a set of clauses without
equality which is reductive w.r.t. ≺T and ≺. If K is saturated w.r.t. ≺-ordered
resolution, then K is order local w.r.t. ≺.

Example 4. Theorem 3 is used in [4] for proving (by saturation) the locality of
the presentation Int of the set of integers with successor and predecessor:

(1) p(x)≈y → s(y)≈x (3) p(x)≈p(y) → y≈x
(2) s(x)≈y → p(y)≈x (4) s(x)≈s(y) → y≈x

together with an explicit axiomatization of the predicate ≈ by congruence axioms.

However, using saturation for detecting locality or for generating local presen-
tations from non-local ones has the following drawbacks: (i) Equality cannot be
used as a built-in predicate: If the clauses contain the equality predicate then the
congruence axioms have to be added explicitly. (ii) The size of the saturated sets
of clauses can be very large. Often, in fact, infinitely many clauses are generated.

Example 5 ([6]). We illustrate the last problem by two examples:

(1) From the clause set {x≤x, x≤y∧y≤z→x≤z, f(x)≤f(s(x))} by saturation
under ordered resolution we obtain an infinite set containing all clauses of
the form f(x)≤f(sn(x)), where n≥0.

(2) From the clause set {nat(0), nat(x), y≈s(x) → nat(y)} by saturation under
ordered resolution and equality factoring we obtain an infinite set containing
all clauses of the form nat(sn(0)).

198 M. Horbach and V. Sofronie-Stokkermans

In such cases, a usual resolution-based theorem prover will not be able to detect
saturation, since the set of clauses which are generated is infinite.

To reduce the size of a representation, we can use constrained clauses. In [6] we
showed that Thm. 3 has a counterpart for constrained clauses with equality:

Theorem 6 ([6]). Let ≺T be a reduction ordering and ≺ a compatible and total
atom ordering. Let N be a set of constrained clauses that is reductive w.r.t. ≺T

and saturated under the superposition calculus w.r.t. ≺ for constrained clauses
described in [7]. Assume that each constrained clause in N with positive equa-
tional atoms contains either a unique positive equation which is also maximal, or
a negative equation which is maximal. Let C be a ground clause whose antecedent
does not contain any equations. Then N |= C iff N |=� C.

The restrictions on N guarantee that constraint equations can be regarded syn-
tactically and that all clauses that are derived in the constraint superposition
calculus [7] from N ∪ ¬C contain equational atoms only negatively and no in-
ferences into constraints are necessary.

The advantage of using constrained clauses is that in many cases it allows us
to obtain a finite symbolic representation for possibly infinite sets of clauses.

Example 7 ([6]). The constrained resolution calculus in [7] allows us to ob-
tain a finite representation for the theory in Example 5(1) by using constrained
clauses of the form y≈s∗(x) ‖ f(x) ≤ f(y). For the theory described in Exam-
ple 5(2), we obtain the saturated set of constrained clauses {x≈s∗(0) ‖ nat(x)}.

3 Enumerating Ground Instances of Constrained Clauses

Locality of theories and theory extensions guarantees that in order to disprove a
set G of ground clauses we only need to look at certain ground instances of the
local axiomatization (without loss of completeness). Note that the constraints
are used as a notation for encoding a family of (syntactic) instances of a clause.
The same holds when we compute given instances of such constrained clauses.
We have (α ‖C)[Ψ(G)] ⊆ C[Ψ(G)]. A ground instance Cτ from C[Ψ(G)] is in
(α ‖C)[Ψ(G)] if the constraint ατ holds. Unfortunately, it is in general not pos-
sible to effectively enumerate all such instances. This is due to the fact that
satisfiability of constraints is not decidable (cf. [7]).

We show that enumerating ground instances is possible for an important class
of constraints; we introduce a notation for them below:

Notation 8 The expression %x≈%yσ̄ denotes a constraint (%x≈%y)σ̄ where (i) σ̄ is
the identity on %x and (ii) no new occurrences of variables in %x are introduced by
σ̄, i.e. %x ∩ vars(%yσ̄) = ∅.

In our experience, such constraints appear very frequently. Examples are the
local axiomatization of monotonicity in Example 7, as well as the following ax-
iomatization of the theory of absolutely free constructors c1, . . . , cm with arities
n1, . . . , nm (which satisfies the requirements of Thm. 6):

Locality Transfer 199

– Injectivity: ci(x1, . . . , xn)≈ci(y1, . . . , yn) → xj ≈ yj for all j ∈ {1, . . . , n};
– Disjointness: ci(x1, . . . , xni)
≈cj(y1, . . . , ynj) for i < j;
– Acyclicity: x≈y(σ11| . . . |σmnm)+ ‖ x
≈y, where σij = {y +→ ci(. . . , y, . . .)}

with y at position j and fresh variables at all other positions.

Theorem 9. For every set N of constrained clauses with only constraints of the
form %x≈%yσ̄ and every set T of ground terms we can effectively enumerate N [T].

Proof : A ground instance Cτ of C[T] is in (α ‖C)[T] if after applying the sub-
stitution τ the constraint holds. Whether this is the case can be decided for
contraints of the form %x≈%yσ̄ by solving the matching problem %xτ = %yσ̄τ , where
%xτ consists of ground terms only. This is done by a reduction in the style of the
standard unification algorithm by Martelli and Montanari, recursively unfolding
the substitution expression:

(%s1, f(%s2))≈(%t1, g(%t2))σ̄
 ⊥ %s≈%yστ̄
 %s≈%tτ̄ if %yσ = %t

(%s1, f(%s2))≈(%t1, f(%t2))σ̄
 (%s1, %s2)≈(%t1,%t2)σ̄ %s≈%yσ̄∗τ̄
 %s≈%y(τ̄ |σ̄σ̄∗τ̄)
%s≈%y(σ̄1|σ̄2)τ̄
 %s≈%yσ̄1τ̄ | %s≈%yσ̄2τ̄ (s,%t)≈(x, %y)
 %t≈%y{x +→ s}

We split the derivation into two branches for disjunctions. If at least one of the
branches terminates without yielding ⊥, the constraint is satisfiable. �

Example 10. Consider the constrained clause (x≈y)σ∗ ‖ f(y) ≤ f(x) with σ =
{x +→ x, y +→ s(y)}, which axiomatizes monotonicity of a function f over the
integers. Let G = (d≈s3(c) ∧ f(c) > f(d)). Then Ψ(G) = {d, c, s(c), s2(c), s3(c)}
and ((x≈y)σ∗ ‖ f(y) ≤ f(x))[Ψ(G)] consists of the clauses:

f(c) ≤ f(si(c)) for i ∈ {0, 1, 2, 3} and f(d) ≤ f(d).

4 Enriching the Language

Axioms consisting of constrained clauses are difficult to export to standard first-
order provers. In addition, there are limitations in using them if we are interested
in checking satisfiability in Herbrand models of the axioms, in which all Skolem
constants of G are interpreted as ground terms.

Example 11. Let N = {x≈s∗(0) ‖ nat(x)}. If a is a constant, we cannot directly
express the positive fact that there is an n such that a = sn(0), so we cannot prove
nat(x) → nat(s(x)) from N : For the ground clause set G = {nat(a),¬nat(s(a))},
we cannot derive a contradiction using the axiomatization N . (In fact, N ∪ G
has a model with the universe {sn(0) | n ∈ N} ∪ {sn(a) | n ∈ N}.)

To address these limitations, and to obtain more natural axiomatizations, we en-
rich the language with additional predicates encoding the constraints and analyze
situations in which locality results can be obtained for these new presentations.

Let N be a set of clauses with constraints of the form %x≈%yσ̄ satisfying the
conditions from Thm. 6. Assume that N is saturated (hence local). Our goal is
to use the form of the constraints to (conservatively) extend the language – e.g.

200 M. Horbach and V. Sofronie-Stokkermans

by defining new predicates – in order to obtain local presentations expressible as
sets of clauses without constraints. For this we extend the signature by adding
a new predicate symbol Rσ̄ for every constraint α = %x≈%yσ̄ and rewriting every
constrained clause of the form α ‖C into the clause Rσ̄(%x, %y) → C. We can
encode the properties of these new relations (i) by giving a complete description
for all ground terms, or (ii) by providing axiomatizations.

4.1 Concrete Description of the New Relations

In a first step, we assume that we give a complete description of the newly
introduced relations for all ground terms; we will have to ensure that saturation
is preserved when changing the clauses in N and adding the encoding. For this
it is necessary that, whenever we eliminate the constraint from a constrained
clause α ‖C, the ground literal ¬R(%x, %y) in the resulting clause R(%x, %y) → C
does not influence the size of that clause too much. This can be achieved by
ignoring constraint equations x≈y where x does not appear in the clausal part.

Example 12. The clause x≈s(y) ‖P (y) is not translated to R(x, y) → P (y),
where the R literal dominates all ground instances of the form R(s(t), t) → P (t),
but to R()→P (y), where R is the predicate corresponding to the empty constraint,
or equivalently to → P (y).

We show that if N is saturated under superposition for constraint clauses, this
holds for the clause sets where constraints have been replaced by new predicates.

Theorem 13. Let N be a consistent set of constrained clauses over Π=(Σ,Pred)
with constraints of the form %x≈%yσ̄. Let N ′ be obtained from N by replacing
the constraints by fresh literals as explained above. Let R be the set of ground
instances of these literals, such that Rσ̄(%x, %y)τ ∈ R if (%x≈%y)σ̄τ is valid, and
¬Rσ̄(%x, %y)τ ∈ R otherwise. Let ≺T be a reduction ordering and ≺ a compatible
and total atom ordering which ensures that R-literals are not maximal in any
clause in N ′. If N is (i) saturated under ordered resolution w.r.t. ≺, or (ii) satu-
rated under constrained superposition w.r.t. ≺, or (iii) Horn and peak saturated
under ordered hyperresolution w.r.t. ≺, then the same holds for N ′ ∪R.

It can be seen that for every set of ground clauses G in the signature of N , N∪G
is satisfiable iff N ′∪R∪G is satisfiable. By Thm. 13, if N is a set of constrained
clauses in first-order logic without equality which is saturated under ordered
resolution, or it satisfies the assumptions in Thm. 6 and is saturated under
constrained superposition, so N ′ ∪R ∪G |=⊥ iff (N ′ ∪R)[Ψ�(G)] ∪G |=⊥.

4.2 Axiomatization for the Newly Introduced Predicates

There are some problems with the approach described above. Assume that G
contains constants which are not in Σ. Then, instances of the constraints α =
%x≈%yσ̄ in N containing such constants might be true for some interpretations of

Locality Transfer 201

the constants and false for other interpretations. In such a situation we cannot
add the corresponding instances of the Rσ-literals to R. If σ is a substitution
expression we need to express the properties of Rσ in terms of the substitutions
used in σ. For this, we introduce for every constraint of the form %x≈%yσ̄ a set
of first-order formulae Defσ̄ describing the relation Rσ̄(%x, %y) by induction on the
structure of α as follows:

Definition 14 (Axiomatizing the properties of the new relations)

(1) For atomic substitutions σ: Defσ := Rσ(%x, %y) ↔ (x1≈σ(y1)∧· · ·∧xn≈σ(yn))
(2) For compositions: Defσ̄τ̄ := Rσ̄τ̄ (%x, %y) ↔ ∃%z (Rσ̄(%x, %z) ∧ Rτ̄ (%z, %y))
(3) For disjunctions: Defσ̄1|σ̄2

:= Rσ̄1|σ̄2
(%x, %y) ↔ (Rσ̄1 (%x, %y) ∨ Rσ̄2(%x, %y))

(4) For iterations: Defσ̄∗ , axiom expressing the fact that Rσ̄∗ is the reflexive and
transitive closure of Rσ̄.

Example 15. Let σ be a substitution with σ(y) = s(y) and σ(x) = x. Let τ
be the substitution with τ(y) = s(s(y)) and τ(x) = x. Let α = x≈yσ (which
corresponds to x≈s(y)), and β = x≈yτ (which corresponds to x≈s(s(y))). Then
Defσ: Rσ(x, y) ↔ (x≈s(y)); Defτ : Rτ (x, y) ↔ (x≈s(s(y))); Defστ : Rστ (x, y) ↔
∃z(Rσ(x, z) ∧ Rτ (z, y)); Defσ|τ : Rσ|τ (x, y) ↔ (Rσ(x, y) ∨Rτ (x, y)).

It can be shown that if N is a set of constrained clauses and G is a set of ground
clauses, N ∪G is satisfiable iff N ′∪G has a model satisfying definitions (1)-(3) in
Def. 14 and such that for every substitution expression σ̄, Rσ̄∗ is the reflexive and
transitive closure of Rσ̄. The definitions of relations Rσ̄ where σ̄ is a composition
or a disjunction of substitutions can be expressed using first-order formulae over
relations associated with the component substitutions of σ̄. The problematic part
is finding a set of axioms which expresses the fact that Rσ̄∗ = (Rσ̄)

∗. It is known
that transitive closure can be encoded in first-order logic (in an extension of the
original signature) if we are interested only in finite models. An axiomatization
for reflexive transitive closure which is sound and complete for finite domains
was proposed in [12]; an axiomatization which completely describes transitive
closure over finite, acyclic graphs was given in [11]:

T1(R) : ∀x, y(R∗(x, y) ↔ (x≈y ∨ ∃z(R(x, z) ∧ R∗(z, y)))).

In [11] it is shown that for checking validity of formulae which contain predicates
of the form R∗ only positively, only the ← implication T←1 (R) of T1(R) is needed.
Having a first order axiomatization does not mean that we have decidability (see
the discussions on this in [11]). Consider for instance the axiom T2(R):

T2(R) : ∀x, y(R∗(x, y) ↔ (x≈y ∨ ∃z(R∗(x, z) ∧ R(z, y)))).

Neither T2(R) nor T1(R) can be proved from the other without induction; simi-
larly for the transitivity of the congruence closure [11].

5 Extensions of Theories of Absolutely Free Constructors

To identify situations in which axiomatizations with good properties exist, we
make the following assumptions:

202 M. Horbach and V. Sofronie-Stokkermans

(A1) We consider sets N = N0 ∪ N1 of constrained clauses where:

– N0 is a set of axioms for Tcs, e.g. AbsFreeΣ0 ∪ Sel(Σ0) (cf. Thm. 2, [14]);
– the extension N0 ⊆ N = N0 ∪ N1 is a local theory extension with the

property that in N1 every variable occurs below an extension function
and every weak partial model can be extended to a total model with the
same universes for the base sorts. (This happens for instance in the case
of local extensions with function symbols whose arguments are of base
sorts, and where the codomain is of a new sort.)

(A2) The clauses in N contain only constraints of the form %x≈%yσ̄; where σ used
only constructors, and ≺ is a simplification ordering.

We analyze the special situation in which the properties of the new relation
symbols can be described by a set of formulae Def (of the form (1)-(4) in Def. 14)
which can be expressed as a set of clauses without additional Skolem functions.
This is the case, for instance, when the following conditions hold:

(C1) Only composition of basic substitutions is allowed; iteration is only allowed
for substitutions with σ(x) 0 x for every variable x.

(C2) The set G of clauses for which we want to check satisfiability contains
only negative atoms starting with a relation of form Rσ∗ .

We first analyze satisfiability w.r.t. absolutely free models, possibly with addi-
tional generators (5.1) and then satisfiability in the absolutely free (Herbrand)
model over Σ0, with no additional generators (5.2).

5.1 Satisfiability w.r.t. Absolutely Free Models

We first show that under the assumptions above locality is preserved if we replace
the constraints in the clauses using new predicate symbols and we specify their
properties.

Theorem 16. Let N1,R, N ′
1 be sets of clauses as in Theorem 13. Assume that

conditions (A1), (A2) and (C1) hold for N = N0 ∪N1. Let G be a set of ground
clauses satisfying condition (C2). Then the following are equivalent:

(1) R ∪ N0 ∪ N ′
1 ∪ G has a model A in which the interpretations of the new

relations satisfy definitions (1)–(3), and such that RA
σ∗ = (RA

σ)
∗.

(2) (Def ∪ N0 ∪ N ′
1)[Ψ

�(G)] ∪ G has a finite partial model (having as elements
the finite set of interpretations of terms in Ψ�(G)), where Def consists of
all definitions of the form (1)-(4) in Def. 14 (which are in this case clauses
without additional Skolem functions), and where the definitions of type (4)
are axiomatized by the set of clauses consisting for every Rσ̄∗ of T←1 (Rσ̄).

Example 17. Let Nf = {x≈s∗(y) ‖ f(y) ≤ f(x)}∪Pre be the (local) constrained
axiomatization of the theory of monotonicity for the function f , where Pre con-
tains the reflexivity and transitivity axioms for ≤. Let N0 be the axiomatization
of the absolutely free constructor s. Note that x≈s∗(y) is a shorthand for x≈yσ∗,

Locality Transfer 203

where σ(x) = x and σ(y) = s(y). The set of clauses obtained from Nf by replac-
ing the constraints with new literals is N ′

f = {Rσ∗(x, y)→f(y)≤f(x)}∪Pre. For
defining Rσ we use the axiom Defσ := {Rσ(x, y) ↔ x≈s(y)}. Let Defσ∗ be an
axiomatization for Rσ∗ as R∗σ (e.g. as in [11]).

Let G1 := a ≈ s(b) ∧ ¬Rσ∗(a, b) ∧ ¬f(b) ≤ f(a) (containing only negative Rσ∗-
literals). The set of clauses N0∪Nf ∪G1 is satisfiable if and only if N0∪N ′

f ∪R∪
G1 is satisfiable. By Thm. 16 this happens if and only if (Def∧N ′

f)[Ψ
�(G1)]∪G1

is satisfiable, where Def = Defσ ∧T←1 (Rσ). We check the satisfiability of this set
of ground clauses using the hierarchical reduction in Theorem 1.

D Gc
1 ∪N0[Ψ

�(G)]0 GR
1 ∪ Def[Ψ�(G)]0 Ge

1 N ′
f [Ψ

�(G)]0

a1≈f(a) a≈s(b) ¬Rσ∗ (a, b) ¬a1 ≤ b1 a1 ≤ a1 Rσ∗ (a, b)→ a1 ≤ b1
b1≈f(b) ¬a≈s(a) Defσ [Ψ

�(G)] b1 ≤ b1 Rσ∗ (b, a)→ b1 ≤ a1

¬b≈s(b) T←
1 (Rσ)[Ψ

�(G)] . . .

Let G2 := (b≈s(a) ∧ Rσ∗(c, b) ∧ d≈s(c) ∧ ¬f(a) ≤ f(d)). G2 contains positive
Rσ∗-literals, so Theorem 16 cannot be used. We present a proof of unsatisfiability
of Defσ ∪T1(Rσ)∪T2(Rσ)∪N ′

f ∪G2: From b≈s(a) and d≈s(c) and from Defσ it
follows that Rσ(b, a) and Rσ(d, c). From Rσ(d, c), Rσ∗(c, b) and T1(Rσ) it follows
that Rσ∗(d, b). From Rσ∗(d, b), Rσ(b, a) and T2(Rσ) it follows that Rσ∗(d, a).
From this and Nf [Ψ

�(G)]0 we derive a1 ≤ d1, which together with ¬a1 ≤ d1
leads to a contradiction.

5.2 Satisfiability w.r.t. Herbrand Models over Σ0

Let Tcs := AbsFreeΣ0 ∪Sel(Σ0) be the theory of absolutely free constructors in a
finite set Σ0 with corresponding selectors mentioned in Theorem 2. We analyze
the problem of checking satisfiability of ground clauses w.r.t. such axiomatiza-
tions in Herbrand models having as universe the set TΣ0 of ground terms over
the signature of Tcs (and no additional generators). Since the set TΣ0 is infi-
nite, we cannot use the results on first-order definability for transitive closure
mentioned before. We will overcome the problem by noting the following fact:

Lemma 18 For every element t in the absolutely free algebra TΣ0 , the num-
ber of terms in the set T =

⋃
i∈N Ti, where T0 = {t} and Ti+1 = {selcj(t′) |

selcj selector and t′ ∈ Ti} is finite.

Example 19. (i) For the theory of one unary constructor s with selector p and
one constant constructor 0, TΣ0 is the set of natural numbers; for every natural
number m the set of elements of the form pn(m) with n ∈ N is finite. (ii) For
the theory of one binary constructor cons with selector tail and one constant
constructor nil (modeling the theory of finite, acyclic lists), from every node in
a linked, finite acyclic list, nil can be reached in finitely many steps using tail.

It is known that TΣ0 |= t≈c(t1, . . . , tn) ↔
∧n

i=1 selci (t)≈ti ∧
∧n

i=1 t
≈ti. We can
transform all clauses and all constraints using this equivalence, such that all

204 M. Horbach and V. Sofronie-Stokkermans

constructors are eliminated. (The constrained clause x≈s∗(y) ‖ f(y) ≤ f(x) can
be rewritten to y≈p∗(x) ‖ f(y) ≤ f(x).)

For the sake of simplicity we restrict here to signatures which contain one con-
structor with arity n and selectors sel1, . . . , seln and m constructors c1, . . . , cm
with arity 0. Let Tsel be axiomatized by the following axioms:

(S1)
∧n

i=1 seli(x)≈seli(y) → x≈y ∨ (
∨m

i=1 x≈ci ∨
∨m

i=1 y≈ci)
(S2) seli(x)≈x →

∨n
i=1 x≈ci

In order to ensure that we check ground satisfiability over TΣ0 , we will add the
following axiom (after extending the signature to a signature ΣR by adding the
relations of the form Rσ̄):

(Fin) R(sel1|...|selk)∗(c
0
1, x) ∨ · · · ∨ R(sel1|...|selk)∗(c

0
m, x)

where sel1, . . . , selk are all selectors and c01, · · · c0m are all 0-ary constructors.2

Theorem 20. Let A be a model of an extension of Tcs with additional rela-
tions {Rσ̄ | σ̄ substitution expression occurring in K}, where K is a family of
constrained clauses satisfying conditions (1)-(4). Assume that Fin holds in A.
Then A has as universe the set TΣ0 .

Having first order axiomatizations for relations of the form Rσ̄∗ and transitive
closure of Rσ̄ does not necessarily imply that we have already methods for effi-
ciently reasoning in such theories. We show that under assumptions (A1), (A2),
(C1) and (C2), when restricting to models with universe TΣ0 , checking satisfi-
ability of sets of ground clauses G w.r.t. a set of saturated constrained clauses
N0 ∪N1, where N0 is a set of axioms for Tcs, can be reduced to checking satisfi-
ability of N0 ∪ N ′

1 ∪ Def ∪ G (where N ′
1 is obtained from N1 by replacing every

clause %x≈%yσ̄||C in N with Rσ(%x, %y) → C and Def is a set of clauses specify-
ing definitions for the newly introduced relations) w.r.t. certain finite structures
with universe TG, defined by:

TG =
⋃
i∈N

Ti, where T0 = st(G) and Ti+1 = {seli(t) | t ∈ Ti}.

Theorem 21. Let N1 be a set of constrained clauses. Assume that conditions
(A1), (A2) hold for N = N0 ∪ N1. Assume that the definitions of the newly
introduced predicate symbols can be expressed as a set Def of clauses without ad-
ditional Skolem functions. For every set G of ground clauses satisfying condition
(C2), the following are equivalent:

(1) N0 ∪ N1 ∪ G has a model A with support TΣ0 in which all relations satisfy
conditions (1)–(3) in Def. 14 and for every σ, RA

σ∗ = (RA
σ)
∗.

(2) (Tsel ∪ Def ∪ N ′
1)[TG] ∪ G has a finite model P having as universe a subset

of TΣ containing all 0-ary constructors and with the property that all terms
in TG are defined in P .

2 This is different from the approach used in [7] in which satisfiability is checked in
the minimal Herbrand model; to ensure that all constants can be expressed using
the initial signature, existential variables are added to the constraints.

Locality Transfer 205

Sometimes the assumptions can be relaxed. One of the simpler cases studied in
the literature are theories with relations defined by R(x, y) ↔ y≈f(x), where
f is a unary function symbol. We will therefore restrict here to analyzing the
situation in which we have one unary constructor and several 0-ary constructors.
For this case we use an adaptation of the axiomatization of finite, acyclic lists
with reachability proposed in [16]. For the theory of one binary constructor, the
results in [15] can be adapted; we think that the results in [15] can be used, with
small changes, also for the theory of one n-ary constructor.

Example 22. Let Rp∗ be the transitive closure of Rp, where Rp(x, y) ↔ x≈p(y).
We adapt the axiomatization used in [16] to obtain an axiomatization Defp∗

for Rp∗ consisting in the formulae (1)–(9). We included also the clause Fin :
(Rp∗(0, x)), expressing the fact that from every element we can reach 0 in finitely
many steps; this guarantees that we check satisfiability in the initial model:

(1) Rp∗(0, x) (2) p(x)≈p(y)→ x≈y ∨ x≈0 ∨ y≈0
(3) Rp∗(x, x) (4) Rp(x, y)→ Rp∗(x, y)
(5) p(x)≈x→ x≈0 (6) Rp∗(x, y)→ x≈y ∨Rp∗(x, p(y))
(7) Rp∗(x, y) ∧ Rp∗(y, x)→ x≈y (8) Rp∗(x, y) ∧Rp∗(y, z)→ Rp∗(x, z)
(9) Rp∗(x, y) ∧ Rp∗(x, z)→ Rp∗(y, z) ∨Rp∗(z, y)

The locality proof in [16] uses the link between locality and embeddability; it
can be adapted to prove that Tsel ∪Defp∗ is a local theory, or alternatively that
the extension N1 ⊆ Tsel ∪ Defp∗ is local, where N1 consists of the axioms (1),
(3), (8) and (9) in Defp∗ .

Example 23. Consider the saturated axiomatization N = {x≈s∗(0) ‖ nat(x)}
of the natural numbers. We transform N by using the selector instead and as-
sociating new predicate symbols with the constraints as follows: Since x≈s∗(0)
iff p∗(x)≈0. we introduce new predicates Rσ and Rσ∗ axiomatized by Defσ:
Rσ(x, y) ↔ p(x)≈y; the axiomatization for Rσ∗ is the one in Example 22. Then
N ′ := Rσ∗(x, 0) → nat(x). Let Fin be Rσ∗(x, 0).

Let G = {nat(a),¬nat(s(a))}. By Thm. 21 we know that if Ts is the theory of
one unary constructor s and one 0-ary constructor 0, then there is a model of
N ′∪G∪Fin (which has as support Ts, i.e. the set of natural numbers) if and only
if (Tsel∪N ′∪Fin)[TG]∪G has a model. Note that although TG is finite, we cannot
estimate its size. We will start by instantiating the clauses in Tsel∪N ′∪Fin using
terms occurring in G. From ¬nat(s(a)) we derive ¬Rσ∗(s(a), 0), which together
with Fin leads to a contradiction. We do not need other instances.

6 Conclusions and Future Work

This paper continues our previous work [6], where we used constrained clauses
to finitely represent possibly infinite sets of clauses and showed that constrained
axiomatizations are local if they are saturated under a version of resolution.
Here we showed that we can encode the constraints by extending the signature
with new predicates – which often bear a particularly useful semantics – in such
a way that locality is guaranteed. We focused on a special type of constrained

206 M. Horbach and V. Sofronie-Stokkermans

clauses containing only constraints of the form %x≈%yσ̄, where %x ∩ vars(%yσ̄) = ∅
and identified extensions of theories of absolutely free constructors for which
locality is preserved after this transformation.

Beyond what we presented in this paper, there are other ways of using such
language extensions in more general settings, which we would like to explore
in future work. Of particular interest are theories with fixpoints. Consider for
instance the theory of a monotone function f over a theory with an underlying
complete ∧-semilattice structure with top element 1. We can use the fact that
greatest fixpoints exist to replace constraints of the form x≈f∗(1) ‖ c ≤ x with
the unconstrained clause c ≤ gfp(f) In future work we plan to apply this type of
reasoning to the description logics EL or ALC with fixpoints (e.g. for computing
uniform interpolants). Another promising research direction is inductive theo-
rem proving: Originally, constrained clauses of this flavor were introduced in [8]
to reason about entailment in Herbrand models, and in particular in minimal
models. The link between saturation and locality established in [6] and in the
current paper opens a completely new avenue to explore the connection between
locality and efficient reasoning in minimal models.

Acknowledgments. We thank the reviewers for their helpful comments. This
work was partly supported by the German Research Council (DFG) as part of
the Transregional Collaborative Research Center “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS, see www.avacs.org).

References

[1] Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with se-
lection and simplification. J. of Logic and Computation 4(3), 217–247 (1994)

[2] Basin, D., Ganzinger, H.: Complexity analysis based on ordered resolution. In:
Proc. LICS 1996, pp. 456–465. IEEE Computer Society Press (1996)

[3] Basin, D., Ganzinger, H.: Automated complexity analysis based on ordered reso-
lution. Journal of the ACM 48(1), 70–109 (2001)

[4] Ganzinger, H.: Relating semantic and proof-theoretic concepts for polynomial time
decidability of uniform word problems. In: Proc. LICS 2001, pp. 81–92. IEEE
Computer Society Press (2001)

[5] Givan, R., McAllester, D.: New results on local inference relations. In: Principles of
Knowledge Representation and Reasoning: Proceedings of the Third International
Conference (KR 1992), pp. 403–412. Morgan Kaufmann Press (1992)

[6] Horbach, M., Sofronie-Stokkermans, V.: Obtaining finite local theory axiomatiza-
tions via saturation. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS
2013. LNCS (LNAI), vol. 8152, pp. 198–213. Springer, Heidelberg (2013)

[7] Horbach, M., Weidenbach, C.: Deciding the inductive validity of ∀∃∗ queries. In:
Grädel, E., Kahle, R. (eds.) CSL 2009. LNCS, vol. 5771, pp. 332–347. Springer,
Heidelberg (2009)

[8] Horbach, M., Weidenbach, C.: Superposition for Fixed Domains. ACM Transac-
tions on Computational Logic 11(4), 27:1–27:35 (2010)

[9] Ihlemann, C., Jacobs, S., Sofronie-Stokkermans, V.: On local reasoning in verifi-
cation. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963,
pp. 265–281. Springer, Heidelberg (2008)

Locality Transfer 207

[10] Ihlemann, C., Sofronie-Stokkermans, V.: On hierarchical reasoning in combina-
tions of theories. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173,
pp. 30–45. Springer, Heidelberg (2010)

[11] Lev-Ami, T., Immerman, N., Reps, T.W., Sagiv, M., Srivastava, S., Yorsh, G.:
Simulating reachability using first-order logic with applications to verification of
linked data structures. Logical Methods in Computer Science 5(2) (2009)

[12] Klaessen, K.: Expressing transitive closure for finite domains in pure first-order
logic. Unpublished manuscript

[13] Sofronie-Stokkermans, V.: Hierarchic reasoning in local theory extensions. In:
Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 219–234.
Springer, Heidelberg (2005)

[14] Sofronie-Stokkermans, V.: Locality results for certain extensions of theories with
bridging functions. In: Schmidt, R.A. (ed.) CADE-22. LNCS (LNAI), vol. 5663,
pp. 67–83. Springer, Heidelberg (2009)

[15] Wies, T., Muñiz, M., Kuncak, V.: An efficient decision procedure for imperative
tree data structures. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011.
LNCS (LNAI), vol. 6803, pp. 476–491. Springer, Heidelberg (2011)

[16] Wies, T., Muñiz, M., Kuncak, V.: Deciding functional lists with sublist sets. In:
Joshi, R., Müller, P., Podelski, A. (eds.) VSTTE 2012. LNCS, vol. 7152, pp. 66–81.
Springer, Heidelberg (2012)

Proving Termination and Memory Safety

for Programs with Pointer Arithmetic�

Thomas Ströder1, Jürgen Giesl1, Marc Brockschmidt2, Florian Frohn1,
Carsten Fuhs3, Jera Hensel1, and Peter Schneider-Kamp4

1 LuFG Informatik 2, RWTH Aachen University, Germany
2 Microsoft Research Cambridge, UK

3 Dept. of Computer Science, University College London, UK
4 IMADA, University of Southern Denmark, Denmark

Abstract. Proving termination automatically for programs with ex-
plicit pointer arithmetic is still an open problem. To close this gap, we
introduce a novel abstract domain that can track allocated memory in
detail. We use it to automatically construct a symbolic execution graph
that represents all possible runs of the program and that can be used
to prove memory safety. This graph is then transformed into an integer
transition system, whose termination can be proved by standard tech-
niques. We implemented this approach in the automated termination
prover AProVE and demonstrate its capability of analyzing C programs
with pointer arithmetic that existing tools cannot handle.

1 Introduction

Consider the following standard C implementation of strlen [23,30], computing
the length of the string at pointer str. In C, strings are usually represented as
a pointer str to the heap, where all following memory cells up to the first one
that contains the value 0 are allocated memory and form the value of the string.

int strlen(char* str) {char* s = str; while(*s) s++; return s-str;}

To analyze algorithms on such data, one has to handle the interplay between ad-
dresses and the values they point to. In C, a violation of memory safety (e.g., de-
referencing NULL, accessing an array outside its bounds, etc.) leads to undefined
behavior, which may also include non-termination. Thus, to prove termination of
C programs with low-level memory access, one must also ensure memory safety.
The strlen algorithm is memory safe and terminates because there is some ad-
dress end ≥ str (an integer property of end and str) such that *end is 0 (a poin-
ter property of end) and all addresses str ≤ s ≤ end are allocated. Other typical
programs with pointer arithmetic operate on arrays (which are just sequences of
memory cells in C). In this paper, we present a novel approach to prove memory
safety and termination of algorithms on integers and pointers automatically. To
avoid handling the intricacies of C, we analyze programs in the platform-indepen-
dent intermediate representation (IR) of the LLVM compilation framework [17].
Our approach works in three steps: First, a symbolic execution graph is created

� Supported by DFG grant GI 274/6-1 and Research Training Group 1298 (AlgoSyn).

S. Demri, D. Kapur, and C. Weidenbach (Eds.): IJCAR 2014, LNAI 8562, pp. 208–223, 2014.
c© Springer International Publishing Switzerland 2014

Proving Termination and Memory Safety 209

that represents an over-approximation of all possible program runs. We present
our abstract domain based on separation logic [22] and the automated construc-
tion of such graphs in Sect. 2. In this step, we handle all issues related to memory,
and in particular prove memory safety of our input program. In Sect. 3, we de-
scribe the second step of our approach, in which we generate an integer transition
system (ITS) from the symbolic execution graph, encoding the essential informa-
tion needed to show termination. In the last step, existing techniques for integer
programs are used to prove termination of the resulting ITS. In Sect. 4, we
compare our approach with related work and show that our implementation in
the termination prover AProVE proves memory safety and termination of typical
pointer algorithms that could not be handled by other tools before.

2 From LLVM to Symbolic Execution Graphs

In Sect. 2.1, we introduce concrete LLVM states and abstract states that represent
sets of concrete states, cf. [9]. Based on this, Sect. 2.2 shows how to construct
symbolic execution graphs automatically. Sect. 2.3 presents our algorithm to
generalize states, needed to always obtain finite symbolic execution graphs.

To simplify the presentation, we restrict ourselves to a single LLVM function
without function calls and to types of the form in (for n-bit integers), in* (for
pointers to values of type in), in**, in***, etc. Like many other approaches to
termination analysis, we disregard integer overflows and assume that variables
are only instantiated with signed integers appropriate for their type. Moreover,
we assume a 1 byte data alignment (i.e., values may be stored at any address).

2.1 Abstract Domain
define i32 @strlen(i8* str) {

entry: 0: c0 = load i8* str

1: c0zero = icmp eq i8 c0, 0

2: br i1 c0zero, label done, label loop

loop: 0: olds = phi i8* [str,entry],[s,loop]

1: s = getelementptr i8* olds, i32 1

2: c = load i8* s

3: czero = icmp eq i8 c, 0

4: br i1 czero, label done, label loop

done: 0: sfin = phi i8* [str,entry],[s,loop]

1: sfinint = ptrtoint i8* sfin to i32

2: strint = ptrtoint i8* str to i32

3: size = sub i32 sfinint, strint

4: ret i32 size }

Consider the strlen func-
tion from Sect. 1. In the
corresponding LLVM code,1

str has the type i8*, since
it is a pointer to the
string’s first character (of
type i8). The program is
split into the basic blocks
entry, loop, and done. We
will explain this LLVM code
in detail when construct-
ing the symbolic execution
graph in Sect. 2.2.

Concrete LLVM states consist of the program counter, the values of local vari-
ables, and the state of the memory. The program counter is a 3-tuple (bprev , b, i),
where b is the name of the current basic block, bprev is the previously executed

1 This LLVM program corresponds to the code obtained from strlen with the Clang
compiler [8]. To ease readability, we wrote variables without “%” in front (i.e., we
wrote “str” instead of “%str” as in proper LLVM) and added line numbers.

210 T. Ströder et al.

block,2 and i is the index of the next instruction. So if Blks is the set of all basic
blocks, then the set of code positions is Pos = (Blks ∪ {ε})×Blks ×N. We rep-
resent assignments to the local program variables VP (e.g., VP = {str, c0, . . .})
as functions s : VP → Z. The state of the memory is represented by a partial
function m : N>0 → Z with finite domain that maps addresses to integer values.
So a concrete LLVM state is a 3-tuple (p, s,m) ∈ Pos × (VP → Z)× (N>0 → Z).

To model violations of memory safety, we introduce a special state ERR to be
reached when accessing non-allocated memory. So (p, s,m) denotes only memory
safe states where all addresses in m’s domain are allocated. Let→LLVM be LLVM’s
evaluation relation on concrete states, i.e., (p, s,m) →LLVM (p, s,m) holds iff (p, s,
m) evaluates to (p, s,m) by executing one LLVM instruction. Similarly, (p, s,m)
→LLVM ERR means that the instruction at position p accesses an address where
m is undefined. An LLVM program is memory safe for (p, s,m) iff there is no
evaluation (p, s,m) →+

LLVM ERR, where→+
LLVM is the transitive closure of→LLVM.

To formalize abstract states that stand for sets of concrete states, we use a
fragment of separation logic [22]. Here, an infinite set of symbolic variables Vsym

with Vsym ∩ VP = ∅ can be used in place of concrete integers. We represent
abstract states as tuples (p,LV,KB ,AL,PT). Again, p ∈ Pos is the program
counter. The function LV : VP → Vsym maps every local variable to a symbolic
variable. To ease the generalization of states in Sect. 2.3, we require injectivity
of LV. The knowledge base KB ⊆ QF IA(Vsym) is a set of pure quantifier-free
first-order formulas that express integer arithmetic properties of Vsym .

The allocation list AL contains expressions of the form alloc(v1,v2) for v1, v2∈
Vsym , which indicate that v1 ≤ v2 and that all addresses between v1 and v2 are
allocated. Finally, PT is a set of “points-to” atoms v1 ↪→ty v2 where v1, v2 ∈ Vsym

and ty is an LLVM type. This means that the value v2 of type ty is stored at
the address v1. Let size(ty) be the number of bytes required for values of type
ty (e.g., size(i8) = 1 and size(i32) = 4). As each memory cell stores one byte,
v1 ↪→i32 v2 means that v2 is stored in the four cells at the addresses v1, . . . , v1+3.

Definition 1 (Abstract States). Abstract states have the form (p,LV,KB ,
AL,PT) where p∈Pos, LV :VP→Vsym is injective, KB ⊆QF IA(Vsym), AL⊆
{alloc(v1, v2) | v1, v2 ∈ Vsym}, and PT ⊆ {(v1 ↪→ty v2) | v1, v2 ∈ Vsym , ty is an
LLVM type}. Additionally, there is a state ERR for violations of memory safety.

We often identify LV with the set of equations {x = LV(x) | x ∈ VP} and ex-
tend LV to a function from VP�Z to Vsym�Z by defining LV(z) = z for all z ∈ Z.
As an example, consider the following abstract state for our strlen program:

((ε, entry, 0), {str = ustr, . . . , size = usize}, {z = 0},
{alloc(ustr, vend)}, {vend ↪→i8 z}).

(†)

It represents states at the beginning of the entry block, where LV(x) = ux for
all x ∈ VP , the memory cells between LV(str) = ustr and vend are allocated,
and the value at the address vend is z (where the knowledge base implies z = 0).

To define the semantics of abstract states a, we introduce the formulas 〈a〉SL
and 〈a〉FO . The separation logic formula 〈a〉SL defines which concrete states are

2 bprev is needed for phi instructions (cf. Sect. 2.2). In the beginning, we set bprev = ε.

Proving Termination and Memory Safety 211

represented by a. The first-order formula 〈a〉FO is used to construct symbolic exe-
cution graphs, allowing us to use standard SMT solving for all reasoning in our
approach. Moreover, we also use 〈a〉FO for the subsequent generation of integer
transition systems from the symbolic execution graphs. In addition to KB , 〈a〉FO
states that the expressions alloc(v1, v2) ∈ AL represent disjoint intervals and that
two addresses must be different if they point to different values in PT .

In 〈a〉SL, we combine the elements of AL with the separating conjunction
“∗” to ensure that different allocated memory blocks are disjoint. Here, as usual
ϕ1 ∗ϕ2 means that ϕ1 and ϕ2 hold for disjoint parts of the memory. In contrast,
the elements of PT are combined by the ordinary conjunction “∧”. So v1 ↪→ty

v2 ∈ PT does not imply that v1 is different from other addresses occurring in
PT . Similarly, we also combine the two formulas resulting from AL and PT by
“∧”, as both express different properties of memory addresses.

Definition 2 (Representing States by Formulas). For v1, v2 ∈ Vsym , let
〈alloc(v1, v2)〉SL = v1 ≤ v2 ∧ (∀x.∃y. (v1 ≤ x ≤ v2)⇒ (x ↪→ y)). Due to the two’s
complement representation, for any LLVM type ty, we define 〈v1 ↪→ty v2〉SL =

〈v1 ↪→size(ty) v3〉SL ∧ (v2 ≥ 0 ⇒ v3 = v2) ∧ (v2 < 0 ⇒ v3 = v2 + 28·size(ty)),

where v3 ∈ Vsym is fresh. Here,3 〈v1 ↪→0 v3〉SL = true and 〈v1 ↪→n+1 v3〉SL =
v1 ↪→ (v3 mod 256) ∧ 〈 (v1 + 1) ↪→n (v3 div 256) 〉SL. Then a = (p,LV,KB ,AL,
PT) is represented by4 〈a〉SL = LV ∧ KB ∧ (∗ϕ∈AL 〈ϕ〉SL) ∧ (

∧
ϕ∈PT 〈ϕ〉SL).

Moreover, the following first-order information on Vsym is deduced from an
abstract state a = (p,LV,KB ,AL,PT). Let 〈a〉FO be the smallest set with

〈a〉FO = KB ∪ {v1 ≤ v2 | alloc(v1, v2) ∈ AL} ∪
{v2 < w1 ∨ w2 < v1 | alloc(v1, v2), alloc(w1, w2) ∈ AL, (v1, v2) �= (w1, w2)} ∪
{v1 �= w1 | (v1 ↪→ty v2), (w1 ↪→ty w2) ∈ PT and |= 〈a〉FO ⇒ v2 �= w2}.

Let T (Vsym) be the set of all arithmetic terms containing only variables from
Vsym . Any function σ : Vsym → T (Vsym) is called an instantiation. Thus, σ does
not instantiate VP . Instantiations are extended to formulas in the usual way, i.e.,
σ(ϕ) instantiates every v ∈ Vsym that occurs free in ϕ by σ(v). An instantiation is
called concrete iff σ(v) ∈ Z for all v ∈ Vsym . Then an abstract state a at position
p represents those concrete states (p, s,m) where (s,m) is a model of σ(〈a〉SL) for
a concrete instantiation σ of the symbolic variables. So for example, the abstract
state (†) on the previous page represents all concrete states ((ε, entry, 0), s,m)
where m is a memory that stores a string at the address s(str).5

3 We assume a little-endian data layout (where least significant bytes are stored in the
lowest address). A corresponding representation could also be defined for big-endian
layout. This layout information is necessary to decide which concrete states are rep-
resented by abstract states, but it is not used when constructing symbolic execution
graphs (i.e., our remaining approach is independent of such layout information).

4 We identify sets of first-order formulas {ϕ1, ..., ϕn} with their conjunction ϕ1∧...∧ϕn.
5 The reason is that then there is an address end ≥ s(str) such that m(end) = 0 and
m is defined for all numbers between s(str) and end . Hence, (s,m) |= σ(〈a〉SL) holds
for an instantiation with σ(ux) = s(x) for all x ∈ VP , σ(vend) = end , and σ(z) = 0.

212 T. Ströder et al.

It remains to define when (s,m) is a model of a formula from our fragment
of separation logic. For s : VP → Z and any formula ϕ, let s(ϕ) result from
replacing all x ∈ VP in ϕ by s(x). Note that by construction, local variables x

are never quantified in our formulas. Then we define (s,m) |= ϕ iff m |= s(ϕ).
We now define m |= ψ for formulas ψ that may still contain symbolic variables

from Vsym (this is needed for Sect. 2.2). As usual, all free variables v1, . . . , vn in
ψ are implicitly universally quantified, i.e., m |= ψ iff m |= ∀v1, . . . vn. ψ. The
semantics of arithmetic operations and relations and of first-order connectives
and quantifiers is as usual. In particular, we define m |= ∀v. ψ iff m |= σ(ψ) holds
for all instantiations σ where σ(v) ∈ Z and σ(w) = w for all w ∈ Vsym \ {v}.

We still have to define the semantics of ↪→ and ∗ for variable-free formulas.
For z1, z2 ∈ Z, let m |= z1 ↪→ z2 hold iff m(z1) = z2.

6 The semantics of ∗ is
defined as usual in separation logic: For two partial functions m1,m2 : N>0 → Z,
we write m1⊥m2 to indicate that the domains of m1 and m2 are disjoint and
m1 · m2 denotes the union of m1 and m2. Then m |= ϕ1 ∗ ϕ2 iff there exist
m1⊥m2 such that m = m1 ·m2 where m1 |= ϕ1 and m2 |= ϕ2.

As usual, “|= ϕ” means that ϕ is a tautology, i.e., that (s,m) |= ϕ holds for
any s : VP → Z and m : N>0 → Z. Clearly, |= 〈a〉SL ⇒ 〈a〉FO , i.e., 〈a〉FO con-
tains first-order information that holds in every concrete state represented by a.

2.2 Constructing Symbolic Execution Graphs

We now show how to automatically generate a symbolic execution graph that
over-approximates all possible executions of a given program. For this, we present
symbolic execution rules for some of the most important LLVM instructions.
Other instructions can be handled in a similar way, cf. [26]. Note that in contrast
to other formalizations of LLVM’s operational semantics [31], our rules operate
on abstract instead of concrete states to allow a symbolic execution of LLVM. In
particular, we also have rules for refining and generalizing abstract states.

Our analysis starts with the set of initial states that one wants to analyze for
termination, e.g., all states where str points to a string. So in our example, we
start with the abstract state (†). Fig. 1 depicts the symbolic execution graph for
strlen. Here, we omitted the component AL = {alloc(ustr, vend)}, which stays
the same in all states in this example. We also abbreviated parts of LV, KB , PT
by “...”. Instead of vend ↪→i8 z and z = 0, we directly wrote vend ↪→ 0, etc.

The function strlen starts with loading the character at address str to c0.
Let p : ins denote that ins is the instruction at position p. Our first rule handles
the case p : “x = load ty* ad”, i.e., the value of type ty at the address ad is
assigned to the variable x. In our rules, let a always denote the abstract state
before the execution step (i.e., above the horizontal line of the rule). Moreover,
we write 〈a〉 instead of 〈a〉FO . As each memory cell stores one byte, in the load-
rule we first have to check whether the addresses ad, . . . , ad + size(ty) − 1 are
allocated, i.e., if there is an alloc(v1, v2) ∈ AL such that 〈a〉 ⇒ (v1 ≤ LV(ad) ∧
6 We use “↪→” instead of “�→” in separation logic, since m |= z1 �→ z2 would imply that
m(z) is undefined for all z �= z1. This would be inconvenient in our formalization,
since PT usually only contains information about a part of the allocated memory.

Proving Termination and Memory Safety 213

(ε, entry, 0), {str = ustr, ...}, {...}, {vend ↪→ 0}A

(ε, entry, 1), {str = ustr, c0 = v1, ...}, {...}, {ustr ↪→ v1, vend ↪→ 0}B

(ε, entry, 1), {str = ustr, c0 = v1, ...},
{v1 = 0, ...}, {...}

C (ε, entry, 1), {str = ustr, c0 = v1, ...},
{v1 = 0, ...}, {ustr ↪→ v1, vend ↪→ 0}

D

. . .
(ε, entry, 2), {str = ustr, c0zero = v2, ...}, {v2 = 0, ...}, {vend ↪→ 0, ...}E

(entry, loop, 0), {str = ustr, ...}, {...}, {vend ↪→ 0, ...}F

(entry, loop, 1), {str = ustr, olds = v3, ...}, {v3 = ustr, ...}, {vend ↪→ 0, ...}G

(entry, loop, 2), {str = ustr, s = v4, ...}, {v4 = v3 + 1, v3 = ustr, ...}, {vend ↪→ 0, ...}H

(entry, loop, 3), {str = ustr, c = v5, s = v4, ...}, {...}, {v4 ↪→ v5, vend ↪→ 0, ...}I

(entry, loop, 3), {str = ustr,
c = v5, ...}, {v5 = 0, ...}, {...}

J (entry, loop, 3), {str = ustr, c = v5, s = v4,
...}, {v5 = 0, ...}, {v4 ↪→ v5, vend ↪→ 0, ...}

K

. . .
(entry, loop, 4), {str = ustr, czero = v6, s = v4, . . .}, {v5 = 0, v6 = 0, ...}, {...}L

(loop, loop, 0), {str = ustr, c = v5, s = v4, olds = v3, ...},
{v5 = 0, v4 = v3 + 1, v3 = ustr, ...}, {v4 ↪→ v5, vend ↪→ 0, ...}

M

(loop, loop, 0), {str = vstr, c = vc, s = vs, olds = volds, ...},
{vc = 0, vs = volds + 1, volds ≥ vstr, vs < vend , ...}, {vs ↪→ vc, vend ↪→ 0, ...}

N

(loop, loop, 3), {str = vstr, c = wc, s = ws, olds = wolds, ...},
{ws = wolds + 1, wolds = vs, vs < vend , ...}, {ws ↪→ wc, vend ↪→ 0, ...}

O

. . .

(loop, loop, 0), {str = vstr, c = wc, s = ws, olds = wolds, ...},
{wc = 0, ws = wolds + 1, wolds = vs, vs < vend , ...}, {ws ↪→ wc, vend ↪→ 0, ...}

P

Fig. 1. Symbolic execution graph for strlen

LV(ad)+size(ty)−1 ≤ v2) is valid. Then, we reach a new abstract state where the
previous position p = (bprev , b, i) is updated to the position p+ = (bprev , b, i+1)
of the next instruction in the same basic block, and we set LV(x) = w for a
fresh w ∈ Vsym . If we already know the value at the address ad (i.e., if there are
w1, w2 ∈ Vsym with |= 〈a〉 ⇒ (LV(ad) = w1) and w1 ↪→ty w2 ∈ PT) then we
add w = w2 to KB . Otherwise, we add LV(ad) ↪→ty w to PT . We used this rule
to obtain B from A in Fig. 1. In a similar way, one can also formulate a rule for
store instructions that store a value at some address in the memory (cf. [26]).

load from allocated memory (p : “x = load ty* ad” with x, ad ∈ VP)

(p, LV {x = v}, KB , AL, PT)

(p+, LV {x = w}, KB ∪ {w = w2}, AL, PT)
if

• there is alloc(v1,v2)∈AL with |= 〈a〉 ⇒ (v1 ≤ LV(ad) ∧ LV(ad)+size(ty)− 1 ≤ v2),
• there are w1, w2 ∈ Vsym with |= 〈a〉⇒ (LV(ad) = w1) and w1 ↪→ty w2 ∈ PT ,
• w ∈ Vsym is fresh

(p, LV {x = v}, KB , AL, PT)

(p+, LV {x = w}, KB , AL, PT ∪ {LV(ad) ↪→ty w})
if

• there is alloc(v1,v2)∈AL with |= 〈a〉 ⇒ (v1 ≤ LV(ad) ∧ LV(ad)+size(ty)− 1 ≤ v2),
• there are no w1, w2 ∈ Vsym with |= 〈a〉⇒ (LV(ad) = w1) and w1 ↪→ty w2 ∈ PT ,
• w ∈ Vsym is fresh

214 T. Ströder et al.

If load accesses an address that was not allocated, then memory safety is
violated and we reach the ERR state.

load from unallocated memory (p : “x = load ty* ad” with x, ad ∈ VP)

(p,LV,KB ,AL,PT)

ERR
if

there is no alloc(v1,v2)∈AL with |= 〈a〉 ⇒ (v1 ≤ LV(ad) ∧ LV(ad)+size(ty)− 1 ≤ v2)

The instructions icmp and br in strlen’s entry block check if the first char-
acter c0 is 0. In that case, we have reached the end of the string and jump to
the block done. So for “x = icmp eq ty t1, t2”, we check if the state contains
enough information to decide whether the values t1 and t2 of type ty are equal.
In that case, the value 1 resp. 0 (i.e., true resp. false) is assigned to x.7

icmp (p : “x = icmp eq ty t1, t2” with x ∈ VP and t1, t2 ∈ VP ∪ Z)

(p, LV {x = v}, KB , AL, PT)

(p+, LV {x = w}, KB ∪ {w = 1}, AL, PT)

if |= 〈a〉 ⇒ (LV(t1) = LV(t2))
and w ∈ Vsym is fresh

(p, LV {x = v}, KB , AL, PT)

(p+, LV {x = w}, KB ∪ {w = 0}, AL, PT)

if |= 〈a〉 ⇒ (LV(t1) �= LV(t2))
and w ∈ Vsym is fresh

The previous rule is only applicable if KB contains enough information to
evaluate the condition. Otherwise, a case analysis needs to be performed, i.e.,
one has to refine the abstract state by extending its knowledge base. This is done
by the following rule which transforms an abstract state into two new ones.8

refining abstract states (p : “x = icmp eq ty t1,t2”, x ∈ VP , t1, t2 ∈ VP ∪ Z)

(p, LV, KB , AL, PT)

(p, LV, KB ∪ {ϕ}, AL, PT) | (p, LV, KB ∪ {¬ϕ}, AL, PT)

if ϕ is LV(t1)=LV(t2) and both �|= 〈a〉⇒ϕ and �|= 〈a〉⇒¬ϕ

For example, in state B of Fig. 1, we evaluate “c0zero = icmp eq i8 c0,

0”, i.e., we check whether the first character c0 of the string str is 0. Since this
cannot be inferred from B’s knowledge base, we refine B to the successor states
C and D and call the edges from B to C and D refinement edges. In D, we
have c0 = v1 and v1
= 0. Thus, the icmp-rule yields E where c0zero = v2 and
v2 = 0. We do not display the successors of C that lead to a program end.

The conditional branching instruction br is very similar to icmp. To evaluate
“br i1 t, label b1, label b2”, one has to check whether the current state
contains enough information to conclude that t is 1 (i.e., true) or 0 (i.e., false).
Then the evaluation continues with block b1 resp. b2. This rule allows us to
create the successor F of E, where we jump to the block loop.

7 Other integer comparisons (for <, ≤, . . .) are handled analogously.
8 Analogous refinement rules can also be used for other conditional LLVM instructions.

Proving Termination and Memory Safety 215

br (p : “br i1 t, label b1, label b2” with t ∈ VP ∪ {0, 1} and b1, b2 ∈ Blks)

(p,LV,KB ,AL,PT)

((b, b1, 0),LV,KB ,AL,PT)
if p = (bprev , b, i) and |= 〈a〉 ⇒ (LV(t) = 1)

(p,LV,KB ,AL,PT)

((b, b2, 0),LV,KB ,AL,PT)
if p = (bprev , b, i) and |= 〈a〉 ⇒ (LV(t) = 0)

Next, we have to evaluate a phi instruction. These instructions are needed
due to the static single assignment form of LLVM. Here, “x = phi ty [t1,b1],
. . . ,[tn,bn]” means that if the previous block was bj , then the value tj is assigned
to x. All t1, . . . , tn must have type ty. Since we reached state F in Fig. 1 after
evaluating the entry block, we obtain the state G with olds = v3 and v3 = ustr.

phi (p : “x = phi ty [t1,b1], . . . ,[tn,bn]” with x ∈ VP , ti ∈ VP ∪ Z, bi ∈ Blks)

(p, LV {x = v}, KB , AL, PT)

(p+, LV {x = w}, KB ∪ {w = LV(tj)}, AL, PT)

if p = (bj , b, k) and
w ∈ Vsym is fresh

The strlen function traverses the string using a pointer s that is increased in
each iteration. The loop terminates, since eventually s reaches the last memory
cell of the string (containing 0). Then one jumps to done, converts the pointers s
and str to integers, and returns their difference. To perform the required pointer
arithmetic, “ad2 = getelementptr ty* ad1,in t” increases ad1 by the size of
t elements of type ty (i.e., by size(ty) · t) and assigns this address to ad2.

9

getelementptr (p :“ad2 = getelementptr ty* ad1, in t”, ad1, ad2∈VP , t∈VP ∪Z)

(p, LV {ad2 = v}, KB , AL, PT)

(p+,LV {ad2=w}, KB ∪{w = LV(ad1)+size(ty) ·LV(t)}, AL, PT)
w∈Vsym fresh

In Fig. 1, this rule is used for the step from G to H , where LV and KB now
imply s = str + 1. In the step to I, the character at address s is loaded to c.
To ensure memory safety, the load-rule checks that s is in an allocated part of
the memory (i.e., that ustr ≤ ustr + 1 ≤ vend). This holds because 〈H〉 implies
ustr ≤ vend and ustr
= vend (as ustr ↪→ v1, vend ↪→ 0 ∈ PT and v1
= 0 ∈ KB).
Finally, we check whether c is 0. We again perform a refinement which yields
the states J and K. State K corresponds to the case c
= 0 and thus, we obtain
czero = 0 in L and branch back to instruction 0 of the loop block in state M .

2.3 Generalizing Abstract States

After reaching M , one unfolds the loop once more until one reaches a state
M̃ at position (loop, loop, 0) again, analogous to the first iteration. To obtain
finite symbolic execution graphs, we generalize our states whenever an evaluation
visits a program position twice. Thus, we have to find a state that is more general
than M = (p,LVM ,KBM ,AL,PTM) and M̃ = (p,LV

˜M
,KB

˜M
,AL,PT

˜M
). For

readability, we again write “↪→” instead of “↪→i8”. Then p = (loop, loop, 0) and

9 Since we do not consider the handling of data structures in this paper, we do not
regard getelementptr instructions with more than two parameters.

216 T. Ströder et al.

AL = {alloc(ustr, vend)}
LVM = {str = ustr, c = v5, s = v4, olds = v3, . . .}
LV

˜M
= {str = ustr, c = ṽ5, s = ṽ4, olds = ṽ3, . . .}

PTM = {ustr ↪→ v1, v4 ↪→ v5, vend ↪→ z}
PT

˜M
= {ustr ↪→ v1, v4 ↪→ v5, ṽ4 ↪→ ṽ5, vend ↪→ z}

KBM = {v5 �= 0, v4 = v3 + 1, v3 = ustr, v1 �= 0, z = 0, . . .}
KB

˜M
= {ṽ5 �= 0, ṽ4 = ṽ3 + 1, ṽ3 = v4, v4 = v3 + 1, v3 = ustr, v1 �= 0, z = 0, . . .}.

Our aim is to construct a new state N that is more general than M and M̃ ,
but contains enough information for the remaining proof. We now present our
heuristic for merging states that is used as the basis for our implementation.

To merge M and M̃ , we keep those constraints of M that also hold in M̃ .
To this end, we proceed in two steps. First, we create a new state N = (p,LVN ,
KBN ,ALN ,PTN) using fresh symbolic variables vx for all x ∈ VP and define

LVN = {str = vstr, c = vc, s = vs, olds = volds, . . .}.

Matching N ’s fresh variables to the variables in M and M̃ yields mappings with
μM (vstr)=ustr, μM (vc)=v5, μM (vs)=v4, μM (volds)=v3, and μ

˜M
(vstr)=ustr,

μ
˜M
(vc)= ṽ5, μ˜M

(vs)= ṽ4, μ˜M
(volds)= ṽ3. By injectivity of LVM , we can also de-

fine a pseudo-inverse of μM that mapsM ’s variables to N by setting μ−1
M (LVM (x))

=vx for x∈VP and μ−1
M (v)=v for all other v∈Vsym (μ−1

˜M
works analogously).

In a second step, we use these mappings to check which constraints of M also
hold in M̃ . So we set ALN = μ−1

M (AL) ∩ μ−1
˜M
(AL) = {alloc(vstr, vend)} and

PTN = μ−1
M (PTM) ∩ μ−1

˜M
(PT

˜M
)

= {vstr ↪→ v1, vs ↪→ vc, vend ↪→ z} ∩ {vstr ↪→ v1, v4 ↪→ v5, vs ↪→ vc, vend ↪→ z}
= {vstr ↪→ v1, vs ↪→ vc, vend ↪→ z}.

It remains to construct KBN . We have v3=ustr (“olds = str”) in 〈M〉, but
ṽ3=v4, v4=v3 + 1, v3=ustr (“olds=str+ 1”) in 〈M̃〉. To keep as much infor-
mation as possible in such cases, we rewrite equations to inequations before per-
forming the generalization. For this, let ⟪M⟫ result from extending 〈M〉 by t1 ≥
t2 and t1 ≤ t2 for any equation t1 = t2 ∈ 〈M〉. So in our example, we obtain v3 ≥
ustr ∈ ⟪M⟫ (“olds ≥ str”). Moreover, for any t1
= t2 ∈ 〈M〉, we check whether
〈M〉 implies t1 > t2 or t1 < t2, and add the respective inequation to ⟪M⟫. In this
way, one can express sequences of inequations t1
= t2, t1+1
= t2, . . . , t1+n
= t2
(where t1 ≤ t2) by a single inequation t1+n < t2, which is needed for suitable
generalizations afterwards. We use this to derive v4 < vend ∈ ⟪M⟫ (“s < vend”)
from v4 = v3 + 1, v3 = ustr, ustr ≤ vend , ustr
= vend , v4
= vend ∈ 〈M〉.

Proving Termination and Memory Safety 217

We then let KBN consist of all formulas ϕ from ⟪M⟫ that are also implied

by 〈M̃〉, again translating variable names using μ−1
M and μ−1

˜M
. Thus, we have

⟪M⟫ = {v5 �= 0, v4 = v3 + 1, v3 = ustr, v3 ≥ ustr, v4 < vend , . . .}
μ−1
M (⟪M⟫) = {vc �= 0, vs = volds + 1, volds = vstr, volds ≥ vstr, vs < vend , . . .}
μ−1

˜M
(〈M̃〉) = {vc �= 0, vs = volds + 1, volds = v4, v4 = v3 + 1, v3 = vstr, vs < vend , . . .}

KBN = {vc �= 0, vs = volds + 1, volds ≥ vstr, vs < vend , . . .}.

Definition 3 (Merging States). Let a = (p,LVa,KBa,ALa,PTa) and b =
(p,LVb,KBb,ALb,PT b) be abstract states. Then c = (p,LVc,KBc,ALc,PT c)
results from merging the states a and b if

• LVc = {x = vx | x ∈ VP} for fresh pairwise different symbolic variables vx.
Moreover, we define μa(vx) = LVa(x) and μb(vx) = LVb(x) for all x ∈ VP
and let μa and μb be the identity on all remaining variables from Vsym .

• ALc = μ−1
a (ALa) ∩ μ−1

b (ALb) and PT c = μ−1
a (PT a) ∩ μ−1

b (PT b). Here,
the “inverse” of the instantiation μa is defined as μ−1

a (v) = vx if v = LVa(x)
and μ−1

a (v) = v for all other v ∈ Vsym (μ−1
b is defined analogously).

• KBC = { ϕ ∈ μ−1
a (⟪a⟫) | |= μ−1

b (〈b〉) ⇒ ϕ }, where
⟪a⟫ = 〈a〉 ∪ { t1 ≥ t2, t1 ≤ t2 | t1 = t2 ∈ 〈a〉 }

∪ { t1 > t2 | t1 �= t2 ∈ 〈a〉, |= 〈a〉 ⇒ t1 > t2 }
∪ { t1 < t2 | t1 �= t2 ∈ 〈a〉, |= 〈a〉 ⇒ t1 < t2 }.

In Fig. 1, we do not show the second loop unfolding from M to M̃ , and di-
rectly draw a generalization edge from M to N , depicted by a dashed arrow.
Such an edge expresses that all concrete states represented by M are also repre-
sented by the more general state N . Semantically, a state a is a generalization
of a state a iff |= 〈a〉SL ⇒ μ(〈a〉SL) for some instantiation μ. To automate
our procedure, we define a weaker relationship between a and a. We say that
a = (p, LV ,KB ,AL,PT) is a generalization of a = (p,LV,KB ,AL,PT) with the
instantiation μ whenever the conditions (b)-(e) of the following rule are satisfied.

generalization with μ (p,LV,KB ,AL,PT)

(p,LV ,KB ,AL,PT)
if

(a) a has an incoming evaluation edge,10

(b) LV(x) = μ(LV(x)) for all x ∈ VP ,
(c) |= 〈a〉 ⇒ μ(KB),
(d) if alloc(v1, v2) ∈ AL, then alloc(μ(v1), μ(v2)) ∈ AL,
(e) if (v1 ↪→ty v2) ∈ PT , then (μ(v1) ↪→ty μ(v2)) ∈ PT

Clearly, then we indeed have |= 〈a〉SL ⇒ μ(〈a〉SL). Condition (a) is needed
to avoid cycles of refinement and generalization steps in the symbolic execution
graph, which would not correspond to any computation.

10 Evaluation edges are edges that are not refinement or generalization edges.

218 T. Ströder et al.

Of course, many approaches are possible to compute such generalizations (or
“widenings”). Thm. 4 shows that the merging heuristic from Def. 3 satisfies the
conditions of the generalization rule. Thus, since N results from merging M and
M̃ , it is indeed a generalization of M . Thm. 4 also shows that if one uses the
merging heuristic to compute generalizations, then the construction of symbolic
execution graphs always terminates when applying the following strategy:

• If there is a path from a state a to a state b, where a and b are at the same
program position, where b has an incoming evaluation edge, and where a has
no incoming refinement edge, then we check whether a is a generalization of
b (i.e., whether the corresponding conditions of the generalization rule are
satisfied). In that case, we draw a generalization edge from b to a.

• Otherwise, remove a’s children, and add a generalization edge from a to the
merging c of a and b. If a already had an incoming generalization edge from
some state q, then remove a and add a generalization edge from q to c instead.

Theorem 4 (Soundness and Termination of Merging). Let c result from
merging the states a and b as in Def. 3. Then c is a generalization of a and b
with the instantiations μa and μb, respectively. Moreover, if a is not already a
generalization of b, then |⟪c⟫|+ |ALc|+ |PT c| < |⟪a⟫|+ |ALa|+ |PT a|. Here, for
any conjunction ϕ, let |ϕ| denote the number of its conjuncts. Thus, the above
strategy to construct symbolic execution graphs always terminates.11

In our example, we continue symbolic execution in state N . Similar to the
execution from F to M , after 6 steps another state P at position (loop, loop, 0)
is reached. In Fig. 1, dotted arrows abbreviate several evaluation steps. As N is
again a generalization of P using an instantiation μ with μ(vc) = wc, μ(vs) = ws,
and μ(volds) = wolds, we draw a generalization edge from P to N . The construc-
tion of the symbolic execution graph is finished as soon as all its leaves correspond
to ret instructions (for “return”).

Based on this construction, we now connect the symbolic execution graph to
memory safety of the input program. We say that a concrete LLVM state (p, s,m)
is represented by the symbolic execution graph iff the graph contains an abstract
state a at position p where (s,m) |= σ(〈a〉SL) for some concrete instantiation σ.

Theorem 5 (Memory Safety of LLVM Programs). Let P be an LLVM
program with a symbolic execution graph G. If G does not contain the abstract
state ERR, then P is memory safe for all LLVM states represented by G.

3 From Symbolic Execution Graphs to Integer Systems

To prove termination of the input program, we extract an integer transition
system (ITS) from the symbolic execution graph and then use existing tools to
prove its termination. The extraction step essentially restricts the information

11 The proofs for all theorems can be found in [26].

Proving Termination and Memory Safety 219

in abstract states to the integer constraints on symbolic variables. This conver-
sion of memory-based arguments into integer arguments often suffices for the
termination proof. The reason for considering only Vsym instead of VP is that
the conditions in the abstract states only concern the symbolic variables and
therefore, these are usually the essential variables for proving termination.

For example, termination of strlen is proved by showing that the pointer
s is increased as long as it is smaller than vend , the symbolic end of the input
string. In Fig. 1, this is explicit since vs < vend is an invariant that holds in all
states represented by N . Each iteration of the cycle increases the value of vs .

Formally, ITSs are graphs whose nodes are abstract states and whose edges
are transitions. For any abstract state a, let V(a) denote the symbolic variables
occurring in a. Let V ⊆ Vsym be the finite set of all symbolic variables occurring
in states of the symbolic execution graph. A transition is a tuple (a,CON , a)
where a, a are abstract states and the condition CON ⊆ QF IA(V � V ′) is a set
of pure quantifier-free formulas over the variables V �V ′. Here, V ′ = {v′ | v ∈ V}
represents the values of the variables after the transition. An ITS state (a, σ)
consists of an abstract state a and a concrete instantiation σ : V → Z. For any
such σ, let σ′ : V ′ → Z with σ′(v′) = σ(v). Given an ITS I, (a, σ) evaluates
to (a, σ) (denoted “(a, σ) →I (a, σ)”) iff I has a transition (a,CON , a) with
|= (σ ∪ σ′) (CON). Here, we have (σ ∪ σ′)(v) = σ(v) and (σ ∪ σ′)(v′) = σ′(v′) =
σ(v) for all v ∈ V . An ITS I is terminating iff →I is well founded.12

We convert symbolic execution graphs to ITSs by transforming every edge
into a transition. If there is a generalization edge from a to a with an instan-
tiation μ, then the new value of any v ∈ V(a) in a is μ(v). Hence, we create
the transition (a, 〈a〉 ∪ {v′ = μ(v) | v ∈ V(a)}, a).13 So for the edge from
P to N in Fig. 1, we obtain the condition {ws = wolds + 1, wolds = vs, vs <
vend , v

′
str = vstr, v

′
end = vend , v

′
c = wc, v

′
s = ws, . . .}. This can be simplified to

{vs < vend , v
′
end = vend , v

′
s = vs + 1, . . .}.

An evaluation or refinement edge from a to a does not change the variables
of V(a). Thus, we construct the transition (a, 〈a〉 ∪ {v′ = v | v ∈ V(a)}, a).

So in the ITS resulting from Fig. 1, the condition of the transition from A to
B contains {v′end = vend}∪ {u′x = ux | x ∈ VP}. The condition for the transition
from B to D is the same, but extended by v′1 = v1. Hence, in the transition
from A to B, the value of v1 can change arbitrarily (since v1 /∈ V(A)), but in
the transition from B to D, the value of v1 must remain the same.

Definition 6 (ITS from Symbolic Execution Graph). Let G be a symbolic
execution graph. Then the corresponding integer transition system IG has one
transition for each edge in G:

• If the edge from a to a is not a generalization edge, then IG has a transition
from a to a with the condition 〈a〉 ∪ {v′ = v | v ∈ V(a)}.

12 For programs starting in states represented by an abstract state a0, it would suffice
to prove termination of all →I-evaluations starting in ITS states of the form (a0, σ).

13 In the transition, we do not impose the additional constraints of 〈a〉 on the post-va-
riables V ′, since they are checked anyway in the next transition which starts in a.

220 T. Ströder et al.

• If there is a generalization edge from a to a with the instantiation μ, then IG
has a transition from a to a with the condition 〈a〉 ∪ {v′ = μ(v) | v ∈ V(a)}.

From the non-generalization edges on the path from N to P in Fig. 1, we
obtain transitions whose conditions contain v′end = vend and v′s = vs. So vs is
increased by 1 in the transition from P to N and it remains the same in all
other transitions of the graph’s only cycle. Since the transition from P to N is
only executed as long as vs < vend holds (where vend is not changed by any
transition), termination of the resulting ITS can easily be proved automatically.

The following theorem shows the soundness of our approach.

Theorem 7 (Termination of LLVM Programs). Let P be an LLVM program
with a symbolic execution graph G that does not contain the state ERR. If IG is
terminating, then P is also terminating for all LLVM states represented by G.

4 Related Work, Experiments, and Conclusion

We developed a new approach to prove memory safety and termination of C
(resp. LLVM) programs with explicit pointer arithmetic and memory access. It re-
lies on a representation of abstract program states which allows an easy automa-
tion of the rules for symbolic execution (by standard SMT solving). Moreover,
this representation is suitable for generalizing abstract states and for generating
integer transition systems. In this way, LLVM programs are translated fully auto-
matically into ITSs amenable to automated termination analysis.

Previous methods and tools for termination analysis of imperative programs
(e.g., AProVE [4,5], ARMC [24], COSTA [1], Cyclist [7], FuncTion [29], Julia [25],
KITTeL [12], LoopFrog [28], TAN [16], TRex [14], T2 [6], Ultimate [15], . . .) either
do not handle the heap at all, or support dynamic data structures by an abstrac-
tion to integers (e.g., to represent sizes or lengths) or to terms (representing finite
unravelings). However, most tools fail when the control flow depends on explicit
pointer arithmetic and on detailed information about the contents of addresses.
While the general methodology of our approach was inspired by our previous
work on termination of Java [4,5], in the current paper we lift such techniques
to prove termination and memory safety of programs with explicit pointer arith-
metic. This requires a fundamentally new approach, since pointer arithmetic and
memory allocation cannot be expressed in the Java-based techniques of [4,5].

We implemented our technique in the termination prover AProVE using the
SMT solvers Yices [11] and Z3 [20] in the back-end. A preliminary version of our
implementation participated very successfully in the International Competition
on Software Verification (SV-COMP) [27] at TACAS, which featured a category
for termination of C programs for the first time in 2014.To evaluate AProVE’s
power, we performed experiments on a collection of 208 C programs from several
sources, including the SV-COMP 2014 termination category and standard string
algorithms from [30] and the OpenBSD C library [23]. Of these 208 programs,
129 use pointers and 79 only operate on integers.

Proving Termination and Memory Safety 221

To prove termination of low-level C programs, one also has to ensure their
memory safety. While there exist several tools to prove memory safety of C
programs, many of them do not handle explicit byte-accurate pointer arithmetic
(e.g., Thor [19] or SLAyer [3]) or require the user to provide the needed loop
invariants (as in the Jessie plug-in of Frama-C [21]). In contrast, our approach
can prove memory safety of such algorithms fully automatically. Although our
approach is targeted toward termination and only analyzes memory safety as a
prerequisite for termination, it turned out that on our collection, AProVE is more
powerful than the leading publicly available tools for proving memory safety. To
this end, we compared AProVE with the tools CPAchecker [18] and Predator [10]
which reached the first and the third place in the category for memory safety at
SV-COMP 2014.14 For the 129 pointer programs in our collection, AProVE can
show memory safety for 102 examples, whereas CPAchecker resp. Predator prove
memory safety for 77 resp. 79 examples (see [2] for details).

To evaluate the power of our approach for proving termination, we compared
AProVE to the other tools from the termination category of SV-COMP 2014. In
addition, we included the termination analyzer KITTeL [12] in our evaluation,

79 integer programs 129 pointer programs

T N F TO RT T N F TO RT

AProVE 67 0 11 1 19.6 91 0 19 19 58.6

FuncTion 11 0 66 2 23.1 - - - - -

KITTeL 58 0 12 9 0.2 9 0 1 119 0.2

T2 55 0 23 1 1.8 6 0 123 0 3.6

TAN 31 0 37 11 2.4 3 0 124 2 10.6

Ultimate 57 4 12 6 3.2 - - - - -

which operates on
LLVM as well. On
the side, we show
the performance of
the tools on in-
teger and pointer
programs when us-
ing a time limit
of 300 seconds for
each example. Here, we used an Intel Core i7-950 processor and 6 GB of mem-
ory. “T” gives the number of examples where termination could be proved, “N”
is the number of examples where non-termination could be shown, “F” states
how often the tool failed in less than 300 seconds, “TO” gives the number of
time-outs (i.e., examples for which the tool took longer than 300 seconds), and
“RT” is the average run time in seconds for those examples where the tool
proved termination or non-termination. For pointer programs, we omitted the
results for those tools that were not able to prove termination of any examples.

Most other termination provers ignore the problem of memory safety and just
prove termination under the assumption that the program is memory safe. So
they may also return “Yes” for memory unsafe programs and may treat read ac-
cesses to the heap as non-deterministic input. Since AProVE constructs symbolic
execution graphs to prove memory safety and to infer suitable invariants needed
for termination proofs, its runtime is often higher than that of other tools. On
the other hand, the table shows that our approach is slightly more powerful
than the other tools for integer programs (i.e., our graph-based technique is also
suitable for programs on integers) and it is clearly the most powerful one for

14 The second place in this category was reached by the bounded model checker LLBMC
[13]. However, in general such tools only disprove, but cannot verify memory safety.

222 T. Ströder et al.

pointer programs. The reason is due to our novel representation of the memory
which handles pointer arithmetic and keeps information about the contents of
addresses. For details on our experiments and to access our implementation in
AProVE via a web interface, we refer to [2]. In future work, we plan to extend
our approach to recursive programs and to inductive data structures defined via
struct (e.g., by integrating existing shape analyses based on separation logic).

Acknowledgments. We are grateful to the developers of the other tools for termina-

tion or memory safety [6,10,12,15,16,18,29] for their help with the experiments.

References

1. Albert, E., Arenas, P., Codish, M., Genaim, S., Puebla, G., Zanardini, D.: Termi-
nation analysis of Java Bytecode. In: Barthe, G., de Boer, F.S. (eds.) FMOODS
2008. LNCS, vol. 5051, pp. 2–18. Springer, Heidelberg (2008)

2. AProVE, http://aprove.informatik.rwth-aachen.de/eval/Pointer/
3. Berdine, J., Cook, B., Ishtiaq, S.: SLAyer: Memory safety for systems-level code.

In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 178–183.
Springer, Heidelberg (2011)

4. Brockschmidt, M., Ströder, T., Otto, C., Giesl, J.: Automated detection of non-
termination and NullPointerExceptions for JBC. In: Beckert, B., Damiani, F.,
Gurov, D. (eds.) FoVeOOS 2011. LNCS, vol. 7421, pp. 123–141. Springer, Hei-
delberg (2012)

5. Brockschmidt, M., Musiol, R., Otto, C., Giesl, J.: Automated termination proofs
for Java programs with cyclic data. In: Madhusudan, P., Seshia, S.A. (eds.) CAV
2012. LNCS, vol. 7358, pp. 105–122. Springer, Heidelberg (2012)

6. Brockschmidt, M., Cook, B., Fuhs, C.: Better termination proving through cooper-
ation. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 413–429.
Springer, Heidelberg (2013)

7. Brotherston, J., Gorogiannis, N., Petersen, R.L.: A generic cyclic theorem prover.
In: Jhala, R., Igarashi, A. (eds.) APLAS 2012. LNCS, vol. 7705, pp. 350–367.
Springer, Heidelberg (2012)

8. Clang compiler, http://clang.llvm.org
9. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In: Graham,
R.M., Harrison, M.A., Sethi, R. (eds.) POPL 1977, pp. 238–252. ACM Press (1977)

10. Dudka, K., Peringer, P., Vojnar, T.: Predator: A shape analyzer based on symbolic
memory graphs (competition contribution). In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 412–414. Springer, Heidelberg (2014)

11. Dutertre, B., de Moura, L.M.: The Yices SMT solver (2006), tool paper at
http://yices.csl.sri.com/tool-paper.pdf

12. Falke, S., Kapur, D., Sinz, C.: Termination analysis of C programs using compiler
intermediate languages. In: Schmidt-Schauß, M. (ed.) RTA 2011. LIPIcs, vol. 10,
pp. 41–50. Dagstuhl Publishing (2011)

13. Falke, S., Merz, F., Sinz, C.: LLBMC: Improved bounded model checking of C using
LLVM (competition contribution). In: Piterman, N., Smolka, S.A. (eds.) TACAS
2013 (ETAPS 2013). LNCS, vol. 7795, pp. 623–626. Springer, Heidelberg (2013)

14. Harris, W.R., Lal, A., Nori, A.V., Rajamani, S.K.: Alternation for termination. In:
Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 304–319. Springer,
Heidelberg (2010)

http://aprove.informatik.rwth-aachen.de/eval/Pointer/
http://clang.llvm.org
http://yices.csl.sri.com/tool-paper.pdf

Proving Termination and Memory Safety 223

15. Heizmann, M., Hoenicke, J., Leike, J., Podelski, A.: Linear ranking for linear lasso
programs. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp.
365–380. Springer, Heidelberg (2013)

16. Kroening, D., Sharygina, N., Tsitovich, A., Wintersteiger, C.M.: Termination anal-
ysis with compositional transition invariants. In: Touili, T., Cook, B., Jackson, P.
(eds.) CAV 2010. LNCS, vol. 6174, pp. 89–103. Springer, Heidelberg (2010)

17. Lattner, C., Adve, V.S.: LLVM: A compilation framework for lifelong program
analysis & transformation. In: CGO 2004, pp. 75–88. IEEE (2004)

18. Löwe, S., Mandrykin, M., Wendler, P.: CPAchecker with sequential combination
of explicit-value analyses and predicate analyses (competition contribution). In:
Ábrahám, E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp.
392–394. Springer, Heidelberg (2014)

19. Magill, S., Tsai, M.H., Lee, P., Tsay, Y.K.: Automatic numeric abstractions for
heap-manipulating programs. In: Hermenegildo, M.V., Palsberg, J. (eds.) POPL
2010, pp. 211–222. ACM Press (2010)

20. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

21. Moy, Y., Marché, C.: Modular inference of subprogram contracts for safety check-
ing. J. Symb. Comput. 45(11), 1184–1211 (2010)

22. O’Hearn, P.W., Reynolds, J.C., Yang, H.: Local reasoning about programs that
alter data structures. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 1–19.
Springer, Heidelberg (2001)

23. http://fxr.watson.org/fxr/source/lib/libsa/strlen.c?v=OPENBSD

24. Podelski, A., Rybalchenko, A.: ARMC: The logical choice for software model check-
ing with abstraction refinement. In: Hanus, M. (ed.) PADL 2007. LNCS, vol. 4354,
pp. 245–259. Springer, Heidelberg (2007)

25. Spoto, F., Mesnard, F., Payet, É.: A termination analyser for Java Bytecode based
on path-length. ACM TOPLAS 32(3) (2010)

26. Ströder, T., Giesl, J., Brockschmidt, M., Frohn, F., Fuhs, C., Hensel, J., Schneider-
Kamp, P.: Automated termination analysis for programs with pointer arithmetic.
Tech. Rep. AIB 2014-05 available from [2] and from
http://aib.informatik.rwth-aachen.de

27. SV-COMP at TACAS 2014, http://sv-comp.sosy-lab.org/2014/
28. Tsitovich, A., Sharygina, N., Wintersteiger, C.M., Kroening, D.: Loop summariza-

tion and termination analysis. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS
2011. LNCS, vol. 6605, pp. 81–95. Springer, Heidelberg (2011)

29. Urban, C.: The abstract domain of segmented ranking functions. In: Logozzo, F.,
Fähndrich, M. (eds.) SAS 2013. LNCS, vol. 7935, pp. 43–62. Springer, Heidelberg
(2013)

30. Wikibooks C Programming, http://en.wikibooks.org/wiki/C_Programming/
31. Zhao, J., Nagarakatte, S., Martin, M.M.K., Zdancewic, S.: Formalizing the LLVM

IR for verified program transformations. In: Field, J., Hicks, M. (eds.) POPL 2012,
pp. 427–440. ACM Press (2012)

http://fxr.watson.org/fxr/source/lib/libsa/strlen.c?v=OPENBSD
http://aib.informatik.rwth-aachen.de
http://sv-comp.sosy-lab.org/2014/
http://en.wikibooks.org/wiki/C_Programming/

QBF Encoding of Temporal Properties

and QBF-Based Verification�

Wenhui Zhang

State Key Laboratory of Computer Science
Institute of Software, Chinese Academy of Sciences

P.O. Box 8718, Beijing 100190, China
zwh@ios.ac.cn

Abstract. SAT and QBF solving techniques have applications in var-
ious areas. One area of the applications of SAT-solving is formal ver-
ification of temporal properties of transition system models. Because
of the restriction on the structure of formulas, complicated verification
problems cannot be naturally represented with SAT-formulas succinctly.
This paper investigates QBF-applications in this area, aiming at the ver-
ification of branching-time temporal logic properties of transition system
models. The focus of this paper is on temporal logic properties specified
by the extended computation tree logic that allows some sort of fairness,
and the main contribution of this paper is a bounded semantics for the
extended computation tree logic. A QBF encoding of the temporal logic
is then developed from the definition of the bounded semantics, and an
implementation of QBF-based verification follows from the QBF encod-
ing. Experimental evaluation of the feasibility and the computational
properties of such a QBF-based verification algorithm is reported.

1 Introduction

SAT and QBF solving techniques have applications in various areas [10,13,9].
One area of the applications of SAT-solving is formal verification of temporal
properties of transition system models [1,14,2,15,19,12,6]. In various situations,
it can be used to quickly determine whether a property is violated and is con-
sidered as a complementary approach to the standard BDD-based verification
approaches [3,16,5]. Therefore a large number of research works has been devoted
into this direction. However, because of the restriction on the structure of for-
mulas, complicated verification problems cannot be naturally represented with
SAT-formulas succinctly. This paper investigates QBF-applications in this area,
aiming at the verification of branching-time temporal logic properties of transi-
tion system models. Branching-time temporal logic properties involve operators
that may require the existence of certain kinds of paths starting at different
states of a system model. This requires the use of quantifiers in the encoding of
such properties.

� Supported by the National Natural Science Foundation of China under Grant No.
61272135 and the 973 Program of China under Grant No. 2014CB340701.

S. Demri, D. Kapur, and C. Weidenbach (Eds.): IJCAR 2014, LNAI 8562, pp. 224–239, 2014.
c© Springer International Publishing Switzerland 2014

QBF Encoding of Temporal Properties and QBF-Based Verification 225

This paper focuses on QBF encoding and QBF-based verification of temporal
properties specified by the extended computation tree logic that allows some
sort of fairness [8]. The main contribution of this paper is a bounded seman-
tics for the extended computation tree logic. A QBF encoding of the temporal
logic is then developed from the definition of the bounded semantics, and an
implementation of QBF-based verification follows from the QBF encoding. One
of the particular aspects of this implementation is that it can handle proper-
ties (branching properties combined with fairness) that are not handled by well
known model checking tools such as Spin [11] and NuSMV [4]. Finally exper-
imental evaluation of the feasibility of the QBF-based verification relative to
BDD-based verification is reported.

2 Preliminaries

We recall the definition of transition system models and that of the extended
computation tree logic.

2.1 Transition System Models

Let AP be a set of propositional symbols. A finite state system may be repre-
sented by a Kripke structure which is a quadruple M = 〈S, T, I, L〉 where S is a
set of states, T ⊆ S × S is a transition relation which is total, I ⊆ S is a set of
initial states and L : S → 2AP is a labeling function that maps each state to a
subset of propositions of AP . A Kripke structure is also called a model.

Transitions A transition from a state s to another state s′ is denoted s → s′.
s → s′ iff (s, s′) ∈ T .

Paths. An infinite path is an infinite sequence of states π = π0π1 · · · such that
πi → πi+1 for all i ≥ 0.

Computations. A computation of M is an infinite path such that the initial state
of the path is in I.

Notations. Let π = π0π1 · · · be a path. We use π(s) to denote a path π with
π0 = s. Then ∃π(s).ϕ means that there is a path π with π0 = s such that ϕ
holds, and ∀π(s).ϕ means that for every path π with π0 = s, ϕ holds.

2.2 Extended Computation Tree Logic (eCTL)

Properties of a transition system model may be specified by temporal logic for-
mulas. Extended computation tree logic [8] is a propositional branching-time
temporal logic that extends the computation tree logic (CTL) introduced by
Emerson and Clarke [7] with possibility to express simple fairness constraints.
For brevity, the extended computation tree logic is hereafter denoted eCTL .

226 W. Zhang

Syntax Let p range over AP . The set of eCTL formulas Φ over AP is defined as
follows:

Φ ::= p | ¬Φ | Φ ∧ Φ | Φ ∨ Φ |AΨ | EΨ

Ψ ::= X Φ | F Φ | G Φ |
∞
F Φ |

∞
G Φ | (Φ U Φ) | (Φ R Φ)

The formulas of Φ are eCTL formulas, and the formulas of Ψ are auxiliary
path formulas. The property of a finite state system may be specified by an
eCTL formula, and conversely, the truth of such a formula may be evaluated in
a finite state system.

Definition 1. (Semantics of eCTL) Let p denote a propositional symbol, and
ϕ, ϕ0, ϕ1 denote eCTL formulas, ψ, ψ0 denote path formulas. Let s be a state
and π be a path of M . Let M, s |= ϕ denote the relation that ϕ holds on s of
M , and M,π |= ψ denote that ψ holds on π of M . The relation M, s |= ϕ and
M,π |= ψ are defined as follows.

M, s |= p iff p ∈ L(s) .
M, s |= ¬ϕ0 iff M, s
|= ϕ0

M, s |= ϕ0 ∧ ϕ1 iff M, s |= ϕ0 and M, s |= ϕ1

M, s |= ϕ0 ∨ ϕ1 iff M, s |= ϕ0 or M, s |= ϕ1

M, s |= Aψ0 iff ∀π(s).(M,π |= ψ0)
M, s |= Eψ0 iff ∃π(s).(M,π |= ψ0)

M,π |= Xϕ0 iff M,π1 |= ϕ0

M,π |= Fϕ0 iff ∃k ≥ 0.M, πk |= ϕ0

M,π |= Gϕ0 iff ∀k ≥ 0.M, πk |= ϕ0

M,π |=
∞
Fϕ0 iff ∀i ≥ 0.∃k ≥ i.M, πk |= ϕ0

M,π |=
∞
Gϕ0 iff ∃i ≥ 0.∀k ≥ i.M, πk |= ϕ0

M,π |= ϕ0Uϕ1 iff ∃k ≥ 0.(M,πk |= ϕ1∧ ∀0 ≤ j < k.(M,πj |= ϕ0))
M,π |= ϕ0Rϕ1 iff ∀k ≥ 0.(M,πk |= ϕ1∨ ∃0 ≤ j < k.(M,πj |= ϕ0))

Definition 2. M |= ϕ iff M, s |= ϕ for all s ∈ I.

Negation Normal Form. An eCTL formula is in the negation normal form (NNF),
if the negation ¬ is applied only to propositional symbols. Every eCTL formula
can be transformed into an equivalent formula in NNF by using the following
equivalences.

¬(ϕ ∧ ψ) ≡ ¬ϕ ∨ ¬ψ
¬AX ϕ ≡ EX¬ϕ
¬AF ϕ ≡ EG¬ϕ
¬AG ϕ ≡ EF¬ϕ

¬A
∞
F ϕ ≡ E

∞
G¬ϕ

¬A
∞
G ϕ ≡ E

∞
F¬ϕ

¬A(ϕ U ψ) ≡ E(¬ϕ R ¬ψ)
¬A(ϕ R ψ) ≡ E(¬ϕ U ¬ψ)

¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ
¬EX ϕ ≡ AX¬ϕ
¬EF ϕ ≡ AG¬ϕ
¬EG ϕ ≡ AF¬ϕ

¬E
∞
F ϕ ≡ A

∞
G¬ϕ

¬E
∞
G ϕ ≡ A

∞
F¬ϕ

¬E(ϕ U ψ) ≡ A(¬ϕ R ¬ψ)
¬E(ϕ R ψ) ≡ A(¬ϕ U ¬ψ)

QBF Encoding of Temporal Properties and QBF-Based Verification 227

Without loss of generality, we only consider formulas in NNF. Formulas not
in NNF are considered as an abbreviation of the equivalent ones in NNF.

3 Bounded Semantics

Before presenting the QBF encoding of temporal properties, we develop a
bounded semantics for eCTL. This bounded semantics extends that of the previ-
ous works for that of the existential fragment of CTL [14] and that of CTL [19].
For convenience, we fix the model under consideration to be M = 〈S, T, I, L〉 in
the rest of this paper.

Finite Paths and k-Paths. A finite path is a finite prefix of an infinite path.
Let k ≥ 0. A k-path of M is a finite path of M with length k + 1. π is a k-
path, if π = π0 · · ·πk such that πi ∈ S for i = 0, ..., k and (πi, πi+1) ∈ T for
i = 0, ..., k − 1.

Bounded Models. The k-model of M is a quadruple Mk = 〈S, Phk, I, L〉 where
Phk is the set of all k-paths of M . Mk can be considered as an approximation
of M .

Paths with Repeating States (rs-paths). An rs-path is a finite path that contains
repeating states (i.e., at least two states are the same). Let rs(π) denote that
π is an rs-path. An important property of such a path is that if π is a prefix of
π′, then rs(π) → rs(π′). For the ideas of k-paths, k-models, and rs-paths, the
reader is referred to [1,14,19].

Definition 3. (Bounded Semantics of eCTL) Let p denote a propositional sym-
bol, and ϕ, ϕ0, ϕ1 denote eCTL formulas, ψ, ψ0 denote path formulas. Let s be a
state of M and π be a k-path of Phk. Let Mk, s |= ϕ denote the relation that ϕ
holds on s of Mk, and Mk, π |= ψ denote that ψ holds on π of Mk. The relation
Mk, s |= ϕ and Mk, π |= ψ are defined as follows.

Mk, s |= p iff p ∈ L(s) .
Mk, s |= ¬p iff p
∈ L(s)
Mk, s |= ϕ0 ∧ ϕ1 iff (Mk, s |= ϕ0) and (Mk, s |= ϕ1)
Mk, s |= ϕ0 ∨ ϕ1 iff (Mk, s |= ϕ0) or (Mk, s |= ϕ1)
Mk, s |= Aψ iff ∀π(s).(Mk, π |= ψ)
Mk, s |= Eψ iff ∃π(s).(Mk, π |= ψ)
Mk, π |= Xϕ0 iff k ≥ 1 ∧ (Mk, π1 |= ϕ0)
Mk, π |= Fϕ0 iff ∃i ≤ k.(Mk, πi |= ϕ0)
Mk, π |= Gϕ0 iff rs(π)∧ (∀i ≤ k.(Mk, πi |= ϕ0))

Mk, π |=
∞
Fϕ0 iff rs(π)∧ ∀i < l ≤ k.(πi = πl → ∃i < j ≤ l.(Mk, πj |= ϕ0))

Mk, π |=
∞
Gϕ0 iff rs(π)∧ ∀i < l ≤ k.(πi = πl → ∀i < j ≤ l.(Mk, πj |= ϕ0))

Mk, π |= ϕ0Uϕ1 iff ∃i ≤ k.(Mk, πi |= ϕ1∧ ∀j < i.(Mk, πj |= ϕ0))
Mk, π |= ϕ0Rϕ1 iff
∀i ≤ k.(Mk, πi |= ϕ1∨ ∃j < i.(Mk, πj |= ϕ0)) ∧ (∃j ≤ k.(Mk, πj |= ϕ0) ∨ rs(π))

228 W. Zhang

Definition 4. Mk |= ϕ iff Mk, s |= ϕ for all s ∈ I.

Let |M | denote the number of states of M .

Lemma 1. If M, s |= ϕ, then there is a k ≥ 0 such that Mk, s |= ϕ.

Proof: The proof is done by structural induction. For brevity (due to the page

limit), we prove the two cases where ϕ is respectively A
∞
Gϕ0 and A

∞
Fϕ0, and

omit the rest of the cases. Let k = |M |.

– Suppose that M, s |= A
∞
Gϕ0 holds.

Since k = |M | and the transition relation is total, the length of every k-path
is greater than |M |. Then for every k-path π, rs(π) holds. We only need to
show for every k-path π starting at s the following holds.

∀i < l ≤ k.(πi = πl → ∀i < j ≤ l.(Mk, πj |= ϕ0)).

Assume πi = πl for a k-path π. Then π′ = π0 · · ·πi(πi+1 · · ·πl)
ω is an infinite

path starting at s = π0. Since π′ satisfies
∞
Gϕ0, we have ∀i < j ≤ l.(M,πj |=

ϕ0). Then according to the induction hypothesis, ∀i < j ≤ l.(Mk, πj |= ϕ0).

– Suppose that M, s |= A
∞
Fϕ0 holds.

Since k = |M |, for every k-path π, rs(π) holds. We only need to show for
every k-path π starting at s the following holds.

∀i < l ≤ k.(πi = πl → ∃i < j ≤ l.(Mk, πj |= ϕ0)).

Assume πi = πl for a k-path π. Then π′ = π0 · · ·πi(πi+1 · · ·πl)
ω is an infinite

path starting at s = π0. Since π′ satisfies
∞
Fϕ0, we have ∃i < j ≤ l.(M,πj |=

ϕ0). Then according to the induction hypothesis, ∃i < j ≤ l.(Mk, πj |= ϕ0).

Lemma 2. If Mk, s |= ϕ for k ≥ |M |, then M, s |= ϕ.

Proof: The proof is done by structural induction. For brevity, we prove the

two cases where ϕ is respectively A
∞
Gϕ0 and A

∞
Fϕ0, and omit the rest of the

cases.

– Suppose that Mk, s |= A
∞
Gϕ0 holds for k.

Then for every k-path π′ starting at s, we have Mk, π
′ |=

∞
Gϕ0, i.e.,

rs(π′) ∧ ∀i < l ≤ k.(π′i = π′l → ∀i < j ≤ l.(Mk, π
′
j |= ϕ0)).

Assume that M, s |= A
∞
Gϕ0 does not hold. We show that this is a contra-

diction. According to this assumption, there is an infinite path starting at s

such that M,π |=
∞
Gϕ0 does not hold. Then we can construct an infinite path

π′ = π′0 · · ·π′i(π′i+1 · · ·π′l)ω starting at s such that l ≤ |M |, π′x
= π′y for all
x < y < l, π′i = π′l, and M,π′j
|= ϕ0 for some i < j ≤ l. Let π′′ be a k-path

QBF Encoding of Temporal Properties and QBF-Based Verification 229

with π′0 · · ·π′iπ′i+1 · · ·π′l as its prefix (this is possible, since l ≤ |M | ≤ k).

Then according to the premise of the lemma, Mk, π
′′ |=

∞
Gϕ0 holds. Then we

have Mk, π
′
j |= ϕ0, and by the induction hypothesis, M,π′j |= ϕ0. This is a

contradiction, which proves the lemma.

– Suppose that Mk, s |= A
∞
Fϕ0 holds for k.

Then for every k-path π′ starting at s, we have Mk, π
′ |=

∞
Fϕ0, i.e.,

rs(π′) ∧ ∀i < l ≤ k.(π′i = π′l → ∃i < j ≤ l.(Mk, π
′
j |= ϕ0)).

Assume that M, s |= A
∞
Fϕ0 does not hold. We show that this is a con-

tradiction. According to this assumption, there is an infinite path start-

ing at s such that M,π |=
∞
Fϕ0 does not hold. Then we can construct an

infinite path π′ = π′0 · · ·π′i(π′i+1 · · ·π′l)ω starting at s such that l ≤ |M |,
π′x
= π′y for all x < y < l, π′i = π′l, and M,π′j
|= ϕ0 for all i < j ≤ l. Let
π′′ be a k-path with π′0 · · ·π′iπ′i+1 · · ·π′l as its prefix (this is possible, since

l ≤ |M | ≤ k). Then according to the premise of the lemma, Mk, π
′′ |=

∞
Fϕ0

holds. Then we have ∃i < j ≤ l.(Mk, π
′
j |= ϕ0), and by the induction hy-

pothesis, ∃i < j ≤ l.(M,π′j |= ϕ0). This is a contradiction, which proves the
lemma.

Lemma 3. If Mk, s |= ϕ, then Mk+1, s |= ϕ.

Proof: The proof is done by structural induction. For brevity, we prove the case

where ϕ is A
∞
Gϕ0, and omit the rest of the cases. Suppose that Mk, s |= A

∞
Gϕ0

holds for k.

Then for every k-path ζ starting at s, we have Mk, ζ |=
∞
Gϕ0, i.e.,

rs(ζ) ∧ ∀i < l ≤ k.(ζi = ζl → ∀i < j ≤ l.(Mk, ζj |= ϕ0)).

Then according to the induction hypothesis, we have

rs(ζ) ∧ ∀i < l ≤ k.(ζi = ζl → ∀i < j ≤ l.(Mk+1, ζj |= ϕ0)).

The goal is to prove that Mk+1, s |= A
∞
Gϕ0 holds, i.e., for every (k + 1)-path

π of Mk+1 starting at s, the following two properties hold.

(1) rs(π)
(2) ∀i < l ≤ k + 1.(πi = πl → ∀i < j ≤ l.(Mk+1, πj |= ϕ0))

Let π = π0 · · ·πkπk+1 be a (k + 1)-path starting at s. Since π′ = π0 · · ·πk is
a k-path, we have the following fact.

rs(π′) ∧ ∀i < l ≤ k.(πi = πl → ∀i < j ≤ l.(Mk+1, πj |= ϕ0))

Since rs(π′) implies property (1), and the cases of property (2) where l ≤ k
are covered by the fact, we only need to show

∀i < k + 1.(πi = πk+1 → ∀i < j ≤ k + 1.(Mk+1, πj |= ϕ0)).

230 W. Zhang

Since rs(π′) holds, there is x < y ≤ k such that πx = πy.
Assume πi = πk+1. We divide the rest of the proof into two cases:

– x < i < y:
Let π′′ be the concatenation of π0 · · ·πx, πy+1 · · ·πk+1, πi+1 · · ·πy .
Then π′′ is a prefix of a k-path starting at s and, since πx = πy , every state
s′ between πx and πy satisfies ϕ0 (Mk, s

′ |= ϕ0 according to the premise and
Mk+1, s

′ |= ϕ0 according to the induction hypothesis).
Therefore ∀i < j ≤ k + 1.(Mk+1, πj |= ϕ0).

– i ≤ x or y ≤ i:
Let π′′ be the path obtained by removing πx+1 · · ·πy from π.
Then π′′ is a prefix of a k-path starting at s and, therefore every state
between πi and πk+1 (of π′′) satisfies ϕ0, according to the premise and the
induction hypothesis.
In addition, every state in the partial-path πx+1 · · ·πy also satisfies ϕ0 (this
is needed in case i ≤ x). Therefore we have ∀i < j ≤ k+1.(Mk+1, πj |= ϕ0).

Theorem 1 (Soundness and Completeness). M, s |= ϕ iff Mk, s |= ϕ for
some k ≥ 0.

The soundness and completeness of the bounded semantics follows from
Lemma 1, Lemma 2 and Lemma 3.

Corollary 1. M |= ϕ iff Mk |= ϕ for some k ≥ 0.

4 QBF Encoding and QBF-Based Verification

From the bounded semantics, a QBF-based characterization of eCTL formulas,
extending that of CTL formulas [20], can be developed as follow. Let k ≥ 0. Let
u0, ..., uk be a finite sequence of state variables. The sequence u0, ..., uk (denoted

by
→
u) is intended to be used as a representation of a path of Mk. This is captured

by the following definition of Pk(
→
u).

Definition 5

Pk(
→
u) :=

k−1∧
j=0

T (uj, uj+1)

Every assignment to the set of state variables {u0, ..., uk} satisfying Pk(
→
u)

represents a valid k-path of M . Let rsk(
→
u) denote that the k-path represented

by
→
u is an rs-path. Formally, we have the following definition of rsk(

→
u).

Definition 6

rsk(
→
u) :=

k−1∨
x=0

k∨
y=x+1

ux = uy.

QBF Encoding of Temporal Properties and QBF-Based Verification 231

Let p ∈ AP be a proposition symbol and p(v) be the propositional formula
such that p(v) is true whenever v is assigned the truth value representing a state
s in which p holds.

Definition 7 (Transformation of eCTL Formulas). Let k ≥ 0. Let v be a
state variable and ϕ be an eCTL formula. The encoding [[ϕ, v]]k is defined as
follows.

[[p, v]]k = p(v)
[[¬p, v]]k = ¬p(v)
[[ϕ ∨ ψ, v]]k = [[ϕ, v]]k ∨ [[ψ, v]]k
[[ϕ ∧ ψ, v]]k = [[ϕ, v]]k ∧ [[ψ, v]]k

[[Aϕ, v]]k = ∀→u.(P (
→
u) ∧ v = u0 → [[ϕ,

→
u]]k)

[[Eϕ, v]]k = ∃→u.(P (
→
u) ∧ v = u0 ∧ [[ϕ,

→
u]]k)

[[Xϕ,
→
u]]k = k ≥ 1 ∧ [[ϕ, u1]]k

[[Fψ,
→
u]]k =

∨k
j=0[[ψ, uj]]k

[[Gψ,
→
u]]k =

∧k
j=0[[ψ, uj]]k ∧ rsk(

→
u))

[[
∞
Fψ,

→
u]]k = rsk(

→
u) ∧

∧k
i=0(
∧k

l=i+1(ui = ul →
∨l

j=i+1[[ψ, uj]]k))

[[
∞
Gψ,

→
u]]k = rsk(

→
u) ∧

∧k
i=0(
∧k

l=i+1(ui = ul →
∧l

j=i+1[[ψ, uj]]k))

[[ϕUψ,
→
u]]k =

∨k
j=0([[ψ, uj]]k ∧

∧j−1
t=0 [[ϕ, ut]]k)

[[ϕRψ,
→
u]]k =

∧k
j=0([[ψ, uj]]k ∨

∨j−1
t=0 [[ϕ, ut]]k) ∧ (

∨k
t=0[[ϕ, ut]]k ∨ rsk(

→
u))

Note that the transition relation of M is total, and therefore every finite path
either can be extended to a k-path or has a k-path as its prefix. Let v(s) denote
that the state variable v has been assigned a value corresponding to the state s.
The following theorem follows from the transformation scheme.

Theorem 2. Let ϕ be an eCTL formula. Mk, s |= ϕ iff [[ϕ, v(s)]]k holds.

Let I(v) denote the propositional formula that restricts potential values of v
to the initial states of M .

Corollary 2. Let ϕ be an eCTL formula. M |= ϕ iff there is a k ≥ 0 such
that ∀v.(I(v) → [[ϕ, v]]k), and M
|= ϕ iff there is a k ≥ 0 such that ∃v.(I(v) ∧
[[¬ϕ, v]]k).

Following from Theorem 1, we have M |= ϕ iff there is a k ≥ 0 such that
Mk |= ϕ. According to Theorem 2, we have M |= ϕ iff there is a k ≥ 0 such that
∀v.(I(v) → [[ϕ, v]]k). The second part of the corollary is shown as follows.

– Suppose that M
|= ϕ.
Then (∃s ∈ I,M, s
|= ϕ), and therefore (∃s ∈ I,M, s |= ¬ϕ).

According to Theorem 1, (∃s ∈ I, ∃k ≥ 0,Mk, s |= ¬ϕ).

Therefore there is a k ≥ 0 such that ∃s ∈ I, Mk, s |= ¬ϕ holds, and then
there is a k ≥ 0 such that ∃v.(I(v) ∧ [[¬ϕ, v]]k), according to Theorem 2.

232 W. Zhang

– On the other hand, suppose that M |= ϕ.
Then ∀s ∈ I,M, s |= ϕ, and therefore ¬(∃s ∈ I,M, s |= ¬ϕ).
According to Theorem 1, ¬(∃s ∈ I, ∃k ≥ 0,Mk, s |= ¬ϕ).
Therefore ¬(∃k ≥ 0, ∃s ∈ I,Mk, s |= ¬ϕ).
Therefore ¬(∃k ≥ 0, ∃v.(I(v) ∧ [[¬ϕ, v]]k)), according to Theorem 2.

Bounded Correctness Checking Let ϕ be an eCTL formula. Following from Corol-
lary 2, we can formulate a bounded correctness checking algorithm for M |= ϕ,
as follows.

Init k = 0; .
If ∀v.(I(v) → [[ϕ, v]]k) holds, report that ϕ holds;
If ∃v.(I(v) ∧ [[¬ϕ, v]]k) holds, report that ϕ does not hold;
Increase k, go to the first “if”-test;

The correctness and the termination are guaranteed by Corollary 2. The al-
gorithm is a combination of checking whether ϕ holds directly by the bounded
semantics, and on the other hand checking whether ϕ does not hold also by
the bounded semantics. The latter part is in accordance with the traditional
bounded model checking approach [1].

5 Implementation and Experimental Evaluation

The implementation of the bounded correctness checking algorithm involves the
following functionalities:

– For the finite state program, convert the program into a Boolean program;
– Produce a Boolean formula for the initial states (i.e., I(v));
– Produce a Boolean formula for the transition relation (i.e., T (v, v′));
– For the property specified by an eCTL formula with a given k, produce a

QBF-formula according to the transformation scheme;
– Combine the QBF-formula with the Boolean formula representing the initial

states;
– Apply a QBF-solving algorithm to check the truth of the combined formula.

The proposed QBF-based approach has been implemented in a verification
tool, denoted VERDS1, and an experimental evaluation has been carried out.
We first present an example to show the application of the approach, and then
the experimental evaluation is reported.

5.1 An Illustrative Example

The example is a concurrent program representing a formulation of Peterson’s
mutual exclusion algorithm [18] as a first order transition system [17]. Let a, b
be variables of enumeration type which have respectively the domain {s0, ..., s3}
and {t0, ..., t3}. Let x, y, t be variables of Boolean type. The program consists of
two processes: A and B with the following specification:

1 http://lcs.ios.ac.cn/~zwh/verds/

http://lcs.ios.ac.cn/~zwh/verds/

QBF Encoding of Temporal Properties and QBF-Based Verification 233

Process A:
a = s0 −→ (y, t, a) := (1, 1, s1)
a = s1 ∧ (x = 0 ∨ t = 0) −→ (a) := (s2)
a = s2 −→ (y, a) := (0, s3)
a = s2 −→ (a) := (s2)
a = s3 −→ (y, t, a) := (1, 1, s1)

Process B:
b = t0 −→ (x, t, b) := (1, 0, t1)
b = t1 ∧ (y = 0 ∨ t = 1) −→ (b) := (t2)
b = t2 −→ (x, b) := (0, t3)
b = t2 −→ (b) := (t2)
b = t3 −→ (x, t, b) := (1, 0, t1)

Let the formula specifying the set of the initial states be a = s0∧ b = t0 ∧x =
y = 0. The value of t is arbitrary at the initial state. The following explains the
meaning of some of the constants.

a = si: process A is waiting for entering the critical region
when i = 1, is in the critical region when i = 2, has left
the critical region when i = 3.

b = ti: process B is waiting for entering the critical region
when i = 1, is in the critical region when i = 2, has left
the critical region when i = 3.

Let the following be the properties of the program we want to verify.

p1: AF (a = s2 ∨ b = t2)
p2: AG(¬(a = s2 ∧ b = t2))

p3: A
∞
G(((a = s1) → AF (a = s2)) ∧ ((b = t1) → AF (b = t2)))

p4: A
∞
G(((a = s1) → EF (a = s2)) ∧ ((b = t1) → EF (b = t2)))

The first 2 properties are simple CTL properties for mutual exclusion algo-
rithms, and the last 2 properties are particular eCTL properties.

Verification The input to the verification tool VERDS must be written in the
language specified in [21]. Let the input be as follows, in which the temporal

operator A
∞
G is written as AFG.

VVM

VAR x:0..1; y:0..1; t:0..1; a:{s0,s1,s2,s3}; b:{t0,t1,t2,t3};

INIT x=0; y=0; a=s0; b=t0;

TRANS a=s0: (y,t,a):=(1,1,s1);

a=s1&(x=0|t=0): (a):=(s2);

a=s2: (y,a):=(0,s3);

a=s2: (a):=(s2);

a=s3: (y,t,a):=(1,1,s1);

b=t0: (x,t,b):=(1,0,t1);

b=t1&(y=0|t=1): (b):=(t2);

b=t2: (x,b):=(0,t3);

b=t2: (b):=(t2);

b=t3: (x,t,b):=(1,0,t1);

SPEC AF((a=s2|b=t2));

AG(!(a=s2&b=t2));

AFG((!a=s1|AF(a=s2))&(!b=t1|AF(b=t2)));

AFG((!a=s1|EF(a=s2))&(!b=t1|EF(b=t2)));

234 W. Zhang

Suppose that the input is contained in the file “tn1mutex.vvm”. For checking
the i-th property, we use the following command, where i is to be replaced by a
given number.

verds -QBF -ck i tn1mutex.vvm

The verification result for the third property (with i = 3) is shown as follows.

VERSION: verds 1.45 - JAN 2014
FILE: tn1mutex.vvm
PROPERTY: AFG((!(a = 1)|AF (a = 2)&(!(b = 1)|AF (b = 2)))
INFO: applying an internal QBF-solver
bound = 0
.
.
bound = 4
CONCLUSION: FALSE

The verification process for the other properties are similar. A summary of
the verification results is as follows, where the first row specifies the properties,
and 2nd and 3rd row show respectively the satisfiability of the formula and the
least k for certifying the satisfiability.

p1 p2 p3 p4
T/F T T F T
k 3 10 4 10

The above example shows that, for some problem instances, the satisfiability
or unsatisfiability may be determined when k is relatively small. In such cases,
the QBF-based verification may have advantage over the traditional symbolic
model checking approach. In the following, we present a comparison of such an
approach with the traditional model checking approach.

5.2 Experimental Evaluation

This subsection contains a summary of an experimental evaluation of QBF-based
verification implemented in VERDS (to be referred to as VERDS-QBF in the rest
of the paper). The experimental evaluation compares this QBF-based verification
with BDD-based verification implemented in NuSMV [4] version 2.5.02. The
comparison is based on the use of two types of random Boolean programs and
24 properties. A description of the programs and the properties is as follows.

Remarks. The comparison is not meant to draw a conclusion on which verifi-
cation approach is better. Rather, it will show that there is a large number of
cases on which one approach is better than the other, and vice versa, and in this
sense the two approaches may be considered complementary.

2 http://nusmv.irst.itc.it/

http://nusmv.irst.itc.it/

QBF Encoding of Temporal Properties and QBF-Based Verification 235

Programs with Concurrent Processes. The parameters of the first set of random
Boolean programs are as follows:

a: number of processes
b: number of all variables
c: number of share variables
d: number of local variables in a process

The shared variables are initially set to a random value in {0, 1}, and the
local variables are initially set to 0. For each process, the shared variables and
the local variables are assigned the negation of a variable randomly chosen from
these variables.

Programs with Concurrent Sequential Processes. The parameters of the second
set of random Boolean programs are as follows, in addition to a, b, c, d specified
above.

t: number of transitions in a process
p: number of parallel assignments in each transition

For each concurrent sequential process, besides the b Boolean variables, there
is a local variable representing program locations, with e possible values. The
shared variables are initially set to a random value in {0, 1}, and the local vari-
ables are initially set to 0. For each transition of a process, p pairs of shared
variables and local variables are randomly chosen among the shared variables
and the local variables, such that the first element of such a pair is assigned
the negation of the second element of the pair. Transitions are numbered from
0 to t − 1, and are executed consecutively, and when the end of the sequence
of the transitions is reached, it loops back to the execution of the transition
numbered 0.

Types of Properties. The properties are specified by a subset of 24 eCTL formulas
(which are actually all CTL properties, since BDD-based CTL model checking in
NuSMV is used as the reference in the evaluation). These properties involve AG,
AF properties, and more complicated ones specified with different combinations
of operators with one or two levels of nesting (with two levels of nesting when
AX or EX is involved). Properties p01 to p12 are shown below, where vi are
global variables.

p01 : AG(
∨c

i=1 vi)
p02 : AF (

∨c
i=1 vi)

p03 : AG(v1 → AF (v2 ∧
∨c

i=3 vi))
p04 : AG(v1 → EF (v2 ∧

∨c
i=3 vi))

p05 : EG(v1 → AF (v2 ∧
∨c

i=3 vi))
p06 : EG(v1 → EF (v2 ∧

∨c
i=3 vi))

p07 : A(v1 U A(v2 U
∨c

i=3 vi)
p08 : A(v1 U E(v2 U

∨c
i=3 vi)

p09 : A(v1 U A(v2 R
∨c

i=3 vi)
p10 : A(v1 U E(v2 R

∨c
i=3 vi)

p11 : A(AXv1 R AX A(v2 U
∨c

i=3 vi)
p12 : A(EXv1 R EX E(v2 U

∨c
i=3 vi)

Properties p13 to p24 are similar to p01 to p12 where the difference is that ∧
and
∨

are replaced by respectively ∨ and
∧
.

236 W. Zhang

Experimental Setup. The comparison of advantage and disadvantage is based on
the time used for the verification problem instances. The experimental data were
obtained by running the tools on a Linux platform. For QBF-based verification,
the following command is used for running VERDS-QBF.

verds -QBF filename

For BDD-based verification, we run NuSMV (without counter-example gen-
eration) by the following command.

NuSMV -dcx filename

The option -dcx is for avoiding the generation of counter-examples. This op-
tion is used, since the corresponding use of VERDS does not generate counter-
examples.

Experimental Data for Programs with Concurrent Processes. For this type of
programs, we test different sizes of the programs with 3 processes (a = 3), and
let b vary over the set of values {12, 24, 36}, then set c = b/2, d = c/a. Each of the
24 properties is tested on 20 test cases for each value of b. For brevity, for each
type of properties, a summary of the experimental data is presented in the left
part of Fig. 1, where N is the number of test cases, T is the number of test cases
in which the property is true, F is the number of test cases in which the property
is false, adv is the number of cases in which VERDS-QBF has an advantage with
respect to the usage of time. In this part of the evaluation, VERDS-QBF has
advantage in 1190 of 1440 test cases. On the relative advantage of verification
and falsification, VERDS-QBF has better advantage in the case of falsification.

Experimental Data for Programs with Concurrent Sequential Processes. For this
type of programs, we test different sizes of the programs with 2 processes (a = 2),
and let b vary over the set of values {12, 16, 20}, and then set c = b/2, d = c/a,
t = c, and p = 4. Similarly, each property is tested on 20 test cases for each value
of b, and a summary of the experimental data is presented in the right part of Fig.
1. In this part of the evaluation, VERDS-QBF has advantage in 739 of 1440 test
cases. On the relative advantage of verification and falsification, VERDS-QBF
has also better advantage in falsification in this part of the evaluation.

