
Coral Calero · Mario Piattini Editors

Green in
Software
Engineering

Green in Software Engineering

ThiS is a FM Blank Page

Coral Calero • Mario Piattini

Editors

Green in Software
Engineering

Editors
Coral Calero
Department of Information Technologies

and Systems
University of Castilla-La Mancha
Ciudad Real
Spain

Mario Piattini
Department of Information Technologies

and Systems
University of Castilla-La Mancha
Ciudad Real
Spain

ISBN 978-3-319-08580-7 ISBN 978-3-319-08581-4 (eBook)
DOI 10.1007/978-3-319-08581-4

Library of Congress Control Number: 2014957717

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

Overview

Sustainability is being demanded by our society today; we have become aware of the

need to cut down on our energy consumption and reduce our carbon footprint. At an

international level, there is a whole host of initiatives trying to tackle these issues, and

the main research and development programmes include sizeable amounts of funding

for projects seeking to achieve environmentally sound technologies.

Information technology (IT) is a key component in reaching the above goals.

The use of IT in obtaining systems that are more ecological (Green by IT) has

indeed been seen to be significant, contributing to virtual meetings, dematerializa-

tion of activities, improvement in logistics, intelligent transport systems, smart

grids, more sustainable management of (smart) cities, etc. We must be aware,

however, that IT also has a negative impact on the environment (the amount of

energy consumed by engineering equipment, processes and services). With this

situation as the backdrop, there have been major efforts (Green in IT) made to

reduce the energy consumption of the ‘hard’ part of IT (green data centres, green

hardware, etc.). Even so, it has not been until recently that research has begun to be

undertaken into how to achieve sustainable software (green in software) alongside
sustainable software engineering (green in software engineering).

It is our firm conviction that we, as software researchers and professionals, are

under an obligation to make those in positions of responsibility in government

and in our organizations aware of the issues involved here. It is all about the vital

importance of obtaining models, methods and tools that reduce the environmental

impact both of the software life-cycle processes and of the software products that

come into being as a result of those processes.

Good books dealing with the issue of Green IT already exist; in this work, we want

to make our own small contribution to the attempt to raise the profile of green in

software engineering. We want to make sure that it gets the consideration it deserves.

To that end, we have brought together the main researchers in the field on this matter.

v

Organization

The book is composed of 13 chapters, structured in 5 parts that can be used as

‘reading paths’.
The first part (Introduction) comprises one chapter written by Coral Calero and

Mario Piattini, which introduces the main general concepts related to Green IT,

discussing what green in software engineering is and how this is different from

green by software engineering.
The second part (Environments, Processes and Construction) consists of three

chapters. Green software development environments is discussed in Chap. 2 by

Ankita Raturi, Bill Tomlinson and Debra Richardson. Chapter 3 describes a green

software engineering process developed by Stefan Naumann, Eva Kern and Markus

Dick. Green software construction, discussed by Fei Li, Soheil Qanbari, Michael

Vögler and Schahram Dustdar, is the topic of Chap. 4.

The third part (Economic and Other Qualities) contains Chap. 5, contributed by

Patricia Lago, Giuseppe Procaccianti and Héctor Fernández, which proposes using

the e3value technique to model and perform trade-off analysis between alternative

green practices, particularly from an economic perspective. Chapter 6 by Juha

Taina and Simo Mäkinen, which presents a layered model that gives some back-

ground, offers suggestions about measuring how well software supports green

software engineering and software engineering for the planet.

The fourth part (Software Development Process) begins with a proposal by Birgit

Penzenstadler (in Chap. 7) for incorporating environmental sustainability as an objec-

tive in requirements engineering from the very start, by using a reference artefact

model. Chapter 8, written by Macario Polo, discusses how different approaches of test

design and test executionmay have an impact on the consumption of energy. Chapter 9,

written by Ignacio Garcı́a-Rodrı́guez de Guzmán, Mario Piattini and Ricardo Pérez-

Castillo, presents useful techniques, tools and practices for improving software sus-

tainability in existing software systems. In Chap. 10, Coral Calero, Ma Ángeles

Moraga, Manuel F. Bertoa and Leticia Duboc show how to include green aspects of

a software product within its quality, while Chap. 11, written by Ma Ángeles Moraga

and Manuel F. Bertoa, presents the main measures for green in software engineering.

The final part (Practical Issues) begins with Chap. 12, in which Qing Gu, Patricia

Lago and Paolo Bozzelli propose a decision-making model for adopting green ICT

strategies, while Chap. 13 by Martin Mahaux and Annick Castiaux discusses the

participation and open innovation in/for sustainable software engineering.

As the reader will realize, we have tried to follow the structure of the SWEBOK,1

attempting to cover most of the key areas (KAs) involved in the incorporation of

green aspects in software engineering. In Table 1, we summarize in which chapter

the content of the corresponding KA is covered (directly or indirectly).

1 SWEBOK V3.0. Guide to the Software Engineering Body of Knowledge. Bourque, P. and

Fairley, R.E. (eds.), NJ., IEEE Computer Society. 2014.

vi Preface

http://dx.doi.org/10.1007/978-3-319-08581-4_2
http://dx.doi.org/10.1007/978-3-319-08581-4_3
http://dx.doi.org/10.1007/978-3-319-08581-4_4
http://dx.doi.org/10.1007/978-3-319-08581-4_5
http://dx.doi.org/10.1007/978-3-319-08581-4_6
http://dx.doi.org/10.1007/978-3-319-08581-4_7
http://dx.doi.org/10.1007/978-3-319-08581-4_8
http://dx.doi.org/10.1007/978-3-319-08581-4_9
http://dx.doi.org/10.1007/978-3-319-08581-4_10
http://dx.doi.org/10.1007/978-3-319-08581-4_11
http://dx.doi.org/10.1007/978-3-319-08581-4_12
http://dx.doi.org/10.1007/978-3-319-08581-4_13

Table 1 The book chapters and the SWEBOK KAs

KA number SWEBOK KA Chapters numbers

1 Software Requirements 7

2 Software Design 8

3 Software Construction 2, 4

4 Software Testing 8

5 Software Maintenance 9

6 Software Configuration Management –

7 Software Engineering Management –

8 Software Engineering Process 2, 3, 13

9 Software Engineering Models and Methods 12

10 Software Quality 6, 10, 11

11 Software Engineering Professional Practice 12

12 Software Engineering Economics 5

13 Computing Foundations

14 Mathematical Foundations

15 Engineering Foundations

We have created a keyword cloud (see Fig. 1) where the most frequently used

terms in this book are written in larger letters, thus showing the areas the book

focuses on.

Audience

The audience for this book is software engineering researchers (professors, PhD and

postgraduate students, industrial R&D departments, etc.), as well as practitioners

(chief information officers, corporate social responsibility professionals, software

quality engineers, etc.) who want to know the state of the art as regards green in

software engineering.

The reader is assumed to have previous knowledge of software engineering.

Fig. 1 Terms cloud (created with www.wordle.net)

Preface vii

http://www.wordle.net/

Acknowledgements

We would like to express our gratitude to all those individuals and parties who

helped us produce this book. In the first place, we would like to thank all the

contributing authors and reviewers who helped to improve the final version. Special

thanks to Springer-Verlag and Ralf Gerstner for believing in us once again and for

giving us the opportunity to publish this work. We would also like to say how

grateful we are to Maria Luisa Cimas of UCLM for her support during the

production of this book.

Finally, we wish to acknowledge the support of the SyS Foundation (Fundación

Software y Sostenibilidad) and of the GEODAS-BC research project (Ministerio de

Economı́a y Competitividad and Fondo Europeo de Desarrollo Regional FEDER,

TIN2012-37493-C03-01).

Ciudad Real, Spain Coral Calero

May 2014 Mario Piattini

viii Preface

Contents

Part I Introduction

1 Introduction to Green in Software Engineering 3

Coral Calero and Mario Piattini

Part II Environments, Processes and Construction

2 Green Software Engineering Environments 31

Ankita Raturi, Bill Tomlinson, and Debra Richardson

3 Processes for Green and Sustainable Software Engineering 61

Eva Kern, Stefan Naumann, and Markus Dick

4 Constructing Green Software Services: From Service Models

to Cloud-Based Architecture . 83

Fei Li, Soheil Qanbari, Michael Vögler, and Schahram Dustdar

Part III Economic and Other Qualities

5 Economic Aspects of Green ICT . 107

Héctor Fernández, Giuseppe Procaccianti, and Patricia Lago

6 Green Software Quality Factors . 129

Juha Taina and Simo Mäkinen

Part IV Software Development Process

7 From Requirements Engineering to Green Requirements

Engineering . 157

Birgit Penzenstadler

8 Towards Green Software Testing . 187

Macario Polo

ix

9 Green Software Maintenance . 205

Ignacio Garcı́a-Rodrı́guez de Guzmán, Mario Piattini,

and Ricardo Pérez-Castillo

10 Green Software and Software Quality . 231

Coral Calero, Ma Ángeles Moraga, Manuel F. Bertoa,

and Leticia Duboc

11 Green Software Measurement . 261

Ma Ángeles Moraga and Manuel F. Bertoa

Part V Practical Issues

12 A Decision-Making Model for Adopting Green ICT Strategies 285

Qing Gu, Patricia Lago, and Paolo Bozzelli

13 Participation and Open Innovation for Sustainable Software

Engineering . 301

Martin Mahaux and Annick Castiaux

Index . 325

x Contents

List of Contributors

Manuel F. Bertoa University of Málaga, Málaga, Spain

Paolo Bozzelli VU University Amsterdam, Amsterdam, The Netherlands

Coral Calero Department of Information Technologies and Systems, University

of Castilla-La Mancha, Ciudad Real, Spain

Annick Castiaux University of Namur, Namur, Belgium

Markus Dick Institute for Software Systems, Trier University of Applied Sciences,

Trier, Germany

Leticia Duboc Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brasil

Schahram Dustdar Distributed Systems Group, Vienna University of Technology,

Vienna, Austria

Héctor Fernández VU University Amsterdam, Amsterdam, The Netherlands

Qing Gu HU University of Applied Sciences, The Netherlands

Ignacio Garcı́a-Rodrı́guez de Guzmán Institute of Information Technologies

and Systems, University of Castilla-La Mancha, Ciudad Real, Spain

Eva Kern Institute for Software Systems, Trier University of Applied Sciences,

Leuphana University of Lüneburg, Germany

Patricia Lago VU University Amsterdam, Amsterdam, The Netherlands

Fei Li Distributed Systems Group, Vienna University of Technology, Vienna,

Austria

Martin Mahaux University of Namur, Namur, Belgium

Simo Mäkinen Department of Computer Science, University of Helsinki, Helsinki,

Finland

xi

Ma Ángeles Moraga Department of Information Technologies and Systems,

University of Castilla-La Mancha, Ciudad Real, Spain

Stefan Naumann Institute for Software Systems, Trier University of Applied

Sciences, Trier, Germany

Birgit Penzenstadler California State University, Long Beach, USA

Ricardo Pérez-Castillo Itestra GmbH, Madrid, Spain

Mario Piattini Department of Information Technologies and Systems, University

of Castilla-La Mancha, Ciudad Real, Spain

Macario Polo Department of Information Technologies and Systems, University

of Castilla-La Mancha, Ciudad Real, Spain

Giuseppe Procaccianti VU University Amsterdam, Amsterdam, The Netherlands

Soheil Qanbari Distributed Systems Group, Vienna University of Technology,

Vienna, Austria

Ankita Raturi University of California, Irvine, Irvine, CA, USA

Debra Richardson University of California, Irvine, Irvine, CA, USA

Juha Taina Faculty of Science, University of Helsinki, Helsinki, Finland

Bill Tomlinson University of California, Irvine, Irvine, CA, USA

Michael Vögler Distributed Systems Group, Vienna University of Technology,

Vienna, Austria

xii List of Contributors

Part I

Introduction

Chapter 1

Introduction to Green in Software

Engineering

Coral Calero and Mario Piattini

1.1 Introduction

Sustainability is gaining importance worldwide, reinforced by several initiatives

with wide media coverage such as the Earth hour1; this is a worldwide grassroots

movement uniting people to protect the planet, organised by the WWF (World

Wide Fund for Nature). Other organisations such as the United Nations (UN) also

highlight the importance of reducing energy consumption and our carbon footprint,

including this issue in the Millennium Development Goals (MDGs2). In Rio+20,

the United Nations Conference on Sustainable Development, the world leaders

approved an agreement entitled ‘The Future We Want’, where it is stated that ‘We

recognize the critical role of technology as well as the importance of promoting

innovation, in particular in developing countries. We invite governments, as appro-

priate, to create enabling frameworks that foster environmentally sound technol-

ogy, research and development, and innovation, including in support of green

economy in the context of sustainable development and poverty eradication. . .’.
Clean and efficient energy as a societal challenge has also been included by the

European Union in Horizon 2020,3 the biggest EU Research and Innovation

programme with nearly €80 billion of funding available from 2014 to 2020.

Other initiatives related to environmental sustainability can likewise be found in

other countries.

C. Calero (*) • M. Piattini

Department of Information Technologies and Systems, University of Castilla-La Mancha,

Ciudad Real, Spain

e-mail: Coral.Calero@uclm.es; Mario.Piattini@uclm.es

1 http://www.earthhour.org/
2 http://www.un.org/millenniumgoals/
3 http://ec.europa.eu/programmes/horizon2020/

© Springer International Publishing Switzerland 2015

C. Calero, M. Piattini (eds.), Green in Software Engineering,
DOI 10.1007/978-3-319-08581-4_1

3

mailto:Coral.Calero@uclm.es
mailto:Mario.Piattini@uclm.es
http://www.earthhour.org/
http://www.un.org/millenniumgoals/
http://ec.europa.eu/programmes/horizon2020/

Although these initiatives point to ICTs (information and communication

technologies) as a key to achieve these goals, we must be aware that ICTs also

have a negative impact on the environment. In fact, as noted by [20], when

pursuing strategic sustainability, the impact of technology is important from two

different points of view at the same time. On the one hand, it helps organisations to

tackle environmental issues (using video conferences, dematerialisation, more

efficient processes, etc.); on the other hand, technology itself is often responsible

for major environmental degradation (amounts of energy consumed by the engi-

neering processes used to manufacture products). This dual aspect of technology

means that organisations also face two challenges: they need to have more sus-

tainable processes and they must produce products that contribute to a more

sustainable society.

As far as the ICT sector is concerned, it contributes about 2 % of the global CO2

emissions and is responsible for approximately 8 % of the EU’s electricity use, and

some 2 % of its carbon emissions come from the ICT equipment and services and

household electronic sector. The total electricity consumption of the ICT sector is

forecast to increase by almost 60 % from 2007 to 2020 (see Fig. 1.1) due to the

increasing number of devices as well as to network expansion [24].

In [38], the authors estimate that present-day systems for business email, pro-

ductivity and CRM software in the United States require 268, 98 and 7 petajoules

(PJ) of primary energy each year, respectively, when the direct energy use and

embodied energy of all system components are considered. When combined, the

present-day primary energy footprints of these three business software applications

add up to as much as 373 PJ per year.

Fig. 1.1 ICT carbon footprint outlook (Mtonnes CO2e) (from [2])

4 C. Calero and M. Piattini

It is therefore essential to control the use of ICTs in order to reduce their impact

on sustainability as much as possible. We will focus specifically on software

technology, because software is more complex to sell, service and support than

hardware, and dollar for dollar, software generates more downstream economic

activity than hardware [31], but it has been disregarded in this area until now.

Spending on software is growing faster than spending on IT overall—4.8 % a year

between 2008 and 2013, compared to 3.3 % for all IT spending [31].

Sustainability has also become more and more important to business recently.

A business that fails to have sustainable development as one of its top priorities

could receive considerable public criticism and subsequently lose market legiti-

macy [20]. According to a global IBM survey in 2008, 47 % of organisations have

begun to redesign their business models on the basis of sustainability, treating

sustainable development as a new source of innovation, a new opportunity for

cutting costs and a new mechanism for gaining competitive advantage. All of this

can be summarised under the concept of ‘strategic sustainability’, introduced by

[55]. Most people claim that they will pay more for a green product [13]. In early

2010, the ISO 26000 standard [33] for corporate social responsibility (CSR) was

published, providing executives with the directions and measures for demonstrating

social responsibilities. In this standard, businesses are required to take a precau-

tionary approach to protecting the environment; the aim is to promote greater

environmental responsibility through business practices and encourage the adop-

tion of environment-friendly information technologies. CSR involves the voluntary

integration by companies of social and environmental concerns in their business

operations, as well as in relationships with their partners [26]. Expectations from

corporations are higher than ever. Investors and other stakeholders consider com-

panies in terms of the ‘triple bottom line’, reflecting financial performance, envi-

ronmental practices and corporate social responsibility (CSR). The present-day

dominant conception of CSR implies that firms voluntarily integrate social and

environmental concerns in their operations and interactions with stakeholders

[12]. All the CSR definitions consistently refer to five dimensions: voluntariness,

stakeholders, social, environmental and economic [17].

In general, the initiatives that foster respect for the environment by means of

ICT, IT, software, etc., are called Green or Greening ICT/IT/Software or sometimes

sustainability in IT. The problem that arises is that, as in every new discipline, there

is no clear map of concepts and definitions. As [8] points out, however, the fact is

that Green IT is not only a trend; it is becoming a necessity as more and more

organisations are implementing some form of sustainable solutions. These same

authors comment that, according to Forrester Research, it is expected that the Green

IT services market will grow from $500 million to nearly $5 billion in 2013.

In the next section, we will try to clarify the differences, similarities and

relationships between all these concepts.

1 Introduction to Green in Software Engineering 5

1.2 Sustainability

The aim of this section is to give a general definition of the word ‘sustainability’

without actually linking it to any particular context. To do so, we will first

summarise the main definitions of sustainability.

Sustainability is a widely used term and refers to the capacity of something to

last for a long time. Some more precise definitions are as follows:

• The Collins dictionary [16] defines sustainability as ‘the ability to be maintained

at a steady level without exhausting natural resources or causing severe ecolog-

ical damage’.

• A similar definition of ‘sustainable’ can be found in Merriam-Webster: ‘of,

relating to, or being a method of harvesting or using a resource so that the

resource is not depleted or permanently damaged’ [39].

• According to [9], a sustainable world is broadly defined as ‘one in which humans

can survive without jeopardizing the continued survival of future generations of

humans in a healthy environment’.

• In [49], the authors affirm that ‘sustainability can be discussed with reference to

a concrete system (ecological system, a specific software system, etc.), therefore,

global sustainability implies the capacity for endurance given the functioning of

all these systems in concert’.

• ‘Sustainability is the capacity to endure and, for humans, the potential for long-

term maintenance’ [47].

• From another perspective, sustainability can be viewed as ‘one more central

quality attribute in a row with the standard quality attributes of correctness,

efficiency, and so forth’ [47]. These same authors also defined the term sustain-
able development as that which ‘includes the aspect to develop a sustainable

product, as well as the aspect to develop a product using a sustainable develop-

ment process’.

• The Brundtland report from the United Nations (UN) defines sustainable devel-

opment as the ability to ‘meet the needs of the present without compromising the

ability of future generations to satisfy their own needs’ [62]. According to the

UN, sustainable development needs to satisfy the requirements of three dimen-

sions, which are the society, the economy and the environment.

• In [2], the author identifies the same dimensions as the aforementioned UN

report for sustainable development: economic development, social development

and environmental protection:

– ‘Environmental sustainability ensures that the environment is able to replen-

ish itself at a faster rate than it is destroyed by human actions. For instance,

the use of recycled material for IT hardware production helps to conserve

natural resources.

– Social development is concerned about creating a sustainable society which

includes social justice or reducing poverty. In general all actions that promote

social equity and ethical consumerism.

6 C. Calero and M. Piattini

– The economic pillar ensures that our economic growth maintains a healthy

balance with our ecosystem; it integrates environmental and social concerns

into business’.

Of all the definitions above, the most widely used is that established by the

Brundtland report of the United Nations (UN) [62].

If we take a close look at the definitions, we can observe that there are two

fundamental pillars underpinning sustainability: ‘The capacity of something to last

a long time’ and ‘the resources used’.

Another aspect that is related to sustainability, and that can be found in the

literature, has to do with the topic to which it is applied: information systems, ICT,

software, etc.

Taking into account that our focus is on software engineering (SE), Fig. 1.2

summarises the different levels of sustainability that relate organization to infor-

mation systems and to software engineering.

In the following sections, we will present some definitions for each of the levels

in Fig. 1.2. We have worked mainly with papers published in the area of software,

software engineering and information systems, because that is what this book

focuses on. This means that we will not present an exhaustive study on definitions

(i.e. on those beyond the scope of this book), but we believe our work will provide a

snapshot of how things are interpreted in the software engineering area.

ORGANIZATION
SUSTAINABILITY

Business
Process

Sustainability

Services
Sustainability

Informa�on
Systems

Sustainability

ICT Sustainability

IT Sustainability

Hardware
Sust.

So�ware
Sust.

Fig. 1.2 Sustainability levels

1 Introduction to Green in Software Engineering 7

1.2.1 IS Sustainability

It must be noted that, in the literature, authors do not differentiate between ‘IS

sustainability’ and ‘sustainable IS’ (the same applies to the other levels), so we take

these concepts as equivalent in this book.

As articulated in the SIGGreen Statement, ‘the Information Systems discipline

can have a central role in creating an ecologically sustainable society because of the

field’s five decades of experience in designing, building, deploying, evaluating,

managing, and studying information systems to resolve complex problems’ [27].

The authors of [64] recommend using the term IS sustainability over IT sustain-

ability, because they consider that the exclusive focus on information technologies

is too narrow.

As remarked by [53], it is only through process change and the application of

process-centred techniques, such as process analysis, process performance mea-

surement and process improvement, that the transformative power of IS can be fully

leveraged in order to create environmentally sustainable organisations and, in turn,

an environmentally sustainable society.

Taking this one step further, we contend that IS researchers must consider

process-related concepts when theorising about the role of IT in the transformation

towards sustainable organisations. This will not only allow us to better understand

the transformative power of IS in the context of sustainable development but will

also enable us to proceed to more prescriptive, normative research that has a direct

impact on the implementation of sustainable, IT-enabled business processes [53].

Although there are some groups working on information systems and environ-

mental friendliness, it is difficult to find suitable IS sustainability concepts. Most of

the work being done is about Green IS. In [13], it is considered that the sustainability

in IS must take into account aspects such as efficiency systems, forecasting, reporting

and awareness, energy-efficient home computing and behaviour modification.

Finally, the book focuses on Green Business Process Management consolidating

the global state-of-the-art knowledge about how business processes can be managed

and improved in the light of sustainability objectives [63].

1.2.2 ICT/IT Sustainability

Donnellan et al. [4] remark that sustainable ICT can develop solutions that offer

benefits both internally and across the enterprise:

• Aligning all ICT processes and practices with the core principles of sustainabil-

ity, which are to reduce, reuse and recycle

• Finding innovative ways to use ICT in business processes to deliver sustainabil-

ity benefits across the enterprise and beyond

The Ericsson report [24] points to dematerialisation and increased efficiency as

the two main ways of aligning ICT with sustainability.

8 C. Calero and M. Piattini

Following the definition provided by [61], IT sustainability is a shorthand for

‘global environmental sustainability’, a characteristic of the Earth’s future, in which

certain essential processes persist for a period of time comparable with human lives.

1.2.3 Software Sustainability

There are several areas in which software sustainability needs to be applied:

software systems, software products, Web applications, data centres, etc. Various

works are in process, but most of this concerns data centres, which consume

significantly higher energy than commercial office space [36].

As noted in [10], the way to achieve sustainable software is principally by

improving power consumption. Whereas hardware has been constantly improved

so as to be energy efficient, software has not. The software development life cycle

and related development tools and methodologies rarely, if ever, consider energy

efficiency as an objective [11]. Energy efficiency has never been a key requirement

in the development of software-intensive technologies, and so there is a very large

potential for improving efficiency [59].

As remarked by [21], software plays a major role, both as part of the problem and

as part of the solution. The behaviour of the software has significant influence on

whether the energy-saving features built into the platform are effective [56].

In [49], it is said that ‘The term Sustainable Software can be interpreted in two

ways: (20) the software code being sustainable, agnostic of purpose, or (24) the

software purpose being to support sustainability goals. Therefore, in our context,

sustainable software is energy-efficient, minimizes the environmental impact of the

processes it supports, and has a positive impact on social and/or economic sustain-

ability. These impacts can occur direct (energy), indirect (mitigated by service) or

as rebound effect [30]’.

According to [18], sustainable software is ‘software, whose impacts on econ-

omy, society, human beings, and environment that result from development,

deployment, and usage of the software are minimal and/or which have a positive

effect on sustainable development’.

These authors subsequently use the same definition for the concept of green and

sustainable software. They therefore define green and sustainable software as

‘software, whose direct and indirect negative impacts on economy, society,

human beings, and environment that result from development, deployment, and

usage of the software are minimal and/or which has a positive effect on sustainable

development’ [46]. They consider that direct impacts are related to resources and

energy consumption during the production and use of software, while indirect

impacts are effects from the software product usage, together with other processes

and long-term systemic effects.

One of the most complete definitions is the one proposed by [34], which

considers that green and sustainable software is software whose:

1 Introduction to Green in Software Engineering 9

• ‘Direct and indirect consumption of natural resources, which arise out of

deployment and utilization, are monitored, continuously measured, evaluated

and optimized already in the development process

• Appropriation and utilization aftermath can be continuously evaluated and

optimized

• Development and production processes cyclically evaluate and minimize their

direct and indirect consumption of natural resources and energy’

Another related term is sustainable computing. It is used to transfer the political

concept of sustainability to computer systems, including material components

(hardware) as well as informational ones (software); it includes development as

well as consumption processes [40].

As commented at the beginning of Sect. 1.2, the literature contains some

definitions of sustainable (or sustainability), while others refer to the term green
(or greenability).

This phenomenon is especially noteworthy in the case of software, because

various authors such as [46] and [34] use both terms synonymously. We believe

that this approach is faulty and that it ought to be avoided, since we are talking

about two different concepts, as will be seen in due course.

What does seem true, however, is that software sustainability, although still in its

early stages, is a very important research topic that will be of great importance in

the next few years. That said, general work on its significance is needed. The goal of

that work would be to raise awareness on the part of all those involved with

software: the companies that develop software, those who buy it and also the people

who use it.

1.2.3.1 Software Engineering Sustainability

One part of the software sustainability is the software engineering sustainability.

Within the context of software engineering, not many proposals have tackled the

concept of sustainability [50]. In a recent update of this work, the authors observed

that the number of proposals has increased considerably over the last 2 years

[49]. This fact serves to demonstrate that there is an ever-growing concern to tackle

sustainability in the context of software engineering.

Sustainability should generally be taken into account from the very first stages of

software development. That is not always feasible, since it is not easy to change

how developers work. Moreover, there is little guidance on how software engineer-

ing can contribute to improving the sustainability of the systems under development

[48]. In this work, the authors consider five dimensions of sustainability that are

important for the analysis of software systems:

• Individual sustainability: This refers to the maintenance of the private good of

individual human capital. Health, education, skills, knowledge, leadership and

access to services constitute human capital [52]. For software engineering (SE),

10 C. Calero and M. Piattini

we have to ask: ‘How can software be created and maintained in a way that

enables developers to be satisfied with their job over a long period of time?’

• Social sustainability: This means maintaining social capital and preserving the

solidarity of societal communities. Social capital is investments and services that

create the basic framework for society [52]. For SE, we ask: ‘What effects do

software systems have on society (e.g. communication, interaction,

government)?’

• Economic sustainability: This aims to maintain assets. Assets include not only

capital but also added value. This requires a definition of income as the “amount

one can consume during a period and still be as well off at the end of the period,

as it devolves on consuming added value (interest), rather than capital” [52]. For

SE, the question is: ‘How can software systems be created so that the stake-

holders’ long-term investments are as safe as possible from economic risks?’

• Environmental sustainability: This seeks to improve human welfare by

protecting natural resources such as water, land, air, minerals and ecosystem

services; hence, much is converted to manufactured or economic capital. Envi-

ronment includes the sources of raw materials used for human needs, as well as

ensuring that sink capacities recycling human wastes are not exceeded [39]. For

SE, we pose the question: ‘How does software affect the environment during,

inter alia, development and maintenance?’

• Technical sustainability: From a point of view of (software) systems engineer-

ing, there is another dimension that has to be considered. Technical sustainabil-

ity has the central objective of long-time usage of systems and their adequate

evolution with changing surrounding conditions and respective requirements.

For SE: How can software be created so that it can easily adapt to future change?

There are many definitions of sustainable software engineering. We present

some of these in Table 1.1. It is clear that there are many more works which use

the term sustainable software engineering.

1.3 From Sustainability to Greenability

As detected in several definitions, sustainability is generally considered from three

dimensions (the social, the economic and the environmental) provided by the

UN [62].

If we apply the definition to our context, the third dimension, the one related to

the technical aspects, is the one that we call the ‘green’ dimension. Figure 1.3 shows

this in diagram form.

Taking this distinction as a basis, in the next section we will show the definitions

of green applied to each one of the levels in Fig. 1.2. As happened in the case of

sustainability, in the literature authors use the terms green and greenability

1 Introduction to Green in Software Engineering 11

(e.g. Green IS and IS Greenability) synonymously; we will do the same, presenting

definitions found for both concepts.

Table 1.1 Sustainable

Reference Term Definition

[3] Sustainable software

engineering

Sustainable software engineering aims to create reli-

able, long-lasting software that meets the needs of users

while reducing environmental impacts; its goal is to

create better software so we will not have to compro-

mise future generations’ opportunities

[37] Sustainable software

engineering

Sustainable software engineering aims to create reli-

able, long-lasting software that meets the needs of users

while reducing the negative impact on the economy,

society and the environment

[33] Sustainable software

engineering

Sustainable software engineering is the art of defining

and developing software products in a way so that the

negative and positive impacts on sustainability that

result and/or are expected to result from the software

product over its whole life cycle are continuously

assessed, documented and optimised

[58] Sustainable software

engineering

Sustainable software engineering is the development

that balances rapid releases and long-term sustainabil-

ity, whereas sustainability is meant as the ability to

react rapidly to any change in the business or technical

environment

[19] Green and sustainable

software engineering

Green and sustainable software engineering is the art of

developing green and sustainable software with a green

and sustainable software engineering process. There-

fore, it is the art of defining and developing software

products in a way, so that the negative and positive

impacts on sustainable development that result and/or

are expected to result from the software product over its

whole life cycle are continuously assessed, documented

and used for a further optimisation of the software

product

[35] Green and sustainable

software engineering

The objective of green and sustainable software engi-

neering is the enhancement of software engineering,

which targets

1. The direct and indirect consumption of natural

resources and energy

2. As well as the aftermath that are caused by soft-

ware systems during their entire life cycle, the goal

being to monitor, continuously measure, evaluate and

optimise these facts

[31] Software engineering

for sustainability

The aim of software engineering for sustainability

(SE4S) is to make use of methods and tools in order to

achieve this notion of sustainable software

12 C. Calero and M. Piattini

1.3.1 Green IS

At the top level, we found the Green IS concept. Chen et al. [14] unite the terms

Green IT and Green IS and suggest that ‘Green IS & IT refers to IS & IT products

(e.g., software that manages an organization’s overall emissions) and practices

(e.g., disposal of IT equipment in an environmentally-friendly way) that aims to

achieve pollution prevention, product stewardship, or sustainable development’.

The authors of [64] define Green IS as inclusive of Green IT, extended with

people, processes, software and information technologies to support individual,

organisational or societal goals (Fig. 1.4).

The Green Book [29] focuses on Green IS projects, programmes and initiatives

as potential influences on the sustainability of organisations and communities under

threat from climate change and other aspects of environmental degradation.

1.3.2 Green ICT/IT

The literature provides us with a variety of definitions of the concept of Green

IT. The term Green IT refers to the relationship between IT and energy

efficiency [11].

In [6], the authors state that Green IT means using technology efficiently while

taking into account the triple bottom line: ‘economic viability, social responsibility

and environmental impact’.

SustainabilitySustainability

Social
Sustainability

Economic
Sustainability

Environmental
Sustainability
(Green level)

Fig. 1.3 Sustainability

dimensions

1 Introduction to Green in Software Engineering 13

The same author in [5] presents eco-computing and green computing as syno-

nyms of Green IT, defining them as a set of best practices for the optimal use of

computing resources. Green practices in technology can cover several phases of the

product or service life cycle: from acquisition to recycling and final disposal.

In [45], the author considers that Green IT ‘refers to the study and practice of

designing, manufacturing, and using computer hardware, software, and communi-

cation systems efficiently and effectively with no or minimal impact on the envi-

ronment’. In his opinion, Green IT is also about ‘using IT to support, assist, and

leverage other environmental initiatives and to help in creating green awareness’.

The author refined the definition in [44] in the following manner: ‘Green IT is the

study and practice of designing, manufacturing, and using computers, servers,

monitors, printers, storage devices, and networking and communications systems

efficiently and effectively with minimal impact on the environment. It includes

environmental sustainability, the economics of energy efficiency, and the total cost

of ownership, which incorporates the cost of disposal and recycling. Green IT is

also about the application of IT to create energy-efficient, environmentally sustain-

able business processes and practices’.

Very similar definitions are provided in the following pieces of work:

• In [22], ‘the aim of Green IT is to produce as little waste as possible during the

whole IT lifecycle (development, operation and disposal)’.

• In [35], ‘Green IT considers the optimizing the resource and energy consumption

of ICT itself, induced during the whole life cycle, and tries to optimize it’.

• In [28], Green IT ‘denotes all activities and efforts incorporating ecologically

friendly technologies and processes into the entire life cycle of information and

communication technology’.

• In [15], the authors use the term green computing. This term ‘refers to environ-

mentally sustainable computing which studies and practices virtually all com-

puting efficiently and effectively with little or no impact on the environment’.

The green computing term is the same as Green IT [4].

• In [42], ‘Green IT is a systematic application of environmental sustainability

criteria to the design, production, sourcing, use and disposal of the IT technical

Green IS

OtherOther

TechnologyTechnologyPeoplePeople

GoalsGoals

Green ITGreen IT

Fig. 1.4 Green IS and

Green IT

14 C. Calero and M. Piattini

infrastructure as well as within the human and managerial components of the IT

infrastructure in order to reduce IT, business process and supply chain related

emissions and waste and improve energy efficiency’.

• In [7], the authors consider Green IT and green computing as synonymous,

defined as the study and practice of designing, manufacturing, using and dis-

posing of computers, servers and associated subsystems efficiently and effec-

tively with minimal or no impact on the environment. Green IT thus

encompasses hardware assets, software assets, tools, strategies and practices

that help improve and foster environmental sustainability.

• In [54], the authors consider that the definition of Green IT is broad, as it can be

applied to situations where IT enables greenhouse gas emission reductions and

to situations where IT enables structural changes that lead to changes in broader

societal patterns, which takes us closer to the low-carbon society and leads to

further emission reductions.

A different definition is provided in [1]. In this work, the author believes that

Green IT can be described by dividing IT-related issues into four different fields:

– ‘Field 1 concerns the IT product itself and the energy and environmental impact

they cause and in particular the products people use on a daily basis. This field is

important to gain (sic) credibility to Green IT solutions because it is difficult to

take Green IT seriously if the products needed have not been undertaken by the

process of diminishing environmental impact.

– Field 2 is about transportation, communication and virtual mobility. This field is

pictured as two separate parts, which represents the transportation of goods and

the transportation of people.

– Field 3 is about community planning on all levels, ranging from whole regions,

cities and small towns down to the personal household planning level.

– Field 4 handles the production and consumption patterns. IT opens possibilities

to measure environmental impact on production and consumption and following

a product or a service throughout its entire lifecycle enables control over the total

environmental effect’.

In [41], the authors explain that Green IT initiatives can range from those that

focus on reducing IT infrastructure’s carbon footprint to those that transform a

business. Green IT can be deployed to support a variety of sustainability initiatives,

such as those to measure carbon footprints, monitor the environmental impact of

business practices, reduce waste in business processes, lower resource consumption

or increase energy efficiency and reduce greenhouse gas emissions.

From our point of view, one of the definitions that best expresses how the term

Green IT is tackled in the literature, at the same time as being more thorough and

precise, is the definition provided in [48], which encapsulates all the definitions in

[15, 22, 28, 35].

For a deeper insight into Green IT, we recommend the book Harnessing Green
IT [43], in which the idea is to give a holistic perspective on Green IT by discussing

its various facets and showing how to embrace them strategically.

1 Introduction to Green in Software Engineering 15

As remarked by [22], however, over a long time, the topics of Green IT involved

only research dealing with hardware. It is clear that, independently of the efforts

made until now, software is also part of IT and must be taken into account when

talking about Green IT.

Apart from the previous definitions of general Green IT, there is an important

aspect to be taken into account, which is related to the difference between Green in
IT and Green by IT. The next section introduces this difference, along with the

definitions found between them.

1.3.2.1 Green by IT Versus Green in IT

The main difference between Green in IT and Green by IT is the role played by the

IT and the focus of the greenness. As indicated by [61], the difference depends on

considering IT as a producer to handle the emissions produced by the IT gadgets

themselves or considering IT as an enabler to enable reduction of emissions across

all areas of an enterprise. This difference was also highlighted recently in [22],

where it is stated that IT can contribute to eco-sustainability in two ways: on the one

hand, Green IT (Green in IT), when IT itself has an impact on the environment, and

on the other hand Green by IT, when IT provides tools for making tasks environ-

ment friendly.

This means that when the goal pursued is to reduce the energy consumption and

the resources used by IT, we are talking about Green in IT. When the focus is on

using IT to achieve more environment-friendly systems in other domains, then this

is Green by IT. This same idea is set out in [35], where it is stated that IT can

contribute to sustainability from two perspectives. On the one hand, IT can support

sustainability by optimising the resources and energy consumption of ICT itself, as

induced during the whole life cycle. This concept is called Green IT (Green in IT).

On the other hand, IT can support sustainability by providing ICT solutions that

reduce the environmental impact in other fields [23]. This is the concept known as

Green by IT.

As we know, IT is composed mainly of software and hardware; this means that

the same considerations can be applied at these levels; thus, we can have green in

software, green in hardware, green by software and green by hardware (Fig. 1.5).

Finally, we can combine the BY and the IN aspects in software and in hardware.

We have called this green software and green hardware, respectively, which

together make up Green IT. In Fig. 1.5, these relationships are shown in the form

of a diagram.

We will use these concepts when presenting the different definitions found

because, as shown previously, there are discrepancies between the concepts and

the meanings given by the different authors.

16 C. Calero and M. Piattini

We will therefore use the terminology in Fig. 1.5 to unify the different defini-

tions. Readers will find in italic and parentheses the alternative concept to that used

by the authors.

In [6], the authors talk about Green IT 1.0 and Green IT 2.0, defining both as

follows: Green IT projects can be divided into two categories:

1. Green for IT (Green in IT), projects aiming to reduce the environmental impact

of IT, also known as Green IT 1.0. For example, 10 GbE (10 gigabit per second

Ethernet), clean energy to power data centres, hardware virtualisation, cloud

computing services (i.e. software as a service (SaaS), Web services, infrastruc-

ture as a service, developing platform as a service), data centre outsourcing and

co-location services, IT asset disposal and recycling services, IT energy mea-

surement, localised cooling, managed printing services, PC power management

software, storage capacity optimisation, thin clients (i.e. low-cost terminals

limited to user interface (UI) processing, data processing being run on the server)

2. IT for Green (Green by IT), projects aiming to reduce the environmental impact

of operations using IT, also known as Green IT 2.0. For example, process

automation, remote collaboration, TelePresence, and resource usage manage-

ment (energy, water, paper, CO2), for example, Project 2 degrees

The same names of Green 1.0 and 2.0 are used by [44] but in another sense.

These authors argue that we are now marching towards the second wave of Green

IT. The first wave, Green IT 1.0, was internally focused on re-engineering IT

products and processes to improve their energy efficiency and meet compliance

requirements. Green IT 2.0 is externally focused on business transformation,

sustainability-based IT innovations and enterprise-wide sustainability [44].

The definition given in [25] highlights the fact that there are two concepts used,

depending on the nature of IT: Green IT (Green in IT), defined as the IT sector’s

own activity and its impact on environmental efficiency, and green applications of

Green
IT

Green IT
Green IN IT

Green IN
So�ware

Green BY IT

Green
Hw

Green
Hw

Green
Sw

Green
Sw

Green BY
So�ware

Green IN
Hardware

Green BY
Hardware

Fig. 1.5 Green software, green hardware and Green IT

1 Introduction to Green in Software Engineering 17

IT (Green by IT) or IT for Green, defined as the impact of IT on the environmental

productivity of other sectors, particularly in terms of energy efficiency and their

carbon footprint.

A slightly different definition of the concepts is the one given by [42], where

waste (materials or substances which harm the environment or demand surplus

energy or resources) is used as a definition criterion: Green IT (Green in IT) is to
produce as little waste as possible during the whole IT life cycle (development,

operation and disposal), and Green by IT aims at producing as little waste as

possible by means of IT.

In [51], the author talks about sustainability for software engineering (how to

make SE itself more sustainable) and sustainability in software engineering (how to

improve the sustainability of the systems we develop). Although the author talks

about sustainability, we think she refers to what we call green software engineering

and, more concretely, to green in software engineering (from the point of view of

the process and of the product).

As can be observed, most of the authors use Green IT and Green by IT instead of

Green in IT and Green by IT. We maintain that this is confusing because concep-

tually Green in and by IT are part of Green IT. That is why we have decided to use

Green in IT instead of only Green IT, giving Green IT an upper level that contains

Green in IT and Green by IT.

1.3.3 Green Software

As remarked in the Intel technical article Impact of Software on Energy Consump-
tion, much of the computer energy used (and saved) is based on the effectiveness of

hardware energy efficiency and the hardware power states of the computer. But

software has an impact as well, in two ways: while running a ‘workload’ and while

‘idle’.4

Until recently, the greater part of the work done within the Green IT industry was

related to the area of hardware, focusing mainly on improving the energy efficiency

of hardware.

Hardware is of course fundamental, but hardware and software together form a

whole; one has no meaning without the other. It thus seems self-evident that

research work needs to be broadened to include software. As [22] points out,

researchers have to pay attention to the effect of software within Green IT.

The trend has been changing in the last few years, and new pieces of work

related to the area of green software are emerging. However, there is no common

definition of green software [1], a fact that leads us to outline some of the definitions

that can be found for the term green software.

4 https://noggin.intel.com/content/impact-of-software-on-energy-consumption

18 C. Calero and M. Piattini

https://noggin.intel.com/content/impact-of-software-on-energy-consumption

Murugesan and Gangadharan [43] define green software as environment-

friendly software that helps improve the environment. The authors classify green

software into four categories:

• Software that is greener (consumes less energy to run)

• Embedded software that assists other things in going green (smart operations)

• Sustainability-reporting software (or carbon management software)

• Software for understanding climate change, assessing its implications and

forming suitable policy responses

Green software is defined in [57] as software that must fulfil three high-level

requirements:

1. The required software engineering processes of software development, mainte-

nance and disposal must save resources and reduce waste.

2. Software execution must save resources and reduce waste.

3. Software must support sustainable development.

According to [22], green software is ‘an application that produces as little waste

as possible during its development and operation’.

1.3.3.1 Green by Software Versus Green in Software

As happened with Green IT, green software can be divided into green by software

and green in software. Again, the main difference is whether the goal pursued is to

have more environment-friendly software or if it is rather to produce software that

helps the environment. Figure 1.6 shows this in diagram form.

Green So�ware

Green BY So�ware Green IN So�ware
Dematerialization
Grid Management

Cloud Management
Data Centers

Domain-related applications
...

Dematerialization
Grid Management

Cloud Management
Data Centers

Domain-related applications
...

Process
Product

Life cycle
Governance

...

Process
Product

Life cycle
Governance

...

Fig. 1.6 ‘Green by’ and ‘Green in’ software

1 Introduction to Green in Software Engineering 19

Green by software appeared some time ago. In general, green by software covers

software developed for domains that work in the preservation of the environment,

as well as software that helps to manage energy-intensive applications.

On the other hand, green in software is related to how to make software in a more

sustainable way resulting in a more sustainable product (this is called green

software engineering). The next section will discuss this.

Of course, green in software also includes other aspects aside from software

development, such as governance.

1.4 Green in Software Engineering

Green in software engineering is part of green in software and therefore of green

software; green in software engineering is the focus of this book. Its main goal is to

include green practices as part of the software development process, as well as the

rest of activities that are part of software engineering (see Fig. 1.7).

ISO/IEC/IEEE Systems and Software Engineering Vocabulary (SEVOCAB)

defines software engineering as ‘the application of a systematic, disciplined, quan-

tifiable approach to the development, operation, and maintenance of software; that

is, the application of engineering to software’ [32].

Based on this definition, we can define green in software engineering as those

practices which apply engineering principles to software by taking into consider-

ation environmental aspects. The development, the operation and the maintenance

of software are therefore carried out in a green manner and produce a green

software product (Fig. 1.8).

Green So�ware

Green BY So�ware

Green IN
So�ware

Green IN
So�ware

Engineering

Fig. 1.7 Green in software engineering

20 C. Calero and M. Piattini

In [22], the author explains that software engineering can be green in three ways

[60]: (a) by producing green software, (b) by producing software to support

environmental consciousness (green by software) and (c) by producing less waste

during the development process.

As can be observed, the author mixes green by software with green in software in

defining green software engineering. Taking into account the definition of software

engineering, it seems that ways (a) and (c) fit, but (b) is does not.

This book gives information on the efforts that are being made nowadays in the

arena of green in software engineering. The following chapters will provide infor-

mation about the different areas of SWEBOK [65], attempting to give a complete

snapshot of the present state of the art [32].

1.5 Other Green Concepts in This Book

In this section, we provide a list of the definitions related to green software given in

the different chapters of this book but not yet dealt with by us. To that end, Table 1.2

shows the chapter in which the term appears along with the term itself and its

definition. It should be underlined that the definition is not necessarily proposed by

the authors themselves; it may have been taken from the literature but used in the

authors’ work. This means that it is advisable to look up the chapter that contains

the definition if the reader wishes to find out the exact source of a particular term. It

should also be noted that the chapters in this book include definitions of concepts

already treated in this chapter that we have not taken into consideration to avoid

unnecessary repetitions.

GreenProcessGreenProcess
GreenGreen

ProductProduct
GreenGreen

Product’Product’

Opera�onOpera�on

DevelopmentDevelopment

GreenProcessGreenProcess

MaintenanceMaintenance

Green in So�ware Engineering

Fig. 1.8 Green in software engineering

1 Introduction to Green in Software Engineering 21

Table 1.2 Green definitions

Chapter

number Term Definition

2 Software engineering envi-

ronment (SEE)

It describes the network of people, software, hard-

ware and infrastructure involved in the construc-

tion of software

Design for sustainable

behaviour

It denotes how designers can influence users to act

in a more environment-friendly manner with

respect to their use of products, services and

environments

3 Green and sustainable soft-

ware product

It is a product that should have little impact on the

sustainable development and, if it is its specific

benefit, promote the pursuit of sustainable

objectives

4 Green software services

(GSS)

When green software is delivered as online services

5 Green strategy It is a plan of action intended to accomplish a

specific environmental goal

Green goal It is an objective that an organisation sets itself to

achieve and which is quantified where practical

6 Software engineering for sus-

tainable development

Addresses issues and questions of where and how

software and software engineering can help sus-

tainable development

Green quality It is only indicated by some quality indicators,

either indirectly or directly

Sustainability of software

systems

Systems which generate much waste can be con-

sidered more harmful to the environment than those

systems that are better at recycling

Green quality factors They are factors that define how software supports

sustainable development

Resource efficiency

(in software engineering)

It is related to software life cycle, including soft-

ware design, management, maintenance and

disposal

Software execution resource

efficiency

It is related to software execution and software

platform usage

Software client process

resource efficiency

It is related to how software stakeholders benefit

from software and its software system

Triftness It is a factor that evaluates how software reduces

waste

Social sustainability It is a factor that evaluates how software supports

social equality

7 Sustainable Capable of being upheld; maintainable; and to

sustain as ‘to keep a person, community, etc., from

failing or giving way’; to keep in being; to maintain

at the proper level; to support life in; nature, etc.,

with needs

Requirements engineering for

sustainability

It denotes the concept of using requirements engi-

neering and sustainable development techniques to

improve the environmental, social and economic

(continued)

22 C. Calero and M. Piattini

Table 1.2 (continued)

Chapter

number Term Definition

sustainability of software systems and their direct

and indirect effects on the surrounding business

and operational context

Green requirements

engineering

It denotes the same concept as requirements engi-

neering for sustainability with a specific focus on

the direct and indirect environmental impacts of

systems

Environmental requirements Requirements with regard to resource flow,

including waste management, can be elicited and

analysed by life cycle analysis (LCA)

9 Green software maintenance It is performed during the entire software working

cycle and ends with the retirement of the software

product, undertaking at this point all the required

activities to reduce the environmental impact of the

retired software. It includes modification of code

and documentation in order to solve possible devi-

ation of the greenability requirements (or the

implementation of new ones), without modifying

the original functionality of the source code

Ecological debt The cost (in terms of resource usage) of delivering

a software system with a greenability degree under

the level of the non-functional requirements

established by stakeholders, plus the incurring cost

required to refactor the system in the future

10 Sustainable software

development

It refers to a mode of software development in

which resource use aims to meet (product) software

needs while ensuring the sustainability of natural

systems and the environment

Greenability Degree to which a product lasts over time,

optimising the parameters, the amounts of energy

and the resources used

Energy efficiency Degree of efficiency with which a software product

consumes energy when performing its functions

Resource optimisation Degree to which the resources expended by a soft-

ware product, when performing its functions, are

used in an optimal manner

Capacity optimisation Degree to which the maximum limits of a product

or system parameter meet requirements in an opti-

mal manner, allocating only those which are

necessary

Perdurability Degree to which a software product can be used

over a long period, being, therefore, easy to mod-

ify, adapt and reuse

Greenability (in use) Degree to which a software product can be used by

optimising its efficiency, by minimising environ-

mental effects and by improving the environmental

user perception

(continued)

1 Introduction to Green in Software Engineering 23

1.6 Challenges and Future Work

Several efforts trying to highlight the importance of including green aspects within

software engineering have been undertaken in recent years.

Our task is to raise awareness among software developers (software industries,

development departments, etc.) as well as users, who hold in their hands the

responsibility of choosing and demanding a software that is more respectful of

the environment.

If we achieve this, the whole software development ecosystem will be forced to

adopt greener software processes and produce greener software products if they

want to remain competitive.

As the issue of green software develops and strengthens, the terminology used

will also become clearer. In this chapter, we have attempted to gather the main

terms used today. We are certain that these are subject to modification, evolving as

the area itself grows in maturity and thereby solving some of the currently present

inconsistencies and lack of precision.

Green in software engineering is a nascent research area, so there are plenty of

challenges. It is our firm belief that in the next few years we will see research

findings and practical applications that we could never even imagine at the

present time.

Table 1.2 (continued)

Chapter

number Term Definition

Efficiency optimisation Optimisation of resources expended in relation to

the accuracy and completeness with which users

achieve goals. Relevant resources can include time

consumption, software resources, etc.

User’s environmental

perception

Degree to which users are satisfied with their per-

ception of the consequences that the use of soft-

ware will have on the environment

Minimisation of environmen-

tal effects

Degree to which a product or system reduces the

effects on the environment in the intended contexts

of use

Quality in use It is the degree to which a product or system can be

used by specific users to meet their needs in order

to achieve specific goals with efficiency, freedom

from risk, greenability and satisfaction in specific

contexts of use

24 C. Calero and M. Piattini

References

1. Abenius S (2009) Green IT & Green software – time and energy savings using existing tools.

In: Environmental informatics and industrial environmental protection: concepts, methods and

tools. Shaker Verlag, Aachen, pp 57–66

2. Adams WM (2006) The future of sustainability. Re-thinking environment and development in

the twenty-first century: technical report, IUCN

3. Amsel N, Ibrahim Z, Malik A, Tomlinson B (2011) Toward sustainable software engineering:

NIER track. In: 2011 33rd international conference on software engineering (ICSE), pp 976–

979

4. Donnellan B, Sheridan C, Curry E (2011) A capability maturity framework for sustainable

information and communication technology. IT Prof 13(1):33–40

5. Bachour N (2012) Green IT project management, Chapter 7. In: Hu W, Kaabouch N (eds)

Sustainable ICTs and management systems for green computing. IGI, Hershey, PA. ISBN

978-1-4666-1839-8

6. Bachour N, Chasteen L (2010) Optimizing the value of Green IT projects within organizations.

In: Green technologies conference

7. Bose R, Luo X (2012) Green IT adoption: a process management approach. Int J Account

Inform Manag 20(1):63–67

8. Brodkin J (2008) Economy driving Green IT initiatives. Netw World 25(48):16

9. Brown B, Hanson M, Liverman D, Merideth R (1987) Global sustainability: toward definition.

Environ Manag 11(6):713–719

10. Calero C, Bertoa MF, Moraga MA (2013) A systematic literature review for software sustain-

ability measures. In: GREENS 2013: Second international workshop on green and sustainable

software, pp 46–53

11. Capra E, Francalanci C, Slaughter SA (2012) Is software “green”? Application development

environments and energy efficiency in open source applications. Inform Software Tech 54

(1):60–71

12. Castelo B, Lima M (2006) Corporate social responsibility and resource-based perspectives.

J Bus Ethics 69:111–132. doi:10.1007/s10551-006-9071-z, Springer 2006

13. Cazier JA, Hopkins BE (2011) Doing the right thing for the environment just got easier with a

little help from information systems. In: Proceedings > Proceedings of SIGGreen workshop.

Sprouts: working papers on information systems, vol 11, issue 10. http://sprouts.aisnet.org/11-10

14. Chen AJ, Watson RT, Boudreau MC, Karahanna E (2009) Organizational adoption of green IS

& IT: An institutional perspective. In: ICIS 2009 proceedings, 142. Retrieved from http://aisel.

aisnet.org/icis2009/142

15. Chia-Tien Dan L, Kai Q (2010) Green computing methodology for next generation computing

scientists. In: Computer Software and Applications Conference (COMPSAC), 2010 IEEE 34th

Annual, pp 250–251

16. Collins (2013) Collins dictionary. http://www.collinsdictionary.com/

17. Dahlsrud A (2008) How corporate social responsibility is defined: an analysis of 37 definitions.

Corp Soc Responsibility Environ Manag 15:1–13. doi:10.1002/csr.132, Wiley InterScience

18. Dick M, Drangmeister J, Kern E, Naumann S (2013) Green software engineering with agile

methods in green and sustainable software (GREENS). In: 2013 2nd International Workshop,

pp 78–85

19. Dick M, Naumann S (2010) Enhancing software engineering processes towards sustainable

software product design. In: Greve K, Cremers AB (eds) EnviroInfo 2010: Integration of

environmental information in Europe. Proceedings of the 24th International Conference

EnviroInfo, Cologne/Bonn, Germany. Shaker, Aachen, pp 706–715

20. Du W, Pan SL, Zuo M (2013) How to balance sustainability and profitability in technology

organizations: an ambidextrous perspective. IEEE Trans Eng Manag 60(2):366–385.

doi:10.1109/TEM.2012.2206113

1 Introduction to Green in Software Engineering 25

http://dx.doi.org/10.1007/s10551-006-9071-z
http://sprouts.aisnet.org/11-10
http://aisel.aisnet.org/icis2009/142
http://aisel.aisnet.org/icis2009/142
http://www.collinsdictionary.com/
http://dx.doi.org/10.1002/csr.132
http://dx.doi.org/10.1109/TEM.2012.2206113

21. Easterbrook S (2010) Climate change: a grand software challenge. In: FoSER 2010, November

7–8, Santa Fe, New Mexico, USA, ACM 978-1-4503-0427-6/10/11, pp 99–103

22. Erdelyi K (2013) Special factors of development of green software supporting eco sustain-

ability. In: IEEE 11th international symposium on intelligent systems and informatics (SISY),

pp 337–340

23. Erdmann L, Hilty J, Goodman P (2004) Arnfalk the future impact of ICTs on environmental

sustainability in technical report EUR 21384 EN. Technical report series EUR 21384 EN.

European Commission; Joint Research Centre; IPTS – Institute for Prospective Technological

Studies, Seville

24. Ericsson (2013) Ericsson energy, carbon report. On the impact of the networked society.

EAB-13:036469 Uen. Ericsson AB. http://www.ericsson.com/res/docs/2013/ericsson-energy-

and-carbon-report.pdf. Accessed on April 2014

25. Faucheux S, Nicolaı̈ I (2011) IT for Green and Green IT: a proposed typology of

eco-innovation. Ecol Econ 70(11):2020–2027

26. Green Book (2000) European Commission, March 2000

27. Hasan H, Molla A, Cooper V (2012) Towards a green IS taxonomy. In: Proceedings of

SIGGreen workshop. Sprouts: Working papers on information systems, vol 12, issue

25, http://sprouts.aisnet.org/12-25

28. Hedwig M, Malkowski S, Neumann D (2009) Taming energy costs of large enterprise systems

through adaptive provisioning. In: International conference on information systems (ICIS

2009), paper 140. Retrieved from http://aisel.aisnet.org/icis2009/140

29. Helen H (2010) Taking the green IS message to the world. In: SIGGreen proceedings,

pp 139–142. http://siggreen-icis2010-wokshop.wikispaces.com/file/view/SIGGreenICIS2010-

WorkshopEBook.pdf/189649215/SIGGreenICIS2010WorkshopEBook.pdf

30. Hilty LM, Arnfalk P, Erdmann L, Goodman J, Lehmann M, Wäger PA (2006) The relevance

of information and communication technologies for environmental sustainability – a prospec-

tive simulation study. Environ Model Software 21(11):1618–1629

31. IDC (2009) Aid to recovery: the economic impact of IT, software, and the Microsoft ecosys-

tem on the global economy

32. ISO/IEC/IEEE 24765 (2010) Systems and software engineering – Vocabulary

33. ISO26000:2010 (2010) Guidance on social responsibility. https://www.iso.org/obp/ui/#iso:std:

iso:26000:ed-1:v1:en

34. Johann T, Dick M, Kern E, Naumann S (2011) Sustainable development, sustainable software,

and sustainable software engineering: an integrated approach. In: 2011 International sympo-

sium on humanities, science & engineering research (SHUSER), pp 34–39

35. Kern E, Dick M, Naumann S Guldner A, Johann T (2013) Green software and green software

engineering – definitions, measurements, and quality aspects. In: First international conference

on information and communication technologies for sustainability, pp 87–94.

36. Koomey J (2011) Growth in data center electricity use 2005 to 2010. Analytics, Oakland, CA,

August 1. http://www.analyticspress.com/datacenters.html

37. Manteuffel C, Loakeimidis S (2012) A systematic mapping study on sustainable software

engineering: a research preview. In: 9th Student colloquium, pp 35–40

38. Masanet E, Shehabi A, Ramakrishnan L, Liang J, Ma X, Walker B, Hendrix V, Mantha P

(2013) The energy efficiency potential of cloud-based software: a U.S. case study. Lawrence

Berkeley National Laboratory, Berkeley, CA. http://crd.lbl.gov/assets/pubs_presos/ACS/

cloud_efficiency_study.pdf. Accessed in April 2014

39. Merriam-Webster (2013) http://www.merriam-webster.com/

40. Mocigemba D (2006) Sustainable computing. Poiesis & Praxis Int J Technol Assess Ethics Sci

4(3):163–184

41. Mohan K, Ramesh B, Cao L, Sarkar S (2012) Managing disruptive and sustaining innovations

in Green IT. IT Prof 14(6):22–29

42. Molla A, Cooper VA, Pittayachawan S, IT and Eco-sustainability (2009) Developing and

validating a Green IT readiness model. In: International conference on information systems

(ICIS 2009). Paper 141. Retrieved from http://aisel.aisnet.org/icis2009/141

26 C. Calero and M. Piattini

http://www.ericsson.com/res/docs/2013/ericsson-energy-and-carbon-report.pdf
http://www.ericsson.com/res/docs/2013/ericsson-energy-and-carbon-report.pdf
http://sprouts.aisnet.org/12-25
http://aisel.aisnet.org/icis2009/140
http://siggreen-icis2010-wokshop.wikispaces.com/file/view/SIGGreenICIS2010WorkshopEBook.pdf/189649215/SIGGreenICIS2010WorkshopEBook.pdf
http://siggreen-icis2010-wokshop.wikispaces.com/file/view/SIGGreenICIS2010WorkshopEBook.pdf/189649215/SIGGreenICIS2010WorkshopEBook.pdf
https://www.iso.org/obp/ui/#iso:std:iso:26000:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:26000:ed-1:v1:en
http://www.analyticspress.com/datacenters.html
http://crd.lbl.gov/assets/pubs_presos/ACS/cloud_efficiency_study.pdf
http://crd.lbl.gov/assets/pubs_presos/ACS/cloud_efficiency_study.pdf
http://www.merriam-webster.com/
http://aisel.aisnet.org/icis2009/141

43. Murugesan S, Gangadharan GR (eds) (2012) Harnessing Green IT: principles and practices.

Wiley, UK. ISBN: 978-1-119-97005-7

44. Murugesan S, Laplante PA (2011) IT for a greener planet. IT Pro January/February, 16–20

45. Murugesan S (2010) Making it Green. IT Prof 12:4–5

46. Naumann S, Dick M, Kern E, Johann T (2011) The greensoft model: a reference model for

green and sustainable software and its engineering. Sustain Comput Informat Syst 1(4):294–

304

47. Penzenstadler B, Fleischmann A (2011) Teach sustainability in software engineering? In: 2011

24th IEEE-CS conference on software engineering education and training (CSEE&T), pp 454–

458

48. Penzenstadler B, Femmer H (2013) A generic model for sustainability with process and

product-specific instances. In: Proceedings of the 2013 workshop on green in/by software

engineering 2013, ACM, Fukuoka, Japan, pp 3–8

49. Penzenstadler B, Raturi A, Richardson D, Calero C, Femmer H, Franch X (2014) Systematic

mapping study on software engineering for sustainability (SE4S). In: 18th International

conference on evaluation and assessment in software engineering

50. Penzenstadler B et al (2012) Sustainability in software engineering: a systematic literature

review for building up a knowledge base. In: 16th international conference on evaluation and

assessment in software engineering (EASE)

51. Penzesdtadler B (2013) Towards a definition of sustainability in and for software engineering.

In: SAC’13. ACM 978-1-4503-1656-9/13/03, pp 1183–1185

52. Goodland R (2002) Sustainability: human, social, economic and environmental, Encyclopedia

of global environmental change. Wiley, UK

53. Seidel S, vom Brocke J (2010) Call for action: investigating the role of business process

management in green IS. In: SIGGreen proceedings. http://siggreen-icis2010-wokshop.

wikispaces.com/file/view/SIGGreenICIS2010WorkshopEBook.pdf/189649215/SIGGreen-

ICIS2010WorkshopEBook.pdf, pp 132–133

54. Sobotta A, Sobotta I, Gotze J (eds) (2010) Greening IT. How greener IT can form a solid

foundation for a low-carbon society. The Greening IT Initiative Italy. ISBN 978-87-91936-02-9

55. Sroufe R, Sarkis J (eds) (2007) Strategic sustainability: the state of the art in corporate

environmental management systems. Greenleaf, Sheffield, UK

56. Steigerwald B, Agrawal A (2011) Developing green software. https://software.intel.com/enus/

node/183291?wapkw¼developing+green+software

57. Taina J (2011) Good, bad, and beautiful software. In search of green software quality factors.

CEPIS Upgrade XII 4:22–27

58. Tate K (2006) Sustainable software development: an agile perspective. Addison-Wesley,

Upper Saddle River, NJ

59. The Climate Group (2008) SMART 2020: enabling the low carbon economy in the information

age. The Global eSustainability Initiative, Brussels

60. Tomlinson B, Silberman SS, White J (2011) Can more efficient IT be worse for the environ-

ment? Computer 44(1):87–89. doi:10.1109/MC.2011.10, ISSN:0018-9162

61. Unhelkar B (2011) Green IT strategies and applications. Using environmental intelligence.

CRC, Boca Raton, FL

62. United Nations World Commission on Environment and Development (1987) Report of the

World Commission on Environment and Development: our common future. In: United

Nations conference on environment and development

63. vom Brocke J, Seidel S, Recker J (eds) (2012) Green business process management: towards

the sustainable enterprise. Springer, Berlin, p XII, 263 p

64. Watson RT, Boudreau M-C, Chen AJW (2010) Information systems and environmentally

sustainable development: energy informatics and new directions for the IS community. MIS Q

34(1):23–38

65. IEEE (2014). SWEBOK V3.0. Guide to the Software Engineering Body of Knowledge.

Bourque, P. and Fairley, R.E. (eds.), IEEE Computer Society

1 Introduction to Green in Software Engineering 27

http://siggreen-icis2010-wokshop.wikispaces.com/file/view/SIGGreenICIS2010WorkshopEBook.pdf/189649215/SIGGreenICIS2010WorkshopEBook.pdf
http://siggreen-icis2010-wokshop.wikispaces.com/file/view/SIGGreenICIS2010WorkshopEBook.pdf/189649215/SIGGreenICIS2010WorkshopEBook.pdf
http://siggreen-icis2010-wokshop.wikispaces.com/file/view/SIGGreenICIS2010WorkshopEBook.pdf/189649215/SIGGreenICIS2010WorkshopEBook.pdf
https://software.intel.com/enus/node/183291?wapkw=developing+green+software
https://software.intel.com/enus/node/183291?wapkw=developing+green+software
https://software.intel.com/enus/node/183291?wapkw=developing+green+software
http://dx.doi.org/10.1109/MC.2011.10

Part II

Environments, Processes and Construction

Chapter 2

Green Software Engineering Environments

Ankita Raturi, Bill Tomlinson, and Debra Richardson

2.1 Introduction

The industrial world is made up of highly technological energy-hungry societies

that struggle with numerous issues regarding the environmental impacts of our

current use of technology. While researchers are often concerned with the carbon

footprint of the transport sector, waste management issues in homes and buildings

and even consider the energy consumption of the overall IT sector, rarely do they

consider the role of software engineering in the environmental impact of our

computing technologies.

The goal of this chapter is to describe what kinds of methods, metrics and tools

exist and what opportunities there are in these areas to support environmental

(particularly energy) issues that exist within software engineering environments.

In Sect. 2.2, we describe some motivating questions and issues that exist in

software, sustainability and the cross section of the two. Section 2.3 contextualises

the need for greening our software engineering environments (SEEs) due to the

environmental impacts of IT. We will then break down what the structure and

components of a Green SEE are in Sect. 2.4. We instantiate some of these ideas

through the example of Joulery, an energy awareness tool for the Green SEE in

Sect. 2.5. Finally, we try to tie all the different ideas discussed in this chapter back

together with some conclusions in Sect. 2.6.

A. Raturi (*) • B. Tomlinson • D. Richardson

University of California, Irvine, Irvine, CA, USA

e-mail: araturi@uci.edu; wmt@uci.edu; djrg@uci.edu

© Springer International Publishing Switzerland 2015

C. Calero, M. Piattini (eds.), Green in Software Engineering,
DOI 10.1007/978-3-319-08581-4_2

31

mailto:araturi@uci.edu
mailto:wmt@uci.edu
mailto:djrg@uci.edu

2.2 Motivation

In his 1966 paper, The Economics of the Coming of Spaceship Earth, Kenneth
Boulding states, ‘Systems may be open or closed in respect to a number of classes

of inputs and outputs. Three important classes are matter, energy, and information’

[12]. He uses this classification to analyse systems such as the world economy,

human societies, the human body and other aspects of the system of the globe. We

can also consider software production as a global system, with matter, energy and

information inputs and outputs of its own, where software engineering is concerned

with ways to understand and improve these classes.

The basic definition of software engineering as defined by the IEEE standard is:

‘application of a systematic, disciplined, quantifiable approach to the development,

operation, and maintenance of software; that is, the application of engineering to

software’ [34]. This description is useful as it gives us a basis for understanding

what the different concerns and components of software engineering are and what

exactly comprises the software engineering environment.

Software itself is an open system where the majority of the inputs and outputs are

oriented towards the information aspect; software engineering tends towards

scrutinising and optimising the information involved. Software engineering envi-

ronments consist of a variety of devices used in the actual production of software.

Boulding’s matter class can be instantiated to also include computer hardware,

buildings, equipment and other physical components of the software engineering

environment. Reductions in the matter involved in software engineering lead to

direct reductions in financial costs and space requirements. Due to the immense

growth of the software industry, the amount of energy that is consumed during

software construction is rapidly increasing. Software engineers are increasingly

interested in investigating the energy involved in software construction as it would

not only reduce financial costs but also address the global energy crisis.

Boulding’s three ‘classes’ can be considered in concert to work towards dis-

cerning variables, with respect to which software engineering can be tweaked to

reduce the amount of matter and energy consumed while still ensuring that the

quality and purpose of information produced are enhanced. However, these classes

are quite broad, and attempting to address all three at once would be a project of a

rather global scope. The classes could also be treated independently; however, any

changes made to one class may affect another due to their interconnected nature.

For example, in order to reduce the amount of energy consumed by certain

hardware, yet another piece of equipment may need to be introduced into the

system. This means that any analysis of the matter, energy or information involved

in a software engineering environment should be mindful of the potential impact on

other classes.

In Fred Brooks’ 2003 paper Three Great Challenges for Half-Century-Old
Computer Science, he states:

1. ‘Due to the highly complex nature of software and its components, quantifying

this complexity is difficult.

32 A. Raturi et al.

2. Due to the variables involved in building software (functional, reliability and

performance specifications), we have issues estimating different metrics for

software including development time.

3. Due to the wide demographic we build software for, building usable, meaningful

and intuitive user interfaces is more like an art than an engineering task making it

difficult to justify good design’ [13].

These three challenges seem especially relevant when we are just beginning to

try to establish software engineering metrics and methods to make both the process

and the product more environmentally aware. Issues that researchers face in relation

to these challenges could potentially include:

1. How do we decompose the software engineering process and product into

quantifiable components for accurate analysis?

2. How do we ensure that the methods and metrics we develop are accurate and

correctly estimate the environmental impact of software engineering?

3. How do we build tools that provide software engineers with useful and mean-

ingful data that can be visualised for a greater understanding of potential

environmental considerations of software engineering?

From an examination of the existent literature in sustainable software engineer-

ing, efforts by researchers such as Naumann et al. [51] involving the life cycle of

software and the work of Capra et al. [15] on the energy complexity of software are

actively trying to answer the first two questions. There remains a gap when it comes

to constructing tools to provide software engineers with environmental impact data.

These tools could include energy monitors and resource trackers and should provide

meaningful visualisations of such data.

Current efforts involve energy monitoring tools that either focus entirely on data

centres as a whole or only on individual activity agnostic devices. In addition, other

software monitoring tools such as bug trackers give developers information regard-

ing other metrics such as the health of their source code. There is a need to link

environmental impact data across the various components (including the data

centre) in a software engineering environment with the goal of providing a com-

prehensive environmental impact map of the system. How this map is presented or

put together, and what information is conveyed, is a design problem that spans

across the software engineering landscape.

In discussing means of integrating new tools into a software engineering envi-

ronment, Thomas and Nejmeh state that we should ensure that any represented

information is consistent with the rest of the engineering environment, no matter

what data are being transformed [61]. In this sense, it would be important to make

sure that any work done visualising such data is consistent with the other types of

software environment information already available to engineers. It is important to

design solutions that are as flexible and customisable as possible while being aware

of the complexity of the systems with which they interact. Due to the varying nature

of these engineering environments, modular solutions would best allow for such

considerations.

2 Green Software Engineering Environments 33

2.3 Contextualising the Need for Green Software

Engineering Environments

Information technology has played a key role in attempting to address environmen-

tal issues while also contributing to a rise in certain other kinds of environmental

issues. However, these two concepts can be considered independently.

We can first consider IT that is being used to actively mitigate environmental

issues. To clarify terms, we make a distinction between ‘Green IT’ and ‘greening

through IT’. ‘Green IT’ is technology that is in and of itself attempting to reduce its

own environment footprints. Murugesan describes Green IT as: ‘the study and

practice of designing, manufacturing, using, and disposing of computers, servers,

and associated subsystems.efficiently and effectively with minimal or no

impact on the environment’ [50]. ‘Greening through IT’ [62], on the other hand,

is a broader focus on how information technology may make a wide range of other

sectors of civilisation more sustainable through the application of IT in those

domains.

A broad range of work has been done to ensure that the IT we design and build

reduces its own resource consumption and consumption by the systems that it is

embedded in. However, due to the sheer vastness and the embedded nature of IT in

all sectors, this has proven to be an enormous task that requires cross-sector

collaboration. Computers and the Internet are considered general-purpose technol-

ogies [36] which can have major impacts on the global economy and society at

large, which makes environmental and energy concerns of software global concerns

too. The Smart 2020 report describes four mechanisms by which IT can be used to

enable other sectors: smart grids, smart buildings, smart logistics and smart motor

systems [65]. These categories provide a sampling of the various types of technol-

ogies that are being built with the purpose of enabling greening through IT. The IT

sector itself is said to be responsible for 2 % of global CO2 emissions [47], and the

overall environmental impacts of this sector also include large amounts of energy

consumption [14] and consumption of a variety of other materials [59], as well as

the production of e-waste and hazardous substance waste.

One of the major environmental concerns that we are dealing with right now is

the world energy crisis. The World Energy Outlook 2010, an IEA report, states that

‘the age of cheap oil is over’ [10], describing rising energy prices and stressing on

the need for a move towards renewables and low- and non-carbon-dependent

energy sources. What this means is that the energy consumption of all sectors

needs to be minimised.

Due to the growing needs of the IT sector, energy consumption of IT is also

becoming a point of investigation [22]. With larger infrastructure, massive power-

hungry data centres and embedded technologies in many daily use objects, the

potential impacts of the IT sector’s footprint could ripple to everything it touches.

The energy demands of IT can seem modest in comparison with other sectors. In

their 2002 book, Electricity Requirements for a Digital Society, Baer, Hassell and
Vollard projected that even a dramatic growth in the IT sector could result in only a

34 A. Raturi et al.

moderate increase in electricity use over the next 20 years, remaining under 5.5 %

of the national electricity total [6]. They do mention that the projections are based

on scenarios involving ‘incomplete data and a large number of assumptions about

how the future will unfold’ [6]. These assumptions include the growing role of IT in

power management, continuing technological improvements, interest in telework

opportunities (which would skew the energy use burden to residential areas) and

so on.

While numbers such as 2 % of global CO2 emissions and 5.5 % of a national

electricity total are only part of a global total, it is important to remember that these

numbers are only of the IT itself and do not take into account the domino effect of

these systems to other sectors. Elliot and Binney state that these numbers are still

‘too large to be maintained’ [22]. So, in order to create more complete datasets on

which to base better projections and to actually minimise current consumption, it

would be useful to have a research agenda in the IT sector that deals specifically

with environmentally sustainable IT.

Murugesan [50] lists five reasons for the push to Green IT: lower costs, lower

power consumption, lower carbon emissions and environmental impacts, space

savings and improved performance and use of systems. Mingay’s report [47]

describes most succinctly the idea that reducing the impact of IT, including its

energy and carbon footprints, is vital due to the entangled nature of environmental

issues. Briefly stated, the idea is that any reduction here can lead to another

reduction there.

2.4 The Green Software Engineering Environment

Let us begin with the International ISO/IEC/IEEE 2476 Standard for Systems and

Software Engineering Vocabulary definition of the software engineering

environment:

Clause 3.2761 software engineering environment (SEE)

1. environment that provides automated services for the engineering of software systems

and related domains, such as project management and process management. ISO/
IEC15940:2006, Information Technology Software Engineering Environment
Services.2.2.1

2. hardware, software and firmware used to perform a software engineering effort

NOTE: It includes the platform, system software, utilities and CASE tools installed.

The SEE can be broken down into four layers: infrastructure, hardware, software

and people, where each is defined as follows:

• Infrastructure: Includes physical structures (e.g. buildings, data centres) and

utilities (e.g. network cabling, water supply systems) that are used to support and

house different software engineering activities.

2 Green Software Engineering Environments 35

• Hardware: Includes computers, networking equipment, servers, mobile devices,

etc. Hardware refers to physical elements that perform computation related to

different software engineering activities.

• Software: Includes collections of computer programs used during software

engineering activities, that is, the platform, system software, firmware, utilities

and CASE tools.

• People: Includes designers, developers, architects, project managers, etc., peo-

ple who are directly involved in different software engineering activities.

In this section, we discuss what types of solutions are available with respect to

the infrastructure, hardware, software and people involved in the SEE.

2.4.1 Green Infrastructure for the SEE

Most technology today contains some form of software, whether it be an applica-

tion running on a computer or an embedded program in a microcontroller. Software

is a multibillion dollar industry requiring an immense supporting infrastructure with

far-reaching impacts. Building software itself is a highly complicated matter. A

majority of the work that has been done in enabling software engineering to be a

more environment-friendly process has focused on optimising data centres and

virtualisation and energy-efficient protocols, creating data collection tools for

specific systems and investigating energy-aware cloud computing options.

