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Preface

WBIR 2014 was the sixth international Workshop on Biomedical Image Reg-
istration. It was held at University College London, UK, July 7–8, 2014. This
scientific event aims to bring together leading researchers in the area of biomed-
ical image registration to present and discuss recent developments in the field.

The previous workshops were held in Bled, Slovenia (1999), at the Univer-
sity of Pennsylvania, USA (2003), at the University Medical Center Utrecht,
The Netherlands (2006), in Lubeck, Germany (2010), and at the University of
Vanderbilt, Nashville, USA (2012).

The WBIR 2014 proceedings, published in the Lecture Notes in Computer
Science series, contain the latest original research results selected through a
rigorous peer-review process. Every full paper (8 to 10 pages in length) was re-
viewed in a double-blind process by three members of the international Program
Committee, composed of 44 renowned scientists in the field of medical image
registration. The result of this selection process is a set of 24 articles from 14
countries and 4 continents. A total of 16 papers were selected for oral presenta-
tion and 8 as posters, all presented during a single track oral and poster session.

The conference program has been greatly enhanced by our four invited speak-
ers, Professors J. Ashburner (University College London, UK), D. Rueckert (Im-
perial College London, UK), and Doctors T. Kadir (Mirada Medical, UK), and
Stéphane Nicolau (IRCAD, France). All four presented exciting state-of-the-art
advances during their keynote lectures covering the main aspect of the scientific
remit of our conference.

We warmly thank the members of our Program Committee and all the par-
ticipants of the event, who made this conference an exciting place to share the
latest discoveries in this fascinating research area.

July 2014 Sébastien Ourselin
Marc Modat
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Fast, Simple, Accurate Multi-atlas Segmentation

of the Brain

Sean Murphy1, Brian Mohr1, Yasutaka Fushimi2,
Hitoshi Yamagata3, and Ian Poole1

1 Toshiba Medical Visualization Systems Europe,
2 Anderson Pl, Edinburgh, EH6 5NP, UK

bmohr@tmvse.com
2 Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University

Graduate School of Medicine, 54 Shogoin Kawaharacho,
Sakyoku, Kyoto, 606-8507, Japan

3 Toshiba Medical Systems Corporation,
1385 Shimoishigami, Otawara, 324-8550, Japan

Abstract. We are concerned with the segmentation of structures within
the brain particularly the gyri of the cerebral cortex, but also subcortical
structures from volumetric T1-weighted MRI images. A fully automatic
multi-atlas registration based segmentation approach is used to label
novel data. We use a standard affine registration method combined with
a small deformation (non-diffeomorphic), non-linear registration method
which optimises mutual information, with a cascading set of regularisa-
tion parameters. We consistently segment 138 structures in the brain, 98
in the cortex and 40 in the sub-cortex. An overall Dice score of 0.704 and
a mean surface distance of 1.106 mm is achieved in leave-one-out cross
validation using all available atlases. The algorithm has been evaluated
on a number of different cohorts which includes patients of different ages
and scanner manufacturers, and has been shown to be robust. It is shown
to have comparable accuracy to other state of the art methods using the
MICCAI 2012 multi-atlas challenge benchmark, but the runtime is sub-
stantially less.

1 Introduction

The aim of this work is to provide fully automated, accurate segmentation of
the gyrus regions and substructures in T1 weighted images. Fully automatic
segmentation has applications in visualisation, localisation of pathology, naviga-
tion, neurosurgery planning, radio-therapy planning and in understanding the
morphometry and longitudinal changes of the brain, particularly with respect to
neurological conditions like Alzheimer’s, schizophrenia and Parkinson’s [1,2,3].

The notion of a medical image atlas is introduced in [4]. The atlas can be dec-
orated with a variety of extra information such as points, curves, structures and
probabilisticmaps.Most schemes for segmenting the brain are based on volumetric
registration although a deformable surface model approach is used in [5,6]. Meth-
ods based on registration are dependent on the accuracy of that registration.

S. Ourselin and M. Modat (Eds.): WBIR 2014, LNCS 8545, pp. 1–10, 2014.
c© Springer International Publishing Switzerland 2014



2 S. Murphy et al.

An extensive evaluation [7], compares the accuracy of 14 non-linear registration
algorithms in the context of brain parcellation. The paper concluded that there is
a modest correlation between the degrees of freedom of a registration method and
its accuracy. It also found that the relative accuracy of methods appeared to be lit-
tle affected by subject population, labelling protocol and accuracy measurement.
This suggests (at least for the evaluated algorithms) that they will generalize well
to unseen populations and protocols.The top entrantswere SPM(Ashburner, Uni-
versity College London), ART (NITRC, Mass), IRTK (Rueckert, Imperial College
London) and SyN (Avants, University of Pennsylvania).

For an example on how to combine segmentation and registration in one
complete framework see [8]. This approach shows how to use the expectation
maximization algorithm to determine the variance and mean of the MR signals in
tissue types/compartments which incorporates priors from probabilistic masks.

In [9], Fischl constructs a probabilistic model of the position of each com-
partment in the brain. He also constructs a model of the MRI-signal which is
assumed to be drawn from a Gaussian distribution where the parameters are
free to vary from point to point. These models are constructed by data-mining
many samples. The probabilistic model also includes a Markov Random Field
component and is used to drive non-linear registration as in [8].

Multi-atlas methods involve performing multiple independent registrations
and fusing the results together, typically using per pixel majority voting as dis-
cussed in [10]. Many variations on this theme exist. The STAPLE algorithm [11]
shows how to solve the segmentation problem while simultaneously evaluating
the accuracy of the different raters (atlases). For a comparison between state of
the art multi-atlas segmentation techniques see the MICCAI 2012 challenge on
multi-atlas labelling [12]. Techniques used included variations of the expectation
maximisation algorithm, variations of the STAPLE algorithm, patch based label
fusion, trained classification methods, different registration approaches including
log domain diffeomorphic demons, spline based methods and dense deformation
field methods. The winning entry from the University of Pennsylvania performed
affine registration using FLIRT, followed by non-rigid registrtion using AIR of
the novel image to all atlases, followed by a label fusion algorithm and a cor-
rective learning approach using AdaBoost classifier with a mixture of spatial,
appearance and contextual features within a 5 x 5 x 5 window [13]. In section
3, we numerically compare our technique to those in the challenge by evaluating
on the same training and test sets.

In the following sections we describe our method in chronological order, fol-
lowed by a results section which is broken into three subsections, followed by a
conclusions section.

2 Method

We also propose a multi-atlas based solution. The algorithm is outlined in figure
1, with details given in the following sub-sections. We first affinely register all
available atlases (27) by maximising mutual information (MI) over the set of rigid
body transformations using simulated annealing at a reduced scale of 8, and then
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over a 9 parameter search space which includes axis aligned scales using Powell’s
method [14] at a scale of 4. A specified number of these atlases (possibly all
atlases) are selected to proceed to the non-linear registration phase by performing
hierarchical clustering on the resultant transformations and selecting the most
consistent subset. The selection trades runtime for accuracy. The multi-scale
non-linear registration phase optimises MI over the set of dense displacement
fields by gradient descent, with a semi-numerical expression for the gradient.
Finally the results from these atlases are used to construct a per compartment
probability map which are used as priors in the expectation maximisation (EM)
fitting of a per compartment Gaussian intensity model. The final segmentations
are arrived at by maximum a posteriori (MAP) classification.

Rigid registration with 
Novel 

Non Rigid registration 
with Novel 

Novel Data 

Rigid 
Registration 

Rigid 
Registration 

Rigid 
Registration 

Atlas 
Selection 

Selected 
Atlases 1 

Selected 
Atlas 2 

Selected 
Atlas M 

Non-Rigid 
Registration 

Non-Rigid 
Registration 

Non-Rigid 
Registration 

Classification Novel Labels 

Atlas 1 

Atlas 2 

Atlas N 

M ≤ N

Fig. 1. Proposed workflow

2.1 Affine Registration

Affine registration between each atlas and the novel dataset is achieved by ini-
tially optimizing MI computed from a joint histogram using simulated annealing
[15] over the class of rigid body transformations. The rotation is parameterised in
terms of roll, pitch and yaw Euler angles around the center of the atlas volume.
The novel and atlas volumes are both downscaled with anti-aliased smoothing by
a factor of 8 prior to registration. The joint histogram is computed by sparsely
sampling from the volumes. The transformation which aligns the center of the
two volumes with no relative scaling or rotation is used to initialise the search.
The simulated annealing optimizer has the effect of restarting in several loca-
tions, which avoids local minima and provides robustness. This is then followed
by a search over the set of 9-parameter transformations which includes axis
aligned scaling, using Powell’s method at a reduced scale of 4.

2.2 Atlas Clustering

Clustering of the atlases with respect to the computed affine transformation is
used to reduce the runtime of the algorithm by reducing the number of non-linear
registrations to atlas volumes. Our method requires that a number of anatomi-
cal landmarks are manually marked on the atlas datasets. The novel volume is
affinely registered to all atlas volumes. The distance metric d(A,B) for atlases A
andB is defined in 1, as the sumof the distances between corresponding landmarks.
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d(A,B) =
∑
i

‖TA(xA,i)− TB(xB,i))‖ (1)

‖·‖ is the Euclidean norm, TA

and TB are the affine trans-
formations to the novel image
from atlas A and B respectively, and xA,i and xB,i are the positions of prede-
termined anatomical landmarks, indexed by i, in atlases A and B respectively.
In this way the pre-defined landmark positions xi, which have been identified
offline by a clinician, are transformed to the novel coordinate system using the
affine transformation T for each atlas.

The distance metric is used to populate a square matrix with dimensions of
the number of atlases (in this case 28). Hierarchical clustering, [16], is used to
identify the atlases which perform consistent registrations. The most consistent
cluster of the appropriate size is selected. In some cases the cluster may be too
large, in which case a random subset of this set is taken. The selected atlases
will continue to the non-linear registration, voting, and EM steps outlined below.
Thus overall, atlas clustering identifies outliers from the affine registration stage,
presumes these to be errors, and removes them from the following steps.

2.3 Non-linear Registration

W = argmax
W ′

MI(R,W ′[T ]) (2)This stage finds a dense deformation
field W (not necessarily diffeomor-
phic), parameterised as vectors on a Cartesian grid, which maximises (locally)
the MI between the floating volume T and the reference R. The deformation-field
is initialised from the affine phase and evolved to convergence, using a gradient
ascent optimiser, with the deformation-field at iteration i given by:

Wi+1 = E ∗ (Wi + kV ∗ Fi) (3)
F =

∂MI(R,W [T ])

∂W
(4)

Convolution kernels V and E enforce the viscous fluid and elastic constraints,
respectively; both modelled by Gaussian filters (∗ is the convolution operator).
Fi is the current force-field, calculated as the multivariate derivative of the MI
with respect to the components of the deformation at each point as described
in [17]. k is a free constant which controls the rate of ascent. It is beneficial
to use a decreasing cascade of k’s and of fluid regularisation parameters. Both
these parameters are reduced geometrically when temporary convergence of MI
is detected, with a lower bound on the fluid regularisation.

The non-linear registration algorithm is multi-scale where results from lower
scales are used as the input to finer scales. The down scale factors used here are
4, 2 and 1. For this application, no elastic constraints are used. The registration
is restricted to the domain of the brain in the atlas dataset dilated by 5 voxels.

2.4 Expectation-Maximization (EM)

The T1 weighted signal of each voxel x, in a given compartment, c, is assumed
to be drawn from a Gaussian distribution: P (x|c) = N (x|μc, σ

2
c ). The parame-

ters of each Gaussian distribution, the mean μc and variance σ2
c , are unknown.
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The compartment/class, c, of each voxel is also unknown and is modelled as a
per voxel distribution ρc,i = p(c|i, x) where i denotes the voxel. The Gaussian
parameters and voxel classifications can be estimated by maximizing the joint
probability density function of the entire image, using the EM algorithm [18]
with sufficient independency assumptions. This iterative algorithm uses gradi-
ent descent to converge to a locally maximal configuration. The votes from each
of the atlases can be used to inform this process as in [19,20], by constructing a
probability mask for each compartment which takes the form of a prior p(c|i).
The variables in the algorithm at iteration t are denoted as ρ

(t)
c,i , μ

(t)
c and σ

2(t)
c .

In this scheme background is also included as a class.

ρ
(0)
c,i = p(c|i) (5)

ρ
(t+1)
c,i =

N (xi|μ(t)
c , σ

2(t)
c )p(c|i)∑

cN (xi|μ(t)
c , σ

2(t)
c )p(c|i)

(6)

μ(t)
c =

∑
i xiρ

(t)
c,i∑

i ρ
(t)
c,i

(7)

σ2(t)
c =

∑
i(xi − μ

(t)
c )2ρ

(t)
c,i∑

i ρ
(t)
c,i

(8)

3 Results

The method has been evaluated in three ways. Firstly, on a unaltered subset of the
OASISdatabase asdiscussed in section3.1, using a leave oneout strategy. Secondly,
on data derived from the MICCAI multi-atlas labelling challenge, using a classic
training/test split in section 3.2. Evaluating on this group allows for a like for like
comparison to other entrants in the challenge. Thirdly, the results have been qual-
itatively evaluated on a broad range of private T1 weighted images from different
cohorts, scanner manufacturers and geographic locations as discussed in 3.3.

Table 1. Top: 98 detected cortical structures. Middle: 40 detected subcortical struc-
ture. Bottom: 12 annotated anatomical landmarks. All identifiers have a left and right
variant with the exception of those marked with ∗.

inferior temporal gyrus cuneus postcentral gyrus
superior parietal lobule precuneus frontal operculum
superior occipital gyrus gyrus rectus central operculum
occipital fusiform gyrus frontal pole parietal operculum
inferior occipital gyrus temporal pole supramarginal gyrus
anterior cingulate gyrus planum polare medial orbital gyrus
transverse temporal gyrus lingual gyrus middle frontal gyrus
posterior cingulate gyrus angular gyrus parahippocampal gyrus
supplementary motor cortex occipital pole middle temporal gyrus
precentral gyrus medial segment fusiform gyrus medial frontal cortex
postcentral gyrus medial segment entorhinal area lateral orbital gyrus
superior frontal gyrus medial segment anterior insula superior frontal gyrus
orbital part of the inferior frontal gyrus subcallosal area middle occipital gyrus
opercular part of the inferior frontal gyrus planum temporale middle cingulate gyrus
triangular part of the inferior frontal gyrus precentral gyrus anterior orbital gyrus

posterior insula superior temporal gyrus
calcarine cortex posterior orbital gyrus

Lateral Ventricle CSF∗ Hippocampus
Cerebral Exterior Vessel Optic Chiasm∗
Cerebellum Exterior Putamen Inf Lat Vent
Cerebral White Matter Caudate 4th Ventricle∗
Cerebellum White Matter Pallidum 3rd Ventricle∗
Cerebellar Vermal Lobules I-V∗ Amygdala Accumbens Area
Cerebellar Vermal Lobules VIII-X∗ Ventral DC Basal Forebrain
Cerebellar Vermal Lobules VI-VII∗ Brain Stem∗ Thalamus Proper

Frontal Horn of the Lateral Ventricle Floor of the Maxillary Sinus Pineal Gland∗
Optic Nerve Attachment Point Pituitary Gland (Base)∗
Superior Aspect of Eye Globe Centre of Eye Globe
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3.1 OASIS

28 datasets were manually segmented from the OASIS database [21] by Neuro-
morphometrics (NMM)1. The patients range in age from 30 to 96, with approx-
imately four patients from each decade: 12 male and 16 female. The patients
are all right-handed. NMM clinicians have annotated 138 structures in all. A
complete list of the cortical and subcortical regions defined can be found in ta-
ble 1. Each dataset was additionally annotated with up to 12 key anatomical
landmarks as specified in 1. These are not detected in the novel dataset, but
are used during the clustering stage. The OASIS volumes have been anonymised
digitally by removing the face, and the signal to noise ratio has been improved by
averaging together several repeated scans. Not every structure has been labelled
in every dataset because it may not have been present.

We performed a leave-one-out cross validation and evaluated two accuracy
metrics: Dice coefficient, see 9, and mean surface distance in millimetres, see 10.

2|X ∩ Y |
|X |+ |Y | (9)

1

|SX |
∑
i∈SX

argmin
j∈SY

‖i− j‖ (10)

‖·‖ is the Euclidean norm. X and Y are the ground truth and generated seg-
mentations, respectively, and SX and SY the corresponding set of points on the
surface of these. Table 2 shows the mean over all compartments and all volumes,
for both of these statistics. Structures which are not present in the ground truth
in all datasets do not contribute to the average Dice or surface distance as in
[12]. Figure 2 shows the effect of the number of atlases used on the accuracy.

Table 2. Mean Dice and mean surface distance for 28 oasis datasets for all structures,
for the cortex and for the non-cortex

Overall Cortical Non-Cortical
Mean Dice 0.704 0.689 0.745
Surface Distance (mm) 1.094 1.119 1.026

3.2 MICCAI Multi-atlas Labelling Challenge

A separate set of 35 datasets were manually segmented from the OASIS database
[21] by NMM for the purpose of the challenge. The patients ranged in age from
18 to 90. 15 datasets were used for training and the remaining 20 were used for
testing. These volumes were pre-processed using bias-field correction and aligned
manually to the AC-PC axis using translation and rotation. Because of this, the
initial affine registration problem is somewhat easier than might be expected on
truly novel data. A more realistic representation of the expected score can be
seen on the pure OASIS dataset in section 3.1. Nonetheless, this set is inter-
esting because it was used in the MICCAI multi-atlas labelling challenge [12].
Held in 2012, this challenge made the training set available and invited entrants
to submit their methods and results to be independently evaluated on the test

1 http://www.neuromorphometrics.com/
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Table 3. The results of the MICCAI multi-atlas segmentation challenge [12]. Shown
is the mean overall Dice, the mean Dice in the cortical areas, the mean Dice in the
non-cortical areas and also estimated runtimes. The score and ranking of our method
(TMVSE BGM) was retrospectively calculated and is shown in the table in bold.

Overall
Rank

Team Name
Reg
Method

Mean
Dice
Overall

Mean
Dice
Cortical

Mean
Dice
Non-
Cortical

Runtime
Estimate
(mins)

1 PICSL BC ANTS 0.7654 0.7388 0.8377 > 1200
2 NonLocalSTAPLE ANTS 0.7581 0.7318 0.8296 > 1200
3 MALP EM Nifti-Seg 0.7576 0.7328 0.8252 > 50 (5 on GPU)
4 PICSL Joint ANTS 0.7499 0.7216 0.8271 > 1200
5 MAPER Nifti-Seg 0.7413 0.7144 0.8144 > 50 (5 on GPU)
6 STEPS Nifti-Seg 0.7372 0.7107 0.8095 > 50 (5 on GPU)
7 SpatialSTAPLE ANTS 0.7372 0.7093 0.8130 > 1200
8 CIS JHU LDDMM 0.7357 0.7131 0.7971 10 - 450

8.5 TMVSE BGM 0.7346 0.7183 0.7807 > 5

9 CRL Weighted STAPLE ANTS+Baloo ANTS 0.7344 0.7122 0.7950 > 1200
10 CRL Weighted STAPLE ANTS ANTS 0.7308 0.7066 0.7966 > 1200
11 CRL STAPLE ANTS+Baloo ANTS 0.7290 0.7064 0.7919 > 1200
12 CRL STAPLE ANTS ANTS 0.7280 0.7033 0.7951 > 1200
13 CRL Probabilistic STAPLE ANTS+Baloo ANTS 0.7251 0.7009 0.7911 > 1200
14 CRL MV ANTS+Baloo ANTS 0.7247 0.6966 0.8012 > 1200
15 CRL MV ANTS ANTS 0.7243 0.6951 0.8035 > 1200
16 DISPATCH Nifti-Seg 0.7243 0.6965 0.8000 > 50 (5 on GPU)
17 CRL Probabilistic STAPLE ANTS ANTS 0.7223 0.6972 0.7907 > 1200
18 SBIA SimRank+NormMS+WtROI DRAMMS 0.7212 0.6940 0.7953 > 240
19 SBIA BrainROIMaps MV IntCorr DRAMMS 0.7193 0.6933 0.7904 > 240
20 SBIA BrainROIMaps JaccDet IntCorr DRAMMS 0.7186 0.6913 0.7927 > 240
21 BIC-IPL-HR ANIMAL 0.7173 0.6888 0.7948 > 168
22 SBIA SimMSVoting DRAMMS 0.7172 0.6898 0.7918 > 240
23 UNC-NIRAL ANTS 0.7171 0.6869 0.7992 > 1200
24 SBIA SimRank+NormMS DRAMMS 0.7162 0.6884 0.7919 > 240
25 BIC-IPL ANIMAL 0.7107 0.6829 0.7864 > 168

set. Since all methods were trained and evaluated on the same set, it provided a
rare opportunity for the quantitative comparison between various methods. We
have retrospectively trained and tested on this data in the same way. The results
in table 3 show that are results are comparable to the state of the art in the
field. The average Dice was calculated as described in section 3.1. The runtimes
per registration are estimated from the specified registration methods cited in
[12]. The methods used were “Nifty-Seg”, see [22] which reported approximately
3.3 minutes on the CPU, or 20 seconds on a GPU, “ANTS-SyN” [23] which
is reported to have runtimes in the order of 80 minutes[7], “DRAMMS” which
reports to have a runtime of approximately 20% of ANTS (16 minutes) in [24],
“LDDMM” which is reported to have a runtime in the range 40 secs to 30 min-
utes, on a high end server, depending on required accuracy [25] and “ANIMAL”
with a reported time of 11.2 minutes. TMVSE registration (CPU based) has a
runtime of 20 seconds on architecture comparable to that specified in [7]. Since
all registrations are independent, multiplying by 15 gives the estimated runtime.

3.3 Subjective Evaluation

The results on 90 other T1 MR brain datasets have also informally examined.
These datasets had no pre-processing applied to them and are representative
of what might be expected when the method is applied to novel data. The
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Fig. 2. The average dice achieved as
a function of the number of atlases
used, for both the random and cluster-
ing strategy. For the random strategy,
the requested number of atlases are cho-
sen at random. For the clustering strat-
egy the most consistent cluster of atlases
of the requested size are used. 1234567 10 13 17 22 27
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datasets covered a range of different cohorts, acquisition parameters, acquisition
directions, slice spacing, venders (Siemens, GE, Philips and Toshiba), resolu-
tions, ages, pathologies and geographic locations. No major failure cases were
reported, which suggests a robustness of the affine registration phase. In one
case, a volume was segmented correctly even though only the left side of the
patients head was present in the volume. Subjectively, the method appears to
perform better on high resolution data. Examples of these results can be seen in
figure 3.

It has been reported that the location of structures are mostly correct al-
though there are often multiple errors per patient, which is typical of other
competing approaches. Both under and over segmentation is observed. Segmen-
tations are often noisy, although this can be corrected by post-processing. The
multi-atlas approach boosts overall classification/Dice accuracy but it can some-
times come at the cost of unrealistic resultant segmentation shapes. Structures
that are topologically inconsistent (not simply connected) with the ground truth
have been observed in some cases. The method makes no explicit provision for
pathological tissue types. When presented with pathology the method will label
it as one (or more) of the known nearby compartments. This has been observed
in at least one patient which a large tumour.

Fig. 3. 2 fully automatic results. 3D T1 Weighted images. Acquired: August 2012
on Toshiba’s Titan 3T scanner, Kyoto. Resolution: 512 × 512. Voxel size: 0.49mm ×
0.49mm × 0.6mm.
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4 Conclusions

A fast and simple method for segmenting structures in the brain is presented.
The speed comes from its algorithmic simplicity. The cost of this simplicity is
a loss in some advantageous properties that are afforded by the more complex
methods like LDDMM and ANTS such as a) guaranteed, efficient invertibility,
b) symmetry: invariance to the order of source and target or c) the natural emer-
gence of a mathematical metric and associated space. However it seems that this
simplicity does not imply low segmentation accuracy in a multi-atlas setting as
shown by the comparable performance to other state-of the art techniques. The
simplicity translates to favourable runtimes, with the next fastest CPU based
non-rigid registration method in the MICCAI challenge taking an estimated 10
times longer which is useful for time critical applications such as image-guided
intervention or for processing large numbers of datasets. We acknowledge that
these are rough runtime estimates since they were not directly measured and had
to be inferred, but they serve as reasonable order of magnitude estimates. We
also acknowledge that our results are retrospective, having had time to optimize
performance with sight of other methods and results from the challenge.
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would also like to thank the commitee and entrants of the MICCAI 2012 grand
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Abstract. B-spline interpolation is a widely used interpolation tech-
nique. In the field of image registration, interpolation is necessary for
transforming images to obtain a measure of (dis)similarity between the
images to be aligned. When gradient-based optimization methods are
used, the image gradients need to be calculated as well, which also ac-
counts for a substantial share of computation time in registration. In
this paper we propose a fast multidimensional B-spline interpolation al-
gorithm with which both image value and gradient can be computed
efficiently. We present a recursive algorithm for the interpolation which
is efficiently implemented with template metaprogramming (TMP). The
proposed algorithm is compared with the algorithm implemented in the
Insight Toolkit (ITK), for different interpolation orders and image dimen-
sions. Also, the effect on the computation time of a typical registration
problem is evaluated. The results show that the computation time of B-
spline interpolation is decreased by the proposed algorithm from a factor
4.1 for a 2D image using 1st order interpolation to a factor of 19.9 for
4D using 3rd order interpolation.

Keywords: B-spline interpolation, template metaprogramming, com-
putation time, image registration.

1 Introduction

Due to the discrete nature of images that are stored in a computer, interpola-
tion is necessary for calculating intensity values of points that are off the voxel
grid. During image registration, iteratively many points are interpolated. Be-
sides the interpolation of points, the gradient of the image is also required when
a gradient-based optimization method is used [1]. The computation time of an
image registration procedure therefore strongly depends on the efficiency of the
interpolation algorithm.

A widely used interpolation technique is B-spline interpolation. We propose
an algorithm for B-spline interpolation and gradient evaluation. In our work we
exploit the separability of the B-spline polynomial, which was shown by [2], and
derive a recursive algorithm for interpolation in images of any dimension. The

S. Ourselin and M. Modat (Eds.): WBIR 2014, LNCS 8545, pp. 11–20, 2014.
© Springer International Publishing Switzerland 2014
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proposed method is effectively implemented using template metaprogramming
(TMP). In TMP, templates are used to let the compiler generate efficient assem-
bly code. Language features such as for loops and if-statements can be replaced
by template specialization and recursion, allowing elimination of run-time flow
control instructions [3]. The computation time and complexity of proposed algo-
rithm was evaluated and compared to the B-spline interpolation algorithm that
is used in ITK version 4.4.1.

A previously published method to speedup B-spline interpolation is based on
creating an approximation of the B-spline weights in a look-up table [4]. Al-
though we do not use this method, it is fully compatible and could be used to
achieve even further speedup at the cost of introducing approximation errors.
In this paper we propose a non-approximated B-spline interpolation algorithm,
which is especially effective for multidimensional images (dimension ≥ 2).

In Section 2.1 a direct implementation of B-spline interpolation is shown and
in Section 2.2 the recursive formulation is derived. Section 2.3 presents the ex-
tension to computing gradients. In Section 2.4 we explain how the recursive
formulation is efficiently implemented with TMP. Section 2.5 compares the al-
gorithmic complexity of the direct and the recursive implementation, Section 3
explains the experiments that are performed and Section 4 shows the results of
these experiments. Finally we draw a conclusion in Section 5.

2 Method

All algorithms and equations in this paper are written using one-based counting,
which means that the initial element of a sequence is assigned the index 1. Let
Sk be a discrete image of dimension D, with k an integer index vector. B-spline
interpolation for a point x ∈ RD is defined by [5]

s(x) =
∑

k∈Zn

βn(x− k)ck, (1)

where s(x) is the interpolated intensity value, βn is the B-spline polynomial of
order n that is non-zero in support region Zn and ck are the B-spline coefficients
which are specified on the image grid. The multidimensional B-spline polynomial
can be written as

βn(x) =
D∏
i=1

βn(xi). (2)

The higher n, the larger Zn and generally, the higher the interpolation accuracy.
The support region Zn is the set of (n + 1)D points in the image grid that are
taken into account in the interpolation at x. The positions of these grid points
depend on x. Let Zn

d be the region of support in dimension d, which is given by
[5]

Zn
d =

{⌈
xd − n+ 1

2

⌉
+ i

}
for i ∈ {0, . . . , n} (3)

The B-spline coefficients ck are defined such that s(k) = Sk and they are pre-
computed by filtering Sk [5,1]. In this work the computation of the coefficients
is not considered. We focus on the efficient evaluation of Eq. (1).
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2.1 Direct Implementation

A direct implementation of Eq. (1) is given by

s(x) =
∑

k1∈Zn
1

∑
k2∈Zn

2

. . .
∑

kD∈Zn
D

[
βn(x1 − k1)β

n(x2 − k2) . . . β
n(xD − kD)

]
ck, (4)

where in each dimension the sum runs over all elements in Zn
d . The part of

Eq. (4) between the square brackets is computed before the multiplication with
ck. Since each β(xi − ki) is required many times (depending on D), probably
all implementations first compute the βn(xi − ki) terms and store these into
temporary variables, in order to quickly access these in the evaluation of the
sum.

2.2 Recursive Implementation

From Eq. (4) one can immediately see that it can be rewritten into [2]:

s(x) =
∑

k1∈Zn
1

βn(x1 − k1)
∑

k2∈Zn
2

βn(x2 − k2) . . .
∑

kD∈Zn
D

βn(xD − kD)ck. (5)

To derive a recursive formulation of Eq. (5) we first change the notation of ck.
The coefficients ck, which are accessed by a D-dimensional point k, are vectorized
into c̃κ with κ = α · k, where αd contains the step in linear index κ due to a
unit step in dimension d in the coefficient image ck. The recursive interpolation
function V (d,x, κ) for dimension index d is given by:

V (d,x, κ) =

⎧⎨⎩
∑

kd∈Zn
d

βn(xd − kd)V (d− 1,x, κ+ αdkd) for d ≥ 1

c̃κ for d = 0

(6)

where the interpolated intensity value at x equals

s(x) = V (D,x, 0). (7)

Pseudo-code implementing Eq. (6) is shown in Alg. 1(a).

2.3 Gradient Evaluation
Often, the image gradient is necessary in image registration methods. The gra-
dient at a sampled point s(x) is given by:

∇s(x) =

⎛
⎜⎜⎜⎝

∂s(x)/∂x1

∂s(x)/∂x2

...
∂s(x)/∂xD

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
k1∈Zn

1

∑
k2∈Zn

2

. . .
∑

kD∈Zn
D

∂βn

∂x1

(x1 − k1)β
n(x2 − k2) . . . β

n(xD − kD)ck

∑
k1∈Zn

1

∑
k2∈Zn

2

. . .
∑

kD∈Zn
D

βn(x1 − k1)
∂βn

∂x2

(x2 − k2) . . . β
n(xD − kD)ck

...∑
k1∈Zn

1

∑
k2∈Zn

2

. . .
∑

kD∈Zn
D

βn(x1 − k1)β
n(x2 − k2) . . .

∂βn

∂xD
(xD − kD)ck

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(8)
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The partial derivative ∂s/∂xi can be evaluated more efficiently by a recursive
algorithm than evaluating all sums of ∂s/∂xi explicitly. The recursive algorithm
is given by:

Gi(d,x, κ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑
kd∈Zn

d

βn(xd − kd)Gi(d− 1,x, κ+ αdkd) for d ≥ 1 and d �= i

∑
kd∈Zn

d

∂βn

∂xd
(xd − kd)Gi(d− 1,x, κ+ αdkd) for d = i

c̃κ for d = 0,

(9)

with
∂s(x)

∂xi
= Gi(D,x, 0). (10)

2.4 Efficient Implementation Using TMP

The recursive algorithm of Eq. (6) can be efficiently implemented using TMP.
Both D and n are set as template arguments, causing the compiler to un-roll the

Algorithm 1. Pseudo code of recursive (a) and TMP implementation (b) of B-spline
interpolation

(a) In the actual implementation, the B-spline weights βn(xd −kd) are precomputed and accessed
in the interpolate function.

function V = interpolate(d, x, κ)
if d == 0 then

return c̃κ
else

V = 0
for kd ∈ Zn

d do
V = V + interpolate(d− 1, x, κ + αdkd)βn(xd − kd)

end for
return V

end if
end function

s(x) = interpolate(D,x, 0)

(b) In the actual implementation, the B-spline weights βn(xd−kd) are precomputed and accessed
in the interpolate function.

template< d,n > class TMP
function V = interpolate(x, κ)

V = 0
for kd ∈ Zd do

V = V + TMP< d − 1, n >::interpolate(x, κ + αdkd)βn(xd − kd)
end for
return V

end function

//Template specialization for d = 0

template< n > class TMP< 0, n >
function V =interpolate(x, κ)

return c̃κ
end function

s(x) = TMP< D,n >::interpolate(x, 0)
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Algorithm 2 . Pseudo code of TMP implementation that computes the value
and gradient

In the actual implementation, the B-spline weights βn(xd−kd) and the B-spline derivative weights
∂βn

∂xd
(xd − kd) are precomputed and accessed in the interpolate function.

template< d,n > class TMP
function [V , G] = interpolate(x, κ)

V = 0
G = 0d //Zero vector of size d
for kd ∈ Zn

d do
Ṽ , G̃ = TMP< d − 1, n >::interpolate(x, κ + αdkd)
V = V + Ṽ βn(xd − kd)
for i = 1 to d− 1 do

Gi = Gi + G̃iβ
n(xd − kd)

end for
Gd = Gd + Ṽ ∂βn

∂xd
(xd − xk)

end for
return V,G

end function

//Template specialization for d = 0

template< n > class TMP< 0, n >
function [V , G] = interpolate(x,κ)

V = c̃κ
G = [] //A vector of length 0
return V,G

end function

s(x),∇s(x) = TMP< D, n >::interpolate(x, 0)

entire weighted sum for the relatively low n and D, which are typically encoun-
tered in image interpolation. This leads to efficient assembly code and reduced
run-time of the interpolation algorithm. Alg. 1(b) shows the TMP implementa-
tion of the recursive formulation in Eq. (6).

A TMP implementation for calculation both the value and the gradient is
presented in Alg. 2. For efficient implementation of Eq. (9) one should note that
Gi(d,x, κ) is identical for all i > d, and thus only needs to be evaluated once
for all i > d, allowing a reduction in computational complexity. Also note, by
comparing to Eq. (6), that V (d,x, κ) for i > d is equivalent to Gi(d,x, κ) and
thus s(x) = Gi(D,x, 0) for i ≥ D + 1. Therefore, by simultaneously evaluating
the value and gradient, the intermediate values V (d,x, κ) can be used instead
of Gi(d,x, κ) for i > d, as shown in Alg. 2.

The proposed algorithm thus consists in the combination of 1) the recursive
algorithm that reduces the number of arithmetic operations, and 2) the efficient
implementation using TMP. Note that our actual implementation differs slightly
from Alg. 2 to handle edge cases identical to the ITK reference algorithm, by
precomputing αdkd for all kd ∈ Zn

d with d ∈ {1, . . . , D} and adjusting this for
the edge cases.

2.5 Complexity Analysis

The reference algorithm with which the proposed algorithm is compared is the
algorithm which is used in ITK version 4.4.1. This algorithm uses the direct
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implementation, see Sec. 2.1. A way to compare the computational complexity
irrespective of the actual implementation is by counting the number of arithmetic
operations, that is the floating point additions and multiplications.

The reference algorithm (Eq. (4)) sums over Zn, consisting of (n+1)D points.
In this sum are D + 2 arithmetic operations. Thus, the number of arithmetic
operations is given by:

Aref
V (D, n) = (n+ 1)D [D + 2] (11)

where the superscript ‘ref’ indicates the reference algorithm and the subscript
V indicates the evaluation of the value. As the proposed algorithm is recursive,
the number of arithmetic operations for the proposed algorithm can most easily
be counted with a similar recursion. The recursive algorithm sums over Zn

d ,
consisting of n + 1 points. In this sum, there are 2 arithmetic operations and
the recursion, in which D is reduced by 1. Therefore, the number of arithmetic
operations equals:

Aprop
V (D,n) =

{
(n+ 1) [2 + Aprop

V (D − 1, n)] for D ≥ 1
0 for D = 0,

=
(n+ 1)

[
2(n+ 1)D − 2

]
n

.

(12)

In big-O notation the complexity can be expressed as Aref
V (D,n) ∈ O(DnD)

and Aprop
V (D,n) ∈ O(nD). The reference method for computing both the value

and the gradient performs all operations D times (once for each element of the
gradient). Within the sum over Zn, a sum over all dimensions is included with
a conditional for multiplying with either βn(xd − kd) or with ∂βn

∂xd
(xd − kd).

The number of arithmetic operations as a function of D and n for the reference
algorithm evaluating the value and gradient is equal to:

Aref
V G(D, n) = D(n+ 1)D [D + 3] . (13)

For the proposed algorithm computing both value and gradient, the sum over Zn
d

includes 2D+2 arithmetic operations and the recursion. Therefore, the number
of arithmetic operations of the proposed algorithm is equal to:

Aprop
VG (D,n) =

{
(n+ 1) [2D + 2 + Aprop

V G (D − 1, n)] for D ≥ 1
0 for D = 0,

=
2(n+ 1)

[
(2n+ 1)(n+ 1)D − n(D + 2) − 1

]
n2

.

(14)

In big-O notation the complexity can be expressed as: Aref
V G(D,n) ∈ O(D2nD)

and Aprop
V G (D,n) ∈ O(nD).

3 Experiments

Three experiments are performed to compare both the interpolated values and
computation times of the reference and proposed algorithm. The three experi-
ments are:
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1. Evaluating the difference between both algorithms after interpolation and
gradient calculation of an image to validate the accuracy of the recursive
algorithm.

2. Computing the ratio of the computational complexity and run-time of both
algorithms using value and gradient calculation for different image dimen-
sions D and interpolation orders n.

3. Computing the run-time of an image registration using both algorithms for
different interpolation orders.

For the first experiment a 2D standard normal distributed noise image of size
100 in each dimension is interpolated after a rotation of 10 degrees. To evaluate
the accuracy of the recursive algorithm the root-mean-square difference (RMSD)
of the resulting interpolated images and the gradient magnitude images are re-
ported.

For the second experiment, standard normal distributed noise images of size
100 in each dimension are created. In each measurement the image is rotated
around a predefined axis and translated in the direction of the axis of rotation.
Each timing measurement is repeated 35 times, in which the rotation angle is
changed from 10◦ to 350◦ in steps of 10◦ and the translation is kept constant at
half a voxel in the direction of the axis of rotation. The mean and standard devi-
ation of these measurements are calculated. The output image was interpolated
on a grid of size 50 in each dimension with identical voxel spacing, centered on
the original image, to avoid boundary effects. Before measuring the computa-
tion times, 10 dummy transformations are applied to the image to reach a steady
state prior to evaluating the computation times and prevent loading data and
filling the cache memory from taking part in the computation time evaluation.

For the third experiment two 3D CT lung images images are registered.
The fixed image was of size 115×157×129 and the moving image was of size
115×166×131. The voxel spacing of both images was 1.4×1.4×2.5 mm3. The
registrations were performed with Elastix, an open source image registration
package based on ITK [6]. In this registration experiment, in which the images
where affinely registered, an adaptive stochastic gradient descent optimizer [7]
was used. The default settings for an affine registration were used: four reso-
lutions, 250 iterations per resolution and 2048 samples per iteration. A mean
squared difference measure was used as a dissimilarity measure. For each algo-
rithm and for each interpolation order the registration was repeated 50 times to
obtain a mean and standard deviation of the run time. Before measuring, one
dummy registration was performed.

All experiments were performed on an Intel®Core™2.7 GHz CPU under a
Ubuntu 12.04 64-bit operating system. The used compiler was the GNU Com-
piler Collection (GCC) version 4.6.3.

4 Results

The RMSD of the interpolated 2D noise image was equal to 2.34 · 10−16. The
RMSD of the gradient magnitude difference was 4.08 · 10−16. This difference is
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Table 1. Ratios of computational complexity and run-times with respect to the case
D = 2 and n = 1. The ratios in this table are for the algorithms calculating the value
only (Alg. 1(b)). (a) # algorithmic operations reference, (b) # algorithmic operations
proposed, (c) run-time reference and (d) run-time proposed.

(a) (a) Aref
V (D,n)

/
Aref

V (2, 1) (b) A
prop
V

(D,n)

/
A

prop
V

(2, 1)

���n
D 2 3 4 ���n

D 2 3 4

1 1.00 2.5 6.00 1 1.00 2.33 5.00

2 2.25 8.44 30.38 2 2.00 6.50 20.00

3 4.00 20.00 96.00 3 3.33 14.00 56.67

(c) Rref
V (D,n)

/
Rref

V (2, 1) (d) R
prop
V

(D,n)

/
R

prop
V

(2, 1)

���n
D 2 3 4 ���n

D 2 3 4

1 1.01 ± 0.18 1.10 ± 0.13 1.59 ± 0.19 1 1.00 ± 0.03 1.05 ± 0.04 1.27 ± 0.02

2 1.11 ± 0.17 1.78 ± 0.22 4.11 ± 0.50 2 1.08 ± 0.04 1.37 ± 0.05 2.07 ± 0.08

3 1.29 ± 0.16 3.02 ± 0.37 11.01 ± 1.35 3 1.22 ± 0.09 1.76 ± 0.04 3.71 ± 0.14

Table 2. Ratios of computational complexity and run-times with respect to the case
D = 2 and n = 1. The ratios in this table are for the algorithms calculating both
value and gradient (Alg. 2). (a) # algorithmic operations reference, (b) # algorithmic
operations proposed, (c) run-time reference and (d) run-time proposed.

(a) Aref
V G(D, n)

/
Aref

V G(2, 1) (b) A
prop
V G

(D, n)

/
A

prop
V G

(2, 1)

���n
D 2 3 4 ���n

D 2 3 4

1 1.00 3.60 11.20 1 1.00 2.57 5.86

2 2.25 12.15 56.70 2 1.93 6.64 21.00

3 4.00 28.80 179.20 3 3.14 13.71 56.29

(c) Rref
V G(D, n)

/
Rref

V G(2, 1) (d) R
prop
V G

(D, n)

/
R

prop
V G

(2, 1)

���n
D 2 3 4 ���n

D 2 3 4

1 1.00 ± 0.07 1.52 ± 0.07 2.88 ± 0.13 1 1.00 ± 0.03 1.17 ± 0.04 1.65 ± 0.04

2 1.23 ± 0.06 3.08 ± 0.14 10.80 ± 0.48 2 1.21 ± 0.05 1.71 ± 0.05 3.21 ± 0.11

3 1.66 ± 0.11 6.15 ± 0.28 32.20 ± 1.44 3 1.53 ± 0.05 2.70 ± 0.14 6.53 ± 0.23

only due to numerical differences. Since floating point additions and multipli-
cations are non-associative, the reordering of the summations might introduce
small round-off differences.

Table 1 shows how the number of arithmetic operations AV (D,n) and the
run-time RV (D,n) of the interpolation depend on D and n. The values in the
table are for the algorithms computing the value only. The table shows the ratios
for D ∈ {2 . . .4} and n ∈ {1 . . . 3} with respect to the case D = 2 and n = 1.
The results in this table show that the proposed algorithm is less dependent
on D and n than the reference algorithm. The same can be concluded for the
results in Tab. 2, showing the ratios for the algorithms calculating both value
and gradient. Note that for both Tab. 1 and Tab. 2 the numbers in (a) are higher
than the numbers in (c) and the numbers in (b) are higher than the numbers in
(d). This is because besides the interpolation, other operations are performed by
both algorithms in the measured run-time, such as transforming x, calculating
the B-spline weights, and several bounds checks.
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Table 3. Ratios of the reference algorithm / proposed algorithm (a) # algorithmic
operations value, (b) # algorithmic operations value and gradient, (c) run-time value
ratio and (d) run-time value and gradient.

(a) Aref
V (D,n)

/
A

prop
V

(D,n) (b) Aref
V G(D,n)

/
A

prop
V G

(D,n)

���n
D 2 3 4 ���n

D 2 3 4

1 1.33 1.43 1.60 1 1.43 2.00 2.73

2 1.50 1.73 2.03 2 1.66 2.61 3.86

3 1.60 1.90 2.26 3 1.82 3.00 4.55

(c) Rref
V (D,n)

/
R

prop
V

(D,n) (d) Rref
V G(D,n)

/
R

prop
V G

(D,n)

���n
D 2 3 4 ���n

D 2 3 4

1 3.26 ± 0.44 3.38 ± 0.11 4.01 ± 0.07 1 4.05 ± 0.25 5.27 ± 0.12 7.05 ± 0.10

2 3.31 ± 0.34 4.18 ± 0.16 6.40 ± 0.24 2 4.12 ± 0.14 7.29 ± 0.10 13.63 ± 0.33

3 3.42 ± 0.21 5.52 ± 0.11 9.53 ± 0.37 3 4.37 ± 0.23 9.24 ± 0.41 19.94 ± 0.52
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Fig. 1. Run time of registration using B-spline interpolation with the reference and
the proposed algorithm

The ratios of the reference to the proposed algorithm are shown in Tab. 3. In
this table, (a) and (b) show the ratios of the number of arithmetic operations
and (c) and (d) the ratios of the run-times. In all cases the proposed algorithm
has a lower run-time and the difference increases for increasing D and increasing
n. Note that the values in Tab. 3(a) are lower than the values in Tab. 3(c) and
the values in Tab. 3(b) are lower than the values in Tab. 3(d). The obtained ac-
celeration is thus larger than predicted. This indicates that besides the reduction
of the number of arithmetic operations in the proposed algorithm, the overhead
such as address computations and flow control operations have also decreased,
which shows the effect of TMP.

Figure 1 shows the computation time of a registration of two 3D images for
n ∈ {1 . . . 3} for both algorithms. For all n the proposed algorithm is faster
than the reference algorithm, and for increasing n the difference increases. The
results also show that with the reference algorithm, the computation time of the
registration depends more on the choice of interpolation order, than with the
proposed algorithm. It was verified that the resulting transformation was iden-
tical in all cases, thus the proposed algorithm only influences the computation
time.
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5 Conclusion

The proposed algorithm decreases the computation time of B-spline interpola-
tion substantially, while providing identical results as the reference algorithm.
The improvement of the proposed algorithm over the reference algorithm in-
creases with increasing dimension D and interpolation order n. The registration
experiment shows that the proposed interpolation algorithm significantly de-
creases the computation time of image registration algorithms that use B-spline
interpolation.

The exact mechanisms that explain the reduction in computation time
achieved with TMP may depend on the compiler that is used. These mecha-
nisms could comprise a reduction in the number of jumps in the code, more
efficient access of the cache memory, reduction in memory latency, etc. Future
research could therefore investigate the compiler dependency of the proposed
method, and analyze in more detail which of these mechanisms is mainly re-
sponsible for the reduction in computation time.