Summary. Based on the total of 2880 test cases3, the experimental evaluation4

shows that the QBF-based verification does not have advantage in verifying any
of the properties that start with AG. On the other hand, the QBF-based ver-
ification may have advantages in parts (ranging from a few percent to a large
percent) of the test cases of other types of verification and falsification problems
(including falsification of AG properties). On the relative advantage of verifica-
tion and falsification, VERDS-QBF has better advantage in falsification in both

3 Available at http://lcs.ios.ac.cn/~zwh/tr/verds130ee.rar
4 Details available at http://lcs.ios.ac.cn/~zwh/tr/verds130eeq.pdf

http://lcs.ios.ac.cn/~zwh/tr/verds130ee.rar
http://lcs.ios.ac.cn/~zwh/tr/verds130eeq.pdf

QBF Encoding of Temporal Properties and QBF-Based Verification 237

Data for Concurrent Processes:

property adv/T adv/F adv/N

p01 - 60/60 60/60
p02 60/60 - 60/60
p03 0/3 43/57 43/60
p04 0/60 - 0/60
p05 46/53 1/7 47/60
p06 53/60 - 53/60
p07 60/60 - 60/60
p08 60/60 - 60/60
p09 50/52 5/8 55/60
p10 60/60 - 60/60
p11 13/13 45/47 58/60
p12 60/60 - 60/60
p13 - 60/60 60/60
p14 3/3 55/57 58/60
p15 0/8 38/52 38/60
p16 0/60 - 0/60
p17 46/56 1/4 47/60
p18 53/60 - 53/60
p19 5/5 54/55 59/60
p20 16/21 30/39 46/60
p21 3/3 56/57 59/60
p22 3/3 56/57 59/60
p23 - 60/60 60/60
p24 24/31 11/29 35/60

sum 615/791 575/649 1190/1440

Data for Concurrent Seq. Processes:

property adv/T adv/F adv/N

p01 0/53 2/7 2/60
p02 60/60 - 60/60
p03 0/10 1/50 1/60
p04 0/60 - 0/60
p05 0/46 0/14 0/60
p06 0/60 - 0/60
p07 60/60 - 60/60
p08 60/60 - 60/60
p09 36/54 0/6 36/60
p10 53/60 - 53/60
p11 33/47 0/13 33/60
p12 52/60 - 52/60
p13 - 60/60 60/60
p14 4/4 4/56 8/60
p15 0/10 1/50 1/60
p16 0/60 - 0/60
p17 0/48 0/12 0/60
p18 0/60 - 0/60
p19 8/8 52/52 60/60
p20 13/18 27/42 40/60
p21 4/4 54/56 58/60
p22 4/4 55/56 59/60
p23 - 59/60 59/60
p24 8/16 29/44 37/60

sum 395/862 344/578 739/1440

Fig. 1. Experimental Data for the two Types of Programs

of the types of programs. In summary, QBF-based verification has advantage
in more than 50 percent of the test cases, which are well distributed among
verification and falsification of universal properties.

6 Concluding Remarks

Bounded semantics of eCTL and QBF-based characterization of eCTL based
on such a semantics have been presented. A verification algorithm of eCTL
properties based on solving QBF-formulas has then been established.

The traditional application area of SAT-based verification has mainly been on
the error detection of various universal properties such as LTL and the universal
fragments of CTL* [1,14,15]. QBF-based verification presented in this paper
applies to the set of eCTL properties (that may be specified with both universal
and existential path quantifiers), and can handle verification and falsification
problems with bounded models. Furthermore, one of the particular aspects of
this implementation is that it can handle properties, for instance, of the form

238 W. Zhang

A
∞
G(p → EFq), that are not handled by well known model checking tools such

as Spin [11] and NuSMV [4].
Experimental evaluation of such an approach has been presented. The test

cases have shown that QBF-based verification and BDD-based verification have
their own advantages and may be considered complementary in the verification
of different problem instances.

The efficiency of QBF-based verification depends very much on the QBF-
solving techniques. External QBF-solvers may be used to increase the efficiency
of the verification. Improving the efficiency by optimizing the QBF-based encod-
ing and by enhancing QBF-solving techniques remains as future works.

References

1. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic Model Checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS/ETAPS 1999. LNCS, vol. 1579, pp.
193–207. Springer, Heidelberg (1999)

2. Biere, A., Cimmatti, A., Clarke, E., Strichman, O., Zhu, Y.: Bounded Model Check-
ing. Advances in Computers, vol. 58. Academic Press (2003)

3. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, J.: Symbolic model
checking: 1020 states and beyond. LICS, pp. 428–439 (1990)

4. Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.: NUSMV: A New Symbolic
Model Verifier. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633,
pp. 495–499. Springer, Heidelberg (1999)

5. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. The MIT Press (1999)
6. Duan, Z., Tian, C., Yang, M., He, J.: Bounded Model Checking for Propositional

Projection Temporal Logic. In: Du, D.-Z., Zhang, G. (eds.) COCOON 2013. LNCS,
vol. 7936, pp. 591–602. Springer, Heidelberg (2013)

7. Emerson, E.A., Clarke, E.M.: Using Branching-time Temporal Logics to Synthesize
Synchronization Skeletons. Sci. of Comp. Prog. 2(3), 241–266 (1982)

8. Emerson, E.A., Halpern, J.Y.: “Sometimes” and “Not Never” revisited: on branch-
ing versus linear time temporal logic. J. ACM 33(1), 151–178 (1986)

9. Goultiaeva, A., Van Gelder, A., Bacchus, F.: A Uniform Approach for Generating
Proofs and Strategies for Both True and False QBF Formulas. In: IJCAI 2011, pp.
546–553 (2011)

10. Hoffmann, J., Gomes, C.P., Selman, B., Kautz, H.A.: SAT Encodings of State-
Space Reachability Problems in Numeric Domains. In: IJCAI 2007, pp. 1918–1923
(2007)

11. Holzmann, G.J.: The model checker Spin. IEEE Transactions on Software Engi-
neering 23(5), 279–295 (1997)

12. Kemper, S.: SAT-based verification for timed component connectors. Sci. Comput.
Program. 77(7-8), 779–798 (2012)

13. Kontchakov, R., Pulina, L., Sattler, U., Schneider, T., Selmer, P., Wolter, F., Za-
kharyaschev, M.: Minimal Module Extraction from DL-Lite Ontologies Using QBF
Solvers. In: IJCAI 2009, pp. 836–841 (2009)

14. Penczek, W., Wozna, B., Zbrzezny, A.: Bounded Model Checking for the Universal
Fragment of CTL. Fundamenta Informaticae 51, 135–156 (2002)

15. Wozna, B.: ATCL* properties and Bounded Model Checking. Fundam. In-
form. 63(1), 65–87 (2004)

QBF Encoding of Temporal Properties and QBF-Based Verification 239

16. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publisher (1993)
17. Peled, D.A.: Software Reliability Methods. Springer (2001)
18. Peterson, G.L.: Myths About the Mutual Exclusion Problem. Information Process-

ing Letters 12(3), 115–116 (1981)
19. Zhang, W.: Bounded Semantics of CTL and SAT-based Verification. In: Breitman,

K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885, pp. 286–305. Springer,
Heidelberg (2009)

20. Zhang, W.: Bounded Semantics of CTL. Institute of Software, Chinese Academy
of Sciences. Technical Report ISCAS-LCS-10-16 (2010)

21. Zhang, W.: VERDS modeling language, http://lcs.ios.ac.cn/~zwh/verds/

http://lcs.ios.ac.cn/~zwh/verds/

Introducing Quantified Cuts

in Logic with Equality

Stefan Hetzl1, Alexander Leitsch2, Giselle Reis2,
Janos Tapolczai1, and Daniel Weller1

1 Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien
2 Institut für Computersprachen, Technische Universität Wien

Abstract. Cut-introduction is a technique for structuring and com-
pressing formal proofs. In this paper we generalize our cut-introduction
method for the introduction of quantified lemmas of the form ∀x.A
(for quantifier-free A) to a method generating lemmas of the form
∀x1 . . .∀xn.A. Moreover, we extend the original method to predicate
logic with equality. The new method was implemented and applied to
the TSTP proof database. It is shown that the extension of the method
to handle equality and quantifier-blocks leads to a substantial improve-
ment of the old algorithm.

1 Introduction

Computer-generated proofs are typically analytic, i.e., they only contain logi-
cal material that also appears in the statement of the theorem. This is due to
the fact that analytic proof systems have a considerably smaller search space
which makes proof-search practically feasible. In the case of sequent calculus,
proof-search procedures typically work on the cut-free fragment. But also reso-
lution is essentially analytic as resolution proofs satisfy the subformula property
of first-order logic. One interesting property of non-analytic proofs is their con-
siderably smaller length. The exact difference depends on the logic (or theory)
under consideration, but it is typically enormous. In (classical and intuitionistic)
first-order logic there are proofs with cut of length n whose theorems have only
cut-free proofs of length 2n (where 20 = 1 and 2n+1 = 22n) (see [16] and [12]).
The length of a proof plays an important role in many situations such as human
readability, space requirements and time requirements for proof checking. For
most of these situations general-purpose data compression methods cannot be
used as the compressed representation is not a proof in a standard calculus any-
more and hence does not allow fast processing, e.g. linear time proof checking. It
is therefore of high practical interest to develop methods of proof transformation
which produce non-analytic and hence potentially much shorter proofs.

Work on cut-introduction can be found at a number of different places in
the literature. Closest to our work are other approaches which aim to abbrevi-
ate or structure a given input proof. In [20] an algorithm for the introduction
of atomic cuts that is capable of exponential proof compression is presented.

S. Demri, D. Kapur, and C. Weidenbach (Eds.): IJCAR 2014, LNAI 8562, pp. 240–254, 2014.
c© Springer International Publishing Switzerland 2014

Introducing Quantified Cuts in Logic with Equality 241

The method [5] for propositional logic is shown to never increase the size of
proofs more than polynomially. Another approach to the compression of first-
order proofs by introduction of definitions for abbreviating terms is [19]. There
is a large body of work on the generation of non-analytic formulas carried out
by numerous researchers in various communities. Methods for lemma generation
are of crucial importance in inductive theorem proving which frequently requires
generalization [1], see e.g. [10] for a method in the context of rippling [2] which
is based on failed proof attempts. In automated theory formation [3,4], an eager
approach to lemma generation is adopted. This work has, for example, led to au-
tomated classification results of isomorphism classes [14] and isotopy classes [15]
in finite algebra. See also [11] for an approach to inductive theory formation.

Our method of algorithmic cut-introduction, based on the inversion of
Gentzen’s cut-elimination method, has been defined in [8] and [7]. The method
in [8] works on a cut-free LK-proof ϕ of a prenex skolemized end-sequent S
and consists of the following steps: (1) extraction of a set of terms T from ϕ,
(2) computation of a compressed representation of T , (3) construction of the
cut formula, (4) improvement of the solution by computation of smaller cut-
formulas, and (5) construction of an LK-proof with the universal cut formula
obtained in (4) and instantiation of the quantifiers with the terms obtained in
(2). It has been shown in [8] that the method is capable of compressing cut-free
proofs quadratically. The paper [7] generalized the method to the introduction
of arbitrarily many universal cut formulas, where the steps defined above are
roughly the same, though the improvement of the solution (step 4) and the final
construction of the proof with cuts (step 5) are much more difficult. The method
of introducing arbitrarily many universal cuts in [7] leads even to an exponential
compression of proof length. Still the methods described above were mainly de-
signed for a theoretical analysis of the cut-introduction problem rather than for
practical applications. In particular, they lacked efficient handling of equality (as
they were defined for predicate logic without equality) and the introduction of
several universal quantifiers in cut formulas (all cut formulas constructed in [7]
are of the form ∀x.A for a single variable x and a quantifier-free formula A).

In this paper we generalize our cut-introduction method to predicate logic
with equality and to the construction of a (single) quantified cut containing
blocks of universal quantifiers. The efficient compression of the terms (step 2) and
the improvement of the solution (step 4) require new and non-trivial techniques.
Moreover, we applied the new method in large-scale experiments to proofs gen-
erated by prover9 on the TPTP library. This empirical evaluation demonstrates
the feasibility of our method on realistic examples.

2 Proofs and Herbrand Sequents

Throughout this paper we consider predicate logic with equality. For practical
reasons equality will not be axiomatized but handled via substitution rules. We
extend the sequent calculus LK to the calculus LK= by allowing sequents of
the form → t = t as initial sequents and adding the following rules:

242 S. Hetzl et al.

Γ → Δ, s = t A[s],Π → Λ

A[t], Γ,Π → Δ,Λ
El1

Γ → Δ, t = s A[s], Π → Λ

A[t], Γ,Π → Δ,Λ
El2

Γ → Δ, s = t Π → A[s], Λ

Γ,Π → A[t],Δ,Λ
Er1

Γ → Δ, t = s Π → A[s], Λ

Γ,Π → A[t],Δ,Λ
Er2

LK= is sound and complete for predicate logic with equality.
For convenience we write a substitution [x1\t1, . . . , xn\tn] in the form [x̄\t̄]

for x̄ = (x1, . . . , xn) and t̄ = (t1, . . . , tn). A strong quantifier is a ∀ (∃) quantifier
with positive (negative) polarity. We restrict our investigations to end-sequents
in prenex form without strong quantifiers.

Definition 1. A Σ1-sequent is a sequent of the form

∀x1 · · · ∀xk1F1, . . . , ∀x1 · · · ∀xkpFp → ∃x1 · · · ∃xkp+1Fp+1, . . . , ∃x1 · · · ∃xkqFq.

for quantifier free Fi.

Note that the restriction to Σ1-sequents does not constitute a substantial
restriction as one can transform every sequent into a validity-equivalent Σ1-
sequent by skolemisation and prenexing.

Definition 2. A sequent S is called E-valid if it is valid in predicate logic with
equality; S is called a quasi-tautology [13] if S is quantifier-free and E-valid.

Definition 3. The length of a proof ϕ, denoted by |ϕ|, is defined as the number
of inferences in ϕ. The quantifier-complexity of ϕ, written as |ϕ|q, is the number
of weak quantifier-block introductions in ϕ.

2.1 Extraction of Terms

Herbrand sequents of a sequent S are sequents consisting of instantiations of S
which are quasi-tautologies. The formal definition is:

Definition 4. Let S be a Σ1-sequent as in Definition 1 and let Hi be a finite set
of ki-vectors of terms for every i ∈ {1, . . . , q}. We define Fi = {Fi[x̄i\t̄] | t̄ ∈ Hi}
if Hi
= ∅ and Fi = {Fi} if Hi = ∅. Let

S∗ : F1 ∪ · · · ∪ Fp → Fp+1 ∪ . . . ∪ Fq.

If S∗ is a quasi-tautology then it is called a Herbrand sequent of S and
H : (H1, . . . , Hq) is called a Herbrand structure of S. We define the instantiation
complexity of S∗ as |S∗|i =

∑q
i=1 |Hi|.

Note that, in the instantiation complexity of a Herbrand sequent, we only count
the formulas obtained by instantiation.

Introducing Quantified Cuts in Logic with Equality 243

Example 1. Consider the language containing a constant symbol a, unary func-
tion symbols f, s, a binary predicate symbol P , and the sequent S defined below.
We write fn, sn for n-fold iterations of f and s and omit parentheses around the
argument of a unary symbol when convenient. Let

S : P (f4a, a), ∀x.fx = s2x, ∀xy(P (sx, y) ⊃ P (x, sy)) → P (a, f4a)

and H = (H1, H2, H3, H4) for

H1 = ∅, H4 = ∅, H2 = {a, fa, f2a, f3a},
H3 = {(s3f2a, a), (s2f2a, sa), (sf2a, s2a), (f2a, s3a), (s3a, f2a), (s2a, sf2a),
(sa, s2f2a), (a, s3f2a)}.

Then

F1 = {P (f4a, a)}, F4 = {P (a, f4a)},
F2 = {fa = s2a, f2a = s2fa, f3a = s2f2a, f4a = s2f3a}
F3 = {P (s4f2a, a) ⊃ P (s3f2a, sa), P (s3f2a, sa) ⊃ P (s2f2a, s2a),

P (s2f2a, s2a) ⊃ P (sf2a, s3a), P (sf2a, s3a) ⊃ P (f2a, s4a),

P (s4a, f2a) ⊃ P (s3a, sf2a), P (s3a, sf2a) ⊃ P (s2a, s2f2a),

P (s2a, s2f2a) ⊃ P (sa, s3f2a), P (sa, s3f2a) ⊃ P (a, s4f2a)}.

A Herbrand-sequent S∗ corresponding to H is then F1 ∪ F2 ∪ F3 → F4. Note
that fa = s2a, f2a = s2fa, f3a = s2f2a, f4a = s2f3a |= f4a = s8a.
The instantiation complexity of S∗ is 12. S∗ is a quasi-tautology but not a
tautology.

Theorem 1 (mid-sequent theorem). Let S be a Σ1-sequent and π a cut-free
proof of S. Then there is a Herbrand-sequent S∗ of S s.t. |S∗|i ≤ |π|q.
Proof. This result is proven in [6] (section IV, theorem 2.1) for LK, but the proof
for LK= is basically the same. By permuting the inference rules, one obtains a
proof π′ from π which has an upper part containing only propositional inferences
and the equality rules (which can be shifted upwards until they are applied to
atoms only) and a lower part containing only quantifier inferences. The sequent
between these parts is called mid-sequent and has the desired properties.

S∗ can be obtained by tracing the introduction of quantifier-blocks in the
proof, which for every formula Qx̄i.Fi in the sequent (where Q ∈ {∀, ∃}) yields
a set of term tuples Hi, and then computing the sets of formulas Fi.

The algorithm for introducing cuts described here relies on computing a com-
pressed representation of the Herbrand structure, which is explained in Section
3. Note, though, that the Herbrand structure (H1, . . . , Hq) is a list of sets of term
tuples (i.e. each Hi is a set of tuples t used to instantiate the formula Fi). In
order to facilitate computation and representation, we will add to the language
fresh function symbols f1, . . . , fq. Each fi will be applied to the tuples of the
set Hi, therefore transforming a list of sets of tuples into a set of terms. In this
new set, each term will have an fk as its head symbol, that indicates to which
formula the arguments of fk belong.

244 S. Hetzl et al.

Example 2. Using this new notation, the Herbrand structure H of the previous
example is now represented as the set of terms:

T : {f2(a), f2(fa), f2(f
2a), f2(f

3a), f3(s
3f2a, a), f3(s

2f2a, sa), . . . , f3(a, s
3f2a)}.

Henceforth we will refer to the transformed Herbrand structure as the term
set of a proof.

3 Computing a Decomposition

We shall now describe an algorithm for computing a compressed representation
of a term set T . Term sets will be represented by decompositions which are
defined as follows:

Definition 5. Let T = {t1, . . . , tn} be a set of ground terms. A decomposition
D of T is a pair, written as U ◦ᾱ W , where U is a set of terms containing the

variables α1, . . . , αm, and W =

⎧⎪⎨⎪⎩w̄1 =

⎛⎜⎝ w1,1

...
w1,m

⎞⎟⎠ , . . . , w̄q =

⎛⎜⎝ wq,1

...
wq,m

⎞⎟⎠
⎫⎪⎬⎪⎭ is a set

of vectors of ground terms s.t. T = U ◦ᾱ W = {u[ᾱ\w̄] | u ∈ U, w̄ ∈ W}. The
size of a decomposition U ◦ᾱ W is |U |+ |W |. When it is clear that the variables
in question are α1, . . . , αm, we just write U ◦ W .

In [7], we gave an algorithm that treated the special case where m = 1. Here,
we will extend that approach with a generalized Δ-vector ΔG, which, together
with a so-called Δ-table, can compute decompositions with an arbitrary m. ΔG,
given in Algorithm 1, computes a simple decomposition, i.e. a decomposition
with only one term in U . The Δ-table stores such decompositions and builds
more complex ones out of them. Due to space reasons, the algorithm can only
be sketched here, for details the interested reader is referred to the technical
report [18].

Definition 6. Let T be a set of ground terms. The Δ-table for T is a set of
key/value-entries, where each entry is of the form W ⇒ U ′, where U ′ is a set
{(u1, T1), . . . , (uq, Tq)}, W is a set of ground term vectors, ui is a term containing
variables, q is some a priori unknown bound different for each line, and Ti is a
subset of T s.t. the following two conditions are satisfied:

1. For every entry W ⇒ {(u1, T1), . . . , (uq, Tq)}, {ui} ◦ W is a decomposition
of Ti (for 1 ≤ i ≤ q).

2. For every T ′ ⊆ T , there is a pair W ⇒ U ′ in the Δ-table s.t. (u, T ′) ∈ U ′.

In practice, condition 2 is relaxed in order to improve performance. Whenever a
subset T ′ of T has only a trivial decomposition, i.e. ΔG(T

′) = (αi, T
′), its infor-

mation is not added to the Δ-table. Moreover, no superset of T ′ is considered
from this point on, since we know that these will also have trivial decompositions.

Introducing Quantified Cuts in Logic with Equality 245

Algorithm 1. Generalized Δ-vector ΔG

function ΔG(t1, . . . , tn: a list of terms)
return transposeW(ΔG’(t1, . . . , tn))

end function
function ΔG’(t1, . . . , tn: a list of terms)

if t1 = t2 = . . . = tn ∧ n > 0 then � case 1: all terms identical
return (t1, ())

else if ti = f(ti1, . . . , t
i
m) for 1 ≤ i ≤ n then � case 2: recurse

(w̄1, . . . , w̄q)←
⊔

1≤j≤m

π2(ΔG(t
1
j , . . . , t

n
j)) �

⊔
≡ concatenation

uj ← π1(ΔG(t
1
j , . . . , t

n
j)) for all j ∈ {1, . . . ,m}

return merge(f(u1, . . . , um), (w̄1, . . . , w̄q)) � merge all αi, αj where w̄i = w̄j

else � case 3: introduce new α
return (αFRESH, (t1, . . . , tn))

end if
end function

Note that this implies that ΔG(T) is almost never computed. An actual decom-
position for T is found by iterating over the Δ-table and, for each entry, trying
to find a set of pairs {(ui1 , Ti1), . . . , (uiq , Tiq)} ⊆ U ′ such that {ui1 , . . . , uin} ◦W
generates T .

Theorem 2 (Soundness). Let T be a term set. If U ◦ W is extracted from
iterating over the Δ-table, then U ◦ W is a decomposition of T .

Proof. See [18].

In fact, a stronger result holds: for every decomposition, there exists a unique
normal form, and iterating over the Δ-table will only return decompositions
in such a normal form. For details, see [18]. To illustrate the algorithm, we
compute a decomposition of the term set of Example 2. We remark that, for our
cut-introduction method, we are interested in a decomposition (U1, . . . , Uq) ◦W
of a Herbrand structure H = (H1, . . . , Hq) which has the property that Hj =
{u[ᾱ\w̄] | u ∈ Uj, w̄ ∈ W}. This is trivially obtained from a decomposition U ◦W
of the term set of a Herbrand structure by setting Uj = {u | fj(u) ∈ U}.
Example 3. Let T = T2 ∪ T3 with

T2 = {t1 : f2(a), t2 : f2(fa), t3 : f2(f
2a), t4 : f2(f

3a)}
T3 = {t5 : f3(s

3f2a, a), t6 : f3(s
2f2a, sa), . . . , t12 : f3(a, s

3f2a)}

be a term set corresponding to the Herbrand structure H = (H1, H2, H3, H4):

H1 = ∅, H4 = ∅,H2 = {a, fa, f2a, f3a},
H3 = {(s3f2a, a), (s2f2a, sa), . . . , (a, s3f2a)}

We now compute ΔG for every subset of T — consider for instance the subset
T ′ = {f3(s3f2a, a), f3(s

2f2a, sa)} ⊆ T :

ΔG(f3(s
3f2a, a), f3(s

2f2a, sa)) = (f3(s
2α1, α2),

{(
sf2a
a

)
,

(
f2a
sa

)}
) = (u,W).

246 S. Hetzl et al.

If the Δ-table already has an entry W ⇒ U ′, we add (u, T ′) to U ′. If not, we
insert a new entry W ⇒ {(u, T ′)}. After ΔG has been computed for all subsets,
we iterate through it, looking for simple decompositions that can be composed
into a decomposition of T . We find the entry

W ⇒ U ′
1 ∪ U ′

2 ∪ U ′
3 ∪ U ′

4

U ′
1 = {}

U ′
2 = {(f2(α1), {t1, t3}), (f2(fα1), {t2, t4}), (f2(α2), {t1, t3}) (f2(fα2), {t2, t4})}

U ′
3 = {(f3(s3α1, α2), {t5, t9}), (f3(s

2α1, sα2), {t6, t10}),
(f3(sα1, s

2α2), {t7, t11}), (f3(α1, s
3α2), {t8, t12})}

U ′
4 = {}

W =

{(
f2a
a

)
,

(
a

f2a

)}
and can see that U ′i ◦W = Ti for 1 ≤ i ≤ 4. Therefore, (U ′1 ∪U ′2 ∪U ′3 ∪U ′4) ◦W
is a decomposition of T . We then translate this decomposition T back into a
decomposition of H by removing the function symbols f2 and f3 from U ′2 & U ′3
(the empty sets U ′1 and U ′4 can be disregarded):

U = (U2, U3),

U2 = {α1, fα1, α2, fα2},
U3 = {(s3α1, α2), (s2α1, sα2), (sα1, s

2α2), (α1, s
3α2)},

W =

{(
f2a
a

)
,

(
a

f2a

)}
.

4 Computing a Cut-Formula

After having computed a decomposition as described in Section 3, the next step
consists in computing a cut-formula based on that decomposition. A decom-
position D specifies the instances of quantifier blocks in a proof with a ∀-cut,
but does not contain information about the propositional structure of the cut
formula to be constructed. The problem to find the appropriate propositional
structure is reflected in the following definition.

Definition 7. Let S be a Σ1-sequent and Fi, ki as in Definition 1, H be a
Herbrand structure for S, and D:U ◦ W a decomposition of H with V (D) =
{α1, . . . , αn}. Let U = (U1, . . . , Uq) and W = {w̄1, . . . , w̄k}, where the w̄j are n-
vectors of terms not containing variables in V (D), and F ′i = {Fi[x̄i\t̄] | t̄ ∈ Ui}
for Ui
= ∅ and F ′i = {Fi} for Ui = ∅. Furthermore let X be an n-place predicate
variable. Then the sequent

S∼ : Xᾱ ⊃
∧k

i=1
Xw̄i,F ′1, . . . ,F ′p → F ′p+1, . . . ,F ′q.

is called a schematic extended Herbrand sequent of S w.r.t. D. The instantiation
complexity of S∼, denoted by |S∼|i, is defined as k +

∑q
i=1 |Ui|.

Introducing Quantified Cuts in Logic with Equality 247

Definition 8. Let S∼ be a schematic extended Herbrand sequent of S w.r.t. a
decomposition D as in Definition 7 and A be a formula with V (A) ⊆
{α1, . . . , αn}. Then the second-order substitution σ: [X\λᾱ.A] is a solution of
S∼ if S∼σ is a quasi-tautology; in this case S∼σ is called an extended Herbrand
sequent. The instantiation complexity of S∼σ is defined as |S∼|i.
Theorem 5 in Section 4.2 shows that, from a solution of a schematic extended
Herbrand sequent S∼ of S, we can define a proof ψ of S with a ∀-cut and
|ψ|q = |S∼|i. The question remains whether every schematic extended Herbrand
sequent is solvable. We show below that this is indeed the case.

Let S∼ as in Definition 7. We define

F [l] =
∧⋃p

i=1
F ′i and F [r] =

∨⋃q

i=p+1
F ′i .

Definition 9. Let S∼ be a schematic extended Herbrand sequent of S as in
Definition 7. We define the canonical formula C(S∼) of S∼ as F [l]∧¬F [r]. The
substitution [X\λᾱ.C(S∼)] is called the canonical substitution of (S, S∼).

Theorem 3. Let S be a Σ1-sequent, and S∼ be a schematic extended Herbrand
sequent of S. Then the canonical substitution is a solution of S∼.

Proof. Let S∼ be a schematic extended Herbrand sequent as in Definition 7 and
C(S∼) be the canonical formula of S∼. We have to prove that

S1 : C(S∼)(ᾱ) ⊃
∧k

i=1
C(S∼)(w̄i), F [l] → F [r]

is a quasi-tautology. But, by definition of C(S∼), S1 is equivalent to

S2 : (F [l] ∧ ¬F [r]) ⊃
∧k

i=1
(F [l] ∧ ¬F [r])(w̄i), (F [l] ∧ ¬F [r]) → .

Clearly S2 is a quasi-tautology if the sequent S3, defined as

S3 :
∧k

i=1
(F [l] ∧ ¬F [r])(w̄i) →

is a quasi-tautology. But, by D = U ◦W being a decomposition of H , S3 is logi-
cally equivalent to the Herbrand sequent S∗ defined overH , which (by definition)
is a quasi-tautology.

Example 4. Let

S : P (f4a, a), ∀x.fx = s2x, ∀xy(P (sx, y) ⊃ P (x, sy)) → P (a, f4a)

like in Example 1 and D be the decomposition U ◦ W of H constructed in
Example 3. We have

U = (U2, U3),

U2 = {α1, fα1, α2, fα2},
U3 = {(s3α1, α2), (s2α1, sα2), (sα1, s

2α2), (α1, s
3α2)},

W =

{(
f2a
a

)
,

(
a

f2a

)}
.

248 S. Hetzl et al.

The corresponding schematic extended Herbrand sequent S∼ is

X(α1, α2) ⊃ (X(f2a, a) ∧X(a, f2a)),
fα1 = s2α1, f2α1 = s2fα1, fα2 = s2α2, f2α2 = s2fα2,
P (s4α1, α2) ⊃ P (s3α1, sα2), P (s3α1, sα2) ⊃ P (s2α1, s

2α2),
P (s2α1, s

2α2) ⊃ P (sα1, s
3α2), P (sα1, s

3α2) ⊃ P (α1, s
4α2), P (f4a, a)→ P (a, f4a).

Its canonical formula C(S∼) which we write as A(α1, α2) is∧2
i=1(fαi = s2αi ∧ f2αi = s2fαi)∧∧3
i=0(P (s4−iα1, s

iα2) ⊃ P (s4−i−1α1, s
i+1α2)) ∧ P (f4a, a) ∧ ¬P (a, f4a).

The canonical solution is [X\λα1α2.A(α1, α2)] and the corresponding extended
Herbrand sequent S′ is like S∼ with X(α1, α2) ⊃ (X(f2a, a) ∧ X(a, f2a)) re-
placed by A(α1, α2) ⊃ (A(f2a, a) ∧ A(a, f2a)). Note that |S′|i = 10, while
|S∗|i = 12. So we obtained a compression of quantifier complexity.

4.1 Improving the Solution

In the last section, we have shown that, given a decomposition D of the termset
of a cut-free proof of a Σ1-sequent S, there exists a canonical solution to the
schematic extended Herbrand sequent induced by S,D, which gives rise to a
proof with a ∀-cut. Furthermore, as we will show in Theorem 5, all solutions are
equivalent from the point of view of the |·|q measure. On the other hand, the
quality of solutions can be distinguished by other properties, for example by the
length of the proof with cut they induce. Since the best known general upper
bound on the length of proofs in propositional logic (which corresponds to our
setting once a decomposition is fixed) depends on the size of the theorem to be
proven, our approach is to search for solutions that have smaller size than the
canonical solution.

We will consider E-validity of quantifier-free formulas F containing free vari-
ables; by “F is E-valid” we mean to say “the universal closure of F is E-
valid”. Throughout this section, we consider a fixed Σ1-sequent S using the
notation of Definition 1, a fixed decomposition D = (U1, . . . , Uq) ◦ W , with
W = {w̄i | 1 ≤ i ≤ k}, of a Herbrand structure H of S, along with the schematic
extended Herbrand sequent S∼ induced by S,H,D, using the notation of Defini-
tion 7. We will abbreviate F ′1∪· · ·∪F ′p by Γ and F ′p+1∪· · ·∪F ′q by Δ, and write
“A is a solution” for “[X\λx̄.A] is a solution for S∼” (note that we will consider
the names x̄ fixed). In this section, we will focus our attention on solutions in
conjunctive normal form (CNF), which always exist since the solution property
is semantic (if A is a solution and A ⇔ B is E-valid, then B is a solution). A
clause C is said to be x̄-free if it contains no symbol from x̄.

The algorithm we will present will involve generating E-consequences of for-
mulas. Although in principle an abstract analysis of our algorithm based on a
notion of E-consequence generator can be performed, we have chosen, for lack of
space, to present only the concrete E-consequence generator used in our imple-
mentation.

Introducing Quantified Cuts in Logic with Equality 249

Our E-consequence generator is based on forgetful reasoning. Let C1, C2 be two
clauses, then denote the set of propositional resolvents of C1, C2 by res(C1, C2)
and the set of clauses that can be obtained from C1, C2 by ground paramodula-
tion by para(C1, C2). Letting F be a formula with CNF {Ci}i∈I we define

F(F) = {C ∧
∧

i∈I\{j,k}
Ci | C ∈ res(Cj , Ck) ∪ para(Cj , Ck)}.

Using F , we can now present Algorithm 2: the solution-finding algorithm SFF .
It prunes a solution A of x̄-free clauses, then recurses upon those consequences
of the pruned A generated by F which pass a certain E-validity check, finally
returning a set of formulas (which will all be solutions).

Algorithm 2. SFF
function SFF (A: solution in CNF)

A← A without x̄-free clauses
S ← {A}
for B ∈ F(A) do

if B[x̄\w̄1], . . . , B[x̄\w̄k], Γ → Δ is E-valid then � B is a solution
S ← S ∪ SFF (B)

end if
end for
return S

end function

Theorem 4 (Soundness & Termination). Let A be any solution in CNF.
Then SFF terminates on A and, for all B ∈ SFF (A), B is a solution.

Proof. Termination is trivial since CNFs get smaller under F . If C(S∼) ⊃ B is
E-valid then B is a solution iff B[x̄\w̄1], . . . , B[x̄\w̄k], Γ → Δ is E-valid. Hence
the E-validity check in SFF suffices. Let A be a solution in CNF and A′ be
A without x̄-free clauses. The fact that A′ is a solution follows from the fact
that A ⊃ C[x̄\w̄k] is E-valid for all x̄-free clauses C of A, together with the
assumption that A is a solution.

The algorithm SFF can be used to lift a compression in quantifier-complexity
to a compression w.r.t. proof length. Indeed, in the setting of first-order logic
without equality, SFF has been applied in [7] to obtain an exponential speed-up
result w.r.t. proof length.

Example 5. Consider the canonical formula C(S∼) of Example 4. Then SFF
generates the CNF

F (α1, α2) : f2α1 = s4α1 ∧ f2α2 = s4α2 ∧ (¬P (s4α1, α2) ∨ P (α1, s
4α2))

for the CNF of C(S∼) by applying paramodulation twice to equational atoms
and resolution thrice to the clauses corresponding to the implications between
the P -atoms. It can be checked that λα1α2.F (α1, α2) is a solution for S∼ which
is smaller than the canonical solution.

250 S. Hetzl et al.

4.2 Proof with Cut

Theorem 5. Let S∼ be an extended Herbrand sequent of a Σ1-sequent S. Then
S has a proof ϕ with a ∀-cut s.t. |ϕ|q = |S∼|i.

Proof. As in [7] (page nr. 12, Theorem 7). Note that the quantifier-blocks in the
cut and the equality rules do not change the measured number of weak quantifier-
block introductions analyzed in the paper above. The main steps in the proof
are the following ones: let S′ be an extended Herbrand sequent obtained by the
solution [X\λᾱ.A]. Then a proof with cut formula ∀x̄.A[ᾱ\x̄] can be constructed
where the quantifier substitution blocks for the cut formula on the right-hand-
side are [x̄\w̄] for w̄ ∈ W while the cut formula on the left-hand-side gets the
substitution [x̄\ᾱ]. The substitutions [x̄i\t̄] for t̄ ∈ Ui are inserted to introduce
the quantifiers of the formula Fi in the end-sequent.

Example 6. Let Γ = P (f4a, a), ∀x.fx = s2x, ∀xy(P (sx, y) ⊃ P (x, sy)) be the
left-hand-side of S. Then, to the canonical solution corresponds an LK-proof ψ
of the form

(ψ1)

Γ → P (a, f4a),A(α1, α2)

Γ → P (a, f4a),∀xy.A(x, y)
∀∗r

(ψ2)

Γ,A(f2a, a), A(a, f2a)→ P (a, f4a)

Γ,∀xy.A(x, y)→ P (a, f4a)
∀∗l

Γ → P (a, f4a)
cut + c∗

where ψ1 and ψ2 are cut-free and ψ2 contains only structural and propositional
inferences (in ψ2 only P (f4a, a) is needed from Γ). The quantifier inferences in ψ1

use exactly the 8 substitutions encoded in U1 and U2, ψ2 uses the 2 substitutions
represented by W . So we have |ψ|q = 10.

5 Implementation and Experiments

Summing up the previous sections, the structure of our cut-introduction algo-
rithm is the following:

Algorithm 3. Cut-Introduction

Require: π: cut-free proof
T ← extractTermSet(π)
D ← getMinimalDecomposition(T)
C(x̄)← getCanonicalSolution(D)
F (x̄)← improveSolution(C(x̄))
return constructProof(F (x̄))

Depending on whether the input proof π contains equality reasoning or not
we either work modulo quasi-tautologies as described in this paper or mod-
ulo tautologies (as described in [8,7]) in improveSolution and constructProof.

Introducing Quantified Cuts in Logic with Equality 251

In getMinimalDecomposition we can either compute decompositions with a sin-
gle variable as in [8,7] or with an unbounded number of variables as described
in Section 3. We denote these two variants with CI1 and CI∗ respectively.

These algorithms have been implemented in the gapt-system1 which is a
framework for transforming and analyzing formal proofs. It is implemented
in Scala and contains data structures such as formulas, sequents, resolution
and sequent calculus proofs and algorithms like unification, skolemization, cut-
elimination as well as backends for several external solvers and provers. For
deciding whether a quantifier-free formula is a tautology we use MiniSat2. We
use veriT3 for deciding whether a quantifier-free formula is a quasi-tautology
and prover94 for the actual proof construction based on the import described
in [9].

We have conducted experiments on the prover9-part of the TSTP-library
(Thousands of Solutions of Theorem Provers, see [17]). The choice of prover9
was motivated by the simple and clean proof output format Ivy which makes
proof import (comparatively) easy. This library contains 6341 resolution proofs.
Of those, 5254 can be parsed and transformed into a sequent calculus proof using
the transformation described in [9]. Of those, 2849 have non-trivial termsets (we
call a term set trivial if every quantified formula in the end-sequent is instanti-
ated at most once).

The input data we have used for our experiments is this collection of proofs
with non-trivial term sets. In this collection 66% use equality reasoning and
hence must be treated with the method introduced in this paper. The average
term set size is 37,1 but 46% have a term set of size ≤ 10. The experiments
have been conducted with version 1.6 of gapt on an Intel i5 QuadCore with
3,33GHz with an allocation of 2GB heap space and a timeout of 60 seconds for
the cut-introduction algorithm.

On 19% of the input proofs our algorithm terminates with finding a compres-
sion, i.e. a non-trivial decomposition (of size at most that of the original termset)
and a proof with cut that realizes this decomposition. On 49% it terminates de-
termining that the proof is uncompressible, more precisely: that there is no proof
with a single ∀-cut which (by cut-elimination) reduces to the given input term set
and is of smaller quantifier complexity, see [7]. Figure 1 depicts the return status
(in percent) depending on the size of the term set. When reading this figure one
should keep in mind the relatively high number of small proofs (see above). One
can observe that proofs with term sets up to a size of around 50 can be treated
well by our current implementation, beyond that the percentage of timeouts is
very large. Small proofs – unsurprisingly – tend to be uncompressible.

In Figure 2 we restrict our attention to runs terminating with a compres-
sion. As one can see from the diagram on the left, a significant reduction of
quantifier-complexity can be achieved by our method. The diagram on the right

1 Generic Architecture for Proof Transformations, http://www.logic.at/gapt/
2 http://minisat.se/
3 http://www.verit-solver.org/
4 http://www.cs.unm.edu/~mccune/prover9/

http://www.logic.at/gapt/
http://minisat.se/
http://www.verit-solver.org/
http://www.cs.unm.edu/~mccune/prover9/

252 S. Hetzl et al.

1-5 11-15 21-25 31-35 41-45 51-55 61-65
0

20

40

60

80

100

timeout

found

compression

uncompressible

timeout

found

compression

uncompressible

term set size

st
a
tu
s
(%

)

Fig. 1. CI∗: return status by term set size

0 20 40 60
0

20

40

60

decomposition

te
rm

se
t

0 10 20 30 40
0

10

20

30

40

improved solution

ca
n
o
n
ic
a
l
so
lu
ti
o
n

Fig. 2. Size Comparison

demonstrates that forgetful reasoning is highly useful for improving the canon-
ical solution. The points plotted as • are the result after using forgetful resolu-
tion only, the points plotted as + are the result after forgetful resolution and
paramodulation.

Our experiments also show that the generalization to the introduction of a
block of quantifiers introduced in this paper has a strong effect: of the 548 proofs
on which CI∗ finds a compression, 22% are found to be uncompressible by CI1.

6 Conclusion

We have introduced a cut-introduction method that works modulo equality and
is capable of generating cut-formulas containing a block of quantifiers. We have
implemented our new method and have conducted a large-scale empirical eval-
uation which demonstrates its feasibility on realistic examples. Lessons learned
from these experiments include that blocks of quantifiers allow for significantly

Introducing Quantified Cuts in Logic with Equality 253

more proofs to be compressed and that forgetful reasoning methods, while rough
in theory, are highly useful for our application in practice.

As future work we plan to extend our method to work modulo (suitably
specified) equational theories. We also plan to evaluate our method on proofs
produced by Tableaux-provers and SMT-solvers. Another important, and non-
trivial, extension will be to cope with cuts that contain quantifier-alternations.

Acknowledgements. The authors would like to thank Pascal Fontaine for help
with the veriT-solver and Geoff Sutcliffe for providing the prover9-TSTP test
set.

References

1. Bundy, A.: The Automation of Proof by Mathematical Induction. In: Voronkov,
A., Robinson, J.A. (eds.) Handbook of Automated Reasoning, vol. 1, pp. 845–911.
Elsevier (2001)

2. Bundy, A., Basin, D., Hutter, D., Ireland, A.: Rippling: Meta-Level Guidance
for Mathematical Reasoning. Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press (2005)

3. Colton, S.: Automated Theory Formation in Pure Mathematics. Ph.D. thesis, Uni-
versity of Edinburgh (2001)

4. Colton, S.: Automated Theory Formation in Pure Mathematics. Springer (2002)
5. Finger, M., Gabbay, D.: Equal Rights for the Cut: Computable Non-analytic Cuts

in Cut-based Proofs. Logic Journal of the IGPL 15(5-6), 553–575 (2007)
6. Gentzen, G.: Untersuchungen über das logische Schließen. Mathematische

Zeitschrift 39, 176–210, 405–431 (1934-1935)
7. Hetzl, S., Leitsch, A., Reis, G., Weller, D.: Algorithmic Introduction of Quantified

Cuts (2013), http://arxiv.org/abs/1401.4330 (submitted)
8. Hetzl, S., Leitsch, A., Weller, D.: Towards Algorithmic Cut-Introduction. In:

Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180, pp. 228–242.
Springer, Heidelberg (2012)

9. Hetzl, S., Libal, T., Riener, M., Rukhaia, M.: Understanding Resolution Proofs
through Herbrand’s Theorem. In: Galmiche, D., Larchey-Wendling, D. (eds.)
TABLEAUX 2013. LNCS, vol. 8123, pp. 157–171. Springer, Heidelberg (2013)

10. Ireland, A., Bundy, A.: Productive Use of Failure in Inductive Proof. Journal of
Automated Reasoning 16(1-2), 79–111 (1996)

11. Johansson, M., Dixon, L., Bundy, A.: Conjecture synthesis for inductive theories.
Journal of Automated Reasoning 47(3), 251–289 (2011)

12. Orevkov, V.: Lower bounds for increasing complexity of derivations after cut elim-
ination. Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematich-
eskogo Instituta 88, 137–161 (1979)

13. Shoenfield, J.R.: Mathematical Logic, 2nd edn. Addison Wesley (1973)
14. Sorge, V., Colton, S., McCasland, R., Meier, A.: Classification results in quasigroup

and loop theory via a combination of automated reasoning tools. Commentationes
Mathematicae Universitatis Carolinae 49(2), 319–339 (2008)

15. Sorge, V., Meier, A., McCasland, R., Colton, S.: Automatic Construction and Ver-
ification of Isotopy Invariants. Journal of Automated Reasoning 40(2-3), 221–243
(2008)

http://arxiv.org/abs/1401.4330

254 S. Hetzl et al.

16. Statman, R.: Lower bounds on Herbrand’s theorem. Proceedings of the American
Mathematical Society 75, 104–107 (1979)

17. Sutcliffe, G.: The TPTP World - Infrastructure for Automated Reasoning. In:
Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS (LNAI), vol. 6355, pp.
1–12. Springer, Heidelberg (2010)

18. Tapolczai, J.: Cut-Introduction with Multiple Universal Quantifiers. Technical re-
port, http://www.logic.at/staff/hetzl/deltavector.pdf

19. Vyskočil, J., Stanovský, D., Urban, J.: Automated Proof Compression by Invention
of New Definitions. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS
(LNAI), vol. 6355, pp. 447–462. Springer, Heidelberg (2010)

20. Woltzenlogel Paleo, B.: Atomic Cut Introduction by Resolution: Proof Structuring
and Compression. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS
(LNAI), vol. 6355, pp. 463–480. Springer, Heidelberg (2010)

http://www.logic.at/staff/hetzl/deltavector.pdf

Quati: An Automated Tool for Proving Permutation
Lemmas

Vivek Nigam1, Giselle Reis2, and Leonardo Lima1

1 Universidade Federal da Paraı́ba, Brazil
2 Technische Universität Wien, Austria

Abstract. The proof of many foundational results in structural proof theory, such
as the admissibility of the cut rule and the completeness of the focusing disci-
pline, rely on permutation lemmas. It is often a tedious and error prone task to
prove such lemmas as they involve many cases. This paper describes the tool
Quati which is an automated tool capable of proving a wide range of inference
rule permutations for a great number of proof systems. Given a proof system
specification in the form of a theory in linear logic with subexponentials, Quati
outputs in LATEX the permutation transformations for which it was able to prove
correctness and also the possible derivations for which it was not able to do so. As
illustrated in this paper, Quati’s output is very similar to proof derivation figures
one would normally find in a proof theory book.

1 Introduction

Permutation lemmas play an important role in proof theory. Many foundational results
about proof systems rely on the fact that some rules permute over others. For instance,
permutation lemmas are used in Gentzen-style cut-elimination proofs [4], the complete-
ness proof of focusing disciplines [1,7], and the proof of Herbrand’s theorem [5].

Proving permutation lemmas, however, is often a tedious and error-prone task as
there are normally many cases to consider. As an example, consider the case of per-
muting ∨l over →l in the intuitionistic calculus LJ. In order to show whether these two
rules permute, one needs to check every possible case in which →l occurs above ∨l in
a derivation. When using a multiplicative calculus, there are four possibilities for such
derivation, two allow a permutation of the rules while the other two do not. Here’s one
of each:

ϕ1

Γ, P � F

ϕ2

Γ ′ � A

ϕ3

Γ ′′, Q, B � F

Γ ′, Γ ′′, A→ B,Q � F
→l

Γ, Γ ′, Γ ′′, A→ B,P ∨Q � F
∨l �

ϕ2

Γ ′ � A

ϕ1

Γ, P � F

ϕ3

Γ ′′, B,Q � F

Γ, Γ ′′, P ∨Q,B � F
∨l

Γ, Γ ′, Γ ′′, P ∨Q,A→ B � F
→l

ϕ1

Γ, P � F

ϕ2

Γ ′, Q � A

ϕ3

Γ ′′, B � F

Γ ′, Γ ′′, A→ B,Q � F
→l

Γ, Γ ′, Γ ′′, A→ B,P ∨Q � F
∨l � ?

The combinatorial nature of proving permutation lemmas can be observed in this ex-
ample. While there are “only” four cases to consider for this pair of rules, for proving

S. Demri, D. Kapur, and C. Weidenbach (Eds.): IJCAR 2014, LNAI 8562, pp. 255–261, 2014.
c© Springer International Publishing Switzerland 2014

256 V. Nigam, G. Reis, and L. Lima

the completeness of the focusing discipline, one needs to study which permutations are
allowed and therefore all pairs of rules need to be considered [7]. Moreover, the fact
that the cases are rarely documented makes it hard for others to check the correctness
of the transformations. For instance, the cut-elimination result for bi-intuitionistic logic
given by Rauszer [14] was later found to be incorrect [2] exactly because one of the per-
mutation lemmas was not true. Therefore, an automated tool to check for these lemmas
would be of great help. This paper introduces such a tool called Quati.1

While here we will restrict ourselves to simply illustrate Quati’s functionalities and
implementation design, we observe that its underlying theory is described in the pa-
pers [8,13,9]. We briefly review this body of work.

In [13], we show how to reduce the problem of proving permutation lemmas to solv-
ing an answer-set program [3]. That is, given a proof system P satisfying some proper-
ties, we reduce the problem of checking whether a rule r1 in P always permutes over
r2 in P to solving an answer-set program. Each solution of this program corresponds to
one possible permutation case. This result sets the foundations for Quati.

However, the exact language in which proof systems are specified was not dealt
in [13]. It was subject of the paper [8] which shows that a great number of proof systems
for different logics (e.g., linear, intuitionistic, classical, modal logics) can be specified
as theories in linear logic with subexponentials (SELL) [11]. These specifications are
shown to have a strong adequacy, namely, on the level of derivations [12], meaning that
there is a one to one correspondence of derivations in the specified logic (object logic)
to derivations in linear logic with subexponentials. Moreover, [8] also shows how to
check whether proof systems specified in SELL admit cut-elimination. This lead to the
tool TATU2. Therefore, SELL is a suitable framework for specifying proof systems.

Finally, in the workshop paper [9], we show how to integrate the material in [13]
and [8]. Given a proof system specified in SELL, we reduce the problem of checking
whether a rule permutes over another to an answer-set program. In the same paper, we
also discuss how to extract proof derivation figures similar to those shown in a standard
proof theory book [15] from the solutions of the generated answer-set programs.

Quati is the result of this series of papers. This paper is organized as follows: Sec-
tion 2 describes Quati’s syntax and its features, while Section 3 describes its implemen-
tation. In Section 4 we end by pointing out future work.

2 Quati at Work

Throughout this section, we will use the specification for the intuitionistic logic’s multi-
conclusion calculus MLJ [6] as our running example. First we specify Quati’s syntax
and then its features.

2.1 Syntax

Quati’s underlying logic, linear logic with subexponentials (SELL) [11], is a powerful
framework for the specification of proof systems. Subexponentials, written !�, ?�, arise

1 Quati is a mammal from the raccoon family native to South America. Its name comes from the
Tupi-guarani, a language spoken by native indians in Brazil, and means “long nose”.

2 https://www.logic.at/staff/giselle/tatu/

https://www.logic.at/staff/giselle/tatu/

Quati: An Automated Tool for Proving Permutation Lemmas 257

Side ::= lft | rght CtxType ::= many | single SubType ::= unb | lin
SubSig ::= SubDecl SubSpec SubRel

SubDecl ::= subexp〈String〉〈SubType〉.
SubSpec ::= subexpctx〈String〉〈CtxType〉〈Side〉.
SubRel ::= subexprel〈String〉<〈String〉.
Bipoles ::= (not〈Atoms〉)*〈BodyPos〉.
BodyPos ::= one | BodyNeg | [〈String〉]bangBodyNeg |

BodyPos*BodyPos | BodyPos+BodyPos

BodyNeg ::= top | bot | 〈MarkAtoms〉 | 〈BodyNeg〉|〈BodyNeg〉 |
〈BodyNeg〉&〈BodyNeg〉

Atoms ::= 〈Side〉〈Form〉 MarkAtoms ::= [〈String〉]?〈Atoms〉

Fig. 1. Here Form is a term of type form

* : ⊗ + : ⊕ & : & | : � [i]bang : !i one : 1 top : � bot : ⊥ [i]? : ?i

Fig. 2. Syntax for the linear logic connectives

from the observation that the linear logic exponentials are not canonical (see [8] for
an extensive discussion). It is known that these operators greatly increase the expres-
siveness of the system when compared to linear logic. For instance, subexponentials
can be used to represent contexts of proof systems [8], to mark the epistemic state of
agents [10], or to specify locations in sequential computations [11]. The main feature of
subexponentials is that they are organized in a pre-order, ., which specifies the prov-
ability relation among them. In [8], we have shown that a great number of proof systems
for linear, classic, intuitionistic and modal logics can be specified in SELL with a strong
level of adequacy. Another important reason for using SELL as specification language
is that one can also use other available tools, such as the tool TATU which is capable of
checking whether a proof system specified in SELL admits cut-elimination.

A Quati program is a SELL theory with some more annotations. Its syntax is given in
Figure 1 and explained in detail by using our running example MLJ. A Quati program
consists of two files: (1) a type signature file, with suffix .sig and (2) a specification
file with suffix .pl consisting of two parts: (a) a subexponential signature and (b) the
rules’ specifications or bipoles.

Type signature This file contains type and kind declarations of the object logic’s ele-
ments. The kind form is built-in and represent the type of formulas of the object logic.
In general, only the connectives’ types need to be declared in this file:

%%%%%%%%%%%%%%%%%%% Signature %%%%%%%%%%%%%%%%%%%%
type imp form -> form -> form.

Subexponential signature The following subexponential signature is used for specify-
ing the proof system MLJ:

%%%%%%%%%%%%%%% Subexponential Signature %%%%%%%%%%%%%%%%%
subexp l unb. subexp r unb.

258 V. Nigam, G. Reis, and L. Lima

subexpctx l many lft. subexpctx r many rght.
subexprel l > r

Intuitively, one subexponential corresponds to one context of the object logic se-
quent.3 MLJ has only two contexts, one to the left and another to the right side of the
sequent, thus we use two subexponentials l and r. Moreover, as both contexts (to the
left and right) behave classically in MLJ, we specify l and r to be unbounded, denoted
by unb. In contrast, the specification of LJ would specify the subexponential r to be
linear, as the right side of LJ’s sequents behaves linearly.

The commandssubexpctx l many lft. andsubexpctx r many rght.
are not formally needed for specifying proof systems, but as discussed in [9], they are
needed in order to improve the visualization of the proof rules. In particular, the former
specifies that the context corresponding to the subexponential l contains only formulas
of the left side of the sequent, denoted by lft, and may contain many formulas, de-
noted by many. In contrast, as the context to the right side of LJ sequents has only one
formula, the subexponential r for that system would be annotated with single.

The pre-order among the subexponentials is specified on the last line using the key-
word subexprel.

Bipoles The second part of the .pl file is composed by bipoles. The concrete syntax
for SELL connectives is depicted in Figure 2. The class of bipole formulas often appear
in proof theory literature due to its good focusing behaviour [1]. The following bipoles
specify, respectively, the left and right implication introduction rules [8]. The capital
letters are assumed to be existentially quantified.
%%%%%%%%%%%%%%%%%%%%%%%%%% Bipoles %%%%%%%%%%%%%%%%%%%%%%%%%%%
% Implication
(not (lft (imp A B))) * (([r]? (rght A)) * ([l]? (lft B))).
(not (rght (imp A B))) * [l]bang (([l]? (lft A)) | ([r]? (rght B))).

The head of these bipoles, formulas (not (lft (imp A B))) and (not
(rght (imp A B))), specify that an implication formula to, respectively, the left
and right-hand-side is introduced. The body specifies the premises of these rules. For in-
stance, the first bipole specifies that its corresponding inference rules has two premises
because of the branching caused by the tensor * appearing in the body of its rule, while
the second has only one premise as no branching is required. The interesting bit is the
!l ([l]bang) in the second bipole specifying that the context of the subexponential r
should be weakened as l > r. In fact, by using advanced proof theoretic machinery,
namely focusing [1], we can make this intuition precise in the sense. We refer to [8] for
more details on encodings.

2.2 Features

Quati has two main features: (1) It can construct the corresponding inference rule(s)
associated to a SELL formula; and (2) it can prove permutation lemmas. We illustrate
these features with the specification of MLJ implication introduction rules shown above.

3 There are some specifications where a subexponential is used to capture the structural proper-
ties of the proof system and therefore does not necessarily correspond to a context in the object
logic. See [8] for more on this.

Quati: An Automated Tool for Proving Permutation Lemmas 259

Rule Construction Proving the adequacy theorems for a given SELL specification is
also error-prone. As detailed in [8], to prove (strong) adequacy we need to show that all
the possible focused derivations that introduce a formula in the specification correspond
to an inference rule of the proof system being specified. Quati automates the proof of
such adequacy theorems by constructing from a bipole the corresponding inference
rule. To do so, Quati uses the machinery described in [13,9] reducing this problem to
the problem of solving answer-set programs.

For the MLJ specification given above, one can use the command#rule in the com-
mand line and select a SELL bipole in the loaded specification. Then Quati generates
a LATEX document containing all possible inference rules that correspond to that bipole.
If we select the bipole used to specify MLJ’s implication right rule, Quati outputs the
LATEX code for the following figure:

:
l Γ 0

l , a � :
r b

:
l Γ 0

l �
:
r Δ0

r, imp(a)(b)
impR

Notice that this rule looks very similar to MLJ’s implication right introduction rule
shown in any proof theory textbook. The context Δ0

r is erased in the premise. The
:
l and

:
r are used to delimit the contexts for the subexponentials l and r, respectively. Quati
uses the subexponential specification to infer that the context for l (resp. for r) should
only be on the left-hand-side (resp. right-hand-side) of the sequent.

Under the hood, Quati is constructing the focused derivation [1] that introduces
such a SELL bipole as described in [8]. This can be observed by using the command
#bipole. For the same SELL bipole used above, Quati returns the LATEX code for the
following figure, corresponding to its focused derivation:

Γ 4
gamma;Γ

4
r ;Γ 3

l
; Γ 1

infty
;⇓ ¬rght(imp(a)(b))

Γ 5
gamma;Γ

7
r ;Γ 5

l ;Γ 1
infty ;⇑

Γ 5
gamma ;Γ

5
r ; Γ

5
l ;Γ

1
infty ;⇑?rrght(b)

Γ 5
gamma;Γ

5
r ;Γ 3

l ;Γ 1
infty ;⇑?llft(a) ::?rrght(b)

Γ 5
gamma; Γ

5
r ;Γ

3
l ;Γ 1

infty ;⇑?llft(a)�?rrght(b)

Γ 5
gamma;Γ

4
r ;Γ 3

l
;Γ 1

infty
;⇓!l?llft(a)�?rrght(b)

Γ 3
gamma;Γ

4
r ;Γ 3

l ; Γ
1
infty ;⇓ ¬rght(imp(a)(b))⊗!l?llft(a)�?rrght(b)

Γ 3
gamma;Γ

4
r ;Γ 3

l ;Γ 1
infty ;⇑

Rule Permutation. As described in the Introduction, Quati can be used to prove per-
mutation lemmas. The command #permute checks whether the permutation of two
selected rules is always allowed or not. Quati outputs, again in LATEX, the cases for
which it was able to find the permutation and the cases for which it was not able to find
a permutation. For example, when Quati checks whether MLJ’s implication left intro-
duction rule permutes over MLJ’s implication right introduction, it correctly finds two
possible permutation cases and it cannot find one of the cases for which is indeed not
possible. We show one of the cases (reformatted to fit the page margins):

260 V. Nigam, G. Reis, and L. Lima

:
l Γ0

l , imp(a)(b), c
 :
r d

:
l Γ0

l
, imp(a)(b)
 :

r Δ0
r , imp(c)(d), a

impR
:
l Γ0

l , imp(a)(b), b
 :
r Δ0

r , imp(c)(d)

:
l Γ0

l
, imp(a)(b)
 :

r Δ0
r , imp(c)(d)

impL

�

:
l Γ7

l , imp(a)(b), c
 :
r a, d

:
l Γ7

l , imp(a)(b), c, b
 :
r d

:
l Γ7

l
, imp(a)(b), c
 :

r d
impL

:
l Γ7

l
, imp(a)(b)
 :

r Δ9
r, imp(c)(d)

impR

Once again, this proof figure is very similar to the proof figure that one would find
in a standard proof theory textbook. Notice that it uses the fact that the contexts are
unbounded, i.e. formulas can be contracted or weakened, to infer the permutation above
(see [13] for more discussion on how this works).

3 Implementation Details

Quati is implemented in OCaml4 and makes use of DLV5 externally to compute mini-
mal models for the answer-set programs generated. It is part of a bigger project, called
sellf6 which also includes the machinery for TATU mentioned above. The follow-
ing diagram provides an overview of the main modules in sellf used by Quati for
checking permutations.

Types
ProofTreeSchema

SequentSchema

ContextSchema Constraints
OlRule

Dlv

Bipole

Quati

Permutation

The basic data structure, defined in the module Types, is linear logic formulas with
subexponentials. The bipoles in Quati are represented by proof tree schemas, defined
in the module ProofTreeSchema, which uses the modules SequentSchema and
ContextSchema. As the name suggests, these are schematic representations of proof
trees, sequents and contexts that use generic contexts [13] to represent possibly non-
empty sets of formulas. The constraints that will later compose the answer-set program
are implemented in the module Constraints. The application of linear logic rules
with constraints is implemented in the ProofTreeSchemamodule. The computation
of possible bipoles of a formula is in the moduleBipole. The Permutationmodule
makes use of the bipole generation to construct the derivations of two rules. Given the
constraints of a derivation, module Dlv contains the code for executing DLV externally,
parsing the result and returning the minimal models. The translation of a proof tree
schema and constraints into an object logic derivation is done in the OlRule module.
It contains data structures to represent proof trees, sequents and contexts of an object
logic and the rewriting algorithm described in [13] (module Derivation).

4 http://ocaml.org/
5 http://www.dlvsystem.com/dlv/
6 https://code.google.com/p/sellf/

http://ocaml.org/
http://www.dlvsystem.com/dlv/
https://code.google.com/p/sellf/

Quati: An Automated Tool for Proving Permutation Lemmas 261

Quati was tested using some proof systems including LK, LJ, MLJ, LL, S4, G1m and
LAX. On most cases, each permutation lemma can be checked in less than one second.
The implementation can be downloaded at

http://www.logic.at/staff/giselle/quati.

4 Conclusions and Future Work

This paper introduced Quati, an automated tool for proving permutation lemmas. Be-
sides briefly commenting on its implementation, we illustrated its syntax, usage and
features. Besides MLJ, in the download one can find the specification of all proof sys-
tems tested, as well as system requirements and installation instructions.

There are several directions we are currently investigating for continuing this work.
One is to come up with more graphical ways of writing proof systems and how to trans-
late such representations into SELL specifications. Another possibility is the derivation
of completeness of focusing strategies in an automated fashion, since such theorems
rely heavily on permutation lemmas. Finally, we are investigating ways to construct
machine-readable proof objects for permutation lemmas.

References

1. Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. J. of Logic and
Computation 2(3), 297–347 (1992)

2. Crolard, T.: Subtractive logic. Theor. Comput. Sci. 254(1-2), 151–185 (2001)
3. Gelfond, M., Lifschitz, V.: Logic programs with classical negation. In: ICLP (1990)
4. Gentzen, G.: Investigations into logical deductions. The Collected Papers of Gerhard Gentzen

(1969)
5. Herbrand, J.: Recherches sur la Théorie de la Démonstration. PhD thesis (1930)
6. Maehara, S.: Eine darstellung der intuitionistischen logik in der klassischen. Nagoya Mathe-

matical Journal, 45–64 (1954)
7. Miller, D., Saurin, A.: From proofs to focused proofs: a modular proof of focalization in

linear logic. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 405–
419. Springer, Heidelberg (2007)

8. Nigam, V., Pimentel, E., Reis, G.: An extended framework for specifying and reasoning about
proof systems. Accepted to Journal of Logic and Computation,
http://www.nigam.info/docs/modal-sellf.pdf

9. Nigam, V., Reis, G., Lima, L.: Quati: From linear logic specifications to inference rules
(extended abstract). In: Brazilian Logic Conference, EBL (2014),
http://www.nigam.info/docs/ebl14.pdf

10. Nigam, V.: On the complexity of linear authorization logics. In: LICS (2012)
11. Nigam, V., Miller, D.: Algorithmic specifications in linear logic with subexponentials. In:

PPDP (2009)
12. Nigam, V., Miller, D.: A framework for proof systems. J. Autom. Reasoning 45(2), 157–188

(2010)
13. Nigam, V., Reis, G., Lima, L.: Checking proof transformations with ASP. In: ICLP (Technical

Communications) (2013)
14. Rauszer, C.: A formalization of the propositional calculus h-b logic. Studia Logica (1974)
15. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory (1996)

http://www.logic.at/staff/giselle/quati
http://www.nigam.info/docs/modal-sellf.pdf
http://www.nigam.info/docs/ebl14.pdf

A History-Based Theorem Prover

for Intuitionistic Propositional Logic Using
Global Caching: IntHistGC System Description

Rajeev Goré, Jimmy Thomson, and Jesse Wu

Research School of Computer Science, The Australian National University,
Canberra, Australia

Abstract. We describe an implementation of a new theorem prover
for Intuitionistic Propositional Logic based on a sequent calculus with
histories due to Corsi and Tassi. The main novelty of the prover lies in its
use of dependency directed backtracking for global caching. We analyse
the performance of the prover, and various optimisations, in comparison
to current state of the art theorem provers and show that it produces
competitive results on many classes of formulae.

1 Preliminaries

IntHistGC is a theorem prover for Intuitionistic Propositional Logic (Int), based
on a sound and cut-free complete sequent calculus which uses histories to guar-
antee termination. The key element behind the prover’s efficiency is the use
of global caching to reduce search space. This system description provides an
overview of IntHistGC’s proof strategy, implementation, optimisations and an
analysis of performance in comparison to the current best provers for Int.

Sequent Calculus. Figure 1 presents the standard multiple conclusioned se-
quent system for Int using sets of formulae. These rules form the basic elements
of the calculus used in our implementation. Note that we assume ¬ϕ := (ϕ → ⊥).

The →L rule may result in infinite looping since the principal formula ϕ → ψ
must be copied into the left premise for completeness. Various approaches are
known to ensure termination: explicit loop-checking; Vorob’ev’s method [1]; and
the use of complex histories to track loops [2, 3].

We take a different approach, by replacing the basic →L and →R rules with
those shown in Figure 2. The →L rule is replaced by a “blocking” version which
prevents any further (backward) applications until “unblocked” by a →R-first
rule. The →R-rest rule can only (and must) be applied (upwards) if we have
previously applied →R-first on the same implication on the same branch.

Rules in this calculus either delete a connective or block an implication. Im-
plications are only unblocked after the use of a →R-first rule, which is prevented
from being applied to the same formula twice. Hence there cannot be an infinite
sequence of blocking and unblocking, so backward proof search in this calculus
always terminates. Although this calculus was developed independently, recently
we have learnt that it is functionally identical to the sequent calculus IG [4].

Lemma 1. �, ⊥, ∧, ∨, id, →L-blocking and →R-rest are invertible rules.

S. Demri, D. Kapur, and C. Weidenbach (Eds.): IJCAR 2014, LNAI 8562, pp. 262–268, 2014.
c© Springer International Publishing Switzerland 2014

A History-Based Theorem Prover for Intuitionistic Propositional Logic 263

Γ � Δ �L
Γ,� � Δ

⊥L
Γ,⊥ � Δ

Γ � Δ ⊥R
Γ � ⊥,Δ

�R
Γ � �,Δ

id
Γ, ϕ � ϕ,Δ

Γ, ϕ, ψ � Δ
∧L

Γ, ϕ ∧ ψ � Δ

Γ � ϕ,Δ Γ � ψ,Δ
∧R

Γ � ϕ ∧ ψ,Δ

Γ, ϕ � Δ Γ, ψ � Δ
∨L

Γ, ϕ ∨ ψ � Δ

Γ � ϕ,ψ,Δ
∨R

Γ � ϕ ∨ ψ,Δ

Γ, ϕ→ ψ � ϕ,Δ Γ, ψ � Δ
→L

Γ, ϕ→ ψ � Δ

Γ, ϕ � ψ
→R

Γ � ϕ→ ψ,Δ

Fig. 1. Basic sequent calculus rules

Γ, ϕ→b ψ � ϕ,Δ Γ, ψ � Δ →L-blocking
Γ, ϕ→ ψ � Δ

Γ � ψ,Δ
→R-rest

Γ � ϕ→ ψ,Δ

p, ϕ1 → ψ1, · · · , ϕn → ψn, ϕ � ψ
→R-first

p, ϕ1 →b ψ1, · · · , ϕn →b ψn � ϕ→ ψ, q, ϕn+1 → ψn+1, · · · , ϕn+m → ψn+m

Fig. 2. New rules where p and q represent disjoint sets of atomic propositions

Backward Proof Search Strategy. Our proof strategy is as below. Note that back-
tracking is required at →R-first jumps, as the rule is not semantically invertible:

while some rule is applicable to a leaf sequent do
stop: apply any applicable termination rule (id, ⊥L, �R) to that leaf
saturate: else apply any applicable static rule (�L, ⊥R, ∧L, ∨R, →L-

blocking, →R-rest) to that leaf
step: else apply the transitional rule (→R-first) to that leaf

Theorem 1. Our rules are sound and our strategy is complete with respect to
Int [4], and produces O(n2) depth proofs.

Related Work. We now describe the main techniques behind three state of the
art theorem provers for Int. All use some form of pre-processing: see Section 2.

BDDIntKt checks the validity of a formula ϕ0 by constructing a finite closure
cl(ϕ0) and checking if any of the subsets in the closure can lead to a model which
falsifies ϕ0 [5]. While the closure generally contains exponentially many subsets,
by using Binary Decision Diagrams (BDDs) many of these do not necessarily
have to be explicitly created.

fCube is a Prolog prover based on a signed tableaux calculus for Int [6]. The
prover makes heavy use of a variety of simplification rules, whereby formulae
with known sign (as well as atoms of a certain polarity) may be replaced under
certain conditions with � or ⊥. These rules produce an equivalent but simpler
sequent, and can significantly reduce unnecessary branching and backtracking.

Imogen uses formula polarity to restrict applicable inference rules [7]. The
prover is based on a focused inverse method, which reduces the search space in
a sequent calculus based on the polarity of connectives and atomic propositions.
Proof search is applied in a forward manner, unlike our strategy above.

264 R. Goré, J. Thomson, and J. Wu

2 Implementation and Optimisations

The sequent rules described in Figures 1 and 2, and the general search strategy
of Section 1, were implemented in Ocaml. Search is conducted in a depth-first
manner, fully exploring one branch before considering others. While breadth-first
search is also possible, a depth-first strategy allows for a natural implementation
of global caching [8] as described next. IntHistGC includes a (slower) configura-
tion which produces graphs for both valid and invalid derivations.

Pre-processing. A simple processing function which replaces inputs with equiv-
alent formulae can significantly reduce the complexity of a proof. By imposing
a standard ordering on all formulae, one can completely remove any compli-
cations due to variable ordering at commutative operators. For example, the
formula (ϕ ∧ ψ) → (ψ ∧ ϕ) can be rewritten as (ϕ ∧ ψ) → (ϕ ∧ ψ) which sim-
plifies to �. IntHistGC also makes use of standard logical identities, such as
ϕ∧� = �∧ ϕ = ϕ∧ ϕ = ϕ, and removes nested implications using the identity
ϕ0 → (ϕ1 → ϕ2) = (ϕ0 ∧ ϕ1) → ϕ2 before applying backwards proof search.

Dependency directed backtracking and Caching. The application of sequent rules
often leads to proofs which only require a subset of formulae within a sequent.
If two valid sequents differ only by formulae which are not necessary for a proof
of validity, then a proof for one is sufficient to prove the other. Thrashing occurs
when branches with the same important formulae are redundantly explored.
Backjumping is a technique which avoids this phenomenon, by backtracking to
the last point which contains all formulae relevant for a proof [9]. This technique
is applied at all branching points, to reduce search space as much as possible.

We extend backjumping by also implementing dependency directed backtrack-
ing [9] which stores sets of formulae used to close branches. This is done by
placing minimal sequents, like those in backjumping, into a cache. Thereafter,
any sequent containing formulae which are a superset of a cached sequent can
be proved by applying the same rules. This removes the need to continue search
within that branch, and so the prover can return to the latest backtracking point.

In addition to a cache for provable sequents, we also implement a cache for
unprovable sequents. In contrast to the minimal sequents constructed for the
provable cache, here we include as many formulae as possible; as long as the
overall sequent is still not provable. If any sequent is a subset of a previously
unproven sequent, then it also cannot be proven - at best, all the same rules will
be applied, which we know from previous experience cannot lead to a proof.

Both caches are global and thus search space can potentially be reduced across
all branches, by substituting previous proofs. However, caching introduces its
own problems. Caching sequents after all rule applications will result in an ex-
ponential growth in cache size. To somewhat mitigate unnecessary growth in
cache size, cache additions are only considered at →R-first jumps and branching
points where backjumping has been applied. As each branch terminates without
loops, we do not need the full complications of global caching for modal logics [8].

A History-Based Theorem Prover for Intuitionistic Propositional Logic 265

Data Structures. Formulae are represented using (positive) integers. After pre-
processing, each formula (including subformulae) is given a unique identifier, and
a number of tables are used to map integers to their respective formula, their
formula type, as well as the integers corresponding to any subformulae.

We use a set-trie data structure for caching, and implement an adaptation
of the algorithms presented in [10]. As formulae are integers, sequents can be
represented by an ordered list of integers. A set-trie takes advantage of such an
ordering, allowing efficient storage of sequents and set containment searches.

Heuristics. For efficiency, non-branching rules are prioritised over branching
rules. Formulae are also expanded in a lazy fashion: only the top-most connective
of a formula is ever considered. Thus the prover can avoid some memory issues
when expanding bi-implications, interpreted as ϕ ↔ ψ := (ϕ → ψ) ∧ (ψ → ϕ).

Some branches are inherently easier to prove (or disprove) than others. For
example, by changing the order of branch choice in a näıve depth-first search,
formulae of the form (¬(¬a1) ↔ a2) ↔ (a2 ↔ a1)) can take either a few millisec-
onds or more than ten minutes to solve - a clear indication of the importance
of branch choice. Currently our implementation takes an approach based on
formula order as defined in the pre-processing stage.

Rule choice is similarly important, and is considered in implementation. For
example, when more than one →L-blocking rule is applicable, our prover at-
tempts to pick one which corresponds to an application of modus ponens. Such
a choice essentially allows the rule id to be immediately applied to one branch.

3 Experimental Results

Performance is evaluated using the Intuitionistic Logic Theorem Proving
(ILTP) Library [11], which allows a maximum of 600 seconds for each indi-
vidual problem instance. We present results in Figure 3 for our prover (IH)
with varying optimisations, along with results for BDDIntKt -autoreorder

-nary -assumimp (BDD), fCube (no options) and Imogen -h optimize. We
also include experiments on an unofficial extended set of the ILTP problem
classes, kindly provided by the authors of the library, Jens Otten and Thomas
Raths (http://www.iltp.de/download/SYJ2xx-50/SYJ2xx-50.tar.gz) in
Figure 4. All tests were conducted on a machine with an Intel i7-3770 CPU
@3.40GHz with 8GB memory. The configurations for IntHistGC are as follows:

Configuration Optimisations involved
näıve The baseline prover without any optimisations
b Backjumping
c Global caching with additions made at →R-first jumps
c2 Global caching with additions also at backjumping points

Figure 3 clearly shows that backjumping and caching both improve significantly
upon our näıve implementation, allowing the prover to complete the majority
of the ILTP benchmark. In fact, global caching by itself, without backjumping,

http://www.iltp.de/download/SYJ2xx-50/SYJ2xx-50.tar.gz

266 R. Goré, J. Thomson, and J. Wu

Class näıve IHb IHc IHbc IHbc2 BDD fCube Imogen Out of

LCL 2 2 2 2 2 2 2 2 2
SYN 20 20 20 20 20 20 20 20 20

SYJ10* 12 12 12 12 12 12 12 12 12

SYJ201 2 20 20 20 20 20 20 20 20
SYJ202 3 5 3 5 8 13 9 8 20
SYJ203 10 20 20 20 20 20 20 20 20
SYJ204 20 20 20 20 20 20 20 20 20
SYJ205 10 20 20 20 20 20 20 20 20
SYJ206 5 20 20 20 20 20 20 20 20

SYJ207 2 3 20 20 20 20 20 20 20
SYJ208 10 10 20 20 20 11 20 20 20
SYJ209 9 10 20 20 20 20 20 20 20
SYJ210 20 20 20 20 20 20 20 20 20
SYJ211 3 4 20 20 20 20 20 20 20
SYJ212 20 20 20 20 20 20 20 20 20

Total 148 206 257 259 262 258 263 262 274

Fig. 3. Performance of various versions of IntHistGC on the ILTP benchmark

manages to solve all problems except that of the valid pigeonhole class SYJ202.
Note that IntHistGC’s ‘c’ configuration has no positive effect on this class, as
there is only one top-level →R-first jump.

While caching clearly has benefits, profiling reveals that the majority of the
time is generally spent on cache look-ups. Therefore we implemented a ‘c3’ option
which performs cache look-ups every second node, rather than at all branching
points. While such a heuristic may result in cache misses, Figures 4 and 6 shows
that this reduction in look-up times often outweighs the extra branching involved
since such branching is often mitigated by backjumping from a later cache hit.

We remark that the ILTP library is limited to 12 main classes of formulae,
half of which are only slight modifications of the other classes. In light of this, we
also benchmarked on other families of formulae: Portia, which are encodings of a
“real world puzzle”; Nishimura [12], previously used by the authors of fCube; and
randomly generated formulae, noting that these tend to be non-valid. Figures 5
and 6 presents timing performance on these classes, in addition to hard instances
of the ILTP problems. Particularly noteworthy are the provable Portia examples,
which show that both IntHistGC and fCube seem to be susceptible to input
ordering. Nevertheless, while using very different techniques to improve speed,
fCube and IntHistGC currently seem to be the best provers for Int (Figures 4,
5 and 6). The two trade wins in pigeonhole and Nishimura, although fCube is
superior on (typically non-valid) random formulae (Figure 5).

Ideally, a prover which utilises the best of both caching and simplification
would perform very well. Unfortunately the two techniques are somewhat con-
flicting, as simplification introduces new formulae which often result in cache
misses. Indeed, we implemented the replacement and basic permanence rules
used by fCube [13] but these resulted in worse performance than caching alone.

A History-Based Theorem Prover for Intuitionistic Propositional Logic 267

Class IHc IHbc IHbcc3 IHbc2 BDD fCube Imogen Out of

SYJ201 50 50 50 50 50 50 36 50
SYJ202 3 5 6 8 13 9 8 38
SYJ203 50 50 50 50 50 50 50 50
SYJ204 50 50 50 50 50 50 50 50
SYJ205 50 50 50 50 50 50 50 50
SYJ206 50 50 50 50 50 50 50 50

SYJ207 50 50 50 50 49 50 26 50
SYJ208 38 38 38 38 11 38 37 38
SYJ209 50 50 50 50 50 50 50 50
SYJ210 50 50 50 50 50 50 50 50
SYJ211 50 50 50 50 45 50 50 50
SYJ212 50 50 50 50 50 50 46 50

Total 541 543 544 546 518 547 503 576

Fig. 4. Performance on extended ILTP formulae

10 20 40 60 100 200 300
0.001

0.01

0.1

1

10

Size

T
im

e
(s
)

IHbcc3

BDD

fCube

Imogen

Fig. 5. Average times for random formula of increasing size

Problem IHbc IHbc2 IHbcc3 IHbc2c3 BDD fCube Imogen

SYJ201+1.050 5.69 10.13 4.58 6.87 31.794 159.92 –
SYJ202+1.008 – 190.16 – 208.21 0.33 27.86 70.76
SYJ207+1.050 301.23 454.69 161.73 242.08 188.36 17.90 –
SYJ208+1.038 181.58 185.99 113.32 112.70 – 1.76 –
SYJ211+1.050 2.18 1.37 10.15 6.17 – 0.02 0.27
SYJ212+1.050 0.26 0.26 0.22 0.22 50.91 0.22 –

p-portia.100 429.97 – 238.00 – – 334.02 –
n-portia.100 5.32 295.84 4.52 14.64 – 385.12 –

n-portiaV2.100 443.25 – 239.08 – – 97.62 –
nishimura.035 0.51 0.51 0.51 0.51 7.05 – –

Fig. 6. Timing comparisons (all times in seconds, – indicates a timeout)

‘p’ means provable, ‘n’ is non-provable and V2 is a version with reordered formulae

268 R. Goré, J. Thomson, and J. Wu

4 Conclusion and Further Work

We have introduced a new prover, which demonstrates the practicality of a
history based sequent calculus using global caching. We find that various op-
timisation techniques make a significant difference in terms of performance. In
particular, global caching was extremely effective on the ILTP benchmark. To
our knowledge, there are no other ATPs for Int which similarly utilise caching.

Further research into the interaction between simplification and caching tech-
niques merits investigation. The development of a technique which allows caching
and simplification to fully complement each other should have a significant im-
pact on prover efficiency. Other than this, it may also be interesting to examine
the performance of global caching using a different underlying calculus.

References

[1] Dyckhoff, R.: Contraction-free sequent calculi for intuitionistic logic. J. Symb.
Log. 57, 795–807 (1992)

[2] Howe, J.M.: Two loop detection mechanisms: A comparison. In: Galmiche, D. (ed.)
TABLEAUX 1997. LNCS, vol. 1227, pp. 188–200. Springer, Heidelberg (1997)

[3] Heuerding, A., Seyfried, M., Zimmermann, H.: Efficient loop-check for backward
proof search in some non-classical propositional logics. In: Miglioli, P., Moscato,
U., Ornaghi, M., Mundici, D. (eds.) TABLEAUX 1996. LNCS, vol. 1071, pp. 210–
225. Springer, Heidelberg (1996)

[4] Corsi, G., Tassi, G.: Intuitionistic logic freed of all metarules. J. Symb. Log. 72,
1204–1218 (2007)

[5] Goré, R., Thomson, J.: BDD-based automated reasoning for propositional bi-
intuitionistic tense logics. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR
2012. LNCS (LNAI), vol. 7364, pp. 301–315. Springer, Heidelberg (2012)

[6] Ferrari, M., Fiorentini, C., Fiorino, G.: fCube: An efficient prover for intuitionistic
propositional logic. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS,
vol. 6397, pp. 294–301. Springer, Heidelberg (2010)

[7] McLaughlin, S., Pfenning, F.: Imogen: Focusing the polarized inverse method for
intuitionistic propositional logic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.)
LPAR 2008. LNCS (LNAI), vol. 5330, pp. 174–181. Springer, Heidelberg (2008)

[8] Goré, R., Nguyen, L.A.: Exptime tableaux for ALC using sound global caching.
J. Autom. Reasoning 50, 355–381 (2013)

[9] Hustadt, U., Schmidt, R.A.: Simplification and backjumping in modal tableau.
In: de Swart, H. (ed.) TABLEAUX 1998. LNCS (LNAI), vol. 1397, pp. 187–201.
Springer, Heidelberg (1998)

[10] Savnik, I.: Index data structure for fast subset and superset queries. In: Cuz-
zocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES 2013.
LNCS, vol. 8127, pp. 134–148. Springer, Heidelberg (2013)

[11] Raths, T., Otten, J., Kreitz, C.: The ILTP problem library for intuitionistic logic.
J. Autom. Reasoning 38, 261–271 (2007)

[12] Fiorentini, C.: All intermediate logics with extra axioms in one variable, except
eight, are not strongly ω-complete. J. Symb. Log. 65, 1576–1604 (2000)

[13] Ferrari, M., Fiorentini, C., Fiorino, G.: Simplification rules for intuitionistic propo-
sitional tableaux. ACM Trans. Comput. Log. 13, 14 (2012)

MleanCoP: A Connection Prover
for First-Order Modal Logic

Jens Otten

Institut für Informatik, University of Potsdam
August-Bebel-Str. 89, 14482 Potsdam-Babelsberg, Germany

jeotten@cs.uni-potsdam.de

Abstract. MleanCoP is a fully automated theorem prover for first-order modal
logic. The proof search is based on a prefixed connection calculus and an addi-
tional prefix unification, which captures the Kripke semantics of different modal
logics. MleanCoP is implemented in Prolog and the source code of the core proof
search procedure consists only of a few lines. It supports the standard modal log-
ics D, T, S4, and S5 with constant, cumulative, and varying domain conditions.
The most recent version also supports heterogeneous multimodal logics and out-
puts a compact prefixed connection proof. An experimental evaluation shows the
strong performance of MleanCoP.

1 Introduction

Modal logics extend the language of classical logic with the unary modal operators �
and �. They are used to represent the modalities ”it is necessarily true that” and ”it is
possibly true that”, respectively. The Kripke semantics of the standard unimodal logics
are defined by a set of worlds and a single binary accessibility relation between these
worlds. Multimodal logics consider a finite set of distinct modal operators �1, . . . ,�n

and �1, . . . ,�n, and the Kripke semantics is specified by a set of n accessibility rela-
tions. First-order modal logics extend propositional modal logics by domains, i.e. sets
of objects that are associated with each world, and the standard universal and exis-
tential quantifiers [5,8]. Modal logics have applications in, e.g., planning, natural lan-
guage processing, and program verification. Multimodal logics are in particular suitable
for representing knowledge and beliefs. Popular multimodal logics include temporal
and epistemic logic, which are used for program verification and representing dynamic
knowledge of different agents [7]. Even though many of these applications would ben-
efit from a higher degree of automation, the development of efficient fully automated
theorem provers for first-order modal logic is still in its infancy.

This paper presents one of the first theorem provers for first-order (multi)modal logic.
It is based on a modal connection calculus (Section 2). Whereas the underlying connec-
tion calculus provides a basis for an efficient proof search [4,11], prefixes are used to
directly encode sequences of accessible worlds of the Kripke semantics. The calculus
for the different modal logics differ only in the prefix unification, which respects the
accessibility relation of the modal logic under consideration. The modal connection
calculus is implemented in a very compact Prolog program (Section 3), which shows a
strong performance on the problems in the QMLTP library (Section 4).

S. Demri, D. Kapur, and C. Weidenbach (Eds.): IJCAR 2014, LNAI 8562, pp. 269–276, 2014.
c© Springer International Publishing Switzerland 2014

jeotten@cs.uni-potsdam.de

270 J. Otten

2 The Modal Connection Calculus

Syntax and Semantics. First-order modal formulae F are composed of atomic for-
mulae, the standard (classical) connectives ¬, ∧, ∨, ⇒, the modal operators �, �,
and the standard quantifiers ∀ and ∃. For multimodal logic, sets of modal operators
{�i,�i | i ∈ IN} are considered. The Kripke semantics of the standard modal logics are
defined by a set of worlds W and a binary accessibility relation Ri ⊆ W ×W between
these worlds [5,8]. In each single world w ∈ W the classical semantics applies to the
standard connectives and quantifiers, e.g.

∀xF /∃xF is true in world w iff F is true in world w for all/some object(s) x,
whereas the modal operators are interpreted with respect to accessible worlds, i.e.,

�iF/�iF is true in world w iff F is true in all/some world(s) w′, with (w,w′)∈Ri.
The properties of the accessibility relation Ri determine the particular modal logic. In
this paper the modal logics D, T, S4, and S5 are considered. Their accessibility relation
is serial (D)1, reflexive (T), reflexive and transitive (S4), or an equivalence relation (S5).
The standard semantics is considered with rigid term designation, i.e. every term de-
notes the same object in every world, and terms are local, i.e. any ground term denotes
an existing object in every world.

Using Prefixes. A prefix is used to name a sequence of accessible worlds and is as-
signed to each literal L and each subformula of a given formula F . E.g., the prefixed
formula F : w1w2 denotes the fact that F is true in world w2 that is accessible from a
world w1. Similarly to free variables and Skolem terms used for quantified variables,
free “world variables” and “Skolem worlds” are used within prefixes [13]. This can be
explained by the fact that the semantics of the quantifiers resembles the semantics of the
modal operators (see the definitions given above). In the negation normal form �i adds
a Skolem world (prefix constant) to the prefix, whereas �i adds a world variable (prefix
variable). Depending on the modal logic (D, T, S4, or S5) and its accessibility relation,
variables can be substituted by exactly one prefix variable or constant (D), by at most
one prefix variable or constant (T), or by any sequence of prefix variables and constants
(S4). For the modal logic S5 only the last element of every prefix is considered.

In Fitting’s modal tableau calculi [5,8], prefixes of literals that close a branch need
to denote the same world, i.e., they need to be identical. Similarly to term unification
for (first-order) terms, this is achieved by a prefix unification during the proof search.
This unification problem is a special case of string unification that takes the prefix prop-
erty, i.e. the form of the prefixes, and the accessibility relation of the modal logic into
account. For D and S5 the prefix unification is straightforward and there is only one
most general unifier. For T and S4 prefix unification procedures that calculate minimal
(finite) sets of most general unifiers were developed as well [10,13].

For (heterogeneous) multimodal logics each prefix constant and variable is marked
with the index i of the corresponding modal operator �i or �i. Prefix constants and
variables can only be assigned to variables with the same index, and the modal logic
assigned to each index i has to be taken into account. Modal operators with different in-
dices are independent from each other, i.e. interaction axioms must be added explicitly.

1 A relation R ⊆W ×W is serial iff for all w1 ∈W there is some w2 ∈W with (w1,w2) ∈ R.

MleanCoP: A Connection Prover for First-Order Modal Logic 271

The Modal Connection Calculus. The connection calculus [4] is already successfully
used for automated theorem proving in first-order classical and first-order intuitionistic
logic [10,11]. In order to adapt the calculus to modal logic, prefixes are added to all
literals. The axiom and the rules of the modal connection calculus are given in Fig-
ure 1. M = {C1, . . . ,Cm} is a prefixed matrix, i.e., a set of clauses where each clause
Ci={L1 : p1, . . . ,Ln : pn} is a set of prefixed literals, i.e., pi is the prefix of the literal
Li. The subgoal clause C and the active path Path are sets of (prefixed) literals or ε; C1

and C2 are clauses. A connection {L1 : p1,L2 : p2} is σ -complementary for a term sub-
stitution σQ and a prefix substitution σM iff σQ(L1) = σQ(L2) and σM(p1) = σM(p2),
where L2 is the complement of L2. These substitutions are rigid, i.e. they are applied to
the whole derivation, and calculated by algorithms for term and prefix unification.

A modal connection proof for the prefixed matrix M is a derivation for ε,M,ε , with
admissible substitutions σQ and σM . Substitutions are admissible if they respect the
accessibility relation and the domain condition. The accessibility relation depends on
the logic and is captured in the specific prefix unification for each modal logic. The
domain condition ensures that if a Skolem term t is assigned to a variable x, then t and x
need to exist in the same world. This property holds if the prefix of (the quantifier of) t
is an initial string of the prefix of (the quantifier of) x for cumulative domains, or if these
prefixes are equal for varying domains; there is no restriction for constant domains.

For example, the prefixed matrix of the modal formula �∀xPx ⇒ �∀y�Py is M1=
{{¬Px : W1}, {Pc : w2w3}} in which c is a Skolem term and w2 and w3 are prefix con-
stants. The following derivation for M1 is a modal connection proof for the modal logics
S4 and S5 with constant and cumulative domains (the arc marks the only connection).

{},M1,{Pc:w2w3}
axiom {},M1,{}

axiom

{Pc :w2w3},{{¬Px :W1},{Pc :w2w3}},{}
extension

ε,{{¬Px : W1},{Pc : w2w3}},ε
start

σQ(x) = c
σM(W1)=w2w3 (=w3 for S5)

(the prefix of x is w2w3 and the
prefix of c is w2)

The modal connection calculus is based on a clausal matrix characterization of log-
ical validity [13], which is a slightly adapted version of the original (non-clausal) ma-
trix characterization [15]. In order to simplify the implementation a Skolemization is
used not only for eigenvariables but also for prefix constants. A similar approach is
already used for intuitionistic logic [10]. Thus, the irreflexivity test of the reduction or-
dering [15] is realized by the occurs check of the term and prefix unification procedures.

axiom {},M,Path
start

C2,M,{}
ε, M, ε

and C2 is copy of C1∈M

reduction
C,M,Path∪{L2: p2}

C∪{L1: p1},M,Path∪{L2: p2}
{L1: p1,L2: p2} is σ -complementary

extension
C2\{L2: p2},M,Path∪{L1: p1} C,M,Path

C∪{L1: p1},M,Path
C2 is a copy of C1∈M, L2:p2∈C2,
{L1:p1,L2:p2} is σ -complementary

Fig. 1. The connection calculus for first-order modal logic

272 J. Otten

3 The Implementation

MleanCoP implements the modal connection calculus presented in Section 2. Ver-
sion 1.3 of MleanCoP features the following enhancements compared to version 1.2
[2,13]: support for heterogeneous multimodal logics, output of a compact modal con-
nection proof, support for the modal TPTP syntax, integration of the strategy scheduling
into the shell script, and an additional check of the domain condition in the core prover.
Furthermore, version 1.3 of MleanCoP does not only support ECLiPSe Prolog, but also
SWI and SICStus Prolog. The total size of the shell script and the four files containing
the Prolog source code is less than 29 KB. MleanCoP is available under the GNU Gen-
eral Public License and can be downloaded at http://www.leancop.de/mleancop/ .

Invoking and Preprocessing. The MleanCoP prover is invoked by the command
./mleancop.sh <problem file> [<time limit>]

which starts the proof search for the modal formula in the file <problem file>. The op-
tional <time limit> is used to control the fixed strategy scheduling. If the problem file
contains a formula in the modal TPTP syntax [14], it is translated into the MleanCoP
syntax. Afterwards, the formula is translated into a prefixed (clausal) matrix, i.e., pre-
fixes are added to all literals in the matrix; no other simplifications are carried out in this
step. The prefixed matrix is stored in Prolog’s database and represented by the predicate
lit/3. An optional definitional clausal form translation reduces the number of possible
connections and might prune the search space significantly.

The Modal Connection Calculus. The implementation of the core proof search pro-
cedure extends the automated theorem prover leanCoP for first-order classical logic
[10,11] by adding prefixes to literals and a prefix unification algorithm for each consid-
ered modal logic. Furthermore, each clause is annotated with a list that contains term
variables together with their prefixes in order to check the domain condition. The Pro-
log source code of the MleanCoP 1.3 core prover is shown in Figure 2. The underlined
code was added to leanCoP 2.1; no other modifications were done. The open subgoal
C and the active path Path in the modal connection calculus of Figure 1 are represented
by the Prolog lists Cla and Path, respectively. Atoms are represented by Prolog atoms,
term (and prefix) variables by Prolog variables and negation by “-”. The substitutions
σQ and σM are stored implicitly by Prolog.

The predicate prove(PathLim,Set,Proof) (lines a–g) implements the start rule.
PathLim is the maximum size of the active path used for iterative deepening, Set is
a list of options used to control the proof search, and Proof contains the returned
connection proof. First, MleanCoP performs a classical proof search, afterwards, the
domain condition is checked (domain_cond/1) and the collected prefixes are unified
(prefix_unify/1) (line g). These are the only external predicates called during the ac-
tual proof search. The implementations of the prefix unifications for the modal logics
D, T, S4, and S5 need between 2 to 17 lines of Prolog code; the domain condition is
implemented by another 15 lines of code. For multimodal logic, prefix constants and
variables are marked with the index of the corresponding modal operator. Prefixes are
divided into sections and unified according to the modal logic assigned to their indices.

MleanCoP: A Connection Prover for First-Order Modal Logic 273

(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)
(i)
(j)
(k)

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)

prove(PathLim,Set,Proof) :-
(\ +member(scut,Set) ->

prove([(-(#)):(-[])],[],PathLim,[],PreSet,FreeV1,Set,[Proof]) ;
lit((#):_,FV:C,_) ->
prove(C,[(-(#)):(-[])],PathLim,[],PreSet,FreeV,Set,Proof1),
Proof=[C|Proof1], append(FreeV,FV,FreeV1)),
domain_cond(FreeV1), prefix_unify(PreSet).

prove(PathLim,Set,Proof) :-
member(comp(Limit),Set), PathLim=Limit -> prove(1,[],Proof) ;
(member(comp(_),Set);retract(pathlim)) ->
PathLim1 is PathLim+1, prove(PathLim1,Set,Proof).

prove([],_,_,_,[],[],_,[]).
prove([Lit:Pre|Cla],Path,PathLim,Lem,[PreSet,FreeV],Set,Proof) :-

Proof=[[[NegLit:PreN|Cla1]|Proof1]|Proof2],
\ + (member(LitC,[Lit:Pre|Cla]), member(LitP,Path), LitC==LitP),
(-NegLit=Lit;-Lit=NegLit) ->

(member(LitL,Lem), Lit:Pre==LitL, Cla1=[], Proof1=[],
PreSet3=[], FreeV3=[]
;
member(NegL:PreN,Path), unify_with_occurs_check(NegL,NegLit),
Cla1=[], Proof1=[],
\ + \ + prefix_unify([Pre=PreN]), PreSet3=[Pre=PreN], FreeV3=[]
;
lit(NegLit:PreN,FV:Cla1,Grnd1),
(Grnd1=g -> true ; length(Path,K), K<PathLim -> true ;

\ + pathlim -> assert(pathlim), fail),
\ + \ + (domain_cond(FV), prefix_unify([Pre=PreN])),

prove(Cla1,[Lit:Pre|Path],PathLim,Lem,PreSet1,FreeV1,Set,Proof1),
PreSet3=[Pre=PreN|PreSet1], append(FreeV1,FV,FreeV3)

),
(member(cut,Set) -> ! ; true),
prove(Cla,Path,PathLim,[Lit:Pre|Lem],PreSet2,FreeV2,Set,Proof2),
append(PreSet3,PreSet2,PreSet), append(FreeV2,FreeV3,FreeV).

Fig. 2. Source code of the MleanCoP core prover

The predicate prove(Cla,Path,PathLim,Lem,[PreSet,FreeV],Set,Proof) imple-
ments the axiom (line 1), the reduction rule (lines 9–11, 21–22) and the extension rule
(lines 13, 16–18, 21–22) of the modal connection calculus in Figure 1. A weak prefix
unification (and domain check) is carried out for the current connection (line 11 and 16);
double negation prevents any variable bindings. If the proof search for the current path
limit fails and this limit was actually reached (lines 14–15), then PathLim is increased
and the proof search restarts with an increased path limit (lines h–k). MleanCoP uses a
few additional effective techniques already used in the classical prover leanCoP: regu-
larity (line 4), lemmata (lines 6–7), and restricted backtracking [11] (line 20). For the
example formula from Section 2 the MleanCoP core prover is invoked by

prove((# all X: p(X) => # all Y: # p(Y)),Proof).

which is (internally) translated into the prefixed matrix
[[]:[p(4^[]^[3^[]]):[3^[],5^[]]],[[X,[W]]]:[-(p(X)):-([W])]]

and returns the modal prefixed connection proof (for S4 with cumulative domains)
Proof = [[p(4^[]^[3^[]]):[3^[], 5^[]]],

[[-p(4^[]^[3^[]]): -[[3^[], [5^[]]]]]]]

where X is a term variable, 4^[]^[3^[]] is a Skolem term; W is a prefix variable for the
world W1, 3^[] and 5^[] are prefix constants for the worlds w2 and w3, respectively.

274 J. Otten

4 Experimental Evaluation

The modal connection prover MleanCoP described in Section 3 was tested on all 580
unimodal and all 20 multimodal problems of version 1.1 of the QMLTP library [14].
All tests were conducted on a 3.4 GHz Xeon system with 4 GB of RAM running
Linux 2.6.24 and ECLiPSe Prolog 5.10. The CPU time limit for all proof attempts
was set to 100 seconds.

Table 1. Results on the unimodal problems (varying/cumul./constant) of the QMLTP library

MleanSeP MleanTAP Satallax ————— MleanCoP —————
Logic (proved) (proved) (proved) (proved) (< 1 sec) (refuted)

D – /130/129 100/120/135 113/133/159 186/207/224 160/178/193 273/247/222

T – /163/165 138/162/175 169/192/212 223/250/270 211/236/253 159/132/114

S4 – /190/189 169/205/220 206/237/258 288/349/364 259/304/320 127/96/83

S5 – / – / – 219/272/272 245/294/301 359/436/436 321/388/388 94/41/41

Table 1 shows the results for unimodal logic for the theorem provers MleanSeP 1.2,
MleanTAP 1.3, Satallax 2.2, and MleanCoP 1.3. The columns contain the number of
proved problems (proved), and for MleanCoP also the number of problems proved
within 1 second (< 1 sec) and the number of refuted problems (refuted). For each logic
the results are given for the varying/cumulative/constant domain conditions.

MleanSeP implements the standard modal sequent calculus for several unimodal
logics with cumulative domains.2 It performs an analytic proof search and uses free
variables with a dynamic Skolemization. For the constant domain variants the Bar-
can formulae are added. MleanTAP is a compact implementation of a prefixed tableau
calculus for several unimodal logics.3 Similarly to MleanCoP it uses prefixes and an
additional prefix unification procedure. Hence, MleanTAP can easily be extended to
multimodal logic by integrating the multimodal prefix unification of MleanCoP 1.3.
Satallax [6] is a theorem prover for higher-order logic (HOL) and is used in combina-
tion with an embedding of first-order modal logic into simple type theory [2,3]. These
are currently the only available theorem provers for first-order modal logic. Instead of
Satallax, other theorem provers for HOL can be used as well, but Satallax shows the
strongest performance when using the embedding into HOL [2].

MleanCoP 1.3 proves significantly more problems than any of the other theorem
provers for first-order modal logic. This is true, even if the time limit for MleanCoP is
reduced to one second. Satallax comes second, proving more problems than MleanSeP
and MleanTAP; it also refutes a high number of problems and can deal with many more
modal logics, such as the modal logic K [2].

MleanCoP 1.3 solves 17 of the 20 multimodal problems included in the QMLTP
library; all of these problems are solved within a fraction of a second.

2 MleanSeP can be obtained at http://www.leancop.de/mleansep/
3 MleanTAP can be obtained at http://www.leancop.de/mleantap/

MleanCoP: A Connection Prover for First-Order Modal Logic 275

5 Conclusion

Despite the fact that modal logics are considered as some of the most important non-
classical logics and numerous calculi were developed, the availability of actual im-
plementations of fully automated theorem provers for first-order modal logic is very
limited. Extending existing theorem provers for propositional modal logic, e.g. mod-
leanTAP [1] or MSPASS [9], to first-order modal logic is not straightforward [2].

The modal connection calculus extends the classical clausal connection calculus by
prefixes and additional prefix unifications, which directly encode the accessibility re-
lations of the different modal logics. MleanCoP is based on the classical connection
prover leanCoP and extended by prefix unifications for the unimodal logics D, T, S4,
S5 and for the (normal) multimodal logics. The returned modal connection proof con-
tains all necessary information to translate it back into a more readable form.

Future work includes the extension of the classical non-clausal connection calcu-
lus [12] to first-order modal logic, optimizing the prefix unifications, and extending the
prefix unification to other standard modal logics.

References

1. Beckert, B., Goré, R.: Free Variable Tableaux for Propositional Modal Logics. In: Galmiche,
D. (ed.) TABLEAUX 1997. LNCS (LNAI), vol. 1227, pp. 91–106. Springer, Heidelberg
(1997)

2. Benzmüller, C., Otten, J., Raths, T.: Implementing and Evaluating Provers for First-order
Modal Logics. In: De Raedt, L., et al. (eds.) 20th European Conference on Artificial Intelli-
gence, ECAI 2012, pp. 163–168. IOS Press, Amsterdam (2012)

3. Benzmüller, C., Raths, T.: HOL Based First-Order Modal Logic Provers. In: McMillan,
K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 127–136.
Springer, Heidelberg (2013)

4. Bibel, W.: Automated Theorem Proving. Vieweg, Wiesbaden (1987)
5. Blackburn, P., van Bentham, J., Wolter, F.: Handbook of Modal Logic. Elsevier, Amsterdam

(2006)
6. Brown, C.: Reducing Higher-Order Theorem Proving to a Sequence of SAT Problems. In:

Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp.
147–161. Springer, Heidelberg (2011)

7. Carnielli, W., Pizzi, C.: Modalities and Multimodalities. Springer, Heidelberg (2008)
8. Fitting, M., Mendelsohn, R.L.: First-Order Modal Logic. Kluwer, Dordrecht (1998)
9. Hustadt, U., Schmidt, R.: MSPASS: Modal Reasoning by Translation and First-Order Res-

olution. In: Dyckhoff, R. (ed.) TABLEAUX 2000. LNCS (LNAI), vol. 1847, pp. 67–81.
Springer, Heidelberg (2000)

10. Otten, J.: leanCoP 2.0 and ileanCoP 1.2: High Performance Lean Theorem Proving in Clas-
sical and Intuitionistic Logic. In: Armando, A., Baumgartner, P., Dowek, G., et al. (eds.)
IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 283–291. Springer, Heidelberg (2008)

11. Otten, J.: Restricting backtracking in connection calculi. AI Communications 23, 159–182
(2010)

12. Otten, J.: A Non-clausal Connection Calculus. In: Brünnler, K., Metcalfe, G. (eds.)
TABLEAUX 2011. LNCS (LNAI), vol. 6793, pp. 226–241. Springer, Heidelberg (2011)

276 J. Otten

13. Otten, J.: Implementing Connection Calculi for First-order Modal Logics. In: Korovin, K., et
al. (eds.) IWIL 2012. EPiC, vol. 22, pp. 18–32. EasyChair (2012)

14. Raths, T., Otten, J.: The QMLTP Problem Library for First-order Modal Logics. In: Gram-
lich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 454–461.
Springer, Heidelberg (2012)

15. Wallen, L.A.: Automated Deduction in Nonclassical Logics. MIT Press, Cambridge (1990)

Optimal Tableaux-Based Decision Procedure

for Testing Satisfiability in the Alternating-Time
Temporal Logic ATL+

Serenella Cerrito1, Amélie David1, and Valentin Goranko2,3

1 Laboratoire IBISC - Université Evry Val-d’Essonne, France
{serena.cerrito,adavid}@ibisc.univ-evry.fr

2 Department of Applied Mathematics and Computer Science
Technical University of Denmark

3 University of Johannesburg, South Africa

Abstract. We develop a sound, complete and practically implementable
tableaux-based decision method for constructive satisfiability testing and
model synthesis in the fragment ATL+ of the full Alternating time tem-
poral logic ATL∗. The method extends in an essential way a previously
developed tableaux-based decision method for ATL and works in 2EXP-
TIME, which is the optimal worst case complexity of the satisfiability
problem for ATL+. We also discuss how suitable parameterizations and
syntactic restrictions on the class of input ATL+ formulae can reduce the
complexity of the satisfiability problem.

1 Introduction

The Alternating-time temporal logic ATL∗ was introduced and studied in [1] as a
multi-agent extension of the branching time temporal logic CTL∗, where the path
quantifiers are generalized to “strategic quantifiers”, indexed with coalitions of
agentsA and ranging over all computations enabled by a given collective strategy
of A. ATL∗ was proposed as logical framework for specification and verification
of properties of open systems modeled as concurrent game models, in which all
agents effect state transitions collectively, by taking simultaneous actions at each
state. The language of ATL∗ allows expressing statements of the type “Coalition
A has a collective strategy to guarantee the satisfaction of the objective Φ on every
play enabled by that strategy”. The syntactic fragment ATL of ATL∗ allows only
state formulae, where all occurrences of temporal operators must be immediately
preceded by strategic quantifiers. The fragment ATL+ of ATL∗ extends ATL by
allowing any Boolean combinations of ATL objectives in the scope of a strategic
quantifier. It is considerably more expressive than ATL, which is reflected in
the high – 2EXPTIME – worst case complexity lower bound of the satisfiability
problem for ATL+ (inherited from the lower bound for CTL+, see [8]) as opposed
to the EXPTIME-completeness of the satisfiability problem for ATL [4,11]. The
matching 2EXPTIME upper bound is provided by the automata-based method
for deciding satisfiability in the full ATL∗, developed in [10].

S. Demri, D. Kapur, and C. Weidenbach (Eds.): IJCAR 2014, LNAI 8562, pp. 277–291, 2014.
c© Springer International Publishing Switzerland 2014

278 S. Cerrito, A. David, and V. Goranko

The contribution of this paper is the development of a sound, complete and
terminating tableaux-based decision method for constructive satisfiability testing
of ATL+ formulae, which we also claim to be intuitive, conceptually simple and
transparent, as well as practically implementable and even manually usable,
despite the inherently high worst-case complexity of the problem. The tableaux
method presented here is based on the general methodology going back to [9]
and [12]. It was further developed for ATL in [7] to which the reader is referred
for more details, and a recent implementation is reported in [3]. The tableaux
method for ATL+ is an essential extension of the one for ATL, as it has to deal
with much more complex (and computationally expensive) path objectives that
can be assigned to the agents. It is also rather different from the above mentioned
automata-based method in [10].

The paper is structured as follows. In Section 2 we offer brief technical pre-
liminaries on concurrent game models, syntax and semantics of ATL∗ and ATL+.
Section 3 develops the technical machinery needed for the presentation of the
tableaux method itself in Section 4. Section 5 contains the main results related
to termination, soundness, completeness and complexity of the procedure. In
Section 6 we offer a brief comparison with the automata-based method in [10].

For lack of space, we only provide here very brief sketches of the proofs of the
soundness, completeness and some other technical claims. A full version of this
paper, including detailed proofs, is available as a technical report [2].

2 Preliminaries

We assume that the reader has basic familiarity with the branching time logic
CTL∗, see e.g. [5]. Also, basic knowledge on ATL∗ [1] and the tableaux-based
decision procedure for ATL in [7], on which this paper builds, would be beneficial.

2.1 Concurrent Game Models, Strategies and Co-strategies

A concurrent game model [1] (CGM) is a tuple
M = (A, St, {Acta}a∈A, {acta}a∈A, out,Prop, L) comprising:

– a finite, non-empty set of players (agents) A = {1, . . . , k}
– a non-empty set of states St,

– a set of actions Acta
= ∅ for each a ∈ A.

For any A ⊆ A we denote ActA :=
∏

a∈A Acta and use σA to denote a tuple
from ActA. In particular, ActA is the set of all possible action profiles in M.

– for each a ∈ A, a map acta : St → P(Acta) \ {∅} defining for each state s the
actions available to a at s,

– a partial transition function out : St × ActA − → St that assigns determin-
istically a successor (outcome) state out(s, σA) to every state s and action
profile σA = 〈σ1, . . . , σk〉, such that σa ∈ acta(s) for every a ∈ A,

– a set of atomic propositions Prop, and a labelling function L : St → P(Prop).

Optimal Tableaux-Based Decision Procedure for Satisfiability in ATL+ 279

Concurrent game models represent multi-agent transition systems that func-
tion as follows: at any moment the system is in a given state, where each agent
selects an action from those available to him at that state. All agents execute
their actions synchronously and the combination of these actions together with
the current state determine a transition to a unique successor state in the model.
A play in a CGM is an infinite sequence of subsequent successor states, i.e., an
infinite sequence s0s1... ∈ Stω of states such that for each i ≥ 0 there exists an
action profile σA = 〈σ1, . . . , σk〉 such that out(si, σA) = si+1. A history is a finite
prefix of a play. We denote by PlaysM and HistM respectively the set of plays
and set of histories in M. For a state s ∈ St we define PlaysM(s) and HistM(s)
as the set of plays and set of histories with initial state s. Given a sequence of
states λ, we denote by λ0 its initial state, by λi its (i + 1)th state, by λ≤i the
prefix λ0...λi of λ and by λ≥i the suffix λiλi+1... of λ. When λ = λ0...λ� is finite,
we say that it has length � and write |λ| = �. Further, we put last(λ) = λ�.

A (perfect recall) strategy for an agent a in M is a mapping Fa : HistM → Acta
such that for all h ∈ HistM we have Fa(h) ∈ acta(last(h)). Intuitively, it assigns
an admissible action for agent a after any history h of the game. We denote
by StratM(a) the set of strategies of agent a. A (collective) strategy of a set
(coalition) of agents A ⊆ A is a tuple (Fa)a∈A of strategies, one for each agent
in A. When A = A this is called a strategy profile. We denote by StratM(A)
the set of collective strategies of coalition A. A play λ ∈ PlaysM is consistent
with a collective strategy FA ∈ StratM(A) if for every i ≥ 0 there exists an
action profile σA = 〈σ1, . . . , σk〉 such that out(λi, σA) = λi+1 and σa = Fa(λ≤i)
for all a ∈ A. The set of plays with initial state s that are consistent with FA

is denoted PlaysM(s, FA). For any coalition A ⊆ A and a given CGM M and
state s ∈ St, an A-co-move at s in M is a mapping ActcA : ActA → ActA\A
that assigns to every collective action of A at the state s a collective action at
s for the complementary coalition A \ A. Likewise, an A-co-strategy in M is a
mapping F c

A : StratM(A)×St → ActA\A that assigns to every collective strategy
of A and a state s ∈ St a collective action at s for A \ A.

2.2 The Logic ATL* and Fragments

The logic ATL∗ is a multi-agent extension of CTL∗ with strategic quantifiers
〈〈A〉〉 indexed with coalitions A of agents. There are two types of formulae in
ATL∗: state formulae, that are evaluated at states, and path formulae, that are
evaluated on plays. To simplify the presentation we will work with formulae in
negation normal form over a fixed set Prop of atomic propositions and primitive
temporal operators Always � and Until U . The syntax of the full language
ATL∗ and its fragments ATL+ and ATL can then be defined as follows, where
l ∈ Prop ∪ {¬p | p ∈ Prop} is a literal, A is a fixed set of agents and A ⊆ A:

State formulae: ϕ := l | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | 〈〈A〉〉Φ | [[A]]Φ (1)

ATL∗-path formulae: Φ := ϕ | ©Φ | �Φ | (ΦUΦ) | (Φ ∨ Φ) | (Φ ∧ Φ) (2)

ATL+-path formulae: Φ := ϕ | ©ϕ | �ϕ | (ϕUϕ) | (Φ ∨ Φ) | (Φ ∧ Φ) (3)

ATL-path formulae: Φ := ©ϕ | �ϕ | (ϕUϕ) (4)

280 S. Cerrito, A. David, and V. Goranko

Note that the state formulae have the same definition but define different sets
in all 3 cases. To keep the notation lighter, we will list the members of the set A
in 〈〈A〉〉 without using {}. When the length of a formula is measured, A will be
assumed given by a bit vector. Parentheses will be omitted whenever safe, but
they will be important when conjunctions and disjunctions are composed.

Hereafter, we use ϕ, ψ, η to denote arbitrary state formulae and Φ, Ψ to
denote path formulae. By an ATL+ formula we will mean by default a state
formula of ATL+; likewise for ATL. We define � := p ∨ ¬p, ⊥ := ¬� and the
temporal operators Sometime ♦ by ♦ϕ := �Uϕ and Release R by ϕRψ :=
�ϕ ∨ ϕU(ϕ ∧ ψ). Note, that 〈〈A〉〉ϕRψ and [[A]]ϕRψ are ATL+ state formulae.

CTL∗ can be regarded as the fragment of ATL∗ where 〈〈∅〉〉 represents the path
quantifier ∀ and 〈〈A〉〉 represents ∃. The semantics of ATL∗ (inherited by ATL+)
is defined in a given CGM M, state s ∈ M and a path λ in M just like the
semantics of CTL∗, with the added clauses for the strategic quantifiers:

– M, s |= 〈〈A〉〉Φ iff there exists an A-strategy FA such that, for all computa-
tions λ consistent with FA, M, λ |= Φ.

– M, s |= [[A]]Φ iff there exists an A-co-strategy F c
A such that, for all compu-

tations λ consistent with F c
A, M, λ |= Φ.

Valid, satisfiable and equivalent formulae in ATL∗ are defined as usual. Here
are some important equivalences in LTL [5] and in ATL∗ [1,6], used further:

– �Ψ ≡ Ψ ∧©�Ψ ; ΦUΨ ≡ Ψ ∨ (Φ ∧©(ΦUΨ));
– 〈〈C〉〉�Ψ ≡ Ψ ∧ 〈〈C〉〉 © 〈〈C〉〉�Ψ ; 〈〈C〉〉ΦUΨ ≡ Ψ ∨ (Φ ∧ 〈〈C〉〉 © 〈〈C〉〉ΦUΨ);
– [[C]]�Ψ ≡ Ψ ∧ [[C]]© [[C]]�Ψ ; [[C]]ΦUΨ ≡ Ψ ∨ (Φ ∧ [[C]]© [[C]]ΦUΨ);
– [[A]]© ϕ ≡ ¬〈〈A〉〉 © ¬ϕ ≡ 〈〈∅〉〉 © ϕ; 〈〈A〉〉〈〈B〉〉Φ ≡ 〈〈B〉〉Φ;
– For every state formula ϕ: 〈〈A〉〉(ϕ∧Ψ) ≡ ϕ∧〈〈A〉〉Ψ , 〈〈A〉〉(ϕ∨Ψ) ≡ ϕ∨〈〈A〉〉Ψ .

Remark 1. It is known [1] that, when restricted to ATL formulae, the semantics
above (based on perfect-recall strategies) is equivalent to the semantics based on
positional (or memoryless) strategies, where the prescribed actions only depend
on the current state, not on the whole history. This is no longer the case for
ATL+. For example, the formula 〈〈1〉〉♦(p∧〈〈1〉〉♦q) → 〈〈1〉〉(♦p∧♦q) is valid in the
semantics with perfect-recall strategies (which can be freely composed) but not
in the semantics with positional strategies (which cannot be freely composed).

Hereafter, we assume that the semantics is based on perfect-recall strategies.
Here we deal with the (constructive) satisfiability decision problem for ATL+:
Given a state formula ϕ in ATL+, does there exist a CGM M and a state s in

M such that M, s |= ϕ? If so, construct such a satisfying pair (M, s).

Remark 2. There are two variants of this satisfiability problem: tight, where it
is assumed that all agents in the model are mentioned in the formula, and loose,
where additional agents, not mentioned in the formula, are allowed in the model.
These variants are really different, but the latter one is immediately reducible to
the former, by adding just one extra agent a to the language. Furthermore, this
extra agent can be easily added superfluously to the formula, e.g., by adding a
conjunct 〈〈a〉〉 © �, so we hereafter only consider the tight satisfiability version.
For further details and discussion on this issue, see e.g., [11,7].

Optimal Tableaux-Based Decision Procedure for Satisfiability in ATL+ 281

3 Decomposition and Closure of ATL+ Formulae

We partition the set of ATL+ formulae into primitive and non-primitive formulae.
The primitive formulae are �,⊥, the literals and all ATL+ successor formulae,
of the form 〈〈A〉〉 © ψ or [[A]] © ψ, each with successor component ψ. The non-
primitive formulae are classified as α-, β- and γ-formulae. An α-formula in our
syntax is a conjunction ϕ ∧ ψ with (conjunctive) α-components ϕ and ψ; a β-
formula is a disjunction ϕ∨ψ with (disjunctive) β-components ϕ and ψ. The rest
of the non-primitive formulae are classified as γ-formulae. That is, a γ-formula
is one of the form [[A]]Φ or 〈〈A〉〉Φ, where Φ is an ATL+ path formula whose main
operator is not ©. We note that, unlike [7], here we do not treat 〈〈A〉〉�ϕ as an
α-formula nor 〈〈A〉〉ϕUψ as a β-formula; both are γ-formulae.

The α- and β-formulae will be decomposed in the tableau as usual, while the
case of γ-formulae 〈〈A〉〉Φ and [[A]]Φ is special and needs extra work, because
their tableau decomposition will depend on the structure of Φ.

3.1 γ-Decomposition and γ-Components of γ-Formulae

We denote the set of ATL+ state formulae by ATL+s and the set of ATL+ path
formulae by ATL+p . We will define a γ-decomposition function dec : ATL+p →
P(ATL+s × ATL+p) with the following intuitive meaning: for any Φ ∈ ATL+p and
pair 〈ψ, Ψ〉 ∈ dec(Φ), ψ is a state formula true at the current state and Ψ is a
path formula expressing what must be true at the next state of a possible play
starting at the current state. Thus, the set dec(Φ) is interpreted as a disjunc-
tion describing all possible ‘types of paths’ starting from the current state and
satisfying Φ. The definition of dec is recursive on ATL+ path formulae, as follows.