One of the most comprehensive analyses on the performance of data centres

comes from the book The Datacenter as a Computer [7] by Barroso and Holzle.

They look at hardware performance and design decisions, monitoring of large-

scale systems and, most relevantly, the energy and power efficiency of the data

centre as a whole. They also discuss ways to calculate PUE (power usage effec-

tiveness), an energy conversion term devised by The Green Grid [55] that takes into

account the energy efficiency of all the individual load-bearing components inside a

data centre. Overall, they provide a rather detailed method using well-accepted

metrics for analysing data centre performance. They focus mostly on the major

culprits: cooling and server power supplies.

According to similar work, 60–70 % [9] of the energy used in data centres goes

entirely to cooling. Companies like Google have invested a lot of time, effort and

money in improving their servers, network infrastructure and component efficiency,

as well as reducing the overall environmental impacts of their systems. They report

servers that lose around 15 % of the electrical input, which is half the waste of

normal servers [29]. Google has also published details of innovative cooling

methods that involve simply using water evaporation to all heat dissipation within

their data centres, reportedly reducing their energy-weighted average overhead

from the 96 % of standard servers to the 19 % of a Google server [24].

Another major issue faced by data centres concerns always-on policies, where

servers are left powered up, regardless of demand, which has led to work on

36 A. Raturi et al.

dynamic power management [8, 48]. Some of the most common processors cur-

rently in use can put out around 100 watts of heat alone [28], which could contribute

to the overall cooling issues that data centres face. The Advanced Configuration and

Power Interface Specification (ACPI) provides four different types of power states

that a computer with a processor that is ACPI enabled can utilise to manage local

wake states according to computational requirements [31].

This has also given rise to interest in virtualisation as an energy-saving mech-

anism. This essentially involves spawning virtual devices on demand, thus reducing

the number of physical components one has and allowing the existing devices to be

used in a more optimal manner [60]. Liu et al. [42] suggest scheduling tasks

throughout a data centre in a distributed manner, while Fan et al. [24] propose

hardware-based power provisioning strategies.

There is no dearth of variety in mechanisms to reduce the energy impact of data

centres. Issues arise in combining these methods and finding tools that are platform

agnostic. In addition, most of the concepts described here only address the data

centre and do not look at infrastructure in the SEE. While the data centre is assumed

to be one of the most energy-intensive parts of an engineering environment, the lack

of integration of the data from this end with the energy data of the developer’s end

could pose an issue.

2.4.2 Green Hardware for the SEE

There exist myriad tools in both software and hardware dedicated to local device

energy use monitoring. The primary push seems to come from consumer electron-

ics, where commercial engineers are designing tools for users to monitor their own

energy consumption. The goals of these tools are both energy awareness and cost

savings as well as being a means to enable consumers to make greener decisions.

The interesting part about these tools is that they can also be considered developer

tools as they can be used by individual software engineers to monitor local device

performance.

One of the first initiatives geared towards informing users of the energy con-

sumption of their electronics was the Energy Star program. Energy Star is a

labelling program by the EPA and the DOE and is geared towards giving manu-

facturers energy efficiency standards which they can use in the design of consumer

products promoting them under this green label [2]. In efforts to meet these

standards, manufacturers of computers and their peripherals, home appliances,

hardware for utility infrastructure and even some organisations in the service

industry have improved their production processes and in-use energy consumption

of their products. According to studies conducted on the savings made by compa-

nies working actively to meet these standards, 5.2 billion dollars in energy costs or

760 petajoules of energy was saved cumulatively between 1993 (the introduction of

Energy Star) and 2000 [58]. These kinds of savings are only projected to increase

with more and more areas of the IT sector and other industries affected moving

2 Green Software Engineering Environments 37

towards producing and using greener technologies. Making sure that the devices

used in the SEE are highly rated with respect to Energy Star would mean that the

energy impact of the SEE hardware layer is reduced.

The hardware tools that exist are mostly in the form of energy metres. Examples

of these devices can be seen in Fig. 2.1. They simply plug into the power outlet, and

then the device to be monitored is plugged into them. The range of data provided

includes volts, amps, watts, etc. One of the Watts Up products is Web enabled

allowing remote monitoring of a device. There is potential to use these to do

widespread power monitoring in engineering environments. However, in order to

support device-level consumption data, one would need a single-purpose piece of

hardware (the monitoring device) for every device to be monitored. A major issue

that could arise with the proliferation of individual energy monitoring devices is an

increase in e-waste.

2.4.3 Green Software for the SEE

Rosseto points out that ‘contrarily from all the other layers, energy efficiency of the

software layer of a data centre remains largely unexplored’ [57], as is exemplified in

Fig. 2.2. You can see that while power input and losses between the source,

networking layers and even down to the hardware are known, there is limited

energy data during computation, related code and eventually the operation the

software does.

There also exists a family of software applications dedicated to power monitor-

ing on computers. For Linux, there exists PowerTOP, which is geared mostly

towards developers [18]. It provides detailed power use information per CPU

Fig. 2.1 Two popular tools for device energy monitoring: (a) Kill A Watt and (b) Watts Up Pro

38 A. Raturi et al.

cycle, process, application and so on. It is actually a command line-based overlay

for Top, a C-based tool that dynamically displays a text output of the top CPU-

consuming processes on a local machine [40].

JouleMeter [56] is a Windows power monitoring tool that provides basic power

reports and is targeted mostly towards casual users. It requires calibration either via

a hardware device like the Watts Up when on desktop machines or via a battery run

on laptops (using the battery delta to estimate power use). Current work on

JouleMeter has begun to look at using learning mechanisms to make estimates of

power consumption from baseline device data [37].

Researchers in green computing and energy consumption have also built a

variety of tools. In their work on estimating power consumption during the use of

specific software application, Amsel et al. [4, 5] developed GreenTracker, which

collects and then displays the graph data for a sample set of applications. This

provided the community with both a methodology to compare software power

consumption and some insight into the discrepancy between the consumption of

different Web browsers, media players and word processors.

PowerScope [27] is another research tool which consists of a system monitor that

tracks system calls on the device being profiled and an energy monitor on a separate

analysis device that collects current samples from a digital multimeter attached to

the device being profiled.

The next group of tools that are designed to enable sustainable software engi-

neering are at the algorithmic level. These are very context-specific tools that can be

used to perform tasks akin to code inspections. JConsole is a graphical Java

monitoring tool which provides details on CPU usage, memory usage, thread

activity, etc., but only of Java applications and subprocesses [19]. JavaSysMon is

an API written in C and Java that allows sampling of CPU usage and memory usage

data [33]. The intended use requires an application to be written over it to perform

the dynamic sampling and visualisation.

There has not been a lot of work that focuses on visualising energy data in a

meaningful manner. Most of these are for residential and personal monitoring

purposes. Fig. 2.3a shows a project which aimed to visualise smart metre data

from consumer homes on their mobile phones [38]. Visually parallel to this work is

the application Usage Timelines [41], also for mobile devices, in Fig. 2.3b. This

Fig. 2.2 Power consumption breakdown in a data centre (adapted from [14])

2 Green Software Engineering Environments 39

application displays CPU usage per application and per process and has a live graph

visualisation for total CPU usage and contains an interface to view details and

potentially terminate each application on the local device. We consider these tools

as motivating examples for the types of energy data visualisations that are lacking

for the SEE. We discuss an analogous tool for the SEE in Sect. 2.5.

Other visualisations that are available for computer-based energy data are also

single device based and textual. PowerTOP and JouleMeter, discussed earlier, only

display text output as can be seen in Fig. 2.4a and b, respectively. Watts Up, also

mentioned in previous sections, has a tool for sale, Logger Pro, that can log and

visualise data that comes from the Watts Up device.

2.4.4 Green Behaviour in the SEE

Lockton et al. describe the field of ‘design for sustainable behaviour’ [43], in which

designers consider how they can influence users to act in a more environment-

friendly manner with respect to their use of products, services and environments.

Within the SEE, we can consider software engineers as users, where they are the

people performing activities, using tools and interacting with the SEE, resulting in

an environmental and energetic impact. Taking a look at software engineers

operating within the SEE would enable us to design better methods, metrics and

tools to encourage green behaviour.

The first thing to consider is the Jevons paradox. Alcott’s analysis of the Jevons

paradox describes it as the issue where increases in technological efficiency in

consuming a resource increase the consumption rate of the associated resource; for

example, ‘a more fuel-efficient car enables one to drive more’ [3]. In 2010, David

Fig. 2.3 Tools for visualising energy consumption: (a) Tariff tool [38] and (b) usage timelines [41]

40 A. Raturi et al.

Owens wrote an article in The New Yorker titled The Efficiency Dilemma [53] where
he also described how energy efficiency could result in greater energy use. In a

rebuttal to this article, Lovins, a scientist at the Rocky Mountain Institute, writes

‘Rebound effects are small in energy-using devices for three reasons: no matter how

efficient your house or washing machine becomes, you won’t heat your house to

sauna temperatures, or re-wash clean clothes; you can’t find an efficient appliances

savings in your unitemised electric bill; and most devices have modest energy costs,

so even big savings look unimportant’ [44]. There are certain aspects of the SEE

that would also have similarly small rebound effects. Time and effort required to

perform software engineering activities play a larger role in whether they are

repeated or optimised. A developer will not unnecessarily recompile code that is

bug-free just because the energy cost is low.

Lovins’ idea can be drawn upon when considering how to reduce the energy

impact of the SEE and, consequently, the IT sector. SEE infrastructure, hardware

and software all exist to meet certain computational needs. If the SEE grows, it is

not out of energy avarice but because there is a need for more computation. The

demand for computation and the demand for information result in a demand for

energy as the SEE will grow to support it. However, the issue is not the cause of the

growth or the value of energy efficiency but of our awareness of energy issues and

of our consumption habits themselves [17]. If we engage in adequate self-reflection

on the way in which our activities affect our energy footprint, we can begin to make

decisions that allow for reduced energy consumption. For example, in 2010, the

United States consumed almost 100 quads of total energy [1]. According to Laitner,

under the current path the United States would be consuming 122 quads by the

year 2050 based on projected growth. He then describes two scenarios where

Fig. 2.4 Tools for visualising energy consumption: (a) PowerTop [18] and (b) JouleMeter [56]

2 Green Software Engineering Environments 41

energy-saving changes are implemented, including better space heating and cooling

which would lead to a drop in consumption to between 50 and 70 quads under the

same projections [39]. To avoid unbounded growth, we would need to make sure

that we are actively implementing efficiency techniques at the infrastructure,

hardware and software layers of the SEE. We can see that if left unchecked, the

demand for computation could result in large increases in things like the size of

data centres and the amount of hardware in the SEE. Therefore, to ensure that

we are actively moving towards a Green SEE, we too would need to make sure

that appropriate energy-saving changes are made to the SEE, as well as the way in

which software engineering activities are conducted.

Due to the variety in energy-consuming nodes in the SEE, there are several

tensions that determine whether or not an energy-efficient SEE would suffer from

rebound effects or not. As an example, during the testing phase of development, we

can generate large numbers of test cases. Regression testing involves running

previously passed tests and tasks again in order to check if a new change has

introduced any bugs. As the time and effort cost to rerun a large test suite are

reasonable, a tester may not think twice about doing this over and over again. So,

what was initially a low-energy activity may now result in more energy being

consumed. There is a trade-off between the various types of testing that can be done

and the energy consumption of the activities that should be kept in mind. Just

because the system is efficient does not mean certain behaviours cannot make it

wasteful.

Doyle [20] discusses the role of technology in a more sustainable world and

concludes that one of the primary goals of Green IT would be to ‘maximise energy

efficiency during a product’s lifetime’. This brings us to a challenge that has been

offered to the environmental value of improving efficiency within the SEE. Does

reducing the energy footprint of software engineering encourage green behaviour?

Tomlinson makes a suggestion that in order to combat the Jevons paradox, we

should consider ‘intelligently applied efficiency’ [63]. Under this principle, yes,

energy-efficient systems may be beneficial in some domains, but they should also

be supported by green policies that actively encourage less consumption in general

to deter the urge to expand. So, to ensure that software engineers are supported in

their quest for low-energy impact behaviours in the activities within the SEE, there

need to be methods, metrics and tools, such as those discussed in this chapter, that

allow for introspection.

We also need to consider what aspects of the SEE support software engineers in

different kinds of decision-making, that is, how are designers encouraged to create

more usable interfaces, how are programmers supported when they make more

secure or maintainable code and how are project managers assisted in selecting

time- and money-saving options? In the paper Safety, Security, Now Sustainability:
The Non-Functional Requirement for the 21st Century [54], Penzenstadler

et al. discuss how requirements engineers were first encouraged to consider safety

and security requirements in software systems and what the move towards consid-

ering sustainability requirements looks like. The paper describes needs that would

42 A. Raturi et al.

alter the behaviour of requirements engineers to encourage them to include envi-

ronmental issues in the specification of a software system.

We can conclude that we need to incentivise software engineers to behave in a

greener fashion by equipping them with the things they need: metrics, methods and

tools. By striving towards a cohesive Green SEE, the barrier to making greener

decisions is lowered. We describe some of these decisions in detail in Sect. 2.5.4.

2.5 Example Tool: The Joulery Energy Dashboard

The Joulery Energy Dashboard instantiates some of the ideas discussed in this

chapter. There is a need for creating tools that address a combination of the

material, information and energy aspects of system involving infrastructure, hard-

ware, software and people layers in the SEE. It is difficult to create a cohesive set of

method metrics and tools that address all of the above. Instead, it is both useful and

feasible to address a subset. In this section, we will present the Joulery Energy

Dashboard, describe its components and design as well as describe how it fits into

the overall landscape of a Green SEE. Joulery aims to visualise the energy footprint

across the infrastructure, hardware and software layers to enable green behaviours

and considers the information and energy aspects of the SEE.

Current energy monitoring tools focus either entirely on large infrastructures

(like data centres) or on very localised monitoring of individual devices. Networks

of devices are at the core of many aspects of industrial society, being crucial parts of

both homes and workplaces, as well as being the support structure of many large

industries. In a 2004 article, Christensen et al. describe the need for power man-

agement of networked devices, stating ‘Energy consumption by digitally networked

devices is expected to increase at a faster rate than other types of energy use in

buildings’ [16]. They discuss research needs such as investigating what and where

the energy problems in networks lie. We argue that a mid-scale analysis is an

important complement to large-scale and small-scale energy investigations,

because it can help the kinds of human organisations, such as corporations, make

decisions more effectively about system-scale phenomena that are under their own

control, rather than focusing only on optimising individual components.

Now, at the core of the SEE lie physical networks. These networks contain

heterogeneous devices that range from high-performance servers, a variety of

computers and laptops, storage, input and output devices as well as miscellaneous

mobile devices. Figure 2.5 shows some of the connections in the SEE. These

devices are used for a range of software engineering activities by a variety of

people. There are developers writing code on Linux-based laptops, software

architects designing components using tablets, requirements engineers using tele-

conferencing equipment to communicate with clients, database engineers building

repositories on servers and so on. In order to provide insight into how each of these

people can modify their behaviours to perform less energy-intensive activities, we

created the Joulery Energy Dashboard.

2 Green Software Engineering Environments 43

The Joulery tool consists of a method for consolidating energy data from

networked devices and provides auto-visualisation of the energy performance of

the network and its components at a granular level. The goal is to enable the

identification of energy sinks in the network which can then be tied back to the

different activities being conducted.

We begin the design of Joulery by treating each node in a physical network in the

SEE in a device agnostic manner and viewing them as resource-consuming entities,

specifically their energy-consuming entities. Figure 2.6 describes the manner in

which the data for each level (process, application, device and network) would

compound to form the overall energy footprint of the software engineering

environment.

Software tools (including Joulery) designed to analyse the environmental impact

attempt to provide a subset of the following three functionalities:

1. Some level of granularity of energy data that is the base for a potential energy

metric

2. A means for energy data collection via hardware tools or estimations

3. Some presentation of dynamic energy consumption data that enables better

decision-making

Fig. 2.5 Hardware involved in an example software engineering environment [52]

44 A. Raturi et al.

2.5.1 Consolidating Energy Data

The hardware involved in the SEE (Fig. 2.5) is structurally similar to a data centre

when we are thinking about the way in which to decompose the system into

resource-consuming nodes. In a white paper by an editor from The Green Grid,

Mark Blackburn states, ‘A low cost, low disruption method bases power usage

calculations on a server’s CPU utilisation’ [11]. This is based on work by Fan

et al. that shows a linear relationship between power usage and CPU utilisation

[24]. Mittal et al. [49] conduct similar investigations into energy consumption of

mobile devices, and while the impact of CPU use is significant, other components

such as the display and networking components are too.

There are a variety of ways in which energy data can be collected, but for

scoping purposes, Joulery only focuses on Linux computers using software-based

loggers, as the Linux kernel allows for direct access to system data at process level.

While the goal would be to avoid using a hardware logger, this prototype requires

the use of one to provide a benchmark value for the conversion of CPU utilisation to

energy consumption discussed later.

The goals of consolidating the energy data of a network are to obtain:

1. An overall metric describing the total energy consumed by the network

2. Device-specific data that is accessible from a central location for analysis,

manipulation and visualisation

3. Application- and process-specific energy data per device to allow for increased

data granularity

Fig. 2.6 Device nodes as part of a network in a software engineering environment

2 Green Software Engineering Environments 45

One means for consolidating energy data is to create data loggers to sit at the

device nodes and have a data aggregator located on a central dedicated server. The

reason for this role split is to reduce processing overhead induced on the nodes

during aggregation by offloading this responsibility to the server.

2.5.1.1 Benchmarking

Heeding advice from centre energy efficiency research, and as suggested by

Blackburn [11], Fan et al. [24] and Barroso and Holzle [7], to get energy consump-

tion of a system, one needs, at the very least, benchmark data regarding power use

levels of the devices. Barroso and Holzle describe a set of benchmark data that is

available for standard servers.

A Watts Up Pro device was used to measure a computer’s power consumption

over an hour to get the average idle power. This was then repeated but with a CPU

stress test run during the hour and the average maximum power recorded. Prime95

[46] is an application that calculates Mersenne prime numbers (prime numbers that

are one less than a power of two) and is popularly used as a device stress-testing

tool. MPrime, a Linux command line port of this application, was used to conduct

the stress tests and obtain benchmarks for a computer running Ubuntu 12.04. The

stress tests produced a range of values, which were then hard-coded into the logger

for use as described in the following sections.

2.5.1.2 Data Logger

The process involved in getting system data through a Linux client logger is quite

straightforward. The ‘/proc’ folder, known as a ‘process information pseudo-file

system’, contains all the system runtime information of the local machine. All the

files contained here are essentially system information at the kernel level. Each

process running on a system also has its own subfolder here that then contains

process-specific information.

The /proc folder is scanned for relevant data which are logged and then pushed to

the server. In the Joulery prototype, only the energy consumed due to CPU usage is

considered, as it consumes the most energy compared to other standard computer

components [45]. This is important to note, as there are potentially many other

energy-consuming components in a device such as the graphics card, networking

card, attached peripherals, etc.

In addition to per process CPU consumption, the logger also reports overall CPU

data. The method here is akin to that used in the tools: ps, Top and PowerTOP

[18, 40]. Importantly, note that two data samples must be taken with a small fixed

time interval and metadata needs to be attached to the log file demarcating the log as

either a ‘before’ or ‘after’ sample. These paired samples are used on the server side

to parse and calculate the energy used by the device.

46 A. Raturi et al.

It should be noted again that this is just one method to access energy data on a

device, and different devices have different kinds of support for access to such data.

For example, ACPI-compatible Linux devices have direct access to local energy

data [31]. So, for each type of client logger that is created, a corresponding parser on

the server side must be written to handle relevant calculation and storage.

2.5.1.3 Data Aggregator

As the client-side logger is responsible for pushing to the server, the primary

responsibility of the server involves knowing which device is sending what and

where and how to store the relevant data logs. Therefore, the server requires

relevant methods to parse and store incoming logs. The corresponding parser for

the data logger described in this section runs the data logs through a series of

manipulations before we can consider the incoming data to represent client energy

consumption data.

First, a log file is received from a client data logger (see Fig. 2.7 for a partial log).

This log contains four categories of information: a unique client ID, the benchmark

power values, a timestamp and system data for each running process. The client ID

can be the MAC address and IP address, or if the names of the devices in the

network are unique, then that too is usable (as in the examples here). The timestamp

is in ISO 8601 format to allow for compatibility and portability between device

times and the other modules involved in this framework.

Line 5, the result of ‘cat /proc/stat’, contains overall CPU data. The consecutive

numbers after the ‘CPU’ label in this line correspond to the amount of time the CPU

has spent in various modes (user, system, etc.). The first three numbers are the time

spent scheduled in user mode, system mode and nice mode, which total to the

amount of time the CPU has been in use. Lines 6 onwards are the results of ‘cat/

proc/stat/PID’ where PID is the ID of each process contained in the /proc folder,

that is, every single process running on that client machine. The relevant pieces for

these process lines in the log file for energy data process consumption are utime

(total time scheduled in user mode) and stime (total time scheduled in kernel mode),

both of which are measured in jiffies.

This log is parsed at the server side to obtain these values of interest as well as

the CPU data from Line 5, and the data are stored in a local database awaiting

Fig. 2.7 The first nine lines of a log belonging to a test client device with the client ID ‘Alpha’

2 Green Software Engineering Environments 47

manipulation. Using process parent ID values, individual processes can be grouped

into their parents. Earlier, it was mentioned that each client sends a pair of data

samples tagged as either a ‘before’ or ‘after’ file. This allows us to take the delta of

the time spent scheduled in each of the modes in order to make an estimate of how

much CPU time was consumed by the process and also by the device as a whole.

Now, the first value to calculate is overall CPU utilisation (CPU usage). The

equation below calculates overall CPU utilisation where subscript ‘a’ and ‘b’
denote values from the ‘after’ and ‘before’ samples, respectively:

cpuUsage ¼ 100� utimea þ stimea þ nicetimea
totaltimea

� utimeb þ stimeb þ nicetimeb
totaltimeb

ð2:1Þ

Next, the proccpu value or the percentage of the CPU utilised by each process is

calculated. The utime and stime values are the numbers from each process’

corresponding line. The total time values are the CPU’s total time values. The

formula below would be used to calculate the CPU utilisation per process:

proccpu ¼ 100� utimea þ stimea
totaltimea

� utimeb þ stimeb
totaltimeb

ð2:2Þ

In order to then get the overall power consumption of the device, we take into

account the power benchmark values (line 2, Fig. 2.7). The two values X and Y in

that line are Pmax and Pidle, respectively, where Pmax was the power used during the

CPU stress test and Pidle was the power used during idle time. Blackburn describes a

power estimation formula that can be used to convert the CPU usage values into

power usage values based on these power benchmarks as shown in the formula

below [11]:

totalPower ¼ Pmax � Pidleð Þ cpuUsage
100

þ 100 ð2:3Þ

To get the estimated power consumed by each process, we distribute the

totalPower according to the portion of CPU utilised by each process shown below:

procpower ¼ proccpu � totalPower ð2:4Þ

The procpower and totalPower values calculated are in watts (W). In order to get

the energy consumed, it would be converted to kilowatt-hours (kWh) using the

formula below, where Time would be the amount of time that elapsed between two

sample points:

48 A. Raturi et al.

Energy ¼ Power � Time ð2:5Þ

The final product is the energy footprint and the power consumed at specific

times of every process on every logged device in the network. As Fig. 2.6 implied,

these values can then be summed, and the footprint can cascade back up. This

consolidated data is now stored server side by the aggregator, enabling access to

process, application, device and network level data that can be leveraged by any

visualisation mechanism created.

2.5.2 Visualising Energy Data

Visualisation tools specifically designed for network energy monitoring are cur-

rently lacking. The tools available are either generic visualisation packages that still

require adaptation to the energy domain or highly specific energy monitoring tools

that can only be applied to, for example, an entire home, with no potential for

increased granularity. We therefore investigate what the most appropriate visuali-

sation options would be for making energy data meaningful to the user.

The goals of visualising energy data collected from a device network would be:

1. To provide a live view of the energy consumption at the network, device,

application and process level

2. To provide access to the history of the network energy consumption at each level

3. To inform the user of patterns in energy consumption in the network

4. To enable the identification of energy sinks through relevant visual cues

One of the biggest challenges faced in any kind of system is finding ways to turn

raw input data into useful information. Dashboards are typically single-screen

visual displays that aggregate a variety of information about a particular system.

They have been used for displaying financial information, sensor details, medical

information and so on. There is a growing interest in adopting the use of dashboards

for displaying energy data of systems. In Few’s book, Information Dashboard
Design, he details how a dashboard can be appropriately used to display important

information by taking into account historical context and visual design principles.

He states, ‘An effective dashboard is the product of . . . informed design: more

science than art, more simplicity than dazzle. It is, above all else, about

communication’ [25].

The network is continuously monitored, and energy data is logged temporally,

requiring the visualisation of sets of discrete time series data, where the energy data

observations are recorded at specific time intervals. Time series data highlights four

data components: trends, cycles (describing regular fluctuations that are non-

seasonal), seasons (variation that is directly affected by time of year) and irregu-

larities (abnormalities that do not fit into any other component) [21]. These would

be useful when dealing with energy data that is geared towards identifying energy

2 Green Software Engineering Environments 49

sinks as they can allow the user to then consider why the observed energy patterns

are occurring. To this effect, any visual display located on the energy dashboard

must enable the display of these kinds of information. This constraint trims the

number of appropriate visualisations to the following:

1. Basic graphs: Dense scatter plots and line graphs are typically used to display

time series data and are particularly effective when one has a small set of series

on the chart. They are widely used in many tools, as has been shown in the

previous sections. They also support a variety of annotations and so, when used

in combination with each other, can result in a cluttered display.

2. Sparklines: Edward Tufte describes sparklines as ‘small, high resolution

graphics in a context full of words, numbers, images’ [64]. They resemble

miniature linegraphs or scatter plots that allow the display of graphs for a

large number of series, where the focus is not on the individual values but on

highlighting trends. An example of a successful use of sparklines for local

system monitoring is the Ubuntu multiload indicator applet [32].

3. Horizon graphs: These can be described as a colour-coded collapsed line chart

[26]. Time series data in a line graph can be converted into a horizon graph. The

main goals of these graphs are to enable identification of anomalies and patterns,

allow both independence of each series and comparison among series and ensure

that the data presented preserve both history and accuracy. Work by Heer

et al. [30] on comparing line graphs to horizon graphs found that users could

estimate values on horizon graphs quicker and more accurately. They have been

successfully used in the financial domain, particularly for visualising stock data.

There is also growing interest in the software industry in both building visual-

isation tools that support horizon graphs and using them to monitor data centres.

2.5.3 Energy Dashboard Features

In order to enable a user of the dashboard to gain insight into the energy usage of the

network at various levels, there must be components, interactions or features in

place to support it. Following is a list of recommended features:

1. Device management system: By taking an object-oriented approach, devices in

the system can be thought of as objects. Each device has a list of applications

running on it, and each application has a corresponding process list. In order to

support this view of the system, there should be a device management system in

place. This would not only be useful for being able to interact with the data

stored after consolidation from a variety of devices on the network but also to

allow for administration of the system. It would also be important to ensure that

raw data are accessible through the dashboard. This means that in addition to the

visual displays there should be the ability to simply look at a list of processes,

applications and devices. Overall the device management system would be

reminiscent of any standard content management system, with the focus being

50 A. Raturi et al.

on ensuring that the energy data associated with each level of the network are

clearly and easily accessible.

2. Network map: A map of the system is a common way of visualising a network to

inform the user about how computers and servers are connected and routed

through the system. Nagios is a widely used network monitoring tool used in

SEEs (shown in Fig. 2.8). It supports network maps through a device discovery

tool [35]. Thomas and Nejmeh state [61] that well-integrated SEE tools should

blend with the existing SEE and provide similar information. Joulery should

therefore be consistent with tools like Nagios. As the server would have a list of

active clients in the network being monitored, a live energy map of the network

could be produced. This map would allow for a high-level view of the system, to

give the user a big picture of the size of the network as well as components

within it.

3. Visual cues: The visual displays described in the previous section are also useful
for enabling drill down capabilities in an energy dashboard. For example, having

a speedometer-style display for each application on each device may be overkill;

however, having a series of horizon charts or sparklines for each process may be

more appropriate. In addition, the use of colour and size should be leveraged to

aid in easy identification of high-energy use areas of the network.

Figures 2.9, 2.10 and 2.11 are design mock-ups that demonstrate how these

features are to be put together to form a cohesive visualisation of the energy

footprint of the network.

Fig. 2.8 Screenshot of the Nagios dashboard [23]

2 Green Software Engineering Environments 51

2.5.4 Joulery in the Green SEE Landscape

This section has described Joulery, a tool for analysing the energy consumption of

networks, via consolidating energy data, and a proposed visualisation for energy

data. The data produced by the prototype consolidation tool provides granular

information, from a network-wide footprint down to consumption per application

on each device.

The energy footprint described here is similar to the IT equipment power

component of the PUE calculation. To this effect, if we can calculate the overall

power associated with the environment containing the network, then the same ratio

can be obtained for a network. As the PUE is a widely recognised and adopted

metric [55], this could be a means to convert the energy consumption value into an

energy metric for networks in SEEs. We demonstrate how a network energy

awareness tool can be developed to provide granular energy data that supports an

existing energy metric (PUE), be designed to support data collection from compo-

nents of a network and present the information in a potentially meaningful manner

to support making better energy decisions.

We briefly describe a set of motivating scenarios that demonstrate how a tool

like Joulery can support the energy and information aspects at the infrastructure,

hardware and software layers and encourage green behaviour.

Fig. 2.9 Joulery dashboard: overview of all devices

52 A. Raturi et al.

Fig. 2.10 Joulery dashboard: process level detail for device ‘Alpha’

Fig. 2.11 Joulery dashboard: network map view

2 Green Software Engineering Environments 53

2.5.4.1 Nettie, the Network Administrator, and the Rogue Server

Nettie, the network administrator for a small software start-up, uses Joulery to

monitor servers in their data centre. By looking at a network map like that in

Fig. 2.11, she is able to see that the device Theta is consuming more energy than

average. Theta is supposed to be a backup server that only kicks into high-

performance mode once a day when it is backing up data. Nettie can then use the

drill down mechanisms in Joulery to view detailed process level energy consump-

tion data (like that in Fig. 2.10) to identify a rogue process that is the cause of the

anomaly. Joulery enabled the Nettie, the network administrator, to fix an energy-

related issue in the SEE, thereby reducing unnecessary consumption.

2.5.4.2 Dev, the Developer, and the Continuous Integration

Conundrum

A midsize software engineering firm focuses on building control systems in a very

systematic fashion. There is a team of developers who are responsible for writing

their allocated pieces of functionality and pushing their code to the repository. The

current system is based around the practice of continuous integration (all developer

code is merged at the repository several times a day). Dev, a curious developer, has

been wondering how energy intensive each build-test-deploy cycle is and if it really

is productive and energy efficient to be doing this multiple times a day. In order to

figure this out, Dev convinces the developers to install the Joulery logger on their

development devices and also installs a logger on the main servers responsible for

continuous integration. Dev needs data over a few weeks to be able to assess how

their integration habits are affecting the overall energy consumption of their SEE.

Dev uses the device list view (like that in Fig. 2.9) to view the energy trends in their

SEE and notices that because of the way their system is set up, each integration

causes an above-average (for their SEE) level of energy consumption.

He then begins a more detailed investigation into what the right trade-off is

between making sure that their mainline repository is clean and that their energy

consumption is not too high. Joulery enabled Dev, the developer, to assess the

impact of an implementation practice that is a norm for certain software engineer-

ing companies. He can use his findings to influence their continuous integration

protocols to be less energy intensive.

2.5.4.3 Archie, the Architect, and the Design Problem

Archie is a software architect for a large software engineering company. The

requirements engineer has described the client’s needs for a data sharing system

that will be used internally in the client’s organisation. The client is a mining

company that operates in remote areas, where power and utility outages are

54 A. Raturi et al.

frequent. With this in mind, Archie realises that the software will therefore need to

consume as few resources as possible. As Archie designs the software, he needs a

method for estimating the overall energy footprint of the system and how it

responds to power interruptions. To do this, Archie fires up a virtual network of

machines and creates a virtual energy footprint of different design options. He uses

the Joulery tool on these virtual machines (viewing Fig. 2.9) and runs a set of

experiments to determine which of his software designs are estimated to be most

robust, energy-efficient and conducive to the client’s needs. Once he settles on the

optimal design, Archie sends this off for approval before implementation can begin.

Joulery enabled Archie, the software architect, to select from a variety of designs to

determine which was least energy intensive.

2.6 Conclusions

To restate the challenge for green software engineers based on Brooks’ challenges

for computer science, how do we build tools that provide software engineers with

useful and meaningful data that can be visualised for a greater understanding of

potential environmental considerations of software engineering?

In this chapter, we have described how the software engineering environment

can be enhanced with respect to the matter involved, information available and

energy consumed within it. We surveyed existing solutions at the infrastructure,

hardware and software layers and described how this can influence green behaviour

and instantiated these ideas through the example of Joulery, an energy awareness tool.

Networks are a core component of software engineering environment. These

kinds of networks are common in industrial civilisations; they make up the infor-

mational backbones of corporations, universities, local governments and many

other mid-level institutions. Performing analyses of energy usage at this level

allows for greater leverage on system-wide consumption than device-level analysis

while being more tractable and actionable than broader-scale assessments. The

Joulery tool aims not only to optimise the energetic footprint of the hardware and

infrastructure in the SEE but is an addition to the suite of SEE software that is

geared towards enabling software engineers to exhibit environment-friendly behav-

iours. We hope that by providing a tool to support this level of analysis, we may

contribute to the broader goal of supporting the transition to sustainability across

many different sectors within the industrialised world. While the relationship

between energy efficiency and sustainability is not always clear [63] and while

sustainability at very least entails a broader set of responses than just efforts to

increase energy efficiency, we believe greater knowledge about energy usage is

nevertheless a critical piece of the sustainability puzzle.

The engineering of software involves a variety of levels of abstraction that

express the system to be built from a set of specifications to implemented code.

The various phases allow for different ways of influencing the end system goals.

Due to this influence that software engineers have, we can consider how to imbue

2 Green Software Engineering Environments 55

each phase with motivations regarding environmental sustainability. With the

increased pace of innovation in our society, software engineering faces shorter

and faster cycles. This speed of development means that the goals are mostly short

term. Energy issues are considered because they are often tied to direct financial

issues as well. As a long-term issue, therefore, other environmental aspects tend to

get left out of the picture. There is still much that can be done to support environ-

mental (including energy) issues that exist within software engineering environ-

ments. We would therefore like to conclude with a set of open questions that still

need to be addressed with respect to green software engineering environments:

1. How can we track and assess the environmental impact of resource consumption

during different activities in the SEE? Is it possible to do this at each layer of the

SEE and can we support cross-sector resource flow tracking?

2. How can we calculate the carbon footprint of different kinds of software

engineering activities? Is this a useful metric for analysing the SEE?

3. As software engineering evolves and we move between treating software as a

product and software as a service, are there different environmental consider-

ations that can and should be made within the SEE?

4. Is using cloud-based solutions simply offloading the environmental responsibil-

ity onto other organisations?

5. How can we assess the effectiveness of this green introspection that is occurring

within the SEE? Are current methods, metrics and tools appropriate?

6. What does it mean to have a truly Green SEE? What kinds of standards or

requirements do we need to set?

Acknowledgement We would like to thank Birgit Penzenstadler and Sunny Karnani for their

feedback on the chapter. We would also like to thank Taylor Kisor-Smith for his contributions to

the Joulery prototype.

References

1. AEO2012 early release overview, Technical report. U.S. Energy Information Administration.

http://www.eia.gov/forecasts/aeo/er/pdf/0383er%282012%29.pdf

2. Agency USEP (2003) Energy star the power to protect the environment through energy

efficiency. Tech. rep.

3. Alcott B (2005) Jevons’ paradox. Ecol Econ 54(1):9–21

4. Amsel N, Ibrahim Z, Malik A, Tomlinson B (2011) Toward sustainable software engineering:

NIER track. In: 2011 33rd international conference on software engineering (ICSE). IEEE, pp

976–979

5. Amsel N, Tomlinson B (2010) Green tracker: a tool for estimating the energy consumption of

software. In: CHI’10 extended abstracts on human factors in computing systems. ACM,

pp 3337–3342

6. Baer WS, Hassell S, Vollaard BA (2002) Electricity requirements for a digital society. RAND,

Santa Monica, CA

7. Barroso LA, Hölzle U (2009) The datacenter as a computer: an introduction to the design of

warehouse-scale machines. Synth Lect Comput Architect 4(1):1–108

56 A. Raturi et al.

http://www.eia.gov/forecasts/aeo/er/pdf/0383er%282012%29.pdf

8. Benini L, Bogliolo A, De Micheli G (2000) A survey of design techniques for system-level

dynamic power management. IEEE Trans Very Large Scale Integrat (VLSI) Syst 8(3):299–

316

9. Berl A, Gelenbe E, Di Girolamo M, Giuliani G, De Meer H, Dang MQ, Pentikousis K (2010)

Energy-efficient cloud computing. Comput J 53(7):1045–1051

10. Birol F (2010) World energy outlook. International Energy Agency

11. Blackburn M, Grid G (2008) Five ways to reduce data center server power consumption. Green

grid

12. Boulding KE (1996) The economics of the coming spaceship earth. Environ Qual Growing

Econ 2:3–14

13. Brooks FP Jr (2003) Three great challenges for half-century-old computer science. J ACM 50

(1):25–26. doi:10.1145/602382.602397, URL http://doi.acm.org/10.1145/602382.602397

14. Capra E, Formenti G, Francalanci C, Gallazzi S (2010) The impact of MIS software on it

energy consumption. In: European conference of information science 2010

15. Capra E, Francalanci C, Slaughter SA (2012) Is software “green”? Application development

environments and energy efficiency in open source applications. Inform Software Tech 54

(1):60–71. doi:10.1016/j.infsof.2011.07.005, URL http://dx.doi.org/10.1016/j.infsof.2011.07.

005

16. Christensen K, Nordman B, Brown R (2004) Power management in networked devices.

Computer 37(8):91–93

17. Commission CE (2000) Energy accounting: a key tool in managing energy costs many costs.

Tech. rep., California Energy Commission

18. Corporation I. Powertop. URL https://01.org/powertop

19. Corporation O. The Java monitoring and management console (jconsole). URL http://openjdk.

java.net/tools/svc/jconsole/

20. Doyle MW (2005) Three pillars of the liberal peace. Am Polit Sci Rev 99(3):463–466

21. Easton VJ, McColl JM. Statistics glossary. URL http://www.stats.gla.ac.uk/steps/glossary/

timeseries.html

22. Elliot S, Binney D (2008) Environmentally sustainable ICT: developing corporate capabilities

and an industry-relevant is research agenda. In: Pacific Asia conference on information

systems, Suzhou, China, 4–7 July 2008

23. Enterprises N. Nagios xi screenshots. URL http://www.nagios.com/products/nagiosxi/

screenshots

24. Fan X, Weber WD, Barroso LA (2007) Power provisioning for a warehouse-sized computer.

ACM SIGARCH Comput Architect News 35(2):13–23

25. Few S (2006) Information dashboard design. O’Reilly, Sebastopol, CA

26. Few S (2008) Time on the horizon. Vis Bus Intell Newslett 1–7

27. Flinn J, Satyanarayanan M (2009) Powerscope: a tool for profiling the energy usage of mobile

applications. In: Proceedings. WMCSA’99. Second IEEE workshop on mobile computing

systems and applications, 1999. IEEE, pp 2–10

28. Garrett M (2007) Powering down. Queue 5(7):16–21

29. Google: going green at Google – clean energy initiatives. URL http://www.google.com/about/

datacenters/index.html

30. Heer J, Kong N, Agrawala M (2009) Sizing the horizon: the effects of chart size and layering

on the graphical perception of time series visualizations. In: Proceedings of the SIGCHI

conference on human factors in computing systems. ACM, pp 1303–1312

31. Hewlett-Packard, Intel, Microsoft, Phoenix, Toshiba. Advanced configuration and power

interface specification. URL http://www.acpi.info

32. Hofmann M. System load indicator. URL https://launchpad.net/indicator-multiload

33. Humble J. javasysmon. URL https://github.com/jezhumble/javasysmon

34. IEEE Std 610.12 (1990) IEEE standard glossary of software engineering terminology

35. Josephsen D (2007) Building a monitoring infrastructure with Nagios. Prentice Hall PTR,

Upper Saddle River, NJ

2 Green Software Engineering Environments 57

http://dx.doi.org/10.1145/602382.602397
http://doi.acm.org/10.1145/602382.602397
http://dx.doi.org/10.1016/j.infsof.2011.07.005
http://dx.doi.org/10.1016/j.infsof.2011.07.005
http://dx.doi.org/10.1016/j.infsof.2011.07.005
https://01.org/powertop
http://openjdk.java.net/tools/svc/jconsole/
http://openjdk.java.net/tools/svc/jconsole/
http://www.stats.gla.ac.uk/steps/glossary/timeseries.html
http://www.stats.gla.ac.uk/steps/glossary/timeseries.html
http://www.nagios.com/products/nagiosxi/screenshots
http://www.nagios.com/products/nagiosxi/screenshots
http://www.google.com/about/datacenters/index.html
http://www.google.com/about/datacenters/index.html
http://www.acpi.info/
https://launchpad.net/indicator-multiload
https://github.com/jezhumble/javasysmon

36. Jovanovic B, Rousseau PL (2005) General purpose technologies. Handbook Econ Growth

1:1181–1224

37. Kansal A, Zhao F, Liu J, Kothari N, Bhattacharya AA (2010) Virtual machine power metering

and provisioning. In: Proceedings of the 1st ACM symposium on cloud computing. ACM,

pp 39–50

38. Kohlbrecher J, Hakobyan S, Pickert J, Grossmann U (2011) Visualizing energy information on

mobile devices. In: 2011 IEEE 6th international conference on intelligent data acquisition and

advanced computing systems (ID-AACS), vol 2. IEEE, pp 817–822

39. Laitner JAS, Nadel S, Elliott RN, Sachs H, Khan AS (2012) The long-term energy efficiency

potential: what the evidence suggests. Tech. rep., American Council for Energy Efficiency

40. LeFebvre W. Unixtop. URL http://sourceforge.net/projects/unixtop/

41. Leubner A. Usage timelines. URL http://www.refined-apps.com/trials/

UsageTimelinesProrelease.apk

42. Liu C, Qin X, Kulkarni S, Wang C, Li S, Manzanares A, Baskiyar S (2008) Distributed energy-

efficient scheduling for data-intensive applications with deadline constraints on data grids. In:

IEEE international performance, computing and communications conference, IPCCC 2008.

IEEE, pp 26–33

43. Lockton D, Harrison D, Stanton NA (2012) Models of the user: designers’ perspectives on

influencing sustainable behaviour. J Des Res 10(1):7–27

44. Lovins AB (2011) Re: The efficiency dilemma. The Mail, The New Yorker

45. Mahesri A, Vardhan V (2005) Power consumption breakdown on a modern laptop. In: Power-

aware computer systems. Springer, pp 165–180

46. Mersenne Research I. The great Internet Mersenne prime search. URL http://www.mersenne.

org/freesoft/

47. Mingay S (2007) Green IT: the new industry shock wave. Gartner RAS Research Note G

153703

48. Mitchell-Jackson JD (2001) Energy needs in an internet economy: a closer look at data centers.

Ph.D. thesis, University of California

49. Mittal R, Kansal A, Chandra R (2012) Empowering developers to estimate app energy

consumption. In: Proceedings of the 18th annual international conference on mobile comput-

ing and networking. ACM, pp 317–328

50. Murugesan S (2008) Harnessing Green IT: principles and practices. IT Prof 10(1):24–33

51. Naumann S, Dick M, Kern E, Johann T (2011) The GREENSOFT model: a reference model

for green and sustainable software and its engineering. Sustain Comput Informat Syst 1

(4):294–304, http://dx.doi.org/10.1016/j.suscom.2011.06.004. URL http://www.

sciencedirect.com/science/article/pii/S2210537911000473

52. Odessa: sample computer network diagrams. URL http://www.conceptdraw.com/samples/

network-diagram

53. Owen D (2010) The efficiency dilemma. Annals of environmentalism, The New Yorker

54. Penzenstadler B, Raturi A, Richardson D, Tomlinson B (2014) Safety, security, now

sustainability: the non-functional requirement for the 21st century. In: Software (IEEE)

Vol. 31 (3)

55. Rawson A, Pfleuger J, Cader T (2008) Green grid data center power efficiency metrics: PUE

and DCIE. The green grid white paper 6

56. Research M. Joulemeter: Computational energy measurement and optimization. URL http://

research.microsoft.com/en-us/projects/joulemeter/default.aspx

57. Rosseto EP (2011) Study of the correlation between software developer profile and code

efficiency. Ph.D. thesis, Politecnico di Milano, Milan

58. Sanchez MC, Brown RE, Webber C, Homan GK (2008) Savings estimates for the United

States Environmental Protection Agency’s energy star voluntary product labeling program.

Energy Policy 36(6):2098–2108

59. Shah A, Christian T, Patel CD, Bash C, Sharma RK (2009) Assessing ICT’s environmental

impact. IEEE Comput 42(7):91–93

58 A. Raturi et al.

http://sourceforge.net/projects/unixtop/
http://www.refined-apps.com/trials/UsageTimelinesProrelease.apk
http://www.refined-apps.com/trials/UsageTimelinesProrelease.apk
http://www.mersenne.org/freesoft/
http://www.mersenne.org/freesoft/
http://dx.doi.org/10.1016/j.suscom.2011.06.004
http://www.sciencedirect.com/science/article/pii/S2210537911000473
http://www.sciencedirect.com/science/article/pii/S2210537911000473
http://www.conceptdraw.com/samples/network-diagram
http://www.conceptdraw.com/samples/network-diagram
http://research.microsoft.com/en-us/projects/joulemeter/default.aspx
http://research.microsoft.com/en-us/projects/joulemeter/default.aspx

60. Smith JW (2010) Green cloud a literature review of energy-aware computing. Ph.D. thesis,

University of St. Andrews, Fife

61. Thomas I, Nejmeh BA (1992) Definitions of tool integration for environments. IEEE Software

9(2):29–35, http://doi.ieeecomputersociety.org/10.1109/52.120599

62. Tomlinson B (2010) Greening through IT. MIT Press, Cambridge, MA

63. Tomlinson B, Silberman MS, White J (2011) Can more efficient it be worse for the environ-

ment? Computer 44(1):87–89

64. Tufte ER (2006) Beautiful evidence, vol 23. Graphics Press, Cheshire, CT

65. Webb M et al (2008) Smart 2020. Enabling the low carbon economy in the information age.

The Climate Group. London 1(1), 1–1

2 Green Software Engineering Environments 59

http://doi.ieeecomputersociety.org/10.1109/52.120599

Chapter 3

Processes for Green and Sustainable

Software Engineering

Eva Kern, Stefan Naumann, and Markus Dick

3.1 Introduction

Within research in the context of ‘Green in IT’ (ways to make ICT itself greener)

and ‘Green by IT’ (possibilities to encourage environmental-friendly movements

by ICT), it turns out that, next to the hardware aspects, the software side also gains

importance. Software causes hardware activity and is responsible for energy con-

sumption in that way. It has become an important aspect of daily life, and most

people cannot imagine future development without software.

Since one big objective of Green IT activities is to find solutions to solve the

problem of increasing energy consumption, energy-efficient software is required. In

order to develop such software, developers need to know how this can be achieved

and to have suitable tools to reach this goal. Above all, the software engineering

process, regarding questions of sustainability, needs to be clarified.

We will present a description of a whole life cycle of software products from a

life cycle thinking point of view and a process model for green software engi-

neering, based on a definition for green software engineering in the following

section. We will then go into the different phases of software development pro-

cesses and integrate the aspects in existing process models.

E. Kern (*)

Institute for Software Systems, Trier University of Applied Sciences, Leuphana University of

Lüneburg, Germany

e-mail: mail@nachhaltige-medien.de

S. Naumann • M. Dick

Institute for Software Systems, Trier University of Applied Sciences, Trier, Germany

e-mail: s.naumann@umwelt-campues.de; sustainablesoftwareblog@gmail.com

© Springer International Publishing Switzerland 2015

C. Calero, M. Piattini (eds.), Green in Software Engineering,
DOI 10.1007/978-3-319-08581-4_3

61

mailto:mail@nachhaltige-medien.de
mailto:s.naumann@umwelt-campues.de
mailto:sustainablesoftwareblog@gmail.com

3.2 Related Work

Many contributions on software engineering exist (e.g. [36, 41]); therefore, we

focus on those articles which cover green and sustainable software engineering.

A good overview can be found in [35]: here, the author found 96 relevant

publications on sustainable software engineering. Penzenstadler [32] discusses the

question what sustainability means in (and for) software engineering. Penzenstadler

et al. [33] ask who the stakeholders are in a sustainable engineering process. Amsel

et al. [4] state that sustainable software engineering should develop a software that

meets the needs of users while reducing environmental impacts.

A methodology to measure and incrementally improve the sustainability of

software projects is presented by Albertao [2]. This methodology advocates the

implementation of sustainable aspects continuously, divided into the following

phases: assessment phase, reflection phase, and goal improvement phase. In order

to make the different sustainability issues manageable, properties of a quality

model that is further developed in a later work are referred to, considering the

overall software process [3]. In view of the fact that the common assumption states

that software is in general ‘environment friendly’, metrics that can be assessed in a

real software project are presented. This approach shows that it is feasible to

continuously improve software projects regarding sustainability issues by measur-

ing a set of metrics repeatedly over several iterations.

Calero et al. [8] take a deeper look at the quality standards of software and how

they can reinforce sustainability.

Agarwal et al. [1] take a look at the definition of green and sustainable software

engineering (see Sect. 3.3 and [31]) and discuss the possibilities and benefits of

green software. They claim that more efficient algorithms will take less time to

execute, which, as a result, will support sustainability. Additionally, they present

methods to develop software in a sustainable way, compared to conventional

methods, and list some more environment-friendly best practices in the develop-

ment and implementation of software systems.

Based on the life cycle of software, Taina proposes metrics [43] and a method to

calculate the carbon footprint of software [42]. To do so, he analysed the impacts of

each software development phase for a generic project. The resulting carbon

footprint is mainly influenced by the development phase but also by the way it is

delivered and how it will be used by the customers. The main problem regarding the

calculation is that detailed data are required, which is often not available. Lami

et al. [28] define software sustainability from a process-centric perspective and

define processes so that they can be measured in terms of process capability

according to the ISO/IEC 15504 standard. They distinguish between the sustain-

ability factors power, paper and fuel consumption, especially.

Inspired by the GREENSOFT model, Mahmoud and Ahmad [30] present a

complete software development life cycle (SDLC) for ecologically sound software

engineering, called the green and sustainable software life cycle. This is a two-level

62 E. Kern et al.

model that consists in the first level of a software engineering process and in the

second level of a categorisation of tools that can help to monitor and to identify how

software causes energy and resource consumption.

The proposed software engineering process incorporates ideas from sequential,

iterative and agile processes. It is designed to reduce its own negative impacts on

the environment as well as the expected impacts of the software product. To make

each phase of the SDLC environmentally sustainable, there are green processes,

green guidelines and metrics that indicate the greenness of a phase. The process

phases are requirements, design, unit testing, implementation, system testing, green

analysis, usage, maintenance and disposal. According to Mahmoud and Ahmad, an

increment milestone can be placed between implementation and system testing.

The release milestone is located between green analysis and usage. It is not possible

to go back to the previous phase during process execution. Instead, from unit

testing, system testing, green analysis and maintenance, one has to return to

requirements. An important phase regarding the environmental optimisation of

the software product is the green analysis phase [30]. Its purpose is to promote

energy efficiency and to determine the greenness of the software artefacts of each

increment. Appropriate tools and metrics help to identify problems in requirements,

design or implementation, which make it necessary to step back to requirements

phase. The disadvantage of this valuable approach is obviously that it is complete,

which means that developers have to drop their well-understood and well-mastered

software process to learn a new one that comes with very limited documentation

and professional support.

Another approach of a green software development is presented by Shenoy

et al. [39]. They take the whole life cycle of software into account and also give

suggestions for the typical development phases of software. Käfer [22] also pre-

sents conceptual and architectural issues concerning software energy consumption

and ideas for incorporating energy efficiency issues into software projects. Mahaux

[29], Penzenstadler [34] and Kocak [26] especially consider requirements engi-

neering. Sahin [38] and Shojaee [40] look at the design of energy-efficient software

while focusing on software engineering in the Web. Dick et al. [14] and Bordage

et al. [6] describe some procedures and rules to reduce the energy consumption of

websites.

The different aspects representing the dimensions of green software engineering

are covered in the GREENSOFT model [31], which is described in Sect. 3.4. The

GREENSOFT model is a conceptual reference model that supports IT professionals

and software users in the sustainable development and usage of software. It consists

of four parts: a life cycle of software products, criteria and metrics, procedure

models and tools. The procedure models examine the development, purchasing,

administration and usage of software.

3 Processes for Green and Sustainable Software Engineering 63

3.3 Definitions

In times of climate change, the topic of sustainability takes on an important role

even in the area of ICT. Besides the efforts of improving the hardware, the software

aspect should get attention as well [24]. Derived from the basic requirements on

green and sustainable software, the following two definitions can be given.

Definition 1 ‘Green and Sustainable Software’ [31]

[Green and Sustainable Software] is software, whose direct and indirect negative

impacts on economy, society, human beings, and environment that result from develop-

ment, deployment, and usage of the software are minimal and/or which has a positive effect

on sustainable development.

A green and sustainable software product can only be achieved if the person in

charge of the requirements and the organisation which are involved in the software

development is aware of the effects of sustainable development that emanate from

the product. In order to enable different stakeholders to include those effects within

their decision-making process, it is necessary to institutionalise the evaluation of

this software. To make sustainability aspects manageable, measures in specified

requirements analysis and the software development process must be integrated. In

that way, requester, software architects and software developers will be able to

optimise the software product. The precondition for that is a sustainable develop-

ment process. This means the consideration of environmental impacts during the

software life cycle and the pursuit of the goals of sustainable development. From

this and definition 1 follows the definition for green and sustainable software

engineering:

Definition 2 ‘Green and Sustainable Software Engineering’ [31]

Green and Sustainable Software Engineering is the art of developing green and sus-

tainable software with a green and sustainable software engineering process. Therefore, it is

the art of defining and developing software products in a way, so that the negative and

positive impacts on sustainable development that result and/or are expected to result from

the software product over its whole life cycle are continuously assessed, documented, and

used for a further optimization of the software product.

The definitions for green and sustainable software and for green and sustainable

software engineering are based on product life cycles in terms of life cycle

assessment (LCA) or a cradle-to-grave approach. These are the findings on the

effect of levels in the ICT to sustainable development and the impact of ICT on the

life cycles of other products and services.

Overall, a green software product should be green and sustainable itself. This

means that the negative environmental, social and economic effects arising from

the software product over its entire life cycle should be as small as possible. Most

obvious in this regard are the first-order effects, the so-called effects of supply, such

as performance requirements, network bandwidth, hardware requirements or the

product packaging, which lead to a higher or lower demand for natural resources

and energy.

64 E. Kern et al.

The second-order effects (usage effects) result from the use of ICT in the life

cycles of other services and products. Information-technological components

whose essential function is to implement services can be found in almost every

product of daily life. In this respect, software plays a crucial role in the life cycles of

products and services: product design, production process, waste disposal and the

usage of other products can be optimised with the software. However, it must be

noted that the second-order effects are more difficult to estimate than the first-order

effects.

It is even more difficult to assess the third-order effects, the so-called systemic

effects, due to the many systemic interdependencies and demands of experience.

An example of this is the so-called rebound effect that can occur when resources are

freed through optimisation, which will be eventually more than overcompensated

by increased business activity of free resources, and the original scale may be

altered. The activities of Green IT are primarily the first-order effects, that is, the

presented effects of supply. In contrast, the second- and third-order effects, which

are usage effects and systemic effects, are associated with Green by IT.
From these considerations, it appears that the conservation of resources and

energy by optimising the ICT can only be one partial aspect. Another important

aspect is the conservation of resources and energy, which can be achieved by the

usage of ICT in other segments of products and services. Seen from a broader point

of view, the question arises how negative effects on ecology, society and economy

can be reduced and how positive effects can be enhanced.

The problem here is that there is software that directly supports the objectives of

sustainable development, because it is their specific purpose; examples include

software which enables smart heating, smart logistics or paperless offices (e.g. see

[18]). In these cases, it is relatively easy to assess the usage effects of an informa-

tion technology system. For standard software that can be used in diverse industries,

the assessment of both the usage effects and the systemic effects is much more

costly or even impossible (e.g. office suites). Since these kinds of software are used

in many different contexts, various usage scenarios exist, and one needs to make

huge efforts to assess these. Therefore, a green and sustainable software product

itself should have little impact on sustainable development and, if it is its specific

benefit, promote the pursuit of sustainable objectives.

3.4 The GREENSOFT Model

The GREENSOFT model (Fig. 3.1) includes a holistic life cycle model for software

products, sustainability criteria and metrics for software products, process models

for various stakeholders as well as recommendations and tools supporting stake-

holders while developing, procuring, maintaining and using software products in a

way compatible with the objectives of sustainable development.

3 Processes for Green and Sustainable Software Engineering 65

The life cycle for software products is based on life cycle thinking (LCT),

which means in fact that it is not a software development life cycle (SDLC). LCT

observes the principle ‘from cradle to grave’ or ‘from cradle to cradle’ [7, 44]. Its

aim is to assess the economic, human, social and ecological compatibility of a

product over its entire life cycle. A typical life cycle for material products begins

with raw material procurement and ends with recycling or disposal, for example,

raw material extraction, material processing, manufacturing, packaging, distribu-

tion/transport, usage and recycling/disposal. Thus, such a life cycle does not

describe engineering processes or workflows that are necessary to develop or

produce a product. Regarding, for example, environmental effects, the life cycle

models all extractions from the environment (e.g. ores, fossil resources or fuels,

water) and all emissions to the environment (e.g. heavy metals, CO2, CH4, radiating

particles) that occur in each life cycle phase. This balance and its assessment can

then be used to optimise the product itself (e.g. raw material mix, expected lifetime,

energy consumption and emissions during usage) and also its production, distribu-

tion or recycling/disposal processes, or it can just be used to compare the product

with competing products [44]. The life cycle for software products presented herein

is an adaption of life cycle models for material products to software.

The model part of sustainability criteria and metrics covers general metrics and

criteria for the measurement of software quality [20] and allows the classification of

criteria and metrics for assessing the effects of a software product on sustainable

Fig. 3.1 The GREENSOFT reference model [37] (cf. [31])

66 E. Kern et al.

development. Criteria and metrics that meet the requirements include models for

the measurement of software quality in terms of product and process quality, as well

as methods that are borrowed from life cycle analysis. Key differentiators are the

immediate criteria and metrics that are based on the first-order effects or effects of

supply and the indirect criteria and metrics that relate to the second- and third-order

effects or usage effects and systemic effects. Some basic criteria and metrics are

presented that can be used to evaluate the effects and impacts of a software product

on sustainable development. Some more criteria and metrics are proposed in [9, 3,

21, 43]. In order to sum up these criteria, Kern et al. [25] introduced a quality model

for green and sustainable software.

The model part enables the classification of process models that support the

procurement, development, administration and usage of software in the context of

sustainable development. As an example, a generic extension for software devel-

opment processes has been proposed, which aims at a systematic consideration of

sustainability aspects in software projects [13]. The extension is described in detail

in Sect. 3.6.

The last part of the model shows recommendations for action and tools. These

provide support to the stakeholders in the application of techniques to promote the

sustainable objectives. The different levels of knowledge and experience of the

actors should be taken into consideration. Possible actors in this area are software

developers, buyers, administrators as well as professionals and private users but

also all those involved in software products in general [14, 17].

3.5 Life Cycle of Software Products

In order to assess the ecological, social, human and economic impacts during

software development, one should consider the entire life cycle of software prod-

ucts from the start. LCT considers more than the production process of a product.

As seen from the perspective of an entire life cycle, one covers the process

beginning with the production of raw materials, over the production itself and the

usage, up to the deactivation and the disposal of the specific product. With the help

of this knowledge, it is possible to optimise the product in a balanced way [44].

Oriented towards the LCA as an international standardised method [12], we

propose the life cycle for software products depicted in Fig. 3.2. This life cycle is

aimed at considering and classifying sustainability aspects during the development

of software products (cf. [11, 19]). It is based on the LCA model of material

products and shows exemplary impacts on sustainable development of usually

immaterial software products.

In the following, we will especially describe the direct effects (so-called first-

order effects) during the life cycle of a software product. These can be easily

generalised to other software products.

3 Processes for Green and Sustainable Software Engineering 67

3.5.1 Development Phase

In the development phase of a software product, impacts of the development

process of the software engineering itself as well as impacts of shared functional-

ities of different departments of the development enterprise are taken into account.

This includes departments like accounting, human resource management, market-

ing, product packaging, etc. Here, especially the energy consumed by workstations

of the software developers and the IT infrastructure, for example, for network and

servers as well as energy for lighting, heating and air conditioning of the buildings,

needs to be considered.

Above that, there is the energy for the personal transport and needed resources.

One big point is business trips like meetings with the development team or the

customer and the daily trips to work of the employees. Some of these trips, and thus

their impacts, could be reduced by telework or video conferences [10]. This means

in general that the consequences caused by material products can be relieved by

immaterial products (the second-order effects). In this case, the material product is

commuting, whereas the immaterial product is telecommuting. Indeed, this might

result in the third-order effects if there are changes in organisations, software

development methods or general life design.

Apart from the described ecological and economically centred effects, there are

also social and human aspects, respectively: regarding social acceptability, one has

to look at the specific working conditions, the payment as well as the social

insurance of so-called offshore workers.

Fig. 3.2 Life cycle for software products, oriented towards life cycle thinking and giving some

exemplary effects [37] (cf. [31])

68 E. Kern et al.

Another aspect going into the development phase is the impact of maintenance,

which means bug fixing of the software product. This kind of work can be seen as a

part of software development.

3.5.2 Distribution Phase and Disposal Phase

The effects caused by the distribution and, further, the disposal of a software

product are, for example:

• Printed or digital manuals and their used resources

• Means of transport

• Kind and design of product packaging

• Download size and IT infrastructure

All of these belong to the distribution phase of the life cycle of a software

product, whereas everything that can be seen as waste management and recycling of

the material parts of the software product goes to the disposal phase.

3.5.3 Usage Phase

The usage of software products especially leads to direct effects: executing soft-

ware consumes computing time and, thus, energy. Additionally, some kinds of

software need network bandwidth and extra computing resources (e.g. ERP sys-

tems). Hence, the energy consumption goes up.

Another point is updates: depending on the size and frequency, updates need

different sizes of memory space. Updates also influence the capacities that are

necessary for data backups. Moreover they need to be transported to the user, which

results in additional data traffic.

In general, the effects of the usage of a software product can be positive as well

as negative. The positive effects are, for example, the reduction of energy and

resource consumption by using ICT in order to optimise processes. These effects

that result indirectly from using ICT are classified among the second-order effects

and are called dematerialisation effects. Another example is the substitution effect,

which means that resources are conserved by replacing material products by their

immaterial counterparts. The negative effects are, for example, induction and

rebound effects that have been already mentioned before.

In the early stages of software development, one can only make a rough estimate

of those effects, especially if the field of application of the software product is

widespread, that is, standard software, for example, office suite.

New software products usually need more powerful hardware than similar older

products. Therefore, the existing hardware will be replaced by newer hardware if

there is a new software product or a new version released. This is the case in

3 Processes for Green and Sustainable Software Engineering 69

enterprises as well as at home. Although newer hardware is normally more energy

efficient, it causes negative ecological effects, since the old hardware needs to be

disposed of. This and also the production of new products need energy and natural

resources (cf. [19]).

Next to these ecological effects, there are systemic effects because the mining of

ores in developing countries for the production of hardware leads to ecological,

social and economic imbalances (cf. [5]). Some of the hardware that is

decommissioned is also brought to these countries. If the material is recycled and

disposed of in uncontrolled ways, this compounds the situation by straining the

environment and health of the affected people [19].

In summary, the usage phase considers the effects of supply, systemic effects

and usage effects.

3.5.4 Deactivation Phase

The last phase (see Fig. 3.2) considers the impacts caused by the deactivation of a

software product. In many cases, deactivation of one product means the implemen-

tation of another one. If so, it might be necessary to convert existing files into a new

format or to archive them. This might lead to occasional costs and other disadvan-

tages. Moreover, one has to take into account the required memory usage for

backups of the existing files.

3.6 A Generic Process Model for Green and Sustainable

Software Engineering

Our proposal of a green and sustainable software development process does not

implement a full SDLC. It rather describes an add-on that can be mixed with any

implementation of an SDLC to raise the awareness of the participating stakeholders

for an ecologically sound software design. Hence, we show later on how its

procedures can be added with ease to Scrum as an agile SDLC, as well as to

more formal Unified Process like OpenUP.

The main process tasks (Fig. 3.3) are sustainability review and preview, process

assessment, interim sustainability presentations and sustainability presentation and

report release. These tasks are accompanied by an auxiliary task, the sustainability

presentation and report preparation, and two artefacts, the sustainability journal and

the sustainability report.

Figure 3.3 depicts the SLDC as iteration based, which is only an example.

Actually, the iterations may be replaced with phases or increments known from

common SDLC models.

70 E. Kern et al.

The process assessment activity assesses the sustainability of the SDLC itself,

whereas the reviews and previews focus on the sustainability of the software

product under development. Both use the same journal to record their results for

further use or reference. At the end of an iteration, the results of both process

assessment and reviews and previews are reported to stakeholders. At the end of the

software development project, a final sustainability report is compiled out of the

journal and interim presentations, and a presentation is prepared. Finally, the report

is presented to the stakeholders in a formal sustainability presentation and report

release event. At the end of the project, the development team executes the

sustainability retrospective to discover knowledge that should be preserved for

upcoming software projects.

3.6.1 Roles

The model knows three roles: development team, sustainability executive and

customer representative.

The development team develops the software product but is also specifically

responsible for conducting the reviews and previews and recording the results in the

journal. It participates in the interim presentations. After the development project

has ended, it performs a retrospective.

The sustainability executive is responsible for organising the sustainability-

centric tasks and events of the software development process. She is especially

responsible for performing process assessment and recording the results in the

journal. She is also responsible for preparing the final sustainability report and for

preparing and presenting the final report release event. Additionally, she maintains

the journal and supports the team regarding sustainability issues.

Fig. 3.3 Generic model for a green and sustainable software process [37]

3 Processes for Green and Sustainable Software Engineering 71

The customer representative is responsible for representing the customers’

requirements and expectations on the sustainability of the software product when

attending the interim presentations and the final report release event.

3.6.2 Sustainability Review and Preview

The sustainability review and preview is mainly performed by the development

team. As its name suggests, it consists of two main parts: the review and the

preview. The review takes a look at the work done, whereas the preview tries to

look ahead at future implementations based on the decisions taken by reviews.

Thus, the reviews and previews form a continuous improvement cycle within an

iteration. The reviews and previews should take place after approximately

two-thirds of an iteration, so that there is a chance to implement the decisions

made within the same iteration. Depending on the length of an iteration, there may

be more than one review and preview. In such a case, the succeeding review and

preview review also the decisions made by its predecessor.

Another asset of the reviews and previews is a short presentation of the data

gathered for process assessment and its ongoing assessment results, which is given

by the sustainability executive. Care must be taken not to blame the development

team for results that are not under its control, for example, huge amounts of carbon

dioxide emissions due to an insufficient thermal insulation of office buildings. On

the other hand, there may be results that are under the control of the development

team, for example, choosing public transport over the car for business trips or the

daily way to work.

Eventually, the outcomes of the reviews and previews are presented in an interim

presentation at the end of each iteration.

The outcomes and measures taken should be recorded in the sustainability

journal for further reference, for example, to examine later on, if taken measures

were successful or not and as a basis to prepare the interim presentations and the

final report.

The reviews and previews are scheduled and organised by the sustainability

executive in close consultation with the development team. This does not neces-

sarily mean that the executive is also the facilitator of the meeting.

3.6.3 Process Assessment

Process assessment continuously assesses the negative and positive effects on

sustainable development caused by the SDLC. It is the sole responsibility of the

sustainability executive to perform this task.

More specifically, data should be gathered in such detail that it is possible to

perform an ongoing carbon footprint calculation. It should be considered that the

72 E. Kern et al.

carbon footprint is calculated in such a way that the footprint of the development

activities can be reported to the development team in review and preview sessions

and to the customer representative in interim presentations. How a carbon footprint

of the software development phase can be calculated is shown in [23].

Another possibility is to perform a continuous LCA according to ISO 14040;

however, these are of much higher complexity than carbon footprints.

The calculations should consider not only past development activities but also

planned activities and approximated emissions from using the product, for example,

planned number of person months for the project, emissions from shipping and

using the product according to expected sales figures. The approximations can be

supported by other participants, for example, energy consumption data measured by

the development team.

Relevant data that should be collected, approximated or calculated can be easily

spotted in the life cycle of software products (Fig. 3.2). This includes, but is not

limited to, energy for heating, ventilation and air conditioning of offices, energy for

preparing hot water, electrical energy for lighting, energy for workstations and IT

infrastructure, length of business trips and used means of travel as well as propor-

tionate impacts of commonly used corporate departments.

The collected data and their results are recorded in the sustainability journal.

3.6.4 Interim Sustainability Presentations

In interim sustainability presentations, the development team reports the measures

taken and their results, which attenuate the negative impacts and strengthen the

positive effects on sustainable development to the customer representative.

Usually, these are the outcomes of the review and preview sessions and depend

on the extent to which the developed measures were successful.

The sustainability executive reports the results and current approximations of

process assessment to the customer representative. This may be the current carbon

footprint as well as approximations of distribution and usage.

3.6.5 Sustainability Journal

The sustainability journal is the focal point of the process add-on. It is a well-

structured document in which all data items and results of process assessment as

well as the issues, solutions and outcomes discovered in review and preview

sessions are recorded.

The journal is not intended to be an extensive textual report. Actually, it should

be result oriented and as short and concise as possible but still extensive enough so

that the decisions and measures taken can be traced.

3 Processes for Green and Sustainable Software Engineering 73

The technical implementation of the journal is open. Although a handwritten

collection of papers in a folder is sufficient, we suggest to implement the journal at

least with a text processor, preferably with a system for computer-supported

collaborative work, for example, wiki, issue tracker or online forum.

The document should be organised in three sections:

1. Environmental impacts and effects recorded and calculated in process

assessment

2. Measures taken in reviews and previews according to the pattern:

(a) Initial situation (e.g. if available supported by data from measurements,

software tests, footprint calculation, etc.)

(b) Decisions made or actions taken

(c) Verification of the effectiveness of the decisions/actions (e.g. supported by

appropriate measurements/metrics)

3. Appendix with data items and their origin that were used to calculate the figures

in process assessment (e.g. energy consumption, CO2 emissions per kWh elec-

trical energy, allocation procedure of proportionate emissions from common

corporate departments, assumed emission base data for different types of travel,

etc.)

3.6.6 Sustainability Retrospective

The sustainability retrospective takes place at the end of the development project. In

a team facilitation approach, the development team and the sustainability executive

reflect on the development process to find valuable ways to improve the sustain-

ability of future software projects. Discussion input can be taken from the journal

but also from any other source connected with the project. Expected outcomes are,

for example, lessons learned, best practices, decisions for future projects and

reflections on impacts and effects of software products. The findings should be

preserved in a knowledge base.

3.6.7 Sustainability Presentation and Sustainability Report

At the end of the development project, the sustainability executive prepares the final

sustainability report and the presentation ceremony (aka sustainability presentation

and report release).

The report is compiled from the journal and the interim presentations. If process

assessment performs an ongoing carbon footprint calculation, the report may

mainly consist of the carbon footprint calculation and its data sources but also of

outstanding measures and solutions that were developed to decrease or increase the

effects on sustainable development.

The report is accompanied by a business presentation that summarises the report.

74 E. Kern et al.

The sustainability presentation and report release finalise the development

project. It is a small formal ceremony, where the sustainability executive presents

the final report (the already prepared business presentation) and symbolically hands

the report over to the customer representative. The development team should attend

the ceremony.

The final sustainability report is based on the journal and the interim presenta-

tions. It should contain the results of process assessment, that is, the carbon

footprint calculation, but also outstanding measures and solutions from reviews

and previews that made the software product more sustainable.

3.7 Integrating Aspects in Existing Process Models

This section shows how the add-on can be integrated for two examples of SDLCs.

The first example uses the agile lightweight method Scrum [15]; the second

example uses OpenUP [16], a simplified and open source version of the Unified

Process [27].

3.7.1 Scrum

Scrum [15] is an agile iterative software development method that tries to deliver a

potentially shippable product increment in each iteration. An iteration called Sprint

starts with the Sprint planning meeting and ends with the Sprint review meeting and

the Sprint retrospective.

The product owner, who represents the interests of all stakeholders, and the

development team, the so-called Scrum team, negotiate in Sprint planning meetings

the development goals of the new Sprint. These goals are used in Sprint review

meetings to assess whether the Sprint was successful or not. The overall objective is

to deliver a potentially shippable product in each Sprint. The Sprint retrospective

follows directly after the review meeting. The objective of this team facilitation

approach is to solve impediments to the development process or to discover issues

that have the potential to advance the development process. During a Sprint, the

team meets in a stand-up meeting every morning, called the Daily Scrum, which is

led by the Scrum Master. Here, team members shortly report what they imple-

mented yesterday, what they plan to implement today and any impediments for the

planned work. The Scrum Master is responsible for the Scrum process to work as

expected and that the team works by the rules and practices of Scrum. He or she is

intentionally not the project leader.

The green and sustainable software engineering add-on can be implemented as

follows (Fig. 3.4): The role of the customer representative is mapped to the product

owner and obviously the development team to the Scrum team. The role of the

sustainability executive does not fit to any existing role in Scrum. When the process

3 Processes for Green and Sustainable Software Engineering 75

is instantiated, possibly a member of the development team may hold this role as

well.

An iteration is represented by a Sprint. After approximately two-thirds of a

Sprint, the sustainability review and preview takes place. The interim presentations

are added to the Sprint review meetings. Process assessment is performed in

parallel to the different Sprints of the project.

When the project is finished, the presentation and report preparation task can be

performed just before the last Sprint review meeting. Thus, the final sustainability

report can be presented and released during the course of the meeting, without the

need for another meeting. The sustainability retrospective should not be confused

with the Sprint retrospective, because of the different objectives.

3.7.2 OpenUP

OpenUP [16] is, in principle, a simplified version of the Unified Process [27],

without many optional parts. It was released on open source by IBM and is further

developed by the Eclipse Foundation. It is an agile, iterative and mostly tool

agnostic development method, well suited for small development teams.

The structure of the life cycle has two dimensions. The first dimension represents

the life cycle phase: inception, elaboration, construction and transition. In each

phase, several sequential iterations may occur. The second dimension represents

different disciplines that occur during the life cycle: requirements, architecture,

development, test, deployment, project management and development environment

(there is no special design discipline; design is part of the development discipline).

Activities occur during iterations (things to do) and consist of several tasks, which

Fig. 3.4 Integrating sustainable software aspects into Scrum [37]

76 E. Kern et al.

are in turn classified into the disciplines (an activity may have steps that belong to

different disciplines). Which activities are executed during a phase and the work-

load generated by an activity depends on the focus of the current phase and the

necessity of the running process. This means that tasks of different disciplines can

be executed with different strengths according to the needs of the process phase.

Each iteration closes with the Assess Results task within the plan and manage

iteration activity, where the team demonstrates the value and gathers feedback from

stakeholders. After the assessment has been performed, the retrospective tries to

improve development and process execution of any existing obstacles. When an

iteration is the last iteration of a phase, a milestone review meeting takes place. Its

objective is to reach an agreement together with the stakeholders on moving to the

next phase. If an iteration is the last iteration, the task has an additional step to gain

the final acceptance of the software product by the stakeholders.

We propose performing sustainability review and preview meetings after

two-thirds of an iteration as an additional task within the Plan and Manage Iteration

activity that occurs in all iterations of all phases (Fig. 3.5). Additionally, interim

sustainability presentations can be performed alongside the Assess Results task at

the end of an iteration. Additionally, the sustainability retrospective is performed at

the end of the last iteration of the project. The sustainability presentation and report

preparation task also belongs to the Plan and Manage Iteration activity. The process

assessment task belongs to the activity of ongoing tasks. However, the activity is

not present in the inception phase. Hence, it has to be added to make process

assessment available at the very beginning of the project.