Since the B-spline transformation [8] uses the same mathematical equations
to obtain a transformed coordinate, in the future we will aim to develop a similar
recursive algorithm using TMP for the implementation of the B-spline transfor-
mation. The proposed algorithm will be made publicly available in ITK.
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from the European Union Seventh Framework Programme (FP7/2007 – 2013)
under grant agreement no. 601055, VPH-DARE@IT.
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Abstract. We propose a novel non-linear registration strategy which
seeks an optimal deformation that maps corresponding boundaries of
similar orientation. Our approach relies on a local similarity metric based
on gradient orientation alignment and distance to the nearest inferred
boundary and is evaluated on a reduced set of locations corresponding to
inferred boundaries. The deformation model is characterized as the in-
tegration of a time-constant velocity field and optimization is performed
in coarse to fine multi-level strategy with a gradient ascent technique.
Our approach is computational efficient since it relies on a sparse se-
lection of voxels corresponding to detected boundaries, yielding robust
and accurate results with reduced processing times. We demonstrate
quantitative results in the context of the non-linear registration of inter-
patient magnetic resonance brain volumes obtained from a public dataset
(CUMC12). Our proposed approach achieves a similar level of accuracy
as other state-of-the-art methods but with processing times as short as
1.5 minutes. We also demonstrate preliminary qualitative results in the
time-sensitive registration contexts of registering MR brain volumes to
intra-operative ultrasound for improved guidance in neurosurgery.

Keywords: image registration, pixel selection, diffeomorphism.

1 Introduction

Image registration is a critical component of a wide variety of medical image
analysis contexts. Inspired by a wide range of time-sensitive clinical applications
(e.g. image-guided interventions), this paper focuses on the domain whereby reg-
istration efficiency is required, without the subsequent sacrifice in accuracy. The
result is a non-linear registration framework that is applicable to a wide variety
of domains —from unimodal to multi-modal image matching —with a similarity
metric that is robust to complex image acquisition variability as is typical in real,
clinical domains. This include domains where intensity homogeneity within com-
mon anatomical regions is violated, as is typical in imaging modalities such as
ultrasound (US). This severely compromises traditional similarity metrics that
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either rely on either direct intensity matches between structures in both images
(e.g. SSD) or on derived functional matches (e.g. NCC, MI)[1].

In this work, we propose a new, non-linear image registration framework that
pursues high computational efficiency, without compromising accuracy. Rather
than perform intensity matching, the technique focuses on matching detected
boundaries from both images. Specifically, the method first performs the infer-
ence of boundaries in each image, and then seeks a diffeomorphism that op-
timally maps boundaries across images based not on intensities but rather on
image gradient orientations, similar to [2,3]. Gradient orientations are robust and
informative features which are of a more geometric nature and can be easily com-
pared. We extend the gradient orientation alignment metric by also evaluating
the distance to the nearest inferred boundary. Hence, our proposed metric seeks
to both maximize gradient orientation alignment and minimize the distance to
the nearest boundary. Computational complexity is significantly reduced given
the aggressive voxel selection restricted to boundary locations, similar to [2].

Experimental results demonstrate the computational gains of the method in
the context of a non-linear registration of inter-patient MR brain volumes de-
rived from the publicly available CUMC12 dataset1. In particular, by evaluating
the image similarity solely on identified image boundaries, the number of voxels
selected and evaluated is reduced to 6% of the total number of voxels found
in the full image, and the subsequent processing time is reduced to 1.5 min-
utes with registration accuracies that are comparable to that of state-of-the-art
methods. The method is applied to the time-sensitive context of registering real
clinical, pre-operative patient MR brain volumes to intra-operative ultrasound
(iUS) for improved navigation guidance in neurosurgery. We also present prelim-
inary qualitative results based on the publicly available BITE dataset[4] where
we demonstrate the method yields successful results in half a minute.

2 Methodology

In this section we describe our proposed approach characterized by the following
major components: an inference of the location of boundaries of interest in both
images, a local similarity metric based on gradient orientation alignment and
distance to the nearest inferred boundary, and a time-constant velocity field
optimized in a coarse-to-fine strategy with a gradient ascent technique.

2.1 Boundary Inference

Our approach relies on an initial inference of locations of boundaries of inter-
est. Note that the task of accurately and robustly identifying the location of
anatomical boundaries represents a non-trivial challenge by itself. In this work,
we choose to not devote an important effort to such task and rather rely on a
conventional Canny edge detector for all our experiments. Once the boundary

1 Data was obtained from http://mindboggle.info/data.html
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Fig. 1. Illustration of the edges detected on a T1-weighted MR brain volume with a
canny-edge detector. The first column shows the MR brain volume. The second column
shows the detected boundary locations. The third column shows the distance image
(jet colormap) computed from the detected edges.

locations have been identified, we compute a distance map where the euclidean
distance to the nearest boundary is evaluated at every voxel. Fig. 1 illustrates
the locations that are detected by a Canny edge operator applied to a MR T1-
weighted brain volume, as well as the corresponding distance map.

2.2 Similarity Metric

Once a set of boundary locations, Ω, and a corresponding distance map, D, are
computed for each image, we define a localized similarity metric which evaluates
gradient orientation alignment and euclidean distance to the nearest boundary.
For a location, xf , in the fixed image domain, we can express the metric as,

s(xf ;D
↓
m,∇I↓m) = exp

(
− (D↓

m (xf ))
2

2σ2

)
×
〈 ∇If (xf )

|∇If (xf ) |
,
∇I↓m (xf )

|∇I↓m (xf ) |

〉k

(1)

where ∇If is the fixed image gradient, ∇I↓m = ∇ (Im ◦T) is the image gradient
from the moving image deformed by the transformation function T, and D↓

m =
(Dm ◦T) is the distance map obtained from the moving image deformed by T.

The idea of relying on gradient orientation alignment as a cue for similar-
ity has been explored in previous papers, particularly in the context of both
rigid[2,1] and nonrigid registration[3]. The metric is characterized by two pa-
rameters: the standard deviation, σ, defining the falloff of the Gaussian function
evaluating the distance to the closest boundary, and the gradient orientation
selectivity, k, defining how gradient orientation alignment is evaluated. For a
mono-modal registration contexts, an odd integer value of k is reasonable since
we expect corresponding gradient orientations across image to be both aligned
and with a similar direction. For the multi-modal registration contexts, where
corresponding gradient orientations across modalities may be aligned but with
an inverse direction, it is more reasonable to use an even integer value for k.

In contexts where we expect all boundaries inferred in one image to have a
counter-part in the other image, we can define an energy function evaluated over
both sets boundary locations,
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Fig. 2. Algorithmic Outline

S(Ψf , Ψm) =
1

|Ωf |
∑

xf∈Ωf

s(xf ;D
↓
m,∇I↓m) +

1

|Ωm|
∑

xm∈Ωm

s(xm;D↑
f ,∇I↑m) (2)

where Ψ = (∇I,D,Ω) is a notation convention used to group features of interest

inferred from each image. Furthermore, D↑
f = Df ◦T−1 and ∇I↑m = ∇(Im ◦T−1)

are the fixed distance map and gradient image deformed by T−1. Note that the
energy function leads to a stronger notion of compromise between the inferences
made in each image and that it involves the use of an invertible transformation.

In this work, we rely on a time-constant velocity field for the characterization
of a diffeomorphism. Specifically, we obtain the forward-mapping transformation
by numerically composing the velocity field from time 0 to time 1 in N steps,

T(xf ) =

(
N∏

ΦΔt

)
(xf ) = (ΦΔt ◦ . . . ◦ ΦΔt) (xf ) (3)

where ΦΔt(xf ) = xf +v(xf )Δt and N ×Δt = 1. The backward-mapping trans-
formation is found by integrating the velocity field in the negative direction.

In our implementation, the composition of the velocity field is performed
on-demand at every location during the optimization of the metric. As a conse-
quence, the computational cost of the algorithm is proportional to the number of
locations evaluated and to the number of time steps, N . Hence, there is signifi-
cant interest to keep both quantities within a minimum. Additionally our current
implementation does not involve any explicit regularization penalty, such as the
L2 norm on the velocity field[5].

2.3 Optimization

The energy function is optimized with a gradient ascent approach, where we rely
on a finite-difference operator at each location to obtain the metric’s derivative.
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The learning rate of the gradient ascent is continuously adapted with a “bold
driver” strategy[6], and the optimization is stopped when either a minimum rate
of change or a maximum number of iterations is reached.

In order to improve computational efficiency and robustness against local ex-
trema, we adopt a coarse-to-fine strategy in which both the resolution of the
images being registered and the velocity field is increased from stage to stage.
It is important to note that the resolution of the velocity field does not directly
correspond to the resolution of the images being registered. In other words, we
evaluate a displacement field with a finer voxel resolution than the one found in
the velocity field. This corresponds to an implicit regularization of the transfor-
mation space effectively constraining the spatial variation of the velocity field.

3 Experiments and Results

3.1 Inter-patient Registration of MR Brain Volumes

We evaluated our proposed approach in the context of the non-linear registration
of inter-patient T1-weighted MR brain volumes. In particular, we rely on a public
dataset, referred to as the CUMC12 dataset, composed of 12 subjects with cor-
responding manual segmentations of 128 unique brain regions. The dataset has
been used in previous publications[7,8] for the evaluation of non-linear registra-
tion techniques and thus allows for direct comparison with previously reported
results. The volumes found in the dataset where acquired at the Columbia Uni-
versity Medical Center on a 1.5 T GE scanner. For the purposes of manually
segmenting the volumes, the original images were resliced coronally to a slice
thickness of 3mm. The resolution of the manual labels is thus slightly coarser
than the resolution of the naive MR volumes which have a coronal slice thickness
of 1.5mm. The expert labellers followed the Cardviews labeling protocol [9] with
the use of the Cardviews software.

Registration performance is evaluated by first applying the estimated non-
linear transformation to the expert labels of the moving image, and then com-
paring such transformed labels with the expert labels of the fixed image (i.e.
“ground truth”). We rely on the target overlap measure and the union overlap
measure[7] for quantifying the agreement between labels.

We parametrized our approach with four coarse-to-fine registration stages,
where at each consequent registration stage we increase the image resolution as
well as the resolution of the velocity field being optimized. Registration perfor-
mance is evaluated across all stages and is summarized in Table 1. Note that
the processing time for each stage includes the processing time of the preceding
stages. Hence, the complete registration with all four stages takes on average
five minutes. Note that the gain in registration accuracy between stage three
and four is relatively small, and that the registration with only the first three
stages takes on average one and a half minutes. The approach was implemented
in C++ and evaluated on a Linux computer with an Intel i7-3770 CPU.

For direct comparison against state-of-the-art registration techniques, we com-
pare the results of our approach, referred to as SymBA, with results reported on
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Table 1. Registration performance and processing time for each registration stage.
Performance is evaluated with the mean target and mean union (Jaccard) overlap
measure across cases and regions. Note that the processing time for each stage includes
the processing time of the preceding stages.

Stage Mean Target (%) Mean Union (%) Mean Run Time

1 41.45 26.49 20 secs
2 46.76 30.83 35 secs
3 50.20 33.88 1 min 30 secs
4 51.31 34.78 5 min

Fig. 3. Mean target and union (Jaccard) overlap across regions and across cases. The
proposed approach (in red), SymBA, is within the top five techniques.

a previous publication[7] focused on the exhaustive comparison of 14 non-linear
registration techniques for MR brain volumes. Fig. 3 shows the compound aver-
age of the target overlap and union overlap (Jaccard) across regions and across
registration cases. Note that the proposed approach has similar results to the
top five techniques, which all have comparable performance. The union overlap
results found in Fig. 3 also include the numbers reported on a recently proposed
registration technique [8], with an average processing time of 15 minutes, as
reported by the authors.

The compound means for each overlap measure are useful criteria for compar-
ing performance across methods, yet they do not describe the variability found
across regions. In Fig. 4, we illustrate the mean and standard deviation of the tar-
get overlap measure for each region. To minimize visual clutter we only include
three techniques: a top ranking method from the top five techniques, SyN [5];
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our proposed approach, SymBA; and an alternative method, ROMEO [10]. Note
that the performance of our approach tends to tightly match the performance of
the top ranking method, and is consistently superior than the poor performing
method. However, the processing time of SyN was of 38 minutes when ran on
the same computer where we ran our technique.

3.2 Registration of MR to Intra-operative Ultrasound

An important motivation for our work lies in improving the registration perfor-
mance in time-sensitive contexts. Registration of MR to iUS for image guided
neurosurgery is a valuable example which requires a technique that addresses
widely different image modalities in a short amount of time.

Our proposed approach can provide substantial advantages for this context by
focusing solely on anatomical boundaries exposed in the iUS and relying on the
fact that brain-shift deformations can be large but are generally characterized by
a coherent displacement. Hence, in this context, we evaluate the energy function
solely over the boundary locations identified in the iUS. Our method was applied
to the 14 real clinical cases available in the BITE public dataset, containing
pre-operative MR to iUS registration cases in tumor resection surgeries[8]. The
dataset includes a set of homologous landmarks for validation of registration
techniques. However, most of the cases presented rigid deformations and tag
points were limited, and not informative for the evaluation of detailed non-linear
movements (discussed in [1]).

Fig. 5 presents a preliminary qualitative example of the performance of our
approach in a case from the dataset. The case was selected based on the appar-
ent prominence of a non-linear deformation around the tumor boundary, which
would be of interest for guidance. The improvement brought forward by the
non-rigid registration can be clearly observed in the close alignment of the tu-
mor boundary and was obtained with registration time of 30 seconds.

4 Discussion

We have presented a non-linear registration technique which relies on bound-
ary information for improved computational efficiency while yielding accurate
results. Our first set of experiments rely on volume overlap measures of man-
ually labelled regions for assessing the accuracy of inter-patient registration of
healthy MR volumes. There are a few limitations with such validation strat-
egy. First, is the point that the use of a tissue-overlap “surrogate measure”
for validating registration may poorly reflect the true geometric performance of
registration algorithms. Such critique has been discussed in detail in previous
work[11]. However, we should point out that the 128 segmented regions found
in the dataset used in this work are anatomical and localized, and thus suffer
far less limitations than overlap based measures which evaluate solely the over-
lap of major healthy tissues (e.g. gray matter). Second, it is also clear that the
task of warping one patient’s brain to another patient’s brain is fundamentally
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Fig. 4. Mean Target Overlap and Standard Deviation per Region. Registration per-
formance of the proposed method, SymBA, is compared against three techniques: a
top performing method, SyN, and ROMEO. Note how the registration performance of
the top performing method, SyN, closely resembles the performance of our proposed
method, and is consistently superior to the low ranking method. SyN had an average
processing time of 38 minutes, while SymBA had an average processing times of 5
minutes, when evaluated on the same machine.
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Fig. 5. Registration of a MR volume (grayscale) to an iUS (heat colormap). The first
column illustrates the initial (misregistered) position of the MR image. The second col-
umn illustrates the MR image after a rigid registration[1]. The third column illustrates
the MR image after proposed non-rigid registration.

ill-posed in the sense that there are anatomical variations across patients which
simply cannot be recovered by a diffeomorphism. However, one could argue that
there are “major” anatomical structures which can indeed be mapped across
patients with a diffeomorphism and where a measure of volume overlap is in-
deed informative. Ultimately, for the purposes of evaluating the performance of
our technique, what remains of critical value, is that such validation strategy
has been employed for the validation of many other techniques and allows for a
direct and fair comparison with previously reported results.

Our approach relies on the inference of boundaries and it is clear that such
stage plays a critical role in the overall performance. In this work, we have relied
on a Canny edge detector, which can be considered a “conventional” technique
for identifying image edges. Future work will look into analyzing the sensitivity
of registration performance with regards to variations in the boundary inference
stage. Additionally, we believe that by explicitly identifying the boundaries of
interest to be aligned, the proposed technique may allow for advantages in various
contexts. For example, any context in which prior information can be exploited
so as to robustly and accurately identify boundaries of interest may lead to
improvement in registration performance. Consider the task of registering to
a template for the segmentation of a specific anatomical structure. In such a
context, one could rely on the atlas labels to restrict the boundary alignment to
locations in the atlas which belong to the region of interest.

5 Conclusion

We have a presented a registration approach which seeks an optimal alignment
between explicitly identified image boundaries and yields successful results in
short processing times. Performance was evaluated in the context of the reg-
istration of inter-patient MR brain volumes, where we demonstrated that our
approach can achieve accurate results in processing times as short as 1.5 minutes.
We’ve also shown preliminary results that illustrate the utility of our approach
in time-sensitive and challenging contexts such as the registration of MR brain
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volumes to an iUS for improved guidance in neurosurgery. Further efforts will
be pursued in fully characterizing the performance of the proposed approach,
particularly in the context of registration MR to iUS.
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Abstract. An important research problem in image-guided radiation therapy is
how to accurately register daily onboard Cone-beam CT (CBCT) images to
higher quality pretreatment fan-beam CT (FBCT) images. Assuming the organ
segmentations are both available on CBCT and FBCT images, methods have been
proposed to use them to help the intensity-driven image registration. Due to the
low contrast between soft-tissue structures exhibited in CBCT, the interobserver
contouring variability (expressed as standard deviation) can be as large as 2-3 mm
and varies systematically with organ, and relative location on each organ surface.
Therefore the inclusion of the segmentations into registration may degrade regis-
tration accuracy. To address this issue we propose a surface assimilation method
that estimates a new surface from the manual segmentation from a priori organ
shape knowledge and the interobserver segmentation error. Our experiment re-
sults show the proposed method improves registration accuracy compared to pre-
vious methods.

1 Introduction

Rigid image registration has established its role in reducing geometric targeting uncer-
tainty in the external radiation therapy of the prostate cancer [6]. Non-rigid registration
has the potential to map the planning data to the treatment images more accurately than
the rigid alignment [1] without the need for invasively implanted radio-opaque mark-
ers. However, this ability is limited at least by two factors. First, the full knowledge
of biomechanical properties is lacking. Therefore assumptions regarding the plausi-
ble range of transformation properties, e.g. different parameterizations, elastic or fluid
models, maybe inaccurate. This type of registration error was studied in [12] under the
Bayesian framework. Another challenge to the prostate CT image registration is the
limited intensity contrast among the soft tissue organs (bladder, prostate and rectum).
Thus the matching accuracy of solely intensity-driven non-rigid registration is often
unsatisfactory, especially at the organ boundaries.

In a typical problem of registering a planning fan-beam CT (FBCT) to an onboard
cone-beam CT (CBCT) acquired just before administering a daily treatment, the manual
segmentations of the FBCT image set are generally available. The idea has been pro-
posed that these organ segmentations can be exploited in the registration. Some methods
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assume the manual segmentations on the CBCT are known [2,8]. And some methods do
not make this assumption. They automatically segment and register the organs, either
sequentially [18] or iteratively [10].

An interesting problem is: if the segmentations differ significantly between different
CBCT observers [11, 16], forcing the registration to match possibly inaccurate seg-
mented surfaces may increase registration error. Zhang et al. [17] suggested using the
interobserver segmentation error (ISE) to locally penalize the surface matching. How-
ever, this method only works for certain cases. To address the same issue, we propose
a different registration algorithm to lower the registration error in a scenario that the
manual segmentation is inaccurate.

2 Method

Our registration cost function combines the costs of intensity similarity and surface
closeness. In short, we improve the registration accuracy by providing an estimated
target surface that is closer to the true segmentation. In this section, we first introduce
the method of surface estimation and then the registration algorithm based on it.

2.1 Surface Estimation

Suppose we represent a surface as a parametric surface discretized to N vertices. At
the i-th parametric node ti, let yi denote the location of the i-th vertex of observed
surface (from manual segmentation), which we model as the true vertex f(ti) location
corrupted by the additive noise ε(t),

yi = f(ti) + εi, i = 1, 2, . . . , N (1)

where f is smooth and has a continuous derivative of at least order m, and εi is a i.i.d
Gaussian random variable with zero mean and variance σ2.

One way to estimate the true surface from a manual segmentation is the prediction
based on a shape model (let ŷi denote the predicted surface). The shape model can be
obtained from statistical shape analysis [5]. In our case, a set of high quality prostate
segmentations for each patient is available and we chose the Point Distribution Model
(PDM) to describe it [3]. Briefly, the PDM of a shape object with N vertices contains
M variation modes is given by

x = x̄+ Pb (2)

where x̄ is the mean shape, b = (b1, b2, . . . , bM )T is a M×1 vector of Gaussian random
variables, P = (p1,p2, . . . ,pM ) is a N × M matrix defining the shape variation
directions. Given an observed surface y, the linear regression:

b̂ = argmin
b

[x̄+ Pb−R(y)]2 (3)

gives a new set of shape coefficients b̂, where R(•) is the Procrustes transformation.
It follows that we obtain a predicted surface: ŷ = x̄ + P b̂ based on the prior shape
knowledge. This idea is illustrated in Fig. 1.
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shape model space

noise space

observed shape y

predicted shape ŷ by shape model

Fig. 1. Observed shape (red) is projected onto the shape model space, forming a predicted surface
(blue)

Eq. (3) can be viewed as a signal-noise filtering problem. Suppose a PDM can capture
all shape instances of an object (signal) and the inter-observer segmentation error is the
only source of noise. Given a manual segmentation y (corrupted signal), we can fully
filter out the inter-observer segmentation error (ISE) by solving Eq. (3) if the ISE is
in the null space of the PDM. And the resulting ŷ will be close to the signal. The
worse case happens when the ISE falls into the same space of the PDM where the noise
and signal are undistinguishable. Therefore the recoverability of the PDM against the
ISE is affected by the orthogonality between the two. Also, it is compromised by the
Procrustes transform since the differences in scale, rotation and translation are removed.

In practice, the predicted surface ŷ may not be more accurate than the manual seg-
mentation y everywhere. Thus we seek a way of fusing y and ŷ together. In this study
we propose the following cost function:

C(f) =

N∑
i=1

(yi − f(ti))
2

σ2
i

+

N∑
i=1

(ŷi − f(ti))
2

δ2i
+ λ

∫ 1

0

(f (m)(u))2du (4)

where the first term is weighted by the interobserver segmentation error (ISE) σ2
i , the

second one is weighted by the accuracy of prediction δ2i , and the third term regularizes
the smoothness of f . The pointwise correspondence between yi, f(ti) and ŷi is assumed
or can be established using surface registration.

As in [17], a set of multi-observer segmented objects are collected to determine the
segmentation error σi. By only considering the relative accuracy, Eq. (4) is simplified
to:

C(f) =

N∑
i=1

(1− αi)(yi − f(ti))
2 +

N∑
i=1

αi(ŷi − f(ti))
2 + λ

∫ 1

0

(f (m)(u))2du (5)

where αi ∈ [0, 1] is the pointwise normalized of ISE balancing the contribution from
the model prediction and the current observation at the i-th point. The first two terms of
Eq. (5) forms a quadratic function. It is easy to verify that its minimizer is given by

f̂i = (1− αi)yi + αiŷi (6)
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Therefore the minimizer of Eq. (5) is obtained by minimizing the following equation

1

N

N∑
i=1

(f̂i − f(ti))
2 + λ

∫ 1

0

(f (m)(u))2du (7)

Inspired by the idea of Data Assimilation (DA) [9], we refer to this process of surface
estimation as Surface Assimilation (SA) and the estimated surface as the assimilated
surface.

2.2 Smoothing Spline Regression

Eq. (7) is actually a Penalized Least Square (PLS) problem. The first part in Eq. (7),
represented by the residual sum of squares (RSS), measures the fidelity to the observed
signal. The second part measures the smoothness of the estimated signal. The smooth-
ing parameter λ balances these two penalties, which is also known as the bandwidth
in some statistics literature. When λ = 0, Eq. (7) becomes an interpolation problem.
When λ → ∞, it is close to a linear regression model.

Craven and Wahba [4] shows the minimizer of Eq. (7) is a natural polynomial spline.
By limiting the solution fλ to a reproducing kernel Hilbert space (RKHS), H , with the
reproducing kernel denoted by R, this problem can be solved under the framework of
smoothing spline regression (SSR) [14]. fλ contains two parts: one that is not penal-
ized by the smoothness operator in Eq. (7) and one that is orthogonal to the former.
Correspondingly, H can be decomposed into two subspaces: H = H 0 + H 1. By
Kimeldorf-Wahba representer theorem [14], a closed form of fλ at a fixed λ is given
by:

fλ =

P∑
ν=1

dνφν +

N∑
i=1

ciξi (8)

where φ1, . . . , φP span H 0 and ξi is the i-th representer in H 1.
Different applications require different splines, such as polynomial splines, periodic

splines, spherical splines, vector splines (see [15] for more details). For our problem,
we chose the periodic splines for closed 2D curve assimilation and spherical splines
for closed 3D surface assimilation. We used Generalized Cross Validation (GCV) [14]
to automatically estimate the smoothing parameter λ . Although, its optimality is not
guaranteed if the segmentation error is correlated with the true boundary location, GCV
estimation can still be used as a starting point for searching better λ [14].

2.3 Intensity Image Registration with Assimilated Surface Constraint

Suppose the template and the target images are denoted as T : Ω → R and S : Ω → R,
respectively, where Ω = [0, 1]3 is the image domain. Let X : S2 → Ω be a parametric
surface denoting the true ROI in the template space. Let Yg : S2 → Ω and Y : S2 → Ω
denote the parametric surfaces of the true and segmented ROI in the target spaces,
respectively, and let F : S2 → Ω be the assimilated surface of Y where S2 is the unit
sphere. The image registration problem can be stated as: Find a dense transformation h :
Ω → Ω that maps points in the target image to the corresponding points in the template
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image. We parameterized h using B-spline representation [13]. The cost function is
defined as:

CTotal(h) = CIntensity(h) + ρCSurface(h) + β CSmooth(h) (9)

where ρ and β control the relative contribution of each cost term.CIntensity is the grayscale
similarity between the template and target images. We chose the sum of the squared
difference (CSSD) in our phantom experiment and the negative mutual information in
FBCT to CBCT registration. CSmooth is the regularization term that penalizes the trans-
formations that are not smooth. In this work we used the bending energy based on the
Laplacian operator (CLAP).

CSurface measures the closeness between the template and target surfaces. We define
the equally-weighted assimilated-surface constraint (EWAS) as:

CEWAS(h) =

∫ 2π

0

∫ π
2

−π
2

‖h(F (u, v))−X(u, v)‖| sinu| du dv (10)

where u, v are the polar and azimuthal angles, respectively. For evaluation purpose,
we designed the following variant of CEWFS: the equally-weighted manual surface con-
straint (EWMS):

CEWMS(h) =

∫ 2π

0

∫ π
2

−π
2

‖h(Y (u, v))−X(u, v)‖| sinu| du dv (11)

As in [17], we define an uncertainty-weighted manual surface constraint (UWMS) as:

CUWMS(h) =

∫ 2π

0

∫ π
2

−π
2

1

ω(u, v)
‖h(Y (u, v))−X(u, v)‖| sinu| du dv (12)

where ω(u, v) is the ISE distributed on the surface. Hereafter EWAS refers to equally-
weighted assimilated surface constrained image registration.

3 Experiments

We evaluated the proposed algorithm on phantom data set and compare it to three other
algorithms (listed in Table 1). For a fair comparison, the balancing parameter ρ1 in
UWMS and ρ in other algorithms satisfies the relation:

ρ1

∫ 2π

0

∫ π
2

−π
2

1

ω(u, v)
| sinu| du dv = ρ (13)

We used the target registration error (TRE) [7] to evaluate the algorithm perfor-
mance. The TRE is defined as the geometric discrepancy between two true surfaces
after the registration, i.e. the difference between X(u, v) and the deformed true target
surface h(Yg(u, v)).
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Table 1. Image registration algorithms in the evaluation experiment

Algorithm Cost function Transformation Optimization

SSD CSSD + βCLAP B-splines Gradient descent
EWMS CSSD + ρCEWMS + βCLAP B-splines Gradient descent
UWMS CSSD + ρ1CUWMS + βCLAP B-splines Gradient descent
EWAS CSSD + ρCEWAS + βCLAP B-splines Gradient descent

ρ=5, ρ1=25 and β=0.005

3.1 Phantom Experiment

Suppose the template and target spaces are with the dimensions 128× 128× 128 mm3.
In the center of template space, we placed an ellipsoid object whose z-axis is not fixed
to simulate the possible shape changes of X(u, v):

X(u, v) = (a cosu cos v, a cosu sin v, b sinu) (14)

where u ∈ [−π
2 ,

π
2 ], v ∈ [0, 2π), a = 24mm to simulate the radius of a regular prostate,

b is a Gaussian random variable with 24 mm mean and 4 mm standard deviation. The
mean shape of X(u, v) is a sphere with a 24 mm radius.

To simulate the manual segmented surfaces with ISE, we sampled an instance of true
surface Yg(u, v) from Eq. (14) and then generate Y (u, v) as

Y (u, v) = (Yg1(u, v), Yg2(u, v) + θ cosu sin v, Yg3(u, v))

where θ is a Gaussian random variable with zero mean and 4 mm standard deviation.
For a fixed Yg(u, v), the shape of Y (u, v) changes only along the y-axis. Under this
setting, the segmentation error at the poles is zero and the largest segmentation error
occurs at the equator. The surface assimilation algorithm was applied to each instance
of Y (u, v) to obtain F (u, v). We illustrate this process in Fig. 2 where a cross-section
view is chosen through the poles of the 3D surfaces.

All ROI surfaces are contained within a grayscale background object, representing
the surrounding tissue. In the template space T (x), the surrounding tissue is simulated
by a vertically elongated ellipsoid rasterized from the surface

T (u, v) = (40 cosu cos v, 40 cosu sin v, 52 sinu)

In the target space S(x), the surrounding tissue is simulated by a horizontally elongated
ellipsoid rasterized from the surface

S(u, v) = (40 cosu cos v, 52 cosu sin v, 40 sinu)

where we chose 40 mm and 52 mm as the lengths of axes of the background objects
to guarantee no surface sample touches them. The shapes of the these grayscale objects
are fixed.

We made 400 sets of X(u, v), Y (u, v), Yg(u, v) and F (u, v), respectively. And in
total 400 pairs of images and surfaces registration were done. The TRE results (in five
categories) are reported in Table 2. SSD performs worst among all algorithms. EWMS,
UWMS and EWAS all improved the TRE and EWAS achieves the best results.
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Fig. 2. Illustration of surface assimilation algorithm in 2D cross-section view slicing through the
poles of the 3D surfaces. (a) shows a simulated manual segmentation (black) overlying on the true
shape (pink). (b) the point distribution model (PDM) predicts where the true boundary is (cyan).
(c) shows the true, the observed and the PDM-predicted surfaces together. The latter two are
combined into the blue one in (d) for visual comparison. The estimated true shape by the spline
regression is shown red in (e) and (f). Comparing (a) and (f) we can see that the assimilated
surface is closer to the true one than the original segmentation.



38 C. Zhang et al.

Table 2. The target registration errors of each algorithm

Algorithm RO DSC LDSC MAD HD

No Registration 0.835 0.905 2.693 2.364 4.464
SSD 0.631 0.770 1.241 4.182 9.363

EWMS 0.882 0.936 2.867 1.104 2.893
UWMS 0.886 0.938 2.914 1.052 2.811
EWAS 0.913 0.954 3.124 0.900 2.263

EWAS vs. EWMS 3.51% 1.96% 8.93% 18.5% 21.8%
improves (p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001)

RO: Relative Overlap, DSC: Dice Similarity Coefficient, LDSC: Logit Dice Similarity Coefficient, MAD: Mean
Absolute Distance (mm), HD: Hausdorff Distance (mm). For RO, DSC and LDSC, higher is better. For MAD and
HD, lower is better.

3.2 Real Data Case Study

We applied the proposed registration algorithm to register a pair of 3D FBCT images.
The registration between FBCT to CBCT remains to be done. We chose a patient with
9 repeated FBCT scans on different treatment days. The prostate on each scan was
contoured consistently by a single expert. The image and its associated manual prostate
segmentation at the first day served as the template image T (x) and surface X(u, v).
The image and surface of Scan 9 served as the target image S(x) and true surface
Yg(u, v). The prostate segmentations between Scan 1 and 8 were used to train the shape
model.

Yg(u, v) is the ground truth surface and was not involved in the registration cost
function. We simulated a possible manual segmentation Y (u, v) with large segmen-
tation error using the ISE model as described previously [17]. We estimated Yg(u, v)
from the given Y (u, v) using the surface assimilation method and obtained F (u, v).
For EWAS algorithm, F (u, v) and X(u, v) were used in the cost function. The output
transformation deformed Yg(u, v) and compare with X(u, v). Since all images were
from the same imaging modality, CSSD was used in the registration cost function. The
results are shown in Fig. 3.

4 Conclusion

We presented a non-rigid image and surface registration algorithm that accommodates
the surface segmentation error. Given a noisy surface, we construct a new one by cor-
recting the boundary with large segmentation error using a statistical shape model. This
surface estimation problem is solved by the method of smoothing spline regression. Ex-
periments were done for 3D digital phantoms and one real patient case. By comparing
the results with previous registration algorithms, our method shows its advantages in
matching the images and surfaces.
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Fig. 3. The registration results of SSD, UWMS, EWMS and EWAS on the patient data. (a) the
red-green blended image showing the difference between the template and the deformed target
images after registration. (b) the deformed grid visualizing the transformation. (c) the 3D view
of the template (pink) and the deformed true target surfaces with EWMS tinted gray and EWAS
tinted blue, respectively. We can see that 1) the quality of intensity alignment among the algo-
rithms is close, 2) the quality of local boundary matching around the prostate is different. Large
deformation at the center (where the prostate is) can be seen in the deformed grids of EWMS and
EWAS. Our results show the deformed surface of EWAS is closer to the template surface.
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Abstract. We describe an automated method for building a statistical
model of the mouse hind limb from micro-CT data, based on articulated
registration. The model was initialised by hand-labelling the constituent
bones and joints of a single sample. A coarse alignment of the entire
model mesh to a sample mesh was followed by consecutive registration of
individual bones and their descendants down a hierarchy. Transformation
parameters for subsequent bones were constrained to a subset of vertices
within a frustum projecting from a terminal joint of an already registered
parent bone. Samples were segmented and transformed into a common
coordinate frame, and a statistical shape model was constructed. The
results of ten registered samples are presented, with a mean registration
error of less than 40 µm (∼ 3 voxels) for all samples. The shape variation
amongst the samples was extracted by PCA to create a statistical shape
model. Registration of the model to three unseen normal samples gives
rise to a mean registration error of 5.84 µm, in contrast to 27.18 µm for
three unseen arthritic samples. This may suggest that pathological bone
shape changes in models of RA are detectable as departures from the
model statistics.

1 Introduction

Rheumatoid arthritis (RA) is an autoimmune disease that affects approximately
1% of the world’s population [1]. The autoimmune response mounted by the
body gives rise to chronic inflammation of the synovial joints, which can cause
active destruction of cartilage and bone. Although the exact cause of RA is
unknown, new therapeutic targets may be discovered by investigating genes or
processes that exacerbate or ameliorate disease progression. Animal models of
inflammatory arthritis are frequently employed for this purpose, in conjunction
with imaging techniques which provide data for deriving measures of disease
severity [2,3]. Histological scoring is commonly used to ascertain the amount of
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bone destruction, whereas x-ray microtomography (micro-CT) provides qualita-
tive assessments of the damage. These commonly used techniques are subjective.
In response to the need of the biomedical community we are working towards de-
veloping objective and quantitative measures of bone destruction from micro-CT
images of the mouse hind limb.

The hypothesis underpinning our work is that shapes of bones affected by a
pathology depart from statically normal bone shape variations. When a diseased
limb sample is registered with a statistical shape model of a normal limb, any
diseased regions will show as gross departures from the model. Such regions can
then be characterised as erosions or spurs, and have their morphology and vol-
ume assessed. Statistical shape models describe the variation that exists within
a set of aligned training shapes described by points. The active shape model
(ASM) is commonly used to identify shape instances in medical image data by
utilising the variability extracted from the training set by principal component
analysis (PCA) [4]. In building such a model, it is necessary to establish point
correspondences across the training set. This is often achieved by registering a
single reference onto each sample, using algorithms such as iterative closet point
(rigid) and B-spline free form deformation (non-rigid). This approach has been
employed previously in building shape models of bones for the assessment of
morphological variations in the primate humerus and scapula [5].

In our research, registration plays a vital role in both model construction
and in abnormality detection. For the construction of a statistical shape model
the individual samples must be co-registered in order to remove any differences
that are not attributable to shape, such as their position, orientation and size.
As the mouse hind limb is composed of multiple bones of various shapes and
sizes, registration of a complete sample requires a 3D anatomical model that
describes both structure and articulation. Having registered this model onto a
series of samples, the pose-normalised bone shapes may be compared. The re-
sulting model is similar to the hip joint model detailed in [6] in which only bone
shape variations are modelled statistically, having previously aligned the sam-
ples based on known kinematic constraints. Finally, for abnormality detection,
a sample in question must be co-registered with the model before establishing
whether its shape deformations fall within the bounds defined by the model
statistics. The closest work related to the bone pathology detection via model
registration detailed the development of a statistical model of the rabbit femur,
which was used to segment osteophytes (bone spurs) present in osteoarthritic
femurs imaged by micro-CT [7]. Research described in this paper explores the
possibility of identifying bone shape changes over the whole mouse hind limb in
models of rheumatoid arthritis, such as periarticular bone loss and full thick-
ness cortical bone damage. Although bone damage observed in RA is generally
confined to the joints, we consider the entire hind limb in order to examine a
variety of mouse models that may develop bone abnormalities elsewhere (e.g.
spondyloarthropathy).
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2 Method

This section first describes the methodology used to acquire and process the
necessary image data used to construct an articulated model of the mouse hind
limb. The framework for model-based registration and segmentation of a train-
ing set is then described, followed by the construction of a statistical model of
non-pathological bone shapes and model validation. Analysis of an abnormal
sample is performed by registering the articulated model, and iteratively de-
forming the mean bone shapes to produce the closest biologically feasible fit,
and then assessing departures from the model as a measure of disease severity.

2.1 Image Acquisition and Processing

All experiments were carried out at the University of Birmingham following
strict guidelines governed by the “Animal (Scientific Procedures) Act 1986” and
approved by the local ethics committee. Female C57Bl/6 mice (Harlan, UK)
were housed in individually ventilated cages in groups of 3-6 individuals on a 12
hour light-dark cycle with ad lib access to standard laboratory mouse chow diet
and water. For arthritis experiments 200 µl KBxN serum was injected intraperi-
toneally into 10 week old mice, details of which can be found in [8]. All mice
were sacrificed at 12 weeks of age. Both hind limbs were dissected and fixed in
formalin over 24 hours in preparation for imaging.

Samples were imaged using a Skyscan1172 micro-CT scanner (Bruker), at a
source voltage of 60 kV and source current of 167 µA, with a 0.5mm aluminium
filter. Projections were taken every 0.45 degrees at 1000ms exposure, with an
image pixel size of 13.59 µm. Flat field corrections were performed to remove
any effects caused by varied pixel sensitivity. Image slices (2000 x 2000 px) were
reconstructed using NRecon 1.6.1.5 (Bruker), and beam hardening correction
was applied to reduce cupping artefacts. Bone regions were segmented from soft
tissue by global thresholding and a 3D surface mesh was computed using the
marching cubes algorithm (CTAn 1.12, Bruker). The global threshold value was
chosen manually, and kept consistent for all samples. Meshes were resampled us-
ing Poisson surface reconstruction to produce a smooth uniformly sampled mesh,
and simplified using quadric edge collapse decimation [9]. Any mesh structure
due to marrow space is of no interest in itself, and may misguide registration
due to its highly variable morphology. Therefore, internal structures were iso-
lated by ambient occlusion, and removed to give a completely hollow surface
mesh (MeshLab 1.3.2, open-source).

2.2 Construction of an Articulated Model

To bootstrap the model construction, a single micro-CT scan of a wild-type
mouse hind limb was first manually segmented into the constituent bones of
interest by outlining individual slices (CTAn 1.12, Bruker). Global threshold-
ing and mesh processing was then performed as described in Section 2.1. Joint
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positions were approximated by isolating the articulating bone surface, and cal-
culating the mean vertex position. In constructing the model, the leg bones (tibia
and fibula) were ignored due to the limited field of view in the micro-CT instru-
ment. Sesamoid bones and claws were ignored as they are irrelevant to pathology
detection.
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Fig. 1. (a) Micro-CT reconstruction of mouse hind limb with bones labelled. (b) Hi-
erarchical representation of bones and their joints in the mouse hind limb. This repre-
sentation provides the order in which model bones are registered to the sample mesh,
which can be modified with ease for experimental purposes.

The topology of the mouse hind limb was represented as a tree (or hierarchy)
where nodes and connections correspond to bones and joints, respectively (Figure
1). All nodes have exactly one parent node (except for the root node) with
any geometric transformations applied to a parent bone being inherited by its
children (i.e. if the 2nd metatarsal is rotated, then so are the 2nd proximal
and distal phalanges). This hierarchical model was represented and stored as
an eXstensible Markup Language (XML) document, allowing for construction
of models with arbitrary hierarchies and traversal sequences.

2.3 Articulated Registration

The articulated registration algorithm follows the scheme outlined in [10], where
an initial coarse alignment of a whole mouse atlas with the sample is followed by
consecutive registration of individual bones, initialising subsequent registration
steps. The method described in this paper differs in several ways to account for
the differences in bone anatomy, joint complexity and proximity of parts. In par-
ticular (1) there is an additional coarse alignment of model and sample based on
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their “centres of mass”; (2) rigid (rotation, translation) and affine (rigid + scal-
ing) transformations are carried out in separate ICP registration steps; and (3)
motion constraint uses a viewing frustum, to account for the proximity and sim-
ilarity of neighbouring components. Without incorporating these modifications
registration yields unsatisfactory results in the form of misaligned bones. During
this process, all transformations are applied to separate instances of the model,
leaving individual samples stationary. In order to perform statistical shape anal-
ysis, sample bones are segmented (using the registration correspondence) and
then inversely transformed into a common coordinate system as shown in Fig-
ure 4.

Coarse Alignment. The coarse alignment process globally aligns the model
and sample meshes, providing an initialisation for the subsequent articulated
registration. The curvature of the model and sample limbs is first approximated
by equally subdividing the image volume along the longitudinal axis (the axis
about which the specimen is rotated in the micro-CT instrument) and computing
the centroid for each subvolume. This gives rise to two corresponding “centre
of gravity” curves, from which a rotation matrix can be computed by solving a
system of linear equations in a least-squares fashion.

(a) (b)

Fig. 2. Coarse alignment of model (blue) and sample (red) “centre of gravity curves”
shown (a) before coarse alignment, and (b) after coarse alignment. The two larger
points shown are the respective centres of mass. The alignment of these points aims to
filter out rotational and translational effects associated with mounting the sample in
the micro-CT scanner, prior to performing articulated registration.

The rotation matrix serves to align the meshes such that they both face the
same direction. This does not however guarantee that the two meshes are aligned
along the longitudinal axis. This is achieved by approximating their centres of
mass, located near the ankle joint. The whole image volume is first projected
onto its xy and yx planes, and the brightest pixels in each projection are then



46 J.M. Brown et al.

located (corresponding to the thickest regions of the specimen.) Of these pixels
the topmost (nearest the leg) is chosen, and the centroid of the slice in which it
resides is computed. The difference between the two centres of mass is used to
determine the translational offset. The rotation and translation are then applied
to the model, aligning it coarsely with the sample mesh. Figure 2 shows the
result of applying the two transformations to two example curves.

Motion Constraints. Having coarsely aligned the model and sample mesh,
the individual bones are registered by ICP consecutively down the hierarchy,
with connected sub-trees inheriting the transformations computed at each step.
The bones that comprise the mouse hind limb can be grouped into three shape
categories; long bones (metatarsals, phalanges), small bones (tibiale, 1st and
2nd distal tarsal) and irregular bones (talus, calcaneus, 3rd - 5th distal tarsals).
Small and irregular bones have limited natural motion, and so the entire search
space is made available to the iterative closest point (ICP) algorithm when ap-
proximating point correspondence. By contrast, long bones have a greater range
of motion which can yield an incorrect registration result if rotation is not con-
strained. This problem has been solved using a field of view approach.

Fig. 3. Motion constraint as applied to a proximal phalanx bone by viewing frustum
culling. The set of legal points within the viewing frustum are shown in green, and the
set of illegal (culled) points are shown in red.

Having already registered its parent, registration of a child bone begins by
finding an initial set of corresponding points by nearest-neighbour criteria. Rather
than testing against all of the available sample points, the set is reduced to a
set of feasible points that fall within a viewing frustum, parametrised by four
angles (up, down, left and right). The viewing frustum is projected from the
end of the parent bone along its principal axis, and the vertices that fall outside
the frustum are eliminated (Figure 3). Correspondence is then approximated
from the remaining points, and the optimal transformation found by ICP. The
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parametrisation of the viewing frustums for each bone was determined manu-
ally, and found to be consistent for all of samples used in the results presented.
Having calculated the optimal rigid transformation, the entire search space is
opened up once again for an additional ICP step that solves for differences in
scaling. The iterative closest point (ICP) algorithm used in this work is a freely
available MATLAB implementation1.

Segmentation and Shape Modelling. The result of registering the artic-
ulated model to a set of n training samples is a set of n transformed model
instances. The point correspondence that the registration yields is used to seg-
ment the individual samples, by propagating labels between model and sample
vertices. Each of the meshes is composed of several thousand points, and in all
likelihood will not have the same exact amount in each. As a result, not every
point will receive a label, and so unlabelled mesh patches are assigned a label
based on neighbouring vertices (those that share an edge). Anatomical struc-
tures not represented in the model (e.g. claws, small non-articulating bones) are
left unlabelled.

Fig. 4. The registration and segmentation workflow for statistical shape model con-
struction. The process begins with the articulated model being registered onto each of
the n samples, which remain stationary. After registration, each sample is segmented
according to the learned correspondence, and inversely transformed into the common
(model) coordinate system according to the transformations gathered during registra-
tion.

The labelled samples are inversely transformed using the learned registration
parameters so that the whole training set adopts a common coordinate frame.
The coregistered samples can now be integrated into a multi-part statistical
model, where shape variation of each individual bone is modelled separately. For
each bone, an n×3m system matrix is formed (where m is the number of points)

1 Finite Iterative Closest Point: http://www.mathworks.co.uk/matlabcentral/
fileexchange/24301-finite-iterative-closest-point)

http://www.mathworks.co.uk/matlabcentral/fileexchange/24301-finite-iterative-closest-point
http://www.mathworks.co.uk/matlabcentral/fileexchange/24301-finite-iterative-closest-point
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Fig. 5. Results of articulated registration of ten samples: (a) the original model overlaid
with the registered samples and (b) the mean registration error for the ten samples.
The results demonstrate a registration accuracy of less than 40 µm (∼3 voxels) over
the whole hind limb (error bars correspond to one standard deviation).

from which the mean shape is subtracted from each row and a covariance matrix
P is computed. Principal component analysis (PCA) is performed to compute
the eigenvectors of P , which correspond to the modes of shape variation, in order
of decreasing variance. New shape instances may be generated from the model
as weighted deviations from the mean shape along the first p modes:

X = X̄ + Pb (1)

where b is a vector of weights, constrained to fall within three standard devi-
ations of the mean. Normal bone shapes are approximated by finding a vector
b for each bone that minimises the least-squared distance (using the Levenberg-
Marquardt algorithm) between the model and sample points. By constraining
the deformations to biologically feasible limits, the differences between the model
and sample may be attributed to pathological shape changes.

3 Results and Validation

Ten wild-type (normal) mouse hind limb samples (5 females, C57Bl/6, 12 weeks
old) were acquired and imaged by micro-CT, and processed according to proto-
cols outlined in Section 2.1. Articulated registration was performed on the ten
samples which are shown overlaid with the original model in Figure 5 alongside
the mean registration error for each sample. Registration error is defined as the
mean Euclidean distance in voxels between model (M) and corresponding sample
(S) points:
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(a) (b)

Fig. 6. (a) Result of articulated registration with shape model fitting to three unseen
normal samples and three unseen arthritic samples. On average, the normal samples
are more accurately approximated by the model that the arthritic samples (with mean
errors of 5.84 µm and 27.18 µm respectively) indicating the presence of statistically
abnormal shape features. (b) An example of a KRN mouse hind limb, with evidence
of bone destruction around the metatarsals.