� dec(ϕ) = {〈ϕ,�〉}, dec(©ϕ) = {〈�, ϕ〉} for any ATL+ state formula ϕ. The
other base cases derive from the well-known LTL equivalences listed in 2.2:

� dec(�ϕ) = {〈ϕ,�ϕ〉} and dec(ϕUψ) = {〈ϕ, ϕUψ〉, 〈ψ,�〉}.
� dec(Φ1 ∧ Φ2) = dec(Φ1)⊗ dec(Φ2), where

dec(Φ1)⊗dec(Φ2) := {〈ψi∧ψj , Ψi∧Ψj〉 | 〈ψi, Ψi〉 ∈ dec(Φ1), 〈ψj , Ψj〉 ∈ dec(Φ2)}.
� dec(Φ1 ∨ Φ2) = dec(Φ1) ∪ dec(Φ2) ∪ (dec(Φ1)⊕ dec(Φ2)),

where dec(Φ1)⊕ dec(Φ2) :=
{〈ψi ∧ ψj , Ψi ∨ Ψj〉 | 〈ψi, Ψi〉 ∈ dec(Φ1), 〈ψj , Ψj〉 ∈ dec(Φ2), Ψi
= �, Ψj
= �}.

The conjunctive case is clear: every path satisfying Φ1∧Φ2 combines a type of
path satisfying Φ1 with a type of path satisfying Φ2. To understand the disjunc-
tive case, first note that the use of dec(Φ1)⊕ dec(Φ2) in the above union reflects
the case of those plays where it is not decided yet which disjunct of Φ1 ∨Φ2 will
hold, so we have to keep both disjuncts true at the present state and delay the
choice. This is why the state formulae ψi and ψj are connected by ∧ but the
path formulae Ψi and Ψj are connected by ∨. Moreover, the ⊕ operation avoids
the construction of a pair 〈ψi∧ψj , Ψi∨Ψj〉 where either Ψi or Ψj is �, because in
that case we would be in a situation already included in dec(Φ1) or in dec(Φ2).
The three cases for paths satisfying the disjunction Φ1 ∨ Φ2 can be illustrated
by the picture in Figure 1.

282 S. Cerrito, A. David, and V. Goranko

dec(Φ1)

•
ϕ1

Φ1

Φ1

Φ1

Φ1

Φ1

dec(Φ2)

•
ϕ2

Φ2

Φ2

Φ2

Φ2

Φ2

dec(Φ1)⊕ dec(Φ2)

•
ϕ2

ϕ1

Φ1

Φ2

Φ2

Φ1

Φ1

Fig. 1. The 3 cases for disjunctive path objectives in a γ-formula

Now, let ζ = 〈〈A〉〉Φ or ζ = [[A]]Φ be a γ-formula to be decomposed. Each pair
〈ψ, Ψ〉 ∈ dec(Φ) is then converted to a γ-component γ(ψ, Ψ) as follows:

γ(ψ, Ψ) = ψ if Ψ = � (5)

γ(ψ, Ψ) = ψ ∧ 〈〈A〉〉©〈〈A〉〉Ψ if ζ is of the form 〈〈A〉〉Φ, (6)

γ(ψ, Ψ) = ψ ∧ [[A]]©[[A]]Ψ if ζ is of the form [[A]]Φ (7)

The following key lemma claims that every γ-formula is equivalent to the
disjunction of its γ-components. For the (long and non-trivial) proof see [2].

Lemma 1. For any ATL+ γ-formula Θ = 〈〈A〉〉Φ or Θ = [[A]]Φ:

1. Φ ≡
∨
{ψ ∧©Ψ | 〈ψ, Ψ〉 ∈ dec(Φ)}.

2. 〈〈A〉〉Φ ≡
∨
{〈〈A〉〉(ψ ∧©Ψ) | 〈ψ, Ψ〉 ∈ dec(Φ)}, and respectively,

[[A]]Φ ≡
∨
{[[A]](ψ ∧©Ψ) | 〈ψ, Ψ〉 ∈ dec(Φ)}.

3. Θ ≡
∨
{γ(ψ, Ψ) | 〈ψ, Ψ〉 ∈ dec(Φ)}.

Example 1. We will use 2 syntactically similar, yet different, running examples:
θ = 〈〈1〉〉(pUq ∨�q)∧ 〈〈2〉〉(♦p ∧�¬q) and ϑ = 〈〈1〉〉(pUq ∨�q)∧ [[2]](♦p ∧�¬q).

First, we consider θ. It is an α-formula with conjunctive components θ1 =
〈〈1〉〉(pUq ∨�q) and θ2 = 〈〈2〉〉(♦p ∧�¬q). Further, θ1 is a γ-formula of the form
〈〈A〉〉Φ where the main connective of Φ is ∨. So dec(θ1) = dec(pUq) ∪ dec(�q) ∪
(dec(pUq) ⊕ dec(�q)), where dec(pUq) = {〈p, pUq〉, 〈q,�〉} and dec(�q) =
{〈q,�q〉}. Thus, dec(θ1) = {〈p, pUq〉, 〈q,�〉, 〈q,�q〉, 〈p ∧ q, pUq ∨�q〉}, hence
θ1 ≡ (p∧〈〈1〉〉©〈〈1〉〉pUq)∨(q)∨(q∧〈〈1〉〉©〈〈1〉〉�q)∨(p∧q∧〈〈1〉〉©〈〈1〉〉(pUq∨�q)).
Likewise, θ2 is a γ-formula of the form 〈〈A〉〉Φ where the main connective of Φ
is ∧. So dec(θ2) = dec(♦p) ⊗ dec(�¬q), with dec(♦p) = {〈T,♦p〉, 〈p, T 〉} and
dec(�¬q) = {〈¬q,�¬q〉}. Thus, dec(θ2) = {〈� ∧ ¬q,♦p ∧ �¬q〉, 〈p ∧ ¬q,� ∧
�¬q〉} = {〈¬q,♦p∧�¬q〉, 〈p∧¬q,�¬q〉} and θ2 ≡ (¬q∧〈〈2〉〉©〈〈2〉〉(♦p∧�¬q))∨
(p ∧ ¬q ∧ 〈〈2〉〉©〈〈2〉〉�¬q).

For ϑ, the γ-decomposition is similar, we only replace 〈〈2〉〉 by [[2]]. Thus, we
obtain ϑ1 ≡ (p ∧ 〈〈1〉〉©〈〈1〉〉pUq) ∨ (q) ∨ (q ∧ 〈〈1〉〉©〈〈1〉〉�q) ∨ (p ∧ q ∧ 〈〈1〉〉©
〈〈1〉〉(pUq ∨�q)) and ϑ2 ≡ (¬q ∧ [[2]]©[[2]](♦p∧�¬q)) ∨ (p∧ ¬q ∧ [[2]]©[[2]]�¬q).

The closure cl(ψ) of an ATL+ state formula ψ is the least set of ATL+ formulae
such that ψ,�,⊥ ∈ cl(ψ) and cl(ψ) is closed under taking of successor-, α-, β-
and γ-components. For any set of state formulae Γ we define cl(Γ) :=

⋃
{cl(ψ) |

ψ ∈ Γ}. We denote by |ψ| the length of ψ and by ‖Γ‖ the cardinality of Γ .

Optimal Tableaux-Based Decision Procedure for Satisfiability in ATL+ 283

Example 2. The closures of the formulae θ and ϑ from Example 1 are:
cl(θ) = {θ, θ1, θ2, p ∧ q ∧ 〈〈1〉〉©〈〈1〉〉(pUq ∨ �q), p ∧ q, p, q, 〈〈1〉〉©〈〈1〉〉(pUq ∨

�q), q ∧ 〈〈1〉〉©〈〈1〉〉�q, 〈〈1〉〉©〈〈1〉〉�q, 〈〈1〉〉�q, p ∧ 〈〈1〉〉©〈〈1〉〉pUq, 〈〈1〉〉©〈〈1〉〉pUq,
〈〈1〉〉pUq, p∧¬q∧〈〈2〉〉©〈〈2〉〉�¬q, p∧¬q,¬q, 〈〈2〉〉©〈〈2〉〉�¬q, 〈〈2〉〉�¬q, ¬q∧〈〈2〉〉©
〈〈2〉〉�¬q,¬q ∧ 〈〈2〉〉©〈〈2〉〉(♦p ∧�¬q), 〈〈2〉〉©〈〈2〉〉(♦p ∧�¬q),�}.

cl(ϑ) = {ϑ, ϑ1, ϑ2, p ∧ q ∧ 〈〈1〉〉©〈〈1〉〉(pUq ∨�q), p ∧ q, p, q, 〈〈1〉〉©〈〈1〉〉(pUq ∨
�q), q ∧ 〈〈1〉〉©〈〈1〉〉�q, 〈〈1〉〉©〈〈1〉〉�q, 〈〈1〉〉�q, p ∧ 〈〈1〉〉©〈〈1〉〉pUq, 〈〈1〉〉©〈〈1〉〉pUq,
〈〈1〉〉pUq, p ∧ ¬q ∧ [[2]]© [[2]]�¬q, p ∧ ¬q,¬q, [[2]]© [[2]]�¬q, [[2]]�¬q, ¬q ∧ [[2]]©
[[2]]�¬q,¬q ∧ [[2]]©[[2]](♦p ∧�¬q), [[2]]©[[2]](♦p ∧�¬q),�}.

Lemma 2. For any ATL+ state formula ϕ, ‖cl(ϕ)‖ < 2|ϕ|
2

.

Proof. Every formula in cl(ϕ) has length less than 2|ϕ| and is built from symbols

in ϕ, so there can be at most |ϕ|2|ϕ| = 22|ϕ| log2 |ϕ| < 2|ϕ|
2

such formulae. �

The estimate above is rather crude, but ‖cl(ϕ)‖ can reach size exponential in
|ϕ|. Indeed, consider the formulae φk = 〈〈1〉〉(p1 Uq1 ∧ (p2 Uq2 ∧ (. . .∧ pk Uqk) . . .)
for k = 1, 2, . . . and distinct p1, q1, . . . , pk, qk, . . . ∈ Prop. Then |φk| = O(k), while
the number of different γ-components of φk is 2k, hence ‖cl(φk)‖ > 2k.

3.2 Full Expansions of Sets of ATL+ Formulae

As part of the tableaux construction we will need a procedure that, for any given
finite set of ATL+ state formulae Γ , produces all “full expansions” (called in [7]
“downward saturated extensions”) defined below.

Definition 1. Let Γ , Δ be sets of ATL+ state formulae and Γ ⊆ Δ ⊆ cl(Γ).

1. Δ is patently inconsistent if it contains ⊥ or a pair of formulae ϕ and ¬ϕ.
2. Δ is a full expansion of Γ if it is not patently inconsistent and satisfies the

following closure conditions:
– if ϕ ∧ ψ ∈ Δ then ϕ ∈ Δ and ψ ∈ Δ;
– if ϕ ∨ ψ ∈ Δ then ϕ ∈ Δ or ψ ∈ Δ;
– if ϕ ∈ Δ is a γ-formula, then at least one γ-component of ϕ is in Δ and

exactly one of these γ-components in Δ, denoted γ(ϕ,Δ), is designated
as the γ-component in Δ linked to the γ-formula ϕ, as explained below.

The family of all full expansions of Γ will be denoted by FE(Γ). It can be
constructed by a simple iterative procedure that starts with {Γ} and repeatedly,
until saturation, takes a set X from the currently constructed family, selects a
formula ϕ ∈ X and: if ϕ is a conjunction, then adds both conjunctive components
of ϕ to X ; if ϕ is a disjunction, then creates two extensions of X by adding
respectively each disjunctive component of ϕ; and if ϕ is a γ-formula, then
creates an extension of X with each γ-component ψ of ϕ and designates ψ as the
γ-component of ϕ linked to ϕ in every full expansion of Γ eventually produced
by further extending X ∪{ψ}. In case when such an extension becomes patently
inconsistent it is discarded from the family. Clearly, this procedure terminates
on every finite input set of formulae Γ and produces a family of at most 2‖cl(Γ)‖

sets. Furthermore, due to Lemma 1, we have the following:

284 S. Cerrito, A. David, and V. Goranko

Proposition 1. For any finite set of ATL+ state formulae Γ :∧
Γ ≡

∨{∧
Δ | Δ ∈ FE(Γ)

}
.

4 Tableau-Based Decision Procedure for ATL+

The tableaux procedure consists of three major phases: pretableau construction,
prestate elimination, and state elimination. It constructs a directed graph T η

(called a tableau) with nodes labelled by finite sets of formulae and directed
edges between nodes relating them to successor nodes.

The pretableau construction phase produces the so-called pretableau Pη for
the input formula η, with two kinds of nodes: states and prestates. States are fully
expanded sets, meant to represent states of a CGM, while prestates can be any
finite sets of formulae from cl(η) and only play a temporary role in the construc-
tion of Pη. States and prestates are labelled uniquely, so they can be identified
with their labels. The prestate elimination phase creates a smaller graph T η

0 out
of Pη, called the initial tableau for η, by eliminating all the prestates from Pη and
accordingly redirecting its edges. Finally, the state elimination phase removes,
step-by-steps, all the states (if any) that cannot be satisfied in a CGM, because
they lack necessary successors or because they contain unrealized eventualities.
Eventually, the elimination procedure produces a (possibly empty) subgraph T η

of T η
0 , called the final tableau for η. If some state Δ of T η contains η, the pro-

cedure declares η satisfiable and a partly defined CGM (called Hintikka game
frame) satisfying η can be extracted from it; otherwise it declares η unsatisfiable.

4.1 Pretableau Construction Phase

The pretableau construction phase for an input formula η starts with an initial
prestate (with label) {η} and consists of alternating application of two construc-
tion rules, until saturation: (SR), expanding prestates into states, and (Next),
creating successor prestates from states. This phase closely resembles the cor-
responding one for ATL tableaux in [7], with the only essential difference being
the γ-decomposition of γ-formulae used here by the rule (SR), which causes,
as we will see, a possibly exponential blow-up of the size of the tableaux, and
eventually of the entire worst case time complexity, as compared to the ATL
tableaux. Another (minor) difference with respect to [7] is in the formulation of
both rules, because here we work with formulae in negation normal form.

Rule (SR). Given a prestate Γ , do the following:

1. For each full expansion Δ of Γ add to the pretableau a state with label Δ.
2. For each of the added states Δ, if Δ does not contain any formulae of the

form 〈〈A〉〉 © ϕ or [[A]]© ϕ, add the formula 〈〈A〉〉 © � to it;
3. For each state Δ obtained at steps 1 and 2, link Γ to Δ via a =⇒ edge;
4. If, however, the pretableau already contains a state Δ′ with label Δ, do not

create another copy of it but only link Γ to Δ′ via a =⇒ edge.

Optimal Tableaux-Based Decision Procedure for Satisfiability in ATL+ 285

Example 3. For the formula θ from Example 1 the initial prestate is Γ0 =
{〈〈1〉〉(pUq ∨�q) ∧ 〈〈2〉〉(♦p ∧�¬q)}. It has 2 full expansions:
Δ1 = {θ, θ1, θ2, p,¬q, 〈〈1〉〉©〈〈1〉〉pUq, 〈〈2〉〉©〈〈2〉〉(♦p ∧�¬q)}, and
Δ2 = {θ, θ1, θ2, p, p ∧ ¬q,¬q, 〈〈1〉〉©〈〈1〉〉pUq, 〈〈2〉〉©〈〈2〉〉�¬q}.

Likewise, for the formula ϑ: Γ0 = {〈〈1〉〉(pUq ∨ �q) ∧ [[2]](♦p ∧ �¬q)} is the
initial prestate and it has 2 full expansions:
Δ1 = {ϑ, ϑ1, ϑ2, p,¬q, 〈〈1〉〉©〈〈1〉〉pUq, [[2]]©[[2]](♦p ∧�¬q)}, and
Δ2 = {ϑ, ϑ1, ϑ2, p, p ∧ ¬q,¬q, 〈〈1〉〉©〈〈1〉〉pUq, [[2]]©[[2]]�¬q}.

In the following, by enforceable successor formula we mean a formula of the
form 〈〈A〉〉 © ψ and by unavoidable successor formula one of the form [[A]]© ψ.

Rule (Next). Given a state Δ do the following, where σ is a shorthand for σA:

1. List all primitive successor formulae of Δ in such a way that all enforceable
successor formulae precede all unavoidable ones; let the result be the list

L = 〈〈A0〉〉 © ϕ0, . . . , 〈〈Am−1〉〉 © ϕm−1, [[A
′
0]]© ψ0, . . . , [[A

′
l−1]]© ψl−1

Let rΔ = m+ l; denote by D(Δ) the set {0, . . . , rΔ − 1}|A|. Then, for every
σ ∈ D(Δ), denote N(σ) := {i | σi � m}, where σi is the ith component of
the tuple σ, and let co(σ) := [Σi∈N(σ)(σi − m)] mod l.

2. For each σ ∈ D(Δ) create a prestate:

Γσ = {ϕp | 〈〈Ap〉〉 © ϕp ∈ Δ and σa = p for all a ∈ Ap}
∪ {ψq | [[A′q]]© ψq ∈ Δ, co(σ) = q, and A− A′q ⊆ N(σ)}

If Γσ is empty, add � to it. Then connect Δ to Γσ with
σ−→.

If, however, Γσ = Γ for some prestate Γ that has already been added to the
pretableau, only connect Δ to Γ with

σ−→.

For intuition on the rule (Next) see [7] and [2]. The rules (SR) and (Next)
are applied alternatively until saturation, which is bound to occur because every
label is a subset of cl(η). Then the construction phase is over. The graph built
in that phase is called pretableau for the input formula η and denoted by Pη.

Example 4. Continuation of Example 3 for θ: For Δ1, the list of successor for-
mulae is L = 〈〈1〉〉©〈〈1〉〉pUq, 〈〈2〉〉©〈〈2〉〉(♦p∧�¬q), so m = 2, l = 0 and rΔ1 = 2.
As there are no unavoidable successor formulae, we do not need to compute
N(σ) and co(σ). Then, Γ(0,0) = {〈〈1〉〉pUq} = Γ1, Γ(0,1) = {〈〈1〉〉pUq, 〈〈2〉〉(♦p ∧
�¬q)} = Γ2, Γ(1,0) = {�} = Γ3 and Γ(1,1) = {〈〈2〉〉(♦p ∧�¬q)} = Γ4.

For Δ2, the list of successor formulae is L = 〈〈1〉〉©〈〈1〉〉pUq, 〈〈2〉〉©〈〈2〉〉�¬q, so
m = 2, l = 0 and rΔ2 = 2. Here again, we do not compute N(σ) and co(σ). Then
Γ(0,0) = {〈〈1〉〉pUq} = Γ1, Γ(0,1) = {〈〈1〉〉pUq, 〈〈2〉〉�¬q} = Γ5, Γ(1,0) = {�} = Γ3

and Γ(1,1) = {〈〈2〉〉�¬q} = Γ6.
Applying rule (SR) to the so-obtained prestates, we have:

states(Γ1) = {Δ3 : {〈〈1〉〉pUq, p, 〈〈1〉〉©〈〈1〉〉pUq}, Δ4 : {〈〈1〉〉pUq, q, 〈〈1, 2〉〉©�}},
states(Γ2) = Δ5 : {〈〈1〉〉pUq, 〈〈2〉〉(♦p ∧ �¬q), p,¬q, 〈〈1〉〉 © 〈〈1〉〉pUq, 〈〈2〉〉 ©

286 S. Cerrito, A. David, and V. Goranko

〈〈2〉〉(♦p ∧ �¬q)}, Δ6 : {〈〈1〉〉pUq, 〈〈2〉〉(♦p ∧ �¬q), p, p ∧ ¬q,¬q, 〈〈1〉〉 ©
〈〈1〉〉pUq, 〈〈2〉〉©〈〈2〉〉�¬q}};
states(Γ3) = {Δ7 : {�, 〈〈1, 2〉〉 © �}};
states(Γ4) = {Δ8 : {〈〈2〉〉(♦p∧�¬q),¬q, 〈〈2〉〉©〈〈2〉〉(♦p∧�¬q)}, Δ9 : {〈〈2〉〉(♦p∧
�¬q), p ∧ ¬q,¬q, 〈〈2〉〉©〈〈2〉〉�¬q}};
states(Γ5) = {Δ10 : {〈〈1〉〉pUq, 〈〈2〉〉�¬q, p,¬q, 〈〈1〉〉©〈〈1〉〉pUq, 〈〈2〉〉©〈〈2〉〉�¬q}};
states(Γ6) = {Δ11 : {〈〈2〉〉�¬q,¬q, 〈〈2〉〉©〈〈2〉〉�¬q}}.

The pretableau for θ is given in Figure 2.

Γ0 : 〈〈1〉〉(pUq ∨ �q) ∧ 〈〈2〉〉(♦p ∧�¬q)

Δ1 : θ, θ1, θ2, p,¬q,
〈〈1〉〉©〈〈1〉〉pUq, 〈〈2〉〉©〈〈2〉〉(♦p∧�¬q)

Δ2 : θ, θ1, θ2, p, p ∧ ¬q,¬q,
〈〈1〉〉©〈〈1〉〉pUq, 〈〈2〉〉©〈〈2〉〉�¬q

Γ1 : 〈〈1〉〉pUqΓ4 :
〈〈2〉〉(♦p ∧�¬q)

Γ2 : 〈〈1〉〉pUq,
〈〈2〉〉(♦p ∧�¬q) Γ3 : � Γ5 :

〈〈1〉〉pUq, 〈〈2〉〉�¬q Γ6 : 〈〈2〉〉�¬q

Δ7 Δ10 Δ11Δ4Δ3Δ9Δ8Δ6Δ5

0, 00, 1 1, 01, 1 0, 0 0, 11, 0 1, 1

0, 0
0, 0

0, 00, 0

0, 0

0, 0

Δ5

Γ2Γ1 Γ3 Γ4

0, 0 0, 1 1, 0 1, 1

Δ6/Δ10

Γ5Γ1 Γ3 Γ6

0, 0 0, 1 1, 0 1, 1

Fig. 2. The pretableau for θ

Example 5. Continuation of Example 3 for ϑ: For Δ1, the list of successor for-
mulae is L = 〈〈1〉〉©〈〈1〉〉pUq, [[2]]©[[2]](♦p ∧�¬q), so m = 1, l = 1 and rΔ1 = 2.
Therefore, N(0, 0) = ∅, N(0, 1) = {2}, N(1, 0) = {1}, N(1, 1) = {1, 2} and
also co(0, 0) = co(0, 1) = 0 = co(0, 1) = co(0, 1) = 0. Then, Γ(0,0) = Γ(0,1) =
{〈〈1〉〉pUq} = Γ1, and Γ(1,0) = Γ(1,1) = {[[2]](♦p ∧�¬q)} = Γ2.

For Δ2, the list of successor formulae is L = 〈〈1〉〉©〈〈1〉〉pUq, [[2]]©[[2]]�¬q, so
m = 1, l = 1 and rΔ2 = 2. Here also N(0, 0) = ∅, N(0, 1) = {2}, N(1, 0) = {1},
N(1, 1) = {1, 2}, and co(0, 0) = co(0, 1) = co(0, 1) = co(0, 1) = 0. Then,
Γ(0,0) = Γ(0,1) = {〈〈1〉〉pUq} = Γ1, and Γ(1,0) = Γ(1,1) = {[[2]]�¬q} = Γ3.

In the same way, we obtain:
states(Γ1) = {Δ3 : {〈〈1〉〉pUq, p, 〈〈1〉〉©〈〈1〉〉pUq}, Δ4 : {〈〈1〉〉pUq, q, 〈〈1, 2〉〉©�}};
states(Γ2) = {Δ5 : {[[2]](♦p ∧ �¬q),¬q, [[2]]© [[2]](♦p ∧ �¬q)}, Δ6 : {[[2]](♦p ∧
�¬q), p∧¬q, p,¬q, [[2]]©[[2]]�¬q}}; states(Γ3)={Δ7 :{[[2]]�¬q,¬q, [[2]]©[[2]]�¬q}}.

4.2 The Prestate and State Elimination Phases. Eventualities

First, we remove from Pη all the prestates and the =⇒ edges, as follows. For
every prestate Γ in Pη put Δ

σ−→ Δ′ for all states Δ in Pη with Δ
σ−→ Γ and all

Optimal Tableaux-Based Decision Procedure for Satisfiability in ATL+ 287

Δ′ ∈ states(Γ); then, remove Γ from Pη. The graph obtained after eliminating
all prestates is called the initial tableau, denoted by T η

0 . The initial tableau for
the formula θ in our running example is given on Figure 3.

Δ1 : θ, θ1, θ2, p,¬q,
〈〈1〉〉©〈〈1〉〉pUq, 〈〈2〉〉©〈〈2〉〉(♦p∧�¬q)

Δ2 : θ, θ1, θ2, p, p ∧ ¬q,¬q,
〈〈1〉〉©〈〈1〉〉p Uq, 〈〈2〉〉©〈〈2〉〉�¬q

Δ7 Δ10 Δ11Δ4Δ3Δ9Δ8Δ6Δ5

0, 0 0, 00, 1 0, 1 1, 01, 1 1, 1

0, 0

0, 0 0, 11, 0 1, 1

0, 0
0, 0

0, 0

0, 1
0, 1

1, 0

1, 1

0, 0

0, 0

0, 1

1, 0

1, 1

0, 0

0, 0 0, 0

0, 0

0, 0

0, 1

1, 0

1, 1

0, 0

Fig. 3. The initial tableau for θ

The elimination phase starts with T η
0 and goes through stages. At stage n+1

we remove exactly one state from the tableau T η
n obtained at the previous stage,

by applying one of the elimination rules described below, thus obtaining the
tableau T η

n+1. The set of states of T η
m is noted Sη

m.
The first elimination rule (ER1), defined below, is used to eliminate all states

with missing successors for some move vectors determined by the rule (Next).
If, due to a previous state elimination, any state has an outgoing move vector
for which the corresponding successor state is missing, we delete the state. The
reason is clear: if Δ is to be satisfiable, then for each σ ∈ D(Δ) there should
exist a satisfiable Δ′ that Δ reaches via σ. Formally, the rule is stated as follows,
where D(Δ) is defined in the rule (Next):

Rule (ER1) : If, for some σ ∈ D(Δ), all states Δ′ with Δ
σ−→ Δ′ have been

eliminated at earlier stages, then obtain T η
n+1 by eliminating Δ from T η

n .

The aim of the next elimination rule is to make sure that there are no unre-
alized eventualities. In ATL there are only two kinds of eventualities : 〈〈A〉〉ϕUψ
and [[A]]♦ϕ. The situation is more complex in ATL+. For instance, should the
formula 〈〈A〉〉(�ϕ∨ψ1 Uψ2) be considered an eventuality? Our solution for ATL+

is to consider all γ-formulae as potential eventualities. In order to properly de-
fine the notion of realization of a potential eventuality we first define a function
Real associating to a γ-formula ψ and a set of ATL+-formulae (representing a
state of the current tableau) a Boolean value indicating whether the potential
eventuality represented by ψ has been ‘realized’ at that state:

– Real(Φ ∧ Ψ,Θ) = Real(Φ,Θ) ∧ Real(Ψ,Θ)
– Real(Φ ∨ Ψ,Θ) = Real(Φ,Θ) ∨ Real(Ψ,Θ)
– Real(ϕ,Θ) = true if ϕ ∈ Θ, false otherwise
– Real(©ϕ,Θ) = false

288 S. Cerrito, A. David, and V. Goranko

– Real(�ϕ,Θ) = true if ϕ ∈ Θ, false otherwise
– Real(ϕUψ,Θ) = true if ψ ∈ Θ, false otherwise

Definition 2 (Descendant potential eventualities). Let ξ ∈ Δ be a poten-
tial eventuality of the form 〈〈A〉〉Φ or [[A]]Φ. Suppose the γ-component γ(ξ,Δ) in
Δ linked to ξ is, respectively, of the form ψ ∧ 〈〈A〉〉©〈〈A〉〉Ψ or ψ ∧ [[A]]©[[A]]Ψ .
Then the successor potential eventuality of ξ w.r.t. γ(ξ,Δ) is the γ-formula
〈〈A〉〉Ψ (resp. [[A]]Ψ) and it will be denoted by ξ1Δ. The notion of descendant
potential eventuality of ξ of degree d, for d > 1, is defined inductively as follows:

- any successor eventuality of ξ (w.r.t. some γ-component of ξ) is a descendant
eventuality of ξ of degree 1;

- any successor eventuality of a descendant eventuality ξn of ξ of degree n is
a descendant eventuality of ξ of degree n+ 1.

We will also consider ξ to be a descendant eventuality of itself of degree 0.

Example 6. (Continuation of Example 5) In Δ1 we have ξ = 〈〈1〉〉(pUq∨�q) with
Real(pUq ∨�q,Δ1) = Real(pUq,Δ1) ∨Real(�q,Δ1) = false∨ false = false,
since q
∈ Δ1, and ξ′ = 〈〈2〉〉(♦p∧�¬q) with Real(♦p∧�¬q,Δ1) = Real(♦p,Δ1)∧
Real(�¬q,Δ1) = true ∧ true = true since p,¬q ∈ Δ1.

The successor eventuality of ξ = 〈〈1〉〉(pUq ∨ �q) w.r.t γ(ξ,Δ5) is ξ1Δ5
=

〈〈1〉〉pUq in Δ3, Δ4, Δ5, Δ6. For each n > 1, the descendant eventuality of degree
n of ξ w.r.t γ(ξ,Δ5) is ξnΔ5

= ξ1Δ5
in Δ3, Δ4, Δ5, Δ6, Δ10. The successor eventu-

ality of ξ′ = 〈〈2〉〉(♦p ∧�¬q) w.r.t γ(ξ′, Δ5) is ξ′1Δ5
= 〈〈2〉〉(♦p ∧�¬q) in Δ5, Δ6,

Δ8. For each n > 1, the descendant eventualities of degree n of ξ′ w.r.t γ(ξ′, Δ5)
are ξ′nΔ5

= ξ′1Δ5
in Δ5, Δ6, Δ8 and Δ9; and ξ′nΔ5

= 〈〈2〉〉�¬q in Δ10 and Δ11.

Now, let L = 〈〈A0〉〉©ϕ0, . . . , 〈〈Am−1〉〉©ϕm−1, [[A
′
0]]©ψ0, . . . , [[A

′
l−1]]©ψl−1

be the list of all primitive successor formulae of Δ ∈ Sη
0 , induced as part of

application of (Next). We will use the following notation:
D(Δ, 〈〈Ap〉〉 © ϕ) := {σ ∈ D(Δ) | σa = p for every a ∈ Ap}
D(Δ, [[A′q]]© ψ) := {σ ∈ D(Δ) | co(σ) = q and A− A′q ⊆ N(σ)}

Next, we will define recursively what it means for an eventuality ξ to be
realized at a state Δ of a tableau T η

n , followed by our second elimination rule.

Definition 3 (Realization of potential eventualities). Let Δ ∈ Sη
n and

ξ ∈ Δ be a potential eventuality of the form 〈〈A〉〉Φ or [[A]]Φ. Then:

1. If Real(Φ,Δ) = true then ξ is realized at Δ in T η
n .

2. Else, let ξ1Δ be the successor potential eventuality of ξ w.r.t. γ(ξ,Δ). If for
every σ ∈ D(Δ, 〈〈A〉〉©ξ1Δ) (resp. σ ∈ D(Δ, [[A]]©ξ1Δ)), there exists Δ′ ∈ T η

n

with Δ
σ−→ Δ′ and ξ1Δ is realized at Δ′ in T η

n , then ξ is realized at Δ in T η
n .

Rule (ER2) : If Δ ∈ Sη
n contains a potential eventuality that is not realized

at Δ ∈ T η
n , then obtain T η

n+1 by removing Δ from Sη
n.

Example 7. (Cont. of Example 6) The potential eventuality ξ′′ = 〈〈1〉〉(pUq) is
not realized in Δ5, so by Rule (ER2) we remove the state Δ5 from T θ

0 and
obtain the tableau T θ

1 . The same applies to Δ6 for ξ′′, so we also remove Δ6

Optimal Tableaux-Based Decision Procedure for Satisfiability in ATL+ 289

from T θ
1 and obtain T θ

2 with Rule (ER2). In T θ
2 there is no more move vector

(0, 1) for the state Δ1, so by Rule (ER1) we remove Δ1 from T θ
2 and obtain

T θ
3 . In the same way, Δ10 is removed by Rule (ER2) and Δ2 by Rule (ER1).
As for the case of ϑ, it is easy to see that no states get eliminated, so the final

tableau is the same as the initial one.

The elimination phase is completed when no more applications of elimination
rules are possible. Then we obtain the final tableau for η, denoted by T η. It is
declared open if η belongs to some state in it, otherwise closed. The procedure
for deciding satisfiability of η returns “No” if T η is closed, “Yes” otherwise.

Example 8. (Continuation of Example 7) At the end of the elimination phase,
Δ1 and Δ2 are no longer in T θ. Thus T θ is closed and we deduce that the
formula θ = 〈〈1〉〉(pUq ∨�q)∧〈〈2〉〉(♦p∧�¬q) is declared unsatisfiable. The final
tableaux for θ is given on Figure 4.

Respectively, the final tableau for ϑ is open, hence ϑ is declared satisfiable.
Indeed, a CGM can be extracted from the final tableau.

Δ7 Δ11Δ4Δ3Δ9Δ8 0, 0
0, 0 0, 0

0, 0

0, 0 0, 0

0, 0

0, 0

Fig. 4. The final tableau for θ

5 Termination, Soundness, Completeness and Complexity

The termination of the tableaux procedure is straightforward, as there are only
finitely many states and prestates that can be added in the construction phase.

Theorem 1. The tableaux method for ATL+ is sound.

Soundness of the tableaux method means that if the input formula is satisfiable,
then the procedure will indeed produce an open tableau. The argument in a
nutshell is that if the input formula η is satisfiable, then, due to Proposition 1,
there is a satisfiable state Δ in states({η}). The key claim, proved by induction
on the number of steps in the elimination phase, is that the elimination rules
only remove states with unsatisfiable labels, so the Δ ‘survives’ the elimination
phase and remains in the final tableau. A detailed proof can be found in [2].

Theorem 2. The tableaux method for ATL+ is complete.

Completeness of the procedure means that an open tableau implies existence of
a CGM model. This is proved by first introducing the notion of Hintikka game
structure, which is essentially a partially defined CGM, and showing that every
open tableau provides a Hintikka game structure containing the input formula
η in the label of a state in it, which is equivalent of η being satisfiable. Again, a
detailed proof can be found in [2].

290 S. Cerrito, A. David, and V. Goranko

Theorem 3. The tableaux procedure for ATL+ runs in 2EXPTIME.

Proof. The argument generally follows the calculations computing the complex-
ity of the tableaux method for ATL in Section 4.7 of [7], with one essential differ-
ence: ‖cl(η)‖ for any ATL formula η is linear in its length |η|, whereas ‖cl(η)‖ for
an ATL+ formula η can be exponentially large in |η|, as shown after Lemma 2.
This exponential blowup, combined with the worst-case exponential in ‖cl(η)‖
number of states in the tableaux, accounts for the 2EXPTIME worst-case com-
plexity of the tableaux method for ATL+, which is the expected optimal lower
bound. It is also an upper bound for the tableaux method, because no further
exponential blowups occur in the prestate- and state-elimination phases. �

There are various ways to restrict or parameterize the set of ATL+ formulae
in order to avoid the exponential blowup of their closure sets. As suggested by
the example after Lemma 2, the main cause for that blowup of the number of
γ-components of a γ-formulae ϕ = 〈〈A〉〉Φ or ϕ = [[A]]Φ in ATL+ is the nesting of
conjunctions and disjunctions in the path formula Φ which are not in the scope
of temporal operators. Let us call that number the superficial Boolean depth
of Φ and denote it by δ0(Φ). Then, let the nested Boolean depth of any ATL+

formula Ψ , denoted δ(Ψ), be the maximal superficial Boolean depth δ0(Φ) of a
path subformula Φ of Ψ . For instance, δ(〈〈1〉〉©〈〈1〉〉((p∨q)U¬q)) = 0, δ(〈〈1〉〉(�p∨
((q ∧ p)U¬q)) = 1, δ(〈〈1〉〉(♦q ∧ (�p ∧ (q U¬q))) = 2. Now, if this number for a
formula η is bounded above, the size of the closure ‖η‖ becomes polynomially
bounded in |η| because the nesting of ∧ and ∨ when they are separated by
a temporal operator does not have multiplicative effect on the number of γ-
components. Consequently, the complexity of the tableaux method is reduced to
single exponential time, caused only by the maximal possible number of states
in the tableaux, just like in ATL. Thus, we have the following.

Proposition 2. The tableaux procedure for ATL+ applied to a class of ATL+

formulae of bounded nested Boolean depth runs in EXPTIME.

6 Concluding Remarks

Here we have developed sound, complete and terminating tableaux-based deci-
sion method for constructive satisfiability testing of ATL+ formulae and have
argued for its practical usability and implementability. The method is amenable
to further extension to the full ATL∗, but this is left to future work.

Some comparison with the automata-based method for satisfiability testing in
ATL∗, presented in [10] are in order. The two methods appear to be quite different
and, though eventually working in the same worst case complexity, the double ex-
ponential blowups seem to occur in different ways, namely, in the automata-based
method, one exponential blowup occurs in converting the formula into an automa-
ton, while the other is in the time complexity of checking non-emptiness of the re-
sulting automaton. It would be instructive to compare the practical implications
and efficiency of both methods and we leave such systematic comparison to the fu-
ture, when (hopefully) both methods are implemented. For now, we only mention

Optimal Tableaux-Based Decision Procedure for Satisfiability in ATL+ 291

that the formula θ from our running example, the tableau for which is worked out
explicitly and in detail in this paper, is translated with the method from [10] into
an automaton with 212 alphabet symbols and over 100 states. Of course, this com-
parison cannot serve as an argument for general practical superiority in efficiency
of the tableaux-based method. Still, the technical details of both methods, illus-
trated in that example, indicate that, while the worst case exponential blowups
are bound to occur in both methods, they seem to be more controllable and avoid-
able in the tableaux-based method, at the expense of its lesser automaticity and
higher degree of user control. Thus, we would argue that both methods have gen-
erally incomparable pros and cons, and consequently are of independent interest,
both theoretically and practically.

Acknowledgments. We thank the anonymous reviewers for their helpful re-
marks and suggestions and for some corrections. We also gratefully acknowledge
the financial support for this research from Université Évry Val-d’Essonne and
the laboratory IBISC by funding visits of V. Goranko to Université Évry Val-
d’Essonne and of A. David to the Technical University of Denmark.

References

1. Alur, R., Henzinger, T.A., Kuperman, O.: Alternating-time temporal logic. Journal
of the ACM 49(5), 672–713 (2002)

2. Cerrito, S., David, A., Goranko, V.: Optimal tableaux-based decision procedure
for testing satisfiability in the alternating-time temporal logic ATL+. Tech. rep.,
Laboratoire IBISC - Université Evry Val-d’Essonne (2014),
https://www.ibisc.univ-evry.fr/~adavid/fichiers/

IJCAR Extended Draft Tableau ATLplus.pdf
3. David, A.: TATL: Implementation of ATL tableau-based decision procedure. In:

Galmiche, D., Larchey-Wendling, D. (eds.) TABLEAUX 2013. LNCS, vol. 8123,
pp. 97–103. Springer, Heidelberg (2013)

4. van Drimmelen, G.: Satisfiability in alternating-time temporal logic. In: Proc. of
LICS 2003, pp. 208–217 (2003)

5. Emerson, E.A.: Temporal and modal logics. In: van Leeuwen, J. (ed.) Handbook
of Theoretical Computer Science, vol. B, pp. 995–1072. MIT Press (1990)

6. Goranko, V., van Drimmelen, G.: Complete axiomatization and decidablity of
Alternating-time temporal logic. Theor. Comp. Sci. 353, 93–117 (2006)

7. Goranko, V., Shkatov, D.: Tableau-based decision procedures for logics of strategic
ability in multiagent systems. ACM Trans. Comput. Log. 11(1) (2009)

8. Johannsen, J., Lange, M.: CTL+ is Complete for Double Exponential Time. In:
Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003.
LNCS, vol. 2719, pp. 767–775. Springer, Heidelberg (2003)

9. Pratt, V.R.: A near optimal method for reasoning about action. Journal of Com-
puter and System Sciences 20, 231–254 (1980)

10. Schewe, S.: ATL* satisfiability is 2EXPTIME-complete. In: Aceto, L., Damg̊ard, I.,
Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP
2008, Part II. LNCS, vol. 5126, pp. 373–385. Springer, Heidelberg (2008)

11. Walther, D., Lutz, C., Wolter, F., Wooldridge, M.: ATL satisfiability is indeed
ExpTime-complete. Journal of Logic and Computation 16(6), 765–787 (2006)

12. Wolper, P.: The tableau method for temporal logic: an overview. Logique et Anal-
yse 28(110-111), 119–136 (1985)

https://www.ibisc.univ-evry.fr/~adavid/fichiers/IJCAR_Extended_Draft_Tableau_ATLplus.pdf
https://www.ibisc.univ-evry.fr/~adavid/fichiers/IJCAR_Extended_Draft_Tableau_ATLplus.pdf

dTL2: Differential Temporal Dynamic Logic
with Nested Temporalities for Hybrid Systems

Jean-Baptiste Jeannin and André Platzer

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA

Abstract. The differential temporal dynamic logic dTL2 is a logic to specify
temporal properties of hybrid systems. It combines differential dynamic logic
with temporal logic to reason about the intermediate states reached by a hybrid
system. The logic dTL2 supports some linear time temporal properties of LTL.
It extends differential temporal dynamic logic dTL with nested temporalities. We
provide a semantics and a proof system for the logic dTL2, and show its use-
fulness for nontrivial temporal properties of hybrid systems. We take particular
care to handle the case of alternating universal dynamic and existential temporal
modalities and its dual, solving an open problem formulated in previous work.

1 Introduction

A major task of computer science is to program objects of our physical world: cars,
trains, airplanes, robots, etc. — often grouped under the denomination of cyber-physical
systems (CPS). A CPS is governed by its programmable controllers, but also by the laws
of physics. To fully verify it, one thus needs to model the controllers and their software
as well as the relevant laws of physics in the same system. Such a system then becomes
hybrid: the controllers are discrete while the laws of physics are continuous.

In recent years, a number of systems have been explored to reason about such hy-
brid systems. In particular, this paper is based on differential dynamic logic [14], [16,
chapter 4], a logic based on dynamic logic [15,17], [16, chapter 2] and including pro-
grams enabling discrete assignments and discrete control structures, but also execution
of differential equations. Differential dynamic logic comes with a semantics as well as
a proof system, which is sound and relatively complete.

Based on dynamic logic, differential dynamic logic only reasons about the end state
of a system. However, to ensure that a system always stays within some structural limits,
or always accomplishes a certain task, one needs to reason about its intermediate states
as well. CPSs that are safe when their systems terminate but have been unsafe in the
middle of the program run are still not safe to use. The idea is to use both dynamic logic
— to quantify over possible executions — and temporal logic — to quantify over the
states in the trace of each execution. This is not a new idea, but previous work [1,14]
focuses only on the non-alternating cases: “some property is always verified during all
executions” and “something happens during some execution.”

In this paper, we are developing a differential temporal dynamic logic dTL2 inspired
from LTL, and we are focusing on correctly handling the more complex alternating
cases: “something happens during all executions” and “there is an execution where

S. Demri, D. Kapur, and C. Weidenbach (Eds.): IJCAR 2014, LNAI 8562, pp. 292–306, 2014.
c© Springer International Publishing Switzerland 2014

Differential Temporal Dynamic Logic with Nested Temporalities for Hybrid Systems 293

some property is always verified,” as well as nested temporal modalities. In particular,
a property checking that a task is always accomplished can now be checked. This logic
is an important stepping stone towards full dTL∗, the differential analog of CTL∗.

As a simple example, let us look at a satellite with position x trying to leave the solar
system, avoiding planets. To simplify, let us consider only two planets with radiuses
r1 and r2, at (evolving) positions p1 and p2. The satellite can be controlled either by a
pilot who can set its steering ω to left or right then let x evolve according to differential
equation flight(ω), or by an autopilot following a PID controller with target direction set
to d. During each evolution, the positions of the planets continue to evolve, following
differential equation planets(p1, p2). The program of the satellite and its safety property
φ — expressing that there exists a steering avoiding all planets — can be expressed as:

satellite ::=(((ω := left ∪ ω := right);x′ = flight(ω), (p′1, p
′
2) = planets(p1, p2))

∪ (d := ∗;x′ = PID(d), (p′1, p
′
2) = planets(p1, p2)))

∗;

control := lost; d := ∗;x′ = PID(d), (p′1, p
′
2) = planets(p1, p2)

φ ::= 〈satellite〉�(dist(x, p1) > r1 ∧ dist(x, p2) > r2 ∧ control
= lost)

This example shows several features of hybrid programs and the logic dTL2. Under
the pilot’s command, the variable ω can be assigned to either left or right, following a
nondeterministic choice ∪. Then x, p1 and p2 follow a differential equation modeling
the continuous evolution of the system, including movement of the planets. Under the
autopilot’s command, d is nondeterministically assigned (d := ∗). There is a nondeter-
ministic choice between the two commands, followed by a star ∗ representing repetition.
In case of mechanical or communication failure, control could be lost, which we repre-
sent by a variable assignment, and the system continues to evolve. The formula φ says
that there exists a possible evolution (〈satellite〉) such that throughout this evolution
(�), the satellite does not hit any planet; namely, the evolution avoiding planets where
control is never lost. The formula φ is expressible in dTL2, and shows how dTL2 han-
dles alternating and nested program (〈satellite〉) and temporal modalities (� and ♦).
The focus of this paper is to create a semantics and a proof calculus for dTL2.

There are three main contributions to this paper. First, we show how to correctly
handle the alternating cases of a universal dynamic modality followed by an existential
temporal modality, and its dual an existential dynamic modality followed by a universal
temporal modality. This solves an open problem identified in 2001 [1] and identified as
a problem for hybrid systems in 2007 [14], [16, chapter 4]. Second, we offer a treatment
where programs are not duplicated by proof rules, solving another open problem formu-
lated in [14], [16, chapter 4]. This is significant for proving hybrid systems in practice,
because previous approaches led to a duplication of proof effort, once for intermedi-
ate and once for final states. Third and finally, we extend the logic to nested temporal
quantifiers, show that all formulas of interest are equivalent to formulas containing at
most two quantifiers — thus the name dTL2 — by identifying the resemblance to modal
system S4.2, and develop a logic and proof calculus for the new temporal formulas.

The paper is organized as follows. After presenting the syntax and semantics of Dif-
ferential Temporal Dynamic Logic dTL2 in Section 2, we show how to normalize trace
formulas and how to axiomatize dTL2 in Section 3. We study alternative proof systems
in Section 4 and related work in Section 5, before concluding in Section 6.

294 J.-B. Jeannin and A. Platzer

2 Differential Temporal Dynamic Logic dTL2

This section defines the syntax and semantics of hybrid programs and trace formulas
formally. The development mostly follows and extends previous work on differential
temporal dynamic logic [14], [16, chapter 4]; we explicitly point out differences and
extensions from the previous work.

2.1 Hybrid Programs

We use hybrid programs (HP) [15,17], [16, chapter 2] α, β to model hybrid systems.
Syntactically, hybrid programs can be atomic hybrid programs or compound hybrid pro-
grams. Atomic hybrid programs can be discrete jump assignments (x := θ), tests (?χ)
and differential equations evolving within an evolution domain constraint χ — meaning
that the system can evolve following a solution of the differential equation as long as χ
remains true (x′ = θ & χ). Terms θ are polynomials with rational coefficients, and con-
ditions χ are first-order formulas of real arithmetic.1 Compound hybrid programs are
nondeterministic choice (α ∪ β), sequential composition (α;β) and nondeterministic
finite repetition (α∗):

α, β ::= x := θ | ?χ | x′ = θ & χ | α ∪ β | α;β | α∗

The trace semantics of hybrid programs assigns to each program α a set of traces
τ(α). The set of states Sta is the set of (total) functions from variables to the reals R. In
addition, we consider a separate state Λ (not in Sta) denoting a failure of the system. For
v ∈ Sta or v = Λ, we denote by v̂ the function σ : {0} → {v}, 0 +→ v, defined only on
the singleton interval [0, 0]. A trace is a (nonempty) finite sequence σ = (σ0, σ1, ..., σn)
of functions σi. For 0 ≤ i < n, the piece σi is a function σi : [0, ri] → Sta, where
ri ≥ 0 is the duration of this step. For i = n, the piece σn is either a function:

– σn : [0, ri] → Sta; we then say that σ is a terminating trace; or
– σn : [0,+∞) → Sta; we then say that σ is an infinite trace; or
– σn : {0} → {Λ}, 0 +→ Λ, for n ≥ 1;2 we then say that σ is an error trace.

We often collectively refer to infinite and error traces as nonterminating; thus when we
refer to terminating traces, we only refer to those traces that terminate but not with an
error state Λ. We write Tra for the set of all traces. A position of σ is a pair (i, ζ) with
0 ≤ i ≤ n and ζ in the domain of definition of σi; the state of σ at (i, ζ) is σi(ζ). For
any trace σ, we denote by first σ the state σ0(0); we informally say that “σ starts with
v” to say that v = first σ. If σ = (σ0, . . . , σn) terminates (and only in that case), we
also denote by last σ the state σn(rn); when σ does not terminate, last σ is undefined.
We denote by val(v, θ) the value of term θ in state v, and by v[x +→ r] the valuation
assigning variable x to r ∈ R and matching with v on all other variables. We also write
v � χ if state v satisfies condition χ, and v
� χ otherwise.

1 Using first-order formulas or real arithmetic results in a poor-test version of the logic. Our
results generalize to a rich-test version, where a condition χ is instead defined as any formula
φ of dTL2 (see Section 2.2).

2 We impose n ≥ 1 so that (Λ̂) is not considered a trace

Differential Temporal Dynamic Logic with Nested Temporalities for Hybrid Systems 295

Given two traces σ = (σ0, . . . , σn) and ρ = (ρ0, . . . , ρm), we say that ρ is a prefix
of σ if it describes the trace σ truncated at some position. Formally, ρ is a prefix of σ if
and only if ρ = σ — a condition ensuring that nonterminating traces are also suffixes
of themselves — or there exists a position (i, ζ) of σ such that:

– traces (σ0, . . . , σi−1) and (ρ0, . . . , ρm−1) are identical.3 In particular this imposes
that i = m; and

– the domain of definition of ρm is exactly [0, ζ] and is included in the domain of
definition of σm, and for all d ∈ [0, ζ], σm(d) = ρm(d).

Symmetrically, we say that ρ is a suffix of σ if it starts at some position of σ then follows
σ. Formally, ρ is a suffix of σ if and only if there exists a position (i, ζ) of σ such that:

– if σi has domain of definition [0, ri], then the domain of definition of ρ0 is exactly
[0, ri − ζ] and for all d ∈ [ζ, ri], σi(d) = ρ0(d − ζ); and in the case where σi has
domain of definition [0,+∞), the domain of definition of ρ0 is also [0,+∞) and
for all d ∈ [ζ,+∞), σi(d) = ρ0(d− ζ); and

– (σi+1, . . . , σn) and (ρ1, . . . , ρm) are identical, which imposes that n− i = m.

Definition 1 (Trace Semantics of Hybrid Programs). The trace semantics τ(α) ⊆
2Tra of a hybrid program α is then defined inductively as follows:

– τ(x := θ) = {(v̂, ŵ) | w = v[x +→ val(v, θ)]};
– τ(x′ = θ & χ) = {(σ) : σ is a state flow of order 1 [15] defined on [0, r] or

[0,+∞) solution of x′ = θ, and for all t in its domain of definition, σ(t) � χ}
∪ {(v̂, Λ̂) : v
� χ};4

– τ(?χ) = {(v̂) : v � χ} ∪ {(v̂, Λ̂) : v
� χ};
– τ(α ∪ β) = τ(α) ∪ τ(β);
– τ(α;β) = {σ ◦ ρ : σ ∈ τ(α), ρ ∈ τ(β) when σ ◦ ρ is defined};

where the composition σ ◦ ρ of σ = (σ0, . . . , σn) and ρ = (ρ0, . . . , ρm) is
• σ ◦ ρ = (σ0, . . . , σn, ρ0, . . . , ρm) if σ terminates and last σ = first ρ (since σ

terminates, last σ is well-defined);
• σ if σ does not terminate;
• undefined otherwise;

– τ(α∗) =
⋃

n∈N τ(αn), where α0 is defined as ?true, α1 is defined as α and αn+1

is defined as αn;α for n ≥ 1.

An important property of this trace semantics is that for all programs α and states
v, there exists a trace σ of α starting with v (even if it might be an error trace). This
property will be key to proving the soundness of assignment rules.

Aside from the correction on τ(x′ = θ & χ), this definition is slightly different from
[14], [16, chapter 4] in two ways: these previous papers also consider infinite sequences
σ = (σ0, σ1, . . .), but infinite sequences are not part of the semantics of any program;
and these papers do not consider infinite traces in the semantics. Still, we can prove
that the interpretation of trace formulas (Section 2.2) is the same on the subset of trace
formulas they consider.

3 If i = m = 0, (σ0, . . . , σi−1) and (ρ0, . . . , ρm−1) are empty and thus not formally traces,
but we still consider the condition fulfilled.

4 This case is corrected from [14], [16, chapter 4], which wrongly forget the error traces of
ordinary differential equations — when χ is initially false.

296 J.-B. Jeannin and A. Platzer

2.2 State and Trace Formulas

To reason about hybrid programs, we use state formulas and trace formulas. State for-
mulas express properties about states, while trace formulas express properties about
traces; their definitions are mutually inductive. A state formula φ, ψ can be a compar-
ison of terms (θ1 ≥ θ2); a negation of a state formula (¬φ); a conjunction (φ ∧ ψ) or
a disjunction (φ ∨ ψ) of state formulas; a universally quantified (∀x φ) or existentially
quantified (∃x φ) state formula — quantification of a variable x is over the set of reals
R. Finally, a state formula can also be a program necessity ([α]π) — expressing that all
traces of hybrid program α starting at the current state satisfy trace formula π — or its
dual, a program possibility (〈α〉π) — expressing that there is a trace of α starting at the
current state satisfying trace formula π.

A trace formula π can be a state formula (φ); a negation of a trace formula (¬π);
a temporal necessity of a trace formula (�π) — expressing that every suffix of the
current trace satisfies π — or its dual, a temporal possibility of a trace formula (♦π) —
expressing that there is a suffix of the current trace satisfying π. The syntax of state and
trace formulas is thus given by:

φ, ψ ::= θ1 ≥ θ2 | ¬φ | φ ∧ ψ | φ ∨ ψ | ∀x φ | ∃x φ | [α]π | 〈α〉π
π ::= φ | ¬π | �π | ♦π

Additionally, as in classical logic, the implication φ → ψ is defined as ¬φ ∨ ψ. When
a trace formula also happens to be a state formula φ, the formula ¬φ means the same
whether it is seen as a state or trace formula; in the rest of the paper we collude the two.
We are now ready to define satisfaction of state and trace formulas.

Definition 2 (Satisfaction of dTL2 Formulas). For state formulas, we write v � φ
to say that state v ∈ Sta satisfies state formula φ. Satisfaction of state formulas with
respect to a state v is defined inductively as follows:

– v � θ1 ≥ θ2 if and only if val(v, θ1) ≥ val(v, θ2)
– v � ¬φ if and only if v � φ does not hold.
– v � φ ∧ ψ if and only if v � φ and v � ψ.
– v � φ ∨ ψ if and only if v � φ or v � ψ.
– v � ∀xφ if and only if v[x +→ d] � φ holds for all d ∈ R.
– v � ∃xφ if and only if v[x +→ d] � φ holds for some d ∈ R.
– for φ a state formula, v � [α]φ if and only if for each trace σ ∈ τ(α) that starts in

first σ = v, if σ terminates, then last σ � φ.
– for φ a state formula, v � 〈α〉φ if and only if there is a trace σ ∈ τ(α) starting in

first σ = v such that σ terminates and last σ � φ.
– If π is not a state formula, v � [α]π if and only σ � π for each trace σ ∈ τ(α) that

starts in first σ = v.
– If π is not a state formula, v � 〈α〉π if and only σ � π for some trace σ ∈ τ(α)

that starts in first σ = v.

For trace formulas, we write σ � π to say that trace σ ∈ Tra satisfies trace formula π.
Satisfaction of trace formulas with respect to a trace σ is defined inductively as follows:

Differential Temporal Dynamic Logic with Nested Temporalities for Hybrid Systems 297

– σ � φ if and only if first σ � φ.
– σ � ¬π if and only if σ � π does not hold.
– σ � �π if and only if ρ � π holds for all suffixes ρ of σ that are different from (Λ̂).
– σ � ♦π if and only if ρ � π holds for some suffix ρ of σ that is different from (Λ̂).

This definition follows the intuition given when presenting the syntax of state and trace
formulas, except for one point. Note that in the definitions of σ � �π and σ � ♦π,
the suffix ρ of σ does not have to be proper, and we can have ρ = σ. When seen as a
trace formula, a state formula φ can express a property on a trace σ. We then say that
σ satisfies φ if and only if the first state of σ satisfies φ (condition first σ � φ in the
definition of σ � φ). However, there is an exception to this definition: when φ appears
directly after a program necessity (as in [α]φ) or a program possibility (as in 〈α〉φ), φ
only refers to terminating traces, and we say that σ satisfies φ if and only if the last state
of σ satisfies φ (condition σ � last φ in the definitions of σ � 〈α〉φ and σ � [α]φ). This
discontinuity in the definition of the satisfaction of φ enables following both the usual
semantics of dynamic logic and of temporal logic, and was also adopted in previous
work [7,14], [16, chapter 4]. It is also useful for proof rules as temporal properties often
reduce to what happens after a program.

The syntax of dTL2 formulas extends the syntax of trace formulas given in [14], [16,
chapter 4] by allowing nesting of temporal modalities, and otherwise agrees with it. The
satisfaction of dTL2 formulas given in Def. 2, although presented in a slightly different
way, agrees with the definitions given in [14], [16, chapter 4] on trace formulas without
nested temporal modalities.

3 Proof Calculus

3.1 Equivalence of Trace Formulas

Trace formulas follow the axioms of modal system S4.2 [9], therefore there are only
four proper affirmative modalities �φ, ♦φ, �♦φ or ♦�φ. Intuitively, because formulas
¬�π and ♦¬π are equivalent — in the sense that they are satisfied by the same traces —
formulas can always be expressed in a way where only state formulas have negations.
Similarly, formulas �π and ��π are equivalent, therefore a trace formula containing
exclusively � temporalities followed by a state formula φ is equivalent to �φ. More-
over, a formula containing both � and ♦ temporalities, finishing by a ♦ temporality
followed by a state formula φ is equivalent to �♦φ. Similar properties are true for their
duals. This is formalized by the following lemma, proved in [10].

Lemma 1 (Equivalence of Trace Formulas). For any trace formula π1, there exists a
trace formula π2 of the form φ, �φ, ♦φ, �♦φ or ♦�φ such that σ � π1 if and only if
σ � π2. Such a π2 can be computed from π1 in linear time in the number of temporal
modalities and negations in π1.

Remark 1. Lemma 1 tells us that the only interesting trace formulas of our system are
those of the form φ, �φ, ♦φ, �♦φ and ♦�φ. For any trace σ, the intuitive meaning
of σ � π for π of the form φ, �φ or ♦φ is clear: we have σ � φ if and only if σ

298 J.-B. Jeannin and A. Platzer

starts in a state satisfying φ; we have σ � �φ if and only if all non-error states of
the trace σ satisfy φ; and we have σ � ♦φ if and only if there is a non-error state of
trace σ satisfying φ. When π is of the form �♦φ and ♦�φ, we get a better intuition by
distinguishing cases:

– if σ is a terminating trace, σ � ♦�φ if and only if last σ � φ, and σ � �♦φ if and
only if last σ � φ as well;

– if σ is an error trace, σ can be written (σ0, . . . , σn−1, Λ̂). Let ρ = (σ0, . . . , σn−1),
then ρ is a terminating trace and a prefix of σ. Moreover, both σ � ♦�φ and
σ � �♦φ are equivalent to last ρ � φ;

– if σ is an infinite trace, σ � ♦�φ holds if and only if φ holds on all states of σ after
some position, and σ � �♦φ holds if and only if any state of σ has a later state
satisfying φ (if we did not have continuous dynamics, this would be the same as φ
being true infinitely often along σ; but here it is not sufficient).

3.2 Normalization of Trace Formulas

The primary goal of this paper is to establish a proof system for differential temporal
dynamic logic dTL2. As for dL and dTL, rules typically decompose programs syntac-
tically. Let us look at the state formula 〈α;β〉�φ, and to simplify, let us only consider
terminating traces for now. Intuitively, this formula says that there exists a trace in
τ(α;β) throughout which φ holds. Considering only terminating traces, this is true as
long as there exists a trace σ of α throughout which φ is true, and a trace ρ of β starting
at last σ throughout which φ is also true. It is thus tempting to write the following rule:

〈α〉�φ ∧ 〈α〉〈β〉�φ

〈α;β〉�φ
(unsound)

This rule is unsound because α is possibly nondeterministic. Its premise says that there
is a trace σ of α throughout which φ is true, and a trace σ′ of α followed by a trace ρ of
β throughout which φ is true. But σ and σ′ do not have to be the same trace; the trick
is that φ is not necessarily true throughout σ′. To fix this rule, we need to express that
traces σ and σ′ are the same, thus writing a premise resembling:

〈α〉(�φ ∧ 〈β〉�φ) (1)

Unfortunately, this is not directly expressible with dTL2, without using the program
α;β again: the missing piece is the expressibility of a conjunction on traces that simul-
taneously talks about temporal properties like �φ and properties true at the end of the
trace. To achieve this expressibility, we extend the logic with normalized trace formulas
to make conjunction of temporal formulas expressible as needed in (1).

A normalized trace formula ξ can be of different forms: for terminating traces, the
formula φ�ψ captures the conjunction of ending in a state satisfying φ, and satisfying
�ψ; and the formula φ � ♦ψ captures the disjunction of ending in a state satisfying φ,
or satisfying ♦ψ. For nonterminating traces, φ �ψ is the same as �ψ, and φ � ♦ψ is
the same as ♦ψ, because there is no terminal state in which it makes sense to evaluate φ.
Additionally, the formula φ��♦ψ captures ending in a state satisfying φ if terminating,

Differential Temporal Dynamic Logic with Nested Temporalities for Hybrid Systems 299

and satisfying �♦ψ otherwise; and similarly, the formula φ � ♦�ψ captures ending in
a state satisfying φ if terminating, and satisfying ♦�ψ otherwise.

Formulas φ � ♦�ψ and φ � �♦ψ play the same role for formulas ♦�ψ and �♦ψ
as formulas φ �ψ and φ � ♦ψ play for formulas �ψ and ♦ψ: they allow us to define
premises of modular inference rules for sequential composition as in (1). Like standard
trace formulas, normalized trace formulas can appear after a program necessity [α] or a
program possibility 〈α〉. We therefore extend state formulas to accept normalized trace
formulas, and define normalized trace formulas as:

φ, ψ ::= . . . | [α]ξ | 〈α〉ξ
ξ ::= φ �ψ | φ � ♦ψ | φ � �♦ψ | φ � ♦�ψ

Sometimes we will also use the notation φ � π, with the understanding that in such
cases π can only be of the form �♦ψ or ♦�ψ.

Coming back to our example, a sound rule for 〈α;β〉�φ can be expressed as:

〈α〉(〈β〉�φ �φ)

〈α;β〉�φ
(〈;〉�)

In the form of its dual [;]♦, this rule will be discussed later and proved sound in [10].
Observe how 〈;〉� does not even duplicate α and β.

Extending Def. 2, the satisfaction of trace formulas [α]ξ and 〈α〉ξ is defined in the
same way as trace formulas [α]π and 〈α〉π (if π is not a state formula):

– v � [α]ξ if and only σ � ξ for each trace σ ∈ τ(α) that starts in first σ = v.
– v � 〈α〉ξ if and only σ � ξ for some trace σ ∈ τ(α) that starts in first σ = v.

Satisfaction of normalized trace formulas carefully distinguishes between terminating
and nonterminating traces, and is defined as follows.

Definition 3 (Semantics of Normalized dTL2 Trace Formulas). For normalized trace
formulas, we write σ � ξ to say that trace σ satisfies normalized state formula ξ. Sat-
isfaction of normalized trace formulas with respect to a trace σ is defined inductively:

σ � φ � ♦ψ if and only if

{
last σ � φ or σ � ♦ψ
σ � ♦ψ

if σ terminates
otherwise

σ � φ �ψ if and only if

{
last σ � φ and σ � �ψ
σ � �ψ

if σ terminates
otherwise

σ � φ � π if and only if

{
last σ � φ
σ � π

if σ terminates
otherwise

Not only can normalized trace formulas help express rules like 〈;〉�, they can also,
along with state formulas, express all possible trace formulas. In Lemma 1, we have
shown how to express any trace formula in the form φ, �φ, ♦φ, �♦φ or ♦�φ. Building
on this result, we now show how to normalize every trace formula into a state formula
or a normalized trace formula. To this effect, we define a relation � between the set
of state formulas and trace formulas, and the set of state formulas and normalized trace
formulas. This simplifies the axiomatization of dTL2 by allowing us to only consider
cases containing normalized trace formulas.

300 J.-B. Jeannin and A. Platzer

�φ � true $�φ (�$) ♦φ � false % ♦φ (�%)
�♦φ � φ � �♦φ (���) ♦�φ � φ � ♦�φ (��♦)

φ � φ (�φ)
π1 ∼ π2 π2 � ξ

π1 � ξ
(∼�)

Fig. 1. Normalization rules for trace formulas

The normalization is sound, meaning that two related formulas are satisfied by the
same trace. Additionally, every trace formula is related to either a state formula or a
normalized trace formula, which can be found in linear time.

Lemma 2 (Soundness of Normalization). If π � ξ then for all traces σ, σ � π if and
only if σ � ξ.

Proof. Soundness of � φ is trivial. Soundness of proof rules � , � �, � �� and��♦ is true by Def. 3, keeping in mind the intuition given in Remark 1. Soundness of
proof rule ∼� is by induction and using Lemma 1. �
Lemma 3 (Existence of a Normalized Form). For any trace formula π there exists a
state formula φ such that π � φ, or a normalized trace formula ξ such that π � ξ.
Such a φ or ξ can be computed from π in linear time.

Proof. This lemma is a direct consequence of Lemma 1, using the identities of Fig. 1.
Unless π is itself a state formula φ, it is related to a normalized trace formula ξ. �

Lemma 3 concludes our study of normalized forms. Since every trace formula is re-
lated (and thus semantically equivalent by Lemma 2) to a state formula or a normalized
trace formula, we can limit our axiomatization to the study of state formulas and normal-
ized trace formulas. Formulas of the form [α]φ or 〈α〉φ involving state formulas have
already been axiomatized in dL [15,17], [16, chapter 2]. The rest of this paper focuses
on axiomatizing formulas of the form [α]ξ or 〈α〉ξ involving normalized trace formulas.
In [10], we come back to trace formulas to study a direct treatment of proof rules for
state formulas of the form [α]π and 〈α〉π in order to make the system more efficient.

3.3 Proof Calculus for dTL2

In this section we present a proof calculus for dTL2 for verifying temporal properties of
hybrid programs specified in the differential temporal dynamic logic dTL2. The basic
idea of the proof calculus is symbolic decomposition. The calculus progressively trans-
forms formulas to simpler formulas, often by inductively decomposing programs that
are in program modalities. In particular, the temporal rules progressively transform tem-
poral formulas to temporal-free formulas, in order to leverage the nontemporal rules of
dL. The proof system inherits its nontemporal rules from the dL proof system [15,17],
[16, chapter 2], and adds its own temporal rules. As is the case for dL, the basis of our
proof system is real arithmetic, and we integrate it as in dL [15,17], [16, chapter 2].
We first present how to use the rules, then a brief overview on the inherited nontem-
poral rules from dL, and finally a detailed account of the new temporal rules of dTL2,
summarized in Fig. 2.

Differential Temporal Dynamic Logic with Nested Temporalities for Hybrid Systems 301

Usage of the Rules. Rules are to be used in the same way as in the dL calculus. We do,
however, use a new double bar notation by writing some rules in the form

φ

ψ

This notation denotes equivalence of the premise and its conclusion. This means that
there exists a dual rule, hence the two following rules are true

φ

ψ

¬φ

¬ψ

For space reasons we do not list dual rules explicitly but give them in [10].

Inherited Nontemporal Rules. On top of the temporal rules presented in Fig. 2, the proof
calculus of dTL2 also inherits the rules of the proof calculus of dL. Since the seman-
tics of dTL2 conservatively extends the semantics of dTL, which itself conservatively
extends the semantics of dL [14], [16, chapter 4], it is sound to inherit the dL calculus.
While we inherit the nontemporal rules of dL, we do not inherit — but rather reformu-
late with normalized trace formulas — the temporal rules of dTL [14], [16, chapter 4],
thus enabling more efficient proofs by exploiting normalized trace formulas.

Temporal Rules. The temporal rules of the proof calculus of dTL2 are presented in
Fig. 2, in which they are grouped by program construct. Rules []� and 〈 〉� lift trace
formula normalization to program modalities. Rule [∪]ξ for nondeterministic choice
easily extends corresponding rule [∪] of dL, and assignment rules behave as expected,
largely because assignments always terminate.

The sequential composition rules exhibit how nicely the normalized formula interact
with sequential composition; remember that sequential composition is one of the main
technical difficulties of a calculus handling alternating program and temporal modali-
ties. Normalized trace formulas were designed for these rules, and particular care was
taken in considering nonterminating traces. Rule [;] expresses that all traces of the
composition of two programs α and β satisfies φ �ψ if and only if all traces of α
satisfy �ψ, and for terminating traces of α, if all following traces of β satisfy φ �ψ.
In particular, this rule improves on the corresponding rule [;]� of dTL by not duplicat-
ing program modality [β], thus eliminating proofs that are exponential in the number
of sequential compositions. Rule [;]� is the main rule for alternating program and tem-
poral modalities in the context of sequential composition. It expresses that all traces of
the composition of two programs α and β satisfies φ ♦ψ if and only if all traces of α
either satisfy ♦ψ, or are terminating and followed only by traces of β satisfying φ�♦ψ.
Finally, rule [;]� similarly handles sequential compositions followed by a � operator.

For the test rules, let us remember that a test trace terminates only if the test passes,
and is otherwise an error trace. Any trace of test ?χ satisfies φ �ψ if and only if
its initial state satisfies φ ∧ ψ when it terminates, or satisfies just ψ when it doesn’t
terminate; this can be summarized as (¬χ ∨ φ)∧ψ as in rule [?]. Rule [?]� is similar.
Any trace of test ?χ satisfies φ � ♦�ψ if and only if it terminates and its initial state
satisfied φ, or it doesn’t terminate and its initial state satisfied ψ; this can be summarized
as (χ ∧ φ) ∨ (¬χ ∧ ψ) as in rule [?] � ♦. Rule [?] � � is similar.

302 J.-B. Jeannin and A. Platzer

Normalization of Trace Formulas π � ξ [α]ξ

[α]π
([]�)

π � ξ 〈α〉ξ
〈α〉π (〈 〉�)

Sequential Composition

[α]([β](φ $ �ψ) $�ψ)

[α; β](φ $ �ψ)
([;]$)

[α]([β](φ % ♦ψ) % ♦ψ)
[α;β](φ % ♦ψ)

([;]%)
[α]([β](φ � π) � π)

[α; β](φ � π)
([;]�)

Nondeterministic Choice

[α]ξ ∧ [β]ξ

[α ∪ β]ξ
([∪]ξ)

Test (¬χ ∨ φ) ∧ ψ

[?χ](φ $ �ψ)
([?]$)

(χ ∧ φ) ∨ (¬χ ∧ ψ)

[?χ](φ � ♦�ψ)
([?]�♦)

(χ ∧ φ) ∨ ψ

[?χ](φ % ♦ψ)
([?]%)

(χ ∧ φ) ∨ (¬χ ∧ ψ)

[?χ](φ � �♦ψ)
([?]��)

Assignment

ψ ∧ [x := θ](φ ∧ ψ)

[x := θ](φ $�ψ)
([:=]$)

ψ ∨ [x := θ](φ ∨ ψ)

[x := θ](φ % ♦ψ)
([:=]%)

[x := θ]φ

[x := θ](φ � π)
([:=]�)

Ordinary Differential Equation ψ ∧ [x′ = θ & χ](φ ∧ ψ)

[x′ = θ & χ](φ $�ψ)

(
[′]$

)
(χ ∨ ψ) ∧ [x′ = θ & (χ ∧ ¬ψ)]φ ∧ 〈x′ = θ〉(¬χ ∨ ψ)

[x′ = θ & χ](φ % ♦ψ)
(
[′]%

)
(χ ∨ ψ) ∧ [x′ = θ & χ]φ ∧ (〈x′ = θ〉(¬χ) ∨ 〈x′ = θ〉[x′ = θ]ψ)

[x′ = θ & χ](φ � ♦�ψ)

(
[′]�♦

)
(χ ∨ ψ) ∧ [x′ = θ & χ]φ ∧ (〈x′ = θ〉(¬χ) ∨ [x′ = θ]〈x′ = θ〉ψ)

[x′ = θ & χ](φ � �♦ψ)
(
[′]��

)
Repetition φ ∧ [α∗][α](φ $�ψ)

[α∗](φ $�ψ)
([∗]$)

ψ ∨ (φ ∧ [α;α∗](φ % ♦ψ))
[α∗](φ % ♦ψ)

([∗n]%)

∀α(φ→ [α](φ % ♦ψ))
φ→ [α∗](φ % ♦ψ) (ind%)

φ ∧ [α∗][α](φ � π)

[α∗](φ � π)
([∗]�)

∀α∀r > 0 (ϕ(r)→ 〈α〉(ϕ(r − 1) $�ψ))

(∃r ϕ(r)) ∧ ψ → 〈α∗〉((∃r ≤ 0 ϕ(r)) $�ψ)
(con$)

Fig. 2. Rule schemata of the proof calculus for dTL2

Ordinary differential equations have terminating traces, but also infinite and error
traces. Additionally, the execution can exit a differential equation at any moment, even
if the evolution constraint domain it still verified; thus formulas like [x′ = θ & χ]φ and
[x′ = θ & χ]�φ are equivalent in a state satisfying χ. Rules for ordinary differential
equations transform formulas into temporal-free formulas, on which the dL proof cal-
culus and in particular differential invariants can be used. In rule [′], the first conjunct
ψ is necessary to handle error traces, when χ is initially false. In rule [′]�, the first
conjunct χ ∨ ψ expresses that the differential equation can evolve or has satisfied ♦ψ
initially. The second conjunct handles traces that never satisfy ψ and thus have to sat-
isfy φ, and the third conjunct makes sure there is either no infinite trace (〈x′ = θ〉¬χ),

Differential Temporal Dynamic Logic with Nested Temporalities for Hybrid Systems 303

or that such an infinite trace satisfies ♦ψ (condition 〈x′ = θ〉ψ, equivalent to 〈x′ =
θ〉♦ψ). The first conjunct of rule [′] � ♦ again handles error traces as in rule [′]�. The
second conjunct ensures all terminating traces finish in a state satisfying φ, and its third
conjunct handles infinite traces by making sure they don’t exist (〈x′ = θ〉¬χ) or that
they satisfy ♦�ψ (condition 〈x′ = θ〉[x′ = θ]ψ). Rule [′] � � is similar.

In some way, repetition rules are easier because as long as a repetition only repeats a
terminating trace, it is itself terminating. Rules [∗] and [∗]� are particularly satisfying
because their premise no longer contains a temporal property of a loop, but only a non-
temporal postcondition of a loop, which is thus provable by ordinary, non-temporal
induction. Only the postcondition still has a temporal property but no more loops. That
is, these rules reduce temporal properties of loops to nontemporal properties of loops,
or more complicated temporal properties on a program without the loop. In rule [∗],
the first disjunct expresses that ♦ψ holds without repeating if ψ holds initially. The
first conjunct φ of the second disjunct is necessary when α repeats zero times; while
the second conjunct executes α any number of times n, then checks that the (n + 1)-
st execution of α also satisfies φ �ψ. The treatment of rule [∗]� is similar. Rule
[∗n] is less satisfying because it leaves an α∗ inside a program modality followed by a
normalized trace formula. If ψ is true then the conclusion trivially holds; otherwise the
rule relies on the fact that α∗ is equivalent to ?true ∪ α;α∗ and just unwinds the loop
once. Program α;α∗ in the modality could as well be the equivalent α∗;α. The same
thing is not true for rule [∗], where [α∗][α](φ �φ) ensures progress of the proof,
while writing [α][α∗](φ�φ) would not. Rules ind� and con extend induction (ind)
and convergence (con) rules of dL to normalized trace formulas. As in dL, they are
not equivalences; and also as in dL, they use the notation ∀α, which quantifies over all
variables possibly assigned by α in assignments or differential equations. Rule ind�
shows that φ is inductive with exit clause ♦ψ, i.e., φ holds after all traces of α from
any state where φ holds, except when exit condition ψ was true at some point during
that trace. If ψ was true initially, rule [∗n] applies instead. Rule con proves that ϕ is
a variant of some trace of α (i.e., its level r decreases) during which ψ always holds
true. Then starting from some initial r (assumption of conclusion), an r for which ϕ(r)
holds will ultimately be ≤0 without having violated when repeating α∗ often enough.

3.4 Meta-Results

Soundness. The following result shows that verification with the dTL2 calculus always
produces correct results about the temporal behavior of hybrid systems, i.e., the dTL2

calculus presented in Fig. 2 is sound. Theorem 1 is proved in [10].

Theorem 1 (Soundness of dTL2). The dTL2 calculus presented in Fig. 2 is sound, i.e.,
derivable state formulas are valid, i.e., valid in every state.

Incompleteness of dTL2. In [15,17], [16, chapter 2] it was shown that the discrete and
continuous fragments of dL are non-axiomatizable. An extension of dL, the logic dTL is
also non-axiomatizable [14], [16, chapter 4]. Since dTL2 is a conservative extension of
both dL and dTL, those results lift to dTL2. Therefore the discrete and continuous frag-
ments of dTL2, even if only containing nontemporal formulas are non-axiomatizable.
In particular dTL2 is non-axiomatizable.

304 J.-B. Jeannin and A. Platzer

Relative Completeness for Star-Free Expressions. We now show how to lift the relative
completeness result of dL [15,17], [16, chapter 2] to dTL2; this completeness result is
relative to first order logic of differential equations (FOD), i.e., first-order real arithmetic
augmented with formulas expressing properties of differential equations [15,17], [16,
chapter 2].

Theorem 2 (Relative completeness for star-free expressions). The dTL2 calculus re-
stricted to ∗-free programs is complete relative to FOD, i.e., every valid dTL2 formula
with only star-free programs can be derived from FOD tautologies.

Theorem 2 is proved in [10]. We conjecture that the proof system of dTL2 is also rela-
tively complete relative to FOD for all expressions, including repetitions.

4 Alternative Proof Systems

Normalizing all temporal formulas before applying the rules of Fig. 2 can sometimes
result in longer proofs than necessary. In [10] we study a proof system directly handling
(non-normalized) trace formulas. This extended proof system alleviates the need for
normalizing all trace formulas, and is thus more efficient.

Another alternative, that we also study in [10], is to suppress all the [] rules of
Fig. 2 (rules [;], [?], [:=], [′] and [∗]) and replace them by rules directly handling
formulas of the form [α]�φ, and the following rule:

[α]φ ∧ [α]�ψ

[α](φ �ψ)
([])

This results in a simpler system, because some of the rules are less complicated. How-
ever the system is not as efficient, because it duplicates the symbolic execution of α.

5 Related Work

In this section we study work related specifically to temporal reasoning of hybrid sys-
tems. For a more general account of previous work on verification of hybrid systems
we refer to [15,17], [16, chapter 2].

This paper is based on work by Platzer introducing a temporal dynamic logic for
hybrid systems [14], extending previous work by Beckert and Schlager [1] to hybrid
programs. Both papers present a relatively complete calculus; however Beckert and
Schlager only consider discrete state spaces, and only study temporal formulas of the
form [α]�φ and its dual 〈α〉♦φ, leaving out any mixed cases alternating program and
temporal modalities [α]♦φ or [α]�♦φ. Platzer proposes to handle mixed cases by non-
local program transformation, but does not show how to handle them compositionally.

Process logic [7,12,13,20] initially used temporal logic [6,19] in the context of dy-
namic logic [8] to reason about temporal behavior of programs. It is well studied, but
limited to discrete programs. It also only considers an abstract notion of atomic pro-
gram, without explicitly considering assignments and tests.

Differential Temporal Dynamic Logic with Nested Temporalities for Hybrid Systems 305

Davoren and Nerode [5] study hybrid systems and their topological aspects in the
context of the propositional modal μ-calculus. Davoren, Coulthard, Markey and Moor
[4] also give a semantics in general flow systems for a generalization of CTL∗. In
both [5] and [4], the authors provide Hilbert-style calculi to prove formulas of their
systems, but in a propositional — not first-order — system, without specific proof rules
to handle ordinary differential equations. Zhou, Ravn and Hansen [21] present a dura-
tion calculus extended by mathematical expressions with derivatives of state variables.
Their system requires external mathematical reasoning about derivatives and continuity.

Other authors have studied temporal properties of hybrid systems in the context
of model checking. Mysore, Piazza and Mishra [11] study model checking of semi-
algebraic hybrid systems for TCTL (Timed Computation Tree Logic) properties and
prove undecidability. They do bounded model checking for differential equations with
polynomial solutions only, while we handle more general polynomial differential equa-
tions and unbounded safety verification. Additionally TCTL does not allow nesting of
temporal modalities as we do. Cimatti, Roveri and Tonetta [3] present HRELTL, a lin-
ear temporal logic with regular expressions for hybrid traces. Their work is inspired
by requirements validation for the European Train Control System, and uses bounded
model checking and satisfiability modulo theory. More recently, Bresolin [2] develops
HyLTL, a temporal logic for model checking hybrid systems, and shows how to solve
the model checking problem by translating formulas into equivalent hybrid automata.

6 Conclusion and Future Work

In this paper we have presented a proof calculus for dTL2, extending dTL by allowing
nesting of temporal modalities. We showed proof rules for handling compositionally
alternating program and temporal modalities, solving an open problem formulated in
2001 [1] and identified as a problem for hybrid systems in 2007 [14], [16, chapter 4].
We also offered a treatment where programs are not duplicated by proof rules, solving
another open problem formulated by [14], [16, chapter 4]. We showed that the system
is relatively complete with respect to FOD for ∗-free hybrid programs. The treatment of
infinite traces is crucial to make the logic interesting, as temporal properties on termi-
nating and error traces simplify greatly (Remark 1).

Future work includes proving our conjecture that the system is relatively complete
with respect to FOD for all expressions; extending the semantics and the proof system
to allow repetition — and not just differential equations — to create infinite traces; and
implementing our proof rules in a tool such as KeYmaera [18].

A number of extensions to dTL2 should be explored, such as inclusion of the tem-
poral Until operator, or nested conjunctions and disjunctions inside temporal formulas.
Some of these extensions can be handled by program transformations [14], [16, chapter
4], but a compositional proof system such as the one presented here would be more
interesting. The proof system of dTL2 is an important step towards a more general sys-
tem dTL∗, extending dTL2 with formulas of CTL∗, and expressing formulas such as
[α]�(♦φ ∧ ψ). We would like to develop a semantics and a proof system for dTL∗.

Acknowledgements. We are grateful to Khalil Ghorbal, Dexter Kozen, Sarah Loos,
Stefan Mitsch, Ed Morehouse, Jan-David Quesel, Marcus Völp, and the anonymous

306 J.-B. Jeannin and A. Platzer

referees for helpful comments and discussions. This material is based upon work sup-
ported by the National Science Foundation under NSF CAREER Award CNS-1054246,
NSF EXPEDITION CNS-0926181 and under Grant No. CNS-0931985.

References

1. Beckert, B., Schlager, S.: A sequent calculus for first-order dynamic logic with trace modal-
ities. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083,
pp. 626–641. Springer, Heidelberg (2001)

2. Bresolin, D.: HyLTL: a temporal logic for model checking hybrid systems. In: Bortolussi,
L., Bujorianu, M.L., Pola, G. (eds.) HAS. EPTCS, vol. 124, pp. 73–84 (2013)

3. Cimatti, A., Roveri, M., Tonetta, S.: Requirements validation for hybrid systems. In: Boua-
jjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 188–203. Springer, Heidelberg
(2009)

4. Davoren, J.M., Coulthard, V., Markey, N., Moor, T.: Non-deterministic temporal logics for
general flow systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp.
280–295. Springer, Heidelberg (2004)

5. Davoren, J.M., Nerode, A.: Logics for hybrid systems. Proc. IEEE (2000)
6. Emerson, E.A., Halpern, J.Y.: “Sometimes” and “Not Never” revisited: on branching versus

linear time temporal logic. J. ACM 33(1), 151–178 (1986)
7. Harel, D., Kozen, D., Parikh, R.: Process logic: Expressiveness, decidability, completeness.

J. Comput. Syst. Sci. 25(2), 144–170 (1982)
8. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
9. Hughes, G., Cresswell, M.: A New Introduction to Modal Logic. Routledge (1996)

10. Jeannin, J.B., Platzer, A.: dTL2: Differential temporal dynamic logic with nested temporali-
ties for hybrid systems. Tech. Rep. CMU-CS-14-109, School of Computer Science. Carnegie
Mellon University, Pittsburgh, PA, 15213 (May 2014), http://reports-
archive.adm.cs.cmu.edu/anon/2013/abstracts/14-109.html

11. Mysore, V., Piazza, C., Mishra, B.: Algorithmic algebraic model checking II: Decidability
of semi-algebraic model checking and its applications to systems biology. In: Peled, D.A.,
Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 217–233. Springer, Heidelberg (2005)

12. Nishimura, H.: Descriptively complete process logic. Acta Inf. 14, 359–369 (1980)
13. Parikh, R.: A decidability result for a second order process logic. In: FOCS, pp. 177–183.

IEEE Comp. Soc. (1978)
14. Platzer, A.: A temporal dynamic logic for verifying hybrid system invariants. In: Artemov, S.,

Nerode, A. (eds.) LFCS 2007. LNCS, vol. 4514, pp. 457–471. Springer, Heidelberg (2007)
15. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reas. 41(2), 143–189

(2008)
16. Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics.

Springer, Heidelberg (2010)
17. Platzer, A.: Logics of dynamical systems. In: LICS, pp. 13–24. IEEE (2012)
18. Platzer, A., Quesel, J.-D.: KeYmaera: A hybrid theorem prover for hybrid systems. In: Ar-

mando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp.
171–178. Springer, Heidelberg (2008)

19. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57. IEEE Comp. Soc. (1977)
20. Pratt, V.R.: Process logic. In: Aho, A.V., Zilles, S.N., Rosen, B.K. (eds.) POPL, pp. 93–100.

ACM (1979)
21. Zhou, C., Ravn, A.P., Hansen, M.R.: An extended duration calculus for hybrid real-time

systems. In: Grossman, R.L., Ravn, A.P., Rischel, H., Nerode, A. (eds.) HS 1991 and HS
1992. LNCS, vol. 736, pp. 36–59. Springer, Heidelberg (1993)

http://reports-archive.adm.cs.cmu.edu/anon/2013/abstracts/14-109.html
http://reports-archive.adm.cs.cmu.edu/anon/2013/abstracts/14-109.html

Axioms vs Hypersequent Rules with Context

Restrictions: Theory and Applications�

Björn Lellmann

TU Vienna, Vienna, Austria

Abstract. We introduce transformations between hypersequent rules
with context restrictions and Hilbert axioms extending classical (and
intuitionistic) propositional logic and vice versa. The introduced rules
are used to prove uniform cut elimination, decidability and complexity
results as well as finite axiomatisations for many modal logics given by
simple frame properties. Our work subsumes many logic-tailored results
and allows for new results. As a case study we apply our methods to the
logic of uniform deontic frames.

1 Introduction

The automatic construction of reasoning systems and decision procedures from
specifications for various logics is an important emerging area in the field of au-
tomated reasoning. Results in this area provide general decision procedures and
complexity results applicable to specific logics in the spirit of Logic Engineering
[11], and also yield deeper insights into strengths, weaknesses, and fundamental
properties of different types of calculi used for reasoning systems. But also from
the perspective of producing such systems for specific logics investigating the
connections between specifications and different frameworks is important, since
this allows choosing the most efficient framework for the logic at hand.

Here we investigate the connection between specifications given as Hilbert
axioms and the framework of hypersequent calculi for extensions of classical
propositional logic. Taking the specifications as Hilbert axioms yields a very
flexible and semantics-independent approach and allows to capture non-normal
modal logics (unlike e.g. [8]) Also, while often not complexity-optimal, the hy-
persequent framework is very flexible and captures several logics for which no
sequent or tableaux systems seem to exists. Of course correspondence results and
general decision procedures demand general results about hypersequent calculi.
This necessitates a clarification of which kind of calculi we consider. To this aim
we introduce the format of hypersequent rules with context restrictions which
is general enough to capture many existing calculi, e.g. for modal logics S5 [1]
and S4.3 [7] as well as for modal logics without symmetry given by simple frame
properties [8]. We obtain sufficient conditions for (syntactic) cut elimination, de-
cidability, and complexity results for such systems. The results apply e.g. to the

� Supported by FWF START Y544-N23.

S. Demri, D. Kapur, and C. Weidenbach (Eds.): IJCAR 2014, LNAI 8562, pp. 307–321, 2014.
c© Springer International Publishing Switzerland 2014

308 B. Lellmann

Table 1. The standard modal rule sets

G | ϕ⇒ ψ

G | �ϕ⇒ �ψ
Kn

G | Γ,ϕ⇒ Δ

G | Γ,�ϕ⇒ Δ
Tn

G | �Γ,ϕ⇒ ψ

G | �Γ,�ϕ⇒ �ψ
4n (|ϕ| = n)

RK := {Kn : n ≥ 0} RKT := RK ∪ {Tn : n ≥ 1} RK4 := RK ∪ {4n : n ≥ 0}

calculi for extensions of K or K4 from [8]. We also show a correspondence between
rules of our format and axioms of a certain form (Def. 5.16). This yields general
decidability and complexity results for modal logics axiomatised this way, and as
a byproduct finite axiomatisations for modal logics given by certain simple frame
properties. As application we construct a new cut-free hypersequent calculus for
the non-normal logic LUDF from [13], entailing a new complexity bound. While
for space reasons the results in this article are given for logics with unary con-
nectives based on classical logic, they extend to higher arities and intuitionistic
logic as base logic similar to [9]. The extension of these investigations to more
general frameworks such as tree-hypersequents will be considered in future work.

2 Preliminaries and Notation

In the following we write N for {0, 1, 2, . . .}. We take V to be a countable set of
propositional variables. The set of boolean connectives is ΛB := {∧,∨,→}. For
a set Λ ⊆ ΛU ∪ ΛB with ΛU a set of unary connectives the set F(Λ) of formulae
over Λ is defined by F(Λ) 4 ϕ ::= p | ⊥ | ♥ϕ | ϕ ◦ ϕ with p ∈ V ,♥ ∈ Λ ∩ ΛU

and ◦ ∈ Λ ∩ ΛB. The connectives ↔ and ¬ are introduced as abbreviations as
usual. Connectives in ΛU are called modalities. The set {�}∪ΛB is denoted Λ�.
For F ⊆ F(Λ) we write Λ(F) for {♥ϕ : ♥ ∈ Λ \ ΛB and ϕ ∈ F} ∪ {ϕ ◦ ψ : ◦ ∈
Λ ∩ ΛB and ϕ, ψ ∈ F}. The modal rank of a formula ϕ, denoted mrk (ϕ), is the
maximum nesting depth of modalities in ϕ, and its complexity is the number of
symbols occurring in it. Sequences ϕ1, . . . , ϕn of formulae are written ϕ, and |ϕ|
denotes the length of ϕ. Similarly ∗ϕ1, . . . , ∗ϕn is written ∗ϕ for ∗ ∈ Λ.

A multiset Γ over a set F of formulae is a function F → N with finite support,
and we write ϕ ∈ Γ for Γ (ϕ) > 0. The union of multisets Γ and Δ is denoted
by Γ,Δ and defined by (Γ,Δ)(ϕ) := Γ (ϕ) + Δ(ϕ). We also write

⊔n
i=1 Γn for

Γ1, . . . , Γn and ϕ for the multiset containing only one occurrence of ϕ. The set
S(F) of sequents over the set F of formulae contains all tuples of multisets
over F , written as Γ ⇒ Δ. A hypersequent over F is a multiset over S(F),
written as Γ1 ⇒ Δ1 | · · · | Γn ⇒ Δn We write H for the hypersequent version
of a standard context-sharing sequent calculus for classical logic [10] with the
standard external and internal weakening and contraction rules [1]. The rules of
RK, RKT and RK4 are given in Table 1. The cut rule is denoted Cut.

A Λ-logic is a set L of formulae over Λ closed under modus ponens (if ϕ ∈ L
and ϕ → ψ ∈ L, then ψ ∈ L) and uniform substitution (if ϕ ∈ L, then ϕσ ∈ L
for every substitution σ : V → F(Λ)) and containing classical propositional logic.
For a set A of formulae, LA is the smallest Λ-logic containing A. For a Λ-logic

Axioms vs Hypersequent Rules with Context Restrictions 309

L and ϕ ∈ F(Λ) we write L ⊕ ϕ for the smallest Λ-logic L′ with L ∪ {ϕ} ⊆ L′.
We also write |=L ϕ for ϕ ∈ L. For the standard notions of modal logic see [4].

3 Hypersequent Rules with Restrictions

The rule format we consider is an abstraction of the rule format found in many
calculi for modal logics. One of the main characteristics is that the format of
context formulae which are copied into a premiss can be restricted as in the rule
4n in Table 1. This is captured by the following notion from [10,9]:

Definition 3.1. For F ⊆ F(Λ) the set of context restrictions over F is
C(F) := {〈F1, F2〉 : F1, F2 ⊆ F}. For a sequent Γ ⇒ Δ and a context re-
striction C = 〈F1, F2〉 the restriction of Γ ⇒ Δ according to C is the sequent
(Γ ⇒ Δ) C := Γ F1⇒ Δ F2 where for a multiset Σ and F ⊆ F(Λ) the mul-
tiset Σ F contains those formulae from Σ which are substitution instances of
formulae in F .

Example 3.2. 1. The context restriction C∅ := 〈∅, ∅〉 intuitively deletes the
whole context, we have (Γ ⇒ Δ) C∅= ⇒ for every sequent Γ ⇒ Δ.

2. The context restriction Cid := 〈{p}, {p}〉 intuitively copies the whole context,
we have (Γ ⇒ Δ) Cid= Γ ⇒ Δ for every sequent Γ ⇒ Δ.

3. The context restriction C� := 〈{�p}, ∅} copies only the boxed formulae on
the left side of the context.

We take the rules to introduce exactly one layer of connectives in the princi-
pal formulae, and we assume that every premiss includes a restriction for each
component of the principal part.

Definition 3.3. A hypersequent rule with context restrictions, written as

{(Γi ⇒ Δi;Ci) : i ≤ m}
Σ1 ⇒ Π1 | · · · | Σn ⇒ Πn

is given by a natural number n > 0, a sequence Σ1 ⇒ Π1 | · · · | Σn ⇒ Πn called
principal part with Σi ⇒ Πi ∈ S(Λ(V))and a set of premisses, where each
premiss (Γi ⇒ Δi;Ci) consists of a sequent of variables and a sequence Ci =
〈F 1

i , G1
i 〉, . . . , 〈Fn

i , Gn
i 〉 of context restrictions subject to the variable condition:

every variable occurs at most once in the principal part and it occurs in the
principal part whenever it occurs in the premisses. An application of such a rule
is given by a substitution σ : V → F(Λ), a side hypersequent G and a sequence
Ω1 ⇒ Υ1 | · · · | Ωn ⇒ Υn of context sequents. It is written as

{G | Ω1 F 1
i
, . . . , Ωn Fn

i
, Γiσ ⇒ Δiσ, Υ1 G1

i
, . . . , Υn Gn

i
: i ≤ m}

G | Ω1, Σ1σ ⇒ Π1σ, Υ1 | · · · | Ωn, Σnσ ⇒ Πnσ, Υn .

The notions of a derivation and derivability for a setR of hypersequent rules with
restrictions are defined in the usual way, and we write �R G if G is derivable in

310 B. Lellmann

R. A rule is derivable in R if for all its applications the conclusion can be derived
from the premisses in R and admissible if whenever the premisses are derivable
in R, then so is the conclusion. We stipulate that sets of rules are closed under
variable renaming and permutation of the components in the principal part.
Rules are written inline using “/” to separate premisses and conclusion.

Example 3.4. 1. The standard hypersequent rules for the propositional connec-
tives. E.g. the rule ∧L is the rule {(p, q ⇒ ; Cid)}/p ∧ q ⇒ .

2. The standard rules for modal logics from Table 1. E.g. the rule 4n is the rule
{(p ⇒ q; C�)}/�p ⇒ �q with |p| = n.

3. The modalised splitting rule for S5 from [1] with applications G | �Γ,Σ ⇒
�Δ,Π/G | �Γ ⇒ �Δ | Σ ⇒ Π is {(⇒ ; 〈{�p}, {�p}〉, Cid)}/ ⇒ | ⇒ .

4 Cut Elimination and Applications

We obtain sufficient criteria for cut elimination by generalising the cut elimi-
nation proof in [5]. The cut-elimination strategy is to permute a cut into the
premisses of the last applied rule on the left until the cut formula is principal in
the last applied rule. Then the cut is permuted into the premisses on the right
until it is principal here as well, in which case it is reduced to cuts on formulae
of smaller complexity. To state the condition used to reduce principal cuts we
use the notion of a cut between rules, where intuitively a new rule is constructed
from two rules by cutting their conclusions on a formula ♥p and eliminating p
from the premisses by cutting on p in all possible ways. To make this precise,
write C ∪ D for the union of two sequences C,D ∈ Cn of restrictions, defined
component-wise: If the i-th components of C resp. D are 〈Fi, Gi〉 resp. 〈F ′i , G′i〉,
then the i-th component of C∪D is 〈Fi∪F ′i , Gi∪G′i〉. In addition, for permuting
the cut into the context on the right we need a condition on the context restric-
tions which ensures that whenever the cut formula satisfies a context restriction,
then so does the whole left premiss of the cut.

Definition 4.1. For sets P1,P2 of premisses and rules R1 = P1/Σ1 ⇒ Π1 |
· · · | Σn−1 ⇒ Πn−1 | Σn ⇒ Πn,♥p and R2 = P2/♥p,Ω1 ⇒ Θ1 | Ω2 ⇒ Θ2 | · · · |
Ωk ⇒ Θk the cut between R1 and R2 on ♥p is the rule cut(R1, R2,♥p) given by

{(Γ, Γ ′ ⇒ Δ,Δ′;C ∪D) : (Γ ⇒ Δ, p;C), (Γ ′ ⇒ Δ′;D) ∈ P}
{(Γ ⇒ Δ;C) ∈ P : p /∈ Γ,Δ}

Σ1 ⇒ Π1 | · · · | Σn−1 ⇒ Πn−1 | Σn, Ω1 ⇒ Πn, Θ1 | Ω2 ⇒ Θ2 | . . . Ωk ⇒ Θk

where P := {(Γ ⇒ Δ;C, C∅, (k−1)-times. . . , C∅) : (Γ ⇒ Δ;C) ∈ P1} ∪ {(Γ ⇒
Δ;D∅, (n−1)-times. . . ,D∅,D) : (Γ ⇒ Δ;C) ∈ P2}. A set R of rules is principal-
cut closed if it is closed under the addition of cuts between rules. It is mixed-cut
permuting if for all R1, R2 ∈ R: if Γ ⇒ Δ,♥p is a component of the prin-
cipal part of R1 and (♥p ⇒) C= ♥p ⇒ for a restriction C of R2, then
(Γ ⇒ Δ) C= Γ ⇒ Δ and (Σ ⇒ Π) DC= (Σ ⇒ Π) D for every restriction D
for this component and sequent Σ ⇒ Π.

Axioms vs Hypersequent Rules with Context Restrictions 311

Example 4.2. 1. The cut between Kn = {(p ⇒ q; C∅)}/�p ⇒ �q and Km+1 =
{(q, q ⇒ r; C∅)}/�q,�q ⇒ �r is the rule cut(Kn,Km+1,�q) = {(p, q ⇒
r); C∅}/�p,�q ⇒ �r = Kn+m. Thus the rule set RK is principal-cut closed.

2. The cut between the rule K4n = {(p ⇒ q; C�)}/�p ⇒ �q and the rule
5 = {q ⇒ ; C∅, Cid)}/�q ⇒ | ⇒ on �q is the rule cut(K4n, 5,�q) = {(p ⇒
C�, C∅,∅)}/�p ⇒ | ⇒ which we denote 5n. Its applications have the form
G | �Γ,Σ, ϕ1, . . . , ϕn ⇒ Π/G | �Γ,�ϕ1, . . . ,�ϕn ⇒ | Σ ⇒ Π . It is straight-
forward to see that the rule set RKT4 ∪ {5n : n ≥ 0} is principal-cut closed.

For sequent rules introducing only one connective, principal-cut closure is known
as coherence [2], and it corresponds to Belnap’s condition C8 [3]. The two prop-
erties of Def. 4.1 ensure that we can eliminate topmost instances of a restricted
version of multicut, where the cut formula occurs only once in the left premiss
(and is principal in the last applied rule there), but several times in several com-
ponents in the right premiss by induction on the maximal complexity of a cut
formula occurring in a derivation. Allowing the cut formula to occur more than
once on the right is necessary due to the internal and external contraction rules.
The fact that several instances of the cut formula in the right premiss of such
a restricted multicut can be principal also is the reason why we take the cuts
between rules of a principal-cut closed rule set to be in the rule set and not just
derivable: we need to be able to replace iterated cuts by a rule from the rule
set. To avoid also several instances of the cut formula being principal in the left
premiss and to deal with external contraction we introduce a further restriction.

Definition 4.3. A rule set R is right-contraction closed if applications of inter-
nal contraction right to the conclusion of a rule are derived by internal contrac-
tions followed by one rule from R. It is single-conclusion right if the principal
part of no rule contains Γ ⇒ Δ,♥p | Σ ⇒ Π,♥q for ♥ ∈ Λ and p, q ∈ V.

The cut formula is not principal in more than one component in the left premiss
if the rule set is single-conclusion right, and right-contraction closure prevents
the cut formula occurring twice in a single component of the principal part (proof
by induction on the complexity of the contracted formulae):

Lemma 4.4. Let R be right-contraction closed and single-conclusion right. Then
whenever �RCut G there is a derivation of G in which in every application of a
rule from R the right hand sides of the principal part are fully contracted.

Finally, we impose a further restriction which ensures that cuts with cut formula
contextual on the left can be permuted into the premisses on the left.

Definition 4.5. A rule is right-substitutive if all restrictions occurring in it
have the form 〈{p}; {p}〉 or 〈F ; ∅〉 for some F ⊆ F(Λ).

Theorem 4.6 (Cut elimination).LetR be right-substitutive, single-conclusion
right, right-contraction closed, principal-cut closed andmixed-cut permuting. Then
for every hypersequent G we have: �RCut G iff �R G .

312 B. Lellmann

Proof (Sketch). By double induction on the maximal complexity of a cut formula
in a derivation and the number of applications with cut formula of maximal com-
plexity. Topmost cuts of maximal complexity are eliminated using the fact that
with right-substitutivity applications of a restricted version of multicut allowing
the cut formula to occur several times in several components on the left can
be eliminated by permuting them up on the left until exactly one occurrence is
principal (by Lem. 4.4 and single-conclusion right), permuting the non-principal
cuts into the premisses and using principal-cut closure and mixed-cut closure as
above to eliminate the remaining cut with cut formula principal on the left. �

Corollary 4.7. The hypersequent calculi H,HRK,HRK4,HRKT and HRKT{5n :
n ∈ N} with rules 5n from Ex. 4.2.2 admit cut elimination.

Proof. Inspection of the rules together with Ex. 4.2 shows that these rule sets
satisfy the conditions of Thm. 4.6. �

Thm. 4.6 together with the next Lemma also provides the basis of the method of
cut elimination by saturation used in Sec. 6, where cut-free hypersequent calculi
are constructed by saturating a rule set under cuts between rules. Of course we
still need to check that the remaining conditions of Thm. 4.6 are satisfied.

Lemma 4.8. Let R1, R2 be hypersequent rules with context restrictions. Then
the rule cut(R1, R2,♥p) is a derivable rule in HR1R2Cut.

4.1 Applications: Decision Procedures and Complexity Bounds

For general decision procedures apart from cut elimination we also need to deal
with Contraction. The idea is to show admissibility of internal contraction under
a modified notion of rule applications, where some principal formulae are copied
into the premiss (as in Kleene’s G3-systems). Then under a mild assumption
only a bounded number of components per hypersequent are relevant in a rule
application, hence using the subformula property of the rules the total number of
hypersequents occurring in a derivation is bounded and we obtain decidability.

Definition 4.9. A modified application of a hypersequent rule R = {(Γi ⇒
Δi;Ci) : i ∈ P}/Σ1 ⇒ Π1 | · · · | Σn ⇒ Πn is given by a side hypersequent G, a
substitution σ : V → F and contexts Θ1 ⇒ Ω1 | · · · | Θn ⇒ Ωn and written as{

G | H | Γiσ,
⊔

j≤n(Σjσ,Θj) Cj
i
⇒ Δiσ,

⊔
j≤n(Πjσ,Ωj) Cj

i
: i ∈ P

}
G | Σ1σ,Θ1 ⇒ Π1σ,Ω1 | · · · | Σnσ,Θn ⇒ Πnσ,Ωn

R∗

with H = Σ1σ,Θ1 ⇒ Π1σ,Ω1 | · · · | Σnσ,Θn ⇒ Πnσ,Ωn.

Thus in addition to the context formulae all principal formulae satisfying the
corresponding restriction are copied into the premiss, and all components of the
principal part are copied to deal with external contraction. If internal contrac-
tions can be permuted with rules this yields admissibility of internal contraction.

Axioms vs Hypersequent Rules with Context Restrictions 313

Definition 4.10. A rule set R is contraction closed if for every rule R ∈ R
with principal part G | Γ ⇒ Δ,♥p,♥q (resp. G | Γ,♥p,♥q ⇒ Δ) there is a rule
R′ ∈ R with principal part G | Γ ⇒ Δ,♥p (resp. Γ,♥p ⇒ Δ) whose premisses
are derivable from those of R by renaming q to p and contractions.

Lemma 4.11. For contraction closed R internal contraction is admissible in
R∗.

Proof. By simultaneous double induction on the complexity of ϕ and the depth
of the derivation we show: whenever �R∗ G | ϕ, ϕ, Γ1 ⇒ Δ1 | · · · | ϕ, ϕ, Γn ⇒ Δn,
then �R∗ G | ϕ, Γ1 ⇒ Δ1 | · · · | ϕ, Γn ⇒ Δn and analogously for ϕ on the right.
Contractions between context and principal formulae are dealt with by modified
rule applications and the inner induction hypothesis, those between principal
formulae using contraction closure and the outer induction hypothesis. �

Definition 4.12. A rule set R is tractable if there is an encoding �.� of appli-
cations of rules from R of size polynomial in the size of the conclusion such that
given a hypersequent G and an encoding �R� of a rule application it is decidable
in time exponential in the size of G whether G is the conclusion of R and it is
decidable in time exponential in the size of �R� whether G is a premiss of R.

Definition 4.13. A rule set R is bounded component if there is n ∈ N such
that the principal part of every rule in R has at most n components.

Theorem 4.14. Let R be a contraction closed, bounded conclusion and tractable
set of rules. Then derivability in R is decidable in double exponential time.

Proof. Using Weakening and Contraction derivability inR is equivalent to deriv-
ability in R∗. Moreover, Lem. 4.11 allows us to equivalently work with hyperse-
quents build from set-set sequents. Since R is bounded component, for some k
at most k components of a hypersequent contain principal formulae of the last
applied rule. Thus w.l.o.g. in a derivation every hypersequent contains at most
k copies of the same component. Hence in a derivation of a hypersequent with

size n at most (k + 1)2
2n

= 22
O(n)

different hypersequents appear. Thus using
the fact that derivability in one step from a set of hypersequents is a monotone
operator we compute all derivable hypersequents of this set using tractability of
R and the fact that since the size of an encoding of a rule application is polyno-
mial in the size of its conclusion the number of encodings of rules with a given
conclusion is only exponential in the size of the conclusion and check whether
the given hypersequent is among these in time doubly exponential in n. �

5 Axioms and Rules

To translate axioms into rules with context restrictions and vice versa we need to
interpret hypersequents as formulae. We do this in an abstract way by viewing
an interpretation as a family of formulae, one for each number of components in
a hypersequent, compatible with the structural rules. Formally:

314 B. Lellmann

Definition 5.1. An interpretation for a Λ-logic L is a set ι = {ιn(p1, . . . , pn) :
n ≥ 1} of formulae in F(Λ) which respects the structural rules, i.e. for all n ≥ 1:

1. ι respects (external) exchange: |=L ιn(ϕ, ψ, χ, ξ) iff |=L ιn(ϕ, χ, ψ, ξ)
2. ι respects external Weakening: if |=L ιn(ϕ), then |=L ιn+1(ϕ, ψ)
3. ι respects external Contraction: if |=L ιn+1(ϕ, ψ, ψ), then |=L ιn(ϕ, ψ)
4. ι respects Cut: if |=L ιn(ϕ, ψ → χ) and |=L ιm(χ → ξ, ζ), then we have

|=L ιn+m−1(ϕ, ψ → ξ, ζ).

The interpretation is regular if for all ϕ ∈ F we have |=L ϕ iff |=L ι1(ϕ).

An interpretation ι = {ιn : n ≥ 1} for a logic induces a map ι : HS → F defined
by Γ1 ⇒ Δ1 | · · · | Γn ⇒ Δn +→ ιn(

∧
Γ1 →

∨
Δ1, . . . ,

∧
Γn →

∨
Δn).

Example 5.2. 1. The interpretation ι� for normal Λ�-logics is given by the for-
mulae ι�n (ϕ1, . . . , ϕn) =

∨n
i=1(ϕi∧�ϕi). It is an interpretation by normality

of � and obviously regular.
2. The standard interpretation for normal Λ�-logics from [1] is ι� given by

ι�n (ϕ1, . . . , ϕn) =
∨n

i=1 �ϕi. It is regular for a normal logic iff �ϕ/ϕ is ad-
missible, in particular if �p → p is an axiom. It is not regular for e.g. KB.

Depending on whether we involve the interpretation we obtain different notions
of soundness. Regular interpretations link these and imply soundness of H.

Definition 5.3. Let R be a set of rules and ι an interpretation for the logic
L. Then R is hypersequent soundness preserving (briefly: hssp) for (L, ι) if for
every application of a rule from R with premisses Hk for k ≤ n and conclusion
G: if |=L ι(Hk) for all k ≤ n, then |=L ι(G). The calculus is sound for L, if
�HR ⇒ ϕ implies |=L ϕ, and complete for L, if |=L ϕ implies �HR ⇒ ϕ.

Proposition 5.4. 1. If R is hssp for (L, ι) and ι is a regular interpretation
for L, then R is sound for L.

2. If ι is a regular interpretation for L, then H is hssp for (L, ι).

Proof. 1. By induction on the depth of a derivation we have: �R H implies
|=L ι(H). Now regularity of ι gives the statement.

2. Using the fact that L includes all propositional tautologies, all the modal-
ities have congruence and thus |=L ιn(ϕ, ψ) iff |=L ιn(ϕ,� → ψ) and the
properties of a regular interpretation. �

The interpretation ι� is regular e.g. for normal Λ�-logics given by a class of
Kripke frames closed under the addition of a predecessor to every world:

Definition 5.5. A class K of frames is extensible if whenever for a frame F =
(W,R) we have F ∈ K then also F• ∈ K where F• = (W ∪ {x}, R ∪ {(x, y) : y ∈
W ∪ {x}}) with x /∈ W .

Lemma 5.6. If L is a normal Λ�-logic defined by an extensible class of frames,
then ι� is a regular interpretation for L.

Axioms vs Hypersequent Rules with Context Restrictions 315

Proof. By normality ι� is an interpretation for L. For regularity suppose that ¬ϕ
is satisfiable in F ∈ K with K the extensible class of frames defining L. Then for
some world w of F and valuation σ we have F, w, σ
|= ϕ. Thus for the additional
world x in F• we have F•, x, σ
|= �ϕ, and since F• ∈ K we have
|=L �ϕ. �

From Rules to Axioms. In the construction of axioms from rules we extend the
method from [14,10,9]. The idea is to show projectivity (Lem. 5.10) of a formula
corresponding to the premisses of the rule and use a substitution witnessing this
property to inject the information of the premisses into a formula corresponding
to the conclusion. For the sake of presentation here we only consider the normal
modality � and restrict the context restrictions to {C∅, Cid, C�}. In general the
method also works for monotone or antitone n-ary modalities and arbitrary
context restrictions. To show projectivity we need to assume the following for
every premiss (Γ ⇒ Δ;C):

If Cid /∈ C then Γ,Δ
= ∅ (1)

For the rest of this section we fix a rule R with this property. In presence of HCut
we may assume furthermore w.l.o.g. that the restriction Cid does not occur in R:
If it does occur we simply convert R into a rule of this format by introducing
a dummy modality · satisfying ·ϕ ↔ ϕ for all formulae and replacing every
restriction Cid by the sequent ⇒ s for a fresh variable s in the premisses and
by ⇒ ·s in the corresponding component in the principal part. By Lem. 4.8 the
resulting rule is equivalent to the original one modulo HRdmCut where Rdm =
{(p ⇒ ; Cid)/ · p ⇒ , (⇒ p; Cid)/ ⇒ ·p} states equivalence of p and ·p. Together
with property (1) this means that Γ,Δ
= ∅ for every premiss (Γ ⇒ Δ;C). Since
the number of context formulae might vary, a rule can not be translated into a
formula directly. This is avoided by fixing the number of context formulae. For
normal modalities and the limited restrictions considered here this gives:

Definition 5.7. The canonical proto rule for a ruleR = {(Γi ⇒ Δi; C1
i , . . . , Cn

i) :
i ≤ m}/Σ1 ⇒ Π1 | · · · | Σn ⇒ Πn is given by the context sequents Ω1 ⇒ | · · · |
Ωn ⇒ with Ωj = �pj if Cj

i = C� for some i and empty otherwise, using fresh
variables p. An application of the canonical proto rule for R given by G and σ is
the same as the application of R given by G, σ and the above contexts.

Example 5.8. 1. The canonical proto rule for 4n from Tab. 1 is given by the
context �p ⇒ and has applications G | �χ,ϕ ⇒ ψ/G | �χ,�ϕ ⇒ �ψ.

2. To treat R5 := (⇒ ; C�, Cid)/ ⇒ | ⇒ we replace Cid by the dummy modality,
giving (⇒ s; C�, C∅)/ ⇒ | ⇒ ·s. The canonical proto rule for R5 is given by
the contexts �p ⇒ | ⇒ and has applications G | �ϕ ⇒ ψ/G | �ϕ ⇒ |⇒ ·ψ.

In the non-normal case or for arbitrary context restrictions we would need to
consider a set of proto rules with every possible number of context formulae also
on the right hand side, compare [10,9]. Using the rules for normal modal logics
and HCut it is straightforward to see that the canonical proto rule is enough:

Lemma 5.9. R and its canonical proto rule are interderivable in HRKCut. �

316 B. Lellmann

Now suppose we have an interpretation ι = {ιn : n ≥ 1} and that

R = {(Γi ⇒ Δi;Ci) : i ≤ m}/Σ1 ⇒ Π1 | · · · | Σn ⇒ Πn

with Cj
i = 〈F j

i , G
j
i 〉. The canonical proto rule R̂ for R is given by the contexts

Ω1 ⇒ | · · · | Ωn ⇒ . The formula corresponding to its premisses is

ϕ :=
∧

i≤m

(∧
(Ω1 F 1

i
, . . . , Ωn Fn

i
, Γi) →

∨
Δi

)
.

Now define a substitution θ by θ(x) = ϕ ∧ x if x ∈ Γi for some i ≤ m and
θ(x) = ϕ → x if x ∈ Δi for some i ≤ m and θ(x) = x otherwise. Since by
monotonicity w.l.o.g. no variable occurs both in antecedent and succedent of a
premiss, θ is well-defined. Straightforward propositional reasoning gives:

Lemma 5.10. The substitution θ witnesses projectivity of ϕ, i.e. the following
hold: �HMonCut ⇒ ϕθ and �HMonCut ϕ ⇒ p ↔ pθ for every p ∈ V. �

This gives equivalence of R̂ to a ground hypersequent, i.e. a set of hypersequents
closed under substitution, which we then interpret as an axiom using ι:

Lemma 5.11. R̂ is interderivable over HCutMon with the ground hypersequent
HR := ⇒ (

∧
(Ω1, Σ1) →

∨
Π1) θ | · · · | ⇒ (

∧
(Ωn, Σn) →

∨
Πn) θ.

Proof. By Lem. 5.10 we have �HCutMon ⇒ ϕθ and thus �HCutMon ⇒ ϕθσ for
every substitution σ. Now inverting the propositional rules using Cut and an
application of R̂ give HRσ. For the other direction, Lem. 5.10 implies �HMonCut

ϕ ⇒ ψ ↔ ψθ (by induction on the complexity of ψ). Hence �HMonCut ϕσ, χiθσ ⇒
χiσ with χi =

∧
(Ωi, Σi) →

∨
Δi. From the premisses of an application of R̂

we obtain Γ | ⇒ ϕσ, and cutting these and the ground hypersequent HRσ
followed by invertibility of H and external Contraction yield the conclusion of
this application. �

Theorem 5.12 (Soundness). If HRKCutR is hssp for (L, ι), then ι(HR) ∈ L.

Proof. Since HR is derivable in HRKCutR by Lem. 5.11 and HRKCutR is hssp
for (L, ι), the former is hssp for (L, ι) as well. Thus ι(HR) ∈ L. �

Theorem 5.13 (Completeness). If for sets A of axioms and R of rules HCutR
is complete for LA and the rule ⇒ ϕ1 | · · · | ⇒ ϕn/ ⇒ ιn(ϕ1, . . . , ϕn) is deriv-
able in HCutR, then HCutRR is complete for LA ⊕ ι(HR).

Proof. By Lem. 5.11 the ground hypersequent HR is derivable in HCutRR, and
thus the axiom ι(HR) is derivable in HCutRR as well. Simulating modus ponens
by Cut we thus obtain completeness of this calculus for LA ⊕ ι(HR). �

Example 5.14. The premiss of the canonical proto rule for R5 from Ex. 5.8.2 is
turned into ϕ = �p → s. Then with θ defined by θ(p) = p and θ(s) = ϕ → s we
obtain H = ⇒ ¬�pθ | ⇒ ·sθ = ⇒ ¬�p | ⇒ ·(ϕ → s). Thus R5 is equivalent
under ι� to the axiom ι�(H) = �¬�p ∨ � · ((�p → s) → s) which modulo
propositional reasoning and monotonicity is easily seen to be equivalent (as an
axiom) to �¬�p∨� ·�p. By idempotency of · this is equivalent to �¬�p∨��p.

Axioms vs Hypersequent Rules with Context Restrictions 317

Crucially, Thm. 5.12 also implies that rules stay hssp in extensions of a logic:

Corollary 5.15. If L1 ⊆ L2, and ι is an interpretation for L1,L2, and HCutRK

is hssp for (L1, ι) and (L2, ι), then if R is hssp for (L1, ι) it is also hssp for (L2, ι).