Fig. 3.5 Integrating sustainable software aspects into OpenUP [37]

3 Processes for Green and Sustainable Software Engineering 77

3.8 Conclusion

In order to enable a green and sustainable software engineering process as a first

step, we propose to have a look at the life cycle of software products. This life cycle

consists of three parts: (1) development, including the development and the distri-

bution of software products; (2) usage; and (3) end of life, including the deactiva-

tion and disposal of the product. This kind of life cycle thinking (‘from cradle to

grave’) helps to consider the sustainability effects of software over the whole

product life. Keeping the whole life cycle in mind, one should especially concen-

trate on the processes to create green and sustainable software.

In this context, we presented a process model to organise the development of

green and sustainable software in software development processes. To do so,

software engineering processes should be enhanced, taking sustainability aspects

into account. These are sustainability reviews and previews, process assessment,

sustainability journal, sustainability retrospective, sustainability presentations and

the final sustainability report. The first enhancements consider environmental

impacts. On the one hand, the needs during the development itself are considered

in the so-called sustainability reviews and previews. On the other hand, the effects

over the whole software development life cycle are continuously assessed within

process assessment. During the whole procedure of developing a software product,

sustainability presentations should be implemented to inform everyone participating

in the process about sustainability issues (e.g. measurement results of energy con-

sumption). In that way, possibilities can be found to optimise the sustainability of the

process and the product itself. The overall decisions about sustainability aspects are

documented in the sustainability journal. At the end of the process, there is a

sustainability retrospective to exchange lessons learned, a final sustainability presen-

tation and a final sustainability report.

The presented generic model can be adapted to existing models. This was

exemplified for Scrum and OpenUP. Overall, the generic model can be seen as an

add-on for software development processes to produce green and sustainable

software. Our aim is to display a generic extension for any of the existing process

models instead of presenting a complete process without specific activities.

The described procedure model for the development process can be

complemented by models for using, administrating and purchasing green and

sustainable software. Indeed, the development process is the central process of

the engineering phase, since the course for the phases following in the life cycle of

software is set. Overall, sustainability aspects need to be taken into account as early

as possible to be able to optimise them in the best possible way.

78 E. Kern et al.

References

1. Agarwal S, Nath A, Chowdhury D (2012) Sustainable approaches and good practices in green

software engineering. IJRRCS 3(1):1425–1428

2. Albertao F (2004) Sustainable software engineering. http://www.scribd.com/doc/5507536/

Sustainable-Software-Engineering#about. Accessed 30 Nov 2010

3. Albertao F, Xiao J, Tian C et al (2010) Measuring the sustainability performance of software

projects. In: IEEE Computer Society (ed) 2010 I.E. 7th international conference on e-business

engineering (ICEBE 2010), Shanghai, China, pp 369–373

4. Amsel N, Ibrahim Z, Malik A et al (2011) Toward sustainable software engineering: NIER

track. In: 2011 33rd international conference on software engineering (ICSE), pp 976–979

5. Behrendt S, Kahlenborn W, Feil M et al (2007) Rare metals. Measures and concepts for the

solution of the problem of conflict-aggravating raw material extraction – the example of

coltan. Texte, 23/07. Umweltbundesamt

6. Bordage S, Philippot O, Bordage F et al (2012) Ecoconception web-Les 100 bonnes pratiques:

Doper son site et réduire son empreinte écologique. Eyrolles

7. Braungart M, McDonough W (2009) Cradle to cradle. Remaking the way we make things.

Vintage, London

8. Calero C, Bertoa MF, Moraga MÁ (2013) Sustainability and quality: icing on the cake. In:

Penzenstadler B, Mahaux M, Salinesi C (eds) Proceedings of the 2nd international workshop

on requirements engineering for sustainable systems, Rio, Brasil, 15 July 2013. http://ceur-ws.

org

9. Capra E, Francalanci C, Slaughter SA (2012) Measuring application software energy effi-

ciency. IT Prof 14(2):54–61

10. Coroama VC, Hilty LM, Birtel M (2012) Effects of Internet-based multiple-site conferences

on greenhouse gas emissions. Telematics Informatics 29(4):362–374

11. Deutsches Institut für Normung e.V. (2003) Umweltmanagement-Integration von

Umweltaspekten in Produktdesign und -entwicklung. Deutsche und englische Fassung

ISO/TR 14062:2002, 1st edn. DIN-Fachbericht. Beuth, Berlin

12. Deutsches Institut für Normung e.V. (2006) Environmental management – life cycle assess-

ment – requirements and guideline (ISO 14044:2006); German and English version EN ISO

14044:2006 13.020.10(DIN EN ISO 14044:2006-10)

13. Dick M, Naumann S (2010) Enhancing software engineering processes towards sustainable

software product design. In: Greve K, Cremers AB (eds) EnviroInfo 2010: integration of

environmental information in Europe. Proceedings of the 24th international conference on

informatics for environmental protection, 6–8 Oct 2010, Cologne/Bonn, Germany. Shaker,

Aachen, pp 706–715

14. Dick M, Naumann S, Held A (2010) Green web engineering. A set of principles to support the

development and operation of “green” websites and their utilization during a website’s life

cycle. In: Filipe J, Cordeiro J (eds) WEBIST 2010 – Proceedings of the sixth international

conference on web information systems and technologies, vol 1, Valencia, Spain, 7–10 April

2010. INSTICC, Setúbal, pp 48–55

15. Eclipse Foundation (2008) Scrum. http://epf.eclipse.org/wikis/scrum/. Accessed 28 Jun 2010

16. Eclipse Foundation (2009) OpenUP. http://epf.eclipse.org/wikis/openup/. Accessed 28 Jun

2010

17. Fischer J, Naumann S, Dick M (2010) Enhancing sustainability of the software life cycle via a

generic knowledge base. In: Greve K, Cremers AB (eds) EnviroInfo 2010: integration of

environmental information in Europe. Proceedings of the 24th international conference on

informatics for environmental protection, 6–8 Oct 2010, Cologne/Bonn, Germany. Shaker,

Aachen, pp 716–725

18. GeSI, Global e-Sustainability Initiative; The Climate Group (2008) SMART 2020: Enabling

the low carbon economy in the information age

3 Processes for Green and Sustainable Software Engineering 79

http://www.scribd.com/doc/5507536/Sustainable-Software-Engineering#about
http://www.scribd.com/doc/5507536/Sustainable-Software-Engineering#about
http://ceur-ws.org/
http://ceur-ws.org/
http://epf.eclipse.org/wikis/scrum/
http://epf.eclipse.org/wikis/openup/

19. Hilty LM (2008) Information technology and sustainability. Essays on the relationship

between ICT and sustainable development. Books on Demand, Norderstedt

20. International Organization for Standardization (2005) Software engineering – software prod-

uct quality requirements and evaluation (SQuaRE) – guide to SQuaRE 35.080(ISO/IEC

25000:2005 (E))

21. Johann T, Dick M, Kern E et al (2012) How to measure energy-efficiency of software: metrics

and measurement results. In: IEEE (ed) Proceedings of the first international workshop on

green and sustainable software (GREENS) 2012, held in conjunction with ICSE 2012, The

international conference on software engineering, June 2–9, Zurich, Switzerland. IEEE Com-

puter Society, pp 51–54

22. Käfer G (2009) Green SE: ideas for including energy efficiency into your software projects.

Technical briefing (TB2). In: 31st international conference on software engineering,

Vancouver

23. Kern E, Dick M, Drangmeister J et al (2013) Integrating aspects of carbon footprints and

continuous energy efficiency measurements into green and sustainable software engineering.

In: Page B, Fleischer A, Göbel J et al (eds) EnviroInfo 2013 – environmental informatics and

renewable energies. 27th international conference on informatics for environmental protec-

tion. Proceedings of the 27th EnviroInfo 2013 conference, Hamburg, Germany, 2–4 Sept 2013.

Shaker, Achen, pp 300–308

24. Kern E, Dick M, Johann T et al (2011) Green software and Green IT: an end user perspective.

In: Golinska P, Fertsch M, Marx-Gómez J (eds) Information technologies in environmental

engineering. Proceedings of the 5th international ICSC symposium on information technolo-

gies in environmental engineering (ITEE 2011), 1st edn. Springer, Berlin, pp 199–211

25. Kern E, Dick M, Naumann S et al (2013) Green software and green software engineering –

definitions, measurements, and quality aspects. In: Hilty LM, Aebischer B, Andersson G

et al (eds) ICT4S ICT for sustainability. Proceedings of the first international conference on

information and communication technologies for sustainability, ETH Zurich, 14–16 February

2013. ETH Zurich, University of Zurich and Empa, Swiss Federal Laboratories for Materials

Science and Technology, Zürich, pp 87–94

26. Kocak SA (2013) Green software development and design for environmental sustainability. In:

11th international doctoral symposium an empirical software engineering (IDOESE 2013),

9 Oct 2013, Baltimore, MD

27. Kruchten P (2003) The rational unified process. An introduction, 2nd edn, The Addison-

Wesley object technology series. Addison-Wesley, Boston

28. Lami G, Fabbrini F, Fusani M (2012) Software sustainability from a process-centric perspec-

tive. In: Winkler D, O’Connor R.V, Messnarz R (eds) EuroSPI 2012, CCIS 301. Springer,

pp 97–108

29. Mahaux M, Canon C (2012) Integrating the complexity of sustainability in requirements

engineering. In: Svensson RB, Berry D, Daneva M et al (eds) 18th international working

conference on requirements engineering: foundation for software quality. Proceedings of the

workshops RE4SuSy, REEW, CreaRE, RePriCo, IWSPM and the conference related empirical

study, empirical fair and doctoral symposium, pp 28–32

30. Mahmoud SS, Ahmad I (2013) A green model for sustainable software engineering 2013. Int J

Software Eng Its Appl 7(4):55–74

31. Naumann S, Dick M, Kern E et al (2011) The GREENSOFT model: a reference model for

green and sustainable software and its engineering. SUSCOM 1(4):294–304. doi:10.1016/j.

suscom.2011.06.004

32. Penzenstadler B (2013) What does sustainability mean in and for software engineering? In:

Hilty LM, Aebischer B, Andersson G et al (eds) ICT4S ICT for sustainability. Proceedings of

the first international conference on information and communication technologies for sustain-

ability, ETH Zurich, 14–16 Feb 2013. ETH Zurich, University of Zurich and Empa, Swiss

Federal Laboratories for Materials Science and Technology, Zürich

80 E. Kern et al.

http://dx.doi.org/10.1016/j.suscom.2011.06.004
http://dx.doi.org/10.1016/j.suscom.2011.06.004

33. Penzenstadler B, Femmer H, Richardson D (2013) Who is the advocate? Stakeholders for

sustainability. In: 2013 2nd International workshop on green and sustainable software

(GREENS), pp 70–77

34. Penzenstadler B, Khurum M, Petersen K (2013) Towards incorporating sustainability while

taking software product management decisions. In: 7th international workshop of software

product management, Essen, Germany

35. Penzenstadler B, Bauer V, Calero C, Franch X (2012) Sustainability in software engineering: a

systematic literature review. In: Proceedings of the 18th international conference on evaluation

and assessment in software engineering

36. Pressman RS (2010) Software engineering. A practitioner’s approach, 7th edn. McGraw-Hill,

New York

37. Research Project “GREENSOFT” (2014) Website: research project “green software engineer-

ing” – downloads. http://www.green-software-engineering.de/en/downloads.html

38. Sahin C, Cayci F, Clause J et al (2012) Towards power reduction through improved software

design. In: IEEE Energytech 2012, 29–31 May 2012, Cleveland, OH. IEEE, Piscataway, NJ

39. Shenoy SS, Eeratta R (2011) Green software development model: an approach towards

sustainable software development. In: 2011 Annual IEEE India conference (INDICON),

pp 1–6

40. Shojaee H (2007) Rules for being a green software engineer. Ship Software OnTime! The blog

that helps you build great software. http://shipsoftwareontime.com/2007/12/24/rules-for-

being-a-green-software-engineer/. Accessed 26 July 2011

41. Sommerville I (2011) Software engineering. International Edition, 9th edn. Pearson, Boston

42. Taina J (2010) How green is your software? In: Tyrväinen P, Cusumano MA, Jansen S (eds)

Software business. First international conference, ICSOB 2010, Jyväskylä, Finland,

21–23 June 2010. Proceedings. Springer, Berlin, pp 151–162

43. Taina J (2011) Good, bad, and beautiful software – in search of green software quality factors.

CEPIS UPGRADE XII (4):22–27

44. Tischner U, Dietz B, Maßelter S et al (2000) How to do EcoDesign? A guide for environmen-

tally and economically sound design. Verlag form, Frankfurt am Main

3 Processes for Green and Sustainable Software Engineering 81

http://www.green-software-engineering.de/en/downloads.html
http://shipsoftwareontime.com/2007/12/24/rules-for-being-a-green-software-engineer/
http://shipsoftwareontime.com/2007/12/24/rules-for-being-a-green-software-engineer/

Chapter 4

Constructing Green Software Services: From

Service Models to Cloud-Based Architecture

Fei Li, Soheil Qanbari, Michael Vögler, and Schahram Dustdar

4.1 Introduction

In recent years, green software research is gaining momentum from the acute need

for sustainable development as well as the far-reaching effect of ICT to our society.

“[Green and] Sustainable Software is software, whose direct and indirect negative

impacts on economy, society, human beings, and environment that result from

development, deployment, and usage of the software are minimal and/or which

have a positive effect on sustainable development” [4]. Based on this definition,

green software research is growing in two directions. The first direction looks into

the runtime energy consumption of software [15] and its engineering pro-aspects of

our society and investigates how software can be used to improve the sustainability

of a broader range of business, social, and individual activities [5]. This chapter is

focused on the research and development in the second direction—to leverage

software to solve sustainability problems on a wider scope.

The emergence of cloud computing and Internet of Things (IoT) makes software

services further reach out to the physical world at a larger scale. Many existing

business operations are being improved with respect to scalability and manageabil-

ity through automation. Such new developments have strong implications to green

software research since sustainability can be improved by applying software ser-

vices based on these new computing paradigms. This view prompts us to rethink the

delivery models and service scope of green software: when green software is

delivered as online services, or green software services (GSS), a broader range of

business, governments, and individual processes can more easily employ the

services to reduce their energy consumption. Furthermore, more flexible business

relationships can be established between different stakeholders so that the financial

F. Li • S. Qanbari (*) • M. Vögler • S. Dustdar

Distributed System Group, Vienna University of Technology, Vienna, Austria

e-mail: Li@dsg.tuwien.ac.at; Qanbari@dsg.tuwien.ac.at; voegler@dsg.tuwien.ac.at;

dustdar@dsg.tuwien.ac.at

© Springer International Publishing Switzerland 2015

C. Calero, M. Piattini (eds.), Green in Software Engineering,
DOI 10.1007/978-3-319-08581-4_4

83

mailto:Li@dsg.tuwien.ac.at
mailto:Qanbari@dsg.tuwien.ac.at
mailto:voegler@dsg.tuwien.ac.at
mailto:dustdar@dsg.tuwien.ac.at

and social interests of green software can in turn promote its research and

development.

To this end, this chapter presents the core GSS constructs based on a cloud-based

architecture. The research is aimed at providing a systematic, high-level view on

four key elements in the development of GSS: stakeholders, their requirements,

various business models, and corresponding software architecture. The stake-

holders of GSS are detailed with the services they can provide and consume, thus

clarifying their interests to GSS. Based on this analysis, we present the domain-

independent core requirements to GSS that are considered by different stake-

holders. Six business models are proposed to promote collaborations of stake-

holders on the delivery of GSS. Each of the business models is then mapped to a

scope of high-level components in the IoT PaaS architecture [11]. This chapter

completes our previous work on business model analysis for GSS [6] by providing

the software architecture for each model, which can serve as the reference for

constructing GSS by service providers.1 In the end, we will discuss how the

business models are related to cloud services and the challenges of realizing a

marketplace for GSS.

The remaining part of this chapter is structured as follows: Sect. 4.2 introduces

the core stakeholders and their relationships in GSS. Then the requirements for GSS

are analyzed in Sect. 4.3. Section 4.4 introduces the business canvas for describing

business models and our past work on IoT PaaS as the basis for GSS architecture.

Section 4.5 presents the business models and corresponding cloud services. Finally,

Sect. 4.6 discusses the implications of these business models to the research and

development of GSS, and the chapter is concluded in Sect. 4.7.

4.2 Stakeholders in GSS

In order to investigate the requirements for GSS, we first conduct a detailed analysis

on the related stakeholders. Overall, the stakeholders are classified into core

stakeholders and supportive stakeholders. Core stakeholders are those business

entities that have direct business interests in providing GSS, whereas supportive

stakeholders are those organizations or individuals who have financial or social

interests in GSS but do not directly profit from delivering GSS. The stakeholders

are illustrated in Fig. 4.1.

1 Part of this chapter was published in [6], and this chapter extends the previous publication by

adding the software architecture for each model.

84 F. Li et al.

4.2.1 Core Stakeholders

• Business service providers are operating diverse businesses that might benefit

from GSS, for example, building operators, transportation services, and data

centers. They share one common objective of maximizing the sustainability of

their businesses (by saving energy or reducing wastes). Since they have the

direct financial incentives of reducing operational costs by applying GSS to their

existing businesses, they are the main driving force for the development of GSS.

• Original Equipment Manufacturer (OEM) produce equipment that are the

source of energy consumption. Their efforts alone on developing sustainable

equipment can result in significant energy conservation (e.g., LED lights and

energy-efficient chillers). Integrating, managing, and leveraging the energy-

saving capabilities of OEM devices are one of the most important approaches

of realizing GSS. More importantly, GSS is able to optimize complex systems

that constitute a large number of OEM equipment [3].

• GSS providers offer GSS that are used by business service providers. The

services are in diverse business domains and of various functions, such as

home automation, facility management, offline analysis, and so on. The services

provided by them can be realized by other stakeholders or domain experts. GSS

providers retain the service interface and establish direct business relationships

with customers who need GSS.

• GSS developers realize business logics and optimization methods in the target

domain. Different implementations of the same business logic could have

considerably different effects in terms of sustainability. Thus, domain knowl-

edge is often required for GSS developers. Promoting a GSS developer commu-

nity will help to leverage the growing amount of data available on the Internet

and the increasingly connected devices [1] to create more diverse GSS and apply

them to more business domains.

Fig. 4.1 Stakeholders of GSS

4 Constructing Green Software Services: From Service Models to Cloud-Based. . . 85

4.2.2 Supportive Stakeholders

• Governments are strong driving forces and important advocates for promoting

sustainable development. Their activities such as policy-making, policy enforce-

ment, legislation, and standard enactment are essential for the adoption and

long-term growth of GSS. Governments are also important public information

providers.

• Auditors systematically assess the performance of GSS. They provide a solid

baseline for comparing and further improving GSS by applying standardized

evaluation methods. Audit may be applied to any system components or domain-

specific business services.

• Service consumers are, in most current GSS applications, passive stakeholders

who benefit from business services at reduced costs. However, since the behav-

ior of consumers is also decisive to the effects of GSS, the usage information and

behavior patterns can be collected for designing better GSS.

Table 4.1 summarizes the main services provided and consumed by each

stakeholder.

Table 4.1 Roles of stakeholders

Stakeholders Services or information provided Services or information

consumed

Business service

providers

• Domain-specific business service

• Domain process optimization

knowledge

• Optimization services

• Auditing

GSS providers • Device integration

• Optimization services

• Data acquisition

• Analytics

• Data visualization

• Domain-specific knowledge

• Device connectivity

• Application development

OEMs • Devices

• Device optimization knowledge

• Device integration

Application developers • Business logic implementation

• Optimization method

implementations

• GSS platform services

• Domain-specific knowledge

• Device optimization

knowledge

Governments • Raising public awareness

to GSS

• Public information

• Regulation and legislation

• Policy enforcement

• Standardization

• Auditing results

Auditors • Auditing • Data access

• Process monitoring

Service consumers • Usage feedbacks • GSS

• Business services

86 F. Li et al.

4.3 Requirements for GSS

Based on the previous analysis about different stakeholders and their involvement

in GSS, this section presents the high-level requirements to GSS. These require-

ments are intended to be domain independent, as each of them addresses the needs

of multiple stakeholders:

1. Identifying core services (concerned stakeholders: all core stakeholders)
Given our perspective that green software is a software designed to improve

the sustainability of other business, social, or individual activities, the easiness

of engaging with various target domains is the key to the wide adoption of GSS.

This prompts us to identify a set of core GSS capabilities that are independent

from the domain specifics of target systems while making GSS easily adaptable

to address domain requirements. Therefore, we regard the following core capa-

bilities critical to the success of GSS. These core capabilities form the basic

features for a domain-independent platform that can serve as the basis of green

software services:

• Collecting and preparing data from target systems: This means that GSS

should have the capability to access and acquire raw data from diverse

environments that are to be made ‘greener’, including physical environments,

hardware, software, and information generated by humans. Thus, GSS should

not be restricted to certain communication protocols or data exchange for-

mats. Furthermore, for the data to be effectively utilized in GSS, GSS has to

prepare the raw data at two levels. The basic level is syntactic preparation to

normalize the presentation of the data. This task is covered in many domain-

specific standardization efforts like oBIX (Open Building Information

Exchange) [14]. The higher level of data preparation is in the ongoing

research on semantic technologies, which aims at the semantic interoperabil-

ity of systems [13].

• Customizing for different target systems: Providing the GSS to a specific

target system means that GSS should be tailored on provisioning. Such

tailoring can either be physically separating system components, configuring

them, and deploying only the necessary components for the target system or

virtually excluding the target system from using other irrelevant system

capabilities. Thus, extensibility and customizability are critical to GSS.

This chapter will illustrate how such tailoring can result in various service

models.

• Accommodating various scales: The target systems of GSS may be of

largely different scales, ranging from a single home to a large city.2 They

differ with each other in terms of numbers and types of equipment, data

volume, and resource requirements for applications. Thus, GSS should be

customized not only for specific functions but also customized in terms of the

2 http://www.pacificcontrols.net/projects/ict-project.html

4 Constructing Green Software Services: From Service Models to Cloud-Based. . . 87

http://www.pacificcontrols.net/projects/ict-project.html

resources needed for each target system. This requires flexible allocation of

computing resources and on-demand scaling of GSS.

2. Supporting a broad range of process optimization and analytics methods
(concerned stakeholders: GSS providers, business service providers, GSS
developers)

Based on the data collected, GSS will support a variety of process optimiza-

tion methods on the underlying resources they are running to ensure the reli-

ability, sustainability, and cost-effectiveness of the semantics they have

promised. GSS is not limited to a certain optimization method but has to decide

on the exact method to be used according to the specific task at hand. The known

methods for optimizing energy usage include offline data modeling and simula-

tion [3, 17], context-aware controls (e.g., presence-based light control), and

agent-based systems [9]. The growing amount of data further requires GSS to

be employed for results in big data research. The implication of this requirement

is that the optimization capability of GSS lies in the capabilities of handling

various types of data formats, including time series data, well-structured data,

unstructured data, or even natural language.
3. Supporting realization and enforcement of sustainability policies (concerned

stakeholders: GSS providers, business service providers, governments, auditors)
Supporting sustainability policies is one of the basic expectations from GSS.

Multiple aspects need to be considered for the realization of sustainability

policies. First of all, GSS is required to model and understand the sustainability

policies of the target systems, for example, temperature limit for a green

building. Second, GSS is required to find efficient ways of meeting the goals

defined by the policies, for example, how to efficiently control the HVAC

systems. Third, in realizing the policies, GSS themselves should be energy

efficient, complying to sustainability policies for IT systems.

4. Ensuring end-to-end privacy and security coverage (concerned stakeholders:
business service providers, service consumers)

Given the sensitivity to private, commercial, and public data that might be

used in GSS, data privacy, security, and confidentiality have to be incorporated

into GSS from the beginning and visible during every stage of development of

the system. Furthermore, since GSS usually need to apply certain controls or

changes in order to change the energy consumption of target systems, such

control capabilities are to be secured so that only the authorized software

components and personnel can perform the allowed controls.

5. Supporting collaborations between stakeholders (concerned stakeholders: all
stakeholders)

As stated in the stakeholder analysis, successful GSS are not built by any

single party but built by the collaborations of multiple stakeholders, each of

which provides their knowledge and services. The collaborations are the basis

for flexible business models. Thus, GSS need to support collaborations by

providing interfaces for different stakeholders, for example, interfaces for

third-party developers to develop new functions or interface for auditors to

88 F. Li et al.

inspect the sustainability status. More importantly, such collaborations are not

only reflected on system interfaces but also the capability of directly presenting

and sharing business interests on serving certain needs of GSS stakeholders.

4.4 Background

The impetus behind business model development is how to create, deliver, and

capture the values of a system. The fast pace of cloud innovation and increasing

diversity of GSS, coupled with unpredictable and ever-changing business require-

ments, require flexible and adaptive business models built upon reliable framework

to maximize GSS utilization. Before proceeding to the introduction of business

models and corresponding architectures, this section will introduce the business

model description approach and the IoT PaaS architecture.

4.4.1 Business Model Description

This chapter leverages an established business model framework [2] to describe the

business models of GSS. The framework is illustrated in Fig. 4.2.

A business model is described in four areas—finance, infrastructure, customer,
and value proposition. These four sections have strong and mutual interrelation-

ships with each other that have to be taken into account in forming business models.

Financial aspects aim at providing profitable and sustainable revenue streams. The

cost structure in the financial area is directly related to the stakeholders who are

providing resources and conducting service activities, whereas the revenue struc-

ture is related to customers who are interested in the specific services. The monetary

flow of this cost and revenue streams are effectively in use under the two models of

metered usage of service and subscription basis. In the infrastructure area, the OEM
devices are provided with optimization capabilities. The infrastructure aspect offers

virtualization layer over infrastructure resources by providing utilization interfaces.

The customer area’s focus is on providing interfaces that define the consumer

segments with their communication, distribution, and sales channels as a touching

point for service delivery. Overall, the three areas converge on the value proposition

of a business model. It seeks to solve customer problems and satisfy their needs

with value propositions. Readers can refer to Bucherer et al. [2] to find more details

on the description framework.

4 Constructing Green Software Services: From Service Models to Cloud-Based. . . 89

4.4.2 IoT PaaS Architecture

The overall IoT PaaS architecture is depicted in Fig. 4.3. IoT PaaS is a domain-

independent platform-as-a-service framework. In general, IoT solutions are highly

domain specific, so the IoT PaaS framework is built to be generic and extendable

enough to be used in different IoT domains. Furthermore, IoT PaaS provides

essential platform services on cloud that can be used and extended by IoT solution

providers.

To get a better understanding of the overall IoT PaaS architecture, we will start

at the lowest tier, the infrastructure, which can be seen at the bottom of Fig. 4.3.

The infrastructure inherits OEM devices, databases, file systems, and computation

units. To communicate with these devices, the virtualization layer is used. This

virtualization layer is both an integral part of infrastructure and platform. It pro-

vides device drivers and several low-level communication protocols to connect

heterogeneous devices and furthermore offers a new level of abstraction by effi-

ciently translating device/network interfaces to software interfaces. To deal with

different domain-specific data models, which would lead to a new level of hetero-

geneity, the IoT PaaS uses domain mediators to mediate between different

virtualized device interfaces. IoT PaaS provides two types of services related to

data to handle real-time and persisted data, respectively. Data processing is focused
on the processing and analyzing of real-time data generated by, for example,

sensory devices, whereas data storing/retrieving facilitates storing, retrieving, and

manipulating of persisted data by hiding the actual underlying data infrastructure.

Since in IoT PaaS, each application runs in a complex and dynamic context,

application context management is focused on providing and maintaining optimal

runtime resources and software configurations for applications. Based on the

resources acquired through tenant management, application context management

helps applications to select the necessary resources at runtime to fulfil the

Fig. 4.2 The method of describing business models

90 F. Li et al.

functional requirements and meet service-level agreements and cost targets. The

combination of tenant management and application context management provides a

virtually isolated operational environment, enacting the concept of virtual verticals,

for each application.

In addition to platform-specific components, IoT PaaS also offers a set of core

services, which can be seen on the left-hand side of the figure. One of the most

important services is resource management, which provides a registration point for
any form of resource, for example, cloud resources, virtualized devices, control

applications, etc. It monitors the resource status and enforces the access policies via

the virtualization layer. In IoT PaaS, resources include not only cloud resources

such as virtual machines and software instances in traditional cloud offerings but

also IoT resources. Since device capabilities and control applications can be used

by multiple tenants via virtualization, IoT PaaS uses tenant management, which
assembles a consolidated view of the resources that are accessible by each tenant.

To measure the usage of various services that can be used by an application, the

service metering component mainly monitors service messages and invocations that

are concerned by the platform and stakeholders. The metered information of both

IoT and cloud resources gets composed to provide a comprehensive view of service

Fig. 4.3 The IoT PaaS architecture

4 Constructing Green Software Services: From Service Models to Cloud-Based. . . 91

usage. To conclude the set of core services, billing generates bills for stakeholders

by analyzing the metered information according to charging schemes, which gets

configured by stakeholders.

4.5 Business Models and Reference Architecture

The GSS architectures that fulfill the requirements and satisfy the stakeholders will

become the cornerstone of flexible GSS business models.

4.5.1 Infrastructure Services

The capabilities of OEM devices and other computational resources play a signif-

icant role in the value generation of infrastructure services. GSS customers can

benefit from infrastructure services for accessing these capabilities through

virtualization, as illustrated in Fig. 4.4.

Its core value proposition is to provide optimization services on OEM devices,

thus directly reducing the cost of using these devices. Resources are virtualized [8]

so that GSS can easily access and control them. GSS providers are responsible for

device virtualization that opens up the APIs for customers to access the infrastruc-

ture capabilities, as illustrated in Fig. 4.5.

Fig. 4.4 Infrastructure services

92 F. Li et al.

The customer value that can be created by this model is mainly to provide

business service providers and their consumers the ability to efficiently operate

their facilities without constantly requesting the support of OEMs.

OEMs also benefit from this model through improved automation on their

customer services since maintenance activities can be automated. The services

under this model can be charged by “subscription” or “pay-as-you-go” models.

This business model provides an abstraction layer with programmable interfaces

to perform administrative tasks over infrastructure resources. Therefore, GSS

consumers do not manage or control the underlying resources but have control

over how the infrastructure capabilities are used. Last but not least, another

significant payback of these services is to cope with load fluctuations in an

automated and consistent manner by cooperating with other virtualized resources,

such as data storage and computational power.

Fig. 4.5 Infrastructure services

4 Constructing Green Software Services: From Service Models to Cloud-Based. . . 93

4.5.2 Platform Services

The platform services business model is illustrated in Fig. 4.6. It aims at providing

GSS providers with a platform including application libraries, device integration

APIs, data services, development environment comprising the end-to-end life cycle

of GSS application coding, customization, testing, deploying, and hosting the

applications as a service, as illustrated in Fig. 4.7.

The service provider of this model is not limited to certain business domains or

optimization methods. OEMs can use the platform to realize the first business

model—infrastructure services. GSS developers can develop GSS for specific

customers on top of the platform, and GSS providers can operate the platform.

The platform provides the core capabilities discussed in Sect. 4.3. Stakeholders can

use the platform through a self-service portal. Essentially, this model is an adapta-

tion of PaaS cloud for GSS. For stakeholders using the platform, the key value

proposition is to realize green business logics and domain-specific optimization

methods at lower upfront cost with faster time to market.

4.5.3 Virtual Verticals

Virtual verticals are provided to domain-specific business services such as smart

buildings or data centers, as illustrated in Fig. 4.8. It deals with configuring and

deploying appropriate GSS for specific domains and operational environment in

order to make the vertical application more efficient in its business and

Fig. 4.6 Platform services

94 F. Li et al.

Fig. 4.7 Platform services

Fig. 4.8 Virtual verticals

4 Constructing Green Software Services: From Service Models to Cloud-Based. . . 95

technological context. ‘Vertical’ means that such applications are delivered as an

end-to-end service coverage including physical devices, middleware, and applica-

tions for a certain physical environment, as illustrated in Fig. 4.9.

Virtual verticals can be realized by the collaborations of GSS providers, OEMs,

and GSS developers. They integrate physical devices in the target environment and

develop dedicated applications, such as light control or chiller management. Busi-

ness service providers, who are the direct customers of virtual verticals, enjoy their

dedicated GSS operational environments without committing computing resources

or maintaining an IT infrastructure for GSS. Instead, they subscribe to virtual

vertical services or license the software services for their operational environment.

It is worth noting that the key difference between the proposed virtual vertical

model and traditional physically isolated vertical model is the capability of sharing

computing resources between verticals, which makes it easier for vertical applica-

tions to scale up.

Fig. 4.9 Virtual verticals

96 F. Li et al.

4.5.4 Data Services

As the amount of data generated from business services is immense and still

growing, the data service business model plays an important role in addressing

data governance with a focus on data storage and processing aspects. Having the

confidentiality of data properly managed and providing data to external experts or

the public will further increase the utility of data. The data service business model is

illustrated in Fig. 4.10. This model also deals with data concerns like privacy

enforcement, up-to-dateness, data availability, and consistency in order to assure

and improve data quality. Figure 4.11 illustrates the scope of data services. In

principle, the service provider does not have to own the data sources, nor does it

provide applications. It only concerns management and provisioning of data. Both

real-time data and persistent data can be in the scope of service.

The data are owned by business service providers, OEMs, or governments. GSS

providers offer the platform for them to open data access and establish business

relationships with the customers who are interested in using the data for knowledge

discovery or analytics. Business service providers can benefit from publicly avail-

able data to optimize their operations. GSS developers can create novel applications

on the data or discover hidden knowledge in the data. The idea of providing data

services have been realized through IoT platforms like Xively,3 and more public

data are being made available [7] for the developer community to discover their

value.

Fig. 4.10 Data services

3 https://xively.com/

4 Constructing Green Software Services: From Service Models to Cloud-Based. . . 97

https://xively.com/

4.5.5 Third-Party Applications

When the access to data, infrastructure, and core services is open to third-party

developers, novel applications can be developed and provided as GSS, as illustrated

in Fig. 4.12.

This business model can be built on top of either infrastructure services, platform

services, or data services. In any case, this model is characterized by opening

application development capabilities to third parties and, typically, providing

application hosting service to them, as illustrated in Fig. 4.13. The involvement

of third party in GSS can help establish a robust resource capacity planning with

provider landscape. On GSS platform, the applications are offered online and used

through subscription or licensing. Virtual verticals can be enhanced with third-party

engagement to further extend the scope of applications. The range of applications

can be broad, including optimized business processes, device optimization

methods, or analytics. This model harnesses the creativity of the developer com-

munity and users to create various novel services.

Fig. 4.11 Data services

98 F. Li et al.

Fig. 4.12 Third-party applications

Fig. 4.13 Third-party applications

4 Constructing Green Software Services: From Service Models to Cloud-Based. . . 99

4.5.6 Analytics as a Service

Analytics on the sustainability of business services are delivered by third-party

analytics services [16], as illustrated in Fig. 4.14. Analytics as a service enables

GSS consumers to leverage specialized analytics capabilities to identify previously

unknown patterns and trends in their data.

This model is to a certain extent a type of third-party application. However,

analytics as a service stresses that analytics are highly specialized tasks. External

experts specialized in analytics are often required for conducting offline analysis.

This model can also be employed by external auditing in order to assess the

performance of GSS. Either data provided by the GSS platform or external data

sources can be taken as input for analytics, as illustrated in Fig. 4.15. For the data to

be effectively used in analytics, provisioning [10] (e.g., cleansing, normalization) is

important but not necessarily a task of data providers since the provisioning can

also be handled by data experts. Business service providers, governments, and

auditors can all be interested in the results of analytics. They may purchase the

reports or pay by the volume of data being analyzed.

Fig. 4.14 Analytics as a service

100 F. Li et al.

4.6 Discussions

4.6.1 A Cloud Perspective to GSS

The rapidly growing popularity of cloud computing has made energy consumption

of large data centers a trending topic in cloud research. Both of the two perspectives

of green software research—energy efficiency of software and using software for

energy efficiency—are applicable to cloud. On the one hand, the energy efficiency

of cloud is affected by the operating systems, middleware, and applications. On the

other hand, software tools can be built in order to manage the energy consumption

of cloud. Mechanisms like resource scheduling and application workload prediction

have been widely applied and are still improving.

This chapter relates cloud and green software in a new perspective: the service

models of cloud. IaaS (infrastructure as a service), PaaS (platform as a service), and

SaaS (software as a service) [12] are already familiar to researchers and IT pro-

fessionals. While green software services are provided on the Internet, the models

are referred to here in order to classify the services provided by each stakeholder. In

fact, the business models proposed in this chapter can easily be mapped to the cloud

service models. Infrastructure services that open up interfaces of OEM devices are

similar to the IaaS cloud, which provides computing resources as services. The

Fig. 4.15 Analytics as a service

4 Constructing Green Software Services: From Service Models to Cloud-Based. . . 101

platform services and data services can be realized on a PaaS cloud by extending its

capabilities of integrating with OEM devices. Third-party applications, virtual

verticals, and analytics as a service are different forms of SaaS. Such mappings

also serve as important reference for existing cloud service providers that plan to

offer their services to the green software market.

4.6.2 Towards a Marketplace for GSS

The core vision of this chapter is to promote stakeholders in GSS to establish

flexible business relationships through cloud-based service delivery models. As a

natural result of the growing participation of stakeholders, a marketplace will

emerge. In the marketplace, each type of service could be provided by multiple

stakeholders, who offer different implementations for the same service with differ-

ent QoS and price. Therefore, on top of the common platforms of GSS that

stakeholders can collaborate at a technical level, there is a further need of

supporting business activities including billing and SLA monitoring.

Although a cloud-based marketplace has been demonstrated by Amazon4 and

the concept of application store5 is well accepted, a marketplace for GSS will face

several new challenges. Evaluating and comparing GSS are hard since the effect of

each service for each customer is tightly related to the specifics of target systems

and their physical environments. Comprehensive metrics, especially domain-

specific metrics, need to be incorporated or developed for objectively and accu-

rately describing the services in the marketplace. These metrics will also help to

establish effective monitoring mechanisms for GSS. A marketplace for GSS also

means that the services should be delivered online. This challenges the deployment

and provisioning mechanisms for GSS since business models such as infrastructure

services and virtual verticals need to be coupled with devices in customers’ physical

environments. Automated or semiautomated methods, such as device integration or

customer tools, need to be created to enable efficient and customized service

delivery.

4.7 Conclusion

The research on the novel topic of green software is still at its infancy. Early

research problems and technical solutions have been proposed, but wide adoption

of green software is yet to happen. In this chapter, we tackled green software from

the business perspective—trying to identify the requirements and the business

4 https://aws.amazon.com/marketplace
5 https://play.google.com/store

102 F. Li et al.

https://aws.amazon.com/marketplace
https://play.google.com/store

models that could benefit a wide range of stakeholders. We detailed the stake-

holders and their interests in GSS. Based on this analysis, the high-level require-

ments of GSS were identified. Diverse business models were then proposed in order

to motivate stakeholders to collaborate on the delivery of GSS. A cloud-based

reference GSS architecture was presented with six variations to implement the

corresponding business models. In the end, we discussed how the business models

are related to cloud service models and the challenges of realizing a marketplace

for GSS.

Acknowledgements The research leading to these results was supported by the Pacific Controls

Cloud Computing Lab6 (PC3L), a joint lab between Pacific Controls LLC, Dubai, and the

Distributed Systems Group at the Vienna University of Technology.

References

1. Atzori L, Iera A, Morabito G (2010) The internet of things: a survey. Comput Netw 54

(15):2787–2805. doi:10.1016/j.comnet.2010.05.010, URL http://dl.acm.org/citation.cfm?

id¼1862461.1862541

2. Bucherer E, Uckelmann D (2011) 10 Business models for the internet of things. Business 1–25

3. Cook J, Smith D, Meier A (2012) Coordinating fault detection, alarm management, and energy

efficiency in a large corporate campus. In: 2012 ACEEE summer study on energy efficiency in

buildings, pp 83–93

4. Dick M, Naumann S, Kuhn N (2010) A Model and Selected Instances of Green and Sustain-

able Software. In: Berleur J, Hercheui M, Hilty L (eds) What kind of information society?

Governance, virtuality, surveillance, sustainability, resilience SE – 24, IFIP advances in

information and communication technology, vol 328. Springer, Berlin, pp 248–259. doi:10.

1007/978-3-642-15479-9 24

5. Dustdar S, Dorn C, Li F, Baresi L, Cabri G, Pautasso C, Zambonelli F (2010) A roadmap

towards sustainable self-aware service systems. In: Proceedings of the 2010 ICSE workshop

on software engineering for adaptive and self-managing systems – SEAMS ’10. ACM,

New York, pp 10–19. doi:10.1145/1808984.1808986. URL http://dl.acm.org/citation.cfm?

id¼1808984.1808986

6. Dustdar S, Li F, Truong HL, Sehic S, Nastic S, Qanbari S, Vogler M, Claesens M (2013) Green

software services: from requirements to business models. In: 2nd international workshop on

green and sustainable software (GREENS). IEEE, pp 1–7. doi:10.1109/GREENS.2013.

6606415

7. (2012) Greenbiz: Hack City–Verge SF @Greenbuild Resources, GreenBiz Group Inc.

8. Guinard D, Trifa V, Karnouskos S, Spiess P, Savio D (2010) Interacting with the SOA-based

internet of things: discovery, query, selection, and on-demand provisioning of web services.

IEEE Trans Serv Comput 3(3):223–235. doi:10.1109/TSC.2010.3

9. James G, Cohen D, Dodier R, Platt G, Palmer D (2006) A deployed multi-agent framework for

distributed energy applications. In: Proceedings of the fifth international joint conference on

autonomous agents and multiagent systems – AAMAS ’06. ACM, New York, p 676. doi:10.

1145/1160633.1160752. URL http://dl.acm.org/citation.cfm?id¼1160633.1160752

6 http://pc3l.infosys.tuwien.ac.at/

4 Constructing Green Software Services: From Service Models to Cloud-Based. . . 103

http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dl.acm.org/citation.cfm?id=1862461.1862541
http://dl.acm.org/citation.cfm?id=1862461.1862541
http://dl.acm.org/citation.cfm?id=1862461.1862541
http://dx.doi.org/10.1007/978-3-642-15479-9%2024
http://dx.doi.org/10.1007/978-3-642-15479-9%2024
http://dx.doi.org/10.1145/1808984.1808986
http://dl.acm.org/citation.cfm?id=1808984.1808986
http://dl.acm.org/citation.cfm?id=1808984.1808986
http://dl.acm.org/citation.cfm?id=1808984.1808986
http://dx.doi.org/10.1109/GREENS.2013.6606415
http://dx.doi.org/10.1109/GREENS.2013.6606415
http://dx.doi.org/10.1109/TSC.2010.3
http://dx.doi.org/10.1145/1160633.1160752
http://dx.doi.org/10.1145/1160633.1160752
http://dl.acm.org/citation.cfm?id=1160633.1160752
http://dl.acm.org/citation.cfm?id=1160633.1160752
http://pc3l.infosys.tuwien.ac.at/

10. Li F, Nastic S, Dustdar S (2012) Data quality observation in pervasive environments. In: The

10th IEEE/IFIP international conference on embedded and ubiquitous computing (EUC 2012),

Paphos, Cyprus

11. Li F, Vögler M, Claeßens M, Dustdar S (2013) Efficient and scalable IoT service delivery on

cloud. In: 6th IEEE international conference on cloud computing, (Cloud 2013), Industrial

Track, Santa Clara, CA

12. Liu F, Tong J, Mao J, Bohn R, Messina J, Badger L, Leaf D (2011) NIST cloud computing

reference architecture. NIST Special Publication 500, 292

13. Loutas N, Kamateri E, Tarabanis K (2011) A semantic interoperability framework for cloud

platform as a service. In: 2011 IEEE third international conference on cloud computing

technology and science. IEEE, pp 280–287. doi:0.1109/CloudCom.2011.45

14. OASIS: Open Building Information Exchange (oBIX) (2012). URL https://www.oasisopen.

org/committees/tchome.php?wgabbrev¼obix

15. Steigerwald B, Agrawal A (2011) Developing green software. Tech. rep., Intel

16. Sun X, Gao B, Fan L, An W (2012) A cost-effective approach to delivering analytics as a

service. In: 2012 IEEE 19th international conference on web services. IEEE, pp 512–519.

doi:10.1109/ICWS.2012.79

17. Zachhuber D, Doppler J, Ferscha A, Klein C, Mitic J (2008) Simulating the potential savings of

implicit energy management on a city scale. In: 2008 12th IEEE/ACM international sympo-

sium on distributed simulation and real-time applications. IEEE, pp 207–216. doi:10.1109/DS-

RT.2008.26

104 F. Li et al.

https://www.oasisopen.org/committees/tchome.php?wgabbrev=obix
https://www.oasisopen.org/committees/tchome.php?wgabbrev=obix
https://www.oasisopen.org/committees/tchome.php?wgabbrev=obix
http://dx.doi.org/10.1109/ICWS.2012.79
http://dx.doi.org/10.1109/DS-RT.2008.26
http://dx.doi.org/10.1109/DS-RT.2008.26

Part III

Economic and Other Qualities

Chapter 5

Economic Aspects of Green ICT

Héctor Fernández, Giuseppe Procaccianti, and Patricia Lago

5.1 Introduction

Over the last decades, the use of information and communications technology (ICT)

and software systems has exploded, making our lives and work much more effi-

cient. However, besides the benefits that ICT brings us, it also contributes signifi-

cantly to environmental issues [11, 13], not only because of the electricity

consumed by computers, data centers, networks, or other ICT utilities but also

due to the rapidly growing computation needs of emerging software systems that

contribute significantly to ever-increasing energy demands and greenhouse gas

emissions [1, 21]. Decreasing ICT operation expenses becomes more and more

crucial. How to make ICT greener (i.e., environmentally sustainable) and how to

develop greener software have been gaining significant attention [16, 17, 24].

ICT can contribute to addressing environmental concerns in two ways: (1) by

optimizing the implementation of ICT or migrating to a sustainable software and

thus minimizing its own environmental impact and (2) by optimizing the business

processes via more environmentally sustainable software and thus minimizing the

use of ICT resources [5, 22]. Currently, many green ICT practices already exist to

improve the energy efficiency of both IT and its supported processes. Examples

include reducing the energy consumption of PCs by enabling power management

features [20], enforcing double-sided printing to save both paper and energy [18],

applying cloud computing technology to significantly reduce hardware and soft-

ware resources needed for individuals [15], and using a fleet management system

and dynamic routing of vehicles to avoid traffic congestion and thus minimize

energy consumption and transportation costs [2].

From the examples above, we can see that greening ICT may save energy

consumption (hence reducing cost), but it often requires additional investments,

H. Fernández (*) • G. Procaccianti • P. Lago

VU University Amsterdam, Amsterdam, The Netherlands

e-mail: Hector.fernandez@vu.nl; g.procaccianti@vu.nl; p.lago@vu.nl

© Springer International Publishing Switzerland 2015

C. Calero, M. Piattini (eds.), Green in Software Engineering,
DOI 10.1007/978-3-319-08581-4_5

107

mailto:Hector.fernandez@vu.nl
mailto:g.procaccianti@vu.nl
mailto:p.lago@vu.nl

business process changes, and extra efforts from both companies and individuals.

According to the analysis by Corbett [4], the most commonly cited driver for

reusing Green IT practices is saving costs. Especially in times of economic crisis,

cost reduction becomes the most important economic objective [23] of many

companies. If green practices do not lead to an explicit (and significant) reduction

of costs, environmental goals are often regarded as a nice optional bonus rather than

a must-have target.

There is no one-size-fits-all green solution due to the diversity of requirements

and characteristics of these enterprises. Executives need to assess the effectiveness

of green ICT practices not only from a technical perspective but more importantly

from an economic point of view and not only look into short-term return on

investments (ROIs) but also have a vision on long-term ones. In addition, when

green ICT practices involve software, calculating costs and ROIs is more difficult.

The impact of software cannot be estimated in isolation, as it depends on many

indirect factors including operation costs, hardware usage, human involvement, and

system configuration. Often there is an intuition of some advantage gained when

investing in such practices. This intuition is sufficient only if the company and

decision makers are already fully committed to regreening their software and ICT

portfolio. In most cases, evidence and quantification are the only way to handle the

complexity of the practices mentioned above and hence to create such commitment.

To ensure economic benefits while making a sustainable business, there must be

an alignment between green goals and organizational/business goals. Only when

such an alignment is in place, the decision makers of a company can be motivated to

take green actions [14]. In the business domain, the strategy modeling language

(SML) [19] has been used to align business models with business goals, business

plans, and optimization objectives to ensure business strategies can be optimally

realized. However, a systematic approach is needed to describe solutions, actions,

or strategies that can produce environmental benefits and enforce the alignment

between green strategies and business goals [8].

Moreover, there is a need for quantifying in advance the economic impact of

green practices. To the best of our knowledge, there is a software tool, named Going

Green Impact Tool,1 that compares the economic value among multiple green

practices specifically for data centers. This tool provides a very comprehensive

analysis on the key environmental and economic consequences of the application of

certain green practices, which aids executives to determine the most effective

practice. The major limitation of this tool lies in the fact that it works only for

predefined practices, including server optimization, power management, virtual-

ization, free cooling, and the reuse of waste heat. End users are not able to add

other solutions for analysis and comparison.

Consequently, to our knowledge there is no single tool that is able to aid decision

makers to run a holistic assessment and make informed decisions. In this chapter,

we present a green model and software tool that allow us to model, estimate,

1 http://ercim-news.ercim.eu/en79/special/the-going-green-impact-tool

108 H. Fernández et al.

http://ercim-news.ercim.eu/en79/special/the-going-green-impact-tool

quantify, and compare the economic consequences of the application of green

practices. To do that, we used the e3value model, which is an economic tool to

model business networks and has been successfully applied in several real-life

business case studies [7]. We designed and implemented a Web-based software

tool that enables to analyze and compare the economic impact of applying a green

practice versus an existing ICT solution. To this end, we carried out an experiment

of modeling a green ICT practice called “desktop virtualization.” The results show

that by applying this practice a company would reduce overall expenses by 47 %

and reduce electricity consumption by 20 %. This research combines formalized

descriptions of green ICT practices with economic models estimating the business

values of ICT solutions. By modeling the application of a green practice, we can

customize the value exchanges to real scenarios and estimate the expected ROIs

using our software tool.

The estimations above showed that while intuition was promising, the actual

figures were delivering amazingly higher ROIs. We argue that such quantifications

would convince organizations more easily to adopt green ICT practices and moti-

vate them to reuse green ICT solutions even if requiring significant investments.

The remainder of the chapter is structured as follows: Sect. 5.2 introduces the

e3value model; Sect. 5.3 presents our green strategy model; Sect. 5.4 shows an

example on how to model a green ICT practice called desktop virtualization;
Sect. 5.5 presents our Web-based software tool and an example using the desktop
virtualization practice; and Sect. 5.6 concludes the chapter.

5.2 Background: The e3value Methodology

e3value models enterprises and end users exchanging things of economic value,

such as goods, services, and money, in return for other things of economic value.

In the following, we introduce the main concepts or constructs supported by the

e3value modeling tool and their associated notations [6, 12]:

• Actor: An economically, and often legally, independent entity. Examples of an

actor include a customer, an organization, and a company. In the notation, an

actor is represented by a plain rectangle.

• Value object: Something that actors exchange which is of economic value for

at least one actor. A value object is a service, a good, money, or an experience.

Examples of value objects are products, delivery service, and tuition fee. In the

notation, a value object is represented as a label on a value exchange.

• Market segment: A set of actors that share a set of properties. Actors in a

market segment assign economic value to a value object equally. In the notation,

a market segment is represented by a set of stacked rectangles.

• Value interface: Something that groups value ports together and shows eco-

nomic reciprocity. Economic reciprocity means that actors/market segment will

only offer value objects if they will receive value objects in return. In the

5 Economic Aspects of Green ICT 109

notation, the value interfaces are drawn at the sides of actor/market segments as

a thin rectangle with rounded corners, with value interfaces within.

• Value port: Something that is used by an actor/market segment to provide or

request a value object. In the notation, a value port is shown as a small arrow

inside a value interface.

• Value exchange: Something that connects two value interfaces and represents a

potential trade of value objects. In the notation, value exchanges are drawn as

lines connecting the port of actors/market segment to each other.

• Dependency path: The path where value exchanges, which is used to count the

number of exchanges. In the notation, dependency path starts with a start

stimulus and ends with a stop stimulus.

As illustrated in Fig. 5.3, many e3value constructs can be associated with

numbers or parameters, such as money transfers as well as the number of consumer

needs (hence the need for concurrent computing). If done correctly, the e3value
modeling tool generates net value flow sheets, which show for each actor in the

model the amount flowing into and out from an actor.

5.3 Modeling the Value Exchange of Green ICT Practices

The design of our green strategy model was inspired by the definitions collected by

the Global Development Research Center (GDRC2), which is an independent

nonprofit think tank carrying initiatives in education, research, and practice. Their

goal is to contribute to broad-based global development by facilitating the creation

and use of knowledge. The GDRC glossary of environmental terms elicited defini-

tions from international organizations (like ISO and the Environmental Protection

Agency of the United States). We found two definitions especially relevant to our

purposes:

• Definition 1: A green strategy (aka environmental strategy) is a plan of action

intended to accomplish a specific environmental goal.

• Definition 2: A green goal (aka environmental goal) is an objective that an

organization sets itself to achieve and which is quantified where practical.

The first definition breaks down a strategy into two components: a plan of action

and a specific environmental goal the action should help achieving. Moreover, the

second definition implies that whenever applicable we should be able to quantify

the extent to which an environmental goal is achieved. This calls, in our opinion, for

the association of metrics (either qualitative or quantitative) that measure the

contribution of each action to the achievement of the goal.

2 www.gdrc.org

110 H. Fernández et al.

http://www.gdrc.org/

Putting the above elements together, we designed the first version of a green

strategy as graphically illustrated by the example in Fig. 5.1. The example has been

extracted from the electronic bookstore domain. It represents a strategy aiming at

reducing the carbon footprint (CF) of printing books.

The strategy includes two actions: the first action print on demand refers to

printing books only after customers order them. This action makes the business

more sustainable by reducing the costs of storing books in large quantities before

customers order them. While this effect is not “green per se,” it does have an

indirect positive impact on the total CF by reducing paper consumption to the

minimum (i.e., exactly the amount of books that are actually ordered by customers).

The second action print near to delivery address is to physically print the ordered

books in a store as near as possible to the address of the customer. This allows to

shorten the delivery distance, hence reducing the CF of transportation. We devel-

oped a number of examples (from both theory and practice) to challenge our first

model of green strategy. In doing that, we have identified the following weaknesses:

1. Each action can have one or more effects that help in achieving the environ-

mental goal. In order to select the best actions to put in place in a certain

organization, we must make each effect explicit. In doing that, we can under-

stand further what we need to measure to monitor the progress towards achieving

the green goal. For instance, in the example of Fig. 5.1, the action effects (added

on the associated arrows) identify that by monitoring paper consumption and

transportation distances, respectively, we can draw the trend towards reducing

the total CF.

2. While action effects are typically technical or environmental in nature, they do

not explain the economic impact that they have. We had various discussions with

companies actively involved in green ICT and/or in decreasing their CF, and all

explained that the major incentive for them to go green is to reduce costs. Hence,

if green strategies do not lead to an explicit (and significant) reduction of costs

(hence increase in revenues), they are (again) nice but not part of the business

Fig. 5.1 Example: a green

strategy for electronic

bookstores

5 Economic Aspects of Green ICT 111

strategy of the organization. In periods of economic crisis, they are the first to be

forgotten or neglected.

To challenge our first model in aligning green strategies and business strategies,

we associated each action effect with its (potential) economic impact. This resulted

in the revised green strategy model illustrated in Fig. 5.2. A green goal is realized

by a number of green actions, and a green action can achieve a number of green

goals. Each green action has a description to explain what the green action means.

A green action leads to at least one action effect, which causes at least one

economic impact. A green action belongs to one subcategory, which is a subset

of a category. While the green goal represents ecologic impact of the strategy as a

whole, the action effects detail the ecologic impact of each action individually.

5.4 Example of Modeling a Green ICT Practice

Aiming at assessing the feasibility of quantifying economic values of green ICT

practices, we carried out an experiment by modeling the application of a practice

called desktop virtualization, which has been selected from the list of green

solutions provided by MJA (Meerjarenafspraken meaning long-term agreements).3

This practice is described as:

A desktop virtualization software facilitates the use of thin clients
(i.e. workstations with minimal hardware configurations). These thin clients are
far more energy efficient than regular fat client computers. There is however an
increase in server side computing due to the extra load of providing the desktops,
which leads to an increase in energy consumption of servers.

Fig. 5.2 Green strategy model

3 The MJA is a voluntary agreement between the Dutch government and the largest energy

consumers in the Netherlands, these being both large industries (e.g., banks and telecom providers)

and higher education institutes (e.g., universities).

112 H. Fernández et al.

From this description, we elicited the following expected effects and associated

economic impact:

• Decrease in energy consumption of client workstations, which decreases energy
consumption costs of client workstations

• Increase in energy consumption of servers, which increases energy consumption
costs of servers

• Acquisition of thin clients, which may raise IT equipment acquisition costs
• Need to implement or purchase virtualization software, which requires short-

term investment

Using the e3value modeling tool, we modeled an AS-IS situation (i.e., usage of

fat client without virtualization) and TO-BE situation (i.e., usage of thin clients with

virtualization) with the period of 3 years. Figure 5.3 shows the AS-IS situation,

where company X purchases a number of fat clients and servers from hardware

suppliers in order to meet its computation needs, pays money to electricity suppliers

for the electricity consumed by these fat clients and servers, and hosts an IT

department (within the company or outsourced) to maintain the hardware devices

ensuring they perform as expected. Figure 5.4 illustrates the TO-BE situation,

where company X purchases thin clients rather than fat clients and the IT

Fig. 5.3 Usage of fat clients, without virtualization

5 Economic Aspects of Green ICT 113

department has an additional task of providing and maintaining a virtualization

software to deliver desktop virtualization service.

Value exchanges can be calculated along multiple dependence paths presented

in the models. The paths start with the start stimulus “concurrent computing need”

of company X. Such need can be fulfilled by a combination of three components:

thin clients, a server, and maintenance service (see the AND fork in Fig. 5.4 labelled

with (1)). To give an example of the dependent paths, consider the value exchanges

related to the thin clients (2), which consists of acquisition of thin clients (3) and

energy consumption of these thin clients (4). The acquisition of thin clients requires

value exchange with the hardware suppliers (5), and the use of these thin clients

requires electricity, which requires another value exchange with the electricity

suppliers (7). Since the electricity is charged per month whereas the computing

need is charged for 3 years, the fork (6) automatically normalizes costs in 1-month

fractions.

After modeling the actors and value exchanges between them, we assigned

parameters (with assumptions) to each value exchange in order to estimate the

costs. The parameters we assigned for the two situations are listed in Table 5.1.

With the provided parameters, the e3valuemodeling tool generated a spreadsheet

that calculates the amount spent and the revenue gained by each actor after 3 years.

Fig. 5.4 Usage of thin clients, with virtualization

114 H. Fernández et al.

From the report, we could quantify the economic benefits that we should expect by

reusing the green ICT practice:

• Energy consumption cost of client workstations is decreased by 88.8 %.

• Energy consumption cost of servers is increased by 37.5 %.

• Acquisition of thin clients requires an investment of 20,000 euro.

• Desktop virtualization software license requires an investment of 1,200 euro.

In this example, estimation results show that the applied practice would lead to

an overall 47 % reduction of expenses and 20 % reduction of electricity consump-

tion. However, when using the e3valuemanagement tool, these measurements and a

comparative analysis have to be manually calculated by users, which converts this

procedure into a tedious task. Therefore, there is a need for automatization to help

users in this decision-making process.

5.4.1 Findings

In general, we have been able to model all relevant fields in the original MJA

document using e3value according to our model. This gives us confidence on its

suitability in modeling green strategies. The next step, however, would be to go

back to the companies, or involve other ones, to check if our way to align economic

impact and environmental benefits is effective and sufficient to decide on the best-

fitting strategy.

For the sake of readability, the green practice in our experiment has been

modeled in a simplified yet realistic context:

1. We limited the number of actors, including only the ones that are essential and

highly relevant to the green practice. In real life, thin clients and fat clients

can be purchased from multiple vendors in multiple times and at potentially

Table 5.1 The parameters assigned to AS-IS and TO-BE situations

Attribute AS-IS situation TO-BE situation

Number and type of clients 50 fat clients 50 thin clients

Price for each client 600 euro 400 euro

Number of servers 1 1

Energy consumption of a client per

month

180 W� 10 h� 22

days¼ 39.6 kW

20 W� 10 h� 22

days¼ 4.4 KW

Energy consumption of a server per

month

250 W� 24 h� 30

days¼ 180 kW

400 W� 24 h� 30

days¼ 288 kW

Price of energy per kWh 0.5 euro 0.5 euro

Maintenance cost per client per year 50 euro 25 euro

Maintenance cost per server per year 400 euro 400 euro

Desktop virtualization software

license per year

n/a 400 euro

5 Economic Aspects of Green ICT 115

different prices. To simplify the models, we assumed that all the equipment is

purchased from a set of vendors concurrently with a fixed price.

2. We simplified the calculation of electricity tariff. Electricity prices may vary

depending on regions, countries, and distribution networks of the same country,

type of customers, and type of contracts. In this experiment, we assumed that

electricity is provided by a set of providers of the same type and with a fixed rate.

However, rates are all taken from real providers.

3. We constructed the relation between IT maintenance and the company in a

simplified manner. In reality, the way in which IT services are arranged can be

quite complex, and the cost for IT maintenance can be charged differently.

In this experiment, we assumed an average maintenance cost per hardware

per year. In addition, often a company already has a number of computers in

use; when deciding to apply desktop virtualization, the disposal cost of legacy

hardware equipment should also be considered. Customization is needed

when modeling the value exchanges and estimating the expected ROIs in

real scenarios.

Further, the case study allowed us to collect the following additional obser-

vations on the codification as well as a list of issues that should lead to further

improvements in our strategy model:

• Advantages of using e3value in alignment with our green strategy model:

– The understandability of green actions is improved:

As we mentioned earlier, the green actions provided to us were docu-

mented by domain experts who made assumptions that readers have sufficient

background knowledge to understand. However, when shared with other

data centers or presented to a third party (e.g., our university for research

purposes), the documented green actions are often not completely under-

standable and are less usable. Modeling the green actions makes it easier to

share and communicate them since assumptions and domain knowledge

embedded in the descriptions become explicit. For instance, in our descrip-

tion of the scenario, the consequences of using fat/thin clients with/without

virtualization are less clear to the reader before modeling. Only after model-

ing, it is clear that from an environmental perspective, it would use

less energy (lower carbon footprint) and maintenance, and from an

economic perspective it saves costs for energy consumption and saves costs

for maintenance. Knowing these consequences is essential for companies to

understand and select the green action.

– Searching and selecting green actions for specific purposes become

easier:

Very often, a company would search for green actions to achieve certain

environmental goals, which is also the purpose of sharing green actions

among multiple data centers under the MJA agreement. When action effects

and economical impacts are explicit, they can be used as criteria for compa-

nies to search for green actions that fulfil their business requirement. Further,

116 H. Fernández et al.

explicit action effects and economical impacts may aid companies to justify

and reason about the selection of certain green actions.

– The completeness of the documentation of green actions is improved:

The model encourages the author of a green action to document and, most

importantly, to think about the environmental effects and economic impact

that the green action may bring. In the future, when the green strategy model

is commonly used for documenting green actions, the authors are guided with

what type of critical information to provide. As a result, the chance that the

documentation of green actions is complete is much higher.

– Dependences between green actions are modeled:

When modeling the green actions, we observed that some green actions are

dependent or related to each other. For example, one green action could be to

use adiabatic cooling for the resources of a data center, meaning that “as a

complement to the direct free cooling we can evaporate water into the airflow

to remove the heat in the air.” Another similar green action is described as

“Moistening and drying air are expensive and energy intensive. Use equip-

ment that operates between 20 and 80 % of relative humidity.” The former

action results in high humidity of the air, and the latter action proposes to use

devices that may tolerate wider ranges of humidity so that no extra efforts are

needed to moisten or dry air. Obviously, the latter action provides a solution

for the problem that the former action introduces. If such a relation is

explicitly modeled, it is easier to justify the economic impact of both green

actions as a whole.

– Advantages of visualizing value exchanges:

The results show that the models in our experiment well simulate the value

exchanges under the simplified context and make the economic value of the

green practice explicit. The e3value technique provides a graphical overview
of a resource exchanging network of a company. The visualization of partici-

pants and their relations in terms of value exchanges aid the analysis of the

economic viability of the network. Therefore, the e3value technique helps to
consider a green practice in the context of the business model of a company; it

encourages the alignment between business strategies and environmental ICT

solutions.

Explicitly modeling the resource exchanges related to green practices

within the business model of a company also urges ICT technicians to be

aware of economic value of certain ICT solutions. Technicians often consider

only quality attributes (e.g., performance, security) when proposing ICT

solutions to meet the business needs of a company. The short- and long-term

economic impact of the ICT solutions, however, often gets little attention, as

long as the solutions meet the budget planned. Using the e3value technique,
ICT technicians are able to compare alternative ICT solutions, especially from

the economic perspective, and decide the one that suits best the company’s

needs. For instance, desktop virtualization can be implemented in many

different ways: by using thin clients and storing the “virtualized desktop

images” on a central server (as we modeled in our experiment) or by running

5 Economic Aspects of Green ICT 117

multiple virtual machines on local hardware such as laptops without a server.

While the former requires a central image management software, the latter

requires the realization of desktop virtual machines. These two solutions may

require different actors and different value exchanges. With the help of the

e3value technique, technicians are able to compare the economic influence of

different solutions and thus make informed decisions.

– The e3value technique versus spreadsheet applications:
One could argue that without using the e3value technique, a spreadsheet

application, such as an Excel sheet that records and calculates the cost, would

also be sufficient. We agree that using Excel (or similar software tools) would

be computationally equivalent to the e3value modeling tool in terms of the

calculation of costs. In fact, the report generated by the e3valuemodeling tool

is in the form of Excel spreadsheets. However, e3value models are different

from spreadsheet applications, which focus only on numbers and calcu-

lations. The e3value modeling tool, instead, provides a graphical interface

both for illustrating the interrelated financial dependencies between actors for

filling parameters by end users. The e3valuemodel cannot be replaced by any

spreadsheet applications specifically because it helps to achieve the following

two goals:

1. To support communication of green practices among different types of

stakeholders. While technical stakeholders would be comfortable in work-

ing directly with formulas and textual calculation (like in Excel), there is

the need to communicate about a practice with business people and

strategic decision makers.

2. To facilitate reuse of the same green practice in different organizations

having different ways of implementing them (e.g., because of different

departments involved or different factors that are variable in one company

and constant in another). Whenever a practice is reused, its contextuali-

zation changes. While applying the changes in a visual model is straight-

forward (assuming one knows the modeling notation), applying the

same changes in a textual calculation (like in Excel) is error prone and

hinders reuse.

• For demonstration purposes, we show that it is feasible to use the e3value
technique to estimate the economic impact of green practices. However,

there are a few issues for further improvement:

– Support for differentiation between positive and negative impacts:

In the case study, we observed that each green action can have multiple

economic impacts, which may be positive (i.e., contributing to reduce costs

and increase benefits) and/or negative (i.e., require investments to put the

actions in place). Currently, both of the two types of economic impacts are

codified by one element (i.e., economic impact) without discriminating

between positive and negative effect. To assess the ROI of a strategy and

align it to the organization business objectives is of course necessary to gain

118 H. Fernández et al.

a clear understanding of both positive and negative economic impacts.

Therefore, in our opinion the discrimination of positive and negative impacts

should be supported by the model.

– Include references to the application of green actions:

We noticed in the MJA document that sometimes reference documen-

tation, a case study, or examples are given to show the application or usage

of a green action. In our opinion, the information about the practice of a

green action is very relevant to give the reader an instrument to get a

better understanding on a green action and, therefore, should be supported

by the model.

– Support for model customization:

The models can be further customized to a real-case scenario with actual

actors and pricing and, most importantly, a real-life business model. Simi-

larly, the energy consumption of hardware devices should be measured

instead of estimated to improve the accuracy of the cost estimation.

– Support a comparative analysis of economic implications for short- and

long-term investments:

We noticed that short-term investments (e.g., acquisition of hardware

devices) and long-term costs (e.g., energy consumption) should be distin-

guished and analyzed in order to provide a thorough estimation of

economic impact of green practices.

5.5 A Web-Based Calculator for Green ICT Practices

Our findings emphasize the need for a quantitative assessment of the economic

benefits of green ICT. For this reason, we developed and released a green ICT Web

calculator, a Web application able to estimate the ROI of applying a green ICT

practice. In this section, we explain our approach and the implementation of the

calculator.

Our first step was to collect and elicit green ICT metrics from both practice and

the literature. We performed a systematic literature review [3] that resulted in

66 green metrics, classified in five categories: energy, performance, economics,

utilization, and pollution. Examples of relevant metrics identified in this study are

energy consumption, energy savings, and client/server energy costs.

Another study we performed [10] was more focused on metrics commonly used

in industry. This study evaluated practices in four different focus areas: embedded

system software, generic software, data centers/high-performance computing, and

hardware. Relevant practices identified in this study were total cost of ownership

(TCO), power usage effectiveness (PUE), and energy from renewable sources.

Finally, we performed a case study in partnership with a multinational tele-

communication organization, where we designed a framework called “value of

energy” [9]. In this framework, we defined several metrics for data management in

the cloud that can be applied to calculate the economic value of data management

practices. Some examples of value of energy metrics are effective power (power used

to store valuable data in the organization), wasted power (power used to store

5 Economic Aspects of Green ICT 119

obsolete data that can be deleted or archived), and future amount of data (the expected

amount of data in the future, according to data growth statistics). Using this previous

work as reference, we carried out additional research to analyze and build a consistent

set of metrics for green ICT.

5.5.1 Formalization of Green ICT Metrics

As a result of the aforementioned studies, we elicited several metrics to describe the

environmental and economic benefits of green ICT practices. Below is a list of the

relevant metrics embedded in the Web calculator according to the implemented

practices. However, as shown above, this list is part of a considerable knowledge

base we built that allows us to easily extend the Web-based calculator with

additional practices:

• Electricity (kWh)

• Carbon emissions (g/kWh)

• Capital expenditures—CAPEX ()

– Hardware

– Software

– Service

• Operational Expenditures—OPEX ()

– Electricity cost

• Equipment lifespan (years)

• E-waste (kg)

Carbon emissions are used to estimate savings in CO2 emissions when adopting

a green ICT practice. To obtain this value, the electricity metric is multiplied by a

number which represents the CO2 grams per kWh emitted in the electricity plants of

the Netherlands (normalized average), namely, 597 g/kWh. This value has been

calculated by means of the measures shown in Table 5.2.

CAPEX is the amount of money (in euro) to be invested in capital expenditures

before the adoption of a green ICT practice. It can be further divided into Hardware,

Software, and Service (maintenance, periodic licenses) costs.

Table 5.2 Emissions and

types of power plants in the

Netherlands

Type of fuel Emissions (g/kWh) Plant power (MWe4)

Gas 430 4,500

Coal 900 3,943

Nuclear 6 485

Renewable 0 37

120 H. Fernández et al.

OPEX is the amount of money (in euro) to be spent on operational expenditures

during the adoption of a green ICT practice. This includes electricity cost that is

derived from the electricity metric according to the relative energy tariff.

Equipment lifespan is used to express how long IT devices can be functional

and, thus, when they should be replaced. The replacement will involve a periodical

payment.

E-waste expresses the quantity of IT material that has to be disposed of. This

metric has an inverse relationship with the equipment lifespan metric.

5.5.2 The Application

The Web calculator4 is an online Web application that helps decision makers

calculate the cost benefits of green ICT practices. To ease this achievement, the

Web calculator has been partially integrated with our online library of green ICT
practices,5 thus allowing users to immediately calculate an economic estimation of

applying a specific practice in their organizations. Up to now, the thin client

practice from the green ICT library has been implemented in the Web calculator.

As part of our future work, additional practices will also be modeled and integrated.

The Web calculator has been developed as a PHP Web application. Along with

the PHP programming language, CSS style sheets and JavaScript are used to

improve user interface in terms of usability and aesthetics.

The Web calculator consists of two modules: model management and selection

processing of models. The first module offers features to find, upload, and retrieve

models. The second module is divided into four substeps in which users select

previously loaded models, configure them, and calculate investments and expenses

according to the modeled practice. After the execution, charts of the results are

available to users to provide visualization of the economic benefits.

Figure 5.5 shows the execution flow of the application. The various phases are

described in detail in the remainder of this section.

Fig. 5.5 Usage diagram of the Web calculator

4 http://greenpractice.few.vu.nl/index.php/calculator/step_1
5 http://greenpractice.few.vu.nl/

5 Economic Aspects of Green ICT 121

http://greenpractice.few.vu.nl/index.php/calculator/step_1
http://greenpractice.few.vu.nl/

5.5.2.1 Features of the Calculator

Model Management

Through the e3value modeling tool, it is possible to generate Excel spreadsheets

that implement the models for green ICT practices. The file manager of the Web

calculator helps users to organize the different models in a meaningful structure for

easier manipulation. In Fig. 5.6, we show a screenshot of the model management

interface. In the list below, you can find all the available file management

operations:

• View and sort files/folders

• Upload new files

• Create files/folders

• Search in files/folders

Thanks to this feature, the Web calculator is easily extensible, allowing users to

estimate the economic effects of new green ICT practices. However, the Excel

spreadsheets have to be generated from the e3value modeling tool in order to be

properly parsed by the Web calculator.

Fig. 5.6 Model management interface

122 H. Fernández et al.

Selection and Processing of Models

Models can be selected and configured from within the Web calculator interface.

Users are able to give each model a meaningful label for comparison, and, more

importantly, they can customize the value exchanges, which represent the actions

between the actors of the model. For example, the electricity provider (actor)

exchanges electricity for money with the company (actor). These value exchanges

can be either an investment or a monthly expense depending on whether exchanges

occur once or everymonth. In the previous example, electricity is a monthly expense

because companies calculate electricity as a monthly cost. After defining these

properties, users can process the models and visualize the results through charts.

The main feature of the Web calculator is model execution. Before the exe-

cution, users can customize the parameters related to the green ICT practice

selected. For the desktop virtualization practice, such parameters can be the

number of clients/servers, the cost of the equipment, the electricity consumption,

and the cost of electricity. This allows users to tune the calculation of the economic

benefits of the practice according to their specific situation.

The Web calculator loads the user-defined parameters into the equations of the

model and calculates the results. Figure 5.7 shows a screenshot of the model

execution interface. By default, the application shows two types of potential

savings: one-time savings and monthly savings. One-time savings include the

investment savings, while monthly savings include electricity consumption

(in kWh), CO2 emissions, and other operational costs.

Fig. 5.7 Processed models

5 Economic Aspects of Green ICT 123

Chart Generation

The Web calculator also features the possibility to visualize the results of the model

processing phase. Figure 5.8 gives an example of the Chart Generation feature for

the desktop virtualization practice. Charts display the calculated metrics for a given

period of time which by default is 12 months. The charts show the difference in

terms of monthly costs and payback time between the AS-IS (fat clients) and

TO-BE (thin clients) situation.

Moreover, two additional visualizations demonstrate the electricity savings in

kWh and the CO2 emission savings. For example, in Fig. 5.8, it can be observed

how applying the desktop virtualization practice reduces the costs (comparing the

AS-IS and TO-BE lines in the top left chart) and shortens the payback time (bottom

left chart). The right-side charts show the progression of CO2 and electricity

savings: for example, after 5 months of applying the desktop virtualization practice,

we estimate to reduce CO2 emissions by more than 2.5 tons. The period of time can

be modified by the user, and the charts are automatically updated.

Fig. 5.8 Visualization of results

124 H. Fernández et al.

5.6 Conclusions

To reduce energy costs and contribute to global environmental goals, organizations

consider green ICT practices increasingly often. Sometimes they even add them as

part of their organizational strategies. However, experience shows that if green ICT

practices are not in line with business and organization strategies, they are easily

neglected or withdrawn in times of crisis.

To aid organizations in the selection of green ICT practices and aligning them to

their business strategies, we applied the e3value technique to estimate the economic

benefits of applying green ICT practices. Such economic benefits can be influenced

by various aspects including investment cost, size of companies, pricing, and

duration. The application of the e3value technique allows to perform trade-off

analysis to select among different green ICT practices, particularly from an eco-

nomic perspective. When costs are quantified and ROI is estimated, informed

decisions can be made before actual investments.

Most green ICT practices do not yet particularly address software-specific aspects.

Our approach allows to clearly separate the role of software (e.g., virtualization

software in the experiment presented here) from the role of other factors and

calculate its direct and indirect economic impact.

Our contribution is twofold: First of all, we provide a rationale for promoting

sustainability in organizations and a stimulus to identify and formalize new green

ICT practices for achieving more profitable results. Secondly, we provide an

educational tool to explain environmental benefits of regreening ICT, as well as

the relation with economic investments, gains, and ROI.