E(M,S) =
1

n

n∑
i=1

√
(M(xi, yi, zi)− S(xi, yi, zi))2 (2)

To test the model’s ability to approximate samples from outside the training
set, articulated registration and shape model fitting was applied to three normal
samples (from outside the training set) and three arthritic samples. The results
are shown in Figure 6 as mean error histograms.

4 Conclusion

In this paper, we demonstrated a method for constructing a statistical model
of the mouse hind limb. Manual segmentation and labelling of a single sample
provides an articulated model which may be used to extract bone shape varia-
tion from a set of unlabelled samples. Registration of the model onto a set of
ten samples achieved a mean registration error of less than 40 µm (∼ 3 voxels).
Whilst some errors are due to natural shape variation, others may attributed to
cumulative misregistration of connected parts. The effect of coarse aligment on
the final results will therefore be investigated in future work. After registration,
labels were transferred onto the samples which were then inversely transformed
into a common (model) coordinate system. The co-registered samples were used
to build a bone-by-bone statistical model of shape variations via PCA. The abil-
ity of the model to represent unseen normal shapes was successfully validated
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by registering a small set of normal samples and obtaining a mean registra-
tion error of 5.84 µm voxels. A mean registration error for unseen abnormal
samples was larger, at 27.18 µm, and its mode was shifted towards larger dis-
placements. This suggests that the erosions and spurs present in the abnormal
samples depart from the model of normal bone shape. Further analysis will be
aimed at demonstrating that the latter results are mainly due to large errors
at the locations of the arthritic abnormalities, which may be mapped onto the
meshes to determine their height/depth or volume. Computing the differences
between an abnormal sample and a normal model at these locations will aid the
quantification of pathologies.
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Julia A. Schnabel2, and Heinz Handels1

1 Institute of Medical Informatics, University of Lübeck, Germany
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Abstract. Deformable image registration is an important step in
medical image analysis. It enables an automatic labelling of anatomi-
cal structures using atlas-based segmentation, motion compensation and
multi-modal fusion. The use of discrete optimisation approaches has re-
cently attracted a lot attention for mainly two reasons. First, they are
able to find an approximate global optimum of the registration cost func-
tion and can avoid false local optima. Second, they do not require a
derivative of the similarity metric, which increases their flexibility. How-
ever, the necessary quantisation of the deformation space causes a very
large number of degrees of freedom with a high computational complex-
ity. To deal with this, previous work has focussed on parametric trans-
formation models. In this work, we present an efficient non-parametric
discrete registration method using a filter-based similarity cost aggrega-
tion and a decomposition of similarity and regularisation term into two
convex optimisation steps. This approach enables non-parametric regis-
tration with billions of degrees of freedom with computation times of less
than a minute. We apply our method to two different common medical
image registration tasks, intra-patient 4D-CT lung motion estimation
and inter-subject MRI brain registration for segmentation propagation.
We show improvements on current state-of-the-art performance both in
terms of accuracy and computation time.

1 Introduction and Background

Deformable image registration is an integral part of medical image analysis and
has been the focus of a large amount of research. Most deformable registra-
tion algorithms consist of three parts: similarity metric, optimisation strategy
and transformation model, a comprehensive overview of the current literature
is given in [21]. Image registration between an target image It and moving im-
age Im can in general be stated as an energy optimisation problem. The spatial
transformation φ = Id+ u, consisting of identity transform Id and deformation
field u, is sought that minimises the cost function E(It, Im,u).
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We define a cost function for deformable registration, which consists of a
similarity term S and a regularisation term R, where α is a positive factor that
balances the weighting between both penalties:

E(u) = S(It, Im,u) + αR(u) (1)

Most registration approaches optimise this combined cost function directly. A
pointwise similarity term, such as the sum of squared differences, defined for
each voxel x: S(x) = (It(x) − Im(x + u))2, contains a non-linearity with respect
to u. Therefore, it cannot be directly solved using convex optimisation.

Continuous Optimisation: One approach is to linearise the similarity term
to obtain an approximate step towards the desired solution. This linearisation is
only valid for a small deformation step, the registration thus requires a series of
small iterative updates. This results in two disadvantages: large deformations of
small anatomical features might be lost, as only a local optimum is found, and
many iterations are required to reach convergence. Additionally the linearisation
requires the derivative of the similarity to be computed, which restricts the
flexibility of continuous optimisation approaches.

MRF-Based Optimisation: In order to overcome the above discussed disad-
vantages of gradient-based techniques, the use of discrete optimisation has been
proposed based on a Markov random field (MRF) formulation [7]. Here, the de-
formation field u is not represented by a continuous vector field, but defined as
a (dense) set of discrete spatial displacement labels d ∈ L = {0,±1, . . .± lmax}3.
The cost of assigning a certain label d ∈ L to each voxel x depends on the unary
potentials, which correspond to the (pointwise) image similarity and pairwise
(or higher-order) interactions (representing the regularisation term). Different
optimisation methods can be employed, however, even the simplest inference al-
gorithms (e.g. dynamic programming on a tree [9]) have a high computational
complexity. Therefore most previous approaches for discrete optimisation in med-
ical image registration used parametric transformation models1. Glocker et al.
[7] used a B-spline transformation model and further reduced the complexity by
restricting the potential displacements to lie along the three normal axes. In [17]
a finite element method is used to parametrise the transformations.

Local Cost Aggregation: Alternatively, local regularisation models have been
used for discrete registration (or stereo estimation). In cost aggregation ap-
proaches [19], no explicit global regularisation of the deformation field is per-
formed, and the motion is only locally constrained to be smooth by averaging
the similarity term over a small window. These techniques work reasonably well
and are computationally fast. However, they often require ad-hoc post-processing
steps to propagate information into textureless regions.

In this work, we present a different solution, which is based on a dual optimi-
sation technique following the idea of [5]. The non-convex optimisation problem

1 The only exception for 3D registration we know of is [20], where a non-parametric
solution is obtained with graph cuts resulting in computation times of 24 hours.
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can be split into two convex problems: one for the similarity term and one for
the regularisation, by introducing an auxiliary vector field linking both terms.
Each term is optimised in alternation, increasing the linking between them until
both vector fields converge. This concept has been previously investigated in [2]
resulting in the ”Pair-And-Smooth, Hybrid Energy based Algorithm” (PASHA),
and can be implicitly found in the demons registration approach [24]. However,
these approaches are based on gradient-based optimisation of the similarity cost.
In contrast, we propose to use a discretised search space to find a better opti-
mum of the similarity term (following the ideas presented in [22] for optical flow
estimation) and additionally use a local cost aggregation step.

The remainder of this paper is organisedas follows. Sec. 2 introduces ourmethod
consisting of local cost aggregation, convex optimisation for global smoothness and
minimisation of inverse inconsistencies. The implementation used to efficiently
solve the proposed model will be explained in detail. In Sec. 3 we present the em-
ployed experiments on two different challenging medical image registration tasks.
Sec. 4 discusses the results and gives an outlook on further possible research di-
rectives.

2 Methods

Our proposed non-parametric discrete registration method aims to find the de-
formation field u, which minimises a cost function over the image domain:

E(u) =
∑
Ω

S(It, Im,u) + α|∇u|2 (2)

The second term penalises the squared gradient of the displacement field, which
forms a diffusive regularisation. The similarity term can be either point-wise or
defined over a local neighbourhood (image patch) Ω.

Our method estimates a deformation field in three steps. First, an explicit
search is performed over a discrete displacement space only enforcing smoothness
by local cost aggregation (Sec. 2.1). This yields a prior map of probable
displacements based on the similarity term and an initial best displacement for
each voxel. Second, global smoothness is enforced through alternative updates
of the estimated deformations and the similarity distribution using an auxiliary
term (Sec. 2.2). Third, inverse consistency [6] is achieved by minimising the
discrepancy between forward and backward transforms (Sec. 2.3). This can be
used to enforce a one-to-one mapping between two images, in order to avoid
physically implausible folding of the deformation field.

2.1 Local Cost Aggregation

Following the definition of previous discrete registration approaches, e.g. [9], we
restrict the deformations u to be part a quantised set of 3D displacements d ∈ L
for each voxel x:

d ∈ L = {0,±q,±2q, . . . ,±lmax}3,
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with a quantisation step q and maximal displacement range of lmax. The advan-
tage of this approach compared to a linearisation of the similarity function is
that both an iterative solution and a local optimum can be avoided. Analogously,
to previous work on local cost aggregation in stereo estimation [12,19], we first
construct a six-dimensional displacement space volume (DSV), which extends
the image dimensions by three dimensions (for the 3D displacement label space
L). Each entry of the DSV represents the point-wise similarity cost of translating
a voxel x with a certain displacement d:

DSV (x,d) = S(It(x), Im(x+ d)) (3)

To enforce constant motion within a small local region, we average the similarity
term over a local patch for every voxel. However, a naive implementation of
such a windowed cost evaluation would have considerable computational cost.
Yet, for uniform or spatially weighted (e.g. B-Spline) patches a cost aggregation
with constant complexity regardless of the patch size can be obtained through a
spatial convolution (or moving average) filter. The convolution filter K is applied
to every 3D subvolume (i.e. in spatial domain) of the DSV with a constant
displacement (see [12], Fig. 1 for a visual example of this procedure).

We could stop here and directly obtain a displacement field by selecting the
displacement d with the lowest aggregated cost for each voxel:

u = argmin
d∈L

(K �DSV (d)) (4)

This concept, which is often called winner-takes-all (WTA), already achieves
a relatively robust estimation of deformations. An alternative way to obtain a
cost aggregation is though iterative diffusion of the similarity images [19], which
repeatedly replaces the value of a voxel with a weighted average of its neighbours.

The concept of filter-based local cost aggregation is directly suitable for point-
wise similarity metrics. One possible choice is to use the sum of absolute differ-
ences (SAD) of self-similarity context (SSC) descriptors as introduced by Hein-
rich et al. [8]. The descriptors represent the self-similarity of small image patches
within a local neighbourhood of each voxel. This yields a twelve-valued vector,
which is quantised into a single 64-bit integer. Evaluating the SAD of two vec-
tors st and sm with quantised representations St and Sm therefore simplifies to
calculating their Hamming weight:

SSC(x) =

12∑
i=1

|st(x)i − sm(x)i| = Ξ{St(x) ⊕ Sm(x)}, (5)

where the function Ξ{·} represents the bit-count operation. The advantage of
this metric is that it can be evaluated very quickly and has been shown to be
robust against local change in contrast and image noise. A local cost aggregation
within the DSV follows accordingly to Eqs. 3 and 4.

We can extend the local cost aggregation from point-wise to patch-based
similarity metrics. In particular local cross-correlation (LCC) is here of interest,
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as it has been widely used for medical image registration [1,15]. LCC can be
directly calculated over a local window Ω centred around x by:

LCC(x) =

∑
Ω(It(x) − μt)(Im(x)− μm)√∑

Ω(It(x) − μt)2
√∑

Ω(Im(x)− μm)2
(6)

where μm and μt define the local intensity mean in moving and target im-
ages respectively. These values and the local standard deviations Vm,t(x) =√
1/|Ω|

∑
Ω(Im,t(x)− μm,t)2 do not depend on the translational displacement

d and can therefore be pre-computed once for both images. Following the ap-
proach in [14] (similarly presented in [1]), we can efficiently compute LCC for
each displacement in constant complexity independent of the patch-size. When
expanding the numerator of Eq. 6, we obtain:

1

|Ω|
∑
Ω

It(x)Im(x) − μt

∑
Ω

Im(x)− μm

∑
Ω

It(x) + μtμm.

Since μt,m = 1/|Ω|
∑

Ω It,m(x), we can simplify this to: 1/|Ω|
∑

Ω It(x)Im(x)−
μtμm. The summation of the first term, can again be more efficiently computed
by first taking the point-wise product of the image intensities followed by a
constant time averaging filter. Since, the local variances have been pre-computed,
evaluating the LCC for each voxel and displacement only requires 10 operations:
a huge speed-up compared to the naive approach, especially for large windows.

Using the WTA approach, however, does not enforce any global smoothness
and can therefore lead to poor motion estimation for homogenous areas with
little texture. For these reasons, most local stereo estimation methods perform
post-processing steps to remove false correspondences.

2.2 Global Smoothness with Convex Optimisation

To improve the motion estimation for homogenous areas, we adopt the approach
presented by [22], which follows the primal dual approaches for total variation
based image processing [5]. An auxiliary second deformation field v is introduced
and the combined cost function E(v,u) is solved in two alternating steps.

E(v,u) = DSV (v) +
1

2θ
(v − u)2 + α|∇u|2 (7)

The optimal selection of v with respect to the similarity term, together with
the auxiliary middle term can be performed globally optimal, as before, using
local cost aggregation and WTA selection (of the DSV plus the coupling term).
Note, that the disparity space volume (DSV) has to be computed only once.
The regularisation penalty can be solved optimally by a Gaussian smoothing of
the deformation field. The parameter α controls the diffusivity of the deforma-
tion field and is implicitly set through the variance of the Gaussian kernel σ2.
The update is performed by u ← Kσv. The parameter θ models the coupling
between similarity and regularisation penalty and is decreased during a number
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of iterations. In our experiments, we have used five iterations of this dual convex
optimisation with θ = θ0 · {150, 50, 15, 5, 1.5}, where θ0 is a parameter which
should be adapted to the range of a specific similarity metric. For θ → 0 we
reach convergence and u = v. We have chosen isotropic diffusion regularisation
with Gaussian smoothing, which has been widely used for medical image reg-
istration, but other regularisation penalties or filters (e.g. bilateral filters [16])
could be easily integrated into this framework.

2.3 Inverse Consistency

Following our above formulation, the registration outcome would be dependent
on the choice of target and moving image. To remove this bias and ensure a
one-to-one mapping, we use a simple scheme to obtain inverse consistent map-
pings, given the forward and backward displacement fields uf and ub respectively
(which are independently calculated). We aim to reduce the inverse consistency
error (ICE) [6]. This can be achieved according to [8] by iteratively updating the
following equations:

un+1
f = 0.5(un

f − un
b (x+ un

f )) (8)

un+1
b = 0.5(un

b − un
f (x+ un

b ))

where the initial (asymmetric) transformation are denoted by a time-point n = 0.
Empirically, we found that 10 iterations are sufficient to reduce the ICE to
insignificantly low values and also ensure the absence negative Jacobian values
(and thus singularities) within the deformation fields. Further details on the
convergence of this scheme can be found in [10] Ch. 4.4.1.

3 Experiments

In order to show the benefits of our new approach, we compare its performance
for two challenging datasets for medical image registration. First, the deformable
registration of inter-patient brain MRI scans, and second, intra-patient lung
motion estimation of 4D-CT scans. The first experiment employs the Columbia
University Medical Center (CUMC) dataset [4], consisting of 1.5 T MRI scans of
12 subjects, which have been manually labeled into 130 anatomical or functional
regions. For the second experiment, we use the ten cases of the DIR-lab dataset
[3], which has been validated with 300 manual landmarks for both the maximum
inspiration and maximum expiration phase of a breathing cycle. The motivation
for choosing these two datasets is that both have been widely used to evaluate
state-of-the-art deformable registration techniques.

3.1 Parameter Choices

We use a multi-resolution scheme with three levels and downsampling factors of
{3, 2, 1} for all experiments. We use a dense displacement sampling (deeds) [9]
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with a sampling range of lmax = {6, 4, 2} voxels for the three resolution levels
and a quantisation of q = 1 voxel. For the brain and lung dataset, we chose
LCC and SSC [8] respectively as similarity metric. To obtain SSC descriptors
in a lower resolution, we calculate self-similarity distances in the original image
resolution and downsample only the final descriptors. A parameter variation has
been performed for a subset of the CUMC12 registration experiment, to exam-
ine the influence of the radius r of the box-filter for local cost aggregation (or
patch-size of LCC computation respectively), the parameter σ for the diffusive
regularisation of deformation fields and θ0 to scale the range of the similarity
metric. The Dice metric D = 2|A ∩ M |/(|A| + |M |) between automatic and
manual segmentations A and M (calculated separately for each of the 130 label
regions) has been chosen to evaluate the quality of registrations. The registra-
tion accuracy varies between D = 50.5 − 50.8% for 0.4 ≤ σ ≤ 1.0 voxels and
D = 50.4 − 50.8% for 0.25 ≤ θ ≤ 4. Using radii of {0, 1, 2, 3, 4} voxels for the
LCC metric results in segmentation overlaps of {36.0, 50.9, 50.8, 50.3, 49.3}%,
indicating a very good robustness except when skipping the cost aggregation
entirely. The chosen parameters for all further experiments using the symmetric
formulation are: σ = 0.6, r = 2, and θ0 = 1. The best settings for an asymmetric
registration are the same except for σ = 1.2, which results in D = 50.8%.

3.2 Computation Time

We use an efficient multi-threaded CPU implementation, which is being made
available at www.mpheinrich.de/software.htmland run experiments on a dual-
core processor. When using an asymmetric registration formulation, ≈ 20 sec.
(for all resolutions) are spent on calculating the DSV and aggregating its cost
locally, and half a minute for the iterative global regularisation, yielding a total
time for one 3D brain registration (with a volume size of 256× 256× 124) of less
than one minute. If a symmetric transformation is required, these computation
times double and an additional time of ≈ 40 sec. has to be added for enforc-
ing inverse consistency of the deformation fields. When using the SSC similarity
metric, ≈ 10 sec. are spent on calculating the descriptors. These processing times
are more then an order of magnitude faster than the top performing algorithms
in [13] and further speed-ups could be expected when using a GPU (c.f. [12]).

3.3 Results

The CUMC12 dataset has been used in a comprehensive comparison study of 14
non-linear registration methods in [13]. In those experiments, the Jaccard index
J = (A ∩M)/(A ∪M) was used to evaluate the registration accuracy. We are
therefore able to directly compare our approach to 14 other algorithms for a total
of 132 one-to-one registrations. The same pre-processing of the data as detailed
in [13] has been used: in particular removing the skull in the images using the
provided brain masks. Our method achieves the highest overlap of all methods,
with J = 36.3%, see Fig. 1. The usefulness of the global regularisation step is
demonstrated by performing the same experiments as before, but this time only

www.mpheinrich.de/software.html
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Fig. 1. Jaccard overlap (over 130 regions) for 16 non-linear registration algorithms for
CUMC12 dataset. Our approach achieves the highest accuracy with J = 36.3%.

a) b) c)

d)

Fig. 2. Coronal view of overlay of inhale and exhale phase of Case # 6 of [3] before
(a) and after (b) alignment using our proposed non-parametric discrete registration.
The estimated deformation field (c) is represented by HSV colours (d), where the
vector orientation is indicated by hue and the deformation length by saturation. The
complexity of the deformation field std(Jac) lies between 0.23 and 0.33 for the 10 cases.

use the local cost aggregation (see Eq. 4) followed by one Gaussian smoothing as
post-processing. This variant (denoted as ”local”) achieves only J = 34.5%. We
also outperform the FEM based discrete registration approach of, Popuri et al.
[17], whose work is the most similar to ours and achieves J = 31.4%. In contrast
to us, they use a parametric transformation model, variational smoothing and
do not include a global convex optimisation of the regularisation term.

The second experiment is challenging for continuous optimisation approaches,
because there is a large discrepancy of the magnitude and direction of the motion
inside and outside of the lungs. Currently, most approaches that achieve a high
accuracy, e.g. [11] or [18] deal with this problem by segmenting the lungs and
masking out the rib-cage and other body parts. In our approach, a discrete
sampling of the displacement, with a very large range of possible motion vectors
(6 × 2 + 1)3 = 2197, is used in the lowest resolution to capture large motion
of small features. Using the same settings as before (except that we selected
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SSC, as we found it works better as similarity metric for this task), we obtain a
target registration error of 1.17 mm. This is only marginally higher than the best
results, previously achieved for masked registration: 0.99 mm ([11] and [18]).
Our approach is so far the most accurate for unmasked registration for this
dataset, with an improvement of ≈ 0.25 mm to the results of [9] (1.43 mm)
and [11] (1.41 mm w/o masks). Figure 2 shows an example registration outcome
including the obtained deformation field.

4 Conclusion

We have presented a new framework for discrete medical image registration,
which includes both local and global regularisation. The search space of poten-
tial deformations is sampled in a dense manner, thus avoiding local minima or
the need for an iterative refinement. A local regularisation is integrated by a
cost aggregation scheme, which is performed through a spatial filtering of the
displacement space volume (DSV). The global diffusive smoothness prior is en-
forced through an alternating update of the distribution of the locally aggregated
image similarity and a global deformation field smoothing through Gaussian
convolution. Solving each of the two decoupled functionals separately results in
convex optimisation problems that can be solved optimally. After few iterations,
this procedure converges to a very good approximation of the optimum of the
combined cost function (and a substantial improvement over using only local
regularisation). Our approach, which achieves computation times of less than
one minute per 3D registration, performs best on the CUMC12 brain dataset in
comparison to 15 other state-of-the-art techniques and within 0.2 mm of the best
approaches for the DIR-Lab lung dataset. Additional results for the remaining
three datasets of the Klein study [13] support the initial findings resulting in
Jaccard scores of 56.38% (for LPBA40), 39.54% (for MGH10) and 36.43% (for
IBSR18), which each outperform the previously best results.

Further research could improve on the presented results, by integrating addi-
tional information, e.g. segmentations or better priors on the deformation field
regularity. In the future, we would like to directly compare our approach to
global MRF-based optimisation strategies [7,9]. The use of this framework for
other challenging medical image registration tasks, including multi-modal regis-
tration, is be directly possible. An interesting alternative to the use of identical
support regions for each voxel could be the use of multiple potential window
sizes to represent simultaneously multiple scales of deformations (c.f. [23]).

Acknowledgements. B.W.P. and J.A.S. would like to acknowledge funding
from the CRUK/ EPSRC Cancer Imaging Centre at Oxford.
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Abstract. B-spline based free-form deformation (FFD) is a widely used
technique in nonrigid image registration. In general, a third-order B-
spline function is used, because of its favorable trade-off between smooth-
ness and computational cost. Compared with the third-order B-splines,
a B-spline function with a lower order has shorter support length, which
means it is computationally more attractive. However, a lower-order
function is seldom used to construct the deformation field for registra-
tion since it is less smooth. In this work, we propose a randomly per-
turbed FFD strategy (RPFFD) which uses a lower-order B-spline FFD
with a random perturbation around the original position to approxi-
mate a higher-order B-spline FFD in a stochastic fashion. For a given
D-dimensional nth-order FFD, its corresponding (n−1)th-order RPFFD
has ( n

n+1
)D times lower computational complexity. Experiments on 3D

lung and brain data show that, with this lower computational complexity,
the proposed RPFFD registration results in even slightly better accuracy
and smoothness than the traditional higher-order FFD.

1 Introduction

Nonrigid image registration is widely used in medical image analysis. To model
the nonrigid deformation field which is recovered by the registration method,
FFD is a popular model and produces competitive results in various registration
tasks. In B-spline based FFD registration, B-spline basis functions distributed
on a uniformly spaced grid are used to model the transformation [1].

For a given degree of smoothness, B-spline function is a spline function that
has minimal support [2]. The B-spline function of order n is obtained by n
times convolution of the zeroth-order B-spline. As the n goes to infinity, B-
splines converge to the Gaussian function in the limit. Both the support length
and the smoothness of B-splines increase with the order n. Compared with the
other order B-spline functions, the third-order (cubic) B-spline function is usually
regarded as a good trade-off between smoothness and computational cost.

S. Ourselin and M. Modat (Eds.): WBIR 2014, LNCS 8545, pp. 62–71, 2014.
c© Springer International Publishing Switzerland 2014
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In this research, we propose a random perturbation approach to approximate
an nth-order (e.g., cubic) B-spline FFD by an (n − 1)th-order (e.g., quadratic)
B-spline FFD. The technique is inspired by the definition of a B-spline as a
convolution of zeroth-order B-splines. In the proposed perturbation process, a
uniformly distributed random variable within the range of half a grid spacing
is utilized to shift the entire B-spline grid around its original position in each
dimension. In RPFFD registration, the perturbation process is combined with a
stochastic gradient descent optimizer, which can handle such stochastic fluctua-
tions in the objective function. Through the approximation of nth-order B-spline
registration with the randomly perturbed (n− 1)th-order B-spline registration,
the computational cost is inherently reduced in the RPFFD registration thanks
to the smaller support region.

2 Method

2.1 Registration Framework

In this work, we focus on parametric intensity-based types of registration meth-
ods. Let F (x) : ΩF ⊂ R

D → R and M(x) : ΩM ⊂ R
D → R denotes the

D-dimensional fixed and moving images where x ∈ RD represents an image
coordinate. Then, the registration problem is formulated as:

μ̂ = argmin
μ

C(F,M ◦Tμ), (1)

where C measures the dissimilarity between the fixed image and the deformed
moving image, Tμ(x) : ΩF → ΩM is a coordinate transformation, and μ repre-
sents the parameter vector of the transformation model. Examples of C are the
sum of squared differences (SSD), normalized correlation coefficient (NCC), and
mutual information [3].

In general, an iterative optimization strategy is utilized to determine the op-
timal set of parameters μ̂,

μk+1 = μk − akdk, k = 1, 2, . . . ,K (2)

where dk is the “optimization direction” at iteration k, and ak controls the step
size along dk.

In gradient-based optimization methods, the definition of dk is based on the
derivative of the cost function with respect to μ, ∂C/∂μ. Popular examples
of such methods are gradient descent, quasi-Newton, and nonlinear conjugate
gradient [4]. It has been shown in [5] that the stochastic gradient descent (SGD)
method is a competitive alternative to these deterministic methods. In SGD, dk

is defined as a stochastic approximation of ∂C/∂μ,

μk+1 = μk − akg̃(μk), (3)

where g̃(μk) is the approximate derivative of the cost function evaluated at
the current optimization position μk. In [5] the stochastic approximation was
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(a) (b) (c) (d)

Fig. 1. One-dimensional B-splines with four different orders: (a) β0(x); (b) β1(x); (c)
β2(x); (d) β3(x)

realized by evaluating the cost function derivative on a small random subset
Ω̃F ⊂ ΩF of image samples, newly selected in each iteration k, thus reducing the
computation time per iteration. For example, if we choose SSD as cost function
C,

C(F,M ◦Tμ) =
1

|ΩF |
∑

xi∈ΩF

(F (xi)−M (Tμ(xi)))
2
, (4)

then, the stochastic approximation g̃(μ) of ∂C/∂μ is calculated as:

g̃(μ) =
2

|Ω̃F |

∑
xi∈Ω̃F

⎛⎝(F (xi)−M (Tμ(xi)))

(
∂Tμ

∂μ

∣∣∣∣
xi

)T (
∂M

∂y

∣∣∣∣
Tµ(xi)

)⎞⎠ .

(5)
Convergence in SGD methods can be achieved by letting the step size decay ak
decay according to a pre-defined function. In [6] an adaptive strategy for setting
ak was proposed. This adaptive stochastic gradient descent (ASGD) method is
used in our work.

2.2 B-spline Basis Functions

The B-spline function of order n is obtained by n times convolution of the zeroth-
order B-spline function [7],

βn(x) = β0(x) ∗ · · · ∗ β0(x)︸ ︷︷ ︸
n times

, (6)

where β0(x) is defined as

β0(x) =

{
1 : −0.5 ≤ x < 0.5
0 : otherwise

, (7)

and the operator ‘∗’ denotes the convolution operation

(f ∗ h)(x) def
=

∫ +∞

−∞
f(x− t)h(t)dt. (8)

Figure 1 shows the shapes of β0(x), β1(x), β2(x), and β3(x). The support length
(nonzero domain) of the B-spline function is increased with the spline order.
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With increasing spline order, the smoothness improves, but the support region
becomes larger.

For a D-dimensional input space, the tensor product of βn(x) is used to span
the multidimensional B-spline function Φ(x) : RD → R,

Φn
D(x) = βn(x1)⊗ · · · ⊗ βn(xD)︸ ︷︷ ︸

D times

, (9)

where ‘⊗’ denotes the tensor product operator.

2.3 B-spline FFD

The traditional FFD transformation model [1] is defined as

Tn
μ(x) = x+

∑
ξ∈Ξ

cξΦ
n
D(x/η − ξ), (10)

where Ξ ⊂ ZD represents a D-dimensional control-point grid, η is the grid
spacing, cξ is the coefficient vector for a control point ξ, and the parameter vector
μ is formed by the elements of all coefficient vectors (μ = {cξ | ξ ∈ Ξ}). For a
given x, the summation goes effectively only over all ξ with nonzero Φn

D(x/η−ξ)
(i.e., over the compact region of support).

As introduced in Section 2.1, a stochastic approximation of the derivative
∂C/∂μ is calculated in the SGD based registration, which requires evaluation of
T n
μ(x) and ∂T n

μ(x)/∂μ. Calculating these terms dominates the computational
costs of nonrigid image registration.

2.4 Randomly Perturbed B-spline FFD

If the nth-order B-spline function is utilized to model the transformation, the
number of control points considered in each dimension is n+1 inside the support
region. Then, the number of control points for a D-dimensional transformation
is (n + 1)D. In practical medical image registration tasks, the input images F
and M are usually 3D images. Thus, the numbers of control points which need to
be considered around one image coordinate are 64 and 27 for β3(x) and β2(x),
respectively. As introduced in Section 2.3, the computational cost of nonrigid
registration is dominated by evaluating the transformation and its derivative.
Therefore, the computational cost could be significantly reduced if the quadratic
B-spline function could replace the commonly used cubic B-splines.

As shown in Figure 1 (a), the support region of β0(x) is [−0.5, 0.5) and its
value constantly equals to 1 inside this region. From Eqs. (6) and (8), we derive

βn(x) = (βn−1 ∗β0)(x) =

∫ +∞

−∞
βn−1(x− t)β0(t)dt =

∫ 0.5

−0.5

βn−1(x− t)dt. (11)

Inspired by this relation, we propose to treat t ∈ [−0.5, 0.5) as a random
variable with a uniform distribution, and approximate βn(x) by a randomly
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shifted lower-order B-splines βn−1(x − t). This leads to the following definition
of the RPFFD transformation model

T̃n−1
μ (x, t) = x+

∑
ξ∈Ξ

cξΦ
n−1
D (x/η − ξ − t), (12)

where t = [t1, t2, · · · , tD]T represent the random shifts in each dimension.
Through this way, the entire B-spline control point grid is thus shifted by vector
t but the grid layout is kept.

The proposed RPFFD transformation model fits naturally in the framework
of stochastic gradient descent optimization. For the computation of ∂C/∂μ, Eq.
(5), we use T̃n−1

μ (x, t) instead of Tn
μ(x), with a perturbation t randomly chosen

in each iteration k of optimization. We thus obtain a stochastic approximation of
the true derivative, at a lower computational cost. It is worth to note that this
approximation comes on top of the approximation by randomly subsampling the
image as explained in Sec. 2.1. The optimization procedure thus can be written as

μk+1 = μk − akg̃(μk, tk), (13)

where tk is the realization of t in iteration k . The computationally efficient
(n−1)th-order B-spline function is utilized only during the optimization process.
Once the stochastic gradient descent optimization has finished, the estimated
parameters μ̂ are directly plugged into the original nth order B-spline FFD to
obtain the final transformation.

Algorithm 1 provides an overview of the proposed RPFFD registrationmethod.

Input: F ← fixed image, M ← moving image, K ← number of iterations,
S ← number of samples |Ω̃F |, and n ← original B-spline order

Output: Registered moving image M
(
Tn

μ̂(x)
)

1 Initialize transformation parameters μ ← 0
2 for k ← 1 to K do
3 Initialize random samples [x1 . . .xS ], g̃ = 0, step size ak

4 Determine random shift tk
5 for x ← x1 to xS do
6 Evaluate F (x)

7 y ← T̃n−1
μ (x, tk)

8 Interpolate moving image value M(y)
9 Calculate gradient ∇M(y)

10 Calculate transformation derivative ∂T̃n−1
μ (x, tk)/∂μ

11 Calculate contribution to g̃

12 end
13 Update transformation parameters μ ← μ− akg̃

14 end
15 μ̂ ← μ
16 Instantiate nth-order FFD transformation Tn

μ̂(x)
17 return M

(
Tn

μ̂(x)
)

Algorithm 1. RPFFD registration method
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Table 1. Description of compared registration methods

Name During optimization Final transformation Random
perturbation

CubicFFD Cubic Cubic Off

QuadraticFFD Quadratic Quadratic Off

QuadraticFFD-M Quadratic Cubic Off

QuadraticRPFFD-M Quadratic Quadratic On

QuadraticRPFFD Quadratic Cubic On

3 Experiments

The performances of the traditional FFD and proposed RPFFD methods were
evaluated and compared in terms of registration accuracy, transformation smooth-
ness, and computation time. The experiments were carried on both 3D lung CT
and 3D brain MRI scans.

3.1 Registration Methods

In the present work, we focused on B-spline order n = 3. We define the stan-
dard cubic FFD (CubicFFD) registration method as the reference method. The

proposed method using T̃n−1
μ (x, t) is referred to as QuadraticRPFFD. To gain

further insight in the differences between CubicFFD and QuadraticRPFFD,
we define three ‘intermediate’ methods, which are also evaluated. First, we de-
fine QuadraticFFD, which is similar to CubicFFD but uses everywhere n = 2
(without random perturbation). Second, we define QuadraticFFD-M, which uses
n = 2 for optimization (without random perturbation), and then plugs the es-
timated μ̂ into an n = 3 FFD to obtain the final transformation. Third, we
define QuadraticRPFFD-M, which uses n = 2 for optimization with random
perturbation, but returns as final transformation T̃n−1

μ̂ (x,0) instead of Tn
μ̂(x).

Table 1 provides an overview of the compared registration methods.

3.2 Experimental Settings

All methods were implemented based on the open source image registration pack-
age elastix [8]. Similarity measures SSD and NCC were used as dissimilarity
terms on lung and brain data, respectively. Trilinear interpolation was used to
interpolate the moving image. For the ASGD optimizer, the numbers of random
samples S and iterations K were set to 2000 in all experiments. A Gaussian
filter using {σ1, . . . , σ4} = {4, 2, 1, 0.5} voxels was applied to the input images
to create 4 image resolution levels. During the registration, the transformation
estimated at a coarser scale was used to initialize the transformation on finer
scale. The finest grid spacing η4 was set to 8mm or 13mm in the experiments on
lung data. To avoid too large coarsest grid spacing, we fixed η1 to be 64mm on
the lung data. With η1 and η4, the multiresolution grid schedule can be calcu-
lated according to {η1, η4(η1/η4)2/3, η4(g1/η4)1/3, η4}. Thus, the grid schedules
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for 8mm and 13mm are {η1, η2, η3, η4}={64, 32, 16, 8}mm and {64, 38, 22, 8}mm,
respectively. On the brain data, the grid schedule {40, 20, 10, 5}mmwas utilized.

3.3 Experimental Data

We used 10 pairs of DIR-Lab 3D chest CT scans with 300 manually annotated
landmarks on the lung structure. The voxel and dimension sizes of lung data are
around 1× 1× 2.5mm and around 256× 256× 110. Lung masks were created to
limit the registration to the lung region. The masks were created by thesholding,
3D-6-neighborhood connected component analysis, and morphological closing
operation using a spherical kernel with a diameter of nine voxels. For all cases,
the exhale phase (moving image) was registered to the inhale phases (fixed im-
age). The mean target registration error (mTRE) which calculates the distance
between the transformed and ground truth landmarks was used to measure the
registration accuracy. To evaluate the transformation smoothness of registration,
the standard deviation of the determinant of spatial Jacobian (DSJ ) was used.
For a given spatial location x̃ inside the lung mask, DSJ is calculated as

DSJ =

∣∣∣∣∂Tμ

∂x
(x̃)

∣∣∣∣ . (14)

Because DSJ represents the local volume change of a specific location, the stan-
dard deviation of DSJ measures the change of the movement thus giving an
indication of the smoothness of a transformation.

The Internet Brain Segmentation Repository (IBSR v2.0), which contains 18
T1-weighted MRI 3D brain scans, was also used to evaluate the registration
methods. The volumes of these images are 256× 256× 128mm. The voxel sizes
are divided into three groups (8: 0.94×0.94×1.5, 6: 0.84×0.84×1.5, 4: 1×1×1.5).
Overall mean overlap which measures the overlap between the transformed and
ground truth atlases was used to evaluate the registration accuracy. The overall
mean overlap is calculated as

Overall Mean Overlap = 2

∑
r | Mr

⋂
Fr |∑

r(| Mr | + | Fr |) , (15)

where r represents a certain label, and the overall mean overlap is calculated
over all labels. For evaluating smoothness of the transformation, we used the
standard deviation of DSJ as defined in Eq. (14), calculated inside a brain mask.
The same affine registrations were used to roughly align the data first, and then
these initialized results were used as the input data for the nonrigid registration
experiments.

4 Results

The results using the finest grid spacings 13mm and 8mm on lung data were
pooled and shown as boxplots in Figure 2. Overall, the RPFFD registration has
better accuracy and smoothness than the other methods.
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Fig. 2. Results on lung data by different methods: (a) accuracy (mTRE, in mm, lower
values are better); (b) smoothness (standard deviation of DSJ , lower values are better)

Figure 3 provides the detailed registration accuracy and smoothness results
on the 10 pairs of lung scans, both for finest grid spacings 13mm and 8mm.
Figure 3 (a) shows that RPFFD registration (QuadraticRPFFD) produced reg-
istration accuracy comparable with or better than the reference method Cu-
bicFFD, except for case 8. The smoothness results (Figure 3 (b)) indicate that
the QuadraticRPFFD produced the best smoothness over all methods in most
cases.

As introduced in Section 2, the quadratic RPFFD has a factor ( n
n+1 )

D lower
computational complexity than the cubic FFD. Experimentally, the computation
times on subject 1 using an Intel Core i7-2720QM with 8G memory were 139±1
seconds and 86 ± 1 seconds (mean ± standard deviation over 10 runs) for the
CubicFFD and QuadraticRPFFD methods, respectively.

Figure 4 shows the registration results on brain data. Quadratic RPFFD reg-
istration generated better registration accuracy than cubic FFD registration,
see Figure 4 (a). In terms of smoothness, Figure 4 (b), the proposed Quadrati-
cRPFFD method outperformed all other methods.

The running time of nonrigid registration to register subject 2 to subject 1
on an Intel Core i7-2720QM with 8G memory were 231± 1 seconds and 146±
1 seconds (mean ± standard deviation over 10 runs) for the CubicFFD and
QuadraticRPFFDmethods, respectively.

5 Discussion

The results indicate that the proposed quadratic RPFFD method outperforms
the standard cubic FFD method not only in terms of computation time, as was
expected, but also in terms of accuracy and smoothness of the estimated trans-
formation. The ‘intermediate’ methods, each omitting one or more components
of the proposed method, were outperformed by RPFFD as well, suggesting that
each element of the algorithm is essential for good performance.

We provide two possible explanations for the improvement in accuracy and
smoothness. First, Tustison et al. [9] demonstrated how the conventional B-spline
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Fig. 3. Detailed registration results on lung data by different methods: (a) accuracy
(mTRE, in mm, lower values are better); (b) smoothness (standard deviation of DSJ ,
lower values are better)
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Fig. 4. Results on brain data by different methods: (a) accuracy (overall mean overlap,
higher values are better); (b) smoothness (standard deviation of DSJ , lower values are
better)

FFD can lead to ill-conditioned optimization spaces, due to the disproportion-
ate B-spline weighting of the control points. To solve the optimization problem
caused by FFD registration, a preconditioning strategy was proposed in their
work. In our work, by randomly shifting the control point grid, the influences of
different control points to the cost function are randomly changed in each itera-
tion. Therefore, the effect of the disproportionate control point weighting might
be reduced thanks to the perturbation process in RPFFD. Second, in RPFFD
registration, a new stochastic dynamic is introduced to the stochastic gradient
descent optimization. The stochastic perturbations in RPFFD may help to avoid
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the local minima as has been previously reported in the literature on stochastic
approximation optimization [10].

In the future, we plan to further investigate these hypotheses, and extend the
RPFFD method to different orders of B-splines. The RPFFD method will also
be evaluated in combination with different multiresolution strategies [11].

6 Conclusions

In this research, a new randomly perturbed B-splines based FFD (RPFFD) reg-
istration method is presented. The new RPFFD method uses a randomly per-
turbed lower (n − 1)th-order B-spline transformation to approximate a higher
nth-order B-spline FFD during optimization. Because less control points are
involved in RPFFD registration, the method is computationally less expensive
than the traditional FFD registration. Besides leading to faster image registra-
tion, the RPFFD method also outperforms the traditional FFD method in terms
of accuracy and smoothness of the registration results.
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Abstract. This paper presents a novel mathematical framework for representing
uncertainty in large deformation diffeomorphic image registration. The Bayesian
posterior distribution over the deformations aligning a moving and a fixed image
is approximated via a variational formulation. A stochastic differential equation
(SDE) modeling the deformations as the evolution of a time-varying velocity field
leads to a prior density over deformations in the form of a Gaussian process. This
permits estimating the full posterior distribution in order to represent uncertainty,
in contrast to methods in which the posterior is approximated via Monte Carlo
sampling or maximized in maximum a-posteriori (MAP) estimation. The frame-
work is demonstrated in the case of landmark-based image registration, including
simulated data and annotated pre and intra-operative 3D images.

1 Introduction

Deformable image registration seeks to identify a deformation field that aligns two im-
ages, and is a key component of image analysis applications such as computational
anatomy [1,2]. An important body of literature focuses on deformations in the form
of diffeomorphisms [3,4,2], one-to-one mappings between image coordinate systems
that are smooth and invertible. These properties help in ensuring biologically plausible
deformations, and avoiding phenomena such as folding or tearing that may occur in
non-diffeomorphic registration approaches [5].

While a good deal of literature has focused on identifying optimal diffeomorphic
registration solutions, it would be useful to quantify the inherent uncertainty in these
solutions when interpreting the results of registration. Quantification of deformable reg-
istration uncertainty, particularly at point locations throughout the image, remains an
open problem. The Bayesian approach quantifies probabilistic uncertainty via a poste-
rior distribution over deformations conditioned on image data. Estimating the full poste-
rior in the case of large deformation diffeomorphisms is desirable but computationally
challenging, and has typically been avoided. Simpson et al. propose a Bayesian vari-
ational framework based on small deformation kinematics [5], however this does not
address the general case of large deformations. Markussen proposed a stochastic differ-
ential equation (SDE) model for large deformations, however only the computation of
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the maximum a posteriori deformation is provided lacking the estimation of a distribu-
tion on the deformations [6]Alternatively, the posterior may be investigated via sampling
methods, e.g. Markov chain Monte Carlo (MCMC) [7] or Hamiltonian Monte Carlo [8].

This paper introduces a novel mathematical framework that allows representing and
computing of the full Bayesian posterior in the case of large deformation diffeomor-
phisms. Our framework considers a SDE modeling the deformation field as the evo-
lution of a time-varying velocity field, with additive noise in the form of a Wiener
process. A Gaussian process (GP) density results from a locally linear approximation
of the SDE and taking the initial deformation field to be Gaussian process distributed.
Deformation field uncertainty is quantified by the point-wise covariance of the defor-
mation field throughout the image, and can be summarized, e.g., via the Frobenius norm
of the covariance (FC). This can be pictured through the following example: if the FC
at a point approaches 0, the marginal density of the transform approaches an impulse
function denoting the existence of a single probable solution. On the other hand, when
FC is large, the density becomes “broader” denoting a larger set of solutions with high
probability at that point. Hence the point-wise FC is a model of uncertainty. Experi-
ments demonstrate our framework in the context of landmark correspondences, where
a heteroscedastic model accounts for variable uncertainty in landmark localization. This
is particularly useful when estimates of landmark localization variability are available.

2 Methods

2.1 Variational Approximation to Registration

We start by posing the registration problem in a probabilistic framework. Let M and
F be moving and fixed objects with domains in ΩM and ΩF respectively, and let φ :
ΩM �→ ΩF be a mapping between the two. The registration problem seeks a posterior
probability density over mappings φ conditioned on data (M,F ), which is expressed
via Bayes theorem as

p(φ|M,F ) = p(φ)p(M,F |φ)/p(M,F ). (1)

In Eq. (1), p(φ) is a prior density over φ embodying geometrical constraints such as
smoothness. p(M,F |φ) is the data attachment factor or likelihood of the map φ relating
F and M . E.g. the probability that M deformed by φ, which we note φ ◦M , is similar
to F . Finally, p(M,F ) is a normalizing constant.

The direct calculation of the posterior density p(φ|M,F ) is a difficult problem.
Hence, we use a variational method to estimate a distribution q(φ) (abbreviated as q)
that is close to p(φ|M,F ) in the sense of the Kullback-Leibler divergence (KL [·‖·]).
Specifically, we seek q minimizing:

KL [q‖p(φ|M,F )] = KL [q‖p(φ)]−
∫

log p(M,F |φ)dq(φ) + log p(M,F ). (2)

In the registration literature the data attachment factor p(M,F |φ) is typically mod-
eled using a measure of similarity between the registered objects: m : ΩF × ΩF �→ R
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which is minimal when two objects are exactly the same and grows as they become dif-
ferent. Adopting the equality − log p(M,F |φ) = m(φ ◦M,F ), Eq. (2) may be rewrit-
ten as:

KL [q‖p(φ|M,F )] = KL [q‖p(φ)] + 〈m(φ ◦M,F )〉q + log p(M,F ), (3)

where 〈m(φ ◦M,F )〉q is the expected value of m with respect to the density q. There
are two main differences of this formulation with respect to common diffeomorphic
registration approaches [3,4]. First, instead of seeking a single optimal deformation φ,
e.g. the maximum a-posteriori (MAP) solution in the Bayesian formulation, we seek to
obtain the full distribution q(φ). In this way, we obtain both the MAP deformation φ
in addition to the uncertainty at any given point in space, which can be calculated from
q(φ). Second, we obtain q(φ) by minimizing the data attachment term over a weighted
combination of all possible deformation fields in the family of φ instead of only at a
single deformation φ.

2.2 Probabilistic Diffeomorphic Deformations

The variational approximation to p(φ|M,F ) described in the previous section requires
a parameterization for q(φ) over which Eq. (3) can be minimized. In this section we
derive a novel parameterization in the form of a Gaussian Process (GP). The theoretical
basis for our derivation lies in a stochastic interpretation of the work of [1], common
to many diffeomorphic registration approaches [2]. Here, we begin by outlining the
relevant elements of this work, then we present our derivation in three propositions and
their proofs, with our primary contributions being in Propositions 2 and 3.