Proof. Since R and HR are interderivable and ι(HR) ∈ L1 ⊆ L2. �

From Axioms to Rules. The translation from axioms to rules proceeds similar
to that for sequent rules in [10,9], but uses the interpretation to peel away one
layer of the formula first. The idea is to treat some subformulae of an axiom as
context formulae and translate the axiom into a proto rule (i.e. a rule with a fixed
number of context formulae). To simplify presentation we assume monotonicity
of the modalities.

Definition 5.16. Let C�, Cr ⊆ F(Λ) and V ⊆ V. The class of translatable
clauses for (C�, V, Cr) is defined by the following grammar (starting variable S):

S ::= L → R

L ::= L ∧ L | ♥Pr | ψ� | � | ⊥ R ::= R ∨ R | ♥P� | ψr | � | ⊥
Pr ::= Pr ∨ Pr | Pr ∧ Pr | P� → Pr | ψr | p | ⊥ | �
P� ::= P� ∨ P� | P� ∧ P� | Pr → P� | ψ� | p | ⊥ | �

where ♥ ∈ Λ, p ∈ V and ψi ∈ Ci for i ∈ {�, r}. A formula is hypertranslatable
for an interpretation ι = {ιn : n ≥ 1} if has the form ιn(χ1, . . . , χn) with χi

a translatable clause for (C�, V, Cr) where no distinct formulae in C� ∪ V ∪ Cr

share a variable, every formula in C� ∪ Cr occurs in the χi exactly once not in
the scope of a modality and at least once in the scope of a modality.

A little thought shows that hypersequents G | ⇒ ϕ (resp. G | ϕ ⇒) with ϕ
generated by taking Pr (resp. P�) as starting variable in the above grammar
can be decomposed using invertibility of the propositional rules into sets of
hypersequents G | Γ ⇒ Δ with Γ ⊆ C� ∪ V and Δ ⊆ Cr ∪ V . The formulae in
C� (resp. Cr) will play the role of context formulae on the left (resp. right). We
now fix a logic L, an interpretation ι = {ιn : n ≥ 1} and a hypertranslatable
formula ϕ for ι and consider the stages of the translation in detail.

Ground hypersequent stage. We have ϕ = ιn(ϕ1, . . . , ϕn) where ϕi =
∧
ψi ∧∧

χi →
∨
ξi ∨

∨
ζi with context formulae χi

j ∈ C�, ζij ∈ Cr and formulae

ψi
j (resp. ξij) of the form ♥δj with δj generated by the above grammar with

starting variable Pr (resp. P�). This is turned into the ground hypersequent
Hϕ := ψ1,χ1 ⇒ ξ1, ζ1 | · · · | ψn,χn ⇒ ξn, ζn which by HCut is hssp for (L, ι).

Shaping the conclusion. We replace each ψi
j = ♥δij with ♥pij where pij ∈ V is

fresh and add the premiss pij ⇒ δij . Analogously we replace ξij = ♥γi
j with ♥qij

and add the premiss γi
j ⇒ qij . By monotonicity and Cut this is equivalent to Hϕ.

Resolving propositional logic. Using invertibility of the propositional rules we
replace each of these premisses by a number of sequents Γ ⇒ Δ with Γ ⊆ C�∪V
and Δ ⊆ Cr ∪ V . In presence of HCut this gives an equivalent rule.

318 B. Lellmann

Cleaning the premisses. To ensure that every variable occurring in the pre-
misses of the rule also occurs in the conclusion we eliminate the variables from
V from the premisses by successively cutting the premisses on all variables in
V as in Def.4.1 disregarding context restrictions. Reasoning as in Lem. 4.8 the
resulting rule is seen to be equivalent to the original rule (compare also [5]).

Introducing context restrictions. The global condition on the context formulae
in Def.5.16 guarantees that every formula in C� ∪Cr occurs exactly once in the
conclusion and at least once in the premisses. Moreover, it occurs always on the
same side of the sequent. Thus we now have a rule with a fixed number of context
formulae. Provided the context formulae are normal in the sense that formulae in
C� distribute over ∧ and those in Cr over ∨ we may replace them with context
restrictions by turning a premiss χ1, . . . , χm, Γ ⇒ Δ, ζ1, . . . , ζk with context
formulae χj and ζj occurring in the ij-th component of the conclusion into the
premiss with restriction (Γ ⇒ Δ;C) where Ci = 〈{χj : ij = i}; {ζj : ij = i}〉 and
deleting all context formulae from the conclusion. Call the resulting rule Rϕ.

Since all steps in the above construction yield rules interderivable with the
original ones using HCut and monotonicity and soundness of these rules is pre-
served by Cor. 5.15 we immediately obtain soundness and completeness.

Proposition 5.17. Let ι be a regular interpretation for L and let R be hssp and
complete for (L, ι) with the rule ⇒ p1 | · · · | ⇒ pn/ ⇒ ιn(p) derivable in R. If
ϕ is hypertranslatable for ι with normal context formulae (C�, Cr), then RRϕ is
hssp and complete for (L ⊕ ϕ, ι). �

Example 5.18. Using ι� the axiom �¬�p∨�·�p from Ex. 5.14 is converted into
the ground hypersequent �p ⇒ | ⇒ ·�p. Taking �p to be in C� we introduce a
fresh variable q and the corresponding premiss to obtain �p ⇒ q/�p ⇒ | ⇒ ·q.
Using normality of � (for RK) the formula �p is now replaced with the context
restriction 〈{�p}, ∅〉 = C� resulting in the rule (⇒ q; C�, C∅)/ ⇒ | ⇒ ·q.

The translations show that in general a single axiom corresponds to a proto
rule, i.e. a rule with a fixed number of context formulae. Thus in general a
rule corresponds to an infinite number of (systematically generated) axioms, see
[10,9] for the sequent case. The method also works for non-monotone modalities,
where in the second stage we introduce both premisses pij ⇒ δij and δij ⇒ pij
instead of only one of these. Furthermore, in some cases we still obtain rules
with restrictions from axioms with non-normal context formulae, see Sec.6.

6 Case Studies

Logics for simple frame properties. An interesting class of examples are the
rules constructed from simple frame properties for normal modal logics [8]. A
simple frame property is a formula ∀w1, . . . , ∀wn∃uϕS in the frame language,
with ϕS =

∨
〈SR,S=〉∈S(

∧
i∈SR

wiRu ∧
∧

i∈S=
wi = u) for some non-empty de-

scription S consisting of a set of tuples 〈SR, S=〉 with SR, S= ⊆ {1, . . . , n} and
SR ∪ S=
= ∅. We identify a simple frame property with its description. In [8]

Axioms vs Hypersequent Rules with Context Restrictions 319

hypersequent rules corresponding to simple frame properties based on K,K4 and
KB are given and cut admissibility is shown via the semantics. Here we consider
the rules based on K and K4 (those for KB do not fit our rule format). The set
of hypersequent rules induced by S for RK is RS := {Rk1,...,kn : ki ≥ 0} with

Rk1,...,kn :=

{
(
⊔

j∈SR
pj1, . . . , p

j
kj

⇒ ; C1
〈SR,S=〉, . . . , C

n
〈SR,S=〉) : 〈SR, S=〉 ∈ S

}
�p11, . . . ,�p1k1

⇒ | · · · | �pn1 , . . . ,�pnkn
⇒

where Cj
〈SR,S=〉 = Cid for j ∈ S= and C∅ otherwise. The set of hypersequent rules

induced by S for RK4 is the set R4
S := {R4

n : n ≥ 0} with R4
n the rule Rn with

Cj
〈SR,S=〉 = Cid for j ∈ S= and C� for j ∈ SR and C∅ otherwise. Inspection of the

rule sets constructed in this way shows that together with HRK (resp. HRK4)
they satisfy all conditions given in Thm. 4.6. Thus we obtain a purely syntactic
analogue to the semantic cut admissibility proof in [8]:

Corollary 6.1. If R is a set of rules induced by simple frame properties for RK

(resp. RK4), then HRKR (resp. HRK4R) has cut elimination. �

Using the translation from rules to axioms we furthermore obtain finite axioma-
tisations from the so constructed rules, provided we have a regular interpretation
and the rules are hssp for this interpretation. While ι� is always regular, the
interpretation ι� gives cleaner axioms. Sometimes regularity of ι� can be read
of the frame properties directly: if SR
= ∅
= S= for all (SR, S=) ∈ θ for one
property θ, then the logic is reflexive, and if S= = ∅ for all (SR, S=) ∈ θ for
every θ, then the logic is extensible (Def. 5.5). Under certain conditions we may
also adjust the original soundness proof to our setting:

Proposition 6.2 ([8]). If S is a simple frame property and LS resp. L4
S are

the logics of the class of frames (resp. transitive frames) with this property, then
R4

S is hssp for (L4
S , ι�) and (L4

S , ι�). If LS is extensible or if S=
= ∅ for all
(SR, S=) ∈ S, then RS is hssp for (LS , ι�) and (LS , ι�).

To obtain the simplest axioms we observe that given HRKCut (resp. HRK4Cut)
by Lem. 4.8 the set of rules induced by a simple property is equivalent (in both
cases!) to a single rule {(

⊔
i∈SR

pi ⇒ ;C〈SR,S=〉) : 〈SR, S=〉 ∈ S}/�p1 ⇒ | · · · |
�pn with Ci

〈SR,S=〉 = Cid for i ∈ S= and C∅ otherwise. Translating this rule gives
the corresponding axiom. This restricts the shape of the resulting axioms.

Definition 6.3. A ι-simple axiom for an interpretation ι = {ιn : n ≥ 1} is an
axiom ιn(ϕ1, . . . , ϕn) where mrk (ϕi) ≤ 1 and � occurs only negatively in the ϕi.

Proposition 6.4. Let LS (resp. L4
S) be the logic of the class F of frames (resp.

transitive frames) satisfying the simple frame property S. Then L4
S is axiomatised

over K4 by one ι�-simple axiom. The logic LS is axiomatised by one ι�-simple
axiom if: (LS is reflexive or F is extensible or S= = ∅ for all 〈SR, S=〉 ∈ S) and
(LS is transitive or F is extensible or S=
= ∅ for all 〈SR, S=〉 ∈ S). �

320 B. Lellmann

Table 2. The additional axioms for LUDF and their translations

(UC) PA ∧ PB → P(A ∨ B) (OiP) OA→ PA (Unif-O) OA→ �OA
(W-P) OA→ (PB → �(B → A)) (OiC) OA→ ¬�¬A (Unif-P) PA→ �PA

G | p⇒ r G | q ⇒ r G | r ⇒ p, q

G | Pp,Pq ⇒ Pr
UC

G | p, q ⇒
G | Op,�q ⇒ OiC

G | Op⇒ q

G | Op⇒ �q
Unif-O

G | p⇒ r G | ⇒ q, r

G | Op,Pq ⇒ �r
W-P

G | p⇒ q G | q ⇒ p

G | Op⇒ Pq
OiP

G | Pp⇒ q

G | Pp⇒ �q
Unif-P

This extends to finite sets of simple frame properties (if using extensibility to
show soundness we need all frame classes obtained by successively adding prop-
erties to be extensible). While seemingly restrictive, the conditions capture all
examples of [8], e.g. directedness, universality, linearity or bounded cardinality.

Example 6.5. The property called Bounded Acyclic Subgraph in [8] induces the
rule RBAS = {(qkk ⇒ ;Ci : k < i ≤ n}/�q11 ⇒ | · · · | �qnn ⇒ where the i-th com-
ponent of Ci is Cid and all other components are C∅. Using reflexivity and ι� the

translation of this is
∨

1≤k≤n �
(
�k ∧�

(∧
1≤i<j≤n(�j ∧ pi → rj) ∧ pk

)
→ rk

)
,

which in particular implies the axiom BASn =
∨n

k=1 �(�pk →
∨k−1

m=1 pm). Trans-
lating the latter back into a rule (taking Cr = C� = ∅ and introducing the dummy

modality writing
∨k−1

m=1 ·pm) again gives the rule RBAS. Thus the logic given by
the Bounded Acyclic Subgraph property is axiomatised over KT by BASn.

The Logic of Uniform Deontic Frames. The logic LUDF of uniform deontic
frames [13] is based on the connectives Λ� ∪ {P ,O} with P and O unary non-
normal modalities with intended interpretations “. . . is permissible” and “. . . is
obligatory” and is axiomatised by the S5-axioms for � together with the axioms
in Table 2. A hypersequent calculus for the fragment without the axioms (Unif-
O) and (Unif-P) based on the calculus for S5 from [12] was given in [6]. We now
construct a cut-free calculus for the full logic using the developed methods.

First we convert the axioms into hypersequent rules, building on the cal-
culus for S5 constructed in Ex. 4.2. Since S5 is reflexive, the interpretation
ι� is regular and thus we take it as the underlying interpretation. Under S5
adding an axiom A is equivalent to adding the axiom �A, hence it suffices
to translate the boxed versions of the axioms. Doing this using the methods
of Sec. 5 gives the rules in Table 2. Next we saturate the rule set under cuts
between rules (Def. 4.1) and (to ensure contraction closure) under contract-
ing principal formulae and the corresponding variables in the premisses. Omit-
ting superfluous premisses this gives the rules in Table 3, where we turned
the set of iterated cuts between instances of (Unif-O) and (Unif-P) and 4n for
n ∈ N into the rules (p1, . . . , pn ⇒ ; C)/�p1, . . . ,�pn ⇒ with context restric-
tion C = 〈{�p,Op,Pp}, ∅〉. By construction these rules are hssp, and clearly
the translations of the axioms are derivable rules using RLUDF. Finally, it is

Axioms vs Hypersequent Rules with Context Restrictions 321

Table 3. The rules in RLUDF, where C := 〈{�p,Op,Pp}, ∅〉 and writing ∗p for
∗p1, . . . , ∗p|p| with ∗ ∈ {O,P ,�}

{(r ⇒ p, q; C∅)} ∪ {(pi ⇒ r; C∅), (qi ⇒ r; C∅) : pi ∈ p, qi ∈ q}
Op,Pq ⇒ Pr

(|p|+ |q| ≥ 1)

(p, r ⇒ s; C), (r ⇒ q, s; C)}
Op,Pq,�r ⇒ �s

(p, r ⇒ ; Cid), (r ⇒ q; Cid)}
Op,Pq,�r ⇒ |p| ≥ 1, |q|, |r| ≥ 0

(p, r ⇒ ; C, Cid), (r ⇒ q; C, Cid)}
Op,Pq,�r ⇒ | ⇒

|p| ≥ 1, |q|, |r| ≥ 0

(r ⇒ s; C)
�r ⇒ �s

|r| ≥ 0
(r ⇒ ; Cid)
�r ⇒ |r| ≥ 1

(r ⇒ ; C, Cid)
�r ⇒ | ⇒

|r| ≥ 1

straightforward to see that RLUDF satisfies the conditions for cut elimination
and the decision procedure of Sec. 4.1. In particular we obtain an apparently
new double exponential complexity bound for LUDF.

References

1. Avron, A.: The method of hypersequents in the proof theory of propositional non-
classical logics. In: Logic: From Foundations to Applications. Clarendon (1996)

2. Avron, A., Lev, I.: Canonical propositional Gentzen-type systems. In: Goré, R.P.,
Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 529–544.
Springer, Heidelberg (2001)

3. Belnap, N.D.: Display logic. J. Philos. Logic 11, 375–417 (1982)
4. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic, Cambridge (2001)
5. Ciabattoni, A., Galatos, N., Terui, K.: From axioms to analytic rules in nonclassical

logics. In: LICS 2008, pp. 229–240. IEEE Computer Society (2008)
6. Gratzl, N.: Sequent calculi for multi-modal logic with interaction. In: Grossi, D.,

Roy, O., Huang, H. (eds.) LORI. LNCS, vol. 8196, pp. 124–134. Springer, Heidel-
berg (2013)

7. Indrzejczak, A.: Cut-free hypersequent calculus for S4.3. Bull. Sec. Log. 41, 89–104
(2012)

8. Lahav, O.: From frame properties to hypersequent rules in modal logics. In: LICS
2013. IEEE Computer Society (2013)

9. Lellmann, B.: Sequent Calculi with Context Restrictions and Applications to Con-
ditional Logic. Ph.D. thesis, Imperial College London (2013)

10. Lellmann, B., Pattinson, D.: Correspondence between modal Hilbert axioms and
sequent rules with an application to S5. In: Galmiche, D., Larchey-Wendling,
D. (eds.) TABLEAUX 2013. LNCS, vol. 8123, pp. 219–233. Springer, Heidelberg
(2013)

11. Ohlbach, H.J.: Logic engineering: Konstruktion von Logiken. KI 3, 34–38 (1992)
12. Poggiolesi, F.: A cut-free simple sequent calculus for modal logic S5. Rev. Symb.

Log. 1(1), 3–15 (2008)
13. Roy, O., Anglberger, A.J., Gratzl, N.: The logic of obligation as weakest permission.

In: Ågotnes, T., Broersen, J., Elgesem, D. (eds.) DEON 2012. LNCS (LNAI),
vol. 7393, pp. 139–150. Springer, Heidelberg (2012)

14. Schröder, L.: A finite model construction for coalgebraic modal logic. J. Log. Al-
gebr. Program. 73(1-2), 97–110 (2007)

Clausal Resolution for Modal Logics of Confluence

Cláudia Nalon1,�, João Marcos2,��, and Clare Dixon3

1 Departament of Computer Science, University of Brası́lia
C.P. 4466 – CEP:70.910-090 – Brası́lia – DF – Brazil

nalon@unb.br
2 LoLITA and Dept. of Informatics and Applied Mathematics, UFRN, Brazil

jmarcos@dimap.ufrn.br
3 Department of Computer Science, University of Liverpool

Liverpool, L69 3BX – United Kingdom
CLDixon@liverpool.ac.uk

Abstract. We present a clausal resolution-based method for normal multimodal
logics of confluence, whose Kripke semantics are based on frames characterised
by appropriate instances of the Church-Rosser property. Here we restrict attention
to eight families of such logics. We show how the inference rules related to the
normal logics of confluence can be systematically obtained from the parametrised
axioms that characterise such systems. We discuss soundness, completeness, and
termination of the method. In particular, completeness can be modularly proved
by showing that the conclusions of each newly added inference rule ensures that
the corresponding conditions on frames hold. Some examples are given in order
to illustrate the use of the method.

Keywords: normal modal logics, combined logics, resolution method.

1 Introduction

Modal logics are often introduced as extensions of classical logic with two additional
unary operators: “�” and “♦”, whose meanings vary with the field of application to
which they are tailored to apply. In the most common interpretation, formulae “�p”
and “♦p” are read as “p is necessary” and “p is possible”, respectively. Evaluation of
a modal formula depends upon an organised collection of scenarios known as possible
worlds. Different modal logics assume different accessibility relations between such
worlds. Worlds and their accessibility relations define a so-called Kripke frame. The
evaluation of a formula hinges on such structure: given an appropriate accessibility
relation and a world w, a formula �p is satisfied at w if p is true at all worlds accessible
from w; a formula ♦p is satisfied at w if p is true at some world accessible from w.

In normal modal logics extending the classical propositional logic, the schema
�(ϕ ⇒ ψ) ⇒ (�ϕ ⇒ �ψ) (the distribution axiom K), where ϕ and ψ are well-
formed formulae and ⇒ stands for classical implication, is valid, and the schematic

� C. Nalon was partially supported by CAPES Foundation BEX 8712/11-5.
�� J. Marcos was partially supported by CNPq and by the EU-FP7 Marie Curie project PIRSES-

GA-2012-318986.

S. Demri, D. Kapur, and C. Weidenbach (Eds.): IJCAR 2014, LNAI 8562, pp. 322–336, 2014.
c© Springer International Publishing Switzerland 2014

Clausal Resolution for Modal Logics of Confluence 323

rule ϕ/�ϕ (the necessitation rule Nec) preserves validity. The weakest of these logics,
named K(1), is semantically characterised by the class of Kripke frames with no re-
strictions imposed on the accessibility relation. In the multimodal version, named K(n),
Kripke frames are directed multigraphs and modal operators are equipped with indexes
over a set of agents, given by An = {1, 2, . . . , n}, for some positive integer n. Ac-
cordingly, in this case classical logic is extended with operators �1 , �2 , . . . , �n , where
a formula as �a p, with a ∈ An, may be read as “agent a considers p to be nec-
essary”. The modal operator ♦a is the dual of �a , being introduced as an abbrevi-
ation for ¬�a ¬, where ¬ stands for classical negation. The logic K(n) can be seen
as the fusion of n copies of K(1) and its axiomatisation is given by the union of
the axioms for classical propositional logic with the axiomatic schemata Ka, namely
�a (ϕ ⇒ ψ) ⇒ (�a ϕ ⇒ �a ψ), for each a ∈ An; and the set of inference rules is given
by modus ponens and the rule schemata Neca, namely ϕ/�a ϕ, for each a ∈ An.

The basic normal multimodal logic K(n) and its extensions have been widely used to
represent and reason about complex systems. Some of the interesting extensions include
the normal multimodal logics based on Ka and (the combination of) axioms as, for in-
stance, Ta (�a ϕ ⇒ ϕ), Da (�a ϕ ⇒ ♦a ϕ), 4a (�a ϕ ⇒ �a �a ϕ), 5a (♦a ϕ ⇒ �a ♦a ϕ),
and Ba (♦a �a ϕ ⇒ ϕ). For example, the description logic ALC, which is employed
for reasoning about ontologies, is a syntactic variant of K(1) [22]; the epistemic logic,
denoted by S5(n), which is used in dealing with problems ranging from multi-agency
to communication protocols [21,11], can be axiomatised by combining Ka, Ta, and 5a.
The addition of those axioms (or their combinations) to K(n) imposes some restrictions
on the class of models where formulae are valid. Thus, a formula valid in a logic con-
taining Ta is valid only if it is valid in a frame where the accessibility relation for each
agent a is reflexive. The other axioms, Da, 4a, 5a, and Ba, demand the accessibility re-
lation for each agent a to be, respectively, serial, transitive, Euclidean, and symmetric.

A logic of confluence K
p,q,r,s
(n) is a modal system axiomatised by K(n) plus axioms

Gp,q,r,s
a of the form

♦a p �a qϕ ⇒ �a r♦a sϕ

where a ∈ An, ϕ is a well-formed formula, p, q, r, s ∈ N, where �a 0ϕ
def
= ϕ and

�a i+1ϕ
def
= �a �a iϕ, and where ♦a 0ϕ

def
= ϕ and ♦a i+1ϕ

def
= ♦a ♦a iϕ, for i ∈ N (the su-

perscript is often omitted if equal to 1). Such axiomatic schemata were notably studied
by Lemmon [16]. Using Modal Correspondence Theory, it can be shown that the frame
condition on a logic where an instance of Gp,q,r,s

a is valid corresponds to a generalised
diamond-like structure representing the Church-Rosser property (the philosophical lit-
erature sometimes calls such property ‘incestual’ [9]), as illustrated in Fig. 1 [6]. To be
more precise, let W be a nonempty set of worlds and let Ra ⊆ W ×W be the acces-
sibility relation of agent a ∈ An. By wR0

aw
′ we mean that w = w′, and wRi+1

a w′

means that there is some world w′′ such that wRaw
′′ and w′′Ri

aw
′. Thus, wRi

aw
′

holds if there is an i-long Ra-path from w to w′; alternatively, to assert that, we may
also write (w,w′) ∈ Ri

a. Given these definitions, the condition on frames that corre-
sponds to the axiom Gp,q,r,s

a is described by ∀w0, w1, w2 (w0Rp
aw1 ∧ w0Rr

aw2 ⇒
∃w3(w1Rq

aw3 ∧ w2Rs
aw3)), where w0, w1, w2, w3 ∈ W .

324 C. Nalon, J. Marcos, and C. Dixon

w0

w1

w2

w3

p
st
ep
s

r
steps

q
steps

s
st
ep
s

Fig. 1. Church-Rosser property for frames where Gp,q,r,s
a = ♦a p �a qϕ⇒ �a r♦a sϕ is valid

Many well-known modal axiomatic systems are identified with particular logics of
confluence. For instance, T(n) corresponds to K

0,1,0,0
(n) , a normal modal logic in which

the axiom �a ϕ ⇒ ϕ is valid, for all a ∈ An and any formula ϕ. The axiom 4a may be
written as G0,1,2,0

a , that is, �a 1ϕ ⇒ �a 2ϕ. The Geach axiom G1a is given by G1,1,1,1
a

(♦a �a ϕ ⇒ �a ♦a ϕ). Formulae in K
1,1,1,1
(n) are satisfiable if, and only if, they are satisfi-

able in a model with n relations satisfying the so-called ‘diamond property’, and analo-
gous claims hold for instance concerning formulae of T(n) and models whose relations
are all reflexive, and formulae of 4(n) and models whose relations are all transitive.

Logics of confluence are interesting not only because they encompass a great num-
ber of normal modal logics as particular examples, but also in view of their attractive
computational behaviour. Indeed, if we think of multimodal frames as abstract rewriting
systems, for instance, and think of modal languages as a way of obtaining an internal
and local perspective on such frames, then each given notion of confluence ensures that
certain different paths of transformation will eventually lead to the same result. Having
a decidable proof procedure for a logic underlying such class of frames helps in estab-
lishing a direct form of verifying the properties of the structures that they represent.

As a contribution towards a uniform approach to the development of proof methods
for logics of confluence, in this work we deal with the logics where p, q, r, s ∈ {0, 1}.
Table 1 shows the relevant axiomatic schemata, some standard names by which they are
known, and the corresponding conditions on frames. The axiom G0,1,1,1

a seems not to
be named in the literature; the corresponding property follows the naming convention
given in [5, pg. 127]. Note that G0,0,0,0

a , G0,1,1,0
a , and G1,0,0,1

a are instances of classical
tautologies and are thus not included in Table 1. Also, given the duality between �a and
♦a , Gp,q,r,s

a is semantically equivalent to Gr,s,p,q
a . Thus, there are in fact eight families

of multimodal logics related to the axioms Gp,q,r,s
a , where p, q, r, s ∈ {0, 1}.

We present a clausal resolution-based method for solving the satisfiability problem
in logics axiomatised by Ka plus Gp,q,r,s

a , where p, q, r, s ∈ {0, 1}. The resolution

Clausal Resolution for Modal Logics of Confluence 325

Table 1. Axioms and corresponding conditions on frames

(p,q,r,s) Name Axioms Property Condition on Frames

(0, 0, 1, 1) Ba ϕ⇒ �a ♦a ϕ symmetric ∀w,w′(wRaw
′ ⇒ w′Raw)

(1, 1, 0, 0) ♦a �a ϕ⇒ ϕ

(0, 0, 1, 0) Bana ϕ⇒ �a ϕ modally banal ∀w,w′(wRaw
′ ⇒ w = w′)

(1, 0, 0, 0) ♦a ϕ⇒ ϕ

(0, 1, 0, 1) Da �a ϕ⇒ ♦a ϕ serial ∀w∃w′(wRaw
′)

(1, 0, 1, 0) Fa ♦a ϕ⇒ �a ϕ functional ∀w,w′, w′′((wRaw
′ ∧ wRaw

′′) ⇒ w′ = w′′)

(0, 0, 0, 1) Ta ϕ⇒ ♦a ϕ reflexive ∀w(wRaw)

(0, 1, 0, 0) �a ϕ⇒ ϕ

(1, 0, 1, 1) 5a ♦a ϕ⇒ �a ♦a ϕ Euclidean ∀w,w′, w′′((wRaw
′ ∧ wRaw

′′) ⇒ w′Raw
′′)

(1, 1, 1, 0) ♦a �a ϕ⇒ �a ϕ

(1, 1, 1, 1) G1a ♦a �a ϕ⇒ �a ♦a ϕ convergent ∀w,w′, w′′((wRaw
′ ∧ wRaw

′′) ⇒
∃w′′′(w′Raw

′′′ ∧ w′′Raw
′′′))

(0, 1, 1, 1) G0,1,1,1
a �a ϕ⇒ �a ♦a ϕ 0,1,1,1-convergent ∀w,w′(wRaw

′ ⇒ ∃w′′(wRaw
′′ ∧ w′Raw

′′))

(1, 1, 0, 1) ♦a �a ϕ⇒ ♦a ϕ

calculus is based on that of [17], which deals with the logical fragment corresponding
to K(n). The new inference rules to deal with axioms of the form Gp,q,r,s

a add relevant
information to the set of clauses: the conclusion of each inference rule ensures that
properties related to the corresponding conditions on frames hold, that is, the newly
added clauses capture the required properties of a model. We discuss soundness, com-
pleteness, and termination. Full proofs can be found in [18].

2 The Normal Modal Logic K(n)

The set WFFK(n)
of well-formed formulae of the logic K(n) is constructed from a

denumerable set of propositional symbols, P = {p, q, p′, q′, p1, q1, . . .}, the negation
symbol ¬, the conjunction symbol ∧, the propositional constant true, and a unary con-
nective �a for each agent a in the finite set of agents An = {1, . . . , n}. When n = 1,
we often omit the index, that is, �ϕ stands for �1 ϕ. As usual, ♦a is introduced as an
abbreviation for ¬�a ¬. A literal is either a propositional symbol or its negation; the set
of literals is denoted by L. By ¬l we will denote the complement of the literal l ∈ L,
that is, ¬l denotes ¬p if l is the propositional symbol p, and ¬l denotes p if l is the
literal ¬p. A modal literal is either �a l or ¬�a l, where l ∈ L and a ∈ An.

We present the semantics of K(n), as usual, in terms of Kripke frames.

Definition 1. A Kripke frame S for n agents over P is given by a tuple
(W , w0,R1,R2, . . . ,Rn), where W is a set of possible worlds (or states) with a
distinguished world w0 , and each Ra is a binary relation on W. A Kripke model
M = (S, π) equips a Kripke frame S with a function π : W → (P → {true, false})

326 C. Nalon, J. Marcos, and C. Dixon

that plays the role of an interpretation that associates to each state w ∈ W a truth-
assignment to propositional symbols.

The so-called accessibility relation Ra is a binary relation that captures the notion of
relative possibility from the viewpoint of agent a: A pair (w,w′) is in Ra if agent a
considers world w′ possible, given the information available to her in world w. We
write 〈M, w〉 |= ϕ (resp. 〈M, w〉
|= ϕ) to say that ϕ is satisfied (resp. not satisfied) at
the world w in the Kripke model M.

Definition 2. Satisfaction of a formula at a given world w of a model M is set by:

– 〈M, w〉 |= true
– 〈M, w〉 |= p if, and only if, π(w)(p) = true, where p ∈ P
– 〈M, w〉 |= ¬ϕ if, and only if, 〈M, w〉
|= ϕ
– 〈M, w〉 |= (ϕ ∧ ψ) if, and only if, 〈M, w〉 |= ϕ and 〈M, w〉 |= ψ
– 〈M, w〉 |= �a ϕ if, and only if 〈M, w′〉 |= ϕ, for all w′ such that wRaw

′

The formulae false, (ϕ ∨ ψ), (ϕ ⇒ ψ), and ♦a ϕ are introduced as the usual abbrevia-
tions for ¬true, ¬(¬ϕ ∧ ¬ψ), (¬ϕ ∨ ψ), and ¬�a ¬ϕ, respectively. Formulae are inter-
preted with respect to the distinguished world w0, that is, satisfiability is defined with
respect to pointed-models. A formula ϕ is said to be satisfied in the model M = (S, π)
of the Kripke frame S = (W , w0,R1, . . . ,Rn) if 〈M, w0〉 |= ϕ; the formula ϕ is sat-
isfiable in a Kripke frame S if there is a model M of S such that 〈M, w0〉 |= ϕ; and
ϕ is said to be valid in a class C of Kripke frames if it is satisfied in any model of any
Kripke frame belonging to the class C.

3 Resolution for K(n)

In [17], a sound, complete, and terminating resolution-based method for K(n), which in
this paper we call RESK, is introduced. As the proof-method for logics of confluence
presented here relies on RESK, in order to keep the present paper self-contained, we re-
produce the corresponding inference rules here and refer the reader to [17] for a detailed
account of the method. The approach taken in the resolution-based method for K(n) is
clausal: a formula to be tested for (un)satisfiability is first translated into a normal form,
explained in Section 3.1, and then the inference rules given in Section 3.2 are applied
until either a contradiction is found or no new clauses can be generated.

3.1 A Normal Form for K(n)

Formulae in the language of K(n) can be transformed into a normal form called Sepa-
rated Normal Form for Normal Logics (SNF). As the semantics is given with respect to
a pointed-model, we add a nullary connective start in order to represent the world from
which we start reasoning. Formally, given a model M = (W , w0,R1, . . . ,Rn, π), we
have that 〈M, w〉 |= start if, and only if, w = w0. A formula in SNF is represented by
a conjunction of clauses, which are true at all reachable states, that is, they have the gen-
eral form

∧
i �∗Ai, where Ai is a clause and �∗, the universal operator, is characterised

Clausal Resolution for Modal Logics of Confluence 327

by (the greatest fixed point of) �∗ϕ ⇔ ϕ ∧
∧

a∈An
�a �∗ϕ, for a formula ϕ. Observe

that satisfaction of �∗ϕ imposes that ϕ must hold at the actual world w and at every
world reachable from w, where reachability is defined in the usual (graph-theoretic)
way. Clauses have one of the following forms:

– Initial clause start ⇒
r∨

b=1

lb

– Literal clause true ⇒
r∨

b=1

lb

– Positive a-clause l′ ⇒ �a l

– Negative a-clause l′ ⇒ ¬�a l

where l, l′, lb ∈ L. Positive and negative a-clauses are together known as modal a-
clauses; the index a may be omitted if it is clear from the context.

The translation to SNF uses rewriting of classical operators and the renaming tech-
nique [20], where complex subformulae are replaced by new propositional symbols and
the truth of these new symbols is linked to the formulae that they replaced in all states.
Given a formula ϕ, the translation procedure is applied to �∗(start ⇒ t0) ∧ �∗(t0 ⇒
ϕ), where t0 is a new propositional symbol. The universal operator, which surrounds
all clauses, ensures that the clauses generated by the translation of a formula are true
at all reachable worlds. Classical rewriting is used to remove some classical operators
from ϕ (e.g. �∗(t ⇒ ψ1 ∧ ψ2) is rewritten as �∗(t ⇒ ψ1) ∧ �∗(t ⇒ ψ2)). Renam-
ing is used to replace complex subformulae in disjunctions (e.g. if ψ2 is not a literal,
�∗(t ⇒ ψ1 ∨ ψ2) is rewritten as �∗(t ⇒ ψ1 ∨ t1) ∧ �∗(t1 ⇒ ψ2), where t1 is a
new propositional symbol) or in the scope of modal operators (e.g. if ψ is not a literal,
�∗(t ⇒ �a ψ) is rewritten as �∗(t ⇒ �a t1) ∧ �∗(t1 ⇒ ψ), where t1 is a new propo-
sitional symbol). We refer the reader to [17] for details on the transformation rules that
define the translation to SNF, their correctness, and examples of their application.

3.2 Inference Rules for K(n)

In the following, l, l′, li, l′i ∈ L (i ∈ N) and D, D′ are disjunctions of literals.

Literal Resolution. This is classical resolution applied to the classical propositional
fragment of the combined logic. An initial clause may be resolved with either a lit-
eral clause or another initial clause (rules IRES1 and IRES2). Literal clauses may be
resolved together (LRES).

[IRES1] �∗(true⇒D ∨ l)

�∗(start⇒D′ ∨ ¬l)
�∗(start⇒D ∨D′)

[IRES2] �∗(start⇒D ∨ l)

�∗(start⇒D′ ∨ ¬l)
�∗(start⇒D ∨D′)

[LRES] �∗(true⇒D ∨ l)

�∗(true⇒D′ ∨ ¬l)
�∗(true⇒D ∨D′)

Modal Resolution. These rules are applied between clauses which refer to the same
context, that is, they must refer to the same agent. For instance, we may resolve two

328 C. Nalon, J. Marcos, and C. Dixon

or more �a -clauses (rules MRES and NEC2); or several �a -clauses and a literal clause
(rules NEC1 and NEC3). The modal inference rules are:

[MRES] �∗(l1 ⇒ �a l)

�∗(l2 ⇒¬�a l)

�∗(true⇒¬l1 ∨ ¬l2)

[NEC1] �∗(l′1 ⇒ �a ¬l1)
...

�∗(l′m ⇒ �a ¬lm)

�∗(l′ ⇒¬�a l)

�∗(true⇒ l1 ∨ . . . ∨ lm ∨ l)

�∗(true⇒¬l′1 ∨ . . . ∨ ¬l′m ∨ ¬l′)

[NEC2] �∗(l′1 ⇒ �a l1)

�∗(l′2 ⇒ �a ¬l1)
�∗(l′3 ⇒¬�a l2)

�∗(true⇒¬l′1 ∨ ¬l′2 ∨ ¬l′3)
[NEC3] �∗(l′1 ⇒ �a ¬l1)

...

�∗(l′m ⇒ �a ¬lm)

�∗(l′ ⇒¬�a l)

�∗(true⇒ l1 ∨ . . . ∨ lm)

�∗(true⇒¬l′1 ∨ . . . ∨ ¬l′m ∨ ¬l′)

The rule MRES is a syntactic variation of classical resolution, as a formula and its
negation cannot be true at the same state. The rule NEC1 corresponds to necessitation
(applied to (¬l1 ∧ . . . ∧ ¬lm ⇒ ¬l), which is equivalent to the literal clause in the
premises) and several applications of classical resolution. The rule NEC2 is a special
case of NEC1, as the parent clauses can be resolved with the tautology true ⇒ l1 ∨
¬l1 ∨ l2. The rule NEC3 is similar to NEC1, however the negative modal clause is
not resolved with the literal clause in the premises. Instead, the negative modal clause
requires that resolution takes place between literals on the right-hand side of positive
modal clauses and the literal clause. The resolvents in the inference rules NEC1–NEC3
impose that the literals on the left-hand side of the modal clauses in the premises are
not all satisfied whenever their conjunction leads to a contradiction in a successor state.
Given the syntactic forms of clauses, the three rules are needed for completeness [17].
Note that for NEC1, we may have m = 0; for NEC2 the number of premises is fixed;
and that for NEC3, if m = 0, then the literal clause in the premises is true ⇒ false,
which cannot be satisfied in any model. Thus, NEC3 is not applied when m = 0.

We define a derivation as a sequence of sets of clauses T 0, T 1, . . . , where T i results
from adding to T i−1 the resolvent obtained by an application of an inference rule of
RESK to clauses in T i−1. A derivation terminates if, and only if, either a contradiction,
in the form of �∗(start ⇒ false) or �∗(true ⇒ false), is derived or no new clauses
can be derived by further application of the resolution rules of RESK. We assume stan-
dard simplification from classical logic to keep the clauses as simple as possible. For
example, D ∨ l ∨ l on the right-hand side of a clause would be rewritten as D ∨ l.

Example 1. We wish to check whether the formula �1 �2 (a ∧ b) ⇒ �1 (�2 a ∧ �2 b) is
valid in K(2). The translation of its negation into the normal form is given by clauses
(1)–(9) below. Then the inference rules are applied until false is generated. In order to
improve readability, the universal operator is suppressed. The full refutation follows.

Clausal Resolution for Modal Logics of Confluence 329

1. start ⇒ t1

2. t1 ⇒ �1 t2

3. t2 ⇒ �2 t3

4. true ⇒ ¬t3 ∨ a

5. true ⇒ ¬t3 ∨ b

6. t1 ⇒ ¬�1 ¬t4
7. true ⇒ ¬t4 ∨ t5 ∨ t6

8. t5 ⇒ ¬�2 a

9. t6 ⇒ ¬�2 b

10. true ⇒ ¬t2 ∨ ¬t5 [NEC1, 3, 8, 4]

11. true ⇒ ¬t2 ∨ ¬t4 ∨ t6 [LRES, 10, 7]

12. true ⇒ ¬t2 ∨ ¬t6 [NEC1, 3, 9, 5]

13. true ⇒ ¬t2 ∨ ¬t4 [LRES, 12, 11]

14. true ⇒ ¬t1 [NEC1, 2, 6, 13]

15. start ⇒ false [IRES1, 14, 1]

Clauses (10) and (12) are obtained by applications of NEC1 to clauses in the context of
agent 2. Clause (14) is obtained by an application of the same rule, but in the context of
agent 1. Clauses (11) and (13) result from applications of resolution to the propositional
part of the language shared by both agents. Clause (15) shows that a contradiction was
found at the initial state. Therefore, the original formula is valid.

4 Clausal Resolution for Logics of Confluence

The inference rules of RESK, given in Section 3.2, are resolution-based: whenever a set
of (sub)formulae is identified as contradictory, the resolvents require that they are not
all satisfied together. The extra inference rules for K

p,q,r,s
(n) , with p, q, r, s ∈ {0, 1},

which we are about to present, have a different flavour: whenever we can identify
that the set of clauses imply that ♦a p �a qψ holds, we add some new clauses that en-
sure that �a r♦a sψ also holds. If this is not the case, that is, if the set of clauses implies
that ¬�a r♦a sψ holds, then a contradiction is found by applying the inference rules for
K(n). Because of the particular normal form we use here, there are, in fact, two general
forms for the inference rules for Kp,q,r,s

(n) , given in Table 2 (where l, l′ are literals and C
is a conjunction of literals).

Table 2. Inference Rules for Gp,q,r,s
a

[RESp,1,r,s
a] �∗(l ⇒ �a l′)

�∗(♦a pl ⇒ �a r♦a sl′)

[RESp,0,r,s
a] �∗(C ⇒ ♦a pl′)

�∗(C ⇒ �a r♦a sl′)

Soundness is checked by showing that the transformation of a formula ϕ ∈ WFFK(n)

into its normal form is satisfiability-preserving and that the application of the inference
rules are also satisfiability-preserving. Satisfiability-preserving results for the trans-
formation into SNF are provided in [17]. To extend the soundness results so as to
cover the new inference rules, note that the conclusions of the inference rules in Ta-
ble 2 are derived using the semantics of the universal operator and the distribution
axiom, Ka. For RESp,1,r,s

a , we have that the premise �∗(l ⇒ �a l′) is semantically
equivalent to �∗(¬�a l′ ⇒ ¬l). By the definition of the universal operator, we ob-
tain �∗(�a p(¬�a l′ ⇒ ¬l)). Applying the distribution axiom Ka to this clause re-
sults in �∗(�a p¬�a l′ ⇒ �a p¬l)), which is semantically equivalent to �∗(¬�a p¬l ⇒

330 C. Nalon, J. Marcos, and C. Dixon

¬�a p¬�a l′). As ♦a is an abbreviation for ¬�a ¬ and because ♦a p �a l′ implies �a r♦a sl′

in Kp,1,r,s
(n) , by classical reasoning, we have that �∗(¬�a p¬l ⇒ ¬�a p¬�a l′) implies

�∗(♦a pl ⇒ �a r♦a sl′), the conclusion of RESp,1,r,s
a . Soundness of the inference rule

RESp,0,r,s
a can be proved in a similar way.

As the conclusions of the above inference rules may contain complex formulae, they
might need to be rewritten into the normal form. Thus, we also need to add clauses
corresponding to the normal form of ♦a pl and ♦a sl′, which occur in the conclusions of
the inference rules. Let ϕ be a formula and let τ(ϕ) be the set of clauses resulting from
the translation of ϕ into the normal form. Let L(τ(ϕ)) be the set of literals that might
occur in the clause set, that is, for all p ∈ P such that p occurs in τ(ϕ), we have that
both p and ¬p are in L(τ(ϕ)). The set of definition clauses is given by

�∗(posa,l ⇒ ¬�a ¬l)

�∗(¬posa,l ⇒ �a ¬l)

for all l ∈ L(τ(ϕ)), where posa,l is a new propositional definition symbol used for re-
naming the negative modal literal ♦a l, that is, the definition clauses correspond to the
normal form of posa,l ⇔ ¬�a ¬l. Note that we have definition clauses for every propo-
sitional symbol and its negation, e.g. for a propositional symbol p ∈ τ(ϕ), we have
the definition clauses �∗(posa,p ⇒ ¬�a ¬p), �∗(¬posa,p ⇒ �a ¬p), �∗(posa,¬p ⇒
¬�a p), and �∗(¬posa,¬p ⇒ �a p), for every a ∈ An occurring in τ(ϕ). We assume
the set of definition clauses to be available whenever those symbols are used. It is also
important to note that those new definition symbols and the respective definition clauses
can all be introduced at the beginning of the application of the resolution method be-
cause we do not need definition clauses applied to definition symbols in the proofs, as
given in the completeness proof [18]. As no new propositional symbols are introduced
by the inference rules, there is a finite number of clauses that might be expressed (mod-
ulo simplification) and, therefore, the clausal resolution method for each modal logic of
confluence is terminating.

As discussed above and from the results in [17], we can establish the soundness of
the proof method.

Theorem 1. The resolution-based calculi for logics of confluence are sound.

Proof (Sketch). The transformation into the normal form is satisfiability preserving
[17]. Given a set T of clauses and a model M that satisfies T , we can construct a model
M′ for the union of T and the definition clauses, where M and M′ may differ only
in the valuation of the definition symbols. By setting properly the valuations in M′, we
have that 〈M′, w〉 |= posa,p if and only if 〈M, w〉 |= ♦a p, for any w ∈ W . Sound-
ness of the inference rules for RESK is also given in [17]. Soundness of RESp,1,r,s

a and
RESp,0,r,s

a follow from the axiomatisation of Kp,q,r,s
(n) .

Table 3 shows the inference rules for each specific instance of Gp,q,r,s
a , where

p, q, r, s ∈ {0, 1}, l, l′ ∈ L, and D is a disjunction of literals. As Gp,q,r,s
a is se-

mantically equivalent to Gr,s,p,q
a , the inference rules for both systems are grouped to-

gether. Some of the inference rules in Table 3 are obtained directly from Table 2. For
instance, the rule for reflexive systems, i.e. where the axiom G0,1,0,0

a is valid, has the

Clausal Resolution for Modal Logics of Confluence 331

Table 3. Inference Rules for several instances of Gp,q,r,s
a

Logic Inference Rules

Ta
[RES0,0,0,1

a] �∗(true ⇒ D ∨ l)

�∗(¬D ⇒ ¬�a ¬l)
[RES0,1,0,0

a] �∗(l ⇒ �a l′)

�∗(true ⇒ ¬l ∨ l′)

Bana
[RES0,0,1,0

a] �∗(true ⇒ D ∨ l)

�∗(¬D ⇒ �a l)

[RES1,0,0,0
a] �∗(l ⇒ ¬�a ¬l′)

�∗(true ⇒ ¬l ∨ l′)

Ba
[RES0,0,1,1

a] �∗(true ⇒ D ∨ l)

�∗(¬D ⇒ �a posa,l)

[RES1,1,0,0
a] �∗(l ⇒ �a l′)

�∗(¬l′ ⇒ �a ¬l)

Da
[RES0,1,0,1

a] �∗(l ⇒ �a l′)

�∗(l ⇒ ¬�a ¬l′)

Logic Inference Rules

G0,1,1,1
a

[RES0,1,1,1
a] �∗(l ⇒ �a l′)

�∗(l ⇒ �a posa,l′)

[RES1,1,0,1
a] �∗(l ⇒ �a l′)

�∗(posa,l ⇒ ¬�a ¬l′)

Fa
[RES1,0,1,0

a] �∗(l ⇒ ¬�a ¬l′)
�∗(l ⇒ �a l′)

5a
[RES1,0,1,1

a] �∗(l ⇒ ¬�a ¬l′)
�∗(l ⇒ �a posa,l′)

[RES1,1,1,0
a] �∗(l ⇒ �a l′)

�∗(posa,l ⇒ �a l′)

G1a
[RES1,1,1,1

a] �∗(l ⇒ �a l′)

�∗(posa,l ⇒ �a posa,l′)

form �∗(l ⇒ �a l′)/�∗(♦a 0l ⇒ �a 0♦a 0l′) in Table 2; in Table 3, the conclusion is
rewritten in its normal form, that is, �∗(true ⇒ ¬l∨ l′). For other systems, the form of
the inference rules are slightly different from what would be obtained from a direct ap-
plication of the general inference rules in Table 2. This is the case, for instance, for the
inference rules for symmetric systems, that is, those systems where the axiom G1,1,0,0

a

is valid. From Table 2, in symmetric systems, for a premise of the form �∗(l ⇒ �a l′),
the conclusion is given by �∗(♦a l ⇒ l′), which is translated into the normal form as
�∗(true ⇒ ¬posa,l ∨ l′). We have chosen, however, to translate the conclusion as
�∗(¬l′ ⇒ �a ¬l), which is semantically equivalent to the conclusion obtained by the
general inference rule, but avoids the use of definition symbols.

The inference rules given in Table 2 provide a systematic way of designing the in-
ference rules for each specific modal logic of confluence. We note, however, that we do
not always need both inference rules in order to achieve a complete proof method for a
particular logic. In the completeness proofs provided in [18], we show for instance that
the inference rules which introduce modalities in their conclusions from literal clauses
(that is, the inference rules RES0,0,r,s

a) are not needed for completeness. We also show
that we need just one specific inference rule for logics in which G0,1,1,1

a and 5a are
valid: RES0,1,1,1

a and RES1,0,1,1
a , respectively.

Given a formula ϕ in Kp,q,r,s
(n) , with p, q, r, s ∈ {0, 1}, the resolution method

for K(n), given in Section 3, and the inference rule RESp,q,r,s
a are applied to τ(ϕ)

and the set of definition clauses. The extra inference rules for Kp,q,r,s
(n) do not need

to be applied to clauses if such application generates new nested definition sym-
bols, that is, we do not need definition clauses for definition symbols. For instance,

332 C. Nalon, J. Marcos, and C. Dixon

the application of RES1,1,1,1
a to a clause of the form �∗(l ⇒ �a posa,l′) would result in

�∗(posa,l ⇒ �a posa,posa,l′). Although it is not incorrect to apply the inference rules
to such a clause, this might cause the method not to terminate. We can show, however,
that the application of inference rules to clauses which would result in nested literals is
not needed for completeness, as the restrictions imposed by those symbols are already
ensured by existing definition symbols and relevant inference rules (see Theorem 3 be-
low). This ensures that no new definition symbols are introduced by the proof method.

Completeness is proved by showing that, for each specific logic of confluence, if a
given set of clauses is unsatisfiable, there is a refutation produced by the method pre-
sented here. The proof is by induction on the number of nodes of a graph, known as
behaviour graph, built from a set of clauses. The graph construction is similar to the
construction of a canonical model, followed by filtrations based on the set of formu-
lae (or clauses), often used to check completeness for proof methods in modal logics
(see [3], for instance, for definitions and examples). Intuitively, nodes in the graph cor-
respond to states and are defined as maximally consistent sets of literals and modal
literals occurring in the set of clauses, including those literals introduced by definition
clauses. That is, for any literal l occurring in the set of clauses, including definition
clauses, and agents a ∈ An, a node contains either l or ¬l; and either �a l or ¬�a l. The
set of edges correspond to the agents’ accessibility relations. Edges or nodes that do not
satisfy the set of clauses are deleted from the graph. Such deletions correspond to appli-
cations of one or more of the inference rules. We prove that an empty behaviour graph
corresponds to an unsatisfiable set of clauses and that, in this case, there is a refutation
using the inference rules for RESK, given in Section 3, and the inference rules for the
specific logic of confluence, presented in Table 3.

Theorem 2. Let T be an unsatisfiable set of clauses in Gp,q,r,s
a , with p, q, r, s ∈ {0, 1}.

A contradiction can be derived by applying the resolution rules for RESK, presented in
Section 3, and Table 3.

Proof (Sketch). We construct a behaviour graph and show that the application of rules
in Table 3 removes nodes and edges where the corresponding frame condition does not
hold. The full proof is provided in [18].

Theorem 3. The resolution-based calculi for logics of confluence terminate.

Proof (Sketch). From the completeness proof, the introduction of a literal such as
posa,posa,l

for an agent a and literal l is not needed. We can show that the restrictions
imposed by such clauses, together with the resolution rules for each specific logical
system, are enough to ensure that the corresponding frame condition already holds. As
the proof method does not introduce new literals in the clause set, there is only a finite
number of clauses that can be expressed. Therefore, the proof method is terminating.

Example 2. We show that ϕ
def
= p ⇒ �1 ♦1 p, which is an instance of B1, is a valid for-

mula in symmetric systems. As symmetry is implied by reflexivity and Euclideanness,
instead of using RES1,1,0,0

1 , we combine the inference rules for both T1 and 51. Clauses
(1)–(4) correspond to the translation of the negation of ϕ into the normal form. Clauses
(5)–(8) are the definition clauses used in the proof.

Clausal Resolution for Modal Logics of Confluence 333

1. start ⇒ t0

2. true ⇒ ¬t0 ∨ p

3. t0 ⇒ ¬ �1 ¬t1
4. t1 ⇒ �1 ¬p
5. ¬pos1,t1 ⇒ �1 ¬t1 [Def . pos1,t1]

6. pos1,t1 ⇒ ¬ �1 ¬t1 [Def . pos1,t1]

7. pos1,p ⇒ ¬ �1 ¬p [Def . pos1,p]

8. ¬pos1,p ⇒ �1 ¬p [Def . pos1,p]

9. true ⇒ ¬t0 ∨ pos1,t1 [MRES, 5, 3]

10. true ⇒ ¬t1 ∨ ¬pos1,p [MRES, 7, 4]

11. pos1,p ⇒ �1 pos1,p [RES1,0,1,1
1 , 7]

12. true ⇒ ¬pos1,p ∨ ¬pos1,t1 [NEC1, 11, 6, 10]

13. true ⇒ ¬p ∨ pos1,p [RES0,1,0,0
1 , 8]

14. true ⇒ ¬p ∨ ¬pos1,t1 [LRES, 13, 12]

15. true ⇒ ¬t0 ∨ ¬p [LRES, 14, 9]

16. true ⇒ ¬t0 [LRES, 15, 2]

17. start ⇒ false [IRES1, 16, 1]

Clause (11) results from applying the Euclidean inference rule to clause (7). Clause
(13) results from applying the reflexive inference rule to (8). The remaining clauses are
derived by the resolution calculus for K(1). As a contradiction is found, given by clause
(17), the set of clauses is unsatisfiable and the original formula ϕ is valid.

5 Closing Remarks

We have presented a sound, complete, and terminating proof method for logics of con-
fluence, that is, normal multimodal systems where axioms of the form

Gp,q,r,s
a = ♦a p �a qϕ ⇒ �a r♦a sϕ

where p, q, r, s ∈ {0, 1}, are valid. The axioms Gp,q,r,s
a provide a general form for ax-

ioms widely used in logical formalisms applied to representation and reasoning within
Computer Science.

We have proved completeness of the proof method presented in this paper for eight
families of logics and their fusions. The inference rules for particular instances of these
logics can be systematically obtained and the resulting calculus can be implemented by
adding to the existing prover for K(n) [24] the clauses dependent on the clause-set. Ef-
ficiency, of course, depends on several aspects. Firstly, for certain classes of problems,
dedicated proof methods might be more efficient. For instance, if the satisfiability prob-
lem for a particular logic is in NP (as in the case of S5(1)), then our procedure may be
less efficient as the satisfiability problem for K(1) is already PSPACE-complete [15].
Secondly, efficiency might depend on the inference rules chosen to produce proofs for a
specific logic. For instance, for S5(n), the user can choose the inference rules related to
reflexivity and Euclideanness, or choose the inference rules related to seriality, symme-
try, and Euclideanness. The number of inference rules used to test the unsatisfiability of
a set of clauses for a particular logic might affect the number of clauses generated by the
resolution method as well as the size of the proof. As in the case of derived inference
rules in other proof methods, using more inference rules might lead to shorter proofs.
Thirdly, as in the case of the resolution-based method for propositional logic, efficiency
might be affected by strategies used to search for a proof. Future work includes the
design of strategies for RESK(n) and for specific logics of confluence. Fourthly, effi-
ciency might also depend on the form of the input problem. For instance, comparisons
between tableaux methods and resolution methods [14,13] have shown that there is no

334 C. Nalon, J. Marcos, and C. Dixon

overall better approach: for some problems resolution proof methods behave better, for
others tableaux based methods behave better. Providing a resolution-based method for
the logics axiomatised by Ka and Gp,q,r,s

a gives the user a choice for automated tools
that can be used depending on the type of the input formulae.

There are quite a few dedicated methods for the logics presented in this paper. In
general, however, those methods do not provide a systematic way of dealing with logics
based on similar axioms or their extensions. Therefore, we restrict attention here to meth-
ods related to logics of confluence. Tableaux methods for logics of confluence where the
mono-modal axioms T, D, B, 4, 5, De (for density, the converse of 4), and G are valid,
can be found in [7,8]. For each of those axioms, a tableau inference rule is given. The
inference rules can then be combined in order to provide proof methods for modal log-
ics under S5(1). Whilst the tableaux procedures in [7,8] are designed for mono-modal
logics they seem to be extendable to multimodal logics as long as there are no interac-
tions between modalities. Those procedures do not cover all the logics investigated in
this paper. In [2], labelled tableaux are given for the mono-modal logics axiomatised by
K and axioms Gp,q,r,s where q = s = 0 implies p = r = 0. This restriction avoids
the introduction of inference rules related to the identity predicate, but also excludes,
for instance, functional and modally banal systems, which are treated by the method
introduced in the present paper. In [4], hybrid logic tableaux methods for logics of con-
fluence are given: the inference rules create nodes, labelled by nominals. The nominals
are used in order to eliminate the Skolem function related to the existential quantifier in
the first-order sentence corresponding to the axiomGp,q,r,s

a . This proof method provides
tableau rules for all instances of the axiom. Soundness and completeness are discussed,
but termination of the method is not dealt with and it is not clear what are the bounds
for creating new nodes in the general case. In [12], sound, complete, and terminating
display calculi for tense logics and some of its extensions, including those with the ax-
iom Gp,q,r,s

a , are presented. It has been shown that these calculi have the property of
separation, that is, they provide complete proof methods for the component fragments.
The paper investigates the relation between the display calculi and deep inference sys-
tems (where the sequent rules can be applied at any node of a proof tree). By finding
appropriate propagation rules for the fusion of tense logic with either S4(1), S5(1), or
functional systems, completeness of search strategies are presented. However, propa-
gation rules for the axiom of convergence, G1, or for the combination of path axioms
(i.e. axioms of the form ♦iϕ ⇒ ♦jϕ) with seriality are not given. Also related, in [1],
prefixed tableaux procedures for confluence logics that validate the multimodal version
of the axiom ♦a �b ϕ ⇒ �c ♦d ϕ, where ϕ is a formula, are given. Note that the logics in
[1] are systems with instances of the axiom G1,1,1,1

a,b,c,d , that is, a logic which allows the
interaction of the agents a, b, c, d ∈ An, and might lead to undecidable systems.

To the best of our knowledge, there are no resolution-based proof methods for logics
of confluence. However, resolution-based methods for modal logics, based on transla-
tion into first-order logic, have been proposed for several modal logics. A survey on
translation-based approaches for non-transitive modal logics (i.e. modal logics that do
not include the axiom 4) can be found in [19]. The translation-based approach has the
clear advantage of being easily implemented, making use of well-established theorem-
provers, and dealing with any logic that can be embedded into first-order, should it be

Clausal Resolution for Modal Logics of Confluence 335

decidable or not. However, first-order provers cannot deal easily with logics that em-
bed some properties which are covered by particular axioms of confluence (e.g. func-
tionality). In order to avoid such problematic fragments within first-order logic, the
axiomatic translation principle for modal logic, introduced in [23], besides using the
standard translation of a modal formulae into first-order, takes an axiomatisation for a
particular modal logic and introduces a set of first-order modal axioms in the form of
schema clauses. As an example, adapted from [23], in order to prove that �a ¬�a p is
satisfiable in KT4(n), for each modal subformula (i.e. �a ¬�a p and �a p) and for each
considered axiom (i.e. T and 4), one schema clause is added, resulting in:

¬Q�a ¬ �a p
(x) ∨ ¬R(x, y) ∨Q�a ¬ �a p

(y)

¬Q�a p
(x) ∨ ¬R(x, y) ∨Q�a p

(y)

¬Q�a ¬ �a p
(x) ∨Q¬�a p

(y)

¬Q�a p
(x) ∨Qp(y)

where the predicate Qϕ(x) can be read as ϕ holds at world x and R is the predicate
symbol to express the accessibility relation for agent a. Note that the clauses on the left
are related to transitivity (4) and the two clauses on the right are related to reflexivity
(T). The axiomatic translation approach is similar to the approach taken in the present
paper and in [17] as the schema clauses provide a way of talking about properties of the
accessibility relation. As in our case, soundness follows easily from the properties of
the translation. Termination follows from the fact that only a finite number of schema
clauses are needed. However, as in the case of the proof method presented here, general
completeness of the method is difficult to be proved and it is given only for particular
families of logics. In [10], a translation-based approach for properties which can be
expressed by regular grammar logics (including transitivity and Euclideanness) is given.
Completeness of the method has been proved for some families of logics.

In the present paper, we have restricted attention to the case where p, q, r, s ∈ {0, 1},
but we believe that the proof method can be extended in a uniform way for dealing with
the unsatisfiability problem for any values of p, q, r, and s, by adding inference rules of
the following form:

[RESp,q,r,s
a] �∗(l ⇒ ♦a p �a rl′)

�∗(l ⇒ �a r♦a sl′)

which requires search for clauses that correspond to the normal form of the premise and
the introduction of as many new definition symbols as the number of modalities occur-
ring in the conclusion. The inference rule RESp,q,r,s

a is obviously sound, but we have
yet to identify the restrictions on the number of new propositional symbols introduced
by the method in order to ensure termination. Future work includes this extension, the
complexity analysis, the implementation of the proof method, and practical compar-
isons with other methods.

References

1. Baldoni, M., Giordano, L., Martelli, A.: A tableau calculus for multimodal logics and some
(un)decidability results. In: de Swart, H. (ed.) TABLEAUX 1998. LNCS (LNAI), vol. 1397,
pp. 44–59. Springer, Heidelberg (1998)

336 C. Nalon, J. Marcos, and C. Dixon

2. Basin, D., Matthews, S., Viganò, L.: Labelled propositional modal logics: Theory and prac-
tice. J. Log. Comput 7(6), 685–717 (1997)

3. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cam-
bridge (2001)

4. Blackburn, P., Dialogue, E.L.E., Cate, B.T.: Beyond pure axioms: Node creating rules in
hybrid tableaux. In: Areces, C.E., Blackburn, P., Marx, M., Sattler, U. (eds.) Hybrid Logics,
pp. 21–35 (July 25, 2002)

5. Boolos, G.S.: The Logic of Provability. Cambridge University Press (1993)
6. Carnielli, W.A., Pizzi, C.: Modalities and Multimodalities. Logic, Epistemology, and the

Unity of Science, vol. 12. Springer (2008)
7. Castilho, M.A., del Cerro, L.F., Gasquet, O., Herzig, A.: Modal tableaux with propagation

rules and structural rules. Fundamenta Informaticae 32(3-4), 281–297 (1997)
8. del Cerro, L.F., Gasquet, O.: Tableaux based decision procedures for modal logics of conflu-

ence and density. Fundamenta Informaticae 40(4), 317–333 (1999)
9. Chellas, B.: Modal Logic: An Introduction. Cambridge University Press (1980)

10. Demri, S., Nivelle, H.: Deciding regular grammar logics with converse through first-order
logic. Journal of Logic, Language and Information 14(3), 289–329 (2005)

11. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning About Knowledge. MIT Press (1995)
12. Goré, R., Postniece, L., Tiu, A.: On the correspondence between display postulates and deep

inference in nested sequent calculi for tense logics. Logical Methods in Computer Science
7(2) (2011)

13. Goré, R., Thomson, J., Widmann, F.: An experimental comparison of theorem provers for
CTL. In: Combi, C., Leucker, M., Wolter, F. (eds.) TIME 2011, Lübeck, Germany, September
12-14, pp. 49–56. IEEE (2011)

14. Hustadt, U., Schmidt, R.A.: Scientific benchmarking with temporal logic decision proce-
dures. In: Fensel, D., Giunchiglia, F., McGuinness, D., Williams, M.-A. (eds.) Proceedings
of the KR 2002, pp. 533–544. Morgan Kaufmann (2002)

15. Ladner, R.E.: The computational complexity of provability in systems of modal propositional
logic. SIAM J. Comput. 6(3), 467–480 (1977)

16. Lemmon, E.J., Scott, D.: The Lemmon Notes: An Introduction to Modal Logic. Segerberg,
K. (ed.). Basil Blackwell (1977)

17. Nalon, C., Dixon, C.: Clausal resolution for normal modal logics. J. Algorithms 62, 117–134
(2007)

18. Nalon, C., Marcos, J., Dixon, C.: Clausal resolution for modal logics of confluence – ex-
tended version. Technical Report ULCS-14-001, University of Liverpool, Liverpool, UK
(May 2014), http://intranet.csc.liv.ac.uk/research/techreports/
?id=ULCS-14-001

19. de Nivelle, H., Schmidt, R.A., Hustadt, U.: Resolution-Based Methods for Modal Logics.
Logic Journal of the IGPL 8(3), 265–292 (2000)

20. Plaisted, D.A., Greenbaum, S.A.: A Structure-Preserving Clause Form Translation. Journal
of Logic and Computation 2, 293–304 (1986)

21. Rao, A., Georgeff, M.: Modeling Rational Agents within a BDI-Architecture. In: Fikes,
R., Sandewall, E. (eds.) Proceedings of KR&R-91, pp. 473–484. Morgan-Kaufmann (April
1991)

22. Schild, K.: A Correspondence Theory for Terminological Logics. In: Proceedings of the 12th
IJCAI, pp. 466–471 (1991)

23. Schmidt, R.A., Hustadt, U.: The axiomatic translation principle for modal logic. ACM Trans-
actions on Computational Logic 8(4), 1–55 (2007)

24. Silva, G.B.: Implementação de um provador de teoremas por resolução para lógicas modais
normais. Monografia de Conclusão de Curso, Bacharelado em Ciência da Computação, Uni-
versidade de Brası́lia (2013), http://www.cic.unb.br/˜nalon/#software

http://intranet.csc.liv.ac.uk/research/techreports/?id=ULCS-14-001
http://intranet.csc.liv.ac.uk/research/techreports/?id=ULCS-14-001
http://www.cic.unb.br/~nalon/#software

Implementing Tableau Calculi Using BDDs:

BDDTab System Description

Rajeev Goré, Kerry Olesen, and Jimmy Thomson

Research School of Computer Science, Australian National University

Abstract. We present a modification of the DPLL-based approach to
decide modal satisfiability where we substitute DPLL by BDDs. We
demonstrate our method by implementing the standard tableau calculi
for automated reasoning in propositional modal logics K and S4, along
with extensions to the multiple modalities of ALC. We evaluate our im-
plementation of such a reasoner using several K and S4 benchmark sets,
as well as some ALC ontologies. We show, with comparison to FaCT++,
InKreSAT and *SAT, that it can compete with other state of the art
methods of reasoning in propositional modal logic. We also discuss how
this technique extends to tableau for other propositional logics.

Introduction. Many approaches have been proposed to decide satisfiability and
validity in various non-classical logics. In the eager approach the entire problem
is encoded into SAT and solved with a SAT-solver, either in one phase [10]
or incrementally [7] (e.g. InKreSAT). In the DPLL-based approach [3], DPLL
is used to provide propositionally satisfying assignments, which are recursively
checked for modal consistency in a master-slave arrangement (e.g. *SAT). Our
approach, BDDTab, is a modification on the DPLL-based approach, where we
use BDDs instead of DPLL. BDDs have also been used to implement the finite
property method directly [4], which is unrelated to the approach we present here.

BDDTab is written in C++, using the BuDDy [2] BDD library. Source and all
benchmarks can be found at http://users.cecs.anu.edu.au/~rpg/BDDTab

We use a common mapping [·] from propositional modal formulae to BDDs:

[p] = 〈vp, true-node, false-node〉 [ϕ ∨ ψ] = [ϕ] ∨ [ψ]

[¬ϕ] = ¬[ϕ] [♦ϕ] = ¬[�¬ϕ]

[ϕ ∧ ψ] = [ϕ] ∧ [ψ] [�ϕ] = 〈v�ϕ, true-node, false-node〉

This mapping is both purely propositional and modally shallow: each modal
formula �ϕ is represented by a BDD variable v�ϕ, and the mapping “stops”
when it reaches a modal formula. We treat modal formulae as if they were
atomic propositions by allocating them a BDD variable v�ϕ. As constructed,
the set of all valuations on which [ϕ] is true represents all the open branches
of a saturated classical propositional logic (CPL) tableau for ϕ. However, the
correspondence between valuations and tableau leaves is not quite one-to-one,
as we demonstrate next.

S. Demri, D. Kapur, and C. Weidenbach (Eds.): IJCAR 2014, LNAI 8562, pp. 337–343, 2014.
c© Springer International Publishing Switzerland 2014

http://users.cecs.anu.edu.au/~rpg/BDDTab

338 R. Goré, K. Olesen, and J. Thomson

a ∨ b (∨)a b

�������	va

��

�� �������	vb

������
��
��
�

t f

♦ϕ;�X ;Z
(KΓ) ∀ψ.�ψ
∈ Z

ϕ;X ;Γ

On the left is the tableau for a∨ b, and in the middle is [a∨ b], where the low
branch is a dashed line, and the high branch is a solid line. Each tableau branch
has only one of the atomic propositions, but [a∨ b], with variable order va < vb,
has the valuation a = f , b = t, which would be equivalent to the tableau node
¬a; b. Thus using BDDs can involve a kind of semantic branching. This is not
limited to the local branching demonstrated above; every satisfying valuation in
a BDD is mutually disjoint with every other satisfying valuation in that BDD, so
the branches in its representation of a saturated tableau are mutually disjoint.

Method. Our method is basically a standard tableau procedure, but we use
BDDs to perform the saturation phases, as described above. Thus we compute
a CPL saturation phase using BDDs, get a branch from the saturation, then
compute modal jumps via (KΓ) (shown above) as necessary, where Γ is a finite
set of global assumptions (TBox). Branches are explored recursively, depth-first.

An important part of our method is when a modal jump closes, and a new
OR-branch needs to be explored. Instead of traversing the BDD for the next
satisfying valuation, we refine the BDD to remove the closed leaf, and then ask for
a new one. The refinement is of the form BDDfinal = BDDinitial∧¬(v0∧v1∧. . .),
where vi are some of the variables of the branch that closed. This process is
analogous to clause learning in SAT procedures.

♦(b ∧ ¬b) ∨ a
(∨)♦(b ∧ ¬b)

(KΓ)
b ∧ ¬b (∧)
b;¬b

(id)×

a v

t f t f t f

v (b b)

a v (b b) va

v (b b)

Above left is the tableau for {♦(b ∧ ¬b) ∨ a}. The first BDD on the right is
[♦(b∧¬b)∨a]. In the tableau, exploring the modal jump over ♦(b∧¬b) will close,
so we would refine [♦(b ∧ ¬b) ∨ a] with the second BDD, giving the third BDD,
from which we would get a new satisfying valuation, and continue the procedure.

This process has the potential to eliminate many branches at a time. For
instance, if a in the previous example were some more complicated formula, we
would have also eliminated every other branch that included ♦(b ∧ ¬b).

The flip-side of this is that the refinement process may introduce new variables
to existing branches. In the above example, every other branch will now explicitly
include ¬♦(b∧¬b), even if it didn’t mention it previously. If these new variables
are “irrelevant” to the branch, they may cause a net increase in the cost of
exploring the branch. We refer to this problem as “irrelevant variables.”

Optimisations. Responsible Variables: Given the choice of refining with ¬(v0)
or ¬(v0∧v1), we prefer ¬(v0) because refining with ¬(v0) would eliminate at least
as many branches as ¬(v0∧v1). Thus a significant optimisation of this algorithm

Implementing Tableau Calculi Using BDDs: BDDTab System Description 339

is to find small subsets of modal variables over which to refine. We recursively
track sets of variables that we deem “responsible” for any unsatisfiable result.

This method for minimising the set v1, v2 is like modal back-jumping [6], and
is the BDD counterpart of the learning technique from standard lazy SMT [1],
but we use only an approximation of the dependency graph, as explained next.

The base case is when a modal jump closes immediately because the subse-
quent saturation returned the false-bdd. In this case we can (relatively cheaply)
incrementally reconstruct the saturation phase from the modal variables, and
explicitly determine a small subset that still yields the false-bdd.

In general, we will only have the responsible variables from beyond the jump.
From this, we can only approximate which modal variables were responsible for
those variables, as the details are hidden in the BDDs. Our approximation is to
consider all the subformulae of a modal variable. If one of its subformulae is a
responsible variable, then we consider it responsible, but we must also consider
other modal variables with common subformulae, and so on for those variables.

♦(b ∨ ♦(a ∧ ¬a));�(¬b)
(jump 1)

...
♦(a ∧ ¬a);¬b

(jump 2)
... (id)×

Consider the above example in K. Jump 2 closes immediately due to a ∧ ¬a.
This is our base case, and we would find that v♦(a∧¬a) is the only responsible
variable. As there is only one branch, v♦(a∧¬a) would be returned to jump 1. We
would then identify v♦(b∨♦(a∧¬a)) as responsible, because its subformula ♦(a∧¬a)
was returned as a responsible variable from beyond jump 1. We would also
identify v�(¬b) as responsible, as it shares the subformula b with v♦(b∨♦(a∧¬a)).

Each BDD corresponds to a saturation phase. If the saturation phase contains
an L-satisfiable branch, then we say that the corresponding BDD is L-satisfiable.

Sat Cache: We use a global cache of L-satisfiable BDDs. A new saturation
(BDD) is immediately flagged as L-satisfiable if the cache already contains it (as
a unique integer). The cache size is limited by a first-in-first-out removal policy.

Unsat Cache: We use a global cache of L-unsatisfiable modal jumps (the re-
finement BDD ¬(v0∧v1∧ . . .) is cached). When creating a saturation, we iterate
through this cache, and if the variables in a cached refinement are a subset of
the variables of the saturation, we apply that refinement to the saturation. The
subset check aids in avoiding introducing irrelevant variables. This cache is also
size-limited, with a first-in-first-out removal policy.

Consider again the example shown under Method. We made a refinement of
[¬♦(b∧¬b)], which we would cache. So if a future modal jump includes ♦(b∧¬b),
we would immediately apply this refinement. From this point in time onward,
no branches would ever be explored that contain ♦(b ∧ ¬b).

BDD Unsat Cache: If we were not concerned about irrelevant variables we
could skip the (potentially expensive) subset checks used in the unsatisfiable

340 R. Goré, K. Olesen, and J. Thomson

Table 1. Results on the LWB benchmarks for K (left) and S4 (right)

subclass B
D
D
T
a
b

B
U
C

S
U
C

N
U
C

N
o
rm

R
eo
rd
er

R
to

L

F
a
C
T
+
+

In
K
re
S
A
T

*
S
A
T

branch n 18 18 18 18 18 19 17 10 13 12
branch p 21 1 21 21 21 21 21 10 16 18
lin n 21 21 21 21 21 21 21 21 21 14
path n 21 2 21 21 21 21 21 21 10 21
path p 21 3 21 21 21 21 21 21 10 21
ph n 10 10 10 10 10 10 10 13 21 12
ph p 9 9 9 9 10 9 9 7 9 9
poly p 21 9 21 21 21 21 21 21 21 21
t4p p 21 0 21 21 21 21 21 21 21 21

subclass B
D
D
T
a
b

B
U
C

S
U
C

N
U
C

N
o
rm

R
eo
rd
er

R
to

L

F
a
C
T
+
+

In
K
re
S
A
T

branch n 19 19 19 19 19 19 18 6 12
grz n 21 21 21 21 21 21 14 21 21
ipc n 12 12 12 12 12 12 21 11 10
ipc p 21 21 21 21 21 21 21 10 9
md n 15 15 15 15 15 15 15 10 8
md p 21 21 21 21 21 21 21 4 3
path n 3 3 3 3 3 3 7 21 4
path p 4 4 4 4 4 4 8 21 5
ph n 5 5 5 5 5 5 4 8 14
ph p 9 9 9 9 9 9 9 6 9
s5 n 21 21 21 21 21 21 21 21 16

cache above. Instead, we could maintain a single BDD of all the refinements and
apply that to every modal jump.

Saturation Unsat Cache: Instead of leaves, we could cache saturated tableaux
like we do for the satisfiable cache, which would also skip the subset checks.

Normalisation: The mapping from a formula ϕ to its BDD [ϕ] is syntactic, so
two semantically equivalent but syntactically different formulae can exist as two
separate BDD variables. To avoid such duplications, we add an extra normali-
sation step where all modal formulae are constructed as BDDs. Since BDDs are
canonical, and equality checking is just integer comparison, duplicate variables
can then be easily identified and merged into one variable before the tableau
process begins. This is similar to the syntactic normalisations (sorting and asso-
ciativity) in other approaches [9], but is stronger, as it also catches distributivity.

Reordering: The order of the BDD variables can have a significant effect on
the size of the constructed BDDs and thus on how long they take to construct.
The BDD package we use, Buddy [2], provides automatic reordering, which pe-
riodically attempts to reorder the variables to reduce the number of BDD nodes.

Results. We evaluated BDDTab, against InKreSAT [7], FaCT++ [12] and
*SAT [11], all with default settings, as representatives of the state-of-the-art.

We also evaluated several versions of our prover: BDDTab uses the optimi-
sations RV, SC and UC, to which the other versions introduce one modification;
BUC uses a single BDD for the unsatisfiable cache; SUC caches unsatisfiable
saturations instead of leaves; NUC does not do any unsatisfiable caching at all;
Norm does extra formula normalisation;Reorder uses automatic BDD variable
reordering; and R to L explores saturated BDDs from right to left.

We have followed Kaminski and Tebbi [7] in their choice of benchmarks. Our
tests were performed on an Intel 3.4GHz CPU with 8GB of memory.

Table 1 contains results for the Logic Work Bench (LWB) benchmarks for K
and S4 [5]. Each subclass consists of a formula shape which takes an argument n

Implementing Tableau Calculi Using BDDs: BDDTab System Description 341

 0
 15
 30
 45
 60
 75
 90

 105
 120
 135

1/4 1/2 1 2 4 8 15 30 60 120

in
st

an
ce

s
so

lv
ed

time (s)

3CNFk
BDD
BUC
NUC

Norm
Reorder

RtoL

SUC

 0
 15
 30
 45
 60
 75
 90

 105
 120
 135

1/4 1/2 1 2 4 8 15 30 60 120

in
st

an
ce

s
so

lv
ed

time (s)

3CNFk
BDD

FaCT++
InKreSAT

*SAT

 0
 100
 200
 300
 400
 500
 600
 700
 800

1/4 1/2 1 2 4 8 15 30 60 120

in
st

an
ce

s
so

lv
ed

time (s)

MQBF

BDD
BUC
NUC

Norm
Reorder

RtoL

SUC

 0
 100
 200
 300
 400
 500
 600
 700
 800

1/4 1/2 1 2 4 8 15 30 60 120

in
st

an
ce

s
so

lv
ed

time (s)

MQBF

BDD
FaCT++

InKreSAT
*SAT

Fig. 1. 3CNFK and MQBF benchmarks

and generates a formula. As n increases, the formulae become larger. The entries
in Table 1 mark the highest problem instance solved by each program, given a
30 second time limit per formula. For each subclass the best result is marked in
bold. Classes where all provers solved all problems are omitted.

On the LWB benchmarks, BDDTab has arguably the best results, completing
every subclass that two or more other provers complete, and gaining a higher
score than all of them for several subclasses, including branch n and p for K,
and branch n, ipc p, md n and md p for S4. BDDTab performs quite poorly on
only a few subclasses, and at least one other prover also performs badly on these.

For the ph n subclasses, this poor result is expected since the formulae are
primarily propositional, and tableau-based approaches can halt once they find a
single open branch. Our approach always computes the entirety of the saturation
phase, and so wastes time finding every open branch, when only one is needed.

BDDTab’s memory use for the ph subclasses grows exponentially with n,
as expected, but is not always a significant factor in its performance on these
subclasses. The first unsolved instance of S4 ph p uses 2.7GB before timing out.
On the first unsolved instances of the other ph subclasses it uses at most 50MB.

Figure 1 shows results for a set of randomly generated 3CNFK [3] formulae of
modal depth 2, 4 and 6, as well as for a subset of the TANCS-2000 [8] Unbounded
Modal QBF (MQBF) benchmarks for K. On the 3CNFK , BDDTab shows the
best performance by a large margin. On the MQBF benchmarks BDDTab per-
forms just as well as FaCT++ and worse than InKreSAT and *SAT.

342 R. Goré, K. Olesen, and J. Thomson

BUC is catastrophically worse over all the benchmarks than BDDTab, except
for LWB S4. It is clear that this is due to irrelevant variables being introduced.

NUC performs similarly to BDDTab over the benchmarks, apart from the
3CNFK , where it performs much better; it solves the same instances, but is
significantly faster on almost every single one, showing that the overhead of the
subset checking can easily outweigh the benefits of using the cache, especially
when the cache is large. On the MQBF each version is able to solve instances
that the other could not, showing that the caching can be worthwhile.

SUC performs almost identically to NUC, which suggests that even cheap
unsatisfiability caching does not provide a net benefit over these benchmarks.

Norm is almost identical to BDDTab. For LWB and MQBF the normalisation
does not find any duplicate formulae, so the only difference is the time taken to
perform the normalisation. These show that this is not necessarily an expensive
procedure. In the 3CNFK the normalisation typically reduces the number of
variables by around 30%, but this doesn’t translate into any net benefit.

Reorder is much worse than BDDTab on 3CNFK and MQBF. Thus naive
automatic reordering can be expensive without providing significant benefit.

R to L is perhaps the most striking result, since it just reverses an arbitrary
ordering decision. On the LWB it performs significantly better than BDDTab
on a number of classes and worse on some others. On the 3CNFK it performs
atrociously. This demonstrates the importance of these ordering decisions.

Description Logics. We tested BDDTab on classifying 15ALC ontologies from
public online collections. This required a trivial extension to multiple modalities,
and we present only general results. Each ontology was translated into a single
multi-modal K formula, and then BDDTab was asked to read this formula and
perform an exhaustive n2 check of all possible subsumptions of named classes.
FaCT++ was asked to classify the original ontologies through OWL API.

Often, the majority of BDDTab’s time is taken up by constructing the BDD
representation of the TBox (the global assumptions), after which the actual clas-
sification is relatively quick. Reordering is very beneficial here, which is primarily
because keeping the size of this BDD small makes it much faster to construct.

BDDTab’s worst performance with reordering was two seconds, except for
ABA-Adult-Mouse-Brain where, even with reordering, BDDTab failed to con-
struct the global assumptions within 10 minutes. FaCT++ took at most 4 sec-
onds to load and classify each. These results are not conclusive, but suggest it
is possible for our method to handle large sets of global assumptions.

Conclusion and Further Work. Determining better ordering schemes and
heuristics is needed. These include BDD variable ordering and reordering, modal
jump exploration order, saturation exploration order and cache removal policies.

The approach could be extended to include features of other logics such as
graded modalities or nominals. Each syntactic element would require its own
BDD variable, and saturation phases would always be performed in one hit, but
otherwise any high level tableau algorithm could use BDDs in this way.

Implementing Tableau Calculi Using BDDs: BDDTab System Description 343

The refinement process could be modified to only remove paths from the BDD,
and avoid introducing new variables to existing paths.

Finally, our notion of “irrelevant variables” can be refined. DPLL-based modal
reasoners (and lately SMT solvers) implement a technique called “pure-literal
filtering”: if a non-Boolean atom (e.g. a box or a diamond formula) occurs only
positively [resp. negatively] in the original formula (i.e. before adding the ¬(v0∧
v1...)) and it is assigned negatively [resp. positively] in a branch, then the negated
[resp. positive] atom can be ignored when recursively checking the branch. In our
example, we can simply consider va in the final OBDD ignoring the “¬ & (...)”
since &(...) occurs only positively in the original formulae.

Our work shows that BDDs can be an effective base data structure for com-
puting tableaux. The results explicitly show this for K, S4 and ALC with respect
to the state-of-the-art as represented by FaCT++, InKreSAT and *SAT.

Acknowledgments. We thank an anonymous reviewer for many suggestions.

References

[1] Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo the-
ories. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of
Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185, pp.
825–885. IOS Press (2009)

[2] Buddy (2013), http://sourceforge.net/projects/buddy/
[3] Giunchiglia, F., Sebastiani, R.: Building decision procedures for modal logics from

propositional decision procedures - the case study of modal K(m). Information and
Computation 162(1/2) (October/November 2000)

[4] Goré, R., Thomson, J.: BDD-based automated reasoning for propositional bi-
intuitionistic tense logics. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR
2012. LNCS, vol. 7364, pp. 301–315. Springer, Heidelberg (2012)

[5] Heuerding, A., Schwendimann, S.: A benchmark method for the propositional
modal logics K, KT, S4 (1996)

[6] Horrocks, I., Patel-Schneider, P.F.: Optimizing Description Logic Subsumption.
Journal of Logic and Computation 9(3), 267–293 (1999)

[7] Kaminski, M., Tebbi, T.: Inkresat: Modal reasoning via incremental reduction
to SAT. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 436–442.
Springer, Heidelberg (2013)

[8] Massacci, F., Donini, F.M.: Design and results of TANCS-2000 non-classical
(modal) systems comparison. In: Dyckhoff, R. (ed.) TABLEAUX 2000. LNCS,
vol. 1847, pp. 52–56. Springer, Heidelberg (2000)

[9] Sebastiani, R., Tacchella, A.: SAT techniques for modal and description logics. In:
Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications,
vol. 185, pp. 781–824. IOS Press (2009)

[10] Sebastiani, R., Vescovi, M.: Automated Reasoning in Modal and Description Log-
ics via SAT Encoding: the Case Study of K(m)/ALC-Satisfiability. Journal of
Artificial Intelligence Research (JAIR) 35, 343–389 (2009)

[11] Tacchella, A.: *sat system description. In: Description Logics (1999)
[12] Tsarkov, D., Horrocks, I.: Fact++ description logic reasoner: System description.

In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp.
292–297. Springer, Heidelberg (2006)

http://sourceforge.net/projects/buddy/

Approximations for Model Construction

Aleksandar Zeljić1, Christoph M. Wintersteiger2, and Philipp Rümmer1

1 Uppsala University, Sweden
2 Microsoft Research

Abstract. We consider the problem of efficiently computing models for
satisfiable constraints, in the presence of complex background theories
such as floating-point arithmetic. Model construction has various ap-
plications, for instance the automatic generation of test inputs. It is
well-known that naive encoding of constraints into simpler theories (for
instance, bit-vectors or propositional logic) can lead to a drastic increase
in size, and be unsatisfactory in terms of memory and runtime needed for
model construction. We define a framework for systematic application of
approximations in order to speed up model construction. Our method is
more general than previous techniques in the sense that approximations
that are neither under- nor over-approximations can be used, and shows
promising results in practice.

1 Introduction

The construction of satisfying assignments (or, more generally, models) for a
set of given constraints is one of the most central problems in automated rea-
soning. Although the problem has been addressed extensively in research fields
including constraint programming, and more lately satisfiability modulo theories
(SMT), there are still constraint languages and background theories where effec-
tive model construction is challenging. Such theories are, in particular, arithmetic
domains such as bit-vectors, nonlinear real arithmetic (or real-closed fields), and
floating-point arithmetic (FPA); even when decidable, the high computational
complexity of such languages turns model construction into a bottleneck in appli-
cations such as bounded model checking, white-box testcase generation, analysis
of hybrid systems, and mathematical reasoning in general.

We follow a recent line of research that applies the concept of abstraction
to model construction (e.g., [3,5,10,19]). In this setting, constraints are usually
simplified prior to solving to obtain over- or under-approximations, or some com-
bination thereof (mixed abstractions); experiments show that this concept can
speed up model construction significantly. However, previous work in this area
suffers from the fact that the definition of good over- and under-approximations
can be difficult and limiting, for instance in the context of floating-point arith-
metic. We argue that the focus on over- and under-approximations is neither
necessary nor optimal: as a more flexible alternative, we present a general algo-
rithm that can integrate any form of approximation into the model construction
process, including approximations that cannot naturally be represented as a

S. Demri, D. Kapur, and C. Weidenbach (Eds.): IJCAR 2014, LNAI 8562, pp. 344–359, 2014.
c© Springer International Publishing Switzerland 2014

Approximations for Model Construction 345

combination of over- and under-approximation. Our method preserves essential
properties like soundness, completeness, and termination.

For the purpose of empirical evaluation, we instantiate our model construction
procedure for the domain of floating-point arithmetic, and present an evaluation
based on an implementation thereof within the Z3 theorem prover [22]. Experi-
ments with publicly available floating-point benchmarks show a uniform speed-
up of about one order of magnitude compared to the naive bit-blasting-based
decision procedure that is built into Z3 (on satisfiable benchmarks), and perfor-
mance that is competitive with other state-of-the-art solvers for floating-point
arithmetic.

The contributions of the paper are: 1. a general method for model construction
based on approximations, 2. an instantiation of our framework for the theory of
floating-point arithmetic, and 3. an experimental evaluation of our approach.

We would like to emphasize that the present paper focuses on the construction
of models for satisfiable constraints. Although our framework can in principle
show unsatisfiability of constraints, this is neither the goal, nor within the scope
of the paper; we believe that further research is necessary to improve reasoning
in the unsatisfiable case.

1.1 Motivating Example

We first illustrate our approach by considering a (strongly simplified) PI con-
troller operating on floating-point data:

double Kp=1.0 ; double Ki =0.25 ; double s e t p o i n t =20.0 ;
double i n t e g r a l = 0 . 0 ; double e r r o r ;
f o r (i n t i = 0 ; i < N; ++i) {

i n = r e a d i n p u t () ;
e r r o r = s e t p o i n t − i n ;
i n t e g r a l = i n t e g r a l + e r r ;
out = Kp∗ e r r + Ki∗ i n t e g r a l ;
s e t o u t p u t (out) ;

}
All variables in this example range over double precision (64-bit) IEEE-

754 floating-point numbers. The PI controller is initialized with the set point
value and the constants Kp and Ki. The controller reads input values via func-
tion read input, and computes output values which control the system using the
function set output. The controller computes the control values (out) so that the
input values are as close to set point as possible. For simplicity, we assume that
there is a bounded number N of control iterations.

Suppose we want to prove that if the input values stay within the range
18.0 ≤ in ≤ 22.0, then the control values will stay within a range that we
consider safe, e.g., −3.0 ≤ out ≤ +3.0. This property is true of our controller
only for two control iterations, but it can be violated within three iterations.

A bounded model checking approach to this problem produces a series
of formulas, one for each N and checks the satisfiability of those formulas

346 A. Zeljić, C.M. Wintersteiger, and P. Rümmer

(usually in sequence). Today, most (precise) solvers for floating-point formulas
implement this satisfiability check by means of bit-blasting, i.e., using a bit-
precise encoding of FPA semantics as a propositional formula. Due to the com-
plexity of FPA, the resulting formulas grow very quickly, and tend to overwhelm
even the fastest SAT/SMT solvers. For example, an unrolling of the PI controller
example to 30 steps cannot be solved by Z3 within an hour of runtime:

Bound N 1 2 5 10 20 30 40 50
Clauses (millions) 0.28 0.66 1.80 3.71 7.53 11.34 15.15 18.97
Variables ” 0.04 0.09 0.25 0.51 1.04 1.57 2.10 2.63
Z3 solving time (s) 4 13 18 213 1068 >1h · · ·

The example has the property, however, that full range of FP numbers is not
required to find suitable program inputs; essentially a prover just needs to find a
sequence of inputs such that the errors add up to a sum that is greater than 3.0.
There is no need to consider numbers with large magnitude, or a large number
of significant digits/bits. We postulate that this situation is typical for many
applications. Since bit-precise treatment of FP numbers is clearly wasteful in
this setting, we might consider some of the following alternatives:

– all operations in the program can be evaluated in real instead of FP arith-
metic. For problems with only linear operations, such as the program at
hand, this enables the use of highly efficient LP solvers. However, the encod-
ing ignores the possibility of overflows or rounding errors; bounded model
checking will in this way be neither sound nor complete. In addition, little
is gained in terms of computational complexity for nonlinear constraints.

– operations can be evaluated in fixed-point arithmetic. Again, this encod-
ing does not preserve the overflow- and rounding-semantics of FPA, but it
enables solving using more efficient bit-vector encodings and solvers.

– operations can be evaluated in FPA with reduced precision: we can use
single precision numbers, or even smaller formats.

Strictly speaking, soundness and completeness are lost in all three cases, since
the precise nature of overflows and rounding in FPA is ignored. All three meth-
ods enable, however, the efficient computation of approximate models, which are
likely to be “close” to genuine double-precision FPA models. In this paper, we
define a general framework for model construction with approximations. In or-
der to establish overall soundness and completeness, the framework contains a
model reconstruction phase, in which approximate models are translated to pre-
cise models. This reconstruction may fail, in which case refinement is used to
iteratively increase the precision of approximate models.

2 Related Work

Related work to our contribution falls into two categories: general abstraction
and approximation frameworks, and specific decision procedures for FPA.

Approximations for Model Construction 347

The concept of abstraction is central to software engineering and program
verification and it is increasingly employed in general mathematical reasoning
and in decision procedures. Usually, and in contrast to our work, only under- and
over-approximations are considered, i.e., the formula that is solved either implies
or is implied by an approximated formula. Counter-example guided abstraction
refinement [7] is a general concept that is applied in many verification tools and
decision procedures (e.g., in QBF [18] and MBQI for SMT [13]).

A general framework for abstracting decision procedures is Abstract CDCL,
recently introduced by D’Silva et al. [10], which was also instantiated with great
success for FPA [11,2]. This approach relies on the definition of suitable abstract
domains for constraint propagation and learning. In our experimental evaluation,
we compare to the FPA decision procedure in MathSAT, which is an instance
of ACDCL. ACDCL could also be integrated with our framework, e.g., to solve
approximations. A further framework for abstractions in theorem proving was
proposed by Giunchiglia et al. [14]. Again, this work focusses on under- and
over-approximations, not on other forms of approximation.

Specific instantiations of abstraction schemes in related areas also include the
bit-vector abstractions by Bryant et al. [5] and Brummayer and Biere [4], as
well as the (mixed) floating-point abstractions by Brillout et al. [3]. Van Khanh
and Ogawa present over- and under-approximations for solving polynomials over
reals [19]. Gao et al. [12] present a δ-complete decision procedure for nonlinear
reals, considering over-approximations of constraints by means of δ-weakening.

There is a long history of formalising and analysing FPA concerns using proof
assistants, among others in Coq by Melquiond [21] and HOL Light by Har-
rison [15]. Coq has also been integrated with a dedicated floating-point prover
called Gappa by Boldo et al. [1], which is based on interval reasoning and forward
error propagation to determine bounds on arithmetic expressions in programs [9].
The ASTRÉE static analyzer [8] features abstract interpretation-based analy-
ses for FPA overflow and division-by-zero problems in ANSI-C programs. The
SMT solvers MathSAT [6], Z3 [22], and Sonolar [20], all feature (bit-precise)
conversions from floating-point to bit-vector constraints.

3 Preliminaries

We establish a formal basis in the context of multi-sorted first-order logic (e.g.,
[16]). A signature Σ = (S, P, F, α) consists of a set of sort symbols S, a set
of sorted predicate symbols P , a set of sorted function symbols F , and a sort
mapping α. Each predicate p ∈ P is assigned a k-tuple α(p) of argument sorts
(with k ≥ 0); each function f ∈ F is assigned a (k + 1)-tuple α(f) of sorts.
We assume a countably infinite set X of variables, and (by abuse of notation)
overload α to assign sorts also to variables. Given a multi-sorted signature Σ
and variables X , the notions of well-sorted terms, atoms, literals, clauses, and
formulas are defined as usual. The function fv (φ) denotes the set of free variables
in a formula φ. In what follows, we assume that formulas are quantifier-free.

A Σ-structure m = (U, I) with underlying universe U and interpretation
function I maps each sort s ∈ S to a non-empty set I(s) ⊆ U , each predicate

348 A. Zeljić, C.M. Wintersteiger, and P. Rümmer

p ∈ P of sorts (s1, s2, . . . , sk) to a relation I(p) ⊆ I(s1) × I(s2) × . . . × I(sk),
and each function f ∈ F of sort (s1, s2, . . . , sk, sk+1) to a set-theoretic function
I(f) : I(s1) × I(s2) × . . . × I(sk) → I(sk+1). A variable assignment β under
a Σ-structure m maps each variable x ∈ X to an element β(x) ∈ I(α(x)).
The valuation function valm,β(·) is defined for terms and formulas in the usual
way. A theory T is a pair (Σ,M) of a multi sorted signature Σ and a class
of Σ-structures M . A formula φ is T -satisfiable if there is a structure m ∈ M
and a variable assignment β such that φ evaluates to true; we denote this by
m,β |=T φ, and call β a T -solution of φ.

4 The Approximation Framework

We describe a decision procedure for problems φ over a set of variables X , using
a theory T . The goal is to obtain a T -solution of φ. The main idea underlying
our method is to replace the theory T with an approximation theory T̂ , which
enables explicit control over the precision used to evaluate theory operations. In
our method, the T -problem φ is first lifted to a T̂ -problem φ̂, then solved in the
theory T̂ , and if a solution is found, it is translated back to a T -solution. The
benefit of using the theory T̂ is that different levels of approximation may be
used during computation. We will use the theory of floating-point arithmetic as
a running example for instantiation of the presented framework.

4.1 Approximation Theories

In order to formalize the approach of finding models by means of approxima-
tion, we construct the approximation theory T̂ = (Σ̂, M̂) from T , by extending
function and predicate symbols with a new argument representing the precision
of the approximation.

Syntax. We introduce a new sort for the precision sp, and a new predicate symbol
. which orders precision values. The signature Σ̂ = (Ŝ, P̂ , F̂ , α̂) is obtained from
Σ in the following manner: Ŝ = S∪{sp}; the set of predicate symbols is extended

with the new predicate symbol ., P̂ = P ∪ {.}; the set of function symbols is
extended with the new constant ω, representing the maximum precision value,
F̂ = F ∪ {ω}; the sort function α̂ is defined in the following manner:

α̂(g) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(sp, s1, s2, . . . , sn) if g ∈ P ∪ F and α(g) = (s1, s2, . . . , sn)

(sp, sp) if g = .
(sp) if g = ω

α(g) otherwise

Semantics. Σ̂-structures (Û , Î) enrich the original Σ-structures by providing ap-
proximate versions of function and predicate symbols. The resulting operations
can be under- or over-approximations, but they can also be approximations that

Approximations for Model Construction 349

are close to the original operations’ semantics by some other metric. The de-
gree of approximation is controlled with the help of the precision argument. We
assume that the set M̂ of Σ̂-structures satisfies the following properties:

– for every structure (Û , Î) ∈ M̂ , the relation Î(.) is a partial order on Î(sp)
that satisfies the ascending chain condition (every ascending chain is finite),
and that has the unique greatest element Î(ω) ∈ Î(sp);

– for every structure (U, I) ∈ M , an approximation structure (Û , Î) ∈ M̂
extending (U, I) exists, together with an embedding h : U +→ Û such that,
for every sort s ∈ S, function f ∈ F , and predicate p ∈ P :

h(I(s)) ⊆ Î(s)

(a1, . . . , an) ∈ I(p) ⇐⇒ (Î(ω), h(a1), . . . , h(an)) ∈ Î(p) (ai ∈ I(α(p)i))

h(I(f)(a1, . . . , an)) = Î(f)(Î(ω), h(a1), . . . , h(an)) (ai ∈ I(α(f)i))

– vice versa, for every approximation structure (Û , Î) ∈ M̂ there is a struc-
ture (U, I) ∈ M that can be embedded in (Û , Î) in the same way.

These properties ensure that every T -model has a corresponding T̂ -model, i.e.
that no models are lost. Interpretations of function and predicate symbols under
Î with maximal precision are isomorphic to their original interpretation under
I. The interpretation Î should interpret the function and predicate symbols in
such a way that their interpretations for a given value of the precision argument
approximate the interpretations of the corresponding function and predicate
symbols under I.

Applied to FPA. The IEEE-754 standard for floating point numbers [17] defines
floating point numbers, their representation in bit-vectors, and the corresponding
operations. Most crucially, bit-vectors of various sizes are used to represent the
significand and the exponent of numbers; e.g., double-precision floating-point
numbers are represented by using 11 bits for the exponent and 53 bits for the
significand. We denote the set of floating-point numbers that can be represented
using s significand bits and e exponent bits by FPs,e. Note that FP domains
are growing monotonically when increasing e or s, i.e., FPs′,e′ ⊆ FPs,e provided
that s′ ≤ s and e′ ≤ e.

For fixed values e of exponent bits and s of significant bits, FPA can be mod-
eled as a theory in our sense. We denote this theory by TF s,e, and write sf
for the sort of FP numbers, and sr for the sort of rounding modes. The var-
ious FP operations are represented as functions and predicates of the theory;
for instance, floating-point addition turns into the function symbol ⊕ with sig-
nature α(⊕) = (sp, sr, sf , sf). The semantics of TF s,e is defined by a unique
structure (Us,e, Is,e); in particular, Is,e(sf) = FPs,e.

We construct the approximation theory T̂F s,e, by introducing the preci-
sion sort sp, predicate symbol ., and a constant symbol ω. The function and
predicate symbols have their signature changed to include the precision argu-
ment. For example, the signature of the floating-point addition symbol ⊕ is
α̂(⊕) = (sp, sr, sf , sf) in the approximation theory.

350 A. Zeljić, C.M. Wintersteiger, and P. Rümmer

The semantics of the approximation theory T̂F s,e is again defined through a

singleton set M̂ = {(Ûs,e, Îs,e)} of structures. The universe of the approximation
theory extends the original universe with a set of integers which are the domain
of the precision sort, i.e., Ûs,e = Us,e ∪ {0, 1, . . . , n}, Îs,e(sp) = {0, 1, . . . , n}, and
Îs,e(ω) = n. The embedding h is the identity mapping.

In order to use precision to regulate the semantics of FP operations, we in-
troduce the notation (s, e) ↓ p to denote the number of bits in reduced pre-
cision p ∈ {0, 1, . . . , n}; for instance, the reduced bit-widths can be defined as
(s, e) ↓ p = (7s · p

n8, 7e ·
p
n8). The approximate semantics of functions is derived

from the FP semantics for the reduced bit-widths. For example, ⊕ in approxi-
mation theory T̂F s,e is defined as:

Îs,e(⊕)(p, r, a, b) = casts,e(I(s,e)↓p(⊕)(r, cast (s,e)↓p(a), cast (s,e)↓p(b)))

This definition uses a function casts,e to map any FP number to a number with
s significand bits and e exponent bits, i.e., casts,e(a) ∈ FPs,e for any a ∈ FPs′,e′ .
The cast performs rounding (if required) using a fixed rounding mode. Note that
many occurrences of casts,e can be eliminated in practice, if they only concern
intermediate results. For example, consider ⊕(c1,⊗(c2, a1, a2), a3). The result of
⊗(c2, a1, a2) can be directly cast to precision c1 without the need of casting up
to full precision when calculating the value of the expression.

4.2 Lifting Constraints to Approximate Constraints

In order to solve a constraint φ using an approximation theory T̂ , it is first
necessary to lift φ to an extended constraint φ̂ that includes explicit variables cl
for the precision of each operation. This is done by means of a simple traversal
of φ, using a recursive function L that receives a formula (or term) φ and a
position l ∈ �∗ as argument. For every position l, the symbol cl denotes a fresh
variable of the precision sort α(cl) = sp and we define

L(l,¬φ) = ¬L(l.1, φ)

L(l, φ ◦ ψ) = L(l.1, φ) ◦ L(l.2, ψ) (◦ ∈ {∨,∧})
L(l, x) = x (x ∈ X)

L(l, g(t1, . . . , tn)) = g(cl, L(l.1, t1), . . . , L(l.n, tn)) (g ∈ F ∪ P)

Then we obtain the lifted formula φ̂ = L(ε, φ), where ε denotes an empty word.
Since T -structures can be embedded into T̂ -structures, it is clear that no models
are lost as a result of lifting:

Lemma 1 (Completeness). If a T -constraint φ is T -satisfiable, then the lifted

constraint φ̂ = L(ε, φ) is T̂ -satisfiable as well.

An approximate model that chooses full precision for all operations induces a
model for the original constraint:

Approximations for Model Construction 351

Approximate
Model Construction

Model-guided
Approximation
Refinement

Proof -guided
Approximation
Refinement

Precise Model
Reconstruction

Model Proof

Sat Unsat

failed

Reconstruction No
refinement
possible

Fig. 1. The model construction process

Lemma 2 (Fully precise operations). Let m̂ = (Û , Î) be a T̂ -model, and β̂ be

a variable assignment. If m̂, β̂ |=T̂ φ̂ for an approximate constraint φ̂ = L(ε, φ),
then m,β |=T φ, provided that: 1. there is a T -structure m embedded in m̂ via h,

and a variable assignment β such that h(β(x)) = β̂(x) for all variables x ∈ fv(φ),

and 2. β̂(cl) = Î(ω) for all precision variables cl introduced by L.

The fully precise case however, is not the only case in which an approximate
model is easily translated to a precise model. For instance, approximate oper-
ations might still yield a precise result for some arguments. Examples of this
are constraints in floating-point arithmetic that have small integer solutions or
fixed-point arithmetic solutions.

Theorem 1 (Precise evaluation). Suppose m̂, β̂ |=T̂ φ̂ for an approximate

constraint φ̂ = L(ε, φ), such that all operations in φ̂ are performed exactly with

respect to T . Then m̂, β̂ |=T φ.

5 Model Refinement Scheme

In the following sections, we will use the approximation framework to successively
construct more and more precise solutions of given constraints, until eventually
either a genuine solution is found, or the constraints are determined to be unsat-
isfiable. We fix a partially ordered precision domain (Dp,.p) (where, as before,
.p satisfies the ascending chain condition, and has a greatest element), and

consider approximation structures (Û , Î) such that Î(sp) = DP and Î(.) = .p.

Given a lifted constraint φ̂ = L(ε, φ), let Xp ⊆ X be the set of precision vari-
ables introduced by the function L. A precision assignment γ : Xp → Dp maps
the precision variables to precision values. We write γ .p γ′ if for all variables
cl ∈ Xp we have γ(cl) .p γ′(cl). Precision assignments are partially ordered by
.p. There is a greatest precision assignment, which maps each precision variable
to the greatest element of the precision domain Dp.

352 A. Zeljić, C.M. Wintersteiger, and P. Rümmer

The proposed procedure is outlined in Fig. 1. First, an initial precision
assignment γ is chosen, depending on the theory T . In Approximate Model Con-
struction, the procedure tries to find (m̂, β̂), a model of the approximated con-

straint φ̂. If (m̂, β̂) is found, Precise Model Reconstruction tries to translate it
to (m,β), a model of the original constraint φ. If this succeeds, the procedure
stops and returns a model. Otherwise, Model-guided Approximation Refinement
uses (m,β) and (m̂, β̂) to increase the precision assignment γ. If Approximate

Model Construction cannot find any model (m̂, β̂), then Proof-guided Approx-
imation Refinement decides how to modify the precision assignment γ. If the
precision assignment is maximal and cannot be further increased, the procedure
has determined unsatisfiability. In the following sections we provide additional
details for each of the components of our procedure.

General Properties. Since .p has the ascending chain property, our procedure is
guaranteed to terminate and either produce a genuine precise model, or detect
unsatisfiability of the constraints. The potential benefits of this approach are
that it often takes less time to solve multiple smaller (approximate) problems
than to solve the full problem straight away. The candidate models provide useful
hints for the following iterations. The downside is that it might be necessary to
solve the whole problem eventually anyway, which is the case, for instance, for
unsatisfiable problems. Therefore, our approach is mainly useful when the goal
is to obtain a model, e.g., when searching for counter-examples.

5.1 Approximate Model Construction

Once a precision assignment γ has been fixed, existing solvers for the operations
in the approximation theory can be used to construct a model m̂ and a variable
assignment β̂ s.t. m̂, β̂ |=T̂ φ̂. It is necessary that β̂ and γ agree on Xp. As an
optimisation, the model search can be formulated in various theory-dependent
ways which heuristically benefit the Precise Model Reconstruction. For example,
search can prefer models with small values of some error criterion, or first attempt
to find models that are similar to models found in earlier iterations.

Applied to FPA. Since our FP approximations are again formulated using FP
semantics, any solver for FPA can be used for Approximate Model Construc-
tion. In our implementation, the lifted constraints φ̂ of ˆTF s,e are encoded in
bit-vector arithmetic, and then bit-blasted and solved using a SAT solver. The
encoding of a particular function or predicate symbol uses the precision argu-
ment to determine the floating-point domain of the interpretation. This kind of
approximation reduces the size of the encoding of each operation, and results in
smaller problems handed over to the SAT solver. An example of theory-specific
optimisation of the model search is to look for models where no rounding occurs
during the calculation.

Approximations for Model Construction 353

Algorithm 1. Model reconstruction

1 (m,h) := extract Tstructure(m̂);

2 lits := extract asserted literals(m̂, β̂, φ̂);
3 for l ∈ lits do

4 (m,β) := extend model(l, β, h, β̂, m̂) ;
5 end

6 complete(β, β̂);
7 return (m,β);

5.2 Reconstructing Precise Models

In the model reconstruction phase, our procedure attempts to produce a model
(m,β) for the original formula φ from an approximate model (m̂, β̂) obtained by
solving φ̂. Since we consider arbitrary approximations (which might be neither
over- nor under-), this translation is non-trivial; for instance, approximate and
precise operations might exhibit different rounding behavior. In practice, it might
still be possible to ‘patch’ approximate models that are close to real models,
avoiding further refinement iterations.

First, note that by definition it is possible to embed a T -structure m in m̂; the
structure m and the embedding h are retrieved from m̂ via extract Tstructure

in Alg. 1. The structure m and h will be used to evaluate φ using values from β̂.
The function extract asserted literals determines a set lits of literals in

φ̂ that are true under (m̂, β̂), such that the conjunction
∧
lits implies φ̂. For

instance, if φ̂ is in CNF, one literal per clause can be selected that is true under
(m̂, β̂). Any pair (m,β) that satisfies the literals in lits will be a T -model of φ.

The procedure then iterates over lits , and successively constructs a valua-
tion β : X → U such that (m,β) satisfies all selected literals, and therefore is a
model of φ (extend model). During this loop, we assume that β is a partial valu-
ation and only defined for some of the variables in X . We use the notation β ↑ h
to lift β from m to m̂, setting all precision variables to greatest precision, defined
by

(β ↑ h)(x) =

{
Î(ω) if x ∈ Xp

h(β(x)) otherwise .

The precise implementation of extend model is theory-specific. In general,
the function first attempts to evaluate a literal l as valm̂,β↑h(l). If this fails,
the valuation β has to be extended, for instance by including values β̂(x) for
variables x not yet assigned in β.

After all literals have been successfully asserted, β may be incomplete, so we
complete it by mapping value assignments from β̂ and return the model (m,β).
Note, that if all the asserted literals already have maximum precision assigned
then, by Lemma 2, model reconstruction cannot fail.

Applied to FPA. The function extract Tstructure is trivial for our FPA ap-
proximations, since m and m̂ coincide for the sort sf of FP numbers. Further,

354 A. Zeljić, C.M. Wintersteiger, and P. Rümmer

by approximating FPA using smaller domains of FP numbers, all of which are
subsets of the original domain, reconstruction of models is easy in some cases
and boils down to padding the obtained values with zero bits. The more diffi-
cult case concerns literals with rounding in approximate FP semantics, since a
significant error emerges when the literal is re-interpreted using higher-precision
FP numbers. A useful optimization is special treatment of equalities x = t in
which one side is a variable x not assigned in β, and all right-hand side variables
are assigned. In this case, the choice β(x) := val m̂,β↑h(t) will satisfy the equa-
tion. Use of this heuristic partly mitigates the negative impact of rounding in
approximate FP semantics, since the errors originating in the (m̂, β̂) will not be
present in (m,β). The heuristic is not specific to the floating-point theory, and
can be carried over to other theories as well.

5.3 Approximation Refinement

The overall goal of the refinement scheme outlined in Fig. 1 is to find a model
of the original constraints using a series of approximations defined by precision
assignments γ. We usually want γ to be as small as possible in the partial order
of precision assignments, since approximations with lower precision can be solved
more efficiently. During refinement, the precision assignment is adjusted so that
the approximation of the problem in the next iteration is closer to full semantics.
Intuitively, this increase in precision should be kept as small as possible, but as
large as necessary. Note that two different refinement procedures are required,
depending on whether an approximation is satisfiable or not. We refer to these
procedures as Model- and Proof-guided Approximation Refinement, respectively.

Model-Guided Approximation Refinement is performed after obtaining a
model (m̂, β̂) of φ̂, together with a reconstructed model (m,β) that does not sat-
isfy φ. We use the procedure described in Alg. 2 for adjusting γ in this situation.
Since the model reconstruction failed, there are literals in φ̂ which are critical
for (m̂, β̂), in the sense that they are satisfied by (m̂, β̂) and required to satisfy
φ̂, but are not satisfied by (m,β). Such literals can be identified through evalu-
ation with both (m̂, β̂) and (m,β) (choose critical literals), and can then
be traversed, evaluating each sub-term under both structures. If a term g(cl, t̄)
is assigned different values in the two models, it witnesses discrepancies between
precise and approximate semantics; in this case, an error is computed using the
error function, mapping to some suitably defined error domain (e.g., the real
numbers � for errors represented numerically). The computed errors are then
used to select those operations whose precision argument cl should be assigned
a higher value.

Depending on refinement criteria, the rank terms function can be imple-
mented in different ways. For example, terms can be ordered according to the
absolute error which was calculated earlier; if there are too many terms to refine,
only a certain number of them will be selected for refinement. An example of a
more complex criterion follows:

Approximations for Model Construction 355

Algorithm 2. Model-guided Approximation Refinement

1 lits := choose critical literals(m̂, β̂, β, φ̂);
2 for l ∈ lits do
3 for g(cl, t̄) ∈ ordered subterms(l) do
4 if valm̂,β̂(g(cl, t̄)) �= val m̂,β↑h(g(ω, t̄)) then

5 Δ(cl) := error(val m̂,β̂(g(cl, t̄)), valm̂,β↑h(g(ω, t̄));

6 end

7 end

8 end
9 chosenTerms := rank terms(Δ);

10 γ := refine(γ, chosenTerms);

Error-based selection aims at refining the terms introducing the greatest im-
precision first. The absolute error of an expression is determined by the errors
of its sub-terms, and the error introduced by approximation of the operation
itself. By calculating the ratio between output and input error, refinement tries
to select those operations that cause the biggest increase in error. If we assume
that theory T is some numerical theory (i.e., it can be mapped to reals in a
straightforward manner), then we can define the error function (in Alg. 2) as
absolute difference between its arguments. Then Δ(cl) represents the absolute
error of the term g(cl, t̄). This allows us to define the relative error δ(cl) of the
term g(cl, t̄) in the following way:

δ(cl) =
Δ(cl)

|val m̂,β↑h(g(ω, t̄))|
Similar measures can be defined for non-numeric theories.

Since a term can have multiple sub-terms, we calculate the average relative
input error; alternatively, minimum or maximum input errors could be used. We
obtain a function characterizing increase in error caused by an operation:

errInc(cl) =
δ(cl)

1 + 1
kΣ

k
i=1δ(cl.i)

,

where g(cl, t̄) represents the term being ranked. The function rank terms then
selects terms g(cl, t̄) with maximum error increase errInc(cl).

Applied to FPA. The only difference to the general case is that we define rela-
tive error δ(cl) to be +∞ if a special value (±∞, NaN) from (m̂, β̂) turns into a
normal value under (m,β). Our rank terms function ignores terms which have
an infinite average relative error of sub-terms. The refinement strategy will pri-
oritize the terms which introduce the largest error, but in the case of special
values it will refine the first imprecise terms that are encountered (in bottom
up evaluation), because once the special values occur as input error to a term
we have no way to estimate its actual error. After ranking the terms using the
described criteria rank terms returns the top 30% highest ranked terms. The
precision of chosen terms is increased by a constant value.

356 A. Zeljić, C.M. Wintersteiger, and P. Rümmer

Proof-Guided Approximation Refinement. When no approximate model
can be found, some theory solvers may still provide valuable information why
the problem could not be satisfied; for instance, proofs of unsatisfiability or
unsatisfiable cores. While it may be (computationally) hard to determine which
variables absolutely need to be refined in this case (and by how much), in many
cases a tight estimate is easy to compute. For instance, it is possible to increase
the precision of all variables appearing in the literals of an unsatisfiable core.

6 Experimental Evaluation

To assess the efficacy of our method, we present results of an experimental eval-
uation obtained through an implementation of the approximation using smaller
floating-point numbers. We implemented this approach as a custom tactic [23]
within the Z3 theorem prover [22]. All experiments were performed on Intel Xeon
2.5 GHz machines with a time limit of 1200 sec and a memory limit of 2 GB. The
symbols T/O and M/O indicate that the time or the memory limit were exceeded.

Implementation Details. For the sake of reproducibility of our experiments, we
note that our implementation starts with an initial precision mapping γ that
limits the precision of all floating-point operations to s = 3 significand and
e = 3 exponent bits. Upon refinement, operations receive an increase in precision
that represents 20% of the width of the full precision. We do not currently
implement any sophisticated proof-guided approximation refinement, but simply
increase the precision of all operations by a constant when an approximation is
determined unsatisfiable.

Evaluation. Our benchmarks are taken from a recent evaluation of the ACDCL-
based MathSAT, by Brain et al. [2]. This benchmark set contains 213 bench-
marks, both satisfiable and unsatisfiable ones. The benchmarks originate from
verification problems of C programs performing numerical computations, where
ranges and error bounds of variables and expressions are verified; other bench-
marks are randomly generated systems of inequalities over bounded floating-
point variables. We compare against Z3 and MathSAT.

Table 1. Evaluation Statistics

Z3 MathSAT Approx.

SAT 76 76 86
UNSAT 56 76 46

The results we obtain are briefly
summarized in Table 1, which shows
that our approximation solves more
satisfiable instances than other solvers,
but the least number of unsatisfiable
problems. This is expected, as our ap-
proximation scheme does not yet in-
corporate any specialized refinement techniques for unsatisfiable formulas. Fig. 2
provides more detailed results, which show that on satisfiable formulas, our ap-
proach is about one order of magnitude faster than Z3. In comparison to Math-
SAT, the picture is less clear (right side of Fig. 2): while our approximation
solves a number of satisfiable problems that are hard for MathSAT, it requires
more time than MathSAT on other problems.

Approximations for Model Construction 357

0.01

0.1

1

10

100

T/O

M/O

0.01 0.1 1 10 100 T/O M/O

S
m
a
ll
fl
o
a
t
A
p
p
ro
x
im

a
ti
o
n

Z3

×
×

×

×
××

×
×

×

××
×

×
×

×

×
××

×
××××

×××××

××

×
×

×

×
×

×

×
×
×

×
×

×

×
××

×
×
×

××

×
××

×

×
×

×

×

×
×

×

××
×
××××

×

×
×

××
×

×
××
××
××
×

×

×
×
×

×

××
×

×

×
×

×

0.01

0.1

1

10

100

T/O

M/O

0.01 0.1 1 10 100 T/O M/O

S
m
a
ll
fl
o
a
t
A
p
p
ro
x
im

a
ti
o
n

MathSAT

×
×

×

×
××

×
×

×

××
×

×
×

×

×
××

×
××××

× ××× ×

××

×
×

×

×
×

×

×
×
×

×
×

×

×
××

×
×
×

× ×

×
× ×

×

×
×

×

×

×
×

×

××
×

××××

×

×
×

××
×

×
× ×

××
××

×

×

×
×

×

×

××
×

×

×
×

×

Fig. 2. Comparisons of our method with other tools (on satisfiable instances)

Overall, it can be observed that our approximation method leads to significant
improvements in solver performance, especially where satisfiable formulas are
concerned. Our method exhibits complementary performance to the ACDCL
procedure in MathSAT; one of the aspects to be investigated in future work is a
possible combination of the two methods, using an ACDCL solver to solve the
constraints obtained through approximation with our procedure.