The Web calculator represents a first step towards calculating the economic

benefits of green ICT: it provides estimations of the economic impact of green ICT

practices, allowing organizations to reuse these practices through informed deci-

sions. Our future work will be devoted to empirically validate the estimations of the

Web calculator through industrial case studies in collaboration with our partners

SURF6 and Green IT Amsterdam.7

Acknowledgement The authors would like to thank Jaap Gordijn for his assistance in

constructing the e3value models presented here. This work has been partially sponsored by the

European Fund for Regional Development under the project MRA Cluster Green Software.

6 http://www.surf.nl/en/about-surf/subsidiaries/surfnet
7 www.greenitamsterdam.nl/

5 Economic Aspects of Green ICT 125

http://www.surf.nl/en/about-surf/subsidiaries/surfnet
http://www.greenitamsterdam.nl/

References

1. Asif M, Muneer T (2007) Energy supply, its demand and security issues for developed and

emerging economies. Renew Sustain Energy Rev 11(7):1388–1413. doi:10.1016/j.rser.2005.

12.004

2. Boudreau M, Chen A, Huber M (2008) Green IS: building sustainable business practices. In:

Watson RT (ed) Information systems: a global text. Global Text Project, Athens, GA

3. Bozzelli P, Gu Q, Lago P (2013) A systematic literature review on green software metrics.

Tech. rep., VU University Amsterdam

4. Corbett J (2010) Unearthing the value of Green IT. In: ICIS, p 198. Association for Informa-

tion Systems

5. Davidson E, Vaast E, Wang P (2011) The greening of IT: how discourse informs IT sustain-

ability innovation. In: Proceedings of conference on commerce and enterprise computing,

pp 421–427. IEEE

6. Gordijn J, Akkermans H (2001) E3-value: design and evaluation of e-business models.

IEEE Intell Syst 16(4):11–17

7. Gordijn J, Yu E, van der Raadt B (2006) E-service design using i* and e3value modeling.

IEEE Software 23(3):26–33

8. Gu Q, Lago P (2013) Estimating the economic value of reusable green ICT practices. In: Safe

and secure software reuse, Lecture Notes in Computer Science, vol 7925. Springer, Berlin,

pp 315–325

9. Gu Q, Lago P, Potenza S (2013) Delegating data management to the cloud: a case study in a

telecommunication company. In: International symposium on the maintenance and evolution

of service-oriented and cloud-based systems (MESOCA), vol 7, pp 56–63. IEEE Computer

Society

10. Gude S, Lago P (2010) A survey of Green IT – metrics to express greenness in the IT industry.

Tech. rep., VU University, Amsterdam

11. Harmon R, Demirkan H, Auseklis N, Reinoso M (2010) From green computing to sustainable

IT: Developing a sustainable service orientation. In: 2010 43rd Hawaii international confer-

ence on system sciences (HICSS), pp 1–10

12. Henkel M, Perjons E (2009) Ways to create better value models. In: Proceedings of the 3rd

workshop on value modeling and business ontologies (VMBO09)

13. Kurp P (2008) Green computing. Commun ACM 51(10):11–13

14. Lago P, Jansen T (2011) Creating environmental awareness in service oriented software

engineering. In: Maximilien E, Rossi G, Yuan ST, Ludwig H, Fantinato M (eds) Service-

oriented computing, vol 6568, Lecture Notes in Computer Science. Springer, Berlin,

pp 181–186

15. Liu L, Wang H, Liu X, Jin X, He W, Wang Q, Chen Y (2009) GreenCloud: a new architecture

for green data center. In: Proceedings of the 6th international conference industry session on

autonomic computing and communications industry session. ACM, pp 29–38

16. Mattern F, Staake T, Weiss M (2010) ICT for green: how computers can help us to conserve

energy. In: Proceedings of the 1st international conference on energy-efficient computing and

networking, e-energy ’10. ACM, New York, pp 1–10. doi:10.1145/1791314.1791316

17. Mingay S (2007) Green ICT: a new industry shockwave. Tech. rep., Gartner. URL http://www.

ictliteracy.info/rf.pdf/Gartneron GreenIT.pdf

18. Mitchell RL (2008) Get up to speed on Green IT. Tech. rep., Computerworld

19. Morrison E, Ghose A, Dam H, Hinge K, Hoesch-Klohe K (2011) Strategic alignment of

business processes. In: 7th international workshop on engineering service-oriented appli-

cations. Springer, Berlin

20. Murugesan S (2008) Harnessing Green IT: principles and practices. IT Prof 10:24–33.

doi:10.1109/MITP.2008.10

21. Omer AM (2008) Energy, environment and sustainable development. Renew Sustain Energy

Rev 12(9):2265–2300. doi:10.1016/j.rser.2007.05.001

126 H. Fernández et al.

http://dx.doi.org/10.1016/j.rser.2005.12.004
http://dx.doi.org/10.1016/j.rser.2005.12.004
http://dx.doi.org/10.1145/1791314.1791316
http://www.ictliteracy.info/rf.pdf/Gartneron%20GreenIT.pdf
http://www.ictliteracy.info/rf.pdf/Gartneron%20GreenIT.pdf
http://dx.doi.org/10.1109/MITP.2008.10
http://dx.doi.org/10.1016/j.rser.2007.05.001

22. Park JK, Cho JY, Shim YH, Kim SJ, Lee BG (2009) A proposed framework for improving IT

utilization in the energy industry. World Acad Sci Eng Tech 58:387–393

23. Sarkar P, Young L (2009) Managerial attitudes towards Green IT. An explorative study of

policy drivers. In: Proceedings of PACIS, pp 1–14

24. Vereecken W, Van Heddeghem W, Colle D, Pickavet M, Demeester P (2010) Overall ICT

footprint and green communication technologies. In: Proceedings of the 4th international

symposium on communications, control and signal (ISCCSP). IEEE, pp 1–6

5 Economic Aspects of Green ICT 127

Chapter 6

Green Software Quality Factors

Juha Taina and Simo Mäkinen

6.1 Introduction

Software quality and quality software have been leading factors since 1968 when

the first software engineering conference was held in Germany [20]. In almost

50 years, the software engineering community has got a very good and realistic

view of what is quality in software and software engineering. We now know how to

build, maintain, and execute quality software.

More than 10 years after the first software engineering conference, the first

important use of the term sustainable development was presented [11]. At that

time, the International Union for Conservation of Nature (IUCN) published the

report ‘World Conservation Strategy: Living Resource Conservation for Sustain-

able Development’ [12]. In 1987, the World Commission on Environment and

Development (WCED) gave perhaps the most commonly used definition for sus-

tainable development: ‘the needs of the present without compromising the ability of

future generations to meet their needs’ [5]. Since then, sustainable development has

gained growing interest among researchers, politicians, economists, environmen-

talists, and other interest groups.

A few years after the WCED report, the first attempt to combine computer

technology and sustainable development was introduced. In 1992, a voluntary

programme called Energy Start started. It is an umbrella of voluntary programmes

aimed at reducing climate change by promoting the development and use of energy-

efficient equipment [3].

J. Taina (*)

Faculty of Science, University of Helsinki, Helsinki, Finland

e-mail: Juha.Taina@helsinki.fi

S. Mäkinen

Department of Computer Science, University of Helsinki, Helsinki, Finland

e-mail: Simo.V.Makinen@helsinki.fi

© Springer International Publishing Switzerland 2015

C. Calero, M. Piattini (eds.), Green in Software Engineering,
DOI 10.1007/978-3-319-08581-4_6

129

mailto:Juha.Taina@helsinki.fi
mailto:Simo.V.Makinen@helsinki.fi

The idea of considering sustainable software and software engineering alone

without the hardware aspects was not fully acknowledged until the year 2010. At

that time, new terms green and sustainable software (green software or sustainable

software depending on the view) and green and sustainable software engineering
(green software engineering) started to emerge.

The field of green software and green software engineering is still young.

Naumann et al. presented a definition for green and sustainable software engineer-

ing as recently as 2013 [19]:

Green and Sustainable Software is software, whose direct and indirect negative impacts on

economy, society, human beings, and environment that result from development, deploy-

ment, and usage of the software are minimal and/or which has a positive effect on

sustainable development [. . .] Green and Sustainable Software Engineering should produce
Green and Sustainable Software in a sustainable way.

While the definition states what green software is, it does not mention the quality

of green software. Since we already have a working software quality model, it is

worth to expand it to support green software quality.

For a good-quality model for green and sustainable software, we need to

understand the properties of green software. Two viewpoints help to define this:

green ICT and software engineering for sustainable development.

Green ICT is the study and practice of using computing resources efficiently

[14]. It is a huge field that includes everything in a software system life cycle from

hardware manufacturing to minimising computer-related waste.

Resource usage is a remarkable issue in green ICT. For example, one supercom-

puter can consume enough energy to power nearly 10,000 homes and costs ten

million dollars a year to operate [10]. Each PC in use generates about a ton of

carbon dioxide a year [17].

At the moment, green ICT concentrates mostly on minimising hardware

resource usage. There is still much to be done there, and savings can be remarkable.

For example, in a moderate climate air-cooling a data centre constitutes about 30 %

of the total energy it consumes [23]. According to IBM, ‘up to 50 % of an average

air-cooled data center energy consumption and carbon footprint today is not caused

by computing but by powering the necessary cooling systems to keep the processors

from overheating’.1 In the United States in 2009, approximately 25 % of TVs,

computer products, and cell phones that were ready for end-of-life management

were collected for recycling. Cell phones were recycled at a rate of approximately

8 %.2

In 2007, Gartner released the statistic that 2 % of global carbon emissions were

from the ICT sector [9]. While this is a huge number, it is still ‘only’ 2 %. For

example, it is estimated that the manufacture of Portland cement accounts for 5 %

of all human-generated greenhouse gas emissions [2]. In a recent commentary,

Carlos Ghosn, CEO of the Renault-Nissan Alliance, claimed that 23 % of

1 http://www.zurich.ibm.com/st/server/zeroemission.html
2 http://www.epa.gov/osw/conserve/materials/ecycling/faq.html

130 J. Taina and S. Mäkinen

http://www.zurich.ibm.com/st/server/zeroemission.html
http://www.epa.gov/osw/conserve/materials/ecycling/faq.html

worldwide greenhouse gas emissions come from the auto industry.3 Eventually, we

need to find a balance between carbon emission and carbon absorption. Reducing

ICT emissions is not enough to reach the goal.

A larger field called software engineering for sustainable development (SE for

SD) addresses issues and questions of where and how software and software

engineering can help sustainable development. While green ICT is included in SE

for SD, it is not limited to green ICT.

In a workshop ‘Software Engineering and Climate Change’, 2009, the partici-

pants defined that SE for SD consists of at least the following4:

1. Software support for green education: Use software to support education and

general knowledge about sustainable development and climate change.

2. Green metrics and decision support: Define software processes and tools for

environment-friendly software design, implementation, usage, and disposal.

3. Lower IT energy consumption: Allow software to support or be part of green ICT.

4. Support for better climate and environment models: Let environmental scientists

do their research with better software.

Since 2009, the requirements for SE for SD have grown substantially. Now SE

for SD is considered to support all sustainable development. From the SE for SD

point of view, good software helps to reduce waste and resource requirements while

bad software increases them. Sometimes software can be downright ugly: badly

written, difficult to use, full of unwanted features, and resource intensive. On the

other hand, we can have elegant software that not only reduces resource require-

ments and minimises waste but also supports sustainable development and sustain-

able development knowledge.

6.2 Green Quality

Common conceptions of software quality include the notion that software should

meet its explicit requirements, serving the needs of the customers and users

appropriately with the expectation that the development of software lives up to

the professional standards of the field [8]. Properly engineered, high-quality soft-

ware fulfils these requirements. Software which is of high quality in these terms

might or might not embed green and sustainable values. It depends on the specified

software requirements, the preferences of the customers or users, and the current

state of professional standards. While software quality can be valued in varied

ways, quality indicators from products, processes, and resources hint at the relative

3 http://www.project-syndicate.org/commentary/carlos-ghosn-describes-what-is-needed-to-improve-

automobiles-safety-sustainability-and-affordability
4 http://www.cs.toronto.edu/wsrcc/WSRCC1/index.html

6 Green Software Quality Factors 131

http://www.project-syndicate.org/commentary/carlos-ghosn-describes-what-is-needed-to-improve-automobiles-safety-sustainability-and-affordability
http://www.project-syndicate.org/commentary/carlos-ghosn-describes-what-is-needed-to-improve-automobiles-safety-sustainability-and-affordability
http://www.cs.toronto.edu/wsrcc/WSRCC1/index.html

quality of software. Green quality, however, is only indicated by some quality

indicators, either indirectly or directly.

Software quality can be characterised on several levels ranging from higher-

level abstractions to more concrete, lower-level characteristics which can be mea-

sured. Quality factors [7] or quality characteristics [1] are meaningful software-

related properties like efficiency, reliability, and usability which cannot be mea-

sured as such due to their general nature [7]. Generally, quality attributes are

properties from products, processes, and resources that are of interest in terms of

software being developed or operated.

Quality attributes can be either internal, in which case the attribute does not rely

on its environment as such, or external, when the effect of the environment on the

attribute is strong and affects the result of the observation or monitoring of the

attribute [7]. Efficiency, reliability, and usability are all external attributes: effi-

ciency of a software product is reliant on the hardware it is executed on and on the

resource utilisation of the system; reliability depends not only on the internal

consistency of software but also on the way software is being operated in a software

system; and perceptions of usability might differ between various user groups.

Internal attributes such as size, however, can be measured in a more consistent

manner without much interference from the external environment. It would be

unlikely that the size of a code product measured in a specific manner would

change given that the code remains unchanged.

Quality factors or characteristics are different internal or external quality attri-

butes which are considered central to software development or its operation. The

factors or characteristics need to be broken down in order to understand which

dimension of the attribute or property is being addressed; these lower-level con-

structs are called quality criteria [7] or quality sub-characteristics [1]. Quality

criteria or sub-characteristics are specific enough so that they can be measured,

unless further division is required. Measurement leads to metrics or measures which

characterise the quality criteria or the sub-characteristics with a value [1, 7]. For

instance, error tolerance is a quality criterion for the quality factor of reliability, and

its measure could be mean time between failures (MTBF) that is measured by the

time between observed failures in a software system. Similarly, the length of a

program is a quality criterion for size, and lines of code would be one way to

measure it.

6.3 Quality Models

Quality models group quality factors together, forming a set of quality factors that

address some quality concerns. Software quality models such as McCall’s quality

model [16] and the ISO standard quality model [1] are relatively generic. While

several quality factors in these models are associated with resource efficiency,

sustainability is not considered as a substantial quality factor.

132 J. Taina and S. Mäkinen

Both of the aforementioned quality models focus on product or system quality.

The models have quality factors for dimensions that deal with quality from different

perspectives. For instance, there are factors that relate to how reliable and secure the

product is and how easy it is to use. Factors in the models are also related to how

products can be tested and maintained later in the product’s life cycle. Since there

are times when software systems need to interact with each other and transfer data

from one system to another, compatibility and interoperability with other systems

are listed as a relevant quality factor. The portability quality factor is important in

situations where the product itself needs to be converted to work in another

environment or transferred to a new system. From all the quality factors in these

two models, efficiency is one of the most relevant factors for green quality and

sustainability. Efficiency signifies the product’s ability to use the available

resources in a non-wasteful manner.

Besides the product quality model, the new ISO software quality standard [1]

contains a separate quality model for quality in use. The model differs from the

system and product quality model in that it describes potential effects the whole

software system might have on its users and the environment. The effects include

estimations from the users of how satisfied they are with the system and how

effective and efficient the system is for the purpose it was designed for. There is

a quality factor called freedom from risk in the quality in use model that has a

sub-characteristic for environmental risk mitigation: the description of the risk

factor implies that a system should limit its negative environmental effects that

result from the use of the software system. Sustainability of software systems can be

inferred from environmental risk mitigation as systems which generate much waste

can be considered more harmful to the environment than those systems that are

better at recycling. Thus, the quality in use model does acknowledge the existence

of environmental factors, but sustainability is not the governing aspect in the

generic quality model.

Software quality models list a wide array of quality factors which might be

suitable when developing, maintaining, or using software. Whether the quality

factors actually are relevant for a particular software project or a software system,

or its users, depends on the instilled ideals and priorities that have been set by the

customers, developers, and other involved parties. While the existing software

quality models do not rule out environmental factors, green quality or sustainable

software development is not specifically encouraged by the models.

The software quality model gives basis for a simple definition for quality

software:

Quality software is software that supports a predefined set of measurable soft-

ware quality factors.

The current software quality model is simple and elegant. It does not restrict

software quality to certain predefined characteristics but allows all kinds of factors

to be present. In fact, quite often software quality factors are in conflict with each

other. A software designer has to decide what factors and at what level he or she

wants to support in his or her software.

The current quality factor model consists of factors that improve software end-

user experience and simplify software engineering. The factors have mostly been

6 Green Software Quality Factors 133

independent of the software problem domain. (Problem domain is the scope where

software is executed and its results are exploited.) However, green software and

green software engineering are strongly problem domain dependent. They are

connected to sustainability and sustainable development. Due to this, green soft-

ware quality needs green quality factors: factors that define how software supports

sustainable development.

6.3.1 Software Quality Measurement

Software quality can be measured in many respects with a multitude of methods.

The quality factors in quality models can give a sense of direction as to which kind

of elements the measurement should focus on. The metrics yielded by software

measurement are associated to some quality concern, given that the metrics them-

selves represent the phenomenon in question adequately.

Software quality measurement can target different products, processes, and

resources. For instance, in a software development project, the product qualities

of code components might be of interest. It is possible to measure the complexity of

code components [15] by analysing the software source code; resolving the com-

ponent relationships and the specialisation degree of components can be done from

the same source code [6]. These metrics can be related to the quality factor of

maintainability, but they might also help to predict the probability of the occurrence

of defects in software [4]. Similarly, by analysing the source code, it can be

measured how well the developers have followed professional coding conventions

while programming which might affect the maintainability of code products.

At first, product quality metrics such as these do not seem connected to green

quality. However, reducing defects can lead to the creation of less waste. The time

of the users and developers is saved if the failure of software for a specific feature

never occurs in the field. Less complex software with fewer intercomponent

relationships could be easier to maintain which subsequently makes future mainte-

nance work on software easier, again reducing the waste induced by imperfect

programming.

When executing the program code of a software, we can learn more about the

qualities of the product. Software performance can be measured when software is

running which allows profiling of the application, giving an idea where most of the

computation time is spent. Good, beautiful software is sufficiently fast in

performing its tasks. Slow software spends more time than necessary when, for

example, going through data structures in the memory for finding the correct result.

Improvements in performance lead to gains in the efficiency of a program and can

result in waste reduction.

Program execution is suitable for dynamic program analysis, measuring quality

factors such as performance, but it can also be used to measure the completeness of

testing. Structural testing is possible when automated, machine-executed tests have

been programmed to test the functionality of a program [21]. Thus, structural

134 J. Taina and S. Mäkinen

testing allows to determine which parts of the program have been tested and which

parts are currently not covered by any automated test. This type of coverage metrics

is represented by the ratio between the amount of code tested and the total amount

of code in a program. Coverage relates to the quality factors of maintainability and

its sub-characteristic testability, but striving for high coverage can also be based on

the desire to prevent defects in software. Fewer defects and better quality can be the

rationale for structural testing, and the positive impact regarding green quality is the

reduced effort and waste related to fixing the defects. Preparing an extensive suite

of automated tests for structural testing might still increase the development effort

in the early stages of development, though.

Regarding testing or any other process for that matter, process effort is a key

metric in software engineering. Effort indicates the time it takes to perform an

activity either by a human or a machine. Effort of testing could be measured by

observing a person who is performing testing on a software system or one of the

product components and measuring the time it took for the person to finish the

testing stages. Equivalently, the effort for a machine could be the time it used for the

execution of the process. All software development activities take time: gathering

the requirements, programming, testing, maintenance, and releasing new software

versions require effort. Knowing the effort of processes helps to point out where

most of the time is spent, which might help to identify resource-intensive activities

and achieve greater resource efficiency through analysis of activities. Green quality

implies that resources are saved where possible. Process metrics, as other product

and resource metrics, can be of use with green and sustainable software

development.

6.4 Green Factor Motivation

It is clear that software can and will help in our goal to support sustainable

development. New and improved software will play an ever-increasing role in

control systems, optimising algorithms and education, among other things. Soft-

ware is needed on all current problem domains, and totally new problem domains

are constantly being introduced. In the next few years, we need to design, write, and

test millions of software requirements and billion lines of code for common

problem domains with new sustainable views and also for totally new problem

domains.

Creating and managing all new and improved software require resources. We

need more energy, hardware, supporting software, and peopleware for software

creation, management, maintenance, and disposal. At the same time, we need to

minimise resource usage and waste so that future generations can also benefit our

software in environmental, economic, and social well-being. Thus, we need to be

very efficient in software engineering and use our valuable resources with maxi-

mum efficiency.

6 Green Software Quality Factors 135

In order to understand the characteristics of sustainable software, we first need to

understand sustainable development. While it is a common term to everyone, it has

several interpretations and definitions that are not necessarily compatible with each

other. Sustainability implies our wishes to keep or improve our standards of living,

to maintain economic growth, to give every human being equal rights and possi-

bilities, to use our current material and energy resources wisely and with minimum

waste, to save the environment of our planet, and more. No wonder that people are

confused with the term.

Hopwood, Mellor, and O’Brien [11] have written a detailed summary of current

trends in sustainable development. We specialise their model of sustainable devel-

opment to software use, and we encourage everyone to read the original article for a

detailed background of trends in sustainable development.

The several incompatible views of sustainable development are at the best

confusing and at the worst negatively affecting public views of sustainability. In

order to clarify the subject, Hopwood et al. use a mapping methodology based on

combining environmental and socio-economic issues. The result is a

two-dimensional mapping that shows how and how much various actors see

sustainability to be related to human equality and environment.

We present a summary of the mapping in a matrix in Table 6.1. The matrix

shows what kind of sustainable development is considered and a typical example of

this kind of an approach. The equality axis (bottom-up) implies level of importance

of human well-being and equality. The environmental axis (left–right) covers the

priority of the environment. Techno-centred implies approaches where new and

improved technology is enough for sustainable development. Eco-centred implies

approaches where current technology is not considered a working solution for

sustainable development.

The higher the concern of equality and anxiety about the environment are, the

more extreme methods are suggested in the name of sustainable development. Most

governments and major environmental and socio-economical organisations are

close to the middle of the mapping. Their view to sustainable development is that

it can be achieved by improving current methods and techniques. According to this

view, we can solve our socio-economical and environmental problems with our

current technology, economy, and political models—without sacrificing reached

living standards.

Table 6.1 Approaches of sustainable development

High concern of equality

Little environmental concern

– Early communism

High concern of equality

Techno-centred

– Social reform

High concern of equality

Eco-centred

– Eco-socialism

Concern of equality

Little environmental concern

– Arab Spring

Concern of equality

Techno-centred

– EU environmental policy

Concern of equality

Eco-centred

– The Club of Rome

Little concern of equality

Little environmental concern

– Early capitalism

Little concern of equality

Techno-centred concern

– Natural resource management

Little concern of equality

Eco-centred concern

– Extreme environmentalism

136 J. Taina and S. Mäkinen

Groups that in the mapping are somewhat right or top from the middle have a

stronger view where they do not trust current methods to be sufficient. According to

such groups, a fundamental reform to current methods and techniques is required to

achieve sustainability. Finally, groups at extreme right or top consider that no

reform is enough, but we need to completely redefine our socio-ecological, eco-

nomical, and political models to achieve sustainability.

So, when we say that software will support sustainable development, whose

sustainable development is it supporting? This is an interesting and unsolvable

question that affects software quality. For example, let us assume that we are more

concerned of the environment than social issues. Then software that supports

extreme environmentalism is by definition greener than software that supports

traditional government policy of technology-centred sustainability. For many peo-

ple, this would sound illogical and downright wrong.

A software quality model needs to be objective, so it is not our task to define

what kind of sustainable development is acceptable. The nature of the green

software definition sets green software and green software engineering close to

the centre of sustainable development mapping. It is technology-centred and does

not have high or low concern of equality.

The previous analysis of sustainable development and the earlier definition for

green software create a starting point to define our green factor model. Let us start

with the sustainable development matrix.

The two major forces of sustainable development are environment preservation

for future generations and socio-economical equality. While the emphasis of the

two forces varies in different definitions, they are practically always present.

In the definition of green and sustainable software, it is mentioned that ‘direct

and indirect negative impacts on economy, society, human beings and environment

[..] are minimal’. The definition already acknowledges the environmental and socio-

economical aspects, so any green factor model should also acknowledge them.

At a large scale, solving the environmental problems and preserving environ-

ment for future generations lead to two requirements:

1. We need to recycle all nonrenewable resources.

2. We need to get rid of all waste.

These are the ultimate solutions to environmental problems and in fact formulate

the same requirement from two different views. For example, global warming is a

waste problem. We dump too much greenhouse gases into the atmosphere. The lack

of pure fresh water is both a waste problem and a recycling problem. Water is

polluted, and nonrenewable freshwater sources are globally used.

While the ultimate requirements eventually need to be fulfilled, implementing

them is currently beyond our abilities (at least without severely breaking socio-

economical equality and well-being). We want to start with somewhat easier

requirements that may eventually lead to satisfied ultimate solutions. We formulate

new requirements as follows:

1. We need to be resource efficient.

2. We need to minimise waste.

6 Green Software Quality Factors 137

Resource recycling simplifies resource efficiency since it is usually more effi-

cient to reuse resources than produce new ones. Minimising waste is the first and

necessary step towards getting rid of waste.

Socio-economical equality gives importance to human well-being and equality.

It is beyond this chapter—and our knowledge—to define exact requirements for

this. We only state that according to socio-economical equality, every human being

should have equal rights, obligations, and possibilities. This leads to the following

requirement:

1. We need to support equal rights and possibilities.

Thus, green software and green software engineering have three goals (see

Fig. 6.1):

• Resource efficiency

• Waste reduction

• Equality support

The level of support depends on how well one wants to support environment and

socio-economic equality. As such, the model is compatible with the earlier sustain-

able development analysis although a natural starting point is to start close to the

middle of the matrix in Table 6.1.

6.5 Green Software Factor Model

From the definition of green software and our previous analysis, we can extract two

properties for green software factors (green factors): (1) object of support and

(2) type of support.

The first property is object of support. It defines who or what is the object of

sustainable green software actions. We identify three cases:

Fig. 6.1 Sustainable development pattern

138 J. Taina and S. Mäkinen

1. The object is software: We affect software architecture and algorithms with

sustainable processes. This is a ‘what software gets’ case. It is a view to green

factors. Green software engineering is based on this case.

2. The object is a software system: Software affects its software system via CPU

operations. This is a ‘what software does’ case. It is a software execution view.

Green ICT (software-wise) is based on this case.

3. The object is a stakeholder: Software affects its stakeholders via its outputs to

the software system. This is a ‘what software delivers’ case. It is a software

system and client view. Sustainable software is based on this case.

All three cases are important and have a different view to quality. Quality is in

human actions to software, in software results, and in software result effects. A

good software factor model supports all views.

The second property is type of support. It defines what direct or indirect effects
green software has on sustainability. The type of support comes directly from the

previous analysis of sustainability. Again, we identify three cases:

• Support for resource efficiency: It defines how green software directly or indi-

rectly supports efficient concrete, abstract, and human resource allocations and

use. This is a ‘how do we get full potential’ support. It is related to all three

objects of support.

• Support for waste reduction: It defines how green software directly or indirectly

minimises waste. This is a ‘how do we not waste useful resources’ support. It is

related to all three objects of support.

• Support for social equality: It defines how green software indirectly supports

socio-economical sustainability. This is a ‘how do we help others’ support. It is

related to software and software system client objects of support.

Note that support for social equality is not related to the case where a software

system is the object. Current software systems do not need social equality.

The previous analysis translates directly to a green factor model. The type of

support translates to software factors since factors define how software behaves.

The object of support translates to factor goals since goals define objects for

behaviour. This leads to three factors: resource effectiveness, triftness, and social
sustainability (Fig. 6.2).

Resource effectiveness is a common factor for all aspects that evaluate software

resource efficiency in software engineering, software execution, and software

stakeholder processes. In software engineering, resource efficiency is related to

software life cycle, including software design, management, maintenance, and

disposal. Software execution resource efficiency is related to software execution

and software platform usage. Software client process resource efficiency is related

to how software stakeholders benefit from software and its software system.

Triftness is a common factor for all aspects that evaluate how software reduces

waste. Again, triftness can be a factor of software engineering, software execution,

and software usage.

6 Green Software Quality Factors 139

Social sustainability is a common factor for all aspects that evaluate how

software supports social equality. Social Sustainability is a common factor for all

aspects that evaluate how software supports social equality. Social Sustainability

can be a factor of software engineering and software benefit.

Resource effectiveness and triftness are related but are not the same factor. We

can be effective on different ways and create different types of waste. For instance,

time is a valuable resource. We can minimise this resource in software development

by hiring the best engineers all over the world. However, the solution probably does

not minimise waste since the hired engineers most likely need to commute a lot and

over long distances in order to get software done.

At a very long time scale, social sustainability can probably be reduced to

resource effectiveness and triftness. However, currently it is a separate factor. For

example, we could have a software system that helps in Third World education. It

clearly supports social equality but is not necessarily resource efficient or does not

necessarily minimise waste. We could also have a software system that helps in

building working sanitary systems (a huge issue in social equality). Eventually, the

sanitary systems will reduce waste but not at the moment and not directly due to our

software.

With the three factors, we can give a factor-based definition for green software:

Green software is a software that follows resource effectiveness and triftness in
execution; supports its stakeholders’ resource effectiveness, triftness, and social
sustainability; and is built with support for resource effectiveness, triftness, and
social sustainability.

The definition is compatible with the definition of green and sustainable software

by Naumann et al. [19] that we quoted earlier.

With the three factors, we can define how green software and green software

engineering behave. Green software is developed and managed with sustainable

Fig. 6.2 High-level factor model

140 J. Taina and S. Mäkinen

methods and executed with maximum efficiency and minimum waste and supports

sustainable development.

The definition and related factors are abstract, and as such they do not give much

support when evaluating green software. For example, let us have a very well-

written spamming software. It follows resource effectiveness and triftness in man-

agement and execution. It probably wastes resources of some of its stakeholders,

but it is a matter of opinion of how much. It can even claim to support social

equality since it sends spam to everyone regardless of their social status. Hence,

someone could easily claim that it is green software.

The problem in the previous example is in the generality of the definition.

Spamming software may be efficient in its own execution, but it clearly steals

common resources such as stakeholders’ network and permanent storage resources.

It also affects its stakeholders’ resource efficiency by at least forcing them to

somehow filter the spam. All these details and more are hidden in the definitions.

Due to this generality, we need to divide the factors into smaller sub-factors.

Fortunately, an excellent green software quality model called GREENSOFT

model has already been proposed [13, 18]. The model is defined at four levels:

software product life cycle, criteria and metrics that represent sustainability aspects

directly and indirectly related to the software product, procedure models for

different phases, and tools and recommendations for action [13].

From our point of view, the most important level of the GREENSOFT model is

the criteria and metrics level and its quality model for green and sustainable

software. It defines direct, indirect, and common criteria and metrics for green

and sustainable software [13]. The model is compatible with our earlier factor

definitions and is a good start to defining green software sub-factors.

By combining the GREENSOFT model, our sustainable development analysis

and green factor requirements, we get a three-level green factor model: (1) a

software object layer (software management layer) that supports software, (2) a

software system object layer (software execution layer) that supports software

execution, and (3) a software stakeholder layer (software system layer) that supports

software end users and their stakeholders. Each layer defines relevant sub-factors.

The three-level layered model is sufficient for a green factor model. However,

the layers are large and complex. Due to this, we further divide the software

execution layer into two layers: (1) an execution layer and (2) a platform layer.

We also divide the software system layer into two smaller layers: (1) an application

layer and (2) a system layer. Finally, we add a semantic layer on top of the model: a

problem domain layer.

The division to execution and platform layer is due to different resource require-

ments. We define the execution layer to deal with resources that are directly related

to software, such as CPU, peripherals, and main memory. The platform layer, on the

other hand, deals with resources that are platform specific and possibly have a

relationship with resources on other platforms. Network, cloud, and database

resources are typical to the platform layer.

The division to application and system layers is related to how we see software.

At the application layer, we consider software a stand-alone object whose factors

6 Green Software Quality Factors 141

we can evaluate. At the system layer, we consider software to be a part of a software

system. The difference is subtle but meaningful. It is relatively straightforward to

calculate how a software system uses resources and generates waste, but it is much

more complicated to evaluate what is the role of software in it. At the application

layer, we consider software and its effects alone.

Finally, the problem domain layer is for evaluating factors that are specific to a

certain problem domain. It is often difficult to compare software and software

systems from separate problem domains, but it is possible to compare them within

a common problem domain as long as the problem domain is well defined.

With the layer model, we can define suitable sub-factors for various approaches

of green software. A summary of the sub-factors is provided in Table 6.2. We

explain each layer in more detail below.

6.5.1 Management Layer

The first and lowest layer in our model is the management layer. It defines how

external resources indirectly affect the software life cycle. It deals with sub-factors

that are related to software engineering and management during the software life

cycle. Software itself is an object of the layer activities.

The management layer is a process layer. Everything in the layer is related to

software processes and software engineering. Since software process researchers

and practitioners have created excellent models and processes to effectively create

new software, the factors and their definitions here are closely related to what has

already been researched. After all, efficient software production includes resource

efficiency which itself is a core component in green software engineering.

The management layer is a very practical layer. The sub-factors and metrics here

are all process related and deal with green issues in software engineering. Never-

theless, the layer belongs to green software engineering since we want our green

software to be produced and maintained with sustainable methods.

The two green ICT factors, resource effectiveness and resource effectiveness and
triftness, are relevant to the management layer. All software processes need to be

resource efficient and minimise waste.

Table 6.2 Summary of layered sub-factors

Resource effectiveness Triftness Social sustainability

Management layer Feasibility Minimality –

Execution layer Execution efficiency Utility –

Platform layer Service efficiency Service utility –

Application layer Reflectivity Reflectivity Support for society

System layer Collaboration Reduction Production sustainability

Problem domain layer Beauty Beauty Beauty

142 J. Taina and S. Mäkinen

In our earlier work, we defined the factor feasibility [25]. It states how resource

efficient it is to develop, maintain, and dispose software. Feasibility is a sub-factor
of resource effectiveness and clearly related to the management layer. Hence, it is a

good management layer sub-factor of resource effectiveness.
A good sub-factor of triftness at the management layer is minimality. It states

how much of the resources used in feasibility-related tasks are directly related to

tasks that have direct value to software end users. In other words, the more we have

minimality, the more we concentrate on developing or managing software func-

tionality that software end users find valuable.

Both feasibility and minimality are still very large factors that cover all stages in
the software life cycle. As such, they are too general for most uses. Fortunately,

both factors are relatively easy to divide into sub-factors with a simple procedure:

1. Identify most common resources used in the management layer.

2. Identify most common stages in the software life cycle.

3. Define suitable sub-factors for each (resource, stage) pair.

The resources and stages together create a sub-factor matrix where each cell may

have several sub-factors. The matrix size and structure depend on the chosen

resources and factors. There is usually no need to name the sub-factors in the

matrix. The pair (resource, stage) identifies all sub-factors in that cell. A short

characterisation identifies a single sub-factor from the others in the cell.

For example, typical resources available are human, hardware, energy, and

facility resources. Typical software life cycle stages are requirements analysis,

design, implementation, testing, installation, reuse, refactoring, and disposal.

With this division, we would get a 4*8 sub-factor matrix, that is, at least 32 -

sub-factors for each factor. For instance, a pair (human resources, implementation)

could simply include a sub-factor of feasibility called implementation efficiency or
just a vector (human resources, implementation, efficiency) (Table 6.3).

As can be seen, sub-factor matrixes grow large. Fortunately, cells often have

closely related sub-factors, so we do not need to define all of them. For example,

Table 6.3 Feasibility sub-factor matrix with sub-factor examples

Resources/

stages Human Hardware Energy Facility

Requirements Requirements analysis

complexity

Design Facility

utilization

Implementation

Testing Test hardware

usability

Reuse

Refactoring Refactoring energy

efficiency

Disposal

6 Green Software Quality Factors 143

most stages of facility efficiency can be covered with a sub-factor facility
utilisation.

The sub-factor matrix helps us to define metrics for feasibility and minimality.
Each sub-factor has a set of criteria for evaluating software status for the sub-factor.

Some criteria are suitable for several factors and sub-factors.

A list of possible sub-factor criteria and metrics is worth a book of their own. We

only include the most popular and widely used metric for green software and green

software engineering: carbon footprint.

Carbon footprint (CF) measures how much carbon dioxide a product emits

during its life cycle. It is the most common and arguably most important metric

in sustainable development. With proper measurements, it is not only possible to

have relevant measurements about software carbon emissions but also to compare

the results to the carbon footprints of other physical and non-physical resources. We

have used the CF metric in our analysis of software life cycle emissions [24].

The management layer is the most researched area in our model. Software

engineers and managers have already optimised used processes to excellent pro-

duction efficiency, waste reduction, and process and software reusability. For

instance, the very idea of lean software engineering [22] is to reduce waste. Its

methods clearly follow green software engineering principles. Green software

engineering can add maximum resource efficiency and improved maintainability

and configurability to traditional software engineering.

6.5.2 Execution Layer

The second layer in our model is the execution layer. It is the first layer where

software plays an active role. The layer has factors that are related to software

execution within a suitable platform. All factors, criteria, and metrics in this layer

are hardware and implementation independent. They can be used in any software

regardless of the problem domain.

In our earlier work, we called efficiency a factor that defines how software

behaves when it comes to saving resources and avoiding waste. Unfortunately,

efficiency is far too general for our layered model. In fact, it would be a super-factor

that covers both resource effectiveness and triftness.
For the execution layer, we need a factor that is an execution-related sub-factor

of resource effectiveness and a similar sub-factor to triftness. For these, we define
execution efficiency and utility.

Execution efficiency defines how efficient it is to resource-wise execute software.

For example, possible software execution resources include CPU, main memory,

sensors, and internal peripherals. We can evaluate how effectively software uses

these resources.

Utility defines how well software execution minimises its waste. For example,

each CPU operation, access to main memory, peripherals, and sensors requires

energy and hence has a CF. With this, we can evaluate the CF value of executing

144 J. Taina and S. Mäkinen

software. We can improve utility by minimising the CF of each software accessed

resource (e.g. by changing our source of energy) or by minimising the number of

accessed resources during software execution.

Again, execution efficiency and utility are not the same sub-factor. For example,

we could have software that uses a main memory database to minimise required

execution time. Due to high main memory usage, it minimises execution time but

requires more energy resources for the main memory. Its execution efficiency is

good, but its level of utility depends on how the required energy is produced. Utility
is much higher when renewable energy sources are used than when coal is used to

generate energy.

Execution efficiency and utility are large factors that are of little use as is. We can

use a similar technique to the one in the management layer to divide the factors into

suitable sub-factors. We have a set of resources and a set of software execution

stages. We can create pairs (resource, stage) and add suitable sub-factors for

each pair.

For example, typical resources in software execution are CPU, main memory,

sensors, and internal peripherals. Typical stages in software execution are software

start, software execution, software wait, software finish, and software restart. With

this division, we will get a 4*5 matrix, that is, 20 sub-factors for each factor.

At the execution layer, the main goal is to save resources. The software engi-

neers should minimise resource requirements without losing functionality and

without indirectly generating more waste elsewhere. For example, wasted CPU

time is a criterion of how much of software execution is in operations that do not

bring visible value for the end users. A typical example of such a code is to ensure

input validity. Such a code is a waste since it does not bring visible value to the end

user. Yet missing the code would create more waste because software would

malfunction more easily. What is needed is to minimise CPU cycles from input

validation without losing its functionality.

The execution layer factors, criteria, and metrics are practical and relatively easy

to calculate. However, interpreting the numbers and especially comparing them to

more common metrics such as the carbon footprint metric are not that clear. For

example, we can calculate how many CPU cycles our software consumed and how

much energy is required to create one CPU cycle. This allows us to calculate an

estimation of how much carbon dioxide emissions our software created in the CPU

cycles. Great. But since CPUs are part of hardware, they would have consumed

energy regardless of our software. Do the carbon emissions count to the software

CF or to the system CF? This is a matter of definition and depends on who is doing

the calculations.

6 Green Software Quality Factors 145

6.5.3 Platform Layer

The platform layer is the first layer where software architectures and architectural

platforms play a role. It helps to define factors, criteria, and metrics for system

services.

At the platform layer, resource effectiveness implies how resource efficient it is

to execute system software. We could use the sub-factor execution efficiency here,
but for the sake of distinction we define a sub-factor service efficiency. It defines
how efficient it is to execute system software in a specific platform. Similarly, we

could use minimality for waste analysis, but due to the separation from regular

software, we want to use a sub-factor service utility for system waste analysis.

Service efficiency evaluates how efficiently software uses resources that are

related to system software and the execution platform. While in execution effi-
ciency, we were interested in concrete hardware components such as CPU and main

memory. In service efficiency, we are more interested in external resources such as

network, cloud, and databases.

Service utility evaluates how well software minimises system-level resource

waste when using the resources. Again, we are interested in external resources.

A similar approach to the one in the previous layers works at this layer. We can

divide service efficiency and service utility into sub-factors by creating a suitable

matrix. However, at this layer the division to execution stages is not interesting. We

have software that requires platform-specific resources. We need to know what

resources are available and at what platform. The stage of the client software is

always the execution stage so we do not need to take the stage to the analysis.

A better approach is to consider what kind of a platform we have and what

resources such a platform would require from outside and how. We can even

consider end users to be one such resource especially when we have a server

platform. We can then create a similar matrix than in the previous layers. Only

this time the cells are (platform, resource) pairs and the sub-factors of type

(platform, resource, factor) triples.

With this approach, not all sub-factors at the platform layer are relevant to every

software. For example, an embedded software system in a refrigerator does not

have the same sub-factors as a weather prediction software in a supercomputer. Yet,

resource-wise, there are similarities on both systems, such as network access.

We consider the following platforms at the platform layer: embedded platforms,

mobile platforms, parallel platforms, desktop platforms, and server platforms.

Other platforms can be included easily. Embedded platforms include platforms to

support embedded software. Parallel platforms support software that is distributed

to a very large number of nodes. Desktop platforms support normal desktop or

laptop software. Server platforms support the Web and other server software.

Again, we can list resources that are relevant to the platform layer. We get at

least the following: energy, network, cloud, space, end user time, and external

peripheral time.

146 J. Taina and S. Mäkinen

Energy resources are present at every layer. At the platform layer, we are

interested in the total energy requirements of the service execution. How much

energy is needed in the platform and how much indirectly outside when the service

request is executed? This information is relevant to all types of platforms.

Network resources are especially important in almost all platforms. In the near

future, even kitchen appliances and bathroom cabinets will have network access.

These resources need to be used efficiently and with minimum waste.

Cloud resources are related to the network resources but also include other

hidden resource requirements. Cloud server software itself is green since it supports

triftness by minimising wasted computing resources (such as idle time) and social
sustainability by offering access to its services. However, from a service software

point of view, it matters how cloud resources are used at the client side. This

information is relevant to all platforms that require net access and at least some

external storage.

Space resources are especially important in mobile and embedded platforms

where storage space is expensive. We can support resource effectiveness and

triftness by minimising space requirements and sometimes also minimising space

energy usage requirements.

End user time is one of the most important resources at the platform and higher

layers. Here, however, the most important aspect is triftness because maximising

human resource efficiency can lead to unwanted social side effects.

External peripheral time defines how much software uses peripherals that are

outside its immediate vicinity. For instance, printers, monitors, and external per-

manent data storage are external peripherals, while main memory and internal

permanent data storage (usually disk storage) are not. External peripherals are

important since they also generate waste. We need to find a balance between

external peripheral usage and wear.

With this division, we get a 5*6 matrix where each cell is a pair (platform,

resource). Each cell includes one or more sub-factor of service efficiency and

service utility.
The platform layer is also the first layer to support. Hence, it is a common layer

between green ICT and SE for SD. The next layers are for only SE for SD.

6.5.4 Application Layer

Any software is always part of a software system. One aspect of the application

layer is to evaluate how well software helps the software system and software

system stakeholders to reach their objective. Green software supports its software

system to reduce waste and use available resources at maximum efficiency.

The difference between the application layer and execution and platform layers

is in the direction of support. In the previous layers, we analysed resource require-

ments and waste reduction for software inputs. At application layer and higher

layers, we analyse software outputs.

6 Green Software Quality Factors 147

For example, a typical output of a desktop software is a report. If the report is

viewed on a display, its resource requirements are of peripheral resources. If it is

printed, paper and ink usage generates both resource requirements and waste. If it is

sent to several people, the resource usage and generated waste should be included

for all receivers.

We call the effects of software to its system-level outputs reflectivity. It states
how much and how software positively affects its system and stakeholders. Reflec-
tivity could be divided into resource reflectivity and waste reduction reflectivity.

However, since we are talking about indirect effects, the difference between

resource efficiency and waste reduction is more on the actions of the software

system and software stakeholders than software itself.

Reflectivity considers effects of all software execution stakeholders. As such,

reflectivity is undoubtedly the most important factor in the green software factor

model. The difference in resource usage and waste generation is a multiplication of

all the stakeholders. For instance, consider reflectivity of a word processor. How-

ever, we are often more interested in the direct effects of software. We define fit for
purpose for this purpose.

Fit for purpose defines how well software fulfils its objective. It is not a

sub-factor of reflectivity since we can have software that has good fit for purpose
but bad reflectivity. The difference comes from the level of indirection. At the first-

order effects, fit for purpose and reflectivity both define how well software supports

its direct end users and system. At the second-order effects, where we consider

effects to other stakeholders, fit for purpose and reflectivity are equal only when the
effects of software are positive.

Our earlier example of spamming software is a good example of a case where fit
for purpose and reflectivity are not equal. Spamming software has good fit for
purpose since it does its job very well. However, it has bad reflectivity since it steals
resources from spam receivers and generates waste.

On the other hand, fit for purpose and reflectivity of good eShop software are

equal. Fit for purpose eShop system is to sell products efficiently via the Internet.

Good eShop software supports this by offering a fast interface and a positive user

experience. Reflectivity of eShop software is to offer a positive and efficient user

experience. It should maximise its customers’ eShop visit efficiency and minimise

time spent on secondary functions (i.e. their waste time).

Fit for purpose is a problematic factor due to its duality. We consider reflectivity
to be more important than fit for purpose, but quite often direct software stake-

holders are more interested in fit for purpose than reflectivity. Due to this, we

wanted to include fit for purpose at this layer although it is not listed in Table 6.2.

Since fit for purpose does not include social sustainability and reflectivity is at a
very general level on it, we define a factor support for society for social sustain-
ability support.

Support for society defines how software supports socio-economical equality.

Like reflectivity, it has first- and second-order effects. The first-order effects of

support for society define how software supports social equality of its end users.

148 J. Taina and S. Mäkinen

The second-order effects of support for society define how software end users can

use software to support social equality.

For example, the previous eShop software has high first-order support for society
when it allows everyone to use the eShop resources as long as they have network

access. It could have second-order support for society if it was used to sell products
that support social equality.

Exact criteria and metrics for the application layer are beyond the space of this

chapter. We can use a matrix approach similar to earlier layers to first define

suitable sub-factors and then define criteria for them.

For example, we can use a following procedure:

1. Identify software stakeholders.

2. Identify the first- and second-order effects to stakeholders.

3. Define criteria (or sub-factors if you are brave) for each (factor, stakeholder,

effect) triple.

At the higher and more abstract levels, it often makes sense to evaluate criteria

instead of sub-factors. At the application level, the deeper we get into factor details,

the smaller is the problem domain where the factor has value. The first- and second-

order software effects can be anything. A detailed list of sub-factors would grow

rapidly and hide the big factor picture from small details.

The software layer is the most important layer in sustainable software. It is the

layer where we can get the best idea of how software in general supports sustainable

development. It is still a system-independent layer, and the ideas and factors at this

layer do fit all software.

6.5.5 System Layer

At the previous layer, software was considered a stand-alone product with the first-

and second-order effects to its stakeholders. The closest stakeholder of software is

its software system. At the system layer, we consider how software in cooperation

with its software system supports resource effectiveness, triftness, and social
sustainability.

It is important to notice the difference between green software and a green
software system. We can have green software in a non-green software system and

vice versa. For example, a coal power plant software system is not a green software

system since it creates much waste. However, an optimising software for

minimising emissions of the plant is green software since it helps the system to

reduce waste. Such software supports triftness when it minimises emissions and fit
for purpose due to support to its system to produce maximum energy with minimum

waste.

At the system layer, we want factors that support both green software and green

software systems. Thus, while the previous coal power plant software was green

software at the application layer, it is not green at the system layer.

6 Green Software Quality Factors 149

We call the system-level support for resource efficiency collaboration. It defines
how a software system helps its stakeholders to manage resources efficiently. A

software system with high collaboration supports and cooperates with its stake-

holders on resource efficiency. The support can be a first-order or second-order

support.

At the first-order support, the software system itself helps in resource manage-

ment. For example, a teleconferencing software system has high collaboration
since it can save travelling-related resources of its end users.

At the second-order support, the software system helps its end users to support

resource efficiency. For example, a research system to help in crop research will

have a second-order support to farmers who use the results of the research.

We call the system-level support for waste reduction reduction. It defines how a

software system helps its stakeholders to reduce waste. A software system with high

reduction helps its stakeholders to directly or indirectly reduce waste. Again, the

support is first or second order.

For example, a street light system that reduces unnecessary light to sky has high

reduction and first-order support to waste reduction. It directly helps reducing

serious waste: light pollution. This type of waste affects well-being, wildlife, and

plants. The street light system also has second-level support to waste reduction if it

helps people to sleep better and that way have a more active life.

We call the system-level support for social equality production sustainability. It
defines how a software system helps its stakeholders to support social equality. A

software system with high production sustainability supports its stakeholders in

sustainable development.

For example, an MOOC (massive open online course) software system has high

second-order production sustainability. With the system, MOOC teachers can

support equality in learning which is an important area in social equality. It can

also have high first-order production sustainability when it supports social equality
among teachers such as a chance to teach on the MOOC without being physically

present. (This is also a matter of reduction.)
The system layer is a useful layer due to its practical nature. At the layer, we are

not that much interested in the role of software but consider software to be an

integral part of the software system. This approach makes defining suitable criteria

and metrics an easier task. Again, a complete list of good criteria and metrics is

beyond the space and scope of this chapter. We only give an example of how it can

be done.

Since a software system is a concrete entity, it is straightforward—while not

always simple—to calculate its resource requirements. We need to calculate all

elements of the system and see how much material, energy, and human resources

their assembly requires and how much the elements have affected social equality.

This is the initial state. Any waste at this time is not considered to be part of the

software system.

When the software system is at the end of its life cycle, its usage has required

resources, generated waste, and affected social equality. These resources can be

calculated. This is the final state.

150 J. Taina and S. Mäkinen

The difference between the initial state and the final state is the net summary of

the software system. We probably want to estimate the final state since we seldom

want to wait until the disposal time of the software system to evaluate its factors.

The next step is to evaluate the first-order effects that the system has to resource

usage, waste generation, and social equality. These effects can be measured from

stakeholders that are directly in contact with the software system. The results are

added to the earlier measurements.

The final step is to evaluate the second-order effects to resource usage, waste

generation, and social equality. These are the effects that the first-level stakeholders

have on their stakeholders. Again, the results are added to the earlier measurements.

The net result gives values to a software system’s collaboration, reduction, and
production sustainability. If the results can be calculated, they are comparable with

the results of any system.

The actual calculations for the second-order effects can be very difficult and

sometimes even impossible. Yet some estimations are possible.

6.5.6 Problem Domain Layer

The final layer, the problem domain layer, is the conclusion of the green factor

model and layered factors. Here all factors, criteria, and metrics are relative to the

chosen problem domain. Due to this, we define only one factor at this level: beauty.
Beauty defines how software supports sustainable development. It is the ultimate

green software factor. Beauty includes resource effectiveness, triftness, and social
sustainability at this layer.

It is up to a problem domain specialist to divide beauty into sub-factors. Beauty
sub-factors are usually not compatible between problem domains. For example,

does women’s education supporting software have more beauty than software that

increases awareness of carbon dioxide emissions?

If a problem domain is clearly defined with reasonable requirements, beauty is

measurable. We can use a simple algorithm:

1. Select a reference software in a software system.

2. Calculate whatever metric you want with reference software.

3. Calculate the same metric with evaluated software.

4. Compare results.

For example, let us have a problem domain of car braking. We can measure how

much we can reuse braking energy. The reference software controls the brakes

without support for reuse. The new software supports reuse. If the new software

saves 15 % braking energy in the software system and the old software saves none,

then we can evaluate the new software to have 15 % more beauty than the old

software. However, the result is specific to a problem domain and in the purest form

requires that both software run in the same hardware.

6 Green Software Quality Factors 151

It is important that the hardware does not change in the measurement. If we

compare two different braking systems, it is difficult to say how much of the

difference is due to better software and how much is related to hardware.

Even without good absolute factors, criteria, and metrics for the problem domain

layer, the layer itself and the ideas of how to measure green software factors within

it are important. It matters how software supports beauty. We have tools and

techniques to create, execute, and measure software that can be truly beautiful.

6.6 Conclusions

In this chapter, we introduced a layered model for green software and green

software engineering quality. The model is based on the idea of software-supported

sustainability, including software engineering.

In order to support sustainability, software has to support both sustainable

environment and socio-economic equality. These sustainability characteristics can

be generalised into three goals: resource efficiency, waste reduction, and support

for human equality. Green software helps to reach all three goals both directly via

its actions and indirectly via support to its stakeholders. Moreover, green software

engineering helps in software development and management.

In order to fulfil the goals above, we need a green software quality model. Our

model is based on the GREENSOFT model by Naumann et al. With the

GREENSOFT model and our requirements for sustainability, we get a layered

model for green quality factors. Each layer defines green software quality from a

specific point of view.

Our layered model consists of the following layers: management layer for green

software engineering, execution layer for green software execution, platform layer

for green software services, application layer for green software applications,

system layer for green software systems, and problem domain layer for

sustainability-related software system problem domains. Each layer defines green

software quality from a slightly different point of view.

When a sustainability specialist wants to define how green a software product is,

he or she can choose the layer that best suits his or her needs. He or she can use the

management layer to see how well software development supports sustainability,

the execution layer to see how well software uses its resources, platform layer to see

how well system software services support sustainability, application layer to see

how well software supports its software system in sustainability, system layer to see

how well the software system supports sustainability, and problem domain layer to

see how well the software system supports its problem domain when compared with

similar software systems. Each layer is important depending on an observer’s point

of view, but usually all layers are not equally important to the observer.

On each layer, we define a set of green software factors and sub-factors to

support sustainability. However, the exact definitions of the factors are less impor-

tant than the idea behind them. Some factors may live the test of time, and some

152 J. Taina and S. Mäkinen

may not. Yet we are certain that the idea of layered software support to sustain-

ability remains.

References

1. ISO (2011) Systems and software engineering – systems and software quality requirements

and evaluation (SQuaRE) – system and software quality models. ISO, Geneva

2. Amato I (2003) Green cement: concrete solutions. Nature 494:300–301

3. Banerjee A, Solomon BD (2003) Eco-labeling for energy efficiency and sustainability: a meta-

evaluation of us programs. Energy Policy 31(2):109–123

4. Briand LC, Wüst J, Daly JW, Porter DV (2000) Exploring the relationships between design

measures and software quality in object oriented systems. J Syst Software 51(3):245–273.

doi:10.1016/S0164-1212(99)00102- 8

5. Brundtland G et al (1987) Our common future: report of the 1987 world commission on

environment and development. United Nations, Oslo, pp 1–59

6. Chidamber S, Kemerer C (1994) A metrics suite for object oriented design. IEEE Trans

Software Eng 20(6):476–493. doi:10.1109/32.295895, URL http://dx.doi.org/10.1109/32.

295895

7. Fenton NE, Pfleeger SL (1997) Software metrics: a rigorous and practical approach. PWS,

Boston, MA

8. Galin D (2004) Software quality assurance: from theory to implementation. Pearson/Addison

Wesley, Harlow

9. Gartner (2007) Green IT: the new industry shockwave. Presentation at symposium/ITXPO

conference

10. Geller T (2011) Supercomputing’s exaflop target. Commun ACM 54(8):16–18

11. Hopwood B, Mellor M, O’Brien G (2005) Sustainable development: mapping different

approaches. Sustain Dev 13(1):38–52

12. IUCN, WWF (1980) World conservation strategy. World Conservation Union, United Nations

Environment Programme, Word Wide Fund for Nature

13. Kern E, Dick M, Naumann S, Guldner A, Johann T (2013) Green software and green software

engineering – definitions, measurements, and quality aspects. In: Proceedings of the first

international conference on information and communication technologies for sustainability

(ICT4S 2013), pp 87–94

14. Lamb J (2009) The greening of IT. How companies can make a difference for the environment.

IBM Press, Indianapolis, IN

15. McCabe T (1976) A complexity measure. IEEE Trans Software Eng SE-2(4):308–320. doi:10.

1109/TSE.1976.233837, URL http://dx.doi.org/10.1109/TSE.1976.233837

16. McCall JA, Richards PK, Walters GF (1977) Factors in software quality. Technical report for

the Rome Air Development Center (ISIS), General Electric

17. Murugesan S (2008) Harnessing green it: principles and practices. IT Prof 10(1):24–33

18. Naumann S, Dick M, Kern E, Johann T (2011) The GREENSOFT model: a reference model

for green and sustainable software and its engineering. Sustain Comput 1(4):294–304

19. Naumann S, Kern E, Dick M (2013) Classifying green software engineering-the GREENSOFT

model. In: 2nd workshop EASED@ BUIS 2013, 13

20. Naur P, Randell B (1969) Software engineering: Report of a conference sponsored by the

NATO science committee, Garmisch, Germany, 7–11 Oct 1968, Brussels, Scientific Affairs

Division, NATO

21. Pezzè M, Young M (2008) Software testing and analysis: process, principles and techniques.

Wiley, Chichester

6 Green Software Quality Factors 153

http://dx.doi.org/10.1016/S0164-1212(99)00102-%208
http://dx.doi.org/10.1109/32.295895
http://dx.doi.org/10.1109/32.295895
http://dx.doi.org/10.1109/32.295895
http://dx.doi.org/10.1109/TSE.1976.233837
http://dx.doi.org/10.1109/TSE.1976.233837
http://dx.doi.org/10.1109/TSE.1976.233837

22. Poppendieck M (2007) Lean software development. In: Proceedings ICSE COMPANION ’07

Companion to the proceedings of the 29th international conference on software engineering,

pp 165–166

23. Shein E (2013) Keeping computers cool from the inside. Commun ACM 56(7):13–16

24. Taina J (2010) How green is your software? In: Proceedings of the first international confer-

ence on software business (ICSOB 2010), pp 151–162

25. Taina J (2011) Good, bad, and beautiful software – in search of green software quality factors.

Cepis Upgrade 12(4):22–27

154 J. Taina and S. Mäkinen

Part IV

Software Development Process

Chapter 7

From Requirements Engineering to Green

Requirements Engineering

Birgit Penzenstadler

7.1 Introduction

Requirements engineering (RE) is the early phase of software engineering where

we determine the exact scope of the system and iteratively elaborate the stake-

holders’ needs and concerns. Step by step, these are refined into more specific

requirements and constraints for the system under development.

Within the overall green software engineering process, RE ties in between

business analysis (see chapter ‘Green Software Economics’ in this book), testing

(see chapter ‘Green Software Testing’) and architecture (see chapter ‘Green
Software Construction’). Good software engineering practice mandates to perform

these phases in an iterative fashion with feedback loops [31].

For describing green software requirements, the basic building blocks are to

define requirements engineering and to define what green means.

7.1.1 Defining Requirements Engineering

Zave [45] provides one of the clearest definitions of RE:

Requirements engineering is the branch of software engineering concerned with the

realworld goals for, functions of, and constraints on software systems. It is also concerned

with the relationship of these factors to precise specifications of software behavior, and to

their evolution over time and across software families. [45], p. 315

Nuseibeh and Easterbrook explain this definition further and expand it on several

tasks that become important when adapting RE for green software:

B. Penzenstadler (*)

California State University, Long Beach, USA

e-mail: bpenzens@uci.edu

© Springer International Publishing Switzerland 2015

C. Calero, M. Piattini (eds.), Green in Software Engineering,
DOI 10.1007/978-3-319-08581-4_7

157

mailto:bpenzens@uci.edu

Requirements Engineering is concerned with interpreting and understanding stakeholder

terminology, concepts, viewpoints and goals. Hence, RE must concern itself with an

understanding of beliefs of stakeholders (epistemology), the question of what is observable

in the world (phenomenology), and the question of what can be agreed on as objectively

true (ontology). Such issues become important whenever one wishes to talk about validat-

ing requirements, especially where stakeholders may have divergent goals and incompat-

ible belief systems. They also become important when selecting a modelling technique,

because the choice of technique affects the set of phenomena that can be modelled, and may

even restrict what a requirements engineer is capable of observing. [32], p. 35

7.1.2 Defining Green and Sustainability

Over the last decades, sustainability research has emerged as an interdisciplinary

area; knowledge about how to achieve sustainable development has grown, while

political action towards the goal is still in its infancy [13].

• The Oxford English Dictionary defines sustainable as ‘capable of being upheld;

maintainable’ and to sustain as ‘to keep a person, community etc. from failing or

giving way; to keep in being, to maintain at the proper level; to support life in; to

support life, nature etc. with needs’. The etymology of the terms originates in the

French verb soutenir, ‘to hold up or support’ [4].
• Sustainability can be discussed with reference to a concrete system—such as an

ecological system, a human network or even a specific software system. Soft-

ware engineering for sustainability has developed as a current focus of research

due to sustainability being advocated as a major objective for behaviour change

on a global scale.

• The attribute green is widely used to denote an emphasis on environmental

sustainability. At the same time, the above explanation makes it clear that

overall sustainability in our daily lives can only occur when the various aspects

are in balance. This has to be reflected in the software systems we create.

7.1.3 Defining Green Requirements Engineering

The term green or sustainable software can be interpreted in two ways: (1) the

software code being sustainable, agnostic of purpose, or (2) the software purpose
being to support sustainability goals, that is, improving the sustainability of human-

kind on our planet. Ideally, both interpretations coincide in a software system that

contributes to more sustainable living. Therefore, in our context, sustainable soft-

ware is energy efficient, minimises the environmental impact of the processes it

supports and has a positive impact on social and/or economic sustainability. These

impacts can occur as direct (energy), indirect (mitigated by service) or systemic

and, potentially, rebound effect [24].

158 B. Penzenstadler

Requirements engineering for sustainability denotes the concept of using

requirements engineering and sustainable development techniques to improve the

environmental, social and economic sustainability of software systems and their

direct and indirect effects on the surrounding business and operational context.

In order to develop such systems, we need awareness (by education), guidance

(e.g. as in this book) and creativity (to find better solutions).

Green requirements engineering consequently denotes that same concept with a

specific focus on the direct and indirect environmental impacts of systems. How-

ever, as sustainability is an encompassing concept and one aspect of it cannot be

strengthened without considering the other dimensions, we will still discuss it in the

broader scope, referring to all five dimensions.

7.1.4 Five Dimensions of Sustainability

As we are convinced that a focus on environmental sustainability only makes sense

when in balance with the other dimensions of sustainability, we define these further

dimensions and describe how they have been represented in requirements engi-

neering up to now.

There are different dimensions to sustainability [37]: Individual sustainability
refers to maintaining human capital (e.g. health, education, skills, knowledge,

leadership and access to services). Social sustainability aims at preserving the

societal communities in their solidarity and services. Economic sustainability

aims at maintaining capital and added value. Environmental sustainability refers

to improving human welfare by protecting the natural resources: water, land, air,

minerals and ecosystem services. Technical sustainability refers to longevity of

systems and infrastructure and their adequate evolution with changing surrounding

conditions.

For the general characteristics of sustainability requirements for the respective

dimensions, we have found the following subtypes that are used in other require-

ments categorisations [41]:

• Environmental: Requirements with regard to resource flow, including waste

management, can be elicited and analysed by life cycle analysis (LCA). Fur-

thermore, impact effects can be analysed by environmental impact assessment

(EIA). Other aspects are efficiency and time constraints. The problem is that

usually only the first-order impacts by a system are considered, whereas the

second- and third-order impacts are not even in the conscience of the developers

because they will not be held responsible for them. The only way to change this

is to change our mindset and actively include a notion of responsibility for the

wider impacts our actions have on the surrounding environment.

• Human: Parts of human sustainability are covered by privacy, safety, security,

HCI and usability. In addition, there is a strong focus on personal health and

well-being, which still needs to be made explicit in requirements. An example

7 From Requirements Engineering to Green Requirements Engineering 159

for this might be that an application suggests to take a break after a specific

amount of working time.

• Social: A share of social sustainability can be treated via computer-supported

cooperative work (CSCW) requirements, which reflect the interaction within

user groups; via ICT for development (ICT4D) requirements; and via political,

organisational or constitutional requirements, as in laws, policies, etc. What is

still missing are, for example, explicit requirements for strengthening commu-

nity building.

• Economic: Economic sustainability is taken care of in terms of budget con-

straints and costs as well as market requirements and long-term business objec-

tives that get translated or broken down into requirements for the system under

consideration. The economic concern lies at the core of most industrial

undertakings.

• Technical: The technical sustainability requirements include non-obsolescence

requirements as well as the traditional quality characteristics of maintainability,

supportability, reliability and portability, which all lead to the longevity of a

system. Furthermore, efficiency, especially energy efficiency, and (hardware)

sufficiency [13] should be part of the technical sustainability requirements.

This list shows that four of the five dimensions are already supported to a

considerable extent by traditional software quality characteristics and requirements

and can be dealt with. The least support exists for the environmental dimension.

Consequently, we especially need to consider and better support the second- and

third-order impacts in the environmental dimension of software systems. One way

to address this would be to describe sustainability requirements, as combinations of

the five dimensions human, social, environmental, economic and technical times

the orders of effect as proposed in [41].

Instead of proposing a new framework that might interfere with established

practices and be negated by the average user as sustainability is only one of many

objectives for a system, in this chapter we aim at presenting how requirements

engineers can take sustainability considerations into account within their

established practice.

7.1.5 Why Not Simply Add a Category Green Software
Requirements?

A question that might arise is why we do not see an actual category green software

requirements in there. The reason is that trying to establish a new category of

requirements that have to be treated separately would lead to increased effort for

developers, which would lead to resistance. Resistance to change does not mean

that software developers would not accept to consider environmental sustainability

as an objective but only that humans as well as organisations of any form are

resistant to change for a variety of reasons [3].

160 B. Penzenstadler

Instead, we are following an integrative approach that shows that requirements

engineering can easily accommodate the new objective of improving the environ-

mental sustainability of software systems using its current techniques and incorpo-

rating simply a few more instantiations of known requirements types.

7.1.6 Outline

The rest of this chapter is outlined as follows: We describe how to elaborate green

requirements and show where different types of sustainability requirements occur

in the overall process of requirements engineering. To better illustrate these steps,

we then introduce an artefact model for requirements engineering and provide

example excerpts for green requirements engineering content items. Furthermore,

we discuss aspects like requirements conflicts, costs, legal constraints and risks. We

conclude with how much difference the consideration of sustainability actually

makes in requirements engineering and point to practical consequences and related

future research.

7.2 Elaborating Green Requirements

Starting from scratch for developing any type of software system, how would we

elaborate green, sustainable requirements within a generic requirements engineer-

ing approach? There are a few questions to help guide the way, as summarised in

Fig. 7.1.

Q1. Does the system under consideration have an explicit purpose towards envi-
ronmental sustainability? If yes, this can be analysed in depth. If no, it can be

considered whether such an aspect is desirable and feasible to add. If, again,

that is not the case, then the analysis details the potentials for greening of that
IT system (further explored in question 2) instead of greening through IT, but

depending on the kind of system this might still lead to considerable improve-

ments of the environmental impact of the system [33]. In case the system is

widely used, that is worth the effort.

Q2. Does the system under consideration have an impact on the environment? Any
system has an impact on the environment, as any system is applied in a real-

Fig. 7.1 Guiding questions for green requirements engineering

7 From Requirements Engineering to Green Requirements Engineering 161

world context of some kind, which is situated within our natural environment.

Consequently, it has to be analysed as to what are the direct (first order),

indirect (second order) and systemic as well as potential rebound effects (third

order). This potentially includes a very large scope, especially for the third-

order effects, but systemic thinking [27] facilitates such an analysis process

and may lead to significant insights.

Q3. Is there an explicit stakeholder for sustainability? In case there is an explicit

stakeholder who advocates for environmental sustainability, I already have a

significant voice that issues objectives, constraints and considerations to sup-

port the quality in the system under consideration. In case there is no such

advocate, it can be decided to establish such a role. Otherwise, the least

representative for sustainability that should be established is a domain expert

responsible for providing information on applying environmental standards,

legislation and regulations.

Q4. What are the sustainability goals and constraints for the system? Independent

of whether the system has an explicit purpose for supporting environmental

sustainability or not, there certainly are a number of objectives that pertain to

the different dimensions of sustainability that may be chosen to apply. For

example, a social network might not have an explicit environmental purpose,

but it certainly has objectives supporting social sustainability. Furthermore,

any system will at least have some constraints with respect to the environment,

as stated in question 2.

For the description of how to elaborate green requirements, we limit ourselves to

a few concepts that are commonly agreed on as content items or information

elements for gathering and refining requirements, all depicted in the overview in

Fig. 7.2. These are business processes, domain models, stakeholders, objectives,
constraints, system vision and usage model, as well as quality requirements, process
requirements, deployment requirements and system constraints. There are a number

of potential starting points for green requirements engineering with related elicita-

tion and analysis activities as illustrated in Fig. 7.2:

Fig. 7.2 Overview of content items and information flow for green requirements engineering

162 B. Penzenstadler

• In case there is a relation of the business process of the system under consider-

ation to sustainability or environmental issues (see Q1), the business process
model is the first piece of information that may explicitly include green concerns

in the form of supporting business processes or services. If that is not the case,

then there will still be elements in the domain model that can be related to

sustainability concerns, due to the impacts caused by the system (see Q2). This is

denoted by the activity analyse sustainability of context.
• If the business context and application domain lack adequate root elements for a

sustainability analysis, the stakeholder model may be used as the starting

point (see Q3), characterised by the activity find sustainability stakeholders.
Whichever the system under consideration, the stakeholder model should

include a sustainability advocate, at least as a representative for legal constraints.

• In either case—a system with an explicit sustainability concern as well as

without such a mission—the objectives and goals should feature sustainability

as one major quality objective (see Q4). This objective should be included in the

general reference goal model of a company used as a basis for instantiation for a

particular system and then refined according to the system specifics. Apart from

eliciting sustainability objectives from the stakeholders, it is also necessary to

elicit sustainability constraints from the domain model for the constraints and
rules, which includes sustainability-related constraints for any kind of system,

for example, environmental standards.

From these different starting points, the sustainability requirements and con-

straints are propagated throughout the content items in requirements engineering as

illustrated in Fig. 7.2. This includes the activities derive sustainable system vision,
specify sustainable interaction and refine and deduce sustainability requirements.
The following sections walk through these stages and describe the development of

the respective content items.

7.2.1 Analyse Sustainability of Context

Whenever we are faced with a system that has an explicit contribution to sustain-

ability either by improving our ways to analyse the environment and reporting

feedback or by enabling and incentivising sustainable behaviour in its users, we can

analyse the contextual elements this is related to in the business processes and the

domain model. Examples for such systems are the carbon footprint calculator,1 the

Story of Stuff Project2 or car-sharing systems like Zipcar3 or DriveNow.4 If it is not

a purpose for environmental sustainability, there might still be a purpose for social

1 http://coolclimate.berkeley.edu/carboncalculator
2 http://storyofstuff.com/
3 http://www.zipcar.com/
4 http://www.drive-now.com/

7 From Requirements Engineering to Green Requirements Engineering 163

http://coolclimate.berkeley.edu/carboncalculator
http://storyofstuff.com/
http://www.zipcar.com/
http://www.drive-now.com/

sustainability, for example, different types of local community tools or social

networks.

Whether sustainability is a concern or not, either way the system will cause some

kind of impact on the environment, which can span from the first-order impacts to

the third-order impacts. The system environment and the wider context are usually

analysed using a domain model. This can also serve as the basis for a life cycle

analysis [19] of the system under consideration. For the example of the car-sharing

system, the first-order impacts would be the resources that the system itself (the

application and the back-end servers) consumes. The second-order impacts would

be the resources the car-sharing system triggers in its application domain, that is,

the cars that are being shared on the road and that do consume a considerable

amount of resources but decrease the overall consumption of resources through

cars. The third-order effects might be a decrease in the number of individually

owned cars and eventually less cars, but this remains to be observed in the long run.

For the example of a social network, the first-order impacts are again the resources

that the system itself consumes (front-end and back-end components); the second-

order impact is the resource consumption caused by interaction with the system, for

example, meeting friends and attending events; and a desirable potential third-order

effect could be a global society that feels better connected and acts as global

citizens, while a potential negative third-order effect might be a decrease in the

participation of people in real-life events or reduction of social interaction to an

online derivative.

7.2.2 Find Sustainability Stakeholders

Stakeholders are the basis for requirements engineering. They pursue goals, include

the users of the system under development and issue constraints. One major pitfall

for requirements engineering is to have an incomplete list of stakeholders, conse-

quently resulting in incomplete requirements or constraints. To ensure smooth

development, it is crucial to involve the stakeholders early on; to elicit desires,

information and feedback from them; and to satisfy their information and commu-

nication needs. Typically, successfully dealing with stakeholders involves identifi-

cation, classification, analysis and communication management. In the context of

green requirements engineering, the goal is to elicit stakeholders that advocate for

sustainability and that are domain experts for life cycle analysis, environmental

concerns, legislation for environmental regulations or environmental standards.

Definition A stakeholder is a person or organisation who influences a system’s
requirements or who is impacted by that system [12].

There are different possible approaches to identifying stakeholders for sustain-

ability [38], and Table 7.1 provides a generic list of sustainability stakeholders that

may be used for reference. Most likely the best way to make sure all have been

164 B. Penzenstadler

Table 7.1 A generic list of sustainability stakeholders

Dimension Stakeholder Description/rationale

Individual User The user is affected by the system in various ways. For

example, users of online learning courses educate themselves

through software

Developer The developer is heavily involved in creating the system.

Aspects like sustainable pace and growth of the developer

must be considered

Employee

represent.

The mental and physical safety of individuals needs to be

maintained. Employee representatives watch rights of

employees involved

Legislation

(indiv. rights}

Systems must respect the rights of their users. A legislation

representative is a proxy for privacy and data protection laws

Social Legislation (state

authority)

The state has a strong interest in understanding a system’s
influence on the society. Contrary to the individual rights

legislation representative, the state authority representative

speaks from the perspective of the state as a whole

Community

represent.

In addition to the state authority, other communities such as

the local government (e.g. the mayor) or non-government

clubs might be affected by a software system. A complete

analysis must take their views into account

CRM The customer relationship manager (CRM) is in charge of

establishing long-term relationships with their customers and

creating a positive image of the company

CSR manager Some companies created the dedicated position of the

corporate social responsibility (CSR) manager, who develops

а company-specific vision of social responsibility

Economic CEO The chief executive officer integrates sustainability goals into

a соmрanу’s vision
Project manager It is very important to have the project manager agree in what

ways the project should support sustainable aspects as he

decides on prioritisation with conflicting interests

Finance

responsible

As sustainable software engineering often also affects the

budget, many financial decisions have to be made to imple-

ment a sustainable software engineering model in a company

Environm. Legislation (state

authority)

Environment protection laws are in place to ensure sustain-

ability goals. These laws must be reflected in the model

CSR manager The CSR manager is often also responsible for environmental

aspects

Activists/

lobbyists

Nature conservation activists and lobbyists (e.g., WWF,

Greenpeace, BUND)

Technical Admin The administrator of a software system has a strong motiva-

tion for long-running, low-maintenance systems, making his

work easier

Maintenance The hardware maintenance is interested in a stable, long-term

strategy for installation of hardware items

Customer Users are interested in certain longevity of the systems they

are using. This refers to the user interface and the required

software and hardware

7 From Requirements Engineering to Green Requirements Engineering 165

identified is a mix or iteration of these approaches, for example, in the order they are

presented in:

1. Phases: Analysing the aspects and development phases of software systems

development to find the responsible roles. This approach is an easy way to set

up early elicitation meetings with the most important, rather obvious, stake-

holders (see Table 7.1).

2. Reference list: Instantiating generic reference lists of stakeholders (see Table 7.1)
for the concrete project context. This second step takes standard roles into

account that have been included in reference models and enhance the initial

quick list of stakeholders. A reference list for sustainability stakeholders is

provided in Table 7.1.