Following the work of [1], many diffeomorphic deformation formulations seek an
optimal registration solution φ, e.g. the MAP deformation in Eq. (1), by constraining
the map φ to be the solution at t = 1 of the ordinary differential equation (ODE)

d
dtφt(x) = vt(φt(x)), φ0(x) = x, t ∈ [0, 1]. (4)

and setting φ1 in Eq. (4) to minimize

E(φ;M,F ) = Ev(v) + Eφ(φ;M,F ), Ev(v) =
1

2

∫ 1

0

∫
Ωm

‖Lvt(x)‖22dxdt. (5)

From the two terms of E, Ev(v) regularizes the evolution of the time-varying velocity
field and Eφ(φ;M,F ) drives E such that the deformed moving object, φ1 ◦M , be-
comes as similar to F as possible. The regularization term Ev(v), is driven by L, a
linear differential operator. The key insight here is that given suitable L according to
[1], Eq. (5) restricts φt(x) defined as in Eq. (4) to the space of diffeomorphisms [1].
From this, we make the following propositions:

Proposition 1. Under a probabilistic interpretation, the regularization term Ev(v) in
Eq. (5) corresponds to the negative logarithm of the GP prior on the stochastic velocity
field v

p(v) = GP(0, Σts(x, y)), Σts(x, y) ∈ SPDd (6)

where the covariance function Σts(x, y), representing the relation between the point x
at time t and the point y at time s, is determined by the operator L in Eq. (5).
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Proposition 2. Interpreting the energy Ev(v) in Eq. (5) as the negative logarithm of
the density of a stochastic process v induces a random process φ with density p(φ) on
the deformation field of Eq. (4) that is a solution of the stochastic differential equation
(SDE)

dφt(x) = vt(φt(x))dt+
√
Σt(φt(x))dWt, (7)

Wt ∼ GP(0, Θts(x, y)), Θts(x, y) = min(t, s) Id, (8)

where
√
Σ is the square root matrix

√
Σ
√
Σ

ᵀ
= Σ; the GP Wt ∈ R

d is called
Brownian motion or a Wiener process [9]; vt(x) ∈ Rd is a deterministic velocity field
like in Eq. (4); and Σt(x) � Σtt(x, x) ∈ SPDd 1, the covariance of the probabilistic
prior defined in Prop. 1, is a consequence of Eq. (5).

Proposition 3. For the stochastic process φ with density p(φ), defined in prop. 2, the
mean φ̄ and covariance Λ functions are solutions of the deterministic ODEs

d
dt φ̄t(x) = 〈vt (φt(x))〉p (9a)

Λts(x, y) = covp [φt(x),φs(y)] =
〈
φt(x)φ

ᵀ
s (y)

〉
p
− φ̄t(x)φ̄

ᵀ
s (y) (9b)

d
dt

〈
φt(x)φ

ᵀ
s (y)

〉
p
=
〈
vt(φt(x))φ

ᵀ
s (y)

〉
p
+
〈
φt(x)v

ᵀ
s (φs(y))

〉
p

(9c)

+ 〈Σts(φt(x),φs(y))〉p .

Moreover, up to a first order approximation:

p(φ) = GP(φ̄t(x), Λts(x, y)), (10)

The proofs for Propositions 1-3 are as follows:

Proof of Prop. 1 This proposition has been proven by Joshi et. al.[2], here we provide
a sketch of the relevant points. We start by relating Ev(v) in Eq. (5) to a probability
density on velocity fields as stochastic processes v, p(v):

− log(p(v)) = Ev(v) + const =
1

2

∫ 1

0

∫
ΩM

‖Lvt(x)‖22dxdt + const, (11)

To show that p(v) is a stochastic process with a particular distribution, we need to
prove that any finite sample of the domain ΩM ∈ Rd has the same parametric distri-
bution [10]. We take N samples X ∈ RN×d in space and t ∈ [0, 1]N in time, and let
Vij = [vti (Xi)]j ∈ RN×d. Then we rewrite Eq. (11) as

− log(p(V)) = 1
2 (L vecV)

ᵀ
L vecV + const = 1

2 vecV
ᵀLᵀL vecV + const, (12)

where L is the matrix such that [LVi·] = [Lvti(Xi)]j . Eq. (12) is recognisable as
the log probability of a centered multivariate Gaussian with covariance C = (LᵀL)−1

and, therefore v(x) is a GP. The covariance function Σts(x, y) can be calculated as the

1 SPDd: set of symmetric positive definite matrices of dimension d.
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matrix Green’s function of the operator L [2]; specifically, if x, y ∈ Rd, Σts(x, y) ∈
SPDd where [Σts(x, y)]ij is the covariance between xi at time t and yj at time s.

This shows that for a given velocity field v(x), random perturbations according to the
regularization term Ev(v) in Eq. (5) or prior Eq. (11) follow a GP, therefore the velocity
fields according to Ev(v) in Eq. (5) have the density specified in Eq. (6) proving Prop. 1.

Proof of Prop. 2 A formal proof of Prop. 2 is beyond the scope of this paper. Instead,
using Prop. 1 we argue its validity and provide appropriate references. In Prop. 1 we
characterized the density of random perturbations of velocity fields according to Eq. (5).
Adding such random perturbations to Eq. (4) leads to Eq. (7).

The second term in Eq. (7) comes from considering the velocity fields vt of Eq. (4)
as a stochastic process according to Prop. 1. We achieve this by perturbing the right
hand side of Eq. (4) with noise. The factor Wt ∈ R

d is white noise, which multiplied
by

√
Σt is a centered Gaussian random variable with covariance Σt, a sample drawn

from Eq. (6). We noted the stochastic velocity field in Eq. (7) v to distinguish it from
the deterministic one v. Eq. (7) ceases to be an ODE as a sample path of Wt is almost
surely not differentiable. Alternatively, using the Itō interpretation of Eq. (7) leads to
the SDE in Eq. (7), whose solution is the density on φ [9, Chap. 8].

Proof of Prop. 3 The ODE for the mean of the stochastic process φ, Eq. (9a), is ob-
tained by calculating the expectation on both sides of Eq. (7). It is a consequence of the
linearity of the expected value and the derivative operator and the definition of Wt as a
zero-centered Wiener process in Eq. (8).

To obtain the ODE for the second moment of φ, shown in Eq. (9c), we use the Itō
product rule [9] to obtain an expression for d(φt(x)φ

ᵀ
s (y)) and substitute it in Eq. (7)

obtaining

〈
d(φt(x)φ

ᵀ
s (y))

〉
p
= d

〈
φt(x)φ

ᵀ
s (y)

〉
p
=

〈
vt(φt(x))dtφ

ᵀ
s (y)

〉
p
+
〈√

Σt(φt(x))dWtφ
ᵀ
s (y)

〉
p

+
〈
φt(x)(vs(φs(y)))

ᵀds
〉
p
+

〈
φt(x)(

√
Σt(φs(y))dWs)

ᵀ
〉
p

+

〈(
vt(φt(y))dt +

√
Σt(φt(y))dWt

)(
vs(φs(y))ds +

√
Σs(φs(y))dWs

)ᵀ〉
p

,

(13)
which, using the Itō identities for expected values of differentials [9] results in Eq. (9c).

Obtaining a parametric form of the density of φ, p(φ), satisfying the SDE (7) in the
general case is an open problem and a wide field of study. However, in the case where
the drift v and diffusion coefficient

√
Σ are linear functions on their time and location

parameters, and the initial condition φt=0 is a GP, φt(x) is known to be a GP [9]. With
this purpose we define a locally linearized (LL) v and

√
Σ centered at t0, x0 [11]:

vt(x) ≈ vt0(x0) + ∂tvt0(x0)(t− t0) + Dx
vt0
(x0)(x − x0) (14a)

√
Σt(x) ≈

√
Σt0(x0) + ∂t

√
Σt0(x0)(t− t0) +

∑
i

∂xi

√
Σt0(x0)(x − x0)i (14b)

where Dx
vt is the Jacobian of vt(x) w.r.t. x and ∂tvt its partial derivative w.r.t. t. Consid-

ering that L is assumed time-invariant in Prop. 1, the time derivative of
√
Σ in Eq. (14b)
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is equal to 0. Then, using the LL equations Eqs. (14a) and (14b), we approximate Eq. (7)
as

dφt(x) ≈ (Atφt(x) + at)dt+

(∑
i

Si
tφt(x)i +Rt

)
dWt (15)

At � Dx
vt0
(x0) at � −Dx

vt0
(x0)x0 + ∂tvt0(x0)(t− t0) + vt0(x0)

Si
t � ∂xi

√
Σt0(x0) Rt � −

∑
i

Si
t · (x0)i +

√
Σt0(x0).

(16)

The LL approximations in Eqs. (14a) and (15) lead to an approximation of the mean
function of φ, φ̄, by the solution of the ODE

dφ̄t(x)
dt ≈ vt(φ̄t(x)) where vt(x) ≈ (Atφ̄t(x) + at), (17)

and its second moment
〈
φt(x)φs(y)

ᵀ〉 when t = s by

d
〈
φt(x)φ

ᵀ
t (y)

〉

dt
≈ At

〈
φt(x)φ

ᵀ
t (y)

〉
+

〈
φt(x)φ

ᵀ
t (y)

〉
A

′ᵀ
t + atφ̄

ᵀ
t (y) + φ̄t(x)a

′ᵀ
t

+
∑
ij

Si
t

〈
φt(x)φ

ᵀ
t (y)

〉 (
S′j
t

)ᵀ
+

(∑
i

Si
t φ̄t(x)i

)
R

′ᵀ
t +Rt

(∑
i

S′i
t φ̄t(y)i

)ᵀ

+RtR
′ᵀ
t ,

(18)

where A′
t; a

′
t; S

′i
t ; and R′

t are the same as At; at; Si
t ; and Rt in Eq. (16) substituting y

and y0 for x and x0.
As long as the initial condition φt=0 is a GP, the linear approximation of φt is a

GP uniquely determined by φ̄ and Λ [9]. Then, given a set of stochastic velocity fields
v0 . . . vtM−1 with t0 = 0 and tM−1 = 1, the parameters of the stochastic process rep-
resenting the transform φ are obtained integrating Eqs. (17) and (18) with the initial
conditions φt=0 ∼ GP(φ̄t=0, Λt=0). Having characterized stochastic transformations
representing a diffeomorphic deformation, we are in position to formulate our proba-
bilistic diffeomorphic registration algorithm.

2.3 Probabilistic Diffeomorphic Registration

The stochastic diffeomorphic deformation model of Section 2.2 leads to a GP approx-
imation on deformation fields, whose parameters are determined by v and Σ; we use
this model as q(φ1), our variational distribution. In this section, we show how to com-
pute the parameters of q(φ1) minimizing Eq. (2) for a particular registration problem.
Taking the approach of [3], we focus on operators L for the energy Eq. (5) regular-
izing in space but not in time. Due to the time-independent regularization, the prior
on velocity fields of φ derived with Prop. 1 is the joint probability of the fields at
each time t: p(φ1) =

∏1
0 p(vt)

dt with p(vt) ∼ GP(0, Σ0). Then, we rewrite left-

most term of Eq. (2) as KL [q‖p(φ1)] =
∫ 1

0 KL [q(vt)|p(vt)] dt. We parameterize each
stochastic velocity field vt by a N -point set represented as a matrix Xt ∈ RN×d ren-
dering its mean equivalent to a spline model [10]. This sets the distributions of the
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discretized velocity field prior to p(vecvt|Xt) = G(0, St=0|Xt). As in usual LDDMM
approaches, we keep the L operator, hence the covariance S, fixed. Hence, the parame-
terized form of variational approximation to the posterior of the velocity fields becomes
q(vecvt|Xt) = G(μt, St=0|Xt). Due to GP properties given the mean and covariance
functions for the GP, we can characterize the mean and covariance for the discretized ve-
locity field as, μt(X) = vec vt(X) and [St=0(X)]di+k,dj+l = [Σt=0(Xi, Xj)]kl, i, j =
1 . . .N, k, l = 0 . . . d− 1 [10]. This leads to an objective which we minimize to obtain
q(φ1) representing the registration problem:

E(q(φ1)) = KL [q(φ1)‖p(φ1)] + 〈m(φ1 ◦M,F )〉q + log p(M,F ) (19a)

KL [q(φ1)‖p(φ1)] =

∫ 1

0

μ
ᵀ
t S

−1
t=0μtdt, s.t. dφ̄t

dt ≈ μt(φ̄t), φ̄0 = id . (19b)

Using the ideas of [3], Eq. (19) can be minimized through geodesic shooting [4], i.e.
it depends only on M , F and μt=0. The shooting equations for the proposed proba-
bilistic diffeomorphic registration can be derived using Eq. (19) in combination with
the evolution equation based on the most probable velocity field μ. In fact, the problem
formulation equations, shown in Eq. (4), stay the same as in [3], only the final condition
Eφ changes, which is then warped to t = 0 for a gradient descent with respect to the
initial velocity μt=0 leading to the objective function of q(φ1) parameterized on μt=0

argmin
μt=0

E(qμt=0(φ)) =
1
2μ

ᵀ
t=0S

−1
t=0μ

ᵀ
t=0 + 〈m(φ1 ◦M,F )〉q − log p(M,F ). (20)

Up to this point the framework we presented is general for cases where M and F
are images or landmarks. Henceforth, we specialize the treatment of the registration
problems for the landmark case where M and F are matrices in RN×d; m(M,F ) =
‖M − F‖22; and the random variable Φt = vec(φt ◦M) � vecφt(M). This allows us
to rewrite

〈m(φ1 ◦M,F )〉q = 〈m(Φ1, F )〉q = tr
〈
Φ1Φ

ᵀ
1

〉
q
− 2Φ̄

ᵀ
1F + trFF ᵀ. (21)

Replacing Eq. (21) in Eq. (20) leads to the gradient

∇μt=0E(qμt=0(φ1)) =
1
2S

−1
t=0μt=0 −

(
2Φ̄1 − 2F

)
.

Having this gradient, we minimize E w.r.t. μt=0 using a gradient descent algorithm.

3 Experiments

We are now in position to perform experiments using our probabilistic diffeomorphic
registration algorithm. For all our experiments, we chose the covariance function

Σts(x,y)ij = δ(t− s)
[
exp

(
− ‖xi−yj‖2

2

2σ2

)]
ij
∈ R

d×d (22)

where σ2 is the model parameter. To conclude the specification of the model, we know
with certainty that the starting point of the registration algorithm is the identity trans-
form, hence φ0(x) ∼ GP(x, Σt=0,s=0(x,y)) and Σt=0,s=0(x,y) = 0.
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(a) Small Deformation (b) Diffeomorphic with Geodesic Shooting

Fig. 1 – Comparison between small deformation and diffeomorphic registrations with equal pa-
rameter values, the uncertainty is represented by the Frobenius norm of the covariance. The small
deformation model has a smaller variance in general at the expense of a possibly invalid defor-
mation field away from the landmarks.

3.1 Validity of the Locally Linear Approximation

To test the validity of our GP model for diffeomorphic deformations we compared the
GP through the LL method with one of the standard numerical solver for SDEs which
does not assume a parametric density on φ [9]. We generated two sets of landmarks, as
shown in Fig. 1, a circle and one resembling a flower, both of radius 10mm. Then we
generated random initial velocity fields with the covariance function in Eq. (22) with a
range of σ ∈ {.1, 2, 5}. We sampled from the SDE in Eq. (7) using the standard Euler-
Maruyama method [9] and then calculated the mean and covariance of the samples at
the end time of the simulation. On the other side we calculated the mean and covari-
ance at the same end time using the ODEs in Eqs. (17) and (18). After generating 100
experiments per landmark set and σ value, the mean arrival locations for both methods
differed by .5±.02 for σ = .1; .1±.003 for σ = 2 and .012±.0003 for σ = 5 all at least
two orders of magnitude smaller than the radius of the datasets; the Frobenius norm of
the difference between covariances was 11 ± 1 for σ = .1; 3 ± .02 for σ = 2; and
.5± .01 for σ = 5 which is small in comparison with the original variance of the points
74. This shows good agreement between the LL and the Euler-Maruyama methods.

3.2 Synthetic Registration Experiment

In order to compare our diffeomorphic model with a stochastic short deformation model
[5], we implemented our model and then registered the landmarks in the circle shown
in green in Fig. 1 to those of the “flower” shown in blue. The results for the short de-
formation model are illustrated in Fig. 1(a) and those of the diffeomorphic in Fig. 1(b).
It is noticeable that in the short deformation model the domain has been warped into
a non-invertible deformation which is not possible in the diffeomorphic case [3,1]. We
also show the uncertainty in the transform as modeled by the of the deformation field
at each point. In Figs. 1(a) and 1(b) it is noticeable how, as expected, the uncertainty is
lower close to the landmarks and it grows as we move far away from them. Moreover,
in both models the FC values are comparable, showing that the increased complexity of
the diffeomorphic model has not increased the uncertainty in the results.
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3.3 Registration of Pre-operative and Intra-operative Images

We illustrate the strength of our method in the case of multi-modal registration. We
use publicly available images [12] which include 12 clinical cases of brain tumor re-
section. For these cases T1-MRI images have been acquired pre-surgically, manually
annotated with between 20 and 37 anatomical landmarks and a tumor delineation and
then intra-operative 3D ultrasound (US) reconstructions were acquired for the same
subjects before tumor resection. The same experts annotated the US images with the
same landmarks as the MRI.

(a) MRI: Linear
Registration

(b) Intraoperative
Ultrasound

(c) MRI: Probabilistic
Diffeomorphic

Registration

Fig. 2 – Registration of pre-operative and intra-operative images: (a) The pre-operative MRI lin-
early registered and projected onto the ultrasound space. (b) The intra-operative ultrasound im-
age; and (c) the pre-operative MRI of (a) registered to (b) using our algorithm were we show the
warping according to the average registration field. The crosshair indicator shows how correspon-
dence between a-b is not as accurate as the one using deformable registration (c).

(a) Validation (b) Smoothing Comparison

Fig. 3 – (a): Evaluating registration accuracy against manually labeled landmarks using LOO (see
Section 3.3). The green line indicates the average pre-registration distance to the ideal location.
The yellow line indicates the median distance to the ideal position of the best configuration, σ =
50mm. (b): The MRI of Fig. 2 warped according to the mean deformation of the probabilistic
diffeomorphic registration using 5 different levels of smoothing. Overlapped on the warped image
is the estimated uncertainty. As the smoothness of the prior increases the uncertainty of the warp
diminishes spanning from a small neighborhood around the landmark to the rest of the image.

We tested the accuracy of our registration algorithm on areas were there is no ex-
plicit information. For this, we used a leave-one-out (LOO) validation. For each subject
we took one of the landmarks out, registered all others and then measured the dis-
tance of the landmark that we left out with the solution that were obtained by including
it in the registration. We show the results in Fig. 3(a). The results are over 12 sub-
jects with between 20 and 37 landmarks per subject. We obtained the best results with
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σ = 50mm. Priors with σ < 50mm, were not able to move the left-out landmark to the
ideal position and had increased variance. Priors, σ > 50mm, had a closer distance to
the ideal location but an increased number of outliers. Finally, we register these subjects
using all the available landmarks and, through visual inspection, we are able the see that
the deformable registration improves the image matching as shown in Fig. 2. Moreover,
we also show how a prior enforcing a stronger smoothness constraint increases the cer-
tainty in of the registration in the whole image. We illustrate this in Fig. 3(b) where the
increase of the low uncertainty (blue) area of the image correlates with the increase of
the smoothness parameter.

4 Discussion and Conclusion

In this paper we presented a probabilistic diffeomorphic registration methodology. By
extending the usual diffeomorphic model of [1] from a deterministic ODE formulation
to a stochastic one, we were able to include in our model the registration error, or uncer-
tainty. To the best of our knowledge, this is the first algorithm proposing a probabilistic
diffeomorphic registration using a parametric density of the diffeomorphic deforma-
tions including a numerical method to calculate the parameters. Having presented our
model, we devised an algorithm to implement it through a locally linear approxima-
tion to a parametric density. We successfully tested this approximation against usual
methods for SDEs where a parametric density is not available. Then, we analyzed the
performance of our algorithm in synthetic and human data. Our experiments showed
that our algorithm produces good results. We measured this quantitatively through a
LOO experiment as well as qualitatively by visual assessment of 12 registrations be-
tween MRI and US modalities.
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Abstract. We propose a robust and efficient approach for the recon-
struction of the descending aorta from contiguous 3D transesophageal
echocardiographic (TEE) images. It is based on an ad hoc protocol, de-
signed to acquire ordered and partially overlapped 3D TEE datasets, fol-
lowed by automated image registration that relies on this a priori knowl-
edge. The method was validated using artificially derived misaligned im-
ages, and then applied to 14 consecutive patients. Both qualitative and
quantitative results demonstrated the potential feasibility and accuracy
of the proposed approach. Its clinical applicability could improve the
assessment of aortic total plaque burden from 3D TEE images.

1 Introduction

Rupture of aortic atherosclerotic lesions is a known risk factor for severe compli-
cations such as stroke and peripheral embolization, leading to decreased quality
of life and excess mortality [1]. Embolic events are more prone to happen when
the aortic lesions are classified as severe or complex plaques (or atheromas),
namely if they are >4 mm thick or contain ulceration or mobile elements [2].
Neurologic complications may occur in particular after cardiac surgery requir-
ing aortic manipulation and therefore characterization and avoidance of these
plaques may help in decreasing embolic risks.

Different modalities, such as contrast angiography and transthoracic echocar-
diography (TTE) and more recently transesophageal echocardiography (TEE),
epiaortic ultrasound, magnetic resonance imaging and computed tomography,
have been used to image aortic plaques [2,3,4,5]. Among these, 2D TEE ex-
hibits several advantages, allowing accurate and detailed evaluation of the aorta
as well as plaque composition. Nevertheless, visualization and measure is pos-
sible only one cross-sectional plane at a time, thus neglecting the evaluation of
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true 3D morphology and the extent of atheromas. Recently available 3D TEE
technology, both real time and ECG-gated full-volume, potentially allows for a
comprehensive evaluation of atheromas in the descending aorta by assessment of
their thickness, volume and shape, as lately suggested by [3,6]. However, as the
entire aorta cannot fit into a single acquisition, multiple datasets must be ac-
quired and analyzed separately in order to quantify the total amount of plaques
and their location at different aortic levels.

Accordingly, our aims were: 1) to develop a novel approach for the recon-
struction of the descending aorta from contiguous partially overlapped 3D TEE
images, based on an ad hoc acquisition protocol and on post-processing image
registration, as first step to allow quantification of total plaque burden; 2) to vali-
date it on artificially misaligned images obtained from original 3D TEE datasets;
3) to apply it on clinical data acquired in patients.

2 Methods

2.1 Acquisition Protocol

An ad hoc protocol was designed to acquire ordered and partially overlapped
3D TEE datasets of the descending aorta. All the images were acquired using
single-beat, narrow-angle acquisition mode (X-7t, Philips, Nederland), at 0° with
the TEE probe rotated towards the aorta. The probe was initially placed in the
deepest esophageal position, in correspondence with the diaphragm, where the
first dataset was acquired. Sequential overlapping segments were obtained by
retracting the probe by increments of approximately 1 cm step (z-axis, foot-to-
head, Figure 1). This increment was evaluated by monitoring the movement of
the TEE tube at the patient’s mouth. This process was repeated until reaching
the aortic arch. Such procedure ensures spatial correspondence between multiple
acquisitions because of the forced path of the TEE probe along the esophagus
and large overlap between consecutive volumes due to small gap between con-
tiguous probe positions. No echo parameter was changed during acquisition of
images belonging to the same patient. Following this protocol, 14 consecutive pa-
tients referred for TEE, were studied and partially overlapped 3D TEE datasets
of the descending aorta were acquired. Of the 14 acquired patients, five were
characterized by the presence of plaques. A different number of datasets (4 to
11) was acquired for each patient, depending on the presence and extension of
atheromas. All datasets were exported in cartesian converted format for further
analysis (QLab, Philips, Netherland).

2.2 Registration

For each patient, the registration process aims to reciprocally align all acquired
datasets and to bring them in the same reference system. We exploited the a
priori knowledge about reciprocal position and range of overlap between images
to initialize and guide the registration. To this rationale, registration was com-
puted for pairs of contiguous images, as presented in the scheme of Figure 2,
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Fig. 1. Schematic describing the acquisition protocol, in which sequential overlapping
3D TEE datasets of the descending aorta were acquired

to take advantage of the information content in the overlapping regions that is
maximum in adjacent volumes.

Initialization and Masks Creation. Due to the lack of frame of reference
and to the extremely limited presence of anatomical landmarks in aortic TEE
datasets, the initial transformation plays a significant role in the success of the
registration process.

The initialization procedure was fully automated and relied on the creation
of image masks obtained from the original pairs of datasets. First, each volume
was thresholded in order to obtain a binary image, with white voxels belonging
to the pyramid acquisition. From it, a sub-volume was obtained by setting to
black the voxels corresponding to the tip of the pyramid, defined as 1/4 of the
total volume of the bounding box including the acquisition pyramid (Figure 3
a)). Finally, voxels belonging to the upper or to the lower sub-volume of the
binary image, corresponding to 1/3 of the total volume of the bounding box
including the pyramid, were set to zero according to the reciprocal position of
the two datasets to be registered. Namely, for the volume in the considered pair
obtained in the deepest esophageal position the lower sub-volume was set to
zero, and vice versa (Figure 3 b) and c)).

The so-obtained masks highlight the voxels in the original datasets that, in
agreement with the acquisition protocol, are expected to be superimposed after
registration. Their role was twofold: firstly, by overlying their centers of mass,
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Fig. 2. Scheme of the algorithm: starting from the consecutive overlapping images
(imageN ), pairwise registration (TN−1

N ) was applied resulting in reciprocally aligned
images (IMAGEN ). After their composition and resampling into a common reference
system, a fusion step is performed to allow 3D view of the output.

it was possible to obtain an adequate and automatic transformation to be used
to initialize the registration process. Secondly, they were used in the registra-
tion to select the voxels that contributed to the metric computation. This was
necessary because TEE aortic datasets are characterized by very limited morpho-
logical distinctive features between different datasets, so that, without masking,
registration would very likely result in local optima in which pyramidal shapes
are overlapping.

Fig. 3. Masks creation: removal of the tip a), the bottom b) or the top portion c)
of the acquisition pyramid to highlight voxels in the dataset that are expected to be
superimposed for each pair of dataset after registration

Pairwise Registration and Composition. After initialization, a standard
voxel-based multi resolution algorithm was used to register contiguous pair of
TEE aortic dataset. A 3D rigid registration approach with three level of mul-
tiresolution and gradient descent optimizer was chosen, and normalized cross
correlation (NCC) between masked images was set as similarity metric to guide
the registration process. The three level multiresolution pyramid was obtained
with isotropic downsampling factors of 4, 2 and 1.
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To ensure temporal correspondence between datasets belonging to the same
patient, the first frame, corresponding to end diastole, was selected for each
acquisition and used for the analysis. We assumed that a rigid transformation
(T = {Tx, Ty, Tz, θx, θy, θz}) was adequate to align our datasets, as temporal
correspondence was ensured by ECG gating, and acquisition parameters were
kept fixed during the entire TEE exam.

After calculating all pairs of registration for each patient, transformations
were composed in order to bring all datasets in the same reference system. We
considered as the reference image the first volume acquired in the study proto-
col, i.e. the dataset corresponding to the deepest esophageal position. Then, all
transformations were mapped with respect of this first image, according to the
following equation:

T n
1 =

n−1∏
i=1

T i+1
i (1)

where T n
1 is the transformation of the nth image with respect to position of

the first acquired image. The entire algorithm was developed in C++ using the
Insight Toolkit [7].

2.3 Validation on Simulated Data

For validation purposes, two datasets were derived from a single 3D TEE dataset
with isotropic spatial resolution of 0.17mm, to test the performance of the pair-
wise registration algorithm. Two sub-volumes (VOI1 and VOI2) were obtained
by cutting 30% of the upper or lower portion of the original volume along the
z axis, respectively, in order to obtain partially overlapped volumes with known
ground truth positions. VOI1 was set as reference image and VOI2 was artificially
misaligned.

Known rototranslations were obtained by randomly sampling a linear distri-
bution of translation values in the range of [-10; +10] mm along the z direction,
[-5; +5] mm along x and y direction and of rotation values in the range of [-10°,
+10°] along each axis. Translation along z-axis was greater than those along x-
and y- axis to simulate misalignment conditions in agreement with the acquisi-
tion protocol.

Following this scheme, 30 different transformations were obtained and applied
to VOI2, which was finally resampled along the VOI1 grid in order to obtain an
artificially misaligned dataset. Registration of the datasets was performed as
described in Section 2.2, and residual errors after registration were computed.
Both multi- and mono-resolution registration approaches were tested and their
performance compared in terms of residual errors and computational time.

2.4 Clinical Validation

Several criteria were applied to quantify the pairwise registration accuracy in
contiguous datasets in patients. Custom software for semi-automated segmenta-
tion of aortic plaques requiring minimal user interaction was used to obtain a 3D
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mesh from each dataset in which posterior aortic wall and atheromas were iden-
tified [6]. The computed geometrical transformation obtained from registration
of pairs of contiguous data was then applied to the 3D meshes to allow visual as-
sessment of correspondence between detected plaques (Figure 4). Furthermore,
mean surface distance (MSD) and Hausdorff distance (HD) between 3D meshes
corresponding to the same plaque, if present, in contiguous datasets were com-
puted. Finally, displacements along z-axis between all consecutive dataset after
registration was recorded in order to verify the consistency with the probe dis-
placement defined in the acquisition protocol.

Fig. 4. Example of the clinical validation procedure. Top left: the two contiguous 3D
TEE datasets in which a detail of the same plaque was highlighted with a yellow circle.
Bottom left: the corresponding result, as 3D mesh, of plaque segmentation obtained
with custom software, with a detail of the same plaque highlighted with a blue circle.
Right: result of the image registration, defined using the original 3D TEE data, ap-
plied to the 3D meshes. The overlap of the two corresponding details of the plaque is
highlighted.

3 Results

Residual registration error after simulations on artificially misaligned images,
as described in 2.3, are presented in Table 1. Very limited errors were found in
both mono and multi resolution approaches. As expected, computational time for
multi resolution approach was significantly lower than mono resolution approach:
85s and 161s (median value), respectively, for each pair of registered datasets.

For the 14 consecutive patients, 142 3D TEE datasets were overall acquired
and 128 pairwise registrations consequently computed. All registration results
were visually checked by an experienced observer as described in Section 2.4
and 90% judged reliable for correspondence of aortic wall and plaques, when
present. Values of translations along the z-axis of 6.15 (2.36; 10.09) mm (median
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Table 1. Residual registration error in phantom datasets expressed as delta transla-
tions (ΔTx, ΔTy, ΔTz) and rotations (Δθx , Δθy, Δθz). Values are presented as median
(25th; 75th percentile).

mono resolution multi resolution

ΔTx 0.016 (0.01; 0.036) mm 0.012 (0.008; 0.025) mm

ΔTy -0.01 (-0.012; -0.006) mm -0.008 (-0.010; -0.0045) mm

ΔTz -0.005 (-0.0142; 0.0004) mm -0.003 (-0.009; 0.0009) mm

Δθx -0.006° (-0.025°; 0.003°) -0.005°(-0.017°; 0.002°)

Δθy 0.002° (-0.002°; 0.007°) 0.002° (-0.0005°; 0.0073°)

Δθz 0.021° (0.018°; 0.026°) 0.018°(0.015°; 0.021°)

and interquartile range) were found, in the range of the probe displacement
defined in the acquisition protocol. In the subset of five patients characterized
by the presence of plaques, 41 3D TEE datasets were overall acquired and 36
pairwise registrations computed. Among these, 18 pairs of volumes presented at
least one corresponding plaque. In these cases, MSD and HD were computed
between pairs of surfaces representing the same plaque in contiguous datasets
resulting in median and interquartile values of 0.9 (0.5; 1.5) mm and 4.7 (3.4; 8)
mm, respectively.

After registration, composition of the transformations with respect with the
first acquired volume allowed for 3D visualization of datasets by means of surface
as well as volume rendering. In the left panel of Figure 5, composed surface
rendering of 9 registered datasets is presented, as resulting segmented mesh, in
which a color code was applied to highlight different plaque thickness. In the

Fig. 5. Example of data composition and fusion: color coded surface rendering of 9
registered datasets (left panel), fused image by means of mean fusion rule, composed
by 10 contiguous dataset (right panel)
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right panel, an example of fused image by means of simple mean intensity fusion
rule, and composed by 10 contiguous datasets is shown.

4 Discussion

Aortic plaques are not only independent risk factors for stroke and peripheral
emboli [8], but their presence was also associated with carotid, coronary and renal
artery disease [2,10]. Thus, identification and quantification of aortic atheroscle-
rotic burden in the descending aorta is clinically relevant. TEE is readily avail-
able and is routinely performed on patients to identify cardiac source for embolic
event as well as during cardiac surgery. Besides, TEE is one of the main imaging
modality used to guide percutaneous procedures, where complication rates are
increased by peri-procedural plaque embolization. Thus, TEE is a suitable tool
for assessing aortic atherosclerosis [9,11].

We proposed a robust and efficient approach for acquiring and composing
3D TEE datasets of the descending aorta. To the best of our knowledge, this
is the first time that the registration and composition of 3D TEE contiguous
aortic datasets is proposed. This method allows for the 3D morphological re-
construction of the descending aorta from 3D TEE images, by augmenting the
field-of-view in respect to the acquisition and analysis from a single position.
Thus, it potentially results into precise spatial localization of atherosclerotic
plaques and quantification of the total plaque burden for the patient.

Our study is based on a dedicated acquisition protocol, that slightly differs
from routine 3D TEE aortic examination, but which complexity is minimal and
potentially possible in all patients already undergoing TEE examinations. In
[12], Housden et al. rigidly registered 3D TEE cardiac datasets to obtain a
compounded image with extended field-of-view and their proposed initialization
strategy was based on probe tracking by X-ray imaging. In our study, instead,
the acquisition protocol resulted in sequentially ordered and partially overlapped
datasets, so that we were able to exploit this a priori knowledge to perform
automatic and robust initialization necessary for image registration.

The registration step is based on known intensity based multi resolution ap-
proach and guided by NCC metric. A similar algorithm was previously adopted
by [13], as a first step for multiview fusion of real time 3D TTE images, with the
aim of obtaining high quality images of the cardiac chambers. Nevertheless, regis-
tration of 3D TEE aortic dataset represents a more difficult task than ventricular
images, due to the lack of characteristic structures and anatomical landmarks.
As a first step for validation of the pairwise registration, we used two virtually
derived artificially misaligned datasets, which results showed very limited resid-
ual registration error, proving the robustness of our approach. Due to the limited
size of the original 3D TEE dataset, we were able to obtain only two artificially
misregistered subvolumes, while up to 11 consecutive volumes were registered
and composed for clinical data. However, this first validation was carried out to
test the performance of the registration, which in our study was performed for
pairs of consecutive volumes. On patients datasets, each registration was first
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checked by visual inspection and high success rate was reported (90%). In the
remaining 10% of cases in which the alignment procedure failed, the ECG gating
probably was not able to avoid other deformations, such as pulsatile or breathing
motion, and affine or non-rigid registration should be considered. Furthermore,
quantitative validation was based on MSD and HD indices, that however was
possible only in 5 patients, in which plaques were present. In this limited cohort,
we found small MSD values, proving that corresponding plaques in contiguous
volumes were correctly overlapped after registration, thus supporting the fea-
sibility and accuracy of the method in the clinical settings. It is worth noting
that the reported higher HD values are justified by the fact that maximum dis-
tance between surfaces is increased as atheromas located on overlapping areas
could also extend to non-overlapping regions. Furthermore, displacement along
the z-axis resulting from the registration process between contiguous dataset
was studied. This axis is approximately correspondent to the longitudinal axis
of the aorta, as the acquisition is forced by the movement of the probe along the
esophagus. The relative position of volumes after registration was verified to be
consistent with the range allowed in the acquisition protocol. Further validation
with gold standard imaging techniques (i.e., CT scans or MRI), in which the
entire descending aorta is imaged, is required to provide additional information
on the algorithm performance.

In conclusion, 3D TEE contiguous and partially overlapped datasets of the
descending aorta can be efficiently registered by an automatic algorithm based
on a priori knowledge of the acquisition protocol. As such, routine investigation
could include systematic 3D data acquisition of the aorta during TEE to improve
the information on total aortic plaque burden in the echocardiographic report.
This will allow standardization of analysis across echocardiographic laboratories
and provide quantification for reporting purposing, which aids in follow-up and
use in clinical trials.
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Abstract. Accurate registration of retinal fundus images is vital in com-
puter aided diagnosis of retinal diseases. This paper presents a robust
registration method that makes use of the intensity as well as structural
information of the retinal vasculature. In order to correct for illumina-
tion variation between images, a normalized-convolution based luminos-
ity and contrast normalization technique is proposed. The normalized
images are then aligned based on a vasculature-weighted mean squared
difference (MSD) similarity metric. To increase robustness, we designed
a multiresolution matching strategy coupled with a hierarchical regis-
tration model. The latter employs a deformation model with increasing
complexity to estimate the parameters of a global second-order transfor-
mation model. The method was applied to combine 400 fundus images
from 100 eyes, obtained from an ongoing diabetic retinopathy screening
program, into 100 mosaics. Accuracy assessment by experienced clinical
experts showed that 89 (out of 100) mosaics were either free of any no-
ticeable misalignment or have a misalignment smaller than the width of
the misaligned vessel.

Keywords: Mosaicking, fundus illumination normalization, diabetic
retinopathy screening.

1 Introduction

Registration of retinal fundus images plays a crucial role in computer-aided di-
agnosis and screening of the human eye for various retinal diseases. Depending
on the targeted clinical application, fundus image registration can aid retinal
examination in three ways. Firstly, mosaicking creates a larger field-of-view by
stitching individual images. Such a mosaic facilitates comprehensive retinal ex-
amination at a single glance. Secondly, multimodal registration spatially aligns
images from different modalities, thereby fusing complementary information into
a single image. Thirdly, longitudinal registration aligns a series of fundus images
taken over time. This is especially vital in screening or staging of progressive eye
diseases such as age-related macular degeneration (AMD) and diabetic retinopa-
thy [1, 2].
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The success of these clinical applications depends on the accuracy of the
registration algorithm. Although several fundus image registration algorithms
have been proposed in the past decades [3–9], accurate and robust registration
of retinal images still remains a challenge. This is mainly due to the sometimes
very small image overlap, severe illumination artifacts near the frame boundaries,
and the spatial distortion as a result of mapping the curved retinal surface onto
the image plane.

Depending on the image information used for matching, existing algorithms
can be grouped into intensity-based and feature-based methods. Intensity based
methods make use of the similarity between the intensity or RGB values of raw
or pre-processed images [3, 4]. Nicola et al. [3] used mutual information as a
similarity criterion to estimate the parameters of a global (rigid) affine model.
In [4], the correlation between the binary vasculature masks of segmented fundus
image pairs is optimized. These intensity based methods ignore the quadratic
and higher order terms of the image distortion.

Feature-based methods [5–9] make use of saliency or landmark points, disre-
garding most of the structural information embedded in the local correlation of
fundus images. In [5], retinal vessel bifurcations and crossover points are used as
landmarks in a hierarchical optimization of a quadratic transformation model.
Stewart et al. [6] used vessel bifurcations for initialization of a dual-bootstrap
iterative closest point (ICP) algorithm to align the vessel centerlines using a
quadratic transformation model. Chanwimaluang et al. [7] used the vasculature
tree for initialization and the quadratic model parameters are estimated using
the vessel bifurcation and crossover points. In [8], a radial distortion correction,
estimated using vessel bifurcations, is applied prior to registration in order to
correct the distortion caused by the curved to planar surface mapping. Recently,
Jian et al. [9] proposed salient feature regions (SFR) as landmark points of
fundus images and local features extracted from these points are subsequently
matched.

In general, the accuracy and robustness of feature-based methods are highly
dependent on the feature detection method, the number of detected features,
and their distribution in the image. The latter two conditions are restrictive in
registration of fundus images, because vessel branching and crossover points are
sparsely and unevenly distributed. Furthermore, this effect gets even worse if the
region of overlap between the image pairs becomes smaller.

In this paper, a registration method is proposed that exploits the intensity
as well as the structural information of the retinal vasculature. We introduce a
novel technique to normalize the green fundus image channel for illumination
and contrast variation, thereby improving the visibility of the vasculature and
hence the registration accuracy in these regions. The method then aligns retinal
vessels based on the normalized images. We designed a multiresolution match-
ing strategy coupled with a hierarchical registration model with a deformation
model of increasing complexity for robust optimization of a global second-order
transformation model.
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Fig. 1. Overview of the proposed registration framework. First, the green channels of
the fundus images are normalized for luminosity and contrast. Then, a hierarchical
coarse-to-fine registration method is applied to produce a mosaic.

2 Methods

The proposed method, outlined in figure 1, starts by normalizing the image lumi-
nosity and contrast, which vary greatly due to illumination conditions. Then the
images are spatially aligned by first estimating the lower order transformation
model parameters at a coarse resolution level and propagating the results to the
next finer resolution level, where higher order model parameters are introduced.
To guide the registration by vasculature regions, more weight was assigned to
pixels in these regions.

2.1 Image Normalization

The main limitations of using the raw intensity values of fundus images for regis-
tration are the luminosity and contrast variations caused by non-uniform illumi-
nation of the retina during image acquisition. In this work, this intra and inter
image variation is compensated for by applying an improved version of Forac-
chia’s luminosity and contrast normalization method [10] to the green channel
(IG) of our RGB fundus images. The method relies on the intensity distribution
of the retinal background (excluding vessels, optic disc, and lesions) to estimate
local luminosity (L) and contrast (C). To compensate for local variations, the
normalized image IN , becomes:

IN =
IG − L

C
, (1)

where L and C are respectively the sample mean and standard deviation of the
background image in the neighborhood of each pixel. However, since the back-
ground image is locally masked by retinal features such as blood vessels, a local
signal approximation is required to handle this space-variant reliability map in
neighborhood operations. In this paper, a higher-order normalized convolution
is used to approximate the luminosity map. It takes into account missing or
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(a) (b) (c)

(d) (e) (f)

Fig. 2. An example of illumination normalization on a pair of fundus images. (a) and
(d) Green channel of fundus images. (b) and (e) Normalized fundus images using the
method described in [10]. (c) and (f) Normalized fundus images using the proposed
normalized convolution technique.

unreliable data samples and gives a better estimate of linear and quadratic vari-
ations in the illumination pattern [11, 12]. This is done by projecting each pixel
and its neighbors on a set of basis vectors, chosen from the second-order Taylor
expansion of the pixel around the neighbors, to create a new representation [12].
The contribution of each neighbor pixel is controlled by a Gaussian applicability
function combined with a confidence measure, which encodes the presence or
absence of background pixel values.

In figure 2, a typical example of a pair of fundus images from the same eye
captured one year apart are shown before and after image normalization. The
normalized image pairs (figure 2c and 2f) appear much more similar than the
unprocessed image pairs (figure 2a and 2d). Moreover, the normalized convolu-
tion approach provides a far better contrast of the fine vasculature compared to
the method described in [10] (figure 2b and 2e), especially around the border of
the images. This is very crucial in registration of fundus images. As most of the
overlap occurs around border regions, the registration accuracy depends on how
well the vasculatures in these regions are aligned.

2.2 Registration Initialization

Convergence and robustness of image registration requires a good starting point.
In this paper, we propose a robust initialization algorithm using overlap-corrected
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cross-correlation, i.e. standard cross-correlation divided by the number of over-
lapping pixels from which it is computed (see Eq. 2). This allows the cross-
correlation to be invariant to the overlap between images. In order to further
handle rotation between the image pairs (e.g. due to possible head, eye or camera
motion between consecutive image acquisitions), this is done at three rotation
angles, α = 0◦,±5◦, and at a very coarse scale, i.e. by blurring with a Gaussian
filter of σ = 32 pixels and downsampling by a factor of s = 16.

I
ĈC

(u, v, α) =

M∑
x=1

N∑
y=1

If (x, y)Im(x′, y′)

M∑
x=1

N∑
y=1

Ωf (x, y)Ωm(x′, y′)
, (2)

where I
ĈC

is the overlap-corrected cross-correlation and If and Ωf (Im and Ωm)
are the normalized image and field-of-view mask of the fixed (moving) image of
size M × N , respectively. (x′, y′) = (x cosα − y sinα + u, x sinα + y cosα + v)
are the rotated and translated pixel coordinates. For each angle, the values of u
and v that maximize I

ĈC
are tentatively selected. The optimal angle (α̂), and

the corresponding values for u and v, are then selected by minimizing the mean
squared difference (MSD) of If (x, y) and Im(x′, y′). In our study, since the image
pairs are represented at a very coarse scale, the three angles (five degrees apart)
are enough to find the starting point for the registration.

2.3 Hierarchical Coarse-to-Fine Registration

Since the image pairs are normalized for luminosity and contrast, the MSD can
be used as similarity metric. The registration is further guided by the vascula-
ture regions as they provide the main distinctive structures of fundus images,
thereby restricting the effect of intensity change in the background region due
to factors such as disease progression and artifacts. This is achieved by weight-
ing the contribution of each pixel to the similarity metric using a measure for
vesselness V (x, y) ∈ [0, 1]. The vesselness-weighted cost function to minimize is:

ε =
1

|Ω|
∑

(x,y)∈Ω

V 2(x, y) ·
[
If (x, y)− Im

(
T (x, y;Θ)

)]2
, (3)

where T (·) is the transformation model parameterized by Θ, If and Im are the
normalized values of the fixed (anchor) and moving (floating) image, respectively,
and Ω is the set of all overlapping pixels in the image pairs. The vesselness maps
of both normalized images were computed from the multi-scale (σ ∈ [1, 9] pixels),
second-order local image structure [13]. The pixelwise maximum of the two maps
was then dilated by a disk structuring element of 25 pixels radius and used as a
weight.

As fundus imaging involves mapping the curved retinal surface onto a flat
image plane, a transformation model of at least second-order is required to accu-
rately align images. In this work, a global 12 parameter quadratic transformation
model is used [5]:
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Table 1. Transformation model and parameters at each pyramid level of the proposed
hierarchical coarse-to-fine registration approach. σ and s are the Gaussian blurring
scale and subsampling factor, respectively. The deformation model parameters at each
level are optimized using Eqs 3 and 4. Note that α̂ is a fixed angle optimized at the
initialization stage (section 2.2).

Level Transformation Parameters σ (pixels) s

1 Translation

(
0 0 0 cos α̂ − sin α̂ θ1
0 0 0 sin α̂ cos α̂ θ2

)
16 8

2 Similarity

(
0 0 0 cosα − sinα θ1
0 0 0 sinα cosα θ2

)
8 4

3 Affine

(
0 0 0 θ1 θ2 θ3
0 0 0 θ4 θ5 θ6

)
4 2

4a
Simplified
Quadratic

(
θ1 θ1 0 θ2 θ3 θ4
θ5 θ5 0 θ6 θ7 θ8

)
2 2

4b Quadratic

(
θ1 θ2 θ3 θ4 θ5 θ6
θ7 θ8 θ9 θ10 θ11 θ12

)
1 1

T (x, y;Θ) =

(
x′

y′

)
=

(
θ1 θ2 θ3 θ4 θ5 θ6
θ7 θ8 θ9 θ10 θ11 θ12

)(
x2 y2 xy x y 1

)T
, (4)

where (x′, y′) are the transformed pixel coordinates and θi is an element of the
transformation matrix Θ.

In order to improve the robustness in estimating the parameters of the trans-
formation model, a hierarchical multiresolution method is applied. The method
employs a four level coarse-to-fine Gaussian pyramid, in which the complexity
of the deformation model increases with every step downwards in the pyramid:
first translation-only at the top level, second translation and rotation, third
an affine transform followed by a simplified quadratic model (4a) and finally a
full quadratic model (4b). The simplified quadratic model assumes an isotropic
second-order deformation along both x and y dimensions. Each level of the Gaus-
sian pyramid is formed by blurring and downsampling. Table 1 summarizes the
transformation models, the blurring scale, and subsampling factors.