7 Conclusion

We present a general method for efficient model construction through the use
of approximations. By computing a model of a formula interpreted in suitably
approximated semantics, followed by reconstruction of a genuine model in the
original semantics, scalability of existing decision procedures is improved for
complex background theories. Our method uses a refinement procedure to in-
crease the precision of the approximation on demand. Finally, we show that
an instantiation of our framework for floating-point arithmetic shows promising
results in practice and often outperforms state-of-the-art solvers.

We plan to further extend the procedure presented here, in particular con-
sidering other theories, other approximations, and addressing the case of un-
satisfiable constraints. Furthermore, it is possible to solve approximations with
different precision assignments in parallel, and use the refinement information
from multiple models (or proofs) simultaneously. Increases in precision may then
be adjusted based on differences in precision between models, or depending on
the runtime required to solve each of the approximations.

Acknowledgments. We would like to thank Alberto Griggio for assistance
with MathSAT and help with the benchmarks in our experiments, as well as the
anonymous referees for insightful comments.

358 A. Zeljić, C.M. Wintersteiger, and P. Rümmer

References

1. Boldo, S., Filliâtre, J.-C., Melquiond, G.: Combining Coq and Gappa for certifying
floating-point programs. In: Carette, J., Dixon, L., Coen, C.S., Watt, S.M. (eds.)
MKM 2009, Held as Part of CICM 2009. LNCS, vol. 5625, pp. 59–74. Springer,
Heidelberg (2009)

2. Brain, M., D’Silva, V., Griggio, A., Haller, L., Kroening, D.: Deciding floating-point
logic with abstract conflict driven clause learning. In: FMSD (2013)

3. Brillout, A., Kroening, D., Wahl, T.: Mixed abstractions for floating-point arith-
metic. In: FMCAD. IEEE (2009)

4. Brummayer, R., Biere, A.: Effective bit-width and under-approximation. In:
Moreno-Dı́az, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2009.
LNCS, vol. 5717, pp. 304–311. Springer, Heidelberg (2009)

5. Bryant, R.E., Kroening, D., Ouaknine, J., Seshia, S.A., Strichman, O., Brady, B.A.:
Deciding bit-vector arithmetic with abstraction. In: Grumberg, O., Huth, M. (eds.)
TACAS 2007. LNCS, vol. 4424, pp. 358–372. Springer, Heidelberg (2007)

6. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS,
vol. 7795, pp. 93–107. Springer, Heidelberg (2013)

7. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, Springer, Heidelberg (2000)

8. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: The ASTREÉ analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp.
21–30. Springer, Heidelberg (2005)

9. Daumas, M., Melquiond, G.: Certification of bounds on expressions involving
rounded operators. ACM Trans. Math. Softw. 37(1) (2010)

10. D’Silva, V., Haller, L., Kroening, D.: Abstract conflict driven learning. In: POPL.
ACM (2013)

11. D’Silva, V., Haller, L., Kroening, D., Tautschnig, M.: Numeric bounds analysis with
conflict-driven learning. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS,
vol. 7214, pp. 48–63. Springer, Heidelberg (2012)

12. Gao, S., Kong, S., Clarke, E.M.: dReal: An SMT solver for nonlinear theories over
the reals. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 208–214.
Springer, Heidelberg (2013)

13. Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfiability
modulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643,
pp. 306–320. Springer, Heidelberg (2009)

14. Giunchiglia, F., Walsh, T.: A theory of abstraction. Artif. Intell. 57(2-3) (1992)
15. Harrison, J.: Floating point verification in HOL Light: the exponential function.

TR 428, University of Cambridge Computer Laboratory (1997), available on the
Web as http://www.cl.cam.ac.uk/~jrh13/papers/tang.html

16. Harrison, J.: Handbook of Practical Logic and Automated Reasoning. Cambridge
University Press (2009)

17. IEEE Comp. Soc.: IEEE Standard for Floating-Point Arithmetic 754-2008 (2008)
18. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with coun-

terexample guided refinement. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012.
LNCS, vol. 7317, pp. 114–128. Springer, Heidelberg (2012)

19. Khanh, T.V., Ogawa, M.: SMT for polynomial constraints on real numbers. In:
TAPAS. Electronic Notes in Theoretical Computer Science, vol. 289 (2012)

http://www.cl.cam.ac.uk/~jrh13/papers/tang.html

Approximations for Model Construction 359

20. Lapschies, F., Peleska, J., Gorbachuk, E., Mangels, T.: SONOLAR SMT-solver.
In: Satisfiability Modulo Theories Competition; System Description (2012)

21. Melquiond, G.: Floating-point arithmetic in the Coq system. In: Conf. on Real
Numbers and Computers. Information & Computation, vol. 216. Elsevier (2012)

22. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

23. de Moura, L., Passmore, G.O.: The strategy challenge in SMT solving. In:
Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics.
LNCS, vol. 7788, pp. 15–44. Springer, Heidelberg (2013)

A Tool That Incrementally Approximates Finite
Satisfiability in Full Interval Temporal Logic�

Rüdiger Ehlers1,2 and Martin Lange1

1 School of Electrical Engineering and Computer Science, University of Kassel, Germany
2 University of Bremen and DFKI GmbH, Bremen, Germany

Abstract. Interval Temporal Logic (ITL) is a powerful formalism to reason
about sequences of events that can occur simultaneously and in an overlapping
fashion. Despite its importance for various application domains, little tool support
for automated ITL reasoning is available, possibly also owed to ITL’s undecid-
ability.

We consider bounded satisfiability which approximates finite satisfiability and
is only NP-complete. We provide an encoding into SAT that is designed to use
the power of modern incremental SAT solvers. We present a tool that tests an ITL
specification for finite satisfiability.

1 Introduction

Propositional Interval Temporal Logic (ITL) [13,9] is a modal logic that is interpreted
over interval structures which enrich the natural numbers with propositional evaluations
of all its intervals. Its modalities are obtained from Allen’s relations on intervals [1].
Thus, it can make assertions like “every right-neighbouring interval contains an interval
which . . . ” etc.

Despite many claims about the importance of ITL in various areas like hardware
verification, A.I. planning etc., there is little tool support for automatically checking
the satisfiability of an ITL formula. On one hand this may be caused by ITL’s unde-
cidability. This issue has been studied extensively together with questions regarding the
expressive power and axiomatisability of ITL and its fragments, naturally obtained by
restricting it to a subset of Allen’s interval relations [10,12,11]. The complexity of their
satisfiability problems varies between NP and undecidability depending on the combi-
nation of relations chosen.

There is an implementation of a tableau-based procedure [5] for the Right Neigh-
bourhood fragment only. This is quite a weak fragment featuring a single modality
only. The same fragment has also been targeted with an approach based on evolution-
ary algorithms [4]. This constitutes a sound but incomplete approximation method for
the finite satisfiability problem, i.e. the question of whether or not a formula is satisfied
by an interval structure based on a finite prefix of the natural numbers.

Approximative solutions can help to tackle difficult (like undecidable or just very
hard) problems. One such method that is particularly successful in the area of hard-
ware verification is bounded model checking [7]. It approximates a PSPACE-hard model
� The European Research Council has provided financial support under the European Commu-

nity’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement no 259267.

S. Demri, D. Kapur, and C. Weidenbach (Eds.): IJCAR 2014, LNAI 8562, pp. 360–366, 2014.
c© Springer International Publishing Switzerland 2014

A Tool That Incrementally Approximates Finite Satisfiability 361

checking problem through successive calls to a problem in NP, i.e. one that easily re-
duces to the satisfiability problem for propositional logic (SAT). It has been shown that
such approximations can also yield useful approaches to even undecidable problems
[2].

Here we report on an implementation of a similar method for the finite satisfiability
problem for ITL. We show how to encode the problem of deciding whether or not a
given ITL formula ϕ has a model of length k by a propositional formula of size polyno-
mial in |ϕ| and |k|. The approximation then iterates through increasing lengths k, thus
being able to report satisfiability but not unsatisfiability. The encoding is incremental,
i.e. the SAT formula for length k + 1 can be obtained using the SAT formula for length
k as starting point and does not have to be computed from scratch. This approach bears
the following advantages.

– It aims at efficiency by using modern SAT solvers and thus benefits from develop-
ments in this area.

– It covers the entire ITL unlike the few implementations described above.
– It is extensible; further logical operators like those of the Duration Calculus [6] or

CDT [15] could easily be integrated into the encoding.

2 Interval Temporal Logic

As usual, we write [i, j] when i ≤ j for the interval of natural numbers between i and j
inclusively. For an n ∈ N let I(n) = {[i, j] | 0 ≤ i ≤ j < n} be the set of all intervals
with upper bound less than n. Let P = {p, q, . . .} be a set of atomic propositions. A
(finite) interval structure (over P) is a pair I = (n, ϑ) with n ∈ N and ϑ : I(n) → 2P .
We call n the length of the interval structure I.

There are twelve relations on intervals over a linear order, known as Allen’s relations
[1], which describe their relative position on this linear order. Here we consider four of
them defined by [i, j] B [i′, j′] iff i = i′ ∧ j′ < j (“started-by”); [i, j] E [i′, j′] iff
i < i′ ∧ j′ = j (“finished-by”); as well as their inverses B̄ and Ē where [i, j] r̄ [i′, j′]
iff [i′, j′] r [i, j].

Formulas of ITL in positive normal form over the set P of atomic propositions are
given by the following grammar.

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈r〉ϕ | [r]ϕ

where p ∈ P and r ∈ {B, B̄, E, Ē}.
We use usual Boolean abbreviations like ⊥ := p ∧ ¬p and � := p ∨ ¬p for some p.

Modal operators for the other eight Allen relations are definable via 〈A〉ϕ := ([E]⊥ ∧
〈B̄〉ϕ) ∨ 〈E〉([E]⊥ ∧ 〈B̄〉ϕ) (“meets”); 〈D〉ϕ := 〈B〉〈E〉ϕ (“contains”); 〈L〉ϕ :=
〈A〉〈E〉ϕ (“before”); 〈O〉ϕ := 〈E〉〈B̄〉ϕ (“overlaps”) and similarly for their inverses.

The set Sub(ϕ) of subformulas of ϕ is defined as usual. We measure the size of a
formula ϕ in terms of the number of its different subformulas: |ϕ| := |Sub(ϕ)|.

362 R. Ehlers and M. Lange

An ITL formula ϕ is interpreted in an interval [i, j] of a finite interval structure
I = (n, ϑ) as follows [9].

I, [i, j] |= p iff p ∈ ϑ([i, j])

I, [i, j] |= ¬p iff p
∈ ϑ([i, j])

I, [i, j] |= ϕ ∧ ψ iff I, [i, j] |= ϕ and I, [i, j] |= ψ

I, [i, j] |= ϕ ∨ ψ iff I, [i, j] |= ϕ or I, [i, j] |= ψ

I, [i, j] |= 〈r〉ϕ iff there is [i′, j′] ∈ I(n) s.t. [i, j]r[i′, j′] and I, [i′, j′] |= ϕ

I, [i, j] |= [r]ϕ iff for all [i′, j′] ∈ I(n) with [i, j]r[i′, j′] we have I, [i′, j′] |= ϕ

The finite satisfiability problem for ITL is defined as follows. Given an ITL formula
ϕ, decide whether or not there is a finite interval structure I = (n, ϑ) and an interval
[i, j] ∈ I(n) such that I, [i, j] |= ϕ. A formula that has a model in the above sense is
said to be finitely satisfiable.

3 Approximating Finite Satisfiability

We develop the notion of bounded ITL satisfiability which approximates finite satisfia-
bility. To keep the presentation short we work with the minimal set of modal operators
introduced above. For efficiency purposes it may be useful to treat the other operators
as basic and not as abbreviations; this is done for instance in the implementation that is
reported on in the next section.

Definition 1. Let n ≥ 1. An ITL formula ϕ is said to be n-bounded satisfiable if there
is a finite interval structure I = (n, ϑ) such that I, [0, 0] |= ϕ. The n-bounded satis-
fiability problem is to decide, given an ITL formula ϕ, whether or not it is n-bounded
satisfiable.

First note that ϕ is finitely satisfiable iff there is a finite interval structure I such that
I, [0, 0] |= Somewhere(ϕ) with Somewhere(ϕ) := ϕ ∨ 〈B̄〉(ϕ ∨ 〈E〉ϕ). Thus, when
determining finite satisfiability it is possible to restrict the attention to satisfaction in the
interval [0, 0] at the cost of extending the input formula by 4 additional subformulas.
Then we get that ϕ is finitely satisfiable iff Somewhere(ϕ) is n-bounded satisfiable for
some n ≥ 1.

Note that n-bounded satisfiability is neither monotone nor antitone in n. Consider
ϕ2 := 〈B〉〈B〉� ∧ [B][B][B]⊥. The first conjunct is satisfied in an interval of the form
[i, j] when j ≥ i + 2, the second one requires j ≤ i + 2. Thus, it is only satisfied by
intervals of length 2. Then 〈A〉(ϕ2∧[B̄]⊥) is 3-bounded satisfiable but neither 2- nor 4-
bounded satisfiable. This is an important observation for the design of a procedure that
successively approximates finite satisfiability by bounded satisfiability for increasing
bounds. It means that one has to increase by steps of 1 for the procedure to be complete.

Let n ≥ 1 be fixed. We reduce the n-bounded ITL satisfiability problem to the
propositional satisfiability problem as follows. Given an ITL formula ϕ we construct a
finite set Cn

ϕ := {Xϕ
0,0} ∪ Pn

ϕ ∪ T n
ϕ of propositional formulas which is satisfiable iff

ϕ is n-bounded satisfiable. The elements of Pn
ϕ :=

⋃n−1
i=0

⋃n−1
j=i Pn

ϕ(i, j) are called the

A Tool That Incrementally Approximates Finite Satisfiability 363

main constraints, and those of T n
ϕ are called temporary constraints. This distinction is

necessary to make the encoding incremental, to be explained in detail below.
Cn
ϕ is defined over the set of atomic propositions {Xψ

i,j}0≤i≤j≤n,ψ∈Sub(ϕ). Intu-

itively, a variable Xψ
i,j expresses that ψ is satisfied by [i, j] in the interval structure

of length n that is represented by a model of Cn
ϕ .

Each main constraint in Pn
ϕ(i, j) is associated with a subformula of ϕ as follows.

¬p X¬p
i,j → ¬Xp

i,j

ψ1 ∧ ψ2 Xψ1∧ψ2

i,j → Xψ1

i,j

Xψ1∧ψ2

i,j → Xψ2

i,j

ψ1 ∨ ψ2 Xψ1∨ψ2

i,j → Xψ1

i,j ∨ Xψ2

i,j

〈B〉ψ X
〈B〉ψ
i,j →

∨j−1
k=i X

ψ
i,k

〈B̄〉ψ X
〈B̄〉ψ
i,j → Xψ

i,j+1 ∨ X
〈B̄〉ψ
i,j+1

〈E〉ψ X
〈E〉ψ
i,j →

∨j
k=i+1 Xψ

k,j

〈Ē〉ψ X
〈Ē〉ψ
i,j →

∨i−1
k=0 Xψ

k,j

[B]ψ X
[B]ψ
i,j → Xψ

i,k, k = i, . . . , j−1

[B̄]ψ X
[B̄]ψ
i,j → Xψ

i,k, k = j+1, . . . , n−1

[E]ψ X
[E]ψ
i,j → Xψ

k,j , k = i+1, . . . , j

[Ē]ψ X
[Ē]ψ
i,j → Xψ

k,j , k = 0, . . . , i−1

Each of them is defined by case distinction on the type of the corresponding subformula.
For every subformula of the form in the left column,Pn

ϕ(i, j) contains all the constraints
given in the corresponding right column.

The temporary constraints in T n
ϕ are defined to be {¬X

〈B̄〉ψ
i,n | 0 ≤ i < n, 〈B̄〉ψ ∈

Sub(ϕ)}. Note that these variables describe the truth value of subformulas on intervals
that do not exist with the currently considered length of an interval structure. They are
used in the permanent constraints in order to make the encoding for the 〈B̄〉-operators
incremental. Since these intervals do not exist, these variables are forced to be false by
the temporary constraints. When increasing the length of considered interval structures,
the temporary constraints are deleted and more permanent constraints are being used to
describe the truth values of these new intervals of the form [i, n] for i ≤ n.

Theorem 2. For all ITL formulas ϕ and all n ≥ 1 we have that ϕ is n-bounded satis-
fiable iff Cn

ϕ is satisfiable.

The proof is standard and therefore omitted. The following estimation on the size of
Cn
ϕ is also easy to verify.

Lemma 3. Cn
ϕ contains O(|ϕ| · n2) many variables and is of size O(|ϕ| · n3).

Also note that Cn
ϕ consists of propositional clauses and can therefore be given to a

SAT solver as it is. Modern SAT solvers support incremental solving meaning that, as
long as in between runs of the solver only clauses are added, the next solving process
can re-use information gathered in the last one like learnt clauses etc. [8]. Solvers such
as picosat [3], which we use in the tool described here can do so even if some vari-
able values are assumed, and satisfiability checking is only performed for assignments
that respect these values. Note that all clauses in T n

ϕ are single-literal clauses and can
thus be used as variable value assumptions during solving.

In order to benefit from incremental SAT solving we need to explain how Cm
ϕ can be

obtained from Cn
ϕ for m > n adding minimal sets of clauses. Because of the remark on

non-monotonicity of bounded ITL satisfiability made at the beginning of this section

364 R. Ehlers and M. Lange

it makes sense to consider the case of m = n + 1 only. The next lemma stating the
possibility of using this encoding incrementally is also easily verified. It is straight-
forward to extend it to the case of m > n + 1.

Lemma 4. For all n ≥ 1 we have Cn+1
ϕ = (Cn

ϕ \ T n
ϕ) ∪

(n⋃
i=0

Pn+1
ϕ (i, n)

)
∪ T n+1

ϕ .

Thus, Cn+1
ϕ can be constructed from Cn

ϕ by removing the temporary constraints (of a
cardinality that is linear in n), and then adding a quadratic number of constraints to it.
This is asymptotically better than building Cn+1

ϕ from scratch which would take cubic
time in n.

Based on Theorem 2 and Lemma 4 we can devise a simple approximation scheme
that tests an ITL formula for finite satisfiability.

procedure ITLFINSATTEST(ϕ)
n ← 0
C ← {Xϕ

0,0}
repeat

n ← n+ 1
C ← C ∪

(⋃n−1
i=0 Pn

ϕ(i, n− 1)
)

until C is satisfiable assuming all assignment in T n
ϕ to hold

extract a model for ϕ of size n from a satisfying propositional assignment
end procedure

Completeness of this approximation is a direct consequence of the fact that it sym-
bolically tests all interval structures of increasing size for being a model for its input
formula. Soundness only holds in the weak sense that this method does not return any
false positives. However, it is not able to detect unsatisfiability, i.e. on unsatisfiable
inputs it simply does not terminate.

Theorem 5 (Completeness). ITLFINSATTEST(Somewhere(ϕ)) terminates on an n-
bounded satisfiable ϕ after at most n iterations of its loop and produces a model for
Somewhere(ϕ).

We remark that ITLFINSATTEST can be made to terminate on fragments of ITL for
which the small model property is known. Such fragments are necessarily decidable. In
such cases it suffices to run the loop up to the maximal size of a minimal model of the
input formula. If none has been found, unsatisfiability can be reported.

4 Experiments

To evaluate the scalability of incremental bounded ITL satisfiability checking using the
ideas described in this paper, we implemented the tool ITLFinSat. It is available for
download at https://github.com/progirep/ITLFinSat. The tool is writ-
ten in C++ and uses the SAT solver picosat v.957 [3] as a library for incremental
solving. The tool is completely single-threaded.

We consider three benchmark cases: an ITL model of the Fischer Mutex protocol
[14], a formalisation of a binary counter, and a classical puzzle as an ITL satisfiability
problem.

https://github.com/progirep/ITLFinSat

A Tool That Incrementally Approximates Finite Satisfiability 365

Table 1. Results of the experiments

benchmark ϕ |ϕ| prop. formula size # prop. variables model size k time
Fischer, n = 2 414 45,441 31,482 10 0.18s
Fischer, n = 3 638 103,987 66,885 12 0.72s
Fischer, n = 4 880 201,650 121,800 14 6.2s
Fischer, n = 5 1140 352,529 201,501 16 311s
chicken puzzle 215 19,705 15,840 9 0.09s
5-bit counter 195 77,028 40,869 17 0.3s
6-bit counter 236 464,168 171,955 33 3.2s
7-bit counter 277 3,178,956 749,529 65 58.9s
8-bit counter 318 24,087,440 3,312,335 129 31m57s

Fischer Protocol. This protocol orchestrates n agents that want to enter some critical
section. Mutual exclusion is achieved through a clever set-wait-and-test phase in which
each agent can indicate their intention to enter by setting a common variable to its
ID, then wait for a while and enter the critical section only if the variable’s value still
equals the agent’s ID. We formalise the possibility for more than one agent to enter their
critical section at the same time as an ITL satisfiability problem, using 4 propositions
for each agent to indicate the state that they are in currently, and n+ 1 propositions for
the common variable’s values. The ITL formula then expresses that at every time the
agents’ states and the variable’s value are unique, and that the agents can only change
states according to the description above, i.e. when the variable’s value allows them to
do so.

Intervals in a model for this formalisation can be seen as durations for how long the
agents need to remain in certain states, and the satisfiability check reveals that mutual
exclusion does not hold when the waiting phase is too short for some agents. Note that
correctness of Fischer’s protocol relies on some phases being longer than others, and
general interval length comparisons are not formalisable in plain ITL. Mutual exclusion
in this protocol does depend on certain intervals being longer than others, though; this
is why the reason for violation in this example would have to be found manually from
the output of the satisfiability test. For the Fischer protocol, we model the question if
for some value of n if for a setting with n processes, all of them can be in their critical
regions at the same time as an ITL formula.

The Chicken Crossing Puzzle. We formulate the classical problem of the farmer trying
to get a fox, a chicken and some corn across the river without ever leaving the chicken
with the fox or the corn unattended on one side. The existence of a solution can naturally
be formalised in ITL using propositions for the locations (i.e. side of the river) of the
four protagonists. The ITL formula states that none of them is on both sides at the same
time, that the farmer can only take one of them across the river at a time, that they are
all on the left side at the beginning and on the right side at the end, etc.

Binary Counter. This benchmark family is used to test the limits of the SAT-based
approach. It formalises the evolution of an n-bit counter using propositions for “the i-th
bit is set/unset on this interval” by stating that the highest bit is unset and afterwards
set, and whenever bit i is set or unset on an interval then this begins with an interval in

366 R. Ehlers and M. Lange

which bit i − 1 is unset and ends in one in which bit i − 1 is set. Moreover, we require
that phases in which some bit is set resp. unset must not overlap. This formula for n bits
is always satisfiable, but its shortest models are of length 2n−1 + 1.

Table 1 presents data collected from satisfiability checks for these benchmarks. All
experiments were carried out on a computer with an Intel i5-3230M CPU running at
2.60GHz. A memory limit of 2GB was never exceeded in our experiments. The table
shows the size of the underlying ITL formula, the size and number of propositional
variables of its SAT encoding when it has been found to be k-bounded satisfiable, the
size k of the model that has been found, and the overall time taken for the satisfiability
check including the encoding and checks at model sizes less than k.

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of the
ACM 26(11), 832–843 (1983)

2. Axelsson, R., Heljanko, K., Lange, M.: Analyzing context-free grammars using an incremen-
tal SAT solver. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir,
A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 410–422. Springer,
Heidelberg (2008)

3. Biere, A.: Picosat essentials. JSAT 4(2-4), 75–97 (2008)
4. Bresolin, D., Jiménez, F., Sánchez, G., Sciavicco, G.: Finite satisfiability of propositional

interval logic formulas with multi-objective evolutionary algorithms. In: FOGA 2013, pp.
25–36. ACM (2013)

5. Bresolin, D., Della Monica, D., Montanari, A., Sciavicco, G.: A tableau system for right
propositional neighborhood logic over finite linear orders: An implementation. In: Galmiche,
D., Larchey-Wendling, D. (eds.) TABLEAUX 2013. LNCS, vol. 8123, pp. 74–80. Springer,
Heidelberg (2013)

6. Chaochen, Z., Hoare, C.A.R., Ravn, A.P.: A calculus of durations. Information Processing
Letters 40(5), 269–276 (1991)

7. Clarke, E.M., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfiability
solving. Formal Methods in System Design 19(1), 7–34 (2001)

8. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.)
SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

9. Halpern, J.Y., Shoham, Y.: A propositional modal logic of time intervals. In: LICS 1986, pp.
279–292. IEEE (1986)

10. Hodkinson, I.M., Montanari, A., Sciavicco, G.: Non-finite axiomatizability and undecidabil-
ity of interval temporal logics with C, D, and T. In: Kaminski, M., Martini, S. (eds.) CSL
2008. LNCS, vol. 5213, pp. 308–322. Springer, Heidelberg (2008)

11. Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: Expressiveness of the interval
logics of allen’s relations on the class of all linear orders: Complete classification. In: IJCAI
2011, pp. 845–850. AAAI (2011)

12. Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: Interval temporal logics: a
journey. Bulletin of the EATCS 105 (2011)

13. Moszkowski, B.: Reasoning about digital circuits. Ph.D. thesis, Stanford Univ (1983)
14. Peterson, G.L., Fischer, M.J.: Economical solutions to the critical section problem in a dis-

tributed system. In: STOC 1977, pp. 91–97. ACM (1977)
15. Venema, Y.: A modal logic for chopping intervals. Journal of Logic and Computation 1(4),

453–476 (1991)

StarExec: A Cross-Community
Infrastructure for Logic Solving�

Aaron Stump1, Geoff Sutcliffe2, and Cesare Tinelli1

1 Department of Computer Science, The University of Iowa, Iowa City, IA, USA
2 Department of Computer Science, University of Miami, Miami, FL, USA

Abstract. We introduce StarExec, a public web-based service built to facilitate
the experimental evaluation of logic solvers, broadly understood as automated
tools based on formal reasoning. Examples of such tools include theorem provers,
SAT and SMT solvers, constraint solvers, model checkers, and software verifiers.
The service, running on a compute cluster with 380 processors and 23 terabytes
of disk space, is designed to provide a single piece of storage and computing in-
frastructure to logic solving communities and their members. It aims at reducing
duplication of effort and resources as well as enabling individual researchers or
groups with no access to comparable infrastructure. StarExec allows community
organizers to store, manage and make available benchmark libraries; competition
organizers to run logic solver competitions; and community members to do com-
parative evaluations of logic solvers on public or private benchmark problems.

1 Introduction

Ongoing breakthroughs in a number of fields depend on continuing advances in the de-
velopment of high-performance automated reasoning tools such as SAT solvers, SMT
solvers, theorem provers, model finders, constraint solvers, rewrite systems, model
checkers, and so on, which we generically refer to here as (logic) solvers. Typically,
application problems are translated into possibly large and complex formal descriptions
(logical formulas, rewrite rules, transition systems, . . .) for these tools to reason about.
Different tradeoffs between linguistic expressiveness and the difficulty of the original
problems have led to the adoption of a variety of reasoning approaches and logical for-
malisms to encode those problems. Distinct research communities have developed their
own research infrastructure to spur innovation and ease the adoption of their solver tech-
nology. This includes standard input/output formats for solvers, e.g., [3, 14]; libraries
of benchmark problems, e.g., [2, 6, 11, 14]; solver execution services, e.g., [12, 13, 15];
and solver competitions, e.g., [1, 4, 5, 7, 8, 9, 10]. By and large, so far these differ-
ent infrastructures have been developed separately in the various logic communities, at
significant and largely duplicated cost in development effort, equipment and support.

StarExec is a solver execution and benchmark library service aimed at facilitating the
experimental evaluation of automated reasoning tools. It is designed to provide a single
piece of storage and computing infrastructure to all logic solving communities, with the

� Work made possible in large part by the support of the National Science Foundation through
grants 0957438, 1058748, and 1058925.

S. Demri, D. Kapur, and C. Weidenbach (Eds.): IJCAR 2014, LNAI 8562, pp. 367–373, 2014.
c© Springer International Publishing Switzerland 2014

368 A. Stump, G. Sutcliffe, and C. Tinelli

primitive

space

Fig. 1. The StarExec space hierarchy

twofold goal of reducing the effort and resources duplication while also enabling com-
munities and individuals that could not afford developing their own infrastructure. The
service allows community organizers to store, manage and make available benchmark
libraries, competition organizers to run competitions, and individual community mem-
bers to run comparative evaluations of logic solvers on benchmark problems. These ca-
pabilities are accessible through a web browser interface at the StarExec web site which
provides facilities to upload and organize benchmarks and solvers, browse and query
the stored benchmark libraries, run user-selected solvers on user-selected benchmarks,
and view and analyze execution results and statistics.

This paper gives an overview of StarExec, briefly describing its main design, compo-
nents, functionality, and usage, and discusses its current status and further development
plans. For more details on the service and its usage, we refer the reader to the online
documentation on the StarExec web site: http://www.starexec.org .

2 Main Concepts

StarExec is built as a service for logic solving communities, groups of logic solver devel-
opers and users such as the SAT, SMT, theorem proving, confluence, model checking,
and software verification communities. In StarExec, a community is a user group ad-
ministered by one or more designated community leaders, users with special privileges
and responsibilities such as accepting new users or uploading and managing bench-
marks and solvers. The system is built on top of a few basic concepts: spaces, users,
solvers, benchmarks, job pairs, jobs, and processors, which are described below.

Spaces. A space is a collection of solvers, benchmarks, jobs, and users—collectively
referred to as primitives—as well as other spaces—also referred to as subspaces. Spaces
are similar to folders in a file system and are the means by which StarExec primitives
are organized (see Figure 1). The subspace hierarchy has a tree structure: each space
other than the root space is contained in exactly one superspace. In contrast, each primi-
tive can be contained in more than one space. The direct subspaces of the root space are
community spaces. Each logic community has one community space which contains,
directly or within subspaces, all benchmarks, solvers, users and jobs in that community.
Spaces can be public or private, locked or unlocked. A public space is visible to all
StarExec users; a private one is visible only to the users contained in it. If a space is
locked no one can copy items out of it. This is useful to store copy-restricted bench-
marks and solvers while still allowing other users to include them in job pairs.

http://www.starexec.org

StarExec: A Cross-Community Infrastructure for Logic Solving 369

Users. A user is a registered and verified person who belongs to at least one com-
munity and is therefore endorsed within the system by a community leader. Every user
has visibility over a set of (sub)spaces and has a set of permissions for each of these
spaces controlling the kind of allowed operations. Users also have leadership over some
spaces. A leader of a space has the full set of permissions over that space. A community
leader is simply the leader of a community space.

Solvers. Solvers are programs that solve logic problems. Specifically, they are Linux
programs that take a text file on standard input and may produce text on standard output.
Solvers can consist of groups of files and folders—as opposed to a single executable.
Each solver is associated with one or more configurations, executable scripts that in-
voke the solver with specific input flags and settings. Configurations and processor
scripts (see below) can be written in any of the scripting languages (Bash, Perl, Python,
and so on) available by default in Linux distributions. A configuration takes as input a
benchmark and feeds it to its solver.

Benchmarks. A benchmark is a single text file. Currently there is no support for
multi-file benchmarks; however, StarExec supports benchmark dependencies, the ref-
erencing of other benchmark files (e.g., TPTP axioms files [14]) within a benchmark.
Each benchmark has a type which consists of a (system-wide) unique name and an
associated benchmark processor.

Jobs and Job Pairs. A job pair consists of a solver configuration and a benchmark to
be run by that configuration. Job pairs are atomic execution units. After execution they
are associated to various pieces of information such as results, CPU time, wall clock
time, etc. A job is simply a collection of job pairs executed or to be executed.

Processors. Processors are executables that take textual input and produce textual
output at certain stages in the job execution pipeline. They are currently of two kinds:
benchmark processors and post-processors. The former are run on benchmarks being
uploaded to a space. They can be used to perform various checks and validations on a
benchmark and to extract meta-data to be stored in a central database. Post-processors
are run on solver output produced by executing a job pair. They can be used to extract
specific data from this output which too are stored in a database for later access.

3 Functionality and Usage

StarExec was designed as a web service accessible through a web browser interface.
Most of the web service functionality is also available through a downloadable client
application, called StarExecCommand. That program provides a command line shell
and a large number of commands mirroring the operations that can be performed via a
web browser. In the following, we focus on the web browser interface.

User Accounts. Using StarExec requires first obtaining a user account. Since every
registered user belongs to at least one of the StarExec communities, every new account
request requires joining one of them (more communities can be joined later). Such
requests are sent to the leaders of the chosen community each of whom has the power
to approve them or not. Communities themselves and community leader users can be
created only by the StarExec administrators. Registered users must log in to StarExec

370 A. Stump, G. Sutcliffe, and C. Tinelli

before being able to use it. External observers can view all public information on the
StarExec website by logging in as the special user guest.

Spaces and Communities. Using an interface similar to that of file explorers in com-
puter desktop GUIs, users can browse the StarExec space hierarchy or, rather, the subset
of it visible to them; view the contents of any spaces they belong to; and inspect details
of users, benchmarks, solvers, and jobs in those spaces. As an example, details about
benchmarks include name, description, owner, upload date, file size, type, and any user-
defined attributes automatically extracted from the benchmark when it was uploaded.
Users can also perform a number of stateful operations on a space depending on the
set of permissions they have on it. These operations may include creating and deleting
subspaces; uploading, copying, linking and deleting benchmarks and solvers; creat-
ing, removing jobs; copying, removing users; making other users leaders; changing the
space’s default permissions; and locking or unlocking the space.

In general, users can copy any visible primitive from an unlocked space to any space
where they have permission to add that kind of primitive. While copy operations are
done uniformly by a drag-and-drop action, their semantics depends on the copied item.
Copying a user U from a space A to a space B amounts to giving U certain permissions
on B. Copying a job J from A to B only creates a link to J in B. Copying a benchmark
or a solver, on the other hand, can be done either way: as an actual copy or just as a link.
All users are by default leaders of the spaces they create. The leaders of a space have
full permissions on that space, which consist in the ability to add/remove primitives and
subspaces as well as make other users space leaders. A space leader can also decide
which set of permissions from the above to grant to regular (i.e., non-leader) users in
the space. For security and integrity reasons, only StarExec administrators can remove
space leaders from a space or demote them to regular users.

Since communities are spaces, users can operate on them as discussed above. How-
ever, users can also browse the communities visible to them, request to join or leave
a community, and download a community’s benchmark processors. Community lead-
ers (i.e., leaders of a community space) can, in addition, set several community-wide
defaults such as timeouts or post-processors for job pairs. They can also upload post-
processors, define benchmark types, and upload their associated processor.

Solvers. StarExec users can add a solver to a space (in which they have the permis-
sion to do so) either by copying/linking the solver from another space or by uploading
it. Solvers must be uploaded as tar archives or compressed tar or zip archives. The
archives can consist of any collection of folders and files but must contain at least one
configuration script—used to establish proper settings and input flags for the solver
and then launch the solver. All configuration scripts must reside in a designated top-
level directory (bin) in the archive and have a name starting with a designated prefix
(starexec run) so that they can be easily identified by the StarExec system.

During a job execution, StarExec will run a configuration script in an environment
with a number of predefined environment variables. Those variables contain such infor-
mation as the absolute path to the benchmark input file, the absolute path to a designated
output directory for the script, and limits on wall clock time, CPU time, memory, and
disk space. Any files written to the output directory during the execution of the script are

StarExec: A Cross-Community Infrastructure for Logic Solving 371

saved by StarExec for later download by the user. Files written elsewhere are removed
after each job run. If a job pair exceeds any of its time or space limits it is terminated.

As with any space item, users can inspect details of any solver visible to them. In
particular, they can view the list and the content of each configuration script. If permit-
ted by the owner of the containing space, they can also download the entire solver and
its configurations as a compressed archive.

Benchmarks. Users can add benchmarks to a space either by copying/linking them
from another space or by uploading an archive file containing benchmarks all of the
same type. The user has the option of (i) recreating the archive’s directory structure as
a space structure in the destination space and place each benchmark in the (sub)space
corresponding to the benchmark’s source (sub)directory, or (ii) simply placing all the
files contained in the archive directly in the destination space. With the first option the
new subspaces take the name of the corresponding subdirectory and all get the same set
of permissions, specified by the user before uploading the archive. All uploaded files are
run through the benchmark processor associated with their type, and are added to their
destination space only if accepted by the processor. An upload status page summarizes
the results of the upload as it progresses and lists all the discarded files, if any.

Benchmark types are global across all communities. They can be created only by
community leaders who must also provide an associated processor. Every benchmark
processor is expected to print for its input benchmark a sequence of lines of the form
key=value where key is an attribute name and value its value. These attribute-value
pairs are stored in StarExec’s database and will be shown later when inspecting the
benchmarks. Most attribute names are user-defined. A predefined attribute, and the only
mandatory one, is starexec-valid. The processor is required to print a pair with that
key and the value true or false depending on whether the benchmark was accepted
by the processor or not. The system will discard the benchmark if the value of this at-
tribute is false. Other predefined but optional attributes allow the processor to specify
dependencies on other benchmarks or an expected result for the benchmark.

Compute Cluster. StarExec compute nodes are partitioned into a number of execution
queues. Each job is submitted to one of these queues. There is a general queue available
to all users. The other queues serve special functions, such as solver competitions, or
are reserved for exclusive use by a community. Only community leaders can request
the creation and the reservation of a queue. A dedicated page on the web server allows
all users to inspect any queue to see pending job pairs for that queue, and inspect any
node in a queue to see currently executing job pairs on that node. To assure result
reproducibility, each job pair is run in isolation on one compute node processor, i.e.,
no two job pairs share the same processor at the same time. To assure a basic level of
security a job pair’s solver is run as a sandboxed user with very limited permissions.

Jobs. Users can create and immediately execute a job in a space. At creation time, they
set execution parameters specifying timeouts, post-processors, and execution queues.
They can choose to have job pairs executed in depth-first or in round-robin fashion. In
the first case, StarExec will execute all job pairs in one subspace before moving on to
the next; in the second, all job pairs in all subspaces will make progress in the execu-
tion concurrently. Users have different ways to generate a job pairs starting from the

372 A. Stump, G. Sutcliffe, and C. Tinelli

root space, the space in which the job is created. For instance, they can instruct the
system to find all subspaces containing solvers and benchmarks, and execute all pos-
sible combinations of those benchmarks and available configurations for those solvers.
Alternatively, users can manually select which benchmarks and solvers to execute. In
that case, they also have different options for how to pair solvers with benchmarks.

After a job has been set up, its job pairs are created automatically and sent to the
specified execution queue. A running job can be monitored by looking at its details
web page, which gets updated in real time with information on how many pairs have
been completed, have been solved, have failed and so on. Specific job pair information
includes its status, final runtimes, and user-defined results. After the job completes,
its page will also provide various statistics in graphical form, such as scatter and cactus
plots. All job data can be also downloaded in real time in CSV format (with one line per
job pair) for off-line analysis, process and visualization. The job’s web page is assigned
a unique, persistent URL that can be used as a reference in publications and the like.

4 Infrastructure and Technologies

The StarExec software infrastructure relies on common web standards and several freely
available software applications and libraries. Almost all of the software developed in-
house for this service is written in Java, with the rest consisting mostly of shell scripts.
We plan to open source the entirety of this software in the near future.

The StarExec hardware infrastructure is located in a dedicated state-of-the-art server
hosting facility at the University of Iowa. The service runs on a Red Hat Fedora com-
pute cluster consisting of 3 head nodes and 190 rack-mounted compute nodes. Each
node has two 4-core 2.4GHz Intel processors with 256GB of RAM and a 1TB hard
drive. Local disk space is used only for caching purposes during job execution. Solvers,
benchmarks and all other persistent data and meta-data are stored centrally in a dual
NetApp network-attached storage system with a capacity of 23TB.

5 Current Status and Future Development

At the time of this writing, StarExec has been used by two public events: the Con-
fluence Competition (CoCo) 2013, which ran in June, 2013; and the SMT Evaluation
(SMT-EVAL) 2013, which ran over several months in 2013. Each event had an execu-
tion queue giving it exclusive access to a subset of the compute nodes. Otherwise, they
had quite different requirements for StarExec. CoCo 2013 ran during a meeting of the
Confluence Workshop, and thus it was very important that the CoCo organizers could
initiate the job and monitor its results live. They used StarExecCommand for this. On
the other hand, their workload was small, just 509 job pairs. In contrast, SMT-EVAL
2013 had a workload of 1,663,478 job pairs, split over four jobs. This meant that oper-
ating at scale was an important criterion for success for SMT-EVAL.

For the FLoC Olympic Games of Summer 2014, many additional events have ex-
pressed interest or made plans to run on StarExec. The latter include the CASC, QBF,
and SMT-COMP competitions. With its basic functionality now in place, we antici-
pate that future developments of the StarExec system and service will be driven by the

StarExec: A Cross-Community Infrastructure for Logic Solving 373

needs of such events or of whole communities. The challenge in adding new features
to meet these needs will be to make them general enough to be potentially useful to
other communities. For example, in some tracks of the Termination Competition, ter-
mination proofs produced by termination checkers for rewriting systems are fed on the
fly to a proof checker. To support this we plan to add to StarExec a general facility for
pipelining tools, something that we expect will be useful to other competitions as well.

Acknowledgements. We would like to thank several people who have contributed in
various capacities to the StarExec project so far. The following people were involved in
the development of the software infrastructure at various stages of the project: E. Burns,
T. Elvers, T. Jensen, W. Kaiser, B. McCune, M. Nassar, CJ Palmer, V. Sardeshmukh,
S. Stark, and R. Zhang. Computer system support and assistance in designing and build-
ing the hardware infrastructure was provided by H. Brown, D. Holstad, J. Tisdale, and JJ
Ulrich. Several people, from user communities and from the StarExec Advisor Board,
provided useful feedback and input. A full list can be found on StarExec website.

References

[1] Barrett, C., Deters, M., de Moura, L., Oliveras, A., Stump, A.: 6 Years of SMT-COMP.
Journal of Automated Reasoning 50(3), 243–277 (2012)

[2] Barrett, C., Stump, A., Tinelli, C.: The Satisfiability Modulo Theories Library (SMT-LIB)
(2010), http://www.SMT-LIB.org

[3] Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. In: Proceedings of
the 8th International Workshop on Satisfiability Modulo Theories (2010)

[4] Beyer, D.: Competition on software verification. In: Flanagan, C., König, B. (eds.) TACAS
2012. LNCS, vol. 7214, pp. 504–524. Springer, Heidelberg (2012)

[5] Biere, A., Claessen, K.: Hardware model checking competition. In: Hardware Verification
Workshop (2010)

[6] Hoos, H., Stützle, T.: SATLIB: An Online Resource for Research on SAT. In: Proceedings
of the 3rd Workshop on the Satisfiability Problem (2001), http://www.satlib.org/

[7] Le Berre, D., Simon, L. (eds.): Special Issue on the SAT 2005 Competitions and Evalua-
tions, vol. 2. JSAT (2006)

[8] Marché, C., Zantema, H.: The termination competition. In: Baader, F. (ed.) RTA 2007.
LNCS, vol. 4533, pp. 303–313. Springer, Heidelberg (2007)

[9] Nieuwenhuis, R.: Special Issue: The CADE ATP System Competition. AI Communica-
tions 15(2-3) (2002)

[10] Peschiera, C., Pulina, L., Tacchella, A., Bubeck, U., Kullmann, O., Lynce, I.: The seventh
QBF solvers evaluation (QBFEVAL’10). In: Strichman, O., Szeider, S. (eds.) SAT 2010.
LNCS, vol. 6175, pp. 237–250. Springer, Heidelberg (2010)

[11] Raths, T., Otten, J., Kreitz, C.: The ILTP Problem Library for Intuitionistic Logic - Release
v1.1. Journal of Automated Reasoning 38(1-2), 261–271 (2007)

[12] Simon, L., Chatalic, P.: SatEx: A Web-based Framework for SAT Experimentation. In: Pro-
ceedings of SAT 2001. ENDM, vol. 9, pp. 129–149 (2001)

[13] Stump, A., Deters, M.: SMT-Exec., http://www.smtexec.org
[14] Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure. The FOF and CNF

Parts, v3.5.0. Journal of Automated Reasoning 43(4), 337–362 (2009)
[15] Sutcliffe, G.: The TPTP World – Infrastructure for Automated Reasoning. In: Clarke, E.M.,

Voronkov, A. (eds.) LPAR-16 2010. LNCS (LNAI), vol. 6355, pp. 1–12. Springer, Heidel-
berg (2010)

http://www.SMT-LIB.org
http://www.satlib.org/
http://www.smtexec.org

Skeptik: A Proof Compression System�

Joseph Boudou1, Andreas Fellner2,3, and Bruno Woltzenlogel Paleo3

1 IRIT, Université de Toulouse, France
joseph.boudou@irit.fr

2 Free University of Bolzano, Italy
fellner.a@gmail.com

3 Vienna University of Technology, Austria
bruno@logic.at

Abstract. This paper introduces Skeptik: a system for checking, com-
pressing and improving proofs obtained by SAT- and SMT-solvers.

1 Introduction

There are various reasons why it is desirable for automated reasoning tools to
output not only a yes or no answer to a problem but also proofs/refutations
or (counter)models. Firstly, state-of-the-art tools are complex and heavily opti-
mized. Their code is often long, hard to understand and difficult to automatically
verify. Consequently, yes/no answers cannot be fully trusted, unless they are ac-
companied by proofs or (counter)models that serve as independently checkable
certificates of their correctness.

Furthermore, for most applications, a yes/no answer is inherently insufficient.
We often already know in advance whether a problem is expected to be satisfiable
or unsatisfiable, and we want more than just a confirmation of this expectation.
For satisfiable formulas, the desired information is encoded in the model; while
for valid formulas, it is contained in the proof. In case the expectation was wrong,
refutations and countermodels can be helpful to explain issues in the encoding of
the problem, in order to correct and refine it. Proofs can been used, for example,
to obtain unsat cores, interpolants and Herbrand disjunctions [12].

Although current automated deduction tools are very efficient at finding
proofs, they do not necessarily find the best proofs (e.g. shortest, least spa-
cious, with smallest core. . . depending on the intended application). The Skeptik
tool (http://github.com/Paradoxika/Skeptik/) finds and eliminates redun-
dancies in proofs, in order to improve and compress them according to various
metrics. It is licensed under a Creative Commons CC-BY-NC-SA License.

Related Work: CERes (http://www.logic.at/ceres) [8] is another proof trans-
formation system, specialized in cut-elimination for sequent calculus. It was
replaced by GAPT (http://code.google.com/p/gapt/) [7], extended with cut-
introduction techniques. MINLOG (http://www.mathematik.uni-muenchen.de/

~logik/minlog/) extracts functional programs from proofs, employing a refined
A-translation.
� Funded by Google Summer of Code 2012 and 2013 and FWF project P24300.

S. Demri, D. Kapur, and C. Weidenbach (Eds.): IJCAR 2014, LNAI 8562, pp. 374–380, 2014.
c© Springer International Publishing Switzerland 2014

http://github.com/Paradoxika/Skeptik/
http://www.logic.at/ceres
http://code.google.com/p/gapt/
http://www.mathematik.uni-muenchen.de/~logik/minlog/
http://www.mathematik.uni-muenchen.de/~logik/minlog/

Skeptik: A Proof Compression System 375

2 Implementation Details

In Skeptik every logical expression is a simply typed lambda expression, im-
plemented by the abstract class E with concrete subclasses Var, App and Abs

for, respectively, variables, applications and abstractions. Scala’s case classes
are used to make E behave like an algebraic datatype with (pattern-matchable)
constructors Var, App and Abs à la functional programming.

Skeptik is flexible w.r.t. the underlying proof calculus. Every proof node is an
instance of the abstract class ProofNode and must contain a judgment of some
concrete subclass of Judgment and a (possibly empty) collection of premises
(which are other proof nodes). A proof is a directed acyclic graph of proof nodes;
it is implemented as the class Proof, which provides higher-order methods for
traversing proofs. Thanks to Scala’s syntax conventions, these methods can be
used as an internal domain specific language that integrates harmoniously with
the Scala language itself. A proof calculus is a collection of inference rules, imple-
mented as concrete subclasses of ProofNode. In particular, the main inference
rules of the propositional resolution calculus used for representing proofs gen-
erated by SAT- and SMT-solvers are Axiom and R (for resolution). They use a
Sequent class (a subclass of Judgment) to represent clauses.

Classes for expressions and proof nodes are small and correctness conditions
(e.g. typing conditions for expressions and the existence of a pivot for a resolu-
tion inference) are checked during object construction. Once constructed, they
cannot be changed, because they are immutable. Therefore, incorrect expressions
and proofs cannot result from the transformations performed by Skeptik. Aux-
iliary functionality is not implemented in the classes but in their homonymous
companion objects. Therefore, even though Skeptik has more than 21000 lines
of code, its most critical core data structures are less than a few hundred lines
long.

3 Supported Proof Formats

Scala’s combinator parsing library makes it easy to implement parsers for various
proof formats. Skeptik uses the extension of a file to determine its proof format.
To export proofs in various formats, Skeptik provides many exporter classes that
extend Java’s java.io.Writer class. Available proof formats are:

TraceCheck Format (“.tc”): The TraceCheck format is one of the three formats
accepted at the Certified Unsat track of the SAT-Competition and is used by
SAT-solvers such as PicoSAT [3]. Each line declares a new clause, specifying
its name (a fresh positive integer), a space separated list of literals (positive or
negative integers, depending on the polarity of the literals), and a list of premises
(other clauses, referred by their names) needed to derive the new clause by
regular input resolution. Zero is used as a delimiter. Figure 1 shows an example.
Other formats accepted at the Certified Unsat track are less detailed and hence
less convenient to be used by tools that post-process proofs. The omission of
premises in the RUP format, for example, throws away information about the

376 J. Boudou, A. Fellner, and B. Woltzenlogel Paleo

⊥

2 −2

1, 2 −1

−1, 2 −2

1,−2

1 1 2 0 0
2 -1 2 0 0
3 -2 0 0
4 1 -2 0 0
5 2 0 1 2 3 0
6 -2 0 2 3 4 0
7 0 5 6

Fig. 1. A proof and its representation in the TraceCheck format

DAG structure of the proofs. Nevertheless, there are tools for converting RUP
proofs to the trace-check format [13].

SMT Proof Format (“.smt2”): Although there is a well-established format for
SMT problems, there is still no agreement on a format for SMT proofs. Skep-
tik supports the format used by veriT [5], which is close in style to SMT-Lib’s
problem format. Other formats could be supported if requested by users. In con-
trast to the TraceCheck format, in veriT’s format, expressions can be arbitrary
first-order terms and formulas and not only propositional variables represented
as integers. The proofs are purely resolution-based at the bottom (closer to the
root) but may contain theory-related and CNF transformation inferences at the
top. This clear separation makes the proofs amenable to propositional resolution
proof compression techniques. Skeptik currently simply ignores non-resolution in-
ferences, but does keep them in the compressed proof it outputs.

Skeptik’s Proof Format (“.s”): Skeptik’s own proof format is a propositional res-
olution proof format meant to be simple and easy to read and write by humans.
Each line either declares a new named subproof or deletes a previously declared
subproof. Axioms are represented as sequents surrounded by curly braces. The
infix resolution operator on subproofs is denoted by the pivot literal surrounded
by square brackets or by a single dot (if there is a single pivot candidate and
its omission is desired). Subproof names and literals can be arbitrary strings of
letters and digits. The last named subproof is considered to be the whole proof.

u = ({ 1 � 2 } [2] { 2 � })
q = (({ � 1, 2 } . u) . (u . { 2 � 1 }))

Fig. 2. The proof from Fig. 1 represented in the Skeptik format

4 Proof Compression Algorithms

One of Skeptik’s essential design goals is ease of implementation, combination and
comparison of proof compression algorithms. This is evidenced by the fact that
most algorithms for the compression of propositional resolution proofs described
in the literature are available in Skeptik. They are shortly described below:

RecyclePivots (RP) [1,2] compresses a proof by partially regularizing it. A proof
is irregular [16] if the resolved literal (pivot) of a resolution proof node is resolved

Skeptik: A Proof Compression System 377

again on the path from this node to the root node. RP finds irregular nodes
efficiently by traversing the proof from the root to the leaves a single time and
memorizing which literals were resolved. When it finds an irregular node, it
marks one of its premises for deletion. In a second traversal, from the leaves
to the root, irregular nodes are replaced by their non-deleted premises. As full
regularization can lead to an exponential blow-up in the proof length [11], it is
important to regularize carefully and only partially. RP achieves this by resetting
the set of literals for a node to the empty set when it has more than one child
(i.e. when it is the premise of more than one node).

RecyclePivotsWithIntersection (RPI) [9] differs from RP in the treatment of a
node with more than one child. Instead of resetting its set of literals to the
empty set, the intersection of the sets of literals incoming from its children is
computed. In this manner, the exponential blow-up is still avoided, but strictly
more irregular nodes are detected and regularized.

LowerUnits (LU) [9] partially eliminates a kind of redundancy that is almost
orthogonal to irregularity. When a node η appears as premise of many resolutions
with the same pivot p, it is desirable to resolve η on p only once instead. This is
not always possible, unless η contains a unit clause (a clause with only the literal
p). LowerUnits reduces redundancy by lowering all unit nodes. The nodes are
removed from their places and reintroduced in the very bottom of the proof, by
resolving them (at most once) with the root of the fixed proof.

LowerUnivalents (LUV) [4] generalizes LowerUnits. By keeping track of nodes
that have already been lowered and their pivots, it becomes possible to lower a
non-unit node if it is univalent : all its literals but one (its so-called valent literal)
can be resolved against the valent literals of the already lowered nodes.

LUVRPI [4] is a non-sequential combination equivalent to the sequential combi-
nation of LUV after RPI and currently provides one of the best trade-offs between
compression time and compression ratio. Non-sequential combinations with LUV

are easy to implement, because LUV has been implemented as a replacement
for the fixProof function used by some algorithms to reconstruct a proof after
deletions.

RPI3LU and RPI3LUV are non-sequential combinations of RPI after LU and LUV,
respectively. They consist of three traversals. The first traversal collects sub-
proofs to be lowered. The second traversal computes the sets of safe literals for
each node, taking into account the subproofs marked for being lowered. The
last traversal actually compresses the proof by removing redundant branches
and lowering subproofs. These algorithm are optimizations of the corresponding
sequential compositions, achieving the same compression ratio in less time.

Reduce&Reconstruct (RR) [15] applies local transformation rules that either elim-
inate local redundancies or shuffle the order of resolution steps (similarly to what
Gentzen’s rank reduction rules do) in order to gradually transform non-local re-
dundancies into local ones. Although the given set of local rules is sufficient to

378 J. Boudou, A. Fellner, and B. Woltzenlogel Paleo

emulate any other compression algorithm, the algorithm may need many traver-
sals to shuffle the order of resolutions steps sufficiently well to eliminate non-local
redundancies. This algorithm can achieve very good compression ratio, if exe-
cuted for long enough. The implementation in Skeptik is very modular, allowing
convenient experimentation with various alternative local transformation rules,
rule application heuristics and termination criteria.

Split [6] lowers pivot variables in a proof. From a proof with conclusion C, two
proofs with conclusions v ∨C and ¬v ∨C are constructed, where the variable v
is chosen heuristically. In a first step the positive/negative premises of resolvents
with pivot v are removed from the proof. Afterwards the proof is fixed, by
traversing it top-down and fixing each proof node. A proof node is fixed by
either replacing it by one of its fixed premises or resolving them. The roots of
the resulting proofs are resolved, using v as pivot, to obtain a new proof of C.
The time-complexity of this algorithm is linear in the proof length, but it has
to be repeated many times to obtain significant compression. This can be done
iteratively or recursively. Also multiple variables can be chosen in advance. All
these variants are implemented in Skeptik.

Tautology Elimination (ET) eliminates proof nodes containing tautological
clauses. Although tautological clauses normally do not occur in proofs gener-
ated by SAT- and SMT-solvers, they may occur in post-processed proofs.

DAGification (D) finds proof nodes having equal clauses and replaces one of them
by the other. Subsumption algorithms generalize DAGification by replacing a
node containing a clause C2 by another node containing a clause C1 if C1 sub-
sumes C2. There are three subsumption-based proof compression algorithms im-
plemented in Skeptik, TopDownSubsumption (TDS), BottomUpSubsumption (BUS)
and RecycleUnits (RU) [2], all with quadratic worst-case complexity.

Pebbling algorithms compress proofs w.r.t. their space, not their length. The
space of a proof is the maximum number of proof nodes that have to be kept
in memory simultaneously, while reading and checking the proof. Minimizing
the space measure is analogous to minimizing the number of pebbles used for
playing the Black Pebbling Game [10] on the DAG of the proof. This is a hard
problem and Skeptik provides many greedy heuristics for reducing space well,
though not optimally. Among them, the fastest and most compressive are some
heuristic variants of the BottomUpPebbler (BUP).

5 Installation and Usage

Skeptik is implemented in Scala and runs on the Java virtual machine (JVM).
Therefore, Java (https://www.java.com/) must be installed. The easiest way to
download Skeptik is via git (http://git-scm.com/), by executing [git clone

git@github.com:Paradoxika/Skeptik.git] in the folder where Skeptik should
be downloaded. It is helpful to install SBT (http://www.scala-sbt.org/), a build

https://www.java.com/
http://git-scm.com/
http://www.scala-sbt.org/

Skeptik: A Proof Compression System 379

tool that automatically downloads all compilers and libraries on which Skeptik de-
pends. To compile, build and package Skeptik, run [sbt one-jar] in Skeptik’s home
folder. This generates an executable jar file. SBT and Scala programs may need a
lot of memory for compilation and execution. If out-of-memory problems occur,
the JVM’s maximum available memory can be increased by executing [export
JAVA TOOL OPTIONS=‘‘-Xmx1024m -Xss4m -XX:MaxPermSize=256m’’].

The command [java -jar skeptik.jar --help] displays a help message ex-
plaining how to use Skeptik. To compress the proof “eq diamond9.smt2” us-
ing the algorithm RPI and write the compressed proof using the ‘smt2’ proof
format, for example, the following command should be executed: [java -jar

skeptik.jar -a RPI -f smt2 examples/proofs/VeriT/eq diamond9.smt2].
Skeptik can be called with an arbitrary number of algorithms and proofs. The
following command would compress the proofs “p1.smt2” and “p2.smt2” with
two algorithms each (RP and a sequential composition of D, RPI and LU):
[java -jar skeptik.jar -a RP -a (D-RPI-LU) p1.smt2 p2.smt2]

Skeptik can also be used as a library of proof data structures and compression
algorithms from within any Java or Scala program. In this manner, communica-
tion via proof files can be avoided.

6 Conclusions and Future Work

Skeptik’s development started around March 2012 and since then it has been
used internally to compare various proof compression algorithms and develop
new ones. Now its wide collection of algorithms is ready to be released to external
users interested in improving the proofs they obtain from SAT- and SMT-solvers.
One particularly successful external use of Skeptik was in interpolation-based
controller synthesis [14]: proofs with millions of nodes have been compressed
by 70% and better interpolants could be extracted from the compressed proof.
Compression ratios varying from 10% to 70% (typically around 20%), depending
on the benchmark and on the employed algorithm, have been observed. The
performance is acceptable; the conveniences of a high-level language such as
Scala outweigh its overheads.

In the near future, parsers for other proof formats for propositional reso-
lution proofs could be easily added if requested by users. Moreover, Skeptik
was designed to be flexible with respect to the underlying proof system. It is
not restricted to propositional resolution. Techniques for compressing natural
deduction proofs are currently being investigated and implemented [18]. Data
structures for sequent calculus proofs are partially available, and techniques
for compressing them [17] could be implemented in Skeptik as well. Many of
the propositional resolution proof compression algorithms could be extended to
first- or even higher-order resolution, by taking extra care of unification. Features
such as the extraction of unsat cores and interpolants could be useful additions
to Skeptik as well.

Acknowledgments. The Vienna Scientific Cluster (http://www.vsc.ac.at)
is regularly used to evaluate Skeptik on thousands of proofs.

http://www.vsc.ac.at

380 J. Boudou, A. Fellner, and B. Woltzenlogel Paleo

References

1. Bar-Ilan, O., Fuhrmann, O., Hoory, S., Shacham, O., Strichman, O.: Linear-time
reductions of resolution proofs. In: Chockler, H., Hu, A.J. (eds.) HVC 2008. LNCS,
vol. 5394, pp. 114–128. Springer, Heidelberg (2009)

2. Bar-Ilan, O., Fuhrmann, O., Hoory, S., Shacham, O., Strichman, O.: Reducing the
size of resolution proofs in linear time. STTT 13(3), 263–272 (2011)

3. Biere, A.: Picosat essentials. Journal on Satisfiability, Boolean Modeling and Com-
putation, JSAT (2008)

4. Boudou, J., Woltzenlogel Paleo, B.: Compression of propositional resolution proofs
by lowering subproofs. In: Galmiche, D., Larchey-Wendling, D. (eds.) TABLEAUX
2013. LNCS, vol. 8123, pp. 59–73. Springer, Heidelberg (2013)

5. Bouton, T., de Oliveira, D.C.B., Déharbe, D., Fontaine, P.: verit: an open, trustable
and efficient smt-solver. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI),
vol. 5663, pp. 151–156. Springer, Heidelberg (2009)

6. Cotton, S.: Two techniques for minimizing resolution proofs. In: Strichman, O.,
Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 306–312. Springer, Heidelberg
(2010)

7. Dunchev, C., Leitsch, A., Libal, T., Riener, M., Rukhaia, M., Weller, D., Woltzen-
logel Paleo, B.: Prooftool: a gui for the gapt framework. In: UITP, pp. 1–14 (2013)

8. Dunchev, T., Leitsch, A., Libal, T., Weller, D., Woltzenlogel Paleo, B.: System
description: The proof transformation system ceres. In: Giesl, J., Hähnle, R. (eds.)
IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 427–433. Springer, Heidelberg (2010)

9. Fontaine, P., Merz, S., Woltzenlogel Paleo, B.: Compression of propositional reso-
lution proofs via partial regularization. In: Bjørner, N., Sofronie-Stokkermans, V.
(eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 237–251. Springer, Heidelberg
(2011)

10. Gilbert, J.R., Lengauer, T., Tarjan, R.E.: The pebbling problem is complete in
polynomial space. SIAM Journal on Computing 9(3), 513–524 (1980)

11. Goerdt, A.: Comparing the complexity of regular and unrestricted resolution. In:
Marburger, H. (ed.) GWAI. Informatik-Fachberichte, vol. 251. Springer (1990)

12. Hetzl, S., Leitsch, A., Weller, D., Woltzenlogel Paleo, B.: Herbrand sequent ex-
traction. In: Autexier, S., Campbell, J., Rubio, J., Sorge, V., Suzuki, M., Wiedijk,
F. (eds.) AISC/Calculemus/MKM 2008. LNCS (LNAI), vol. 5144, pp. 462–477.
Springer, Heidelberg (2008)

13. Heule, M., Hunt Jr., W.A., Wetzler, N.: Trimming while checking clausal proofs.
In: FMCAD, pp. 181–188 (2013)

14. Hofferek, G., Gupta, A., Könighofer, B., Jiang, J.H.R., Bloem, R.: Synthesizing
multiple boolean functions using interpolation on a single proof. In: FMCAD, pp.
77–84 (2013)

15. Rollini, S.F., Bruttomesso, R., Sharygina, N.: An efficient and flexible approach
to resolution proof reduction. In: Raz, O. (ed.) HVC 2010. LNCS, vol. 6504, pp.
182–196. Springer, Heidelberg (2010)

16. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Siek-
mann, J., Wrightson, G. (eds.) Automation of Reasoning: Classical Papers in Com-
putational Logic 1967-1970, vol. 2. Springer (1983)

17. Woltzenlogel Paleo, B.: Atomic cut introduction by resolution: Proof structuring
and compression. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS,
vol. 6355, pp. 463–480. Springer, Heidelberg (2010)

18. Woltzenlogel Paleo, B.: Contextual natural deduction. In: Artemov, S., Nerode, A.
(eds.) LFCS 2013. LNCS, vol. 7734, pp. 372–386. Springer, Heidelberg (2013)

Terminating Minimal Model Generation

Procedures for Propositional Modal Logics�

Fabio Papacchini and Renate A. Schmidt

The University of Manchester, UK

Abstract. Model generation and minimal model generation are useful
for tasks such as model checking and for debugging of logical specifica-
tions. This paper presents terminating procedures for the generation of
models minimal modulo subset-simulation for the modal logic K and all
combinations of extensions with the axioms T, B, D, 4 and 5. Our pro-
cedures are minimal model sound and complete. Compared with other
minimal model generation procedures, they are designed to have smaller
search space and return fewer models. In order to make the models more
effective for users, our minimal model criterion is aimed to be semanti-
cally meaningful, intuitive and contain a minimal amount of information.
Depending on the logic, termination is ensured by a variation of equality
blocking.

1 Introduction

Automated reasoning methods are often designed to check satisfiability and va-
lidity of formulae. In many applications the “yes or no” answer returned by
these methods is all the information that is needed, but there are tasks where
additional information is required. Model generation methods complement such
automated reasoning methods by returning models that explain why a certain
answer holds. Examples of tasks where model generation methods are useful are
fault analysis, model checking and debugging of logical specifications [18,13].
Even for the most well-behaved, decidable logics, in general, there are uncount-
ably many different models for satisfiable formulae and models can be very large,
which makes effective model generation a challenging problem. For these reasons,
there have been several studies about the generation of different kinds ofminimal
models for classical and non-classical logics [2,15,14,16,17,13,7].

In this paper we introduce a semantic notion of minimality, similar to the no-
tions used in [17,13]. Our minimality criterion is based on a preorder on models
called subset-simulation (i.e., it is a variation of the more common notion of sim-
ulation [4]). The criterion is designed so that minimal models are semantically
meaningful, more natural than models minimal with respect to other minimality
criteria, and contain a minimal amount of information. In this paper we propose

� The first author is supported by an EPSRC EU Doctoral Training Award. The
research was partially supported by EPSRC research grant EP/H043748/1.

S. Demri, D. Kapur, and C. Weidenbach (Eds.): IJCAR 2014, LNAI 8562, pp. 381–395, 2014.
c© Springer International Publishing Switzerland 2014

382 F. Papacchini and R.A. Schmidt

the first terminating, minimal model sound and complete procedures for the gen-
eration of models minimal modulo subset-simulation for all normal modal logics
in between K and S5. If a model generator is minimally sound and complete,
not only will it generate one minimal model, but it will generate the complete
set of all minimal models. In comparison with other approaches, our procedures
benefit from smaller search spaces, and fewer models are returned. In particular,
we aim to return the smallest set of all relevant minimal models, so that the user
is not swamped with too many similar models.

As modal logics are closely related to description logics, our procedures can
be used as methods complementary with respect to ontology debugging methods
such as the ones proposed in [19,8]. The usual definition of ontology debugging
assumes that an ontology is incoherent (inconsistent). In this case, debugging is
the ability to identify the cause of the incoherence and fix it. An ontology can
however be considered faulty even when it is coherent, but it does not properly
model the domain of interest. This can be because aspects and properties of the
domain of interest, that are expected to hold, do not follow from the ontology.
In this context, similarly to test-driven software development paradigms, our
procedures complement the notion of ontology debugging and provide assistance
to model correctly the domain of interest. Minimal model generation procedures
can be used to check whether these properties hold at any stage of the life cycle
of the ontology, and then corrected based on the computed models.

Another possible use for the generation of models minimal modulo subset-
simulation is positive query answering for Horn fragments of modal logics similar
to [13]. In [13] the query answering problem is reduced to a model checking
problem. Our procedures can be used in the same way, but it is not restricted
to Horn fragments of modal logics.

The logics and the main properties of models minimal modulo subset-simula-
tion are presented in Section 2. Section 3 defines minimal model sound and com-
plete procedures for the logics under consideration. As minimal model soundness
can be easily shown if the procedures are minimal model complete, we focus on
formally proving minimal model completeness (Section 4). Termination results
for all the logics under consideration are presented in Section 5, as one of the
main contributions of the paper. How our procedures relate to other minimal
model generation procedures, what are possible extensions of the procedures,
and how it is possible to further improve them is discussed in Section 6. Sec-
tion 7 summarises the contributions of the paper and mentions directions of
future work.

2 Modal Logics and the Minimality Criterion

We work with modal formulae of the propositional modal logic K possibly ex-
tended with a subset of the well-known axioms T, B, D, 4, and 5. Specifically,
the logics covered in this paper are all propositional normal modal logics be-
low S5, namely, K, KD, KDB, K4, K5, KD4, KD5, K45, KD45, KB4,
KT4, and KT5(= S5). All these logics are decidable. Table 1 lists the axioms
and their semantic characterisations as frame properties.

Terminating Minimal Model Generation Procedures 383

Table 1. Modalities and their corresponding frame conditions

� Axiom Frame condition First-order representation

K

T �p→ p reflexivity ∀xR(x,x)

B p→ �♦p symmetry ∀x∀y(R(x,y)→ R(y, x))

D �p→ ♦p seriality ∀x∃yR(x,y)

4 �p→ ��p transitivity ∀x∀y∀z(R(x,y) ∧R(y, z)→ R(x, z))

5 ♦p→ �♦p Euclideanness ∀x∀y∀z(R(x,y) ∧R(x, z)→ R(y, z))

A modal formula is a formula of the form �, ⊥, pi, ¬φ, φ1 ∧ φ2, φ1 ∨ φ2,
♦φ, �φ, where � and ⊥ are two nullary logical operators for, respectively, true
and false; pi ∈ Σ is a propositional symbol belonging to the set Σ of proposi-
tional symbols; ¬, ∧, ∨, ♦, � are, respectively, the logical operators of negation,
conjunction, disjunction, diamond and box; and φ1, φ2, φ are modal formulae.

We adopt the standard semantics of modal formulae, known as Kripke seman-
tics. A frame for a modal logic is a tuple (W,R), where W is a non-empty set of
worlds and R ⊆ W ×W is the accessibility relation over W . An interpretation I
is a tuple (W,R, V) composed of a frame and an interpretation function V that
assigns to each world u ∈ W a set of propositional symbols, meaning that such
propositional symbols hold in u. Given an interpretation I = (W,R, V) and a
world u ∈ W , truth of a modal formula φ is inductively defined as follows.

I, u
|= ⊥ I, u |= �
I, u |= pi iff pi ∈ V (u)

I, u |= ¬φ iff I, u
|= φ

I, u |= φ1 ∨[∧] φ2 iff I, u |= φ1 or[and] I, u |= φ2

I, u |= �φ iff for every v ∈ W if (u, v) ∈ R then I, v |= φ

I, u |= ♦φ iff there is a v ∈ W such that (u, v) ∈ R and I, v |= φ

Given an interpretation I, a world u and a modal formula φ, if I, u |= φ holds,
then I is a model of φ.

A model graph M = (W,R,V) is an interpretation except that V(u) returns
the set of formulae true in u. Given a model graph M = (W,R,V) it is possible to
obtain the corresponding interpretation I = (W,R, V), where V (u) = V(u) ∩Σ
for all u ∈ W .

Let u and v be two elements of the domain of a model I. If there is a path in
the model from u to v, then u is an ancestor of v and v is a descendant of u.

The frame closure of a model I is the model obtained by computing the
closures of the relevant frame properties (e.g., transitive closure).

Let I = (W,R, V) and I ′ = (W ′, R′, V ′) be two models of a modal formula φ.
A bisimulation is a binary relation B ⊆ W×W ′ such that for any two worlds u ∈
W and u′ ∈ W ′, if uBu′ then the following hold.

– V (u) = V ′(u′),

384 F. Papacchini and R.A. Schmidt

– if uRv, then there exists a v′ ∈ W ′ such that u′Rv′ and vBv′, and
– if u′R′v′, then there exists a v ∈ W such that uRv and vBv′.

An auto-bisimulation is a bisimulation between a model and itself.
Let I = (W,R, V) and I ′ = (W ′, R′, V ′) be two models of a modal formula φ.

A subset-simulation is a binary relation S ⊆ W × W ′ such that for any two
worlds u ∈ W and u′ ∈ W ′, if uSu′ then the following hold.

– V (u) ⊆ V ′(u′), and
– if uRv, then there exists a v′ ∈ W ′ such that u′Rv′ and vSv′.

If S is such that for all u ∈ W there is at least one u′ ∈ W ′ such that uSu′, then
we call S a full subset-simulation from I to I ′. We say a subset-simulation S is
a maximal subset-simulation if there is no other subset-simulation S′
= S such
that S ⊂ S′. Given two models I and I ′, if there is a full subset-simulation S
from I to I ′, we say that I ′ subset-simulates I, or I is subset-simulated by I ′.
We write I ≤⊆ I ′ if I is subset-simulated by I ′.

Subset-simulation is a preorder on models. That is, subset-simulation is a
reflexive and transitive relation on models. For this reason it can be used to define
the following minimality criterion. A model I of a modal formula ϕ is minimal
modulo subset-simulation iff for any model I ′ of ϕ, if I ′ ≤⊆ I, then I ≤⊆ I ′.

As bisimulation is more restrictive than subset-simulation, any model IB
bisimilar to a model I preserves the original subset-simulation relationship of I.
This result is formally expressed in the following lemma, and is used for proving
termination of our procedures.

Lemma 1. Bisimulation preserves subset-simulation. That is, given two mod-
els I and I ′, any bisimilar model IB of I is such that if I ≤⊆ I ′ then IB ≤⊆ I ′,
and if I ′ ≤⊆ I then I ′ ≤⊆ IB.

3 Procedures for the Generation of Minimal Models

Our procedures for the generation of models minimal modulo subset-simulation
are composed of a tableau calculus and a minimality test. Depending on which
logic below S5 is considered, different rules for handling frame properties and
different termination techniques are used. The tableau calculus, without the
minimality test, is devised to generate minimal models, but it can also generate
non-minimal models. We prove minimal model completeness of the calculus in
Section 4, and that the use of the minimality test results in minimal model sound
and complete procedures.

As the minimality criterion is based on a preorder, it is possible to have
symmetry classes of models and minimal models belong to the same symmetry
class. Models that belong to the same symmetry class share the same positive
information, meaning that all the models entail the same positive formulae. For
this reason, we define minimal model completeness as follows. A procedure is
minimal model complete if it generates at least one witness for each symmetry
class of minimal models.

Terminating Minimal Model Generation Procedures 385

Table 2. Tableau calculus for the generation of minimal models

(�)
(u, v) : R u : �φ

v : φ
(α)

u : (φ1 ∧ . . . ∧ φn) ∨ Φ+
α

u : φ1 ∨ Φ+
α

...
u : φn ∨ Φ+

α

(β)
u : A∨ Φ+

u : A u : Φ+

u : neg(Φ+)

where A is of the form ♦φ, �φ, or pi, and
neg(Φ+) = ¬p1 ∧ . . . ∧ ¬pn, where each pi
is a disjunct of Φ+.

(♦) u : ♦φ
(u, v) : R

v : φ

where v is fresh.

(SBR)
u : p1 . . . u : pn u : ¬p1 ∨ . . . ∨ ¬pn ∨ Φ+

α

u : Φ+
α

The input to the calculus is a modal formula in negation normal form labelled
by an initial world u. Transformation to negation normal form is not essential,
but it simplifies the presentation. It also means that there is no need for pre-
processing before applying the calculus, and reduces the number of rules in the
calculus. Disjunctions and conjunctions are assumed to be flattened (e.g., we
write φ1 ∨ φ2 ∨ φ3 instead of φ1 ∨ (φ2 ∨ φ3)). By A we mean a modal formula
of the form pi, ♦φ or �φ. We use Φ+ to denote a non-empty disjunction, where
all disjuncts are of the form A, and use Φ+

α to denote a possibly empty disjunc-
tion, where all disjuncts are of the form A or are conjunctions. By neg(Φ+) we
mean the conjunction ¬p1 ∧ . . . ∧ ¬pn, where the pi are all the positive propo-
sitional variables appearing as disjuncts of Φ+. If Φ+ does not contain any pi,
then neg(Φ+) = �. The exclusive selection of positive propositional variables is
crucial for the minimal model completeness of the calculus. An example of this
is given in the explanation of the (β) rule.

Table 2 presents the rules of the calculus for the modal logic K. Given an
input formula u : φ, the rules are exhaustively applied. At most one rule is
applied to any formula appearing as the main premise, where the main premise
of a multi-premise rule is the premise on the right. For fairness, each instance
of a rule application is performed exactly once. Given an open branch B in a
tableau derivation, a model I = (W,R, V) can be extracted from B as follows.
The domain W is the set of all the labels occurring in B, the accessibility relation
is composed of all the instances (u, v) : R in B, the interpretation function V is
such that V (u) = {pi | u : pi ∈ B}. A partial model graph M is extracted from
a branch B in a similar way, except that V(u) = {φ | u : φ ∈ B}.

The (α) rule is a variation of standard rule for conjunctions. If Φ+
α = � then

it just expands the conjunction, otherwise the application of the (α) rule per-
forms lazy clausification. If such lazy clausification is performed in a clever way,

386 F. Papacchini and R.A. Schmidt

for example, by using a good heuristic for choosing the right conjunction to ex-
pand, it can result in the reduction of inferences due to the implicit restriction
of Φ+

α in the premise of the rule.
The (�) rule and the (♦) rule are the common rules for box and diamond

formulae. They simply expand formulae in the scope of a modality as required
by their semantics.

The (β) rule is the only branching rule of the calculus. Its purpose is to branch
over disjunctions without any negated propositional variables, and to close the
left branch if it is not minimal. This latter point is achieved by the use of a limited
form of complement splitting (more common uses of complement splitting can be
found in the literature, e.g. [2]). The reason why complement splitting is applied
only on positive propositional variables is that the negation of diamond formulae
or box formulae would result in new modal formulae (specifically, box formulae
and diamond formulae) that can compromise the minimality of the resulting
model. For example, let us assume that the (β) rule is applied to u : φ1 ∨�φ2. If
the complement ♦¬φ2 of �φ2 would have been added to the left branch, the left
branch would still be open, and the resulting model would still be a model for
the original formula, but the newly introduced diamond formula would generate
unnecessary information. The resulting model would not be minimal. A similar
example can be given for the case of the negation of diamond formulae.

The (SBR) rule is a selection-based resolution rule. It can be seen as a weaker
version of the (SBR) rule in [16], the PUHR rule in [2], or the hyper-tableau
rule in [1]. The aim of this rule is twofold. First, it provides the closure rule of the
calculus, because atomic closure is sufficient. Second, it allows to remove negative
information (i.e., all negative propositional variables) from a disjunction. The
rationale for the (SBR) rule is that if a disjunction contains negative information
(at least one negated propositional variable) that is not in conflict with any
formula on the branch, then any expansion of such a disjunction results in either a
minimal model, where the disjunction is true due to the negative information, or
in a non-minimal model. Hence, there is no advantage in expanding a disjunction
as long as it is not possible to remove all the negative information from it.
The (SBR) rule is the reason why other rules, specifically the (β) rule and
the (α) rule, can be applied only to disjunctions of the form Φ+ or Φ+

α . This
decreases the number of required inferences.

Theorem 1. The tableau calculus in Table 2 is sound and refutationally com-
plete for K.

For reasons of space we omit a formal proof, but the calculus does not differ
much from known calculi. All the rules are sound variations of common rules.
The rule modifications help in directing the calculus toward the generation of
minimal models, for example, the restrictions in Φ+ or Φ+

α .
In the next section we show that the calculus is minimal model complete.

Minimal model completeness means that the calculus generates at least one
witness per symmetry class of minimal models. We also want the calculus to be
minimal model sound, that is, only minimal models are generated.

Terminating Minimal Model Generation Procedures 387

Table 3. Rules for extending the calculus

(T)
(u, u) : R

(B)
(u, v) : R

(v, u) : R

(4)
(u, v) : R (v, w) : R

(u,w) : R
(5)

(u, v) : R (u, w) : R

(v, w) : R

(D)
u : ♦�

To achieve minimal model soundness we define a minimality test to close
branches from which non-minimal models can be extracted. The minimality test
is called subset-simulation test. It consists of two operations. First, let I be a
partial model extracted from an open branch B. If a model I ′ such that I ′ ≤⊆ I
has already been found, then close B. Second, let I be a model newly extracted
from an open and fully-expanded branch B. If a model I ′ such that I ′ ≤⊆ I
has already been found, then close B, and for any already extracted model I ′,
if I ≤⊆ I ′, then close the branch from which I ′ was extracted.

Computing subset-simulation relations between finite models is a decidable
problem. Our procedure uses the algorithm for computing subset-simulations
presented in [17], which is a variation of the algorithm for computing auto-
simulation in [6]. The complexity of the algorithm depends directly on the size
of the domains and on the number of relations in the involved models.

Our minimal model generation procedure extends to all sublogics of S5. Ta-
ble 3 contains the structural rules enabling the handling of all these logics. Aug-
menting the extensions with the subset simulation test results in minimal model
sound and complete procedures. This is because the subset-simulation test is
independent of the logic. What matters is minimal model completeness, and [17]
proves that such structural rules preserve minimal model completeness. It is
worth noting that some of the extensions, e.g., K4, might have minimal models
with an infinite domain, and this affects termination. However, minimal model
soundness and completeness can be ensured by choosing good branch selection
strategies. A suitable branch selection strategy is to always select the branch
with the smallest number of labels (i.e., the branch where the extracted partial
model has the smallest domain). In Section 5 we show that a better branch
selection strategy can be adopted as soon as termination of the procedure is
ensured.

4 Minimal Model Completeness

Because our minimal model completeness proof relies on results in [17] for
the multi-modal logic K(m) and its extensions, we recall here some definitions
from [17]. A simulation relation between models is as a subset-simulation rela-
tion, except that the first property is V (u) = V ′(u′). I ≤= I ′ denotes that I is

388 F. Papacchini and R.A. Schmidt

simulated by I ′. The minimality criterion in [17] is as follows. A model I of a
modal formula ϕ is minimal modulo subset-simulation iff for any model I ′ of ϕ,
if I ′ ≤⊆ I, then I ≤⊆ I ′ and for any model I ′′ of ϕ belonging to the same
symmetry class of I, if I ′′ ≤= I then I ≤= I ′′. The notion of minimal model
completeness used in [17] requires the generation of all minimal models, and not
just a witness per symmetry class.

As the logics considered in this paper are a subset of the logics considered
in [17], the following lemma is restricted to the logics covered in this paper.

Lemma 2. Let I and I ′ be models of a modal formula ϕ such that I is minimal
with respect to the minimality criterion in [17], and I ′ is minimal with respect
to the minimality criterion used in this paper. Then the following hold.

– I is minimal with respect to the minimality criterion used in this paper, and
– there exists a model I ′′ minimal with respect to the minimality criterion used

in [17] such that I ′′ ≤⊆ I ′.

The lemma explains the relation between the minimality criterion used in [17]
and the minimality criterion used in this paper. The first point of Lemma 2 tells
us that the minimality criterion used in this paper considers as minimal all the
models considered minimal by the minimality criterion in [17], and potentially
more than these. The second point tells us, indirectly, that the symmetry classes
for the two notions are the same.

As the notion of minimal model completeness in [17] is wider than our notion,
and given the relation between the two minimality criteria, the following holds.

Lemma 3. The procedure in [17] is minimal model complete with respect to our
notions of minimal model and minimal model completeness.

From a procedural perspective, the minimal model generation procedure we
propose and the procedure proposed in [17] mainly differ in how diamond for-
mulae are expanded. This is due to the use of different minimality criteria and
different notions of minimal model completeness, which force the calculus in [17]
to explore all possible expansions of diamond formulae. The (♦) rule, simplified
to the uni-modal case, used in [17] is the following.

(♦) u : ♦φ

(u, u1) : R . . . (u, un) : R (u, v) : R
u1 : φ un : φ v : φ

where each ui appears on the
branch, and v is fresh.

Theorem 2. For any model I ′ extracted from an open and fully expanded branch
of the procedure in [17], there is a model I extracted from an open and fully ex-
panded branch B of our procedure such that I ≤⊆ I ′.

Proof. Let I = (W,R,V) and I ′ = (W ′, R′,V ′). We prove the theorem induc-
tively by creating a relation S ⊆ W×W ′ during the construction of the branch B,
and show that S is a full subset-simulation.

Base Case: Let us assume that the input of the procedure in [17] is u′ : ϕ, and
the input of our procedure is u : ϕ. This means that I ′, u′ |= ϕ, and the initial

Terminating Minimal Model Generation Procedures 389

partial model graph I is ({u}, ∅,V(u) = {ϕ}). As I ′ is a complete model graph
and I ′, u′ |= ϕ, then ϕ ∈ V ′(u′). This implies that V(u) ⊆ V ′(u′). Let (u, u′) ∈ S.
Then it is immediate that S is a full subset-simulation from I to I ′.

Induction Step: Let us assume that after n rule applications, for the extracted
model I there is a subset-simulation S from I to I ′. We prove that S, or a
variation of it, is still a subset-simulation relation after the application of any
rule ρ of our procedure. For reasons of space we give proofs only for three of the
rules, but all the other cases are similar. In all the following cases, we assume I =
(W,R,V) is the model extracted before the application of ρ.

ρ is the (α) rule. This means that the expanded formula is a labelled dis-
junction u : ϕ, where at least one disjunct ϕα is a conjunction. Let Φ be the
set of labelled formulae representing the conclusion of the (α) rule and Ψ =
{ψ | u : ψ ∈ Φ}. This means that Φ is on the branch and the new extracted
model graph I ′′ = I, where V ′′ = V except for V ′′(u) = V(u) ∪ Ψ . By the
inductive hypothesis, there is a u′ ∈ W ′ such that (u, u′) ∈ S, V(u) ⊆ V ′(u′)
and I ≤⊆ I ′. As ϕ ∈ V ′(u′) and I ′ is a complete model, then Ψ ⊆ V ′(u′). This
implies that V ′′(u) ⊆ V ′(u′). That is, the current S is a full subset-simulation
such that I ′′ ≤⊆ I ′. In principle there may be more than one conjunction to be
selected for the application of the (α) rule. This implies that Φ may be different
from the application of the (α) rule applied to generate I ′. Even though the two
sets of conclusions are syntactically different, they are semantically equivalent.
Hence, w.l.o.g. we can assume that the same conjunction is used.

ρ is the (♦) rule. This means that the expanded formula is a labelled diamond
formula, let us say u : ♦ϕ. As a result of the application of the (♦) rule, {v :
ϕ, (u, v) : R} are on the branch and v is fresh on the branch. The new extracted
model I ′′ is as follows. W ′′ = W ∪ {v}, R′′ = R ∪ {(u, v)}, and V ′′ = V ex-
cept for V ′′(v) = {ϕ}. By the inductive hypothesis, there is a u′ ∈ W ′ such
that (u, u′) ∈ S, V(u) ⊆ V ′(u′) and I ≤⊆ I ′. As ♦ϕ ∈ V ′(u′) and I ′ is a com-
plete model, then there is an R-successor v′ ∈ W ′ of u′ such that ϕ ∈ V ′(v′).
Let S′ = S ∪ {(v, v′)}. S′ is a full subset-simulation such that I ′′ ≤⊆ I ′.

ρ is the (4) rule. This means that there are two labelled relations (u, v) : R
and (v, w) : R for which transitivity has not been applied yet. As a result of
the application of the (4) rule, (u,w) : R is on the branch and the new ex-
tracted model I ′′ is such that I ′′ = I, except for R′′ = R ∪ {(u,w)}. By the
inductive hypothesis, there are u′, v′, w′ ∈ W ′ such that (u, u′), (v, v′), (w,w′) ∈
S, (u′, v′), (v′, w′) ∈ R and I ≤⊆ I ′. As I ′ is a complete model and R is tran-
sitive, then (u′, w′) ∈ R. That is, the current S is a full subset-simulation such
that I ′′ ≤⊆ I ′. �

Corollary 1. For any model I ′ minimal with respect to [17], there is a model I
generated by our procedure such that I ≤⊆ I ′.

Minimal model completeness of our tableau calculus follows from Lemma 3
and Corollary 1. Minimal model soundness is the result of applying the subset-
simulation test to minimal model complete tableaux calculi.

390 F. Papacchini and R.A. Schmidt

Theorem 3. The tableau calculus in Table 2 and the extensions with the rules
in Table 3 are minimal model complete. That is, the calculi generate at least one
witness for each symmetry class of minimal models.

Theorem 4. Augmenting the tableau calculus in Table 2 and its extensions with
the rules in Table 3 and the subset-simulation test gives us minimal model sound
and complete procedures. That is, only minimal models and at least a witness for
each symmetry class of minimal models are generated.

5 Ensuring Termination

The presented calculus is (strongly) terminating for the modal logic K and its
reflexive and symmetric extensions (i.e., it terminates for KT, KB and KTB).
It is known that it is always possible to generate finite models for these logics
without using any termination technique. As a reference for this, [16] proves
that these logics have finite minimal Herbrand models and presents a tableau
calculus that does not require any termination technique.

The same reasoning cannot be used for the other normal modal logics, namely,
KD, KDB, K4, K5, KD4, KD5, K45, KD45, KB4, KT4, and KT5. The
main challenge to obtain terminating procedures for these logics is to find block-
ing techniques preserving minimal model completeness.

For KD and KDB it is not difficult to achieve termination while preserving
minimal model completeness. This is because the seriality condition is what
affects termination, forcing all models to have paths where a world in which the
only true formula is � is repeated infinitely many times. It is, therefore, enough
to add a reflexive edge as soon as the first such world appears, and the resulting
finite model is bisimilar to the original model. Therefore, the following holds.

Theorem 5. Our procedures to handle the modal logics KD and KDB are
minimal model sound and complete, and terminate if a reflexive loop is added to
each occurrence of a fully-expanded world u where V(u) = ∅.

The rule application order is important in a practical implementation. Specif-
ically, the (♦) rule needs to be the last rule to be applied.

More interesting are the logics K4, KT4, and KD4. For these logics, the
models can be infinite due to the seriality axiom or because of transitivity. The
previous termination strategy is not sufficient for these logics (i.e., it is possible to
have infinite chains where no fully-expanded world has an empty interpretation).
The usual method to obtain a terminating tableau calculus, see, e.g. [9], is to use
static subset blocking. Formally, a world u is subset blocked if there is a parent v
of u such that V(u) ⊆ V(v). This kind of blocking, however, is not compatible
with our minimality criterion because it might potentially merge a world with less
positive information and a world with more positive information. This may lead
to non-minimal models being considered minimal, affecting the minimal model
soundness of the procedure, or to the non-generation of some minimal model,
affecting the minimal model completeness of the procedure. It turns out that

Terminating Minimal Model Generation Procedures 391

∅

{s} {t}

{p}

∅

{s} {t}

{p} {p}

{q}

Fig. 1. Example of incompleteness when anywhere equality blocking is used

equality blocking is more suitable. However, not all forms of equality blocking
can be used, but ancestor equality blocking can. A world u is considered ancestor
equality blocked if there is an ancestor v of u such that V(u) = V(v). We show
that anywhere equality blocking (i.e., v can block u even if it is not an ancestor
of u) violates minimal model completeness by means of an example. Suppose
that φ = ♦s ∧ ♦t ∧�♦(p ∨ q) is the input formula. While the model on the left
in Figure 1 is generated when anywhere equality blocking is used, the model on
the right is not and it is a model minimal modulo subset-simulation. However:

Theorem 6. Our procedures to handle the modal logics K4, KT4 and KD4
are minimal model sound and complete, and terminate when ancestor equality
blocking is used.

Proof. Termination follows from known results that ancestor equality blocking is
enough to ensure termination for these logics (e.g., [9]). We prove that minimal
model completeness is preserved only for the case of K4, but the same reasoning
can be used to prove it for the other logics. Suppose φ is the input modal formula.
Let us assume that M is an infinite model graph of φ such that M,u |= φ. Hence,
there is at least one connected component in the graph with a path composed
of an infinite sequence of worlds. Since the tableau calculus only propagates
subformulae of φ, there are only finitely many formulae per world. This implies
that the infinite path must contain a finite number of distinguishable worlds,
that can be identified with each other. Due to transitivity each world in the
path is connected with all its descendants, meaning we can focus our attention
on the infinite repetition of a finite path of distinct worlds. This implies that M
subset-simulates another model where a loop over the finite path is created. This
reasoning can be iterated for all the infinite components of the graph. Hence, M
subset-simulates a finite model. Therefore, as ancestor equality blocking blocks
the infinite path at the first appearance of the first repeated world, minimal
model completeness is preserved. �

As in the previous case, the rule application order is important. Specifically,
the (♦) rule needs to be applied last. In this way it is possible to build the
model by exhaustively expanding all formulae world by world. If ancestor equal-
ity blocking is checked only before applying the (♦) rule, then when equality is
detected the set of formulae true in a world cannot change anymore.

392 F. Papacchini and R.A. Schmidt

For all the remaining cases anywhere dynamic equality blocking can be used.
This blocking technique blocks a world if there is another world for which the
interpretation is the same. The dynamic part is due to the possibility of having
false guesses. Specifically, it is possible that two worlds are considered to be the
same at some point in the derivation, but they do not have the same interpre-
tation in a subsequent point in the derivation. Making the blocking technique
dynamic allows for the possibility of blocking and unblocking pairs of worlds.
This technique, or a variation of it, is already used in the literature (e.g., [3,10]).

Theorem 7. Our procedures to handle the modal logics K5,KD5, K45, KD45,
KB4 and KT5 are minimal model sound and complete, and terminate when
anywhere dynamic equality blocking is used.

Proof. As for Theorem 6, we only need to prove that minimal model complete-
ness is guaranteed. We prove it only for the case of K5, but the same reasoning
can be used to prove it for the other logics. Due to frames being Euclidean, the
resulting model is a strongly connected graph where the only exception is the
root world. Hence, any two non-root worlds u and v are related by a reflexive,
symmetric and transitive relation. If V(u) = V(v), then an auto-bisimulation of
the model would merge them into a single world. This implies that the applica-
tion of anywhere dynamic equality blocking is equivalent to a bisimulation step.
For Lemma 1, if the original model was minimal modulo subset-simulation, then
the resulting model is still minimal modulo subset-simulation. �

From minimal model completeness and the termination results of this section,
this theorem follows.

Theorem 8. All the normal modal logics between K and KT5 have finitely
many symmetry classes of models minimal modulo subset-simulation.

Having strong termination techniques for all the normal modal logics allows
us to vary the branch selection strategy. Specifically, a depth-first left-to-right
branch selection strategy can be used. From a practical perspective this is im-
portant because it allows for memory efficient implementations.

6 Related Work and Discussion

The most similar approach for the generation of minimal models, for both the
methodology used and the minimality criterion involved, is [17]. [17] is the first
paper to introduce the notion of models minimal modulo subset-simulation and,
hence, first to propose a technique for the generation of such minimal models
for the multi-modal logics K(m) and some of its extensions. Our procedures
have however much smaller search spaces than those in [17]. This is because our
notion of minimal model completeness requires the generation of one witness per
symmetry class, while the notion used in [17] requires the whole symmetry classes
to be generated. This is reflected in the rules of the two tableaux calculi. The only
branching rule of our tableau calculus is the (β) rule, while in [17] also the (♦) rule
is a branching rule. The (♦) rule in [17] has a high branching factor (i.e., the

Terminating Minimal Model Generation Procedures 393

number of branches is equal to current number of labels in the branch plus one),
and it leads to the generation of many similar and, therefore, unnecessary models.
In the literature, other notions of minimal model completeness similar to the one
we adopt exist. For example, in [5,13] not all minimal models are generated, but
only witnesses of a specific kind of equivalences classes are generated.

The used notions of minimality and minimal model completeness allowed us
to simplify the subset-simulation test in [17]. The subset-simulation test can be
improved even more if for any extracted minimal model the auto-bisimulation
is computed. This is because the complexity of checking subset-simulation rela-
tions depends on the number of worlds and the number of edges. Using auto-
bisimulation can potentially result in minimal models having a smaller domain,
making the comparison with other models easier. It is important to note though
that the procedure proposed in [17] is designed to cover more expressive modal
logics than what we cover in this paper, but, as long as termination is not taken
into consideration, our approach can easily be extended to cover exactly the
same expressive multi-modal logics while maintaining the results of this paper.

The minimality criterion in [13] has similarities to our minimality criterion
and, using our terminology, it can be defined as a minimality criterion based on
subset-bisimulation. [13] proposes a method to reduce the problem of answering
positive queries for Horn modal formulae to the task of model checking. The
creation of a minimal model that preserves all positive entailments simplifies the
model checking task. It is interesting to note that any model minimal modulo
subset-simulation is also minimal with respect to the minimality criterion pro-
posed in [13]. This means that our approach can be used to address exactly the
same problem, even for formulae that are outside of the modal Horn fragment.

Apart from our notion of minimal models, other minimality criteria exist.
These can be classified into: syntactic notions of minimality, minimal Herbrand
models [2,14,16], and domain minimality [7,11]. The class of minimal Herbrand
models has the advantage that it can be ordered by the subset relation. It is thus
possible to focus on generating models minimal under this ordering. Generating
minimal Herbrand models for classical logics has been studied in [2,14] and for
modal logics in [16]. Despite the use of a different minimality criterion, there are
similarities between the models considered minimal by our approach and those
considered minimal in [16]. As long as termination is not taken into consider-
ation, models minimal modulo subset-simulation are a subset of minimal Her-
brand models. As our minimality criterion takes into consideration the semantics
of models, some minimal Herbrand model can be considered redundant or not
minimal, resulting in a smaller set of minimal models. As soon as termination
techniques are necessary, comparing the two notions of minimality becomes more
difficult. This is also due to the fact that the approach proposed in [16] cannot be
extended easily to cover logics with potentially infinite models, and is restricted
to the multi-modal logics K(m), KT(m), KB(m) and KTB(m).

By contrast, domain minimal models are finite for all logics with the finite
model property. Another possibility therefore is to focus on the generation of
models with minimised domains [7,11]. Domain minimal models, however, tend

394 F. Papacchini and R.A. Schmidt

to be counter-intuitive because too many worlds are collapsed into a single world.
As a result, all the information needed to satisfy the input formula is pushed
to the least number of domain elements, making tasks such as verification and
debugging harder. Our approach is designed to avoid the creation of domain
minimal models while spreading the positive information as much as possible.
This results in more meaningful and intuitive models, as is shown in [17].

Description logics are closely related to the modal logics considered in this
paper, and all results can be transferred to the corresponding description logics.
An important difference is the presence of TBoxes in description logics. This
difference can be accommodated by using a calculus for modal logics extended
with rules for handling universal modalities. As TBoxes do not need the com-
plete expressiveness of the universal modalities, we can extend our procedures
in such a way that only specific patterns of universal modalities are allowed. In
this way the procedures can handle description logics such as ALC with non-
empty TBoxes. ABoxes pose no technical challenges. The full expressive power
of universal modalities, however, increases the complexity of the procedure, and
termination techniques preserving minimal model completeness are needed.

In this paper we used structural rules to accommodate frame conditions. A
common alternative to the structural rules are propagation rules (e.g., [12]). The
use of propagation rules is possible, but it would require expensive changes to the
procedures. It can be proved that if there is a subset-simulation relation between
two models obtained by using propagation rules, then the same subset-simulation
relation holds also for the frame closures of the models. As the complexity of com-
puting subset-simulation depends on the size of the domain and on the number
of edges, the use of propagation rules seems promising. On the other hand, the
other direction does not hold. In particular, subset-simulation relations between
models where the frame closures are computed are not necessarily transferred
to models generated by using a procedure based on propagation rules. As the
subset-simulation test is applied many times, the use of propagation rules would
require repeated computations of frame closures leading to worse performance.

7 Conclusion

We presented the first terminating, minimal model sound and complete proce-
dures for the generation of models minimal modulo subset-simulation for all the
sublogics of S5. Compared with other minimal model generation approaches,
our procedures greatly benefit from smaller search spaces, fewer models are gen-
erated, and the semantically meaningfulness and naturalness of the models make
them more effective for debugging purposes. These features of the procedures
are really promising from both an implementation and a practical point of view.

We plan to extend our procedures by introducing rules handling more expres-
sive modal logics. Logics we aim to handle are all the extensions from the uni-
modal case to the multi-modal case, converse relations, universal modalities and
inclusion axioms.These generalisations correspond to expressive logicswidely used
in real world applications. This is why we are currently working on implementing
the procedures. We believe efficient implementations are achievable, and they will

Terminating Minimal Model Generation Procedures 395

have important impact by complementing and improving techniques for debug-
ging and verification.

References

1. Baumgartner, P., Fürbach, U., Niemelä, I.: Hyper tableaux. In: Or�lowska, E.,
Alferes, J.J., Moniz Pereira, L. (eds.) JELIA 1996. LNCS, vol. 1126, pp. 1–17.
Springer, Heidelberg (1996)

2. Bry, F., Yahya, A.: Positive unit hyperresolution tableaux and their application to
minimal model generation. J. Automat. Reason. 25(1), 35–82 (2000)

3. Cialdea Mayer, M.: A proof procedure for hybrid logic with binders, transitivity
and relation hierarchies. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI),
vol. 7898, pp. 76–90. Springer, Heidelberg (2013)

4. Clarke, E.M., Schlingloff, B.: Model checking. In: Robinson, A., Voronkov, A. (eds.)
Handbook of Automated Reasoning, pp. 1635–1790. Elsevier (2001)

5. Denecker, M., De Schreye, D.: On the duality of abduction and model generation in
a framework for model generation with equality. Theoret. Computer Sci. 122(1&2),
225–262 (1994)

6. Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing simulations on finite
and infinite graphs. In: Proc. FCS-36, pp. 453–462. IEEE Comput. Soc. (1995)

7. Hintikka, J.: Model minimization—An alternative to circumscription. J. Automat.
Reason. 4(1), 1–13 (1988)

8. Horridge, M., Parsia, B., Sattler, U.: Extracting justifications from bioportal on-
tologies. In: Cudré-Mauroux, P., Heflin, J., Sirin, E., Tudorache, T., Euzenat, J.,
Hauswirth, M., Parreira, J.X., Hendler, J., Schreiber, G., Bernstein, A., Blomqvist,
E. (eds.) ISWC 2012, Part II. LNCS, vol. 7650, pp. 287–299. Springer, Heidelberg
(2012)

9. Horrocks, I., Hustadt, U., Sattler, U., Schmidt, R.A.: Computational modal logic.
In: Blackburn, P., van Benthem, J., Wolter, F. (eds.) Handbook of Modal Logic,
pp. 181–245. Elsevier (2007)

10. Horrocks, I., Sattler, U.: A description logic with transitive and inverse roles and
role hierarchies. J. Logic Comput. 9(3), 385–410 (1999)

11. Lorenz, S.: A tableaux prover for domain minimization. J. Automat. Reason. 13(3),
375–390 (1994)

12. Massacci, F.: Single step tableaux for modal logics. J. Automat. Reason. 24(3),
319–364 (2000)

13. Nguyen, L.A.: Constructing finite least Kripke models for positive logic programs
in serial regular grammar logics. Logic J. IGPL 16(2), 175–193 (2008)

14. Niemelä, I.: Implementing circumscription using a tableau method. In: Proc. ECAI
1996, pp. 80–84. Wiley (1996)

15. Niemelä, I.: A tableau calculus for minimal model reasoning. In: Miglioli, P.,
Moscato, U., Ornaghi, M., Mundici, D. (eds.) TABLEAUX 1996. LNCS, vol. 1071,
pp. 278–294. Springer, Heidelberg (1996)

16. Papacchini, F., Schmidt, R.A.: A tableau calculus for minimal modal model gen-
eration. Electr. Notes Theoret. Computer Sci. 278(3), 159–172 (2011)

17. Papacchini, F., Schmidt, R.A.: Computing minimal models modulo subset-
simulation for propositional modal logics. In: Fontaine, P., Ringeissen, C., Schmidt,
R.A. (eds.) FroCoS 2013. LNCS (LNAI), vol. 8152, pp. 279–294. Springer, Heidel-
berg (2013)

18. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1),
57–95 (1987)

19. Schlobach, S., Huang, Z., Cornet, R., van Harmelen, F.: Debugging incoherent
terminologies. J. Automat. Reason. 39(3), 317–349 (2007)

COOL – A Generic Reasoner
for Coalgebraic Hybrid Logics (System Description)�

Daniel Gorı́n1, Dirk Pattinson2, Lutz Schröder1,
Florian Widmann3, and Thorsten Wißmann1

1 Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
2 The Australian National University, Canberra

3 Imperial College London, UK

Abstract. We describe the Coalgebraic Ontology Logic solver COOL, a generic
reasoner that decides the satisfiability of modal (and, more generally, hybrid) for-
mulas with respect to a set of global assumptions – in Description Logic parlance,
we support a general TBox and internalize a Boolean ABox. The level of gener-
ality is that of coalgebraic logic, a logical framework covering a wide range of
modal logics, beyond relational semantics. The core of COOL is an efficient unla-
belled tableaux search procedure using global caching. Concrete logics are added
by implemening the corresponding (one-step) tableaux rules. The logics covered
at the moment include standard relational examples as well as graded modal logic
and Pauly’s Coalition Logic (the next-step fragment of Alternating-time Tempo-
ral Logic), plus every logic that arises as a fusion of the above. We compare the
performance of COOL with state-of-the-art reasoners.

1 Introduction

Many modal logics can be interpreted using a Kripke-style relational semantics, but
there is a vast array of modal logics that cannot be captured using relational models.
Examples include classical and monotone modal logics [5], coalition logic / alternating-
time logic [18,1], and probabilistic modal logic [10]. Graded modal logic [11] was
originally formulated as a relational logic but is more naturally seen as talking
about weighted graphs [7]. Semantically, these logics are captured using coalgebraic
logic [17], a unifying framework that systematizes semantics, meta-theory and algo-
rithms. Reasoning algorithms harness the syntactical presentation of these logics in
terms of one-step rules. In tableaux presentation, these rules have the form

Γ0

Γ1 | · · · | Γn

where Γ1, . . . , Γn are sets of literals (read conjunctively) over a set V of propositional
variables, and Γ0 is set of literals over Λ(V) = {♥a | ♥ ∈ Λ, a ∈ V } where Λ
is an abstract set of modal operators. The reading of these rules is standard: to show
satisfiability of the premiss, one needs to establish satisfiability of one conclusion, for
every applicable rule.

� Work of the first, third, and fifth author supported by DFG grant GenMod2 (SCHR 1118/5-2).

S. Demri, D. Kapur, and C. Weidenbach (Eds.): IJCAR 2014, LNAI 8562, pp. 396–402, 2014.
© Springer International Publishing Switzerland 2014

COOL – A Generic Reasoner for Coalgebraic Hybrid Logics (System Description) 397

Example 1. 1. Modal Logic K . A simple one-conclusion example is the standard
(unlabeled) tableau rule �a1, . . . ,�an,♦b/a1, . . . , an, b for the modal logic K , over
modal operators Λ = {�,♦}.

2. Coalition logic: Pauly’s coalition logic [18], or the next-step fragment of
alternating-time temporal logic ATL [1], is parametrized by a set N = {1, . . . , n}
of agents; subsets of N are called coalitions. Operators are of the form [C], ‘coalition
C can force’, with duals 〈C〉 ‘coalition C cannot avoid’. In the terminology of [1], the
semantics is based on concurrent game frames. A complete set of rules is given by

[C1]a1, . . . , [Cn]an
a1, . . . , an

[C1]a1, . . . , [Cn]an, 〈D〉b, 〈N〉c1, . . . , 〈N〉cm
a1, . . . , an, b, c1, . . . , cn

where n,m ≥ 0 and the Ci are disjoint and contained in D [18,19,12].

3. Graded logic: Fine’s graded modal logic [11] counts successor states in relational
models; it has found its way into modern description logics [3] in the shape of qualified
number restrictions. Its operators are ♦k , read ‘in more than k successors’, with duals
�k ‘in all but at most k successors’. A complete set of rules [19,6] is given by

♦k1a1, . . . ,♦knan,�l1b1, . . . ,�lmbm∑
1≤i≤n riai −

∑
1≤j≤m sj(¬qj) > 0

(
∑

1≤i≤n ri(ki + 1)−
∑

1≤j≤m sj lj ≥ 1)

where n,m ≥ 0 and ri, sj > 0, subject to the side condition indicated, and with the
sums in the conclusion of the rule referring to arithmetic of characteristic functions, i.e.
counting 1 for ‘true’ and 0 for ‘false’. Sufficient tractability of this rule is shown using
results from integer linear programming [19].

The one-step rules are combined with propositional rules such as Γ, a ∨ b/Γ, a | Γ, b
and rules that deal with nominal and satisfaction operators. One of the crucial feature of
these logics is compositionality: the restriction on the rule format allows us to synthesize
logics in a modular fashion. This is best understood by thinking of the one-step tableau
rules as building blocks for logics that de-construct modal operators of a given type.

Sequencing of Logics. To describe, e.g. simple Segala systems [20] that describe sys-
tems that perform non-deterministic actions followed by a (probabilistic) action of the
environment, we use a two-sorted syntax

L0 4 φ ::= p0 | ¬φ | φ ∧ φ | ♦aψ L1 4 ψ ::= p1 | ¬ψ | ψ ∧ ψ | 〈p〉φ
where pi is a typed propositional variable of the language Li and 〈p〉 is an exemplaric
operator of probabilistic modal logic ‘with probability at least p’. To show satisfiabil-
ity of φ ∈ L0 we deconstruct propositional connectives and apply tableaux rules for
Hennessy-Milner logic. This leaves us with formulae in L1 that are deconstructed in
the same way, but using the rules of propositional modal logic, recursively yielding a
formula in L0 to which the same procedure is applied.

Fusion of Logics. To ensure the same typing discipline we describe the fusion of two
logics over modal operators Λ1 and Λ2 in the same typed framework using three sorts
and two new operators [π1] and [π2]:

L0 4 φ ::= p0 | ¬φ | φ ∧ φ | [π1]ψ | [π2]σ

L1 4 ψ ::= p1 | ¬ψ | ψ ∧ ψ | ♥1φ L2 4 σ ::= p2 | ¬σ | σ ∧ σ | ♥2φ

398 D. Gorı́n et al.

where ♥i ∈ Λi is an operator of type i, and pi is a propositional variable of type i. It
is straightforward to embed the standard (language of the) fusion into the language L0.
We have two modal operators together with the tableau rules

¬[πi]a1, . . . ,¬[πi]ai, [πi]b1, . . . , [πi]bk
¬a1, . . . ,¬an, b1, . . . , bk

for i = 1, 2. This allows us to reason about fusion using the same, typed, reasoning
algorithm as described above for sequencing.

Choice. Choice allows us to axiomatise, e.g., the alternating systems of Hansson and
Jonsson [16] where a successor state either originates from a labelled transition, or from
a probabilistic action of the environment. Like fusion, we describe choice by means of
a multi-sorted language that introduces one new modal operator, +, described by a one-
step tableau rule. For alternating systems, we have

L0 4 φ ::= p0 | ¬φ | φ ∧ φ | ψ + σ

L1 4 ψ ::= p1 | ¬ψ | ψ ∧ ψ | ♥1φ L2 4 σ ::= p2 | ¬σ | σ ∧ σ | ♥2φ

where we read the binary operator ψ+ σ as ‘ψ for labelled successors and σ for proba-
bilistic ones’. Reasoning over logics defined using choice is governed by the rules

¬(a1 + c1), . . . ,¬(an + cn), (b1 + d1), . . . , (bk + dk)

¬a1, . . . ,¬an, b1, . . . , bn | ¬c1, . . . ,¬cn, d1, . . . , dk

that induce type-correct formulae of sort L1 (left) and L2 (right).
A range of generic reasoning procedures of optimal complexity has been devel-

oped for coalgebraic logics with various additional features, including global assump-
tions, nominals, and fixpoints that all support modular combinations as described.
The most basic of these, the generic PSPACE algorithm for satisfiability in next-step
logics [19], has been implemented (already supporting modularity) in the COLOSS
tool [4]. Here, we present the Coalgebraic Ontology Logic Reasoner (COOL), avail-
able at https://www8.cs.fau.de/research/cool, which supports modular
combinations of logics, global assumptions, and nominals, and uses global caching.

2 The COOL Solver: Supported Features

COOL implements a global caching algorithm for coalgebraic hybrid logic with global
assumptions [13]. In description logic parlance, we support terminological reasoning
(TBoxes) as well as nominals and satisfaction operators (thus internalizing Boolean
ABoxes in concepts). These features are orthogonal to the underlying base logic which
is constructed in a modular way from a number of basic building blocks, and the effort
of adding a new logic is typically quite limited. Global caching combines theoretical
optimality (i.e. an exponential time upper bound) with amenability to heuristic opti-
mization [15]. In more detail, COOL supports the following.
− Global assumptions, or, in description logic parlance, a general TBox: one can

restrict the class of models to ones in which all states/worlds/individuals satisfy a given
finite set of formulas, the global assumptions. In knowledge representation, such global
assumptions serve to express background knowledge about the terminological domain.

https://www8.cs.fau.de/research/cool

COOL – A Generic Reasoner for Coalgebraic Hybrid Logics (System Description) 399

− Nominals: we incorporate two key features of hybrid logic [2], nominals and sat-
isfaction operators. Here, a nominal is a name i for an individual state in the model; as
a formula, i is satisfied precisely in the unique state named by i. The satisfaction oper-
ator @i lets the evaluation point of a formula jump to i. Reasoning with these features
encompasses DL-style ABox reasoning: recall that an ABox (assertional box) contains
statements of the forms φ(i) or R(i, j), respectively read ‘individual i satisfies formula
φ’ and ‘individuals i and j are in relation R’. In hybrid logic, these statements can be
expressed as @iφ and @i♦Rj, respectively.
For reasoning with these features, we use the global caching algorithm introduced
in [13]. Global caching for relational modal logics (phrased in DL terminology) goes
back to [14]; the principle has been generalized to coalgebraic logic in [12]. The basic
idea of global caching is to regard a tableau as a directed (possibly cyclic) graph rather
than a tree, thus enabling sharing of nodes. This allows one to visit each label (i.e. finite
set of subformulas) at most once, ensuring at most exponential (hence in most cases
asymptotically optimal) run time. The algorithm partitions the set of currently created
tableau nodes into unexpanded (X), undecided (U), satisfiable (E), and unsatisfiable
(A) nodes. It consists in applying the following two types of steps in near-arbitrary se-
quence, until either the root node is marked A or E or no further steps are applicable:
− Expand: Apply all matching rules to an unexpanded node (then moved from X to

U), creating either new successor nodes (initially marked X) or links to existing nodes.
− Propagate: Mark expanded nodes as unsatisfiable if there is a matching tableau

rule with only unsatisfiable conclusions, and as satisfiable if all matching rules have
some satisfiable conclusion. Here, the recursion is understood as a least fixed point for
unsatisfiability, and as a greatest fixed point for satisfiability.
After the final propagation step, all nodes marked U are reported as satisfiable. Note
that the algorithm may leave nodes marked X, thus allowing for quick answers in many
cases; the apparent non-determinism works in favour of the implementer, as any termi-
nating sequence of steps will yield a correct result, thus leaving room for heuristics.

The novel global caching algorithm for coalgebraic hybrid logic [13] deals with the
global demands arising from satisfaction operators (@iφ holds everywhere or nowhere)
by means of a dedicated second type of nodes called @-constraints. An @-constraint
records @-formulas to be satisfied for a given standard node to be satisfiable. It is linked
to standard nodes in a new type of step called @-expansion (essentially, having @iφ in
an @-constraint requires a standard node satisfying i and φ). In @-propagation steps, the
@-constraints are updated throughout the model using greatest fixed points, essentially
following a winning strategy of the player advocating satisfiability.

3 The COOL Solver: Implementation Details

The implementation of COOL focuses on modal rules, and uses the minisat sat-solver [9]
for reasoning in classical propositional logic, more precisely for expanding the proposi-
tional part of nodes in the tableau graph. The SAT solver is used as a black box, and no
optimisations that concern propositional reasoning are implemented on top of those per-
formed by minisat. Rules for graded and probabilistic modal logics are generated using

400 D. Gorı́n et al.

the GNU Linear Programming Toolkit 1. We refer to [21] for the details of generating
rules for propositional and graded logics on the basis of linear inequalities.

Compositionality of Logics. The underlying modal logic (semantically: the branching
type of systems) is described using an algebraic term with one free variable S (for state)
where each base logic is represented by a unary function symbol and two binary ones
for choice and fusion. These terms are best read as equalities, and e.g. the alternating
systems of Hansson and Jonsson mentioned in the introduction can be specified by

S = Ch(HM(S),P(S))

where Ch represents choice, HM represents Hennessy-Milner logic (multi-modal K)
and P is probabilistic modal logic. Semantically, this expression defines the system
type: given a state, we either see labelled successors, or a probability distribution over
states, i.e. we observe an external choice between both. Similarly, simple Segala sys-
tems are modelled by S = HM(P(S)) and the fusion of probabilistic modal logic and
Hennessy-Milner logic would be S = Fus(HM(S)),P(S)) where Fus is a binary func-
tion representing fusion.

Generic Reasoning and Tableau Rules. Our reasoner is generic in that the reasoning
algorithm is conceptually independent of the underlying modal logic. This is achieved
by isolating the modal rules into OCAML functions that – given a premiss – compute
the set of all (instances of) applicable tableau rules The underlying reasoning algorithm
then invokes the respective rules in sequence, following the construction of any given
particular logic. The treatment of nominals, satisfaction operators and global assump-
tions is identical for all logics, and is hard-coded into the reasoning algorithm.

Optimisations. As mentioned above, we do not implement any optimisations on the
propositional level, but we use global caching for dealing both with nominals and modal
tableaux. The only conceptual implementation supported by COOL (and implemented
for K) is backjumping [3]: each logical feature provides a hook by which a subset of
literals that cause a clash can be passed back to the reasoner.

4 Experimental Evaluation

The COOL reasoner is still on its early stages of development and, having finished a
robust implementation of the generic core, our main focus at the moment is on adding
support for more logics. Still, our measurements suggest that it already offers a fair per-
formance: even for the logic K (that is, the baseline logic ALC of the DL community),
the response times of COOL are often within those of a long-established DL reasoner,
implementing many advanced optimization strategies, such as FACT++.[22]

The experiments we report here are based on random formula generation in clausal
form. This methodology allows one to compare different reasoners without risking an
optimization bias (testing w.r.t. a set of problems for which one of the reasoners was
specifically tuned) and give reasonable expectations regarding the capacity of a rea-
soner to handle large problems. We acknowledge that on real data-sets the difference in

1 http://www.gnu.org/s/glpk/

http://www.gnu.org/s/glpk/

COOL – A Generic Reasoner for Coalgebraic Hybrid Logics (System Description) 401

300

1

10

100

3001 10 100

C
oo

l
ru

nt
im

e
in

se
c.

(lo
gs

ca
le

)

Fact++ runtime in sec. (logscale)

1%

64%

300

1

10

100

3001 10 100

C
oo

l
ru

nt
im

e
in

se
c.

(lo
gs

ca
le

)

Fact++ runtime in sec. (logscale)

0.2%19%

0.04%59%

a) FACT++ vs. COOL on ALC b) FACT++ vs. COOL on ALCQ

Fig. 1. Comparative evaluation of COOL vs. FACT++ on random formulas in ALC and ALCQ,
with 5 atoms and 0.25 chance of occurring; up to 6 dis-/conjuncts per dis-/conjunction; TBox
formulas with modal depth of 2. Percentages shown refer to percentage of samples represented
by indicated points. Times correspond to the USER TIME field as reported by the GNU TIME

command. Test conducted on a heterogeneous cluster of computers with similar load.

performance between reasoners can become more noticeable and that random testing
may oversample trivial formulas, but we defer alternative measurements (benchmark-
ing with dedicated formula series) until more substantial sets of benchmark formulas
are available also for non-relational logics.