3. Context: Inspecting the business and operational context of the system under

development and understanding which concrete roles are involved. This step

makes sure that the specifics of the project under consideration are all met and

special roles are considered. A simple reference model that is being used in

software engineering to map out stakeholders is the so-called onion model [1]

with its four concentric spheres: product, system, containing system and the

wider environment, which has been instantiated for a green system purpose [26].

4. Goals: Iteratively analysing and refining a generic goal model and deducing the

related roles. This approach is especially suitable for finding passive stake-

holders that do not have an active interest in issuing own goals but whose

constraints have to be adhered to, for example, legislative representatives.

We document the stakeholders in a stakeholder model that allows to list and

describe all stakeholders involved in a project. Stakeholders comprehend individ-

uals, groups or institutions having the responsibility for requirements and a major

interest in the project.

The stakeholder model is the checklist for ensuring that goals have been elicited

and constraints have been collected from all stakeholders. Furthermore, the stake-

holders have to validate the elicited requirements.

7.2.3 Elicit Sustainability Objectives, Goals and Constraints

The next step is to elicit the sustainability objectives and goals from the stake-

holders and to deduce any sustainability constraints from the business processes

and/or the domain model.

An objective or a goal is a discretionary abstract characteristic, which the system

shall fulfil with regard to its operational environment or the development process of

the system shall fulfil. Objectives and goals are issued by stakeholders and can be

differentiated into various types that help structuring the ways of processing them

during requirements engineering.

166 B. Penzenstadler

Definition A goal is an objective the system under consideration should achieve.

Goal formulations thus refer to intended properties to be ensured; they are optative

statements as opposed to indicative ones and bounded by the subject matter [18].

To facilitate goal elicitation, we distinguish three subcategories that refer to

different levels of abstraction in systems development: Business goals are all

business-relevant (strategic) goals as well as goals with a direct impact on the

system or project. Usage goals are a direct relation to the functional context and

usage of the system (user perspective) for behaviour modelling. System goals are

system-related goals that determine or constrain system characteristics.

In order to consider the sustainability perspective during goal modelling, we

consult the generic reference model for sustainability (see excerpt in Fig. 7.3; see

[35, 36] for an encompassing description) that represents the sustainability dimen-

sions by sets of values. Values are approximated by indicators, supported by

regulations and contributed to by activities [36].
One option for application would be instantiating the generic sustainability

model for a specific system. This is feasible in a case where sustainability is the

major purpose of the system under consideration. For most systems, sustainability

will be one amongst a number of objectives; therefore, it is more suitable to develop

one overall goal model for the system and to detail the submodel for the objective of

sustainability by using the sustainability dimensions and the generic sustainability

model as a reference. This means to analyse the generic sustainability model and to

decide for each value within the dimensions whether it is applicable to the system

under development and, if so, to select those related activities which can be

operationalised as goals for the system.

Fig. 7.3 Illustrative excerpt of the generic sustainability reference model [35, 36]

7 From Requirements Engineering to Green Requirements Engineering 167

7.2.4 Derive Sustainable System Vision and Usage Model

The next steps are to derive a sustainable system vision and to specify sustainable

system interaction in a usage model.

Definition A system vision is a common vision of the system under consideration

agreed upon by all stakeholders that have an active interest in the system.

One frequently used method to create system visions that are easy to communi-

cate is rich pictures [30]. A rich picture is a cartoon-like representation that

identifies all the stakeholders, their concerns and some of the structural and

conceptual elements in the surrounding work context. The choice of an easy-to-

understand medium instead of a more formal and detailed one arises from the need

that stakeholders of various domains and disciplines have to understand the vision.

The system vision is usually coupled to a milestone with the scope of an early

draft of a common idea of the system. It can be used as an early basis for estimations

and planning of the subsequent development process. Furthermore, it is a detection

basis for moving targets.

In case the purpose of the system is closely linked to sustainability, this shall

become very clear in the vision. In case it is a minor aspect, it may still be expressed

as one of the concerns.

7.2.5 Refine and Deduce Sustainability Requirements

Finally, detailed sustainability requirements and constraints are refined and

deduced in four categories: process requirements, deployment requirements, sys-

tem constraints and quality requirements. Further concerns for the system or the

project may be managed in a risk list.

Process requirements denote demands with regard to the conducted develop-

ment, for example, using a green software engineering process. Deployment

requirements specify demands with respect to the installation of the system and

launching it into operation, for example, the migration of the data of the legacy

system to the green data centre used for the system under development. System

constraints detail restrictions on a system’s technical components and architecture

as well as related quality attributes, for example, hardware sufficiency, that is, that

the system shall run on the old hardware without resource-intensive upgrades.

Quality requirements describe the demands for individual quality attributes across

a system’s functionality, the satisfaction criteria of those requirements, the quali-

tative or quantitative metrics and how the metric will be evaluated.

By going through these steps, we have obtained detailed sustainability require-

ments that can be traced back to their respective origins in the business process, the

168 B. Penzenstadler

domain model, the stakeholder model or the goal model. From here on, the

responsibility for ensuring that the requirements are designed into the system and

eventually implemented moves on from the requirements engineer to the system

architect and the designers. In the following section, we provide a number of

examples for content items that illustrate the elaboration of the above-described

steps by using a domain-independent artefact model for requirements engineering.

As the artefact model itself is not specifically coupled to the approach of green

requirements engineering, we chose to first present the approach and then illustrate

it by means of excerpts from those artefacts.

7.3 Exemplary Application in Artefact-Oriented

Requirements Engineering

In this section, we provide an illustrative application of green requirements engi-

neering using an artefact-based approach to requirements engineering. Green

requirements engineering may as well be applied with an activity-based approach

though—the choice was taken for illustrative purposes, as the artefact-based

approach provides an overview that is explicitly structured according to the work

results. That way, the result excerpts can be seen in context with other requirements

engineering work results.

Independent of the requirements engineering approach, an underlying system

model provides the foundation for documenting the requirements to a system in a

way that ensures that the requirements can be consolidated into a consistent system

requirements specification. Therefore, we first introduce a basic system model and

then the requirements artefact model.

7.3.1 Foundation: A Basic System Model

The basic system model underlying the presented approach considers a system to be

composed of subsystems (components) interacting with other systems in its context.

According to Broy et al. [5, 6], a well-founded systems modelling theory pro-

vides firstly the appropriate modelling concepts such as the concept of a system and

that of a user function, with (1) a concept for structuring the functionality by

function hierarchies, (2) concepts to establish dependency relationships between

these functions and (3) techniques to model the functions with their behaviour in

isolation including time behaviour and to connect them into a comprehensive

functional model for the system, and secondly a concept of composition and

architecture to capture

7 From Requirements Engineering to Green Requirements Engineering 169

1. The decomposition of the system into components that cooperate and interact to

achieve the system functionalities

2. The interfaces of the components including not only the syntactic interfaces but

also the behaviour interfaces

3. A notion of modular composition which allows us to define the interface

behaviour of a composed system from the interface behaviours of its

components

This is detailed in views of the system on three different abstraction levels: its

surrounding business and operational context, the system itself as a black box and

the system as a white box [5, 6].

Basing requirements engineering on a system model allows for early model

orientation that facilitates the consolidation of objectives, requirements and con-

straints issued by the different stakeholders of a system. The documentation of the

gathered information is performed via an artefact model.

7.3.2 AMDiRE: Artefact Model for Domain-independent
Requirements Engineering

The various influences on processes and application domains make requirements

engineering (RE) inherently complex and difficult to implement. When it comes to

defining an RE reference model, we basically have two options: we can establish an

activity-based RE approach where we define a blueprint of the relevant RE methods

and description techniques or we can establish an artefact-based approach where we

define a blueprint of the RE artefacts rather than a blueprint of the way of creating

the artefacts. In the last 6 years, we have established several artefact-based RE

approaches and empirically underpinned the advantages of applying those

approaches in industry [11, 29, 34, 39]. Those approaches remain, however,

complex as they encompass various modelling concepts and, in particular, incor-

porate their particularities of the different application domains, such as the one of

business information systems. For this reason, we consolidated the different

approaches and established the AMDiRE approach, that is, the artefact model for

domain-independent requirements engineering. AMDiRE includes a detailed arte-

fact model that captures the basic modelling concepts used to specify RE-relevant

information, tool support and a tailoring guideline that guides the creation of the

artefacts (see Fig. 7.4).

The above-explained system model and its context need to be documented in an

adequate way in a system requirements specification. For this, we follow the

artefact-oriented approach AMDiRE (Artefact Model for Domain-independent

Requirements Engineering) [28]. For the purpose of this chapter, we use a reduced

170 B. Penzenstadler

version of the model as depicted in Fig. 7.5. For the full AMDiRE model, please

refer to [28].

7.3.3 Example Content Items for Illustration

For illustration purposes, this chapter uses an example system that most readers are

likely to be somewhat familiar with: the online social networking service

Facebook.5

How would it change the requirements of a software system if sustainability had

been considered all along the way? For Facebook, the hypothesis is that the user

interface would be a little simpler to require less energy and thereby run well on

older devices (environmental sustainability), and the privacy policy and settings

would have been available from the start as opposed to years later due to user

complaints (individual and social sustainability).

In addition, we provide examples from systems that have an explicit sustain-

ability objective in their system vision. One of them is a car-sharing system; another

one is the Story of Stuff Citizen Muscle Boot Camp [21], a massive open online

course system that shall educate users about how to take action for environmental

causes.

Fig. 7.4 Components of the AMDiRE approach

5Disclaimer: The examples provided within this chapter are not the results of an official collab-

oration with Facebook, but rather the re-elicitation by the author.

7 From Requirements Engineering to Green Requirements Engineering 171

Context Layer

Project Scope Constraints
and Rules

Business Process

Process Requirements

Deployment Requirements

Risk List

Data Model

A–

A–

A–

A–

A

A

E

E

E

E

Functional
Hierarchy

System Constraints

System Layer

Architecture Overview Function Model

Glossary

Glossary

Data Model

Component Model Behaviour Model

Quality Requirements

System

C C

Fun 1

Fun 2

Glossary

Domain ModelObjectives
and Goals

Stakeholder Model

Requirements Layer

System Vision

Usage Model Sevice Model

!

!

!

!

!

Fig. 7.5 A pictogram of the AMDiRE artefact model

172 B. Penzenstadler

7.3.4 Stakeholder Model

Stakeholders are documented in the stakeholder model. This content item describes

all stakeholders involved in a project, comprehending individuals, groups or insti-

tutions. User groups are a specialisation of stakeholders interacting with the system.

The means to document stakeholder models are UML actor hierarchies, informal

hierarchical graphics or natural text.

The stakeholder model is the basis for rationale and a major source of require-

ments and future user groups and actors. The artefacts predominantly affected by

the stakeholder model are the goal model, the domain model (business processes),

the system vision and the usage model (use cases and scenarios).

The example box lists the stakeholders for Facebook, including the ones that

advocate sustainability or serve as domain experts on its various aspects.

Example
Stakeholder list for Facebook

• Product owner: Facebook, Inc. executive board, shareholders, department
heads, managers

• Domain experts: Social media expert, communication expert, psycholo-
gist, business analyst, marketing expert, environmental specialist, sustain-
ability consultant

• Partners and suppliers: Plug-in providers, third software integrated in
Facebook (e.g. games)

• Developers: Requirements engineer, architects, implementer, tester, qual-
ity assurance, green product champion

• Post-implementation support: Maintenance, managers, user forum
moderators

• Regulatory bodies: Legislative representatives for national and interna-
tional laws w.r.t. privacy, data storage, trade and the environment, green
certifying body

• Users: Customers (who advertise on the platform), content users (the
standard ‘user’ of an online network), green user, anti-green user,
administrators

• Competitors: Twitter, LinkedIn, Google Plus, YouTube, Foursquare,
Reddit, Pinterest, Tumblr, Flickr, Instagram, Myspace, Meetup, Diaspora,
etc.

7.3.5 Objectives and Goals

The AMDiRE content item objectives and goals is denoted in, for example, KAOS

[25] or i* [44]. Each goal, whether it is a business goal, a usage goal or a system
goal, is issued by a stakeholder.

7 From Requirements Engineering to Green Requirements Engineering 173

Goals satisfy a statement of intent [25], they build a hierarchy and they can

influence each other in terms of conflicts, constraints or support. Each usage goal is

related to a business goal and each system goal to a usage goal. Furthermore, system

goals demand one or more quality attributes [2]. Goals are decomposed into sub-

goals, and goals can support another goal (contribute to it) or be in conflict with

another goal (either directly stating the opposite or requiring a trade-off).

In the Facebook example below, the objectives in the three categories were

elicited by considering the dimensions of sustainability and how they can be

reflected with regard to the system.

Example
Illustrative Facebook goals related to sustainability dimensions

• Business goals

– Long-term evolution (economic and technical sustainability)
– ROI (economic sustainability)
– Large market share (economic sustainability)

• Usage goals

– Connect people (social sustainability)
– Share content (individual and social sustainability)
– Trigger communication (individual and social sustainability)
– Spread news (individual, social, economic sustainability)

• System goals

– High availability (individual, social, economic and technical s.)
– High reliability (individual, social, economic and technical s.)
– Long-term maintenance (social, economic and technical s.)

As an example with explicit sustainability concerns, Fig. 7.6 depicts the goal

model for the car-sharing system.

7.3.6 System Vision and Usage Model

From the goal model, we derive a sustainable system vision and the respective

usage model.

174 B. Penzenstadler

F
ig
.
7
.6

S
u
st
ai
n
ab
il
it
y
g
o
al
s
o
f
th
e
ca
r-
sh
ar
in
g
ca
se

st
u
d
y
[1
0
]

7 From Requirements Engineering to Green Requirements Engineering 175

7.3.6.1 System Vision

The system vision comprehends the system context of the system under consider-
ation, which is intended to realise a number of features. A feature is, in our

understanding, a prominent or distinctive user-recognisable aspect, quality or

characteristic of a system that is related to a specific set of requirements, whose

realisation enables the feature [7, 20].

Facebook does not have an explicit sustainability purpose. However, the vision

could be extended such that the features are used for environmental causes, for

example, organising green events or environmental campaigns. Instead of illustrat-

ing this extension, we provide two examples for systems that have an explicit

sustainability reference in their system visions.

For the explicit sustainability purpose, examples are provided from the

car-sharing system case study and the Citizen Muscle Boot Camp. Figure 7.7

depicts the system vision elaborated in discussion with various stakeholders from

the respective industry domains. Figure 7.8 shows a system vision for the online

course by the Story of Stuff Project.

7.3.6.2 Usage Model

This content item details a use case overview in its use cases and scenarios. We

distinguish services and use cases. Both concepts are means to describe (black box)

system behaviour. Use cases describe sequences of interaction between actors
(realising user groups) and the system as a whole. More precisely, a use case

represents a collection of interaction scenarios, each defining a set of interrelated

actions that are executed either by an actor or by the system under consideration

[8]. For each use case, there is at least one functional scenario in which actors
participate. A scenario inherits from a requirement (not a whole use case), and each

scenario is detailed into actions, which can be actor actions or system actions, each
processing data objects.

Functional scenarios are triggered by events. Furthermore, we include generic
scenarios, which serve for the satisfaction of quality requirements as they provide a
means to specify generic interactions between actors and a system not necessarily

motivated by business processes, such as maintenance activities an administrator

performs. Use cases and scenarios can be represented in the form of structured text

(e.g. the Cockburn template [8]), in UML use case diagrams, in diagrams and in

message sequence charts.

As denoted earlier, the Facebook example does not have a specific sustainability

purpose, but the service may well be used for environmental causes. Therefore, in

the following example box, we specify a use case where a campaign for environ-

mental sustainability is posted as an event.

176 B. Penzenstadler

Example
Use case for creating a green event on Facebook

Primary actor: standard content user
Goal in context: the purpose of this feature is to enable users to create an

event and to invite their friends to their activities
Preconditions: in order to create an event, a user must have a Facebook

account
Trigger: user desires to create an event to be carried out either in real life

or online

1. User Joe reaches the events interface from the home page of Facebook
2. The system prompts him with a form for entering the event information
3. Joe enters the title ‘Ban Plastic Bags’ campaign
4. He sets time and date for the event and describes the challenge of

convincing local shopkeepers to switch to reusable bags and encourage
their customers to return with their own bags

5. Joe selects a picture of a reusable shopping bag as the event background
picture and clicks a button to finish creating

(continued)

Fig. 7.7 The car-sharing system vision

7 From Requirements Engineering to Green Requirements Engineering 177

F
ig
.
7
.8

T
h
e
S
to
ry

o
f
S
tu
ff
C
it
iz
en

M
u
sc
le

B
o
o
t
C
am

p
O
n
li
n
e
C
o
u
rs
e
S
y
st
em

178 B. Penzenstadler

6. The system notifies Joe of the successful operation he has performed and
prompts him to invite his friends

7. Joe invites all friends in his local group from the same town to join him in
this campaign

7.3.7 Specific Requirements Types

In the next refinement step for the system-level requirements, the information from

goals, constraints and system vision is propagated into process requirements,

deployment requirements, risk list, quality requirements and system constraints.

Quality requirements characterise specific quality attributes of the system (either

coupled to a specific functionality or as a cross-cutting concern). They are usually

represented in the form of natural text. Quality requirements are assessed by

measurements that can be either a normative reference (e.g. a GUI style guide) or
a metric. Quality requirements constrain system actions and can be satisfied by

generic scenarios. We make use of quality definition models as by Deissenböck

et al. [9].

Example
High-priority quality requirements for Facebook, issued by content user

• High availability (economic, individual and social sustainability)
• High usability, easy to use (individual and social sustainability)
• Privacy (individual sustainability)

The system constraints describe logical and technical restrictions on a system’s
architecture, its functionality by means of single atomic actions and its quality by

means of assessable system quality requirements. We consider concepts that

describe the transition to logical and technical architecture layers according to

[42]. Hence, we see a system as a grey box rather than as a glass box, since we

restrict systems’ internals, but do not consider their logical structure by interacting

components, interface specifications and functions. They are usually described in

natural language text.

Example
System constraint for Facebook

• The servers shall run in green data centres

Process requirements constrain the content and/or structure of selected artefact

types and the process model, that is, the definition of the milestones regarding time

7 From Requirements Engineering to Green Requirements Engineering 179

schedules, used infrastructure like mandatory tools and compliance to selected

standards and approaches like to the V-Modell XT. They are mostly described in

natural language text.

Example
Process requirement for Facebook: they might decide to use the approach
provided in the book at hand

• Develop the system according to the guidance provided by software
engineering for sustainability

The risk list includes a description of all risks that are related to project-specific

requirements, usually in the form of natural language text. The conceptualisation of

requirements risks is considered on the basis of an artefact model [16, 17]. The risks

are implied by the various types of requirements, and we use the risk list as an

interface to risk management.

Example
Risk list for Facebook

• Excessive content generation by users could cause high-energy demands
with peaks that cannot be satisfied by renewable energy

• Users are not active enough; therefore, no community would be
established

7.4 Discussion

In this section, we reflect on the mapping of sustainability dimensions to content

items and discuss requirements conflicts, cost modelling, legal constraints and risk

management.

7.4.1 Which Dimensions Appear in Which Content Items?

Independent of the applied artefact model, it is interesting to take a look at the

mapping of sustainability dimensions to content items. Table 7.2 gives a coarse-

grained mapping of requirements content items to the sustainability dimensions from

which they contain information. For example, a system vision will generally include

mainly environmental and social sustainability aspects (as it abstracts from technical

details), the system constraints will feature many constraints from the environmental

and technical sustainability dimensions and the process requirements will include

demands from the environmental, social and technical dimensions.

180 B. Penzenstadler

7.4.2 Sustainability Requirements Conflicts

In traditional qualities considered during software engineering, we already face a

number of potential conflicts, for example, between code maintenance and code

performance or between the development time and the desired quality of a software

system. Consequently, the question arises what kinds of conflicts exist between the

five dimensions of sustainability and their related goals.

The economic dimension aligns with the environmental one in terms of resource

savings (energy, materials, waste), but they may conflict when it comes to addi-

tional certifications, building a (environmentally and socially) sustainable supply

chain and turning to more expensive alternative solutions in case they are more

environmentally friendly. The reason for this is mainly that up to now, the negative

environmental impacts that are caused by our economy are hardly charged. There-

fore, the goal of environmental sustainability does not get assigned monetary value

but only image value, which is likely to be ranked second. These conflicts are also

discussed in [36].

Another potential conflict, at least for some systems, is a trade-off between

energy efficiency and dangerous materials. This is one potential goal conflict in

case energy efficiency would require using more dangerous materials. Although not

a software system in itself, a light bulb might serve as an example: New energy-

saving lamps are much more energy efficient than the old light bulbs but at the

same time contain toxic mercury that imposes a threat when a lamp breaks,

similarly as phenol, naphthalene and styrene. In the case at hand, considerate

users will make sure the lamp is not in use and is in close proximity to their

heads, but as legislation has already banned the old light bulbs in some countries,

they will have to be used for now. Resolving such a conflict for a particular case

means to assign weights to each of the goals and prioritise whether energy saving

is greater or whether the risk and long-term negative impacts of the dangerous

materials are greater.

Table 7.2 Requirements content items and their sustainability dimensions

Content item Sustainability dimension

Stakeholder model All

Goals All

System vision Mainly environmental and social

Usage model Social and economic

Quality requirements Technical

Deployment requirements Technical

System constraints Environmental and technical

Process requirements Environmental, social and technical

Risk list All

7 From Requirements Engineering to Green Requirements Engineering 181

7.4.3 Cost Modelling

Another aspect worth discussing is the connection between stakeholders, goals and

cost modelling. The stakeholders are made explicit in the goal model by tracing

back to the issuer of a goal, as the information source (e.g. a domain expert) or the

issuer of a goal. With respect to assigning costs to the goals, there is a limitation, as

this only makes sense for business goals, but not for values that cannot be expressed

in return on investment. Some goals, for example, the protection of the environ-

ment, do not have a monetary value in themselves, and their qualitative value is

hard to measure. At the same time, it is important to define measures to ensure the

realisation of these goals and to show that the approach can make a difference in

those resulting measures. Consequently, instead of assigning costs to the sustain-

ability goals, their contribution to higher causes must be made explicit, for example,

the contribution to objectives commonly agreed on by governments like the sus-

tainable development goals from Rio+206 or Vision 2050 [43].

7.4.4 Legal Constraints

As a consequence to the fact that environmental goals have not yet been prioritised

sufficiently by the economy, legislation has established a number of environmental

regulations that companies have to adhere to. These regulations will still be

extended in the future, which makes legislation probably the most important

stakeholder representing especially environmental sustainability. Individual and

social sustainability are also taken care of by law, for example, by workers’ rights,
which are supported and represented by worker unions.

It would be interesting to see at which point we need new laws and a different

legislation to make sure that important questions of sustainability are incorporated

into IT systems. Furthermore, it would be interesting to look at other examples such

as functional safety and, also to a certain extent, security, where such laws exist.

7.4.5 Risk Management and Environmental Sustainability

Risks, safety and security all strongly relate to sustainability: risks need to be

managed in order to enable sustainability, and safety and security are part of

sustainability.

Safety is part of individual and social sustainability for preserving human life

(no injuries) and the environment (no chemical or other hazardous accidents) but

6 http://www.uncsd2012.org/

182 B. Penzenstadler

http://www.uncsd2012.org/

also has aspects in economic sustainability (a product that is not safe will not let a

company reach long-term economic goals).

Security is also part of various dimensions: the technical dimension (as it is a

standard quality attribute for systems), then the individual and social dimensions

(as the users shall be protected) and, as a consequence of that, also the economic

dimension (insecure systems will not have market success).

Both of these quality aspects have not been around forever, but they were

introduced as explicit qualities for software systems after the first safety hazards

and the first security threats occurred. Consequently, we can learn from this

development for systematically incorporating sustainability into software

engineering [40].

7.5 Conclusion

This chapter provided an overview of how green requirements engineering may be

conducted within the scope of general-purpose requirements engineering by asking

a few guiding questions along the way and providing plugs for additional analysis

activities that inform the development of environmental issues that should be

considered. This approach was supported by illustrating examples and a discussion

on the different types of conflicts and traceability of information across different

requirements engineering content items.

The impact of our contribution is mainly determined by the question of how

much difference the consideration of sustainability actually makes in requirements

engineering. If we can make a sustainability purpose explicit in a system, then the

difference is significant. If such a purpose is not given, a secondary influence can be

achieved by adding sustainability objectives and greening the system itself. The

latter has less impact on the environment but is still feasible, especially if the system

has a big user community. In the long run, the author’s hypothesis is that we will not
be able to end resource depletion by greening existing systems but only by

disruptive change and completely transforming our systems. However, creating

the mindset for that starts with acknowledging the need for incorporating sustain-

ability as an explicit quality objective in systems development.

One open issue is the standardisation of (environmental and general) sustain-

ability as an explicit quality objective in software development, for example, within

the IEEE 830 recommendation for software requirements specifications and the

ISO 25000 on software quality, informed by the ISO standard families on environ-

mental management [14] and social responsibility [15]—maybe this book can

provide a basis for triggering such a standardisation.

The path towards software engineering for sustainability (SE4S)7 requires a

mindset of awareness (by business analysts and developers), methodical guidance

(as provided in this chapter) and creativity. For the latter, we need creative

7 http://www.se4s.org

7 From Requirements Engineering to Green Requirements Engineering 183

http://www.se4s.org/

confidence [22] to establish the right mindset for transition engineering [23] that

enables us to move towards a more sustainable global society as illustrated in

Vision 2050 [43], supported by adequate software systems.

Acknowledgements I would like to thank Ankita Raturi and Debra Richardson for feedback on

earlier versions of this chapter as well as Daniel Mendez, Henning Femmer, Alejandra Rodriguez,

Oliver Feldmann, Susanne Klein, Manfred Broy, Daniel Pargman, Joseph Tainter, Lorenz Hilty,

Bill Tomlinson, Juliet Norton, Coral Calero, Xavier Franch, Wolfgang Lohmann, Beth Karlin and

Allison Cook for helpful and inspiring discussions. Furthermore, I thank my students Joseph

Mehrabi, Noel Canlas, Evelyn Luu and Kuan Chi Tseng for allowing me to use their system vision

illustration for the Citizen Muscle Boot Camp. This work is part of the DFG EnviroSiSE project

under grant number PE2044/1-1.

References

1. Alexander I, Robertson S (2004) Understanding project sociology by modeling stakeholders.

IEEE Software 21(1):23–27

2. Boegh J (2008) A new standard for quality requirements. IEEE Software 25(2):57–63

3. Bridges W (1995) Managing transitions: making the most of change paperback. Nicholas

Brealey, Boston; 3rd revised edition (3 Dec 2009)

4. Brown B, Hanson M, Liverman D, Merideth R (1987) Global sustainability: toward definition.

Environ Manag 11(6):713–719

5. Broy M, Feilkas M, Herrmannsdoerfer M, Merenda S, Ratiu D (2010) Seamless model-based

development: from isolated tools to integrated model engineering environments. Proc IEEE 98

(4):526–545, available at http://dx.doi.org/10.1109/JPROC.2009.2037771

6. Broy M, Stoelen K (2001) Specification and development of interactive systems: focus on

streams, interfaces, and refinement. Springer, New York

7. Classen A, Heymans P, Schobbens PY (2008) What’s in a feature: a requirements engineering

perspective. In: Fiadeiro J, Inverardi P (eds) Proceeding of the 11th international conference on

fundamental approaches to software engineering (FASE 08) in conjunction with ETAPS

08, no. 4961 in FASE/ETAPS. Springer, Berlin, pp 16–30

8. Cockburn A (2000) Writing effective use cases. Addison-Wesley Longman, Boston,

MA. ISBN 13: 978-0201702255

9. Deissenboeck F, Juergens E, Lochmann K, Wagner S (2009) Software quality models:

purposes, usage scenarios and requirements. In: Proceedings of the 7th international workshop

on software quality (WoSQ 09). IEEE Computer Society Press, p N/A

10. Feldmann O (2012) Sustainability aspects in specifying a car sharing platform. Bachelor’s
thesis, Technische Universität, München

11. Fernández DM, Lochmann K, Penzenstadler B, Wagner S (2011) A case study on the

application of an artefact-based requirements engineering approach. In: 15th international

conference on evaluation and assessment in software engineering

12. Glinz M, Wieringa RJ et al (2007) Guest editors’ introduction: stakeholders in requirements

engineering. IEEE Software 24(2):18–20, http://doi.ieeecomputersociety.org/10.1109/MS.

2007.42

13. Hilty L, Lohmann W, Huang E (2011) Sustainability and ICT—an overview of the field.

Politeia 27(104):13–28

14. International Standardization Organization (2004) ISO 14000 – environmental management.

http://www.iso.org/iso/home/standards/management-standards/iso14000.htm

15. International Standardization Organization (2010) ISO 26000 Guidance on social responsibil-

ity. http://www.iso.org/iso/home/standards/iso26000.htm

184 B. Penzenstadler

http://dx.doi.org/10.1109/JPROC.2009.2037771
http://doi.ieeecomputersociety.org/10.1109/MS.2007.42
http://doi.ieeecomputersociety.org/10.1109/MS.2007.42
http://www.iso.org/iso/home/standards/management-standards/iso14000.htm
http://www.iso.org/iso/home/standards/iso26000.htm

16. Islam S (2009) Software development risk management model – a goal driven approach. In:

Proceedings of the 7th joint meeting of the European software engineering conference and the

ACM SIGSOFT symposium on the foundation of software engineering (ESEC/FSE). ACM,

New York, pp 5–8

17. Islam S, Houmb S, Mendez Fernandez D, Joarder M (2009) Offshore-outsourced software

development risk management model. In: Proceedings of the 12th IEEE international confer-

ence on computer and information technology (ICCIT 09), pp 514–519

18. Jackson M (1995) Software requirements and specifications: a lexicon of practice, principles

and prejudices. Addison Wesley, Reading, MA

19. Johansson B, Skoogh A, Mani M, Leong S (2009) Discrete event simulation to generate

requirements specification for sustainable manufacturing systems design. In: Proceedings of

the 9th workshop on performance metrics for intelligent systems, PerMIS ’09. ACM,

New York, pp 38–42. doi:10.1145/1865909.1865918, URL http://doi.acm.org/10.1145/

1865909.1865918

20. Kang K, Cohen S, Hess J, Nowak W, Peterson S (1990) Feature-oriented domain analysis

(FODA) feasibility study. Tech. Rep. CMU/SEI-90-TR-21, Software Engineering Institute,

Carnegie Mellon University Pittsburgh, PA

21. Karlin B, Penzenstadler B, Cook A (2014) Pumping up the Citizen Muscle Bootcamp:

improving user experience in online learning. In: 16th international conference on human-

computer interaction

22. Kelley T, Kelley D (2013) Creative confidence: unleashing the creative potential within us all.

Crown Business, New York

23. Krumdieck S (2011) The survival spectrum: the key to transition engineering of complex

systems. In: Proceedings of the ASME international mechanical engineering congress &

exposition

24. Hilty L et al (2006) The relevance of information and communication technologies for

environmental sustainability. Environ Model Software 21(11):1618–1629. doi:10.1016/j.

envsoft.2006.05.007, URL http://www.sciencedirect.com/science/article/pii/

S1364815206001204

25. van Lamsweerde A (2009) Requirements engineering: from system goals to UML models to

software specifications. Wiley, New York. ISBN 13: 978-0470012703

26. Mahaux M, Heymans P, Saval G (2011) Discovering sustainability requirements: an experi-

ence report. In: 17th international working conference on requirements engineering: founda-

tion for software quality

27. Meadows D (1997) Leverage points – places to intervene in a system. http://www.

donellameadows.org/wp-content/userfiles/Leverage_Points.pdf (1999). A shorter version of

this paper appeared in Whole Earth, Winter 1997

28. Mendez D, Penzenstadler B (2014) Artefact-based requirements engineering: the AMDiRE

approach. Requirements Eng J (to appear 2014)

29. Méndez Fernández D, Penzenstadler B, Kuhrmann M, Broy M (2010) A meta model for

artefact-orientation: fundamentals and lessons learned in requirements engineering. In: Model

driven engineering languages and systems, vol 6395, pp 183–197

30. Monk A, Howard S (1998) Methods & tools: the rich picture: a tool for reasoning about work

context. Interactions 5(2):21–30

31. Nuseibeh B (2001) Weaving together requirements and architectures. Computer 34(3):115–

117. doi:10.1109/2.910904, URL http://dx.doi.org/10.1109/2.910904

32. Nuseibeh B, Easterbrook S (2000) Requirements engineering: a roadmap. In: Proceedings of

the conference on the future of software engineering. ACM, New York, pp 35–46

33. Penzenstadler B (2012) Supporting sustainability aspects in software engineering. In: 3rd

international conference on computational sustainability (CompSust)

34. Penzenstadler B, Eckhardt J, Fernandez DM (2013) Two replication studies for evaluating arte

fact models in RE: results and lessons learnt. In: Proceedings of the 3rd international workshop

7 From Requirements Engineering to Green Requirements Engineering 185

http://dx.doi.org/10.1145/1865909.1865918
http://doi.acm.org/10.1145/1865909.1865918
http://doi.acm.org/10.1145/1865909.1865918
http://dx.doi.org/10.1016/j.envsoft.2006.05.007
http://dx.doi.org/10.1016/j.envsoft.2006.05.007
http://www.sciencedirect.com/science/article/pii/S1364815206001204
http://www.sciencedirect.com/science/article/pii/S1364815206001204
http://www.donellameadows.org/wp-content/userfiles/Leverage_Points.pdf
http://www.donellameadows.org/wp-content/userfiles/Leverage_Points.pdf
http://dx.doi.org/10.1109/2.910904
http://dx.doi.org/10.1109/2.910904

on replication in empirical software engineering research (RESER ’13), IEEE, 2013, Balti-
more, MD

35. Penzenstadler B, Femmer H (2012) A generic model for sustainability. Tech. rep., Technische

Universität, München

36. Penzenstadler B, Femmer H (2013) A generic model for sustainability with process and

product-specific instances. In: First international workshop on green in software engineering

and green by software engineering

37. Penzenstadler B, Femmer H, Richardson D (2013) Who is the advocate? Stakeholders for

sustainability. In: 2nd international workshop on green and sustainable software (GREENS), at

ICSE

38. Penzenstadler B, Femmer H, Richardson D (2013) Who is the advocate? Stakeholders for

sustainability. In: 2nd international workshop on green and sustainable software (GREENS), at

ICSE, San Francisco, CA

39. Penzenstadler B, Fernandez DM, Eckhardt J (2013) Understanding the impact of artefact-

based RE – design of a replication study. In: Proceedings of the 7th international symposium

on empirical software engineering and measurement (ESEM ’13), IEEE, 2013, Baltimore, MD

40. Penzenstadler B, Raturi A, Richardson D, Tomlinson B (2014) Safety, security, now sustain-

ability: the non-functional requirement of the 21st century. IEEE Software Spec Issue Green

Software

41. Raturi A, Penzenstadler B, Tomlinson B, Richardson D (2014) Developing a sustainability

non-functional requirements framework. In: under review for GREENS’14
42. Wiegers K (2003) Software requirements, 2nd edn. Microsoft Press, Redmond, WA. ISBN 13:

978-0735618794

43. World Business Council for Sustainable Development: Vision 2050 (2010) A new agenda for

business. http://www.wbcsd.org/WEB/PROJECTS/BZROLE/VISION2050-FULLREPORT_

FINAL.PDF

44. Yu E (2011) Modelling strategic relationships for process reengineering. Soc Model Require-

ments Eng 11

45. Zave P (1997) Classification of research efforts in requirements engineering. ACM Comput

Surv 29(4):315–321

186 B. Penzenstadler

http://www.wbcsd.org/WEB/PROJECTS/BZROLE/VISION2050-FULLREPORT_FINAL.PDF
http://www.wbcsd.org/WEB/PROJECTS/BZROLE/VISION2050-FULLREPORT_FINAL.PDF

Chapter 8

Towards Green Software Testing

Macario Polo

8.1 Introduction

Along the life cycle, testing activities are needed time and time again: during the

initial development, to detect and fix errors in the first release, and later, depending

on the maintenance type, both to detect possible errors introduced in new function-

alities and to check that the previous version remains stable after the maintenance

intervention. So, testing is an essential workflow to ensure software quality, though

it is also time consuming, costly and energy demanding. This chapter discusses how

different approaches of test design, test execution and the selected test requirement

may impact the costs related to testing. The chapter also includes a theoretical

model about the consumption of energy depending on the selected approach.

8.2 Test Requirements

Software testing consists of a series of activities which are carried out along the

whole software life cycle. It is a destructive process whose main goal is to find

errors within the system under test (‘SUT’). Software testing has three main steps:

1. Test design

2. Test execution

3. Result analysis

M. Polo (*)

Department of Information Technologies and Systems, University of Castilla-La Mancha,

Ciudad Real, Spain

e-mail: Macario.Polo@uclm.es

© Springer International Publishing Switzerland 2015

C. Calero, M. Piattini (eds.), Green in Software Engineering,
DOI 10.1007/978-3-319-08581-4_8

187

mailto:Macario.Polo@uclm.es

Test design is carried out taking into account one or more test requirements

which should be fulfilled when test cases are executed. In general terms, a test

requirement refers to some coverage criterion that measures how the test cases run

through some attribute of the SUT: executing all the statements in the source code,

all the decisions and all the conditions; reaching MC/DC (modified condition/

decision); killing all the source code mutants; executing all the scenarios of all

the functional requirements; etc.

The size of the test suite strongly depends on the selected test requirement; in

fact, it is very different to calling once each method in a class that executes with true

and with false every condition in a decision statement.

Consider, for example, the code in Fig. 8.1, which is a Java implementation of

the well-known Triangle-type determination problem [5]: it consists of a class

whose constructor receives three integer numbers as parameters, which are the

lengths of the three sides of a triangle.

The calculateType method assigns the triType field a number between 1 and

4 representing whether the object corresponds to a scalene, isosceles or equilateral

triangle or whether it is not a triangle. This problem is commonly used for teaching

testing, and very often it has been used in software testing literature as a common

benchmark to evaluate testing techniques. The idea is to write test cases to get a

complete test of the class.
The concept of completeness varies from a coverage criterion to another. For

example, if a tester considers to get all the possible outputs of the program (which

corresponds to the Myers cause–effect graph technique), just the four test cases in

Fig. 8.2 are required: if they are executed with JUnit, all of them give a pass verdict,

and, thus, the tester could be convinced of the SUT quality.

However, these four test cases do not visit or only partially visit the lines

highlighted in Fig. 8.3. By partial visit, we mean that not all possible conditions

of a decision are evaluated: for example, the second condition (x+y>z) of the

decision (triType¼¼1 &&x+y>z) is only evaluated when the first one

(triType¼¼1) is true, because both conditions are separated by an and logical

connector.

The same test suite, if executed with a mutation tool, gets a mutation score of

69.29 %, which is far from the desired 100 %. The first mutant generated by the

Bacterio tool [12], for example, holds a fault which remains undiscovered

(Fig. 8.4).

8.3 Impact of the Test Requirement

A coverage criterion C1 subsumes another criterion C2 if for every program, any

test set T that satisfies C1 also satisfies C2 [3]: going through all the program

statements subsumes going through all the methods. Except in the case of an

improbable program with no branches, the number of test cases required for the

latter is less than in the former.

188 M. Polo

Besides the white box coverage criteria (statements, MC/DC, mutation score,

etc.), it is often interesting to measure the degree in which parameter values are

used in test cases.

Suppose, for illustration, a single class which offers a function to convert

magnitudes between different measures (left side of Fig. 8.5). Its convert
(sourceUnit:String, targetUnit:String, magnitude:dou-
ble):double function is capable of converting temperatures (Celsius,
Fahrenheit, Kelvin), lengths (Meters, Yards, Inches, Kilome-
ters, Miles) and weights (Kilograms, Pounds, Ounces). With these

packagebenchmarks;

publicclassTriangle
{

private int x, y, z;
private int triType;
public static intSCALENE = 1, ISOSCELES = 2, EQUILATERAL = 3, NOT_A_TRIANGLE = 4;

publicTriangle(int x, int y, int z) {
this.x=x; this.y=y; this.z=z;
this.triType=0;

}

/**
*
* @return 1 ifscalene; 2 ifisosceles; 3 ifequilateral; 4 ifnot a triangle
*/
public void calculateType() {

if (x==y) {
triType=triType+1;

}
if (x==z) {

triType=triType+2;
}
if (y==z) {

triType=triType+3;
}

if (x<=0 || y<=0 || z<=0) {
triType=NOT_A_TRIANGLE;
return;

}
if (triType==0) {

if (x+y<=z || y+z<=x || x+z<=y) {
triType=NOT_A_TRIANGLE;
return;

} else {
triType=SCALENE;
return;

}
}
if (triType>3) {

triType=EQUILATERAL;
} else if (triType==1 &&x+y>z) {

triType=ISOSCELES;
} else if (triType==2 &&x+z>y) {

triType=ISOSCELES;
} else if (triType==3 &&y+z>x) {

triType=ISOSCELES;
} else {

triType=NOT_A_TRIANGLE;
}

}

public int getType() {
return this.triType;

}
}

Fig. 8.1 A class implementing the Triangle-type determination problem [5]

8 Towards Green Software Testing 189

values in Courier font for the source and target units, some numerical values

for the magnitude and a single spreadsheet, one can quickly generate a good number

of combinations to test the function (right side of Fig. 8.5).

For this very simple function, the problem is the huge number of test cases which

can be generated: there are 11 fixed values for source and target, one addi-

tional for invalid units (e.g. nautical mile or pear or apple) and at least

13 values to consider the boundary values (e.g. �273 �C, which is the Kelvin

absolute zero) and representative values of the equivalence classes of magnitude.
With these values, a completely exhaustive testing would produce

12� 12� 13¼ 1,872 test cases.

This strategy (generating all combinations) is almost never used due to the huge

number of test cases produced, even for testing small programs or functionalities

(consider that, besides the test case generation, tests must be executed and enriched

with an oracle, that is, one or more statements to check whether the system passes or

fails each test case).

For input parameter values, there exist different coverage criteria. Since the goal

of testing is finding errors and many of them appear when the program is executed

with unforeseen value combinations, common criteria are pairwise and n-wise.
Pairwise is fulfilled when all the pairs of values of any two parameters are used at

least in a test case. If we talk of tuples or n elements instead of pairs, we will get

public class TriangleTestAllOutputs extends Test-
Case {

public void testEQUILATERAL() {
Triangle t=newTriangle(5, 5, 5);
t.calculateType();
assertTrue(t.getType()==Triangle.EQUILATERAL);

}

public void testISOSCELES1() {
Triangle t=newTriangle(5, 5, 6);
t.calculateType();
assertTrue(t.getType()==Triangle.ISOSCELES);

}

public void testSCALENE() {
Triangle t=newTriangle(5, 4, 6);
t.calculateType();
assertTrue(t.getType()==Triangle.SCALENE);

}

public void testNOT_A_TRIANGLE1() {
Triangle t=newTriangle(5, 5, 10);
t.calculateType();
assert-

True(t.getType()==Triangle.NOT_A_TRIANGLE);
}

}

Fig. 8.2 A test suite for the Triangle problem, built with the cause–effect technique

190 M. Polo

public void calculateType() {
if (x==y) {

triType=triType+1;
}
if (x==z) {

triType=triType+2;
}
if (y==z) {

triType=triType+3;
}

if (x<=0 || y<=0 || z<=0) {
triType=NOT_A_TRIANGLE;
return;

}
if (triType==0) {

if (x+y<=z || y+z<=x || x+z<=y) {
triType=NOT_A_TRIANGLE;
return;

} else {
triType=SCALENE;
return;

}
}
if (triType>3) {

triType=EQUILATERAL;
} elseif (triType==1 &&x+y>z) {

triType=ISOSCELES;
} elseif (triType==2 &&x+z>y) {

triType=ISOSCELES;
} elseif (triType==3 &&y+z>x) {

triType=ISOSCELES;
} else {

triType=NOT_A_TRIANGLE;
}

}

Fig. 8.3 Visited, unvisited and partially visited statements by test cases in Fig. 8.2

Fig. 8.4 The first mutant of the Triangle class (right) has a fault inserted by the ABS mutation

operator

8 Towards Green Software Testing 191

n-wise coverage. For example, the convert function tested with pairwise requires

only 172 test cases (less than 10 % than all combinations).

For a given set of parameter values, all combinations is the generation strategy

with the highest chance to find errors but also the one which produces more test

cases, usually of an unmanageable size. Although the size of pairwise suites is

lower and their chance of finding errors is high, it is still lower than all combina-
tions. In general, the most effective technique for cost saving is the reduction of test

suites, whilst a given white box coverage is preserved. We will deal hereinafter

with this.

Actually, a coverage criterion can be considered of white box depending on the

‘zoom’ used to test the system: the state machine of a system is a white box view of

such a system, even though not all the branches in the code of the operations called

by transitions or states are called. Consider the Account::transfer operation in

Fig. 8.6, which transfers the amount passed as the first parameter to targetAccount
passed as the second: proposing a test case traversing that transition does not imply

that all the statements in the code are reached.

8.4 Understanding the Cost of Test Execution

Readers who have visited repositories of big projects may have seen the commonly

called nightly builds (Fig. 8.7). They are nearly deployable versions of the respec-

tive systems that are ready to be tested. Since automated test execution may be an

unattended process, which does not require any human intervention, test cases are

often executed at night; the next morning, testers receive the result report, and if

errors are present, they are reported to the developers.

Since the goal of testing is to find errors in the SUT, at a first glance, a test case is

better than another if the former finds more errors than the latter or, in case no errors

are found, if the former reaches more coverage than the latter. For this, it is

Fig. 8.5 The converter class and some test data combinations

192 M. Polo

important, however, to take into account the presence of redundant test cases and

the intersections of the errors discovered or the areas covered by the test cases.

Actually, in regression testing, these two characteristics of the test cases are

strongly considered for selecting the test cases that should be included in a

regression test suite.

In regression testing, old test cases are re-executed against the SUT when a new

version has been released: their goal is to find faults that the maintenance interven-

tion has likely introduced. Since test cases must be executed but also maintained

and kept updated in order to consider the new characteristics, function parameters,

etc., of the new version, it is important to keep them in test suites of a reasonable

size—ideally just a few test cases—but with the same ability to find errors of a large

test suite.

Mutation [1] can help us to understand these ideas. A mutant of the SUT is a

copy of the SUT itself which holds an artificial change inserted in it. These changes

are inserted by tools via mutation operators that try to imitate common faults that

programmers may commit when they write their programs. The most used

public class Account {
...
private double balance;

public int transfer(double amount,
Account other) {

if (balance-amount>=0) {
if (other.isBlocked())

return BLOCKED;
if (pendingCharges())

return PENDING_CHARGES;
other.deposit(amount);
this.withdraw(amount);
return SUCCESS;

} else {
return INSUFFICIENT_BALANCE;

}
}

Fig. 8.6 Behaviour of a supposed banking account

Fig. 8.7 Nightly builds in the websites of Firefox and Eclipse

8 Towards Green Software Testing 193

operators are AOR (arithmetic operator replacement), ROR (relational operator

replacement), UOI (unary operator insertion), ABS (absolute value insertion) and

LCR (logical connector replacement) [6]. Some of the changes these operators

insert actually produce faulty versions of the SUT, whilst others are code optimi-

sations or de-optimisations which are impossible to detect by test cases: the

statement highlighted in Fig. 8.8, for example, is one of these ‘equivalent mutants’.

Mutation has traditionally been used to evaluate the quality of test cases: in fact,

P being a program, M¼ {M1, . . . M100} a set of 100 faulty versions of a program,

and TSA and TSB two test suites for P, TSA will be better than TSB (with respect to

mutation) if it finds more faults on M than TSA (i.e. in mutation vocabulary, if TSA
kills more mutants than TSB). The quality of a test suite is measured as the mutation

score, which is the percentage of nonequivalent mutants killed (Fig. 8.9).

From the execution of a test suite against a set of mutants, the tester gets what is

called a ‘killing matrix’: rows are labelled with mutants and columns with test

cases. A filled-in cell represents that the test case in the column has found the fault

inserted in the mutant in the row (i.e. the test case has killed the mutant). For the

sake of understanding, Fig. 8.10 shows the two killing matrices of two test suites

that exercise the same SUT. Assuming that equivalent mutants have been removed,

TSA is better than TSB because their respective mutation scores are 0.9 and 0.4.

However, TSB finds the fault inserted in m10, which is not discovered by the other.

Regarding individual test cases, tA2 is the best in both test suites, since it finds

five of the ten artificial errors. Note also that tB3 is a useless test case, since it does

not discover any error. On the other hand, m7 is a very good fault, in the sense that it

has not been discovered by any test case.

A very interesting observation is in the presence of redundant test cases: from the

mutation testing point of view, a test case is redundant with respect to another if all

the mutants it kills are also killed by another test case; so, K(t) being the set of

mutants killed by test case t, ti is redundant with respect to tj if K(ti) � K(tj). In the

test suite TSA of Fig. 8.8, tA3 subsumes tA4, since the two mutants killed by the latter

(m4 and m6) are also killed by the former (m4, m5 and m6). In TSB, no test case

subsumes any other.

This approach is extensible to any other test requirement or coverage criterion:

think about source code lines, conditions or decisions: a test requirement/test case
matrix can be built to extract a reduced-size test suite. Since test cases must be

Fig. 8.8 One of the equivalent mutants obtained for the Triangle problem

194 M. Polo

executed, validated and maintained, it is essential to keep under control the test

requirement achieved by each test case.

8.4.1 Algorithms for Test Suite Reduction

The optimal test suite reduction problem (i.e. the problem of extracting a subset TSR

of a test suite TS whose size is the minimum possible whilst the test requirements of

TSR are the same as TS) is NP-hard, and thus, methods for test suite reduction are

based on greedy algorithms, which find good solutions in a polynomial time.

In a recent paper, Polo et al. [11] describe an effective algorithm to reduce a test

suite based on mutation. Consider the killing matrix on the left side of Fig. 8.10: this

greedy algorithm starts by adding the test case in TSA that kills more mutants than

TSRA (in this example, tA2); then, it removes K(tA2) from the set of mutants and

continues iterating with the next test case killing more mutants. The algorithm stops

when all the mutants TS are also killed by TSR. Thus, applied to that killing matrix,

the algorithm evolves according to Fig. 8.11.

But the test requirement for a test case selection can be any one: coverage of

sentences, blocks, paths, number of mutants killed or, even, a combination of two or

more. In this sense, Harrold, Gupta and Sofa [2] give a greedy algorithm (usually

referred to as HGS) for reducing the suite of test cases into another one, preserving

P : program under test
T : test suite
K : number of killed mutants
M : number of generated mutants
E : number of equivalent mutants

Fig. 8.9 Mutation score

TSA
tA1 tA2 tA3 tA4

m1 X X

m2 X X

m3 X
m4 X X

m5 X

m6 X X X
m7
m8 X X X

m9 X
m10

TSB
tB1 tB2 tB3 tB4

m1 X

m2
m3 X
m4 X X

m5 X

m6
m7
m8
m9
m10 X

Fig. 8.10 Possible killing

matrices of test suites TSA
and TSB

8 Towards Green Software Testing 195

the fulfilment of the test requirements (in general, two different coverage criteria)

reached by the original suite. The main steps of this algorithm are as follows:

1. Initially, all the test requirements are unmarked.

2. Add to TSR those test cases that only exercise a test requirement. Mark the

requirements covered by the selected test cases.

3. Order the unmarked requirements according to the cardinality of the set of test

cases exercising one requirement. If several requirements are tied (since the sets

of test cases exercising them have the same cardinality), select the test case that

would mark the highest number of unmarked requirements tied for this cardi-

nality. If multiple such test cases are tied, break the tie in favour of the test case

that would mark the highest number of requirements with testing sets of suc-

cessively higher cardinalities; if the highest cardinality is reached and some test

cases are still tied, arbitrarily select a test case from among those tied. Mark the

requirements exercised by the selected test. Remove test cases that become

redundant as they no longer cover any of the unmarked requirements.

4. Repeat the above step until all testing requirements are marked.

Gupta continued improving this algorithm with other collaborators:

• With Jeffrey [3], he added ‘selective redundancy’ to the algorithm. ‘Selective

redundancy’ makes it possible to select test cases that, for any given test

requirement, provide the same coverage as another previously selected test

case, but that adds the coverage of a new, different test requirement. Thus,

maybe TR reaches the all-branches criterion but not def-uses; therefore, a new

test case t can be added to TR if it increases the coverage of the def-uses

requirement: now, TR will not increase the all-branches criterion, but it will do

with def-uses.

tA1 tA2 tA3 tA4

m1 X X
m2 X X
m3 X
m4 X X
m5 X
m6 X X X
m7
m8 X X X
m9 X
m10

tA1 tA3 tA4

m4 X X
m5 X
m7
m9 X
m10

tA1 tA4

m7
m9 X
m10

tA4

m7
m10

TSR={tA2} TSR={tA2, tA3}
TSR={tA2, tA3,

tA1}
TSR={tA2, tA3,

tA1}

Fig. 8.11 Getting a reduced test suite from a whole killing matrix

196 M. Polo

• With Tallam [13], test case selection is based on concept analysis techniques.

According to the authors, this version achieves the same size or smaller size

reduced test suites than prior heuristics as well as a similar time performance.

As a proof of the impact of test suite reduction on cost savings, Table 8.1 shows

some reductions for several small programs that have commonly been used in

software testing literature [6–10]: the third column represents the size of the

original test suite used to test the corresponding program; the fourth is the size of

the reduced suite.

8.4.2 Test Case Execution Algorithms

For illustrative purposes only, Fig. 8.12 shows an excerpt of the killing matrix

produced by a test suite composed by 343 automatically generated test cases for the

Triangle-type determination problem. For this figure, we generated

114 nonequivalent mutants using the Bacterio tool. In Bacterio, cells with

X represent killed mutants, and cells with O denote that the corresponding test

case has visited, but not killed, the statement mutated in the corresponding mutant.

To produce this matrix, Bacterio has executed each of the 343 test cases against the

114 mutants generated: this means that it has made 343� 114¼ 39,102 executions.

We already know that test suite reduction is an excellent tool to avoid the costly

tasks of test case execution and re-execution. To allow reduction algorithms (such

as those reviewed in the previous section) to get their best results, a complete

execution of all test cases against all mutants is required. Note in the zoomed part of

Fig. 8.9 that the mutant 100 is ‘killed and killed and again killed’ by one test case

and another: from the mutation testing point of view, if a test case discovers the

fault inserted in a mutant, this one can be removed from the mutant set, thus

avoiding the execution of test cases that attempt to find previously discovered

faults. From any other testing criterion point of view, if a test case already exercises

a certain area of the program under test, writing a test to go over that very same area

could be avoided (when feasible).

Without leaving the killing matrices, there exist different execution algorithms

that fill in the matrix in several ways. The goal of these algorithms is to decrease the

cost of test case execution by preventing the execution of test cases against already

killed mutants. In the context of any other test requirement, the idea is to prevent the

execution of test cases to reach a previously fulfilled test requirement. In the

Table 8.1 Reduction of the

test suite size in some small

benchmark programs

Program LOC # of mutants |TS| |TSR|

Bisect 31 44 25 2 (8 %)

Fourballs 47 168 96 5 (5.2 %)

Mid 59 138 125 5 (4 %)

TriTyp 61 239 216 17 (7.8 %)

8 Towards Green Software Testing 197

highlighted part of Fig. 8.12 and since the first test case kills version100, all the
subsequent executions of test cases against this version could be avoided.

Good execution algorithms fill in the test requirement/test case matrix by rows.

Revisiting the example of the TSA test suite in Fig. 8.10, the testing tool executes

tA1 against m1; since it is killed, the tool stops launching more test cases against it

and takes m1 out from the mutant set. The same happens with m2, m8 and m9: they

are killed and no more attempts to kill them will be made. In a second iteration, the

testing tool starts to execute tA2 directly against m3. The process continues this way

until all mutants are attempted to be killed. In Fig. 8.13, only 24 executions are

required instead of the 40 of a full test.

When applying this execution algorithm to the Triangle problem, filling in the

killing matrix by rows requires 1,037 test case executions instead of 39,102 (i.e. it

reduces down to 2.66 %). Moreover, a greedy algorithm may be applied to reduce

the test suite size. Bacterio implements one of these algorithms, obtaining that only

27 test cases are required to get the same mutation score results than the 343 original

test cases. So, for regression testing, the tester may only consider the 27 test cases

selected. Moreover, if he or she executes them against the system with a time-

saving execution algorithm for filling in by rows, only 335 executions will be

needed, being 0.08 % of the original number (39,102). The new application of the

same reduction algorithms will not improve the results at all.

Although our running example is small, redundancy of test cases or overlapping

of test requirements is common also in large systems. Thus, an adequate policy of

test case execution may reduce regression testing costs by almost 99 %, with the

corresponding savings in energy.

Fig. 8.12 A fragment of the killing matrix for a test suite for the Triangle problem and a detail

198 M. Polo

8.5 Understanding the Costs of Test Design

Test design is the task devoted to the design of test cases to fulfil some test

requirement that, as already mentioned, commonly corresponds to a coverage

criterion.

Testers use coverage criteria mainly for (1) discovering the areas of the system

which are not exercised by test cases and (2) building test cases that, now, do go

over these unexplored areas. In another sense, the coverage reached by a test suite

that does not find any error in the SUT is an indirect measure of the SUT quality: if I

completely execute the SUT with the most strict coverage criterion and I do not find

any error, then probably the SUT is free of them.

Typically, a testing team receives a system to be tested together with a document

explaining its functionalities. Probably after a first contact with a cycle of smoke

testing, the team starts to iteratively design test cases for a given functionality.

Testing methodologies, such as TMap Next [4], suggest to start test design with test

cases having high and early probability of finding errors. In general, when a test

case finds a hidden, very difficult to detect fault, that very same test case will

probably find many others. Consider, for instance, the full test killing matrix

already used in Fig. 8.10, which is reproduced on the left side of Fig. 8.14: there

were two faults (m7 and m10) that remained hidden for the test suite. Suppose now

the tester focuses on m7 and adds a specific test case (tA5, added on the right side of

the figure) for finding it (i.e. to kill that mutant). It is very likely this new test case

will also find many other errors: in this artificial example, tA5 not only finds the fault

for which detection has been designed but also m10 and others that were also

detected by other cases in the test suite.

Considering code metrics and code coverage criteria, testers should first design

test cases to reach those statements with a deeper nesting level (Fig. 8.15).

TSA
tA1 tA2 tA3 tA4

m1 X
m2 X
m3 X
m4 X
m5 X
m6 X
m7
m8 X
m9 X
m10

Fig. 8.13 Killing matrix

proceeding from filling in

by rows

8 Towards Green Software Testing 199

8.6 A Theoretical Model for Testing Cost and Energy

Consumption

Consider a system S composed of a set of classes {A, B, C, D, E} and a suitable test
suite TS with n test cases: TS¼ {tc1, tc2, . . . tcn}. Suppose that, for each class in S,
we have a set of mutants M¼ {MA, MB, MC, MD, ME}. The number of mutants

generated for each class is, respectively, a, b, c, d and e. This is

MA ¼ MA
1, MA

2, MA
3, . . . MA

a
� �

MB ¼ MB
1, MB

2, MB
3, . . . MB

a
� �

MC ¼ MC
1, MC

2, MC
3, . . . MC

a
� �

MD ¼ MD
1, MD

2, MD
3, . . . MD

a
� �

ME ¼ ME
1, ME

2, ME
3, . . . ME

a
� �

Finally, for doing mutation testing with TS against S, we must generate mutated

versions of S, each one containing one class mutant. So, the set of mutated versions

V is

TSA

tA1 tA2 tA3 tA4

m1 X X
m2 X X
m3 X
m4 X X
m5 X
m6 X X X
m7
m8 X X X
m9 X
m10

TSA

tA1 tA2 tA3 tA4 tA5

m1 X X
m2 X X X
m3 X X
m4 X X X
m5 X
m6 X X X X
m7 X
m8 X X X X
m9 X
m10 X

Fig. 8.14 Finding a

difficult fault helps to find

many others

if (A) {
m1();
if (B) {

m2();
if (C) {

m3();
while (D) {

m4();
m5();

}
}

}
}

Fig. 8.15 Reaching the

highlighted statement

requires reaching all the

others

200 M. Polo

V={
{MA

1, B, C, D, E},
{MA

2, B, C, D, E},
…
{MA

a, B, C, D, E},
…
{A, MB

1, C, D, E},
…
{A, B, MC

1, D, E},
…
{A, B, MC

c, D, E},
…
{A, B, C, D, ME

1},
…
{A, B, C, D, ME

e}
}

Each class contributes to the number of versions with its corresponding number

of mutants. For the system in Table 8.2, composed of three classes with, respec-

tively, 3, 4 and 2 class mutants, the number of mutant versions is 3 + 4 + 2¼ 9.

v1 (the first mutated version of S) is composed of the first generated mutant of the

A class and the original versions of the remaining classes B, C, D and E. The last

mutated system version is composed by the original classes A, B, C and D, plus the
last mutant generated for E(ME

e). Since there are a mutants for A, b for B, etc., the
total number of mutant versions is |V|¼ a+ b + c+ d + e.

8.6.1 Testing the First Release

If we want to fill in the whole killing matrix for the first system release, we need to

perform a full execution of all the test cases against all the mutant versions. The

total cost of this activity is

cost S, V, TSð Þ ¼ TSj j � Vj j ¼ TSj j � aþ bþ cþ d þ eð Þ

Having the full killing matrix, we can get a test suite TSR, proceeding from the

reduction of TS. The size of TSR will be equal or lower to that of TS:

Table 8.2 A sample system with three classes A, B, C and, respectively, 3, 4 and 2 mutants

Original system and mutants System versions, each with a class mutant

S¼ {A, B, C}
A mutants¼ {A1, A2, A3}

B mutants¼ {B1, B2, B3, B4}

C mutants¼ {C1, C2}

V1¼ {A1, B, C}
V2¼ {A2, B, C}
V3¼ {A3, B, C}

V4¼ {A, B1, C}
V5¼ {A, B2, C}
V6¼ {A, B3, C}
V7¼ {A, B4, C}

V8¼ {A, B, C1}

V9¼ {A, B, C2}

8 Towards Green Software Testing 201

TSRj j ¼ α� TSj j, 0 � α � 1

The cost of using TSR for testing S is

cost S;V; TSRð Þ ¼ α� cost S, V, TSð Þ ¼ TSRj j � Vj j � TSj j � Vj j

8.6.2 Testing a Corrected Release

Suppose that users detect bugs in S that must be fixed. So, the development team

carries out a corrective maintenance intervention and produces Sc, a corrected
version of S. In general, corrective interventions affect just small pieces of the

code. For this example, let us assume that A is the only class modified. Since the

code of A has changed, the previous Amutants are no longer valid, and new mutants

must be generated for this class. We can ignore the cost of mutant generation (it is

actually very low compared to others) and put our focus on the costs of test

execution. We need only to execute the reduced test suite against V. The cost of

this execution is

cost Sc, V, TSRð Þ ¼ TSRj j � Vj j

8.6.3 Testing a Perfective Release

The addition of a new functionality introduces major changes in the system, likely

with new classes and modifications in the previous release. Supposing E has

changed and F, G have been added, the perfective system is

Sp ¼ S � Ef g [F, Gf g ¼ A, B, C, D, E, F, Gf g

So, a new set of mutants must be generated for E’, F and G:

M
; ¼ M � MEf g [ME

;f g [MF, MGf g

Since M changes, also does V:

V
; ¼ V � vi

�� vi containsME
j

� � [Vp,

where Vp is the set of new versions containing mutant proceedings from the

classes added or modified:

202 M. Polo

Vp ¼ vi
�� vi containsmutants inME

; j orMF
j orMG

j
� �

Consider (see Fig. 8.16) that TSR is still valid for A, B, C, D and E’ but that new test

cases are required for the changing parts of E’, for F and for G. That is, TSR’¼ TSR
[TSE’FG.

With these considerations, the testing cost is

cost Sp, V
;
, TSR [TSE;

FGð Þ ¼ ��TSR
��� Vj j þ TSE;

FGj j � Vp

�� ��

8.6.4 Example

Let S be a system with 10 classes and 10,000 class mutants. For simplicity, let us

consider that there are 1,000 mutants of each class. Consider also that the initial test

suite holds 200 test cases (50 mutants per test case):

cost S, V, TSð Þ ¼ 10, 000 � 200 ¼ 2, 000, 000units

Although it depends on how test cases have been built, a mean test suite

reduction rate may be around 12 % of the original test suite. So, the reduced test

suite would have 0.12� 200¼ 24 test cases. So, the future cost of regression testing
(applicable after corrective maintenance interventions) will be

cost S, V, TSRð Þ ¼ 10, 000 � 24 ¼ 240, 000units

Suppose the system is extended with new functionalities: one existing class X is

modified to X’ and three are added. The number of new versions is

V
;j j ¼ Vj j � MXj j þ MXj j þ 3� 1000ð Þ ¼ 10, 000 � 1, 000 þ 1, 000 þ 3, 000
¼ 13, 000

For killing the new 3,000 versions, we require 3,000/50¼ 60 new test cases (note

that we have no reduction at this moment for the new three classes). The total

testing cost is

cost ¼ 240, 000 þ 60 � 3, 000 ¼ 420, 000units

After this, a new reduction can be made that will only affect the new 60 test

cases. Assuming also a reduction rate of 0.12, this results in 60� 0.12¼ 7 test

TSR TSE’FG

A B C D E’ F G

Fig. 8.16 TSR is valid for

A–E’; TSE’FG is needed for

E’, F and G

8 Towards Green Software Testing 203

cases. The new whole reduced test suite will have the 24 previous test cases plus

these 7. So, the execution cost of future corrective releases will be

cost ¼ 240, 000 þ 7 � 2000 ¼ 254, 000units

8.7 Conclusions

From the point of view of energy consumption, test case execution is the most

expensive task: mutant generation (if the mutation score is used as the coverage

criterion) and test suite reduction are almost insignificant, as well as test case

generation (since test cases can be generated with automated tools). Test case

execution, however, implies CPUs working hard for significant amounts of time.

So, the application of test suite reduction algorithms and the introduction of other

control mechanisms (such as controlling what test cases fulfil every test require-

ment, e.g. controlling what test cases cover each mutant cluster) may lead to

important cost and energy savings. Although cost and energy savings may be

small for a single project, data centre managers may realise the benefits of applying

smart policies of test case management in their project portfolios.

References

1. DeMillo RA et al (1978) Hints on test data selection: help for the practicing programmer.

Computer 11(4):34–41

2. Harrold MJ et al (1990) A methodology for controlling the size of a test suite. In: Conference

on software maintenance, 1990, Proceedings, pp 302–310

3. Jeffrey D, Gupta R (2005) Test suite reduction with selective redundancy. In: Proceedings of

the 21st IEEE international conference on software maintenance, 2005. ICSM’05, pp 549–558

4. Koomen T (2006) TMap Next for result-driven testing. UTN, ’s-Hertogenbosch

5. Myers GJ (2004) The art of software testing, 2nd edn. Wiley, Hoboken, NJ

6. Offutt AJ et al (1996) An experimental determination of sufficient mutant operators. ACM

Trans Software Eng Methodol 5(2):99–118

7. Offutt AJ et al (1996) An experimental evaluation of data flow and mutation testing. Softw

Pract Experience 26(2):265–176

8. Offutt AJ, Lee SD (1994) An empirical evaluation of weak mutation. IEEE Trans Software

Eng 20:337–344

9. Pargas RP et al (1999) Test-data generation using genetic algorithms. Software Test Verifica-

tion Reliab 9(4):263–282

10. Polo M et al (2009) Decreasing the cost of mutation testing with second-order mutants.

Software Test Verification Reliab 19(2):111–131

11. PoloM et al (2012) Reduction of test suites usingmutation. In: Proceedings of the 15th international

conference on fundamental approaches to software engineering. Springer, Berlin, pp 425–438

12. Reales P, Polo M (2012) Bacterio: Java mutation testing tool: a framework to evaluate quality of

tests cases. In: 28th IEEE international conference on software maintenance (ICSM), pp 646–649

13. Tallam S, Gupta N (2005) A concept analysis inspired greedy algorithm for test suite

minimization. In: Proceedings of the 6th ACM SIGPLAN-SIGSOFT workshop on program

analysis for software tools and engineering. ACM, New York, pp 35–42

204 M. Polo

Chapter 9

Green Software Maintenance

Ignacio Garcı́a-Rodrı́guez de Guzmán, Mario Piattini,

and Ricardo Pérez-Castillo

9.1 Introduction

The most important development stage (requirements, analysis, design, etc.) for

each software practitioner is probably the one in which the practitioner is involved.

There is one irrefutable fact, however: the software maintenance stage is the most

time- and cost-consuming (up to 80 %). The time spent in software development is

usually within the boundaries imposed by project planning, but the maintenance

stage is not limited, and it will be running along with the software until its removal.

According to [8], software maintenance can be defined “as the totality of

activities required to provide cost-effective support to software”; to a great extent,

software maintenance will be more or less cost- and time-consuming depending on

the quality of the product when it was delivered, as well as on the software and

hardware updates, new functionalities required by the stakeholders, etc.

Software maintenance is fully described in the ISO/IEC 14764 standard [11] as a

software process that “. . . begins with Process Implementation where planning for

maintenance is performed and ends with the retirement of the software product. It

includes modification of code and documentation due to a problem or need for

I. Garcı́a-Rodrı́guez de Guzmán (*)

Institute of Information Technologies and Systems, University of Castilla-La Mancha,

Ciudad Real, Spain

e-mail: Ignacio.GRodriguez@uclm.es

M. Piattini

Department of Information Technologies and Systems, University of Castilla-La Mancha,

Ciudad Real, Spain

e-mail: Mario.Piattini@uclm.es

R. Pérez-Castillo

Itestra GmbH, Madrid, Spain

e-mail: perez@itestra.com

© Springer International Publishing Switzerland 2015

C. Calero, M. Piattini (eds.), Green in Software Engineering,
DOI 10.1007/978-3-319-08581-4_9

205

mailto:Ignacio.GRodriguez@uclm.es
mailto:Mario.Piattini@uclm.es
mailto:perez@itestra.com

improvement. The objective of the Maintenance Process is to modify an existing

software product while preserving its integrity. . .” This standard [11] also identifies
four types of software maintenance:

• Corrective maintenance: Modifications made necessary by actual errors in a

software product. If the software product does not meet its requirements, cor-

rective maintenance is performed.

• Preventive maintenance: Modifications made necessary by detecting potential

errors in a software product.

• Adaptive maintenance: Modifications to implement new system interface

requirements, new system requirements or new hardware requirements.

• Perfective maintenance: Providing new functionality improvements for users; it

might also be reverse engineering either to create maintenance documentation

that did not exist previously or to modify existing documentation.

Software maintenance could be carried out with more or less effort depending on

the relative ease with which the system can be maintained, that is, on the main-

tainability quality attribute. According to ISO 25000 [12], maintainability is one of

the six quality characteristics of a software product. Maintainability, in turn, is built

up by means of five sub-characteristics (modularity, reusability, analyzability,

modifiability, and testability). Many efforts in this stage will be focused on the

improvement of this quality characteristic.

Despite the fact that software maintenance is a very well-known process which

has a lot of research and knowledge at its disposal, new challenges that must be

addressed in the maintenance phase are arising today. People are becoming sensi-

tive to the current environmental problems that IT is helping to cause due to its

direct impact. There are three main degrees of impact on the environment that IT

causes [21]: first-order impacts are environmental effects that result from produc-

tion and use of ICT, i.e. resource use and pollution from mining, hardware produc-

tion, power consumption during usage, and disposal of electronic equipment waste;

second-order impacts are effects that result indirectly from using ICT, like energy

and resource conservation by process optimisation (dematerialisation effects), or

resource conservation by substitution of material products with their immaterial

counterparts (substitution effects); and third-order impacts are long-term indirect

effects on the environment that result from ICT usage, like changing life styles that

promote faster economic growth and, at worst, outweigh the formerly achieved

savings (rebound effects).

Interest in designing and implementing Green IT solutions has therefore been

increasing dramatically over the past few years [19]. A main driving force behind

this green movement is IT’s rapidly rising energy demands, due to the growing

global adoption of computing services [20].

New models and proposals are appearing in the quest to produce sustainable

software [21], but there is an issue here that cannot be ignored: the huge amount of

complex information systems running nowadays in all organizations. Most of them

have probably been developed following a classical approach (i.e., not a green
software engineering [21]). As a consequence, these software systems would not be

206 I. Garcı́a-Rodrı́guez de Guzmán et al.

sensitive about any kind of impact on the environment and are thus not considered

as Green IT.

So the question is: “Is there any chance of all these systems becoming more

environment-friendly?” Maintenance arises as a possible answer to this question.

Classical maintenance activities allow the improvement of software quality char-

acteristics [12]; maintenance, in turn, would also be helpful in improving

greenability for those legacy systems that have not been developed following

green approaches.

The maintenance process deals with legacy systems by means of software
refactoring. A refactoring is a correctness-preserving transformation that improves

the quality of the software without altering the semantics [17] or functionality.

There is not much research about what to do with non-green legacy systems, but the
maintenance process would be the best candidate for dealing with non-green

software systems in an effort to improve their degree of greenability.

This chapter intends to outline a definition for green maintenance and discusses

possible ways of undertaking the improvement of software greenability in the

maintenance process. The state of the art is low, which means that it is essential

to establish mechanisms to deal with existing software systems that have not been

developed under green principles. The first step outlined in this work therefore

consists of exploring the effects of classical maintenance issues (refactoring soft-

ware flaws) on greenability. We propose not to consider green maintenance as a

separate kind of maintenance but rather to integrate it with the classical type. Their

aim is to find out how to combine both sorts of maintenance in such a way as to

avoid side effects when applying refactoring to improve greenability or another

software quality [12].

In addition, as technical debt [4, 16] influences classic software maintenance, a

new concept is proposed: ecological debt. Ecological debt is intended to measure

the cost of not undertaking green software maintenance to improve the greenability

quality characteristic of a software system. The relationship between ecological and

technical debts is analyzed, along with their relationship with classical and green

software maintenance.

The remainder of this chapter is organized as follows: Sect. 9.2 analyzes

classical and green maintenance, the possible relationship between them, and

how they should be considered together; Sect. 9.3 discusses some of the typical

software flaws that are solved in classical maintenance and how these could also be

considered for green maintenance; Sect. 9.4 discusses software debt as a concept

that is closely related to software maintenance and outlines how a new concept,

ecological debt, should be considered as a possible way of measuring the

greenability improvements that remain to be carried out in software; Sect. 9.5

presents a case study about how refactoring bad smells would have a direct impact

on software greenability; finally, Sect. 9.6 draws a few conclusions summarizing

the ideas presented in this chapter.

9 Green Software Maintenance 207

9.2 Greening Software Maintenance: A New Facet

for a Classical Process

9.2.1 Existing Proposals

Software maintenance only focuses on preserving software functionality

(or including additional functionalities when needed) through the analysis, modifi-

cation, and improvement of either system source code or its associated documen-

tation. In this definition, there is no evidence either about software greenability or of

any of its areas of impact. This being so, an important question arises: “Is there any

sense in stating the basis for green and sustainable software engineering when there

is such a vast amount of software systems running that have not met their ROI?”

The answer should be yes, because in spite of the fact that most software systems

have not been developed according to the basic principles of green and sustainable
engineering, we cannot ignore the numbers: “the approximate energy consumption

of U.S. data centers increased from 28 billion kWh in 2000 to 61 billion kWh in

2006. Meanwhile, estimations rose from 58 billion kWh in 2000 to 123 billion kWh

in 2005 on a global scale” [21]. The current software systems must be “maintained”

to obtain new versions with a higher degree of greenability; unfortunately, tradi-

tional software maintenance does not deal with this kind of quality improvement.

Despite green software maintenance being a fast-growing research area, the

concept of “green software maintenance” or “sustainable maintenance” is men-

tioned in only a few papers [21, 24]. There is a lack of work that can serve as a

reference point, and the few papers that do exist offer a description of “green

maintenance” that is very far from the basis of “classical maintenance”.

In [21], the authors present the GREENSOFT model, where green and sustain-

able software is described, along with the corresponding engineering process.

Focusing on the software development stage of the subject of this chapter, the

GREENSOFT model considers a usage phase, where impact that comes about as a

result of deploying, using, and maintaining the software product is considered. As

the proposal states, different activities are carried out in this stage: installation of

software patches or updates, configuration of software systems, training of

employees in regard to proper software usage (well-trained employees carry out

their tasks faster, which entails lower power consumption), configuration of the

software system to consume less power or just switching their computer to suspend

mode when they leave. Other energy- and resource-consuming issues, such as the

connection to services provided by other servers or the replacement of old hardware

(because the updating of the software systems installed requires more powerful

equipment), are considered in the usage (maintenance) phase of this proposal.