At each level of the pyramid, the model parameters which minimize the cost
function ε, are optimized using Levenberg-Marquardt. In order to take into ac-
count the difference of the magnitude of each parameter’s search space, a scaling
technique is employed. In addition, the parameters are orthogonalized with re-
spect to each other so as to mitigate intra-parameter correlation. Since the opti-
mization of each level is initialized by the results of the previous level, the risk of
getting stuck into a local minimum is greatly reduced. Moreover, the hierarchical
coarse-to-fine approach speeds up the convergence of the Levenberg-Marquardt
algorithm by providing an appropriate initial estimate of parameters at succes-
sive pyramid levels.
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3 Experiments and Results

3.1 Data Description

Data for this study was obtained from an ongoing diabetic retinopathy screen-
ing program at the Rotterdam Eye Hospital. 70 diabetes patients who visited
the hospital in two consecutive years for diabetic retinopathy screening were in-
cluded. During each visit, four images of macula-centered, optic nerve-centered,
superior, and temporal regions of the retina were acquired from each eye. 400
images from 100 eyes, selected randomly from the first or the second year, were
combined into 100 mosaics. At least one eye of each patient was included in this
study.

3.2 Data Processing

For each eye, the image having the largest overlap with the remaining three
images was selected as the fixed image. Then, starting with the fixed image as
intermediate result, each of the three images were registered sequentially to the
intermediate result in order of decreasing overlap area with the fixed image. The
overlap between image pairs was as low as 14%, with an average of 48%. In total,
300 registrations were accomplished to create the 100 mosaics.

After registration, instead of averaging the overlapping area, each mosaic was
constructed by overlaying the four individual images on top of each other. This
is particularly important to assess the registration accuracy of fine vasculatures
as combining by averaging conceals any misalignment or yields spurious blurring
in the overlap regions. By changing the order of overlay, each image appeared in
the top layer once, resulting in four mosaics. These mosaics were put together
to form a mosaic video which was then used for grading.

3.3 Fundus Mosaic Grading

Unlike the conventional approach where the centerline error between the aligned
vessels is used to quantify the accuracy of alignment, we let clinical experts
do the evaluation. Two experienced graders, which are involved in the diabetic
retinopathy screening program, independently assessed the accuracy of the nor-
malized mosaic images. Each of the graders evaluated the accuracy of the overall

Table 2. Evaluation results of 100 mosaics from both graders. Each grader evaluated
half of all the data.

No. of mosaics

Grade Grader 1 Grader 2 Total

Off 1 2 3
Not Acceptable 8 0 8

Acceptable 35 10 45
Perfect 6 38 44
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Fig. 3. A fundus mosaic which was graded as ‘perfect’. The zoomed in and overlaid
image patch shows part of the mosaic in which three images overlapped.

Fig. 4. A fundus mosaic which was graded as ‘not acceptable’. The arrows in the
zoomed in and overlaid image patch mark the misaligned micro-vessels, resulting in
a blurred or double appearance of the vessels. The image patch on the left shows
accurately aligned fine vasculatures.

mosaic by assessing how well the vasculatures in the overlap region were aligned
and assigned a grade to it. Mosaics were graded based on the region with the
worst alignment. The possible grades were:
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• Off: an image is placed at an incorrect location.
• Not Acceptable: a misalignment larger than the width of a misaligned
vessel.

• Acceptable: a misalignment smaller than the width of a misaligned vessel.
• Perfect: no noticeable misalignment.

It should also be noted that in our evaluation a mosaic is considered as ‘not
acceptable’ even if the misalignment occurs in a very small fraction of the overlap
region between two images.

3.4 Results

The evaluation results from both graders are summarized in table 2. Figure 3
shows a mosaic image which was graded as ‘perfect’. A mosaic which was graded
as ‘not acceptable’ is shown in figure 4. The overlap regions in the mosaics of
figure 3 and 4 are constructed by averaging.

4 Discussion and Conclusion

In this paper, we present a robust hierarchical coarse-to-fine registration method
for fundus images. The intensity as well as the structural information of the reti-
nal vasculature are exploited to spatially align the four images. The method reg-
isters retinal images after normalization for luminosity and contrast variation
within and between images. The alignment is done based on the vasculature-
weighted MSD of the normalized images, solving the inherent limitation of
feature-based algorithms of being dependent on the number and distribution
of features. The robustness benefited greatly from the multiresolution matching
strategy. We coupled a hierarchical coarse-to-fine registration with a deformation
model of increasing complexity to estimate the parameters of a global second-
order spatial transformation model. Careful initialization of each step with the
results of the previous scale reduced the risk of getting trapped in a local mini-
mum during the optimization.

Among the 100 mosaics created by the proposed method, 44 mosaics were
free of any noticeable misalignment (‘perfect’ grade) and 45 mosaics received an
‘acceptable’ grade. Three mosaics were graded as ‘off’, all due to a failure in
the first initialization stage. One of these failures could be attributed to a very
poor image quality. Note that none of the 400 images were used to develop the
method.

In the remaining eight mosaics, even though the accuracy of the alignment
was good in most of the overlap area, a small misalignment of one or two micro-
vessels resulted in a ‘not acceptable’ grade. The misalignments in these mosaics
occurred mostly in fine vasculature regions (see figure 4). Here, the low signal-to-
noise ratio resulted in a weak second-order local structure and, therefore, a low
vesselness weight. In these cases, the registration was mainly guided by larger
vasculature in regions around it.
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In future work, we plan to evaluate a larger data set and include inter-observer
agreement in our evaluation. The accuracy of the algorithm will also be evaluated
for registering images from inter-visit retinal examinations. Finally, we have
plans to compare the performance of our approach with other retinal image
registration methods.
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1. Abràmoff, M.D., Garvin, M., Sonka, M.: Retinal imaging and image analysis. IEEE
Reviews in Biomedical Engineering 3, 169–208 (2010)

2. Zhou, L., Rzeszotarski, M.S., Singerman, L.J., Chokreff, J.M.: The detection and
quantification of retinopathy using digital angiograms. IEEE Transactions on Med-
ical Imaging 13(4), 619–626 (1994)

3. Ritter, N., Owens, R., Cooper, J., Eikelboom, R.H., Van Saarloos, P.P.: Registra-
tion of stereo and temporal images of the retina. IEEE Transactions on Medical
Imaging 18(5), 404–418 (1999)

4. Matsopoulos, G.K., Mouravliansky, N.A., Delibasis, K.K., Nikita, K.S.: Auto-
matic retinal image registration scheme using global optimization techniques. IEEE
Transactions on Information Technology in Biomedicine 3(1), 47–60 (1999)

5. Can, A., Stewart, C.V., Roysam, B., Tanenbaum, H.L.: A feature-based, robust,
hierarchical algorithm for registering pairs of images of the curved human retina.
IEEE Transactions on Pattern Analysis and Machine Intelligence 24(3), 347–364
(2002)

6. Stewart, C.V., Tsai, C.L., Roysam, B.: The dual-bootstrap iterative closest point
algorithm with application to retinal image registration. IEEE Transactions on
Medical Imaging 22(11), 1379–1394 (2003)

7. Chanwimaluang, T., Fan, G., Fransen, S.R.: Hybrid retinal image registration.
IEEE Transactions on Information Technology in Biomedicine 10(1), 129–142
(2006)
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Abstract. Respiratory motion models relate the motion of the internal anatomy, 
which can be difficult to directly measure during image guided interventions or 
image acquisitions, to easily acquired respiratory surrogate signal(s), such as 
the motion of the skin surface. The motion models are usually built in two 
steps: 1) determine the motion from some prior imaging data, e.g. using image 
registration, 2) fit a correspondence model relating the motion to the surrogate 
signal(s). In this paper we present a generalized framework for combining the 
image registration and correspondence model fitting steps into a single optimi-
zation. Not only does this give a more theoretically efficient and robust  
approach to building the motion model, but it also enables the use of ‘partial’ 
imaging data such as individual MR slices or CBCT projections, where it is not 
possible to determine the full 3D motion from a single image. The framework 
can also incorporate motion compensated image reconstruction by iterating be-
tween model fitting and image reconstruction. This means it is possible to esti-
mate both the motion and the motion compensated reconstruction just from the 
partial imaging data and a respiratory surrogate signal. 

We have used a simple 2D ‘lung-like’ software phantom to demonstrate a 
proof of principle of our framework, for both simulated ‘thick-slice’ data and 
projection data, representing MR and CBCT data respectively. We have imple-
mented the framework using a simple demons like registration algorithm and a 
linear correspondence model relating the motion to two surrogate signals. 

1 Introduction 

Respiratory motion is often a problem when acquiring images or planning and guid-
ing interventions (e.g. surgery, radiotherapy) in the abdomen and thorax. It can cause 
artefacts in reconstructed images, limiting their utility, and can cause misalignment 
between the planned intervention and the moving anatomy, limiting the accuracy of 
the guidance and leading to uncertainties in the delivered treatment. One solution to 
the problem of respiratory motion, which has been proposed for a wide range of dif-
ferent applications, is the use of respiratory motion models [1].  

There are three elements to these motion models: the motion of the organ/anatomy 
of interest, respiratory surrogate data, and a correspondence model. If the motion of 
interest is known during the procedure (the image acquisition or the image guided 
intervention) then it can be corrected for, e.g. by performing a motion compensated 
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image reconstruction [2,3], or by ‘animating’ the treatment/intervention plan to follow 
the motion [4]. However, it is usually very difficult or impossible to directly measure 
the full motion of interest during the procedure due to limitations of the imaging 
equipment and/or impositions made by the intervention. In contrast, the respiratory 
surrogate data should be easy to acquire during the procedure, but cannot be used 
directly to compensate for the motion. The respiratory surrogate data is usually one or 
more simple 1D signals, such as the displacement of the skin surface or diaphragm, or 
the tidal volume measured with spirometry. The correspondence model relates the 
surrogate signal(s) to the motion of interest, and is fitted to some prior data before the 
start of the procedure (Fig 1). During the procedure the model is then used to estimate 
the motion of interest from measurements of the surrogate signal(s). 

Fig. 1. An illustration of how a respiratory motion model is typically built. Respiratory surro-
gate data is simultaneously acquired with imaging data. Image registration is then used to de-
termine the motion from the imaging data (1). Once the motion has been determined a corres-
pondence model is fitted which relates the motion to the surrogate data (2).  

The prior data used to fit the correspondence models consists of simultaneously 
acquired surrogate signal(s) and imaging data. The motion models are usually con-
structed in two distinct steps: 1) determine the respiratory motion from the imaging 
data using image registration, and 2) fit the correspondence model relating the surro-
gate signal(s) to the motion determined in step 1 (Fig 1). In this paper we propose a 
new generalized framework that combines the image registration and the model fitting 
into a single optimization. Not only does this give a more theoretically efficient and 
robust approach to determining and modelling the motion, but it also enables the use 
of ‘partial’ imaging data such as CBCT projections, or individual MR slices, where it 
is not possible to determine the full 3D motion from a single image. Additionally, it is 
straightforward to incorporate motion compensated image reconstruction into this 
framework using an iterative scheme. 

This means the framework is particularly well suited to motion compensated image 
reconstruction applications, as the motion model can be fitted to the ‘unreconstructed’ 
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partial imaging data, rather than requiring some previously reconstructed imaging 
data for fitting the motion model. E.g., some authors have proposed building a motion 
model from 4DCT data, and using this motion model to motion compensate a CBCT 
scan acquired at a later time [2]. This can lead to problems when there are differences 
in the motion and/or anatomy between the 4DCT data and the CBCT scan (as is often 
seen during the course of radiotherapy). Using the framework proposed here it is 
possible to build the motion model directly from the CBCT projection data, and then 
use the model to motion compensate the CBCT reconstruction [5]. No prior 4DCT 
data is required. 

It should be noted that a few publications that could be said to already fit into the 
framework proposed here, e.g. [5,6]. However, these publications have all been fo-
cused on a particular application, registration algorithm, and motion model, whereas 
the framework presented here is a generalized framework that can be applied to a 
wide range of applications, registration algorithms, and motion models. 

2 Theory and Methodology 

2.1 Respiratory Motion Models 

To build a respiratory motion model imaging data must be simultaneously acquired 
with one or more respiratory surrogate signals. The imaging data consists of Nt  
distinct images, ۷ଵ ڮ ۷ே೟, each acquired at a different time-point and representing a 
different respiratory state. These should cover at least one breath cycle, although 
sometimes several breath cycles will be imaged so that inter-cycle variations can be 
observed and modelled. A reference-state image, I0, is also required. This could be 
one of the images already acquired or it could be some other image, e.g. a high quality 
breath-hold image. 

The typical approach to building respiratory motion models is to first determine the 
motion from the image data using image registration, and to then fit a correspondence 
model that relates the motion to the surrogate signals using a methods such as linear 
least squares [1]. To determine the respiratory motion image registration is performed 
between I0 and each of the other images, In, where n = 1…Nt. Each registration is 
usually performed independently. The motion at time-point n can then be represented 
by the motion parameters, Mn, which describe the spatial transformation resulting 
from the registration to image In. 

A respiratory correspondence model is parameterized by a set of model parameters, 
R, and relates Mn to the surrogate signals, ܁௡ ൌ ଵ,௡ݏ ڮ  ேೞ,௡, where Ns is the numberݏ
of surrogate signals measured at each time-point, n, i.e. Mn is a function of Sn and R: ۻ௡ ൌ ݂ሺ܁௡,  ሻ܀

E.g. a linear correspondence model relating the motion to two surrogate signals can 
be parameterized by 3 model parameters (for each motion parameter): ۻ௡ ൌ ଵ,௡ݏଵ܀ ൅ ଶ,௡ݏଶ܀ ൅  ଷ܀
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Many correspondence models have been proposed in the literature, as detailed in 
[1]. Any of these models, including linear, polynomial, and B-spline models, can be 
used within the framework presented below. 

2.2 Combining Image Registration and Respiratory Motion Modelling 

The framework presented in this paper does not follow the typical approach described 
above. Instead, it directly optimizes the correspondence model parameters on all the 
image data simultaneously, such that the motion estimated by the correspondence 
model can be used to transform the reference-state image to best match the image 
data. 

Most image registration algorithms attempt to optimize the value of a cost function 
which expresses how good the registration is: ܥሺ۷ଵ, ۷ଶ,  ሻۻ

This is a function of the motion parameters, M, and two images, I1 and I2, where I2 
is usually the result of transforming another image according to the motion parame-
ters: ۷ଶ ൌ ܶሺ۷଴,  ሻۻ

T is the function that applies the transformation parameterized by M to the image 
I0. Note, in this work I0 is the moving image, as this is more convenient when using 
partial imaging data. The cost function, C, usually consists of one or more similarity 
terms and zero or more constraint terms. A common approach is to calculate the gra-
dient of C with respect to the motion parameters:  ߲ۻ߲ܥ 

and then use an optimization method such as gradient descent or conjugate gradient 
to find the optimal values of M that give the best value of C. 

From the respiratory correspondence model it is possible to calculate the gradient 
of the motion parameters, M, with respect to the model parameters, R, e.g. for the 
linear correspondence model above: ߲܀߲ۻଵ ൌ ,ଵݏ ଶ܀߲ۻ߲ ൌ ,ଶݏ ଷ܀߲ۻ߲ ൌ 1  

The chain rule can be used to find the gradient of the cost function with respect to 
the correspondence model parameters, i.e.: ߲܀߲ܥ ൌ ۻ߲ܥ߲ ܀߲ۻ߲  

and this can be used to directly optimize the model parameters to give the best val-
ue of the cost function on the image data.  
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The model parameters should be optimized on all the image data simultaneously, 
so the total cost function over all images needs to be calculated: 

௧௢௧௔௟ܥ ൌ ෍ ௡ே೟ܥ
௡ୀଵ  

where ܥ௡ ൌ ,൫۷௡ܥ ۷ ೙், ,௡൯ۻ ۷ ೙் ൌ ܶሺ۷଴, ,௡ሻۻ ௡ۻ ൌ ݂ሺ܁௡,  ሻ܀

Sn is the values of the surrogate signals at time n, and R is the current model para-
meters. Likewise, the gradient of the total cost function over all images needs to be 
calculated: ߲ܥ௧௢௧௔௟߲܀ ൌ ෍ ே೟܀௡߲ܥ߲

௡ୀଵ  

where 
డ஼೙డ܀  is the gradient of the cost function with respect to the model parameters 

calculated using image, In, and surrogate signals, Sn. The gradient of the total cost 
function can then be used to find the optimal values of R using the same optimization 
method as used for standard image registration between two images, e.g. gradient 
descent. 

2.3 Using Partial Imaging Data 

With the framework described above it is possible to use ‘partial’ imaging data, such 
as single slices or projections, instead of full images, providing the total partial image 
data still sufficiently samples the motion over the region of interest. When using par-
tial imaging data it is necessary to model the image acquisition/reconstruction 
process: ۾௡ ൌ ௡ሺ۷௡ሻܣ ൅ ઽ௡ 

where Pn is the partial imaging data at time n, In is the full image at time n, εn is 
the imaging noise, and An is the function which simulates the image acquisition at 
time n. E.g. for projection data An would be the forward-projection operator and for 
slice data An would be the slice selection profile. Using An the cost function can be 
calculated for each partial image, Pn: ܥ௡ ൌ ,௡۾൫ܥ ௡൫۷ܣ ೙்൯,  ௡൯ۻ

To calculate 
డ஼డۻ the difference image between the two input images is often re-

quired. When using partial imaging data it is necessary to transform the difference 
image from the space of the partial images, Pn, into the space of the full images, In, as 
the spatial transform parameterized by Mn is defined is the space of the full images. 
This is done using the adjoint of the function An, written as ܣ௡כ , e.g. the adjoint of the 
forward projection operator is the back projection operator. 
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For example, if using Sum of Squared Differences (SSD) as the cost function and 
the linear correspondence model with two surrogate signals from the previous exam-
ples, then: ܥ௡ ൌ ฮ۾௡ െ ௡൫۷ܣ ೙்൯ฮଶଶ 

ଵ܀௡߲ܥ߲  ൌ ቀെ2ܣ௡כ ቀ۾௡ െ ௡൫۷ܣ ೙்൯ቁ ۷׏ ೙்ቁ ଶ܀௡߲ܥ߲ ଵݏ ൌ ቀെ2ܣ௡כ ቀ۾௡ െ ௡൫۷ܣ ೙்൯ቁ ۷׏ ೙்ቁ ଷ܀௡߲ܥ߲ ଶݏ ൌ െ2ܣ௡כ ቀ۾௡ െ ௡൫۷ܣ ೙்൯ቁ ۷׏ ೙் 

2.4 Incorporating Motion Compensated Image Reconstruction 

The framework as described above assumes we have a full reference-state image, I0, 
available. However, the framework can easily be combined with motion compensated 
image reconstruction in an iterative approach, meaning a prior reference-state image 
is not required. 

A number of publications have described how motion compensated image recon-
structions can be performed for different imaging modalities, providing the motion is 
known [2,3]. The motion compensated image reconstruction can be combined into the 
framework described above by iterating between the image reconstruction and model 
fitting [5]. Firstly, a standard (non-motion compensated) reconstruction is performed 
from the partial imaging data. The result will contain blurring and other artefacts 
caused by motion, but can be used as an initial estimate of I0. This is used to fit the 
model parameters, R, as described above. The fitted motion model is then used to 
perform a motion compensated reconstruction and obtain a better estimate of I0. The 
process then continues to iterate between fitting R using the most recent I0, and per-
forming a motion compensated image reconstruction of I0 using the most recent val-
ues of R. 

As the model fitting framework described above is itself iterative, and will likely 
be performed using a multi-resolution scheme (as such schemes are commonly em-
ployed in image registration algorithms), there are different options for how often to 

perform the motion compensated image reconstruction: 1) every time 
డ஼డ܀ is recalcu-

lated, 2) after fitting the model parameters at the current resolution level, 3) after fully 
fitting the model parameters at all resolution levels. 

3 Phantom Experiments 

In order to demonstrate our framework we have performed a number of experiments 
using a simple 2D ‘lung-like’ software phantom of size 128 x 128 pixels (Fig 2a). To 



 Combining Image Registration, Respiratory Motion Modelling 109 

 

‘animate’ the phantom we used a linear correspondence model with two surrogate 
signals. The first signal, s1, was the displacement of the skin surface measured from a 
real patient, and the second signal, s2, was the temporal gradient of the first signal 
(Fig 2b), i.e. the 2nd signal is a derived surrogate signal [1]. The motion parameters, 
M, represented a deformation field with a 2D vector at each pixel. As the reference-
state image corresponded to surrogate values of 0, the ‘offset’ model parameter, R3, 
was not required, so there were 4 model parameters for each pixel (the x and y  
components of R1 and R2). We manually defined the true correspondence models 
parameters, Rtrue, so that they were smoothly varying over the phantom (Fig 2c) and 
produced plausible looking respiratory motion that includes non-linear deformation 
and both intra- and inter-cycle variation (the motion is different during inhalation and 
exhalation and during different breath cycles).  

 

Fig. 2. a) 2D ‘lung-like’ software phantom. b) surrogate signals used to animate the phantom, 
s1 is plotted in blue and s2 is plotted in red. c) top-left: x component of ܀ଵ୲୰୳ୣ, top-right: y com-
ponent of ܀ଵ୲୰୳ୣ, bottom-left: x component of ܀ଶ୲୰୳ୣ, bottom-right: y component of ܀ଶ୲୰୳ୣ. 

We then simulated the acquisition of 3 different types of imaging data (Fig 3): 

1. Full 2D images representing 4DCT like data. 13 images were simulated, covering 
one complete breath cycle. 5% Gaussian noise was added to the images. Fig 3a. 

2. 1D slices representing MR like data. The slices were 5 pixels wide and a Gaussian 
slice profile was used. The slice spacing was 1 pixel (i.e. overlapping slices), and 
slices were acquired from each location in both the x and y directions. Each slices 
was acquired 3 times, giving a total of 768 slices. 5% Gaussian noise was added to 
the slices. Fig 3b. 

3. 1D projections representing CBCT projection like data. Projections were acquired 
with an angular spacing of 1° and a total of 360 projections. 1% Gaussian noise 
was added to the projection data. Fig 3 c. 

To fit the correspondence model parameters, Rfit, to the imaging data we implemented 

a simple ‘demons-like’ registration algorithm. No constraint term was used but 
డ஼డ܀ 

was smoothed with a Gaussian filter (standard deviation = 5 pixels) prior to updating 
the model parameters. SSD was used as the similarity measure. The optimization was 
done using gradient descent and a multi-resolution scheme with 3 resolution levels, 
and stopped when the cost function improved by less than 0.1%. For the slice and 

 



110 J.R. McClelland, B.A.S. Champion, and D.J. Hawkes 

 

projection data the model fitting was performed both using the original reference-state 
image used to simulate the image acquisition, and using motion compensated image 
reconstruction from the partial data. The motion compensated reconstruction was 
updated after fitting the model parameters at the each resolution level (option 2 in 
section 2.4). 

  

Fig. 3. Simulated imaging data. a) full 2D image (6 of 13 images shown), b) 1D slices, c) 1D 
projections. Image number is plotted on the x axis. 

4 Results 

Table 1 gives the mean, standard deviation, and maximum of the absolute difference 
between Rtrue and Rfit for each of the fitted models, as well as the absolute values of 
Rtrue for comparison. The summary statistics are calculated over all 4 model parame-
ters for all pixels inside the phantom. To assess how well the original motion can be 
reproduced by the fitted models we also calculated the Euclidean distance between 
Mtrue and Mfit (the pixel displacements generated by Rtrue and Rfit respectively). Table 
2 gives the mean, standard deviation, and maximum values calculated over all pixels 
inside the phantom and all time-points used in the simulated image acquisitions. The 
values for Mtrue are also given to indicate how much motion occurred (these values 
are from the slice acquisition as this had the most time-points, but the values for the 
other acquisitions are similar). 

It can be seen from Tables 1 and 2 that when using the full images the models can 
be fitted very well and the motion can be reproduced very accurately. The results are 
worse for the partial imaging data, as may be expected, but the models are still fitted 
well and the majority of the motion is reproduced accurately. The mean values are 
lower for the slice data, but the maximum values are lower for the projection data. 
The results are worse when performing motion compensated reconstructions than 
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Figure 4 shows the motion compensated reconstructions from the slice and projec-
tion data using no motion (i.e. a standard reconstruction), Mfit, and Mtrue. It can be 
seen that the motion compensated reconstructions are clearly superior to the non-
motion compensated reconstructions. The reconstructions using Mfit are very similar 
to those using Mtrue, indicating the fitted models can adequately reproduce the motion 
for the purpose of performing motion compensated image reconstructions.  

5 Conclusions 

In this paper we have presented a general framework that can be used to combine 
image registration, respiratory motion modelling, and motion compensated image 
reconstruction. This framework can be used with any registration algorithm that uses 
the gradient of the cost function to optimize the registration and any respiratory  
correspondence model where the gradient of the motion with respect to the model 
parameters can be calculated. This includes most registration algorithms that are 
commonly used, and all correspondence models that we are aware of in the literature. 

To demonstrate this framework we implemented it using a ‘demons-like’ registra-
tion algorithm and a linear correspondence model using two surrogate signals. We 
used a simple 2D software phantom to simulate the acquisition of full images, slice 
image data, and projection image data. For all types of image data the framework was 
able to fit the model directly to the image data and to give a good estimate of the true 
motion. We also showed that motion compensated image reconstruction can be in-
cluded in the framework using an iterative approach, and that we were able to recon-
struct images that were very similar to those obtained when the true motion was used. 

On-going work includes implementing the framework with an efficient open-
source registration package based on the B-spline registration algorithm (NiftyReg1), 
and thoroughly validating the framework using a variety of real clinical data, includ-
ing MR, CBCT projections, and 4DCT. The framework can then be applied to a wide 
range of medical imaging applications that are affected by respiratory motion. In each 
of these applications it will be necessary to investigate the ideal combination of image 
data, registration algorithm (and settings), respiratory surrogate signals and corres-
pondence model, and image reconstruction algorithm (if required). 
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Abstract. Minimally Invasive Surgery (MIS) application using com-
puter vision algorithms, helps surgeons to increase intervention safety.
With the availability of the fluorescence camera in MIS surgery, the
anastomosis procedure becomes safer to avoid ischemia.We propose an
Augmented Reality (AR) software that non-rigidly registers the ischemic
map based on fluorescence signal on the live endoscopic sequence. The
efficiency of the proposed system relies on robust feature tracking and
accurate image registration using image deformation. Experimental re-
sults on in-vivo data have shown that the proposed system satisfies the
clinical requirements.

Keywords: feature tracking, augmented reality, non-rigid registration.

1 Introduction

Colorectal cancer is the third cancer in the world with more than 1.3 million
new cases diagnosed every year [1]. The standard surgical treatment is an anas-
tomosis: the surgeon removes the segment of the colon containing the tumors
and sews the healthy remaining parts of the colon together. To perform the re-
section, the surgeon needs to clamp vessels irrigating the segment containing the
tumors. Once clamped, vessel color begins to get bluer due to ischemia (shortage
of oxygen damaging the cells) giving a rough idea of the sites where resection
must be performed. In case of the resection and suture site are not properly
selected and undergo an ischemia, the anastomosis will not cure and leakages
will occur. When such an anastomosis is performed, the surgeon must revise his
surgery (in 2% of cases) to remove anastomosis leakages due to ischemia. For
this postoperative complication the death rate is 32% [2]. Therefore, an accu-
rate identification of the frontier between ischemic sites and safe ones is a critical
task.

As already mentioned, it is currently detected by bluish discoloration of tissues
(cyanosis) compared to normal ones, but this approach requires ischemia to have
occurred at least one hour before. Moreover this diagnosis method is very subjec-
tive and surgeon experience dependent. Among recent research to quantitatively
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evaluate ischemia [3], a very promising one can reduce by 60% revision of anas-
tomosis thanks to the fluorescence properties of Indocyanine Green (ICG) when
injected intravenously [4]. Nowadays, fluorescence cameras have been miniatur-
ized and are already available for minimally invasive surgery (MIS). Typically,
we use a D-light P Camera (Karl Storz) which allows, thanks to specific filters,
to switch between normal view and fluorescence view (switching delay of 1s).
We have recently shown [5] how we can compute a probability map of ischemia
using ICG and its fluorescence signal, which allows to define accurate frontiers
of ischemic sites.

This map (Fig.1.c) is generated from the temporal evolution of fluorescence
signal (Fig.1.a-b) of each pixel in the video (a slow evolution of fluorescence
means a higher risk of ischemia). We highlight that the fluorescence signal reaches
the same intensity in the whole video after 50 seconds. Therefore, after this
delay, switching to the endoscopic fluorescence mode to visually assess ischemia
locations is useless.

In the current software (gray part of Fig.1), this map is then superimposed
on the endoscopic reference image (captured just before fluorescence video) and
displayed on a second screen to the surgeon when he performs the resection
(Fig.1.d). Obviously, the system would be much more efficient if we could su-
perimpose the map on the live endoscopic view. This would ease the surgeons
task who must perform a mental registration of the static image that contains
reference view and computed ischemia map. Indeed breathing, the peristaltic
movement of the colon and instrument interactions with tissues continuously
modify the surgical scene.

In this paper, we propose a method to non rigidly register this map in real-time
(Fig.1.e-g) and show that our method is accurate despite colon deformation and
camera motion. The contribution of our paper is mainly related to the application
since it is based upon existing techniques. We firstly propose a methodology
adapted to our context to register in real time the ischemic map. Secondly,we
evaluate on clinical relevant data the accuracy of our approach.

The paper is organized as follows. We describe in Sec.2 how the ischemic map
is updated using feature tracking. Sec.3 is dedicated to the validation protocol,
where we show that the accuracy of our non-rigid registration on clinical data
is promising for further tests.

2 Feature-Based Non-rigid Registration of Ischemic Map

The method used in this paper to register the ischemic map is divided in two
parts. Firstly, we explain our method to estimate the motion of selected features
on the structure of interest. Secondly, we explain how we compute a dense defor-
mation map from these sparse features and thus non rigidly register the ischemic
map.
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2.1 Feature Tracking and Robust Matching

Feature Detection and Descriptor. To reach our purpose, we need to track
the colon motion in the image despite occlusions due to instruments and with-
out any assumption about the chronological order of frames to be processed. To
meet these needs, feature tracking based on feature matching techniques seems
to be the most appropriate. In general, feature matching algorithms find a set
of potential matches between two sets of features extracted from two images by
exploiting their similar appearance. The features are extracted using a feature
detector. The appearance is determined by the feature representation, which in-
cludes colors, corners, scale, intensity, which is usually computed using a feature
descriptor. This information must be distinctive for each feature to guarantee a
high correspondence in matching features.

We choose to use the SURF [6] detector to detect features based on our
tracking performance evaluation [7] on pig colon tissues, which shows that the
SURF detector has the best performance in terms of feature distribution. We
choose BRISK [8] to calculate the descriptor of detected features: it creates
binary descriptors that work with Hamming distance instead of Euclidean, which
allows for very fast matching computation necessary for our application.

Feature Detection and Descriptor. However, initial matches based on ap-
pearance only may contain a large number of mismatches (outliers): this is due
to appearance similarity of features in pig colon images. Outliers are obviously
problematic to compute a consistent image deformation (inaccurate registration,
artefacts: see Fig.2).

There are a number of filters (physical proximity, scale similarity, orientation,
descriptor distance ratio...) that have been proposed to improve robustness of
selected feature matching [9][10]. In our context, we cannot rely on smooth tem-
poral transition between two frames because we compare the live image to a
reference one acquired several minutes before with a different camera position
and a different colon shape due to peristaltic motion and instrument interaction.
Therefore, we discard the physical proximity, scale and orientation filters and we
propose the following strategy.

Let SR be the set of features detected in the reference image and SL the set
of features detected in the live image. For each feature of SR, we find the two
best matches in the live image using Hamming distance between descriptors, and
for each feature in SL, their two best matches in the reference image. We get
respectively two sets of matches MR→L,ML→R, where each feature is matched
on two candidates. The next step consists in filtering these matches. For this
purpose we propose two steps.

Firstly, for each set (MR→L,ML→R) we reject both candidate matches if their
associated Hamming distance is too close. If the measured distance is very low
for the first candidate match and much greater for the second one, we accept
the first match as a good one. We selected a ratio of 0.65 from experimental
results. Secondly, from the remaining matches of the two sets (MR→L,ML→R)
we extract the matches that are in agreement with both sets. This means that,
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for a match to be accepted, both points must be the best matching feature of
the other.

Using this approach we propose a highly restricting filter, which can discard
possible good matches. However, our application cannot afford any outlier and
it is thus crucial to guarantee robust feature matching. We will see in Sec.3
that this conservative choice allows a sufficient number of good matches for our
application.

2.2 Image Deformation

The method we use is based on 2D registration and not 3D which is sufficient
for our application. In fact, during the surgical procedure (from the beginning of
the fluorescence to the definition of resection sites) we expect little perspective
motion of the scene, since camera motion remains limited by the trocart. In
this paper, we use the method described in [11] to estimate image deformation
from a set of sparse matched features and register the ischemic map. The image
deformation is based on Moving Least Squares (MLS) using various classes of
linear functions including affine, similarity and rigid transformations. The choice
of MLS methods is motivated by the fact that they are easy to implement and
provide a very fast computation of deformations.

Let P be a set of features in the reference image (Fig.1.a) and Q the set
of corresponding features in the live image (Fig.1.e). Given a point v in the
reference image, they compute the best transformation Iv(x) : R2 → R2 that
minimizes ∑

pi∈P,qi∈Q

wi|Iv(pi)− qi|2 (1)

Where wi are weights expressed as wi =
1

|pi−v|2α . Therefore, they obtain a differ-

ent transformation Iv(x) for each transformation class (affine, similarity, rigid).
Finally they obtain a dense motion field that we use to deform and register the
ischemic map (Fig.1.f). We loop this registration procedure during the definition
of resection sites by the surgeon.

3 Experiments and Evaluation

The performance of our proposed method using soft-tissue tracking was evalu-
ated on in-vivo datasets of pig colon. We use 5 video sequences with a resolution
of 768 × 576 and 25fps corresponding to 5 different pigs. We use the OpenCV
implementation of SURF detector and BRISK descriptor for feature tracking.
The MLS deformation method was written without neither parallelization nor
optimisation of the code. For all the videos in this paper, we used grids with
(144 × 115) vertices in order to apply the deformation instead of applying de-
formation for each pixel to reduce computation time. We then use a bilinear
interpolation to fill the resulting quads as in the seminal paper [11]. Comput-
ing the deformation field for each pixel increases the accuracy on average by
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Fig. 1. Diagram of the Fluorescence-based Enhanced Reality, showing the reference
image (a), the fluorescence sequence (b) and the ischemic map (c) generated from
the temporal evolution of fluorescence signal. Previous approach (in gray square): the
ischemic map (c) is superimposed on the reference image (a) providing a static aug-
mented reality view (d). New approach: we perform feature matching between the
reference image (a) and the live image (e). From the matched features, we deform the
ischemic map (c) to obtain an updated ischemic map (f). We then superimpose the
updated ischemic map (f) on the live sequence (e) providing a dynamic augmented
reality view (g).
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(a) Initial matches (b) Filtered matches

(c) Deformation using initial matches (d) Deformation using filtered matches

Fig. 2. The influence of feature matching outlier on image deformation quality

2% but dramatically increases computational time and thus do not satisfy our
requirement.

We firstly describe in Sec.3.1 how we obtain ground truth data to evaluate
our registration method and present the accuracy results. Secondly, we discuss
in Sec.3.2 the computational performance of each MLS method with respect to
our real-time constraint.

3.1 Accuracy Registration Performance

Our video set contains varying conditions such as image transformation, tis-
sue change (peristaltic movements, interaction of surgical tools), illumination
changes and occlusions. The ground truth data for our evaluation is obtained
manually by annotating 10 points on the colon (tissue of interest) that are

(a) (b) (c) (d) (e)

Fig. 3. Example of MIS images sequences of the 5 different pigs used in our experiments
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(a) (b)

Fig. 4. Evaluation of image registration. (a) before deformation, (b) after deformation.
Green points: the ground truth, yellow points: the estimated points using MLS Rigid,
green line: the ground truth displacement.

tracked on 10 distant frames which shows large deformation and camera mo-
tion. We make sure that the clicked points are relatively not too close (minimum
distance of 20 pixels) to the matched features in the process.

This allows us to quantitatively evaluate the non-rigid registration provided
by our method and to show its interest for the colon. Fig.4 shows an example of
ground truth points (green) tracked on two different frames and the estimated
points using image deformation field. We highlight that 6 pixels correspond ap-
proximately to 1 mm, which is the thickness of colon vessels measured using a
ruler during the surgical procedure. In Tab.1 we provide the result of registra-
tion error using three different methods: MLS Affine, Rigid and Similarity for an
example video sequence (Fig.3b). For each annotated point we give the average
error and the average point displacement over the 10 frames. We notice that for
this example sequence the MLS Rigid gives the best registration result, which
remains under 1 mm.

In Tab.2 we provide the average error registration over the 10 points and the
10 frames of the three different methods for the different video sequences. The
error tolerance for the surgeon for this kind of intervention being about 5 mm
[12] and thus our first in-vivo evaluation clearly shows that our approach has
the potential to fulfil clinical requirements of this application. Although, we note
that MLS Rigid provides slightly better results on average. However, we need
more data to clearly understand in which case one method outperform another
one.

3.2 Computational Performance

The proposed system (Fig.6) was implemented on a PC with an Intel Core I7-
3.4 GHz processor, 8 GB of RAM. In Fig.5 we provide the computational time
for MLS methods for a different number of matched features used to register the
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Table 1. The average error registration and its standard deviation of the MLS Affine,
Rigid and Similarity (Simil) methods for an example sequence (Fig.3b)

Points pt 0 pt 1 pt 2 pt 3 pt 4 pt 5 pt 6 pt 7 pt 8 pt 9

Displacement 47.3 ±40.3 46.5 ±40.4 47.2 ±41.6 46.9 ±41.1 51.1 ±43.2 52.8 ±44.7 47.8 ±40.7 48.5 ±41.6 47.4 ±40.5 48.2 ±41.1
(pixels)

Method MLS Affine

Error 2.6 ± 2.2 4.5 ± 3.7 2.9 ± 1 4.5 ± 3.9 2.8 ± 2.2 6.1 ± 6.5 4.1 ± 2.2 3.1 ± 2.4 2.4 ± 1.6 4.5 ± 3.7
(pixels)

Method MLS Rigid

Error 1.6 ± 1.2 1.2 ± 1.7 1.1 ± 0.4 1.4 ± 1.8 2.6 ±0.6 4.7 ± 1.9 1.6 ± 1.2 1.1 ± 0.5 2.7 ± 2.7 3.6 ± 4.8
(pixels)

Method MLS Simil

Error 1.5 ± 1.6 4.3 ± 3.4 2.4 ± 0.7 4.3 ± 4.1 2.5 ± 2.1 6.1 ±6.6 3.2 ± 2.3 3.1 ± 2.6 2.4 ± 1.6 4.1 ± 4
(pixels)

Table 2. The average error registration in pixels and its standard deviation for the
MLS Affine, Rigid and Similarity method for each video sequences

Videos Fig.3a Fig.3b Fig.3c Fig.3d Fig.3e Average

Affine 3.7 ± 0.9 3.7± 1.4 3.4 ± 1.1 6.2 ± 1.3 1.7 ± 0.6 3.7± 0.6

Rigid 3.9 ± 0.4 2.1± 1.6 3.4 ± 0.7 6.1 ± 1.1 1.9 ± 0.6 3.4± 0.4

Simil 3.6 ± 0.7 3.3 ± 1.5 3.1 ± 1.1 6.3 ± 1.2 1.6 ± 0.5 3.5 ± 0.5

image. We can clearly see that the deformation time is linear with the number of
points used to calculate deformation. We also notice that the MLS Affine trans-
formation provides the best result in terms of computation time (about 0.18s
for about 200 features). However the computational time can be reduced with
better code optimization. We highlight that on average, the number of matched
features used for our experiment is about 240 points where the proposed feature
tracking algorithm takes 0.07s, which includes feature detection, descriptor and

Fig. 5. Computational time depending on the number of matched points used to cal-
culate the registration using image deformation based on MLS (Affine, Similarity and
Rigid)
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matching computation. Computation time is thus mainly due to the deforma-
tion computation. The software provides a registration of 5 frames per second,
which satisfy surgeon needs. However it would be preferable to optimise this
computation time by optimising and parallelising the code.

(a) (b) (c)

Fig. 6. Illustration of the augmented view provided by our system on several live
images, which underwent large deformation and occlusions. a. Reference image, b.
superimposition of ischemic map on reference image, c. non-rigid registration of the
ischemic map.

4 Conclusion

In this paper, we propose a strategy to provide an AR system which helps
surgeons localize ischemia risk, by superimposing a probability map onto a live
endoscopic video. The colon texture is well suited for tracking thanks to vessels
bifurcations providing highly distinctive features. The proposed AR system relies
on this feature tracking and matching which is robust for complete and prolonged
occlusion so we are able to recover the ischemic map during the definition of
resection sites.

Our method relies on feature tracking to non-rigidly register a probability
map using Moving Least Squares (Affine, Similarity and Rigid) transformation
on a live endoscopic view. We evaluate the accuracy and the computational time
of the proposed methods and we show that the results greatly satisfy surgeons
needs. Future research will focus on evaluating our proposed method on human
data and extending our application to more surgical procedures, such as stomach
bypass using visual guidance based on fluorescence imaging.
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Abstract. Visualization and analysis of intra-operative images in image-
guided radiotherapy and surgery are mainly limited to 2D X-ray imaging,
which could be beneficially fused with information-rich pre-operative 3D
image information by means of 3D-2D image registration. To keep the
radiation dose delivered by the X-ray system low, the intra-operative
imaging is usually limited to a single projection view. Registration of 3D
to a single 2D image is a very challenging registration task for most of
current state-of-the-art 3D-2D image registration methods. We propose
a novel 3D-2D rigid registration method based on evaluation of sim-
ilarity between corresponding 3D and 2D gradient covariances, which
are mapped into the same space using backprojection. Normalized scalar
product of covariances is computed as similarity measure. Performance of
the proposed and state-of-the-art 3D-2D image registration methods was
evaluated on two publicly available image datasets, one of cerebral an-
giograms and the other of a spine cadaver, using standardized evaluation
methodology. Results showed that the proposed method outperformed
the current state-of-the-art methods and achieved registration accuracy
of 0.5 mm, capture range of 9 mm and success rate >80%. Considering
also that GPU-enabled execution times ranged from 0.5–2.0 seconds, the
proposed method has the potential to enhance with 3D information the
visualization and analysis of intra-operative 2D images.

Keywords: Image-guided surgery, 3D-2D image registration, gradient
backprojection, covariance, similarity measure, quantitative evaluation.

1 Introduction

Image registration is an indispensable tool for the visualization and analysis of
pre- and post-operative images, planning of interventions and in clinical imaging
studies. However, it is yet to play a more proactive role in the visualization and
analysis of intra-operative images, for example in image-guided radiotherapy
(IGRT) and image-guided surgery (IGS). Imaging systems used in IGRT and
IGS are required to be of high spatial and high temporal resolution, which leaves
X-ray imaging as the only technology currently feasible for use in the operating
room. As patient dose is the main concern with X-rays, imaging is limited to 2D.
Bringing the information-rich 3D pre-operative images and treatment plans into
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the operating room, and to enable intra-operative 3D visualization and analysis,
requires accurate, robust and fast 3D-2D image registration methods.

Due to dimensional inconsistence, the 3D-2D image registration is an ill-posed
problem, which is often regularized by simultaneously considering at least two
2D images from different projection views [4]. Some IGS systems achieve this by
using a biplane X-ray imaging system; however, the biplane X-ray is used only in
complex treatment procedures, in which twice higher radiation dose delivered to
the patient is an acceptable trade-off. Since radiation dose presents a hazardous
risk for patient health, it is desirable to perform IGS procedures using a single
2D view. Performing 3D-2D image registration using a single 2D view, however,
presents a challenging task for most of current state-of-the-art methods.

According to a recent survey [4], 3D-2D registration methods are catego-
rized as calibration-based and intrinsic (intensity-, feature- and gradient-based
or hybrid) or extrinsic image-based methods. While the calibration-based meth-
ods [9] cannot compensate for patient movement, the extrinsic image-based
methods [12] are impractical as they require that known artificial objects be
introduced into the imaged scene; therefore, only the intrinsic image-based meth-
ods are considered for IGRT and IGS. Furthermore, the feature-based methods
can be applied only if a reliable and straightforward segmentation can be used
to determine the edges and surfaces of structures of interest. Intensity-based
methods[1] recast the 3D-2D to 2D-2D registration by aligning the 2D modal-
ity to simulated 2D images, called digitally reconstructed radiographs (DRRs).
DRRs are obtained by casting virtual rays through a pre-operative 3D image.
For DRR to 2D modality registration a robust similarity measures (SMs) such
as mutual information (MI), gradient difference and pattern intensity can be
used [1]. Gradient-based methods are promising since they encode structural in-
formation, and are very efficiently projected from 3D to 2D [3,5] or backprojected
from 2D to 3D [11], making them far less computationally demanding than DRR-
generation needed in the intensity based methods. The main drawback, however,
is that gradient-based method are more sensitive image noise and small 3D image
transformations; thus, they usually have a higher chance of registration failure.
To overcome this, Mitrović et al. [5] proposed a neighborhood-based gradient-
matching process, but which was dedicated for registration of tubular structures
like vessels. Even though several state-of-the-art 3D-2D registration methods ex-
ist, few or even none have been proved accurate, robust and fast enough for 3D
to single 2D view image registration [4].

In this paper, we propose a novel 3D-2D registration method based on mea-
suring similarity between gradient covariances in 3D and 2D images. Gradient
covariances capture the distribution of gradients in the 3D or 2D neighborhoods
and thus, compared to intensity gradients alone, seem more robust as registra-
tion features. 3D and 2D gradient covariances are mapped into the same space
using backprojection [11] (Fig. 1) and their similarity, measured by normalized
scalar product of covariances, is maximized to obtain register 3D and 2D im-
ages. Performance of the proposed and state-of-the-art 3D-2D image registration
methods was evaluated on two publicly available image datasets, first of cerebral
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angiograms [5] and the second of a spine cadaver [10], using standardized eval-
uation methodology [2]. Results demonstrate that the proposed method outper-
formed the current state-of-the-art methods and achieved registration accuracy
of 0.5 mm, capture range of 9 mm, success rate >80% and execution times from
0.5–2.0 seconds.

2 Image Registration Methodology

3D-2D registration is concerned with positioning the coordinate system of a
pre-operative 3D image (Sv) in a world coordinate system Sw so as to align cor-
responding anatomical structures on 2D and projected 3D image. The pose of the
2D image Sp (in the detector plane P) is known a priori based on a calibration of
the imaging system, e.g. C-arm. The degree-of-freedom of spatial transformation
T, which is applied to the 3D image, should be selected based on the physical
properties and the expected nature of motion of the imaged anatomy. Since we
will test our method on images of cerebral angiograms and lumbar vertebrae, we
consider here a rigid-body transformation. To best align the 3D to 2D image,
one needs to find an optimal transformation T = T(p) defined by six rigid-
body parameters p = [tx ty tz αx αy αz]

T. Fig. 1 shows the geometrical setup of
the 3D to 2D registration problem and the idea behind the gradient covariance
based 3D-2D registration method, which is proposed in the next subsections.
First, the methodology of gradient backprojection proposed by Tomaževič [11]
is briefly explained, followed by derivation of covariance backprojection and the
covariance based measure of 3D and 2D image similarity.