We report on three comparisons: i) COOL vs. FACT++ on ALC (with a TBox), ii)
COOL vs. FACT++ on ALCQ (with and without a TBox), and iii) COOL vs. TATL (a
tableau reasoner for full ATL [8]) on coalition logic (with and without a TBox, encoded
using ATL temporal operators for TATL). We kept fixed a number of parameters such as
number of atoms, average number of conjuncts/disjuncts etc., and gradually increased
the modal depth. In coalition logic, COOL answered consistently and substantially faster
and with fewer timeouts than TATL, especially in the presence of a TBox (a scatter
plot of the comparison reveals no additional information). Scatter plots for COOL vs.
FACT++ are shown in Fig. 1. On ALC, COOL shows a behaviour comparable to that of
FACT++. Contrastingly, FACT++ is still substantially faster on ALCQ, possibly due to
the fact that COOL does not yet implement backjumping for ALCQ.

5 Conclusions

Based on generic results from coalgebraic logic, the COOL reasoner supports a sim-
ple implementation and automatic combination of a wide spectrum of logics; very few
other reasoners support any logic outside the standard relational setup. A preliminary
empirical evaluation suggests that, while there is still plenty of room for optimizations,
the implementation of the core global-caching algorithm is robust and efficient.

Acknowledgments. The authors wish to thank Erwin R. Catesbeiana for helpful com-
ments on consistency checking.

402 D. Gorı́n et al.

References

1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J. ACM 49, 672–
713 (2002)

2. Areces, C., ten Cate, B.: Hybrid logics. In: Blackburn, P., van Benthem, J., Wolter, F. (eds.)
Handbook of Modal Logic, pp. 821–868. Elsevier (2007)

3. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The
Description Logic Handbook. Cambridge University Press (2003)

4. Calin, G., Myers, R., Pattinson, D., Schröder, L.: Coloss: The coalgebraic logic satisfiability
solver. In: Methods for Modalities, M4M-5. ENTCS, vol. 231, pp. 41–54. Elsevier (2009)

5. Chellas, B.: Modal Logic. Cambridge University Press (1980)
6. Cı̂rstea, C., Kupke, C., Pattinson, D.: EXPTIME tableaux for the coalgebraic μ-calculus. In:

Grädel, E., Kahle, R. (eds.) CSL 2009. LNCS, vol. 5771, pp. 179–193. Springer, Heidelberg
(2009)

7. D’Agostino, G., Visser, A.: Finality regained: A coalgebraic study of Scott-sets and multisets.
Arch. Math. Logic 41, 267–298 (2002)

8. David, A.: TATL: Implementation of ATL tableau-based decision procedure. In: Galmiche,
D., Larchey-Wendling, D. (eds.) TABLEAUX 2013. LNCS, vol. 8123, pp. 97–103. Springer,
Heidelberg (2013)

9. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.)
SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

10. Fagin, R., Halpern, J.Y.: Reasoning about knowledge and probability. J. ACM 41, 340–367
(1994)

11. Fine, K.: In so many possible worlds. Notre Dame J. Formal Logic 13, 516–520 (1972)
12. Goré, R., Kupke, C., Pattinson, D.: Optimal tableau algorithms for coalgebraic logics. In:

Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 114–128. Springer,
Heidelberg (2010)

13. Goré, R., Kupke, C., Pattinson, D., Schröder, L.: Global caching for coalgebraic description
logics. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 46–60.
Springer, Heidelberg (2010)

14. Goré, R., Nguyen, L.: EXPTIME tableaux forALC using sound global caching. In: Descrip-
tion Logics, DL 2007. CEUR Workshop Proceedings, vol. 250 (2007)

15. Goré, R.P., Postniece, L.: An experimental evaluation of global caching forALC (system de-
scription). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI),
vol. 5195, pp. 299–305. Springer, Heidelberg (2008)

16. Hansson, H., Jonsson, B.: A calculus for communicating systems with time and probabilities.
In: Real-Time Systems, RTSS 1990, pp. 278–287. IEEE Computer Society (1990)

17. Pattinson, D.: Coalgebraic modal logic: Soundness, completeness and decidability of local
consequence. Theoret. Comput. Sci. 309, 177–193 (2003)

18. Pauly, M.: A modal logic for coalitional power in games. J. Log. Comput. 12, 149–166 (2002)
19. Schröder, L., Pattinson, D.: PSPACE bounds for rank-1 modal logics. ACM Trans. Comput.

Log. 13, 1–13 (2009)
20. Segala, R.: Modelling and Verification of Randomized Distributed Real-Time Systems. PhD

thesis, Massachusetts Institute of Technology (1995)
21. Snell, W., Pattinson, D., Widmann, F.: Solving graded/probabilistic modal logic via linear

inequalities (system description). In: Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012. LNCS,
vol. 7180, pp. 383–390. Springer, Heidelberg (2012)

22. Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: System description. In: Fur-
bach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 292–297. Springer,
Heidelberg (2006)

The Complexity of Theorem Proving

in Circumscription and Minimal Entailment

Olaf Beyersdorff� and Leroy Chew��

School of Computing, University of Leeds, UK

Abstract. We provide the first comprehensive proof-complexity analy-
sis of different proof systems for propositional circumscription. In partic-
ular, we investigate two sequent-style calculi: MLK defined by Olivetti
[28] and CIRC introduced by Bonatti and Olivetti [8], and the tableaux
calculus NTAB suggested by Niemelä [26]. In our analysis we obtain
exponential lower bounds for the proof size in NTAB and CIRC and
show a polynomial simulation of CIRC by MLK . This yields a chain
NTAB <p CIRC <p MLK of proof systems for circumscription of
strictly increasing strength with respect to lengths of proofs.

1 Introduction

Circumscription is one of the main formalisms for non-monotonic reasoning. It
uses reasoning with minimal models, the key idea being that minimal models
have as few exceptions as possible. Therefore circumscription embodies common
sense reasoning. Indeed, circumscription is known to be equivalent to reason-
ing under the extended closed world assumption, one of the main formalisms
for reasoning with incomplete information. Apart from its foundational relation
to human reasoning, circumscription has wide-spread applications, e.g. in AI,
description logics [7] and SAT solving [21]. Circumscription is used both in first-
order as well as in propositional logic, and we concentrate in this paper on the
propositional case.

The semantics and complexity of circumscription have been the subject of
intense research (see e.g. the recent articles [7, 14, 29]). In particular, deciding
circumscriptive inference is harder than for propositional logic as it is complete
for Πp

2, the second level of the polynomial hierarchy [11, 16]. Likewise, from the
proof-theoretic side there are a number of formal systems for circumscription
ranging from sequent calculi [8, 28] to tableau methods [25, 26, 28].

The contribution of the present paper is a comprehensive analysis of these
formal systems from the perspective of proof complexity. The main objective in
proof complexity is a precise understanding of lengths of proofs. The two main
tools for this are lower bound methods for the size of proofs for specific proof
systems as well as simulations between proof systems. While lower bounds pro-
vide exact information on proof size, simulations compare the relative strength

� Supported by a grant from the John Templeton Foundation.
�� Supported by a Doctoral Training Grant from EPSRC.

S. Demri, D. Kapur, and C. Weidenbach (Eds.): IJCAR 2014, LNAI 8562, pp. 403–417, 2014.
c© Springer International Publishing Switzerland 2014

404 O. Beyersdorff and L. Chew

of proof systems and determine whether proofs can be efficiently translated be-
tween different formalisms. In this paper our results will employ both of these
paradigms. While the bulk of research in proof complexity has concentrated on
propositional proofs the last decade has seen ever increasing interest in proof
complexity of non-classical logics (cf. [4] for a survey). In particular, very im-
pressive results have been obtained for modal and intuitionistic logics [20, 22].

Prior to this paper, very little was known about the proof complexity of
propositional circumscription. Our analysis concentrates on three of the main
formalisms for circumscription: the tableau systemNTAB introduced by Niemelä
[26], the analytic sequent calculus CIRC by Bonatti and Olivetti [8], and the
sequent calculus MLK by Olivetti [28]. Our main results are exponential lower
bounds for the proof size in the tableau system NTAB and the sequent calculus
CIRC (Theorems 6 and 19) as well as an efficient simulation of CIRC by MLK
(Theorem 13). Together with the simulation of NTAB by CIRC shown by Bon-
atti and Olivetti [8] this gives a hierarchy of proof systems NTAB <p CIRC <p

MLK . Moreover, this hierarchy is strict as our results provide separations be-
tween the proof systems (Theorems 8 and 19). While the systems NTAB and
MLK only work for minimal entailment — the most important special case of
circumscription — we also extend the results on MLK to the calculus DMLK
from [28] for general circumscription (Theorem 16).

In related research, Egly and Tompits [15] investigated the proof-theoretic
strength of circumscription in a first-order version of Bonatti and Olivetti’s se-
quent calculus. They showed that for some formulas, first-order CIRC has much
shorter proofs than classical first-order LK . Also in [1,5] the authors investigated
the proof complexity of propositional default logic and autoepistemic logic, two
other main approaches to non-monotonic reasoning. Although there are several
translations between the different non-monotonic logics, we stress that none of
these previous results imply lower bounds or simulations for circumscription.

This paper is organised as follows. In Sect. 2 we review background informa-
tion and notation about circumscription and proof complexity. In particular, we
discuss the antisequent calculus AC . Section 3 contains our first main result: the
exponential lower bound for CIRC . In Sect. 4 we prove the simulation of CIRC
by MLK for minimal entailment; and this is extended to full circumscription
and the calculus DMLK in Sect. 5. Section 6 then contains the comparison to
Niemelä’s tableau calculus NTAB , obtaining a separation between this tableau
and CIRC . We conclude in Sect. 7 with a discussion and some open problems.
Due to space restrictions some proofs are omitted or briefly sketched.

2 Preliminaries

Our propositional language contains the logical symbols ⊥,�,¬,→,∨,∧. The
notation A[x/y] indicates that in the formula A every occurrence of formula x is
replaced by formula y. For a set of formulae Σ, VAR(Σ) is the set of all atoms
that occur in Σ. For a set P of atoms we set ¬P = {¬p | p ∈ P}. Disjoint union
of two sets A and B is denoted by A � B.

The Complexity of Theorem Proving in Circumscription 405

Circumscription is a non-monotonic logic introduced by McCarthy [24]. It
looks at finding the ‘minimal’ situations that can occur, given our assumptions
(cf. McCarthy’s famous example of the “missionaries and cannibals” problem
[24]). For circumscription, the propositional atoms are partitioned into three
sets: P is the set of all atoms that are minimised, R is the set of fixed atoms,
and Z denotes all remaining atoms, which may vary from the minimisation but
are not themselves minimised. We usually only display P and R in the notation.

A model is a subset of the propositional atoms ΣProp. We define a pre-order
≤P ;R on models I, J as follows: I ≤P ;R J ⇔ I∩P ⊆ J∩P and I∩R = J∩R. The
relation ≤P ;R is transitive and minimality can be defined for models. Let I |= Γ .
We say that I is a (P ;R)-minimal model of Γ (and denote it by I |=P ;R Γ) if
and only if for any model J , if J |= Γ then (J ≤P ;R I) ⇒ (I ≤P ;R J).

If φ is a formula, then Γ �P ;R φ means that φ holds in all (P ;R)-minimal
models of Γ . This is the notion of semantic entailment in circumscription. A
few special cases can be noted. When P = ∅ then �P ;R coincides with �, the
classical entailment. When P is the set of all variables appearing in the formulae
of either the antecedent or the succedent then entailment is known as minimal
entailment, and we denote it with the symbol �M .

Proof Complexity. A proof system (Cook, Reckhow [12]) for a language L
over alphabet Γ is a polynomial-time computable partial function f : Γ � ⇁ Γ �

with rng(f) = L. An f -proof of string y is a string x such that f(x) = y.
From this we can start defining proof size. For f a proof system for language

L and string x ∈ L we define sf (x) = min(|w| : f(w) = x). Thus the partial
function sf tells us the minimum proof size of a theorem. We can overload the
notation by setting sf (n) = max(sf (x) : |x| ≤ n) where n ∈ N. For a function
t : N → N, a proof system f is called t-bounded if ∀n ∈ N, sf (n) ≤ t(n).

Proof systems are compared by simulations. We say that a proof system f
simulates g (g ≤ f) if there exists a polynomial p such that for every g-proof
πg there is an f -proof πf with f(πf) = g(πg) and |πf | ≤ p(|πg|). If πf can
even be constructed from πg in polynomial time, then we say that f p-simulates
g (g ≤p f). Two proof systems f and g are (p-)equivalent (g ≡(p) f) if they
mutually (p-)simulate each other.

Gentzen’s system LK is one of the historically first and best studied proof
systems [18]. It operates with sequents. Formally, a sequent is a pair (Γ ,Δ) with
Γ and Δ finite sets of formulae. A sequent is usually written in the form Γ � Δ.
In classical logic Γ � Δ is true if every model for

∧
Γ is also a model of

∨
Δ,

where the disjunction of the empty set is taken as ⊥ and the conjunction as �.
When considering LK in proof complexity we treat sequents as strings in binary,
built from binary strings representing atoms and connectives. The system can
be used both for propositional and first-order logic; the propositional rules are
displayed in Fig. 1. Notice that the rules here do not contain structural rules for
contraction or exchange. These come for free as we chose to operate with sets of
formulae rather than sequences. Note the soundness of rule (• �), which gives
us monotonicity of classical propositional logic.

406 O. Beyersdorff and L. Chew

(�)
A � A

(⊥ �)⊥ � (� �)� �

Γ � Σ (• �)
Δ,Γ � Σ

Γ � Σ (� •)
Γ � Σ,Δ

Γ � Σ,A
(¬ �)¬A,Γ � Σ

A,Γ � Σ
(� ¬)

Γ � Σ,¬A
A,Γ � Σ

(•∧ �)
B ∧A,Γ � Σ

A,Γ � Σ
(∧• �)

A ∧ B,Γ � Σ

Γ � Σ,A Γ � Σ,B
(� ∧)

Γ � Σ,A ∧ B

A,Γ � Σ B,Γ � Σ
(∨ �)

A ∨B,Γ � Σ

Γ � Σ,A
(� •∨)

Γ � Σ,B ∨A

Γ � Σ,A
(� ∨•)

Γ � Σ,A ∨B

A,Γ � Σ,B
(�→)

Γ � Σ,A→ B

Γ � Σ,A B,Δ � Λ
(→�)

A→ B,Γ,Δ � Σ,Λ

Γ � Σ,A A,Γ � Σ
(cut)

Γ � Σ

Fig. 1. Rules of the sequent calculus LK [18]

A useful ingredient for working towards a calculus for non-monotonic logics is
the notion of underivability. We use Γ � φ to denote that “there is a model M
that satisfies all formulae in Γ but for which ¬φ holds”. An antisequent is a pair
of sets Γ , Δ of formulae, denoted Γ � Δ. Semantically, an antisequent Γ � Σ
is true if there is some model M |= Γ so that for all φ in Σ we have M |= ¬φ.
This is equivalent to saying that we cannot derive Γ � Σ.

Bonatti [6] devised an antisequent calculus AC (cf. also [30]; rules of AC are
given in Fig. 2. Correctness and completeness of AC was proven by Bonatti.

Theorem 1. (Bonatti [6]) An antisequent is true if and only if it is derivable
in the antisequent calculus AC.

While the truth of an antisequent tells us of the existence of a model that
satisfies the left hand side but contradicts the right hand side, this does not
point immediately to the model itself. The model, however, can be constructed
from an AC -proof.

Proposition 2. Given an AC-proof of an antisequent Γ � Δ we can construct
in polynomial-time a model M that satisfies Γ and falsifies Δ.

We mention that Proposition 2 implies that AC is presumably not automa-
tizable, i.e., it is not possible to construct AC -proofs in polynomial time (even
though AC -proofs are always of quadratic size [5]). In fact, using Proposition 2
it can be shown that automatizability of AC is equivalent to a complexity as-
sumption Q, studied in [17] and shown to be equivalent to the p-optimality of
the standard proof system for SAT in [3].

The Complexity of Theorem Proving in Circumscription 407

(�) where Γ and Σ are disjoint sets of propositional variables
Γ � Σ

Γ � Σ, α
(¬ �)

Γ,¬α � Σ

Γ, α � Σ
(� ¬)

Γ � Σ,¬α

Γ, α, β � Σ
(∧ �)

Γ, α ∧ β � Σ

Γ � Σ,α
(� •∧)

Γ � Σ,α ∧ β

Γ � Σ, β
(� ∧•)

Γ � Σ,α ∧ β

Γ � Σ,α, β
(� ∨)

Γ � Σ,α ∨ β

Γ, α � Σ
(•∨ �)

Γ, α ∨ β � Σ

Γ, β � Σ
(∨• �)

Γ, α ∨ β � Σ

Γ,α � Σ, β
(�→)

Γ � Σ,α→ β

Γ � Σ,α
(• →�)

Γ, α→ β � Σ

Γ, β � Σ
(→ • �)

Γ, α→ β � Σ

Fig. 2. Inference rules of the antisequent calculus AC by Bonatti [6]

3 A Lower Bound for the Sequent Calculus CIRC

Bonatti and Olivetti [8] devised sequent calculi for several non-monotonic logics,
among them was circumscription in a sequent calculus referred to as CIRC . A
new item Σ known as a constraint has been added to the sequent. Σ is a set of
atoms disjoint from R, so the circumscriptive sequents are of form Σ;Γ �P ;R Δ
(which may be regarded as a 5-tuple). As defined by Bonatti and Olivetti [8],
the sequent Σ;Γ �P ;R Δ is true when: “In every (P ∪ Σ;R)-minimal model of
Γ that satisfies Σ there is a formula φ ∈ Δ that holds.”

When Σ is empty we omit it from the notation, and these are the circum-
scriptive sequents we are primarily interested in. The rules of the calculus CIRC
comprise the rules given in Fig. 3 together with all rules from LK and AC .
Bonatti and Olivetti proved the correctness and completeness of CIRC :

Theorem 3. (Bonatti, Olivetti [8]) A sequent Σ;Γ �P ;R Δ is true if and
only if it is derivable in CIRC.

To start a proof-theoretic investigation of CIRC we need the following notion:

Definition 4. Let π be a CIRC-proof of a circumscriptive sequent Γ �P ;R Δ
and let s be a sequent occurring in π (we will also call this a line of π). We call
s involved in π if either s is Γ �P ;R Δ or is used as premise for some rule whose
conclusion is an involved sequent. We call s intermediate if s is involved in π
and occurs in π as a conclusion of any of rules (C1)–(C4).

Thus the intermediate sequents form the “essential CIRC -part” of the proof
on which we will focus our analysis. The whole proof can be much larger due
to LK and AC -derivations. The next lemma shows that intermediate sequences
are always of a special form.

408 O. Beyersdorff and L. Chew

Γ,¬P � q
(C1)

q,Σ;Γ �P ;∅ Δ

Σ,Γ � Δ
(C2)

Σ;Γ �P ;R Δ

q,Σ;Γ �P ;R Δ Σ;Γ,¬q �P ;R Δ
(C3)

Σ;Γ �P,q;R Δ

Σ;Γ, q �P ;R Δ Σ;Γ,¬q �P ;R Δ
(C4)

Σ;Γ �P ;R,q Δ

In all rules q is atomic and does not occur in P or R.

Fig. 3. Inference rules of the circumscription calculus CIRC of Bonatti & Olivetti [8]

Lemma 5. Let π be a proof of the minimal entailment formula Γ �VAR(Γ∪Δ);∅
Δ. Then every intermediate line in π (in the sense of Definition 4) is of the
form P+;Γ,¬P− �P 0;∅ Δ, where VAR(Γ ∪ Δ) = P 0 � P+ � P−.

Our first result shows an exponential lower bound to the proof size of CIRC .
We do this by forcing the CIRC -proof to enumerate all minimal models, however
in general a CIRC -proof may not be required to do so. For an easy example,
consider

∧
1≤i≤n pi∨qi �M

∧
1≤i≤n pi∨qi, which has exponentially many minimal

models, but can be derived in two lines from (�) and (C2).

Theorem 6. CIRC needs exponential-size proofs, i.e., sCIRC (n) ∈ 2Ω(n/ logn).

Proof. The idea is to construct a class of formulae which are of size O(n log n),
but whose proof size grows exponentially. We use propositional variables Pn =
{pi, qi : 1 ≤ i ≤ n} and define antecedent Γn := {pi ∨ qi : 1 ≤ i ≤ n} and
succedent Δn :=

∧
1≤i≤n(pi∧¬qi)∨ (qi ∧¬pi). We consider the class of sequents

Γn �Pn;∅ Δn.
Intuitively the sequents express

∧
1≤i≤n pi ∨ qi |=M

∧
1≤i≤n pi ⊕ qi, which is

not classically true. But they are true circumscriptive sequents, because every
minimal model of Γn will include pi or qi but cannot include both as these models
are not minimal. Notice that the size of the sequents is bounded by O(n log n)
because to represent of each of the n variables we need O(log n) bits.

Let now π be a CIRC -proof of ∅;Γn �Pn;∅ Δn. We now argue inductively.
Induction Hypothesis (on k for k ≤ n): Let P+;Γn,¬P− �P 0;∅ Δn be

an intermediate sequent of π (we know it is of this form by Lemma 5) with
k = n− |P− � P+|. Then the sub-proof of P+;Γn,¬P− �P 0;∅ Δn in π contains
at least 2k lines of the form B;Γn,¬A �C;∅ Δn, where A,B,C are sets of atoms,
with P+ ⊆ B, P− ⊆ A, and with B, A disjoint in any line.

Base Case (when k = 0): A single line is needed to state the end result
P+;Γn,¬P− �P 0;∅ Δn, and it suffices to take B = P+, A = P−.

Inductive Step: Assume the induction hypothesis holds for k − 1. Our aim is
to show that if 1 ≤ k ≤ n, then P+;Γn,¬P− �P 0;∅ Δn can only be inferred in
CIRC by using (C3) in the form of

The Complexity of Theorem Proving in Circumscription 409

s, P+;Γn,¬P− �P 0\{s};∅ Δn P+;Γn,¬P−,¬s �P 0\{s};∅ Δn

P+;Γn,¬P− �P 0;∅ Δn

for some s in P 0. Lemma 5 tells us that P+ � P− � P 0 = Pn. As k < n there is
some i, 1 ≤ i ≤ n, such that pi, qi /∈ P+ � P− and so pi, qi ∈ P 0.

Suppose that P+;Γn,¬P− �P 0;∅ Δn is inferred via (C1). Then, for some
p ∈ P+, the sequent Γn,¬P−,¬P 0 � p must be obtainable in the antisequent
calculus. But as pi, qi ∈ P 0 and pi∨qi ∈ Γn the set Γn,¬P−,¬P 0 is inconsistent
and has no models. Hence Γn,¬P−,¬P 0 � p and Γn,¬P−,¬P 0 � p is not
derivable in AC .

Suppose instead that it is inferred via (C2). Then P+, Γn,¬P− � Δn must be
true. However, as pi, qi /∈ P+ � P− the model which takes pi, qi as both true is
consistent with the antecedent but not the succedent; so (C2) cannot be used.

Rule (C4) cannot be used either as the resulting sequent always has an element
in R. Hence, (C3) is used to infer P+;Γn,¬P− �P 0;∅ Δn.

The inductive case needs proofs of both s, P+;Γn,¬P− �P 0\{s};∅ Δn and
P+;Γn,¬P−,¬s �P 0\{s};∅ Δn to construct the full proof. By the induction hy-

pothesis each takes at least 2n−k−1 many lines of our desired form. Atom s is
either in B or in A but not both. Therefore the lines are all distinct and there
are 2 · 2n−k−1 many lines, hence at least 2n−k lines for the inductive step.

Finally, when k = n we get that the full proof π of ∅;Γn �Pn;∅ Δn contains at
least 2n applications of (C3). �

In fact the proof even shows an exponential lower bound to the number of
lines, i.e., the proof length, which is a stronger statement.

4 Separating the Sequent Calculi CIRC and MLK

We now focus our attention on minimal entailment. In particular we will discuss
Olivetti’s sequent calculus MLK from [28] and compare its proof complexity
with CIRC . MLK operates with sequents Γ �M Δ. Semantically, Γ �M Δ is
true if

∨
Δ holds in all (VAR(Γ ∪ Δ); ∅)-minimal models of Γ .

To introduce derivability we use the property of a positive atom in a formula
from [28], defined inductively as follows. Atom p is positive in formula p. Atom p
is positive in formula φ if and only if it is negative in ¬φ. If atom p is positive in
formula φ or χ, it is positive in φ∧χ and φ∨χ. If atom p is negative in formula
φ or positive in χ then it is positive in φ → χ.

The MLK calculus comprises all rules detailed in Fig. 4 together with all rules
from LK . Olivetti showed soundness and completeness of MLK .

Theorem 7. (Olivetti [28]) A sequent Γ �M Δ is true if and only if it is
derivable in MLK.

We first show that for minimal entailment, CIRC is not better than MLK .

Theorem 8. CIRC does not p-simulate MLK for minimal entailment.

410 O. Beyersdorff and L. Chew

(�M)
Γ �M ¬p

Γ � Δ (��M)
Γ �M Δ

for p atomic and not positive in any formula in Γ

Γ �M Σ,A A, Γ �M Λ
(M-cut)

Γ �M Σ,Λ

Γ �M Σ Γ �M Δ
(• �M)

Γ,Σ �M Δ

Γ �M Σ,A Γ �M Σ,B
(�M ∧)

Γ �M Σ,A ∧B

A,Γ �M Σ B,Γ �M Σ
(∨ �M)

A ∨B,Γ �M Σ

Γ �M Σ,A
(�M •∨)

Γ �M Σ,B ∨ A

Γ �M Σ,A
(�M ∨•)

Γ �M Σ,A ∨B

A,Γ �M Σ
(�M ¬)

Γ �M Σ,¬A
A,Γ �M Σ,B

(�M→)
Γ �M Σ,A→ B

Fig. 4. Rules of the sequent calculus MLK for minimal entailment (Olivetti [28])

Proof. We use the hard examples from Theorem 6 and show that they can be
proved in MLK in polynomial size. Using the same notation as in the proof of
Theorem 6 we define Γ i as Γn\{pi∨qi}. Consider the following MLK derivation.

(�)
pi � pi

(• �)
Γ i, pi � pi

(��M)
Γ i, pi �M pi

(�M)
Γ i, pi �M ¬qi

(�M ∧)
Γ i, pi �M pi ∧ ¬qi

(�M ∨•)
Γ i, pi �M (pi ∧ ¬qi) ∨ (qi ∧ ¬pi)

(�)
qi � qi

(• �)
Γ i, qi � qi

(��M)
Γ i, qi �M qi

(�M)
Γ i, qi �M ¬pi

(�M ∧)
Γ i, qi �M qi ∧ ¬pi

(�M •∨)
Γ i, qi �M (pi ∧ ¬qi) ∨ (qi ∧ ¬pi)

(∨ �M)
Γn �M (pi ∧ ¬qi) ∨ (qi ∧ ¬pi)

This proof tree shows that Γn �M (pi ∧ ¬qi) ∨ (qi ∧ ¬pi) can be proved in
linear length. By repeated use (at most a linear number of times) of rule (�M ∧)
we build the big conjunction and obtain Γn �M Δn in polynomial size. �

The next lemma provides a translation of intermediate CIRC -sequents to
MLK -sequents, which is easy to verify model-theoretically.

Lemma 9. Let VAR(Γ,Δ) = P 0 �P+ �P−. Then P+;Γ,¬P− �P 0;∅ Δ is true
if and only if Γ,¬P− �M Δ,¬P+ is true.

Given a minimal entailment sequent Λ �VAR(Λ,Δ);∅ Δ and its proof (ti)0≤i≤n

in CIRC we define a map τ that acts on intermediate sequents of the form
Σ;Γ �P ;∅ Δ and maps them to the MLK -sequent Γ �M Δ,¬Σ. This map is
well defined as Lemma 5 guarantees that all intermediate sequents are exactly
of the form that allow the translation in Lemma 9.

To compare MLK with CIRC we need a few facts on LK .

The Complexity of Theorem Proving in Circumscription 411

Lemma 10. 1. For sets of formulae Γ,Δ and disjoint sets of atoms Σ+, Σ−

with VAR(Γ ∪ Δ) = Σ+ � Σ− we can efficiently construct quadratic-size
LK-proofs of Σ+,¬Σ−, Γ � Δ when the sequent is true.

2. For formulae φ, χ we have sLK(φ � φ[χ/⊥]) ∈ O(|χ| + |φ|).

Lemma 11. Let Σ, Γ , Δ be sets of formulae. From a sequent Σ,
∧

Γ �M Δ of
size n we can derive Σ,Γ �M Δ in an O(n3) size MLK proof.

Proof (Sketch). Informally, the idea is that writing a conjunction or a list of
formulae is semantically the same thing, but must be treated as different objects
in a proof. The lemma demonstrates the ability of MLK to prove one direc-
tion of the equivalence in polynomial size. The strategy used is to inductively
prove Σ,

∧
Γ, Γ ′ �M Δ for Γ ′ ⊆ Γ . We use proof by induction on the number

of elements r of Γ ′. We then use M -cut to remove the conjunction from the
antecedent. �

Remark 12. As can be seen, the M-cut rule is very powerful and allows to manip-
ulate the minimal entailment sequents, by using classical sequents. In fact, even
when omitting all rules (�M ∧), (∨ �M), (�M •∨), (�M ∨•), (�M ¬), (�M→)
from MLK we still obtain a calculus that is complete for minimal entailment
and p-simulates the original MLK . An example illustrating this for (�M ¬) is
given below.

(�)
A � A (� ¬)� A,¬A

(repeated use of • �)
Γ � A,¬A

(��M)
Γ �M A,¬A A,Γ �M Σ

(M-cut)
Γ �M Σ,¬A

The next theorem is the main result in this section. Together with Theorem 8
it shows that MLK is strictly stronger than CIRC for minimal entailment.

Theorem 13. MLK p-simulates CIRC for minimal entailment.

Proof (Sketch). Let π be a proof in CIRC of the minimal entailment sequent
Λ �VAR(Λ,Δ);∅ Δ. We will show that there exist constants a and b (independent
of π and the sequent) such that there is a proof π� of Λ �M Δ in MLK with
|π�| ≤ a|π|3+ b. The induction argument is based on translating each line of the
CIRC -proof using τ defined after Lemma 9 and deriving it in MLK .

Induction Hypothesis (on the number r of applications of (C3) and (C4)):
Let Λ �VAR(Λ,Δ);∅ Δ be a minimal entailment sequent with CIRC proof π. Let
Σ;Γ �P ;∅ Δ be an intermediate sequent of π (as in Definition 4), which is
preceded by r applications of rules (C3) and (C4) in π, and the sub-proof up to
that line is of size k. Then τ(Σ;Γ �P ;∅ Δ) can be derived in an (ak3 + b)-size
MLK proof.

Base Case (r = 0): For the base cases we only have to consider conclusions
of rules (C1) and (C2).

412 O. Beyersdorff and L. Chew

C1: What makes (C1) the most difficult case is that it uses the antisequent
calculus, which is not incorporated in MLK . When using (C1) in CIRC proof π
we would start with premise Γ,¬P � q and end with conclusion q,Σ;Γ �P ;∅ Δ,
so we have to find an MLK proof starting with the axioms of the MLK calculus
that is cubic in size and reaches conclusion τ(q,Σ;Γ �P ;∅ Δ) = Γ �M Δ,¬q,¬Σ.

Suppose that the intermediate sequent q,Σ;Γ �P ;∅ Δ is inferred via (C1) in
the CIRC proof π. Then Γ,¬P � q holds; so there is some model N in which
Γ,¬P and ¬q hold. Moreover, since we have the AC -proof we can efficiently
construct this N by Proposition 2, which is needed to get a p-simulation.

Consider the sets of atoms Σ+ = VAR(Γ) ∩ N and Σ− = VAR(Γ) \ (N ∪
{q} ∪ P). We claim that Σ+ ⊆ Σ ⊆ Σ+ � Σ− (but must omit the proof here).
Therefore we can find Σ� ⊆ Σ− such that Σ = Σ+ � Σ�.

For set of atoms A = {a1, . . . , al} let us define Γ̂ (A) =
∧

Γ [a1/⊥, . . . , al/⊥].
This notation allows us to replace the variables with their assigned value, and
treat the antecedent as a single formula. Let m = |Λ �VAR(Λ,Δ);∅ Δ|. We will
let U and Q be arbitrary sets of atoms such that U � Q = Σ− ∪ P . Then
Σ+ �M Γ̂ (U) is true. This is because all atoms in Q and U are minimised to
not true, and the remaining positive atoms of N are all true, hence the minimal
model is N and so Γ is satisfied. We incorporate these sequents in a proof by
induction where we replace ⊥ with atoms in Γ̂ one by one (we omit details of
this induction). For Q = Σ− ∪ P we obtain from this induction an MLK -proof
of Σ+ �M

∧
Γ of size O(m2). We proceed extending the proof with

Σ+ �M

∧
Γ

(�M)
Σ+ �M ¬q

(• �M)
Σ+,
∧

Γ �M ¬q

Using Lemma 11 we can add a cubic size proof to get Σ+, Γ �M ¬q. Now we
wish to weaken the right hand side. To do this we start with the axiom ¬q � ¬q.
Then use the weakening rules of LK to get Σ+, Γ,¬q � ¬q,¬Σ�, Δ. We then
continue with

Σ+, Γ �M ¬q

Σ+, Γ,¬q � ¬q,¬Σ�, Δ
(��M)

Σ+, Γ,¬q �M ¬q,¬Σ�, Δ
(M-cut)

Σ+, Γ �M ¬q,¬Σ�, Δ

Repeated use of rule (�M ¬) on sequents derives Γ �M Δ,¬q,¬Σ, which is
equivalent to the conclusion in (C1) under translation τ .

C2: We start with the classical sequent Σ,Γ � Δ and then continue with

Σ,Γ � Δ
(��M)

Σ,Γ �M Δ
repeated use of (�M ¬)

Γ �M Δ,¬Σ

to obtain Γ �M Δ,¬Σ = τ(Σ;Γ �P ;∅ Δ).
Inductive Step: In our overall induction we still need to consider the cases

of applications of rules (C3) and (C4).
C3: For (C3), because of Lemma 5 our premises translated under τ must be

Λ,¬P− �M Δ,¬P+,¬p and Λ,¬P−,¬p �M Δ,¬P+, yielding

The Complexity of Theorem Proving in Circumscription 413

Λ,¬P− �M Δ,¬P+,¬p Λ,¬P−,¬p �M Δ,¬P+

(M-cut)
Λ,¬P− �M Δ,¬P+

C4: Since we have no fixed elements there are no applications of (C4).
Finally, the inductive claim for the entire proof gives us a cubic size proof of

the sequent τ(Λ �VAR(Λ,Δ);∅ Δ), and this is Λ �M Δ as required. Since our proof
is constructive we even obtain a p-simulation. �

5 Extending the Simulation to Full Circumscription

While MLK only works for minimal entailment Olivetti [28] also augmented
this calculus to obtain a sequent calculus for full circumscription. The rules of
this calculus DMLK are shown in Figure 5. To distinguish between the different
sequent calculi we use the notation Γ �P ;R Δ for derivability in DMLK .

(P -int)
Γ �P ;R ¬p

Γ,N(U)�P ;R Δ
(Z-int)

Γ,N(z), U → z �P ;R Δ

Γ � Δ (� �)
Γ �P ;R Δ

for p ∈ P and not positive in any formula in Γ
for z ∈ Z and z /∈ Γ,Δ,U and formula U occurring negatively in N(U)

Γ �P ;R Σ,A A, Γ �P ;R Λ
(�-cut)

Γ �P ;R Σ,Λ

Γ �P ;R Σ Γ �P ;R Δ
(•�)

Γ,Σ �P ;R Δ

Γ �P ;R Σ,A Γ �P ;R Σ,B
(�∧)

Γ �P ;R Σ,A ∧B

A,Γ �P ;R Σ B,Γ �P ;R Σ
(∨�)

A ∨ B,Γ �P ;Z Σ

Γ �P ;R Σ,A
(� • ∨)

Γ �P ;R Σ,B ∨A

Γ �P ;R Σ,A
(� ∨ •)

Γ �P ;R Σ,A ∨B

A,Γ �P ;R Σ
(�¬)

Γ �P ;R Σ,¬A
A,Γ �P ;R Σ,B

(�→)
Γ �P ;R Σ,A→ B

Fig. 5. Rules of the sequent calculus DMLK for circumscription (Olivetti [28])

Theorem 14. (Olivetti [28]) DMLK is sound and complete for circumscrip-
tion.

If we want to prove a p-simulation of CIRC by DMLK it is necessary to make
use of the (Z-int) rule. This seems problematic as the (Z-int) rule is syntactically
quite restrictive and specialised for Olivetti’s proof of Theorem 14. We therefore
alternatively suggest to incorporate the antisequent calculus, adding rules of AC
and the following new rule

414 O. Beyersdorff and L. Chew

Γ,R+,¬R−,¬P−,¬P 0 � p
(� �)

Γ,R+,¬R−,¬P− �P ;R ¬P+

for p ∈ P+, P− � P 0 � P+ = P , and R+ � R− = R. This still yields a sequent
calculus DMLK + (� �) which is sound and complete for circumscription.

Similarly to Lemmas 5 and 9, the next lemma provides a translation of cir-
cumscriptive sequents to �-sequents.

Lemma 15. Let Γ �P ;R Δ be a circumscriptive sequent with a CIRC-proof π.

1. Every intermediate sequent of π is of form P+;Γ,¬P−, R+,¬R− �P 0;R0 Δ,
where P is partitioned into sets P+, P−, P 0; R is partitioned analogously.

2. Let σ be the function that takes intermediate sequents of π of the form
P+;Γ,¬P−, R+,¬R− �P 0;R0 Δ to sequents Γ,¬P−, R+,¬R−�P ;RΔ,¬P+.
Let A be an intermediate sequent of π, then σ(A) is a true sequent.

We can now state the simulation.

Theorem 16. DMLK + (� �) p-simulates CIRC.

6 Comparison to Niemelä’s Tableau Calculus

We now discuss the relations of these sequent calculi to a tableau calculus for
minimal entailment. This tableau works for clausal theories and was introduced
by Niemelä [26]. In this paper we will refer to this tableau calculus as NTAB .

For clausal theory Γ and formula φ, a Niemelä-tableau is defined as follows.We
start the construction of the tableau T with a single branch (Ci)0≤i≤k containing
all the clauses of Γ ∪ Δ, where Δ is ¬φ expressed in CNF (conjunctive normal
form). There are two rules for extending a branch, where the premises must
occur earlier in the branch. Figure 6 gives these two rules where those clauses
above the line indicate the premises needed to use the rule, and the clauses below
indicate the extensions.

Niemelä’s tableau NTAB uses the following conditions to close branches.

{a1, a2, . . . , am,¬b1,¬b2, . . . ,¬bn}, {b1}, . . . , {bn},
{¬a1}, . . . , {¬aj−1}, {¬aj+1}, . . . , {¬am}

(N1)
{aj}

{a1, a2, . . . , am,¬b1,¬b2, . . . ,¬bn}, {b1}, . . . , {bn}
(N2)

{aj} | {¬aj}

Fig. 6. Rules of Niemelä’s tableau NTAB [26]. The notation {aj} | {¬aj} indicates
that the branch splits.

The Complexity of Theorem Proving in Circumscription 415

1. A branch B is (classically) closed when for some atoms b1, . . . , bn the clauses
{¬b1, . . . ,¬bn}, {b1}, . . . , {bn} occur in the same branch.

2. Let NΓ (B) = {¬c | c is an atom, {c} does not occur in B, and ∃C ∈ Γ s.t.
c ∈ C }. A branch B is ungrounded when B contains a unit clause {a}, for
which NΓ (B) ∪ Γ � a.

3. A branch is MM-closed if it is either closed or ungrounded.

The correctness and completeness of NTAB was shown by Niemelä:

Theorem 17. (Niemelä [26]) For clausal Γ and arbitrary φ there is an NTAB
proof for Γ, φ with all its branches MM-closed if and only if Γ �M φ.

In the same work [8], where Bonatti and Olivetti introduce CIRC , they also
compare it to NTAB , showing that tableaux in NTAB can be efficiently trans-
lated into CIRC -proofs.

Theorem 18. (Bonatti, Olivetti [8]) CIRC p-simulates NTAB.

We will now show that the converse simulation does not hold, i.e.,we will
prove a separation between NTAB and CIRC . This separation uses the well-
known pigeonhole principle PHPn+1

n . This an elementary, but famous principle
for which a wealth of lower bounds is known in proof complexity (cf. [2, 19]).
PHPn+1

n uses variables xi,j with i ∈ [n + 1] and j ∈ [n], indicating that pigeon
i goes into hole j. PHPn+1

n consists of the clauses
∨

j∈[n] xi,j for all pigeons

i ∈ [n + 1] and ¬xi1,j ∨ ¬xi2,j for all choices of distinct pigeons i1, i2 ∈ [n + 1]
and holes j ∈ [n]. We use these formulas to obtain an exponential separation
between NTAB and CIRC .

Theorem 19. NTAB does not simulate CIRC for minimal entailment.

Proof. We first show that sNTAB (PHPn+1
n � ⊥) ≥ 2Ω(n). The crucial obser-

vation is that any tableau in NTAB for the pigeonhole principle, is in fact a
refutation using the DPLL algorithm [13]. This can be seen as follows. The for-
mula ¬⊥ in conjunctive normal form is just the empty set. So each tableau has
as starting nodes just the clauses of PHPn+1

n . In any MM-closed tableau for this
sequent, every branch must be closed. This holds as PHPn+1

n is inconsistent;
so the antisequent NΓ (B), Γ � a is untrue and the ungrounded condition never
holds for any branch.

The only clauses that can be derived by (N1) and (N2) are unit clauses. The
unit clauses being derived by rule (N2) can be interpreted as the branching labels
in the DPLL algorithm. Using (N1) is a restricted form of unit propagation;
this step can be done at any point in the DPLL algorithm, and normally it is
done automatically between each branching step. Using (N2) is equivalent to
branching on a variable. When a branch is (classically) closed this means that
the empty clause can be inferred by unit propagation in a constant number of
steps. Therefore each proof of PHPn+1

n � ⊥ in NTAB can be efficiently turned
into a DPLL execution.

It is well known that runs of the DPLL algorithm can be efficiently translated
into resolution refutations. Therefore the exponential lower bound for PHPn+1

n

416 O. Beyersdorff and L. Chew

of Haken [19] applies and each NTAB-proof of PHPn+1
n � ⊥must be of exponen-

tial size. On the other hand, Buss [10] showed that the pigeonhole formulas admit
polynomial-size Frege proofs; and Frege systems are known to be p-equivalent
to LK (cf. [23]). As LK is part of CIRC we obtain polynomial-size CIRC -proofs
of PHPn+1

n �M ⊥. �

7 Conclusion

Combining results from this paper together with earlier results from [8] we obtain
the p-simulations NTAB ≤p CIRC ≤p MLK of proof systems for propositional
circumscription. Moreover, all these systems are exponentially separated. While
this tells us thatMLK is the best proof system with respect to size of proofs, this
might be different when it comes to proof search. In fact, NTAB and CIRC are
both analytic1, which enables efficient proof search strategies (cf. [8]), whereas
for MLK the restricted cut rule is very powerful, making the system highly
non-analytic. This is in line with the experience from classical proof complexity
and SAT solving where strong proof systems are known to be not automatizable
under suitable assumptions (cf. [9]); and modern SAT solvers all build on rather
weak proof systems [27].

In terms of proof complexity, the main question left open by this paper is to
show lower bounds forMLK . Clearly, as circumscription is complete for the second
level Πp

2 of the polynomial hierarchy [11,16], there exist at least super-polynomial
lower bounds forMLK assumingNP
= Πp

2. However, it might be very hard to show
such bounds unconditionally. We note that for default logic and autoepistemic
logic it is even known that showing lower bounds for the sequent calculi of these
logics from [8] is as hard as showing lower bounds for classical LK [1, 5], which is
the main open problem in propositional proof complexity. We leave open whether
a similar connection as in [1, 5] can also be shown between LK and MLK .

References

1. Beyersdorff, O.: The complexity of theorem proving in autoepistemic logic. In:
Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 365–376.
Springer, Heidelberg (2013)

2. Beyersdorff, O., Galesi, N., Lauria, M.: A lower bound for the pigeonhole prin-
ciple in tree-like resolution by asymmetric prover-delayer games. Inf. Process.
Lett. 110(23), 1074–1077 (2010)

3. Beyersdorff, O., Köbler, J., Messner, J.: Nondeterministic functions and the exis-
tence of optimal proof systems. Theor. Comput. Sci. 410(38-40), 3839–3855 (2009)

4. Beyersdorff, O., Kutz, O.: Proof complexity of non-classical logics. In: Bezhan-
ishvili, N., Goranko, V. (eds.) ESSLLI 2010/2011, Lectures. LNCS, vol. 7388, pp.
1–54. Springer, Heidelberg (2012)

5. Beyersdorff, O., Meier, A., Müller, S., Thomas, M., Vollmer, H.: Proof complexity of
propositional default logic. Archive for Mathematical Logic 50(7), 727–742 (2011)

1 The CIRC -rules in Fig. 3 are analytic, but cut is available in the LK -part. If we
replace LK by cut-free LK , we obtain a fully analytic sequent calculus for circum-
scription.

The Complexity of Theorem Proving in Circumscription 417

6. Bonatti, P.A.: A Gentzen system for non-theorems. Technical Report CD/TR
93/52, Christian Doppler Labor für Expertensysteme (1993)

7. Bonatti, P.A., Lutz, C., Wolter, F.: The complexity of circumscription in DLs. J.
Artif. Intell. Res (JAIR) 35, 717–773 (2009)

8. Bonatti, P.A., Olivetti, N.: Sequent calculi for propositional nonmonotonic logics.
ACM Transactions on Computational Logic 3(2), 226–278 (2002)

9. Bonet, M.L., Pitassi, T., Raz, R.: On interpolation and automatization for Frege
systems. SIAM Journal on Computing 29(6), 1939–1967 (2000)

10. Buss, S.R.: Polynomial size proofs of the propositional pigeonhole principle. The
Journal of Symbolic Logic 52, 916–927 (1987)

11. Cadoli, M., Lenzerini, M.: The complexity of propositional closed world reasoning
and circumscription. J. Comput. Syst. Sci. 48(2), 255–310 (1994)

12. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems.
The Journal of Symbolic Logic 44(1), 36–50 (1979)

13. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-
proving. Commun. ACM 5(7), 394–397 (1962)

14. Durand, A., Hermann, M., Nordh, G.: Trichotomies in the complexity of minimal
inference. Theory Comput. Syst. 50(3), 446–491 (2012)

15. Egly, U., Tompits, H.: Proof-complexity results for nonmonotonic reasoning. ACM
Transactions on Computational Logic 2(3), 340–387 (2001)

16. Eiter, T., Gottlob, G.: Propositional circumscription and extended closed world
reasoning are Πp

2 -complete. Theor. Comput. Sci. 114(2), 231–245 (1993)
17. Fenner, S.A., Fortnow, L., Naik, A.V., Rogers, J.D.: Inverting onto functions. In-

formation and Computation 186(1), 90–103 (2003)
18. Gentzen, G.: Untersuchungen über das logische Schließen. Mathematische

Zeitschrift 39, 68–131 (1935)
19. Haken, A.: The intractability of resolution. Theor. Comput. Sci. 39, 297–308 (1985)
20. Hrubeš, P.: On lengths of proofs in non-classical logics. Annals of Pure and Applied

Logic 157(2-3), 194–205 (2009)
21. Janota, M., Marques-Silva, J.: cmMUS: A tool for circumscription-based MUS

membership testing. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS
(LNAI), vol. 6645, pp. 266–271. Springer, Heidelberg (2011)

22. Jeřábek, E.: Substitution Frege and extended Frege proof systems in non-classical
logics. Annals of Pure and Applied Logic 159(1-2), 1–48 (2009)

23. Kraj́ıček, J.: Bounded Arithmetic, Propositional Logic, and Complexity Theory.
Cambridge University Press (1995)

24. McCarthy, J.: Circumscription – a form of non-monotonic reasoning. Artificial
Intelligence 13, 27–39 (1980)

25. Niemelä, I.: Implementing circumscription using a tableau method. In: ECAI, pp.
80–84 (1996)

26. Niemelä, I.: A tableau calculus for minimal model reasoning. In: Miglioli, P.,
Moscato, U., Ornaghi, M., Mundici, D. (eds.) TABLEAUX 1996. LNCS, vol. 1071,
pp. 278–294. Springer, Heidelberg (1996)

27. Nieuwenhuis, R.: SAT and SMT are still resolution: Questions and challenges. In:
Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364,
pp. 10–13. Springer, Heidelberg (2012)

28. Olivetti, N.: Tableaux and sequent calculus for minimal entailment. J. Autom.
Reasoning 9(1), 99–139 (1992)

29. Thomas, M.: The complexity of circumscriptive inference in Post’s lattice. Theory
of Computing Systems 50(3), 401–419 (2012)

30. Tiomkin, M.L.: Proving unprovability. In: Proc. 3rd Annual Symposium on Logic
in Computer Science, pp. 22–26 (1988)

Visibly Linear Temporal Logic�

Laura Bozzelli1 and César Sánchez2,3

1 Technical University of Madrid (UPM), Madrid, Spain
2 IMDEA Software Institute, Madrid, Spain

3 Institute for Information Security, CSIC, Spain

Abstract. We introduce a robust and tractable temporal logic, we call
Visibly Linear Temporal Logic (VLTL), which captures the full class of
Visibly Pushdown Languages. The novel logic avoids fix points and pro-
vides instead natural temporal operators with simple and intuitive se-
mantics. We prove that the complexities of the satisfiability and visibly
pushdown model checking problems are the same as for other well known
logics, like CaRet and the nested word temporal logic NWTL, which in
contrast are strictly more limited in expressive power than VLTL. More-
over, formulas of CaRet and NWTL can be easily and inductively trans-
lated in linear-time into VLTL.

1 Introduction

Visibly Pushdown Languages (VPL), introduced by Alur et al. [5,6], are a sub-
class of context-free languages that is similar in tractability and robustness to
the less expressive class of regular languages. A VPL consists of nested words,
that is words over an alphabet (pushdown alphabet) which is partitioned into
three disjoint sets of calls, returns, and internal symbols. This partition induces
a nested hierarchical structure in a given word obtained by associating to each
call the corresponding matching return (if any) in a well-nested manner. VPL
are accepted by Nondeterministic Visibly Pushdown Automata (NVPA) [5,6], a
subclass of pushdown automata where the input symbol controls the kind of
operations permissible on the stack. Alternative characterizations of VPL have
been given in terms of operational and declarative formalisms. Here, we recall
alternating automata-based characterizations [7,11], like the class of parity al-
ternating visibly pushdown automata and the more tractable class of parity
two-way alternating finite-state jump automata (AJA) [11], which extend stan-
dard alternating finite-state automata (AFA) with non local moves for navigating
the nested structure of words in VPL.

VPLhave applications in the formal verification of recursive programswithfinite
data modeled by pushdown systems [9,6,4]. VPL turn out to be useful also in the
streaming processing of semi-structured data, such asXML documents, where each
open-tag is matched with a closing-tag in a well-nested manner (see e.g. [18,2]).

� This work was funded in part by Spanish MINECO Project “TIN2012-39391-C04-01
STRONGSOFT” and by Spanish MINECO Project “TIN2012-38137-C02 VIVAC”.

S. Demri, D. Kapur, and C. Weidenbach (Eds.): IJCAR 2014, LNAI 8562, pp. 418–433, 2014.
c© Springer International Publishing Switzerland 2014

Visibly Linear Temporal Logic 419

The theory of VPL is connected to the theory of regular tree-languages since nested
words can be encoded by labeled binary trees satisfying some regular constraints,
and there are translations fromVPL into regular tree languages over tree-encodings
of nested words, and vice versa. However, as shown in [18,2], NVPA are often more
natural (and sometimes exponentially more succinct) than tree automata, and
preferable in the streaming processing of XML documents.

Linear Temporal Logics for VPL-Properties. Well-known and tractable lin-
ear temporal logics for VPL are the logic CaRet [4] and its extension NWTL+ [3],
which in turn are context-free extensions of standard linear temporal logic LTL.
Like LTL, which does not allow to specify all the linear-time ω-regular prop-
erties, the logics CaRet and NWTL+ can only express a strict subclass of VPL.
Known logical frameworks which capture the full class of VPL are an extension of
standard MSO over nested words with a binary matching-predicate (MSOμ) [5]
and a fixpoint calculus [11], where for the latter, satisfiability and visibly push-
down model checking are EXPTIME-complete [11]. One drawback is that MSOμ

is not elementarily decidable. Additionally, fixpoint logics are considered in some
sense low-level logics, making them “unfriendly” as specification languages. In
the setting of regular languages, some tractable formalisms allow to avoid fix-
point binders and still obtain full expressivity, like ETL [23] and fragments
of the industrial-strength logic PSL [1], like the regular linear temporal logic
RLTL [16,20], which fuses regular expressions and LTL modalities. Merging reg-
ular expressions and temporal operators in the linear-time setting has been mo-
tivated by the need of human readable specification languages, as witnessed by
the widespread adoption of ForSpec, PSL, SVA in industry (see e.g. [8]). Our
work follows this direction for visibly-pushdown languages. We recently intro-
duced [12] an algebraic characterization of VPL over finite nested words in terms
of visibly rational expressions (VRE). VRE extend regular expressions with two
novel operators which capture in a natural way the nested relation between calls
and matching returns in nested words. These two operators, when applied to
languages L of well-matched words (i.e., nested words without pending calls and
pending returns), correspond to classical tree substitution and Kleene closure
applied to the tree language encoding of L (in accordance with the encoding of
well-matched words by ordered unranked finite trees [2]). However, as observed
in [2] when comparing well-matched words with ordered unranked trees, “word
operations such as prefixes, suffixes, and concatenation [...] do not have analo-
gous tree operations.” This is explicitly witnessed by VRE having both word-like
concatenation and tree-like substitution (and their Kleene closures), so allowing
to describe both the linear structure and the hierarchical structure of nested
words.

Our Contribution. We investigate a new linear temporal logic for VPL specifi-
cations, which merges in a convenient way VRE and LTL modalities. The task of
combining language operators (such as concatenation and Kleene closure) and
logical modalities is in general not easy, since allowing unrestricted complemen-
tation (corresponding to logical negation) in regular expressions already leads to

420 L. Bozzelli and C. Sánchez

a non-elementary decidable declarative formalism [22]. Thus, we propose a gen-
eralization of RLTL with past that we call Visibly Linear Temporal Logic (VLTL),
which is obtained by replacing regular expressions for VRE expressions as build-
ing blocks for the temporal modalities. Our natural choice leads to a unifying
and convenient logical framework for specifying VPL-properties because:
– VLTL is closed under Boolean combinations including negation and captures

the full class of VPL. Moreover, VLTL avoids fix points and only offers tem-
poral operators with simple and intuitive semantics.

– VLTL is elementarily decidable. In particular, satisfiability and visibly push-
down model checking have the same complexity as for the strictly less ex-
pressive logics CaRet and NWTL+: i.e. are EXPTIME-complete.

Another advantage of VLTL is that CaRet and NWTL+ can be inductively trans-
lated in linear-time into VLTL. In particular, the temporal modalities of CaRet
and NWTL+ can be viewed as derived operators of VLTL, and, in principle,
one can introduce additional “user-friendly” temporal modalities as VLTL de-
rived operators. Thus, VLTL can be also used as a common unifying setting for
obtaining efficient decision procedures for other “simple-to-use” logics for VPL.

In order to tackle the decision problems for VLTL, we propose an elegant
and unifying framework which extends in a non-trivial and sophisticated way
the efficient alternating automata-theoretic approach recently proposed for fu-
ture RLTL [21]. The technique for future RLTL makes use of a translation of the
logic into parity AFA, which is crucially based on the well-known linear-time
translation of regular expressions into nondeterministic finite-state automata. A
direct generalization of this construction based on the use of parity alternating
visibly pushdown automata would lead to doubly exponential time decision pro-
cedures. Instead, our approach exploits as an intermediate step a compositional
polynomial-time translation of VLTL formulas into a subclass of parity two-
way alternating AJA with index 2, that we call stratified AJA with main states
(SAJA). Moreover, we identify a subclass of VRE such that the corresponding
fragment of VLTL has the same expressiveness as full VLTL and admits a linear-
time translation into SAJA. Hence, we obtain a translation for this fragment of
VLTL into equivalent Büchi NVPA of size 2O(|ϕ| logm), where m is the size of the
largest VRE used in ϕ. Full proofs are omitted due to space limitations.

Related Work. Combining modal logic and regular expressions is also the
main feature of the branching temporal logic PDL. In [17], an extension of PDL
for recursive programs, has been investigated, where low-level operational as-
pects are allowed in the form of path expressions given by NVPA. This logic
is incomparable with VLTL and the related satisfiability and visibly pushdown
model-checking problems are 2-EXPTIME-complete. In [10], a linear temporal
framework for VPL has been introduced which allows PDL-like path regular ex-
pressions extended with the binary matching-predicate μ of MSOμ. The setting
is parameterized by a finite set of MSO-definable temporal modalities, which
leads to an infinite family of linear temporal logics having the same complexity
as VLTL and subsuming the logics CaRet and NWTL+. However, it seems clear
(even if this issue is not discussed in [10]) that each of these logics does not

Visibly Linear Temporal Logic 421

capture the full class of VPL. Moreover, the complexity analysis in [10], based
on the use of two-way alternating tree automata, is not fine-grained and it just
allows to obtain a generic polynomial in the exponent of the complexity upper
bound.

2 Preliminaries

We recall Visibly Pushdown Automata [5] and Visibly Rational Expressions [12].
In the rest of the paper, we fix a pushdown alphabet Σ = Σcall ∪Σret ∪Σint ,

that is a finite alphabet Σ which is partitioned into a set Σcall of calls, a set
Σret of returns, and a set Σint of internal actions.

Visibly Pushdown Automata [5]. Nondeterministic Visibly Pushdown Au-
tomata (NVPA) are standard Pushdown Automata operating on finite words
over a pushdown alphabet Σ satisfying the following “visibly” restriction: (i) on
reading a call, one symbol is pushed onto the stack, (ii) on reading a return,
one symbol is popped from the stack (if the stack is empty, the stack content
remains unchanged), and (iii) on reading an internal action, no stack opera-
tion is performed. The languages of finite words accepted by NVPA are called
visibly pushdown languages (VPL). We also consider Büchi ω-NVPA [5], which
are standard Büchi Pushdown Automata on infinite words over Σ satisfying the
above “visibly” restriction. The ω-languages accepted by Büchi NVPA are called
ω-visibly pushdown languages (ω-VPL). For details on the syntax and semantics
of NVPA and Büchi ω-NVPA, see [5].

Matched Calls and Returns. For a word w on Σ, |w| is the length of w (we
set |w| = ω if w is infinite). For all 1 ≤ i ≤ j ≤ |w|, w(i) is the ith symbol of w,
and w[i, j] is the word w(i)w(i + 1) . . . w(j). The empty word is denoted by ε.
The set WM (Σ) of well-matched words is the subset of Σ∗ inductively defined
as follows: (i) ε ∈ WM (Σ) (ii) � · w ∈ WM (Σ) if � ∈ Σint and w ∈ WM (Σ),
and (iii) c · w · r · w′ ∈ WM (Σ) if c ∈ Σcall , r ∈ Σret , and w,w′ ∈ WM (Σ). Let
i be a call position of a word w. If there is j > i such that j is a return position
of w and w(i + 1) . . . w(j − 1) is a well-matched word (note that j is uniquely
determined if it exists), we say that j is the matching return of i along w. The
set MWM (Σ) of minimally well-matched words is the set of well-matched words
of the form c · w · r such that c is a call, r is a return, and w is well-matched.

For a language L ⊆ Σ∗, we define MWM (L) def
= L ∩MWM (Σ), that is the set

of words in L which are minimally well-matched.

Visibly Rational Expressions (VRE) [12]. We recall the classes of pure VRE
and pure ω-VRE [12], here called simply VRE and ω-VRE. VRE extend regular
expressions (RE) with two non-regular operators: the binary M -substitution op-
erator and the unary S-closure operator.1 Given L ⊆ Σ∗ and a language L′ of
1 The origin of the name M -substitution is minimally well-matched substitution, while
S-closure stands for Strict Mimimally Well-Matched Closure, see [12].

422 L. Bozzelli and C. Sánchez

finite or infinite words on Σ, we use L ·L′ for the concatenation of L and L′, L∗
for the Kleene closure of L, and Lω for the ω-Kleene closure of L.

Definition 1 (M-substitution [12]). Let w ∈ Σ∗, � ∈ Σint , and L ⊆ Σ∗.
The M -substitution of � by L in w, denoted by w �� L, is the language of
finite words over Σ obtained by replacing occurrences of � in w by minimally
well-matched words in L. Formally, w �� L is inductively defined as follows:

– ε �� L def
= {ε};

– (� · w′) �� L def
=
(
MWM (L) · (w′ �� L)

)
∪
(
({�} ∩ L) · (w′ �� L)

)
– (σ · w′) �� L def

= {σ} · (w′ �� L) for each σ ∈ Σ \ {�}.

For two languages L,L′ ⊆ Σ∗ and � ∈ Σint , the M -substitution of � by L′ in
L, written L �� L′, is defined as L �� L′ def

=
⋃

w∈Lw �� L′. Note that ��

is associative, and {�} �� L = MWM (L) if {�} ∩ L = ∅.

Definition 2 (S-closure [12]). Given L ⊆ Σ∗ and � ∈ Σint , the S-closure of
L through �, denoted by L	� , is defined as follows:

L	�
def
=
⋃
n≥0

MWM (L)�� (L ∪ {�}) �� . . . �� (L ∪ {�})︸ ︷︷ ︸
n occurrences of ��

.

Example 1. Let Σcall = {c1, c2}, Σret = {r1, r2}, and Σint = {�}. Let us
consider the languages L = {c1� r1, c2 � r2} and L′ = {c1 r1, c2 r2}. Then,
L	� �� L′ = {ci1 ci2 . . . cin rin . . . ri2 ri1 | n ≥ 2, i1, . . . , in ∈ {1, 2}}.

Definition 3. The syntax of VRE α and ω-VRE β over Σ is defined as follows:

α := ε
∣∣ int ∣∣ call ∣∣ ret ∣∣ σ ∣∣ c r

∣∣ c�r
∣∣ α ∪ α

∣∣ α · α
∣∣ α∗ ∣∣ α �� α

∣∣ α	�

β := αω
∣∣ β ∪ β

∣∣ α · β

where σ ∈ Σ, c ∈ Σcall , r ∈ Σret , and � ∈ Σint . The basic expressions int, call ,
ret are used to denote in a succinct way the languages Σint , Σcall , and Σret ,
while the redundant basic expressions c r and c�r in the syntax of VRE are used
for defining subclasses of VRE. A VRE α (resp., ω-VRE β) denotes a language
of finite words (resp., infinite words) over Σ, written L(α) (resp., L(β)), which
is inductively defined in the obvious way.

Note that ω-VRE are defined in terms of VRE in the same way as ω-regular
expressions are defined in terms of regular expressions. A VRE is well-matched
if it does not contain basic subexpressions in Σcall ∪ Σret ∪ {call , ret}. A VRE
α is well-formed if each subexpression of α of the form (α1 �� α2) or α	�

1 is
well-matched, and an ω-VRE β is well-formed if each VRE occurring in β is well-
formed. As usual, the size |α| of a VRE α is the length of the string describing α.

Theorem 1 (from [12]). (Well-formed) VRE and (well-formed) ω-VRE cap-
ture the classes of VPL and ω-VPL, respectively.

Visibly Linear Temporal Logic 423

Proof. The results for VRE and ω-VRE were established in [12]. Moreover, a
straightforward adaptation of the translations from NVPA to VRE and from
Büchi ω-NVPA to ω-VRE in [12] show that well-formed VRE and well-formed
ω-VRE are sufficient to capture the classes of VPL and ω-VPL, respectively. �

3 Visibly Linear Temporal Logic (VLTL)

In this section, we introduce the Visibly Linear Temporal Logic (VLTL), an ex-
tension of Regular Linear Temporal Logic (RLTL) with past (see [16,20]) obtained
by replacing regular expressions in the temporal modalities of RLTL with VRE.

The syntax of VLTL formulas ϕ over the pushdown alphabet Σ is as follows:

ϕ := true
∣∣ ϕ ∨ ϕ

∣∣ ¬ϕ
∣∣ α;ϕ ∣∣ ϕ;α ∣∣ ϕ|α⟫ϕ

∣∣ ϕ|α〉ϕ
∣∣ ϕ⟪α|ϕ

∣∣ ϕ〈α|ϕ

where α is a VRE over Σ, the symbol ; is the sequencing operator, | ⟫ and ⟪ |
are the (future) power operator and the past power operator, and | 〉 and 〈 |
are the (future) weak power operator and the past weak power operator. The
power formulas ϕ1|α⟫ϕ2, ϕ1⟪α|ϕ2, ϕ1|α〉ϕ2, and ϕ1〈α|ϕ2 are built from three
elements: ϕ2 (the attempt), ϕ1 (the obligation), and α (the delay). Informally,
for ϕ1|α⟫ϕ2 (resp., ϕ1⟪α|ϕ2) to hold, either the attempt holds, or the obligation
is met and the whole formula evaluates successful after (resp., before) the delay;
additionally, the attempt must be eventually met. The weak formulas ϕ1|α〉ϕ2

and ϕ1〈α|ϕ2 do not require the attempt to be eventually met. For a VLTL formula
ϕ, ϕ is well-formed if every VRE occurring in ϕ is well-formed. Let ‖ϕ‖ be the
integer 1 if either ϕ = true or ϕ has a Boolean connective at its root; otherwise,
‖ϕ‖ is the size of the VRE associated with the root operator of ϕ. The size |ϕ|
of ϕ is defined as

∑
ψ∈SF(ϕ) ‖ψ‖, where SF(ϕ) is the set of subformulas of ϕ.

VLTL formulas ϕ are interpreted over infinite pointed words (w, i) over Σ,
where w ∈ Σω and i ≥ 1 is a position along w. The satisfaction relation (w, i) |=
ϕ is defined by induction as follows (we omit the rules for Boolean connectives):

(w, i) |= α;ϕ ⇔ for some j > i, (w, j) |= ϕ and w[i, j] ∈ L(α)
(w, i) |= ϕ;α ⇔ for some j < i, (w, j) |= ϕ and w[j, i] ∈ L(α)
(w, i) |= ϕ1|α⟫ϕ2 ⇔ for some sequence i = j1 < . . . < jn, (w, jn) |= ϕ2

and for all 1 ≤ k < n, w[jk, jk+1] ∈ L(α) and (w, jk) |= ϕ1

(w, i) |= ϕ1⟪α|ϕ2 ⇔ for some sequence j1 < . . . < jn = i, (w, j1) |= ϕ2

and for all 1 < k ≤ n, w[jk−1, jk] ∈ L(α) and (w, jk) |= ϕ1

(w, i) |= ϕ1|α〉ϕ2 ⇔ (w, i) |= ϕ1|α⟫ϕ2,
or for some infinite sequence i = j1 < j2 < . . . ,
w[jk, jk+1] ∈ L(α) and (w, jk) |= ϕ1 for all k ≥ 1

(w, i) |= ϕ1〈α|ϕ2 ⇔ (w, i) |= ϕ1⟪α|ϕ2,
or for some sequence 1 = j1 < . . . < jn = i, (w, jn) |= ϕ1

and w[jk, jk+1] ∈ L(α) and (w, jk) |= ϕ1 for all 1 ≤ k < n

The ω-pointed language Lp(ϕ) of ϕ is the set of infinite pointed words (w, i) over
Σ satisfying ϕ (i.e. (w, i) |= ϕ). The ω-language L(ϕ) of ϕ is the set of infinite

424 L. Bozzelli and C. Sánchez

words w over Σ such that (w, 1) ∈ Lp(ϕ). Two formulas ϕ1 and ϕ2 are globally
equivalent if Lp(ϕ1) = Lp(ϕ2). The satisfiability problem for VLTL is checking
for a VLTL formula ϕ, whether L(ϕ)
= ∅. The visibly pushdown model checking
problem for VLTL is checking for a VLTL formula ϕ over Σ and a pushdown
system P (defined as a Büchi NVPA P over the same pushdown alphabet Σ and
with all states accepting), whether L(P) ⊆ L(ϕ).

Note that the VLTL operators generalize both the operators of standard LTL
with past (in particular, the next, previous, until, and since modalities) and the
operators of ω-visibly rational expressions. For example, the until formula ϕ1Uϕ2

requires that either ϕ2 holds (attempt) or otherwise ϕ1 holds (obligation) and
the formula is reevaluated after a delay of a single step. Similarly, the ω-visibly
rational expression αω has no possible escape, a trivially fulfilled obligation, with
a delay indicated by α.

In the rest of this section, we use some VRE of constant size (where � ∈ Σint):
– αONE := int ∪ ret ∪ call , αMWM := � �� (call · (αONE)

∗ · ret),
αWM := (int∗ · (αMWM)∗)∗

Note that L(αONE) = Σ, L(αMWM) = MWM (Σ), and L(αWM) = WM (Σ).
Moreover, we use some shortcuts in VLTL. The formula (σ · αONE); true is sat-
isfied by words that begin with letter σ ∈ Σ. We abbreviate this formula by σ.
Additionally, we use Gϕ to stand for ϕ |αONE · αONE 〉 ¬true (the LTL always
operator), and ϕ to stand for ϕ; (αONE · αONE) (the LTL previous operator).

Expressiveness of VLTL. First, we observe that (well-formed) ω-VRE can be
translated in linear-time into language-equivalent (well-formed) VLTL formulas
by the mapping f from ω-VRE to VLTL inductively defined as follows.
– f(αω) := true|α · αONE 〉¬true
– f(β ∪ β′) := f(β) ∨ f(β′) and f(α · β) := (α · αONE); f(β).

Thus, by Theorem 1, (well-formed) VLTL formulas can express every ω-VPL
(note that past temporal modalities are not required to capture ω-VPL). The
converse direction holds as well (see Section 5). Hence, we obtain the following.

Theorem 2. (Well-formed) VLTL formulas capture the class of ω-VPL.

Comparison with Known Context-Free Extensions of LTL. We compare
now VLTL with some known context-free extensions of LTL: CaRet [4], NWTL [3],
and NWTL+ [3]. NWTL and NWTL+ are expressively complete for the first-order
fragment FOμ of MSOμ [3], while it is an open question whether the same holds
for CaRet [3], the latter being subsumed by NWTL+. In the analysis of recursive
programs, CaRet and NWTL+ allow to express in a natural way LTL properties
over non-regular patterns such as (*) the stack content at a given position, and
(**) the local computations of procedures which skip over nested procedure
invocations. Theorem 3 below shows that these logics can be easily translated in
linear time into VLTL. Additionally, VLTL can specify more expressive regular
properties over the patterns (*) and (**) such as the following requirement for
a given N ≥ 1, “whenever the procedure A is invoked, the depth of the stack
content is a multiple of N”, which can be expressed by the following VLTL
formula (where the call cA denotes the invocation of procedure A),

Visibly Linear Temporal Logic 425

G(cA −→ (¬true);αN) αN := [(αWM · call · . . . · αWM · call︸ ︷︷ ︸
N times

·αWM)]∗

Theorem 3. For a CaRet, NWTL or NWTL+ formula ϕ, one can build in linear-
time a VLTL formula with constant-size VRE which is globally equivalent to ϕ.

Proof. We sketch only the translation of CaRet into VLTL. CaRet extends LTL
with non-regular versions of the temporal modalities: the abstract next and until
modalities and their past counterparts, and the caller modalities. Here, we focus
on the abstract modalities a and Ua which correspond to the standard next and
until modalities interpreted on abstract paths. Formally, for an infinite pointed
word (w, i) on Σ, the abstract path of w from i is a maximal (possibly infinite)
sequence of positions i = j1 < j2 < . . . < jn < . . . such that for all pairs of
adjacent positions jk and jk+1: either jk is a call with matching return jk+1, or
jk is not a call, jk+1 is not a return, and jk+1 = jk +1. To translate a and Ua

into VLTL, we use the following constant-size VRE: αa := αMWM ∪ ((int ∪ ret) ·
(int ∪ call)). Then, the VLTL formula αa;ϕ1 is globally equivalent to aϕ1, and
ϕ1 |αa⟫ϕ2 is globally equivalent to ϕ1 Ua ϕ2. �

4 Subclasses of Alternating Jump Automata

Alternating Jump Automata (AJA) over finite and infinite words [11] are an al-
ternative automata-theoretic characterization of VPL and ω-VPL. In this section,
in order to capture compositionally and efficiently VLTL formulas, we introduce
a subclass of two-way parity AJA with index 2, called two-way stratified AJA with
main states (SAJA). Then, we show how to translate (well-formed) VRE into a
subclass of AJA over finite words; this result is used in Section 5 to handle the
temporal operators in the translation of VLTL formulas into SAJA. Note that
a naive approach based on the use of unrestricted two-way parity AJA would
lead to decision procedures for VLTL that are computationally more expensive.
More concretely, following [13], two-way parity AJA with n states and index k

can be translated into equivalent Büchi NVPA with 2O((nk)2) states and stack
symbols. We show that SAJA with n states can be more efficiently translated
into equivalent Büchi NVPA with 2O(n logm) states and stack symbols, where m
is the size of the largest non-trivial coBüchi stratum. Another technical issue
is the efficient handling of logical negation. Like for RLTL, VLTL does not have
a positive normal form. Hence, a construction for the negation operator must
be given explicitly. Like for standard parity AFA, complementation of parity
two-way AJA is easy: one only has to dualize the transition function and to com-
plement the acceptance condition. However, the classical complementation for
the parity condition increases in one unit the color assigned to every state, so
that the total number of colors could grow linearly in the size of the formula (by
alternating the constructions for complementation with those related to other
modalities that reintroduce the lowest color). Instead, we show that SAJA (which
only use three colors) are closed under complementation.

426 L. Bozzelli and C. Sánchez

AJA operate on words over a pushdown alphabet and extend standard alter-
nating finite-state automata by also allowing non-local moves: when the current
input position is a matched call, a copy of the automaton can move (jump) in a
single step to the matched-return position. We also allow ε-moves and local and
non-local backward moves. We first give the notion of Alternating Jump Tran-
sition Tables (AJT), which represent AJA without acceptance conditions. Let
DIR = {ε,→,←,�,�}. Intuitively, the symbols → and ← are used to denote
forward and backward local moves and � and � are for non-local moves which
lead from a matched call to the matching return, and vice-versa. For a set X ,
B+(X) denotes the set of positive Boolean formulas over X built from elements
in X using ∨ and ∧ (we also allow the formulas true and false). For a formula
θ ∈ B+(X), a model Y of θ is a subset Y of X which satisfies θ. The model Y

of θ is minimal if no strict subset of Y satisfies θ. The dual formula θ̃ of θ is
obtained from θ by switching ∨ and ∧, and switching true and false.

Two-Way AJT. A two-way AJT T over Σ is a tuple T = 〈Q, q0, δ〉, where Q is
a finite set of states, q0 ∈ Q is the initial state, and δ : Q×Σ → B+(DIR×Q×Q)
is a transition function. Now, we give the notion of run. We restrict ourselves to
memoryless runs, in which the behavior of the automaton depends only on the
current input position and current state. Since later we will deal only with parity
acceptance conditions, memoryless runs are sufficient (see e.g. [24]). Formally,
given a finite or infinite pointed word (w, i) on Σ and a state p ∈ Q, a (i, p)-run of
T over w is a directed graph 〈V,E, v0〉 with set of vertices V ⊆ {0, . . . , |w|+1}×Q
and initial vertex v0 = (i, p). Intuitively, a vertex (j, q) describes a copy of the
automaton which is in state q and reads the jth input position. Additionally,
we require that the set of edges E is consistent with the transition function δ.
Formally, for every vertex (j, q) ∈ V such that 1 ≤ j ≤ |w|, there is a minimal
model X = {(dir1, q1, q′1), . . . , (dirn, qn, q′n)} of δ(q, w(j)) such that the set of
successors of (j, q) is {v1, . . . , vn} and for all 1 ≤ k ≤ n, the following holds:

– dirk = ε: vk = (j, qk).
– dirk =→: vk = (j + 1, qk) if j + 1 ≤ |w|, and vk = (j + 1, q′k) otherwise.
– dirk =←: vk = (j − 1, qk) if j − 1 > 0, and vk = (j − 1, q′k) otherwise.
– dirk =�: vk = (jr, qk) if j is a call with matching return jr; otherwise

vk = (j + 1, q′k).
– dirk =�: vk = (jc, qk) if j is a return with matching call jc; otherwise

vk = (j − 1, q′k).

An infinite path π of a run is eventually strictly-forward whenever π has a suffix
of the form (i1, q1), (i2, q2), . . . such that: (i) ij ≤ ij+1 for all j ≥ 1 and (ii) for
infinitely many j, ij < ij+1.

A two-way AJT T = 〈Q, q0, δ〉 is an AJT with main states if:
– the set of states is partitioned into a set M of main states and into a set S

of secondary states such that q0 ∈ M.
– there are no moves from secondary states to main states. Hence, every path

starting from a secondary state visits only secondary states.

Visibly Linear Temporal Logic 427

Two-Way Stratified AJA with Main States (SAJA). We introduce now
the class of SAJA as a two-way and non-regular extension of one-way hesitant
AFA over infinite words introduced in [14]. Intuitively, the ability to combine
both forward and backward moves is syntactically restricted in such a way to
ensure that every infinite path in a run is eventually strictly-forward. Moreover,
for efficiency issues, we distinguish between main states and secondary states.
Intuitively, in the translation of VLTL formulas into SAJA, main states are as-
sociated with the regular part of the formula, while secondary states (whose
number can be quartic in the number of main states) are associated with the
non-regular part (the M -substitution and S-closure operators in the VRE of the
formula). Formally, a SAJA A is a tuple A = 〈Q, q0, δ,F〉 with Q = M∪S, where
〈Q, q0, δ〉 is a two-way AJT with main states and F is a strata family of the form
F = {〈ρ1, Q1, F1〉, . . . , 〈ρk, Qk, Fk〉}, where Q1, . . . , Qk is a partition of the set of
states Q, and for all 1 ≤ i ≤ k, ρi ∈ {−, t,B,C} and Fi ⊆ Qi, such that Fi = ∅
whenever ρi = t. A stratum 〈ρi, Qi, Fi〉 is called a negative stratum if ρi = −, a
transient stratum if ρi = t, a Büchi stratum (with Büchi acceptance condition
Fi) if ρi = B, and a coBüchi stratum (with coBüchi acceptance condition Fi) if
ρi = C. Additionally, there is a partial order ≤ on the sets Q1, . . . , Qk such that:

R1. Moves from states in Qi lead to states in components Qj such that Qj ≤ Qi;
additionally, if Qi belongs to a transient stratum, there are no moves from
Qi leading to Qi.

R2. For all q ∈ Qi and atoms (dir, q, q′) or (dir, q′, q) occurring in δ, the following
holds: (i) dir ∈ {←,�, ε} if the stratum of Qi is negative, and dir ∈ {→,�
, ε} otherwise, and (ii) if dir = ε, then there are no ε-moves from q.

R3. For every Büchi or coBüchi stratum 〈ρi, Qi, Fi〉, Fi ∩ S = ∅.

R1 is the stratum order requirement and it ensures that every infinite path π
of a run gets trapped in the component Qi of some non-transient stratum. R2 is
the eventually syntactical requirement and it ensures that Qi belongs to a Büchi
or coBüchi stratum and that π is eventually strictly-forward. Moreover, note
that R2 also ensures that for all runs and vertices of the form (0, q) reachable
from the initial vertex, q belongs to a negative stratum.

Now we define when a run is accepting. Let π be an infinite path of a run,
〈ρi, Qi, Fi〉 be the Büchi or coBüchi stratum in which π gets trapped, and Inf(π)
be the states from Q that occur infinitely many times in π. The path π is
accepting whenever Inf(π) ∩ Fi
= ∅ if ρi = B and Inf(π) ∩ Fi = ∅ otherwise (i.e.
π satisfies the corresponding Büchi or coBüchi requirement). Note that R3 in the
definition of SAJA ensures that whenever π starts at a vertex associated with a
secondary state (hence, π visits only secondary states), then π is accepting if the
stratum 〈ρi, Qi, Fi〉 is a coBüchi stratum, and it is rejecting otherwise. A run is
accepting if: (i) all its infinite paths are accepting and (ii) for each vertex (0, q)
reachable from the initial vertex such that q is in the stratum S = 〈ρi, Qi, Fi〉
(recall that S is ensured to be a negative stratum), it holds that q ∈ Fi. Note that
this last condition is necessary to allow complementation of SAJA by dualization.
The ω-pointed language Lp(A) of A is the set of infinite pointed words (w, i) over

428 L. Bozzelli and C. Sánchez

Σ such that there is an accepting (i, q0)-run of A on w. The ω-language L(A)
of A is the set of infinite words w over Σ such that (w, 1) ∈ Lp(A).

The dual automaton Ã of the SAJA A is defined as Ã = 〈M ∪ S, q0, δ̃, F̃〉,
where δ̃(q, σ) is the dual formula of δ(q, σ), and F̃ is obtained from F by convert-
ing a Büchi stratum 〈B, Qi, Fi〉 into the coBüchi stratum 〈C, Qi, Fi〉, a coBüchi
stratum 〈C, Qi, Fi〉 into the Büchi stratum 〈B, Qi, Fi〉, and a negative stratum
〈−, Qi, Fi〉 into the negative stratum 〈−, Qi, Qi \ Fi〉. Following standard argu-
ments (see e.g. [24]) we obtain the following lemma, which is crucial for handling,
compositionally and efficiently, negation in VLTL formulas.

Lemma 1. The dual automaton Ã of a SAJA A is a SAJA whose ω-pointed
language Lp(Ã) is the complement of Lp(A).

From SAJA to Büchi NVPA. The size of a SAJA stratum 〈ρi, Qi, Fi〉 is the
number of main states in Qi (we do not take into account the number of sec-
ondary states in Qi). A coBüchi stratum 〈ρi, Qi, Fi〉 is trivial whenever Fi = ∅.

Theorem 4. For a SAJA A = 〈M∪S, q0, δ,F〉, one can build in singly exponen-
tial time a Büchi NVPA P accepting L(A) with 2O(|S|+|M|·log(k)) states and stack
symbols, where k is the size of the largest non-trivial coBüchi stratum of A.

Sketched Proof. Our approach is a refinement of a non-trivial variation of the
method used in [13] to convert parity two-way AJA into equivalent Büchi NVPA.
First, we give a characterization of the fulfillment of the acceptance condition
for a non-trivial coBüchi stratum along a run in terms of the existence of an
odd ranking function; the latter generalizes the notion of odd ranking function
for standard coBüchi alternating finite-state automata [15] which intuitively,
allows to convert a coBüchi acceptance condition into a Büchi-like acceptance
condition. Then, by exploiting the above result and a non-trivial generalization
of the Miyano-Hayashi construction [19], we give a characterization of the words
in L(A) in terms of infinite sequences of finite sets (called regions) satisfying
determined requirements which can be easily checked by a Büchi NVPA, where
the control states and stack symbols range over the set of regions. The number
of regions is at most 2O(|S|+|M|·log(k)), where k is the size of the largest non-trivial
coBüchi stratum of the given SAJA A. �

Translation of VRE in Subclasses of AJA on Finite Words. In the trans-
lation of VLTL formulas into SAJA, we use two subclasses of AJA over finite
words (for which we give different acceptance notions) in order to handle the
VRE associated with the future and past temporal operators. Note that the
proposed approach substantially differs from the alternating automata-theoretic
approach for RLTL, the latter being crucially based on the use of nondetermin-
istic automata for handling the regular expressions of the temporal modalities.2

Definition 4. A forward (resp., backward) AJA with main states is an AJT
with main states A = 〈M ∪ S, q0, δ,Acc〉 augmented with a set Acc of accepting

2 AJA are strictly more expressive than their nondeterministic counterpart [11].

Visibly Linear Temporal Logic 429

states and such that no moves (dir, q, q′) with dir ∈ {ε,←,�} (resp., dir ∈
{ε,→,�}) are allowed, and δ(q, σ) = false for all accepting main states q and
σ ∈ Σ. If A is forward (resp., backward), then a run of A over a finite word w
is accepting if for all vertices of the form (|w| + 1, q) (resp., (0, q)), q ∈ Acc.
Moreover, the language L(A) of A is the set of finite words w on Σ such that
there is an accepting (1, q0)-run (resp., accepting (|w|, q0)-run) on w.

In order to correctly handle the VRE expressions in the translation of VLTL
formulas into SAJA, we need to impose additional restrictions on the above two
classes of AJA (which intuitively allow to simulate the behavior of nondeter-
ministic automata), ensuring at the same time that these restrictions still allow
to (efficiently) capture VRE. These restrictions in their semantic form are the
following ones, where a pseudo run is defined as a run but for all accepting main
states q and σ ∈ Σ, we replace the value false of δ(q, σ) with true.

J1. In each (pseudo) run starting from a main state, there is exactly one maximal
path (the main path) from the initial vertex which visits only main states.
Moreover, each vertex of the run which is not visited by the main path is
associated with a secondary state.

J2. In a pseudo run over an infinite word, the main path cannot end at a vertex
(j, q) such that j > 0 and q is not accepting.

J3. Let the given AJA A be forward (resp., backward). Then, for all infinite
words w on Σ and 1 ≤ i ≤ j, w[i, j] ∈ L(A) iff there is a pseudo (i, q0)-run
(resp., pseudo (j, q0)-run) of A over the infinite word w whose main path
visits position j+1 (resp., i− 1) in an accepting main state, the latter being
obtained by a local move.

Intuitively, the main path simulates the unique path of a run in a nondeterminis-
tic automaton. The notion of pseudo run is used just to ensure that runs of AJA
with main states over infinite words whose main path visits an accepting main
state exist. Moreover, the semantic requirements J2 and J3 crucially allow to
deal with the sequencing and power operators in the translation of VLTL formu-
las into SAJA. Interestingly, we can show that the semantic requirements J1–J3
can be syntactically captured. These syntactical constraints also ensure that in
a (pseudo) run, the secondary vertices are associated with positions inside min-
imally well-matched subwords of the input word. The forward (resp., backward)
AJA with main states satisfying these syntactical requirements (ensuring J1–J3)
are called forward (resp., backward) AJA with main paths (MAJA). It is worth
noting that MAJA with no secondary states correspond to standard finite-state
nondeterministic automata. For the class of MAJA, we show the following result.

Theorem 5 (From VRE to MAJA). Given a VRE α, one can build in poly-
nomial time a forward (resp., backward) MAJA A with O(|α|) main states and
O(|α|4) secondary states such that L(A) = L(α) \ {ε}. Moreover, if α is well-
formed, then A can be compositionally constructed in linear time.

Sketched Proof. The result for the general case of unrestricted VRE is an
adaptation of two known results: VRE can be translated in quadratic time into

430 L. Bozzelli and C. Sánchez

equivalent NVPA [12], and NVPA can be translated in quadratic time into equiva-
lent AJA over finite words [11]. The proof of the surprising result that well-formed
VRE can be compositionally translated in linear time into forward and backward
MAJA is instead non-trivial. This proof exploits an additional syntactical sub-
class of MAJA that captures more efficiently the restricted class of well-matched
VRE (the additional syntactical constraints are used to implement in an efficient
way M -substitution and S-closure in well-matched VRE). Note that thanks to
the fulfillment of the semantic requirements J1–J3, the concatenation and the
Kleene closure operators can be handled in a way analogous to the standard
translation of regular expressions in nondeterministic automata. �

5 Decision Procedures for the Logic VLTL

In this section, we study the satisfiability and visibly pushdown model checking
problems for VLTL. Based on Lemma 1 and Theorem 5, we derive a polynomial-
time compositional translation of VLTL formulas into SAJA, which provides an
automata-theoretic approach to these decision problems. The translation is de-
scribed by induction on the structure of the given VLTL formula ϕ. The base
case ϕ = true is immediate. For the induction step, given two VLTL formulas
ϕ1 and ϕ2, assume that A1 = 〈M1 ∪ S1, q

0
1 , δ1,F1〉 and A2 = 〈M2 ∪ S2, q

0
2 , δ2,F2〉

are the SAJA associated with the VLTL formulas ϕ1 and ϕ2, accepting the ω-
pointed languages Lp(ϕ1) and Lp(ϕ2), respectively. We illustrate now how to
build the SAJA A = 〈M ∪ S, q0, δ,F〉 accepting Lp(ϕ) for formulas ϕ built us-
ing a single VLTL operator applied to ϕ1 and ϕ2. For ϕ = ¬ϕ1, A is the dual
automaton of A1, and the correctness directly follows from Lemma 1. For the
other operators, here, we focus on the future power operator and the future
weak power operator. Thus, let ϕ =ϕ1|α⟫ϕ2 or ϕ =ϕ1|α〉ϕ2. Moreover, let
Aα = 〈Mα ∪Sα, qα, δα,Accα〉 be the forward MAJA of Theorem 5 for the VRE α
and such that (Mα ∪ Sα) ∩ (M1 ∪ S1) = ∅ and (Mα ∪ Sα) ∩ (M2 ∪ S2) = ∅. Then,
the initial state q0 of A is a fresh state and:

M = M1 ∪M2 ∪Mα ∪ {q0} and S = S1 ∪ S2 ∪ Sα

δ(q, σ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
δ2(q

0
2 , σ) ∨ (δ1(q

0
1 , σ) ∧ δα(qα, σ)) if q = q0

δ1(q, σ) if q ∈ M1 ∪ S1
δ2(q, σ) if q ∈ M2 ∪ S2
δα(q, σ) if q ∈ Sα or q
→σ Accα
δα(q, σ) ∨ (ε, q0, q0) if q →σ Accα

F =

{
F1 ∪ F2 ∪ {〈B,Mα ∪ Sα ∪ {q0}, ∅〉} if ϕ =ψ1|α⟫ψ2

F1 ∪ F2 ∪ {〈B,Mα ∪ Sα ∪ {q0}, {q0}〉} if ϕ =ψ1|α〉ψ2

where the notation q →σ Accα (resp., q
→σ Accα) means that q ∈ Mα and there
is a (resp., there is no) local move in Aα from q on reading σ which leads to
an accepting main state. Note that the construction adds a new Büchi stratum
above all strata from previous stages, so paths that move to the automaton of a
subformula do not visit the newly added stratum. Moreover, the number of main

Visibly Linear Temporal Logic 431

states (resp., secondary states) of the new stratum is at most |Mα| + 1 (resp.,
|Sα|). Also, the SAJA for formulas ϕ1 and ϕ2 share the strata belonging to the
SAJA of common subformulas of ϕ1 and ϕ2.

3 Thus, since a MAJA satisfies the
semantic requirements J1–J3 at the end of Section 4, by Theorem 5, we obtain
the following theorem and its immediate corollary (combined with Theorem 4).

Theorem 6. For a VLTL formula ϕ, one can build in polynomial time a SAJA
A such that: Lp(A) = Lp(ϕ), A has O(|ϕ|) main states and O(|ϕ|4) secondary
states in the general case, and just O(|ϕ|) states if ϕ is well-formed or has
constant-size VRE. Also, the size of the largest non-trivial coBüchi stratum of
A is linear in the size of the largest VRE associated with a weak future power
operator in ϕ which is in the scope of an odd number of negations.

Corollary 1. For a well-formed VLTL formula ϕ, one can build a Büchi NVPA
P accepting L(ϕ) with 2O(|ϕ|·log(k)) states and stack symbols, k being the size of
the largest VRE associated with a weak future power operator in ϕ which is in
the scope of an odd number of negations.

Checking whether L(P) ⊆ L(ϕ) for a pushdown system P and a VLTL formula
ϕ, reduces to check emptiness of L(P) ∩L(¬ϕ). Thus, since checking emptiness
for the intersection of ω-VPL by Büchi NVPA is in PTIME [5], and satisfiability
and visibly pushdown model checking for CaRet are EXPTIME-complete [4], by
Theorems 3, 4, and 6, we obtain the following.

Corollary 2. Satisfiability and visibly pushdown model checking for VLTL are
EXPTIME-complete.

6 Concluding Remarks

Our automata-theoretic approach, based on the use of SAJA as an intermediate
step, can be conveniently used also for less expressive logical frameworks. In
particular, by Theorems 3, 4, and 6, CaRet and NWTL+ formulas ϕ can be
translated into equivalent Büchi NVPA of size 2O(|ϕ|), which matches the upper
bounds for the known direct translations [4,3]. Analogously, our approach can
also be used to convert formulas ϕ of RLTL with past into equivalent Büchi
nondeterministic finite-state automata of size 2O(|ϕ|·log(k)), where k is the size of
the largest regular expression associated with a weak future power operator in ϕ
(which follows from Theorem 4 and the fact that the SAJA obtained from ϕ has
only local moves and no secondary states). The recent upper bounds for RLTL
[21] tackled only future operators leaving RLTL with past as an open problem.

Future work includes to adapt our automata-based constructions to alphabets
based on atomic propositions, and to explore whether alternative formalisms like
ETL [23] – adapted to VPL– can be efficiently integrated in the VLTL framework.
Other interesting problems are to explore the relative expressive power of frag-
ments of VLTL and to capture minimal expressively complete VLTL fragments.

3 In fact, for a given subformula, we need to distinguish between the occurrences which
are in the scope of an even number of negations from those which are in the scope
of an odd number of negations.

432 L. Bozzelli and C. Sánchez

References

1. IEEE Standard for Property Specification Language (PSL). IEEE Standard 1850–
2010 (April 2010)

2. Alur, R.: Marrying words and trees. In: Proc. 26th PODS, pp. 233–242. ACM
(2007)

3. Alur, R., Arenas, M., Barceló, P., Etessami, K., Immerman, N., Libkin, L.: First-
order and temporal logics for nested words. In: Proc. 22nd LICS, pp. 151–160.
IEEE Computer Society (2007)

4. Alur, R., Etessami, K., Madhusudan, P.: A temporal logic of nested calls and
returns. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp.
467–481. Springer, Heidelberg (2004)

5. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proc. 36th STOC, pp.
202–211. ACM (2004)

6. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3) (2009)
7. Arenas, M., Barceló, P., Libkin, L.: Regular languages of nested words: Fixed

points, automata, and synchronization. In: Arge, L., Cachin, C., Jurdziński, T.,
Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 888–900. Springer, Heidelberg
(2007)

8. Armoni, R., Fix, L., Flaisher, A., Gerth, R., Ginsburg, B., Kanza, T., Landver, A.,
Mador-Haim, S., Singerman, E., Tiemeyer, A., Vardi, M.Y., Zbar, Y.: The ForSpec
temporal logic: A new temporal property-specification language. In: Katoen, J.-P.,
Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 296–311. Springer, Heidelberg
(2002)

9. Ball, T., Rajamani, S.K.: Bebop: a symbolic model checker for boolean programs.
In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp.
113–130. Springer, Heidelberg (2000)

10. Bollig, B., Cyriac, A., Gastin, P., Zeitoun, M.: Temporal logics for concurrent
recursive programs: Satisfiability and model checking. In: Murlak, F., Sankowski,
P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 132–144. Springer, Heidelberg (2011)

11. Bozzelli, L.: Alternating automata and a temporal fixpoint calculus for visibly push-
down languages. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS,
vol. 4703, pp. 476–491. Springer, Heidelberg (2007)

12. Bozzelli, L., Sánchez, C.: Visibly rational expressions. In: Proc. FSTTCS. LIPIcs,
vol. 18, pp. 211–223 (2012)

13. Dax, C., Klaedtke, F.: Alternation elimination for automata over nested words.
In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 168–183. Springer,
Heidelberg (2011)

14. Kupferman, O., Vardi, M., Wolper, P.: An Automata-Theoretic Approach to
Branching-Time Model Checking. J. ACM 47(2), 312–360 (2000)

15. Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM
Transactions on Computational Logic 2(3), 408–429 (2001)

16. Leucker, M., Sánchez, C.: Regular linear temporal logic. In: Jones, C.B., Liu, Z.,
Woodcock, J. (eds.) ICTAC 2007. LNCS, vol. 4711, pp. 291–305. Springer, Heidel-
berg (2007)

17. Löding, C., Serre, O.: Propositional dynamic logic with recursive programs. In:
Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 292–306.
Springer, Heidelberg (2006)

18. Madhusudan, P., Viswanathan, M.: Query automata for nested words. In: Královič,
R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 561–573. Springer, Hei-
delberg (2009)

Visibly Linear Temporal Logic 433

19. Miyano, S., Hayashi, T.: Alternating finite automata on ω-words. Theoretical Com-
puter Science 32, 321–330 (1984)

20. Sánchez, C., Leucker, M.: Regular linear temporal logic with past. In: Barthe, G.,
Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 295–311. Springer,
Heidelberg (2010)

21. Sánchez, C., Samborski-Forlese, J.: Efficient regular linear temporal logic using
dualization and stratification. In: Proc. 19th TIME, pp. 13–20 (2012)

22. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: Pre-
liminary report. In: Proc. 5th STOC, pp. 1–9. ACM (1973)

23. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Information and
Computation 115, 1–37 (1994)

24. Zielonka, W.: Infinite games on finitely coloured graphs with applications to au-
tomata on infinite trees. Theoretical Computer Science 200(1-2), 135–183 (1998)

Count and Forget: Uniform Interpolation

of SHQ-Ontologies

Patrick Koopmann� and Renate A. Schmidt

The University of Manchester, UK

Abstract. We propose a method for forgetting concept symbols and
non-transitive roles symbols of SHQ-ontologies, or for computing uni-
form interpolants in SHQ. Uniform interpolants restrict the symbols
occuring in an ontology to a specified set, while preserving all logical
entailments that can be expressed using this set in the description logic
under consideration. Uniform interpolation has applications in ontology
reuse, information hiding and ontology analysis, but so far no method
for computing uniform interpolants for expressive description logics with
number restrictions has been developed. Our results are not only inter-
esting because they allow to compute uniform interpolants of ontologies
using a more expressive language. Using number restrictions also allows
to preserve more information in uniform interpolants of ontologies in less
complex logics, such as ALC or EL. The presented method computes uni-
form interpolants on the basis of a new resolution calculus for SHQ. The
output of our method is expressed using SHQμ, which is SHQ extended
with fixpoint operators, to always enable a finite representation of the
uniform interpolant. If the uniform interpolant uses fixpoint operators, it
can be represented in SHQ without fixpoints operators using additional
concept symbols or by approximation.

1 Introduction

Ontologies are at the center of the semantic web and knowledge-based systems
in an increasing number of domains. They model terminological domain knowl-
edge and are usually represented using a description logic to allow reasoning to
be performed automatically. Uniform interpolation and forgetting deal with the
problem of reducing the vocabulary used in an ontology in such a way that entail-
ments expressed in this reduced vocabulary are preserved. Eliminating concepts
or relations from an ontology is referred to as forgetting them, and the result is
a uniform interpolant for the reduced vocabulary.

Uniform interpolation has applications in a range of areas. (i) Ontology
Reuse and Distributed Ontologies. Big ontologies such as the National Can-
cer Institute Thesaurus often cover a huge amount of terms, whereas for applica-
tions often only a subset is needed. A uniform interpolant can provide a basis in
applications where too many symbols in the ontology that users are unfamiliar

� Patrick Koopmann is supported by an EPSRC doctoral training award.

S. Demri, D. Kapur, and C. Weidenbach (Eds.): IJCAR 2014, LNAI 8562, pp. 434–448, 2014.
c© Springer International Publishing Switzerland 2014

Count and Forget: Uniform Interpolation of SHQ-Ontologies 435

with could be harmful [20]. (ii) Information Hiding. In a lot of applications,
an ontology may be used by a number of people with different privileges. For
such an environment it is crucial to have safe techniques to hide confidential
information from users that are not privileged to access them [4]. Uniform in-
terpolation provides a way to remove confidential concepts and relations from
an ontology without affecting the entailments over the remaining terminology.
(iii) Understanding concept relations. Relations between concepts in big
ontologies are often indirect and hard to understand with growing complexity
of the ontology. Uniform interpolation can be used to compute an ontology that
only uses a small number of symbols of interest, to get a direct representation of
the relations between them [7]. (iv) Ontology Maintenance. A related task
is understanding how changes to an ontology, for example the addition of new
concept definitions, affect the meaning of other concepts. Uniform interpolants
can be used to determine whether the meaning of certain concepts changed,
and to get a direct representation of these changes [12]. Further applications of
uniform interpolation can be found in [7,14].

So far, the only expressive description logics for which methods for computing
uniform interpolants exists are ALC and ALCH [10,8,12,19]. In this paper we
extend the methods of [10,8] to the description logic SHQ, which extends ALCH
with transitive roles and number restrictions. This way, we broaden the applica-
tion of uniform interpolants to ontologies that use a more expressive description
logic. But the expressivity of the underlying description logic also determines
what information is included in the uniform interpolant. Consider for example
the following simple ALC-ontology Tbike.

Bicycle : ∃hasWheel.FrontWheel ∃hasWheel.RearWheel

FrontWheel : Wheel ¬RearWheel

RearWheel : Wheel ¬FrontWheel

This TBox states that every bicycle has a front wheel and a rear wheel, and
that those are disjoint types of wheels. Assume we are not interested in the
distinction between front wheels and rear wheels. If we want to preserve all logical
entailments inALC over the remaining symbols Bicycle, hasWheel andWheel, this
can be done by the single TBox axiom Bicycle : ∃hasWheel.Wheel, which states
that every bicycle has a wheel, and which is the ALC-uniform interpolant of
Tbike for {Bicycle, hasWheel,Wheel}. We do lose however the indirectly expressed
information that a bicycle has at least two wheels, since we cannot express this in
ALC without using at least one of the concepts FrontWheel and RearWheel. Using
number restrictions however, we can express this. The SHQ-uniform interpolant
of Tbike consists therefore of the axiom Bicycle : ≥2hasWheel.Wheel, which states
that every bicycle has at least two wheels.

The results in [10,8,12] suggest that resolution-based approaches allow for an
efficient computation of uniform interpolants in a lot of cases, since they make it
possible to derive consequences for a specified symbol in a goal-oriented manner.
Motivated by this, we follow a similar approach as in [10,8]. In Section 4, we
present a new resolution calculus for SHQ. Based on this calculus, we present

436 P. Koopmann and R.A. Schmidt

respectively two methods for forgetting concept symbols and non-transitive role
symbols in Sections 5 and 6. Since a finite representation of uniform interpolants
is not always possible in pure SHQ, the result may involve the use of fixpoint
operators. This way uniform interpolants can always be represented finitely. For
this reason, the output of our method is at worst represented in SHQμ, which
is SHQ extended with fixpoint operators. If fixpoint operators are not desired,
it is possible to obtain a finite presentation in SHQ using additional symbols,
or to approximate the uniform interpolant.

All proofs, some examples and an empirical evaluation of our method are
provided in the long version of this paper [11].

2 Definition of SHQμ and Uniform Interpolation

To begin with, we define the description logic SHQμ, which is SHQ extended
with fixpoint operators.

Let Nr be a set of role symbols. An RBox R is a set of role axioms of the form
r : s (role inclusion), r ≡ s (role equivalence) and trans(r) (transitivity axiom),
where r, s ∈ Nr. r ≡ s is defined as abbreviation for the two role inclusions r : s
and s : r. Given an RBox R, we denote by :R the reflexive transitive closure
of the role inclusions in R. A role r is transitive in R if trans(r) ∈ R. r is simple
in R if there is no role s with s :R r and trans(s) ∈ R.

Let Nc and Nv be two sets of respectively concept symbols and concept vari-
ables. SHQμ-concepts have the following form:

⊥ | A | X | ¬C | C � D | ≥nr.C | νX.C[X],

where A ∈ Nc, X ∈ Nv, r ∈ Nr, C and D are arbitrary concepts, n is a
non-zero natural number, and C[X] is a concept expression in which X oc-
curs under an even number of negations. We define further concept expressions
as abbreviations: � = ¬⊥, C D = ¬(¬C � ¬D), ≤mr.C = ¬(≥nr.C) with
m = n − 1, ∃r.C = ≥1r.C, ∀r.C = ≤0r.¬C and μX.C[X] = ¬νX.¬C[X/¬X],
where C[E1/E2] denotes the concept obtained by replacing every E1 in C by E2.
Concepts of the form ≥nr.C and ≤nr.C are called number restrictions, and con-
cepts of the form νX.C[X] and μX.C[X] are called fixpoint expressions. νX.C[X]
and μX.C[X] denote respectively the greatest and the least fixpoint of C[X], and
ν and μ are respectively the greatest and least fixpoint operator. A concept vari-
able X is bound if it occurs in the scope C[X] of a fixpoint expression νX.C[X]
or μX.C[X]. Otherwise it is free. A concept is closed if it does not contain any
free variables, otherwise it is open.

A TBox T is a set of concept axioms of the forms C : D (concept inclusion)
and C ≡ D (concept equivalence), where C and D are closed concepts. C ≡ D
is short-hand for the two concept axioms C : D and D : C. An ontology O =
〈T ,R〉 consists of a TBox T and an RBox R with the additional restriction that
non-simple roles in R occur only in number restrictions of the form ≤0r.C or
≥1r.C in T . This restriction in necessary to ensure decidability of common SHQ

Count and Forget: Uniform Interpolation of SHQ-Ontologies 437

reasoning tasks [6], and our method for uniform interpolation assumes that it is
satisfied.

Next, we define the semantics of SHQμ. An interpretation I is a pair 〈ΔI , ·I〉
of the domain ΔI is a nonempty set and the interpretation function ·I assigns
to each concept symbol A ∈ Nc a subset of ΔI and to each role symbol r ∈ Nr a
subset of ΔI × ΔI . The interpretation function is extended to SHQμ-concepts
as follows.

⊥I = ∅ (¬C)I = ΔI \ CI (C � D)I = CI ∪ DI

(≥ nr.C)I = {x ∈ ΔI | #{(x, y) ∈ rI | y ∈ CI} ≥ n}

The semantics of fixpoint expressions is defined following [2]. Whereas concept
symbols are assigned fixed subsets of the domain, concept variables range over
arbitrary subsets, which is why only closed concepts have a fixed interpretation.
Open concepts are interpreted using valuations ρ that map concept variables to
subsets of ΔI . Given a valuation ρ and a set W ⊆ ΔI , ρ[X +→ W] denotes a val-
uation identical to ρ except that ρ[X +→ W](X) = W . Given an interpretation I
and a valuation ρ, the function ·Iρ is ·I extended with the cases XI

ρ = ρ(X) and

(νX.C)Iρ =
⋃

{W ⊆ ΔI | W ⊆ CI,ρ[X !→W]}.

If C is closed, we define CI = CIρ for any valuation ρ. Since C does not contain

any free variables in this case, this defines CI uniquely.
A concept inclusion C : D is true in an interpretation I iff CI ⊆ DI , a role

inclusion r : s is true in I iff rI ⊆ sI and a transitivity axiom trans(r) is true in I
if for any domain elements x, y, z ∈ ΔI we have (x, z) ∈ rI if (x, y), (y, z) ∈ rI .
I is a model of an ontology O if all axioms in O are true in I. An ontology O
is satisfiable if there exists a model for O, otherwise it is unsatisfiable. Two
TBoxes T1 and T2 are equi-satisfiable if every model of T1 can be extended to
a model of T2, and vice versa. T |= C : D holds iff in every model I of T
we have CI ⊆ DI . If an axiom α is true in all models of O, we write O |= α.
Observe that O |= r : s iff r :R s. Interestingly, allowing number restrictions
and fixpoint operators does not affect the complexity of deciding satisfiability of
ontologies: for SHQ as well as for SHQμ it is ExpTime-complete [17,2].1

Let sig(E) denote the concept and role symbols occurring in E, where E can
denote a concept, an axiom, a TBox, an RBox or an ontology.

Definition 1 (Uniform Interpolation). Given an ontology O and a set of
concept and role symbols S, an ontology OS is a uniform interpolant of O for S
iff the following conditions are satisfied:

1. sig(OS) ⊆ S, and
2. OS |= α iff O |= α for every SHQ-axiom α with sig(α) ⊆ S.
1 [2] proves only ExpTime-completeness for ALCQμ, but the result can be easily
extended to incorporate role hierarchies and transitive roles using the technique
proposed in [16].

438 P. Koopmann and R.A. Schmidt

3 The Normal Form

Our method for computing uniform interpolants in SHQ is based on a new
resolution calculus ResSHQ which provides a decision procedure for satisfiability
of SHQ-ontologies, and which allows for goal-oriented elimination of concept
symbols. Before this calculus can be applied to an ontology, its TBox has to be
normalised into a set of clauses using structural transformation or flattening.
Let Nd ⊆ Nc be a set of definer (concept) symbols that is disjoint with the
signature of the given TBox.

Definition 2 (Normal form). An SHQ-literal is a concept description of the
form A, ¬A, ≥nr.D or ≤mr.¬D, where A ∈ Nc, r ∈ Nr, n ≥ 1, m ≥ 0 are
natural numbers and D = D1 � . . . � Dn is a disjunction of definer symbols.
A literal of the form ¬D,D ∈ Nd, is called negative definer literal. An SHQ-
clause is an unordered set of SHQ-literals l1, . . . , ln, represented as l1 � . . .� l2.
The empty clause and the empty disjunction are represented as ⊥. SHQ-clauses
are abbreviations for TBox axioms of the respective forms � : l1 � . . . � l2 and
� : ⊥. A TBox is in SHQ-clausal form if every axiom in it is an SHQ-clause.

Number restrictions of the form ≤nr.C contain a hidden negation of the concept
under the restriction (they are equivalent to ¬≥(n + 1)r.C). Hence C occurs
negatively in ≤nr.C. The normal form ensures that every concept under a role
restriction occurs positively. This is why ≤-literals have the form ≤nr.¬D.

A TBox is converted into SHQ-clausal form as follows. First we replace ex-
istential and universal role restrictions ∃r.C and ∀r.C by corresponding number
restrictions ≥1r.C and ≤0r.¬C. Then every axiom is converted into negation
normal form (every axiom is of the form � : C, and in C negation only oc-
curs in front of concept symbols or directly under ≤-restrictions, and every ≤-
restriction is of the form ≤nr.¬C). Next, we replace each concept C that occurs
under a role restriction of the form ≥ nr.C or ≤ nr.¬C by a new concept definer
symbol D and add the new axiom ¬D�C to the TBox. This flattens the TBox,
which means every role restriction is of the form ≥nr.D or ≤nr.¬D, where D is
a definer symbol. The flattened TBox can be converted into SHQ-clausal form
using standard CNF transformations.

Observe that the definition of the SHQ-clausal form allows for disjunctions
of arbitrary length under role restrictions ≥ nr.D and ≤ nr.¬D. These disjunc-
tions are not introduced by the initial transformation of the TBox, but may be
produced by the rules of the calculus.

Example 1 (SHQ-normal form). Consider the TBox T = {A1 : ≥5r.(A � B),
A2 : ≤3r.A}. Observe that the normal form requires a negation under each
≤-restriction. The SHQ-clausal form of T consists of the following clauses.

1. ¬A1 � ≥5r.D1 2. ¬D1 � A � B

3. ¬A2 � ≤3r.¬D2 4. ¬D2 � ¬A

Since the normal form has to be preserved, some rule applications of the cal-
culus require the introduction of new definer symbols that represent the con-
junction of existing definer symbols. In particular, during the derivation a new

Count and Forget: Uniform Interpolation of SHQ-Ontologies 439

definer symbol D12 is introduced for the conjunction D1 D2 by adding two
clauses ¬D12 � D1 and ¬D12 � D2, which are equivalent to the concept inclu-
sion D12 : D1 D2. As exemplified here, throughout the paper we indicate
which conjunction an introduced definer symbol represents using its index. To
avoid the infinite introduction of new definer symbols, we check whether a de-
finer symbol representing this conjunction already exists. This way the number
of introduced definer symbols is limited to 2k, where k is the number of definer
symbols introduced by the initial transformation of the TBox.

4 The Underlying Calculus

We now introduce a sound and refutationally complete calculus ResSHQ that
decides satisfiability of TBoxes in SHQ-normal form. This calculus serves as the
basis for the method of computing uniform interpolants.

The calculus consists of the rules shown in Figure 1. Most of the rules are
motivated by the tautology (C1�L1)(C1�L2) : (C1�C2�(L1L2)). Therefore,
the conclusion often contains literals entailed by L1 L2, where L1 and L2

occur in the premises. In the case of the resolution rule, which is known from
propositional resolution calculi, we have that (A ¬A) entails ⊥.

For the transitivity rule, observe that ≤0r.¬D is equivalent to ∀r.D, and due
to the restrictions on SHQ ontologies, roles with transitive sub-roles do not occur
in number restrictions of the form ≤nr.¬D, where n > 0. If a domain element a
satisfies ∀r1.D, and we have a transitive role r2 : r1, the transitive closure of
r2-successors of a are all r1-successors of a, and they all have to satisfy D. We
put this information into clausal form by adding a new cyclic definer symbol D′

that is subsumed by D, and by stating that every r2-successor of a and every
r2-successor of an D′-instance has to satisfy D′ (this is similar to what is done
in [16] to incorporate transitivity axioms into formulae).

For the ≥-combination rule, observe that our normal form does not allow for
conjunctions under number restrictions. We can however express the conjunction
D1 D2 using a disjunction D12 of possibly new definer symbol symbols that
represent the conjunctions of each pair of definer symbols from D1 and D2. The
≥-combination rule becomes more intuitive by interpreting the last two literals of
each conclusion as an implication. For example, ≥(n1+n2)r.(D1�D2)�≥1r.D12

is equivalent to ≤(n1+n2−1)r.(D1�D2) → ≥1r.D12. Figure 2 illustrates the idea.
Every column represents an r-successor. If an upper cell is light, it satisfies D1,
if a lower cell is light, it satisfies D2. The two columns in the middle represent r-
sucessors satisfying both D1 and D2, that is, satisfying D12. All except the right-
most column represent r-successors satisfying the union D1 �D2. Depending on
how many r-successors satisfy D1�D2, the set of r-successors in D12 gets smaller
or bigger according to the conclusions of the ≥-rule.

For the ≥≤-combination rule, observe that in Figure 2, if there are more
elements in D1 than in ¬D2, D1 and D2 have to overlap. If D1 contains at
least n1 elements and the complement of D2 contains at most n2 elements, the
intersection D12 must contain at least n1 − n2 elements.

440 P. Koopmann and R.A. Schmidt

Resolution:
C1 %A C2 % ¬A

C1 % C2

Transitivity:

C % ≤0r1.¬D trans(r2) ∈ R r2 &R r1

C % ≤0r2.¬D′ ¬D′ %D ¬D′ % ≤0r2.¬D′

where D′ is a new definer symbol.

≥-Combination:

C1 % ≥n1r1.D1 C2 % ≥n2r2.D2 r1 &R r r2 &R r

C1 % C2 % ≥(n1 + n2)r.(D1 % D2) % ≥1r.D12

...
C1 % C2 % ≥(n1 + 1)r.(D1 % D2) % ≥n2r.D12

where D12 =
⊔

Di∈D1,Dj∈D2
Dij represents the conjunction of D1 and D2.

≥≤-Combination:

C1 % ≥n1r1.(D1 % . . . %Dm) C2 % ≤n2r2.¬Da r1 &R r2

C1 % C2 % ≥(n1 − n2)r2.(D1a % . . . %Dma)
n1 > n2

≥-Resolution:

C % ≥nr.(D %D) ¬D
C % ≥nr.D

≥-Elimination:

C % ≥nr.⊥
C

Fig. 1. Inference rules of ResSHQ

The ≥-resolution rule is a variant of the classical resolution rule, and the
≥-elimination rule eliminates unsatisfiable literals. The six rules form a sound
and refutationally complete calculus for ontologies in SHQ-clausal form, as the
following theorem shows.

Theorem 1. ResSHQ is sound and refutationally complete. Given any set N of
SHQ-clauses and any RBox R, the saturation of N using the rules of ResSHQ
contains the empty clause iff the ontology O = 〈N,R〉 is unsatisfiable.

Observe that the ≥-combination rule can be applied arbitrarily often, resulting
in clauses with larger and larger numbers occurring in the number restrictions.
For this reason, ResSHQ on its own is not a decision procedure, since we can
derive infinitely many clauses. In order to achieve termination, we need to add
redundancy elimination. This is also essential to make the uniform interpolation
method practical. Our notion of redundancy is close to the one introduced in [8],

Count and Forget: Uniform Interpolation of SHQ-Ontologies 441

D1 ¬D1

¬D2 D2

Fig. 2. Diagram illustrating the ≥- and the ≥≤-combination rules

but is extended to incorporate number restriction literals and disjunctions under
role restrictions.

Definition 3 (Subsumption and Reduction). A definer symbol D1 is sub-
sumed by a definer symbol D2 (D1 :d D2), if either D1 = D2 or there is a
clause ¬D1 � D2 in the current clause set. A disjunction D1 of definer sym-
bols is subsumed by a disjunction D2 of definer symbols (D1 :d D2) if every
definer symbol in D1 is subsumed by a definer symbol in D2. A literal l1 is sub-
sumed by a literal l2 (l1 :l l2) if one of the following is satisfied: (i) l1 = l2,
(ii) l1 = ≥n1r1.D1 and l2 = ≥n2r2.D2, where n1 ≥ n2, r1 :R r2 and D1 :d D2,
or (iii) l1 = ≤n1r1.¬D1 and l2 = ≤n2r2.¬D2, where n1 ≤ n2, r2 :R r1 and
D1 :d D2. A clause C1 is subsumed by a clause C2 (C1 :c C2) if every literal
in C1 is subsumed by a literal in C2. A clause C is redundant with respect to a
clause set N, if N contains a clause C′ with C′ :c C.

The reduction of a disjunction D, denoted by red(D), is obtained from D by
removing every definer symbol from D that is subsumed by another definer symbol
in D. The reduction of a clause C, denoted by red(C), is obtained from C by
removing every literal that is subsumed by another literal in C and reducing every
disjunction that occurs under a number restriction in the remaining literals.

Observe that the roles and the numbers for ≤-restrictions are compared in the
other direction as for ≥-restrictions. This is due to the hidden negation present
in ≤-restrictions.

Example 2 (Subsumption and reduction). Assume D12 represents D1D2, which
means we have the clauses ¬D12 � D1 and ¬D12 � D2, and we have r : s ∈ R.
Then ≥3r.D12 is subsumed by A � ≥2s.D1 and ≤2s.¬D12 is subsumed by B �
≤3r.¬D2 (A � ≥2s.D1 and B � ≤3r.¬D2 are redundant). The reduction of
≥1r.(D12 � D1) is ≥1r.D1 and the reduction of ≥1r.(D1 � D2) � ≥2r.D1 is
≥1r(D1 � D2).

In addition to subsumption deletion and reduction, we also remove tautological
clauses which contain pairs of contradictory literals. This leads to the set of sim-
plification rules shown in Figure 3. Our use of the terminology for subsumption
follows the traditional use in description logics. This means that it is C2 that is
deleted when C1 is subsumed by C2 (C1 :c C2), and not vice versa. We denote
the calculus ResSHQ extended with these rules by RessSHQ.

Theorem 2. RessSHQ is sound and refutationally complete, and provides a de-
cision procedure for SHQ-ontology satisfiability.