The green software development model [24] proposes a new approach for the

software development life cycle. This proposal focuses on what should be consid-

ered in each phase of the development process (requirements gathering, design,

implementation, testing, deployment, and maintenance) to produce software in an

environment-friendly way. This approach considers some of the classical

208 I. Garcı́a-Rodrı́guez de Guzmán et al.

maintenance issues such as fixing bugs, fine-tuning the system, implementation of

new features, etc. From the green point of view, the authors propose (1) using

electronic documentation instead of paper-based documentation and (2) not using

reverse engineering or any technique based on disassembling the software system,

since these are time- and power-consuming activities. To reduce the impact of the

previous point, we need to try to (3) involve the development team in maintenance.

Maintenance thus speeds up, since the maintenance team becomes familiar with the

system to be maintained; the authors also propose (4) trying to avoid software

system migration, since it leads to disposal of legacy hardware and devices, along

with disposal of old technology, and (5) building the system in such a way as to be

adaptable to new technologies, devices, and hardware equipment.

Having reviewed the scarce documentation about the topic, we see that the initial

ideal of green software maintenance seems to be slightly distorted. The ideas

presented in this section do not improve software greenability or reduce power

consumption. The aforementioned proposals are good practices that make for a

more environment-friendly maintenance stage (reducing paper consumption, train-

ing users to carry out their tasks more quickly, also using fewer resources, avoiding

refactoring and reengineering, etc.). Do these practices actually improve software

greenability, however? The answer is “no”. The fact is that reducing power

consumption is not directly affected by any of these useful approaches: “greening

software maintenance” is not the same as “maintenance to make software greener.”

The second idea fits better with the maintenance concept set forth in the ISO/IEC

14764 standard [10], where maintenance is the process intended to improve the

quality of a software product. Considering greenability as a software quality

characteristic for measuring the degree to which a software product has appropriate

power consumption, software maintenance is the only way to reach such improve-

ment through software transformation. Keeping such an idea in mind, we therefore

speak about green software maintenance or we refer to those tasks undertaken

during software maintenance to improve greenability in an effort to obtain new

versions of a given system while at the same time improving power consumption.

9.2.2 Green Software Maintenance: A First Approach

The approaches mentioned above do not lack grounds, but it is important to look at

maintenance from all points of view if we are to provide a proper definition of what

exactly green software maintenance is.
Software configuration and optimization, user training, and software manage-

ment are the main activities in the software maintenance (and deployment) stage.

Nonetheless, from a software engineering point of view, software evolution is also

an inevitable activity (according to Lehman’s laws [15]), which occurs alongside

software maintenance.

9 Green Software Maintenance 209

This assumption leads us to the fact that software maintenance implies software

evolution, so suitable tools and techniques must be provided. To enable such an

evolution, the system can be modified, improved, and manipulated and be the

subject of any kind of actions that imply dealing with the source code and the

associated documentation. In the best circumstances, software evolution is carried

out by accessing the module or class that must be improved and updating the

corresponding documentation. However, in the real world, most systems are not

in such a situation. In general, when systems have not been developed in the recent

past, source code and documentation (if that documentation exists) are not aligned,

and there is no evidence about what process is being executed by this software
[22]. Such misalignment is often produced by the natural ageing of software

systems [26]. Classical software maintenance is therefore in charge of dealing

with all these situations, attempting to improve the software quality of existing

software systems.

At this point, if the classical software maintenance process deals with a given

kind of software issues that arise during the operational life of the software system,

what should we consider as green software maintenance?
When a system has been developed under the principles of green software

engineering [21], green software maintenance makes sense in the way that it

preserves functionality as well as the greenability characteristic of the software

system. That said, we ought to consider what is going on with the vast amount of

existing software systems which have not been developed following greenability

principles. In this case, green maintenance (as a facet of the software maintenance

stage) must undertake all the required changes to improve the greenability quality

characteristic of the system. In this sense, the green software maintenance carried

out on this kind of systems would address, for example, the improvement of power

consumption.

So, since the classical software maintenance perspective is well defined by

means of the existing standard, the green software maintenance perspective should

now be established. The following definition is inspired by the one proposed in

[11]: “green maintenance is performed during all the software working cycle and

ends with the retirement of the software product, undertaking at this point all the

required activities to reduce the environmental impact of the retired software. It

includes modification of code and documentation in order to solve possible devi-

ation of the greenability requirements (or the implementation of a new ones),

without modifying the original functionality of the source code.” This definition

takes into account that green maintenance must (1) be carried out throughout the

whole software life cycle, (2) preserve the original functionality of the software

system, (3) preserve the sustainable requirements of the system, and (4) include the

new ones (e.g., for systems which had not initially been developed following the

principles of green and sustainable software engineering).

It is now possible to consider a new maintenance process in which classical

maintenance issues, as well as greenability requirements, are taken into account

(see Fig. 9.1).

210 I. Garcı́a-Rodrı́guez de Guzmán et al.

Unfortunately, the problem is not as easy as considering a global process with

two subsets of activities, each one dealing with a different concern. As far as we

know, there are no studies dealing with this precise problem, but it is possible to

find some research work that addresses the issue of the relationship between green

requirements and software maintainability. In [23], the authors analyze the conse-

quences of applying refactoring to solve the god-class design anti-pattern. Although

this case study is discussed in depth in the following sections, the most important

conclusion is the fact that improving the software maintainability attribute [12] may

worsen the greenability quality characteristic of a system and vice versa (see

Fig. 9.1).

In spite of the fact that classical maintenance and green software maintenance

should be considered as a whole process, there does in fact exist a crossroad where

the most suitable balance between maintainability and greenability can be

decided on.

At the maintenance stage, the most important quality characteristic is maintain-

ability (degree of effectiveness and efficiency with which a product or system can be
modified by the intended maintainers [12]). Maintainability states the degree of

straightforwardness in carrying out maintenance. Maintenance is a high-level

quality characteristic, and other sub-characteristics [12] to measure the different

facets of maintainability are thus defined in the standard: modularity, reusability,

analysability, modifiability, and testability. Good values for these

sub-characteristics make maintenance easier and cheaper.

On the other hand, greenability can be considered as the degree of environmental

friendliness of a software system, based on its power consumption. A high value for

this characteristic implies low power consumption. As occurs in software measure-

ment, the most important problem when measuring a quality characteristic has to do

with thresholds. What is considered a good value? Are values of greenability valid

for any kind of software, regardless of its size or working domain? While a lot of

research about thresholds in software measurement has been carried out,

greenability lacks these reference values.

Fig. 9.1 Unified concept of software maintenance and the crossroad between quality

characteristics

9 Green Software Maintenance 211

The crossroad between classical maintenance and green software maintenance

mentioned above can be transferred to a trade-off problem between maintainability

and greenability. Improving a sub-characteristic of maintainability can affect

greenability positively, negatively [23] or not at all. On the other hand, if the

greenability of a software system is improved during maintenance, maintainability

may worsen. It is essential to conduct experiments in order to figure out what kind

of implication the improvement of a sub-characteristic of maintainability has on

greenability. At the moment, it is only possible to predict an implication between

maintainability and greenability (see Table 9.1).

Table 9.1 presents the hypothetical relationship between greenability and main-

tainability. Since maintainability is a coarse-grained concept, the relationship is

established between greenability and the sub-characteristics of maintainability. For

each sub-characteristic, whether or not there exists a possible relationship with

greenability is considered, but it is not clear to what extent the relationship is

positive or negative (i.e., if by increasing one, the second is positively affected or

the opposite). For example, the modularity sub-characteristic (“degree to which a

system or computer program is composed of discrete components such that a

change to one component has minimal impact on other components” [12]) is likely

to be related to greenability for two reasons:

• Modularization implies more items to build up the system and thus more

elements to intercommunicate. This fact implies a greater amount of power

consumption, since a higher number of messages require more energy.

• On the other hand, a suitable degree of modularization means a better design

and, thus, a quicker (and less energy-consuming) maintenance.

Another sub-characteristic that probably has a positive impact on greenability is

reusability (“degree to which an asset can be used in more than one system, or in

building other assets” [12]). The more a component is used, the more optimized the

component will be. If we consider the optimization level in terms of greenability,

this component would probably be optimized to have low power consumption. In

addition, the component would have a good degree of maintainability.

Table 9.1 Relationship between maintainability and greenability

Greenability

Relation Implication

Maintainability Modularity X – More modules imply more communication lines

– Better design implies less energy and time to

carry out any other task of maintenance

Reusability X – Highly reusable assets are prone to be optimized,

as is their greenability

Analyzability ?

Modifiability X – If an asset is easy to modify, it is likely to keep

(and not worsen) its greenability

Testability ?

“X” for a possible relationship, “?” when the relationship is not clear

212 I. Garcı́a-Rodrı́guez de Guzmán et al.

In any case, Table 9.1 displays the hypothesis of possible relationships between

maintainability and greenability. Experiments and case studies must be carried out

to establish a validated correspondence between maintainability and greenability

that would in turn be useful for understanding the correlation between classical

maintenance and green software maintenance. This knowledge must exist before

we can theorize about an integrated view of software maintenance that comprises

classical and green views of this stage of the software life cycle.

9.3 Promising Techniques for Improving Greenability

in Green Software Maintenance

From a software engineering point of view, we concluded in the previous section

that green software maintenance has two main objectives: to preserve the

greenability quality degree and to improve greenability when it has never been

taken into account for a given system.

For our purpose, the most important challenge is the second one: what could be
done in the maintenance process to improve greenability without changing the
original functionality and decreasing maintainability?

At the moment, it is only proposals such as [21, 24] that state what could be done

during the maintenance and usage stage to improve/keep software greenability.

Nonetheless, these approaches do not deal with the design and the source code of

software systems. The literature does not reveal any kind of source code/design

modification that should be performed during maintenance in order to improve

greenability. That means that it is possible that existing techniques for improving

software maintainability could also be useful for improving software greenability.

Working with this assumption, it is important to figure out (1) how we can deal

with source code in order to improve it without modifying its functionality and

(2) what structures/problems should be detected in the effort to improve maintain-

ability and (perhaps) greenability.

The first question has a very easy answer. In maintenance time, refactoring is the
process for improving problems of the source code [6, 17], so system quality is also

improved. Refactoring is one of the main steps in software reengineering (see the

next subsection for a detailed explanation). The second question refers to all the

things that deteriorate the source code (and in turn the software system). In

maintenance, the system can be refactored to repair bugs, solve bad programming

and design practices (bad smells and anti-patterns).

The following subsections offer an overview of what refactoring, bad smells,

and anti-patterns are and why they are candidates for improving software

greenability.

9 Green Software Maintenance 213

9.3.1 Software “Greengineering”: Reengineering
for Greening Legacy Systems

Software reengineering [1] is a classical tool for dealing with existing software

systems. The classical model of reengineering establishes three subprocesses [16]:

reverse engineering, restructuration, and forward engineering. This model is also

known as the horseshoe model [17] (see Fig. 9.2).
The reverse engineering stage allows the processing of the software system in

order to create abstract representations of its structure. Once the system is

abstracted, the improvement of the software system begins by means of the

software refactoring stage. As [17] discuss, software refactoring is an updating of

the concept of software restructuration [3] of the reengineering process and could

be defined as “the process of changing a [an object-oriented] software system in

such a way that it does not alter the external behavior of the code, yet improves the

internal structure.” In the third stage, forward engineering, the abstract representa-

tion that has been improved/modified is used to regenerate the source code

implementing the system. The target is functionally equivalent to the original one

but with a better quality level.

The role of software refactoring is clear in classical software maintenance, but

what does this mean for a hypothetical definition of green software maintenance? It
is important to consider that classical and green maintenance should not be separate

concerns but complementary (see Fig. 9.1). The adoption of a green perspective of

software development should not put software engineering to one side but rather the

opposite. Focusing on the concern of this chapter, we should address the integration

of “classical with green software maintenance.” instead of “classical versus green

software maintenance.”

Fig. 9.2 Reengineering horseshoe model

214 I. Garcı́a-Rodrı́guez de Guzmán et al.

Software refactoring is consequently the best choice for dealing with green

software maintenance, because refactoring is the only way of dealing with code if

we are to provide the software system with green capabilities. The key point now is

to figure out what should be refactored and what kinds of improvements reduce

power consumption. Applying refactoring to provide a system with green capabil-

ities can be understood as green software reengineering or software greengineering.

9.3.2 Bad Smells

Bad smells could be understood as unsightly programming styles and poor design

strategies that appear in source code as a consequence of quick and uncontrolled

development. In [6], the author brings together a set of code smells which fre-

quently appear in software systems. Table 9.1 summarizes the set of code smells

presented in [6], together with a brief definition. The author also considers a set of

possible refactoring approaches for each bad smell, but this is beyond the scope of

this chapter.

In classical maintenance, software refactoring is carried out to solve the quality

problem that underlies bad smells. As the author proposes, for each bad smell, it is

possible to apply a refactoring solution to transform the current state of the system

into an equivalent one with a better quality and without the bad smell.

The issue is this: in classical maintenance, such transformations are desirable

and required, but it is not clear to what extent there exists any kind of correlation

between classical and green maintenance that would ensure an improvement of the

system greenability. In this sense, experimentation is required in order to lay down

which bad smells should be removed and which refactoring solutions should be

applied. The crossroad mentioned in Sect. 9.5.3 establishes that there are some

maintainability improvements which are inversely proportional to greenability

improvement.

In addition to the bad smell and the definition, Table 9.2 includes a column

called impact. Impact makes reference to the effect on greenability of refactoring a

given bad smell. As we said before, there is no research about the effect of

refactoring on greenability, so the values for the impact column have been hypoth-

esized (i.e., experimentation is required in order to validate it). Three values have

been designated to predict the impact of a refactoring: (1) “+,” when the refactoring

may have a positive effect, improving greenability; (2) “0,” when it is not clear

when the refactoring has a positive or negative effect on greenability; and “�,”

when the refactoring worsens greenability.

9 Green Software Maintenance 215

9.3.3 Anti-patterns

According to [2], anti-patterns are “a literary form that describes a commonly

occurring solution to a problem that generates decidedly negative consequences.

The Anti-Pattern may be the result of a manager or developer not knowing any

better, not having sufficient knowledge or experience in solving a particular type of

Table 9.2 Code of bad smells and possible impact on greenability

Bad smell Definition Impact

Duplicated code A fragment of code is repeated one or more times �
Long method Methods with too many variables, parameters, and code 0

Large class A class with too many instance variables. Too many

responsibilities

�

Long parameter list Method with a long and understandable list of parameters 0

Divergent change Code is similar but not the same +

Shotgun surgery For a given change, a lot of changes in other places are

required

+

Feature envy A method in a class is more interested in another class

than in the owner class. The method envies the data of the
other object

+

Data clumps The same set of data is repeated in different places (clas-

ses, methods, parameters, code, etc.)

�

Primitive obsession Using of primitive types instead of objects, reducing

understandability

+

Switch statements The same switch statement is scattered in different places +

Parallel inheritance

hierarchies

When you make a subclass of a class, you must also make

a subclass of another

+

Lazy class A class that does not do anything except cost money to

maintain and understand

+

Speculative generality Too many sorts, hooks, and special cases are included in

code for an uncertain need in the future

+

Temporary field An instance variable in a class is not always instantiated.

It makes it difficult for there to be understandability

0

Message chains The client is coupled to a long and complex structure of

navigation when requesting one object

+

Middle man A class is delegating much of its behavior to a second

class

+

Inappropriate intimacy Two classes are tightly coupled +

Alternative classes with

different interfaces

Two methods doing the same, with different signatures.

Two classes doing something very similar

0

Incomplete library class Libraries do not usually contain all the functionality we

need

0

Data class Classes without responsibility and only fields with get/set

methods

+

Refused bequest A class does not need all the fields and methods from a

parent class

+

216 I. Garcı́a-Rodrı́guez de Guzmán et al.

problem, or having applied a perfectly good pattern in the wrong context.” Such

anti-patterns have a negative impact on software quality and might also worsen

software maintainability.

Anti-patterns could also be a possible path for dealing with software

greenability. Finding and solving software anti-patterns improve software quality,

but the question now is to find out to what extent software refactoring (to eliminate

anti-patterns) also affects greenability.

In [2], the authors face patterns from three different perspectives: (1) software

development anti-patterns or technical problems and solutions that are introduced

by programmers, (2) architectural anti-patterns or common problems in how sys-

tems are structured, and (3) managerial anti-patterns or problems in software

processes and development organizations. From the software engineering point of

view, the most interesting kind of software anti-patterns is the first one, develop-

ment anti-patterns, because they represent problems that should be addressed in

software maintenance. Architectural anti-patterns could also be considered to be of

interest because most of the consequences of these anti-patterns could be treated in

source code (at least relieving their symptoms). On the other hand, the managerial

anti-pattern is not useful if we are addressing greenability from a software engi-

neering point of view. Managerial anti-patterns identify problems related to the

human resource involved in software projects. Although certain managerial anti-

patterns (those relating to human working manners) can be directly related to

software greenability, they are not the focus of this chapter. Table 9.3 summarizes

the most common development anti-patterns.

Table 9.4 presents the most common architecture anti-patterns. According to

[18], architecture anti-patterns “focus on some common problems and mistakes in

the creation, implementation, and management of architecture.”

Tables 9.3 and 9.4 include an impact column to represent the possible impact of

applying software refactoring to solve the anti-patterns. In this case, there are four

possible values: “+” if the refactoring has a positive impact on greenability, “�” if

the refactoring has a negative impact on greenability, “0” if it is not clear whether

there is an impact on greenability, and “NA” when there is no software refactoring

to solve the anti-pattern (i.e., it is more related to the process than to the product).

As we pointed out with code smells, the prediction of the impact of refactoring

the anti-patterns is just a hypothesis. It is at this point that experiments with each

anti-pattern (and with combinations of them) must be conducted in order to find out

which of them would be suitable for improving software greenability at a mainte-

nance stage (i.e., green maintenance).

9.3.4 Considerations

Despite the fact that we have analyzed the possible impact of bad smells and

anti-patterns on software greenability separately, there is an important relationship

between both concepts that must be taken into account. On one hand, anti-patterns

9 Green Software Maintenance 217

are common (but undesirable) design decisions or poor designs taken by bad

designers or constraints in the project. On the other hand, bad smells are a symptom

that something is not working well. In other words, bad smells are the evidences of

a possible anti-pattern. For example, if we consider the blob (also known as the
god-class anti-pattern), there are several bad smells that might demonstrate the

existence of an anti-pattern: the long method, the large class, and the data class.
None of these three bad smells in a program is proof in itself of the existence of the
blob anti-pattern, but finding any of them is a reason to suspect that this anti-pattern

does indeed exist.

Table 9.3 Software development anti-patterns

Anti-pattern Definition Impact

The blob (god
class)

One class contains most responsibilities, while the others hold

only data and small processing

�

Continuous

obsolescence

Technology evolution makes it difficult for developers to keep

software interoperating properly with other products

0

Lava flow Dead code and forgotten design is frozen in an ever-changing

design

0

Functional

decomposition

OO systems produced by non-object-oriented developers. The

object-oriented code resembles structural language

+

Poltergeist Very short-time life cycle classes. Such classes are usually

responsible for starting processes

+

Boat anchor Software or hardware artifact that is very costly but without any

useful purpose

+

Golden hammer Development teams apply solutions in which they are very

experienced again and again, instead of exploring suitable new

ones

0

Dead end A reusable component supported by a vendor or supplier is

modified. This complicates integrating such modifications in

new releases

0

Spaghetti code Software structure is made in an ad hoc way, so it is difficult to

extend and maintain

�

Input kludge Ad hoc algorithms manage program input +

Walking through a

minefield

Products are released too early, and an important number of bugs

are (very probably) in the code

+

Cut-and-paste

programming

Copy-and-pasted blocks of source code entail maintenance

problems

�

Mushroom

management

Developers are isolated from the system’s end user. Requisites

are received indirectly, by means of other intermediaries

0

218 I. Garcı́a-Rodrı́guez de Guzmán et al.

9.4 Technical Debt and Ecological Debt

Technical debt can be defined as “writing immature or not quite right code in order

to ship a new product to market faster”; we can find it in many forms (process,

scope, testing, and design) [4, 16]. Technical debt could also be understood as the

“invisible result of past decisions about software that affect the future” [14]. Equa-

tion (9.1) presents a very simple equation that summarizes how technical debt could

be calculated. In this formula, the technological flaw concept represents any kind of

bad smell, anti-pattern or lack of documentation or of test cases, for example:

Table 9.4 Software architecture anti-patterns

Anti-pattern Definition Impact

Autogenerated

stovepipe

A local system is migrated to a distributed architecture. If the

design remains the same, problems appear, such as how data is

transferred

+

Jumble Vertical and horizontal elements are mixed. Software is com-

plex and difficult to evolve and reuse

�

Stovepipe system There is neither abstraction nor documentation of subsystems.

Their integration has to be done in an ad hoc manner

+

Cover your assets Requirements are spread over “tons” of documents. Developers

have no idea about what to do with such a mess of information

NA

Vendor lock-in A product adopts a given technology and becomes dependent

upon the vendor conditions. Problems arise when the product

upgrades

+

Wolf ticket A product that meets software standards but whose interfaces

may vary from the published standards

0

Architecture by

implication

Overconfident architects believe that certain important archi-

tectural documentation is not needed. They have a lot of expe-

rience and then consider that something is not necessary, since it

remains in their mind. Development is not possible without such

information in document form

0

Warm bodies Many programmers are assigned to a project, but only a few are

quality developers

NA

Design by

committee

A complex software design is usually developed by a committee

of experts. Different and democratic opinions lead to complex

designs that are difficult to implement

NA

Swiss army knife Excessively complex class interface. The class attempts to serve

too many uses

�

Reinvent the wheel Lack of technological transfer between a project and a new one.

The advantage of having design knowledge is made the most of

0

The Grand Old

Duke of York

People’s talent is not taken into account when defining system

architecture. People’s skills are important for deciding in which

software development stage a particular person involved in the

project should work

0

9 Green Software Maintenance 219

Technical Debt ¼
X

Refactor Technological Flawj

� � ð9:1Þ

Technical debt may be considered to be a result of decisions to trade off competing

concerns during development, but the problem is that these decisions are the result

of short-term thinking due to (1) pressures of the project, (2) time constraints,

(3) deadlines in the contract, (4) meeting deadlines to integrate with a partner

product near the release date, (5) taking advantage of good marketing opportunities

(in this case, it could be seen as a matter of investment), (6) development of a

prototype, and so on [16].

So, to what extent is technical debt good or bad? On the one hand, the existence

of technical debt in a software system presupposes things that are not carried out or

provided (documentation, tests, functionalities, etc.) or things that are definitively

wrong (misaligned documentation, poor design, bad smells, etc.). On the other

hand, assuming a certain degree of technical debt gives us the possibility of

releasing a product to take full advantage of a market opportunity, test a first

version of a product with a stakeholder who has no clear idea of the requirements

or put off implementing requirements that are not essential for a first version of the

system. Technical debt is therefore a trade-off problem that offers the chance of

transforming debt into investment if and when debt is recognized and quantified

(i.e., the technical debt may very well be worthwhile).

Technical debt is a concept that is very close to software maintenance, since any

bug, bad smell or anti-pattern that has been intentionally (or unintentionally)

introduced into the system must be addressed in the maintenance process. Quanti-

fying technical debt is thus a good method for envisaging how costly maintenance

will be in the near-midterm future.

While technical debt is in fact the lack of required functional or nonfunctional

requirements (on purpose or unintentionally), it is possible to outline a similar

situation with respect to green software development: the concept of ecological
debt. Greenability requirements (as nonfunctional requirement) would not be an

absolute value (i.e., the response time for queries) but would be allowed to move

within a given range. Obviously, the greener the system is, the less its consumption

of resource. But once again, the trade-off issues should be analyzed. If the

long-term cost of increasing the greenness in a software system is less than planned

(but with a given and acceptable degree of greenability) and is smaller than making

a system highly sustainable, then it may be reasonable to include a certain value of

ecological debt in the system. It is important to track this debt, since some legal

stipulation or stakeholder requirement might very well change. If that should

happen, the systems would have to be refactored, with the subsequent waste of

resources, as well as the inevitable extra costs. That means (1) technical debt of the

code and documentation that must be refactored and the (2) excessive (but

assumed) resource consumption up until the time that the change in regulations

or requirements occurred. When ecological debt is incurred, it is very important to

know that different publications advise us to avoid reengineering (and in turn

220 I. Garcı́a-Rodrı́guez de Guzmán et al.

refactoring) source code, because this is considered a very time- and

resource-consuming task.

Nevertheless, not all ecological debt is due to decisions taken because of

greenability requirements (or failing to complete requirements). Other kinds of

ecological debt are almost unavoidable and even necessary; for example, the update

strategy of a software product influences many factors of that product. These

include data transfer, processing, and hardware infrastructure, all of which are

required for the delivery of updates. All these issues, which may cause further

consumption of power and resource [21], imply a decrease in software greenability.

If we submit our systems to such policies or strategies, we are assuming an

ecological debt that must be recognized and quantified.

Now that the concept is clear, a possible definition can be outlined. Ecological

debt may be considered as “the cost (in terms of resource usage) of delivering a

software system with a greenability degree under the level of the nonfunctional

requirements established by stakeholders, plus the incurring cost required to

refactor the system in the future” [Eq. (9.2)]:

Ecological Debt ¼
X

Cost resourceið Þ þ
X

Refactor Ecological Flawjð Þ ð9:2Þ

According to Eqs. (9.1) and (9.2), ecological and technological debts have a

common factor, that is, the need to fix flaws. Up until now, it has not been clear

whether there are specific flaws that are associated with low values of software

greenability or even if the existing ones (applied in classical software maintenance)

also influence greenability. As proposed in the previous section, a possible starting

point for classifying which flaws affect greenability would be the examination of

those flaws related to classical maintenance, validating their impact on software

greenability.

Equation (9.2) points to a very important consideration when talking about

ecological debt; this is the fixed (and unrecoverable) cost of the overused resources.

An overused resource is seen as a software or hardware resource which has been

oversized for the actual software need. For example, a very common oversized

resource related to greenability is power consumption. Power consumption can be

expressed as cost ($, €, £, etc.), carbon footprint (CO2) or electrical power (w/h).

The cost of these resources is a sort of investment that cannot be recovered or

repaired (as can be done, on the other hand, with technical debt). It is possible to

match such wasted power consumption to an economic concept—the irrecoverable

expense: it is an outlay that cannot be recovered; this outlay must not influence the

future decisions of the organization, since it cannot be recovered. It is nevertheless

important to point out that in ecological debt, this irrecoverable expense must be

taken into account in the context of the maintenance of the software maintenance

strategy for the software portfolio. Technical debt (as well as the refactoring of the

ecological flaws of the ecological debt) exists for the whole period during which the

organization does not decide to solve it, but the irrecoverable expense factor of the

ecological debt [Eq. (9.2)] is a continuous expense that will never be recovered.

9 Green Software Maintenance 221

This is the most important reason for reducing the level of ecological debt of a

software system to the minimum. This is also the motivation which makes us want

to define and formalize the green software maintenance presented in this chapter.

Earlier in this chapter, we proposed that green maintenance and classic mainte-

nance should be considered under the same process; the same should be done with

technical and ecological debt. Both forms of debt—the ecological and the techno-

logical—have in common the need to fix flaws. We can in fact state that the

software system has a set of flaws which are responsible for its debt and that that

set is made up of the union of the ecological and technical flaws. The issue now is:

what happens if a technical flaw affects greenability, or vice versa?

For any given system, if there were not a set of (technical and ecological) flaws

that clearly affects the system maintainability and greenability positively and in the

same way, it would be necessary to undertake a trade-off analysis, since refactoring

technological flaws would negatively affect ecological debt, and vice versa. On the

other hand, if there were common flaws, it would be possible to apply a set of

refactoring transformations that benefits both ecological debt and technological

debt (while in turn improving greenability and maintainability). Finally (though

very improbably), if ecological and technical flaws were the same, then refactoring

all of them would reduce both kinds of debt and improve greenability and

maintainability.

In Sect. 9.2, we advise considering green and classical maintenance under the

same process, and we strongly recommend considering ecological and technical

debt within the same category. Both kinds of debt are an economic load that would

endanger the future of the whole software system and could therefore be considered

under system debt, where technical debt and ecological debt are used as a driving

force to maintain and improve the system (as well to invest in market opportunities

based on the context).

9.5 Case Study: An Attempt to Improve Greenability

and Maintainability at One and the Same Time

As has been discussed, there is not a great deal of evidence about how software

refactoring has a positive sustainable impact in the maintenance stage. The study

presented in this section addresses that question.

The case study presented here is an excerpt from a complete one [23].

9.5.1 Introduction

We have already commented that modifications in the maintenance stage could be

understood as a kind of refactoring activity which is carried out through the

222 I. Garcı́a-Rodrı́guez de Guzmán et al.

modification of the source code by means of different possible refactoring

operators.

Validating all the possible refactoring solutions for all the existing bad smells

and design flaws is almost impossible. This being so, we undertake an exploratory

study considering the god-class software anti-pattern [25], as well as the side effects
of applying a possible refactoring (see Fig. 9.3). This anti-pattern consists of a given

class (the god class) which (1) performs most of the work of the system, (2) plays

the role of a controller, and (3) is surrounded by simple data container classes.

We illustrate the core problem through the following toy example. Consider a

payment system in which it is necessary to make payments and refunds. On the one

hand, Fig. 9.3a shows a fragment of the class diagram for a possible architecture of

this system. The CreditCard class can be considered as a god class, since it contains
almost the whole intelligence. It retrieves each operation and checks the status

(accepted or rejected) and, depending on the status, performs the payment or

refund. This architecture design is poorly cohesive and highly coupled with data

classes. On the other hand, Fig. 9.3b provides a simple refactored solution from

which a class for operation intelligence has been extracted. The Operation class

simply reports its status (accepted or rejected) and responds in order to pay() and
refund() invocations. The CreditCard does all the work: it requests information

from the Operation, makes decisions, and tells the Operation class what to do.

As can be seen in Fig. 9.3, the main problem that arises after refactoring the

source system consists of the fact that the communication (message interchange)

between the god class, the surrounding classes, and the new classes (created after

refactoring the anti-pattern) increases dramatically. This consequence establishes

the trade-off between maintainability (design quality) and greenability (power

consumption). In the remainder of the case study, we try to find out whether this

maintainability activity improves greenability or not.

Fig. 9.3 (a) A god class and (b) a simple refactored solution

9 Green Software Maintenance 223

9.5.2 Hypothesis, Context, and Execution of the Case Study

We put forward the following research hypothesis to be dealt with: power con-
sumption decreases as a result of reducing object message traffic. The research goal
is to demonstrate that when common refactoring patterns are applied under the

detection of well-known anti-patterns, they lead to excessive object message traffic,

and power consumption is therefore also higher.

The hypothesis was assessed through two industrial (and open source) case

studies: Informa [9] (which provides an RSS library based on the Java platform)

and NekoHTML [7] (an HTML scanner to parse HTML documents and enable the

access to the information by means of XML interfaces).

We carried out the following steps while executing the case study:

1. Both systems under study are analyzed to detect possible occurrences of the

god-class anti-pattern. The analyses were carried out with the JDeodorant
eclipse plug-in [13] which, in turn, proposes a possible refactoring to solve the

problem. Refactoring is then applied, and a new version for each system is

obtained: InformaR and NekoHTMLR.
2. The next step consists in the measurement of the traffic between objects. In order

to carry out a strict comparison between the initial information systems and the

refactored ones, the same execution scenario is used; it is based on the existing

test cases of both systems. To quantify the object operation invocations, the

source code of both systems was traced and profiled (instrumented) by means of

the Eclipse Test & Performance Tools Platform (TPTP) [5].

3. The power consumption is also measured for both versions of each system. The

execution scenario is established using the test cases provided by the software

developers. To measure power consumption, the systems are now executed

without any instrumentation to avoid bias as much as possible. Measurement

is carried out by means of the energy logger Voltcraft Energy Logger 4000. This
artifact measures energy consumption per second in watts (W). Processor usage

is also measured.

4. Once all data has been collected, results are analyzed and some interpretations

are given in order to verify the initial hypothesis.

9.5.3 Conclusions of the Case Study

The steps outlined above were followed, and the data collected by the execution of

the case studies is summarized in Table 9.5. Table 9.5 provides most of the relevant

architectural/design metrics of the original and refactored system under study in

addition to the difference between both versions. The upper part of Table 9.5

provides (1) the number of lines of source code, (2) the number of classes, (3) the

number of methods, (4) the afferent coupling as the number of classes on average

outside a package that depend on classes inside the package, (5) the efferent

224 I. Garcı́a-Rodrı́guez de Guzmán et al.

T
a
b
le

9
.5

A
rc
h
it
ec
tu
ra
l
m
et
ri
cs
,
m
es
sa
g
e
tr
af
fi
c,
an
d
p
o
w
er

co
n
su
m
p
ti
o
n
d
u
ri
n
g
ex
ec
u
ti
o
n

M
ea
su
re

In
fo
rm

a
In
fo
rm

aR
D
if
.
(%

)
N
ek
o
H
T
M
L

N
ek
o
H
T
M
L
R

D
if
.
(%

)

A
rc
h
it
ec
tu
re

#
L
in
es

o
f
co
d
e

9
,7
3
9

9
,8
9
1

1
.5
6

7
,9
3
8

8
,1
7
9

3
.0
4

#
C
la
ss
es

1
1
6

1
2
7

9
.4
8

6
0

7
4

2
3
.3
3

#
M
et
h
o
d
s

9
9
6

1
,0
2
4

2
.8
1

4
7
3

5
2
3

1
0
.5
7

A
ff
er
en
t
co
u
p
li
n
g

1
0

1
0
.5

5
.0
0

5
.2
9

5
.4
3

2
.7
1

E
ff
er
en
t
co
u
p
li
n
g

7
.2
1

7
.5
7

4
.9
5

5
.5
7

7
.2
9

3
0
.7
8

C
y
cl
.
co
m
p
le
x
it
y

1
.8
7

1
.8
4

�1
.1
8

3
.4
4

3
.2
3

�6
.2
4

R
ef
ac
t.

#
G
o
d
cl
as
se
s

2
1

0
1
0

0

R
at
io

g
o
d
cl
as
se
s

1
8
.1

%
0
%

1
7
%

0
%

#
E
x
tr
ac
.
cl
as
se
s

4
9

0
2
6

0

E
x
ec
u
ti
o
n

#
T
es
t
ca
se
s

3
3
7

3
3
7

0
.0
0

4
,2
0
1

4
,2
0
1

0
.0
0

#
E
rr
o
rs

7
1

7
1

0
.0
0

0
0

0
.0
0

#
F
ai
lu
re
s

1
8

1
9

5
.5
6

1
,8
0
0

2
,2
0
0

2
2
.2
2

#
M
es
sa
g
es

6
,2
2
1

9
7
,8
4
6

1
,4
7
3

1
,5
5
0
,8
4
8

7
,9
0
0
,6
0
0

4
0
9

T
im

e
(s
)

5
7

6
0

5
.2
6

2
2

2
7

2
2
.7
3

P
w

T
o
ta
l
w
at
ts

2
,0
5
2
.6

2
,2
0
7
.7

7
.5
6

7
4
3
.9

8
9
3
.4

2
0
.1
0

W
at
ts
/s

3
6
.7

3
7
.4

1
.9
1

3
3
.8

3
4
.4

1
.6
2

9 Green Software Maintenance 225

coupling as the number of classes inside a package that depend on classes outside

the package, and finally (6) the McCabe cyclomatic complexity, which counts the

number of flows through a piece of code.

Despite the huge amount of data included in Table 9.5, the most important thing

to highlight for our purpose is the increment of interchange of messages and the

increase in power consumption. On the one hand, data in Table 9.5 reveals that the

refactored architecture produces between 14 and 4 times more messages for both

systems. On the other hand, Fig. 9.4 presents the active power consumption

evolution (in watts) during the execution of the original systems and the refactored

ones.

The power consumption of Informa was 36.7 W, on average, while the con-

sumption of InformaR was 37.4 W, on average. The difference in power consump-

tion was 1.91 %, on average. In the case of NekoHTML, the original system

consumed 33.8 W/s, while the consumption of NekoHTMLR was 34.4, on average.

This means an increase of 1.62 %. What is more, since the execution time was

higher for the refactored systems, the increases in power consumption (in terms of

absolute values) were 7.6 % and 20.1 %, respectively. The different increases in

power consumption are probably due to the different execution scenarios for each

system (which are based on test cases). These scenarios could lead to the execution

of a different amount of parts being affected by inheritance and delegations as a

result of god-class refactoring.

In spite of the several limitations and threats to the validity of this study, the

experimental results have shown that an architecture in which god classes have

been refactored may worsen in terms of power consumption. That is due to the

excessive traffic message derived from the architecture refactoring, which in turn

leads to a harmful effect on the power consumption of the refactored systems.

Fig. 9.4 Power consumption during execution

226 I. Garcı́a-Rodrı́guez de Guzmán et al.

9.6 Conclusions

Green maintenance is a novel concept (one of many) that arises as a consequence of

the “greening by IT” trend [20]. Current approaches to green maintenance and

usage focus the effort of the process on stating what to do to reduce the environ-

mental impact. However, all the activities considered are very directly oriented

towards software managers, end-user training, and software retirement procedures

and protocols.

A green maintenance point of view like this is correct, but it is too narrow. Many

other maintenance activities are put to one side. Classical maintenance considers

not only management and training activities but also many other activities related to

the different sorts of maintenance: bug removal, adaptation of current systems to

technological changes (software and hardware updates), quality improvement or

addition of new functionalities. So, what should green maintenance take into

account?

In this chapter, we try to foresee a definition, as well as possible techniques to

deal with green maintenance, due to the lack of studies dealing with this topic. As

with classical maintenance, software refactoring is presented as a powerful tool for

dealing with software systems in green maintenance. The difference now is the

target of such refactoring: the issue is to keep the greenability level or improve it

when software has not been developed according to green and sustainable software

engineering [21]. As far as we know, there are neither procedures nor techniques for

applying and improving software greenability, as classical maintenance has to

improve maintainability or other software quality characteristics.

Some studies (such as the one presented in the case study in Sect. 9.5) find out that

facing classical software flaws (such as bad smells or anti-patterns) may not be a

suitable solution for improving greenability. Although the ideas presented in this

chapter are just the tip of the iceberg, it is essential to determine which of the typical

software flaws have an impact on greenability. This is a challenging purpose, since

classical maintenance and green maintenance must coexist in real maintenance

(a system must be sustainable, but a system must also have good values for its quality

characteristics [12]). Melding both facets of maintenance should be studied in detail,

because as the case study shows, the refactoringwould have opposite outcomes for the

two respective kinds of maintenance. It thus becomes a trade-off problem, where

software quality and greenability should be balanced depending on the stakeholders’

requirements.

Also a novel concept is introduced: the ecological debt. As technical debt is

useful as a driver for addressing software maintenance, ecological debt would also

be useful not only for green maintenance but also for the whole green development

cycle. Ecological debt arises in measuring the cost of avoiding the implementation

(or of implementing only partially) of green requirements in development time. In

the maintenance stage, ecological debt is useful as a way of measuring to what

extent a refactoring of the system improves or decreases the greenability charac-

teristic. An important concern that arises from the analysis of ecological debt is the

9 Green Software Maintenance 227

irrecoverable expense or the fixed cost that is incurred by a software system with a

power consumption level above that recommended.

In a nutshell, a possible roadmap for setting up a practical and theoretical

framework for an integrated software maintenance starts by analyzing the concept

of green maintenance, establishing possible activities and kinds of green mainte-

nance. Secondly, it is important to find out to what extent refactoring classic

software flaws has an impact on software greenability. Thirdly, we should face up

to the fact that classical and green maintenance produce a trade-off problem if we

attempt to put them together into a single process. Finally, it is vital to identify

green bad smells and green anti-patterns with their corresponding refactoring

techniques.

References

1. Arnold RS (1992) Software reengineering. IEEE Press, Los Alamitos, CA, p 675. ISBN

0-8186-3272-0

2. Brown WH, Malveau RC, Mowbray TJ (1998) Antipatterns: refactoring software, architec-

tures, and projects in crisis. Wiley, New York

3. Chikofsky EJ, Cross JH (1990) Reverse engineering and design recovery: a taxonomy. IEEE

Software 7(1):13–17

4. Cunningham W (1192) The WyCash portfolio management system. In: Proceeding OOPSLA

’92 addendum to the proceedings on object-oriented programming systems, languages, and

applications (addendum). ACM

5. Eclipse (2013) Test & performance tools platform project [cited 12/07/2013]; available from:

http://www.eclipse.org/tptp/

6. Fowler M (1999) Refactoring: improving the design of existing code. Addison-Wesley,

Boston, MA

7. HTML, N. Neko HTML Parser v 1.9.18 (2009) [cited 12/07/2013]; available from: http://

nekohtml.sourceforge.net/

8. IEEE (2014) Guide to the software engineering body of knowledge (SWEBOK®). IEEE

Computer Society, p 346

9. Informa Project. Informa RSS Java Library (2007) [cited 02/04/2013]; available from: http://

informa.sourceforge.net/

10. ISO/IEC, ISO/IEC 14764 (2006) Software engineering – software life cycle processes –

maintenance. http://www.iso.org/iso/catalogue_detail.htm?csnumber¼39064. ISO/IEC

11. ISO/IEC (2006) Software engineering – software life cycle processes – maintenance. ISO/IEC,

p 56

12. ISO/IEC, ISO 25000 (2005) Software product quality requirements and evaluation (SQuaRE)

2013

13. JDeodorant. JDeodorant tool (2012) [cited 02/04/2013]; available from: http://jdeodorant.com/

14. Kruchten P et al (2013) Technical debt: towards a crisper definition report on the 4th

international workshop on managing technical debt. Software Eng Notes 38(5):51–54

15. Lehman M (1980) Programs, life cycles, and laws of software evolution. In: Proceedings of the

IEEE

16. Lim E, Taksande N, Seaman C, Balancing A (2012) What software practitioners have to say

about technical debt. IEEE Software 29(6):22–27

17. Mens T, Tourw T (2004) A survey of software refactoring. IEEE Trans Software Eng 30

(2):126–139

228 I. Garcı́a-Rodrı́guez de Guzmán et al.

http://www.eclipse.org/tptp/
http://nekohtml.sourceforge.net/
http://nekohtml.sourceforge.net/
http://informa.sourceforge.net/
http://informa.sourceforge.net/
http://www.iso.org/iso/catalogue_detail.htm?csnumber=39064
http://www.iso.org/iso/catalogue_detail.htm?csnumber=39064
http://jdeodorant.com/

18. Mowbray T (1998) Antipatterns: refactoring software, architectures, and projects in crisis.

Wiley, New York

19. Murugesan S (2008) Harnessing green IT: principles and practices. IT Prof 10(1):24–33

20. Murugesan S et al (2013) Fostering green IT – guest editors’ introduction. IT Prof 15(1):16–18

21. Naumann S et al (2011) The GREENSOFT model: a reference model for green and sustainable

software and its engineering. Sustain Comput Informat Syst 1(4):294–304

22. Pérez-Castillo R, Garcı́a-Rodrı́guez de Guzmán I, Piattini M (2011) Business process arche-

ology using MARBLE. Inform Software Tech 53(10):1023–1044

23. Perez-Castillo R, Piattini M (2014) Analyzing the harmful effect of god class refactoring on

power consumption. IEEE Software 31(3):48–54

24. Shenoy SS, Eeratta R (2011) Green software development model: an approach towards

sustainable software development. In: Proceedings of the annual IEEE India conference

(INDICON 2011). IEEE Computer Society, Hyderabad

25. Smith CU, Williams LG (2000) Software performance antipatterns. In: Proceedings of the 2nd

international workshop on software and performance. ACM, Ottawa, Ontario, Canada, pp

127–136

26. Visaggio G (2001) Ageing of a data-intensive legacy system: symptoms and remedies. J

Software Mainten Evol Res Pract 13:281–308

9 Green Software Maintenance 229

Chapter 10

Green Software and Software Quality

Coral Calero, Ma Ángeles Moraga, Manuel F. Bertoa, and Leticia Duboc

10.1 Introduction

Quality is currently one of the main goals that organisations set for themselves. A

large number of organisations provide products that are similar to each other, thus

permitting consumers to choose from a wide variety of brands. Bearing this

situation in mind, companies attempt to develop products of better quality; their

survival depends to an increasing extent on the quality of the products and services

provided.

The need to resolve this issue is also present in the software industry, which has

consequently become concerned about ensuring software product quality (PQ).

This in turn has led to the appearance of the ISO/IEC 25000 family of standards

[6], a family which is divided into five sections, one of which—ISO/IEC 25010—

[7] presents various software quality models.

However, as highlighted in [3], none of these models considers sustainability or

the ecological aspects of software products. From our point of view, this is also a

very important weakness of the standards, since software sustainability is gaining

more and more importance in society in general and in industry in particular.

While sustainability is a standardised practice in a number of engineering

disciplines, there is currently no such awareness within the software engineering

C. Calero (*) • Ma.Á. Moraga

Department of Information Technologies and Systems, University of Castilla-La Mancha,

Ciudad Real, Spain

e-mail: Coral.Calero@uclm.es; MariaAngeles.Moraga@uclm.es

M.F. Bertoa

University of Málaga, Málaga, Spain

e-mail: Bertoa@lcc.uma.es

L. Duboc

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brasil

e-mail: Leticia@ime.uerj.br

© Springer International Publishing Switzerland 2015

C. Calero, M. Piattini (eds.), Green in Software Engineering,
DOI 10.1007/978-3-319-08581-4_10

231

mailto:Coral.Calero@uclm.es
mailto:MariaAngeles.Moraga@uclm.es
mailto:Bertoa@lcc.uma.es
mailto:Leticia@ime.uerj.br

community, as noted in [11]; the way to achieve a sustainable software is mainly by

improving its power consumption [2]. This, however, is a very restrictive interpre-

tation of what software sustainability is.

The UN identifies three dimensions for sustainable development: social, eco-

nomic and environmental. In the software context, they could be understood as:

• Social sustainability: This is related to software use (by whom, how and under

what circumstances a software may be used).

• Economic sustainability: This is related to aspects of the software business, but

not to its development.

• Environmental sustainability: This deals with aspects of energy efficiency and is

the type of sustainability that is most closely related to technical aspects, that is

in our case those that have to do with the sustainability of software development.

Software product development affects mainly the environment, via the con-

sumption of resources during its use and production. The most direct (and obvious)

impact of a software product is on energy consumption, but other resources may

also have a negative impact on software sustainability (processor usage, network

utilisation and bandwidth).

We believe that it is of prime importance to pay the necessary attention to the

environmental dimension of sustainability from the software product development

perspective. We term this ‘green’ software or software ‘greenability’. Figure 10.1

provides a representation of this in a diagram form.

When a software product is developed, the requirements that the product should

satisfy must be specified. Software requirements can be classified into functional

requirements (FR) and nonfunctional requirements (NFR).

According to [5], FR should define the fundamental actions that must take place

in the software in accepting and processing the inputs as well as in processing and

generating the outputs.

In [4], NFR are defined as requirements that constrain or set some quality

attributes upon functionalities.

From these definitions, we can interpret that FR are related to the ‘what’ of a

software product and NFR can be seen as the ‘how’ of a software product.

Sustainability

Environmental
-Greenability-

Economic Social

Fig. 10.1 Greenability as

environmental

sustainability

232 C. Calero et al.

From our point of view, greenability is a ‘how’, because it is a way to improve a

software product and must therefore be part of its quality.

In this chapter, we present our proposal on how to include greenability in

software quality.

10.2 ISO/IEC 25010

The starting point for our work will be the ISO/IEC 25010 [7] Standard, which is

the only valid international standard related to software product quality; it is widely

used in the industry.

The reason for using this standard, or in general any standard, is to avoid

conflicts and inconsistencies regarding the vocabulary used. But it also has another

advantage: the use of a standard makes it possible to start with a widely accepted set

of quality characteristics that has been agreed on by consensus.

Within the ISO/IEC 25010 [7], the software quality life cycle is presented in the

standard (see Fig. 10.2).

This life cycle is divided into three parts: process, software product and effect of

software product.

One of the things that affect the quality of a software product is the process

quality. From the ‘green’ point of view, this means that it is advisable to have green

development. There are various definitions of the term sustainable software devel-
opment. For example [1]:

‘Sustainable Software Development refers to a mode of software development in

which resource use aims to meet (product) software needs while ensuring the

sustainability of natural systems and the environment’.

Following the quality life cycle, there is a second block related to software

product quality (which is what should be dealt with when developing the product).

Finally, the last block is linked to quality in use (QiU), which is related to the

users and how the software product behaves with regard to its quality when it is

being used.

Fig. 10.2 Software quality lifecycle (extracted from [7])

10 Green Software and Software Quality 233

It is evident that all three aspects—process quality, product quality and quality in

use—are fundamental. And, of course, it would be possible to have a green process

whose result will not be a green product and the opposite—a green product that has

not been developed by following a green process.

We defend the need for a green process that results in a green product (Fig. 10.3).

It is therefore necessary to include the obligation to use a green process in

factories as well as to include greenability aspects in the NFR (nonfunctional

requirements) of software products.

In this chapter, we will focus on product greenability as well as greenability in

use, although we also give prime importance to the green process. The green

process is, however, a way of doing things, and in the standard, it is not represented

by means of a model, unlike the other two, that is product greenability and

greenability in use.

ISO/IEC 25000 [6] defines three quality models that are shown in Fig. 10.4, in

which the targets of the quality models and the related entities are presented.

Product greenability & Greenability in use

Consider greenability NFR

Green
So�ware
product

Green Process

Produce so�ware in a sustainable way.
Sustainable so�ware development

Fig. 10.3 Green aspects that influence software development

Fig. 10.4 Targets of a quality model (extracted from [6])

234 C. Calero et al.

In the ISO/IEC 25010, a software product is defined as a ‘set of computer

programs, procedures, and possibly associated documentation and data. Products

include intermediate products, and products intended for users such as developers

and maintainers’. It is also necessary to point out that in the SQuaRE standards,

software quality has the same meaning as software product quality. From this

section on, this meaning will therefore be used in the same manner.

Our focus is thus on the product quality model and the quality in use model

defined for the target software. The next two sections address these.

10.3 Software Product Quality and (Software Product)

Greenability

As is stated in the standard, ‘the product quality model is useful for specifying

requirements, establishing measures, and performing quality evaluations. The qual-

ity characteristics defined can be used as a checklist in order to ensure a compre-

hensive treatment of quality requirements, thus providing a basis that can be used to

estimate the consequent effort and activities that will be needed during systems

development. The characteristics in the product quality model are intended to be

used as a set when specifying or evaluating software product quality’ [7].

In [7], the product quality model is composed of eight characteristics, each of

which is subdivided into several sub-characteristics (see Fig. 10.5). The

sub-characteristics can be evaluated on the basis of measurable attributes (for

which measures can be defined).

Having presented the quality model, we shall now analyse how software product

greenability should be considered in the quality model. The first thing we must

check is if greenability is already included in the ISO/IEC 25010 quality model.

To do this, we shall use an example that is provided in [7] (Annex B: Example of

mapping to dependability), which shows how an organisation could map its soft-

ware dependability model onto the ISO/IEC 25010 model. It also attempts to show

how to discover whether the model being handled by the organisation can be

considered to be embedded in the quality model of the standard. This is done by

matching those characteristics from the model that are being studied (which in the

case of the example in the standard is ‘dependability’) with the characteristics and

sub-characteristics of the standard, in an effort to verify whether they have already

been considered or if they are comparable to those of which the standard is

composed.

If we apply this procedure to greenability, then we must first define the

greenability model. To do this, we must define what the greenability of a software

product is and then attempt to identify the characteristics of which greenability is

composed.

10 Green Software and Software Quality 235

In order to define what the greenability of a software product is, we use the

aforementioned definition of sustainable software development, which states that

the fundamental objective of a sustainable software product is to make good use of

the resources while minimising their consumption as much as possible. We can

therefore consider that a software product’s greenability is related to the optimisa-

tion of the resources used. We can employ the definition of sustainable software

development to identify the aspects of greenability.

It is, therefore, important for us to identify all the aspects related to the resources

used in software development: the use of software resources (such as other appli-

cations and components), the use of hardware resources (such as disk storage), the

use of human resources (e.g. development times) and the use of other material

resources (e.g. print paper and ink, storage media).

In addition to these aspects, however, we must not forget that energy consump-

tion should also be taken into account, because it is the main way in which a

software can have an impact on the environment.

Having defined the characteristics of greenability, as well as those aspects

related to it, we shall now create a conversion table using the characteristics from

the quality model of the standard (similarly to what is done in the standard

example). The results are shown in Table 10.1.

Fig. 10.5 A software product quality model in ISO/IEC 25010 [7]

236 C. Calero et al.

The left-hand and centre columns contain the ‘performance efficiency’ charac-

teristic from ISO/IEC 25010, together with its three sub-characteristics. We have

selected this characteristic from the standard because it is obviously the one most

closely related to the use of resources. This makes it the best candidate for con-

sideration when studying whether greenability is already included in the standard.

The right-hand column of Table 10.1 contains the aspects that have been

identified for greenability and which may be comparable to the

sub-characteristics of the standard.

If we focus solely on this comparison and as all the greenability aspects

identified match with the sub-characteristics of the standards, we might believe

that the standard already contains a characteristic that could perfectly well be

considered to be software greenability.

However, if we consider that performance efficiency is the characteristic that

deals with the aspects of a software product’s greenability, then we are making

various mistakes:

Table 10.1 Greenability and ISO/IEC 25010

ISO/IEC 25010 Greenability

Performance efficiency

Performance relative to the amount

of resources used under stated

conditions

Time behaviour

Degree to which the response and

processing times and throughput rates of

a product or system, when performing

its functions, meet the requirements

Hardware

resource

utilisation

Software

resource

utilisation

Resource utilisation

Degree to which the amounts and types

of resources used by a product or sys-

tem, when performing its functions,

meet the requirements

Hardware

resource

utilisation

Software

resource

utilisation

Human

resource

utilisation

Other material

resource

utilisation

Energy

consumption

Capacity

Degree to which the maximum limits of

a product or system parameter meet the

requirements

Hardware

resource

utilisation

Software

resource

utilisation

Other material

resource

utilisation

10 Green Software and Software Quality 237

• It would not be possible to define specific requirements for performance effi-

ciency (there would only be greenability requirements). This would be a mis-

take, since the intention of this characteristic is to provide a software product

with aspects related to the efficiency that we wish the product to have.

• It is not possible to differentiate between the requirements that we desire for

performance efficiency and those for greenability. The former are more closely

related to the utilisation of resources, while the latter are related to the optimi-

sation of this utilisation.

• The concept of greenability as a part of the quality is lost, which may make its

application confusing. It would be difficult to know whether a requirement

defined for performance efficiency originates from performance improvement

or from the assurance of greenability (given that we consider them to be

the same).

• It would be impossible to define greenability requirements that were not related

to performance efficiency.

• Although all the aspects of greenability might appear to be already included in

the model, we cannot rule out the possibility of future inclusions of new

sub-characteristics in it, something which might not be possible in performance

efficiency.

The key factor is that it is necessary to distinguish the good uses of

resources both from the performance perspective and from the environmental

point of view.

We therefore believe that considering greenability to be already included in the

standard is not a correct option and that it is necessary to add to the model a new

characteristic related to greenability.

To do this, we must take into account that when a software product is being

developed, its greenability can be considered from two points of view.

We must ensure first of all that the software product is energy efficient when it

works, using the resources in the most appropriate manner. This, together with the

aspects identified previously for greenability, results in the proposal of the follow-

ing sub-characteristics:

• Energy efficiency: Degree of efficiency with which a software product consumes

energy when performing its functions.

• Resource optimisation: Degree to which the resources expended by a software

product, when performing its functions, are used in an optimal manner. As in the

standard, the authors consider that resources can include other software prod-

ucts, the software and hardware configuration of the system and materials

(e.g. print paper, storage media).

• Capacity optimisation: Degree to which the maximum limits of a product or

system parameter meet the requirements in an optimal manner, allocating only

those which are necessary. As in the standard, the authors consider that

238 C. Calero et al.

parameters can include the number of items that can be stored, the number of

concurrent users, the communication bandwidth, the throughput of transactions

and the size of the database.

On the other hand, we must ensure that the software product will last, only

needing to be replaced if adapting it to the new circumstances is very difficult to

achieve. We refer to this as perdurability.

The idea of making a software that is perdurable is to achieve a software product

that is long lasting, modifiable and reusable, that is those aspects that make the

software that has been developed last for a long time while at the same time being

able to adapt to change without losing its functionality or any other features related

to its quality.

In order to define perdurability, we first need to identify what it must consider,

and to do so, we are going to use the standard ISO/IEC 25010 (2010). In this

standard, there are three characteristics that could be related to the one we are

looking for:

• Reliability: Degree to which a system, product or component performs specified

functions under specified conditions for a specified period of time

– Maturity: Degree to which a system meets needs for reliability under normal

operation

– Availability: Degree to which a system, product or component is operational

and accessible when required for use

– Fault tolerance: Degree to which a system, product or component operates as

intended, despite the presence of hardware or software faults

– Recoverability: Degree to which, in the event of an interruption or a failure, a

product or system can recover the data directly affected and re-establish the

desired state of the system

• Maintainability: Degree of effectiveness and efficiency with which a product or

system can be modified by the intended maintainers

– Modularity: Degree to which a system or computer program is composed of

discrete components such that a change to one component has minimal

impact on other components

– Reusability: Degree to which an asset can be used in more than one system or

in building other assets

– Analysability: Degree of effectiveness and efficiency with which it is possible

to assess the impact on a product or system of an intended change to one or

more of its parts, to diagnose a product for deficiencies or causes of failures or

to identify parts to be modified

– Modifiability: Degree to which a product or system can be effectively and

efficiently modified without introducing defects or degrading existing prod-

uct quality

10 Green Software and Software Quality 239

– Testability: Degree of effectiveness and efficiency with which test criteria

can be established for a system, product or component, and tests can be

performed to determine whether those criteria have been met

• Portability: Degree of effectiveness and efficiency with which a system, product

or component can be transferred from one hardware, software or other opera-

tional or usage environment to another

– Adaptability: Degree to which a product or system can effectively and

efficiently be adapted to different or evolving hardware, software or other

operational or usage environments

– Installability: Degree of effectiveness and efficiency with which a product or

system can be successfully installed and/or uninstalled in a specified

environment

– Replaceability: Degree to which a product can be replaced by another spec-

ified software product for the same purpose in the same environment

However, if we look at these sub-characteristics and their definitions in detail,

we can discard many of them for not being related to long-term issues (the ones we

are looking for). As a result, we obtain a final set of characteristics that could be

related to perdurability. The following characteristics must be taken into account

when defining the perdurability characteristic: reusability, modifiability and

adaptability.

These characteristics will not be used exactly as they are defined for defining

perdurability, but they will be used as a basis for doing so, taking into account the

objective of perdurability. We can therefore define the new characteristic as

follows:

Perdurability: Degree to which a software product can be used over a long

period, being, therefore, easy to modify, adapt and reuse.

Once we have identified and defined the sub-characteristics of greenability, we

could add to the software product quality model a new characteristic for

greenability, proposed by the ISO/IEC 25010 (2010) and defined as shown in

Fig. 10.6.

The new software product quality model would therefore be composed of nine

characteristics (see Fig. 10.7).

Fig. 10.6 The greenability characteristic

240 C. Calero et al.

We put together all the concepts and definitions of the new characteristic:

– Characteristic

Greenability: Degree to which a product lasts over time, optimising the param-

eters, the amounts of energy and the resources used.

– Sub-characteristics

Energy efficiency: Degree of efficiency with which a software product con-

sumes energy when performing its functions.

Resource optimisation: Degree to which the resources expended by a software

product, when performing its functions, are used in an optimal manner. As in

the standard, the authors consider that resources include other software

products, the software and hardware configuration of the system and mate-

rials (e.g. print paper, storage media).

Capacity optimisation: Degree to which the maximum limits of a product or

system parameter meet the requirements in an optimal manner, allocating

only those which are necessary. As in the standard, the authors consider that

parameters can include the number of items that can be stored, the number of

concurrent users, the communication bandwidth, the throughput of trans-

actions and the size of the database.

Perdurability: Degree to which a software product can be used over a long

period, being therefore easy to modify, adapt and reuse.

At this point, it is important to explain why we do not include aspects such as

money, delivery date, etc. As stated in the standard, some software properties are

inherent in the software product, while some others are assigned to it (see Fig. 10.8).

The quality of a software product in a particular context of use is determined by its

inherent properties.

Fig. 10.7 The new software product quality model

10 Green Software and Software Quality 241

Inherent properties can be classified as either functional properties or quality

properties. Functional properties determine what the software is able to do. Quality

properties determine how well the software performs. Quality properties are inher-

ent to a software product and the associated system.

An assigned property is therefore not considered to be a quality characteristic of

the software, since it can be changed without changing the software.

10.4 Quality in Use and Greenability (in Use)

The quality in use characteristics relate to the effect of the system in use and are

thus a starting point for requirements; they can be used to measure the impact of the

quality of the system on use and maintenance.

The software product quality characteristics can be used to specify and evaluate

detailed characteristics of the software product that are prerequisites for achieving

the desired levels of quality in use.

The requirements for quality in use specify the required levels of quality from

the users’ point of view. These requirements are derived from the needs of the users

and other stakeholders (such as software developers, system integrators, acquirers

or owners). The quality in use requirements are used as the target for validation of

the software product by the user.

The system quality in use model (Fig. 10.9) in the ISO/IEC 25010 standard is

composed of five characteristics, which are further subdivided into sub-characteristics

that can be measured when a product is used in a realistic context of use.

In the case of the quality in use, we are going to use another approach to add the

new characteristic to the model rather than the one used for the product quality.

However, the idea behind both is the same: to be sure that the characteristic is not

already included in the standard as well as to identify and define the

sub-characteristics and define the characteristic. In this case, it was also necessary

to check the rest of the characteristics and even the quality in use definition itself,

because in this model there are a lot of definitions with references to other elements

of the model. We prefer to present both in order to show more than one way of

doing things.

Fig. 10.8 Software properties (extracted from [2])

242 C. Calero et al.

To include a new characteristic, related to greenability, in the standard, we are

going to follow a set of actions:

1. Working with the sub-characteristics

2. Defining the characteristic

3. Reviewing the quality in use characteristics

4. Redefining quality in use

10.4.1 Working with the Sub-characteristics

In order to identify the sub-characteristics which affect greenability, we have

studied the quality in use model from the standard, identifying those characteristics

and sub-characteristics that may be related in some way to greenability, adapting

them to it. We have also considered the inclusion of new characteristics not derived

from the previous step. As a result, we have identified the following

sub-characteristics:

• Efficiency optimisation: Optimisation of resources expended in relation to the

accuracy and completeness with which users achieve goals. Relevant resources

can include time consumption, software resources, etc.

• User’s environmental perception: Degree to which users are satisfied with their

perception of the consequences that the use of a software will have on the

environment.

• Minimisation of environmental effects: Degree to which a product or system

reduces the effects on the environment in the intended contexts of use.

Quality in use

Effec�veness Efficiency Sa�sfac�on

Usefulness

Pleasure

Comfort

Trust

Freedom from
risk

Economic risk
mi�ga�on

Health and safety
risk migita�on

Environmental
risk mi�ga�on

Context coverage

Context
completeness

Flexibility

Fig. 10.9 System quality in use model

10 Green Software and Software Quality 243

10.4.2 Defining the New Characteristic

Once the sub-characteristics had been defined, we were able to define the new

greenability characteristic as the degree to which a software product can be used by

optimising its efficiency, by minimising environmental effects and by improving

the user’s environmental perception.

As a result of carrying out the first two steps, we obtained the new characteristic

and sub-characteristics shown in Fig. 10.10.

10.4.3 Reviewing Quality in Use Characteristics

As mentioned previously, some of the definitions of quality in use models made use

of other definitions of the standard; this means it is necessary to go over all of them

in order to incorporate the new characteristic into the definitions. To be specific, the

following need to be examined:

Context coverage: Degree to which a product or system can be used with effec-

tiveness, efficiency, freedom from risk, greenability and satisfaction in both

specified contexts of use and in contexts beyond those initially explicitly

identified

Context completeness: Degree to which a product or system can be used with

effectiveness, efficiency, freedom from risk, greenability and satisfaction in all

the specified contexts of use

Flexibility: Degree to which a product or system can be used with effectiveness,

efficiency, freedom from risk, greenability and satisfaction in contexts beyond

those initially specified in the requirements

Greenability in
use

Efficiency
Op�miza�on

User's
Environmental

percep�on

Minimiza�on of
environmental

effects

Fig 10.10 Quality in use greenability

244 C. Calero et al.

10.4.4 Redefining Quality in Use

Finally, the last step is to check the quality in use definition, making sure that it

takes into account the newly added characteristic.

Quality in use is the degree to which a product or system can be used by specific

users to meet their needs in order to achieve specific goals with efficiency, freedom

from risk, greenability and satisfaction in specific contexts of use.

The final result of this process is the new quality in use model shown in

Fig. 10.11.

We put together all the information related to the new characteristic:

– Characteristic

Greenability: Degree to which a software product can be used by optimising its

efficiency, by minimising environmental effects and by improving the user’s

environmental perception.

– Sub-characteristics

Efficiency optimisation: Optimisation of resources expended in relation to the

accuracy and completeness with which users achieve goals. Relevant

resources can include time consumption, software resources, etc.

User’s environmental perception: Degree to which users are satisfied with

their perception of the consequences that the use of a software will have on

the environment.

Minimisation of environmental effects: Degree to which a product or system

reduces the effects on the environment in the intended contexts of use.

Quality in use

Effec�veness Efficiency Sa�sfac�on

Usefulness

Pleasure

Comfort

Trust

Freedom from
risk

Economic risk
mi�ga�on

Health and
safety risk
migita�on

Environmental
risk mi�ga�on

Context
coverage

Context
completeness

Flexibility

Greenability

Efficiency
Op�miza�on

User's
Environmental

percep�on

Minimiza�on of
environmental

effects

Fig. 10.11 Complete quality in use model

10 Green Software and Software Quality 245

As in the software product quality model, we have also taken into consideration

those aspects related uniquely to the inherent properties.

10.5 Linking the Software Product Model and the Quality

in Use Model

As indicated in Sect. 10.2 (Fig. 10.2), there is a relationship between the product

quality (PQ) and the quality in use (QiU) models. However, no clues on how to

make this relationship are given in the ISO/IEC 25010 standard [7].

In the software quality field, people usually work on product quality and focus

mainly on the maximisation of the product quality as a means of ensuring high level

of quality in use.

This is not necessarily true in most situations, however: a product with the best

quality does not necessarily guarantee that the product will fulfil the user’s needs in

its context of use; for example, a Ferrari is not the best car to go to work in, in most

cases.

Our position is exactly the opposite; we concentrate on quality in use as the

driving factor to consider when designing a software product or when selecting the

product that best fits a user’s needs.

This means that we start with a given level of QiU, and we wish to determine the

minimum level of product quality that will guarantee such a desired quality in use.

The goal would in fact be to be able to select the smallest set of really relevant

product quality sub-characteristics that ensure the required level of quality; focus-

ing solely on these is the way to avoid superfluous costs or irrelevant features which

may increase the final impact on the environment unnecessarily while also pushing

up the price of the product.

In our quest to determine the relationship between the quality in use (QiU) and

the product quality (PQ), we are going to use the Bayesian belief networks (or,

simply, the Bayesian networks, BNs). A BN is a directed acyclic graph whose

nodes are the uncertain variables and whose edges are the causal or influential links

between variables. A conditional probability table (CPT) is associated with each

node in order to denote such causal influence [8]. We have successfully applied this

approach previously [9], and other authors have also used the BN for the assessment

of software quality [10]. The overall idea is to use the BN as a way to represent the

models.

To define a BN, it is necessary to:

1. Provide the set of random variables (nodes) and the set of relationships (causal

influence) among those variables.

2. Build a graph structure with them.

3. Define conditional probability tables associated with the nodes. These tables

determine the weight (strength) of the links of the graph and are used to calculate

the probability distribution of each node in the BN.

246 C. Calero et al.

In our case, steps (1) and (2) will be applied by using the standard, modelling the

different relationships between and among the characteristics and

sub-characteristics of the PQ and the QiU, in addition to the degree of dependence

or influence among them. Once the network has been defined, it has to be ‘trained’,

using a set of controlled experiments, so that it ‘learns’.

The trained network can also be used to make inferences about the values of the

variables in the network. Bayesian propagation algorithms use probability theory to

make such inferences, employing the information available (usually a set of obser-

vations or evidences).

10.5.1 Modelling the Relationships Between PQ and QiU

The first step is to identify the relationships between the PQ and the QiU. These

relationships can be modelled by determining the characteristics of the former that

affect the characteristics of the latter. This is done by using the definitions provided

in the standard, along with those provided in this chapter for the new characteristics

related to greenability included in the standard. Table 10.2 shows these relation-

ships by employing a matrix, in which ‘X’ indicates that a relationship exists.

From the information of Table 10.2, we can generate a BN (Fig. 10.12), where

each characteristic is represented as a node and each X in the matrix as an arc

between the nodes. Nodes from PQ are represented in the top of the BN, and the

ones from QiU are represented in the bottom part.

This solution throws up a number of problems:

1. Two characteristics of PQ have the same degree of influence on one of the

characteristics of QiU; for example, compatibility and usability have the same

influence on satisfaction, which seems to be unreal.

2. Two characteristics of QiU are affected in the same way by one particular

characteristic of PQ; for example, functional suitability has the same influence

on satisfaction as freedom from risk.

3. All the sub-characteristics of one characteristic of PQ have the same influence on

one characteristic of QiU; for example, all the security sub-characteristics

(confidentiality, integrity, non-repudiation, accountability, authenticity) have

the same influence on freedom from risk.

4. A characteristic of PQ has the same influence on all the sub-characteristics of

one QiU characteristic (performance efficiency, for instance, influences the

following sub-characteristics of satisfaction—usefulness, trust, pleasure and

comfort, all to the same extent).

These findings show that it is better to work with each of the QiU characteristics

independently. By way of example, as our present focus is on greenability, we shall

make the process concentrate solely on the greenability in use characteristic

(although the same process can be applied to the other QiU characteristics).

10 Green Software and Software Quality 247

T
a
b
le

1
0
.2

R
el
at
io
n
sh
ip
s
b
et
w
ee
n
P
Q

an
d
Q
iU

Q
u
al
it
y
in

u
se

E
ff
ec
ti
v
en
es
s

E
ffi
ci
en
cy

S
at
is
fa
ct
io
n

F
re
ed
o
m

fr
o
m

ri
sk

C
o
n
te
x
t
co
v
er
ag
e

G
re
en
ab
il
it
y

P
ro
d
u
ct

q
u
al
it
y

F
u
n
ct
io
n
al

su
it
ab
il
it
y

X
X

X
X

X
X

P
er
fo
rm

an
ce

ef
fi
ci
en
cy

X
X

X
X

C
o
m
p
at
ib
il
it
y

X
X

X

U
sa
b
il
it
y

X
X

X
X

R
el
ia
b
il
it
y

X
X

X
X

X

S
ec
u
ri
ty

X
X

M
ai
n
ta
in
ab
il
it
y

X
X

X

P
o
rt
ab
il
it
y

X
X

X

G
re
en
ab
il
it
y

X
X

X
X

X

248 C. Calero et al.

10.5.2 Modelling the Relationships Between PQ
and Greenability (in Use)

We are going to follow a similar process to that set out previously but now

constructing the matrix between the PQ characteristics and the sub-characteristics

of greenability (in use). The result is shown in Table 10.3; Fig. 10.13 shows the

corresponding BN.

In this option, we have eliminated problems 2 and 4, but problems 1 and 3 still

remain, since we are still working at the level of characteristics in the case of PQ.

The solution is to work with the sub-characteristics of PQ instead of with the

characteristics.

10.5.3 Modelling the Relationships Between PQ
Sub-characteristics and Greenability (in Use)

Since we are working with the sub-characteristics of PQ, we need to create

influence tables for each of the sub-characteristics of greenability in relation to

Reliability Security

Usability
Maintainability

Portability

Greenability

Compa�bility

Performance
Efficiency

Func�onal
Suitability

Greenability

Context
Coverage

Freedom from
risk Sa�sfac�on

Efficiency

Effec�veness

Quality in Use

Fig. 10.12 PQ versus QiU Bayesian network

10 Green Software and Software Quality 249

the sub-characteristics of each characteristic of PQ which have an influence on

greenability (in use).

In order to simplify the information, we are going to work separately with each

of the three greenability sub-characteristics.

First of all, we present the table (Table 10.4) and BN (Fig. 10.14) corresponding

to the efficiency optimisation sub-characteristic.

Table 10.3 Relationship between PQ and greenability (in use)

Greenability in use

Efficiency

optimisation

User’s

environmental

perception

Minimisation of

environmental effects

Product

quality

Functional

suitability

X X

Performance

efficiency

X X X

Compatibility X X X

Usability X X

Reliability X

Security

Maintainability X X X

Portability X X

Greenability X X X

ReliabilityUsability

Maintainability

Portability

Greenability

Compa�bility

Performance
Efficiency

Func�onal
Suitability

Minimiza�on of
environmental

effects

User’s
environmental

percep�on

Efficiency
op�miza�on

Greenability

Fig. 10.13 PQ versus greenability (in use) Bayesian network

250 C. Calero et al.

T
a
b
le

1
0
.4

R
el
at
io
n
sh
ip

b
et
w
ee
n
P
Q
su
b
-c
h
ar
ac
te
ri
st
ic
s
an
d
ef
fi
ci
en
cy

o
p
ti
m
is
at
io
n

E
ffi
ci
en
cy

o
p
ti
m
is
at
io
n

E
ffi
ci
en
cy

o
p
ti
m
is
at
io
n

C
o
m
p
at
ib
il
it
y

C
o
ex
is
te
n
ce

X
M
ai
n
ta
in
ab
il
it
y

M
o
d
u
la
ri
ty

X

In
te
ro
p
er
ab
il
it
y

X

U
sa
b
il
it
y

A
p
p
ro
p
ri
at
en
es
s

re
co
g
n
is
ab
il
it
y

X
R
eu
sa
b
il
it
y

X

O
p
er
ab
il
it
y

A
n
al
y
sa
b
il
it
y

U
se
r
er
ro
r
p
ro
te
ct
io
n

X
M
o
d
ifi
ab
il
it
y

X

U
se
r
in
te
rf
ac
e
ae
st
h
et
ic
s

T
es
ta
b
il
it
y

L
ea
rn
ab
il
it
y

G
re
en
ab
il
it
y

E
n
er
g
y
ef
fi
ci
en
cy

X

A
cc
es
si
b
il
it
y

R
es
o
u
rc
e

o
p
ti
m
is
at
io
n

X

F
u
n
ct
io
n
al

su
it
ab
il
it
y

F
u
n
ct
io
n
al

co
m
p
le
te
n
es
s

X
P
er
d
u
ra
b
il
it
y

X

C
ap
ac
it
y

o
p
ti
m
is
at
io
n

X

F
u
n
ct
io
n
al

co
rr
ec
tn
es
s

X
P
er
fo
rm

an
ce

ef
fi
ci
en
cy

T
im

e
b
eh
av
io
u
r

X

F
u
n
ct
io
n
al

ap
p
ro
p
ri
at
en
es
s

R
es
o
u
rc
e
u
ti
li
sa
ti
o
n

X

C
ap
ac
it
y

X

10 Green Software and Software Quality 251

Although this BN reflects the relationships identified, it produces a very high

number of entries on the final node (that of efficiency optimisation). The definition

of the probability tables is therefore very laborious and cumbersome.

One practice that is commonly used to simplify the relationships in BNs is based

on the introduction of synthetic nodes. In this case, we decided to introduce a

synthetic node between the PQ sub-characteristics of each characteristic on the

standard. We have given these nodes the name of the corresponding characteristic,

followed by EO (from efficiency optimisation). Figure 10.15 shows the new BN.

The BN still has a very high number of entries on the final node, even after

carrying out the above action. This means it is necessary to introduce synthetic

nodes between the PQ characteristics that are conceptually related. The BN

obtained (Fig. 10.16) drastically reduces the number of entries in the probability

tables, thus becoming a usable BN for our purposes.

Using the same method, we obtain the BN for the other two sub-characteristics.

For the sake of simplicity, we will show only the final BN with the synthetic nodes

added, using UEP and MEE, respectively, in these nodes on the BN for the

sub-characteristics of the user’s environmental perception and the minimisation

of environmental effects (see Table 10.5, Fig. 10.17, Table 10.6 and Fig. 10.18).

The definition of the three BN (one for each greenability sub-characteristic)

makes it possible to study each of them independently, thus making it easier to

observe the influence of PQ sub-characteristics on each of these.

This approach not only makes it easier to define the probability tables but also

ensures that the network is simpler to use, thanks to the smaller number of nodes.

Once these BNs have been built, they need to be combined in a global BN in

order to study greenability as a whole. Figure 10.19 shows this combination that has

been made taking into account that there are several parts of the BNs that are

Efficiency Op�miza�on

Time behaviour

Resource
u�lisa�on

Capacity

Approp.
Recogn.