Fig. 1. Geometrical setup of 3D to 2D image registration and illustration of the pro-
posed backprojection of gradient covariance (cf. text below for details)
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2.1 Gradient Backprojection

Let the X-ray source rs be at the origin of a coordinate system S and let the
detector plane P perpendicular to z axis of S (Fig. 1). 2D intensity image P
can be written in spherical coordinates (ρ,Θ, ϕ) as P (rp) = P (Θ,ϕ). The rela-
tionship between the 3D image intensity V (r) and attenuation coefficient μ(ρ)
can be expressed by a linear attenuation model V (r) =

∫
L
μ(ρ)dρ. Then, the 3D

intensity gradient corresponds to the gradient of attenuation coefficient μ(r) in
point r, which for spherical coordinates r = (ρ,Θ, ϕ) is expressed as

∇V (r) = ∇ρ μ(ρ,Θ, ϕ) +∇t μ(ρ,Θ, ϕ) . (1)

where ∇ρ μ(r) and ∇tμ(r) are radial and tangential, respectively, to the projec-
tion beam L. The second term corresponds to 2D intensity gradient

∇P (rp) =
1

ρ

∫ ρ2

ρ1

ρ̃∇tμ(ρ̃, Θ, ϕ) dρ̃ . (2)

The intensity gradient gbv in plane B is tangential to vector er on L and equals
∇tV (rv). Let ĝbp ∼ ∇Vt(rv), then the intensity gradient in the detector plane
P is obtained by orthogonal projection

gp = (n× ĝbp)× np) . (3)

The inverse mapping from P to B is an oblique (back)projection expressed as [11]

ĝbp =
(np × gp)× er

np ◦ er
. (4)

According to (1) the 2D intensity gradient gbp is composed of radial (ρ) and
tangential components (t) of the 3D intensity gradient, however, using (2) only
the tangential component is projected to 2D plane P as

gp =
1

‖rp − rs‖

∫
L

‖rv − rs‖∇V (rv) dρ . (5)

Hence, the backprojected gradient must be scaled according to its distance from
the X-ray source rs, i.e.

gbp =
‖rp − rs‖
‖rv − rs‖

· (np × gp)× er
np ◦ er

. (6)

2.2 Gradient Covariance Backprojection

Gradient covariances encode the shape of intensity gradient distribution in some
neighborhood and can be efficiently mapped between 3D and 2D spaces using
the gradient backprojection methodology and projection operators. Operator
ΓB = I3 − ere

T
r is an orthogonal projection from r to plane B such that

gbv(r) = ΓB(r)gv . (7)
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Similarly, backprojection of the 2D intensity gradient is obtained by (6) and is
written in matrix form as

gbp(r) = c(r)ΓB−1(r)gp , (8)

where c(r) = ‖rp − rs‖/‖r − rs‖ and ΓB−1 = −(er ◦ np)
−1[er]×[np]×. Symbol

[a]× denotes a skew-symmetric matrix of a 3-element vector a

[a]× =

⎡⎢⎣ 0 −a3 a2

a3 0 −a1

−a2 a1 0

⎤⎥⎦ . (9)

Based on (7) and (8) the covariance matrix originating from neighborhood Ωv

in 3D is computed as

Cv(r) =

∫
Ωv

gbv(r)gbv(r)
T ≈ ΓB

[∫
Ωv

gv g
T
v

]
ΓT
B , (10)

while covariance matrix originating from neighborhood Ωp in 2D as

Cp(r) =

∫
Ωp

gbp(r)gbp(r)
T ≈ c2 ΓB−1

[∫
Ωp

gp g
T
p

]
ΓT
B−1 . (11)

Expressions in square brackets of Eqs. (10) and (11) are the respective 3D
and 2D gradient covariances, computed in neighborhoods Ωv = Ωv(rv, h) and
Ωp = Ωp(rp, c ·h) around corresponding 3D and 2D points rv and rp. Parameter
h represents window size of the neighborhood. In (10) and (11) we assume that
the projection operators ΓB and ΓB−1 and factor c are invariant to r within
neighborhoods Ωv and Ωp, respectively, given that h is sufficiently small. Cor-
responding covariance matrices Cv(r) and Cp(r) are used to define similarity
measure between 3D and 2D images.

2.3 Similarity Measure

Covariance matrices in (10) and (11) are positive semi-definite symmetric matri-
ces, the similarity or dissimilarity of which can be measured by various similarity
measures [6]. Here, we will use tensor scalar product (TSP) given as

sTSP (Cv,Cp) = Cv : Cp = Trace(CvCp) =

n∑
i=1

n∑
j=1

λv,iλp,j(ev,i ◦ ep,j)2 , (12)

where n is the dimensionality of tensors, λ�,k is the k-th eigenvalue ofC� and e�,k
is the corresponding eigenvector. Note that (12) is analog to the sine weighting
function of the SM used to compare 3D to backprojected 2D gradients in [11].
Since TSP is sensitive to relative size of covariance matrix elements, we use
normalized TSP (NTSP)

sNTSP (Cv,Cp) =
Cv : Cp

‖λ(Cv)‖ ‖λ(Cp)‖
=

sTSP (Cv,Cp)

Trace(Cv)Trace(Cp)
. (13)
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The final similarity measure is computed for points rv with K strongest intensity
gradients ‖gbf(rv)‖ as

SM =

K∑
i=1

sNTSP (Cv,Cp) . (14)

The parameters p of the rigid-body 3D-2D registration are obtained by maximiz-
ing the SM. The proposed backprojection gradient covariance 3D-2D registration
method will be referred to as BGC in the experiments.

3 Image Registration Experiments

Performance of the proposed and state-of-the-art 3D-2D image registrationmeth-
ods was evaluated on two publicly available image datasets, first of cerebral
angiograms[5] and the second of a spine cadaver[10]. For 3D and 2D image pairs
in these two datasets, rigid registration has been established by aligning fiducial
markers attached to patient or imaged anatomy, thus the reference or gold stan-
dard registrations are highly accurate and known. By using the gold standard
registrations and the standardized evaluation methodology[2] we performed an
objective and quantitative evaluation of 3D-2D registration methods.

3.1 Evaluation Criteria

Criteria for evaluation of 3D-2D registration methods were based on measuring
the initial and final alignment of 3D targets, which were already defined on the
anatomy of interest in each of the datasets[5,10], with respect to (w.r.t.) their
goldstandard position. Initial positions of 3D images were defined in terms of
mean target registration error (mTRE), generated in the range 0–20 mm mTRE
w.r.t. the gold standard position by randomly sampling rigid body transforma-
tions. After executing 3D-2D registration, accuracy of alignment was measured
by mean reprojection distance (mRPD) as it is less sensitive to small deviations
of the out-of-plane translation[2], which is ill-defined for registration of 3D to
single 2D image. mRPD is the mean of minimal distances between the 3D tar-
get points in the goldstandard position and lines connecting the X-ray source
and the 3D target points in the registered position. Registration was considered
successful if mRPD < 2 mm. Overall accuracy of the 3D-2D registration was
defined as MEAN±STD of mRPD of all successful registrations. Overall success
rate (SR) was defined as the percentage of successful registrations, while capture
range (CR) was defined as the mTRE distance to the first 1 mm subinterval with
less than 95% of successful registrations. Execution times were also measured.

3.2 Experiment Description

On the dataset of cerebral angiograms, 3D-2D registration methods were tested
on ten pairs of 3D digitally subtracted angiograms (3D-DSAs) and 2D-DSA
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images, acquired in the lateral (LAT) projection. As in [5], the 3D and 2D im-
ages were smoothed and resampled to 0.75 mm and 0.3 mm isotropic resolution,
respectively. The initial positions of for each 3D-DSA image were defined by
Mitrović et al. [5] and ranged from 0–20 mm mTRE, with 20 position per each
1 mm subinterval of mTRE. For all ten pairs, there were a total of 4000 initial
positions. The benefit of using the given initial positions is that the obtained
registration results can be directly compared to the ones reported in [5]. Ad-
ditionally, we tested a method based on gradient projection [3] referred to as
GPR. The proposed BGC method was tested with window size h set to 2 mm.
To be able to compare our results to [5], we used Powell’s directional set method
with Brent’s line search [7] to find the rigid-body parameters with both the GPR
and the proposed BGC method (PB-BGC). BGC was also tested with the more
recent BOBYQA derivative-free optimization [8] (QA-BGC).

Registrations on the spine cadaver dataset[10] involved five 3D CT images of
L1–5 lumbar vertebrae and 18 2D X-ray views, which were acquired in the range
0− 170 ◦ around the axis of the spine cadaver. As the initial positions were not
a priori defined, they were generated by randomly selecting four 2D X-ray views
per each 3D CT image, which formed 20 3D-2D image pairs. For each image pair,
20 rigid body transformations were generated by randomly sampling translations
and rotations from the range of 0–20 mm and 0–10 ◦, such that the obtained
transformations, relative to the goldstandard position, presented mTRE in the
range of 0–20 mm with one initial position per each 1 mm subinterval of mTRE.
This resulted in 400 different initial positions across all the image pairs. Prior
to registration the 3D and 2D images were smoothed and resampled to 0.75
mm isotropic resolution. Four methods were tested, i.e. DRR-based registration
using mutual information metric, gradient-based GPR[3] and BGB[11] methods
and the proposed BGC. BGC was executed with window size h set either to 0.1
or 1 mm, and by first executing with h = 1 mm and improving the obtained
registration by executing with h = 0.1 mm. Methods were executed on NVidia
450GTS GPU using BOBYQA derivative-free optimization [8].

3.3 Results

Evaluation results of 3D-2D registration on datasets of cerebral angiograms and
of spine cadaver are reported in Tables 1 and 2, respectively. When registering
cerebral angiograms, the proposed BGC method achieved slighly higher accuracy
with QA as compared to PB optimization method, while SR, CR and execution
times were similar. The proposed BGC methods improved the SR and CR com-
pared to the state-of-the-art methods, most notably extending the CR by 3
mm over the MGP+BGB method. Even though MGP+BGB was more accurate
than BGC (0.28 vs. 0.42 mm), the registration accuracy of BGC was in subpixel
regime (< 0.75 mm).

On the spine cadaver datasets, BGC also achieved subpixel accuracy (0.56
mm) for small window size h. In general, by decreasing the window size h the
registration accuracy of the BGC method improved. Conversely, by increasing h
the SR and CR improved as more registration trials converged from the farther
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Table 1.MEAN±STD of mRPD of successful registrations, success rates (SR), capture
ranges (CR) and execution times for computed for registrations of ten 3D-DSA and
lateral (LAT) 2D-DSA image pairs for cerebral angiograms [5]. The best result for each
evaluation criteria is marked in bold.

Method MEAN ± STD [mm] SR [%] CR [mm] Time [s]

MIP-MI 0.30 ± 0.29 77.4 5 84.3

GPR 0.61 ± 0.23 61.2 2 45.7

BGB� 0.40 ± 0.37 52.4 3 11.6

MGP� 0.61 ± 0.37 73.2 5 0.5

MGP�+BGB� 0.28 ± 0.21 79.5 6 15.3

PB-BGCh=2 0.51 ± 0.29 82.2 9 1.8

QA-BGCh=2 0.42 ± 0.25 78.2 8 2.0

�Not computed on GPU.

Table 2.MEAN±STD of mRPD of successful registrations, success rates (SR), capture
ranges (CR) and execution times computed for registrations of 20 3D CT and X-ray
image pairs of lumbar vertebrae [10]. The best result for each evaluation criteria is
marked in bold.

Method MEAN ± STD [mm] SR [%] CR [mm] Time [s]

DRR-MI 0.60 ± 0.25 39.3 2 9.4

GPR 0.55 ± 0.30 36.5 2 5.1

BGB 0.31 ± 0.18 61.3 4 0.5

BGCh=0.1 0.57 ± 0.35 58.8 5 0.5

BGCh=1 0.93 ± 0.37 80.5 9 0.5

BGCh=1+0.1 0.56 ± 0.28 80.8 9 0.8

initial positions. This is an interesting feature of the proposed BGC method,
which was exploited in multi-scale registration BGCh=1+0.1 so as to improve, in
overall, the registration accuracy, SR and CR. BGC method achieved CR of 9
mm, thus more than doubling the CR of state-of-the-art methods, while SR was
higher by 20%. The execution times reported in Tables 1 and 2 show that even
with GPU-enabled DRR/MIP generation the projection-based methods (DRR-
MI, MIP-MI and GPR) were an order of magnitude slower than GPU-enabled
hybrid MGP or gradient-based BGB and BGC methods.

Fig. 2 shows cumulative SRs w.r.t. the initial mTRE for all of the tested
methods. In terms of SR, the proposed BGC methods consistently outperformed
the tested methods on both datasets.

4 Discussion

In this paper, we proposed a novel 3D-2D registration method based on mea-
suring similarity between 3D and 2D gradient covariances. The 2D covariances
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Fig. 2. Cumulative success rates (SR) w.r.t. initial mTRE for the tested methods on
the cerebral angiogram (left) and spine cadaver (right) datasets

were mapped into the same space as the 3D gradient covariances by using the
proposed covariance backprojection methodology. The proposed 3D-2D registra-
tion method maximized normalized scalar product between 3D and 2D covari-
ances. Performance of the proposed and state-of-the-art 3D-2D image registration
methods was evaluated on two publicly available image datasets, one of cerebral
angiograms and the other of a spine cadaver, using standardized evaluation
methodology. Results showed that the proposed method outperformed the cur-
rent state-of-the-art methods and achieved registration accuracy of 0.5 mm, cap-
ture range of 9 mm and success rate >80%.

The key advantage of the proposed method is a much higher success rate (SR)
and capture range (CR) compared to state-of-the-art methods. High SR of 3D-
2D registration method is very important factor during image-guided surgery,
during which each registration failure will significantly interrupt the treatment
process, requiring manual intervention. The proposed method achieved SRs of
more than 80% on two image datasets of different anatomies, while the SRs of
state-of-the-art methods varied from 40%–80%. Secondly, high CR is important
as the initial guess of the position of 3D image prior to registration need not
be very precise. I.e. given a rough initial position that is within the CR of the
method, the 3D-2D registration method will, with high confidence, be able to
accurately align the 3D with the 2D image. The proposed method had CR that
was up to twice as high as the CR of state-of-the-art methods, both on the
datasets of cerebral angiograms and the datasets of spine cadaver. Considering
also that GPU-enabled execution times were from 0.5–2.0 seconds, the proposed
method has a high potential for implementation as part of an image-guided
system in surgery or radiotherapy, enabling one to enhance with 3D information
the visualization and analysis of intra-operative 2D images.

Acknowledgments. This research was supported by the Ministry of Education,
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Abstract. Previous amyloid positron emission tomography (PET)
imaging studies have shown that Alzheimer’s disease (AD) patients
exhibit higher standardised uptake value ratios (SUVRs) than healthy
controls. Automatic methods for SUVR calculation in brain images are
typically based on registration of PET brain data to a template, fol-
lowed by computation of the mean uptake ratio in a set of regions in
the template space. Resulting SUVRs will therefore have some depen-
dence on the registration method. It is widely accepted that registration
based on anatomical information provides optimal results. However, in
clinical practice, good quality anatomical data may not be available and
registration is often based on PET data alone. We investigate the effect
of using functional and structural image information during the regis-
tration of PET volumes to a template, by comparing six registration
methods: affine registration, non-linear registration using PET-driven
demons, non-linear registration using magnetic resonance (MR) driven
demons, and our novel joint PET-MR registration technique with three
different combination weightings. Our registration method jointly regis-
ters PET-MR brain volume pairs, by combining the incremental updates
computed in single-modality local correlation coefficient demons registra-
tions. All six registration methods resulted in significantly higher mean
SUVRs for diseased subjects compared to healthy subjects. Furthermore,
the combined PET-MR registration method resulted in a small, but sig-
nificant, increase in the mean Dice overlaps between cortical regions in
the MR brain volumes and the MR template, compared with the single-
modality registration methods. These results suggest that a non-linear,
combined PET-MR registration method can perform at least as well as
the single-modality registration methods in terms of the separation be-
tween SUVRs and Dice overlaps, and may be well suited to discriminate
between populations of AD patients and healthy controls.

1 Introduction

Alzheimer’s Disease (AD) affects more than 25 million people worldwide [1],
and is significantly more prevalent in the older population. Although the exact
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with sponsorship from Siemens Molecular Imaging.
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c© Springer International Publishing Switzerland 2014



Combined PET-MR Brain Registration 135

cause of AD is unknown, the presence of fibrillar amyloid-β (Aβ) is central to
the pathogenesis of the disease.

Positron emission tomography (PET) imaging is increasingly used to assess
the Aβ burden in patients with dementia, and the standardised uptake value ra-
tio (SUVR) has become a common measure for PET radiotracers in brain studies
[2]. Studies have shown that AD patients exhibit higher 18F-florbetapir SUVRs
than cognitively normal controls [3]. The SUVR is calculated by computing the
mean uptake of tracer in a region of interest, divided by uptake in a normalisation
region (where the uptake is non-specific). Typically, prior to SUVR calculation,
the PET volume is registered to a template space in which the regions of inter-
est are defined. Current methods for quantitative analysis of amyloid imaging
use affine or non-linear registration methods to achieve alignment to the PET
template [4]. Consequently, SUVRs can be somewhat dependent on the quality
of the registration.

Although widely accepted that using anatomical images to drive the registra-
tion of functional images improves their diagnostic value, it has not been clearly
investigated and reported in the literature. Using joint PET and magnetic res-
onance (MR) image information would exploit all the available data, and could
potentially capture changes present in both modalities. In turn, this could lead
to more precise SUVRs. Furthermore, in a clinical setting, optimal quality MR
and/or PET images may not be available. In this situation, a registration ap-
proach which is capable of using a weighted combination of the two modalities
could be useful.

The purpose of this work is to investigate the effect of using joint modality
image information during registration of PET volumes to a template. To achieve
this we propose a novel approach to combined non-linear PET-MR brain reg-
istration. We extend the diffeomorphic demons registration framework [5], by
combining the individual update steps in simultaneous single-modality demons
registrations. Unlike existing multi-channel demons methods [6,7], which only
use anatomical images, we combine functional and anatomical information at
each iteration. Furthermore, to account for any non-uniform bias distribution
in the images, we employ a local correlation coefficient (LCC) image similarity
metric [8,9], rather than the standard sum of squared differences (SSD).

We compared SUVRs following affine registration and five PET-MR LCC-
demons registrations, each with a different weighted combination of PET and
MR updates. For this study, 38 subjects (19 AD, 19 healthy controls) were pre-
selected from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database1.
The templates were constructed using the images from ten randomly selected
subjects (5 AD, 5 healthy controls). Registrations were then conducted on the re-
maining 28 subjects. Cortex-to-cerebellum SUVRs were calculated in six cortical
regions, as described in [3].

The remainder of this paper is structured as follows: In Section 2, we out-
line our registration algorithm. Section 3 introduces the PET-MR dataset, and
the steps involved in creating the MR and PET templates. Section 4 describes

1 http://adni.loni.ucla.edu/
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the experiments and results. Finally, Section 5 discusses the advantages and
limitations of our combined non-linear PET-MR registration compared with al-
ternative methods, and concludes this work.

2 Methods

2.1 Diffeomorphic Demons

The diffeomorphic demons registration algorithm, introduced by Vercauteren et
al. [5], estimates the diffeomorphic transformation s between a fixed image F and
a moving image M . Finding the displacement field s involves the optimisation
of an energy function:

E(s) =
1

σ2
i

Sim(F,M ◦ s) + 1

σ2
x

Dist(s, c) +
1

σ2
T

Reg(s) (1)

where Sim(F,M ◦s) is an image similarity measure and Reg(s) is a regularisation
term. To allow for some errors in s, Cachier et al. [8] introduced the Dist(s, c)
term. This forces the displacement field s to be close to the exact correspondences
c.

To ensure that the registration is invertible, an update step is found on the
Lie group through the exponential mapping from a velocity vector field u to
diffeomorphisms. Thus, the diffeomorphic demons algorithm can be described
by:

Algorithm 1. Diffeomorphic Demons

• Given the current deformation field s, compute an update field u
• c ← s ◦ exp(u)
• Regularise c by convolving with a Gaussian filter, such that s ← G ∗ c

2.2 Local Correlation Coefficient

In the classical form, the choice of single-modality similarity measure is the
sum of squared differences (SSD) between the image intensities at each voxel.
Despite its simple implementation, SSD is a global criterion and assumes a linear
relationship between the image intensities. This makes it extremely sensitive to
the locally varying intensity biases often found in medical images.

By assuming that the bias distribution is locally uniform, Cachier et al. [8]
proposed a local implementation of the correlation coefficient (LCC). The LCC
similarity ρ implicitly estimates the locally affine relationship between the image
intensities, thus accounting for additive and multiplicative bias:

ρ(F,M) =

∫
σ

FM√
F 2 ·M2

(2)



Combined PET-MR Brain Registration 137

where F = Gσ ∗ F (x) is the local mean image defined by convolution with a
Gaussian Gσ of kernel size σ.

Unlike SSD, the LCC criterion has a parameter which needs to be chosen
based on the application (i.e. the kernel size σ of the Gaussian filter). However,
LCC optimisation fits neatly into the demons registration framework, in contrast
to mutual information [10], which requires the estimation of the global joint
intensity histogram of the images. If Sim(F,M ◦ s) is replaced by ρ2(F,M ◦ s)
in (1), the correspondence energy can be written as:

E(F,M) =
1

σ2
i

ρ2(F,M) +
1

σ2
x

‖u‖2 (3)

The resulting update velocity field is computed using:

u = − 2Λ

‖Λ‖2 − 4
ρ2

σ2
i

σ2
x

(4)

where

Λ =

(
Gσ ∗ (F∇MT −M∇FT )

Gσ ∗ (FM)
+

Gσ ∗ (F∇FT )

Gσ ∗ (F 2)
− Gσ ∗ (M∇MT )

Gσ ∗ (M2)

)
(5)

The derivation of the optimisation of (3) with respect to a symmetric update
is presented in [9], and we refer the reader to that work for more details.

2.3 Extending Diffeomorphic LCC-Demons by Combining Multiple
Update Fields

In our proposed combined PET-MR registration algorithm, we first assume that
the pairs of PET and MR volumes for each subject are rigidly registered. The
non-linear registration of the PET-MR image pairs is then performed using PET
to PET and MR to MR registration (as described in Sections 2.1 and 2.2), but
combining the individual update fields at each iteration as follows:

u = αuMR + (1− α)uPET, 0 ≤ α ≤ 1 (6)

where the relative contribution of each modality can be controlled by varying the
weighting α. Hence, the diffeomorphic demons algorithm is modified as described
in Algorithm 2:

Algorithm 2. Combined PET-MR Diffeomorphic LCC-Demons Registration

• Use (4) to compute an update field uMR for the two MR images, and an
update field uPET for the two PET images.

• Use (6) to compute the combined update velocity field u
• c ← s ◦ exp(u)
• Regularise c by convolving with a Gaussian filter, such that s ← G ∗ c
• Apply s to the moving MR image and the moving PET image
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3 Materials

3.1 ADNI Data and Initialisation

In this study, 38 subjects (19 AD, 19 cognitively normal controls) were selected
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) online database.
Each subject had a pair of 18F-florbetapir Aβ PET and T1-weighted MR vol-
umes, acquired no more than 12 months apart.

Prior to the non-linear registrations, the PET volumes were rigidly registered
to their corresponding MR volumes using FLIRT [11,12]. The brains were then
extracted from the whole-head MR and PET images, by constructing a mask
from the tissue segmentations of the MR images (obtained using SPM8 [13]).
Finally, again using FLIRT, the MR brain volumes were affinely registered to a
template in MNI space. The non-linear MNI152 brain template used by FSL2

was chosen as the template. The resulting transformations were also applied to
the PET brain volumes. During this process, all images were resampled to a
resolution of 1× 1× 1 mm/voxel.

3.2 Template Construction

In an attempt to reduce the bias associated with selecting an exemplar subject as
the template, an MR template was created iteratively from 10 of the 38 subjects
(5 AD, 5 healthy) using the method proposed by Guimond et al. in [14]. In brief,
the method involves non-linearly registering the subjects to an initial reference
image. The new reference image is constructed by averaging the intensities of the
registered images, and deforming this image by the mean inverse transformation
from all the subjects to the reference. This entire process is repeated until the
estimated template no longer changes between iterations.

A PET template could be constructed in a similar fashion, however, to ensure
an unbiased starting point for the combined PET-MR registration, the MR and
PET templates need to be perfectly registered. Therefore, a pseudo-PET tem-
plate was synthesised from the MR template. This was achieved by combining
its tissue segmentations with different weighting factors to resemble an amyloid
PET image.

Figure 1 shows an axial slice from the MR and synthetic PET templates.

4 Experiments and Results

4.1 Affine Registration

The MR volumes of the 28 subjects excluded from the template creation were
affinely registered to the MR template using FLIRT [11,12]. The resulting trans-
formations were then applied to the corresponding PET volumes.

2 http://fsl.fmrib.ox.ac.uk/
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(a) (b)

Fig. 1. Example axial slice of (a) the iterative MR template, and (b) the synthetic
PET template

4.2 Non-linear Registration

Starting with the affinely registered images, five separate PET-MR LCC-demons
registrations were conducted for each of the 28 subjects: α = 0 (i.e. PET to PET
registration), α = 1 (i.e. MR to MR registration), and α = {0.25, 0.5, 0.75} for
the proposed combined PET-MR registration (with increasing influence of the
MR volumes).

The registration parameters for the LCC-demons were taken from [9]: σLCC
= 2 and σi/σx = 0.05, with a multi-resolution, multi-scale scheme of 30×99×10
iterations (coarse to fine).

4.3 Dice Overlap

To evaluate the performance of the different registration methods, the Dice over-
lap was calculated for each subject’s MR after registration, with respect to the
MR template [15].

The subject cortical region atlases were created automatically using an inde-
pendent and established registration method. To achieve this, SPM8 was used
to perform non-linear registration of each whole-head MR volume (in native
subject space) to MNI space [13]. The resulting inverse deformation fields were
used to resample the Automatic Anatomic Labelling (AAL) atlas regions [16] to
native subject space. Following this procedure, any transformations applied to
the MR brain volumes (e.g. those described in Sections 3.1, 4.1 and 4.2) were
also applied to the corresponding atlas.

The MR template atlas was constructed by taking the deformed atlases of the
subjects comprising the template, and combining them using a majority vote
rule at each voxel [17].

Paired t-tests on the mean Dice overlap were conducted between each regis-
tration method and every other.

4.4 Standardised Uptake Value Ratio

Following registration, SUVRs were calculated from the mean 18F-florbetapir
uptake in six cortical regions of interest (medial orbital frontal, parietal, tempo-
ral, precuneus, posterior cingulate and anterior cingulate), with reference to the
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cerebellum. The target and normalisation regions were based on the AAL atlas
regions [16], and manually dilated/eroded so they were visually similar to those
presented in [3,4].

In order to best distinguish between AD patients and healthy individuals using
SUVRs, the registration method should result in a large difference in mean SUVR
between the groups, and a small variance for each group. Therefore, the SUVR
means and standard deviations were calculated for each group, and a two-sample
t-test, allowing for different standard deviations for each group, was used to test
whether the population means were different.

4.5 Results

Figure 2 shows an example registered PET image from both groups, for all six
registration methods. To aid visual assessment of the registrations, the bottom
row of Fig. 2 shows a close up of the ventricles, with the outline of the PET
template ventricle superimposed in red.

Fig. 2. Example PET registration results for a subject with Alzheimer’s disease (top),
and a healthy control (middle). The bottom row shows a close-up of the region high-
lighted in the middle row, with the outline of the PET template ventricle superimposed
in red. The left-most column shows the pseudo-PET template. The remaining columns
(left to right) represent each registration method: affine, PET to PET (α = 0), proposed
combined PET-MR (α = {0.25, 0.5, 0.75}), and MR to MR (α = 1). All non-linear reg-
istration methods show improved registration over the affine method.

Table 1 presents the mean (standard deviation) Dice overlap (by registration
method) of labels in the registered MR volumes and the MR template. The
paired t-tests between all of the registration methods show that the non-linear
methods demonstrate significantly higher overlap than the affine registration
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method (p < 0.05, corrected for 15 comparisons). Moreover, the combined PET-
MR registration methods (α = {0.25, 0.5, 0.75}) have significantly higher mean
Dice values than the non-linear, single-modality methods (α = {0, 1}).

The mean SUVR of each group (AD or cognitively normal controls) for each
registration method, as well as the corresponding t-values, are also presented in
Table 1. Across all six registration methods, the AD group has a significantly
higher mean SUVR than the control group (p < 0.01).

Table 1. Mean (standard deviation) Dice overlap, mean (standard deviation) SUVR,
and t-value by registration method: affine, PET to PET (α = 0), proposed combined
PET-MR (α = {0.25, 0.5, 0.75}), and MR to MR (α = 1). The best results are high-
lighted in bold.

Affine α = 0 α = 0.25 α = 0.5 α = 0.75 α = 1

Dice overlap 0.65 0.69 0.73 0.73 0.73 0.72
(0.04) (0.03) (0.02) (0.02) (0.02) (0.02)

SUVR AD 1.46 1.45 1.45 1.45 1.45 1.46
(0.28) (0.25) (0.25) (0.25) (0.25) (0.26)

SUVR Controls 1.12 1.12 1.11 1.11 1.11 1.11
(0.25) (0.23) (0.22) (0.21) (0.21) (0.21)

t-value 3.42 3.67 3.75 3.84 3.91 3.88

5 Discussion and Conclusion

The results displayed in Fig. 2 show improved registration for the non-linear
methods compared with the affine method. This is especially apparent in the
close-up of the ventricles. The mean Dice values in Table 1 further support
this visual assessment, since the non-linear registration methods demonstrate a
significantly higher overlap between cortical regions in the registered MR images
and the MR template than the affine registration method.

Unsurprisingly, applying the deformation field from the PET to PET (α = 0)
registration to the MR volume offered only a small, though statistically signif-
icant, improvement in mean Dice overlap compared to the affine method. This
is likely due to the lack of distinct edges in the PET brain volumes, resulting
in a smoother deformation field than MR to MR registration. The results also
show that the combined PET-MR registration methods (α = {0.25, 0.5, 0.75})
had significantly higher mean Dice values (same standard deviations) than the
MR to MR (α = 1) method. This may be due to the functional information
acting as a spatially varying regulariser on the LCC-demons updates.

In this work, the cortical region atlases used to compute Dice overlaps were
created using an independent registration method (SPM8). Although systematic
differences may exist between the SPM8 and LCC-demons registration methods,
these should have minimal effect on the Dice overlaps, which are compared be-
tween LCC-demons methods only.
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Due to the large variation in elderly brains, and differences in the progression
of AD, a range of SUVRs is expected in both groups. Nevertheless, the mean
SUVRs (and standard deviations) in this study fall within the range reported
in [3]. Furthermore, the five non-linear registration methods exhibited smaller
standard deviations than the affine registration method, suggesting more precise
SUVRs. In addition, Table 1 suggests that the combined PET-MR LCC-demons
registration method using α = 0.75, which exhibits the largest t-value in our
experiments, is well suited to discriminate between two populations of cognitively
healthy individuals and AD patients.

In this paper we have proposed a combined PET-MR registration method,
using a novel weighting between single-modality updates within the LCC-demons
framework. Our method exploits all of the available data, and our results suggest
that this method can perform at least as well as the single-modality registration
methods with regards to the Dice overlaps and separation between SUVRs. In the
future, we will further assess the choice of the weighting parameter α, including
a spatially varying weighting of the update combination, on a larger validation
data set. We will also investigate the effectiveness of this method on images of
sub-optimal quality.
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Abstract. Co-registration of multi-modal microscopic images can integrate 
benefits of each modality, yet major challenges come from inherent difference 
between staining, distortions of specimens and various artefacts. In this paper, 
we propose a new interactive registration-learning method to register functional 
fluorescence (IF) and structural histology (HE) images in a pyramidal fashion. 
We synthesize HE image from the multi-channel IF image using a supervised 
machine learning technique and hence reduce the multi-modality registration 
problem into a mono-modality one, in which case the normalised cross correla-
tion is used as the similarity measure. Unlike conventional applications of  
supervised learning, our classifier is not trained by ‘ground-truth’ (perfectly-
registered) training dataset, as they are not available. Instead, we use a rela-
tively noisy training dataset (affinely-registered) as an initialization and rely on 
the robustness of machine learning to the outliers and label updates via pyrami-
dal deformable registration to gain better learning and predictions. In this sense, 
the proposed methodology has potential to be adapted in other learning prob-
lems as the manual labelling is usually imprecise and very difficult in the case 
of heterogeneous tissues. 

Keywords: Microscopy, multimodality, deformable registration, noisy robust 
supervised learning. 

1 Introduction 

The fast development of multi-modality microscopes and other molecular and cellular 
techniques allows simultaneous or consecutive biological image acquisition on a sin-
gle specimen, using multiple techniques [1]. For example, in the preclinical cancer 
research, fluorescence image (IF) is widely used in studying the tumour function us-
ing targeted biomarkers. On the other hand, the Haematoxylin and Eosin (H&E) stain 
(the most common histological stain) colours cell nuclei and identifies necrotic region 
in tumours. Accurate co-registration of these datasets can combine the structural and 
functional properties of tissue to allow a more complete picture of tumour microenvi-
ronment and hence the benefits of using each modality can be maximised. However, 
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multi-modality image registration is nontrivial in general and particular challenges 
arise for multimodal microscopic images in the following aspects (as shown in Figure 
1): 1) dissimilar appearance due to generic difference between functional image (IF) 
and morphological image (HE); 2) non-rigid distortions such as holes, folding and 
tears during the histological sectioning and staining; 3) common artefacts such as 
uneven illumination, dust and air bubbles and staining variations.  

So far, the most popular approach in the multi-modal image registration is to 
maximize the mutual information (MI) of the images based on their joint intensity 
histogram [2], which favours similar or correlated statistical properties of the two 
modalities. Although MI works relatively well for rigid alignments [3], it becomes 
particularly challenging when dealing with non-rigid registration, as the number of 
false local optima increases [4]. Other approaches extract a modality-independent 
structure representation from both images and use a L1 or L2 distance measure to 
assess their similarity [5, 6]. However, the assumption of common structure is not 
valid for registering functional and structure images. 

Another attempt that explores registration between different modalities is to simu-
late one modality from another, based on modelling the physics of image acquisition 
[7], or using a image retrieval approach [8]. The strength of this approach is that the 
simulation provides visual representation of the second modality, which itself can be 
of clinical interest when the image of that modality is not available or severely dis-
torted.  

In this paper, we also simulate one modality from another to reduce the multi-
modality registration problem into an intra-modality registration. Since it is very dif-
ficult to quantify the relationship between multiple biomarkers imaged by separate 
modalities using explicit mathematical equations, a learning approach is used here to 
explore the implicit relationship between modalities. Though a supervised learning is 
used during registration, our method does not require the use of perfectly registered 
image pairs as training datasets, as they are not always available for biological im-
ages. In fact, confirmation of ‘perfectly-registered’ multi-modal biological images is 
not generally a trivial task. Alternatively, our method uses only ‘roughly-registered’ 
image data (affine registered in our case) as the first learning base and relies on the 
ability of learning algorithm to reject label noise and the interaction of subsequent 
deformable registration and machine learning to improve the learning and registration 
simultaneously. Though other previous unsupervised learning-based registration that 
do not require ‘perfectly-registered’ image data have been proposed [9, 10], our work 
differ from them in that a supervised learning technique is used for feature selection 
and therefore an elaborate search of matching labels is avoided. 

2 Registration Framework 

The general approach of the registration between the IF and HE images introduced 
here is a pyramidal interactive registration-learning method (PIRLM). After creating 
Gaussian pyramids of the actual and the simulated HE images, the deformable trans-
formation parameters obtained from the previous coarser pyramid level are used to 
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align the IF and HE images at the next level (Fig. 2). The aligned images serve as 
training data for the robust boosting model and for the model predictions. The up-
dated simulation of HE image is used to further guide the subsequent deformable 
registration. At the coarsest scale, the inputs are the initial affinely aligned IF and HE 
images. In contrast to previous iterative classification and registration approach pro-
posed in [11],  we updates our labels by registration whereas in [11] features were 
updated instead. 

 

Fig. 1. Example of a fluorescence image (IF) (left) and an HE stain image (right) of the same 
histological specimen. The slice represents one whole tumour cross-section. The three colour 
channels in IF represent three fluorescence stains (red: microvessels, green: hypoxia, blue: 
perfusion). In this example, the deformation of the HE image was caused by rupture during 
removal of the cover slip between stainings. 

 

 

Fig. 2. Schematics of the pyramid interactive registration-learning method (PIRLM) to align 
the IF and HE images. The deformation model used is cubic B-splines based free-form defor-
mation (FFD). The blue box is the framework for the machine learning and prediction proce-
dure, which takes the results from coarser-scale registrations to label the model training data. 
The model prediction is then used to simulate HE based on IF features and thereby provides the 
reference image for the subsequent finer-scale FFD registration. The key feature of this frame-
work is that both the learning and registration are carried out in multiple pyramidal levels. 
Please see the text for a detailed explanation of each step in this workflow. 
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2.1 IF and HE Affine Pre-alignment 

As the three channels of fluorescence images are independent of each other, the aver-
age of the three channels was used to convert to the fluorescence gray-level image. 
HE images are true colour RGB images and thus were converted into gray-level im-
ages using a standard RGB to grey conversion by eliminating the hue and saturation 
information while retaining the luminance.  

First, IF and HE grey-level images were aligned by affine registration using IF as a 
reference and HE as the moving image. As IF and HE are different modalities, the 
similarity measure for affine registration used is their normalized mutual information 
(NMI), a normalized variant of mutual information [12]. In our framework, the grey-
level fluorescence image is only used in the affine pre-alignment, but not in the sub-
sequent deformable registration. 

2.2 HE Segmentation 

Separating the Specimen from the Background. As shown in Figure 1, the back-
ground of our HE histological slices is white and has high luminosity intensities. The 
luminosity layer, L, was obtained by converting images from the RGB colour space 
into L*a*b color space. The Otsu’s automatic threshold method [13] was then applied 
to the luminosity intensities to separate the specimen from the background. 

Separation of Viable and Necrotic Regions. Unlike in the IF, where the fluores-
cence intensity is linearly related to the concentration of the fluorophore (amount of 
stain), the intensity ܫ௥, ,௚ܫ ௕ܫ  of each of the HE RGB channels depends on the color of 
the stain nonlinearly. The color deconvolution method has been proposed to convert 
RGB intensity in each pixel of a histological slice into the actual amount of Haema-
toxylin and Eosin stain [14]. The necrotic areas are stained for eosin (pink) but not for 
haematoxylin (blue), whereas the viable tissue is stained with both. Thus, the K-
means cluster method is used to cluster the pixels in the specimen with H&E stain 
amount vectors into necrotic and live regions using the Euclidean distance metric. 
Together with the above mentioned specimen/background separation, the HE micro-
scopic image is segmented into three regions - background, necrotic and viable tissue. 

2.3 Simulation of HE from IF Based on a Robust Boosting Method 

We simulated HE from IF features based on the Robustboost method proposed by 
Freund [15], which is designed to be particularly resistant to label noise. The normal 
boosting algorithm such as Adaboost aims to minimise the number of mistakes in train-
ing sets and could iteratively put large weights on mislabelled examples. In contrast, the 
goal of Robustboost is to minimise the number of examples whose normalised margin is 
smaller than a pre-set threshold. In our application, the threshold error margin is set to 
be 0.1. Below a brief description of the learning and prediction phases at each image 
scale of the pyramidal interactive registration-learning framework is given. 

Training Phase: The HE segmentation label image is affinely aligned with IF using 
the above obtained affine transformation parameters. Let ܵ ൌ ሼݏଵ, ,ଶݏ … ,  ௡ሽ denoteݏ
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the HE segmentation label image after alignment, where ݊ is the number of pixels in 
the HE microscopic image and ݏ௜ א ࣦ ൌ ሼ'background','necrotic','live'ሽ. Therefore, 
the fluorescence image ۴ ൌ ሼࢌଵ, ,ଶࢌ … ,  ௡ሽ is classified by ܵ, where the feature vectorࢌ
for each pixel are the intensities of multichannel IF images, local range and entropy in 
a 3x3 neighbourhood (9 features in total). The three-class classification uses a multi-
class extension of all boost methods proposed in [16]. The weak learner was chosen to 
be a decision stump because of its simple form, quick computation, as well as its su-
perior performance in the presence of label noise compared to the deeper tree struc-
ture [15].  At resolution level ݅, a sample size of 100 כ ݅ଶ pixels was used for as the 
training dataset. 

Predicting Phase: The models obtained from the training phase were applied to all 
pixels of each IF for classification. To differentiate from the label nomenclature used in 
the training phase, the predicted region class was denoted with ܲ ൌ ሼ݌ଵ, ,ଶ݌ … ,  ,௡ሽ݌
which is the same as ݏ௜, ݌௜ א ࣦ ൌ ሼ'background','necrotic','live'ሽ. The classifier was 
trained and tested on the same image, which overcomes the problem of staining varia-
tions across slices though the raw intensities was used as features without normalisation. 

HE simulation: The spatial-averaged grey scale HE intensities in the background, 
necrotic and viable regions were assigned to the predicted region class ܲ to synthesize 
a simulated HE image. A median filter was then applied to suppress possible spikes 
and to generate a smoother simulated HE image. 

2.4 FFD Based Registration 

To cope with local distortion caused by the HE image preparation procedure, the de-
formable registration of IF and HE images was posed as an energy optimization prob-
lem where energy functional, ࣟ, is minimized for optimal alignment between the im-
ages. The energy is defined as: 

 ࣟሺ۷۴, ሻ܂|۶۳ ൌ ,ܝܕܑܛሺ۶۳ܥܥܰ ۶۳|ોሻ ൅  ሻ                                   ሺ1ሻ܂஼ሺ࣬ ߣ
 
whereas ۷۴ and ۶۳ denotes the fluorescence and HE stained images, respectively, 

and ۶۳ܝܕܑܛ is the IF simulated HE image based on the supervised learning procedure 
described above. Instead of assessing the match between IF and HE (multimodality) 
directly, we use the normalized cross correlation to measure the similarity  
between the simulated HE and real HE images. We used two-dimensional free-form 
deformation (FFD) based on cubic B-splines [16] as our transformation model and 
regularisation term  ࣬஼ሺ܂ሻ is the curvature regularisation function for elastic types of 
transformation and ߣ controls the amount of regularisation. The registration is com-
pleted using Medical Image Registration Toolbox provided by Andriy Myronenko 
(https://sites.google.com/site/myronenko/research/mirt). The original gradient de-
scendent optimisation is replaced by an iterative quasi-newton optimization technique 
with Hessian update using Broyden-Fletcher-Goldfarb-Shanno (BFGS), which is 
available as MATLAB build-in function.  
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3 Results 

3.1 Experiments and Image Acquisition 

Tumour Line. Xenografted tumors were derived from an established human 
squamous cell carcinoma cell line of the head and neck: FaDu. The mouse experi-
ments described here were approved according to national animal welfare regulations. 

Fluorescence Image Acquisition. The individual whole tumor cyrosections were 
scanned at the same pixel size and photographed using the AxioVision 4.7 and the 
multi-dimensional and mosaix modules (Zeiss, Jena, Germany). In order to reflect 
fluorescent intensity changes of all three stains on a single image, each stain was 
given a particular colour: vessel stain CD31 as red, hypoxia stain Pimonidazole as 
green and perfusion stain Hoechst 3342 as blue.  

HE Image Acquisition. After fluorescence images being taken, the cover slip needed 
to be removed in order to stain the same slice with HE to detect necrotic area. This 
procedure can sometimes cause severe tearing and folding in HE images. After HE 
staining, the HE whole tumour cross-sections were again scanned at the same pixel 
size and photographed with the same settings as the IF images. In total, 26 pairs of IF 
and HE images from five different tumours were processed. 

Image Resolution. IF and HE images were processed as whole tumour cross-section 
images down-sampled to a resolution of 1000 x 1000 with each pixel size correspond-
ing to 10μm. 

3.2 Registration Results 

Comparison Methods. The proposed registration framework, PIRLM, was compared 
to an IF-HE registration utilizing the classical multi-modality registration methods 
normalized mutual information (NMI). In order to incorporate multichannel informa-
tion, we treat each IF channel as individual channel and replicate the HE grey-level 
image three times. The displacement field is taken as the average of the displacement 
field estimated from each channel independently [17]. Besides multi-channel mutual 
information based registration, we also performed an IF-HE registration without in-
teractive HE simulation as a comparison (non-interactive learning and registration 
method, NILRM), in which case the learning-based simulation was only carried on 
one single scale (at the original resolution) using initial affine-aligned IF and HE im-
ages in the training phase. All three non-rigid registration methods are initialised  
using the results achieved by affine pre-alignment and are carried using the same 
pyramidal approach (The number of pyramidal level set to be 5).  

Registration Parameter Setting. The regularisation term ߣ is chosen to be 0.01, 
which is found to be optimal for both normalised registration metrics. B-spline control 
point spacing is 16 pixels. The termination tolerance is set to be 1e-6 with a maximum 
iteration of 400 allowed. For mutual information, the bin size was set to be both 32 
and 64, 32 bins achieve slightly better result, which is thus reported here.  
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In this presented application, a three-tissue class model is used to segment the HE 
image into viable, necrotic and background regions. When such a priori knowledge is 
not available, one can perform a principle component analysis to automatically seg-
ment the image into clusters without a predefined class number (e.g. [18]) and thus 
the proposed registration framework can be transferred to the new application with 
minor modification. A future extension to the registration framework is to simulate a 
full continuous grey-level image instead of a discrete label image, in which case the 
class probability of the Robustboost predictions would be used (as soft labels). An-
other potential approach is to use regression instead of classification to synthesize 
target modality [19], in which case the segmentation is no longer required.  
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Abstract. Relaxation time (T10) estimation using variable flip angle se-
quences is a key step for pharmacokinetic (PK) analysis of tumours in
DCE-MRI exams. In this study, the effects of motion within flip angle
sequences on the T10 and subsequent Ktrans and kep estimation were ex-
amined. It was found that errors in T10 estimation caused by motion had
a significant impact on subsequent PK analysis. A new similarity metric,
based on the T10 regression error, for groupwise motion correction of vari-
able flip angle sequences is proposed and compared against Groupwise
Normalized Mutual Information (GNMI). In rigid registration experi-
ments on simulated data, the new metric outperformed GNMI, showing
an improvement alignment of over 14% in terms of average target reg-
istration error, which is also reflected by a lower T10 estimation error.
Finally, registration was applied to 46 clinical sequences to identify the
average amount of motion found in this type of acquisition; this showed
an estimated displacement of 0.98mm, which could lead to over 25%
Ktrans estimation error if motion were not corrected.