442 P. Koopmann and R.A. Schmidt

Tautology deletion: N ∪ {C %A % ¬A}
N

Subsumption deletion: N ∪ {C1, C2}
N ∪ {C1}

provided C1 &c C2

Reduction: N ∪ {C}
N ∪ {red(C)}

Fig. 3. Simplification rules of RessSHQ

≤-Combination:

C1 % ≤n1r1.¬D1 C2 % ≤n2r2.¬D2 r & r1 r & r2

C1 % C2 % ≤(n1 + n2)r.¬D12

≤≥-Combination:

C1 % ≤n1r1.¬D1 C2 % ≥n2r2.D2 r2 &R r1 n1 ≥ n2

C1 % C2 % ≤(n1 − n2)r1.¬(D1 %D2) % ≥1r1.D12

...
C1 % C2 % ≤(n1 − 1)r1.¬(D1 %D2) % ≥n2r1.D12

Fig. 4. Additional inference rules of ForgetSHQ

5 Forgetting Concept Symbols

We reduce the problem of computing uniform interpolants to the problem of
forgetting single symbols. We denote the result of forgetting a single symbol x
from an ontology O by O−x, where x can be a role or a concept symbol. O−x is
the uniform interpolant of O over sig(O) \ {x}.

The general idea for forgetting a concept symbol A is to saturate the clausal
representation of O in such a way that every clause that cannot be represented in
an SHQ-ontology in the signature sig(O)\{A} becomes superfluous. In addition
to the rules of RessSHQ, we need two more inference rules for the forgetting
procedure, which are shown in Figure 4. It turns out that we do not have to
consider number restrictions with disjunctions in our rules, which is the situation
with all number restrictions after the transformation into SHQ-clausal form.

Assume a domain element has maximally n1 r-successors satisfying ¬D1 and
maximally n2 r-successors satisfying ¬D2. If we sum them up without further
knowledge, we have that there are at most n1 + n2 r-successors satisfying ei-
ther ¬D1 or ¬D2. Since formulae under ≤-restrictions are negated, and because
(¬D1 � ¬D2) ≡ ¬(D1D2), we can verify that the ≤-combination rule is sound.

Count and Forget: Uniform Interpolation of SHQ-Ontologies 443

D1 ¬D1

¬D2 D2

Fig. 5. Diagram illustrating the ≤≥-combination rule

For the ≤≥-combination rule, we again interpret the last two literals of each
conclusion as an implication. For example for the first conclusion, the implication
is ≤0r.(D12) → ≤(n1 − n2)r.¬(D1 � D2). That this implication follows from
≤n1r.D1 and ≥n2r.D2 if n1 ≥ n2 is illustrated in the diagram in Figure 5.

Let N be the SHQ-normal form of the TBox of O. In order to forget A,
or to compute O−A, we saturate N, where we apply resolution only on the
symbol A we want to forget, or on definer symbols. The combination rules are
only applied if they lead to the introduction of new clauses that make further
resolution steps on A possible. For example, if we have the clauses ≤5r.¬D1,
≥3r.D2, ¬D1 �A and ¬D2 � ¬A, we apply the ≤≥-combination rule, since this
leads to the introduction of a new definer symbol D12, and, after resolving on
the definer symbols, the clauses ¬D12 � A and ¬D12 � ¬A. These two clauses
can be resolved on A. If we do not have ¬D1 �A or ¬D2 � ¬A, we do not have
to apply the ≤≥-combination rule in order to compute the uniform interpolant.

After this saturation is computed, we can remove all clauses that contain the
symbol A we want to forget, or that are of the form ¬D1�D2 or ¬D1 � ¬D2 �C.
Clauses of the form ¬D1 � D2 become superfluous since we computed all resol-
vents on D2. Clauses of the form ¬D1 � ¬D2 � C can also be discarded, as is
proved in the long version of this paper.

N−A is the clausal representation of the result of forgetting A from N, as the
following lemma shows.

Lemma 1. Given a set of clauses N and an RBox R, N−A does not contain A
and we have 〈N−A,R〉 |= α iff 〈N,R〉 |= α for all SHQ-axioms α that do not
contain A.

It remains to eliminate all introduced definer symbols, so that the ontology
is completely represented in the desired signature. Since every clause in N−A

contains at most one negative definer literal ¬D, we can compute for each definer
symbol D a unique concept inclusion D : C1 . . .Cn, where ¬D�C1,. . .,¬D�
Cn are the clauses in which ¬D occurs outside of a role restriction. We call this
concept inclusion the definition of D. D : C1 . . .Cn is equivalent to the set
of clauses ¬D�C1, . . . ,¬D�Cn, and we obtain therefore an equivalent TBox by
replacing these clauses by the corresponding definitions. We denote the result of
this transformation by T −A

D .
In order to compute a TBox representation of T −A

D without definer symbols,
we apply the definer elimination rules shown in Figure 6, where T [D !→C] denotes
the TBox obtained by replacing D with C. If a definer symbol occurs only on the
left-hand side of its definition, we can replace all positive occurrences of it using

444 P. Koopmann and R.A. Schmidt

Non-cyclic definer elimination:

T ∪ {D & C}

T [D �→C]
provided D �∈ sig(C)

Definer purification:

T

T [D �→�]
provided D occurs in T only under number restrictions

Cyclic definer elimination:

T ∪ {D & C[D]}

T [D �→νX.C[X]]
provided D ∈ sig(C[D])

Fig. 6. Rules for eliminating definer symbols

the non-cyclic definer elimination rule. If there is no definition of D, D occurs
only positively and we can replace all its occurrences by �. If a definer symbol
occurs on both sides of its definition, applying the non-cyclic definer elimination
rule would lead to an infinite derivation. Instead we apply the cyclic-definer
elimination rule, which introduces a greatest fixpoint operator.

Since ontologies can have cyclic definitions, it is in general not always pos-
sible to find a finite uniform interpolant that does not use fixpoint operators.
If we want to compute a representation of the uniform interpolant that is com-
pletely in SHQ and does not use fixpoint operators, we can either keep the cyclic
definer symbols, or approximate the uniform interpolant. Keeping the cyclic de-
finer symbols has the advantage that we preserve all entailments of the uniform
interpolant and obtain an ontology that can be processed by any common rea-
soner supporting SHQ. The remaining definer symbols can be seen as “helper
concepts” that make a finite representation possible.

If we want an ontology without fixpoints that is completely in the desired
signature, we can in general only approximate the uniform interpolant, since it
might be infinite. This approximation can be performed by replacing the cyclic
definer symbols a finite number of times following their definitions, and then
replacing them by � (see also [10] for this).

Theorem 3. Given any ontology O = 〈T ,R〉 and concept symbol A, O−A =
〈T −A,R〉 is a uniform interpolant of O for sig(O) \ {A} in SHQμ. If O−A

does not use any fixpoint operators, it is the uniform interpolant of O in SHQ
for sig(O) \ {A}.

We conducted a small evaluation of forgetting concept symbols from real-life
ontologies, details of which can be found in the long version of this paper [11].
Our results suggest that at least for smaller ontologies of up to 700 axioms,
forgetting half of the concept symbols in the signature can be performed in a
few minutes in the majority of cases.

Count and Forget: Uniform Interpolation of SHQ-Ontologies 445

Role hierarchy:

s & r r & t

s & t

≤-Monotonicity:

C % ≤nr.¬D s & r

C % ≤ns.¬D

≥-Monotonicity:

C % ≥nr.D r & s

C % ≥ns.D

Fig. 7. Inference rules for forgetting the role symbol r

6 Forgetting Role Symbols

We can adapt the method from [8] to obtain a procedure for forgetting role sym-
bols from SHQ ontologies, provided the role to be forgotten is not transitive. For
forgetting role symbols, we have to process the RBox as well, and act differently
depending on what we can make of the role hierarchy.

Forgetting transitive roles is not possible if we want to express the uniform
interpolant in SHQμ, as the following theorem shows.

Theorem 4. There are ontologies O and role symbols r, where r is transitive
in O, without a finite uniform interpolant of O for sig(O) \ {r} in SHQμ.

Proof. Consider an ontology O with an RBox R = {s : r, r : t, trans(r)}. We
have the following infinite number of entailments of O, where C is any concept:
O |= ∀t.C : ∀s.C, ∀t.C : ∀s.∀s.C, Since neither t nor s are transitive, there
can be no finite ontology in SHQμ defined over sig(O)\{r} and entails all these
consequences.

In order to forget a non-transitive role symbol r, we have to apply the combi-
nation rules on number restrictions with r exhaustively. As for forgetting concept
symbols, the other rules have to be applied only if they lead to the introduction
of new definer symbols and clauses that make further derivations on r possible.
On the resulting clause set, we apply the monotonicity rules shown in Figure 7.
We denote the result by N∗r.

If r has a super-role s (that is, r : s), we can afterwards filter out all clauses
that contain r and obtain a clausal representation of the uniform interpolant.
The ≥-monotonicity role ensures that all information regarding ≥-restrictions
in the desired signature is preserved. If r has no super-role, we have to check
which clauses of the form C � ≥nr.D can be filtered out. If N∗r |= ¬D, we
replace C � ≥nr.D with C, otherwise, we can remove C � ≥nr.D from the
clause set, since all derivations on r have already been performed. To decide
whether N∗r |= ¬D, we can either use an external reasoner or the calculus
RessSHQ presented in Section 4. We also remove all clauses that are of the form
¬D�D or ¬D1 �¬D2 �C. The resulting set N−r of clauses is transformed into
an SHQμ- or SHQ-ontology using the definer elimination techniques described
in the previous section. The resulting TBox T −r is the TBox of the uniform
interpolant. The RBox R−r is computed by applying the role hierarchy rule
from Figure 7 on the RBox and filtering out role inclusions containing r. We
have the following result.

446 P. Koopmann and R.A. Schmidt

Theorem 5. Given any ontology O = 〈T ,R〉 and any role symbol r such that
trans(r)
∈ R, O−r = 〈T −r,R−r〉 is a uniform interpolant of O for sig(O) \ {r}
in SHQμ. If O−r does not contain any fixpoint operators, it is a uniform inter-
polant of O for sig(O) \ {r} in SHQ.

7 Discussion and Related Work

There has been research in developing methods that deal with uniform interpola-
tion in several description logics, starting from simple ones, such as DL-Lite [20]
and EL [7,15,13], to more expressive ones such as ALC and ALCH [19,12,10,9,8].
Forgetting in more expressive description logics was first investigated by [18] and
[14]. In [14], it was shown that deciding the existence of uniform interpolants
that can be represented finitely inALC without fixpoints is 2-ExpTime and that
these uniform interpolants can in the worst case have a size triple exponential
with respect to size of the original ontology. It can be shown that, using fixpoint
operators, this bound can be reduced to a double-exponential complexity. [18,19]
were first to consider the computation of uniform interpolants in ALC and pre-
sented a tableau-based approach. A more goal-oriented method was presented
in [12], following a resolution approach based on a different calculus than our
method. [12] also included first experimental results, showing the practicality for
a lot of applications.

The first resolution-based method incorporating fixpoints, using ideas from
the area of second-order quantifier elimination [3], was presented in [10]. This
method was implemented and evaluated on a large set of real-life ontologies [9],
showing that the worst case complexity of uniform interpolants is hardly reached
in reality, and that uniform interpolants can often be computed in a few seconds.
In [8], this method was extended by redundancy elimination techniques and the
ability to forget role symbols, and an evaluation showed even better results with
respect to the size and use of fixpoint operators in the result.

Forgetting for description logics with number restrictions was first consid-
ered in [20], where a method for the description logic DL-LiteNbool is presented.
DL-LiteNbool extends DL-Lite with unqualified number restrictions and Boolean
operators [1]. The logic allows for inverse roles, but does not allow concepts
under number restrictions. More specifically, it cannot express universal restric-
tions or qualified existential role restrictions. This makes it possible to implement
forgetting in DL-LiteNbool using propositional resolution.

Apart from number restrictions, there are more extensions to SHQ that have
not been investigated yet, such as inverse roles or nominals. Whereas it is possible
that a method for computing uniform interpolants in an expressive description
logic with inverse roles will be discovered in the future, for nominals this will
likely not be the case. This follows from result for module extraction from [5].
Given two ontologies O and M and a signature S, M is an S-module of O, if M
is a subset of O and has the same logical entailments over S as O. Different from
uniform interpolants, modules can contain symbols that are not in S. Uniform
interpolation can be used to test whether an ontology M is an S-module of

Count and Forget: Uniform Interpolation of SHQ-Ontologies 447

another ontology O. More specifically, M is an S-module of O iff M ⊆ O and
M |= OS , where OS is the uniform interpolant of O over S. But in [5] it was
shown that determining whether M is an S-module of O is undecidable already
for the description logic ALCO, which extends ALC with nominals. From this
follows that there can be no general method for computing uniform interpolants
of ALCO-ontologies that are represented in a decidable logic.

8 Conclusion and Future Work

We have presented a method for uniform interpolation of SHQ-ontologies. The
method allows to compute uniform interpolants for ontologies in more expres-
sive description logics than previous approaches, and also to preserve indirect
cardinality information from ontologies that do not use number restrictions. The
method makes use of a new sound and refutationally complete resolution-calculus
for the description logic SHQ. If a finite representation cannot be computed in
pure SHQ, fixpoint operators are used in the result, which can be simulated
using helper concepts. The result of forgetting transitive roles cannot be repre-
sented in SHQμ, and is not computed by our method. A solution might be to
use a description logic that allows for transitive closures of roles.

Results of a preliminary evaluation of our method indicate that at least for
smaller ontologies, forgetting of concept symbols can be performed in short
amounts of time [11]. Even for input ontologies that do not contain number re-
strictions, we sometimes obtained interesting results where further entailments
using ≥-number restrictions where derived, that would not have been part of
an ALCH uniform interpolant. It is likely that for smaller signatures (100–2000
symbols, depending on the ontology), uniform interpolants of large ontologies
can in most cases still be computed in short times, if only concept symbols have
to be forgotten, and there are optimisations we have not investigated yet. For-
getting role symbols is likely a much more expensive task, since our combination
rules derive a lot of consequences. An evaluation of this is future work.

We have not investigated the complexity of our method and uniform interpo-
lation in SHQ in general. It is therefore open whether our method is optimal.
Additionally, we are currently investigating uniform interpolation for descrip-
tion logics with inverse roles, such as SHI and SHIQ. Besides extending the
expressivity of the supported description logic, there are further ways in which
the framework of uniform interpolation can be extended. So far, most work on
uniform interpolation for more expressive description logics focused on the TBox
and the RBox. An open problem is uniform interpolation of ontologies in SHQ
or more expressive logics that also have an ABox, which would be useful in many
applications, including privacy and ontology analysis.

References

1. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: DL-Lite in the Light
of First-Order Logic. In: AAAI 2007, pp. 361–366. AAAI Press (2007)

448 P. Koopmann and R.A. Schmidt

2. Calvanese, D., Giacomo, G.D., Lenzerini, M.: Reasoning in Expressive Description
Logics with Fixpoints based on Automata on Infinite Trees. In: Proc. IJCAI 1999,
pp. 84–89. Morgan Kaufmann (1999)

3. Gabbay, D.M., Schmidt, R.A., Sza�las, A.: Second Order Quantifier Elimination:
Foundations, Computational Aspects and Applications. College Publ. (2008)

4. Grau, B.C.: Privacy in ontology-based information systems: A pending matter.
Semantic Web 1(1-2), 137–141 (2010)

5. Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontologies:
theory and practice. J. Artif. Intell. Res. 31(1), 273–318 (2008)

6. Horrocks, I., Sattler, U., Tobies, S.: Practical Reasoning for Very Expressive De-
scription Logics. Logic J. IGPL 8(3), 239–264 (2000)

7. Konev, B., Walther, D., Wolter, F.: Forgetting and Uniform Interpolation in Large-
Scale Description Logic Terminologies. In: Proc. IJCAI 2009, pp. 830–835. AAAI
Press (2009)

8. Koopmann, P., Schmidt, R.A.: Forgetting Concept and Role Symbols in ALCH-
Ontologies. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013.
LNCS, vol. 8312, pp. 552–567. Springer, Heidelberg (2013)

9. Koopmann, P., Schmidt, R.A.: Implementation and Evaluation of Forgetting in
ALC-Ontologies. In: Proc. WoMO 2013. CEUR-WS.org (2013)

10. Koopmann, P., Schmidt, R.A.: Uniform Interpolation of ALC-Ontologies Using
Fixpoints. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013.
LNCS, vol. 8152, pp. 87–102. Springer, Heidelberg (2013)

11. Koopmann, P., Schmidt, R.A.: Count and Forget: Uniform Interpolation of SHQ-
Ontologies—Long Version. Tech. Rep., The University of Manchester (2014),
http://www.cs.man.ac.uk/~koopmanp/IJCAR_KoopmannSchmidt2014_long.pdf

12. Ludwig, M., Konev, B.: Towards Practical Uniform Interpolation and Forgetting
for ALC TBoxes. In: Proc. DL 2013, pp. 377–389. CEUR-WS.org (2013)

13. Lutz, C., Seylan, I., Wolter, F.: An Automata-Theoretic Approach to Uniform
Interpolation and Approximation in the Description Logic EL. In: Proc. KR 2012,
pp. 286–296. AAAI Press (2012)

14. Lutz, C., Wolter, F.: Foundations for Uniform Interpolation and Forgetting in
Expressive Description Logics. In: Proc. IJCAI 2011, pp. 989–995. AAAI Press
(2011)

15. Nikitina, N.: Forgetting in General EL Terminologies. In: Proc. DL 2011, pp. 345–
355. CEUR-WS.org (2011)

16. Schmidt, R.A., Hustadt, U.: A principle for incorporating axioms into the first-
order translation of modal formulae. In: Baader, F. (ed.) CADE 2003. LNCS
(LNAI), vol. 2741, pp. 412–426. Springer, Heidelberg (2003)

17. Tobies, S.: Complexity results and practical algorithms for logics in knowledge
representation. Ph.D. thesis, RWTH-Aachen, Germany (2001)

18. Wang, K., Wang, Z., Topor, R., Pan, J.Z., Antoniou, G.: Concept and Role Forget-
ting in ALC Ontologies. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum,
L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823,
pp. 666–681. Springer, Heidelberg (2009)

19. Wang, K., Wang, Z., Topor, R., Pan, J.Z., Antoniou, G.: Eliminating concepts and
roles from ontologies in expressive descriptive logics. Comput. Intell. (to appear)

20. Wang, Z., Wang, K., Topor, R.W., Pan, J.Z.: Forgetting for knowledge bases in
DL-Lite. Ann. Math. Artif. Intell. 58(1-2), 117–151 (2010)

http://www.cs.man.ac.uk/~koopmanp/IJCAR_KoopmannSchmidt2014_long.pdf

Coupling Tableau Algorithms for Expressive Description
Logics with Completion-Based Saturation Procedures

Andreas Steigmiller1,∗, Birte Glimm1, and Thorsten Liebig2

1 University of Ulm, Ulm, Germany
{Andreas.Steigmiller,Birte.Glimm,Thorsten.Liebig}@uni-ulm.de

2 derivo GmbH, Ulm, Germany
liebig@derivo.de

Abstract. Nowadays, saturation-based reasoners for the OWL EL profile are
able to handle large ontologies such as SNOMED very efficiently. However,
saturation-based reasoning procedures become incomplete if the ontology is ex-
tended with axioms that use features of more expressive Description Logics, e.g.,
disjunctions. Tableau-based procedures, on the other hand, are not limited to a
specific OWL profile, but even highly optimised reasoners might not be efficient
enough to handle large ontologies such as SNOMED. In this paper, we present
an approach for tightly coupling tableau- and saturation-based procedures that
we implement in the OWL DL reasoner Konclude. Our detailed evaluation shows
that this combination significantly improves the reasoning performance on a wide
range of ontologies.

1 Introduction

The current version of the Web Ontology Language (OWL 2) [19] is based on the very
expressive Description Logic (DL) SROIQ [6]. To handle (standard) reasoning tasks,
sound and complete tableau algorithms are typically used, which are easily extensible
and adaptable. Moreover, the use of a wide range of optimisation techniques allows
for handling many expressive, real-world ontologies. Since standard reasoning tasks
for SROIQ have N2EXPTIME-complete worst-case complexity [9], it is, however, not
surprising that larger ontologies easily become unpractical for existing systems.

In contrast, the OWL 2 profiles define language fragments of SROIQ for which rea-
soning tasks can be realised efficiently, e.g., within polynomial worst-case complexity.
For example, the OWL 2 EL profile is based on the DL EL++ which can be handled very
efficiently by variants of saturation-based reasoning procedures [2,10]. These saturation
algorithms have also been pushed to more expressive DLs (e.g., Horn-SHIQ [10] or
ALCH [12]) for which they are often able to outperform the more general tableau al-
gorithms. In particular, they allow a fast one-pass handling of several reasoning tasks
such as classification (i.e., the task of arranging the named concepts of an ontology in
a subsumption hierarchy), whereas tableau-based procedures perform classification by
a pairwise comparison of the named concepts. Handling cardinality restrictions with
saturation procedures is, however, still an open question.

∗ The author acknowledges the support of the doctoral scholarship under the Postgraduate Schol-
arships Act of the Land of Baden-Wuerttemberg (LGFG).

S. Demri, D. Kapur, and C. Weidenbach (Eds.): IJCAR 2014, LNAI 8562, pp. 449–463, 2014.
c© Springer International Publishing Switzerland 2014

450 A. Steigmiller, B. Glimm, and T. Liebig

Recently, new approaches have been proposed to also improve the reasoning perfor-
mance for ontologies of more expressive DLs by combining saturation procedures and
fully-fledged tableau reasoners in a black box manner [1,14]. These approaches try to
delegate as much work as possible to the specialised and more efficient reasoner, which
allows for reducing the workload of the fully-fledged tableau algorithm, and often re-
sults in a better pay-as-you-go behaviour than using a tableau reasoner alone.

In this paper, we present a much tighter coupling between saturation- and tableau-
based algorithms, whereby further performance improvements are achieved. After in-
troducing some preliminaries (Section 2), we present a saturation procedure that is
adapted to the data structures of a tableau algorithm (Section 3). This allows for easily
passing information between the saturation and the tableau algorithm within the same
reasoning system. Moreover, the saturation partially handles features of more expres-
sive DLs in order to efficiently derive as many consequences as possible (Section 3.1).
We then show how parts of the ontology can be identified for which the saturation
procedure is possibly incomplete and where it is necessary to fall-back to the tableau
procedure (Section 3.2). Subsequently, we present several optimisations that are based
on passing information from the saturation to the tableau algorithm (Section 4) and back
(Section 5). Finally, we present the results of a detailed evaluation (Section 6) before we
conclude (Section 7). Further details, proofs, an extended evaluation, and comparisons
with other reasoners are available in a technical report [16].

2 Preliminaries

For brevity, we do not introduce DLs (see, e.g., [3]) and we only present our approach
for the DL ALCHOIQ. However, the approach can easily be extended to SROIQ
(see [16]), e.g., by encoding role chains and adding appropriate rules for the remaining
features such as ∃r.Self concepts.

2.1 Tableau Algorithm

For ease of presentation, we assume in the remainder of the paper that all concepts are
in negation normal form (NNF) and we use ¬̇ to denote the negation of a concept in
NNF. Moreover, we assume that all ABox axioms are internalised into the TBox of a
knowledge base.1

A tableau algorithm decides the consistency of a knowledge baseK by trying to con-
struct an abstraction of a model for K , a so-called “completion graph”. A completion
graph G is a tuple (V, E,L, �̇), where each node v ∈ V (edge 〈v,w〉 ∈ E) represents
one or more (pairs of) individuals. Each node v (edge 〈v,w〉) is labelled with a set of
concepts (roles), L(v) (L(〈v,w〉)), which the individuals represented by v (〈v,w〉) are
instances of. The relation �̇ records inequalities between nodes.

The algorithm works by initialising the graph with one node for each nominal in the
input knowledge base. Complex concepts are then decomposed using a set of expan-
sion rules, where each rule application can add new concepts to node labels and/or new

1 In the presence of nominals, this can easily be realised, e.g., by expressing a concept assertion
C(a) (role assertion r(a, b)) as {a} � C ({a} � ∃r.{b}).

Coupling Tableau Algorithms with Saturation Procedures 451

nodes and edges to the completion graph, thereby explicating the structure of a model.
The rules are applied until either the graph is fully expanded (no more rules are appli-
cable), in which case the graph can be used to construct a model that is a witness to
the consistency of K , or an obvious contradiction (called a clash) is discovered (e.g.,
both C and ¬̇C in a node label), proving that the completion graph does not correspond
to a model. The input knowledge base K is consistent if the rules (some of which are
non-deterministic) can be applied such that they build a fully expanded, clash-free com-
pletion graph. A cycle detection technique called blocking ensures the termination of
the algorithm.

Typically, lazy unfolding rules are used in the tableau algorithm to process axioms
of the form A � C, where the concept C is added to the label of a node if it contains
the atomic concept A. Axioms that are not directly supported by this lazy unfolding
approach must be internalised, which can be realised by expressing a general concept
inclusion (GCI) axiom C � D by � � ¬̇C � D. Given that � is satisfied at each node,
the disjunction is then also added to all node labels.

2.2 (Binary) Absorption

Absorption is used as a preprocessing step in order to reduce the non-determinism in
the tableau algorithm. Basically, axioms are rewritten into (possibly several) simpler
concept inclusion axioms such that lazy unfolding rules in the tableau algorithm can be
used and, therefore, internalisation of axioms is often not required. Algorithms based on
binary absorption [8] allow for and create axioms of the form (A1 � A2) � C, whereby
also more complex axioms can be absorbed. To efficiently support a binary absorption
axiom (A1 � A2) � C in the tableau algorithm, a separate unfolding rule is used, which
adds C only to node labels if A1 and A2 are already present. More sophisticated ab-
sorption algorithms, such as partial absorption [15], further improve the handling of
knowledge bases for more expressive DLs since the non-determinism that is caused
by disjunctions on the right-hand side of axioms is further reduced. Roughly speaking,
the non-absorbable disjuncts are partially used as conditions on the left-hand side of
additional inclusion axioms such that the processing of the disjunctions can further be
delayed. Many state-of-the-art reasoning systems are at least using some kind of binary
absorption, which makes the processing of simple ontologies (e.g., EL ontologies) also
with the tableau algorithm deterministic. In the following, we assume that knowledge
bases are, at least, preprocessed with a variant of binary absorption and we also use the
syntax of binary absorption axioms to illustrate the algorithms and examples.

3 Saturation Compatible with Tableau Algorithms

In this section, we describe a saturation method that is an adaptation of the completion-
based procedure [2] such that it generates data structures that are compatible for further
usage within a fully-fledged tableau algorithm for more expressive DLs. Similarly to
completion graphs, this saturation generates nodes that are labelled with sets of concepts
and, therefore, it directly allows for transferring results from the saturation to the tableau
algorithm. For example, the saturated labels can be used to initialise the labels of new

452 A. Steigmiller, B. Glimm, and T. Liebig

nodes in the completion graph or to block the processing of nodes. In some cases, it is
directly possible to extract completion graphs from the data structures of the saturation,
which makes an explicit model construction with the tableau algorithm unnecessary.

Note, the adapted saturation method is not designed to cover a certain OWL 2 profile
or a specific DL language. In contrast, we saturate those parts of a knowledge base
that can easily be supported with an efficient algorithm (see Section 3.1). Unsupported
concept constructors are (partially) ignored by the saturation, but we dynamically detect
which parts have not been completely handled afterwards (see Section 3.2). Hence, the
results of the saturation are possibly incomplete, but since we know how and where
they are incomplete, we can use the results from the saturation appropriately.

3.1 Saturation Based on Tableau Rules

The adapted saturation method generates so-called saturation graphs, which approxi-
mate completion graphs in a compressed form (e.g., it allows for “reusing” nodes).

Definition 1 (Saturation Graph). Let Rols(K) (fclos(K)) denote the roles (concepts)
that occur in K (in completion graphs for K). A saturation graph for K is a directed
graph S = (V, E,L) with the nodes V ⊆ {vC | C ∈ fclos(K)}. Each node vC ∈ V
is labelled with a set L(vC) ⊆ fclos(K) such that L(vC) ⊇ {�,C}. We call vC the
representative node for the concept C. Each edge 〈v, v′〉 ∈ E is labelled with a set
L(〈v, v′〉) ⊆ Rols(K). We say that a node v ∈ V is clashed if ⊥ ∈ L(v).

A major difference to a completion graph is the missing �̇ relation, which can be
omitted since the saturation is not designed to completely handle cardinality restrictions
and, therefore, we also do not need to keep track of inequalities between nodes in the
saturation graph. Furthermore, each node in the saturation graph is the representative
node for a specific concept, which allows for reusing nodes. For example, instead of
creating new successors for existential restrictions, we reuse the representative node for
the existentially restricted concept as a successor.

In principle, the nodes, edges, and labels are used as in completion graphs (cf. [6])
and, therefore, we also use the (r-)neighbour, (r-)successor, (r-)predecessor, ancestor
and descendant relations analogously. Please note, however, that a node in the saturation
graph can have several predecessors due to the reuse of nodes.

We initialise the saturation graph with the representative nodes for all concepts that
have to be saturated. For example, if the satisfiability of the concept C has to be tested,
then we are interested in the saturation of the concept C and, therefore, we add the node
vC with the label L(vC) = {�,C} to the saturation graph. Note that we only build one
saturation graph, i.e., if we are later also interested in the saturation of a concept D that
is not already saturated, then we simply extend the existing saturation graph by vD. For
knowledge bases that contain nominals, we also add a node v{a} with L(v{a}) = {�, {a}}
for each nominal {a} occurring in the knowledge base.

For the initialised saturation graph, we apply the saturation rules depicted in Ta-
ble 1. Note that if a saturation rule refers to the representative node for a concept C
and the node vC does not yet exist, then we assume that the saturation graph is auto-
matically extended by this node. Although the saturation rules are very similar to the

Coupling Tableau Algorithms with Saturation Procedures 453

Table 1. Saturation rules for the (partial) handling ofALCHOIQ knowledge bases

�1-rule: if H ∈ L(v), H � C ∈ K with H = A, H = {a}, or H = �, and C � L(v),
then L(v) −→ L(v) ∪ {C}

�2-rule: if {A, B} ⊆ L(v), (A � B) � C ∈ K , and C � L(v),
then L(v) −→ L(v) ∪ {C}

�-rule: if C1 �C2 ∈ L(v) and {C1,C2} � L(v),
then L(v) −→ L(v) ∪ {C1,C2}

∃-rule: if ∃r.C ∈ L(v) and r � L(〈v, vC〉),
then L(〈v, vC〉) −→ L(〈v, vC〉) ∪ {r}

∀-rule: if ∀r.C ∈ L(v), there is an inv(r)-predecessor v′ of v, and C � L(v′),
then L(v′) −→ L(v′) ∪ {C}

�-rule: if C1 �C2 ∈ L(v), there is some D ∈ L(vC1) ∩ L(vC2), and D � L(v),
then L(v) −→ L(v) ∪ {D}

�-rule: if �n r.C ∈ L(v) with n ≥ 1 and r � L(〈v, vC〉),
then L(〈v, vC〉) −→ L(〈v, vC〉) ∪ {r}

o-rule: if {a} ∈ L(v), there is some D � L(v), and
D ∈ L(v{a}) or there is a descendant v′ of v with {{a},D} ⊆ L(v′),

then L(v) −→ L(v) ∪ {D}
⊥-rule: if ⊥ � L(v), and

1. {C, ¬̇C} ⊆ L(v), or
2. {�nr.C,�m s.D} ⊆ L(v) with n > m, r �∗ s and D ∈ L(vC), or
3. �nr.C ∈ L(v) with n > 1, and {a} ∈ L(vC), or
4. there exist a successor node v′ of v with ⊥ ∈ L(v′), or
5. there exist a node v{a} with ⊥ ∈ L(v{a}),

then L(v) −→ L(v) ∪ {⊥}

corresponding expansion rules in the tableau algorithm, there are some differences. For
example, the number of nodes is limited by the number of (sub-)concepts occurring in
the knowledge base due to the reuse of nodes for satisfying existentially restricted con-
cepts. Consequently, the saturation is terminating since the rules are only applied when
they can add new concepts or roles to node or edge labels. Moreover, a cycle detection
technique such as blocking is not required, which makes the rule application very fast.
Note also that the ∀-rule propagates concepts only to the predecessors of a node, which
is necessary in order to allow the reuse of nodes for existentially restricted concepts.
Language features of more expressive DLs are only partially supported. For instance,
the �-rule adds only those concepts that are implied by both disjuncts. In order to (par-
tially) handle a nominal {a} in the label of a node v, we use an o-rule that adds those
concepts that are derived for v{a} or for descendant nodes that also have {a} in their label
(instead of merging such nodes as in tableau procedures). This enables a very efficient
implementation and is sufficient for many ontologies.

The rules also include a ⊥-rule, which adds the concept⊥ to the label of those nodes
for which a clash can be discovered. Furthermore, it propagates⊥ to the ancestor nodes.
In case ⊥ occurs in the label of a representative node for a nominal, the knowledge base
is inconsistent and⊥ is propagated to every node label in the saturation graph; otherwise
⊥ in the label of a node vC indicates the unsatisfiability of C. Although it is, in principle,
possible to detect also several other kinds of clashes for the incompletely handled parts

454 A. Steigmiller, B. Glimm, and T. Liebig

vA vB v{a}
s− s

r

L(vA) =
{
�, A,∃s−.B,B � {a},C

}
L(vB) =

{
�, B,C,∃s.{a},�1 s.C

}

L(v{a}) =
{
�, {a},C,�2 r.B

}

Fig. 1. Generated saturation graph for testing the satisfiability of A1 for Example 1

in the saturation (e.g., for a concept C that has to be propagated to a successor node v,
where v has already the negation of C in its the label), the presented conditions of the
⊥-rule are already sufficient to show the completeness. Hence, we omit further clash
conditions for ease of presentation. Note, the use of a ⊥-rule is typical for saturation
procedures since we are interested in associating clashes with specific nodes instead of
entire completion graphs. As a consequence, the saturation allows for handling several
independent concepts within the same saturation graph, while unsatisfiable nodes can
nevertheless be distinguished from nodes that are (possibly) still satisfiable.

Example 1. Let us assume that the TBox T contains the following axioms:

A � ∃s−.B A � B � {a} B � C B � ∃s.{a}
B � �1 s.C {a} � C {a} � �2 r.B

In order to test the satisfiability of the concept A, we initialise the saturation graph with
the representative node for A and the nominal {a}. Applying the rules of Table 1 yields
the saturation graph depicted in Figure 1. Note that the procedure creates new nodes
on demand, e.g., for the processing of disjunctions, existential restrictions, and at-least
cardinality restrictions. Although the concept C is added to node labels, a node for C
is not created since C is not used in a way that requires this. Also note that the �-rule
application adds C to the label of vA, because C is in the label of the representative
nodes for both disjuncts of the disjunction B � {a} (i.e., C ∈ L(vB) ∩ L(v{a})).

With a suitable absorption technique, the saturation is usually able to derive and add
the majority of those concepts that would also be added by the tableau algorithm for
an equivalent node. This is especially the case for ontologies that primarily use fea-
tures of the DL EL++. Since EL++ covers many important and often used constructors
(e.g., �,∃), the saturation does already the majority of the work for many ontologies (as
confirmed by our evaluation in Section 6).

3.2 Saturation Status Detection

If used alone, the presented saturation procedure easily becomes incomplete for more
expressive DLs, similarly to other saturation-based procedures. Our aim is, however, to
gain as much information as possible from the saturation, i.e., we would like to detect
more precisely for which nodes the saturation was incomplete. In principle, this can
easily be approximated by testing for which nodes the actual tableau expansion rules
are applicable. However, since we partially saturate some more expressive concept con-
structors, this approach is often too conservative. For example, consider a saturation
graph without nominals and at-most cardinality restrictions, but with an at-least cardi-
nality restriction � n r.C with n > 1 in some node label. When constructing a model

Coupling Tableau Algorithms with Saturation Procedures 455

from the saturation graph, we could create the required n successors by “copying” the
node vC . Nevertheless, the tableau expansion rule for this at-least cardinality restriction
is still applicable since we only have one successor. It would, however, be sufficient
to check whether the number of successors is possibly limited by at-most cardinality
restrictions or nominals. Similar relaxations are also possible for other concept con-
structors, which is exploited by the approach described in this section.

In order to identify nodes for which the saturation procedure might be incomplete,
we first identify nodes that depend (directly or indirectly) on nominals and nodes that
have tight at-most restrictions.

Definition 2. Let S = (V, E,L) be a saturation graph and v ∈ V a node. We say that
v is directly nominal dependent if {a} ∈ L(v); v is nominal dependent if v is directly
nominal dependent or v has a successor node v′ such that v′ is nominal dependent.

For a role s and a concept D, the number of merging candidates for v w.r.t. s and D
is defined as

∑
�n r.C∈G n with

G = {�n r.C ∈ L(v) | r �∗ s and D ∈ L(vC)} ∪
{�1 r.C | ∃r.C ∈ L(v), r �∗ s and D ∈ L(vC)}.

The node v has tight at-most restrictions if there is an at-most cardinality restriction
�m s.D ∈ L(v) and the number of merging candidates for v w.r.t. s and D is exactly m.

For nodes with tight at-most restrictions, it is not necessary to merge some of its merg-
ing candidates, but every additional candidate might require merging and, therefore,
these nodes cannot be used arbitrarily.

We can now identify critical nodes that are possibly incompletely handled by the
saturation as follows:

Definition 3. Let S = (V, E,L) be a saturation graph and v ∈ V a node. We say that v
is directly critical, if

C1 ∀r.C ∈ L(v) and there is an r-successor v′ of v such that C � L(v′);
C2 C � D ∈ L(v) and C,D � L(v);
C3 �m s.D ∈ L(v) and there is an s-successor v′ of v such that L(v′) ∩ {D, ¬̇D} = ∅;
C4 �m s.D ∈ L(v) and the number of merging candidates for v w.r.t. s and D is greater

than m;
C5 v has an inv(s)-successor v′ with �m s.D ∈ L(v′) and L(v) ∩ {D, ¬̇D} = ∅;
C6 v has an inv(s)-successor v′ with � m s.D ∈ L(v′), D ∈ L(v), and the number of

merging candidates for v′ w.r.t. s and D is m;
C7 {a} ∈ L(v) and there is some v′ ∈ V with {a} ∈ L(v′) and L(v) � L(v′);
C8 v is nominal dependent and for some nominal {a} the node v{a} is critical; or
C9 v has an inv(s)-successor v′ with �m s.D ∈ L(v′) and {a} ∈ L(v′).

We say that v is critical if v is directly critical or v has a critical successor v′.

Conditions C1, C2, and C3 identify nodes as critical for which the ∀-, the �-, or the
ch-rule of the tableau algorithm is applicable. Note that in Condition C1 it is only
necessary to check whether the concept can be propagated to successor nodes since
the propagation to predecessors is ensured by the saturation procedure. Condition C4
identifies nodes as critical for which at-most restrictions might not be satisfied. Condi-
tions C5 and C6 work analogously to C3 and C4, but check this from the perspective

456 A. Steigmiller, B. Glimm, and T. Liebig

of a predecessor node. Note that C6 only has to check whether the number of merging
candidates is equal to m since nodes with an at-most cardinality restriction �m s.D and
more merging candidates than m are already critical due to C4. Condition C7 checks
whether merging different nodes in the saturation graph that have the same nominal in
their label could lead to problems, while C8 marks nominal dependent nodes as critical
if representative nodes for nominals are critical since it cannot be excluded that more
consequences are propagated to these nodes over the nominals. Finally, Condition C9
identifies nodes as critical for which an interaction between at-most restrictions, nomi-
nals and inverse roles could occur and thus the NN-rule of the tableau algorithm could
be applicable.

A concept C is obviously unsatisfiable if its representative node is clashed (i.e.,
⊥ ∈ L(vC)), whereas the satisfiability of C can only be guaranteed (for the general
case) if vC is not critical, vC does not depend on a nominal, and the knowledge base
is consistent. Consistency is explicitly required, because a concept is satisfiable only if
the knowledge base is consistent, which, however, cannot always be determined by the
saturation procedure since it might not be able to completely handle all representative
nodes for nominals. In particular, if the saturation graph contains a critical represen-
tative node for a nominal, then only the nominal dependent nodes are also marked as
critical. Thus, for the remaining nodes, we have to require that the knowledge base is
consistent in order to be able to guarantee the satisfiability of their associated concepts.
In addition, if a node vC is nominal dependent, then the consequences that are propa-
gated to vC obviously depend on the labels of the corresponding representative nodes for
these nominals. Therefore, we cannot generally guarantee the satisfiability of C without
knowing the status of the representative nodes for those nominals on which vC depends.

Please also note that a critical representative node for a nominal also makes all nom-
inal dependent nodes critical, which can obviously be very problematic in practice. In
Section 5, we show how we can use information from a completion graph, e.g., from
the initial consistency check, to improve the status of the saturation graph.

Example 1 (continued). For the saturation graph depicted in Figure 1, vA, vB, and v{a}
are nominal dependent, vB has a tight at-most restriction, and only vA is critical: First,
C6 applies to vA since vB is an s−-successor of vA due to ∃s−.B ∈ L(vA), �1 s.C ∈ L(vB)
and the number of merging candidates for vB w.r.t. s and C is 1. Second, C2 applies to
vA since none of the disjuncts of B � {a} ∈ L(vA) occurs in L(vA).

4 Assisting Tableau Algorithms

In this section, we show how we can use the saturation graph to improve the tableau
algorithm such that existing optimisations can still be used. For example, to further
support the important dependency directed backtracking [3,18], which allows for eval-
uating only relevant non-deterministic alternatives, we have to correctly manage the
dependencies for all results that we transfer from the saturation into a completion graph.

4.1 Transfer of Saturation Results to Completion Graphs

Since the saturation uses compatible data structures, we can directly transfer the satura-
tion results into the completion graph. For example, if we create a new successor node v

Coupling Tableau Algorithms with Saturation Procedures 457

due to an existential restriction ∃r.C, then we can directly initialise v with the concepts
fromL(vC) and record that the added concepts deterministically depend on C. The most
notable advantage of the transferred consequences is that they often allow for blocking
much earlier. Basically, concepts that would be propagated back from successor nodes
are already present in the node label and, thus, a block can often be established even
without creating and processing the required successors.

Furthermore, the successors of a node v in the completion graph can be blocked
if there is a node v′ in the saturation graph such that v and v′ are labelled with the
same concepts and v′ is neither clashed, critical nor nominal dependent. If v′ is nominal
dependent and we would block the successors of v, then we might miss the handling
of new consequences if the dependent nominal nodes are modified in this completion
graph. If v′ does not have a tight at-most restriction, then we can directly block v since
merging with a predecessor can be excluded. Of course, if new concepts are propagated
to v, then the block becomes invalid and the processing of the successors has to be
reactivated unless another node can be used for the blocking.

4.2 Subsumer Extraction

Higher level reasoning tasks such as classification often exploit information that can be
extracted from the constructed completion graphs [5]. Obviously, we can also use the
saturation graph to improve classification. For example, if a node vA is neither clashed
nor critical, then A is satisfiable and L(vA) contains all of its subsumers. In particular,
if no nodes are critical (which is the case for many EL ontologies), only a transitive
reduction is necessary for classification and, thus, we automatically get a one-pass clas-
sification for simple ontologies. Otherwise, the subsumers identified by the saturation
can be used to initialise the tableau-based classification algorithm, which is more accu-
rate than the often used told subsumers extracted from the ontology axioms.

4.3 Model Merging

Many ontologies contain axioms of the form C ≡ D, which can be seen as an abbre-
viation for C � D and D � C. Treating axioms of the form A ≡ D with A an atomic
concept as A � D and D � A can, however, downgrade the performance of tableau al-
gorithms since absorption might not apply to D � A, i.e., the axiom is internalised into
� � ¬̇D � A. To avoid this, many implemented tableau algorithms explicitly support
A ≡ D axioms by an additional unfolding rule, where the concept A in the label of a
node is unfolded to D and ¬A to ¬̇D (exploiting that D � A is equivalent to ¬A � ¬̇D)
[7].2 Unfortunately, using such an unfolding rule also comes at a price since the tableau
algorithm is no longer forced to add either A or ¬̇D to each node in the completion
graph, i.e., we might not know for some nodes whether they represent instances of A
or ¬A. This means that we cannot exclude A as possible subsumer for other (atomic)
concepts if the nodes in the completion graph (or in the saturation graph) do not contain
A, which is an important optimisation for classification procedures (cf. Section 4.2).

2 Note that this only works as long as there are no other axioms of the form A � D′ or A ≡ D′

with D′ � D in the knowledge base.

458 A. Steigmiller, B. Glimm, and T. Liebig

To compensate this, we can create a “candidate concept” A+ for A, for example by
partially absorbing D, which is then automatically added to a node in the completion
graph if the node is possibly an instance of A. Hence, if A+ is not added to a node label,
then we know that A is not a possible subsumer of the concepts in the label of this node.
Although the candidate concepts already allow a significant pruning of subsumption
tests, there are still ontologies where we have to add these candidate concepts to many
node labels, especially if only a limited absorption of D is possible. Hence, A can still
be a possible subsumer for many concepts.

The saturation graph can, however, again be used to further improve the identification
of (more or less obvious) non-subsumptions. Basically, if a candidate concept A+ for
A ≡ D is in the label of a node v in the completion graph, then we test whether we can
merge v with the saturated node v¬̇D. Since D is often a conjunction, we can also try
to merge v with the representative node for a disjunct of ¬̇D. If the “models” can be
“merged” as defined below, then v is obviously not an instance of A.

Definition 4 (Model Merging). Let S = (V, E,L) be a fully saturated saturation graph
and G = (V ′, E′,L′, �̇) be a fully expanded and clash-free completion graph for a
knowledge base K . A node v ∈ V is mergeable with a node v′ ∈ V ′ if

• v is not critical, not nominal dependent, and not clashed;
• {C, ¬̇C} ∩ (L(v) ∪ L′(v′)) = ∅ for some concept C;
• if {A1, A2} ⊆ (L(v) ∪ L′(v′)) and (A1 � A2) � C ∈ K , then C ∈ (L(v) ∪ L′(v′));
• if ∀r.C ∈ L(v) (� m r.C ∈ L(v)), then C ∈ L′(w′) (¬̇C ∈ L′(w′)) for every r-

neighbour w′ of v′;
• if ∀r.C ∈ L′(v′) (� m r.C ∈ L′(v′)), then C ∈ L(w) (¬̇C ∈ L′(w′)) for every

r-successor w of v.

The conditions that guarantee that the models are mergeable can be checked very
efficiently. Note that it is possible to relax some of the conditions. For instance, it is
not necessary to enforce that v is not nominal dependent as long as we can ensure that
there is no interaction with the generated completion graph. This can, for example, be
guaranteed if the completion graph does not use nominals.

5 Saturation Improvements

Obviously, the tableau algorithm can benefit more from the saturation, if few nodes are
critical. In the following, we present different approaches for improving the saturation
by reducing the number of critical nodes.

5.1 Extending Saturation to More Language Features

One way to improve the saturation is to extend the rules to cover more language fea-
tures, e.g., as in the consequence-based reasoning procedure for Horn-SHIF [10].
Although we cannot directly modify existing r-successors to support universal restric-
tions of the form ∀r.C, we can easily create a new r-successor whose label addition-
ally contains C. By further removing the previous r-successor, the node is no longer

Coupling Tableau Algorithms with Saturation Procedures 459

critical due to C1. Analogously, to (partially) support at-most restrictions of the form
� 1 r.�, several r-successors can be merged into a new node. To completely cover the
DL EL++, it would be necessary to integrate a more sophisticated handling of nominals.
Currently, we are, however, not aware of real-world ontologies where this would result
in significant improvements. Note that it is possible to limit the number of additionally
created nodes for these extensions and to consider parts that are not handled as critical,
thus the overhead of the saturation can be managed.

5.2 Improving Saturation with Results from Completion Graphs

As already mentioned, even if there is only one critical representative node for a nom-
inal, all nominal dependent nodes have to be considered critical. Analogously, nodes
with incompletely handled concepts (e.g., disjunctions) are considered critical and also
all nodes that indirectly refer to other critical nodes, even if all concepts in their labels
can be handled completely. Extending the saturation rules only also has its limits since
we are not aware of saturation-based procedures that cover very expressive DLs such
as SROIQ. Hence, we can still get many critical nodes in knowledge bases that use
unsupported features.

An approach to overcome this issue is to “patch” the saturation graph with results
from fully expanded and clash-free completion graphs, e.g., from consistency or satis-
fiability checks. Roughly speaking, we replace the labels of critical nodes in the satura-
tion graph with corresponding labels from a completion graph, where we know that they
are completely handled. Applying the saturation rules again, then hopefully results in a
saturation graph with less critical nodes. However, since the completion graph contains
deterministically and non-deterministically derived consequences, we also have to dis-
tinguish them for the saturation. An interesting way to achieve this is to simultaneously
manage two saturation graphs: one where only the deterministically derived concepts
are added and a second one, where also the non-deterministically derived concepts and
consequences are considered. If the non-deterministic consequences have only a locally
limited influence, i.e., the non-deterministically added concepts propagate new conse-
quences only to a limited number of ancestor nodes, then, by comparing both saturation
graphs, we can possibly identify ancestor nodes that are not further influenced by non-
deterministic consequences and, thus, do not have to be considered critical.

6 Implementation and Evaluation

We extended Konclude3 [17] with the presented saturation procedure and optimisations.
Konclude is a tableau-based reasoner for SROIQ [6] with extensions for the handling
of nominal schemas [15]. It integrates many state-of-the-art optimisations such as lazy
unfolding, dependency directed backtracking, caching, etc. Moreover, Konclude uses
partial absorption in order to significantly reduce the non-determinism in ontologies,
which makes Konclude very suitable for the integration of saturation procedures.

The saturation algorithm integrated in Konclude almost covers the DL Horn-SRIF
by using the extensions described in Section 5.1 for universal restrictions and functional

3 Available at http://www.konclude.com/

http://www.konclude.com/

460 A. Steigmiller, B. Glimm, and T. Liebig

Table 2. Statistics of ontology metrics for the evaluated ontology repositories (Ø stands for aver-
age and M for median)

Repository # Ontol- Axioms Classes Properties Individuals
ogies Ø M Ø M Ø M Ø M

Gardiner 276 6, 143 95 1, 892 16 36 7 90 3
NCBO BioPortal 403 25, 561 1, 068 7, 617 339 47 13 1, 782 0
NCIt 185 178, 818 167, 667 69, 720 68, 862 116 123 0 0
OBO Foundry 422 44, 424 1, 990 8, 033 839 28 6 24, 868 66
Oxford 383 74, 248 4, 249 8, 789 544 52 13 18, 798 12
TONES 200 7, 697 337 2, 907 100 28 5 66 0
Google Crawl 413 6, 282 194 1, 122 38 69 15 830 1
OntoCrawler 544 1, 876 119 125 18 56 12 638 0
OntoJCrawl 1, 680 5, 848 218 1, 641 43 29 8 810 0
Swoogle Crawl 1, 635 2, 529 109 420 21 26 8 888 0
ALL 6, 141 18, 583 252 4, 635 50 39 9 3, 674 0

at-most restrictions (only merging with predecessors is not implemented). The number
of nodes that are additionally processed for the handling of these saturation extensions
is mainly limited by the number of concepts occurring in the knowledge base. However,
the saturation in Konclude only supports a very limited handling of individuals since the
individuals also have to be handled by the tableau algorithm (at least in the worst-case)
and several representations of the individuals easily multiply the memory consumption.
To compensate this, Konclude primarily handles individuals with the tableau algorithm
and uses patches from completion graphs (as presented in Section 5.2) to improve those
parts in the saturation graph that depend on nominals.

In the following, we present a detailed evaluation that shows the improvementof Kon-
clude due to the integrated saturation procedure. The evaluation uses a large test corpus
of ontologies which have been obtained by collecting all downloadable and parseable on-
tologies from the Gardiner ontology suite [4], the NCBO BioPortal,4 the National Can-
cer Institute thesaurus (NCIt) archive,5 the Open Biological Ontologies (OBO) Foundry
[13], the Oxford ontology library,6 the TONES repository,7 and those subsets of the
OWLCorpus [11] that were gathered by the crawlers Google, OntoCrawler, OntoJCrawl,
and Swoogle.8 All ontologies were parsed and converted to self-contained OWL/XML
files with the OWL API. For the 1,380 ontologies with imports we created a version with
resolved imports and another one without the imports (for testing the reasoning perfor-
mance on the main ontology content without imports, which are frequently shared by
many ontologies). Since Konclude does not yet support datatypes, we removed all data

4 http://bioportal.bioontology.org/
5 http://ncit.nci.nih.gov/
6 http://www.cs.ox.ac.uk/isg/ontologies/ ; We ignored repositories that are redun-

dantly contained in the Oxford ontology library (e.g., the Gardiner ontology suite).
7 http://owl.cs.manchester.ac.uk/repository/
8 In order to avoid too many redundant ontologies, we only used those subsets of the OWLCorpus

which were gathered with the crawlers OntoCrawler, OntoJCrawl, Swoogle, and Google.

http://bioportal.bioontology.org/
http://ncit.nci.nih.gov/
http://www.cs.ox.ac.uk/isg/ontologies/
http://owl.cs.manchester.ac.uk/repository/

Coupling Tableau Algorithms with Saturation Procedures 461

properties and we replaced all data property restrictions with owl:Thing in all ontologies.
Table 2 shows an overview of our obtained test corpus with overall 6,141 ontologies in-
cluding statistics of ontology metrics for the source repositories. Please note that 34.9 %
of all ontologies are not even in the OWL 2 DL profile, which is, however, mainly due
to undeclared entities.

The evaluation was carried out on a Dell PowerEdge R420 server running with two
Intel Xeon E5-2440 hexa core processors at 2.4 GHz with Hyper-Threading and 48
GB RAM under a 64bit Ubuntu 12.04.2 LTS. Our evaluation focuses on classification,
which is a central reasoning task that is supported by many reasoners and, thus, it is
ideal for the comparison of results. In principle, we only measured the wall clock time
for classification, i.e., the times spent for parsing and loading ontologies as well as
for writing classification output to files are not included. Each test was executed with
a time limit of 5 minutes, but without any limitation of memory allocation. Although
Konclude supports parallelisation, we only used one worker thread, which allows for a
comparison independent of the number of CPU cores and facilitates the presentation of
the improvements through saturation.

Table 3 shows a comparison of the accumulated classification times for the evaluated
repositories (in seconds) between the following versions of Konclude:

• NONE, where none of the saturation optimisations are activated,
• NONE+RT, where only the transfer of results from the saturation into the comple-

tion graph (as presented in Section 4.1) is activated;
• NONE+SE, where only the extraction of subsumers from the saturation (as pre-

sented in Section 4.2) is activated;
• NONE+MM, where only the model merging with the saturation graph (as presented

in Section 4.3) is activated;
• ALL−SI, where the saturation improvements (as presented in Section 5) are deacti-

vated (i.e., all the saturation optimisations presented in Setion 4 are activated),
• ALL, where all saturation optimisations and saturation improvements are activated.

In addition, the column on the right side shows the performance gains (in percent) from
NONE to the version ALL. Please note that the saturation improvements are optimisa-
tions to further improve the saturation procedure and, therefore, a separate evaluation
of these techniques does not make sense.

It can be observed that the most significant improvements are achieved with the
model merging optimisation (cf. NONE+MM), which is due to the large amount of
NCI-Thesaurus ontologies in the NCIt archive, where this optimisation significantly
reduces the classification effort. In contrast, if only the transfer of the saturation re-
sults (NONE+RT) or the extraction of subsumers from the saturation (NONE+SE) is
activated, then only minor improvements with respect to the version NONE are possi-
ble. However, the combined activation of these optimisations (cf. ALL−SI) again leads
to a significant performance gain for the repositories, which indicates that there is a
synergy effect from the combination of these optimisation. Since all of these optimisa-
tions are based on the saturation procedure, which also requires a significant amount
of processing time for large ontologies (approximately 1, 953 s for all repositories),
this synergy effect is not very surprising. By further activating the saturation improve-
ments (cf. ALL), we obtain another performance gain. Considering all repositories, the

462 A. Steigmiller, B. Glimm, and T. Liebig

Table 3. Accumulated classification times (in seconds) with separately activated saturation opti-
misations for the evaluated ontology repositories

Repository NONE NONE+RT NONE+SE NONE+MM ALL−SI ALL ↓ [%]

Gardiner 531 611 469 535 558 559 −5.2
NCBO BioPortal 2, 071 1, 947 971 2, 156 988 793 61.7
NCIt 28, 639 28, 538 28, 276 3, 223 2, 496 2, 457 91.4
OBO Foundry 879 821 979 1, 078 741 649 26.2
Oxford 6, 623 5, 006 6, 012 6, 510 3, 429 2, 743 58.6
TONES 1, 756 1, 456 1, 413 494 321 337 80.8
Google 465 428 448 467 363 138 70.3
OntoCrawler 26 25 24 25 23 22 14.7
OntoJCrawl 1, 417 923 715 1, 427 517 548 61.4
Swoogle 2, 501 2, 502 2, 493 1, 402 1, 248 1, 343 46.3
ALL 44, 910 42, 256 41, 800 17, 317 10, 684 9, 589 78.6

combined activation of all saturation optimisations and improvements reduces the accu-
mulated reasoning time by 78.6 %. It is also worth pointing out that the version NONE
timed out for 128 ontologies, whereas the version ALL only reached the time limit for
10 ontologies. Thus, an evaluation with an increased time limit would show even better
performance gains. For example, the Oxford ontology library contains the SCT-SEP
ontology,9 which can be classified by the version ALL in 181.2 s, whereas the version
NONE requires 1709.4 s. SCT-SEP is a SNOMED extension that intensively uses dis-
junctions and disjointness and, thus, is clearly outside the OWL EL fragment. Neverthe-
less, large parts of the ontology have an EL structure and, therefore, our optimisations
are able to improve the reasoning performance by almost one order of magnitude.

Table 3 also reveals that some saturation optimisations are not really relevant for
some repositories. For instance, the activated result transfer yields worse reasoning
times for the ontologies in the Gardiner ontology suite. Moreover, the model merg-
ing optimisation causes significant performance losses for some repositories (e.g., for
OBO Foundry), which indicates that further optimisation is possible; e.g., one could
learn statistics about the success of model merging with certain nodes in the saturation
graph and automatically skip a merging test if there is a high likelihood that it will fail.

7 Conclusions

In this paper, we have presented a technique for tightly coupling saturation- and tableau-
based procedures. Unlike standard consequence-based procedures, the approach is
applicable on arbitrary OWL 2 DL ontologies. Furthermore, it has a very good pay-
as-you-go behaviour, i.e., if only few axioms use features that are problematic for
saturation-based procedures (e.g., disjunction), then the tableau procedure can still ben-
efit significantly from the saturation. This seems to be confirmed by our evaluation
over several thousand ontologies, where the integration of the presented saturation opti-
misations into the reasoning system Konclude significantly improves the classification
performance.

9 Originally from https://code.google.com/p/condor-reasoner/

https://code.google.com/p/condor-reasoner/

Coupling Tableau Algorithms with Saturation Procedures 463

References
1. Armas Romero, A., Cuenca Grau, B., Horrocks, I.: MORe: Modular combination of OWL rea-

soners for ontology classification. In: Cudré-Mauroux, P., Heflin, J., Sirin, E., Tudorache, T.,
Euzenat, J., Hauswirth, M., Parreira, J.X., Hendler, J., Schreiber, G., Bernstein, A., Blomqvist,
E. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 1–16. Springer, Heidelberg (2012)

2. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proc. 19th Int. Joint Conf. on
Artificial Intelligence (IJCAI 2005), pp. 364–369. Professional Book Center (2005)

3. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The De-
scription Logic Handbook: Theory, Implementation, and Applications, 2nd edn. Cambridge
University Press (2007)

4. Gardiner, T., Horrocks, I., Tsarkov, D.: Automated benchmarking of description logic reason-
ers. In: Proc. 19th Int. Workshop on Description Logics (DL 2006), vol. 198. CEUR (2006)

5. Glimm, B., Horrocks, I., Motik, B., Shearer, R., Stoilos, G.: A novel approach to ontology
classification. J. of Web Semantics 14, 84–101 (2012)

6. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Proc. 10th Int.
Conf. on Principles of Knowledge Representation and Reasoning (KR 2006), pp. 57–67.
AAAI Press (2006)

7. Horrocks, I., Tobies, S.: Reasoning with axioms: Theory and practice. In: Proc. 7th Int. Conf.
on Principles of Knowledge Representation and Reasoning (KR 2000), pp. 285–296. Morgan
Kaufmann (2000)

8. Hudek, A.K., Weddell, G.E.: Binary absorption in tableaux-based reasoning for description
logics. In: Proc. 19th Int. Workshop on Description Logics (DL 2006), vol. 189. CEUR (2006)

9. Kazakov, Y.: RIQ and SROIQ are harder than SHOIQ. In: Proc. 11th Int. Conf. on Prin-
ciples of Knowledge Representation and Reasoning (KR 2008), pp. 274–284. AAAI Press
(2008)

10. Kazakov, Y.: Consequence-driven reasoning for Horn-SHIQ ontologies. In: Proc. 21st Int.
Conf. on Artificial Intelligence (IJCAI 2009), pp. 2040–2045. IJCAI (2009)

11. Matentzoglu, N., Bail, S., Parsia, B.: A corpus of OWL DL ontologies. In: Proc. 26th Int.
Workshop on Description Logics (DL 2013), vol. 1014. CEUR (2013)

12. Simančík, F., Kazakov, Y., Horrocks, I.: Consequence-based reasoning beyond Horn ontolo-
gies. In: Proc. 22nd Int. Joint Conf. on Artificial Intelligence (IJCAI 2011), pp. 1093–1098.
IJCAI/AAAI (2011)

13. Smith, B., Ashburner, M., Rosse, C., Bard, J., Bug, W., Ceusters, W., Goldberg, L.J., Eilbeck,
K., Ireland, A., Mungall, C.J., The, O.B.I., Consortium, L.N., Rocca-Serra, P., Ruttenberg,
A., Sansone, S.A., Scheuermann, R.H., Shah, N., Whetzeland, P.L., Lewis, S.: The OBO
Foundry: coordinated evolution of ontologies to support biomedical data integration. Nature
Biotechnology 25, 1251–1255 (2007)

14. Song, W., Spencer, B., Du, W.: WSReasoner: A prototype hybrid reasoner forALCHOI on-
tology classification using a weakening and strengthening approach. In: Proc. 1st Int. Work-
shop on OWL Reasoner Evaluation (ORE 2012), vol. 858. CEUR (2012)

15. Steigmiller, A., Glimm, B., Liebig, T.: Nominal schema absorption. In: Proc. 23rd Int. Joint
Conf. on Artificial Intelligence (IJCAI 2013), pp. 1104–1110. AAAI Press (2013)

16. Steigmiller, A., Glimm, B., Liebig, T.: Coupling tableau algorithms for the DL SROIQ
with completion-based saturation procedures. Tech. Rep. UIB-2014-02, University of Ulm,
Ulm, Germany (2014), http://www.uni-ulm.de/fileadmin/website_uni_ulm/iui/
Ulmer_Informatik_Berichte/2014/UIB-2014-02.pdf

17. Steigmiller, A., Liebig, T., Glimm, B.: Konclude: system description. J. of Web Semantics
(accepted, 2014)

18. Tsarkov, D., Horrocks, I., Patel-Schneider, P.F.: Optimizing terminological reasoning for ex-
pressive description logics. J. of Automated Reasoning 39, 277–316 (2007)

19. W3C OWL Working Group: OWL 2 Web Ontology Language: Document Overview. W3C
Recommendation (October 27, 2009)

http://www.uni-ulm.de/fileadmin/website_uni_ulm/iui/Ulmer_Informatik_Berichte/2014/UIB-2014-02.pdf
http://www.uni-ulm.de/fileadmin/website_uni_ulm/iui/Ulmer_Informatik_Berichte/2014/UIB-2014-02.pdf

EL-ifying Ontologies�

David Carral1, Cristina Feier2, Bernardo Cuenca Grau2,
Pascal Hitzler1, and Ian Horrocks2

1 Department of Computer Science, Wright State University, Dayton US
2 Department of Computer Science, University of Oxford, Oxford UK

Abstract. The OWL 2 profiles are fragments of the ontology language
OWL 2 for which standard reasoning tasks are feasible in polynomial
time. Many OWL ontologies, however, contain a typically small number
of out-of-profile axioms, which may have little or no influence on reason-
ing outcomes. We investigate techniques for rewriting axioms into the
EL and RL profiles of OWL 2. We have tested our techniques on both
classification and data reasoning tasks with encouraging results.

1 Introduction

Description Logics (DLs) are a family of knowledge representation formalisms
underpinning the W3C standard ontology languages OWL and OWL 2. State-
of-the-art DL reasoners such as Pellet [18], JFact, FaCT++ [21], RacerPro [9],
and HermiT [15] are highly-optimised for classification (i.e., the problem of com-
puting all subsumption relationships between atomic concepts in an ontology)
and have been exploited successfully in many applications. In a recent large-
scale evaluation campaign, these reasoners exhibited excellent performance on a
corpus of more than 1, 000 ontologies, as they were able to classify 75%-85% of
the corpus in less than 10 seconds when running on stock hardware [8,3].

However, notwithstanding extensive research into optimisation techniques, DL
reasoning remains a challenge in practice. Indeed, the aforementioned evaluation
also revealed that many ontologies are still hard for reasoners to classify. Further-
more, due to the high worst-case complexity of reasoning, systems are inherently
not robust, and even minor changes to ontologies can have a significant effect on
performance. Finally, the limitations of DL reasoners become even more appar-
ent when reasoning with ontologies and large datasets.

These issues have motivated a growing interest in lightweight DLs: weaker
logics that enjoy more favourable computational properties. OWL 2 specifies
several profiles (language fragments) based on lightweight DLs [14]: OWL 2 EL
(or just EL) is based on the EL family of DLs; OWL 2 RL (or just RL) is based on
Datalog; and OWL 2 QL (or just QL) is based on DL-Lite. Standard reasoning
tasks, including classification and fact entailment (checking whether an ontology
and a dataset entail a given ground atom), are feasible in polynomial time for
all profiles, and many highly scalable reasoners have been developed [22,11,2,4].

� Work supported by the Royal Society, the EPSRC project Score! and the National
Science Foundation under the award TROn: Tractable Reasoning with Ontologies.

S. Demri, D. Kapur, and C. Weidenbach (Eds.): IJCAR 2014, LNAI 8562, pp. 464–479, 2014.
c© Springer International Publishing Switzerland 2014

EL-ifying Ontologies 465

Unfortunately, many ontologies fall outside the OWL 2 profiles, and we are
forced to resort to a fully-fledged reasoner if a completeness guarantee is re-
quired. Even in such cases, the majority of axioms typically still fall within one of
the profiles, and the out-of-profile axioms may have little or no influence on the
results of classification or query answering. Effectively detecting cases where the
additional expressivity is used in a “harmless” way is, however, challenging, since
even a single axiom can have a dramatic effect on reasoning outcomes.

In this paper we investigate techniques for rewriting out-of-profile axioms so
as to improve reasoner performance. All rewritings are polynomial and preserve
classification and fact entailment reasoning outcomes. In Section 3, we consider
rewritings that are applicable to SHOIQ—a DL that covers OWL DL and most
of OWL 2 [10]—and that can transform non-EL axioms into EL by elimination
of inverse roles and universal restrictions. If all non-EL axioms can be rewritten,
then we can provide completeness guarantees using only an EL reasoner. Other-
wise, the rewritings can still improve the performance of fully-fledged reasoners
(e.g., by enabling the use of optimisation techniques that are applicable only in
the absence of certain constructs) and/or the effectiveness of modular reasoners
that combine profile-specific with OWL 2 reasoners, such as MORe [1].

In Section 4, we focus on Horn ontologies and consider rewritings into OWL
2 RL. The RL profile is tightly connected to Datalog, and hence existential
restrictions ∃R.C occurring positively in axioms are disallowed, unless C is a
singleton nominal {o}. We show that when R fulfills certain conditions, such
concepts ∃R.C can be rewritten into existential restrictions over nominals as
accepted in OWL 2 RL; we call such roles R reuse-safe. In the limit case where
all roles are reuse-safe, the ontology can be polynomially rewritten into RL;
if, additionally, the ontology contains no cardinality constraints, it can also be
rewritten into EL. Furthermore, if only some roles are reuse-safe, they can be
treated by (hyper-)tableau reasoners in an optimised way, potentially reducing
the size of the constructed pre-models and improving reasoning times.

We have implemented our rewriting techniques and evaluated their effect on
reasoning times over a large repository of ontologies. Our experiments reveal that
our EL-ification techniques can lead to substantial improvements in classification
times for both standard and modular reasoners. Furthermore, we show that many
ontologies contain only reuse-safe roles and hence can be rewritten into RL; thus,
highly scalable RL triple stores can be exploited for large-scale data reasoning.

This paper is accompanied by an online technical report.1

2 Preliminaries

A signature consists of disjoint countably infinite sets of individuals NI, atomic
concepts NC and atomic roles NR. A role is an element of NR ∪ {R−|R ∈ NR}.
The function Inv(·) is defined over the set of roles as follows, where R ∈ NR:
Inv(R) = R− and Inv(R−) = R. An RBox R is a finite set of RIAs R : R′ and
transitivity axioms Tra(R), with R and R′ roles. We denote with :R the minimal

1 http://www.cs.ox.ac.uk/isg/TR/safeshoiq.pdf

http://www.cs.ox.ac.uk/isg/TR/safeshoiq.pdf

466 D. Carral et al.

relation over roles in R s.t. R :R S and Inv(R) :R Inv(S) hold if R : S ∈ R.
We define :∗R as the reflexive-transitive closure of :R. A role R is transitive in
R if there is a role S such that S :∗R R, R :∗R S and either Tra(S) ∈ R or
Tra(Inv(S)) ∈ R. A role R is simple inR if no transitive role S exists s.t. S :∗R R.
The set of SHOIQ concepts is the smallest set containing A (atomic concept),
� (top), ⊥ (bottom), {o} (nominal), ¬C (negation), C D (conjunction), C �
D (disjunction), ∃R.C (existential restriction), ∀R.C (universal restriction), �
nS.C (at-most restriction), and � nR.C (at-least restriction), for A ∈ NC, C and
D SHOIQ concepts, o ∈ NI, R a role and S a simple role, and n a nonnegative
integer. A literal concept is either atomic or the negation of an atomic concept.
A TBox T is a finite set of GCIs C : D with C,D concepts. An ABox A is a
finite set of assertions C(a) (concept assertion), R(a, b) (role assertion), a ≈ b
(equality assertion), and a
≈ b (inequality assertion), with C a concept, R a role
and a, b individuals. A fact is either a concept assertion A(a) with A atomic,
a role assertion, an equality assertion, or an inequality assertion. A knowledge
base is a triple K = (R, T ,A). The semantics is standard [10].

We assume familiarity with standard conventions for naming DLs, and we
just provide here a definition of the OWL 2 profiles. A SHOIQ KB is:

– EL if (i) it does not contain inverse roles, negation, disjunction, at-most
restrictions and at-least restrictions; and (ii) every universal restriction ap-
pears in a GCI of the form � : ∀R.C.

– RL if each GCI C : D satisfies (i) C does not contain negation as well as
universal, at-least, and at-most restrictions; (ii) D does not contain nega-
tion (other than ⊥), union, existential restrictions (other than of the form
∃R.{o}), at-least restrictions, and at-most restrictions with n > 1.

– QL if it does not contain transitivity and for each GCI C : D (i) C is either
atomic or ∃R.�; (ii) D is of the form

�n
i=1 Bi with each Bi either a literal

concept, or ⊥, or of the form ∃R.A with R a role and A either atomic or �.

Classification of K is the task of computing all subsumptions K |= A : B with
A ∈ NC ∪ {�}, and B ∈ NC ∪ {⊥}. Fact entailment is to check whether K |= α,
for α a fact. Both problems are reducible to knowledge base unsatisfiability.

3 EL-ification of SHOIQ Ontologies

In this section, we propose techniques for transforming non-EL axioms into EL.
Whenever possible, inverse roles are replaced with fresh symbols and the knowl-
edge base is extended with axioms simulating their possible effects. At the same
time, we attempt to transform positive occurrences of universal restrictions into
negative occurrences of existential restrictions while inverting the relevant role.
Note that our techniques do not rewrite disjunctions and cardinality restrictions;
thus, ontologies containing such constructs will not be fully rewritten into EL.

3.1 Preprocessing

Before attempting to rewrite a SHOIQ knowledge base K into EL, we first
bring K into a suitable normal form. Normalisation facilitates further rewriting

EL-ifying Ontologies 467

Θ(T) =
⋃
α∈T

Θ(α)

Θ(C & D % ∀R.B) = Θ(C & D % αB) ∪ {αB & ∀R.B}
Θ(C & D % ∀R.¬B) = Θ(C $ αB & D) ∪ {∃R.B & αB}
Θ(C & D% �� nR.B) = Θ(C & D % αB) ∪ {αB &�� nR.B}

Θ(C & D% � nR.¬B) = Θ(C & D% � nR.αB) ∪ {αB $B & �}
Θ(C & D% � nR.¬B) = Θ(C & D% � nR.αB) ∪ {� & αB %B}

Θ(C & D % ¬B) = Θ(C $B & D)

Θ(α) = α for any other axiom α.

Fig. 1. C is a conjunction of atomic concepts or �, D is a disjunction of concepts C,
∀R.C, �� nR.C (��∈ {�,�}) or ⊥, with C literal, B atomic, and αB is fresh

steps, and it allows us to identify axioms with a direct correspondence in EL.
For example, A � B : ¬∀R.¬C is equivalent to the EL axioms A : ∃R.C and
B : ∃R.C. Furthermore, although A : ∃R.¬B is not equivalent to an EL axiom,
it can be trivially transformed into the EL axioms A : ∃R.X and X B : ⊥ by
introducing a fresh symbol X . We therefore introduce a normal form that makes
explicit those axioms that are neither logically equivalent to EL axioms, nor can
be transformed into EL by means of the trivial introduction of fresh symbols.

Definition 1. A GCI is normalised if it is of either of the following forms, where
each A(i) is atomic or �, B is atomic, each C(j) is atomic, ⊥, or a nominal, R
is a role, n � 2, and m � 1:

(N1)

n�
i=1

Ai :
m⊔
j=1

Cj ; (N2) A : ∃R.Ai; (N3) ∃R.A : Ai

(N4) A : �nR.Ai; (N5) A : ∀R.B; (N6) A : �mR.Ai

A knowledge base K = (R, T ,A) is normalised if A has only facts and each GCI
in T is normalised. Finally, K is Horn if m = 1 in each axiom N1 or N6.

Note that axioms of type N2 and N3, as well as Horn axioms of type N1,
are EL. To normalise a knowledge base K, we proceed in two steps. First, we
translate K into the following disjunctive normal form [15].

Definition 2. A GCI is in disjunctive normal form (DNF) if it is of the form
� :

⊔n
i=1 Ci, where each Ci is of the form B, {o}, ∃R.B, ∀R.B, �nR.B,

or �nR.B, for B a literal concept, R a role, and n a nonnegative integer. A
knowledge base K = (R, T ,A) is in DNF if all roles in A are atomic, all concept
assertions in A contain only a literal concept, and each GCI in T is in DNF.

DNF normalisation can be seen as a variant of the structural transformation,
in which all complex concepts are “flattened” and negations are made explicit

468 D. Carral et al.

(see [15] for details). Once K is in DNF, we can further normalise by replac-
ing concepts ¬B in restrictions ∀R.¬B, ∃R.¬B, �nR.¬B and �nR.¬B with
fresh symbols, bringing the remaining negated concepts to the left in GCIs, and
introducing fresh symbols for all restrictions occurring in disjunctions.

Definition 3. Let K be a KB. Then, Υ (K) is computed from K as follows: (i)
apply the transformation in [15] to obtain K′ = (R′, T ′,A′) in DNF; (ii) replace
each assertion α = ¬A(a) in A′ with a fact Xα(a), with Xα fresh, and extend
T ′ with Xα A : ⊥; and (iii) apply to T ′ the transformation Θ in Figure 1.

The following proposition establishes the properties of normalisation.

Proposition 1. Let K be a KB, then Υ (K) is normalised and can be computed
in polynomial time in the size of K. Furthermore, if K is EL, then so is Υ (K).
Finally, K is satisfiable iff Υ (K) is satisfiable.

3.2 Rewritable Inverse Roles

Satisfiability of SHOIQ KBs is NExpTime-complete, whereas for SHOQ it is
ExpTime-complete; thus, in general, inverse roles cannot be faithfully eliminated
from SHOIQ KBs by means of a polynomial transformation. The following
example illustrates that an obstacle to rewritability is the interaction between
inverses and at-most restrictions.

Example 1. Consider K = (R, T ,A), with R = ∅, A = {A(a)}, and T as follows:

T = {A : ∃R−.B; B : ∃R.C; B : � 1R.�}

Note thatK |= C(a). In every model (ΔI , ·I), object aI must be R−-connected to
some x ∈ BI (due to the first axiom in T); also, x must be R-connected to some
y ∈ CI (due to the second axiom). Then, for the last axiom to be satisfied, aI and
y must be identical; thus, aI ∈ CI . Figure 2 a) depicts such a model. Consider
now K′ obtained from K by replacing R− with a fresh atomic role NR− . Then,
K′
|= C(a), and Figure 2 b) depicts a model of K′ not satisfying C(a). Extending
K′ with EL axioms to simulate the interaction between inverses and cardinality
restrictions (and thus recover the missing entailment) seems infeasible. ♦

We next propose sufficient conditions for inverse roles to be rewritable in the
presence of cardinality constraints. Our conditions ensure existence of a one-to-
one correspondence between the canonical forest-shaped models of the original
and rewritten KBs, and hence disallow cases such as Example 2.2

Definition 4. Let K = (R, T ,A) be a normalised SHOIQ knowledge base. A
(possibly inverse) role R is generating in K if there exists a role R′ occurring in
T in an axiom of type N2 or N4 such that R′ :∗R R.

2 Roughly speaking, a forest-shaped model of a (normalised) knowledge base is canon-
ical if every fact that holds in the model is “justified” by an axiom or assertion in
the knowledge base. In particular, the result of unravelling a pre-model constructed
by a (hyper-)tableau algorithm is a canonical forest-shaped model.

EL-ifying Ontologies 469

a

A,C

x

B

R−

R

a

A C

x y

B

RNR−

a) b)

Fig. 2. A situation where rewriting away inverse roles leads to missing entailments

An inverse role S− is rewritable if for each X ∈ {S, S−} occurring in an
axiom of type N6 we have that Inv(X) is not generating in K.

Intuitively, roles R′ in axioms N2 or N4 are those “inducing” the edges between
individuals and their successors in a canonical model; then, a role R is generating
if it is a super-role of one such R′. Our condition ensures that “backwards” edges
in a canonical model ofK (i.e., those induced by an inverse role) cannot invalidate
an at-most cardinality restriction. In the limit case where all inverse roles in a
SHOIQ KB are rewritable, we can faithfully eliminate inverses and rewrite the
KB into SHOQ by means of a polynomial transformation.

Theorem 1. Let C be the class of all normalised SHOIQ ontologies containing
only rewritable inverse roles. Then, there exists a polynomial transformation
mapping each K ∈ C to an equisatisfiable SHOQ knowledge base.3

Theorem 1 identifies a class of SHOIQ ontologies for which standard reasoning
is feasible in ExpTime (in contrast to NExpTime). This result can also be ex-
ploited for optimisation: tableaux reasoners employ pairwise blocking techniques
over SHOIQ ontologies, while they rely on more aggressive single blocking tech-
niques for SHOQ inputs, which can reduce the size of pre-models.

3.3 The EL-ification Transformation

Before presenting our transformation formally, we provide two motivating ex-
amples. First, we show how a rewritable inverse role can be eliminated in the
presence of cardinality constraints.

Example 2. Let K = (R, T ,A) be the following knowledge base:

R = {R : T−; S : T−}
T = {A : ∃R.B; A : ∃S.C; A : � 1T−.�; B C : D; ∃R.D : B}
A = {A(a); T (b, a)}

Figure 3(a) depicts a canonical model for K. The facts entailed by K are
precisely those that hold in the canonical model. By Definition 4, T− is rewritable

3 Theorem 1 is given here for presentation purposes: it follows as a corollary of Theo-
rem 3, which we state only after presenting our transformations.

470 D. Carral et al.

a
A

B
b

B

C

D

T

R,S

a
A

B
b

B

C

D

T

NT−

R,S

a) b)

Fig. 3. Rewriting away inverse roles in a KB with cardinality constraints

since T is not generating; however, it does not suffice to replace T− with a fresh
NT− since the resulting KB will no longer entail the facts R(a, b), S(a, b), B(b),
C(b), and D(b). Instead, we can extend A with T−(a, b), and only then replace
T− with NT− . The canonical model of the resulting KB is given in Figure 3(b).♦

Next, we show how axioms of type N5, which involve a universal restriction, can
be replaced with EL axioms of type N3 if the relevant roles are not generating.

Example 3. Consider K = (R, T ,A) where R = {R : S−}, A = {A(a);S(a, b)},
and T is defined as follows:

T = {A : ∀S.B; B : ∃R.C; ∃S.B : D; C D : ⊥}

Clearly, K is unsatisfiable. Furthermore, it does not contain axioms N6, and
hence S− is rewritable. In a first step, we extend K with logically redundant ax-
ioms, which make explicit information that may be lost when replacing inverses
with fresh symbols. Thus, we extend T with ∃S−.A : B, and B : ∀S−.D; fur-
thermore, we extend R with R− : S; and finally, A with the assertion S−(b, a).

An important observation is that S is not generating. As a result, we can
dispense with axiom A : ∀S.B. Then we replace S− with a fresh symbol NS−

and R− with NR− . The resulting K′ = (R′, T ′,A′) is as follows:

R′ = {R : NS− ; NR− : S}
T ′ = {∃NS− .A : B; B : ∃R.C; ∃S.B : D; B : ∀NS− .D; C D : ⊥}
A′ = {A(a); S(a, b); NS−(b, a)}

K′ is unsatisfiable; furthermore it is in EL except for axiom B : ∀NS− .D. This
axiom cannot be dispensed with since S− is generating, and hence it is needed
to propagate information along NS−-edges in a canonical model. ♦

We next present our transformation. For simplicity, we first restrict ourselves
to ALCHOIQ KBs; later on, we discuss issues associated with transitivity ax-
ioms and show how our techniques extend to SHOIQ.

Definition 5. Let K = (R, T ,A) be a normalised ALCHOIQ knowledge base.
The knowledge base Ξ(K) = (R′, T ′,A′) is obtained as follows:

EL-ifying Ontologies 471

1. Extension: the knowledge base Ke = (Re, Te,Ae) is defined as follows:

– Re extends R with an axiom Inv(R) : Inv(S) for each R : S in R;
– Te extends T with the following axioms:

• an axiom ∃Inv(R).A : B for each axiom A : ∀R.B in T where
either Inv(R) is generating, or R is not generating; and

• an axiom A : ∀Inv(R).B for each axiom ∃R.A : B in T where
Inv(R) is generating;

– Ae extends A with an assertion R−(b, a) for each R(a, b) ∈ A.

2. EL-ification: Ξ(K) = (R′, T ′,A′) is obtained from Ke by first removing all
axioms A : ∀R.B in Te where R is not generating in T and then replacing
each occurrence of an inverse role that is rewritable in Ke with a fresh role.

The extension step only adds redundant information, and hence K and Ke are
equivalent. Making such information explicit is crucial for the subsequent EL-
ification step, where ineffectual axioms involving universal restrictions are re-
moved, and rewritable inverse roles are replaced with fresh atomic roles. The
following theorem extablishes the properties of the transformation.

Theorem 2. Let K′ = Ξ(K). The following conditions hold:

1. K′ is satisfiable iff K is satisfiable;
2. K′ is of size polynomial in the size of K;
3. If K satisfies all of the following properties, then K′ is EL:

– K is Horn and does not contain axioms of type N4 or N6;
– each axiom N5 satisfies either A = �, or R is not generating.
– each axiom N3 satisfies either A = �, or Inv(R) is not generating.

Note that the third condition in the theorem establishes sufficient conditions on
K for the transformed knowledge base K′ to be in EL. A simple case is when K
is in the QL profile of OWL 2, in which case the transformed KB is guaranteed
to be in EL. An interesting consequence of this result is that highly optimised
EL reasoners, such as ELK, can be exploited for classifying QL ontologies.

Corollary 1. If K is a normalised QL knowledge base, then Ξ(K) is in EL.

In many cases our transformation may only succeed in partially rewriting a
knowledge base into EL (c.f. Example 3). Even in these cases, our techniques
can have substantial practical benefits (see Evaluation section). As discussed in
Section 3.2, in the absence of inverse roles (hyper-)tableau reasoners may exploit
more aggressive blocking techniques. Furthermore, modular reasoning systems
such as MORe, which are designed to behave better for ontologies with a large
EL subset, are substantially enhanced by our transformations.

3.4 Dealing with Transitivity Axioms

As shown by the following example, the transformation in Definition 5 is not
applicable to knowledge bases containing transitivity axioms in the RBox.

472 D. Carral et al.

Example 4. Consider K = (R, T ,A) with R = {R : R−;Tra(R)}, A = {A(a)},
and T = {A : ∃R.B;A : C; ∃R−.C : D}. Let K′ = Ξ(K), where we assume
that the transitivity axiom Tra(R) stays unmodified in K′. More precisely, A′ =
A, and R′ = {R : NR− ;NR− : R;Tra(R)}, and T ′ = {A : ∃R.B;A :
C; ∃NR− .C : D;C : ∀R.D}. It can be checked that K |= D(a), but K′
|= D(a);
thus, a relevant entailment is lost. An attempt to recover this entailment by
making NR− transitive does not solve the problem. ♦

To address this issue, we eliminate transitivity before applying our transforma-
tion in Definition 5. Standard techniques for eliminating transitivity axioms in
DLs (e.g., [15]) have the effect of introducing non-Horn axioms. As a result, a
Horn knowledge base may not remain Horn after eliminating transitivity. There-
fore, we propose a modification of the standard technique that preserves Horn
axioms and which is compatible with our transformation in Definition 5.

Definition 6. Let K = (R, T ,A) be a normalised SHOIQ knowledge base. For
each axiom of the form A : ∀R.B in T and each transitive sub-role S of R in
R, let XS

R,B be an atomic concept uniquely associated to R,B, S. Furthermore,
for each axiom ∃R.A : B in T and each transitive sub-role S of R in R, let
Y S
R,B be a fresh atomic concept uniquely associated to R,B, S.
The knowledge base Ω(K) = (R′, T ′,A′) is defined as follows: (i) R′ is ob-

tained from R by removing all transitivity axioms; (ii) T ′ is obtained from T
by adding axioms A : ∀S.XS

R,B, XS
R,B : ∀S.XS

R,B, and XS
R,B : ∀S.B for each

concept XS
R,B, and axioms ∃S.A : Y S

R,B, ∃S.Y S
R,B : Y S

R,B , and ∃S.Y S
R,B : B

for each concept Y S
R,B; finally, (iii) A′ = A.

Lemma 1 establishes the properties of transitivity elimination, and Theorem
3 shows that our techniques extend to a SHOIQ knowledge base K by first
applying Ω to K and then Ξ to the resulting KB.

Lemma 1. Let K be a normalised SHOIQ KB. The following holds:

1. Ω(K) is satisfiable iff K is .
2. Ω(K) is a normalised ALCHOIQ; furthermore, Ω(K) is Horn iff K is Horn.
3. Ω(K) can be computed in time polynomial in the size of K.
4. if K is EL, then so is Ω(K).
5. If an inverse role R− is rewritable in K, then it is also rewritable in Ω(K).

Theorem 3. Let K = (R, T ,A) be a normalised SHOIQ knowledge base, and
let K′ = Ξ(Ω(K)). Then, K′ satisfies all properties 1− 3 in Theorem 2.

4 Reuse-Safe Roles

We next focus on Horn ontologies, and show how to further optimise reasoning by
identifying roles that are “reuse-safe”, and which can thus be treated by (hyper-)
tableau reasoners in a more optimised way. Each application of an axiom N2
or N4 triggers the generation of fresh individuals in a (hyper-)tableau. If these

EL-ifying Ontologies 473

s11F1 s12 F2 . . . s17F1 s18 F2

s7F s10 Fs8F s9 F

s3D1, E s6 D2, Es4D2, E s5 D1, E

s1 s2B1, C B2, C

a A

R R

R R R R

S S S S

R R R R

s8F1 s9 F2

s7F

s3D1, E s6 D2, Es4D2, E s5 D1, E

s1 s2B1, C B2, C

a A

R R

R R R R

S S S S

R R

a) b)

Fig. 4. Decreasing model size by reusing individuals

axioms involve a reuse-safe role, however, we show that reasoners can associate
with each such axiom a single fresh nominal, which can be deterministically
“reused” whenever the axiom is applied during construction of a pre-model. This
may reduce the size of pre-models, and improve reasoning times. Our technique
extends the results in [16], which show that for EL ontologies all roles admit
reuse, and pre-model size can be bounded polynomially.

Example 5. Consider the following knowledge base K = (R, T ,A) where R = ∅,
A = {A(a)}, and T consists of the following axioms:

A & ∃R.B1 C & ∃R.D1 A & ∀R.C E & ∃S.F F & ∃R.F2 B1 $B2 & ⊥
A & ∃R.B2 C & ∃R.D2 C & ∀R.E F & ∃R.F1 F1 $ F2 & ⊥ D1 $D2 & ⊥

Since R is generating and K has no inverses, we have Ξ(K) = K. Figure 4
a) depicts a canonical model of K. Role S is reuse-safe since it is not “affected”
by non-EL axioms involving universal restrictions. We can exploit this fact to
“fold” the model by identifying all nodes with an S-predecessor to a single fresh
nominal, as in Figure 4 b). In this way, we can reduce model size. ♦

Definition 7. Let K = (R, T ,A) be a normalised Horn KB. A role R in K is
reuse-safe if either R is not generating or the following conditions hold:

– Each axiom A : � 1S.B in K satisfies R
:∗R S and R
:∗R Inv(S);
– Each axiom A : ∀S.B in K with A
= � satisfies R
:∗R S; and
– Each axiom ∃S.A : B in K with A
= � satisfies R
:∗R Inv(S).

If a generating role R is reuse-safe, we can ensure that R-edges in a canonical
model of K are irrelevant to the satisfaction of non-EL axioms in K. To ensure
that (hyper-)tableau algorithms will exploit reuse-safety, and construct succinct
“folded” canonical models such as the one in Example 5, we provide the following
transformation, which makes the relevant nominals explicit.

474 D. Carral et al.

Definition 8. Let K = (R, T ,A) be a normalised Horn knowledge base.
For each each positive occurrence of a concept ∃R.B (resp. � nR.B) in K

with R reuse-safe, let cR,B (resp. ci,R,B for 1 � i � n) be fresh individual(s).
Then, Ψ(K) is KB obtained from K by:

– replacing each axiom in T of the form A : ∃R.B, where R is safe, by
A : ∃R.{cR,B} and adding the fact B(cR,B) to A, and by

– replacing each axiom of the form A : �nR.B, where R is safe, by all α ∈
{A : ∃R.{ci,R,B}, {cj,R,B} {ck,R,B} : ⊥ | 1 � i � n and 1 � j < k � n}
and adding the facts B(ci,R,B), for 1 � i � n, to A.

The following theorem establishes the correctness of our transformation.

Theorem 4. K is satisfiable iff Ψ(K) is satisfiable.

In practice, system developers can achieve the same goal as our transformation
by making their implementations sensitive to reuse-safe roles: to satisfy an axiom
involving existential or an at-least restrictions over such role, a system should
reuse a suitable distinguished individual instead of generating a fresh one.

We next analyse the case where all roles in a Horn KBK = (R, T ,A) are reuse-
safe. In this case, we can show that Ψ(K) is in RL. Furthermore, we can identify
a new efficiently-recognisable class of DL knowledge bases that contains both
EL and RL, and for which both classification and fact entailment are feasible in
polynomial time.

Theorem 5. Let C be the class of Horn knowledge bases K such that all roles
in K are reuse-safe. Then, the following conditions hold:

1. Checking whether a SHOIQ KB K is in C is feasible in polynomial time;

2. Every EL and RL knowledge base is contained in C;
3. Ψ(K) is an RL knowledge base for each K ∈ C; and
4. Classification and fact entailment in C are feasible in polynomial time.

Finally, it is worth emphasising that, although the transformations Ψ in Defini-
tion 8 and Ξ in Section 3 are very different and serve rather orthogonal purposes,
they are connected in the limit case where all roles are reuse-safe and the ontol-
ogy does not contain cardinality restrictions.

Proposition 2. Let K be a normalised Horn KB that does not contain axioms
N4 or N6. Then, Ξ(Ω(K)) is EL iff all roles in K are reuse-safe.

5 Evaluation

We have implemented the transformations described in Sections 3 and 4, and
we have performed a range of classification and data reasoning experiments over
both realistic ontologies and standard benchmarks.

EL-ifying Ontologies 475

Table 1. Classification times for representative ontologies (in seconds)

Ontology ID 00018 00352 00448 00461 00463 00470 00660 Fly

Original (HermiT) 76.787 18.679 68.545 2.260 t-out 286.89 102.80 840.014
Normalised (HermiT) 30.730 7.235 41.529 11.768 t-out 318.60 123.71 807.167
EL-ified (HermiT) 9.006 7.953 21.395 1.801 651.884 54.40 17.62 17.361

Original (MORe) 42.292 15.095 5.949 2.515 t-out 258.53 99.93 844.639
Normalised (MORe) 10.521 3.195 5.061 11.442 t-out 293.55 85.42 819.640
EL-ified (MORe) 3.0792 2.650 5.019 1.310 694.046 3.48 17.58 17.409

5.1 Classification Experiments

For our input data, we used the OWL 2 ontologies in the Oxford Ontology
Repository,4 which contains 793 realistic ontologies, as well as a “hard” version
of the FlyAnatomy ontology, which is not yet in the repository. Several of the
test ontologies contain a small number of axioms exploiting constructs (such
as complex RIAs) not available in SHOIQ; in these cases we tested filtered
versions of the ontologies where such axioms have been removed.

We tested classification times for the latest versions of HermiT (v.1.3.8) and
MORe (v.0.1.5) using their standard settings. All experiments were performed
on a laptop with 16 GB RAM and Intel Core 2.9 GHz processor running Java
v.1.7.0 21, with a timeout set to 3,000s.

EL-ification Experiments. Out of the 793 ontologies in the corpus, we se-
lected those 70 that contain inverse roles, and which HermiT takes at least 1s to
classify. For each test ontology K we have computed a normalised version Υ (K)
and an EL-ified version K′ (see Section 3), and have compared classification
times for HermiT and MORe on each version.

We found that 50 out of the 70 test ontologies contained only rewritable in-
verse roles, which could be successfully eliminated using our transformations, and
4 of these ontologies could be fully rewritten into EL. Of these 50 ontologies, 6
could not be classified by HermiT even after EL-ification; however, HermiT suc-
ceeded on 2 EL-ified ontologies that could not be classified in their original form.
For the remaining 42 ontologies, normalisation alone leads to a slight deteriora-
tion in average performance due to the introduction of new class names (which
HermiT must classify); however, EL-ification improves HermiT’s performance
by an average factor of approximately 3. We believe that this improvement is
due to HermiT being able to use single blocking instead of pairwise blocking.

Like HermiT, MORe failed on 8 of the original ontologies, but succeeded on
two of these after EL-ification. With the remaining 42, as for HermiT, normal-
isation alone leads to a slight deterioration in performance, but EL-ification
improves performance by an average factor of approximately 6. The larger im-
provement can be explained by the fact that many axioms are rewritten into
EL, and hence MORe can delegate a greater part of the computational work to
ELK. Table 1 presents results for some representative cases.

4 http://www.cs.ox.ac.uk/isg/ontologies/

http://www.cs.ox.ac.uk/isg/ontologies/

476 D. Carral et al.

Finally, as already mentioned, our test corpus contains 20 ontologies with
non-rewritable inverse roles. As expected, in these cases we obtained no consis-
tent improvement since the presence of inverses forces HermiT to use pairwise
blocking; furthermore, in some cases the transformation negatively impacts per-
formance, as it adds a substantial number of axioms to simulate the effect of
inverse roles. Hence, it seems that our techniques are clearly beneficial only
when all inverse roles are rewritable.

Reuse Safety. From the 793 ontologies in the corpus, we identified 174 Horn
ontologies that do not fall within any of the OWL 2 profiles. We have applied
our transformation in Definition 8 to these ontologies and found that 53 do not
contain unsafe roles and hence are rewritten into RL. Furthermore, we found
that in the remaining ontologies 89% of the roles were reuse-safe, on average.
We have tested classification times with HermiT over the transformed ontologies,
but found that the transformation had a negative impact on performance. This
is explained by the fact that our transformation introduces nominals. In the
presence of nominals, HermiT disables anywhere blocking—a powerful technique
that makes nodes blockable by any other node in the tableau (and not just by its
ancestors). As mentioned in Section 4, it would be more effective to implement
safe reuse as a modification of HermiT’s calculus; this, however, implies non-
trivial modifications to the core of the reasoner, which is left for future work.

5.2 Data Reasoning Experiments

We have used the standard LUBM benchmark, which comes with an ontology
about academic departments and a dataset generator parameterised by the num-
ber of universities for which data is generated (LUBM(n) denotes the dataset
for n universities). The LUBM ontology is not in RL, as it contains axioms of
type N2; however, all roles in LUBM are reuse-safe and hence we rewrote it
into RL using the transformation in Definition 8. For each dataset, we recorded
the times needed to compute the instances of all atomic concepts in the ontol-
ogy. We compared HermiT over the original ontology and the RL reasoner RD-
Fox5 over the transformed ontology. HermiT took 3.7s for LUBM(1), and timed
out for LUBM(5). In contrast RDFox only required 0.2s for LUBM(1), 1.5s for
LUBM(10), and 7.4s for LUBM(20). These results suggest the clear benefits of
transforming an ontology to RL and exploiting highly scalable reasoners such as
RDFox.

6 Related Work

The observation that many ontologies consist of a large EL “backbone” and a
relatively small number of non-EL axioms is exploited by the modular reasoner
MORe [1] to delegate the bulk of the classification work to EL reasoner ELK
[11]. Modular reasoning techniques, however, are sensitive to syntax and all

5 http://www.cs.ox.ac.uk/isg/tools/RDFox/

http://www.cs.ox.ac.uk/isg/tools/RDFox/

EL-ifying Ontologies 477

non-EL axioms (as well as those “depending” on them) must be processed by a
fully-fledged OWL reasoner. Ren et al. propose a technique for approximating
an OWL ontology into EL [17]; this approximation, however, is incomplete for
classification and hence valid subsumptions might be lost.

Several techniques for inverse role elimination in DL ontologies have been de-
veloped. Ding et al. [7] propose a polynomial reduction from ALCI into ALC,
which is then extended in [6] to SHOI. Similarly, Song et al. [19] propose a
polynomial reduction from ALCHI to ALCH KBs to optimise classification. In
all of these approaches inverse roles are replaced with fresh symbols and new
axioms are introduced to compensate for the loss of implicit inferences. These
approaches, however, are not applicable to KBs with cardinality restrictions; fur-
thermore, inverse role elimination heavily relies on the introduction of universal
restrictions, and hence they are not well-suited for EL-ification. Calvanese et
al. [5] propose a transformation from ALCFI knowledge bases to ALC which is
sound and complete for classification; this technique exhaustively introduces uni-
versal restrictions to simulate at-most cardinality restrictions and inverse roles,
and hence it is also not well-suited for EL-ification; furthermore, this technique
is not applicable to knowledge bases with transitive roles or nominals. Finally,
Lutz et al. study rewritability of first-order formulas into EL as a decision prob-
lem [13]; the rewritings studied in [13], however, require preservation of logical
equivalence, whereas ours preserve satisfiability.

The techniques described in Section 4 extend the so-called combined approach
to query answering in EL [12,20]. They are also related to are strongly related
to individual reuse optimisations [16], where to satisfy existential restrictions a
(hyper-)tableau reasoner tries to reuse an individual from the model constructed
thus far. Individual reuse, however, may introduce non-determinism in exchange
for a smaller model: if the reuse fails (i.e., a contradiction is derived), the reasoner
must backtrack and introduce a fresh individual. In contrast, in the case of reuse-
safe roles reuse can be done deterministically and hence model size is reduced
without the need of backtracking.

Finally, Zhou et. al use a very similar transformation as ours to strengthen
ontologies and overestimate query answers [23]. It follows from Theorem 5 that
the technique in [23] leads to exact answers to atomic queries for Horn ontologies
where all roles are reuse-safe.

7 Conclusions and Future Work

In this paper, we have proposed novel techniques for rewriting ontologies into
the OWL 2 profiles. Our techniques are easily implementable as preprocessing
steps in DL reasoners, and can lead to substantial improvements in reasoning
times. Furthermore, we have established sufficient conditions for ontologies to
be polynomially rewritable into the EL and RL profiles. Thus, for the class of
ontologies satisfying our conditions reasoning becomes feasible in polynomial
time. There are many avenues to explore for future work. For example, we will
investigate extensions of our EL-ification techniques that are capable of rewriting

478 D. Carral et al.

away disjunctive axioms. Furthermore, we are planning to implement safe reuse
in HermiT and evaluate the impact of this optimisation on classification.

References

1. Armas Romero, A., Cuenca Grau, B., Horrocks, I.: MORe: modular combination
of OWL reasoners for ontology classification. In: Cudré-Mauroux, P., et al. (eds.)
ISWC 2012, Part I. LNCS, vol. 7649, pp. 1–16. Springer, Heidelberg (2012)

2. Baader, F., Lutz, C., Suntisrivaraporn, B.: CEL — A polynomial-time reasoner
for life science ontologies. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS
(LNAI), vol. 4130, pp. 287–291. Springer, Heidelberg (2006)

3. Bail, S., Glimm, B., Gonçalves, R.S., Jiménez-Ruiz, E., Kazakov, Y., Matentzoglu,
N., Parsia, B. (eds.): ORE. CEUR, vol. 1015 (2013)

4. Bishop, B., Kiryakov, A., Ognyanoff, D., Peikov, I., Tashev, Z., Velkov, R.: OWLim:
A family of scalable semantic repositories. Semantic Web J. 2(1), 33–42 (2011)

5. Calvanese, D., De Giacomo, G., Rosati, R.: A note on encoding inverse roles and
functional restrictions in ALC knowledge bases. In: Proceedings of the 1998 De-
scription Logic Workshop (DL 1998), pp. 69–71. CEUR (1998)

6. Ding, Y.: Tableau-based Reasoning for Description Logics with Inverse Roles and
Number Restrictions. Ph.D. thesis, Concordia University, Canada (2008)

7. Ding, Y., Haarslev, V., Wu, J.: A new mapping from ALCI to ALC. In: Calvanese,
D., Franconi, E., Haarslev, V., Lembo, D., Motik, B., Turhan, A., Tessaris, S. (eds.)
DL 2007. CEUR Workshop Proceedings, vol. 250 (2007)

8. Gonçalves, R.S., Matentzoglu, N., Parsia, B., Sattler, U.: The empirical robustness
of Description Logic classification. In: DL, pp. 197–208 (2013)

9. Haarslev, V., Hidde, K., Möller, R., Wessel, M.: The racerpro knowledge represen-
tation and reasoning system. Semantic Web J. 3(3), 267–277 (2012)

10. Horrocks, I., Sattler, U.: A tableau decision procedure for SHOIQ. J. of Auto-
mated Reasoning 39(3), 249–276 (2007)

11. Kazakov, Y., Krötzsch, M., Simanč́ık, F.: Concurrent classification of EL ontologies.
In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N.,
Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 305–320. Springer,
Heidelberg (2011)

12. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The Com-
bined Approach to Ontology-Based Data Access. In: IJCAI, pp. 2656–2661 (2011)

13. Lutz, C., Piro, R., Wolter, F.: Description logic tboxes: Model-theoretic character-
izations and rewritability. In: IJCAI, pp. 983–988 (2011)

14. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C. (eds.):
OWL 2 Web Ontology Language: Profiles. W3C Recommendation (October 27,
2009), http://www.w3.org/TR/owl2-profiles/

15. Motik, B., Shearer, R., Horrocks, I.: Hypertableau reasoning for description logics.
J. Artificial Intelligence Research (JAIR) 36(1), 165–228 (2009)

16. Motik, B., Horrocks, I.: Individual reuse in description logic reasoning. In: Ar-
mando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI),
vol. 5195, pp. 242–258. Springer, Heidelberg (2008)

17. Ren, Y., Pan, J.Z., Zhao, Y.: Soundness preserving approximation for TBox rea-
soning. In: AAAI (2010)

18. Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical
OWL-DL reasoner. J. Web Semantics (JWS) 5(2), 51–53 (2007)

http://www.w3.org/TR/owl2-profiles/

EL-ifying Ontologies 479

19. Song, W., Spencer, B., Du, W.: A transformation approach for classifying
ALCHI(D) ontologies with a consequence-basedALCH reasoner. In: ORE. CEUR,
vol. 1015, pp. 39–45 (2013)

20. Stefanoni, G., Motik, B., Horrocks, I.: Introducing Nominals to the Combined
Query Answering Approaches for EL. In: AAAI (2013)

21. Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: System description.
In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp.
292–297. Springer, Heidelberg (2006)

22. Wu, Z., Eadon, G., Das, S., Chong, E.I., Kolovski, V., Annamalai, M., Srinivasan,
J.: Implementing an inference engine for RDFS/OWL constructs and user-defined
rules in Oracle. In: ICDE, pp. 1239–1248 (2008)

23. Zhou, Y., Cuenca Grau, B., Horrocks, I., Wu, Z., Banerjee, J.: Making the most
of your triple store: query answering in OWL 2 using an RL reasoner. In: WWW
(2013)

The Bayesian Description Logic BEL

İsmail İlkan Ceylan1,� and Rafael Peñaloza1,2,��

1 Theoretical Computer Science, TU Dresden, Germany
2 Center for Advancing Electronics Dresden
{ceylan,penaloza}@tcs.inf.tu-dresden.de

Abstract. We introduce the probabilistic Description Logic BEL. In
BEL, axioms are required to hold only in an associated context. The
probabilistic component of the logic is given by a Bayesian network that
describes the joint probability distribution of the contexts. We study
the main reasoning problems in this logic; in particular, we (i) prove
that deciding positive and almost-sure entailments is not harder for BEL
than for the BN, and (ii) show how to compute the probability, and the
most likely context for a consequence.

1 Introduction

Description Logics (DLs) [2] are a family of knowledge representation formalisms
originally designed for representing the terminological knowledge of a domain in
a precise and well-understood manner. They have been successfully employed
for creating large knowledge bases, representing real application domains. For
instance, they are the logical formalism underlying prominent bio-medical on-
tologies such as Snomed CT, Galen, or the Gene Ontology.

Description logic ontologies are usually composed of axioms that restrict the
class of possible interpretations. As these are hard restrictions, DL ontologies
can only encode absolute, immutable knowledge. For some application domains,
however, knowledge depends on the situation (or context) in which it is consid-
ered. For example, the notion of a luxury hotel in a small rural center will be
different from the one in a large cosmopolitan city. When building an ontology
for hotels, it makes sense to contextualize the axioms according to location, and
possibly other factors like season, type of weather, etc. Since these contexts refer
to notions that are external to the domain of interest, it is not always desirable,
or even possible, to encode them directly into the classical DL axioms.

We follow a different approach for handling contextual knowledge. We label
every axiom with the context in which it is valid. For example, we could have
statements like 〈LuxuryHotel : ∃hasFeature.MeetingRoom : city〉 stating that in
the context of a city, every luxury hotel has a meeting room. This axiom im-
poses no restriction in case the context is not a city: it might still hold, or not,
depending on other factors.

� Supported by DFG within the Research Training Group “RoSI” (GRK 1907).
�� Partially supported by DFG within the Cluster of Excellence ‘cfAED’.

S. Demri, D. Kapur, and C. Weidenbach (Eds.): IJCAR 2014, LNAI 8562, pp. 480–494, 2014.
c© Springer International Publishing Switzerland 2014

The Bayesian Description Logic BEL 481

Labeling the axioms in an ontology allows us to give a more detailed descrip-
tion of the knowledge domain. Reasoning in these cases can be used to infer
knowledge that is guaranteed to hold in any given context. While the knowledge
within this context is precise, there might be a level of uncertainty regarding
the current context. To model this uncertainty, we attach a probability to each
of the possible contexts. Since we cannot assume that the contexts are (proba-
bilistically) independent, we need to describe the joint probability distribution
over the space of all contexts. Thus, we consider knowledge bases that are com-
posed of an ontology labeled with contextual information, together with a joint
probability distribution over the space of contexts.

To represent the probabilistic component of the knowledge base, we use
Bayesian networks (BNs) [14], a well-known probabilistic graphical model that
allows for a compact representation of the probability distribution, with the help
of conditional independence assumptions. For the logical component, we focus
on EL [1], a light-weight DL that allows for polynomial-time reasoning. These
formalisms together yield the Bayesian DL BEL.

We study classical and probabilistic reasoning problems in BEL. Not surpris-
ingly, reasoning in this logic is intractable in general, as is reasoning in BNs
already. However, we show that hardness arises exclusively from the probabilis-
tic component: the parameterized complexity of reasoning is polynomial, if the
size of the BN is considered as a parameter.

The choice of EL as underlying logical formalism is meant as a simple pro-
totypical case. It allows us to understand the subtleties of combining BNs with
DLs, as a first step towards more expressive formalisms. For a preliminary dis-
cussion on more expressive Bayesian DLs, and additional details and examples
for BEL, see [9].

2 The Description Logic BEL
The DL BEL is a probabilistic extension of the light-weight DL EL, where prob-
abilities are encoded using a Bayesian network [14]. Formally, a Bayesian net-
work (BN) is a pair B = (G,Φ), where G = (V,E) is a finite directed acyclic
graph (DAG) whose nodes represent Boolean random variables,1 and Φ contains,
for every node x ∈ V , a conditional probability distribution PB(x | π(x)) of x
given its parents π(x). If V is the set of nodes in G, we say that B is a BN
over V .

The idea behind BNs is that G = (V,E) encodes a series of conditional in-
dependence assumptions between the random variables. More precisely, every
variable x ∈ V is conditionally independent of its non-descendants given its par-
ents. Thus, every BN B defines a unique joint probability distribution (JPD)
over V given by

PB(V) =
∏
x∈V

PB(x | π(x)).

1 In their general form, BNs allow for arbitrary discrete random variables. We restrict
w.l.o.g. to Boolean variables for ease of presentation.

482 İ.İ. Ceylan and R. Peñaloza

x

y

z

x

0.7
y

x 1
¬x 0.5

z

x y 0.3
x ¬y 0.1
¬x y 0
¬x ¬y 0.9

Fig. 1. The BN B0 over V0 = {x, y, z}

A very simple BN is shown in Figure 1. From this network we can derive e.g.
P (x,¬y, z) = P (z | x,¬y) · P (¬y | x) · P (x) = 0.1 · 0 · 0.7 = 0.

As with classical DLs, the main building blocks in BEL are concepts, which
are syntactically built as EL concepts. Given two disjoint sets NC and NR of
concept names and role names, respectively, BEL concepts are defined through
the syntactic rule

C ::= A | � | C C | ∃r.C
where A ∈ NC and r ∈ NR. In DLs, the domain knowledge is typically encoded as
a finite set of general concept inclusions (GCIs), called a TBox. BEL generalizes
classical TBoxes by annotating the GCIs with a context, defined by a set of
literals belonging to a BN.

Definition 1 (KB). Let V be a finite set of Boolean variables. A V -literal is
an expression of the form x or ¬x, where x ∈ V ; a V -context is a consistent set
of V -literals.

A V -restricted general concept inclusion (V -GCI) is an expression of the form
〈C : D : κ〉 where C and D are BEL concepts and κ is a V -context. A V -TBox
is a finite set of V -GCIs.

A BEL knowledge base (KB) over V is a pair K = (B, T) where B is a BN
over V and T is a V -TBox.

Intuitively, a V -GCI is an axiom that is only guaranteed to hold when its context
is enforced. The semantics of this logic is defined with the help of interpretations
that map concept and role names to unary and binary predicates, respectively;
additionally, these interpretations evaluate the random variables from the BN.

Definition 2 (interpretation). Given a finite set of Boolean variables V , a
V -interpretation is a tuple I = (ΔI , ·I ,VI) where ΔI is a non-empty set called
the domain, VI : V → {0, 1} is a valuation of the variables in V , and ·I is an
interpretation function that maps every concept name A to a set AI ⊆ ΔI and
every role name r to a binary relation rI ⊆ ΔI × ΔI .

When there is no danger of ambiguity, we will usually ignore the parameter V
and speak simply of e.g. a TBox, a KB, or an interpretation.

The interpretation function ·I is extended to arbitrary BEL concepts by the
following rules.

The Bayesian Description Logic BEL 483

− �I := ΔI

− (C D)I := CI ∩DI

− (∃r.C)I := {d ∈ ΔI | ∃e ∈ ΔI : (d, e) ∈ rIand e ∈ CI}

The valuation VI is extended to contexts by defining, for every x ∈ V ,
VI(¬x) = 1− VI(x), and for every context κ,

VI(κ) = min
�∈κ

VI(�),

where min�∈∅ VI(�) := 1. Intuitively, a context κ can be thought as a conjunction
of literals, which is evaluated to 1 iff each literal is so and 0 otherwise. We
say that the V -interpretation I is a model of the GCI 〈C : D : κ〉, denoted
as I |= 〈C : D : κ〉, iff (i) VI(κ) = 0, or (ii) CI ⊆ DI . It is a model of the
TBox T iff it is a model of all the GCIs in T . The idea is that the restriction
C : D is only required to hold whenever the context κ is satisfied. Thus, any
interpretation that violates the context trivially satisfies the whole axiom.

Example 3. Let V0 = {x, y, z}, and consider the V0-TBox

T0 := { 〈A : C : {x, y}〉 , 〈A : B : {¬x}〉 , 〈B : C : {¬x}〉}.

The interpretation I0 = ({d}, ·I0,V0) where V0({x,¬y, z}) = 1, AI0 = {d}, and
BI0 = CI0 = ∅ is a model of T0, but is not a model of the GCI 〈A : B : {x}〉.

The classical DL EL can be seen as a special case of BEL in which all GCIs are
associated with an empty context; that is, are of the form 〈C : D : ∅〉. Notice
that every valuation satisfies the empty context ∅. Thus, a V -interpretation I
satisfies the GCI 〈C : D : ∅〉 iff CI ⊆ DI . We say that T entails 〈C : D : ∅〉,
denoted by T |= C : D, if every model of T is also a model of 〈C : D : ∅〉. For
a valuation W of the variables in V , we can define a TBox containing all axioms
that must be satisfied in any V -interpretation I = (ΔI , ·I ,VI) with VI = W .

Definition 4 (restriction). Let K = (B, T) be a KB. The restriction of T to
a valuation W of the variables in V is the TBox

TW := {〈C : D : ∅〉 | 〈C : D : κ〉 ∈ T ,W(κ) = 1}.

So far, our semantics have focused on the evaluation of the Boolean variables and
the interpretation of concepts, ignoring the probabilistic information provided
by the BN. To handle these probabilities, we introduce multiple-world semantics
next. Intuitively, a V -interpretation describes a possible world; by assigning a
probabilistic distribution over these interpretations, we describe the required
probabilities, which should be consistent with the BN.

Definition 5 (probabilistic model). A probabilistic interpretation is a pair
P = (I, PI), where I is a set of V -interpretations and PI is a probability distri-
bution over I such that PI(I) > 0 only for finitely many interpretations I ∈ I.

484 İ.İ. Ceylan and R. Peñaloza

This probabilistic interpretation is a model of the TBox T if every I ∈ I is a
model of T . P is consistent with the BN B if for every possible valuation W of
the variables in V it holds that∑

I∈I,VI=W

PI(I) = PB(W).

The probabilistic interpretation P is a model of the KB (B, T) iff it is a (prob-
abilistic) model of T and consistent with B.

One simple consequence of this semantics is that probabilistic models preserve
the probability distribution of B for subsets of literals; i.e., contexts. The proof
follows from the fact that a context corresponds to a partial valuation. Hence,
the probability of a context κ is the sum of the probabilities of all valuations
that extend κ.

Theorem 6. Let K = (B, T) be a KB, and κ a context. For every model P of
K it holds that ∑

I∈I,VI(κ)=1

PI(I) = PB(VI(κ)).

For the following sections it will be useful for proving our results to consider
a special kind of interpretations, which we call pithy . These interpretations
contain at most one V -interpretation for each valuation of the variables in V .
Each of these V -interpretations provides the essential information associated to
the corresponding valuation.

Definition 7 (pithy). The probabilistic interpretation P = (I, PI) is called
pithy if for every valuation W of the variables in V there exists at most one
V -interpretation I = (ΔI , ·I ,VI) ∈ I such that VI = W.

We now study classical and probabilistic reasoning problems in BEL, and analyse
their complexity.

3 Reasoning in BEL
In the previous section we have described how probabilistic knowledge can be
represented using a BEL KB. We now focus our attention to reasoning with this
knowledge. The most basic decision problem in any DL is whether an ontology
is consistent. It turns out that, as for classical EL, this problem is trivial in BEL.

Theorem 8. Every BEL KB is consistent.

Proof (Sketch). Let K = (B, T) be a BEL KB. Let ΔI = {a} and ·I be such that
AI = {a} and rI = {(a, a)} for all A ∈ NC and r ∈ NR. For every valuation W ,
define the V -interpretation IW = (ΔI , ·I ,W). Then, the probabilistic interpre-
tation P = (I, PI) where I = {IW | W is a valuation} and PI(IW) = PB(W) is
a model of K.

The Bayesian Description Logic BEL 485

A more interesting reasoning problem is subsumption: decide whether a concept
is interpreted as a subclass of another one. We generalize this problem to consider
also the contexts and probabilities provided by the BN.

Definition 9 (subsumption). Let C,D be two BEL concepts, κ a context,
and K a KB. C is contextually subsumed by D in κ w.r.t. K , denoted as
〈C :K D : κ〉, if every probabilistic model of K is also a model of the TBox
{〈C : D : κ〉}. For a probabilistic interpretation P = (I, PI), we define the
probability of a consequence P (〈C :P D : κ〉) :=

∑
I∈I,I|=〈C"D:κ〉 PI(I). The

probability of 〈C : D : κ〉 w.r.t. K is defined as

P (〈C :K D : κ〉) := inf
P|=K

P (〈C :P D : κ〉).

We say that C is positively subsumed by D in κ if P (〈C :K D : κ〉) > 0, and C
is p-subsumed by D in κ, for p ∈ (0, 1] if P (〈C :K D : κ〉) ≥ p. We sometimes
refer to 1-subsumption as almost-sure subsumption.

Clearly, if C is subsumed by D in κ w.r.t. a KB K, then P (〈C :K D : κ〉) = 1.
The converse, however, may not hold since the subsumption relation might be
violated in V -interpretations of probability zero.

Example 10. Consider the KB K0 = (B0, T0), where B0 is the BN depicted in
Figure 1 and T0 the TBox from Example 3. It follows that P (〈A :K0 C : ∅〉) = 1
and P (〈C :K0 B : {x, y}〉) = 0. Moreover, for any two concepts E,F , it holds
that P (〈E :K0 F : {x,¬y}〉) = 1 since 〈E :K0 F : {x,¬y}〉 can only be violated
in V -interpretations that have probability 0. However, in general the consequence
〈E :K0 F : {x,¬y}〉 does not hold.

3.1 Probabilistic Subsumption

We consider first the problem of computing the probability of a subsumption,
or deciding positive, p-subsumption, and almost-sure subsumption. As an inter-
mediate step, we show that it is possible w.l.o.g. to restrict reasoning to pithy
models.