User error
protec�on

Modularity

Reusability

Modifiability

Resource
op�misa�on

Energy
efficiency

Capacity
Op�miza�on

Perdurability

Co-existence

Interoperability

Func�onal
Completeness

Func�onal
Correctness

Fig. 10.14 PQ sub-characteristics versus efficiency optimisation Bayesian network

252 C. Calero et al.

common to two or three of them as well as the fact that it has been necessary to

include synthetic nodes.

Of course, we can apply the same approach to the other QiU characteristics,

obtaining different BNs that can be combined so as to achieve the complete QiU of

a software product.

Efficiency Op�miza�on

Time behaviour

Resource
u�lisa�on

Capacity

Performance
EfficiencyEO

Approp.
Recogn.

User error
protec�on

UsabilityEO

Modularity

Reusability

Modifiability

MaintainabilityEO
Resource

op�misa�on

Energy
efficiency

Capacity
Op�miza�on

GreenabilityEO

Perdurability

Co-existence Interoperability

Compa�bilityEO

Func�onal
Completeness

Func�onal
Correctness

Func�onal
SuitabilityEO

Fig. 10.15 PQ sub-characteristics versus efficiency optimisation Bayesian network with synthetic

nodes

Efficiency Op�miza�on

Time behaviour

Resource
u�lisa�on

Capacity

Performance
EfficiencyEO

Approp.
Recogn.

User error
protec�on

UsabilityEO

Modularity

Reusability

Modifiability

MaintainabilityEO
Resource

op�misa�on

Energy
efficiency

Capacity
Op�miza�on

GreenabilityEO

Perdurability

Co-existence Interoperability

Compa�bilityEO

Func�onal
Completeness

Func�onal
Correctness

Func�onal
SuitabilityEO

Fig. 10.16 Efficiency optimisation Bayesian network

10 Green Software and Software Quality 253

T
a
b
le

1
0
.5

R
el
at
io
n
sh
ip

b
et
w
ee
n
P
Q
su
b
-c
h
ar
ac
te
ri
st
ic
s
an
d
u
se
r’
s
en
v
ir
o
n
m
en
ta
l
p
er
ce
p
ti
o
n

U
se
r’
s
en
v
ir
o
n
m
en
ta
l

p
er
ce
p
ti
o
n

U
se
r’
s
en
v
ir
o
n
m
en
ta
l

p
er
ce
p
ti
o
n

P
o
rt
ab
il
it
y

A
d
ap
ta
b
il
it
y

X
R
el
ia
b
il
it
y

M
at
u
ri
ty

X

In
st
al
la
b
il
it
y

A
v
ai
la
b
il
it
y

R
ep
la
ce
ab
il
it
y

X
F
au
lt
to
le
ra
n
ce

X

C
o
m
p
at
ib
il
it
y

C
o
ex
is
te
n
ce

R
ec
o
v
er
ab
il
it
y

X

In
te
ro
p
er
ab
il
it
y

X
M
ai
n
ta
in
ab
il
it
y

M
o
d
u
la
ri
ty

X

U
sa
b
il
it
y

A
p
p
ro
p
ri
at
en
es
s

re
co
g
n
is
ab
il
it
y

X
R
eu
sa
b
il
it
y

X

O
p
er
ab
il
it
y

A
n
al
y
sa
b
il
it
y

U
se
r
er
ro
r
p
ro
te
ct
io
n

M
o
d
ifi
ab
il
it
y

X

U
se
r
in
te
rf
ac
e
ae
st
h
et
ic
s

T
es
ta
b
il
it
y

L
ea
rn
ab
il
it
y

X
G
re
en
ab
il
it
y

E
n
er
g
y
ef
fi
ci
en
cy

X

A
cc
es
si
b
il
it
y

R
es
o
u
rc
e

o
p
ti
m
is
at
io
n

X

F
u
n
ct
io
n
al

su
it
ab
il
it
y

F
u
n
ct
io
n
al

co
m
p
le
te
n
es
s

P
er
d
u
ra
b
il
it
y

X

C
ap
ac
it
y

o
p
ti
m
is
at
io
n

X

F
u
n
ct
io
n
al

co
rr
ec
tn
es
s

P
er
fo
rm

an
ce

ef
fi
ci
en
cy

T
im

e
b
eh
av
io
u
r

X

F
u
n
ct
io
n
al

ap
p
ro
p
ri
at
en
es
s

X
R
es
o
u
rc
e

u
ti
li
sa
ti
o
n

X

C
ap
ac
it
y

X

254 C. Calero et al.

10.6 How to Adapt the Bayesian Networks to a Specific

Context

It is clear that the networks that come about in the previous section represent the

influences between the PQ and the greenability of any particular software product;

its definition is based on those given in the ISO/IEC 25010 and, as such, should be

adapted to the specific context to which it is to be applied. In order to carry out this

adaptation, we must ensure that all the characteristics of the standard are applicable

to this context and that no further characteristics are going to be needed.

To do the former, we have to know what the context is and be able to establish

the applicability of the characteristics to this specific context. If there is any shadow

of a doubt, it is better not to eliminate characteristics, since once trained, the

Bayesian networks themselves will be able to rule out any characteristics that

have no influence.

In addition, it will be possible to determine whether or not to include new

characteristics of the context by studying the state of the art, looking for other

proposals, consulting experts, etc.

In general, if it is not a context with very well-defined features, we have to rely

on the standard covering all the quality characteristics.

After these actions have been taken, we will be able to build the structure of the

Bayesian network, one that is adapted and fitted to the characteristics and

sub-characteristics of PQ and QiU in our context.

The second step we have to take to adapt the proposal has to do with the

probability tables. The influences of some given characteristics will obviously

vary from domain to domain. That means it is vital to create tables to reflect the

specific reality of a particular domain.

Interoperability

Func�onal
Appropriateness

User’s environmental
percep�on

Time behaviour

Resource
u�lisa�on

Capacity

Performance
EfficiencyUEP

Adaptability Replaceability

PortabilityUEP

Approp.
Recogn. Learnability

UsabilityUEPMaturity

Recoverability

Fault-tolerance

ReliabilityUEP
Modularity

Analysability

Modifiability

MaintainabilityUEP

Resource
op�misa�on

Energy
efficiency

Capacity
Op�miza�on

GreenabilityUEP

PerdurabilityResource
AspectsUEP

Func�onality
UEP

UsageUEP

Fig. 10.17 User’s environmental perception Bayesian network

10 Green Software and Software Quality 255

T
a
b
le

1
0
.6

R
el
at
io
n
sh
ip

b
et
w
ee
n
P
Q
su
b
-c
h
ar
ac
te
ri
st
ic
s
an
d
m
in
im

is
at
io
n
o
f
en
v
ir
o
n
m
en
ta
l
ef
fe
ct
s

M
in
im

is
at
io
n
o
f
en
v
ir
o
n
m
en
ta
l

ef
fe
ct
s

M
in
im

is
at
io
n
o
f
en
v
ir
o
n
m
en
ta
l

ef
fe
ct
s

P
o
rt
ab
il
it
y

A
d
ap
ta
b
il
it
y

X
G
re
en
ab
il
it
y

E
n
er
g
y
ef
fi
ci
en
cy

X

In
st
al
la
b
il
it
y

R
es
o
u
rc
e

o
p
ti
m
is
at
io
n

X

R
ep
la
ce
ab
il
it
y

X
P
er
d
u
ra
b
il
it
y

X

C
o
m
p
at
ib
il
it
y

C
o
ex
is
te
n
ce

X
C
ap
ac
it
y

o
p
ti
m
is
at
io
n

X

In
te
ro
p
er
ab
il
it
y

X
M
ai
n
ta
in
ab
il
it
y

M
o
d
u
la
ri
ty

X

P
er
fo
rm

an
ce

ef
fi
ci
en
cy

T
im

e
b
eh
av
io
u
r

X
R
eu
sa
b
il
it
y

X

R
es
o
u
rc
e

u
ti
li
sa
ti
o
n

X
A
n
al
y
sa
b
il
it
y

C
ap
ac
it
y

X
M
o
d
ifi
ab
il
it
y

X

T
es
ta
b
il
it
y

256 C. Calero et al.

To do that, we must carry out experiments or surveys that allow us to obtain a

series of data that serve as input to the network validation process.

From this validation, we will obtain a structure that is completely adapted to the

context to which we want to apply it.

The final step in being able to use this network will be the definition of specific

measurements for the software product we wish to measure. These measurements

should be able to be calculated for the product; this will preferably be automatic,

though that is not always possible. These measurements will be the ones which will

serve as inputs to the external nodes of the network; their values should be changed

into valid inputs to the network, and these values will be propagated through the

Minimiza�on of
EnvironmentalEffects

Time behaviour

Resource
u�lisa�on

Capacity

Performance
EfficiencyMEE

Adaptability Replaceability

PortabilityMEE

Modularity

Reusability

Modifiability

MaintainabilityMEE
Resource

op�misa�on

Energy
efficiency

Capacity
Op�miza�on

GreenabilityMEE

Perdurability

Co-existence Interoperability

Compa�bilityMEE

Resource
AspectsMEEFunc�onalityMEE

Fig. 10.18 Minimisation of environmental effects Bayesian network

Resource
AspectsMEE

UEPAspects

Greenability
(in use)

Time behaviour

Resource
u�lisa�on

Capacity

Performance
Efficiency

Resource
op�misa�on

Energy
efficiency

Capacity
Op�miza�on

Greenability

Perdurability

Co-existence Interoperability

Compa�bility

Func�onal
Completeness

Func�onal
Correctness

Func�onal
SuitabilityEO

Adaptability Replaceability

Portability

Modularity

Reusability

Modifiability

MaintainabilityEO-MEM

User’s environmental
percep�on

Efficiency Op�miza�on
Minimiza�on of

Environmental Effects

Approp.
Recogn. Learnability

UsabilityUEP

User error
protec�on

UsabilityEO

Func�onal
Appropriateness

Maturity

Recoverability

Fault-tolerance

ReliabilityUEP

Modularity

Analysability

Modifiability

MaintainabilityUEP

Fig. 10.19 Greenability (in use) Bayesian network

10 Green Software and Software Quality 257

BN, via the nodes and by applying the probability tables, until the lower node is

reached (the one of quality in use or some of its characteristics).

Once all these actions have been carried out, the network may begin to be used.

10.7 Using the Bayesian Networks

As we commented in the previous section, before being able to use the network, we

must adapt it to the particular context that interests us. Once this adaptation has

been performed, the network will be ready to be employed with at least three

different uses.

One of these could be by using the network in a ‘static’ way, that is to say, just as

it turns out after the validation process. The other two will be using the network in a

‘dynamic’ way. The objective will be different in each case.

10.7.1 Bayesian Networks ‘Static’ Usage

In the ‘static’ use case, we use the network only as a development guide for the new

product. In other words, the validated network will give us information about which

aspects are relevant from the point of view of the quality in use, enabling us to

identify which quality aspects we should be concerned with when we develop the

product in question. As is obvious, this case focuses on the product developers who

wish to make a competitive product, not only from the point of view of its

functional aspects but also placing special emphasis on its nonfunctional aspects

(i.e. those to do with quality), thereby obtaining a competitive edge.

10.7.2 Bayesian Networks ‘Dynamic’ Usage

In this case, the network will be handled with two basic uses in mind; it will be

essential to define measurements for the external nodes that make up the input to the

network.

These measurements should ideally be automatisable, and it ought to be possible

to calculate on the product and for each of the entry attributes of the network.

Once these measures are established and validated, we can use the network for

two purposes: the first will be to determine the quality in use of a product once it has

been created. This information will obviously let us know if our product has the

quality in use or not. In this case, we are using the network in a ‘top-down’ way,

with a given PQ (established by the defined measurements), to calculate the quality

in use (calculated by the propagation of the values through the network until they

reach the lowest quality in use node).

258 C. Calero et al.

Where the quality level has not reached the desired level of quality in use, we can

use the network for the second objective we have set out: to determine the minimum

values of external quality that the product needs to reach the desired quality in use.

This is a ‘bottom-up’ navigation of the network, from the quality in use up to the

external nodes. We can ascertain what values the product should have for the input

nodes, in other words, based on the measurements defined for the characteristics.

This means that the approach will identify for us those aspects that allow us to

reach an appropriate level of PQ based on the QiU level we are looking for. Along

with this, we can also find out which aspects of the PQ are non-relevant.

The first of the two uses is fundamental for those acquiring software products,

since it enables them to choose the product of the highest quality among several that

have the same functionality. The second of the uses, as in the case of the static use

once more, has a focus that is meant to appeal mainly to product developers.

10.8 Conclusions

Greenability must be part of the quality of a software product and should be

integrated into the quality model, for example that proposed in the ISO/IEC

25010 standard. This means that it will also be included in the quality in use model.

In this chapter, we have presented the extension proposed for the PQ and QiU

models of the ISO/IEC 25010 standard.

Moreover, as there is a direct influence between the product quality (which

includes a greenability characteristic) and the quality in use (which already inte-

grates greenability), we have presented a Bayesian network that shows the relation-

ships between both. In future work, we plan to work on this Bayesian network,

apply it to a specific domain and construct the probability tables, so as to achieve

the greenability level of a given software product. We also plan to use Bayesian

networks for the greenability evaluation by means of measures and indicators. This

is therefore another of our future objectives.

The final goals are, on the one hand, to incorporate greenability in the develop-

ment of a software product, in the form of nonfunctional requirements, and ensure

that the final products are environment friendly and, on the other hand, to define

measures and indicators for the greenability of a software product, so we may use

them to evaluate, detect weaknesses or improve the greenability of a software

product.

Of course, we also wish to continue studying other aspects of greenability, that is

the economic, and mainly the social, aspects to which we believe special attention

should be paid if we are to point to and mitigate some labour situations that

currently occur in the software industry and that should be rejected immediately.

10 Green Software and Software Quality 259

References

1. Calero C, Bertoa MF, Moraga MA (2013) Sustainability and quality: icing on the cake. In:

Second international workshop on requirements engineering for sustainable systems

(RE4SuSy) in RE’13 (July 15th–19th), vol 995. ISSN:1613-0073, Paper 5, http://ceur-ws.org

2. Calero C, Bertoa MF, Moraga MA (2013) A systematic literature review for software sustain-

ability measures. In: GREENS 2013: Second international workshop on green and sustainable

software, pp 46–53

3. Capra E, Francalanci C, Slaughter SA (2012) Is software “green”? Application development

environments and energy efficiency in open source applications. Inform Software Tech 54

(2012):60–71

4. Glinz M (2007) On non-functional requirements. In: International conference on requirements

engineering, pp 21–26

5. IEEE 830 (1998) IEEE recommended practice for software requirements specifications

6. ISO/IEC 25000 (2010) Systems and software engineering – software product quality require-

ments and evaluation SQuaRE

7. ISO/IEC 25010 (2010) Systems and software engineering – software product quality require-

ments and evaluation (SQuaRE) – software product quality and system quality in use models.

ISO

8. Jensen FV (2001) Bayesian networks and decisions graphs. Springer, Berlin

9. Moraga MA et al (2008) Evaluating quality-in-use using Bayesian networks. In: 12th ECOOP

workshop: quantitative approaches on object oriented software engineering (QAOOSE 2008)

10. Neil M, Krause P, Fenton NE (2003) Software quality prediction using Bayesian networks. In:

Khoshgoftaar TM (ed) Software engineering with computational intelligence, Chap. 6. Inter-

national series in engineering and computer science. Kluwer Academic, Higham, MA. ISBN:

978-1-4615-0429-0

11. Penzenstadler B et al (2012) Sustainability in software engineering: a systematic literature

review for building up a knowledge base. In: 16th international conference on evaluation and

assessment in software engineering (EASE 2012)

260 C. Calero et al.

http://ceur-ws.org/

Chapter 11

Green Software Measurement

Ma Ángeles Moraga and Manuel F. Bertoa

11.1 Introduction

People today have lifestyles that put the resources of future generations at risk.

There is, however, a growing consciousness of this problem. In fact, civil societies

are increasingly requiring manufacturers to incorporate principles of sustainably

sound design into their products and to produce these products in an ecologically

and socially responsible manner [7]. One of humanity’s current challenges is

therefore to conserve the environment and attain a sustainable economic, social

and personal development.

Both the industry and consumers are reacting to this need, which has led to the

appearance of various Green IT initiatives. However, it would appear that the

industry is far more conscious of this need than are the consumers. According to

[1], users are often unaware of the concept of sustainable software and do not see

unsustainable software as an environmental concern.

It is clear that nowadays people are using more and more devices, such as iPads,

mobile phones, smartphones, etc. In fact, software systems are part of our day-to-

day life, and this signifies that the energy consumption of information and com-

munications technology (ICT) is increasing. Some authors such as [6] state that

information technology (IT) plays a predominant role in reducing energy consump-

tion, both as a tool to monitor and optimise the energy efficiency of any production

process and as a target of energy efficiency initiatives. There are, however, other

authors who are unsure whether or not the energy savings made through the use of

Ma.Á. Moraga (*)

Department of Information Technologies and Systems, University of Castilla-La Mancha,

Ciudad Real, Spain

e-mail: MariaAngeles.Moraga@uclm.es

M.F. Bertoa

University of Málaga, Málaga, Spain

e-mail: Bertoa@lcc.uma.es

© Springer International Publishing Switzerland 2015

C. Calero, M. Piattini (eds.), Green in Software Engineering,
DOI 10.1007/978-3-319-08581-4_11

261

mailto:MariaAngeles.Moraga@uclm.es
mailto:Bertoa@lcc.uma.es

ICT overbalance the energy consumed by ICT [8, 13]. This is owing to the fact that

ICT can optimise material flows and thus reduce energy consumption [11], but

energy consumption by ICT itself, especially through the Web, has been gradually

increasing [9]. ICT uses resources and consumes energy in both the construction

and the use of hardware and software products and may therefore have a positive or

a negative effect on the environment.

It is therefore clear that concerns exist as regards ICT helping to reduce negative

effects on the environment. But the majority of works to date have focused more on

analysing the concerns related to hardware than those related to software [2, 7].

This may be owing to the fact that it is evident that hardware consumes energy and

that this affects sustainability. One very clear case is that of data centres, which

require ever-increasing quantities of energy. There are, therefore, many works in

the literature related to the energy efficiency of data centres [8].

However, software development should not remain indifferent to the need to

construct software products that contribute towards sustainability, both during their

creation and use. Although software does not directly consume energy, it greatly

affects the consumption of hardware equipment, as it indirectly guides its function-

ing [6]. An efficient software will indirectly consume less energy by using up less

hardware equipment in order to run [14]. In fact in [5], the authors have carried out

an experiment in which they have found that different MIS applications that satisfy

the same functional requirements and run on the same hardware and operating

systems have significantly different amounts of consumption (up to 145 %).

Software is the core of any IT technology, and the way in which a software is

developed may therefore have a great influence on the activities that use this

software, such as the functions offered, how the IT infrastructure is used or the

amount of energy that is needed. Nevertheless, as noted previously, the energy

efficiency of software products and the sustainability aspects related to software

products in general have been studied less than hardware. According to [6], the

software development life cycle and related development tools and methodologies

rarely, if ever, consider energy efficiency as an objective. However, this trend is

changing, and new proposals have emerged in the last few years.

Green software engineering practices can help companies to reduce or minimise

the environmental impact of their software products. In fact, the main objective of

green software engineering is to develop software products that will reduce nega-

tive environmental impacts. A definition of green and sustainable software can be

found in [7] in which the authors define the term as ‘the art of defining and

developing software products in a way, so that the negative and positive impacts

on sustainable development that result and/or are expected to result from the

software product over its whole life cycle are continuously assessed, documented,

and used for a further optimization of the software product’.

The authors of [16] carried out a systematic literature review (SLR) with the

objective of discovering the proposals related to software engineering for sustain-

ability. This work was an updated version of a previous work which was presented

in [15]. As a result of the aforementioned SLR, the authors obtained that 62 of the

262 Ma.Á. Moraga and M.F. Bertoa

83 publications selected as being relevant had been published in the previous

3 years (2011–2013). This shows two things. On the one hand, it indicates that

researchers are increasingly more concerned about this topic, which has led to a

considerable growth in the number of publications during the last few years. On the

other hand, it demonstrates that the topic is still in its initial stages and not yet

consolidated.

Since this is such a new subject, it may therefore run the risk of beginning with

typical problems such as the lack of widely accepted theoretical bases on which to

work or the non-application of methodologies that will ensure that things are done

correctly. In order to avoid this, the first step is to define a greenability quality

model for software products. Therefore, the green quality characteristics which

affect software products should be identified and defined. This study and the

definition of the model are dealt with in Chap. 10 of this book. However, although

the definition of a greenability quality model is the first step and is essential, it is not

sufficient. In order to have a useful model, it is necessary to define measures.

Bearing all this in mind, in this chapter we focus on those aspects related to

measures.

The chapter is organised as follows. Section 11.2 is focused on measurement and

the importance of measurement in general. In order to use a common terminology

in the topic of measurement, the software measurement ontology (SMO) is also

presented in this section. In Sect. 11.3, some specific green measures are presented

and classified according to the product greenability quality model presented in

Chap. 10, whereas in Sect. 11.4 some examples of SMO application to the

definition of green measures are shown. Finally, Sect. 11.5 provides some

conclusions.

11.2 Importance of Measurement

The topic of measurement has not appeared recently and dates back to ancestral

times. This practice is very common in any type of engineering and no less so in

software engineering.

In the software engineering domain, one of the main motivations for measuring

has arisen due to a growing interest in this topic and the need for measures in order

to make improvements. These improvements may be oriented towards the project,

the process or the product. We shall focus on aspects related to the product.

In order to be able to state that one product has more quality or is better than

another, it is first necessary to carry out measurements in order to compare the

results. Measurements are a good means to understand, monitor, control, predict

and test software development and maintenance projects [4] and can be used by

professionals and researchers to make better decisions [17]. Another indication of

its importance is the fact that measurement is considered in 11 out of 15 KA of the

SWEBOK [12].

11 Green Software Measurement 263

http://dx.doi.org/10.1007/978-3-319-08581-4_10
http://dx.doi.org/10.1007/978-3-319-08581-4_10

In general, the software measurement process attempts to attain three principal

objectives [10]:

• To help us understand what happens during development and maintenance

• To allow us to control what occurs in projects

• To allow us to improve processes and products

However, software measurement is a relatively new discipline. As a result, the

literature, until recently, contained different concepts and terminology that had not

been agreed by consensus. There was, therefore, no agreement between users and

researchers as to the precise meaning of some commonly used terms, such as

‘measurement’, ‘measure’, ‘metric’, ‘measurable attribute’, etc. It is even possible

to find inconsistencies among the various research proposals in the

measurement area.

This situation, along with the objective of harmonising the various software

measurement standards and research proposals, led to the appearance of the soft-

ware measurement ontology (SMO).

Figure 11.1 describes the SMO concepts and relationships represented in

Unified Modeling Language (UML).

As shown in the figure, the SMO is organised into four main sub-ontologies:

1. Software measurement characterisation and objectives, which establish the

context and goals of the measurement

2. Software measures, which define the terminologies used in the definition of

measures

3. Measurement approaches, which describe the different means used to obtain the

measurement results for the measures defined

4. Measurement, which contains the concepts related to performing the measure-

ment process

The SMO concepts and their definitions are detailed in Table 11.1. Tables 11.2

and 11.3, respectively, provide an excerpt of relationship and attribute tables for the

SMO. A complete description of all the tables can be found in [3]. Moreover, the

SMO has been represented by using the Web Ontology Language (OWL), and its

representation can be found at http://alarcos.inf-cr.uclm.es/ontologies/smo.

11.3 Green Measures

A quality model offers many possibilities regarding its use the use of definitions,

measures and indicators being the most important. We used this idea as an objective

and then consulted the literature related to either direct or indirect software sus-

tainability measurement, along with other review works that had the same objec-

tive. We have therefore studied approximately 200 proposed measures that we

consider can be adapted to our greenability quality model.

264 Ma.Á. Moraga and M.F. Bertoa

http://alarcos.inf-cr.uclm.es/ontologies/smo

We have found 74 measures that are in some way related to software product

greenability. We shall discuss them according to how they are calculated and the

greenability sub-characteristics with which each one may be related.

It is more common to find indirect or derived measure proposals in the literature,

as they usually have greater significance than an isolated value as in direct or base

measures. However, we found 34 derived measures that account for 46 % of all the

analysed measures. These derived measures are calculated using base measures

and/or other derived measures. In our case, we analysed 38 base measures

representing 51 % of the total. The others are two indicators which, in International

Organization for Standardization (ISO) terminology, are complex measures that

need an analysis model based on, among other things, derived and base measures

(see Fig. 11.2).

Software Measures

Measurement

Characterization and Objectives

Measurement Approaches

Measurement Method
(from Measurement Approaches)

Base Measure
(from Software Measures)

1..*

1

1..*

1

uses

Measurement Function
(from Measurement Approaches)

0..*

0..*

0..*

0..*

uses

Derived Measure
(from Software Measures)

0..*

0..*

0..*

0..*

calculated with

0..*

0..*

0..*

0..*

uses

Quality Model
(from Characterization and Objectives)

kind

Measurement Result
(from Measurement)

value

Measurement Approach
(from Measurement)

Type of Scale
(from Software Measures)

Entity Class
(from Characterization and Objectives)

0..* 0..*0..*

includes

0..*

1

*

1

*

defined for

Measurable Concept
(from Characterization and Objectives)

1..* 1..*1..* 1..*

evaluates

0..*

0..*

0..*

includes
0..*

Measurement
(from Measurement)

LocationInTime

1

1

1

1
produces

1

*

1

*

performs

Unit of Measurement
(from Software Measures)

Scale
(from Software Measures)

1..*

1

1..*

1
belongs to

Attribute
(from Characterization and Objectives)

1 1..*1 1..*

has

*

1

*

1

Is performed on

1..*

1..*

1..*

1..*

relates

Information Need
(from Characterization and Objectives)

1

1..*

1

1..*is associated with

Measure
(from Software Measures)

*

1

*

1

uses

0..* 0..*0..*

transformation

0..* 1..*

0..1

1..*

0..1

expressed in

1..*

1

1..*

1

has

0..*1..* 0..*1..* defined for

Indicator
(from Software Measures)

1..*

0..*

1..*

0..*

satisfies

Decision Criteria
(from Measurement Approaches)

Analysis Model
(from Measurement Approaches)

1..*

0..*

1..*

0..*

uses

1..*

1

1..*

1

calculated with

1..*

1..*

1..*

1..*

uses

Entity
(from Characterization and Objectives)

1..*

0..*

1..*

0..*

belongs to

*1 *1

Is performed on

0..*0..*

composed of

Fig. 11.1 UML representation of SMO concepts, attributes and relationships

11 Green Software Measurement 265

Table 11.1 Concepts of the SMO

Concept Superconcept Definition

Information

need

Concept Insight necessary to manage objectives, goals, risks and

problems

Measurable

concept

Concept Abstract relationship between attributes of entities and

information needs

Entity Concept Object that is to be characterised by measuring its attributes

Entity class Concept The collection of all entities that satisfy a given predicate

Attribute Concept A measurable physical or abstract property of an entity that is

shared by all the entities of an entity class

Quality model Concept The set of measurable concepts and the relationships between

them which provide the basis for specifying quality require-

ments and evaluating the quality of the entities of a given

entity class

Measure Concept The defined measurement approach and the measurement

scale (a measurement approach is either a measurement

method, a measurement function or an analysis model)

Scale Concept A set of values with defined properties

Type of scale Concept The nature of the relationship between values on the scale

Unit of

measurement

Concept Particular quantity, defined and adopted by convention, with

which other quantities of the same kind are compared in order

to express their magnitude relative to that quantity

Base measure Measure A measure of an attribute that does not depend upon any other

measure and whose measurement approach is a measurement

method

Derived

measure

Measure A measure that is derived from other base or derived mea-

sures, using a measurement function as the measurement

approach

Indicator Measure A measure that is derived from other measures using an

analysis model as the measurement approach

Measurement

method

Measurement

approach

Logical sequence of operations, described generically, used

in quantifying an attribute with respect to a specified scale

(a measurement method is the measurement approach that

defines a base measure)

Measurement

function

Measurement

approach

An algorithm or calculation performed to combine two or

more base or derived measures (a measurement function is

the measurement approach that defines a derived measure)

Analysis

model

Measurement

approach

Algorithm or calculation combining one or more measures

with associated decision criteria (an analysis model is the

measurement approach that defines an indicator)

Decision

criteria

Concept Thresholds, targets or patterns used to determine the need for

action or further investigation or to describe the level of

confidence in a given result

Measurement

approach

Concept Sequence of operations aimed at determining the value of a

measurement result (a measurement approach is either a

measurement method, a measurement function or an analysis

model)

(continued)

266 Ma.Á. Moraga and M.F. Bertoa

According to the greenability sub-characteristics from the product greenability

quality model, we have found several measures for all of the proposed

sub-characteristics (see Fig. 11.3). However, the distribution among them is

uneven. The majority of the measures are related to energy efficiency, and 30 of

Table 11.1 (continued)

Concept Superconcept Definition

Measurement Concept A set of operations having the object of determining a value

of a measurement result, for a given attribute of an entity,

using a measurement approach

Measurement

result

Concept The number or category assigned to an attribute of an entity

by making a measurement

Table 11.2 Relationship table for the measurement approaches sub-ontology

Name Concepts Description

Calculated

with

Derived measure—

measurement function

Every derived measure is calculated with one mea-

surement function. Every measurement function may

define one or more derived measures

Calculated

with

Indicator—analysis

model

Every indicator is calculated with one analysis model.

Every analysis model may define one or more

indicators

Uses Base measure—mea-

surement method

Every base measure uses one measurement method.

Every measurement method defines one or more base

measures

Satisfies Information need—

indicator

An indicator may satisfy several information needs.

Every information need is satisfied by one or more

indicators

Uses Measurement func-

tion—derived measure

A measurement function may use several derived

measures. A derived measure may be used in several

measurement functions

Uses Measurement func-

tion—base measure

A measurement function may use several base mea-

sures. A base measure may be used in several mea-

surement functions

Uses Analysis model—

measure

An analysis model uses one or more measures. A

measure may be used in several analysis models

Uses Analysis model—deci-

sion criteria

An analysis model uses one or more decision criteria.

Every decision criterion is used in one or more analysis

models

Table 11.3 Attribute table for the measurement sub-ontology

Concept Attribute Description Type Card

Measurement Location in

time

Time instant where measurement is carried

out

Time/

date

1

Measurement

result

Value Value which represents the result of the

measurement action

Variant 1

11 Green Software Measurement 267

the 81 measures studied can be related to this sub-characteristic. This is not

surprising because when we think of sustainability, one of the first and foremost

aspects to appear is that of energy consumption.

There are, however, quite a large number of measures that are related to resource

optimisation (17) and perdurability (21) (23 % and 28 %, respectively). This might

result from the fact that both economic necessity and care of the environment have,

from the outset, led to the need to measure spending and the possible optimisation

of the resources used for a software product. It is interesting to consider the large

number of perdurability measures. Many measures can be associated with this

property when we define this sub-characteristic in terms of ease of modifiability,

adaptability and reuse, and therefore, it is not surprising that a large number of

measures are found.

Finally, for the capacity optimisation sub-characteristic, we have only found six

measures (8 %). We think that this smaller number of measures is due to the

difficulty in proposing measures to evaluate the optimisation of resource allocation.

The following tables, which are divided into greenability sub-characteristics,

show the references and classification of the measures with which we have worked.

Table 11.4 shows the measures that we have been able to relate to energy

efficiency. We have followed a flexible inclusion criterion and have assumed that

although some measures are not clearly oriented towards a software product, they

may, with a minor adaptation, serve to evaluate a particular aspect of this

sub-characteristic.

Table 11.5 shows the measures studied that are related to the resource optimi-

sation sub-characteristic. The measures classified into this sub-characteristic should

evaluate the consumption and optimisation of the different resources that a software

product uses. These resources may be other software products, the system’s hard-

ware and software configuration or materials.

Fig. 11.2 Type of

measures

268 Ma.Á. Moraga and M.F. Bertoa

Table 11.6 contains the measures that have been classified as being related to the

capacity optimisation sub-characteristic. Thesemeasures are all of the derived type, since

the sub-characteristic proposed attempts to evaluate the capacity (as regards resources)

used in an optimummanner and will normally have to compare the amount of resources

that have been assigned or used with the maximum capacity of these resources.

Finally, Table 11.7 presents the measures related to perdurability. Please note

that the measures related to ease of use, adaptability and modifiability are classified

into this sub-characteristic. Some of the measures have been proposed for the

evaluation of these product quality sub-characteristics and, therefore, may also

evaluate this greenability sub-characteristic.

In this work, we have only focused on measures assessing software products. We

have in fact found far more proposed measures (about 200) related to the develop-

ment process and the project, at the company level, for the complete system, among

others. Some of the measures that we have classified as being for the software

product could even be understood to be related not only to the software product but

also to the complete system. Nevertheless, our goal was to verify that measures

already existed, so we have accepted with a broad and flexible criterion that a

measure can be used to evaluate a greenability sub-characteristic attribute.

Some examples will be provided in the following section, in which we shall also

attempt to formalise some of these measures.

Another limit that is complex to define is whether a measure is of the product or

of the product in use. A software product obviously ‘only’ consumes energy when it

is being executed, that is it is being used, but we consider that greenability in use is

closely related to the user, and we have therefore defined the quality in use model,

which includes greenability in use (see Chap. 10). Few of the measures studied are

Fig. 11.3 Greenability

sub-characteristic measures

11 Green Software Measurement 269

http://dx.doi.org/10.1007/978-3-319-08581-4_10

Table 11.4 Energy efficiency measures

Reference Name Description/definition Type

Arnoldus

2013

AE annual

consumption

The total energy consumption of an e-service

on an annual basis

AE¼AEhardware+AEcommunication

Derived

ET consumption per

transaction

The average energy consumption per exe-

cuted end user or business transaction

ET¼AE/AT

where AT is the annual number of

transactions

Derived

Das 2008 Power and

performance

Power and performance measurements Base

Goiri 2013 Load t The average IT power the data centre will

consume in epoch t

Derived

Grosskop

2013

Power usage effec-

tiveness (PUE)

Indicator for efficiency of data centre

infrastructure

Derived

Consumption near

sweet spot (CNS)

The ratio between the system’s average

consumption and its optimal consumption

per unit of work

Derived

Hindle 2012

a,b

Power per second Power measures per second Base

Power consumption The relationship between software changes

and power consumption

Base

Jiang 2008 Energy usage Real-time energy usage. It is a comprehen-

sive set of measurements such as real, active

and reactive power

Base

Johann

2011

Energy efficiency Useful work done/energy used Derived

Kim 2012 Power Power is the rate of energy consumption,

measured in watts (W)

Base

Energy Energy¼ power� time, measured in watt-

hour (Wh) rather than joule (J) for energy

Base

Power consumption

rating R(P(i, j))

Power P(i, j) consumed by content j of

website i

R(P(i, j)) ¼
1, for 5 * max8l,m{P(l,m)}/P(i,j)

2, for 4 * max8l,m{P(l,m)}/P(i,j)< 5

3, for 3 * max8l,m{P(l,m)}/P(i,j)< 4

4, for 2 * max8l,m{P(l,m)}/P(i,j)< 3

5, for max8l,m{P(l,m)}/P(i,j)< 2

Indicator

Energy consumption

E(i)

The amount of energy consumption E(i) of a

website i by visitors

Derived

Energy consumption

rating model for

websites

Power consumption for websites Base

(continued)

270 Ma.Á. Moraga and M.F. Bertoa

Table 11.4 (continued)

Reference Name Description/definition Type

Noureddine

2012

Power software Psoftware¼Pcomp +Pcom Derived

Pcomp CPU power consumed by software

Pcomp¼Pcpu(d) ·Ucpu(d)
Derived

Pcpu Global CPU power during d

PCPU dð Þ ¼ 0:7�TPD
f TPD�V2

TPD

� F � V2

Derived

Pcom Power consumed by the network card to

transmit software’s data

Pcom ¼
X

i∈ states
tixPixd

ttotal

Derived

Seo 2008,

2009

Communication

energy cost

Energy cost owing to the data exchanged

over the network

Base

Component energy

cost

Energy cost of a component due to

exchanging subscriptions, unsubscriptions

and events with pub-sub connectors

Base

Facilitation energy

cost

Energy cost of a pub-sub connector incurred

by managing subscriptions and publications,

finding the set of subscriptions that match

each published event and creating connec-

tion objects that implement remote

communication

Base

Service energy cost Energy cost of services that a connector may

provide

Base

Client connector

energy cost

Energy cost of a client connector incurred by

receiving requests from and forwarding

responses to clients

Base

Client energy cost Energy cost of a client owing to sending

requests to and receiving responses from a

connector

Base

Client-server facilita-

tion energy cost

Facilitation energy cost of client and server

connectors

Base

Communication

energy consumption

Energy consumption of communication,

which includes the cost of exchanging data

both locally and remotely

Base

Conversion pub-sub

energy cost

Energy cost of a pub-sub connector incurred

by marshalling and unmarshalling events

that are transmitted remotely

Base

Coordination

pub-sub energy cost

Energy cost of a pub-sub connector incurred

by performing coordination

Base

Sinha 2001 Second-order soft-

ware energy ESTI

model

The amount of current consumed by a pro-

gram during its execution with different

instruction classes

Base

11 Green Software Measurement 271

clearly related to this aspect of greenability. We believe that, as has occurred with

quality in use, greenability in use will become more important in the future.

This aspect is normal in any software product quality assessment, in which the

tendency is to maximise the product quality as a means to achieve the best quality in

use. We do not believe that this is the best way to work with quality, and we

advocate another way to plan the measurement: first, fix the quality in use prefer-

ences, and then ensure the product quality characteristics that are necessary to

achieve them.

Table 11.5 Resource optimisation measures

Reference Name Description/definition Type

Albertao 2010 Relative response

time

The number of tasks with an unacceptable

response time divided by the number of tasks

tested

Derived

Learnability Ratio of how fast a user can learn to use the

application w.r.t. the time the user used it

Derived

Effectiveness Ratio of tasks accomplished without help

w.r.t. the total number of tasks

Derived

Error rate Ratio of errors w.r.t. the number of tasks Derived

Amsel 2011 Green Tracker Percentage CPU usage Base

Executed instruc-

tion count measure

(EIC)

The number of assembly instructions exe-

cuted considering a typical embedded integer

processor core

Base

Heisig 2004 Model tree Resource utilisation Base

Hindle 2012

a,b

System activity

information

CPU, memory, disk, network, etc., measures Base

Combination of

previous

Combine both and synchronise them with

timestamps

Derived

Kip 2011,

2012

Consumable Volume of consumables generated by the

application during its workflow execution

Base

Availability Probability that a request is correctly fulfilled

within a maximum expected time frame

Derived

Human resources Costs of human factors affecting the software

life cycle

Base

Response time The time taken by a service to handle user

requests

Base

Lami 2013 Percentage of used Percentage of virtual servers used versus

percentage of physical servers used

Derived

Marzolla

2012

Response time Collecting performance measures at runtime,

response time R, throughput X and individual

device utilisations, Uk, k¼ 1. . .K

Base

Medland 2010 Print consumption Metrics summarising print consumption data

for dynamic time and personnel ranges

Base

Noureddine

2012

Process CPU usage

during d
UPID

CPU dð Þ ¼ t PIDCPU

tCPU
dð Þ Derived

272 Ma.Á. Moraga and M.F. Bertoa

11.4 Definition of Green Measures Using SMO

In this section, we present a set of measures that have been defined according to the

SMO described in Sect. 11.3. In general, the entities that we wish to evaluate will be

software products (or a specific category of them), and the information need that we

have is to evaluate the greenability of this software or a particular property that is

related to greenability. Usually, the measures proposed by the authors are presented

in a very general manner. Upon formalising them, we have assumed and stated

certain aspects that were not proposed by the original authors. For example, the IoR

(index of regeneration) indicator and its analysis model have not been proposed by

Soto and Ciolkowski in [18], but formalising the measures and having to think

about all their details by following the SMO have been an interesting exercise.

11.4.1 Measure Related to Energy Efficiency

Level of power consumption

– Description: Used to classify the content of websites at various levels of power

consumption

– Entity: Websites

– Information need: Evaluation of websites for energy saving

– Measurable concept: Energy efficiency

– (Sub-)characteristic: Energy efficiency

Table 11.6 Capacity optimisation measures

Reference Name Description/definition Type

Arnoldus

2013

RE, relative

efficiency

RE¼Etoptimal/ET

The efficiency of the e-service with regard to its

optimal efficiency (typically at maximum load)

Derived

Goiri

2013

Workload t The amount of computational load offered (measured

in terms of average power per epoch, including the

covering subset) in epoch t

Derived

Grosskop

2013

Fixed to vari-

able energy

ratio

FVER¼EUfixed/Euvariable

EUfixed is the consumption when idle.

Euvariable is the difference between this idle baseline

and the maximum energy consumption per unit of

work

Derived

Kip 2011,

2012

Application

performance

Performance MEAS with regard to energy

consumption

Derived

Asset efficiency IT resource efficiency in terms of energy and

utilisation

Derived

Lami

2013

Percentage of

used

Percentage of used functionalities/features of the

tools supporting development actually used with

regard to the full set of functionalities/features

provided

Derived

11 Green Software Measurement 273

T
a
b
le

1
1
.7

P
er
d
u
ra
b
il
it
y
m
ea
su
re
s

R
ef
er
en
ce

N
am

e
D
es
cr
ip
ti
o
n
/d
efi
n
it
io
n

T
y
p
e

A
lb
er
ta
o
2
0
1
0

M
o
d
ifi
ab
il
it
y
(D

)
D
¼
(A

+
I)
�
1

D
er
iv
ed

A
b
st
ra
ct
n
es
s
(A

)
A
¼
N
a/
N
c.
H
o
w

m
u
ch

a
p
ac
k
ag
e
ca
n
w
it
h
st
an
d
ch
an
g
e

D
er
iv
ed

In
st
ab
il
it
y
(I
)

I
¼
C
e/
(C
e
+
C
a)
.
P
o
te
n
ti
al

im
p
ac
t
o
f
ch
an
g
es

in
a
g
iv
en

p
ac
k
ag
e

D
er
iv
ed

E
st
im

at
ed

sy
st
em

li
fe
ti
m
e

E
st
im

at
ed

n
u
m
b
er

o
f
y
ea
rs

in
w
h
ic
h
th
e
m
in
im

u
m

h
ar
d
w
ar
e
re
q
u
ir
ed

b
y
th
e
sy
st
em

w
il
l
re
ac
h
th
e
m
ar
k
et

B
as
e

S
u
p
p
o
rt
ra
te

T
h
e
n
u
m
b
er

o
f
u
se
r
q
u
es
ti
o
n
s
th
at

re
q
u
ir
ed

as
si
st
an
ce

d
iv
id
ed

b
y
th
e
n
u
m
b
er

o
f

m
in
u
te
s
th
e
sy
st
em

w
as

u
se
d
in

a
g
iv
en

se
ss
io
n

D
er
iv
ed

E
st
im

at
ed

in
st
al
la
ti
o
n
ti
m
e

T
h
e
am

o
u
n
t
o
f
ti
m
e
th
e
u
se
r
ta
k
es

to
in
st
al
l
th
e
p
ro
d
u
ct

w
it
h
o
u
t
as
si
st
an
ce

B
as
e

D
ef
ec
t
d
en
si
ty

K
n
o
w
n
d
ef
ec
ts
(f
o
u
n
d
b
u
t
n
o
t
re
m
o
v
ed
)/
L
O
C

D
er
iv
ed

T
es
ti
n
g
ef
fi
ci
en
cy

D
ef
ec
ts
fo
u
n
d
/d
ay
s
o
f
te
st
in
g

D
er
iv
ed

T
es
ti
n
g
ef
fe
ct
iv
en
es
s

D
ef
ec
ts
fo
u
n
d
an
d
re
m
o
v
ed
/d
ef
ec
ts
fo
u
n
d

D
er
iv
ed

S
u
p
p
o
rt
fo
r
m
o
to
r-
im

p
ai
re
d
u
se
rs

B
as
ed

o
n
W
eb

ac
ce
ss
ib
il
it
y
in
it
ia
ti
v
e
(W

A
I)

B
as
e

V
is
u
al
ly

im
p
ai
re
d
u
se
rs

B
as
ed

o
n
W
eb

ac
ce
ss
ib
il
it
y
in
it
ia
ti
v
e
(W

A
I)

B
as
e

B
li
n
d
u
se
rs

B
as
ed

o
n
W
eb

ac
ce
ss
ib
il
it
y
in
it
ia
ti
v
e
(W

A
I)

B
as
e

U
se
rs

w
it
h
la
n
g
u
ag
e
an
d
co
g
n
it
iv
e

d
is
ab
il
it
ie
s

B
as
ed

o
n
W
eb

ac
ce
ss
ib
il
it
y
in
it
ia
ti
v
e
(W

A
I)

B
as
e

Il
li
te
ra
te

u
se
rs

B
as
ed

o
n
W
eb

ac
ce
ss
ib
il
it
y
in
it
ia
ti
v
e
(W

A
I)

B
as
e

In
te
rn
at
io
n
al
is
at
io
n
an
d
lo
ca
li
sa
ti
o
n

B
as
ed

o
n
W
eb

ac
ce
ss
ib
il
it
y
in
it
ia
ti
v
e
(W

A
I)

B
as
e

D
is
ta
n
ce

fr
o
m

th
e
m
ai
n
se
q
u
en
ce

T
h
e
ab
il
it
y
to

m
ak
e
ch
an
g
es

q
u
ic
k
ly

an
d
co
st
ef
fe
ct
iv
el
y

B
as
e

274 Ma.Á. Moraga and M.F. Bertoa

K
ip

2
0
1
1
,

2
0
1
2

C
o
m
p
li
an
ce

C
o
st
o
f
g
u
ar
an
te
ei
n
g
th
e
co
n
fo
rm

it
y
d
eg
re
e
as

re
g
ar
d
s
re
g
u
la
ti
o
n
s
an
d
p
o
li
ci
es

es
ta
b
li
sh
ed

b
y
th
ir
d
p
ar
ti
es

B
as
e

R
ec
o
v
er
ab
il
it
y

T
h
e
ca
p
ab
il
it
y
o
f
a
se
rv
ic
e
to

re
st
o
re

th
e
n
o
rm

al
ex
ec
u
ti
o
n
af
te
r
a
fa
il
u
re

w
it
h
in

a

g
iv
en

p
er
io
d
o
f
ti
m
e

B
as
e

R
el
ia
b
il
it
y

P
ro
b
ab
il
it
y
th
at

a
se
rv
ic
e
re
m
ai
n
s
o
p
er
at
io
n
al

to
d
el
iv
er

th
e
d
es
ir
ed

fu
n
ct
io
n
o
v
er

a

sp
ec
ifi
ed

p
er
io
d
o
f
ti
m
e

D
er
iv
ed

S
ea
co
rd

2
0
0
3

W
M
R
D
(w

ei
g
h
te
d
m
o
d
ifi
ca
ti
o
n

re
q
u
es
ts
d
ay
s)

W
M
R
D

¼
X

#
of

O
pe
nM

od
R
eq

i

E
st
im
at
ed
C
ha

ng
eE

ff
or
t
�
Sn

ap
sh
ot
D
at
e
�
su
bm

is
si
on

D
at
e

ð
Þ

W
it
h
i
fr
o
m

1
to

th
e
n
u
m
b
er

o
f
o
p
en

m
o
d
ifi
ca
ti
o
n
re
q
u
es
ts

D
er
iv
ed

S
o
to

2
0
0
9

S
u
st
ai
n
ab
il
it
y

T
h
e
li
k
el
ih
o
o
d
th
at

an
F
/O
S
S
co
m
m
u
n
it
y
w
il
l
co
n
ti
n
u
e
to

b
e
ab
le

to
m
ai
n
ta
in

th
e

p
ro
d
u
ct

o
r
p
ro
d
u
ct
s
it
d
ev
el
o
p
s
o
v
er

an
ex
te
n
d
ed

p
er
io
d
o
f
ti
m
e

In
d
ic
at
o
r

11 Green Software Measurement 275

– Attribute: Energy usage

– Indicator: Ratio of power consumption—R(P(i,j))

– Derived measure:
max 8l,m P l;mð Þf gð Þ

P i;jð Þ
– Base measure: P(i,j), power consumed by content j of website i

– Measurement method: Using the Green Tracker tool

– Measurement function:

– R P i; jð Þð Þ ¼

1, for5∗
max 8l,m P l;mð Þf gð Þ

P i; jð Þ
2, for4∗

max 8l,m P l;mð Þf gð Þ
P i; jð Þ < 5

3, for3∗
max 8l,m P l;mð Þf gð Þ

P i; jð Þ < 4

4, for 2∗
max 8l,m P l;mð Þf gð Þ

P i; jð Þ < 3

5, for
max 8l,m P l;mð Þf gð Þ

P i; jð Þ < 2

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

– Scale: Integer from 1 to 5

– Units: Absolute values

– Comments: The authors set the threshold such that the worst grade (¼5) begins

at two times the average power consumption value. The authors work with R(P

(i,1)), that is j¼ 1, which is the content of the main page that generally has flash

content which consumes a considerable amount of electrical energy.

– Source: Taeseong Kim, Yeonhee Lee and Youngseok Lee. 2012. Energy mea-
surement of web service. In Proceedings of the 3rd International Conference on
Future Energy Systems: Where Energy, Computing and Communication Meet
(e-Energy ’12)

11.4.2 Measure Related to Resource Optimisation

Percentage of CPU usage

– Description: Estimate energy consumption according to the use of the CPU for

Internet browsers

– Entity: Internet browsers

– Information need: To assess energy consumption for environmental purposes

– Measurable concept: Software greenability

– (Sub-)characteristic: Resource optimisation

– Attribute: CPU usage

– Derived measure: % CPU usage

– Base measure: Time CPU usage

– Measurement method: Using the Green Tracker tool

– Measurement function: Time CPU usage/1 min� 100

– Scale: Real number from 0 to 100

276 Ma.Á. Moraga and M.F. Bertoa

– Units: Percentage

– Comments: The time that the CPU has been used is measured each minute.

Although the authors state that they measure energy consumption, they are really

measuring the use of the CPU. They affirm that the higher use of the CPU, the

higher the energy consumption, but they do not measure the energy consumed.

– Source: Nadine Amsel, Zaid Ibrahim, Amir Malik and Bill Tomlinson. 2011.
Toward sustainable software engineering (NIER track). In Proceedings of the
33rd International Conference on Software Engineering (ICSE ’11)

11.4.3 Measure Related to Durability

Index of regeneration

– Description: The index of regeneration is the average for all the developers as

regards the time that they spend making contributions with respect to the total

time that the project lasts.

– Entity: Free/open source software

– Information need: Perdurability of F/OSS

– Measurable concept: Community sustainability

– (Sub-)characteristic: Perdurability

– Attribute: Community regeneration

– Indicator: Index of regeneration (IoR). We can define an indicator that takes

into account the total time taken to complete the project and the amount of time

that each developer has been involved with the project. The index of regenera-

tion is calculated for each developer. As an indicator, it is possible to calculate

the average of individual indices. If the average is high (>¼0.75), this will

indicate a low regeneration; if it is low (<¼0.25), this will indicate a high

regeneration.

– Derived measure: The amount of time a developer has worked on project i, TT(i)

– Base measures: Time of the first contribution of developer I (TFC(i)). Time of

the last contribution of developer I (TLC(i)). Time of the first contribution

(TFC). Time of the last contribution (TLC)

– Measurement method: Looking at the first and last contributions of each

developer throughout the project’s history

– Measurement function:

1. TT¼TLC�TFC

2. TT(i)¼TLC(i)�TFC(i)

3. IoR(i)¼TT(i)�TT

4. IoR¼Average(IoR(i))

– Scale: Real number from 0 to 1

– Units: Index� (day/day)

– Comments: Community sustainability is affected by factors such as the com-

position of a community and its ability to grow or regenerate. With regard to

11 Green Software Measurement 277

growth and regeneration, a community’s history in this respect can be a good

predictor of its future behaviour. If the same core group of developers has been

active throughout the project history, this does not reflect significant

regeneration.

– Source: Martin Soto and Marcus Ciolkowski, 2009. The QualOSS open source
assessment model measuring the performance of open source communities. In
Proceedings of the 2009 3rd International Symposium on Empirical Software
Engineering and Measurement (ESEM ’09)

11.5 Conclusions

Nowadays, society is increasingly concerned about looking after the environment.

Each day, we are bombarded with numerous advertisements that tell us to recycle,

switch off lights, not waste water, etc. The ICT area cannot remain indifferent to

this effort. Numerous proposals from the ICT community have therefore appeared

which can be classified from two perspectives. On the one hand, proposals have

appeared whose objective is to attempt to reduce the negative impacts on the

environment as a consequence of the use of ICTs themselves (Green ICT). More-

over, on the other hand are those proposals that use ICT to reduce the negative

impacts on the environment in other areas (Green by IT).

The majority of these proposals are more focused on the hardware aspect and

particularly deal with improving energy efficiency. However, the development and

use of a software product also have an impact on the environment. Software

developers, industry and even users are therefore increasingly concerned about

this topic. Green software engineering, whose importance has increased over the

last few years, has consequently arisen, and in fact in the last 3 years, the majority of

the works dealing with this topic have appeared [16].

Bearing in mind both this concern and the few works that exist in relation to

measurement, in this chapter we have focused on studying measurement within the

context of green software.

We have first set out the measurement bases, stressing the importance of

measuring and presenting a software measurement ontology (SMO) as a basis for

the use of a common terminology. We have then focused on the green aspect and

have identified a set of measures that have been proposed in the literature for this

context. We have studied a set of 192 measures proposed by several authors and

have selected 74 measures that we understand to be related to software product

greenability. We have seen how these 74 measures can be classified as regards the

greenability sub-characteristics proposed in the greenability quality model

(presented in Chap. 10). We have seen that all the sub-characteristics can take

advantage of the measures that have been already proposed in the literature,

although we have verified that there are considerably fewer measures for capacity

optimisation than for the other three sub-characteristics, which are well represented.

278 Ma.Á. Moraga and M.F. Bertoa

http://dx.doi.org/10.1007/978-3-319-08581-4_10

However, the vast majority of the measures proposed appear in a very informal

and general form. We have therefore used the concepts and terms proposed in the

SMO in order to create three examples of how these measures can be presented in a

more formal manner. It is important to stress that we have created the majority of

the information appearing in this section based on the information found in the

works used as a source for each measure and that we have made quite a few

suppositions of our own. In this respect, it is important to highlight that upon

attempting to formalise any measure and concentrate on its details by following

the SMO, various aspects come to the fore that are necessary to think about and

discuss and that can be avoided when an ambiguous and general proposition is

formed.

Reference Authors Title Journal/Proceedings

Albertao

2010

Albertao, F.,

Xiao, J., Tian, C.,

et al.

Measuring the sustainability

performance of software

projects

e-Business Engineering

(ICEBE), 2010 IEEE 7th

International Conference

on, pp. 369–373. 2010

Amsel 2011 Amsel, N.,

Ibrahim, Z.,

Malik, A. and

Tomlinson, B.

Toward sustainable software

engineering (NIER track)

Proceedings of the 33rd

International Conference on

Software Engineering, pp.

976–979. 2011

Arnoldus

2013

Arnoldus, J.,

Gresnigt, J.,

Grosskop, K., and

Visser, J.

Energy-efficiency indicators

for e-services.

Proceedings of the 2nd

International Workshop on

Green and Sustainable

Software(GREENS ‘13),

pp. 24–29. 2013

Das 2008 Das, R., Kephart,

J.O., Lefurgy, C.,

et al.

Autonomic multi-agent

management of power and

performance in data centers

Proceedings of the 7th

international joint confer-

ence on Autonomous agents

and multiagent systems:

industrial track, pp. 107–

114. 2008

Goiri 2013 Goiri, I., Katsak,

W., Le, K., et al.

Parasol and GreenSwitch:

managing datacenters

powered by renewable

energy.

SIGARCH Comput. Archit.

News 41, 1 (March 2013),

51–64.

Grosskop

2013

Grosskop, K. PUE for end users - Are you

interested in more than bread

toasting?

Proceedings of 2nd Work-

shop Energy Aware Soft-

ware-Engineering and

Development.

EASED@BUIS 2013

Heisig 2004 Heisig, S. and

Moyle, S.

Using model trees to charac-

terize computer resource

usage

Proceedings of the 1st ACM

SIGSOFT workshop on

Self-managed systems, pp.

80–84. 2004.

(continued)

Appendix: References of Tables 11.4, 11.5, 11.6 and 11.7

11 Green Software Measurement 279

Reference Authors Title Journal/Proceedings

Hindle

2012a

Hindle, A. Green mining: a methodol-

ogy of relating software

change to power

consumption

Mining Software Reposito-

ries (MSR), 2012 9th IEEE

Working Conference on, pp.

78–87. 2012

Hindle

2012b

Hindle, A. Green mining: investigating

power consumption across

versions

Proceedings of the 2012

International Conference on

Software Engineering, pp.

1301–1304. 2012

Jiang 2008 Jiang, X., Daw-

son-Haggerty, S.,

Taneja, J., et al.

Creating greener homes with

IP-based wireless AC energy

monitors

Proceedings of the 6th

ACM conference on

Embedded network sensor

systems, pp. 355–356. 2008

Johann et al.

2011

Johann, T., Dick,

M., Naumann, S.,

and Kern, E.

How to measure energy-effi-

ciency of software: Metrics

and measurement results

Green and Sustainable

Software (GREENS), 2012

First International Work-

shop on, pp. 51–54. 2012

Kim 2012 Kim, T., Lee, Y.,

and Lee, Y.

Energy measurement of web

service

Proceedings of the 3rd

International Conference on

Future Energy Systems:

Where Energy, Computing

and Communication Meet,

pp. 27:1–27:8. 2012

Kip 2011 A. Kipp, J. Liu, T.

Jiang, et al.

Approach towards an

energy-aware and energy-

efficient high performance

computing environment

IEEE International Confer-

ence on In Intelligent Com-

puter Communication and

Processing (ICCP), pp.

493–499, Aug. 2011.

Kip 2012 A. Kipp, T. Jiang,

M. Fugini, and I.

Salomie

Layered green performance

indicators

Future Generation Com-

puter Systems 28(2): pp.

478–489, Feb. 2012

Lami 2013 G. Lami, F.

Fabbrini, and M.

Fusani

A methodology to derive

sustainability indicators for

software development

projects

Proceedings of the 2013

International Conference on

Software and System Pro-

cess (ICSSP 2013), pp. 70–

77. 2013

Marzolla

2012

Marzolla, M. Optimizing the energy con-

sumption of large-scale

applications

Proceedings of the 8th

international ACM

SIGSOFT conference on

Quality of Software Archi-

tectures, pp. 123–132, 2012

Medland

2010

Medland, R. Curbing paper wastage using

flavoured feedback

Proceedings of the 22nd

Conference of the Com-

puter-Human Interaction

Special Interest Group of

Australia on Computer-

Human Interaction, pp.

224–227, 2010

Noureddine

2012

Noureddine, A.,

Bourdon, A.,

Rouvoy, R., and

Seinturier, L.

A preliminary study of the

impact of software engineer-

ing on GreenIT

First International Work-

shop on Green and Sustain-

able Software (GREENS),

pp. 21–27, 2012

(continued)

280 Ma.Á. Moraga and M.F. Bertoa

References

1. Amsel N, Ibrahim Z, Malik B (2011) Tomlinson toward sustainable software engineering:

NIER track. In: 33rd international conference on software engineering (ICSE), pp 976-979

2. Benini L, de Micheli G (2000) System-level power optimization: techniques and tools. ACM

Trans Des Autom Electron Syst 5(2):115–192

3. Bertoa MF, Garcı́a F, Vallecillo A (2006) An ontology for software measurement. In: Calero

FRC, Piattini M (eds) Ontologies for software engineering and technology. Springer, Berlin,

pp 175–196

4. Briand LC, Morasca S, Basili VR (1996) Property-based software engineering measurement.

In: IEEE transactions on software engineering, pp 68–85

5. Capra E, Formenti G, Francalanci C, Gallazzi S (2010) The impact of MIS software on IT

energy consumption. In: European conference of information systems

6. Capra E, Francalanci C, Slaughter SA (2012) Is software “green”? Application development

environments and energy efficiency in open source applications. Inform Software Tech 54

(1):60–71

7. Dick M, Drangmeister J, Kern E (2013) Naumann green software engineering with agile

methods. In: 2013 2nd international workshop on green and sustainable software (GREENS),

pp 78–85

8. Dick M, Naumann S (2012) Enhancing software engineering processes towards sustainable

software product design. In: Greve K, Cremers AB (eds) EnviroInfo 2010: integration of

Reference Authors Title Journal/Proceedings

Seacord

2003

Seacord, R., Elm,

J., Goethert, W.,

et al.

Measuring software

sustainability

Proceedings of International

Conference on Software

Maintenance, ICSM 2003,

pp. 450–459, 2003.

Seo 2008 C. Seo, S. Malek,

& N. Medvidovic

Component-Level Energy

Consumption Estimation for

Distributed Java-Based Soft-

ware Systems

Proceedings of the 11th

International Symposium

on Component-Based Soft-

ware Engineering (CBSE

’08), pp. 97–113, 2008.

Seo 2009 C. Seo, G.

Edwards, D.

Popescu, et al.

A framework for estimating

the energy consumption

induced by a distributed

system’s architectural style

Proceedings of the 8th

international workshop on

Specification and verifica-

tion of component-based

systems (SAVCBS ’09).

2009

Sinha 2001 A. Sinha Energy efficient operating

systems and software

Doctoral Thesis in Electri-

cal Engineering and Com-

puter Science at the

Massachusetts Institute of

Technology, August 2001

Soto 2009 Soto, M. and

Ciolkowski, M.

The QualOSS open source

assessment model measuring

the performance of open

source communities

3rd International Sympo-

sium on Empirical Software

Engineering and Measure-

ment, ESEM 2009., pp.

498–501, 2009

11 Green Software Measurement 281

environmental information in Europe. Proceedings of the 24th international conference

EnviroInfo. Cologne/Bonn, Germany, pp 706–715

9. Erdmann L, Hilty M, Goodman J, Arnfalk P (2004) The future impact of ICTs on environ-

mental sustainability. Available from: http://ftpjrc.es/EURdoc/eur21384en.pdf

10. Fenton N, Pfleeger SL (1997) Software metrics: a rigorous approach. Chapman & Hall,

London

11. Fichter K (2001) Sustainable business strategies in the internet economy. In: Sustainability in

the information society 2001, Metropolis-Veri, Marburg

12. IEEE (2004) Guide to the software engineering body of knowledge (SWEBOK)

13. Johann T, Dick M, Kern E, Naumann E (2011) Sustainable development, sustainable software,

and sustainable software engineering: an integrated approach. In: International symposium on

humanities, science & engineering research (SHUSER), pp 34–39

14. Mahmoud S, Ahmad I (2013) A green model for sustainable software engineering. Int J

Software Eng Its Appl 7(4):55–74

15. Penzenstadler B, Bauer V, Calero C, Franch X (2012) Sustainability in software engineering: a

systematic literature review. In: 16th international conference on evaluation & assessment in

software engineering (EASE 2012), pp 32–41

16. Penzenstadler B, Raturi A, Richardson D, Calero C, Femmer H, Franch X (2014) Systematic

mapping study on software engineering for sustainability (SE4S). In: 18th international

conference on evaluation and assessment in software engineering

17. Pfleeger SL (1997) Assessing software measurement. IEEE Software March/April:25–26

18. Soto M, Ciolkowski M (2009) The QualOSS open source assessment model measuring the

performance of open source communities. In 3rd international symposium on empirical

software engineering and measurement. ESEM 2009, pp 498–501

282 Ma.Á. Moraga and M.F. Bertoa

http://ftpjrc.es/EURdoc/eur21384en.pdf

Part V

Practical Issues

Chapter 12

A Decision-Making Model for Adopting

Green ICT Strategies

Qing Gu, Patricia Lago, and Paolo Bozzelli

12.1 Introduction

The interest of organisations in becoming more environmentally sustainable by

adopting Green ICT solutions is constantly growing. More and more initiatives have

been proposed on energy efficiency computing, ranging from hardware to software

solutions [9]. Accordingly, energy efficiency has become an important issue for the

industry due to the fact that the energy consumption of ICT systems is rapidly growing

and the reduction of the related energy footprint is highly demanded to realise

financial savings while decreasing the environmental impact of their systems—in

terms of, for example, greenhouse gas emissions, e-waste and heat generation [8].

An impediment for organisations to become more environmentally sustainable is

that decision makers lack sufficient or necessary information, and hence knowl-

edge, about which Green ICT solutions can or should be adopted. They need

suitable tools to guide them in deciding where to invest. This work aims at

providing such a tool, that is, addressing the following two issues so that decision

makers can easily decide on the most promising Green ICT investment areas (IAs):

1. Improve the knowledge of decision makers about Green ICT investment areas.

2. Provide a tool that helps decision makers decide on Green ICT investment areas.

Q. Gu (*)

HU University of Applied Sciences, The Netherlands

e-mail: qingbonnet@gmail.com

P. Lago • P. Bozzelli

VU University Amsterdam, Amsterdam, The Netherlands

e-mail: p.lago@vu.nl; Paolo.bozzelli@gmail.com

© Springer International Publishing Switzerland 2015

C. Calero, M. Piattini (eds.), Green in Software Engineering,
DOI 10.1007/978-3-319-08581-4_12

285

mailto:qingbonnet@gmail.com
mailto:p.lago@vu.nl
mailto:Paolo.bozzelli@gmail.com

12.2 The Decision-Making Model

In our previous work, we have defined an ontological model for Green ICT

strategies [3]. Through a number of case studies and collaborations with the

industry and public administrations, we validated and refined the model [2]. Our

main motivation for defining a model for Green ICT strategies was to offer a

semantic structure for the essential elements that define a strategy, for the sake

of, for example, reuse, comparison and selection. Accordingly, it was natural to use

the elements of this model as a starting point for defining our decision-making

model, as presented in this chapter.

12.2.1 The Metamodel

To address the two issues mentioned above, a decision-making model should

capture the knowledge necessary to reason about where to invest and should

support the reasoning process. To cover these two aspects, we carried out a

systematic study of the literature (details are available in [1]) discussing two

main artefacts: the investment areas that are already claimed in the green and

sustainable ICT community and the best practices, or strategies, claimed by

companies and organisations. Obviously, strategies act in one or multiple invest-

ment areas. Hence, the two artefacts are linked. Accordingly, our Green ICT

strategy model has been extended to cover this dependency.

Furthermore, strategies naturally need economic investments and bring in economic

benefits. In the same vein, they have (positive and/or negative) environmental effects.

While economic impacts and environmental effects are elements of our original

strategy model, they should also be linked to the investment areas where such

impacts/effects may occur. In other words, decisionmaking needs to cluster strategies,

and their dependencies, within the scope of investment areas, and investment areas

need to be related to the potential economic impacts and environmental effects.

12.2.2 Model Elements

Figure 12.1 shows our decision-making metamodel extending the Green ICT

strategy model from our previous work.

A decision-making model would consist of the following key elements:

• Goals are objectives that an organisation sets itself to achieve.

• Green investment areas are a portion of business assets in which companies

spend capitals to achieve green/sustainable goals in terms of green strategies.

• Green strategies are clusters of green practices that address common environ-

mental concerns.

• Dependencies are defined as relations between strategies.

For example, in the figure, green strategy a and green strategy b are linked by

dependency x (i.e. one strategy may require the other).

286 Q. Gu et al.

• Economic impact captures the financial implications of adopting strategies in a

selected investment area. It can be either positive or negative. A positive

economic impact can be revenues, gains or returns on investment; a negative

economic impact can be expenses required due to the adoption of certain

strategies.

• Environmental effects capture the ecologic outcomes of adopting strategies in a

selected investment area. Examples are the optimisation of energy consumption

or the reduction of the company carbon footprint.

As shown in Fig. 12.1, a core part of the decision model is a set of investment

areas (IAs). Each investment area has a number of strategies, which have depen-

dencies with other strategies, either within the same IA or different IAs. Each

strategy can achieve a number of goals, and as a result, the IA it belongs to can

achieve the same goals. Similarly, each strategy can have a number of environ-

mental and economic impacts, and as a result, the IA it belongs to can have the same

environmental and economic impacts.

Fig. 12.1 The decision-making metamodel

12 A Decision-Making Model for Adopting Green ICT Strategies 287

12.2.3 An Instantiation of the Decision-Making Model

Next to the definition of the decision-making model, the systematic literature study

presented in [1] also provided quite a rich collection of specific investment areas

and information characterising how to address them in various strategies.

We have used these results to instantiate the decision-making model. This

instantiation is illustrated by means of two views: the goals view and the depen-

dencies view. The goals view (see Fig. 12.3) illustrates which goals are achieved by

the investment areas resulting from our studies. The dependencies view (see

Fig. 12.4) shows dependencies among strategies and defines dependent and inde-

pendent investment areas.

The notation used in the views is depicted in Fig. 12.2. The thickness of the

arrows depicts the relation strength (σ) of a dependency. The thicker the arrow, the
stronger is the dependency. Furthermore, the views also show which of these

dependencies are critical or non-critical, respectively, depicted as a red depen-

dency or a green dependency, following the distinction illustrated in Fig. 12.2.

Figure 12.3 depicts the goals view in more detail. In this view, only investment

areas and their goals are shown. The goals in our study have been extracted from the

Green ICT practices. In other words, investment goals correspond to a number of

green practices, which are often clustered as green strategies. The thickness of lines

in the view denotes the number of practices that have the same goal. In other words,

the thicker the line, the higher is the chance to achieve a goal by investing on the

related IA. For instance, the number of green practices that can achieve the goal

energy management and good housekeeping is more in the investment area IT
equipment than that of way of working. This means it is better to invest in IT
equipment than way of working if energy management and good housekeeping is

the main goal.

Fig. 12.2 Decision-making model—notation

288 Q. Gu et al.

Figure 12.4 represents the dependencies view. In this view, investment areas

may be divided into two main categories: the dependent IAs, which are investment

areas containing strategies that are related to strategies of other investment areas,

Fig. 12.3 Decision-making model—goals view

Fig. 12.4 Decision-making model—dependencies view

12 A Decision-Making Model for Adopting Green ICT Strategies 289

and the independent IAs, which are made up of strategies not related to strategies of

other investment areas.

For example, data centre cooling and data centre design are dependent IAs

because three ‘extends’ dependencies occur among their strategies, while aware-

ness is an independent IA because no dependency is defined between its strategies

and strategies of any other investment area. Consequently, the model shows how

dependencies occur among strategies, providing a set of arrows with different ends.

12.3 The Decision-Making Process

In this section, we illustrate how decisions on a green investment area should be

taken by using our decision-making model. We were able to identify two alternative

approaches that depend on what information is available for decision making.

The first approach starts with defining a set of goals that decision makers would

like to achieve. Based on the goals, a list of candidate investment areas can be

identified. By analysing the expected environmental effects and economic impact

of these IAs, decision makers can decide on which area(s) to invest in depending on

their specific requirements. We define this approach as the goal-driven process.

The second approach assumes that decision makers already have the knowledge

of the investment areas they want to target. Starting from these investment areas,

the model allows decision makers to check which goals are achieved by addressing

those investment areas and to evaluate the related environmental effects and

economic impact. We define this approach as the strategy-driven process.

12.3.1 Goal-Driven Process

First, the decision maker should gather high-level (or user-level) information like

the goals one wants to achieve, the drivers motivating the decision-making process

towards a certain decision and eventually the challenges, that is, the constraints in

place at the company premises, and the decision maker should know upfront on

how to pose a reduction in the set of possible final solutions (like initial capital

availability). In other words, goals will be matched with the ones defined by each

green practice. Drivers will be used as a rationale to track the motivation that led to

the final decision. Challengeswill be used to constrain the set of possible alternative
decisions.

Once the above information has been defined (see Fig. 12.5), it is compared with

the possible decisions (e.g. investment areas, strategies and eventual dependencies).

Therefore, the investment areas and related strategies matching with the decision

maker’s requirements are selected.

290 Q. Gu et al.

Therefore, a list of economic and environmental effects for each resulting

investment area is provided. As a result, the decision maker can easily decide

which investment area provides the most important environmental and economic

effects. To aim towards this decision, a set of metrics is provided to quantify the

effects, so that decision makers can easily assess the impact of their decision.

After the effects are assessed, decision makers can easily decide on which

investment area their company should focus on.

12.3.2 Strategy-Driven Process

Differently from the goal-driven process, the information gathered at the beginning

of the strategy-driven process (see Fig. 12.6) includes investment areas rather than

goals. This approach assumes that decision makers already have the knowledge

about some investment areas, and they want to investigate which goals such IAs

allow to achieve and which economic impact and environmental effects they bring

about. Once one or more investment areas have been identified, decision makers

can check which goals are achieved by applying strategies of the selected invest-

ment area(s). Furthermore, the model returns a set of environmental and economic

effects and provides a set of metrics that allows decision makers to assess the

environmental benefits and the economic impact.

As a result, decision makers can check if the resulting goals are compliant with

their own goals. Moreover, they make the decision comparing the effect assessment

of each selected investment area with their expected effects.

Finally, the investment area that matches with their goals and their expected

effects should be decided.

Fig. 12.5 The goal-driven decision-making process

Fig. 12.6 The strategy-driven decision-making process

12 A Decision-Making Model for Adopting Green ICT Strategies 291

12.4 Usage Scenarios

The following illustrates how each approach works in practice. For each approach,

a usage scenario is first defined. Then each step of the approach is applied.

12.4.1 Scenario 1: Goal-Driven Process

Scenario 1: Definition—CM is a cloud-video surveillance company that is not
familiar with Green ICT practices and would like to invest its capital to get
economic benefits and to improve the ‘greenness’ of the company by reducing the
environmental impact of its infrastructure. As a starting initiative, its decision
makers are investigating a way to reduce the energy consumption generated by
the IT equipment of its office.

12.4.1.1 Step 1: Select Goal

As described in Sect. 12.3.1, the first step is to select the company’s goals. CM

wants to reduce the energy consumed by its IT equipment, such as workstations,

printers, network devices and so on. The goal that CM wants to achieve is:

G1 Energy management and good housekeeping

12.4.1.2 Step 2: Check Related Investment Areas

Starting from goal G1 takes into account different investment areas. From Fig. 12.3,

we can see that the top three investment areas are IT equipment, data centre design
and energy management. After allaying these three investment areas, the decision

makers would like to further focus on IT equipment because data centre design is

about the design and development of more energy-efficient and environment-

friendly data centres while energy management is about the planning and operation
of energy-related provision, which are less relevant to CM.

Therefore, decision makers investigate for strategies that allow to reduce energy

consumption due to IT equipment utilisation.

IT equipment defines the following strategies:

• Mobile computing: This strategy focuses on the replacement of desktop com-

puters with notebook computers.

• Newer hardware: This strategy includes a set of solutions to improve the energy

efficiency of existing IT equipment or to create energy-efficient workplaces.

292 Q. Gu et al.

• Printing optimisation: This strategy includes a set of solutions and policies to

reduce paper waste and optimise the utilisation of printers.

• Procurement policies: This strategy suggests to impose requirements on external

suppliers with regard to eco-certified hardware.

• Storage optimisation: This strategy suggests solutions such as switching to

offline storage or lower storage devices.

• Thin client: This strategy promotes the replacement of desktop computers with

thin client computers.

12.4.1.3 Step 3: Evaluate Effects

Assess Environmental Effects

Consequently, decision makers can assess the environmental effects (in Table 12.1)

and the positive economic impact (in Table 12.2).

In summary, the environmental effects generated by these strategies are:

• IT equipment power consumption allows to measure the power consumption

generated by the utilisation of an IT device, such as storage devices, processors

and so on. It is calculated as follows:

EIT ¼
XdIT
i¼0

εi

where dIT is the total number of IT devices and εi is the energy consumption of the

ith IT device. The result of this metrics is expressed in kilowatt (kW). The IT

devices to be taken into account in this calculation are printing devices.

Table 12.1 Environmental effects of the strategies

Green

strategies Environmental effects Metrics

Mobile

computing

Reduce power consumption IT equipment power

consumption

Newer

hardware

Reduce power consumption IT equipment power

consumption

Printing

optimisation

Reduce power consumption, reduce paper waste,

reduce cartridge-related pollution

Printouts power con-

sumption, paper waste

Procurement

policies

Reduce power consumption IT equipment power

consumption

Storage

optimisation

Reduce power consumption IT equipment power

consumption

Thin client Reduce power consumption IT equipment power

consumption

12 A Decision-Making Model for Adopting Green ICT Strategies 293

• Power consumption is also related to the performed printouts. Therefore, deci-

sion makers can use the printouts power consumption, which measures the

power consumption needed to generate printouts. It is calculated as follows:

Eprintout ¼
Xp
i¼0

εiþ
Xpo
j¼0

εj

where p and po are respectively the number of printers and the number of printouts

and εi and εj are respectively the energy consumed by printers and the energy

consumed due to printouts.