1 Introduction

Pharamacokinetic (PK) analysis of tumours has a high potential to distinguish
between malign and benign neoplasms and has recently shown promise to assess
and predict antiangiogenic treatment response [11]. Dynamic contrast-enhanced
magnetic resonance imaging (DCE-MRI) is one of the most suitable imaging
techniques to acquire contrast agent (CA) uptake information within tumours.
It consists of taking a dynamic MRI sequence over a short period of time upon the
injection of a CA, which locally enhances the image intensities. These can then
be analysed through PK models, providing quantitative information about the
tissue microvascular properties. The most frequently used model, the Tofts model
[10], provides physiologically relevant tissue information through permeability
parameters Ktrans and kep. Correlating intensity changes in DCE-MRI to CA
concentration is one of the obstacles found in this type of analysis. Locally
estimating the CA concentration requires the estimation of the relaxation time
(T10), a patient-specific tissue property, for the same region. Additional volumes
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of images need to be acquired to estimate this property for each voxel of the
DCE-MRI volumes. Several protocols have been developed for this task, such
as inversion recovery and saturation-recovery [5]. In this work, T10 estimation is
performed by the variable nutation angle method, which consists of acquiring a
sequence of spoiled gradient echo (SPGR) volumes with several flip angles [5].
The tissue relaxation time at each voxel may then be estimated by analysing the
MRI intensities at each voxel in all the different flip angle volumes. However,
patient motion within these volumes may cause errors in the T10 estimation,
which may then impact the accuracy of the PK analysis.

Even though a lot of effort has been put into analysing and correcting for
motion within a DCE-MRI acquisition [2,4], little has been done to correct for
motion within the variable flip angle SPGR sequence. The relation between T10

estimation errors on Ktrans and kep was studied in [9], showing that inaccuracies
in T10 resulted in even greater errors in Ktrans. An image registration method
using B-Spline free-form deformation with mutual information was applied in
that work to correct for motion [9], but its effect and efficacy were not evaluated.

This paper is structured as follows. Sec. 2 presents the background for PK
analysis from DCE-MRI studies and T10 estimation. In Sec. 3, a groupwise rigid
registration framework is presented for motion correction of variable flip angle
sequences, as well as the T10 regression error similarity metric, which is a new
similarity metric that we propose for this type of MR sequences. This is followed
by Sec. 4, which presents experiments that analyse the effects of motion on
variable flip angle sequences in PK estimation and evaluate the motion correction
framework and the new similarity metric. Finally, the conclusions and outlook
of this work are discussed in Sec. 5.

2 Background

2.1 Pharmacokinetic Modelling

The two compartment Tofts model is one of the most popular models used for
PK analysis[10]. It models the perfusion of the CA between the blood plasma
and the extravascular extracellular space (EES). The leakage rate of the CA is
described by two physiological parameters: Ktrans and kep. In the Tofts model,
the CA concentration Ce in the EES is given by:

Ce(t) = Ktrans exp(−kept) ∗ Cp(t) (1)

Cp(t), the arterial input function (AIF), is the CA concentration in the blood
feeding the region being analysed. In this work we used a population model for
the AIF, the Orton 3 model [7]. The main goal in the PK analysis is to extract
relevant information from the tumour by estimating Ktrans and kep.

2.2 Converting Concentration to Relaxation Time (T1)

The Tofts model requires CA concentration uptake data to estimate Ktrans and
kep. The presence of CA causes a shortening of the T1 relaxation time which
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Fig. 1. MRI from SPGR sequences with variable flip angles; clinical data: (a) 3o, (b)
9o , (c) 12o, (d) 15o; simulated data: (e) 3o, (f) 9o , (g) 12o, (h) 15o. Despite all images
presenting the same tissues and morphology, the MRI intensities change according to
the acquired flip angle.

is reflected by an increase of the acquired MRI intensities.The relation between
the CA concentration and the MRI intensity value[10] is given by:

T−1
1 = T−1

10 + r1C (2)

where r1 is the relaxivity, a CA property, and C the tissue concentration. The
estimation of T10, the pre-injection relaxation time, plays a vital role in obtaining
physiological information from DCE-MRI sequences. T10 may be computed from
a sequence of variable flip angle SPGR volumes. Under the assumption of no
motion, noise nor changes of the magnetic properties of the tissue, the intensity
at any voxel i in these volumes will be given by [5]:

S(i) = M0 sin(α)

[
1− exp

(
−TR

T1(i)

)][
1− cos(α) exp

(
−TR

T1(i)

)]−1

(3)

where TR and α are respectively the sequence pulse repetition time and the

flip angle. M0 = gφ exp
(

−TE

T∗
2 (i)

)
, g is the MRI scanner gain, TE the sequence

echo time (both acquisition parameters) and φ the tissue proton density. By
rearranging Eq. 3 into a linear function, T10 can be computed:

Y = AX +B

Y =
S

sin(α)
, X =

S

tan(α)
, A = exp

(
−TR

T10

)
, B = M0

(
1− exp

(
−TR

T10

))
(4)

At each voxel, A and B can be computed by a linear regression over the observed
values on the variable flip angle volumes. However, this assumes that T10 remains
fixed at each voxel over all the variable flip angle sequence, which is only true if
there is no motion between the MRI acquisitions.

2.3 Pharmacokinetic Model Parameters Estimation

Ktrans and kep can be estimated by finding the pair of parameters which gen-
erate concentration curves which best fit the observed DCE-MRI data. For a
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pair of candidate parameters K̂trans and k̂êp, a modeled CA concentration curve

(Ĉ(K̂trans, k̂êp, t)) can be generated (Eq. 1). This can be converted into an esti-

mated signal enhancement curve ŜE(K̂trans, k̂ep, t):

ŜE(t) = exp(−r2C(t)TE)

⎡⎣ 1− exp
(

−TR

T1(t)

)
1− cos(α) exp

(
−TR

T1(t)

)
⎤⎦⎡⎣1− cos(α) exp

(
−TR

T10

)
1− exp

(
−TR

T10

)
⎤⎦
(5)

Likewise, for each voxel i in the DCE-MRI sequence, a signal enhancement
curve (SE(t(n)) = S(i, t(n))/S(i, t(0))) may be extracted as the signal intensity
uptake after the injection of contrast. By minimizing the mean square error at
each voxel i between the estimated and the acquired signal enhancement curves
(ŜE and SE), the PK parameters can be estimated. Computing T10 is essential
for the computation of the estimated signal enhancement curve ŜE and later in
Sec. 4.3 we will analyse the effects of the use of incorrect T10 during PK analysis.

3 Methods

3.1 Groupwise Registration

A groupwise registration framework was used to evaluate different metrics for
correcting motion within the SPGR volume sequence. It simultaneously regis-
ters all the N variable flip angles using a single similarity metric for the whole
sequence of volumes. One of the variable flip angle volumes was considered as
static, while the remaining ones were subjected to motion correction. A new
similarity metric was created for groupwise registration of these volumes: the
T10 regression error similarity metric, which is described in Sec. 3.2. A standard
groupwise similarity metric, the Groupwise Normalized Mutual Information [1],
was implemented as a commonly used similarity metric for comparison (Sec. 3.3).
In this work, a Levenberg-Marquardt optimizer was used for similarity metric
minimization (alglib library [3]). A pre-processing filtering stage was performed
by applying a Gaussian blurring filter with a standard deviation of 1mm (close
to in-plane voxel size). In this work, rigid registration was applied within this
framework, however, other transformation model could be used.

3.2 T10 Regression Error Similarity Metric

We propose a new similarity metric for motion correction on variable flip angle
SPGR volumes based on the T10 regression error. Estimating T10 consists in
fitting a line through two or more points from the SPGR volume sequence at
each voxel. In the presence of more than two points, this regression will yield a
residual error which may be caused by motion between the volumes, noise and/or
changes in the magnetic properties of the tissue. Hence, the misfit found can be
used to assess the amount of patient motion between the MRI acquisitions.

Taking advantage of a modelled relationship between the intensities over a
series of images has previously been proposed as a similarity metric. In [2,4], the
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Fig. 2. Groupwise registration method by minimizing the T10 regression error in vari-
able flip angle SPGR sequences

error between the data and the Tofts PK model was used as a non-linear motion
correction similarity metric on DCE-MRI volumes.

In this work, a similar approach was taken to develop a similarity metric for
the variable flip angle volume sequence. The T10 regression is expected to have a
better fit when there is a better alignment. Hence, the proposed similarity metric
is here defined as the error between the observed values for each flip angle volume
S(i, α(n)) and the fitted values (Ŝ(i, α(n), T̂10(i), M̂0(i))):

simreg =
1

NI

I∑
i=1

N∑
n=1

(
S(i, α(n))− Ŝ(i, α(n), T̂10(i), M̂0(i))

)2

(6)

where, I are the pixels within each volume and N the number of variable flip
angle volumes within the sequence. An overview of the motion correction method
using the T10 regression error similarity metric is shown in Fig. 2.

3.3 Groupwise Normalized Mutual Information

The Groupwise Normalized Mutual Information (GNMI) [1] was used for
comparison for the simultaneous registration of variable flip angle sequences.
It extends the Normalized Mutual Information (NMI) [8] for sets of volumes by
summing the NMI of each volume In to a reference volume I. The reference vol-
ume is generated by taking the mean intensity at each voxel of all the volumes
being registered. Defining H(I1, I2) as the joint entropy between I1 and I2 [6],

the GNMI is given by: simgnmi = (1/N).
∑N

n=1

((
H(I) +H(In)

)
/
(
H(I, In)

))
4 Results

4.1 Materials

Clinical Data. SPGR variable flip angle sequences from 27 patients with ad-
vanced colorectal adenocarcinomas were acquired on a 1.5T GE scanner using
a T1-weighted, gradient-echo, fat-suppressed sequence (LAVA). Each sequence
was composed of three or four volumes with different flip angles (3o, 9o, 12o

and/or 15o) with TR = 4.5ms and TE = 2.2ms. Most of the patients were im-
aged twice, before and after chemoradiotherapy, thus there were 46 sequences.
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The volumes had a resolution between 0.78 and 0.94mm in-plane, with a slice
thickness between 4 and 5mm. All images had grid dimensions of 512 x 512 and
the volumes contained between 20 to 28 slices. The colorectal region is the object
of interest of these acquisitions and, to reduce computation time, this region was
cropped from the original volumes. Each image was reduced to an in-plane 80
x 80 voxels region around the rectum and the upper and lower three slices were
removed. Figs. 1 (a)-(d) show an example of a variable flip angle sequence.

Simulated Data. To assess the effects of motion on T10 estimation, ground
truth volumes with known relaxation time and motion are required. However,
from acquired clinical exams this is not possible, as the motion, which is the ob-
ject of this study, will be present, but unknown. Thus, simulated ground truth
variable flip angle volumes and T10 and M0 maps were generated. These maps
were created based on clinical data: for each variable flip angle sequence, T10 and
M0 were estimated according to the procedure shown in Sec. 2.2 and were con-
sidered as the ground truth. Creating such ground truth data ensures a similar
distribution of values as found in clinical data. The variable flip angle volumes
were generated by applying these maps to Eq. 3. For each ground truth gen-
erated sequence, the chosen flip angles were the same as the original sequence.
Figs. 1 (e)-(h) show examples of these simulated images. Randomly generated
known rigid motion was applied to the simulated volumes to evaluate the effects
of motion in T10 estimation and compare different registration algorithms (Sec.
4.2). The rigid transformations were drawn from a normal distribution (μ = 0)
with σk standard deviation on each transformation parameter. For each motion
level k, the amount of motion caused by the random transformations was com-
puted as the mean level of motion introduced in the SPGR variable flip angle
sequences. A volume size dependent scale was applied to normalize the motion
on the rotation parameters, keeping the displacement caused by motion and
translation on the same level.

4.2 Experiments

Evaluating the Effects of Motion on the Estimation of Pharmacoki-
netic Model Parameters. Two experiments were performed to assess the
effects of motion within the SPGR volume sequence on T10 and subsequent PK
model parameter estimation. Firstly, the error in T10 due to motion was esti-
mated by applying varying levels of random levels of rigid deformations to sim-
ulated MRI variable flip angle sequences with known T10 values (Sec. 4.1). After
applying the deformations, T10 was estimated and compared to the ground truth,
providing a measure of the estimation error as a function of residual misalign-
ment. The second experiment consisted of evaluating how motion corrupted T10

estimations affect subsequent PK model parameter estimation. Simulated DCE-
MRI signals were generated with known Ktrans and kep values and T10 = 1.0s.
Erroneous T10 values were used to estimate these PK parameters and the ob-
tained results were compared to the original ones, providing a measure of by how
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much T10 error propagates to PK analysis. In this experimentKtrans ranged from
0.01 to 2.00 and kep from 0.01 to 5, providing an average estimation error over
different curves. Other parameters of this experiment were: r1 = 4.5 (mM.s)−1,
r2 = 5.5 (mM.s)−1, TR = 4.5ms, TE = 0.22ms and a 15o flip angle. The synthetic
DCE-MRI curves were created with samples every 12 seconds for 5.2 minutes.

Evaluation and Comparison of Similarity Metrics for Rigid Body Mo-
tion Correction. The T10 regression and GNMI similarity metrics were tested
using a rigid registration framework (Sec. 3.1) on 20 ground truth sequences of
variable flip angle MRI volumes. The procedure to perform this test is presented
below:

1. Ground truth parameter maps (T 10 and M0) were created from the original
clinical data, as explained in Sec. 4.1.

2. For each flip angle, a random rigid transformation was created and applied
to the T 10 and M0 volumes (Sec. 4.1).

3. The transformed maps were used to create motion corrupted MRI volumes
with variable flip angles using Eq. 3.

4. The volumes were registered twice, once using the T10 regression error simi-
larity metric and once using GNMI (Secs 3.1, 3.2 and 3.3 ).

5. The mean displacement and the T10 estimation error were computed be-
fore and after registration to assess the registration accuracy of each of the
similarity metrics.

To complement this experiment, the robustness of these similarity metrics to
noise was also evaluated. Several levels of Rician noise were applied to the mo-
tion corrupted synthetic sequences and registered using the T10 regression error
similarity metric or GNMI.

Estimation of the Rigid Motion Found on SPGR Variable flip Angle
Volume Sequences. The third experiment aims at estimating the amount of
rigid motion found within the SPGR variable flip angle sequences. This pro-
vides, in conjunction with the other experiments, a lower bound to the error
in PK parameter estimation caused by motion in T10 estimation. Rigid motion
was quantified by applying the groupwise rigid registration method (Sec. 3.1)
to several SPGR sequences. This was performed using both similarity metrics;
the original motion was considered as the displacement caused by the obtained
registration transforms.

4.3 Results and Discussion

Evaluating the Effects of Motion on the Estimation of Pharmacoki-
netic Model Parameters. The T10 estimation error as a function of the av-
erage motion is shown in Fig. 3 for each tested motion level. A linear relation
between the amount of simulated motion and the T10 estimation error is ob-
served. Fig. 4 shows how inaccuracies in T10 affect the estimation of Ktrans and
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Fig. 3. Estimated T10 error due to motion within the SPGR sequence volumes. The
average T10 error exceeds 15% for a motion equivalent to an in-plane voxel size (0.8mm).

Fig. 4. Ktrans and kep estimation error due to T10 inaccuracies. A magnification of the
error occurs for underestimated T10 values.

kep. The most notable result is that underestimations of T10 have significantly
greater effect on the PK model parameter estimation. Overall, T10 errors are
amplified during Ktrans estimation and reduced for kep estimation. These be-
haviours had already been reported on a similar experiment using a different
AIF [9].

Evaluation of Similarity Metrics for Rigid Body Motion Correction.
The similarity metrics were evaluated by the mean displacement found between
the original (pre-motion) and the registered volumes. The average amount of
motion that was simulated, and the target registration and T10 estimation errors
before and after registration are shown in Tab. 1. For all motion levels, the T10

regression metric showed a lower registration error than the GNMI metric and for
each level a paired one-sided Wilcoxon signed test indicated that the new metric
was statistically significantly better at correcting motion (p-level<0.01). The
difference between the registration outcomes became more accentuated as the
simulated motion increased. As for the T10 estimation, it almost always showed
lower errors as the motion was corrected. In terms of PK model parameter
estimation, when subjected to 1.23mm mean simulated motion, performing rigid
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Table 1. Mean displacement and standard deviation and T10 estimation error before
and after groupwise rigid registration on simulated volumes

Mean displacement ± standard deviation [mm] / Mean absolute T10 error [%]

Pre-registration T10 regression GNMI

0.46 ± 0.08mm 9% 0.34 ± 0.15mm 10% 0.38 ± 0.09mm 10%
0.68 ± 0.13mm 14% 0.45 ± 0.19mm 13% 0.55 ± 0.11mm 14%
0.92 ± 0.16mm 17% 0.61 ± 0.38mm 15% 0.69 ± 0.15mm 16%
1.23 ± 0.26mm 20% 0.72 ± 0.39mm 16% 0.88 ± 0.23mm 18%

Table 2. Mean displacement and standard deviation and T10 estimation error before
and after groupwise rigid registration on simulated volumes with Rician noise

Noise level Mean displacement ± standard deviation [mm] / Mean absolute T10 error [%]

σn Pre-registration T10 regression GNMI

0
0.72 ± 0.11mm

13% 0.43 ± 0.10mm 11% 0.55 ± 0.09mm 12%
15 30% 0.40 ± 0.10mm 26% 0.59 ± 0.14mm 27%
30 46% 0.42 ± 0.18mm 44% 0.66 ± 0.14mm 44%

registration with the proposed similarity metric reduced the T10 estimation error
by 4%, which would cause a decrease of similar magnitude on the Ktrans error.

When evaluating the effects of noise on the registration of variable flip angle
sequences, the results (presented in Tab. 2) show that both similarity metrics
are robust to it.

Assessing the Rigid Motion Found on SPGR Variable Flip Angle Vol-
ume Sequences. A considerable discrepancy was found between the motion
estimated using the T10 regression and the GNMI similarity metrics. The new
metric indicated a mean rigid displacement of 0.98mm ± 0.41mm; when using
GNMI, 0.53mm ± 0.45mm motion was observed. This result not only shows that
considerable motion may occur within these volumes, but also that the choice
of the metric when correcting for motion may have a relevant effect on the reg-
istration. Considering the lowest estimated motion (using the GNMI metric),
an average error of around 12% may be expected for T10, leading to about 15%
Ktrans error. Alternatively, the motion estimated using the T10 regression metric,
0.98mm, could indicate an estimation error of more than 25% on Ktrans.

5 Discussion and Conclusion

This work has presented a novel method for correcting patient motion within
variable flip angle sequences and studied how this may affect DCE-MRI analysis.
A clear relation between motion and Ktrans error was shown, quantifying how
much misalignment may be present during relaxation time estimation without
compromising the PK analysis. In contrast, kep estimation was much more robust
to T10 error. Our experiments also showed that there exists a relevant amount
of motion within variable flip angle MRI sequences, which would cause an error
between 15% and 25% on Ktrans, motivating the need for motion correction
techniques when estimating T10 for PK analysis of DCE-MRI exams.
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Our key contribution was the proposition of a new similarity metric for mo-
tion correction in SPGR variable flip angle sequences based on the T10 regression
error. This novel metric consistently showed lower registration error on sets of
simulated volumes with simulated motion when compared to the GNMI metric.
However, further development is still needed for the validation of this technique
in clinical variable flip angle sequences. The presence and correction of non-linear
motion in these exams will be examined using the new similarity metric. More-
over, further experiments must be performed to analyse the effects of motion
correction on clinical data to further establish whether flip angle sequence regis-
tration can improve the PK analysis results and the characterization of tumours.
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Abstract. Optical microscopy imaging techniques have enabled a wide
spectrum of biomedical applications. Among visualization, a quantitative
analysis of tumour cell growth in lungs is of great importance. The main
challenges inherently linked with such data analysis are: local contrast
changes related to tissue depth, lack of clear object boundaries due to
the presence of noise, and cluttering with motion artefacts due to trans-
lational shift of the specimen and non-linear lung tissue collapse. This
paper aims to address these problems by introducing a novel image reg-
istration framework specifically designed to correct for motion artefacts
from optical microscopy of lung tumour cells imaging. For this purpose,
a previously developed modality independent neighbourhood descriptor
(MIND) was adapted to cope with multiple image channels for optical mi-
croscopy data. Two versions of this novel multichannel MIND (mMIND)
are here presented. The proposed registration technique estimates both
rigid transformations and non-linear deformations both common in the
optical microscopy volumes and time-sequences acquisition. The perfor-
mance of our registration technique based on a novel multichannel image
representation is demonstrated using two distinctive optical imaging data
sets of lung cells: 3D volumes with translation motion artefacts only, and
time-sequences with both rigid and non-linear motion artefacts. Visual
inspection of the registration outcomes and reported results of the qual-
itative evaluation show a promising improvement compared to images
without correction.

Keywords: image registration, microscopy imaging, lung tumour cell
imaging, structural image representation.

1 Introduction

Recent advances in optical microscopy methods in biomedical science have at-
tracted active research in finding accurate and efficient tools for automated anal-
ysis of (usually large scale) imaging data sets. Such applications include but are
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Fig. 1. Exemplar of intensity inconsistency for the mouse lung tumour tissue data.
Areas depicted by the red arrows show the same anatomical structure taken from the
neighbourhood slices of the entire stack, however the intensity values are different.

not limited to the following: variability of cell nuclei analysis [14], tumour cell
migration analysis [5], classification of protein motion patterns [6], and vessel
architecture and blood flow analysis [7].

In this paper, we consider intravital microscopy (IVM), which captures high-
resolution image sequences and furthermore can be used for visualization of
tumour cell growth and their interaction with host immune cells such as macro-
phages and T cells. The in vivo-model of choice is small rodents, and both
whole organs (following explantation from the animal) as well as tumours in
situ can be imaged. In our current experimental set-up, the acquisition protocol
is specified for ex-vivo lung imaging as follows. Lungs that carry metastatic
colonies are explanted to study the behaviour and phenotype of macrophages
interacting with the colonies within the lungs. The lungs are kept at 37 ◦C for
up to two hours while imaging. The protocol comes with a number of challenges,
which this paper aims to address. The intrinsic regular motion patterns such
as tissue movements (due to lung decompression) introduce motion artefacts;
thus preventing stable image acquisition at high spatial resolution. In addition,
the motion is not necessarily spatially and temporally uniform i.e. the whole
lung might undergo motion, or parts of it only, and this may start at any time
during image acquisition. This makes a high rate of abortive experiments and
significantly limits the potential of intravital microscopy techniques.

1.1 Related Work

The majority of the applications using optical imaging data sets that have been
investigated so far in the literature treat the registration between consecutive
slices of the stack as a purely mono-modal registration problem. Such approaches
proposed for stack motion correction usually use intensity based similarity mea-
sures i.e. the sum of the squared differences (SSD) or the sum of the absolute
differences (SAD). However, usage of SSD (or SAD) based image registration im-
plies the assumption that the corresponding structures in both input images have
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constant intensity values. However, this assumption is violated in the case of op-
tical microscopy data, where changes in intensity are common due the artefacts
caused by the optical characteristics of the microscopy system. One exemplar of
such intensity inconsistency for mouse lung tumour tissue data is shown in Fig. 1.
While the areas depicted by the red arrows show the same anatomical structure
taken from the neighbourhood slices of the stack, the intensity values are differ-
ent. [8] used mutual information based similarity measures but the results were
not satisfactory as motion artefacts were not completely removed. This was due
to the fact that mutual information is a global measure of image similarity, while
the intensity inconsistencies are local. Other approaches tackling this problem ei-
ther require segmentation of the object of interest [7] or advanced preprocessing
using feature detection [6]. In our case, such segmentation or feature detection
is not possible as it comes with extra segmentation of very irregularly shaped
cells.

Here, we present an efficient post-acquisition image registration based tech-
nique to correct data corrupted by rigid and non-linear motion artefacts. In con-
trast to other approaches (e.g. [8]), our method directly integrates information
from all channels of volume/sequence using a novel technique called multichan-
nel modality independent neighbourhood descriptors (mMIND). These novel de-
scriptors are robust to local contrast changes, and noise present in the acquired
data. The proposed registration technique estimates both rigid and non-linear
deformations inherently linked with the optical microscopy volumes or time-
sequences acquisition. We demonstrate that the presented image registration
framework is capable of correcting for motion artefacts apparent in the collected
data sets.

The remainder of this paper is organized as follows. In Sec. 2 we briefly review
the concept of the modality independent neighbourhood descriptor (Sec. 2.1) and
then we introduce and explain in detail how to compute mMIND descriptors for
multichannel data derived from MIND (Sec. 2.2). Finally, this section describes
an adapted optimization scheme for rigid and non-linear registration. Section 3
presents the lung data set used for evaluation purposes (Sec. 3.1), and the em-
ployed experimental setup (Sec. 3.2). The obtained results for those data are
presented in Sec. 3.3. The paper is summarized and concluded in Sec. 4.

2 Methodology

In this work, we consider registration for the multichannel images I = [I1, . . . , Ic,
. . . , IC ] consisting of C channels of an entire stack S = [I1, . . . , In, . . . IN ] where
N is the number of images in this stack acquired using optical microscopy. We
start our registration by selecting this initial image from one of the images In

from the stack to be a reference image (usually the first image of the stack I1)
and a consecutive image In+1 of this stack is referred to as the moving image.
Consequently, to remove rigid motion artefacts present in the entire stack S,
we perform N-1 pairwise registrations minimizing a generally stated similarity
function Sim in the following way:



Motion Correction of Intravital Microscopy of Lung Tumour Imaging 167

p̂ = argmin
p

(
N−1∑
n=1

∑
x

(Sim(In(x), In+1(x+ p)))

)
(1)

where p denotes the estimated motion correction parameters (the parameters of
adapted global transformation model), and x denotes a spatial position within
the image domain. Similarly, to also remove any non-linear motion components
in the entire stack, we perform N-1 pairwise deformable registrations combining
the similarity measure and a regularisation term Reg:

û = argmin
u

(
N−1∑
n=1

∑
x

(Sim(In(x), In+1(x+ u)) + αReg(u))

)
(2)

where u denotes the estimated displacement field, and α is a positive factor
weighting the elements of the cost function.

Changing the reference image for each registration instead of using one pre-
selected image was found to increase the quality of the stack reconstruction, as
the corresponding neighbourhood slices of the stack contain the same anatomical
structures [8].

2.1 MIND: Modality Independent Neighborhood Descriptor

The modality independent neighbourhood descriptor (MIND) was originally pro-
posed by [3] for multimodal registration of CT/MRI lung data. Recently, this
descriptor was also successfully applied to CT/Ultrasound rigid registration [1].
The modality independent neighbourhood descriptor is a vector defined as fol-
lows:

MIND(I(x), r) =
1

n
exp

(
−d(I(x), I(x+ r))

v(I(x))

)
(3)

where d is a distance measure between two local image patches within a spatial
search range r ∈ r, and v is a variance estimator. In case of grey-level images,
the distance d between two points x and x + r was defined as the sum of the
squared differences of all pixels within the two patches centred at x and x+ r.

The MIND descriptor (defined by Eq. (3)) cannot be used directly for our
data, as it is defined for grey-level images (single channel images). Therefore, a
particular channel needs to be chosen for the registration, or as suggested by [8]
a single-channel composite image can be generated based on all image channels
in the following way:

c(I(x)) =

C∑
c=1

Ic(x) ·
∑

x Ic(x)∑
x I1(x) + . . .+

∑
x IC(x)

(4)

While such linear combination of the image channels has no biological signif-
icance, however, it enables to process multichannel data without the need to
discard any channel. However, the composite image c(I) still suffers from any
local contrast changes and presence of the noise.
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2.2 mMIND: Multichannel Modality Independent Neighbourhood
Descriptor

In order to extend the applicability of MIND for multichannel data, we propose
two alternative approaches in order to avoid discarding information from any
other channels. The first version of the multichannel MIND (mMIND) calculates
the MIND descriptor for each channel separately and then merges those distances
as elements of the new descriptor in the following way:

mMINDa(I(x), r) = [MIND(I1(x), r), . . . ,MIND(IC(x), r)] (5)

In case of four-neighbourhood spatial search space r, the mMINDa has 4 ∗ C
elements.

For the second version of the proposed mMIND descriptor we propose to use
the sum of the squared differences between the vector-valued patches centred at
x and x+ r.

mMINDc(I(x), r) =
1

n
exp

(
−
∑C

c=1 d(Ic(x), Ic(x+ r))

v(I(x))

)
(6)

In case of four-neighbourhood spatial search space r, the mMINDc has same
number of channels as the original single-channel MIND (4 elements).

2.3 Registration Framework

Rigid Registration. Following our previous formulation in Sec. 2 for stack
motion correction, we restrict our parameters for the model of transformation
p = [ptx , pty ] to be a translational part of the global rigid transformation. Our
implementation of registration uses the traditional Levenberg-Marquardt (LM)
algorithm for vector valued-images [11]. Different optimization methods can be
used to find a local solution of the presented cost function (see [9]).

Non-Linear Registration. To estimate the non-linear components of motion
artefacts in the data, we use the Demons approach [12], which is a widely used
non-parametric registration framework. The original formulation of the Demons
algorithm minimises the similarity Sim formulated as the sum of squared in-
tensity differences and a diffusion based regularisation Reg of the deformation
field is performed by Gaussian smoothing. The chosen framework can also be ap-
plied to vector-valued data using the multichannel Demons approach [10]. The
particular choice of this registration is motivated by an efficient second order
minimisation scheme (ESM) applied in the Demons algorithm where a second
order approximation of the cost function is achieved by combining the image gra-
dients of the reference image and the moving image. The novel representation
of multichannel images using the proposed image descriptor, described in the
previous section, produces images that can be treated as mono-modal, so that
the multichannel Demons approach with ESM can be applied to a multichannel
microscopy registration problem.
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3 Evaluation

To demonstrate the functionality of our registration method with the new image
descriptors, we apply it to the challenging application of correction for motion
distortion from optical microscopy imaging.

3.1 Data Description

Images were acquired using a confocal laser scanning microscope (Zeiss 710 LSM,
Carl Zeiss Jena, Germany) with a 20x objective and 845 nm 2P excitation.
The in-plane dimension of the images is 1024×1024 with spatial resolution of
0.415×0.415μm2 with three 8 bit channels. There is variable stack size between
49 and 67 slices (with resolution of 1.0μm in z direction). All acquisition pro-
cedures are in accordance with the ASPA (Animals Scientific Procedures Act)
1986 and ethical guidelines of the University of Oxford.

3.2 Experimental Setup

The particular registration parameters selected for our experiments are as fol-
lows. During registration a linear interpolation with a Neumann boundary con-
dition is performed where pixel values outside the image domain are replaced by
the values of the nearest pixel within the image boundary. Additionally, we em-
ploy a five level multi-resolution scheme to improve the convergence rate of the
algorithms. Downsampling factors of [16, 8, 4, 2, 1] are used for all experiments
presented in this paper. To obtain mMIND descriptors for a lower resolution,
we calculate appropriate distances between local patches in the original image
resolution, and then down-sample this descriptor to the desired resolution. The
mMIND parameters are σ = 2.5 for estimating the patch distance d and the
four-neighbourhood spatial search region.

Due to the lack of ground truth, a surrogate criterion, the sum of the squared
difference (SSD), was evaluated to quantify the performance of registration. We
used the SSD to measure the similarity of the group of images in the registered
stack computed as follows: SSD = 1

N−1

∑N−1
n=1

∑
x(In(x) − In+1(x))

2 Addi-
tionally, we also calculated the peak signal-to-noise ratio (PSNR) [2].

3.3 Results

Data with Translation Motion Distortions. Figure 2 shows a z-stack sum
projection for one of the data sets with translation distortions before and after
rigid registration. The translational motion is apparent as a smooth image blur
reducing sharpness of object details. The effective elimination of translational
motion was achieved by both presented descriptors mMINDa and mMINDc. As
an example Fig. 2(right) shows a reduction of motion artefacts after registra-
tion using the mMINDa descriptor. The sum of the squared differences (SSD)
before registration is 9.88 ∗ 103, while after registration using the mMINDa and
mMINDc was reduced to 3.88∗103 and 3.86∗103, respectively. The PSNR before
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Fig. 2. Example of rigid registration results for a lung tissue data set with translational
motion distortions. (left) z-stack sum projection of entire volume before registration,
(right) z-stack sum projection of entire volume after rigid registration using mMINDa.
The effectiveness of rigid motion artefacts reduction can be clearly seen, and it is
possible to distinguish and evaluate individual cells (green).

Fig. 3. Example of rigid registration results for very challenging lung tissue data with
translational motion distortions. (left) z-stack sum projection of entire volume before
registration, (right) z-stack sum projection of entire volume after rigid registration
using mMINDa. Before registration, the image is unusable for analysis; however, rigid
motion artefacts reduction clearly improves the quality of the image.

registration was 27.2 ± 4.5dB while after registration using the mMINDa was
29.2± 3.9dB, and using the mMINDc was 29.2± 4.1dB.
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Fig. 4. Example of deformable registration results for lung tissue data with non-linear
motion distortions. (left) z-stack sum projection of entire volume before registration,
(right) z-stack sum projection of entire volume after non-linear registration. The cor-
rection for non-linear motion renders a larger area of the sample image suitable for
analysis.

Fig. 5. Example of deformable registration results for lung tissue data with non-linear
motion distortions. (left) z-stack sum projection of entire volume before registration,
(right) z-stack sum projection of entire volume after non-linear registration. The image
quality is improved and the outline of blood vessels (green) can be traced. Also, cells
(red) can be evaluated. However, the quality of underlying data limits the effectiveness
of non-linear motion artefact correction.

Similarly, Fig. 3 shows the sum z-stack projection for a very challenging ex-
ample of the collected data set with translational distortions before and after
rigid registration using mMINDa. As before, the proposed registration tech-
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niques based on image descriptors mMINDa and mMINDc were able to reduce
motion distortions. The SSD before registration for data shown in Fig. 3 is
6.25 ∗ 103, while after registration using the mMINDa and mMINDc was re-
duced to 2.07 ∗ 103 and 2.04 ∗ 103, respectively. The PSNR before registration
was 26.5± 4.6dB while after registration using the mMINDa was 34.2± 5.1dB,
and using the mMINDc was 34.1± 5.2dB.

Data with Non-Linear Motion Distortions. Fig. 4 and Fig. 5 show a sum
z-stack projections for two data sets with non-linear distortions before (left)
and after deformable registration (right). The proposed registration was able to
reduce both translational and non-linear motion artefacts apparent due to the
lung collapse as indicated by Fig. 4 (right) and 5 (right). This demonstrate the
potential of our proposed image registration method using mMIND descriptors
to restore data sets that were severely distorted by rigid and non-linear motion
artefacts, enabling their further analysis.

4 Discussion and Conclusions

In this paper, we have presented a set of new multichannel modality independent
neighbourhood descriptors (mMIND) that are particularly designed for registra-
tion of multichannel image data. The crucial step of mMIND generation in terms
of the calculation of the neighbourhood patch distances, was performed in two
different ways: between the patches of each channel separately, and between
vector-valued patches integrating all channels of these data. The obtained re-
sults indicate that registration with either of the presented descriptors is able
to cope well with motion artefacts. The rigid and non-linear components of mo-
tion artefacts were estimated via efficient optimisation schemes: the Levenberg-
Marquardt algorithm for rigid registration and the Demons framework with the
efficient second order minimisation scheme (ESM). In the examples presented,
image registration visually improved the quality of the data sets acquired. Due
to the registration based on the proposed multichannel extension of MIND, the
motion correction framework is not sensitive to the data noise, and removes
blurry information only related to the motion artefacts. The visual inspection of
image registration outcomes is further supported by quantitative results compar-
ing the sum of the squared differences (SSD) and the peak signal-to-noise ratio
(PSNR) before and after registration. From the biological perspective, the pre-
sented method renders formerly unusable data open to quantitative analysis and
salvages work that otherwise would have had to be discarded by the scientists.

Future work will focus on further development of image registration methods
suitable for intravital microscopy (IVM), facilitating detailed and automated
analysis of tumour cell growth and migration. This type of analysis requires
the development of a computationally efficient framework in order to be able
to upscale to large biomedical experiments. Therefore, we plan to investigate
descriptors with near real-time performance such as the quantized self-similarity
descriptor with a similarity measure based on the Hamming distance [4]. Further
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improvement of the presented descriptors might also be possible. The multichan-
nel MIND are not rotationally invariant which could be a limitation in some
applications. Therefore, the use of the other image descriptors such entropy or
Laplacian image representation [13] could address such specific requirements.
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4. Heinrich, M.P., Jenkinson, M., Papież, B.W., Brady, S.M., Schnabel, J.A.: Towards
realtime multimodal fusion for image-guided interventions using self-similarities.
In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013,
Part I. LNCS, vol. 8149, pp. 187–194. Springer, Heidelberg (2013)

5. Kedrin, D., Gligorijevic, B., Wyckoff, J., Verkhusha, V.V., Condeelis, J., Segall,
J.E., van Rheenen, J.: Intravital imaging of metastatic behavior through a mam-
mary imaging window. Nat. Methods 5(12), 1019–1021 (2008)

6. Kim, I.-H., Chen, Y.-C.M., Spector, D.L., Eils, R., Rohr, K.: Nonrigid registration
of 2-D and 3-D dynamic cell nuclei images for improved classification of subcellular
particle motion. IEEE Trans. Image Process. 20(4), 1011–1022 (2011)

7. Kumar, A.N., Short, K.W., Piston, D.W.: A motion correction framework for time
series sequences in microscopy images. Microsc. Microanal. 19, 433–450 (2013)

8. Lorenz, K.S., Salama, P., Dunn, K.W., Delp, E.J.: Digital correction of motion
artefacts in microscopy image sequences collected from living animals using rigid
and nonrigid registration. J. Microsc. 245(2), 148–160 (2012)

9. Modersitzki, J.: FAIR: Flexible Algorithms for Image Registration. SIAM, Philadel-
phia (2009)

10. Peyrat, J.-M., Delingette, H., Sermesant, M., Xu, C., Ayache, N.: Registration of
4D cardiac CT sequences under trajectory constraints with multichannel diffeo-
morphic Demons. IEEE Trans. Med. Imag. 29, 1351–1368 (2010)

11. Thevenaz, P., Ruttimann, U.E., Unser, M.: A pyramid approach to subpixel regis-
tration based on intensity. IEEE Trans. Image Process. 7(1), 27–41 (1998)

12. Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic Demons:
Efficient non-parametric image registration. NeuroImage 45, S61–S72 (2009)

13. Wachinger, C., Navab, N.: Entropy and laplacian images: structural representations
for multi-modal registration. Med. Image Anal. 16(1), 1–17 (2012)

14. Yang, S., Kohler, D., Teller, K., Cremer, T., Le Baccon, P., Heard, E., Eils, R.,
Rohr, K.: Nonrigid registration of 3-D multichannel microscopy images of cell nu-
clei. IEEE Trans. Image Process. 17(4), 493–499 (2008)



Registration of Image Sequences

from Experimental Low-Cost Fundus Camera

Radim Kolar1,2, Bernhard Hoeher3,4, Jan Odstrcilik1,2,
Bernhard Schmauss3,4, and Jiri Jan1

1 Department of Biomedical Engineering, Faculty of Electrical Engineering
and Communication, Brno University of Technology, Brno, Czech Republic

kolarr@feec.vutbr.cz
2 International Clinical Research Center, Center of Biomedical Engineering,

St. Anne’s University Hospital, Brno, Czech Republic
3 Institute of Microwaves and Photonics,

Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
4 Erlangen Graduate School in Advanced Optical Technologies (SAOT),

University of Erlangen-Nuremberg, Erlangen, Germany

Abstract. This paper describes new registration approach for registra-
tion of low SNR retinal image sequences. We combine two approaches -
Fourier-based method for large shift correction and Lucas-Kanade
tracking for small shift and rotation correction. We also propose method
for evaluation of registration results, which uses spatial variation of min-
imum value in intensity profiles through blood-vessels. We achieved pre-
cision of registration below 2.1 pixels, which is acceptable with regards
to image SNR (around 10dB). The final averaging of registered sequence
leads to improvement of image quality and improvement in SNR over 10
dB.

1 Introduction

Digital fundus camera is a fundamental diagnostic device, which is widely utilized
in ophthalmology for assessment of the human retina. Nowadays, two branches
in developing of fundus camera instrumentations can be identified. One is fo-
cused on development of an advanced imaging devices using adaptive optics to
eliminate eye aberrations. The second branch focuses on development of low-cost
fundus camera enabling to acquire single-shot or video sequences. Motivation to
develop such low-cost devices is to extend the use of fundus cameras into differ-
ent fields of medical examination as there are promising non-ophthalmic appli-
cations, e.g. vascular applications [1]. Another motivation factor is telemedicine
- these cameras are intended for being used in developing countries with off-site
image reading.

Several authors described low-cost fundus camera and alternative camera
design. Guyomard at el. [2] has described endoscope for small animal retinal
imaging including fluorescein angiography video acquisition. Tran et al. [3] used
Panasonic Lumix G2 with commercially available optics to acquire single-shot
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50◦ field of view human fundus images. There is also an increasing effort to use
smart phones for retinal imaging. Haddock et al. [4] used hand held ophthalmic
lens and iPhone with Filmic Pro application for controlling the illumination, fo-
cus and exposure to acquire video sequences. Similar approach with special lens
smart phone adapter was used in [5]. This effort is connected also with develop-
ment of appropriate image processing techniques for acquired sequences, which
are usually more noisy, non-uniformly illuminated and containing different arte-
facts. One of the main (pre)processing method is registration of acquired retinal
sequences.

There are many journal publications, which describe different approaches for
retinal image registration. Major part of these techniques are based on utiliza-
tion of blood vessel tree as a source of landmarks, e.g. [6], [7]. Some authors also
used intensity based approaches with different optimization criteria, e.g. [8], [9].
Current approaches combines intensity- and landmarks-based methods, e.g. [10],
[11]. Detailed state-of-the-art including comparison of different approaches can
be found in [12]. In a spite of these published papers there are still applications,
where image registration is challenging task. These applications include low SNR
images, multimodal registration (e.g. near infrared imaging, angiographic imag-
ing, fundus laser scanning modalities, optical coherence tomography), sub-pixel
registration or registration of long-term retinal images with different morpho-
logical changes. These specific applications need to modify existing approaches.

This paper deals with registration of low SNR fundus temporal sequences
from experimental low-cost fundus camera. We used phase correlation approach
(as in our our previous work [12]) together with Lucas-Kanade (LK) tracking.
We found only two relevant papers, where LK method has been applied in reti-
nal application, which are close to ours. The first paper used LK method for
estimation of macular disparity map in multiple view fundus imaging [13]. The
second paper used LK tracking for processing of 1◦ field of view sequences from
adaptive optics confocal scanning laser ophthalmoscope [14]. Here we show that
LK method can be satisfactorily applied also for registration of sequences from
low-cost experimental fundus camera.

The paper is organized as follows: Section 2 introduces our camera and im-
age sequences, Section 3 describes the registration approach. The evaluation of
registration is described in Section 4. Last two sections discuss our results and
conclude the paper.

2 Image Acquisition and Image Properties

The fundus camera that was used to acquire the image data is designed as a low-
cost device consisting of some components that are available on the mass market.
It is a mobile lab demonstrator including a computer with a custom software for
data recording, displaying of a live preview and controlling the fundus camera.

A new method called ”stripe field imaging” [15] was realized and proved by
the demonstrator. Compared to conventional fundus cameras based on ring illu-
mination methods, there are improvements that partially compensate the loss in
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quality caused by the use of low-cost components. The demonstrator is capable
of capturing colour images and videos from the human eye at pupil size of only
2 mm. Even with such small pupils it is possible to acquire a very large field of
view (FOV). The geometry of the FOV is a square with a length of 68◦ and width
of 18◦ (viewing angles). Such large FOVs at only 2 mm pupil diameter are not
possible with the common used ring illumination method where only a circular
FOV with a diameter of around 20◦ would be possible at a pupil diameter of
1.58 mm [16]. An eye piece intended for amateur telescopes was used to image
the retina to an internal image plane. This plane was imaged by a C-mount lens
(f = 16 mm) to an industry standard CCD (Sensor: Sony ICX274, monochrome,
1628x1236 pixels). The illumination was realized by a power LED module with
three emitters producing red (625 nm), green (527 nm) and blue (470 nm) light,
which are used sequentially for capturing three monochrome images. These are
then combined to one colour image by image post-processing.

Several image artifacts were identified during acquisition of some ”dark frames”,
where an absorber is placed instead of the eye. These frames can be averaged and
typical artifacts caused by the optics inside the fundus camera can be identified
and consequently eliminated using this ”dark frames”.

We tested the intensity SNR in different uniform areas and different acquired
fundus images and sequences. We obtained values around 10 dB (evaluated as
intensity SNR = 20log(mean/standard deviation)). The image SNR in fundus
images acquired from professional camera is typically over 20 dB, as we tested on
images from Canon CR-1 with Canon EOS 40D digital camera. Four examples
of acquired images from different acquisitions (eyes) are given in Fig. 1. Typical
image as well as very noisy, non-uniformly illuminated, as well as image with
specific reflection artefacts are shown.

We tested our method on 5 experimental sequences with the number of frames
from 39 to 179. We also checked the quality visually and we excluded images
without any fundus structures (due to very strong reflections from cornea or
because the object moved out of optical axis or out of focus).

3 Registration Approach

The registration approach consists of preprocessing and two main steps. The first
step compensates the large shifts between consecutive images and the second step
tracks blood vessels using basic optical flow method and compensates for small
shift and rotation.

3.1 Sequence Preprocessing

The first necessary step is preprocessing of each frame in the sequence due to
presence of non-uniform illumination and noise. The noise is eliminated using
median filter with 3 × 3 kernel and is followed by contrast limited adaptive
histogram equalization (CLAHE [17]), which has been successfully used in retinal
applications dealing with fundus image processing, e.g. [18], [19]. This helps to
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a) b)

c) d)

Fig. 1. a) Standard image quality with apparent low illumination; b) Noisy image with
low reflection and high noise level; c,d) Images with artefacts due to light reflections
from structures apart from retina.

increase the contrast of the blood vessels and equalize image illumination, see
Fig. 4. We observed that using this preprocessing has positive influence on both
registration steps.

3.2 Phase-Correlation Based Alignment

The first step of registration is based on phase correlation, which employs Fourier
shift theorem [20]. Let f1(x, y) and f2(x, y) be two functions, which differ only
by displacements x0 and y0. The normalized cross spectrum is computed using
a complex conjugate (∗) of one of the spectra (denoted as F1(u, v) and F2(u, v),
respectively):

F2(u, v)F1(u, v)
∗

|F2(u, v)F1(u, v)∗|
= e−j(ux0+vy0). (1)

Taking the inverse FT of the right hand side term leads to Dirac function δ(x−
x0, y−y0) at the coordinates (x0, y0) defining the spatial shift [21]. This method
has been used for long-term fundus image registration in our previous work
together with model for rotation and scaling transformation [12]. Nevertheless,
here we use only translation, because we suppose that rotation between frames
is low. Furthermore, due to low SNR, it is difficult to estimate rotation by this
method (as we had tested in preliminarily stage of this project).

3.3 Blood Vessels Tracking

Lucas-Kanade Tracking. After large shift compensation, Lucas-Kanade track-
ing is applied [22]. The goal of the tracking is to find, for given pointXj = (xj , yj)
in image Ii, corresponding point X ′

j = (x′
j , y

′
j) = Xj +Dj in image Ii+1, using

the assumption that the neighborhood of the point Xj is similar to the neigh-
borhood of the point X ′

j . The vector Dj = (dxj , dyj) is referred as the optical
flow at Xj and can be different for specific points Xj for j = 1, 2, ...N . Vector
Dj minimizes the function:
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ε(Dj) =

xj+wxj∑
x=xj−wxj

yj+wyj∑
y=yj−wyj

[Ii(x, y)− Ii+1(x+ dxj , y + dyj)]
2
for j = 1, 2, ...N.