Lemma 11. Let K be a KB. If P is a probabilistic model of K, then a pithy
model Q of K can be computed such that for every two concepts C,D and context
κ it holds that P (〈C :Q D : κ〉) ≤ P (〈C :P D : κ〉).

Proof (Sketch). Let W be a valuation and I, I ′ ∈ I two V -interpretations such
that VI = VI′

= W . Construct a new interpretation J as the disjoint union of
I and I ′. The probabilistic interpretation (H, PH) with H = (I ∪ {J }) \ {I, I ′}
and

PH(H) :=

{
PI(H) H
= J
PI(I) + PI(I ′) H = J

is a model of K. Moreover, J |= 〈C : D : κ〉 iff both I |= 〈C : D : κ〉 and
I ′ |= 〈C : D : κ〉. �

486 İ.İ. Ceylan and R. Peñaloza

As we show next, the probability of a consequence can be computed by reasoning
over the restrictions TW of T .

Theorem 12. Let K = (B, T) be a KB, C,D two concepts and κ a context.

P (〈C :K D : κ〉) = 1− PB(κ) +
∑

TW |=C"D
W(κ)=1

PB(W).

Proof. For every valuation W construct the V -interpretation IW as follows. If
TW |= C : D, then IW is any model (ΔIW , ·IW ,W) of TW ; otherwise, IW
is any model (ΔIW , ·IW ,W) of TW that does not satisfy 〈C : D : κ〉, which
must exist by definition. The probabilistic interpretation PK = (I, PI) such that
I = {IW | W a valuation of V } and PI(IW) = PB(W) for all W is a model of
K and

P (〈C :PK D : κ〉) =
∑

IW |=〈C"D:κ〉
PI(IW)

=
∑

W(κ)=0

PI(IW) +
∑

W(κ)=1,
IW |=〈C"D:κ〉

PI(IW)

= 1− PB(κ) +
∑

TW |=C"D
W(κ)=1

PB(W).

Thus, P (〈C :K D : κ〉) ≤ 1− PB(κ) +
∑
TW |=C"D,W(κ)=1 PB(W). Suppose now

that the inequality is strict, then there exists a probabilistic model P = (J, PJ)
of K such that P (〈C :P D : κ〉) < P (〈C :PK D : κ〉). By Lemma 11, we can
assume w.l.o.g. that P is pithy, and hence for every valuationW with PB(W) > 0
there exists exactly one JW ∈ J with VJW = W . We thus have∑

JW |=〈C"D:κ〉,W(κ)=1

PJ(JW) <
∑

IW |=〈C"D:κ〉,W(κ)=1

PI(IW).

Since PI(IW) = PJ(JW) for all W , then there must exist a valuation V such that
IV |= 〈C : D : κ〉 but JV
|= 〈C : D : κ〉. Since JV is a model of TV it follows
that TV
|= C : D. By construction, then we have that IV
|= 〈C : D : κ〉, which
is a contradiction. �

Based on this theorem, we can compute the probability of a subsumption as
described in Algorithm 1. The algorithm simply verifies for all possible valuations
W , whether TW entails the desired axiom. Clearly, the for loop is executed 2|V |

times; that is, once for each possible valuation of the variables in V . Each of
these executions needs to compute the probability PB(W) and, possibly, decide
whether TW |= C : D. The former can be done in polynomial time on the size
of B, using the standard chain rule [14], while deciding entailment from an EL
TBox is polynomial on T [8]. Overall, Algorithm 1 runs in time exponential on

The Bayesian Description Logic BEL 487

Algorithm 1. Probability of Subsumption

Input: KB K = (B, T), GCI 〈C & D : κ〉
Output: P (〈C &K D : κ〉)
1: P ← 0, Q← 0
2: for all valuations W do
3: if W(κ) = 0 then
4: Q← Q+ PB(W)
5: else if TW |= C & D then
6: P ← P + PB(W)

7: return 1−Q+ P

B but polynomial on T . Moreover, the algorithm requires only polynomial space
since the different valuations can be enumerated using only |V | bits. Thus, we
obtain the following result.

Theorem 13. The problem of deciding p-subsumption is in PSpace and fixed-
parameter tractable where |V | is the parameter.2

As a lower bound, unsurprisingly, p-subsumption is at least as hard as deciding
probabilities from the BN. Since this latter problem is hard for the class PP [19],
we get the following result.

Theorem 14. Deciding p-subsumption is PP-hard.

If we are interested only in deciding positive or almost-sure subsumption, then
we can further improve these upper bounds to NP and coNP, respectively.

Theorem 15. Deciding positive subsumption is NP-complete. Deciding almost-
sure subsumption is coNP-complete.

Proof. To decide positive subsumption, we can simply guess a valuation W and
check in polynomial time that (i) PB(W) > 0 and (ii) either W(κ) = 0 or
TW |= C : D. The correctness of this algorithm is given by Theorem 12. Thus
the problem is in NP.

To show hardness, we recall that deciding, given a BN B and a variable x ∈ V ,
whether PB(x) > 0 is NP-hard [11]. Consider the KB K = (B, ∅) and A,B
two arbitrary concept names. It follows from Theorem 12 that PB(x) > 0 iff
P (〈A :K B : {¬x}〉) > 0. Thus positive subsumption is NP-hard. The coNP-
completeness of almost-sure subsumption can be shown analogously. �

Notice once again that the non-determinism needed to solve these problems is
limited to the number of random variables in B. More precisely, exactly |V | bits
need to be non-deterministically guessed, and the rest of the computation runs
in polynomial time. In practical terms this means that subsumption is tractable

2 Recall that a problem is fixed-parameter tractable if it can be solved in polynomial
time, assuming that the parameter is fixed [15].

488 İ.İ. Ceylan and R. Peñaloza

as long as the DAG remains small. On the other hand, Algorithm 1 shows that
the probabilistic and the logical components of the KB can be decoupled while
reasoning. This is an encouraging result as it means that one can apply the
optimized methods developed for BN inference and for DL reasoning directly in
BEL without major modifications.

3.2 Contextual Subsumption

We now turn our attention to deciding whether a contextual subsumption re-
lation follows from all models of the KB in a classical sense; that is, whether
〈C :K D : κ〉 holds. Contrary to classical EL, subsumption in BEL is already
intractable, even if we consider only the empty context.

Theorem 16. Let K be a KB and C,D two concepts. Deciding 〈C :K D : ∅〉 is
coNP-hard.

Proof. We present a reduction from validity of DNF formulas, which is known
to be coNP-hard [10]. Let φ = σ1 ∨ . . . ∨ σn be a DNF formula where each σi

is a conjunctive clause and let V be the set of all variables appearing in φ. For
each variable x ∈ V , we introduce the concept names Bx and B¬x and define the
TBox Tx := {〈A : Bx : {x}〉 , 〈A : B¬x : {¬x}〉}. For every conjunctive clause
σ = �1 ∧ . . . ∧ �m define the TBox Tσ := {〈B�1 . . . B�m : C : ∅〉}. Let now
K = (B, T) where B is an arbitrary BN over V and T =

⋃
x∈V Tx ∪

⋃
1≤i≤n Tσi .

It is easy to see that φ is valid iff 〈A :K C : ∅〉. �

The main reason for this hardness is that the interaction of contexts might pro-
duce consequences that are not obvious at first sight. For instance, a consequence
might follow in context κ not because the axioms from κ entail the consequence,
but rather because any valuation satisfying κ will yield it. That is the main idea
in the proof of Theorem 16; the axioms that follow directly from the empty con-
text never entail the subsumption A : C, but if φ is valid, then this subsumption
follows from all valuations. We obtain the following result.

Lemma 17. Let K = (B, T) be a KB. Then 〈C :K D : κ〉 iff for every valuation
W with W(κ) = 1, it holds that TW |= C : D.

It thus suffices to identify all valuations that define TBoxes entailing the conse-
quence. To do this, we will take advantage of techniques developed in the area
of axiom-pinpointing [6], access control [3], and context-based reasoning [4]. It
is worth noticing that subsumption relations depend only on the TBox and not
on the BN. For that reason, for the rest of this section we focus only on the
terminological part of the KB.

We can think of every context κ as the conjunctive clause χκ :=
∧

�∈κ �. In
this view, the V -TBox T is a labeled TBox over the (distributive) lattice B of
all Boolean formulas over the variables V , modulo equivalence. Each formula φ
in this lattice defines a sub-TBox Tφ which contains all axioms 〈C : D : κ〉 ∈ T
such that χκ |= φ.

The Bayesian Description Logic BEL 489

Using the terminology from [4], we are interested in finding a boundary for a
consequence. Given a TBox T labeled over the lattice B and concepts C,D, a
boundary for C : D w.r.t. T is an element φ ∈ B such that for every join-prime
element ψ ∈ B it holds that ψ |= φ iff Tψ |= C : D (see [4] for further details).
Notice that the join-prime elements of B are exactly the valuations of variables
in V . Using Lemma 17 we obtain the following result.

Theorem 18. Let φ be a boundary for C : D w.r.t. T in B. Then, for any
context κ we have that 〈C :K D : κ〉 iff χκ |= φ.

While several methods have been developed for computing the boundary of a
consequence, they are based on a black-box approach that makes several calls to
an external reasoner. We present a glass-box approach that computes a compact
representation of the boundary directly. This method, based on the standard
completion algorithm for EL [8], can in fact compute the boundaries for all
subsumption relations between concept names that follow from the KB.

For our completion algorithm we assume that the TBox is in normal form; i.e.,
all GCIs are of the form 〈A1 A2 : B : κ〉, 〈A : ∃r.B : κ〉, or 〈∃r.A : B : κ〉,
where A,A1, A2, B ∈ NC ∪ {�}. It is easy to see that every V -TBox can be
transformed into an equivalent one in normal form in linear time.

Given a TBox in normal form, the completion algorithm uses rules to label a
set of assertions until no new information can be added. Assertions are tuples
of the form (A,B) or (A, r,B) where A,B ∈ NC ∪ {�} and r ∈ NR are names
appearing in the TBox. The function lab maps every assertion to a Boolean
formula φ over the variables in V . Intuitively, lab(A,B) = φ expresses that
TW |= A : B in all valuations W that satisfy φ; and lab(A, r,B) = φ expresses
that TW |= A : ∃r.B in all valuations W that satisfy φ. The algorithm is
initialized with the labeling of assertions

lab(α) :=

{
t α is of the form (A,�) or (A,A) for A ∈ NC ∪ {�}
f otherwise,

where t is a tautology and f a contradiction in B. This function is modified by
applying the rules from Table 1 where for brevity, we denote lab(α) = φ by
αφ. Every rule application changes the label of one assertion for a more general
formula. The number of assertions is polynomial on T and the depth of the
lattice B is exponential on |V |. Thus, in the worst case, the number of rule
applications is bounded exponentially on |V |, but polynomially on T .

Clearly, all the rules are sound; that is, at every step of the algorithm it holds
that TW |= A : B for all concept names A,B and all valuations W that satisfy
lab(A,B), and analogously for (A, r,B). It can be shown using techniques from
axiom-pinpointing (see e.g. [7,4]) that after termination the converse also holds;
i.e., for every valuation W , if TW |= A : B, then W |= lab(A,B). Thus, we
obtain the following result.

Theorem 19. Let lab be the labelling function obtained through the completion
algorithm. For every two concept names A,B appearing in T , lab(A,B) is a
boundary for A : B w.r.t. T .

490 İ.İ. Ceylan and R. Peñaloza

Table 1. Completion rules for subsumption in BEL

If

{ 〈A1 $A2 & B : κ〉 ∈ T , }
then lab(X,B) := (χκ ∧ φ1 ∧ φ2) ∨ ψ(X,A1)

φ1 , (X,A2)
φ2 , (X,B)ψ

χκ ∧ φ1 ∧ φ2 �|= ψ

If

{ 〈A & ∃r.B : κ〉 ∈ T }
then lab(X, r,B) := (χκ ∧ φ) ∨ ψ(X,A)φ, (X, r,B)ψ

χκ ∧ φ �|= ψ

If

{ 〈∃r.A & B : κ〉 ∈ T }
then lab(X,B) := (χκ ∧ φ1 ∧ φ2) ∨ ψ(X, r, Y)φ1 , (Y,A)φ2 , (X,B)ψ

χκ ∧ φ1 ∧ φ2 �|= ψ

Once we know a boundary φ for A : B w.r.t. T , we can decide whether
〈A :K B : κ〉: we need only to verify whether χκ |= φ. This decision is in NP on
|V |. Although the algorithm is described exclusively for concept names A,B, it
can be used to compute a boundary for C : D, for arbitrary BEL concepts C,D,
simply by adding the axioms 〈A0 : C : ∅〉 and 〈D : B0 : ∅〉, where A0, B0 are
new concept names, to the TBox, and then computing a boundary for A0 : B0

w.r.t. the extended TBox. This yields the following result.

Corollary 20. Subsumption in BEL can be decided in exponential time, and is
fixed-parameter tractable where |V | is the parameter.

Clearly, the boundary for C : D provides more information than necessary
for deciding whether the subsumption holds in a given context κ. It encodes
all contexts that entail the desired subsumption. We can use this knowledge to
deduce the most likely context.

3.3 Most Likely Context

The problem of finding the most likely context for a consequence can be seen
as the dual of computing the probability of this consequence. Intuitively, we are
interested in finding the most likely explanation for an event; assuming that a
consequence holds, we are interested in finding an explanation for it, in the form
of a context, that has the maximal probability of occurring.

Definition 21 (most likely context). Given a KB K = (B, T) and con-
cepts C,D, the context κ is called a most likely context for C : D w.r.t. K
if (i) 〈C :K D : κ〉, and (ii) for every context κ′, if 〈C :K D : κ′〉 holds, then
PB(κ

′) ≤ PB(κ).

Notice that we are not interested in maximizing P (〈C :K D : κ〉) but rather
PB(κ). Indeed, these two problems can be seen as dual, since P (〈C :K D : κ〉)
depends inversely, but not exclusively, on PB(κ) (see Theorem 12).

The Bayesian Description Logic BEL 491

Algorithm 2. Compute all most likely contexts

Input: KB K = (B, T), concepts C,D
Output: The set Λ of most likely contexts for C & D w.r.t. K and probability p ∈ [0, 1]
1: Λ← ∅, p← 0
2: φ← boundary(C & D, T) � compute a boundary for C & D w.r.t. T
3: for all contexts κ do
4: if χκ |= φ then
5: if PB(κ) > p then
6: Λ← {κ}
7: p← PB(κ)
8: else if PB(κ) = p then
9: Λ← Λ ∪ {κ}
10: return Λ, p

x1 x2 · · · xn

x1

1

x2

1

xn

1

Fig. 2. The BN Bn over {x1, . . . , xn}

Algorithm 2 computes the set of all most likely contexts for C : D w.r.t.
K, together with their probability. It maintains a value p of the highest known
probability for a context, and a set Λ with all the contexts that have probability
p. The algorithm first computes a boundary for the consequence, which is used to
test, for every context κ whether 〈C :K D : κ〉 holds. In that case, it compares
PB(κ) with p. If the former is larger, then the highest probability is updated to
this value, and the set Λ is restarted to contain only κ. If they are the same,
then κ is added to the set of most likely contexts.

Computing a boundary requires exponential time on T . Likewise, the number
of contexts is exponential on B, and for each of them we have to test propositional
entailment, which is also exponential on B. Overall, we have the following.

Theorem 22. Algorithm 2 computes all most likely contexts for C : D w.r.t.
K in exponential time.

In general, it is not possible to lower this exponential upper bound, since a
simple consequence may have exponentially many most likely contexts. For ex-
ample, given a natural number n ≥ 1, let Bn = (Gn, Φn) be the BN where
G = ({x1, . . . , xn}, ∅), i.e., G contains n nodes and no edges connecting them,
and for each i, 1 ≤ i ≤ n Φn contains the distribution with PB(xi) = 1 (see
Figure 2). For every context κ ⊆ {x1, . . . , xn}, we have that PB(κ) = 1 which
means that there are 2n most likely contexts for A : A w.r.t. the KB (Bn, ∅).

Algorithm 2 can be adapted to compute one most likely context in a more
efficient way. The main idea is to order the calls in the for loop by decreasing
probability. Once one context κ with χκ |= φ has been found, it is guaranteed to
be a most likely context and the algorithm may stop. This approach would still
require exponential time in the worst case. However, recall that simply verifying

492 İ.İ. Ceylan and R. Peñaloza

whether κ is a context for C : D is already coNP-hard (Theorem 16), and hence
deciding whether it is a most likely context is arguably hard for the second level
of the polynomial hierarchy. On the other hand, this exponential bound depends
exclusively on |V |. Hence, as before, we have that deciding whether a context is
a most likely context for a consequence is fixed-parameter tractable over |V |.

4 Related Work

The amount of work on handling uncertain knowledge with description logics
is too vast to cover in detail here. Many probabilistic description logics have
been defined, which differ not only in their syntax but also in their use of the
probabilities and their application. These logics were recently surveyed in [17].
We discuss here only those logics most closely related to ours.

One of the first attempts for combining BNs and DLs was P-Classic [16],
which extended Classic through probability distributions over the interpreta-
tion domain. The more recent PR-OWL [12] uses multi-entity BNs to describe
the probability distributions of some domain elements. In both cases, the prob-
abilistic component is interpreted providing individuals with a probability dis-
tribution; this differs greatly from our multiple-world semantics, in which we
consider a probability distribution over a set of classical DL interpretations.

Perhaps the closest to our approach are the Bayesian extension of DL-Lite [13]
and DISPONTE [18]. The latter allows for so-called epistemic probabilities that
express the uncertainty associated to a given axiom. Their semantics are based,
as ours, on a probabilistic distribution over a set of interpretations. The main
difference with our approach is that in [18], the authors assume that all probabil-
ities are independent, while we provide a joint probability distribution through
the BN. Another minor difference is that in DISPONTE it is impossible to obtain
classical consequences, as we do.

Abstracting from the different logical constructors used, the logic in [13] looks
almost identical to ours. There is, however, a subtle but important difference. In
our approach, an interpretation I satisfies an axiom 〈C : D : κ〉 if VI(κ) = 1
implies CI ⊆ DI . In [13], the authors employ a closed-world assumption over the
contexts, where this implication is substituted for an equivalence; i.e., VI(κ) = 0
also implies CI
⊆ DI . The use of such semantics can easily produce inconsistent
KBs, which is impossible in BEL.

5 Conclusions

We have introduced the probabilistic DL BEL, which extends the classical EL
to express uncertainty. Our basic assumption is that we have certain knowledge,
which depends on an uncertain situation, or context. In practical terms, this
means that every axiom is associated to a context with the intended meaning
that, if the context holds, then the axiom must be true. Uncertainty is repre-
sented through a BN that encodes the probability distribution of the contexts.

The Bayesian Description Logic BEL 493

The advantage of using Bayesian networks relies in their capacity of describing
conditional independence assumptions in a compact manner.

We have studied the complexity of reasoning in this probabilistic logic. Con-
trary to classical EL, reasoning in BEL is in general intractable. More precisely,
we have shown that positive subsumption is NP-complete, and almost-sure sub-
sumption is coNP-complete. For the other reasoning problems we have not found
tight complexity bounds, but we proved that p-subsumption is NP-hard and in
PSpace, while contextual subsumption and deciding most likely contexts are
between coNP and ExpTime.

In contrast to these negative complexity results, we have shown that the com-
plexity can be decoupled between the probabilistic and the logical components
of the KB. Indeed, all these problems are fixed-parameter tractable over the
parameter |V |. This means that, if we have a fixed number of contexts, then all
these problems can be solved in polynomial time. It is not unreasonable, more-
over, to assume that the number of contexts is quite small in comparison to
the size of the TBox. Finally notice that reasoning with the BN itself is already
intractable. What we have shown is that intractability is a consequence of the
contextual and probabilistic components of the KB, and not of the logical one.

There are several directions for future work. First, we would like to tighten
our complexity results. Notice that the main bottleneck in our algorithms for
deciding contextual subsumption and computing the most likely contexts is the
computation of the boundary, which requires exponential time. It has been ar-
gued that a compact representation of the pinpointing formula, which is a spe-
cial case of the boundary, can be computed in polynomial time for EL using
an automata-based approach [5]. If making logical inferences over this compact
encoding is not harder than for the formula itself, then we would automatically
obtain a ΣP

2 algorithm for deciding contextual subsumption. Likewise, a context
could be verified to be a most likely context for a consequence in PSpace.

A different direction will be to extend our semantics to more expressive logics.
In particular, we will include assertion and role axioms into our knowledge bases.
Since many of our algorithms depend only on the existence of a reasoner for the
logic, such extension should not be a problem. Our complexity results, on the
other hand, would be affected by these changes. From the probabilistic side,
we can also consider other probabilistic graphical models to encode the JPD
of the contexts. Finally, we would like to consider problems that tighten the
relationship between the probabilistic and the logical components. One of such
problems would be to update the BN according to evidence attached to the
TBox.

References

1. Baader, F.: Terminological cycles in a description logic with existential restric-
tions. In: Proc. 18th International Joint Conference on Artificial Intelligence (IJ-
CAI 2003), pp. 325–330. Morgan Kaufmann (2003)

494 İ.İ. Ceylan and R. Peñaloza

2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions, 2nd edn. Cambridge University Press (2007)

3. Baader, F., Knechtel, M., Peñaloza, R.: A generic approach for large-scale onto-
logical reasoning in the presence of access restrictions to the ontology’s axioms.
In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta,
E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 49–64. Springer,
Heidelberg (2009)

4. Baader, F., Knechtel, M., Peñaloza, R.: Context-dependent views to axioms and
consequences of semantic web ontologies. J. of Web Semantics, 12–13, 22–40 (2012)

5. Baader, F., Peñaloza, R.: Automata-based axiom pinpointing. J. of Automated
Reasoning 45(2), 91–129 (2010)

6. Baader, F., Peñaloza, R.: Axiom pinpointing in general tableaux. J. of Logic and
Computation 20(1), 5–34 (2010)

7. Baader, F., Peñaloza, R., Suntisrivaraporn, B.: Pinpointing in the description logic
EL+. In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007. LNCS (LNAI),
vol. 4667, pp. 52–67. Springer, Heidelberg (2007)

8. Brandt, S.: Polynomial time reasoning in a description logic with existential re-
strictions, GCI axioms, and—what else? In: Proc. 16th European Conference on
Artificial Intelligence (ECAI 2004), pp. 298–302. IOS Press (2004)

9. Ceylan, İ.İ.: Context-Sensitive Bayesian Description Logics. Master’s thesis, Dres-
den University of Technology, Germany (2013)

10. Cook, S.A.: The complexity of theorem-proving procedures. In: Proc. Third Annual
ACM Symposium on Theory of Computing, STOC 1971, pp. 151–158. ACM, New
York (1971), http://doi.acm.org/10.1145/800157.805047

11. Cooper, G.F.: The computational complexity of probabilistic inference using
bayesian belief networks (research note). Artif. Intel. 42(2-3), 393–405 (1990)

12. da Costa, P.C.G., Laskey, K.B., Laskey, K.J.: Pr-owl: A bayesian ontology language
for the semantic web. In: da Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B.,
Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) URSW 2005 - 2007.
LNCS (LNAI), vol. 5327, pp. 88–107. Springer, Heidelberg (2008)

13. d’Amato, C., Fanizzi, N., Lukasiewicz, T.: Tractable reasoning with bayesian de-
scription logics. In: Greco, S., Lukasiewicz, T. (eds.) SUM 2008. LNCS (LNAI),
vol. 5291, pp. 146–159. Springer, Heidelberg (2008)

14. Darwiche, A.: Modeling and Reasoning with Bayesian Networks. Cambridge Uni-
versity Press (2009)

15. Downey, R.G., Fellows, M.: Parameterized Complexity. Monographs in Computer
Science. Springer (1999)

16. Koller, D., Levy, A.Y., Pfeffer, A.: P-classic: A tractable probablistic description
logic. In: Proc. 14th National Conference on Artificial Intelligence (AAAI 1997),
pp. 390–397. AAAI Press (1997)

17. Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description
logics for the semantic web. J. of Web Semantics 6(4), 291–308 (2008)

18. Riguzzi, F., Bellodi, E., Lamma, E., Zese, R.: Epistemic and statistical probabilistic
ontologies. In: Proc. 8th Int. Workshop on Uncertainty Reasoning for the Semantic
Web (URSW 2012), vol. 900, pp. 3–14. CEUR-WS (2012)

19. Roth, D.: On the hardness of approximate reasoning. Artif. Intel. 82(1-2), 273–302
(1996)

http://doi.acm.org/10.1145/800157.805047

OTTER Proofs in Tarskian Geometry

Michael Beeson1 and Larry Wos2

1 San José State University
2 Argonne National Laboratory

Abstract. We report on a project to use OTTER to find proofs of the
theorems in Tarskian geometry proved in Szmielew’s part (Part I) of
[9]. These theorems start with fundamental properties of betweenness,
and end with the development of geometric definitions of addition and
multiplication that permit the representation of models of geometry as
planes over Euclidean fields, or over real-closed fields in the case of full
continuity. They include the four challenge problems left unsolved by
Quaife, who two decades ago found some OTTER proofs in Tarskian
geometry (solving challenges issued in [15]).

Quaife’s four challenge problems were: every line segment has a mid-
point; every segment is the base of some isosceles triangle; the outer
Pasch axiom (assuming inner Pasch as an axiom); and the first outer
connectivity property of betweenness. These are to be proved without
any parallel axiom and without even line-circle continuity. These are dif-
ficult theorems, the first proofs of which were the heart of Gupta’s Ph. D.
thesis under Tarski. OTTER proved them all in 2012. Our success, we
argue, is due to improvements in techniques of automated deduction,
rather than to increases in computer speed and memory.

The theory of Hilbert (1899) can be translated into Tarski’s lan-
guage, interpreting lines as pairs of distinct points, and angles as ordered
triples of non-collinear points. Under this interpretation, the axioms of
Hilbert either occur among, or are easily deduced from, theorems in the
first 11 (of 16) chapters of Szmielew. We have found Otter proofs of
all of Hilbert’s axioms from Tarski’s axioms (i.e. through Satz 11.49 of
Szmielew, plus Satz 12.11). Narboux and Braun have recently checked
these same proofs in Coq.

1 Introduction

Geometry has been a test bed for automated deduction almost as long as comput-
ers have existed; the first experiments were done in the 1950s. In the nineteenth
century, geometry was the test bed for the development of the axiomatic method
in mathematics, spurred on by the efforts to prove Euclid’s parallel postulate
from his other postulates and ultimately the development of non-Euclidean ge-
ometry. This effort culminated in Hilbert’s seminal 1899 book [5]. In the period
1927–1965, Tarski developed his simple and short axiom system (described be-
low). Some 35 years ago, the second author experimented with finding proofs
from Tarski’s axioms, reporting success with simple theorems, but leaving sev-
eral unsolved challenge problems. The subject was revisited by Art Quaife, who

S. Demri, D. Kapur, and C. Weidenbach (Eds.): IJCAR 2014, LNAI 8562, pp. 495–510, 2014.
c© Springer International Publishing Switzerland 2014

496 M. Beeson and L. Wos

in his 1992 book [8] reported on the successful solution of some of those chal-
lenge problems using an early version of McCune’s theorem-prover,OTTER. But
there were several theorems that Quaife was not able to get OTTER to prove,
and he stated them as “challenge problems” in his book. As far as we know,
nobody took up the subject again until 2012, when the present authors set out
to see whether automated reasoning techniques, and/or computer hardware, had
improved enough to let us progress beyond Quaife’s achievements.

The immediate stimulus was the existence of the almost-formal development
of many theorems in Tarskian geometry in Part I of [9]. This Part I is essentially
the manuscript developed by Wanda Szmielew for her 1965 Berkeley lectures on
the foundations of geometry, with “inessential modifications” by Schwäbhauser.
There are 16 chapters. Quaife’s challenge problems occur in the first nine chap-
ters. The rest contain other important geometrical theorems (described below).
We set ourselves the goal to find OTTER proofs of each of the theorems in
Szmielew’s 16 chapters. Our methodology was to make a separate problem of
each theorem, supplying OTTER with the axioms and the previously-proved
theorems, as well as the (negated) goal expressing the theorem to be proved. We
were sometimes forced to supply OTTER with more information than that, as
we describe below.

We did succeed in 2012 to find OTTER proofs of Quaife’s challenge problems,
the last of which is Satz 9.6 in Szmielew. Verification of chapters 1 through 11
(which we completed with OTTER in 2013) suffices to formally prove Hilbert’s
axioms from those of Tarski. In this paper, we give Tarski’s axioms, explain
the challenge problems of Quaife and some of the axioms of Hilbert, discuss
the difficulties of finding OTTER proofs of these theorems, and explain what
techniques we used to find those proofs.

2 Tarski’s Axioms

In about 1927, Tarski first lectured on his axiom system for geometry, which was
an improvement on Hilbert’s 1899 axioms in several ways: first, the language
had only one sort of variables (for points), instead of having three primitive
notions (point, line, and angle). Second, it was a first-order theory (Hilbert’s
axioms mentioned sets, though not in an essential way). Third, the axioms were
short, elegant, and few in number (only about fifteen). They could be expressed
comprehensibly in the primitive syntax, without abbreviations.

2.1 History

The development of Tarski’s theory, started in 1927 or before, was delayed,
first by Tarski’s involvement in other projects, and then by World War II (galley
proofs of Tarski’s article about it were destroyed by bombs). The first publication
of Tarski’s axioms came in 1948 [10], and contained little more than a list of the

OTTER Proofs in Tarskian Geometry 497

axioms and a statement of the important metamathematical theorems about the
theory (completeness, representation of models as F2 for F a real-closed field,
quantifier-elimination and decidability). Tarksi then lectured on the subject at
Berkeley in 1956–58, and published a reduced set of axioms in 1959 [11]. In the
sixties, Tarski, Szmielew, Gupta, and Schwäbhauser (and some students) reduced
the number of axioms still further. The manuscript that Szmielew prepared for
her 1965 course became Part I of [9]. More details of the history of these axioms
can be found in [12] (our main source) and the foreword to (the Ishi Press edition
of) [9]. For our present purposes, the relevance of the history is mainly that there
are three versions of Tarski’s theory, the 1948 version, the 1959 version, and the
1965 version (published in 1983). The earlier experiments of Wos used the 1959
axioms, but Quaife used the 1965 version, as we do. The exact differences are
explained below.

2.2 Syntax

The fundamental relations in the theory (first introduced by Pasch in 1852) are
“betweenness”, which we here write T(a, b, c), and “equidistance”, or “segment
congruence”, which is officially written E(a, b, c, d), and unofficially as ab = cd,
segment ab is congruent to segment cd. The intuitive meaning of T(a, b, c) is
that b lies between a and c on the line connecting a and c; Tarski used non-strict
betweenness, so we do have T(a, a, c) and T(a, c, c) and even T(a, a, a). Hilbert
used strict betweenness. Both of them wroteB(a, b, c), which is a potential source
of confusion. We therefore reserveB for strict betweenness, and useT for Tarski’s
non-strict betweenness. The fact that Tarski’s initial is ‘T’ should serve as a
mnemonic device. Of course the equality relation between points is also part of
the language.

2.3 Betweenness and Congruence Axioms

We write ab = cd instead of E(a, b, c, d) to enhance human readability. In
OTTER files of course we use E(a, b, c, d). The following are five axioms from
the 1965 system.

ab = ba (A1) reflexivity for equidistance
ab = pq ∧ ab = rs → pq = rs (A2) transitivity for equidistance
ab = cc → a = b (A3) identity for equidistance
∃x (T(q, a, x) ∧ ax = bc) (A4) segment extension
T(a, b, a) → a = b (A6) identity for betweenness

When using (A4) in OTTER, we Skolemize it:

T(q, a, ext(q, a, b, c)) ∧ E(a, ext(q, a, b, c), b, c) (A4) Skolemized

The original (1948) theory had the following additional fundamental proper-
ties of betweenness listed as axioms. (We follow the numbering of [12].)

498 M. Beeson and L. Wos

T(a, b, b) (A12) Reflexivity for betweenness
T(a, b, c) → T(c, b, a) (A14) Symmetry for betweenness
T(a, b, d) ∧T(b, c, d) → T(a, b, c) (A15) Inner transitivity
T(a, b, c) ∧T(b, c, d) ∧ b
= c → T(a, b, d) (A16) Outer transitivity
T(a, b, d) ∧T(a, c, d) → T(a, b, c) ∨T(a, c, b) (A17) Inner connectivity
T(a, b, c) ∧T(a, b, d) ∧ a
= b (A18) Outer connectivity

→ T(a, c, d) ∨T(a, d, c)

Of these only (A15) and (A18) appear in the 1959 version, because in 1956–
57 Tarski and his students Kallin and Taylor showed that the other four are
dependent (derivable from the remaining axioms). H. N. Gupta showed in his
1965 Ph. D. thesis [4] that (A18) is also dependent. The proof of (A18) is one of
Quaife’s challenge problems. Gupta also showed that (A15) implies (A6) using
the other axioms of the 1959 system. Then one could have dropped (A6) as an
axiom; but instead, Szmielew dropped (A15), keeping (A6) instead; then (A15)
becomes a theorem.

All six of these axioms occur as theorems in [9]: (A12) is Satz 3.1, (A14) is
Satz 3.2, (A15) is Satz 3.5, (A16) is Satz 3.7, (A18) is Satz 5.1, and (A17) is
Satz 5.3. Hence, our research program of proving all the theorems in Szmielew’s
development using OTTER automatically captured these results as soon as we
reached Satz 5.3.

2.4 The Five-Segment Axiom

Hilbert [5] treated angles as primitive objects and angle congruence as a primitive
relation, and took SAS (the side-angle-side triangle congruence principle) as an
axiom. In Tarski’s theory, angles are treated as ordered triples of points, and
angle congruence is a defined notion, so a points-only formulation of the SAS
principle is required. The key idea is Tarski’s “five-segment axiom” (A5), shown
in Fig. 1.

d

a b c

D

A B C

Fig. 1. The five-segment axiom (A5)

If the four solid segments in Fig. 1 are pairwise congruent, then the fifth
(dotted) segments are congruent too. This is essentially SAS for triangles dbc and
DBC. The triangles abd andABD are surrogates, used to express the congruence
of angles dbc and DBC. By using Axiom A5, we can avoid all mention of angles.

OTTER Proofs in Tarskian Geometry 499

2.5 Pasch’s Axiom

Moritz Pasch [6] (See also [7], with an historical appendix by Max Dehn) supplied
(in 1882) an axiom that repaired many of the defects that nineteenth-century
rigor found in Euclid. Roughly, a line that enters a triangle must exit that
triangle. As Pasch formulated it, it is not in ∀∃ form. There are two ∀∃ versions,
illustrated in Fig. 2.5. These formulations of Pasch’s axiom go back to Veblen
[13], who proved outer Pasch implies inner Pasch. Tarski took outer Pasch as an
axiom in [11].

�

a x
� q

�
c

� b

�
p

�

a
�

qx

�
b

� c

�

p

Fig. 2. Inner Pasch (left) and Outer Pasch (right). Line pb meets triangle acq in one
side. The open circles show the points asserted to exist on the other side.

T(a, p, c) ∧T(b, q, c) → ∃x (T(p, x, b) ∧T(q, x, a)) (A7) inner Pasch
T(a, p, c) ∧T(q, c, b) → ∃x (T(a, x, q) ∧T(b, p, x)) outer Pasch

For use in OTTER, we introduce Skolem symbols ip(a, p, c, b, q) and
op(p, a, b, c, q) for the point x asserted to exist.

Tarski originally took outer Pasch as an axiom. In [4], Gupta proved both
that inner Pasch implies outer Pasch, and that outer Pasch implies inner Pasch,
using the other axioms of the 1959 system. The proof of outer Pasch from inner
Pasch is one of Quaife’s four challenge problems.

2.6 Dimension Axioms

With no dimension axioms, Tarski’s geometry axiomatizes theorems that are true
in n-dimensional geometries for all n. For each positive integer n, we can specify
that the dimension of space is at least n (with a lower dimension axiom A8(n)),
or at most n (with an upper dimension axiom A9(n)). The upper dimension
axiom says (in a first-order way) that the set of points equidistant from n given
points is at most a line. The lower dimension axiom for n is the negation of
the upper dimension axiom for n− 1. For the exact statements of these axioms
see [12].

500 M. Beeson and L. Wos

x y

�
a

�b

�c

�
t

�
d

Fig. 3. Tarski’s parallel axiom

2.7 Tarski’s Parallel Axiom (A10)

In the diagram (Fig. 3), open circles indicate points asserted to exist.
T(a, d, t) ∧T(b, d, c) ∧ a
= d → ∃x∃y (T(a, b, x) ∧T(a, c, y) ∧T(x, t, y) (A10)

The hypothesis says that t lies in the interior of angle a, as witnessed by b,
c, and d. The conclusion says that some line through t meets both sides of the
angle. Of course this fails in non-Euclidean geometry when both ab and ac are
parallel to xy.

According to [12], Szmielew preferred to use the “triangle circumscription
principle (A102) as the parallel axiom. Substituting (A102) was apparently one
of the “inessential changes” made by Schwabhäuser. This principle says that if
a, b, and c are not collinear, then there exists a point equidistant from all three.

2.8 Continuity Axioms

Axiom schema (A11) is not a single axiom, but an axiom schema, essentially
asserting that first-order Dedekind cuts are filled. Models of A1-A11 are all iso-
morphic to planes F2 where F is a real-closed field. One can also consider instead
of (A11), the axioms of line-circle continuity and/or circle-circle continuity, which
assert the existence of intersection points of lines and circles, or circles and cir-
cles, under appropriate hypotheses. None of the continuity axioms are used in
the work reported on in this paper. Szmielew’s development proceeds strictly on
the basis of A1-A10.

3 Methodology

In this section we describe, with illustrative examples, the techniques we used
in this project.

3.1 How OTTER Works

Readers familiar with OTTER can skip this section. It is not an introduction
to OTTER, but an attempt to make the subsequent information about our

OTTER Proofs in Tarskian Geometry 501

methodology comprehensible to those who do not have expertise with OTTER;
at least, it should enable such readers to make sense of the input files and proofs
we exhibit below and on the project’s website [1]. For more information about
OTTER, see [17].

OTTER is a clause-based resolution theorem prover. One writes -A for the
negation of A. One writes A | B for disjunction (“or”). One does not write “and”
at all, but instead one enters the two clauses separately. One writes A → B as
-A | B. Similarly one writes P ∧ Q → R as -P | -Q | R.

Variables begin with x,y,z,w,u,v. Names beginning with any other letter
are constants. A resolution theorem-prover requires the goal to be negated and
entered as clauses. For example, to prove A(x) → ∃y B(x, y), we would enter
the following clauses:

A(c).

-B(c,y).

After proving this theorem, if we want to use it to prove the next theorem, we
invent a new Skolem symbol f and enter the theorem as -A(x) | B(x,f(x)).

The input to OTTER is contained in two lists, the “set of support” (sos) and
“usable”. The fundamental run-time loop of OTTER moves a clause from sos to
usable, and then tries to use one of the specified inference rules to generate new
clauses from that clause and other clauses in usable. If conclusions are generated,
OTTER has to decide whether to keep them or not. If it decides to keep them,
they are placed on sos, where they can eventually be used to generate yet more
new clauses. If the empty clause is generated, that means a proof has been found,
and it will be output.

The fundamental problem of automated deduction is to avoid drowning in a
sea of useless conclusions before finding the desired proof. One tries to get control
over this by assigning “weights” to clauses, adjusting those weights in various
ways, and using them to control both which clauses are kept, and which clause
is selected from sos for the next iteration of the loop. By default: the weight of a
clause is the number of its symbols; the next clause selected is the lightest one in
sos; and clauses are kept if their weight does not exceed a parameter max weight.
More sophisticated ways of setting the weights have been developed over the past
decades and are discussed below. The idea is to get the weights of the important
clauses to be small, and then to squeeze down max weight to prevent drowning.

In addition to techniques involving weighting, there are other ways to control
OTTER’s search:

– Use a propitious combination of rules of inference. For an introduction to
these rules please refer to [17].

– You have some control over which clause will be selected from sos at the
next iteration, using OTTER’s pick given ratio.

– You have some control over how the search starts and what kind of proof you
want to look for (forward, backward, or bi-directional) by choosing which of
your clauses to put in sos and which to put in usable.

502 M. Beeson and L. Wos

3.2 Hints

Putting a clause into list(hints) causes OTTER to give that clause, if de-
duced, a low weight, causing it to be retained, even if its default weight would
have been so large as to cause it to be discarded. One has options (specified at
the top of an OTTER file) to cause this weight adjustment to apply to clauses
that match the hints, or subsume the hints, or are subsumed by the hints. The
way we use hints is describe in Section 3.5. The technique of hints was invented
by Veroff [14] and later incorporated into OTTER. As a technical note: when
using hints, you should always include these lines, without which your hints will
not have the desired effect.

assign(bsub_hint_wt,-1).

set(keep_hint_subsumers).

Another similar technique is known as resonators. This is more useful when
one has a proof in hand, and wishes to find a shorter proof. For the exact
differences between hints and resonators, see [16], p. 259.

3.3 Giving OTTER the Diagram

This refers to a technique we learned from Quaife [8]. Suppose we are trying
to find an x such that A(a, b, x). If we let OTTER search, without making any
attempt to guide the search, essentially OTTER will generate all the points that
can be constructed from a and b (and other points in the problem or previously
constructed in clauses that were kept) by the Skolem functions for segment
extension and inner Pasch. Imagine trying to prove a geometry theorem that
way: just take your ruler and draw all the lines you can between the points of
the diagram, and label all the new points formed by their intersections (that is
using Pasch), and construct every point that can be constructed by extending a
segment you have by another segment you have, and see if any of the new points
is the point you are trying to construct, and if not, repeat. You will generate a
sea of useless points, even if you discard those with too many construction steps.

In order to guide OTTER to construct the right points, we “give it the dia-
gram” by defining the points to be constructed, using the Skolem functions. For
example, consider the “crossbar theorem” (Satz 3.17). See Fig. 4, which shows
the diagram and the Otter input (not shown are the axioms A1-A6 and the
previous theorems, which are placed in list(usable)). The two lines defining r
and q are what we call “giving OTTER the diagram.” With those lines present,
OTTER finds a proof instantly. Remove them, and OTTER does not find a
proof (at least, not in ten minutes).

The reason this works is that q, being a single letter, has weight 1, so clauses
involving q have much lower weight than would the same clauses with q replaced
by ip(c, s, a, t, r), which has weight 6. A clause involving the terms defining both
q and r would have weight at least 14, so it would not be considered very soon,
and meantime, many other points will be constructed.

OTTER Proofs in Tarskian Geometry 503

list(sos).

T(a,s,c).

T(b,t,c).

T(a,p,b).

-T(p,x,c)|-T(s,x,t).

r = ip(c,t,b,a,p).

q = ip(c,s,a,t,r).

end_of_list.
�

a b

�
c

�

p

q�s
� t

r

Fig. 4. The crossbar theorem asserts that q exists, given the other points except r. To
prove it we construct first r and then q, using inner Pasch twice.

In this simple example, if you put all clauses into sos, and nothing in usable,
OTTER does eventually find a proof without being given the diagram, but it is
certainly much slower than with the diagram. In other, more complex examples,
we think this technique is essential. Here, for example, are the lines from the
input file for Satz 5.1, the inner connectivity of betweenness, describing the two
rather complicated diagrams on pp. 39–40 of [9]:

c1=ext(a,d,c,d).

d1=ext(a,c,c,d).

p=ext(c1,c,c,d).

r=ext(d1,c,c,e).

q=ext(p,r,r,p).

b1 = ext(a,c1,c,b).

b2 = ext(a,d1,d,b).

e = ip(c1,d,b,d1,c).

3.4 Assistance with Proof by Cases

We found that OTTER often “got stuck” when Szmielew’s proof required an
argument by cases. We could sometimes get around this difficulty by simply
adding a clause A | -A, where the proof needs to proceed by cases on A. It seems
that OTTER prefers constructive proofs! This technique is called “tautology
adjunction” by the second author, who used it decades ago in proving that
subgroups of index 2 are normal. We used this in many input files. Here we
discuss just one example. The inner connectivity of betweenness (A17 above,
Satz 5.3 in Szmielew) is derived as an easy corollary of Satz 5.1, which is

a
= b ∧T(a, b, c) ∧T(a, b, d) → T(a, c, d) ∨T(a, d, c).

504 M. Beeson and L. Wos

The natural way to formulate list(sos) for this problem would be

a != b.

T(a,b,c).

T(a,b,d).

-T(a,c,d).

-T(a,d,c).

Of course, that does not suffice to find a proof. So, we added the description of
the diagram, as given in the previous section. Unfortunately OTTER could still
not find a proof, even with hints.

The proof in Szmielew proceeds by cases. The methodology we followed in
such cases was this:

– Add one case to sos, e.g. c=c1. (c1 is a constant from the diagram, above.)
– If we find a proof: add the steps of that proof as hints.
– Remove that case, and add its negation, e.g. c != c1

– If we find a proof: add its steps also as hints.
– Now remove both cases and add their disjunction: c = c1 | c != c1.

Often we could find a proof. The amazing thing, to us, was that the same file
with the tautology deleted would often not find a proof. We do not understand
exactly why tautology adjunction works, but in practice, it often helps.

The example at hand required two divisions into cases (so tautology disjunc-
tion was applied recursively). The first is the case whether c=c1 or not, and the
second, whether d1=e or not. In the input file, one can see in the two commented
lines in list(sos) the traces of completing the last argument by cases.

% d1 = e.

% d1!= e.

d1=e | d1!=e.

c = c1 | c != c1.

We do not mean to imply that this was all there was to proving Satz 5.1. This
was just the last difficulty. By that time, the input file already contained a long
list of hints obtained by methods described in the next section. The final proof
has 131 steps.

3.5 Supplying Proof Steps

Our methodology was as follows: when trying to prove a theorem, we prepared
an input file with the negated goal in list(sos), and the axioms and previously
proved theorems in list(usable), and the choice of inference rules as described
below. If this did not find a proof, and the proof in Szmielew had a diagram,
we supplied the diagram. If that still did not work, then we tried supplying
some intermediate goals. We would list some important steps of the proof from

OTTER Proofs in Tarskian Geometry 505

Szmielew (in negated form) in list(passive), with answer literals having num-
bers for those goals. When this file is run, one sees which of the intermediate
goals are being proved. Among other things, this showed us where OTTER was
“getting stuck.” But even though we found no proof of the main goal, we had
the proofs of some intermediate goals. We converted these proof steps to hints,
and ran OTTER again. Sometimes more intermediate goals would be reached.
One can tinker with max weight: sometimes a smaller max weight may keep one
from drowning, and sometimes a larger max weight may allow a vital clause to
be kept. With luck, this process would converge.

We note a technical point: Exactly how does one extract a list of hints from
the proofs in an OTTER output file? The lines of a proof contain extraneous ma-
terial, such as line numbers of the ancestors and justifications of the inferencea,
that must be stripped out. Since this has to be done iteratively and often, and
sometimes the list of clauses to be converted is long, one needs an automated
method to do this. The first author used a PHP script, and the second author
used a Unix shell script, for this purpose.

3.6 Divide and Conquer

If the methods described above still did not produce a proof, we tried to cut
the task in half as follows: we picked one of the intermediate steps (already in
list(passive), but not being proved), and added its positive form to list(sos).
In the abstract, say we are trying to prove conclusion C from hypothesis A. The
proof, we think, should proceed by first proving B from A, and then proving C
from A and B. If we can’t succeed in proving C from A in one run, it makes
sense to assume B as well as A, and try to prove C. In a separate run, we try to
prove B from A. That may be easier with the negated form of B in list(sos)

instead of list(passive).

3.7 Choice of Inference Rules and Settings

We mentioned above that one of the ways OTTER can be controlled is through
a propitious choice of inference rules and settings. We tinkered with our choices
often, in the hope that a different choice would be better. We did not find
that one choice was always best. We always used hyperresolution, and we some-
times used unit resolution or binary resolution. Sometimes it helped to turn
binary resolution on. Sometimes it helped to turn binary resolution off. Gen-
erally, we think it worked better with both hyperresolution and binary reso-
lution allowed, but not always. Occasionally we could “break through” using
sos queue or set(input sos first). We often changed the values of the pa-
rameters max weight, max distinct vars, pick given ratio, and max proofs.
We used paramodulation for equality reasoning. The second author believes that
failing to use paramodulation was an important reason for the limited success
of the experiments he made in the 1980s in Tarskian geometry; but we also note
that Quaife writes that paramodulation was available for use but seldom actually
used in his proofs.

506 M. Beeson and L. Wos

3.8 What about Prover9? Or E, Spass, Vampire?

The question inevitably arises, why did we use OTTER instead of the newer
provers mentioned? The short answer is, we did use Prover9, and others tried E,
Spass, and Vampire. Whenever we could not get a proof with OTTER, the first
author would try it in Prover9. But in every case, Prover9 also could not find a
proof; and sometimes Prover9 would not succeed when OTTER would. In so-far
unpublished work, Narboux et. al. tried E, Spass, and Vampire on the theorems
from Szmielew, with a 14% success rate. This was in a completely automated
mode, so not directly comparable to the 100% success rate we achieved with a
human-OTTER team.

4 Results

All the input files and resulting OTTER proofs that we found are posted on
the web at [1]. Here we list some of the more difficult proofs we found, with
the length of the proofs. It is not meaningful to list the execution times, as the
posted input files (for the difficult proofs) were developed iteratively, and contain
many hints based on previous runs, so most of the posted input files produce a
proof more or less immediately.

4.1 Properties of Betweenness

In section 2.3, we listed six difficult theorems (A12-A18), each of which Tarski
originally took as an axiom, and their numbers as theorems in [9]. There is
another theorem about betweenness that occurs as a challenge problem in [15],
namely the “five-point theorem”:

T(z, w, v) ∧T(z, y, v) ∧T(w, x, y) → T(z, x, v).

We found OTTER proofs of all those theorems. The following table gives the
length of these proofs, which is perhaps some indication of the relative difficulty
of finding them.

A12 Satz 3.1 Reflexivity for betweenness 4 steps
A14 Satz 3.2 Symmetry for betweenness 4 steps
A15 Satz 3.5 Inner transitivity 4 steps
A16 Satz 3.7 Outer transitivity 16 steps
A17 Satz 5.3 Inner connectivity 131 steps
A18 Satz 5.1 Outer connectivity 4 steps

4.2 Midpoints, Perpendiculars, and Isosceles Triangles

The “midpoint theorem” asserts that every segment has a midpoint. The tradi-
tional Euclidean construction involves the intersection points of two circles, but
we are required to prove the theorem from A1-A9. (Not even the parallel axiom

OTTER Proofs in Tarskian Geometry 507

A10 is to be used.) This is a difficult problem, and was apparently not solved
until Gupta’s 1965 thesis [4]. Two important preliminary steps are the erection
of a perpendicular to a line at a given point, and the “Lotsatz”, which says we
can drop a perpendicular to a line from a point not on the line. Remember this
must be done without circles! A very clever observation of Gupta was that it is
easy to construct the midpoint of ab if ab is the base of an isosceles triangle (only
two applications of inner Pasch are needed). This plays a key role in the proof
of the Lotsatz. The two theorems on perpendiculars are used to construct the
midpoint. Of course, once we have midpoints and perpendiculars, it is trivial to
show that every segment is the base of an isosceles triangle; that theorem does
not even occur explicitly in [9]. An important lemma used in the proofs of these
theorems is the “Krippenlemma” (too long to state here). Here are the lengths
of our proofs of these theorems:

Satz 7.22 Krippenlemma 132 steps
Satz 7.25 Base of isosceles triangle has a midpoint 123 steps
Satz 8.18 Lotsatz: there is a perpendicular to a

line from a point not on the line 332 steps
Satz 8.21a There is a perpendicular to a line

through a point on the line on the opposite side
from a given point not on the line. 108 steps

Satz 8.22b Given segment ab and perpendiculars ap and qb, and
point t on line ab between p and q, with ap ≤ qb, then
segment ab has a midpoint. 233 steps

Satz 8.22 Every segment has a midpoint 23 steps

4.3 The Diagonals of a Rhombus Bisect Each Other

One of the challenges in [15], solved by Quaife, was to prove that the diagonals
of a rectangle bisect each other. That problem assumed that opposite sides are
equal and the diagonals meet in the midpoint of one diagonal; you are to prove
that the other diagonal is also bisected. A more general problem is found in
Satz 7.21, which asserts that in a quadrilateral with opposite sides equal, the
diagonals meet, and bisect each other. Our proof of this theorem has 31 steps.

4.4 Inner and Outer Pasch

The proof that inner Pasch implies outer Pasch (using A1-A6 and A8) was one of
the major results of Gupta’s thesis, and enabled Szmielew to replace outer Pasch
by inner Pasch as an axiom. This theorem was one of Quaife’s four challenges.
It is Satz 9.6 in [9]. The proof posted on our archive is 111 steps, preceded by
proofs Satz 9.4 and Satz 9.5 of 57 and 45 steps. Satz 9.5 is the “plane separation
theorem”, important in its own right.

4.5 Hilbert’s Axioms

Hilbert’s theory can be interpreted in Tarski’s, using pairs of points for lines
and ordered triples of points for angles and planes. His axioms (so interpreted)

508 M. Beeson and L. Wos

all turn out to be either axioms, theorems proved in [9], or extremely elemen-
tary consequences of theorems proved in [9]. The theorems of [9] needed are
2.3,2.4,2.5,2.8; 3.2,3.13;6.16, 6.18; 8.21, 8.22; 9.8, 9.25, 9.26, 11.15, 11.49, and
finally Hilbert’s parallel axiom is Satz 12.11. We have posted OTTER proofs of
all these theorems. Narboux and Braun have proof-checked Hilbert’s axioms in
Tarskian geometry, using Coq [2].

5 Discussion

5.1 Proof Checking vs. Proof Finding

“Proof checking” refers to obtaining computer-verified proofs, starting with
human-written proofs. “Proof finding” refers to the traditional task of auto-
mated deduction, finding a proof by searching a large space of possible proofs,
either without possessing a proof or without making use of a known proof. The
use of hints blurs this distinction, as we shall now explain. If we have a proof
in hand (whether generated by human or machine), and we enter its steps as
hints, with a low max weight, we forceOTTER to find a proof containing mostly
the same formulas as the proof in the hints. (The order of deductions might be
different.) Thus we can almost always ensure that Otter finds a proof, if we
have a proof in hand. One could plausibly claim that this is proof-checking, not
proof-finding.

What if, instead of entering all the steps as hints, we enter some key steps in
list(passive), and generate some proofs of some of those steps, and put those
steps in as hints? Now are we doing proof-checking, or proof-finding? What
may have appeared to be a clearcut distinction turns out to be a continuum of
possibilities.

5.2 1992 vs. 2014

The research reported here shows how much progress has occurred in automated
reasoning in that time period. Indeed, approximately thirty years ago, almost
all of the theorems cited in this article were out of reach. The question arises,
whether this advance might be due simply to the increased memory capacity
and speed of modern computers. Perhaps Quaife, equipped with one of our
computers, would have found these proofs? Perhaps we, constrained to run on
a computer from 1990, might not have found them? We argue that this is not
the case: the improvements are due not to faster hardware but to the techniques
described above, namely generating partial proofs (of intermediate steps) and
using their steps as hints; using the right combination of inference rules and
settings; using tautology adjunction to help with proofs by cases; and divide-
and-conquer. We note that Quaife did have (in fact, invented) the technique of
giving OTTER the diagram. We did not actually try to run on a 1990 computer,
and we do not doubt that it would have been painful and discouraging; but we
think the main credit should go to Veroff’s invention of hints, and the uses of
hints developed by the second author and applied here.

OTTER Proofs in Tarskian Geometry 509

6 Conclusions

We used OTTER to find proofs of the theorems in Tarskian geometry in the first
nine chapters of Szmielew’s development in Part I of [9]. Those theorems include
the four unsolved challenge problems from Quaife’s book[8], and the verification
of Hilbert’s axioms.

Input files and the resulting proofs for all the theorems that we have proved
from Szmielew are archived at [1], where they can be viewed or downloaded. The
second author has also conducted many experiments aimed at shortening some
of these proofs or finding forward proofs instead of backwards or bidirectional
proofs; we have not reported on those experiments here.

References

1. Beeson, M.: The Tarski formalization project,
http://www.michaelbeeson.com/research/FormalTarski/index.php

2. Braun, G., Narboux, J.: From Tarski to Hilbert. In: Ida, T., Fleuriot, J. (eds.)
Automated Deduction in Geometry 2012 (2012)

3. Caviness, B.F., Johnson, J.R. (eds.): Quantifier Elimination and Cylindrical Alge-
braic Decomposition. Springer, Wien/New York (1998)

4. Gupta, H.N.: Contributions to the Axiomatic Foundations of Geometry. Ph.D.
thesis, University of California, Berkeley (1965)

5. Hilbert, D.: Foundations of Geometry (Grundlagen der Geometrie), 2nd English
edn. Open Court, La Salle (1960), translated from the tenth German edition by
Leo Unger. Original publication date (1899)

6. Pasch, M.: Vorlesung über Neuere Geometrie. Teubner, Leipzig (1882)
7. Pasch, M., Dehn, M.: Vorlesung über Neuere Geometrie. B. G. Teubner, Leipzig

(1926), The 1st edn. (1882), which is the one digitized by Google Scholar, does not
contain the appendix by Dehn

8. Quaife, A.: Automated Development of Fundamental Mathematical Theories.
Springer, Heidelberg (1992)

9. Schwabhäuser, W., Szmielew, W., Tarski, A.: Metamathematische Methoden in der
Geometrie: Teil I: Ein axiomatischer Aufbau der euklidischen Geometrie. In: Teil
II: Metamathematische Betrachtungen (Hochschultext). Springer (1983); reprinted
2012 by Ishi Press, with a new foreword by Michael Beeson

10. Tarski, A.: A decision method for elementary algebra and geometry. Tech. Rep.
R-109, 2nd revised edn., reprinted in [3], pp. 24–84. Rand Corporation (1951)

11. Tarski, A.: What is elementary geometry? In: Henkin, L., Suppes, P., Tarksi, A.
(eds.) The Axiomatic Method, with Special Reference to Geometry and Physics.
Proceedings of an International Symposium held at the Univ. of Calif., Berkeley,
December 26, 1957-January 4, 1958. Studies in Logic and the Foundations of Math-
ematics, pp. 16–29. North-Holland, Amsterdam (1959); available as a 2007 reprint,
Brouwer Press, ISBN 1-443-72812-8

12. Tarski, A., Givant, S.: Tarski’s system of geometry. The Bulletin of Symbolic
Logic 5(2), 175–214 (1999)

13. Veblen, O.: A system of axioms for geometry. Transactions of the American Math-
ematical Society 5, 343–384 (1904)

14. Veroff, R.: Using hints to increase the effectiveness of an automated reasoning
program. Journal of Automated Reasoning 16(3), 223–239 (1996)

http://www.michaelbeeson.com/research/FormalTarski/index.php

510 M. Beeson and L. Wos

15. Wos, L.: Automated reasoning: 33 basic research problems. Prentice Hall, Engle-
wood Cliffs (1988)

16. Wos, L.: Automated reasoning and the discovery of missing and elegant proofs.
Rinton Press, Paramus (2003)

17. Wos, L., Pieper, G.W.: A fascinating country in the world of computing. World
Scientific (1999)

NESCOND: An Implementation of Nested Sequent
Calculi for Conditional Logics

Nicola Olivetti1 and Gian Luca Pozzato2

1 Aix-Marseille Université, CNRS, LSIS UMR 7296 - France
nicola.olivetti@univ-amu.fr

2 Dipartimento di Informatica - Universitá di Torino - Italy
gianluca.pozzato@unito.it

Abstract. We present NESCOND, a theorem prover for normal conditional log-
ics. NESCOND implements some recently introduced NESted sequent calculi for
propositional CONDitional logics CK and some of its significant extensions with
axioms ID, MP and CEM. It also deals with the flat fragment of CK+CSO+ID,
which corresponds to the logic C introduced by Kraus, Lehmann and Magidor.
NESCOND is inspired by the methodology of leanTAP and it is implemented
in Prolog. The paper shows some experimental results, witnessing that the per-
formances of NESCOND are promising. The program NESCOND, as well as
all the Prolog source files, are available at http://www.di.unito.it/
˜pozzato/nescond/

1 Introduction

Conditional logics are extensions of classical logic by a conditional operator ⇒. They
have a long history [10, 11], and recently they have found an interest in several fields
of AI and knowledge representation. Just to mention a few (see [2] for a complete
bibliography), they have been used to reason about prototypical properties, to model
belief change, to reason about access control policies, to formalize epistemic change in
a multi-agent setting. Conditional logics can also provide an axiomatic foundation of
nonmonotonic reasoning [9]: here a conditional A ⇒ B is read “normally, if A then
B”.

In previous works [1, 2] we have introduced nested sequent calculi, called NS, for
propositional conditional logics. Nested sequent calculi [4–6, 8] are a natural general-
ization of ordinary sequent calculi where sequents are allowed to occur within sequents.
However, a nested sequent always corresponds to a formula of the language, so that we
can think of the rules as operating “inside a formula”, combining subformulas rather
than just combining outer occurrences of formulas as in ordinary sequent calculi. The
basic normal conditional logic CK and its extensions with ID, MP and CEM are con-
sidered, as well as the cumulative logic C introduced in [9] which corresponds to the
flat fragment (i.e., without nested conditionals) of the conditional logic CK+CSO+ID.

Here we describe an implementation of NS in Prolog. The program, called
NESCOND, gives a PSPACE decision procedure for the respective logics, and it is
inspired by the methodology of leanTAP [3]. The idea is that each axiom or rule of

S. Demri, D. Kapur, and C. Weidenbach (Eds.): IJCAR 2014, LNAI 8562, pp. 511–518, 2014.
c© Springer International Publishing Switzerland 2014

http://www.di.unito.it/~pozzato/nescond/
http://www.di.unito.it/~pozzato/nescond/

512 N. Olivetti and G.L. Pozzato

the nested sequent calculi is implemented by a Prolog clause of the program. The re-
sulting code is therefore simple and compact: the implementation of NESCOND for
CK consists of only 6 predicates, 24 clauses and 34 lines of code. We provide experi-
mental results by comparing NESCOND with CondLean [12] and GOALDUCK [13].
Performances of NESCOND are promising, and show that nested sequent calculi are
not only a proof theoretical tool, but they can be the basis of efficient theorem proving
for conditional logics.

2 Conditional Logics and Their Nested Sequent Calculi

We consider a propositional conditional language L over a set ATM of propositional
variables. Formulas of L are built as usual: ⊥, � and the propositional variables of
ATM are atomic formulas; if A and B are formulas, then ¬A and A ◦ B are complex
formulas, where ◦ ∈ {∧,∨,→,⇒}. We adopt the selection function semantics. We
consider a non-empty set of possible worlds W . Intuitively, the selection function f
selects, for a world w and a formula A, the set of worlds of W which are closest to
w given the information A. A conditional formula A ⇒ B holds in a world w if the
formula B holds in all the worlds selected by f for w and A.

Definition 1 (Selection function semantics). A model is a triple M = 〈W , f, []〉
where W is a non empty set of worlds, f : W × 2W +−→ 2W is the selection function,
and [] is the evaluation function, which assigns to an atom P ∈ ATM the set of worlds
where P is true, and is extended to boolean formulas as follows: [�] = W; [⊥] = ∅;
[¬A] = W−[A]; [A∧B] = [A]∩[B]; [A∨B] = [A]∪[B]; [A → B] = [B]∪(W−[A]);
[A ⇒ B] = {w ∈ W | f(w, [A]) ⊆ [B]}. A formula F ∈ L is valid in a model
M = 〈W , f, []〉, and we write M |= F , if [F] = W . A formula F ∈ L is valid, and
we write |= F , if it is valid in every model, that is to say M |= F for every M.

The semantics above characterizes the basic conditional system, called CK, where no
specific properties of the selection function are assumed. An axiomatization of CK is
given by (� denotes provability in the axiom system):

– any axiomatization of the classical propositional calculus (prop)
– If � A and � A→ B, then � B (Modus Ponens)
– If � A↔ B then � (A⇒ C)↔ (B ⇒ C) (RCEA)
– If � (A1 ∧ · · · ∧An)→ B then � (C ⇒ A1 ∧ · · · ∧ C ⇒ An)→ (C ⇒ B) (RCK)

Moreover, we consider the following standard extensions of the basic system CK:

AXIOM
A ⇒ A

(A ⇒ B) ∨ (A ⇒ ¬B)

(A ⇒ B) → (A → B)

(A ⇒ B) ∧ (B ⇒ A) → ((A ⇒ C) → (B ⇒ C))

f(w, [A]) ⊆ [A]

| f(w, [A]) | ≤ 1

w ∈ [A] implies w ∈ f(w, [A])

f(w, [A]) : [B] f(w, [B]) : [A] f(w, [A]) = f(w, [B])and implies

MODEL CONDITIONSYSTEM
ID
CEM
MP
CSO

In Figure 1 we present nested sequent calculi NS, where S is an abbreviation for
CK{+X}, and X ∈ {CEM, ID, MP, ID+MP, CEM+ID}. A nested sequent Γ is de-
fined inductively as follows: a formula of L is a nested sequent; if A is a formula and Γ
is a nested sequent, then [A : Γ] is a nested sequent; a finite multiset of nested sequents
is a nested sequent. A nested sequent can be displayed as

NESCOND 513

Γ(P,¬P) (AX) (AX�)Γ(�)

Γ(A ∧ B) Γ(¬(A ∧ B)) Γ(A ∨ B) Γ(¬(A ∨ B))

Γ(A) Γ(¬A) Γ(¬B)Γ(B) Γ(A,B)Γ(¬A,¬B)

Γ(A ⇒ B)

Γ(¬(⇒ B), [A′ : Δ])

Γ([A : B])

Γ([A : Δ])

Γ([A : Δ,¬A])

Γ([A : Δ], [B : Σ])

Γ([A : Δ, Σ], [B : Σ]) A,¬B B,¬A

(∧+) (∧−) (∨−)(∨+)

(⇒+)

(⇒−)

(ID)

(CEM)

Γ(A → B) Γ(¬(A → B))

Γ(¬A,B) Γ(A)
(→+) (→−)

(¬)
P ∈ ATM

Γ(¬(A ⇒ B))

Γ(¬(A ⇒ B), A) Γ(¬(A ⇒ B),¬B)
(MP)

Γ(A)
Γ(¬¬A)

Γ(¬B)

Γ(¬⊥) (AX⊥)

Γ,¬(A ⇒ B), [A′ : Δ]

Γ,¬(A ⇒ B), [A′ : Δ,¬B] Γ,¬(A ⇒ B), [A : A′]
(CSO)

Γ,¬(A ⇒ B), [A′ : A]

Γ(¬(A ⇒ B), [C : Δ,¬B]) A,¬C C,¬A

C

Fig. 1. The nested sequent calculi NS

A1, . . . , Am, [B1 : Γ1], . . . , [Bn : Γn],

where n,m ≥ 0, A1, . . . , Am, B1, . . . , Bn are formulas and Γ1, . . . , Γn are nested
sequents. A nested sequent can be directly interpreted as a formula by replacing “,”
by ∨ and “:” by ⇒, i.e. the interpretation of A1, . . . , Am, [B1 : Γ1], . . . , [Bn : Γn] is
inductively defined by the formula F(Γ) = A1∨ . . .∨Am∨(B1 ⇒ F(Γ1))∨ . . .∨(Bn ⇒
F(Γn)).

We have also provided nested sequent calculi for the flat fragment, i.e. without nested
conditionals, of CK+CSO+ID, corresponding to KLM logic C [9]. The rules of the
calculus, called NCKLM, are those ones of NCK+ID (restricted to the flat fragment)
where the rule (⇒−) is replaced by the rule (CSO).

In order to present the rules of the calculus, we need the notion of context. Intuitively
a context denotes a “hole”, a unique empty position, within a sequent that can be filled
by a sequent. We use the symbol () to denote the empty context. A context is defined
inductively as follows: Γ () = Δ, () is a context; if Σ() is a context Γ () = Δ, [A :
Σ()] is a context. Finally, we define the result of filling “the hole” of a context by
a sequent. Let Γ () be a context and Δ be a sequent, then the sequent obtained by
filling the context by Δ, denoted by Γ (Δ) is defined as follows: if Γ () = Λ, () then
Γ (Δ) = Λ,Δ; if Γ () = Λ, [A : Σ()] then Γ (Δ) = Λ, [A : Σ(Δ)]. The notions of
derivation and of derivable sequent are defined as usual. In [1] we have shown that:

Theorem 1. The nested sequent calculi NS are sound and complete for the respective
logics, i.e. a formula F of L is valid in CK+X if and only if it is derivable in NS.

As usual, in order to obtain a decision procedure for the conditional logics under consid-
eration, we have to control the application of the rules (⇒−)/(CSO), (MP), (CEM),
and (ID) that otherwise may be applied infinitely often in a backward proof search,
since their principal formula is copied into the respective premise(s). We obtain a sound,
complete and terminating calculus if we restrict the applications of these rules as fol-
lows [1, 2]: (⇒−) can be applied only once to each formula ¬(A ⇒ B) with a context
[C : Δ] in each branch, the same for (CSO) in the system CK+CSO+ID; (ID) can be
applied only once to each context [A : Δ] in each branch; (MP) can be applied only

514 N. Olivetti and G.L. Pozzato

once to each formula ¬(A ⇒ B) in each branch. For systems with (CEM), we need
a more complicated mechanism: due to space limitations, we refer to [1] for this case.
These results give a PSPACE decision procedure for their respective logics.

3 Design of NESCOND

In this section we present a Prolog implementation of the nested sequent calculi NS.
The program, called NESCOND (NESted sequent calculi for CONDitional logics), is
inspired by the “lean” methodology of leanTAP, even if it does not follow its style in a
rigorous manner. The program comprises a set of clauses, each one of them implements
a sequent rule or axiom of NS. The proof search is provided for free by the mere depth-
first search mechanism of Prolog, without any additional ad hoc mechanism.

NESCOND represents a nested sequent with a Prolog list, whose elements can be
either formulas F or pairs [Context,AppliedConditionals]where:

- Context is also a pair of the form [F,Gamma], where F is a formula of L and
Gamma is a Prolog list representing a nested sequent;
- AppliedConditionals is a Prolog list [A 1=>B 1,A 2=>B 2,...,A k=>
B k], keeping track of the negated conditionals to which the rule (⇒−) has been al-
ready applied by using Context in the current branch. This is used in order to imple-
ment the restriction on the application of the rule (⇒−) in order to ensure termination.

Symbols� and⊥ are represented by constantstrue and false, respectively, whereas
connectives ¬, ∧, ∨, →, and ⇒ are represented by !, ˆ, v, ->, and =>.

As an example, the Prolog list [p, q, !(p => q), [[p, [q v !p, [[p,[p => r]],[]],

!r]],[p => q]], [[q, [p, !p]],[]]] represents the nested sequent P,Q,¬(P ⇒ Q),
[P : Q ∨ ¬P, [P : P ⇒ R],¬R], [Q : P,¬P]. Furthermore, the list [p => q] in the
leftmost context is used to represent the fact that, in a backward proof search, the rule
(⇒−) has already been applied to ¬(P ⇒ Q) by using [P : Q∨¬P, [P : P ⇒ R],¬R].

Auxiliary Predicates. In order to manipulate formulas “inside” a sequent, NESCOND
makes use of the three following auxiliary predicates:

- deepMember(+Formulas,+NS) succeeds if and only if either (i) the nested se-
quentNS representing a nested sequent Γ contains all the fomulas in the list Formulas
or (ii) there exists a context [[A,Delta],AppliedConditionals] in NS such
that deepMember(Formulas,Delta) succeeds, that is to say there is a nested
sequent occurring in NS containing all the formulas of Formulas.
- deepSelect(+Formulas,+NS,-NewNS) operates exactly as deepMember,

however it removes the formulas of the list Formulas by replacing them with a place-
holder hole; the output term NewNS matches the resulting sequent.
- fillTheHole(+NewNS,+Formulas,-DefNS) replaces hole in NewNSwith

the formulas in the list Formulas. DefNS is the output term matching the result.

NESCOND for CK. The calculi NS are implemented by the predicate prove(+NS,
-ProofTree). This predicate succeeds if and only if the nested sequent represented
by the list NS is derivable. When it succeeds, the output term ProofTreematches with
a representation of the derivation found by the prover. For instance, in order to prove

NESCOND 515

that the formula (A ⇒ (B ∧ C)) → (A ⇒ B) is valid in CK, one queries NESCOND
with the goal: prove([(a => b ˆ c) -> (a => b)],ProofTree). Each
clause of prove implements an axiom or rule of NS. To search a derivation of a nested
sequent Γ , NESCOND proceeds as follows. First of all, if Γ is an axiom, the goal will
succeed immediately by using one of the following clauses for the axioms:

prove(NS,tree(ax)):-deepMember([P,!P],NS),!.
prove(NS,tree(axt)):-deepMember([top],NS),!.
prove(NS,tree(axb)):-deepMember([!bot],NS),!.

implementing (AX), (AX#) and (AX⊥), respectively. If Γ is not an instance of the
axioms, then the first applicable rule will be chosen, e.g. if a nested sequent in Γ con-
tains a formula A v B, then the clause implementing the (∨+) rule will be chosen, and
NESCOND will be recursively invoked on the unique premise of (∨+). NESCOND
proceeds in a similar way for the other rules. The ordering of the clauses is such that
the application of the branching rules is postponed as much as possible.

As an example, the clause implementing (⇒−) is as follows:

1. prove(NS,tree(condn,A,B,Sub1,Sub2,Sub3)):-
2. deepSelect([!(A => B),[[C,Delta],AppliedConditionals]],

NS,NewNS),
3. \+member(!(A => B),AppliedConditionals),
4. prove([A,!C],Sub2),
5. prove([C,!A],Sub3),!,
6. fillTheHole(NewNS,[!(A => B),[[C,[!B|Delta]]

,[!(A => B)|AppliedConditionals]]],DefNS),
7. prove(DefNS,Sub1).

In line 2, the auxiliary predicate deepSelect is invoked in order to find both a
negated conditional ¬(A ⇒ B) and a context [C : Δ] in the sequent (even in a
nested subsequent). In this case, such formulas are replaced by the placeholder hole.
Line 3 implements the restriction on the application of (⇒−) in order to guaran-
tee termination: the rule is applied only if ¬(A ⇒ B) does not belong to the list
AppliedConditionals of the selected context. In lines 4, 5 and 7, NESCOND is
recursively invoked on the three premises of the rule. In line 7, NESCOND is invoked
on the premise in which the context [C : Δ] is replaced by [C : Δ,¬B]. To this aim, in
line 6 the auxiliary predicate fillTheHole(+NewNS,+Formulas,-DefNS) is
invoked to replace the hole in NewNS, introduced by deepSelect, with the negated
conditional ¬(A ⇒ B), which is copied into the premise, and the context [C : Δ,¬B],
whose list of AppliedConditionals is updated by adding the formula ¬(A ⇒ B)
itself.

NESCOND for Extensions of CK. The implementation of the calculi for extensions
of CK with axioms ID and MP are very similar. For systems allowing ID, contexts
are triples [Context, AppliedConditionals, AllowID]. The third ele-
ment AllowID is a flag used in order to implement the restriction on the application
of the rule (ID), namely the rule is applied to a context only if AllowID=true, as
follows:

516 N. Olivetti and G.L. Pozzato

prove(NS,tree(id,A,SubTree)):-
deepSelect([[[A,Delta],AppliedConditionals,true]]],

NS,NewNS),!,
fillTheHole(NewNS,[[[A,[!A|Delta]],AppliedConditionals,

false]]],DefNS),
prove(DefNS,SubTree).

When (ID) is applied to [Context, AppliedConditionals, true], then
the predicate prove is invoked on the unique premise of the rule DefNS, and the flag
is set to false in order to avoid multiple applications in a backward proof search.

The restriction on the application of the rule (MP) is implemented by equipping
the predicate prove by a third argument, AppliedMP, keeping track of the negated
conditionals to which the rule has already been applied in the current branch. The clause
of prove implementing (MP) is:

1. prove(NS,AppliedMP,tree(mp,A,B,Sub1,Sub2)):-
2. deepSelect([!(A => B)],NS,NewNS),
3. \+member(A => B,AppliedMP),!,
4. fillTheHole(NewNS,[A,!(A => B)],NS1),
5. fillTheHole(NewNS,[!B,!(A => B)],NS2),
6. prove(NS1,[A => B|AppliedMP],Sub1),
7. prove(NS2,[A => B|AppliedMP],Sub2).

The rule is applicable to a formula ¬(A ⇒ B) only if [A => B] does not be-
long to AppliedMP (line 3). When (MP) is applied, then [A => B] is added to
AppliedMP in the recursive calls of prove on the premises of the rule (lines 6
and 7).

The implementation of the calculus for the flat fragment of CK+CSO+ID, corre-
sponding to KLM cumulative logic C, is similar to that for CK+ID; the only differ-
ence is that (⇒−) is replaced by (CSO). This does not make use of the predicate
deepSelect to “look inside” a sequent to find the principal formulas ¬(A ⇒ B) and
[C : Δ]: since the calculus only deals with the flat fragment of the logic under consid-
eration, such principal formulas are directly selected from the current sequent by easy
membership tests (standard Prolog predicates member and select), without search-
ing inside other contexts. Due tu space limitations, we omit details for extensions with
CEM.

4 Performance of NESCOND

The performances of NESCOND are promising. We have tested it by running SICStus
Prolog 4.0.2 on an Apple MacBook Pro, 2.7 GHz Intel Core i7, 8GB RAM machine.
We have compared the performances of NESCOND with the ones of two other provers
for conditional logics: CondLean 3.2, implementing labelled sequent calculi [12], and
the goal-directed procedure GOALDUCK [13]. We have tested the three provers (i) on
randomly generated sequents, obtaining the results shown in Figure 2 and (ii) over a set
of valid formulas. Concerning CK, we have considered 88 valid formulas obtained by
translating K valid formulas (�A is replaced by � ⇒ A, whereas &A is replaced by
¬(� ⇒ ¬A)) provided by Heuerding, obtaining the results in Figure 3.

NESCOND 517

Concerning (i), we have tested the three provers over 2000 random sequents, whose
formulas are built from 15 different atomic variables and have a high level of nesting
(10): NESCOND is not able to answer only in 0.05% of cases (1 sequent over 2000)
within 10 seconds, whereas both GOALDUCK and CondLean are not able to conclude
anything in more than 3% of cases (60 tests over 2000). If the time limit is extended
to 2 minutes, NESCOND answers in 100% of cases, whereas its two competitors have
still more than 1.30% of timeouts. The difference is much more significant when con-
sidering sequents with a lower level of nesting (3) and whose formulas contain only 3
different atomic variables: with a time limit of 10 seconds, NESCOND is not able to
answer only in 9.09% of cases, whereas both CondLean and GOALDUCK are not able
to conclude in 16.55% and in 51.15% of cases, respectively: this is explained by the fact
that NESCOND is faster than the other provers to find 355 not valid sequents (against
17 of CondLean and 34 of GOALDUCK) within the fixed time limit.

Concerning (ii) the performances of NESCOND are also encouraging. Considering
CK, NESCOND is not able to give an answer in less than 10 seconds only in 5 cases
over 88, against the 8 of CondLean and the 12 of GOALDUCK; the number of timeouts
drops to 4 if we extend the time limit to 1 minute, whereas this extension has no effect
on the competitors (still 8 and 12 timeouts). We have similar results also for extensions
of CK as shown in Figure 3: here we have not included GOALDUCK since the most
formulas adopted do not belong to the fragments admitting goal-directed proofs [13].

Fig. 2. NESCOND vs CondLean vs GOALDUCK over 2000 random sequents

Timeouts for systems without CEM

1ms 1s 10s

CondLean 19,23% 15,38% 13,46%

NESCOND 5,77% 0,00% 0,00%

Timeouts for systems CEM and CEM+ID

1ms 1s 10s

CondLean 51,72% 37,93% 27,59%

NESCOND 58,62% 51,72% 48,28%

Timeouts for extensions of CK

1ms 1s 10s

CondLean 48,08% 36,54% 28,85%

NESCOND 38,46% 28,85% 26,92%

100ms 1s 10s 1m

CondLean 12,50% 12,50% 9,09% 9,09%

GoalDUCK 21,71% 18,26% 13,88% 13,88%

NESCOND 12,50% 10,23% 5,68% 4,55%

Timeouts for CK

Fig. 3. NESCOND vs CondLean vs GOALDUCK: timeouts over valid formulas

518 N. Olivetti and G.L. Pozzato

These results show that the performances of NESCOND are encouraging, probably
better than the ones of the other existing provers for conditional logics (notice that there
is no set of acknowledged benchmarks for them). Figure 3 shows that this also holds for
extensions of CK: for systems not allowing CEM, NESCOND gives an answer in 95%
of the tests (all of them are valid formulas) in less than 1ms. The performances worsen
in systems with CEM because of the overhead of the termination mechanism.

5 Conclusions and Future Issues

We have presented NESCOND, a theorem prover for conditional logics implementing
nested sequent calculi introduced in [1]. Statistics in section 4 show that nested sequent
calculi do not only provide elegant and natural calculi for conditional logics, but they
are also significant for developing efficient theorem provers for them. In future research
we aim to extend NESCOND to other systems of conditional logics. To this regard, we
strongly conjecture that adding a rule for the axiom (CS) (A ∧ B) → (A ⇒ B) will
be enough to cover the whole cube of the extensions of CK generated by axioms (ID),
(MP), (CEM) and (CS). This will be object of subsequent research. We also aim at com-
paring the performances of NESCOND with those of CoLoSS [7], a generic-purpose
theorem prover for coalgebraic modal logics which can handle also basic conditional
logics.

References

1. Alenda, R., Olivetti, N., Pozzato, G.L.: Nested Sequent Calculi for Conditional Logics. In:
del Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS, vol. 7519, pp. 14–27.
Springer, Heidelberg (2012)

2. Alenda, R., Olivetti, N., Pozzato, G.L.: Nested Sequents Calculi for Normal Conditional
Logics. Journal of Logic and Computation (to appear)

3. Beckert, B., Posegga, J.: leantap: Lean tableau-based deduction. JAR 15(3), 339–358 (1995)
4. Brünnler, K., Studer, T.: Syntactic cut-elimination for common knowledge. Annals of Pure

and Applied Logic 160(1), 82–95 (2009)
5. Fitting, M.: Prefixed tableaus and nested sequents. A. Pure App. Log. 163(3), 291–313

(2012)
6. Goré, R., Postniece, L., Tiu, A.: Cut-elimination and proof-search for bi-intuitionistic logic

using nested sequents. In: Advances in Modal Logic, vol. 7, pp. 43–66 (2008)
7. Hausmann, D., Schröder, L.: Optimizing Conditional Logic Reasoning within CoLoSS. Elec-

tronic Notes in Theoretical Computer Science 262, 157–171 (2010)
8. Kashima, R.: Cut-free sequent calculi for some tense logics. St. Logica 53(1), 119–136

(1994)
9. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and

cumulative logics. Artificial Intelligence 44(1-2), 167–207 (1990)
10. Lewis, D.: Counterfactuals. Basil Blackwell Ltd. (1973)
11. Nute, D.: Topics in conditional logic. Reidel, Dordrecht (1980)
12. Olivetti, N., Pozzato, G.L.: CondLean 3.0: Improving Condlean for Stronger Conditional

Logics. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 328–332.
Springer, Heidelberg (2005)

13. Olivetti, N., Pozzato, G.L.: Theorem Proving for Conditional Logics: CondLean and Goal-
Duck. Journal of Applied Non-Classical Logics (JANCL) 18(4), 427–473 (2008)

Knowledge Engineering for Large Ontologies

with Sigma KEE 3.0

Adam Pease1 and Stephan Schulz2

1 Articulate Software
apease@articulatesoftware.com

2 Institut für Informatik, Technische Universität München
schulz@eprover.org

Abstract. The Suggested Upper Merged Ontology (SUMO) is a large,
comprehensive ontology stated in higher-order logic. It has co-evolved
with a development environment called the Sigma Knowledge Engineer-
ing Environment (SigmaKEE). A large and important subset of SUMO
can be expressed in first-order logic with equality. SigmaKEE has inte-
grated different reasoning systems in the past, but they either had to be
significantly modified, or integrated in a way that multiple queries to the
same theory required expensive full re-processing of the full knowledge
base.

To overcome this problem, to create a simpler system configuration
that is easier for users to install and manage, and to integrate a state-of-
the-art theorem prover we have now integrated Sigma with the E theorem
prover. The E distribution includes a simple server version that loads and
indexes the full knowledge base, and supports interactive queries via a
simple interface based on text streams. No special modifications to E
were necessary for the integration, so SigmaKEE can be easily upgraded
to future versions.

1 Introduction

The Suggested Upper Merged Ontology (SUMO) [6,7] is a large, compre-
hensive ontology stated in higher-order logic [2]. It has co-evolved with a
development environment called the Sigma Knowledge Engineering Environment
(SigmaKEE) [8].

SUMO and Sigma have been employed in applications for natural language
understanding [9], database modeling [11] and sentiment analysis [10], among
others.

A large and important subset of SUMO can be expressed in first-order logic
with equality. This subset has been used in several instances of of the LTB
division of the yearly CADE ATP System Competition (CASC)[13,18,14] The
LTB (Large Theory Batch) division of CASC is concerned with reasoning in
large theories, and in particular with the task of answering a series of queries
over a large, relatively static background theory.

Since a large part of SUMO can be expressed in first-order logic, SigmaKEE
provides first-order reasoning capabilities to support the user in interacting with

S. Demri, D. Kapur, and C. Weidenbach (Eds.): IJCAR 2014, LNAI 8562, pp. 519–525, 2014.
c© Springer International Publishing Switzerland 2014

520 A. Pease and S. Schulz

the knowledge base. Earlier versions of SigmaKEE have been integrated with a
customized special purpose version of Vampire [15]. However, later versions of
Vampire were not compatible with the customized version and the integration
interface with SigmaKEE. As a consequence, Sigma did not have access to the
latest deduction technologies.

An interim measure has been integration with the TPTPworld environment [22]
that supports remote access to the entire suite of theorem provers competing
in CASC, also adding facilities for generating explicit proof objects even with
provers that do not natively have that capability. In recent years, an initial inte-
gration has also been done for the LEO-II higher-order logic prover [1]. However,
both approaches require re-processing of the full ontology for each query, and
thus result in significant overhead, resulting in noticeable delays even for simple
user queries.

To overcome this problem, to use the latest first-order theorem proving tech-
nology, and to create a simpler system configuration that is easier for users
to install and manage, SigmaKEE 3.0 now integrates the well-known theorem
prover E [16,17]. The E distribution includes a simple server version that loads
and indexes the full knowledge base, and supports interactive queries via a sim-
ple interface based on text streams. No special modifications to E were necessary
for the integration, so Sigma users will be able to upgrade to successive versions
of E as they are released.

2 Architecture and User Interface

Sigma is a Java and JSP system that typically will run under the Apache Tomcat
web server. It consists of a set of tools integrated at the user level by an HTML
interface. These include:

– translation of theories to and from THF, TPTP, SUO-KIF, OWL and Prolog
formats

– mapping theories to other theories based on similarity of terms names and
definitions

– structured browsing of hyperlinked and sorted theory content, including tree-
structured presentation of hierarchies

– natural language paraphrases of theories in many different languages
– structured browsing of WordNet [4] and Open Multilingual Wordnet [3] and

their links to SUMO
– various kinds of static analysis tools for theories, as well as structured infer-

ence using theorem proving as a client that attempts to find theory contra-
dictions

The core of the system consists of data structures to manage knowledge bases,
their constituent files, and the statements contained in the files. Analysis, dis-
play, natural language processing and inference components have been added
incrementally around the common data structures. In particular, the facilities to

Knowledge Engineering for Large Ontologies with Sigma KEE 3.0 521

handle TPTP input and output, and integration with the TPTPworld environ-
ment were added to support development for the CASC competition. Sigma is
an Integrated Development Environment for ontologies in the same sense Eclipse
is an IDE for Java programming. While actual development of theories is per-
formed in a text editor, a suite of tools assists in the process of developing text
files of SUMO-based theories and a typical development process involves having
both Sigma and a text editor running, and the developer frequently switching
attention between the two.

By integrating E into Sigma, SUMO developers can more rapidly test new
theories for consistency, as well as applying them in applications involving au-
tomated deduction. Sigma supports a hyperlinked proof output that links steps
in each proof to display of the statements from which they are derived.

Users interact with Sigma via a web browser. The user interface is straight-
forward, consisting of a window in which queries or statements are made in
SUO-KIF format, and hyperlinked proof results, which are similar to a standard
textbook proof. Steps in the proof are presented along with a brief justification
of how they were derived, whether directly asserted to the knowledge base, or
derived via rules of inference from previous steps.

In a typical workflow, a user writes theory content in a text editor and pe-
riodically loads the file into Sigma. He will frequently use the Sigma browsing
tools to inspect other portions of SUMO, for example, to find useful relations
and classes to help model the knowledge of the task at hand, or simply to check
relation argument orders or argument types. The user can pose queries to E to
test the coverage of the new theory content. Debugging a query that doesn’t
yield an answer often involves breaking down a complex chain of reasoning into
smaller and simpler steps, adding knowledge to complete elements of the chain
and gradually building up to the full line of reasoning desired. This will involve
running queries, checking proofs of lemmas, checking existing portions of SUMO
to see if knowledge that might be assumed present is actually present, and in the
desired form. Based on iterations of this process, the user will keep adding new
statements to a theory in a text editor until the modeling or application task
is complete. In typical usage, this development process is broadly quite similar
to modern programming, just that the language is strictly declarative, rather
than functional or procedural, and therefore the analysis and development tools
themselves are different. But the cycle of development in a text editor, use of
analysis, browsing and debugging tools, then further editing or development of
the ”program” is a familiar one.

3 SigmaKEE/E Integration

SigmaKEE has been integrated with E 1.8[16,17]. E is a powerful theorem prover
for full first order logic with equality. It has a number of features that make it
an attractive choice for this integration:

– E supports the TPTP standards for input and output. In particular, it reads
specifications and writes proof objects in the TPTP-3 language [20] and uses

522 A. Pease and S. Schulz

Web GUI
SigmaKEE front-end

Apache Tomcat
SigmaKEE back-end

e_ltb_runner

Static Background
Knowledge Base/Ontology

Static FOF Background
Knowledge Base

Working Session Assumptions and Query
Working Session Assumptions and Query

Relevance Filter

...

Deduction Control

EE E

TPTP to
SUO-KIF
translation

SUO-KIF
to TPTP
translation

SUMO-KIF
to TPTP
translation

SUO-KIF
to TPTP
translation

Fig. 1. Main architectural components and data flows of SigmaKEE with respect to
the deduction component

the SZS result ontology [19] to signal success or failure of a proof attempt.
Thus, the main interfaces are well-defined and results are easy to parse.

– As of version 1.7, E supports the proposed TPTP answer standard [21]. It
can report one or multiple answers to queries, i.e. instantiations for top-level
existentially quantified variables in the conjecture that make it true. This is
particularly valuable for query-answering.

– With version 1.8, E can generate and print checkable proof objects with
barely measurable overhead [17]. The proof objects make logical dependen-
cies obvious, and can also help to debug the ontology, in particular by iden-
tifying inconsistencies.

In addition to support for well defined I/O standards and fast proof gener-
ation, E also provides a prototypical implementation of deduction as a service.
The e ltb runner control program in the E distribution supports the efficient
execution of multiple queries over a static background theory, both in batch mode
and in interactive mode. This interactive mode forms the base of the interface
between the SigmaKEE core and the deduction system.

On start-up, e ltb runner reads a specification file that describes the con-
stant background theory, given in the form of files of clauses and formulas in
TPTP-3 syntax. This initial knowledge base is indexed with a bi-directional

Knowledge Engineering for Large Ontologies with Sigma KEE 3.0 523

index from formulas to function symbols and vice versa. Moreover, various statis-
tics on the distribution of function symbols in the knowledge base are computed.
These pre-computed indices and values allow the efficient application of a pa-
rameterized variant of the SInE algorithm [5].

SUMO

Instantiate
predicate vars

Expand row
variables

Add type
constraints

Rename
predicates

Syntax
translation E

Hyperlink

Remove
higher-order

Syntax
translation

Proof
simplification

Sigma

Fig. 2. Language transforms

The program then enters interac-
tive mode and reads input from the
user via stdin. Users can provide ad-
ditional formulas, either directly or by
specifying TPTP input directives to
load axioms from files. Typically, a
query consists of a number of addi-
tional assumptions and a conjecture
(or question, if answer instantiations
are desired). These formulas are tem-
porarily integrated into the knowledge
base and the indices are updated in
a way that allows for the efficient re-
traction of the formulas and resetting
of the indices. When the user indi-
cates that the current specification is
complete, e ltb runner runs various
different relevancy filters over the ex-
tended knowledge base and extracts a
number of individual proof problems,
each of which contains the conjecture
or query and a number of potentially
useful axioms. These are handed to
different instances of E in automatic
mode. If one of the instances finds
a proof (or a counter-saturation), all
provers are stopped, and the result,

along with the proof or the derivation of the saturation, is provided back on
the standard output channel. If all instances of E time out or hit other resource
limits, the proof attempt fails.

Once the job is processed, the additional formulas are removed from the knowl-
edge base and the indices, and the system waits for the next user command.

Figure 1 provides an overview of the integration with SigmaKEE with E.
On start-up, the SigmaKEE back-end translates the static ontology into TPTP
format. It starts up e ltb runner in interactive mode, passing the translated
ontology as as the background theory. The back-end connects to the deduction
component via stdin and stdout.

New knowledge entered by the user is kept in a separate working session.
When the user wants to query the knowledge base, the formulas of the current
working session and the query are translated to TPTP syntax and provided as a
job to e ltb runner. There, they are added to the background knowledge, the

524 A. Pease and S. Schulz

relevance filters are applied, and different instances of E try to find an answer to
the query. If successful, the proof is handed to the SigmaKEE back-end, where
it is translated back to SUO-KIF.

Several transformations are required to convert SUO-KIF into TPTP, and
to restore the content in the TPTP3 format proofs to their authored SUO-KIF
versions, as shown in Figure 2. While these transforms are described in more
detail in [7] and [12] a brief overview here may be helpful. First, variables that
are in the predicate position in a rule are removed by instantiating every such
rule with every predicate from the knowledge base that is applicable. Next, the
remaining higher-order logic content that is not expressible in TPTP FOF syntax
is removed. Then row-variables, which stand for multiple arguments in variable-
arity relations are expanded, treating this construct as a macro. SUMO requires
type constraints for the arguments to all relations. To fully implement this in a
non-sorted logic such as TPTP FOF, we prefix all rules with type constraints.
While in TPTP-3 implementations any symbol identifier can be used either a
function symbol of a given arity or a predicate symbol of a given arity, SUO-KIF
does not share this restriction. Hence, in cases where a symbol is used in more
than one role, occurrences of one type are renamed.

Lastly, the actual syntactic transformation of SUO-KIF, which conforms to
LISP S-Expressions is converted to the Prolog syntax of TPTP. Upon return
from E, the SZS ontology tags are extracted to provide the overall status of
the result. The proof is simplified to removed repeated appearances of the same
statement. Answer variables are removed. The syntactic transform is now run
in reverse, converting TPTP statements to SUO-KIF. Finally, predicates are
returned to their originally authored names.

4 Conclusion

Sigma KEE 3.0 brings together a practical development environment for creat-
ing expressive logical theories and a leading first order theorem prover. It is a
start at providing the same sort of powerful development approach for logical
theories that programmers have long enjoyed for procedural and object-oriented
development.

SigmaKEE and SUMO offer a development tool suite and a reusable library
of content on which to build new theories. All the tools are open source, in hopes
of inviting collaboration. E is available from http://eprover.org and as part
of the Sigma distribution from http://sigmakee.sourceforge.net.

References

1. Benzmüller, C., Pease, A.: Progress in automating higher-order ontology reasoning.
In: Konev, B., Schmidt, R., Schulz, S. (eds.) Workshop on Practical Aspects of
Automated Reasoning (PAAR 2010). CEUR Workshop Proceedings, Edinburgh,
UK (2010)

2. Benzmüller, C., Pease, A.: Reasoning with Embedded Formulas and Modalities in
SUMO. In: The ECAI 2010 Workshop on Automated Reasoning about Context
and Ontology Evolution (August 2010)

http://eprover.org
http://sigmakee.sourceforge.net

Knowledge Engineering for Large Ontologies with Sigma KEE 3.0 525

3. Bond, F., Paik, K.: A survey of wordnets and their licenses. In: Proceedings of the
6th Global WordNet Conference (GWC, Matsue, pp, 64–71 (2012)

4. Fellbaum, C.: WordNet: An Electronic Lexical Database. Language, Speech, and
Communication. MIT Press (1998),
http://books.google.com.hk/books?id=Rehu8OOzMIMC

5. Hoder, K., Voronkov, A.: Sine Qua Non for Large Theory Reasoning. In: Bjørner,
N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 299–314.
Springer, Heidelberg (2011)

6. Niles, I., Pease, A.: Toward a Standard Upper Ontology. In: Welty, C., Smith,
B. (eds.) Proceedings of the 2nd International Conference on Formal Ontology in
Information Systems, FOIS 2001 (2001)

7. Pease, A.: Ontology: A Practical Guide. Articulate Software Press, Angwin (2011)
8. Pease, A., Benzmller, C.: Sigma: An Integrated Development Environment for Log-

ical Theories. AI Comm. 26, 9–97 (2013)
9. Pease, A., Li, J.: Controlled English to Logic Translation. In: Poli, R., Healy, M.,

Kameas, A. (eds.) Theory and Applications of Ontology. Springer (2010)
10. Pease, A., Li, J., Nomorosa, K.: WordNet and SUMO for Sentiment Analysis. In:

Proceedings of the 6th International Global Wordnet Conference (GWC 2012),
Matsue, Japan (2012)

11. Pease, A., Rust, G.: Formal Ontology for Media Rights Transactions. In: Garcia,
R. (ed.) Semantic Web Methodologies for E-Business Applications. IGI publishing
(2008)

12. Pease, A., Sutcliffe, G.: First Order Reasoning on a Large Ontology. In: Proceedings
of the CADE-21 Workshop on Empirically Successful Automated Reasoning on
Large Theories, ESARLT (2007)

13. Pease, A., Sutcliffe, G., Siegel, N., Trac, S.: Large Theory Reasoning with SUMO
at CASC. AI Comm. 23(2-3), 137–144 (2010); Special issue on Practical Aspects
of Automated Reasoning

14. Pelletier, F.J., Sutcliffe, G., Suttner, C.: The Development of CASC. AI Commu-
nications 15(2), 79–90 (2002)

15. Riazanov, A., Voronkov, A.: The Design and Implementation of VAMPIRE. Jour-
nal of AI Communications 15(2/3), 91–110 (2002)

16. Schulz, S.: E – A Brainiac Theorem Prover. AI Comm 15(2/3), 111–126 (2002)
17. Schulz, S.: System Description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov,

A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 735–743. Springer, Heidelberg (2013)
18. Sutcliffe, G., Suttner, C.: The state of CASC. AI Comm 19(1), 35–48 (2006)
19. Sutcliffe, G., Zimmer, J., Schulz, S.: TSTP Data-Exchange Formats for Automated

Theorem Proving Tools. In: Sorge, V., Zhang, W. (eds.) Distributed Constraint
Problem Solving and Reasoning in Multi-Agent Systems. Frontiers in Artificial
Intelligence and Applications, pp. 201–215. IOS Press (2004)

20. Sutcliffe, G., Schulz, S., Claessen, K., Van Gelder, A.: Using the TPTP Language
for Writing Derivations and Finite Interpretations. In: Furbach, U., Shankar, N.
(eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 67–81. Springer, Heidelberg
(2006)

21. Sutcliffe, G., Stickel, M., Schulz, S., Urban, J.: Answer Extraction for TPTP,
http://www.cs.miami.edu/~tptp/TPTP/Proposals/AnswerExtraction.html

(acccessed August 7, 2013)
22. Trac, S., Sutcliffe, G., Pease, A.: Integration of the TPTPWorld into SigmaKEE.

In: Proceedings of IJCAR 2008 Workshop on Practical Aspects of Automated
Reasoning (PAAR 2008). CEUR Workshop Proceedings (2008)

http://books.google.com.hk/books?id=Rehu8OOzMIMC
http://www.cs.miami.edu/~tptp/TPTP/Proposals/AnswerExtraction.html

Author Index

Ansótegui, Carlos 107
Avni, Guy 1

Baumgartner, Peter 152
Bax, Joshua 152
Beeson, Michael 495
Berdine, Josh 168
Beyersdorff, Olaf 403
Biere, Armin 91
Bjørner, Nikolaj 168
Blanchette, Jasmin Christian 46
Bonet, Maria Luisa 107
Boudou, Joseph 374
Bozzelli, Laura 418
Brockschmidt, Marc 184, 208

Carral, David 464
Cerrito, Serenella 277
Ceylan, İsmail İlkan 480
Chew, Leroy 403
Chocron, Paula 122
Cortier, Véronique 16
Cuenca Grau, Bernardo 464

David, Amélie 277
Dixon, Clare 322

Echenim, Mnacho 137
Ehlers, Rüdiger 360
Emmes, Fabian 184

Feier, Cristina 464
Fellner, Andreas 374
Fontaine, Pascal 122
Frohn, Florian 184, 208
Fuhs, Carsten 184, 208

Giesl, Jürgen 184, 208
Giráldez-Cru, Jesús 107
Glimm, Birte 449
Goranko, Valentin 277
Goré, Rajeev 26, 262, 337
Goŕın, Daniel 396

Hensel, Jera 208
Hetzl, Stefan 240
Heule, Marijn J.H. 91
Hitzler, Pascal 464
Horbach, Matthias 192
Horrocks, Ian 464

Jeannin, Jean-Baptiste 292

Koopmann, Patrick 434
Kupferman, Orna 1

Lahav, Ori 76
Lange, Martin 360
Leitsch, Alexander 240
Lellmann, Björn 307
Levy, Jordi 107
Liebig, Thorsten 449
Lima, Leonardo 255
Lindblad, Fredrik 61

Marcos, João 322

Nalon, Cláudia 322
Nigam, Vivek 255

Olesen, Kerry 337
Olivetti, Nicola 511
Otten, Jens 269
Otto, Carsten 184

Papacchini, Fabio 381
Pattinson, Dirk 396
Pease, Adam 519
Peltier, Nicolas 137
Peñaloza, Rafael 480
Platzer, André 292
Plücker, Martin 184
Popescu, Andrei 46
Pozzato, Gian Luca 511

Reis, Giselle 240, 255
Ringeissen, Christophe 122
Rümmer, Philipp 344

528 Author Index

Sánchez, César 418
Schmidt, Renate A. 381, 434
Schneider-Kamp, Peter 184, 208
Schröder, Lutz 396
Schulz, Stephan 519
Seidl, Martina 91
Sofronie-Stokkermans, Viorica 192
Steigmiller, Andreas 449
Ströder, Thomas 184, 208
Stump, Aaron 367
Sutcliffe, Geoff 367
Swiderski, Stephanie 184

Tamir, Tami 1
Tapolczai, Janos 240
Thiemann, René 184
Thomson, Jimmy 262, 337

Tinelli, Cesare 367

Tourret, Sophie 137
Traytel, Dmitriy 46

Waldmann, Uwe 152
Weller, Daniel 240
Widmann, Florian 396
Wintersteiger, Christoph M. 344
Wißmann, Thorsten 396
Woltzenlogel Paleo, Bruno 374
Wos, Larry 495

Wu, Jesse 262

Zeljić, Aleksandar 344
Zhang, Wenhui 224
Zohar, Yoni 76

	Foreword
	Preface
	Organization
	From Reachability to Temporal Specificationsin Cost-Sharing Games
	Electronic Voting: How Logic Can Help
	And-Or Tableaux for Fixpoint Logicswith Converse: LTL, CTL, PDL and CPDL
	Structured Search and Learning
	Table of Contents
	Invited Papers
	From Reachability to Temporal Specifications in Cost-Sharing Games
	1 Introduction
	2 Preliminaries
	2.1 Automaton-Formation Games
	2.2 Nash Equilibrium, Social Optimum, and Equilibrium Inefficiency

	3 Properties of Automaton-Formation Games
	4 Computational Complexity Issues in AF Games
	5 Tractable Instances of AF Games
	6 Surprises in Symmetric Instances
	References

	Electronic Voting: How Logic Can Help
	1 Context
	2 Existing Systems for Internet Voting
	3 Cryptographic Primitives
	3.1 Terms
	3.2 Equational Theories for e-voting

	4 Security Properties
	5 Conclusion
	References

	And-Or Tableaux for Fixpoint Logicswith Converse: LTL, CTL, PDL and CPDL
	1 Introduction and Credits
	2 Traditional Modal and Description Logic Tree Tableaux
	3 And-Or Graph and Tree Tableaux for K
	3.1 And-Or Tree Tableaux

	4 And-Or Graph Tableaux for Adding Converse
	5 Traditional Tableaux Methods for Fixpoint Logics
	6 One-Pass And-Or Tree Tableaux for Fixpoint Logics
	7 One-Pass And-Or Tree Tableaux for CTL
	7.1 The Rules
	7.2 A Fully Worked Example
	7.3 One-Pass And-Or Tree Tableaux for Other Fixpoint Logics

	8 On-the-Fly And-Or Graph Tableaux for PDL
	9 On-the-Fly And-Or Graph Tableaux for CPDL
	10 Further Work
	References

	HOL
	Unified Classical Logic Completeness
	1 Introduction
	2 A Gentzen System for First-Order Logic
	3 Abstract Completeness
	4 Concrete Completeness
	5 Further Concrete Instances
	6 Formalization and Implementation
	7 Related Work
	8 Conclusion
	References

	A Focused Sequent Calculusfor Higher-Order Logic
	1 Introduction
	2 Inference System
	2.1 Syntax and Judgments
	2.2 Main Judgment
	2.3 Focusing Judgment
	2.4 Conversion Judgment
	2.5 Soundness

	3 ProofSearch
	3.1 Customized Order of Refining Sub-derivations
	3.2 Weighted Refinement of the Derivation Tree
	3.3 Unification
	3.4 β-Reduction

	4 Implementation
	5 Empirical Result
	6 Conclusions and Future Work
	References

	SAT and QBF
	SAT-Based Decision Procedure for AnalyticPure Sequent Calculi
	1 Introduction
	2 Preliminaries
	3 Pure Sequent Calculi
	3.1 Analyticity

	4 Semantics for Pure Sequent Calculi
	5 Reduction to Classical Satisfiability
	6 Next Operators
	6.1 On Analyticity of Pure Calculi with Next Operators

	7 Conclusions and Further Research
	References

	A Unified Proof System for QBF Preprocessing
	1 Introduction
	2 Preliminaries
	3 QRAT: Quantified Resolution Asymmetric Tautologies
	4 Preprocessing for QBFs
	5 Representing Preprocessing Techniques with QRAT
	6 QRAT Proofs
	6.1 The QRAT Proof Format
	6.2 Checking QRAT Proofs
	6.3 Implementation

	7 Conclusion
	References

	The Fractal Dimension of SAT Formulas
	1 Introduction
	2 Fractal Dimension of a Graph
	3 The Fractal Dimension of SAT Instances
	3.1 Fractal Dimension versus Diameter

	4 Experimental Evaluation
	4.1 The Accuracy of the BND Algorithm
	4.2 Random Formulas
	4.3 Industrial Instances
	4.4 Crafted Instances
	4.5 Fractal Dimension at Fine-Grained Scale

	5 The Effect of Learning
	6 Conclusions
	References

	SMT
	A Gentle Non-disjoint Combinationof Satisfiability Procedures
	1 Introduction
	2 Notation and Basic Definitions
	3 Gentle Theories Sharing Unary Predicates
	4 TheL¨owenheim Class
	5 The Bernays-Sch¨onfinkel-Ramsey Class
	6 Example: Non-Disjoint Combination of Order and Sets
	7 Conclusion
	References

	Equational Reasoning
	A Rewriting Strategy to Generate PrimeImplicates in Equational Logic
	1 Introduction
	2 On Equational Logic and Prime Implicate Generation
	2.1 Equational Logic
	2.2 Implicate Generation

	3 Atomic Rewriting
	4 Prime Implicate Generation: A New Algorithm
	4.1 Integration of the Atomic Rewriting
	4.2 Recovery of the Main Solution

	5 Experimental Results
	6 Conclusion
	References

	Finite Quantification in Hierarchic Theorem Proving
	1 Introduction
	2 Hierarchic Theorem Proving
	3 Finite Domain Transformation
	4 Checking Satisfiability
	5 Experimental Results
	6 Conclusions
	References

	Computing All Implied Equalities via SMT-Based Partition Refinement
	1 Introduction
	2 Preliminaries
	3 Algorithms for Implied Equalities
	3.1 Basic PartitionMerging (BPM)
	3.2 Model-Based PartitionMerging (MPM)
	3.3 Basic Partition Refinement (BPR)
	3.4 Incremental Partition Refinement (IPR)
	3.5 Space-Optimized Partition Refinement

	4 Practicalities
	5 Empirical Evaluation
	6 Conclusions
	References

	Proving Termination of Programs Automaticallywith AProVE
	1 Introduction
	2 AProVE and Its Graphical User Interface in Eclipse
	2.1 Analyzing Programming Languages
	2.2 Analyzing Term Rewrite Systems

	3 Partial Certification of Generated Proofs
	4 Conclusion
	References

	Verification
	Locality Transfer: From ConstrainedAxiomatizations to Reachability Predicates
	1 Introduction
	2 Preliminaries
	2.1 General Definitions
	2.2 Local Theories and Theory Extensions

	3 Enumerating Ground Instances of Constrained Clauses
	4 Enriching the Language
	4.1 Concrete Description of the New Relations
	4.2 Axiomatization for the Newly Introduced Predicates

	5 Extensions of Theories of Absolutely Free Constructors
	5.1 Satisfiability w.r.t. Absolutely Free Models
	5.2 Satisfiability w.r.t. Herbrand Models over Σ0

	6 Conclusions and Future Work
	References

	Proving Termination and Memory Safetyfor Programs with Pointer Arithmetic
	1 Introduction
	2 FromLLVM to Symbolic Execution Graphs
	2.1 Abstract Domain
	2.2 Constructing Symbolic Execution Graphs
	2.3 Generalizing Abstract States

	3 From Symbolic Execution Graphs to Integer Systems
	4 Related Work, Experiments, and Conclusion
	References

	QBF Encoding of Temporal Propertiesand QBF-Based Verification
	1 Introduction
	2 Preliminaries
	2.1 Transition System Models
	2.2 Extended Computation Tree Logic (eCTL)

	3 Bounded Semantics
	4 QBF Encoding and QBF-Based Verification
	5 Implementation and Experimental Evaluation
	5.1 An Illustrative Example
	5.2 Experimental Evaluation

	6 Concluding Remarks
	References

	Proof Theory
	Introducing Quantified Cutsin Logic with Equality
	1 Introduction
	2 Proofs and Herbrand Sequents
	2.1 Extraction of Terms

	3 Computing a Decomposition
	4 Computing a Cut-Formula
	4.1 Improving the Solution
	4.2 Proof with Cut

	5 Implementation and Experiments
	6 Conclusion
	References

	Quati: An Automated Tool for Proving Permutation Lemmas
	1 Introduction
	2 Quati atWork
	2.1 Syntax
	2.2 Features

	3 Implementation Details
	4 Conclusions and Future Work
	References

	A History-Based Theorem Proverfor Intuitionistic Propositional Logic UsingGlobal Caching: IntHistGC System Description
	1 Preliminaries
	2 Implementation and Optimisations
	3 Experimental Results
	4 Conclusion and Further Work
	References

	MleanCoP: A Connection Proverfor First-Order Modal Logic
	1 Introduction
	2 The Modal Connection Calculus
	3 The Implementation
	4 Experimental Evaluation
	5 Conclusion
	References

	Modal and Temporal Reasoning
	Optimal Tableaux-Based Decision Procedurefor Testing Satisfiability in the Alternating-TimeTemporal Logic ATL+
	1 Introduction
	2 Preliminaries
	2.1 Concurrent Game Models, Strategies and Co-strategies
	2.2 The Logic ATL* and Fragments

	3 Decomposition and Closure of ATL+ Formulae
	3.1 γ-Decomposition and γ-Components of γ-Formulae
	3.2 Full Expansions of Sets of ATL+ Formulae

	4 Tableau-Based Decision Procedure for ATL+
	4.1 Pretableau Construction Phase
	4.2 The Prestate and State Elimination Phases. Eventualities

	5 Termination, Soundness, Completeness and Complexity
	6 Concluding Remarks
	References

	dTL2: Differential Temporal Dynamic Logic with Nested Temporalities for Hybrid Systems
	1 Introduction
	2 Differential Temporal Dynamic Logic dTL2
	2.1 Hybrid Programs
	2.2 State and Trace Formulas

	3 Proof Calculus
	3.1 Equivalence of Trace Formulas
	3.2 Normalization of Trace Formulas
	3.3 Proof Calculus for dTL2
	3.4 Meta-Results

	4 Alternative Proof Systems
	5 Related Work
	6 Conclusion and Future Work
	References

	Axioms vs Hypersequent Rules with ContextRestrictions: Theory and Applications
	1 Introduction
	2 Preliminaries and Notation
	3 Hypersequent Rules with Restrictions
	4 Cut Elimination and Applications
	4.1 Applications: Decision Procedures and Complexity Bounds

	5 Axioms and Rules
	6 Case Studies
	References

	Clausal Resolution for Modal Logics of Confluence
	1 Introduction
	2 The Normal Modal Logic K(n)
	3 Resolution for K(n)
	3.1 A Normal Form for K(n)
	3.2 Inference Rules for K(n)

	4 Clausal Resolution for Logics of Confluence
	5 ClosingRemarks
	References

	Implementing Tableau Calculi Using BDDs:BDDTab System Description
	Introduction
	Method.
	Optimisations
	Results
	Description Logics.
	Conclusion and Further Work
	References

	SMT and SAT
	Approximations for Model Construction
	1 Introduction
	1.1 Motivating Example

	2 Related Work
	3 Preliminaries
	4 The Approximation Framework
	4.1 Approximation Theories
	4.2 Lifting Constraints to Approximate Constraints

	5 Model Refinement Scheme
	5.1 Approximate Model Construction
	5.2 Reconstructing Precise Models
	5.3 Approximation Refinement

	6 Experimental Evaluation
	7 Conclusion
	References

	A Tool That Incrementally Approximates Finite Satisfiability in Full Interval Temporal Logic
	1 Introduction
	2 Interval Temporal Logic
	3 Approximating Finite Satisfiability
	4 Experiments
	References

	StarExec: A Cross-Community Infrastructure for Logic Solving
	1 Introduction
	2 Main Concepts
	3 Functionality and Usage
	4 Infrastructure and Technologies
	5 Current Status and Future Development
	References

	Skeptik: A Proof Compression System
	1 Introduction
	2 Implementation Details
	3 Supported Proof Formats
	4 Proof Compression Algorithms
	5 Installation and Usage
	6 Conclusions and Future Work
	References

	Modal Logic
	Terminating Minimal Model GenerationProcedures for Propositional Modal Logics
	1 Introduction
	2 Modal Logics and the Minimality Criterion
	3 Procedures for the Generation of Minimal Models
	4 Minimal Model Completeness
	5 Ensuring Termination
	6 Related Work and Discussion
	7 Conclusion
	References

	COOL – A Generic Reasoner for Coalgebraic Hybrid Logics (System Description)
	1 Introduction
	2 TheCOOL Solver: Supported Features
	3 TheCOOL Solver: Implementation Details
	4 Experimental Evaluation
	5 Conclusions
	References

	Complexity
	The Complexity of Theorem Provingin Circumscription and Minimal Entailment
	1 Introduction
	2 Preliminaries
	3 A Lower Bound for the Sequent Calculus CIRC
	4 Separating the Sequent Calculi CIRC and MLK
	5 Extending the Simulation to Full Circumscription
	6 ComparisontoNiemel¨a’s Tableau Calculus
	7 Conclusion
	References

	Visibly Linear Temporal Logic
	1 Introduction
	2 Preliminaries
	3 Visibly Linear Temporal Logic (VLTL)
	4 Subclasses of Alternating Jump Automata
	5 Decision Procedures for the LogicVLTL
	6 Concluding Remarks
	References

	Description Logics
	Count and Forget: Uniform Interpolationof SHQ-Ontologies
	1 Introduction
	2 Definition of SHQμ and Uniform Interpolation
	3 The Normal Form
	4 The Underlying Calculus
	5 Forgetting Concept Symbols
	6 Forgetting Role Symbols
	7 Discussion and Related Work
	8 Conclusion and Future Work
	References

	Coupling Tableau Algorithms for Expressive Description Logics with Completion-Based Saturation Procedures
	1 Introduction
	2 Preliminaries
	2.1 Tableau Algorithm
	2.2 (Binary) Absorption

	3 Saturation Compatible with Tableau Algorithms
	3.1 Saturation Based on Tableau Rules
	3.2 Saturation Status Detection

	4 Assisting Tableau Algorithms
	4.1 Transfer of Saturation Results to Completion Graphs
	4.2 Subsumer Extraction
	4.3 Model Merging

	5 Saturation Improvements
	5.1 Extending Saturation to More Language Features
	5.2 Improving Saturation with Results from Completion Graphs

	6 Implementation and Evaluation
	7 Conclusions
	References

	EL-ifying Ontologies
	1 Introduction
	2 Preliminaries
	3 EL-ification of SHOIQ Ontologies
	3.1 Preprocessing
	3.2 Rewritable Inverse Roles
	3.3 The EL-ification Transformation
	3.4 Dealing with Transitivity Axioms

	4 Reuse-Safe Roles
	5 Evaluation
	5.1 Classification Experiments
	5.2 Data Reasoning Experiments

	6 Related Work
	7 Conclusions and Future Work
	References

	Knowledge Representation and Reasoning
	The Bayesian Description Logic BEL
	1 Introduction
	2 The Description Logic BEL
	3 Reasoning in BEL
	3.1 Probabilistic Subsumption
	3.2 Contextual Subsumption
	3.3 Most Likely Context

	4 Related Work
	5 Conclusions
	References

	OTTER Proofs in Tarskian Geometry
	1 Introduction
	2 Tarski’s Axioms
	2.1 History
	2.2 Syntax
	2.3 Betweenness and Congruence Axioms
	2.4 The Five-Segment Axiom
	2.5 Pasch’s Axiom
	2.6 Dimension Axioms
	2.7 Tarski’s Parallel Axiom (A10)
	2.8 Continuity Axioms

	3 Methodology
	3.1 How OTTER Works
	3.2 Hints
	3.3 Giving OTTER the Diagram
	3.4 Assistance with Proof by Cases
	3.5 Supplying Proof Steps
	3.6 Divide and Conquer
	3.7 Choice of Inference Rules and Settings
	3.8 What about Prover9? Or E, Spass, Vampire?

	4 Results
	4.1 Properties of Betweenness
	4.2 Midpoints, Perpendiculars, and Isosceles Triangles
	4.3 The Diagonals of a Rhombus Bisect Each Other
	4.4 Inner and Outer Pasch
	4.5 Hilbert’s Axioms

	5 Discussion
	5.1 Proof Checking vs. Proof Finding
	5.2 1992 vs. 2014

	6 Conclusions
	References

	NESCOND: An Implementation of Nested Sequent Calculi for Conditional Logics
	1 Introduction
	2 Conditional Logics and Their Nested Sequent Calculi
	3 Design of NESCOND
	4 Performance of NESCOND
	5 Conclusions and Future Issues
	References

	Knowledge Engineering for Large Ontologieswith Sigma KEE 3.0
	1 Introduction
	2 Architecture and User Interface
	3 SigmaKEE/E Integration
	4 Conclusion
	References

	Author Index