• The reduction of cartridge-related pollution can be assessed by the cartridge

waste metrics, which allows to measure the amount of wasted cartridge in terms

of kilograms of wasted toner and/or ink. It is calculated as follows:

Wcart ¼
Xk
i¼0

Ki

where k is the total number of cartridges and Ki is the toner/ink wasted by the ith
cartridge. Its result is expressed in kilograms (kg).

• The reduction of the wasted paper can be easily calculated by the paper waste

metrics, which assesses the waste of paper with respect to the number of

installed printers:

Wcart ¼
Xp
i¼0

Pi

where p is the number of installed printers and Pi is the amount of paper consumed

by the ith printer. Its result is expressed in kilograms (kg).

Assess the Positive Economic Impact

In turn, the positive economic impacts generated by these strategies are:

Table 12.2 Positive economic impact of the strategies

Green strategies Environmental effects Metrics

Mobile computing Reduce energy costs IT equipment energy cost

Newer hardware Reduce energy costs IT equipment energy cost

Printing optimisation Reduce printing costs Printouts energy costs, printing costs

Procurement polices Reduce energy costs IT equipment energy cost

Storage optimisation Reduce energy costs IT equipment energy cost

Thin client Reduce energy costs IT equipment energy cost

294 Q. Gu et al.

• IT equipment energy cost expresses the cost of energy consumed by the IT

equipment of a data centre or an office:

CeIT ¼
Xd
i¼0

cεεi

where cε is the fixed electricity fare, εi is the energy consumed by the ith IT device

and d is the number of IT devices in the facility. The IT devices, in this case, are

printers in the office.

• The printing costs evaluate the cost incurred by the printing tasks. It is calcu-

lated with respect to the used amount of paper and cartridge only, as follows:

Cprint ¼ UpaperCpaper

� �þ UcartCcartð Þ

where Upaper and Ucart are respectively the amount of used paper and cartridge,

while Cpaper and Ccart are respectively the prices of paper and cartridge.

• The printouts energy cost metrics calculates the cost of the energy consumed

due to printouts. It is calculated as follows:

Cprintout ¼ cε
Xp
i¼0

εiþ
Xpo
j¼0

εj

 !

where cε is the fixed electricity fare, p and po are respectively the number of printers

and the number of printouts and εi and εj are respectively the energy consumed by

printers and the energy consumed due to printouts.

Assess the Negative Economic Impact

Table 12.3 shows the negative economic impact of each strategy, with the metrics

for calculating the impact. Obviously, the strategies printing optimisation and
procurement policies require the least expenses and investments.

In particular:

• The IT equipment procurement cost metrics performs the calculation as follows:

Cpurchase IT ¼
Xd
i¼0

Ci

where Ci is the purchase cost of the ith IT device and d is the number of IT devices

in the facility. The number of IT devices is measured, since it suffices to count the

IT devices to be replaced or the IT devices to be newly purchased. The cost of IT

devices is, for instance, provided by IT reseller catalogues.

Further, the costs of printing equipment depend on the recycling process, the

purchase of eco-labelled cartridge and the purchase of multifunctional printers.

Consequently:

12 A Decision-Making Model for Adopting Green ICT Strategies 295

• The paper recycling cost metrics allows to calculate the costs incurred by the

recycling process as follows:

Crecyle ¼ pcrec

where p is the amount of paper to be recycled and crec is the recycling fare. The

amount of paper is expressed in kilograms, and it is estimated before delivering the

whole amount of paper to the recycling service provider. The recycling fare is set by

the recycling service provider, and it is expressed in dollars per kilogram ($/kg).

• The cost of the eco-labelled cartridge is calculated using the cartridge cost

metrics, which performs the calculation as follows:

Ccart ¼
Xcart
i¼0

Ci

where Ci is the cost of the ith cartridge and cart is the total amount of purchased

cartridges. The cost of the cartridge is provided by the printing equipment reseller.

The results are expressed in dollars ($).

• The cost of the multifunctional printers is calculated with the IT equipment

procurement cost metrics, introduced above. It performs the calculation as

follows:

Cpurchase IT ¼
Xd
i¼0

Ci

where Ci is the purchase cost of the ith IT device and d is the number of IT devices

in the facility. In this case, the IT device is a multifunctional printer. The number of

printers is measured, since it suffices to count the printers to be replaced or the

Table 12.3 Negative economic impact of the strategies

Green

strategies Negative impact Metrics

Mobile

computing

Purchase of new hardware IT equipment procurement cost

Newer

hardware

Purchase of new hardware IT equipment procurement cost

Printing

optimisation

Purchase of printing accessories or

new printers

Paper recycling costs, cartridge cost, IT

equipment procurement cost

Procurement

policies

No –

Storage

optimisation

Purchase of new hardware IT equipment procurement cost

Thin client Purchase of new hardware IT equipment procurement cost

296 Q. Gu et al.

printers to be newly purchased. The cost of printers may be provided by IT reseller

catalogues.

12.4.1.4 Step 4: Make a Decision

Once the effects have been assessed, decision makers can decide on which invest-

ment area to focus their attention on and which strategies they should apply. Due to

the low negative economic impact and promising savings as well as environmental

effects, decision makers might choose:

• Decided investment area: IT equipment

• Decided strategies: printing optimisation and procurement policies

12.4.2 Scenario 2: Strategy-Based Process

Scenario 2: Definition—The Environmental Department of the Turkish govern-
ment has been proposed to provide funding for a green initiative, organised by a
non-profit association that wants to encourage the department staff to behave in an
environment-friendly way. Decision makers of the department are fully acquainted
with the initiative, but they would like to know more about its environmental effects.
Since it is an initiative organised by a non-profit association, revenues of the
initiative are less important, but expenses should be estimated in advance.

12.4.2.1 Step 1: Select Investment Areas

As described in Sect. 12.3.2, the first step is to identify the starting investment areas.

Decision makers have the knowledge about sensitisation of employees regarding

environment-friendly behaviour. For this reason, they select the following invest-

ment area:

IA1 Awareness
The awareness investment area defines the following three strategies:

• GS41 IT awareness: This strategy incentivises the promotion of green awareness

by means of software solutions, such as smart metering and sensitisation by

sending messages to customers, employees or users.

• GS42 labelling: This strategy is designed to show to consumers the total amount

of GHG emissions expected to be produced throughout the product life cycle.

• GS4 employee awareness: This strategy is about the promotion of awareness

campaigns and the development of green company policies.

12 A Decision-Making Model for Adopting Green ICT Strategies 297

In summary, decision makers take into account only the employee awareness

strategy, since it is the only one designed to encourage the staff of an organisation to

be aware of their energy consumption and take environment-friendly actions.

12.4.2.2 Step 2: Check Achieved Goals

From Fig. 12.3, we can see that the investment area awareness would achieve the

following goals, sorted by the related strength:

• Improve awareness

• Energy management and good housekeeping

• Reduce GHG emissions

• Optimise energy efficiency of product proposal

• Encourage green product development

The top three goals perfectly match with the goals of the Environmental Depart-

ment of the Turkish government, and therefore, it is confirmed that the investment

area selected is promising.

12.4.2.3 Step 3: Evaluate Effects

To assess the effects of the employee awareness strategy, decision makers can

check the list of linked environmental and economic effects (for details, we refer

the reader to Appendixes in [1]). Decision makers focus on environmental effects

and the negative economic impact.

Assess Environmental Effects

The only environmental effect generated by the employee awareness strategy is the

following: increase the environmental awareness of the employees within the

company or the organisation.

To assess this environmental effect, decision makers can use the following

metrics:

• The employee environmental awareness coverage (%), which allows to mea-

sure the potential amount of employees that are affected or sensitised by

awareness-oriented practices. It is measured as follows:

EACemployees ¼ ec
e

where ec is the number of involved employees and e is the total number of

employees. This metrics returns a percentual value (%).

• The message-bounded employee environmental awareness coverage (%),

which is a particularisation of the employee environmental awareness coverage
metrics, because it is calculated with respect to the number of messages that are

298 Q. Gu et al.

sent to involve employees in the green awareness initiative. It is measured as

follows:

MEACemployees ¼ ec
mE

where ec is the number of involved employees, E is the total number of employees

andm is the total number of employees. This metrics returns a percentual value (%).

Assess the Negative Economic Impact

The only expense to support the employee awareness strategy will be concerning

the rewards that have to be paid to the most active and environment-friendly

employees. Therefore, the only negative economic impact will be the following:

• Extra costs are needed to pay rewards.
To quantify and calculate this cost, decision makers can use the following

metrics:

• The reward payment, which allows to evaluate how much should be spent to

reward employees for their awareness about green initiatives. It is calculated as

follows:

Crew ¼
Xr
i¼0

Ci

where r is the number of rewards and Ci is the amount of money spent for the ith
reward.

12.4.2.4 Step 5: Make a Decision

Assuming that the rewards for the best environment-friendly employees should be

limited up to some thousands of dollars and that only a limited number of

employees (e.g. from 1 to 3) should be rewarded, decision makers can decide to

invest in the awareness investment area and, therefore, to support the expenses

concerning the green initiative.

In summary, decision makers make the following decisions:

• Decided investment area: awareness

• Decided strategies: employee awareness

12 A Decision-Making Model for Adopting Green ICT Strategies 299

12.5 Conclusions

In this work, we have presented and instantiated a decision-making model and two

alternative decision-making approaches (goal driven and strategy driven)

addressing the issues claimed in Sect. 12.1, namely, how to improve the knowledge

of decision makers about Green ICT investment areas and how to provide a tool to

guide the decision-making process. By means of two usage scenarios, we illustrated

the usage of the model as well as the two decision-making approaches.

While promising, major research is required to feed the decision-making model

with knowledge about where to invest, how to invest and related implications

whenever companies and organisations want to go green. This should provide

knowledge in rendering energy-aware both the ICT solutions themselves (e.g. [4,

6, 7]) and the exploitation of ICT solutions at the service of energy [5].

Acknowledgement This work has been partially sponsored by the European Fund for Regional

Development under the project MRA Cluster Green Software.

References

1. Bozzelli P (2013) A decision-making model for Green IT investment areas. Master’s thesis, VU
University Amsterdam

2. Gu Q, Lago P, Muccini H, Potenza S (2013) A categorization of green practices used by Dutch

data centers. In: 3rd international conference on sustainable energy information technology,

7. Elsevier

3. Gu Q, Lago P, Potenza S (2012) Aligning economic impact with environmental benefits: a green

strategy model. In: Workshop on green and sustainable software (GREENS), ICSE Companion.

IEEE Computer Society, pp 62–68

4. Gu Q, Lago P, Potenza S (2013) Delegating data management to the cloud: a case study in a

telecommunication company. In: International symposium on the maintenance and evolution of

service-oriented and cloud-based systems (MESOCA), n 7. IEEE Computer Society, pp 56–63

5. Hilty L, Lohmann W, Huang EM (2011) Sustainability and ICT – an overview of the field.

Notizie di Politeia 28(104):13–28

6. Procaccianti G, Bevini S, Lago P (2013) Energy efficiency in cloud software architectures. In:

Environmental informatics and industrial ecology, Proceedings of the EnviroInfo

7. Procaccianti G, Lago P, Lewis GA (2014) Green architectural tactics for the cloud. In: Working

IEEE/IFIP conference on software architecture. IEEE Computer Society

8. Velte T, Velte A, Elsenpeter R (2008) Green IT: reduce your information system’s environ-
mental impact while adding to the bottom line. McGraw-Hill, New York, URL http://books.

google.nl/books?id¼xPQZqKrJN7oC

9. Wang J, Feng L, Xue W, Song Z (2011) A survey on energy-efficient data management.

SIGMOD Rec 40(2):17–23. doi:10.1145/2034863.2034867, URL http://doi.acm.org/10.1145/

2034863.2034867

300 Q. Gu et al.

http://books.google.nl/books?id=xPQZqKrJN7oC
http://books.google.nl/books?id=xPQZqKrJN7oC
http://books.google.nl/books?id=xPQZqKrJN7oC
http://dx.doi.org/10.1145/2034863.2034867
http://doi.acm.org/10.1145/2034863.2034867
http://doi.acm.org/10.1145/2034863.2034867

Chapter 13

Participation and Open Innovation
for Sustainable Software Engineering

Martin Mahaux and Annick Castiaux

13.1 Introduction

For decades, economists have put innovation at the core of economic growth. In

their classical conception, sustainability is the capability to maintain and develop

the level of economic performance of the society. In this regard, entrepreneurs who

creatively change the rules of the economic game by proposing innovative tech-

nologies and businesses are key actors that support growth [45]. The ICT sector has

obviously been a key provider of this kind of innovation in the past years, the new

information and communication technologies being at the foundations of a transi-

tion towards a post-industrial economy.

More recently, the acceptation of ‘sustainability’ has changed in order to take

into account the increasingly important issues of sustainable development. In

addition to their economic challenge, firms have to deal with growing environmen-

tal and social requirements from their stakeholders, that is, actors that affect or are

affected by the actions of the firm. From the firm’s side, environmental and social

requirements can be seen as additional constraints to the firm’s innovation space,

limiting its opportunities to develop and grow, that is, to reach its own sustainabil-

ity. In contrast, it can also be seen as an enabler for differentiation and consequently

as a competitive advantage.

In this context, innovation processes should be thought differently, as the

complexity of sustainability issues asks for systemic approaches, going beyond

the borders of a given organisation and integrating economic, social and environ-

mental objectives that are very often antagonist. The purpose of this chapter is

twofold: first, we want to demonstrate the importance of participation and openness

in innovation processes integrating sustainable development, illustrating it with a

prominent example in the software domain—open source software (OSS); second,

M. Mahaux (*) • A. Castiaux

University of Namur, Namur, Belgium

e-mail: martin.mahaux@unamur.be; annick.castiaux@unamur.be

© Springer International Publishing Switzerland 2015

C. Calero, M. Piattini (eds.), Green in Software Engineering,
DOI 10.1007/978-3-319-08581-4_13

301

mailto:martin.mahaux@unamur.be
mailto:annick.castiaux@unamur.be

we want to propose elements of a methodological framework supporting participa-

tion in the context of software requirements engineering.

13.2 Participation, Openness and Sustainable Innovation

13.2.1 Why Is the Innovation Process More and More Open?

13.2.1.1 Openness and Participation to Enlarge Innovation Sources

Traditionally, the innovation process was managed in a closed manner, inside the

firm’s borders. We see two reasons in this closure. First, firms wanted (and still

want) to protect the competitive advantage they build through innovation, as

interactions with other actors can lead to knowledge spillovers and intellectual

property losses. Second, technological firms based their development on knowledge

and experience accumulated through the years, in which they found the main

sources of innovation. They did not see opportunities outside their usual field.

This behaviour is often called the ‘not-invented-here’ effect. Even inside the firm,

the involvement in the innovation process was very limited, as it was the prerog-

ative of some categories of personnel, mainly researchers developing new technol-

ogies in the R&D department or engineers conceiving and improving processes in

plants.

Progressively, things changed as firms faced highly publicised failures due to

their lack of openness in their innovation process. A well-known example is the

case of Xerox in the late 1970s. Xerox launched a research centre—PARC, Palo

Alto Research Center—in 1970, where excellent and creative computer engineers

developed inventions that were never commercialised by Xerox. Instead, these

ideas served other companies, such as Apple. Xerox exited the computer market

in 1975, refocusing on its core business: printing [17]. One of the reasons of this

failure is the lack of integration of the R&D function with other functions of the

company, which did not allow Xerox to transform creativity into innovation. More

recently, firms realised that every person in the company is able to propose

interesting ideas that can lead to innovation. A company like Renault, for instance,

challenges its personnel on tricky technological problems, associating human

resources in the early stage of the innovation process and using such participatory

approach as a motivation factor [9]. Such a participation in the innovation process

can even go beyond the borders of the firm, including customers, users or citizens.

Several motivations can explain this trend to open the innovation process:

• Thinking out of the box: Firms—especially if they are established—are

influenced by their culture, knowledge and competences. Opening innovation

to external sources of ideas helps them to think out of the box. This is the

principle of inbound open innovation [10].

302 M. Mahaux and A. Castiaux

• Practising cross-fertilisation: Associating multiple profiles in idea generation

allows to explore unexpected areas and to combine complementary knowledge

backgrounds [6]. In increasingly complex products, this combination of multiple

knowledge sources has become mandatory.

• Combining problem and solution focus: Faced with the same problem, a user and

a supplier think differently. The user wants to solve a problem (whatever the

solution), while a supplier wants to sell a solution (as close as possible from his

expertise). Combining these problem and solution orientations seems to lead to

better innovations, satisfying both parties [23].

• Assessing technology: Collaborating with users helps to assess technology on

various criteria (quality, user-friendliness, design, etc.) and avoids market

failures.

• Benefiting from innovative attitudes: A lot of people are innovative and like to

contribute to a creative process. They value this participation in itself, as studies

in the open source community have shown [22]. Integrating them in the inno-

vation can be a factor of motivation for human resources as well as a method of

loyalty development for customers.

• Propagating standards: When developing breakthrough technologies, there is a

strong risk that competitors develop similar technologies concurrently and that

one of those competitive technologies become the dominant design (the stan-

dard), making all other technological designs irrelevant. Cooperation with other

actors (users, partners, suppliers) is a way to reduce such a risk [1].

For various reasons that we develop in this chapter, sustainability will greatly

benefit from these aspects of open innovation.

13.2.1.2 Openness and Participation to Involve Stakeholders
in the Strategy

Freeman proposes an alternative view of strategic management [14]. Beyond a

performance path oriented mainly to the satisfaction of shareholders, he demon-

strates how other parties with whom the firm is in relation have to be taken into

account to optimise the chances of success on a marketplace. At a moderate level,

the firm can consider its stakeholders in an instrumental way in order to enhance its

performance. Especially in uncertain periods and environments, taking into account

the viewpoints of key stakeholders opens alternative and more informed strategic

paths. However, Freeman recommends a more radical change: strategic manage-

ment should integrate stakeholders intrinsically through a strong partnership. In this

view, the interests of stakeholders are taken into account in decision making even

before strategic decisions, as ethical foundations of the strategy. This is the key

principle of corporate social responsibility (CSR).

Such a point of view questions the classical definition of performance. An

intrinsic partnership with stakeholders considers that satisfying stakeholders’ inter-

ests must be taken into account when evaluating the firm’s performance [13]. This

13 Participation and Open Innovation for Sustainable Software Engineering 303

means that performance is not only economic but has to integrate dimensions that

are valued by stakeholders, in particular social and environmental dimensions. In

this sense, participation is strongly linked with sustainability.

13.2.2 Participation, Openness and Sustainability: Is It
Possible to Innovate for Sustainability in a Closed
View?

Sustainable development issues can only be considered and tackled using a sys-

temic approach of innovation. As a matter of fact, such issues necessarily involve

multiple actors that have an impact on their mutual performances because of their

strong interactions, both on environmental and social matters. In this section, we

demonstrate the necessity to adopt a systemic and open view, beyond the firm’s

boundaries. We consider two levels of analysis: the global economy and the firm in

its value chain.

13.2.2.1 Sustainability and Innovation at the Global Economy Level

Sonntag shows that environmental and social challenges require a global change in

consumption modes and technology developments, as both co-evolve [46]. Tradi-

tionally, firms try to continuously increase their economic performance and to

grow. To meet growth, firms innovate, developing technologies allowing them to

produce more at lower costs and with shorter life cycles, in order to enhance their

performance, maintain their leadership and ensure their survival, that is, their

sustainability. Once they are engaged in a technological path, the cumulative nature

of the innovation process and the importance of their investments in a set of

dedicated capabilities will affect their future strategic choices and, by ‘ricochet’,

have an impact on the whole industry (by imitation) and on their markets (which

become used to some consumption behaviours). This lock-in effect [4] has led to

dominant technological trajectories: since the beginnings of mass production tech-

nologies after World War II, this trend has increased, notably thanks to information

technologies. Cheaper goods and reduced production cycles have changed our

consumption habits, which in turn have changed firms that must meet consumer

requirements to survive.

Moreover, competitiveness policies developed by governments are based on

advanced manufacturing technologies. Even current sustainable policies are

embedded in this paradigm: they focus on limiting environmental damages and

integrating sustainability criteria into organisation decision making, trying to dem-

onstrate that clean production and eco-efficiency lead, in the end, to economies for

the firm. However they do not question the acceleration of consumption and the

subsequent low-cost manufacturing. Of course, this race in production and

304 M. Mahaux and A. Castiaux

consumption cycles is damaging for macro-sustainability, as it increases aggregated

use of natural resources [21].

Alternative paradigms are possible. For example, the extension of product

durability could lead to a reduction of the global consumption of resources.

However, this requires a change in business models, where value is created and

captured in a different way. In particular, services with added value and co-creation

with customers offer alternative opportunities of revenue. These two possibilities

ask for collaborative (open) approaches beyond the traditional manufacturer–con-

sumer unidirectional relationship.

13.2.2.2 Sustainability at the Value Chain Level

In a seminal paper, Hall demonstrates the systemic nature of environmental inno-

vations that involve not only the firm but its whole supply chain, as well as other

actors affected by its environmental impacts [19]. He underlines that innovations

developed to take into account environmental considerations—that he calls ‘eco-

innovations’—cannot easily emerge spontaneously. He proposes a systemic view

putting at stake different agents, inside and outside a firm’s supply chain, who

influence each other towards the emergence, the development and the adoption of

such eco-innovations. He identifies two types of pressures favouring

eco-innovations, as illustrated in Fig. 13.1.

First, the vertical pressure goes backwards through the supply chain, from the

end customers up to the producers of raw materials. The importance of this vertical

pressure depends on two major factors: the power of the agent on upstream agents

in the chain and the competences of this agent concerning the technical knowledge

at stake in the choice between alternatives. If an agent has such a power and the

asymmetry of information between this agent and its suppliers is sufficiently low,

this leads to interfirm innovations and systemic improvements. However, this

vertical pressure is not sufficient to foster eco-innovation. As a matter of fact,

externalities, should they be positive or negative, are not taken into account by the

actors of a given supply chain. To favour the integration of externalities in the

eco-innovation processes led by firms, an additional pressure has to play its role: the

Fig. 13.1 Pressures

favouring the emergence of

eco-innovations (adapted

from [19])

13 Participation and Open Innovation for Sustainable Software Engineering 305

environmental pressure, represented in Fig. 13.1 as the horizontal pressure. Exerted

by organisations, which are external to the considered supply chain

(e.g. governmental authorities, NGOs), this pressure is motivated by externalities,

as the environmental impact of industrial activities. It takes the form of regulations,

rules, quality labels or reputation threats. This horizontal pressure is local, as it

impacts a given firm or a given group of competitors. Along the whole supply chain,

levels of pressure are variable, which has only a limited impact on the whole supply

chain. These two pressures, horizontal and vertical, are complementary conditions

to the successful emergence of eco-innovations [19].

13.2.3 Open and Participatory Innovation to Integrate
Stakeholders and Reach Sustainability

The preceding discussion leads to the conclusion that innovations favourable to

macro-sustainability should integrate as much as possible the firm’s stakeholders.

Such participative approaches of innovation should involve internal (employees)

and external (users, suppliers) actors in a co-innovation process. This helps the firm

to integrate key elements in new technologies and services, favouring the adoption

of the innovations. So, not only does participatory innovation meet the stakeholder

integration necessary for macro-sustainability, but it is also favourable to micro-

sustainability, providing the firm with competitive advantages that it obtains from a

better understanding of customers’ needs and suppliers’ possibilities. Moreover,

associating the employees in the innovation process has also been demonstrated as a

positive factor for the intrinsic motivation of employees, which benefits both the

social sustainability and the efficiency of the firm.

Open innovation [10], which is presented as a shift of paradigm in the way

innovation is practised by firms, can also favour macro-sustainability. On the one

hand, inbound open innovation, which consists in seeking sources of innovation

outside the firm, should strengthen the vertical pressure given by Hall and raise

awareness of cultural changes, for instance, in consumption patterns, to begin a

virtuous cycle between sustainable consumption and production modes. On the

other hand, outbound open innovation should favour the propagation of good

innovation practices and sustainable technologies. Once more, however, political

intervention is required to support alternative performance values. If open innova-

tion can help to meet the conditions of macro-sustainability, does it favour micro-

sustainability? Firms listening to their environment (thus using inbound open

innovation) avoid to be surprised by new trends they would not have anticipated.

Moreover, outbound open innovation helps the firm to focus on core competencies

while leaving space for curiosity and creativity, only keeping the innovative results

that can reinforce the firm’s competitive advantages. In this perspective also, open

innovation is favourable to micro-sustainability.

306 M. Mahaux and A. Castiaux

13.3 Understanding Participation and Co-creative
Processes in Socio-technical Systems Design

When building a socio-technical system and in particular software-intensive sys-

tems, requirements engineering (RE) refers to the activities through which business

problems and solutions are defined, in contrast to implementation activities. While

other activities of the software development process may be more of a specialist

affair, the RE phase relies heavily on every stakeholder, in particular the user.

Indeed, the requirements discovery process can be seen as a process of collabora-

tive creativity [29]. Consequently, participation is always present, in a more or less

intense way. The question is thus not whether or not to use participatory processes,

but which ones and to which participation degree. This section explores the concept

of participation in more detail.

13.3.1 Governance for Participation

Citizen participation has been classified by Arnstein [3] in a number of levels, from

pseudo-participation (non-participation) to full citizen control, in raising the level

of power given to the citizen. Thirty-five years and several criticising papers later,

researchers have augmented this vision with a more subtle way of assessing

participation levels. The quality and methods of involvement as well as the type

of people involved have notably been lacking in Arnstein’s model [16, 50]. These

more recent works indicate that there is no simple way to assess the level of

participation. They, however, can inspire a simplified multi-ladder framework for

describing various participative degrees in the RE process, as illustrated in

Fig. 13.2. It focuses on who will participate (how many different stake areas and

how many representatives from each category will be represented in the various

discussions), how participation will be facilitated (how frequently, how directly,

how qualitatively), how far participants will be allowed to influence decisions (from
bare consultation to real decision making—this corresponds to Arnstein’s ladder)

and on what matter(s) participation will be allowed (low-level details, high-level

objectives or everything that is in between). This framework allows one to assess a

Fig. 13.2 Ladders of participation in RE

13 Participation and Open Innovation for Sustainable Software Engineering 307

level of participation for every RE process, so we now understand better what a

participative RE process may mean.

We may thus define ‘participative RE processes’ as those where stakeholders

from various areas of stakes are expected to actively work together to discover,

validate, document or analyse requirements elements. A process is considered more

participative if more people from more stake areas are involved; if they interact

more frequently, in a richer and more direct way with each other; if their potential

influence on decisions is bigger; and if they are allowed to influence on more topics.

We refer to governance as the way the participative process is managed to reach

the desired participation level. The first condition for a successful participative

process is an adequate stakeholder selection. Fung describes the five main stake-

holder selection techniques in citizen participation [16]:

• Fully open self-selection (anyone may register)

• Self-selection augmented by selective recruitment (open but some less

represented areas are recruited)

• Random selection

• Lay stakeholders (unpaid representatives, e.g. neighbourhood association

representatives)

• Professional stakeholders

The fully open selection method is known to over-represent some stakeholders;

augmentation by selective recruitment is supposed to lower the bias. Using unpaid

representatives enables to reach people that have an interesting mix of strong

visions, expertise and field experience, while professional stakeholders bring even

more expertise and visions—at the risk of being more partial. The parallel with RE

is only limited: it applies only to mass-market-driven products, that is, those that

target an important number of buyers. The way stakeholders are involved in such

projects has evolved strongly. Many developers now tap in the wisdom of the

crowd, using information networks to involve a large amount of users and gather

new requirements, in the form of feedback on existing products. Some more

sophisticated mechanisms enable users to request and vote for specific features to

be implemented. Open source communities are the most radical in this direction,

offering full-fledged forums and voting schemes to discuss feature requests. Studies

have shown that communities at large drive the future of products [37]. The

structures implementing the ‘fully open’ selection pattern have to live with its

main drawback: a highly biased population participates, mostly made of tech-

savvy people. The perceived lack of usability of open source solutions for non-

tech-savvy people might come from this bias. Commercial development may enjoy

more professional market survey practices, including a mix of the four selection

techniques, which is probably a more profitable cocktail if managed adequately.

Whether or not the product is a mass-market one, there is a need for the

participative process to tap on a variety of stake areas. Collaborative creative

processes gain richness when the creating team is sufficiently diverse. More

participative processes will include and involve as early as possible representatives

from the users, customers, sponsors, developers, regulators, experts, etc.

308 M. Mahaux and A. Castiaux

Once the right people are selected, the frequency and richness of the interaction

between them will be crucial in shaping the participative process. Do we just ask

people to send a comment once via a software distribution platform (like Google

Play or Apple’s App Store)? Do we allow discussion on a forum in the way open

source does? Or do we invite them to take part in creative requirements workshops?

These are very different ways to interact. From expressing preferences, through

developing them, to building together a consensual solution, there is a wide range of

possible participation techniques. More participative processes will tend to support

the latter. In this case, political literature will usually talk of negotiation or

consensus seeking [16]. In our opinion, however, there is a large spectrum between

pure negotiation and creative consensus making. In the first end of this spectrum,

the conflicting views are competing, while in the second end, they are enriching

each other. Instead of reaching a deceiving middle-point compromise after negoti-

ation, co-creation encourages to use conflicting views as the source for creativity,

exploring new dimensions to reach a consensus that is seen by all as better than

what each had originally in mind. While crucial in order to yield the best fruits out

of participation, switching from negotiation to co-creation is however a step that is

not easy to take, and we will suggest a methodological framework for this in

Sect. 13.5.

Finally, we can assess the influence of the participative process on the final

decisions. More participative processes allow more power to the group, on a

broader scope of decisions.

13.3.2 Promises of and Obstacles to Co-creative Processes
in Requirements Engineering

Beyond the impact of participatory processes at macro- and microeconomical

scales described in Sect. 13.2, the importance of collaborative creativity in RE

[29] leads us to think that more participatory approaches to RE will indeed reach

better results, more efficiently, as they suit better the natural participative nature of

the problem at hand. But further, what is ‘better results’? In our context, we are

probably interested in ‘more sustainable systems’, that is, systems that perform

better in terms of economical, ecological and social values. First things first: as far

as a system that does not bring value to its users is worth trashing, we may

confidently conclude that ‘sustainable systems’ are at least systems that suit the

needs of users, which is the core objective of RE as a discipline. Beyond that,

sustainable systems will have to take ecological and social requirements into

account.

Studies in several domains lead us to think that, indeed, participation has a strong

potential to provide more sustainable systems. However, this will not be automatic,

and many obstacles have to be mitigated. We develop below an initial argumenta-

tion, building on studies in the social development and journalism domains.

13 Participation and Open Innovation for Sustainable Software Engineering 309

13.3.2.1 Promises

Firstly, it is worth noting that in social development projects, participation is seen as

being a component of sustainable development [35]. In this discipline, participation

has long been seen as a must, not only to ensure acceptance but also as a way to

empower people, consequently leading to a better control of their own lives in the

long term [28]. A similar pattern exists when, in a company, participative innova-

tion is fostered, leading to empowerment and more satisfaction [53]. In short, we

can say that successful participation will lead to long-term empowerment, which in

turn supports social sustainability, as having control of one’s life is a crucial human

need and right. Empowerment also means power to act and think by oneself, thus

retrieving an active role in the society, potentially leading to more responsible

behaviours. The power to create is seen by many as a core human asset. Creating in

groups rebuilds links in a society that is missing them more and more. It has the

potential to revive the feeling that we are interconnected, and all depend on each

other, on this single planet, which is likely to reinforce responsible behaviours too.

Empowering people also relates to democracy. Many experts estimate that

democracy urgently needs to be revived in order to offer the world a chance to

adequately tackle the century’s challenges, and many lean towards participative

processes as the best chance in this domain: participation efforts in this sector have

shown that sustainable development indeed needs participation [44]. Both in Africa

and in Belgium, participative governance is shown to work well and to relate to

sustainable decision making from involved citizens [28, 35]. Those works also

indicate that projects using successful participation have a better acceptance rate,

last longer and consequently have a stronger impact. This relates to sustainability in

that projects that are not accepted or short-lived represent an important waste of

resources and energy.

Further, cases illustrate how participation allows deconstruction and creative

reconstruction of problem frames, by allowing circulation of the problem in various

dimensions and spaces. Participation helps to open up the solution space and let us

come to richer solutions that cope with more objectives and constraints, including

sustainability constraints that were sometimes out of the initial scope, before the

participation [35]. Doelle and Sinclair also advocate that a consensus-making form

of participation will be more efficient and lead to more sustainable outcomes than

an a posteriori assessment one [11]. Journalists also point to promises from partic-

ipation, imagining the discipline as a conversation rather than broadcasting [2],

nurturing better democracy. People are ready to participatively fund independent

journals and are shown to do so for contributing to common good and social

change [18].

310 M. Mahaux and A. Castiaux

13.3.2.2 Obstacles

It is clear that participation is not automatically a success. Real participative

processes may be rich but always cost time and are not always possible or even

desirable. The first problem with participative processes concerns the possibility for

the participation to be controlled by a certain type of people, more skilled or

culturally stronger. The idea that participation is a discussion forum without rules

must thus be rejected, at the risk of seeing the stronger impose its opinions by

influencing others in a way or another [35]. Lyons et al. indicate experiences where

participation failed for such reasons [28].

But even if there is no such strong person or group, the risk of seeing participants

fighting for their own personal, local, short-term interests exists. In these circum-

stances, the process will be, at best, inefficient. Lyons et al. also show such

examples in African development projects: where no democratic and transparent

cultures and infrastructures were in place around the project, the participation failed

to bear its promises [28]. Participative processes are indeed vulnerable to

malfunctioning environments. There is sometimes a huge work to accomplish

before the environment is ready for participation. The failure mentioned above

draws this conclusion, along with failures in participative journalism: Goode

indicates that people and systems, including software running at major crowd-
media platforms, have to make their way (in order to yield results from participative

processes) [18]. In other words, we are not there yet, and the road is not as easy as

some would like to let it think. In many places, we live and work in a culture that is

focused on the individual, on fighting for one’s own ideas, on competition. In

particular, in the innovation sphere, competitiveness is still seen as the main

objective of most innovation initiatives. Education too is still mostly centred on

the individual and on pragmatic skills, rather than on relational skills. Software

education, in particular, is still focusing on individual and technical skills,

underexploiting the softer and more relational aspects of the discipline, despite

some attempts to tackle these problems [40]. Providing training and education in

requirements engineering and focusing on human and participative aspects, it is the

author’s experience that practitioners and students alike have an important gap to

bridge in order to be able to exploit the full power of collaboration.

Finally, we underline that if participation is to lead to more sustainability,

beyond the positive social aspect of empowering people, we need participants

who care about sustainability. The various cases of urban development in Belgium

showed that involving a greater public did bring environmental concerns to the

front, while experts had neglected some of these aspects. In general, participation

relies on strong stakeholder analysis, which we have been used to in requirements

engineering. In the case of sustainable systems design, we need to ensure that some

stakeholders will stand up for sustainability concerns [41].

In short, we can say that real collaboration is not the norm and that it represents

an important paradigm shift at various levels. Participation is a fragile process that

13 Participation and Open Innovation for Sustainable Software Engineering 311

needs to be protected and supported, requiring new infrastructures, mindsets and

skills.

13.3.3 A New Role for Experts

A common concern is about the quality of work that can be achieved by amateurs

participating and the place that professionals, or experts, should take in the process.

The example of online medical forums (a form of participative medicine) is

probably making this problem clear. Bypassing doctors and mutually diagnosing

and medicating each other online can potentially be extremely dangerous. Simi-

larly, information relayed by microblogging platforms (a form of participative

journalism), escaping the journalistic validation, has the potential to convey

wrong information at a dangerously rapid rate [18]. Crowdsourcing cars (partici-

pative engineering) is nice but should not mean forgetting centuries of engineering

to reinvent the wheel.

Consequently, participation must not be seen as excluding professionals and

experts from the process, as it tends to be done in the examples above. Instead, we

have to reinvent the relation between experts and the public/users/audience. This

relation cannot be unidirectional, from top to bottom anymore, but places experts

and professionals at the centre of a discussion: they have to act as facilitators and

consultants. For example, a participative policy-making effort led in Belgium had

invited experts from the academy and industry to present the state of the art and

answer questions in the various areas of expertise that the 1,000 selected citizens

would discuss. The process was managed professionally and employed trained

facilitators [54]. So neither do we reject experts nor do we give them the power

to decide on their own: we use them as facilitators and consultants. Journalists

cross-checking and validating Twitter feeds to provide accurate uncensored infor-

mation are another example of a new relation between experts and the public.

13.4 Case Illustration: Open Source Software

13.4.1 Open Source Software: Open and Participative

Open source software (OSS) is a paramount example of open and participative

efforts for developing software-based systems. After exploring the notion of open

source in terms of participation and openness, we will discuss the effect that this

movement has had on innovation and sustainability.

312 M. Mahaux and A. Castiaux

13.4.1.1 Openness

OSS is, of course, by definition open: it allows software to be freely used, modified

and shared. There are, however, various levels of openness, as indicated by the

many flavours of open source licences. The open source initiative publishes the

definition of what constitutes open source and validates open source licences as

compliant to their definition [56]. This definition is made of ten items that are

directed at ensuring that OSS plays its role in the collaborative evolution of

software, involving as many participants as possible, including commercial ones.

13.4.1.2 Participation

As we have mentioned above, participation in OSS mostly follows the fully open

self-registration paradigm. Various kinds of stake areas are represented. Coders are

the most prominent group, but non-coders also participate, mostly through writing

the requirements. In an attempt to understand user participation in writing the

requirements for OSS, Noll traced features from first mention to release. The results

confirm the importance of user participation in open source projects [37]. There is a

public, open role in setting the agenda for OSS, whereas in closed software this was

not the case: profit-related objectives would always be the main driver.

The fact that developers with all sorts of skills, origin, background and motiva-

tion co-construct software is core to open source. OSS licences ensure that the

openness in that regard is total. The only restriction is then sociocultural: only a

fragment of the population is skilled and equipped for participation. However, the

barrier is lowering quickly, as equipment gets cheaper (thanks to open source

hardware and software initiatives) and software education and resources get avail-

able on the Internet (thanks to open and/or participative education initiatives).

The richness of interactions of collaborators in OSS projects is diverse. It is

rarely direct; most interactions happen via online interfaces that have various levels

of richness in the discussions they can support. It goes from classical forums

through ticketing systems (e.g. [55]) until clustering and voting mechanisms or

specific distributed requirements gathering platforms (e.g. [34]). Online discussion

can never support a consensus process as well as a well-facilitated workshop can.

But in the context of massively distributed RE, this is probably as good as it can be.

Concerning the power that is given to participants, the term forking denotes the

possibility for anyone to make a copy of a project and continue to develop it in

parallel with the original project. Studies have shown that this pattern obliges

project leaders to listen to their community, giving them a formal power that avoids

dictatorial situations to the benefit of more participative situations [38]. This also

allows for a situation where the scope of participation is total: participants may

decide from high-level strategic options until code line level details, just by forking

if they do not agree with the current direction.

13 Participation and Open Innovation for Sustainable Software Engineering 313

13.4.2 Open Source and Innovation

There is a common critique of open source projects: they are thought to merely

copy other software, making it free but of lesser quality. A typical example of this is

the famous OpenOffice project, based on the even more famous Office suite from

Microsoft. However, in 2007 already, Ebert [12] summarised 3 years of ‘open

source’ column in IEEE Software with an article ‘Open Source Drives Innovation’.
He underlined that open source components, such as operating systems, databases,

application servers and Web servers, are at the heart of an immense amount of

innovative systems. But more, open source has brought innovation in the software

world by changing the way we develop systems, augmenting the quality,

revolutionising software architecture, supporting standards, re-establishing fair

competition and reinventing business models.

Another critique to open source is that it facilitates imitation and thus results in

lower value for the inventors. In 2008, Pollock [42] examined the relative perfor-

mance of an ‘open’ versus a ‘closed’ regime and explicitly characterised the

circumstances in which an open approach, despite its effect on facilitating imita-

tion, results in a higher level of innovation. The outcome is strikingly simple: when

open source reduces the cost of innovation at least as much as the cost of imitation,

open regime is supporting innovation. This is frequently the case in open source

thanks to user involvement, crowd development, code reuse, etc. And this is not

even taking into account business model innovations that have brought many

additional advantages to the first mover, supporting innovation even more by

augmenting the value of it for the inventor.

More recently, Rayna and Striukova [43] compared the performance of open

source and patent pools in the open innovation context. Patent pools are a way to

pool patents from various inventors such that they are made available as a package,

simplifying their use for innovation. They follow the intellectual property para-

digm, adapted to the open innovation context, in a ‘coopetition’ [36] setting. The

issues of financial and nonfinancial benefits, appropriability, standards, coopera-

tion, risks and feasibility are, in turn, discussed for each of the structures. No

structure is declared better than the other per se, but the authors underline pros

and cons of each. The lesson for us is that open source is at least as valid as

traditional patent systems for innovation. Sometimes it will work better; at other

times it should be avoided.

Some obstacles remain indeed present for open source innovation. A major

problem is that open source brings with it an inherent risk of licence conflicts that

may become an issue when aiming to develop an innovative demo into an actual

product [25]. A lot of work is ongoing to reduce this risk. Another risk is that

adopting open source increases the business risk coming from the integration of

differentiating contributions within the core release stream. It is also not very clear

how the requirements management should adapt to the use of OSS to fully exploit

its innovation potential [52].

314 M. Mahaux and A. Castiaux

13.4.2.1 Open Source and Sustainability

We relate hereunder a number of ways in which OSS can be considered more

sustainable than traditional software.

Being free (as in ‘no money required’), OSS is potentially contributing in larger

diffusion of modern living tools, thus hoping to reduce inequalities. In particular,

the potential of OSS in developing countries is therefore important. But, more

importantly, beyond reducing licensing costs, OSS is hoped to promote indigenous

technological development by having access to the source code, avoiding being

hostage to proprietary software, advancing knowledge more quickly and helping to

set up an information economy, in a way that respects the local culture and

techniques [7]. In this way, it is not only the free and open character of the software

but also the participative development process that is a factor of sustainability.

While the process of building that new economy may not be cheaper than buying

proprietary software, its benefits are much higher for the developing country. What

is true for developing countries is true in general: OSS has an important role in open

learning, potentially reducing inequalities more extensively than reducing licensing

costs. Programming is not limited to chartered engineers any more: the barrier to

join has been significantly reduced. The educational world is more and more

grasping the opportunities offered by OSS, sometimes in advanced ways [24].

The possibility to adapt to OSS easily is also a vector for reducing inequalities.

In developing countries, it is an essential property that enables to use software that

is really adapted to the huge variety of contexts and specific needs [7]. In the same

way, OSS is also an important provider of software for people with disabilities.

There are many examples, such as text-to-speech libraries for visually impaired

people [48], text-to-Braille [15], improvement of open source Web browsers [20],

etc. Again, it is not only the free character of OSS that is important but also the fact

that communities are available to develop in a participative way that makes it a

sustainability driver.

Open source has also demonstrated an important potential in managing natural

disaster crises and humanitarian situations, and more work is ongoing in that

direction [27]. At a more preventive stage, it is known that OSS plays an important

role in supporting, among others, climate science [47]. Other humanities benefit

from this characteristic of OSS, such as health [5].

One of the main interests of open source is its ability to support standardisation

and reuse. An important challenge at this level is continuously the attention of an

important researcher community [47]. This allows allocating fewer resources to

build better products, offering a huge advantage for the sustainability of the sector.

Opening the source code has also an obvious impact on its auditability by the

public, that is, its transparency. Consequently, it can offer important guarantees to

users, notably in terms of security, privacy and sustainability in the sense of the

absence of planned obsolescence. These nonfunctional concerns are gaining more

and more interest from the public, and experts have been studying them since long.

Privacy is considered by experts as a key stone for the future of the Internet (the

13 Participation and Open Innovation for Sustainable Software Engineering 315

term privacy counts >11.900 hits on DBLP [26], versus 314 for maintainability for
example). Obsolescence has since long been pointed as a key problem of

unsustainable innovation [51]. While OSS solves this problem on the one hand, it

is however important to note that the obsolescence of an OSS product is mostly

linked to the sustainability of its community.

Finally, if strengthening social links between people on the planet is indeed part

of social sustainability, then the OSS movement can certainly be seen as a driver for

it. Indeed, the main reasons why people engage in OSS projects are peer recognition

and the feeling of belonging to a community, as well as the feeling of enjoyment

procured by one’s creative contribution to something, as Camara and Fonseca

summarise from many studies [7].

As a conclusion to this subsection, we think there is ample evidence to show that

OSS, a paramount example of openness and participation in IT, extensively sup-

ports sustainable innovation.

13.5 Methodological Proposition for Supporting
Sustainable Innovation in Software Engineering

In the 3 last years, our lab has been pioneering research on how to support

participative and sustainable innovation in the software domain. We are gradually

building elements of a methodology, taking specific approaches on creativity,

collaboration and sustainability in software and, more particularly, requirements

engineering. Its basic constituents are depicted below (Fig. 13.3) and explained

further down.

13.5.1 A Conceptual Framework for Creativity in the Design
of ICT Systems

This framework, shown in Fig. 13.4, explains what different concepts may lie

behind this simple word: creativity. It allows to better understand creativity in a

particular context and the methods and techniques to be adopted accordingly. The

framework describes five dimensions and three contextual factors that give the

specific creativity identity card to a project.

13.5.2 Factors for Collaborative Creativity

In a recent work [29], which is under empirical validation, we have studied factors

that influence the effectiveness of groups in collaboratively creative efforts

316 M. Mahaux and A. Castiaux

Sustainable &
Participative
Innovation

Analysis &
Definition of
Infratsructure

1: Creativity
Dimensions

2: Factors for
Collaborative

Creativity

3: Dynamic
Capabilities

Eco-Design
Participative
Technique

4: Improv for
Training

5: Improv for
Design

6: Sustainability
Requirements

Fig. 13.3 Methodological framework for sustainable software innovation

Fig. 13.4 Creativity dimensions framework

13 Participation and Open Innovation for Sustainable Software Engineering 317

(Fig. 13.5). We distinguished between factors relating to the team and to the

individual.

The team factors are further split into team context, the team values that are

shared among the team members and the team structure that describes how the team

is organised internally. This study enables to take a holistic approach when trying to

support collaborative efforts, by ensuring a full covering of the attention points. The

framework however does not prescribe specific methods or techniques: the frame-

work only helps the facilitator to build his process in a systematic way.

13.5.3 Dynamic Capabilities for Sustainable Development

In this research [8], we explore the impact of sustainability requirements on

dynamic capabilities that a company must develop and maintain to remain com-

petitive in a turbulent environment [49]. In particular, we analyse the new innova-

tion capacity to integrate the three pillars of sustainable development. To do this,

we consider the three basic functions of dynamic capabilities (detect, assess and

transform) and identify new requirements to fulfil these three functions. A field

study of the process of innovation in the ICT industry, in collaboration with IBM,

supports this analysis. It shows the new dynamics introduced in this sector to

strategically integrate the dimensions of sustainability—particularly energy effi-

ciency—in innovation and the different phases of the innovation process. We

finally derive a conceptual framework highlighting the dynamic in presence when

Fig. 13.5 A conceptual framework for collaborative creativity in RE

318 M. Mahaux and A. Castiaux

a socio-technical system transits towards sustainable development. The model

allows evaluating which endogenous and exogenous organisational pressures

shape the development and dissemination of these sustainable ICT technologies.

13.5.4 Improv-Based Training for Participatory Creativity

Theatrical improvisation (improv) is a form of stagecraft in which a group writes,

directs and plays a piece in the instant. The challenge is to maximise exchanges

between protagonists who do not have, by definition, the same vision of history at

the beginning. Through a communication endangered by the immediacy of the

moment, they will have to make their distinct imaginary worlds as one. The same

problem arises in the participative design context: we need to be able to build

together a unique solution tailored to a problem, taking into account a variety of

visions and constraints. Similarly, participants often have a diverging idea of the

problem and the solution; it will now have to converge, maximising the satisfaction

of all stakeholders. The issues are the same: How to find good ideas? How to use the

conflict as a source of creativity? How to find its place? How to effectively

communicate its point of view?

Practitioners of improvisation have developed rules and techniques to perfect

their art: our contribution was to recover this work to help design teams to

understand the forgotten mechanisms underlying collective creativity—listening,

openness, trust, acceptance, co-construction, shared responsibility, etc. [33]. This

technique has the potential to help us make the switch from a deeply rooted habit for

competition towards a collaborative spirit. Its strong points in this respect are its use

of gaming to talk directly to our deeper instincts and provide safe but close-to-

reality exercises that everyone can play as the capacities are built progressively.

The feedback is also easier to receive in gaming than on the real job.

13.5.5 Creative, Agile and User-Experience-Centred Design
Technique

Also based on improvisational theatre, this technique uses improv as a ‘machine to

build stories together’. Under construction, this tool is hoped to help system

designers who have realised the importance of scenario-based participatory work

[31, 32]. Its strong points are to tap into people’s ability to tell stories and to embody

them. Contextualisation and action are supposed to facilitate communication, while

the framework of improvisation rules ensures true participation and facilitates the

story-telling abilities of the group.

13 Participation and Open Innovation for Sustainable Software Engineering 319

13.5.6 Sustainable Requirements Techniques

Recognising that sustainability could be seen as a particular nonfunctional require-

ment, as well as safety or performance for example, the centre has been working to

initiate research on the tools needed taking those new requirements into account. In

the area of security, for example, numerous studies have been conducted to design

secure systems ‘by design’. Our approach was to initiate a similar path for sustain-

ability. We proposed a series of tools that can be added to the panoply of systems

designers eager to control the environmental impact of the product [30]. These tools

include add-ons to goal models, context diagrams, stakeholder analysis diagrams,

misuse cases, etc. We also co-initiated a series of international workshops on the

subject [39].

13.6 Conclusion

Open and participative innovation is gaining interest worldwide, as it shows its

ability to perform better in a world that is not focused solely on economic growth.

Greater participation is pushing a more subtle view on value, one where people and

nature have their place. People at various levels are empowered, and if they feel part

of a single common planet, they become more responsible and build more sustain-

able systems. Collaborative creativity has the power to give this feeling of unity

back, and the few places where collaboration is successfully replacing competition

are giving us reasons to hope.

At the core of the post-industrial economy, the software industry is a key enabler

in this context. Software is an ideal place to play open and participative, as OSS

demonstrates. It also has the power to facilitate participation in all other domains,

by helping in barrierless knowledge transfer and facilitating distributed discussions.

As experts in the field, we must act as facilitators and consultants to help the

world build sustainable systems. The building process will be key: it has to be

participative and open to the best extent. It has to be smart about this, because

neither participation nor openness is obvious in today’s still dominant economical

settings, company structures or people’s minds. We have to keep reinventing

business models and design techniques that will make it work. We have to use

tools that will help us think about the impact of the system on society and the planet

and to take informed decisions based on this.

We have never been so close to a massive transition of the economic and

governance systems for a better world. We need to grab this chance: as ICT system

builders, we have a key role to play.

320 M. Mahaux and A. Castiaux

References

1. Abernathy WJ, Utterback JM (1978) Patterns of industrial innovation. Technol Rev 64:254–

282

2. Aitamurto T (2011) The impact of crowdfunding on journalism. Journalism Pract 5(4):429–

445

3. Arnstein SR (1969) A ladder of citizen participation. J Am Inst Plann 35(4):216–224

4. Arthur WB (1989) Competing technologies, increasing returns, and lock-in by historical

events. Econ J 99:116–131

5. Asare P et al (2012) The medical device dongle: an open-source standards-based platform for

interoperable medical device connectivity. In: 2nd ACM SIGHIT international health infor-

matics symposium. ACM, New York, pp 667–672

6. Björkdahl J (2009) Technology cross-fertilization and the business model: the case of inte-

grating ICTs in mechanical engineering products. Res Policy 38(9):1468–1477

7. Camara G, Fonseca F (2007) Information policies and open source software in developing

countries. J Am Soc Inform Sci Technol 58(1):121–132

8. Castiaux A (2012) Developing dynamic capabilities to meet sustainable development chal-

lenges. Int J Innovat Manag 16(6):16

9. Castiaux A, Paque S (2009) Participative innovation: when innovation becomes everyone’s

business. Int J Enterpren Innovat Manag 10(2):111–121

10. Chesbrough HW (2003) Open innovation: the new imperative for creating and profiting from

technology. Harvard Business Press, Boston, MA

11. Doelle M, Sinclair AJ (2006) Time for a new approach to public participation in EA:

promoting cooperation and consensus for sustainability. Environ Impact Assess Rev 26

(2):185–205

12. Ebert C (2007) Open source drives innovation. IEEE Software 24(3):105–109

13. Freeman RE et al (2004) Stakeholder theory and “the corporate objective revisited”. Organ Sci

15(3):364–369

14. Freeman RE (2010) Strategic management: a stakeholder approach. Cambridge University

Press, Cambridge, MA

15. Frees B et al (2010) Generating Braille from OpenOffice.org. In: Miesenberger K et al (eds)

Computers helping people with special needs. Springer, Berlin, pp 81–88

16. Fung A (2006) Varieties of participation in complex governance. Publ Admin Rev 66:66–75

17. Gladwell M (2011) Creation myth. http://www.newyorker.com/reporting/2011/05/16/

110516fa_fact_gladwell?currentPage¼all

18. Goode L (2009) Social news, citizen journalism and democracy. New Media Soc 11(8):1287–

1305

19. Hall J (2000) Environmental supply chain dynamics. J Cleaner Prod 8(6):455–471

20. Hanson VL et al (2005) Improving Web accessibility through an enhanced open-source

browser. IBM Syst J 44(3):573–588

21. Hardin G (1968) The tragedy of the commons. Science 162(3859):1243–1248

22. Hertel G et al (2003) Motivation of software developers in Open Source projects: an Internet-

based survey of contributors to the Linux kernel. Res Policy 32(7):1159–1177

23. Von Hippel E (2005) Democratizing innovation. MIT Press, Cambridge, MA

24. Pavlik PI Jr et al (2012) Facilitating co-adaptation of technology and education through the

creation of an open-source repository of interoperable code. In: Cerri SA et al (eds) Intelligent

tutoring systems. Springer, Berlin, pp 677–678

25. Kilamo T et al (2012) Open source, open innovation and intellectual property rights – a

lightning talk. In: Hammouda I et al (eds) Open source systems: long-term sustainability.

Springer, Berlin, pp 298–303

26. Ley M, Bast H. The DBLP computer science bibliography. http://www.dblp.org

27. Li JP et al (2013) A case study of private–public collaboration for humanitarian free and open

source disaster management software deployment. Decis Support Syst 55(1):1–11

13 Participation and Open Innovation for Sustainable Software Engineering 321

http://www.newyorker.com/reporting/2011/05/16/110516fa_fact_gladwell?currentPage=all
http://www.newyorker.com/reporting/2011/05/16/110516fa_fact_gladwell?currentPage=all
http://www.newyorker.com/reporting/2011/05/16/110516fa_fact_gladwell?currentPage=all
http://www.dblp.org/

28. Lyons M et al (2001) Participation, empowerment and sustainability: (how) do the links work?

Urban Stud 38(8):1233–1251

29. Mahaux M et al (2013) Collaborative creativity in requirements engineering: analysis and

practical advice. In: Proceedings of the 7th international IEEE conference on research chal-

lenges in information science, Paris, France

30. Mahaux M et al (2011) Discovering sustainability requirements: an experience report. In:

Requirements engineering: foundation for software quality, pp 19–33

31. Mahaux M et al (2010) Making it all up: getting on the act to improvise creative requirements.

In: Proceedings of the 18th IEEE conference on requirements engineering. IEEE, Sydney

32. Mahaux M, Hoffman A (2012) Research preview: using improvisational theatre to invent and

represent scenarios for designing innovative systems. In: 1st International workshop on

creativity in requirements engineering, Essen, Germany

33. Mahaux M, Maiden N (2008) Theater improvisers know the requirements game. IEEE

Software 25(5):68–69

34. Merten T et al (2011) Improved representation of traceability links in requirements engineer-

ing knowledge using Sunburst and Netmap visualizations. In: 2011 Fourth international

workshop on managing requirements knowledge (MARK), pp 17–21

35. Mormont M et al (2006) La participation composante du développement durable: quatre études

de cas. VertigO Rev Électronique En Sci Environ 7:2

36. Nalebuff BJ, Brandenburger A (1996) Co-opetition. Harper Collins, New York

37. Noll J (2007) Innovation in open source software development: a tale of two features. In: Feller

J et al (eds) Open source development, adoption and innovation. Springer, New York, pp 109–

120

38. Nyman L et al (2012) Perspectives on code forking and sustainability in open source software.

In: Hammouda I et al (eds) Open source systems: long-term sustainability. Springer, Berlin, pp

274–279

39. Penzenstadler B et al (eds) (2013) Proceedings of the 2nd International workshop on require-

ments engineering for sustainable systems. Presented at the RE4SuSy@RE, Rio, Brazil

40. Penzenstadler B et al (2013) University meets industry: calling in real stakeholders. In: 2013 I.

E. 26th conference on software engineering education and training (CSEE T), pp 1–10

41. Penzenstadler B, Femmer H, Richardson D (2013) Who is the advocate? Stakeholders for

sustainability. In: 2nd International workshop on Green and Sustainable Software (GREENS)

2013. IEEE, pp 70–77

42. Pollock R (2009) Innovation, imitation and open source. Int J Open Source Software Process 1

(2):28–42

43. Rayna T, Striukova L (2010) Large-scale open innovation: open source vs. patent pools. Int J

Technol Manag 52(3):477–496

44. Reuchamps M (1978) Le G1000. http://orbi.ulg.ac.be/handle/2268/142718

45. Schumpeter JA (1975) Capitalism, socialism, and democracy. Harper Colophon, New York

46. Sonntag V (2000) Sustainability – in light of competitiveness. Ecol Econ 34(1):101–113

47. Stephens A et al (2012) The challenges of developing an open source, standards-based

technology stack to deliver the latest UK climate projections. Int J Digit Earth 5(1):43–62

48. Strobbe C et al (2010) Generating DAISY books from OpenOffice.org. In: Miesenberger K

et al (eds) Computers helping people with special needs. Springer, Berlin, pp 5–11

49. Teece DJ (2007) Explicating dynamic capabilities: the nature and microfoundations of (sus-

tainable) enterprise performance. Strat Manag J 28(13):1319–1350

50. Tritter JQ, McCallum A (2006) The snakes and ladders of user involvement: moving beyond

Arnstein. Health Policy 76(2):156–168

51. Waldman M (1993) A new perspective on planned obsolescence. Q J Econ 108:273–283

52. Wnuk K et al (2012) How can open source software development help requirements manage-

ment gain the potential of open innovation: an exploratory study. In: Proceedings of the

322 M. Mahaux and A. Castiaux

http://orbi.ulg.ac.be/handle/2268/142718

ACM-IEEE international symposium on empirical software engineering and measurement.

ACM, New York, pp 271–280

53. Etude sur l’innovation participative 2011. http://www.innovacteurs.asso.fr/?page_id¼29

54. G1000: Platform for democratic innovation. http://www.g1000.org/en/

55. Overview – Redmine. http://www.redmine.org/

56. The open source definition (annotated) | Open Source Initiative. http://opensource.org/osd-

annotated

13 Participation and Open Innovation for Sustainable Software Engineering 323

http://www.innovacteurs.asso.fr/?page_id=29
http://www.innovacteurs.asso.fr/?page_id=29
http://www.g1000.org/en/
http://www.redmine.org/
http://opensource.org/osd-annotated
http://opensource.org/osd-annotated

Index

A
AMDiRE, 170

Anti-pattern, 216

B
Bad smells, 215

Brundtland report, 6

C
Capacity optimisation, 23

Characteristics, 235

Cloud, 83

Collaborative creativity, 307

Corporate social responsibility (CSR), 5

D
Design for sustainable behaviour, 22

Dimensions of sustainability, 10

economic sustainability, 11

environmental sustainability, 11

individual sustainability, 10–11

social sustainability, 11

technical sustainability, 11

E
Ecological debt, 23, 207, 219–222, 227

Ecological effects, 70

Economic sustainability, 232

Efficiency optimization, 24

Energy Dashboard, 43

Energy efficiency, 23, 318

Environmental, 31

effects, 286, 291

factors, 133

issues, 34, 107

requirements, 23

sustainability, 182–183, 232

Environmentally sustainable, 285

Environmentally sustainable society, 8

e3 value, 114, 122, 125

G
Green, 5, 158

actions, 116, 118

behaviour, 40–43

computing, 14, 39

development, 233

goal, 22, 111

guidelines, 63

hardware, 16, 37–38

ICT, 108, 109, 112–115, 119, 142, 147,

278, 285, 286

metrics, 119–121

practices, 119–125

ICT/IT, 13–16

Impact Tool, 108

infrastructure, 36–37

IS, 8, 13

IT, 5, 13, 14, 16, 18, 34, 35, 42, 61, 65, 108,

206, 261

maintenance, 207, 227

measures, 264–278

metrics, 131

processes, 63, 234

quality, 22, 131–133, 263

© Springer International Publishing Switzerland 2015

C. Calero, M. Piattini (eds.), Green in Software Engineering,
DOI 10.1007/978-3-319-08581-4

325

Green (cont.)
quality factors, 22

requirements engineering, 23, 158–159, 183

software, 16, 18–20, 38–40, 83, 102, 130,

133, 137–140, 149, 151, 232

actions, 138

development, 63

development model, 208

engineering, 20, 130, 133, 137, 138,

142, 168, 206, 262, 278

maintenance, 23, 206, 208–210, 214

product, 64

requirements, 157, 160

systems, 149

strategy, 22

strategy model, 112, 116

and sustainable software, 83, 158, 262

development process, 70

engineering process, 12, 62, 64, 75, 78

life cycle, 62

product, 22, 64

Greenability, 11–20, 23, 211, 212, 237, 240,

245, 265

Greenability (in use), 23, 242–246, 272

Greenability model, 235

Green by hardware, 16

Green by IT, 16, 61, 65, 278

Green by software, 16, 19–20

Green for IT, 17

Greengineering, 215

Greening through IT, 34

Green in hardware, 16

Green in IT, 61

Green in software, 16, 19–20

GREENSOFT model, 62, 63, 65, 141, 208

Green software engineering environments

(SEE), 31, 43

Green software services (GSS), 22, 83–85,

87, 88

Green/sustainable goals, 286

I
ICT/IT sustainability, 8–9

Information and communication technologies

(ICTs), 4, 5

Information technology, 34

Interim sustainability presentations, 70

ISO 25000, 183

ISO/IEC 25010, 231

Issues, 31

IS sustainability, 8

IT for green, 17

IT sustainability, 8, 9

M
Measurement, 263

Measures, 132, 235, 269, 278

Method, 62

Metrics, 33, 62, 63, 102, 132, 134, 168

Millennium development goals (MDGs), 3

Minimization of environmental effects, 24

Mutation, 193, 194

N
Nonfunctional requirements (NFR), 232

O
Open source, 301

P
Participation, 303–304, 307–309, 311

Perdurability, 23

Power usage effectiveness (PUE), 119

Q
Quality, 206, 231

attributes, 168

characteristics, 132

criteria, 132

models, 132–134

requirements, 179

software, 133

in use, 24

R
Refactoring, 213

Requirements, 235, 290

Requirements engineering (RE), 157, 307

Requirements engineering for sustainability,

22, 159

Resource efficiency (at software

engineering), 22

Resource optimisation, 23

326 Index

S
SDLC environmentally sustainable, 63

SEE. See Software engineering environment

(SEE)

SEVOCAB. See Software Engineering
Vocabulary (SEVOCAB)

SIGGreen Statement, 8

SMO. See Software measurement ontology

(SMO)

Social sustainability, 22, 140, 232

Software client process resource efficiency, 22

Software engineering

metrics, 33

sustainability, 10–11, 184, 262

for sustainable development, 22, 130

Software engineering body of knowledge

(SWEBOK), 21

Software engineering environment (SEE),

22, 31, 33, 35

Software Engineering Vocabulary

(SEVOCAB), 35

Software execution resource efficiency, 22

Software greenability, 232

Software maintenance, 205

Software measurement, 264

Software measurement ontology (SMO), 263,

264, 273, 278

Software process, 62

Software product greenability, 232–242

Software quality, 66, 129, 132, 137, 160,

187, 207

measurement, 134–135

models, 133

Software sustainability, 9–10, 62

Software testing, 187

Stainable technologies, 306

Stakeholders, 84–86, 94, 173

Sustainability, 3, 6–11, 16, 31, 62, 83, 139, 158,

164, 167, 231, 262, 301, 305–306,

311, 315–316

of business services, 100

journal, 70

objectives, 166

policies, 88

presentation, 70

requirements, 168–169

requirements conflicts, 181

retrospective, 71

review and preview, 70

of software systems, 22

stakeholders, 164–166

Sustainable, 22

computing, 10

development, 5, 8, 65, 131, 133, 136, 137,

304, 310, 318–319

engineering process, 62

IS, 8

organizations, 8

requirements, 320

software, 9, 107, 130, 261

development, 23, 133, 233

engineering, 11, 12, 33, 62

systems, 309, 320

SWEBOK. See Software engineering body of

knowledge (SWEBOK)

Systems and software engineering vocabulary

(SEVOCAB), 20

T
Terms green and sustainable software, 130

Testing, 187

Test requirements, 187–188

Triftness, 22, 139

U
United Nations (UN), 6

User’s environmental perception, 24

Index 327

	Preface
	Overview
	Organization
	Audience
	Acknowledgements

	Contents
	List of Contributors
	Part I: Introduction
	Chapter 1: Introduction to Green in Software Engineering
	1.1 Introduction
	1.2 Sustainability
	1.2.1 IS Sustainability
	1.2.2 ICT/IT Sustainability
	1.2.3 Software Sustainability
	1.2.3.1 Software Engineering Sustainability

	1.3 From Sustainability to Greenability
	1.3.1 Green IS
	1.3.2 Green ICT/IT
	1.3.2.1 Green by IT Versus Green in IT

	1.3.3 Green Software
	1.3.3.1 Green by Software Versus Green in Software

	1.4 Green in Software Engineering
	1.5 Other Green Concepts in This Book
	1.6 Challenges and Future Work
	References

	Part II: Environments, Processes and Construction
	Chapter 2: Green Software Engineering Environments
	2.1 Introduction
	2.2 Motivation
	2.3 Contextualising the Need for Green Software Engineering Environments
	2.4 The Green Software Engineering Environment
	2.4.1 Green Infrastructure for the SEE
	2.4.2 Green Hardware for the SEE
	2.4.3 Green Software for the SEE
	2.4.4 Green Behaviour in the SEE

	2.5 Example Tool: The Joulery Energy Dashboard
	2.5.1 Consolidating Energy Data
	2.5.1.1 Benchmarking
	2.5.1.2 Data Logger
	2.5.1.3 Data Aggregator

	2.5.2 Visualising Energy Data
	2.5.3 Energy Dashboard Features
	2.5.4 Joulery in the Green SEE Landscape
	2.5.4.1 Nettie, the Network Administrator, and the Rogue Server
	2.5.4.2 Dev, the Developer, and the Continuous Integration Conundrum
	2.5.4.3 Archie, the Architect, and the Design Problem

	2.6 Conclusions
	References

	Chapter 3: Processes for Green and Sustainable Software Engineering
	3.1 Introduction
	3.2 Related Work
	3.3 Definitions
	3.4 The GREENSOFT Model
	3.5 Life Cycle of Software Products
	3.5.1 Development Phase
	3.5.2 Distribution Phase and Disposal Phase
	3.5.3 Usage Phase
	3.5.4 Deactivation Phase

	3.6 A Generic Process Model for Green and Sustainable Software Engineering
	3.6.1 Roles
	3.6.2 Sustainability Review and Preview
	3.6.3 Process Assessment
	3.6.4 Interim Sustainability Presentations
	3.6.5 Sustainability Journal
	3.6.6 Sustainability Retrospective
	3.6.7 Sustainability Presentation and Sustainability Report

	3.7 Integrating Aspects in Existing Process Models
	3.7.1 Scrum
	3.7.2 OpenUP

	3.8 Conclusion
	References

	Chapter 4: Constructing Green Software Services: From Service Models to Cloud-Based Architecture
	4.1 Introduction
	4.2 Stakeholders in GSS
	4.2.1 Core Stakeholders
	4.2.2 Supportive Stakeholders

	4.3 Requirements for GSS
	4.4 Background
	4.4.1 Business Model Description
	4.4.2 IoT PaaS Architecture

	4.5 Business Models and Reference Architecture
	4.5.1 Infrastructure Services
	4.5.2 Platform Services
	4.5.3 Virtual Verticals
	4.5.4 Data Services
	4.5.5 Third-Party Applications
	4.5.6 Analytics as a Service

	4.6 Discussions
	4.6.1 A Cloud Perspective to GSS
	4.6.2 Towards a Marketplace for GSS

	4.7 Conclusion
	References

	Part III: Economic and Other Qualities
	Chapter 5: Economic Aspects of Green ICT
	5.1 Introduction
	5.2 Background: The e3value Methodology
	5.3 Modeling the Value Exchange of Green ICT Practices
	5.4 Example of Modeling a Green ICT Practice
	5.4.1 Findings

	5.5 A Web-Based Calculator for Green ICT Practices
	5.5.1 Formalization of Green ICT Metrics
	5.5.2 The Application
	5.5.2.1 Features of the Calculator

	5.6 Conclusions
	References

	Chapter 6: Green Software Quality Factors
	6.1 Introduction
	6.2 Green Quality
	6.3 Quality Models
	6.3.1 Software Quality Measurement

	6.4 Green Factor Motivation
	6.5 Green Software Factor Model
	6.5.1 Management Layer
	6.5.2 Execution Layer
	6.5.3 Platform Layer
	6.5.4 Application Layer
	6.5.5 System Layer
	6.5.6 Problem Domain Layer

	6.6 Conclusions
	References

	Part IV: Software Development Process
	Chapter 7: From Requirements Engineering to Green Requirements Engineering
	7.1 Introduction
	7.1.1 Defining Requirements Engineering
	7.1.2 Defining Green and Sustainability
	7.1.3 Defining Green Requirements Engineering
	7.1.4 Five Dimensions of Sustainability
	7.1.5 Why Not Simply Add a Category Green Software Requirements?
	7.1.6 Outline

	7.2 Elaborating Green Requirements
	7.2.1 Analyse Sustainability of Context
	7.2.2 Find Sustainability Stakeholders
	7.2.3 Elicit Sustainability Objectives, Goals and Constraints
	7.2.4 Derive Sustainable System Vision and Usage Model
	7.2.5 Refine and Deduce Sustainability Requirements

	7.3 Exemplary Application in Artefact-Oriented Requirements Engineering
	7.3.1 Foundation: A Basic System Model
	7.3.2 AMDiRE: Artefact Model for Domain-independent Requirements Engineering
	7.3.3 Example Content Items for Illustration
	7.3.4 Stakeholder Model
	7.3.5 Objectives and Goals
	7.3.6 System Vision and Usage Model
	7.3.6.1 System Vision
	7.3.6.2 Usage Model

	7.3.7 Specific Requirements Types

	7.4 Discussion
	7.4.1 Which Dimensions Appear in Which Content Items?
	7.4.2 Sustainability Requirements Conflicts
	7.4.3 Cost Modelling
	7.4.4 Legal Constraints
	7.4.5 Risk Management and Environmental Sustainability

	7.5 Conclusion
	References

	Chapter 8: Towards Green Software Testing
	8.1 Introduction
	8.2 Test Requirements
	8.3 Impact of the Test Requirement
	8.4 Understanding the Cost of Test Execution
	8.4.1 Algorithms for Test Suite Reduction
	8.4.2 Test Case Execution Algorithms

	8.5 Understanding the Costs of Test Design
	8.6 A Theoretical Model for Testing Cost and Energy Consumption
	8.6.1 Testing the First Release
	8.6.2 Testing a Corrected Release
	8.6.3 Testing a Perfective Release
	8.6.4 Example

	8.7 Conclusions
	References

	Chapter 9: Green Software Maintenance
	9.1 Introduction
	9.2 Greening Software Maintenance: A New Facet for a Classical Process
	9.2.1 Existing Proposals
	9.2.2 Green Software Maintenance: A First Approach

	9.3 Promising Techniques for Improving Greenability in Green Software Maintenance
	9.3.1 Software ``Greengineering´´: Reengineering for Greening Legacy Systems
	9.3.2 Bad Smells
	9.3.3 Anti-patterns
	9.3.4 Considerations

	9.4 Technical Debt and Ecological Debt
	9.5 Case Study: An Attempt to Improve Greenability and Maintainability at One and the Same Time
	9.5.1 Introduction
	9.5.2 Hypothesis, Context, and Execution of the Case Study
	9.5.3 Conclusions of the Case Study

	9.6 Conclusions
	References

	Chapter 10: Green Software and Software Quality
	10.1 Introduction
	10.2 ISO/IEC 25010
	10.3 Software Product Quality and (Software Product) Greenability
	10.4 Quality in Use and Greenability (in Use)
	10.4.1 Working with the Sub-characteristics
	10.4.2 Defining the New Characteristic
	10.4.3 Reviewing Quality in Use Characteristics
	10.4.4 Redefining Quality in Use

	10.5 Linking the Software Product Model and the Quality in Use Model
	10.5.1 Modelling the Relationships Between PQ and QiU
	10.5.2 Modelling the Relationships Between PQ and Greenability (in Use)
	10.5.3 Modelling the Relationships Between PQ Sub-characteristics and Greenability (in Use)

	10.6 How to Adapt the Bayesian Networks to a Specific Context
	10.7 Using the Bayesian Networks
	10.7.1 Bayesian Networks `Static´ Usage
	10.7.2 Bayesian Networks `Dynamic´ Usage

	10.8 Conclusions
	References

	Chapter 11: Green Software Measurement
	11.1 Introduction
	11.2 Importance of Measurement
	11.3 Green Measures
	11.4 Definition of Green Measures Using SMO
	11.4.1 Measure Related to Energy Efficiency
	11.4.2 Measure Related to Resource Optimisation
	11.4.3 Measure Related to Durability

	11.5 Conclusions
	References

	Part V: Practical Issues
	Chapter 12: A Decision-Making Model for Adopting Green ICT Strategies
	12.1 Introduction
	12.2 The Decision-Making Model
	12.2.1 The Metamodel
	12.2.2 Model Elements
	12.2.3 An Instantiation of the Decision-Making Model

	12.3 The Decision-Making Process
	12.3.1 Goal-Driven Process
	12.3.2 Strategy-Driven Process

	12.4 Usage Scenarios
	12.4.1 Scenario 1: Goal-Driven Process
	12.4.1.1 Step 1: Select Goal
	12.4.1.2 Step 2: Check Related Investment Areas
	12.4.1.3 Step 3: Evaluate Effects
	12.4.1.4 Step 4: Make a Decision

	12.4.2 Scenario 2: Strategy-Based Process
	12.4.2.1 Step 1: Select Investment Areas
	12.4.2.2 Step 2: Check Achieved Goals
	12.4.2.3 Step 3: Evaluate Effects
	12.4.2.4 Step 5: Make a Decision

	12.5 Conclusions
	References

	Chapter 13: Participation and Open Innovation for Sustainable Software Engineering
	13.1 Introduction
	13.2 Participation, Openness and Sustainable Innovation
	13.2.1 Why Is the Innovation Process More and More Open?
	13.2.1.1 Openness and Participation to Enlarge Innovation Sources
	13.2.1.2 Openness and Participation to Involve Stakeholders in the Strategy

	13.2.2 Participation, Openness and Sustainability: Is It Possible to Innovate for Sustainability in a Closed View?
	13.2.2.1 Sustainability and Innovation at the Global Economy Level
	13.2.2.2 Sustainability at the Value Chain Level

	13.2.3 Open and Participatory Innovation to Integrate Stakeholders and Reach Sustainability

	13.3 Understanding Participation and Co-creative Processes in Socio-technical Systems Design
	13.3.1 Governance for Participation
	13.3.2 Promises of and Obstacles to Co-creative Processes in Requirements Engineering
	13.3.2.1 Promises
	13.3.2.2 Obstacles

	13.3.3 A New Role for Experts

	13.4 Case Illustration: Open Source Software
	13.4.1 Open Source Software: Open and Participative
	13.4.1.1 Openness
	13.4.1.2 Participation

	13.4.2 Open Source and Innovation
	13.4.2.1 Open Source and Sustainability

	13.5 Methodological Proposition for Supporting Sustainable Innovation in Software Engineering
	13.5.1 A Conceptual Framework for Creativity in the Design of ICT Systems
	13.5.2 Factors for Collaborative Creativity
	13.5.3 Dynamic Capabilities for Sustainable Development
	13.5.4 Improv-Based Training for Participatory Creativity
	13.5.5 Creative, Agile and User-Experience-Centred Design Technique
	13.5.6 Sustainable Requirements Techniques

	13.6 Conclusion
	References

	Index