(2)
The wx and wy define the summation window of size 2wx + 1, 2wy + 1 and usu-
ally (for isotropic pixel) wx = wy. There is a trade-off between accuracy and
robustness when choosing the window size. Smaller window leads to capturing
small motion, but the tracking is lost when the movement exceeds the search
window. Contrary, the large window size decrease accuracy. The pyramidal im-
plementation can partially reduce this drawback. Nevertheless, in our approach
we used the basic version, because the large movements have been compensated
by Fourier approach as described in previous section. Hence, the choice of wx, wy

is not so critical. We set the windows size as wx = wy = 10, which corresponds to
the estimated precision of Fourier-based alignment. This value also corresponds
to the thickest blood vessels in acquired retinal scenes.

It should be noted that tracking only the blood vessels has some advantages.
First, it should be more robust then tracking all pixels in the image, because
there are various artefacts through the sequence (reflections of illumination light
source, nonuniformity in illumination) and the noise level is relatively high. Sec-
ond, there are regions without some (significant) structures, which would be
difficult to track. And third, blood vessel tracking is faster than tracking of all
pixels. The main disadvantage of this approach is a need of correctly segmented
vascular tree (see next section).

Detection of Tracking Points. The detection of tracking point is crucial for
successful optical flow registration. We apply this detection on randomly selected
image in aligned sequence obtained in the first step, after application of median
filter and CLAHE method.

Since the blood vessels appear in the filtered image mainly as a valley (darker
than background), we can determine their position using Hessian matrix. This
matrix of the second derivatives is defined as [23]:

Hij =

(
∂xxI(x, y) ∂xyI(x, y)
∂yxI(x, y) ∂yyI(x, y)

)
. (3)

The Hessian has two real eigenvalues because ∂yxI(x, y) = ∂xyI(x, y). This ma-
trix and corresponding eigenvalues are computed for each pixel using Sobel dif-
ference operator. Since we are interested in image valleys, we take only the higher
positive eigenvalue. This parametric (eigenvalue) image is further thresholded.
The selection of threshold has been finally adjusted empirically (after testing sev-
eral methods - Kittler, Otsu etc.). As the next step, the thresholding approach
will be modified to be fully automatic. Small segmented regions are consequently
removed as we assume that segmented blood vessels should create longer (i.e.
larger) structures. Morphological thinning is finally used to obtain skeleton of
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the blood vessels. An example of segmentation results and skeleton image is
shown in Fig. 2. White arrow indicates an artifact due to acquisition geome-
try, which has been masked out using ”dark frames” as mentioned in Section
2. The number of tracking points is finally reduced by decimation of skeleton
coordinates as there are hundreds of pixels to track in the vascular skeleton.

Fig. 2. Results of blood vessel segmentation in one frame (left) and corresponding
skeleton image (right). The white arrows indicates position of segmented artefacts.

Spatial Transformation. Once the optical flow for each tracking point is
determined, the transformation must be performed. We used shift and rotation:[

x′
j

y′j

]
=

[
cos(ϕ) −sin(ϕ)
sin(ϕ) cos(ϕ)

]
×
[
xj

yj

]
+

[
txj

tyj

]
. (4)

The minimization of:

N∑
j=1

∣∣∣∣(xj

yj

)
−
(
x′
j

y′j

)∣∣∣∣2 → min (5)

is employed with respect to transformation parameters ϕ, txj , tyj . This leads
to overestimated set of linear equations, which can be easily solved by Gauss
elimination method.

These steps provide estimation of transformation parameters, which are con-
sequently applied on moving registered image. This minimization is iteratively
applied on currently registered image until there is only small change in the
value of transformation parameters (the minimum required change is 0.1 pixel
for shifts and 0.01 radians for rotation).

3.4 Registration Evaluation

Proper evaluation is usually critical part of image registration techniques, in
a case where gold standard datasets are not available. Here we evaluated the
registered sequences with the help of intensity profiles extracted from the selected
blood vessels. For registered sequence, the centre of the blood vessels should
remain on the same position (denoted as a point Pmin) and only small variation of
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Table 1. Standard deviations computed for each sequence from positions of the min-
imum intensity point of blood vessel located in the central (Pc), inferior (Pi) and
superior (Ps) part of the sequence. ’Final’ row stands for final sequences; ’DFT’ row
stands for sequences after phase correlation.

Sequence 1 Sequence 2 Sequence 3 Sequence 4 Sequence 5

Pc Pi Ps Pc Pi Ps Pc Pi Ps Pc Pi Ps Pc Pi Ps

Final 1.13 0.82 0.78 2.10 0.89 1.26 1.65 1.36 1.79 1.20 1.43 0.43 1.64 1.02 0.54

DFT 1.34 1.31 1.38 2.80 1.58 3.10 2.54 1.95 2.22 2.21 1.84 1.35 2.91 2.63 1.35

39 frames 82 frames 179 frames 82 frames 95 frames

thickness due to blood pulsation is observed. Therefore, we manually defined the
position of intensity profiles through the blood vessels with high image contrast
in each sequence and we evaluated the variation of Pmin by the means of standard
deviation. To be able to capture subpixel variations, interpolation with factor 8
has been applied on each profile. This has been evaluated in the three different
positions of fundus - in optic disc (Pc) and in superior (Ps) and inferior (Pi)
part of the blood vessel tree.

Fig. 3. Intensity profiles through one blood vessel from the centre of the optic disc
(colour curves) as depicted on RGB image by blue line. The black profile represents
the mean spatial profile with standard deviation (dotted black curves).
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Fig. 4. Two images from Sequence 3 are shown at the top row. Averaged image after
registration (left bottom) followed by CLAHE method application (right bottom) is
presented.

4 Results and Discussion

We tested our method on five sequences of different length. The standard de-
viation of Pmin is shown in Table 1 for registered sequence (’Final’ row) and
sequence after large shift compensation (’DFT’ row). The values are below 2.1
pixels and the total mean value of standard deviations is 1.20 pixels for final se-
quences. The sequences after large shift compensation are under 3.1 pixels and
the mean value is 2.03. This mean value of standard deviations can be viewed
as the mean precision of registration. Therefore, we can conclude that the LK
method improves the registration up to 1 pixel.

We can also observed from the Table 1 that there are not significant differences
between different positions (Pc, Pi, Ps), which means that there is no systematic
error. This also implies that selected spatial transformation is convenient for
this task. The intensity profiles with the mean profile has also been plotted for
subjective assessment of the registration results (see Fig. 3 as an example).

The registered sequences were averaged and SNR has been evaluated in each
sequence within homogeneous regions. We obtained values around 20dB, which
indicates 10dB improvement. An example of averaged sequence 2 is shown in Fig.
4. Small blurring is present due to limited precision of our method. However, it
is obvious that more structures can be seen in averaged image, particularly after
CLAHE method application.

5 Conclusion

The main purpose of this work was to prove that the proposed approach is
convenient for the sequence from our experimental fundus camera. We showed
that combination of Fourier approach together with basic Lucas-Kanade tracking
method can be used with acceptable precision. There are still some parts, which
must be solved to make this method more robust. The most important part in
tracking is detection of tracking points, which utilizes segmentation of vascular
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tree using manually selected threshold in this work. In a spite of many published
methods in retinal vessel segmentation, the segmentation in low SNR images is
still challenging task. The automatic detection of ’bad’ frames must also be solved
to exclude the images with barely visible retinal structures from registration,
because they don’t contribute to overall quality of sequences. The selection of
the reference or starting frame must also be included in the next step to improve
the robustness. It is also probably possible to improve the precision by using
different LK-based approaches, e.g. [24].
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Abstract. Quantitative magnetic resonance imaging (qMRI) aims to
extract quantitative parameters representing tissue properties from a se-
ries of images by modeling the image acquisition process. This requires
the images to be spatially aligned but, due to patient motion, anatomical
structures in the consecutive images may be misaligned. In this work, we
propose a groupwise non-rigid image registration method for motion com-
pensation in qMRI. The method minimizes a dissimilarity measure based
on principal component analysis (PCA), exploiting the fact that inten-
sity changes can be described by a low-dimensional acquisition model.
Using an unbiased groupwise formulation of the registration problem,
there is no need to choose a reference image as in conventional pairwise
approaches. The method was evaluated on three applications: modified
Look-Locker inversion recovery T1 mapping in a porcine myocardium,
black-blood variable flip-angle T1 mapping in the carotid artery region,
and apparent diffusion coefficient (ADC) mapping in the abdomen. The
method was compared to a conventional pairwise alignment that uses a
mutual information similarity measure. Registration accuracy was eval-
uated by computing precision of the estimated parameters of the qMRI
model. The results show that the proposed method performs equally well
or better than an optimized pairwise approach and is therefore a suitable
motion compensation method for a wide variety of qMRI applications.

Keywords: groupwise image registration, quantitative MRI, motion
compensation, T1 mapping, ADC mapping, principal component analysis.

1 Introduction

Magnetic resonance images (MRI) can be acquired with different contrast weight-
ings and together these images provide information about the anatomy, function
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and pathology. In qMRI, quantitative parameters reflecting magnetic resonance
tissue properties are estimated by fitting a parametric acquisition model to a
series of contrast-weighted images. Examples are diffusion tensor MRI, ADC
mapping, dynamic contrast-enhanced MRI and MR relaxometry (T1 and T2

mapping) [1].
Patient motion, e.g. breathing and heart pulsations, cause anatomical struc-

tures in consecutive images to be misaligned. However, the qMRI model assumes
that the same tissue is present at a specific voxel in each of the images. If this is
not the case, estimation of the tissue parameters will be corrupted. Therefore,
aligning the images prior to parameter estimation is necessary and for this pur-
pose image registration techniques can be employed.

Alignment is commonly achieved by a pairwise registration of all images to a
reference image [2, 3]. The downside is that the result of the registration depends
on the choice of reference image. Therefore, in case of a series of images, a group-
wise registration, in which all images are aligned simultaneously, is preferable.
It has previously been shown that groupwise image registration leads to more
consistent results than a pairwise approach [4, 5], because a groupwise approach
avoids a bias towards a reference image and takes into account the intensity
information of all images simultaneously.

In literature several different groupwise registration approaches have been pro-
posed, e.g. [4–8]. Metz et al. proposed a groupwise measure based on voxelwise
variance [4]. Marsland et al. proposed minimum description length as a dissimi-
larity measure for groupwise image registration [5]. Wachinger et al. introduced
a framework for multivariate similarity measures, in which the sum for all im-
age pairs of a pairwise measure is used as a groupwise measure [6]. Miller et al.
proposed a stack entropy cost function in which the sum of voxelwise entropies
is used as an alignment criterion [8]. In previous work, we proposed a groupwise
registration method for diffusion MRI data, using a dissimilarity measure based
on PCA which minimizes a sum of eigenvalues [7]. Hamy et al. also used PCA for
motion correction, but they used PCA to obtain the low-rank data components
and used a residual complexity measure for registration [9].

In this article, we propose a groupwise non-rigid registration method for mo-
tion compensation in qMRI. In our approach we exploit that intensity changes
are expected to behave according to a low-dimensional acquisition model, which
is typically the case in qMRI. Because of the groupwise formulation of the reg-
istration, the need for choosing a reference image is eliminated. The method is
based on our previous work [7], which focused on diffusion tensor MRI. We inves-
tigate whether the method can be applied to other types of qMRI, as in theory
the method is not bound to a certain qMRI model. The method was applied to
modified Look-Locker inversion recovery (MOLLI) T1 mapping in an infarcted
porcine myocardium, black-blood variable flip-angle (VFA) T1 mapping in the
carotid artery region, and ADC mapping in the abdomen. Whereas in [7] only
used affine transformations were used, we use a B-spline transformation model
that can account for the non-rigid deformations.
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2 Method

2.1 Groupwise Registration Framework

We use a parametric registration approach, where the transformation is modeled
by a set of parameters μ. Let Mg(x) be a series of G images, acquired in a
qMRI experiment, with g ∈ {1 . . .G} and x a 2D or 3D spatial coordinate
and let Tg(x;μg) be a transformation applied to image Mg(x), parameterized
by parameters μg. The transform parameters for each separate volume μg are
concatenated into one parameter vector μ =

(
μT

1 ,μ
T
2 , . . . ,μ

T
G

)T. We formulate
groupwise registration as the minimization of a dissimilarity measure D with
respect to μ:

μ̂ = argmin
μ

D(μ). (1)

In this process all images Mg are aligned simultaneously. The transformation is
modeled with a cubic B-spline [10], in which the parameter vector μg is formed by
the elements of the B-spline control point coefficients. The control point spacing
ν is application dependent and defined by the user.

2.2 qMRI Acquisition Models

In qMRI the intensity at x for each image Mg is predicted by an acquisition
model mg:

Mg(x) = mg(θ(x)), (2)

where θ is a vector with l tissue parameters at coordinate x. The mg functions
for the three different datasets used in this paper are given below. The first
dataset is acquired with a MOLLI sequence and hence the expected intensity is
governed by a inversion recovery T1 model [11] (T1MOLLI), which is given by:

mg(θ(x)) =
∣∣∣A(x)−B(x)e−TIg/T∗

1 (x)
∣∣∣ with θ(x) = (A(x), B(x), T ∗

1 (x)) , (3)

where TIg is the inversion time for image Mg. The parameter of interest, T1(x)
can be calculated from A, B and T ∗

1 [11]. The second dataset is acquired with a
black-blood VFAT1 sequence [12] with predicted intensity:

mg(θ(x)) =

∣∣∣∣A(x) sin(αg)
1− e−TR/T1(x)

1− cos(αg)e−TR/T1(x)
e−TEg/T2(x)

∣∣∣∣ , (4)

with θ(x) = (A(x), T1(x), T2(x)). αg is the flip-angle and TEg the echo time
per image Mg and TR the repetition time. The last dataset is acquired with an
ADC sequence, with the predicted intensity:

mg(θ(x)) = B0(x)e
−bgu

T
g D(x)ug (5)

with θ(x) = (B0(x), D11(x), D22(x), D33(x)) and ug is a vector in the direction
of the applied gradient. D(x) is a 3×3 symmetric diffusion tensor, where for
the purpose of ADC mapping only its diagonal needs to be considered, bg is the
so-called b-value and the ADC is given by ADC = trace(D)/3.
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For all models, the qMRI parameters θ(x) are estimated by fitting the model
mg to the measured intensities Mg. The number of images acquired for qMRI is
usually higher than the number of qMRI model parameters that need to be esti-
mated. This is done to obtain a more precise estimation of the qMRI model pa-
rameters.

2.3 Dissimilarity Measure

In this section the groupwise dissimilarity measure is presented. Let the images
Mg be represented as columns of an N ×G matrix M, where N is the number
of voxels in one image Mg. A row of M can be considered as a data point in
a G-dimensional space. In a zero noise setting it is expected that these data
points actually lie in a non-linear l-dimensional subspace, where l is the number
of free qMRI model parameters (the dimension of θ). The correlation matrix of
the data points in M is defined as:

K =
1

N − 1
S−1

(
M−M

)T (
M−M

)
S−1, (6)

where S is a diagonal matrix with the standard deviations of each column of M
as diagonal elements and M is a matrix with in each column the column-wise
average of M. The dimension of the subspace can be determined by an eigen-
value decomposition of K i.e., by a PCA. The key idea behind the proposed
dissimilarity measure is that, when motion is present in the images, the data no
longer adheres to the presumed acquisition model and the eigenvalue spectrum
of K changes.

To illustrate how motion can affect the eigenvalue spectrum of K, we created
a synthetic image based on the T1MOLLI model. The relative eigenvalue spec-
trum of K is shown in Fig. 1 for both a perfectly aligned series of images and
for the same series artificially deformed. In the aligned case the first 3 eigenvec-
tors capture 100% of the data variance, but in the misaligned case, the first 3
eigenvectors capture only 88% of the data variance.

The aim is to transform the images Mg such that the eigenvalue spectrum
of K approaches the spectrum of an aligned set of images. Let λj be the jth
eigenvalue of K, then our dissimilarity measure is defined as:

DPCA(μ) =
G∑

g=1

Kgg(μ)−
L∑

j=1

λj(μ) = G −
L∑

j=1

λj(μ), (7)

where the dependence on μ has been made explicit to clarify that K (and thus
λj) is computed based on the deformed images Mg(Tg(x;μg)). The constant
1 ≤ L ≤ G is a user-defined parameter. For different models, a different value of
L must be chosen. A good initial guess is L = l, assuming that the non-linear
l-dimensional subspace can be approximated by an l-dimensional hyperplane.

2.4 Optimization

For minimization with gradient-based optimizers the derivative of D with respect
to μ must be known, which was derived in [7]. An adaptive stochastic gradient
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Fig. 1. Eigenvalue spectra for aligned and misaligned synthetic T1MOLLI data

descent optimization method is used [13], which randomly samples positions in
image space at each iteration in order to reduce computation time and interpola-
tion artifacts [14]. A conventional multi-resolution strategy is used. The number
of random samples, the number of resolution levels, and the number of itera-
tions per resolution level are user-defined parameters. The average deformation
of the images is constrained to be zero by the approach of Balci et al. [15]: the
average derivative of the dissimilarity measure with respect to its parameters μg
is subtracted from each derivative to μg, i.e. the derivatives are centered to zero
mean.

∂D∗

∂μg

=
∂D
∂μg

− 1

G

∑
g′

∂D
∂μg′

. (8)

where ∂D∗/∂μg is the zero-centered derivative. Linear interpolation is used to
interpolate the images during registration, to limit computation time. Cubic
B-spline interpolation was used to produce the final deformed images.

3 Experiments

3.1 Data

Experiments were performed with three qMRI applications: T1 mapping in the
myocardium of a porcine heart (T1MOLLI-HEART), T1 mapping in the carotid
artery region (VFAT1-CAROTID) and ADC mapping in the abdomen (ADC-
ABDOMEN). Figure 2 shows example images.

The T1MOLLI-HEART datasets were obtained using single-slice acquisition,
from porcine hearts with transmural myocardial infarction of the lateral wall.
For each of the nine subjects 11 images were acquired, with inversion times TIg ∈
{94, 784, 1473, 163, 853, 1542, 266, 956, 1646, 2335, 3025} ms. The voxel spacing
was 0.70×0.70 mm2 with slight differences between the datasets due to changes
in field of view. The acquisition matrix was equal to 128×128 and the slice
thickness of 6 mm.

The VFAT1-CAROTID data was acquired with a 3D iMSDE prepared black-
blood TFE sequence [12]. For each acquisition, five images were acquired with an
isotropic voxel spacing of 0.7mm: one anatomical reference TFE scan and four
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(a) T1MOLLI-HEART (b) VFAT1-CAROTID (c) ADC-ABDOMEN

Fig. 2. Example images and registration masks. (a) a short axis slice of a T1MOLLI-
HEART dataset, (b) a slice of a VFAT1-CAROTID dataset, (c) a slice of an ADC-
ABDOMEN dataset

scans with varying αg and TEg. The echo times were TEg ∈ {11.5, 11.5, 26, 45}
ms, the flip-angles were αg ∈ {4, 15, 15, 15} and the repetition time was TR = 10
ms for g = 2 . . . 5. The acquisition matrix was equal to 224×223×36. Unfortu-
nately, it proved difficult to perform accurate voxelwise T2 fits on the variable
TE data, regardless of the registration strategy, therefore we only report evalua-
tions of T1 values. The anatomical scan was not used for T1 quantification. Four
subjects were scanned twice, resulting in eight VFAT1-CAROTID datasets.

The ADC-ABDOMEN data was acquired using multi-slice acquisition, with
three orthogonal gradient directions, aligned with the read, phase and slice di-
rections. In each acquisition bg ∈ {0, 100, 150, 200, 300, 500, 900} [mm2/s]. The
voxel spacing was 1.48×1.48×5.00 mm3 and the acquisition matrix was equal
to 128×112×40. Five subjects were scanned four times in a single scan session,
providing 20 ADC-ABDOMEN datasets. Before further processing, within-image
motion artifacts due to interleaved acquisition were corrected [16]. All volumes
except the bg = 0 [mm2/s] were used in ADC quantification.

3.2 Image Registration Settings

All datasets were registered with the proposed groupwise method using the mea-
sure DPCA and with a pairwise approach using the MI measure DMI. The pro-
posed method was implemented in the publicly available registration package
Elastix [14]. For both methods the number of iterations per resolution was 1000
and the number of spatial samples was 2048.

The T1MOLLI-HEART data was registered with a mask (see Fig. 2(a)),
loosely drawn around the cardiac region, to reduce influence of surrounding
organs. For DPCA we chose L = l = 3, and ν was set to 32 mm in both dimen-
sions. We observed that the choice of reference image was of high influence on
the results when using DMI. Therefore, we repeated all experiments using Mg

with g ∈ {1, 4, 7, 11} as reference images, and report the results for all cases.
The VFAT1-CAROTID data was registered with two different masks, around

the left and right carotid artery (see Fig. 2(b)). For DPCA we chose L = l = 3. Vi-
sual inspection of the registration results of the VFAT1-CAROTID data showed
that DPCA led to misregistrations with L = 3. Possible explanations for this are
the following. Firstly, the range of used echo times was small compared to the
typical T2 in both ROIs, which affects the expected eigenvalue spectrum of K.
Secondly, the anatomical scan, which was taken into account in the groupwise
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registration, does not entirely adhere to the VFAT1 model, which can give a dif-
ferent eigenvalue spectrum of K than expected. Finally, the registration masks
were small causing the number of different tissue types within the masks to be
limited. All these issues can cause the first principal component of the data to
be dominant and therefore we chose L = 1, which was visually confirmed to give
acceptable registration results. ν was set to 15 mm in all three dimensions. The
chosen reference image for DMI was the anatomical scan.

For the ADC-ABDOMEN data L = l = 4 was used for DPCA. ν was set to
a relatively coarse setting of 150 mm in all three dimensions, because the DMI
approach lead to misregistrations for a lower value of ν. The chosen reference
image for DMI was the bg = 0 image. No mask was used for registration.

3.3 Evaluation Method

In all experiments the result of DPCA was transformed to the space of the DMI
reference image, using the inverse transformation Tg†(x;μg†) with g† indicating
the reference image. In this space, θ was estimated with a maximum-likelihood
(ML) estimator that takes the Rician noise of MRI data into account [17]. The
uncertainty of θ was quantified by the Cramér–Rao lower bound (CRLB), which
gives a lower bound for the variance of the ML estimated parameters [17–19].
To use the CRLB as indicator of misalignment we adopt the measure proposed
by Bron et al. [3], which is the 90% percentile of the square root of the CRLB
(90%CRLBσ) over a region of interest (ROI). This measure identifies misalign-
ment, since, especially at tissue boundaries, misalignment may result in biolog-
ically implausible values of the estimated parameters. Additionally, the model
will fit less accurately to the data, resulting in a higher estimated noise level
and thus CRLB [3]. The 90%CRLBσ for all datasets and all three cases (no
registration (-), DMI and DPCA) were calculated in manually specified ROIs.

In the T1MOLLI-HEART data the myocardial region of interest (ROI) was
drawn on each image that was chosen as a reference image for the DMI mea-
sure. In the VFAT1-CAROTID data the walls of both arteries were annotated
as ROIs. The mean of the 90%CRLBσ over the two ROIs is reported. In the
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Fig. 3. 90%CRLBσ results for the T1MOLLI-HEART data in the myocardium. Note
that the maximum of the y-axis is 500 ms, but some bars are higher. The four bars
with equal color for each subject correspond to the four reference spaces. The typical
T1 in the ROI was 859 ms.
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Fig. 5. 90%CRLBσ results with ADC-ABDOMEN data for a ROI at the boundary of
the liver and the kidney. ADC values in the ROI ranged between 0.70− 2.40 μm2/ms.

ADC-ABDOMEN a spherical region at the boundary of the kidney and the liver
was annotated as ROI. Note that the ROIs where the alignment was evaluated
were different from the masks that were used for registration.

For the ADC-ABDOMEN four series per acquisition session were available,
providing the opportunity to measure the experimental reproducibility of the
model fit. The experimental reproducibility was quantified by evaluating the
90% percentile of standard deviation (90%STD) of the ADC values in the ROI
over the four series of the abdomen. To this end all series were registered to the
space of the scans of the first series, using an additional pairwise registration
between the bg = 0 images.

4 Results

Figure 3 shows the 90%CRLBσ of the T1 for the three cases (no registration
(-), DMI and DPCA) of the T1MOLLI-HEART data of the nine subjects in the
annotated ROIs. The results show that 90%CRLBσ for the results of DMI highly
depends on the chosen reference image. Visually, the scan with the longest inver-
sion time, i.e. image M11, depicts anatomy most clearly. In most cases, the best
result is indeed obtained when the 11th image in the series is set as a reference
image. In most cases the best result is obtained when the 11th image in the series
is set as a reference image. The DPCA shows the most stable results over the
four reference spaces and it also shows the lowest overall 90%CRLBσ.
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Table 1. Experimental reproducibility of the ADC value in the ROI of the ADC-
ABDOMEN data

subject#

1 2 3 4 5

90%STD (-) [μm2/ms] 0.32 0.92 0.74 0.78 0.48
90%STD DMI [μm2/ms] 0.29 0.48 0.61 0.57 0.41
90%STD DPCA [μm2/ms] 0.31 0.43 0.64 0.40 0.41

Figure 4 shows the mean 90%CRLBσ of the T1 in the annotated ROIs for the
eight cases of the VFAT1-CAROTID data. The mean 90%CRLBσ is reduced by
both DMI and DPCA compared to using no registration. Both methods led to a
similar 90%CRLBσ in almost all subjects.

Figure 5 shows the 90%CRLBσ of the ADC for the 20 cases of the ADC-
ABDOMEN data. From the results it can be seen that the 90%CRLBσ is reduced
by bothDMI andDPCA compared to no registration. Both methods led to a similar
90%CRLBσ in most of the subjects. Table 1 shows the 90%STD in the ROI. The
90%STD is reduced by both DMI and DPCA compared to using no registration.

5 Discussion and Conclusion

The results of the T1MOLLI-HEART data showed that DMI failed for some ref-
erence images, whereas the proposed method DPCA consistently performed well,
which is an advantage of the groupwise approach. The results of the VFAT1-
CAROTID and the ADC-ABDOMEN data showed that both DMI and DPCA
led to a (similar) improvement in precision of the fitted tissue parameters, com-
pared to using no registration.

For the VFAT1-CAROTID data the initial L = l = 3 was changed to L = 1
since apparently the chosen acquisition settings and relatively small registration
mask led to only 1 dominant eigenvector. On all qMRI datasets the other regis-
tration settings (ν, number of spatial samples, number of iterations) were opti-
mized for DMI and it is a question for further research to investigate if settings
optimized for DPCA can further improve the results of the proposed approach.

In this work, a B-spline transformation model was used, however, the pro-
posed method can be implemented with other transformation models as well.

In conclusion, we presented a groupwise image registration method using a
PCA-based dissimilarity measure that was designed for the alignment of qMRI
images. It has been shown that the approach performs as good as or better than
a MI-based pairwise approach. Notably, the result of the pairwise method highly
depends on the chosen reference image. This disadvantage is eliminated in the
groupwise approach. The proposed method is therefore a suitable model-free
approach for the registration of qMRI data.
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European Union’s Seventh Framework Programme for research, technological
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Abstract. In this paper we present a rigid registration approach for 4D
ultrasound (US) datasets, where images are registered over time. The
3D registration approach preceding the 4D registration consists of two
main steps - block-matching and outlier rejection. The outlier rejection
step removes the spurious matchings’ from the block-matching module
and ensures inverse consistency. For 4D registration, we perform regis-
tration of consecutive US volumes over the time series. Transformation
between any two frames is estimated by taking the product of all the in-
termediate transforms. To avoid accumulation of error over the series of
transformations, a long range feedback mechanism is proposed. A mean
total registration error of 1 mm is achieved across six 4D ultrasound
sequences of human liver with an execution speed of 10 Hz.

1 Introduction

Motivation : Ultrasound (US) is a unique imaging modality. Unlike computed
tomography (CT) and magnetic resonance imaging (MRI), it is mobile and real-
time. This is a desired combination in diagnostic and interventional setup. With
the advent of 4D ultrasound, volumes of human anatomy can be visualized in
real-time. Interoperative imaging using 4D ultrasound has huge potential in min-
imally invasive surgery of the liver. Image registration is a basic requirement in
these applications and they aid in image stabilization for better visualization.
A group wise 4D registration approach takes a stack of US volumes to perform
the registration over the time series [1]. This approach is benefited from looking
at US volumes in hindsight and is suited for offline processes as they have high
computational and storage cost. A more dynamic approach would be to register
images in streaming 4D US data. In this scenario, registrations are required to
be up to date until the current time point, appending the registration results of
the subsequent US frame. Given the registration results for the left half of the
time axis the challenge is to move forward in time, keeping the registration up to
date. A typical 3D US registration method when extended in the time domain
is likely to face the following challenges -

– Due to motion (probe, patient or breathing), the region of interest might un-
dergo large displacements, resulting in small overlap between the US frames.

S. Ourselin and M. Modat (Eds.): WBIR 2014, LNCS 8545, pp. 194–202, 2014.
c© Springer International Publishing Switzerland 2014
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– Over time small errors in the 3D registration could accumulate, yielding
widely diverging outcomes.

– Continuous input stream of US volumes induces heavy computational and
storage burden on the registration approach.

Related work : Image registration is the process of determining the geometrical
transformation that aligns the moving image to the fixed image. 4D registration
extends this notion in the temporal domain. Group wise 4D US registration was
addressed by Vijayan et al. [1], where spatial and temporal smoothness of the
transformations are enforced by using a temporal free-form deformation (TFFD)
model. Shi et al. [2] extend the TFFD model with a sparse representation and
use it to recover smooth motion from time sequence of cardiac US images. Øye et
al. [3] propose a method to perform real time image registration on streaming 4D
ultrasound data, and use it to deduce the positioning of each ultrasound frame in
a global coordinate system. In this paper, the 3D registration framework which is
precursor to our 4D registration approach is part of an existing work submitted
to a journal. In this work we extend the previous registration framework, to
address the issues related to the 4D US registration problem.

Our Contributions : In this paper we present a 4D registration approach which
unlike the group wise approaches performs registration dynamically. First, to
maximize the chance of overlap between the contents of the frames, we register
consecutive frames in time. In order to have a robust registration an inverse
consistency criteria is enforced. This ensures consistency between the forward
backward transforms. Second, the inverse consistency criteria helps the prepro-
cessing (which in our case is the block-matching scheme) done in a parallel
fashion. Third, to neutralize or reduce the accumulation of registration errors
over the time series, we propose a feedback mechanism over a time gap.

2 Method

2.1 3D Registration

The 3D registration approach is based on block-matching [4]. For a collection of
points from the fixed images the block-matching gives a set of correspondences
in the moving image. As US images are poor in quality, the correspondences may
have lots of spurious matches. We remove the false matches using an outlier re-
jection module. A game-theoretic matching approach, similar to [5], is employed
to reject the false matches1. The true matches are further used to estimate the
rigid transformation using Arun’s et al. least-squares registration algorithm [6].

1 This approach of performing registration {a) point selection b) block-matching and
c) game theory based outlier rejection} is part of an existing work (submitted). Our
contribution in this paper is to extend the method to forward-backward (or inverse
consistency based) registration.
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2.2 4D Registration

Let P = {pi} and Q = {qi} where 0 < i ≤ n, be the set of locations from fixed
volume and moving volume, respectively. We have a one to one correspondence
between the point sets from the block-matching. Let a mapping M ⊆ P ×Q rep-
resent potential correspondence from the point set P to Q; and similarly in the
reverse direction a mappingN ⊆ Q′×P ′ represent potential correspondence from
the point set Q′ = {q′i} to P ′ = {p′i}. Ideally if all the points are tracked well
both in the forward and the backward directions then ∀i p′i = pi ⇒ q′i = qi and
vice-versa (Inverse consistency). Note that we choose the point sets P and Q′,
independently. This has two advantages, first, inverse consistency is not enforced
explicitly, and second, the block-matching can be executed in parallel. Later we
show how we incorporate the inverse consistency in an implicit way. Further as
the point sets are from volumes representing the same anatomical structure, the
geometric distance between the points should be preserved (Geometric consis-
tency). A point qi in the moving volume that preserves the geometric distances
with most of the other points in the same set Q and their corresponding pi and
p′i are in close proximity, have a better chance of being an inlier. The criteria
of preserving the geometric distances, similar to [7] and the inverse consistency
criteria forms the basis of our outlier rejection scheme.

The geometric consistency information can be embedded in a graph structure
and can be represented as two affinity matrices (forward):

Ai,j =

{
e−δ2ij/2σ

2

if i �= j
0 else

, (1)

where δij = (‖qi − qj‖ − ‖pi − pj‖); and (backward),

Bi,j =

{
e−δ′2ij/2σ

2

if i �= j
0 else

, (2)

where δ′ij = (‖p′i − p′j‖ − ‖q′i − q′j‖).
For ensuring an inverse consistency in an implicit way, we combine the forward

and backward block-matching information into a single graph. This is done by
combining the matrix A and B into a symmetric matrix G as follows (forward-
backward):

G =

⎡⎣A | CT

− −
C | B

⎤⎦ , (3)

where the matrix C is given as:

Ci,j = e−δ′′2ij/2σ
2

, (4)

where δ′′ij = (‖qi − q′j‖ − ‖pi − p′j‖).
Given a vector x defining the probability of points in {P,Q′} being an inlier,

we try to find a vector x that maximizes F :

maxF(x) = x·Gx subject to x ∈ Δ , (5)
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where Δ = {x ∈ Rn : xi ≥ 0 and
∑n

i=1 xi = 1}. Finding the internal nodes or
the inliers corresponds to the notion of a dominant set [8].

Equation 5 can be optimized (local optimum) using replicator dynamics [8][9].
The replicator dynamics update equation to maximize a energy term of the form
x·Gx, subject to x ∈ Δ is:

xi(t+ 1) = xi(t)
(Gx(t))i
x(t)·Gx(t)

, (6)

where xi is the ith term of x. The equation ensures that ∀t,x(t) ∈ Δ. Equation 1,
Equation 2 and Equation 6 are part from our previous work (submitted).
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2.3 Penalizing Drift

Registration over consecutive frames in a time series is likely to accumulate
errors. To address this issue we bring a strategy that would help in reducing
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the drift. Consider T τn
τ0 to be the transformation from frame τ0 → τn. It is

estimated by taking product of all the transformations between successive frames
in the sequence, i.e. T τn

τ0 = T τn
τn−1

× T τn−1
τn−2 × · · · × T τ1

τ0 . To counter the drift we
propose occasional long range interaction between the current frame τn and some
previous frame in time, say τn−d, where d is the feedback gap. The steps of the
strategy are as follows:

1. Register frames τn−d and τn. Let the resulting transform be Fτn
τn−d

.
2. Let the pointsets Pτn−d

and Pτn be pointsets in the frames τn−d and τn,
respectively. These pointsets are related by the transform Fτn

τn−d
, i.e. Pτn =

Fτn
τn−d

∗ Pτn−d
.

3. The projection of the pointsets Pτn−d
over the frame τn−1 is Pτn−1 , and is

estimated as Pτn−1 = T τn−1
τn−d ∗ Pτn−d

.
4. Include the additional points Pτn−1 and Pτn , in their respective frames, dur-

ing the registration (outlier rejection module) of consecutive frames τn−1

and τn.

3 Experiments

The code was implemented in C++ and MeVisLab. A laptop with Intel(R)
Core(TM) i7-2720QM CPU @ 2.20 G Hz, 4 Core(s) processor using 64-bit Win-
dows 7 operating system and 8 GB of RAM is used for processing the code.

The 4D US data is acquired at 6 Hz from iU22 Philips machine. Three volun-
teers were used. From each of the volunteers, two (axial and coronal) sequences
of 4D US were captured. The probe was kept steady during the acquisition.
We use Elastix registration toolbox [10] to generate the reference standard. Dif-
ferent grids were used in the method and the evaluation. From the six 4D US
datasets, systematically pairs of US volumes were selected to evaluate the per-
formance. For all the experiments, we use the same set of parameters: block-size
of (11, 11, 11) mm and grid spacing of 14 mm (which translates to around 200
points). The sum of square distance (SSD) is the similarity metric using in block-
matching. The first two experiments are performed to evaluate the registration
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approach. The third experiment is performed to evaluate the feedback mecha-
nism.

1. The purpose of the experiment is to study the parameter σ (given in equa-
tion 4) and its effect on pairwise 3D registration. The two pairwise reg-
istrations evaluated are a) Forward registration (using affinity matrix in
equation 1) and b) Froward Backward registration (using affinity matrix in
equation 4). The range of σ values evaluated are {2, 4, 6, 8, 10, 12, 14}. We
systematically select pairs of 3D US volumes from the six 4D US dataset. The
pairs correspond to the following time points {(0, 4), (0, 8), (0, 12), (0, 16),
(0, 20), (0, 24), (0, 28)} are used in the evaluation. Based on the registration
results, we choose the best σ value for our application and report the cor-
responding registration error. We use mean total registration error (mTRE)
as the registration error metric. The mTRE is given as:

mTRE(T̂ τ2
τ1 , T

τ2
τ1 ) =

1

n

n∑
i=1

‖T̂ τ2
τ1 pi − T τ2

τ1 pi‖ , (7)

where T̂ τ2
τ1 is the reference standard transformation from time point τ1 to τ2.

2. Next we evaluate the performance of our registration approach over a se-
quence of US volumes. The 4D registration between the time points (2, 5),
for example is estimated by registering 2 → 3, 3 → 4, 4 → 5 time points
and then multiplying the respective transformation sequentially to derive the
final transform. 4D registration and the pairwise 3D registration are com-
pared with the reference standard, for the time points {(0, 4), (0, 8), (0, 12),
(0, 16), (0, 20), (0, 24), (0, 28)}.

3. In the third experiment we evaluate the feedback mechanism. Sequential
registration similar to the previous experiment is performed for the time
points {(0, 4), (0, 8), (0, 12), (0, 16), (0, 20), (0, 24), (0, 28)}. Additionally, a
feedback is used to counter the drift. The feedback gap d is set to 4.

Results :

1. Figure 1 shows the forward and forward-backward registration results for
various σ values and two different grid space settings. The grid spacing of
14 mm, 18 mm correspond to 200, 100 sample points, respectively. For a
fair comparison between the forward and forward-backward approach, the
total number of points used for registration should be equal. In terms of
the number of points, the forward approach with 200 points is equivalent to
the forward-backward approach with 100 points each way. Figure 1 shows
that the forward-backward registration approach performs better than the
forward registration approach, given the number of points are same in the
two methods. For grid spacing of 14 mm, the forward-backward approach
performs best at σ = 10 mm with mTRE of 1 mm. Figure 2 shows the
forward-backward registration results for various σ values and two differ-
ent grid space settings. Increase in sample points improves the registration
results.



200 J. Banerjee et al.

Fig. 7. 4D Registration results for four datasets: Left - Registration result in checker
box view, Middle - Fixed image, Right - Moving Image. First Row - Registration
between time points 0 and 8, Second Row - Registration between time points 0 and
12, Third Row - Registration between time points 0 and 20, Last Row - Registration
between time points 0 and 28.

2. In Figure 3 we study the performance of the registration approach when
applied between consecutive frames over the time series. For the first con-
secutive eight frames the mTRE is below 1.2 mm. Beyond these initial frames
the registration performance diverge gradually. The results for all the six 4D
US datasets are plotted in Figure 6. These results are also compared to the
pairwise 3D registration results and are shown in Figure 3. Figure 5 and
Figure 6 show the registration results on all the datasets.

3. In Figure 4 the 4D registration is evaluated with and without the feedback
mechanism. The 4D registration without feedback graph diverges. The 4D
registration with feedback curve descends and moves closer to the reference
standard. Some representative registration results are shown in Figure 7.
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4 Discussion and Conclusion

In this work we present a registration framework to perform registration over a
time series, and demonstrate its application on 4D US liver dataset. The method
consists of two parts - the first part performs a 3D registration between subse-
quent volumes and ensures inverse consistency, the second part uses an feedback
mechanism to counter accumulation of registration error.

Figure 3 shows that the pairwise registration performs well with mTRE of 1
mm. When applied sequentially, the registration results in Figure 3 show that the
sequential registration works well for the first eight to ten frames. However after
that the registration diverges and performance gradually deteriorates. Hence it
is advisable to register back with the original frame after every tenth frame to
maintain good registration accuracy. We further apply a feedback criterion to
counter the accumulation of registration error over a time series. The initial
results as shown in Figure 4 are encouraging. The feedback gap parameter d is
data dependent. In our experiments we select d = 4 as for d − 1 consecutive
frames the accumulated registration error is below (1 mm) a tolerable limit, see
Figure 3. More in-depth analysis is part of future work.

The block-matching and forward-backward outlier rejection was additionally
implemented in OpenCL. The implementation was run on a NVIDIA GTX 780
Ti graphics processing unit. For block-size of (11, 11, 11) mm, grid spacing of
18 mm (i.e. 100 points) and search range of (20, 20, 20) mm the block-matching
algorithm takes 0.045 seconds. The outlier rejection module with the forward-
backward condition takes 0.05 seconds for grid spacing of 18 mm each way.
Adding both the modules results in an execution speed of 10 Hz.

To conclude, we present a forward-backward transformation based registration
approach for 4D US data. We evaluate a strategy to counter the accumulation of
registration error using a feedback mechanism applying long range interaction.
The approach is evaluated using six 4D US sequences with satisfactory results.
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Abstract. Popular intensity-based similarity measures such as (norma-
lized) mutual information estimate statistics over the entire image, neg-
lecting spatial relationships and local image properties. In this work, we
present an adaptive multiscale image similarity measure for non-rigid
registration which combines image statistics at multiple scales for a mul-
tiscale representation of regional image similarities. We validated the pro-
posed similarity measure on simulated and clinical MR brain datasets.
Results show that our approach achieves higher registration accuracy and
robustness than conventional global measures or their local variations at
a single scale.

1 Introduction

Image registration is an essential image processing technique for the analysis of
medical images in various applications, ranging from computer-aided diagnosis to
interventional planning and guidance, that may require spatial normalization.
The objective of image registration is to find a spatial transformation which
aligns corresponding (anatomical) structures in two or more images.

Similarity measures based on voxel intensities often rely on the assumptions
of independence and stationarity of the intensities from voxel to voxel. As a
consequence, such measures cannot capture the complex interactions between
voxel intensities (e.g. local structures), and they are not robust against spatially-
varying intensity distortions.

Popular intensity-based similarity measures are mutual information (MI) [21]
and its normalized version, normalized mutual information (NMI) [19]. They
estimate the shared information between the images to be registered by construc-
ting intensity histograms over the entire images, assuming a global statistical
relationship between them and neglecting spatial relationships. To take spatial
information into account, a common approach is to consider spatial location as
an additional channel [18] or to weight intensities with local spatial kernels to
vary the contributions of voxels to the joint statistics [15,20,7,9,25].

Such local methods have shown to significantly improve the registration results
compared to the standard (global) ones. However, one problem of such regional
approaches is that local statistics are only effective within a small image region,
which may create numerous local minima of the objective function. Additionally,

S. Ourselin and M. Modat (Eds.): WBIR 2014, LNCS 8545, pp. 203–212, 2014.
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local measures are less robust to noise and outliers than global measures. Only
using local statistics on small regions of the image may lead to poor estimates of
joint probabilities and therefore to poor registration results. To overcome this,
some approaches have proposed to combine global and local statistics [6,24],
where in the latter the combinations weights are dependent on the local statis-
tics around individual voxels. One drawback common to all the aforementioned
approaches is the selection of the region size for statistics computations. In med-
ical images, regions of interest may appear in various sizes and contain features
of different granularity. Hence, deformation to be captured by image registra-
tion may occur at a variety of scales. In this paper, we address this issue by
combining similarity measures at different levels of granularity. This involves
computing regional similarities on a hierarchy of image patches and combining
them across the hierarchical levels to obtain a multiscale similarity mesure. Our
approach encodes the notion of scales directly into the hierarchy, thus enabling
a multiscale representation of regional similarities.

The idea of considering multiple scales in the similarity measure is some-
what related to the classical approach of registering images at several scales
using a multiresolution representation for the images [3,5,12]. Following this
coarse to fine strategy, Likar et al [8] proposed a hierarchical approach for elas-
tic registration. Images were divided into subimages at different scales, locally
affine registered and elastically interpolated. In [22], a wavelet-based multireso-
lution strategy was used to combine MI with spatial information obtained from
the high-frequency coefficients of the wavelet transform at each resolution. In
the framework of large deformation diffeomorphic metric mapping (LDDMM),
Risser et al [13] included scale in the regularization metric by adding kernels
of different scales. Recently, Sommer et al [17] developed a multiscale extension
of the LDDMM, the kernel bundle framework, which allows multiple kernels at
multiple scales. These latter approaches, however, are computationally expen-
sive and are not well adapted to multimodal images. We will show that our
measure using NMI and free-form deformations is particularly well adapted to
multimodal image registration while maintaining manageable computation cost.

2 Method

2.1 Image Registration

Registration of two differentiable images F,M : IRd → IR with dimension
d ∈ {2, 3} can be formulated as an optimization of a cost function (a distance
measure plus a regularization term) over a space of transformations:

μ̂ = arg min
μ

(
− S

(
F,M ◦ Tμ

)
+ γR(Tμ)

)
,

where F,M are respectively the fixed and moving images, S is a similarity mea-
sure, Tμ : IRd → IRd is a transformation with parameterization μ, R is a regu-
larizer and γ is a regularization penalty weight.
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In this work, we focus on the similarity measure S that quantifies the degree
of match between the images. Information-theoretic similarity measures, such
as MI and NMI, are among the most popular measures used in intensity-based
image registration:

SMI(F,M ;Tμ) = H(F ) + H(M ◦ Tμ)− H(F,M ◦ Tμ) , (1)

SNMI(F,M ;Tμ) =
H(F ) + H(M ◦ Tμ)

H(F,M ◦ Tμ)
, (2)

where H(F ),H(M) are the Shannon’s marginal entropies of the fixed and moving
images, and H(F,M ◦ Tμ) is their joint entropy.

We choose NMI as similarity measure because, unlike MI, it is robust to
changes in the region of overlap between the images, and its range is bounded
between 1 and 2, which is an interesting property for the definition of our adap-
tive multiscale similarity measure in Section 2.2.

In this work, the negative NMI is minimized using the L-BFGS algorithm [1].
The implementation of NMI is based on a Parzen-windowmethod to estimate the
probability density functions such that the entropy of an image F is computed
with H(F ) = −

∑
x pF (x) log pF (x), where pF is the histogram of F estimated

using Parzen-windows [12,23]. With this estimation, NMI is differentiable and
the gradient with respect to the parameters μ of Tμ, which is needed by the

optimization algorithm, is given by ∇μSNMI =
[
∂SNMI

∂μ1
, . . . , ∂SNMI

∂μn

]
with

∂SNMI
∂μi

=
1

A2(μ)

∑
x,y

(
A(μ) log pM (y;μ)−B(μ) log p(x, y;μ)

)∂p(x, y;μ)
∂μi

,

where pM (y;μ) is the histogram of imageM ◦Tμ, p(x, y;μ) is the joint histogram
of F and M ◦ Tμ, and A(μ) = H(F,M ◦ Tμ), B(μ) = H(F ) + H(M ◦ Tμ) using
the Parzen-window estimation for the entropies. More details on the gradient
computation can be found in [23].

As transformation model, we choose a free-form transformation modeled using
B-splines [14]. By deforming an underlying grid of uniformly spaced control
points, the moving image is transformed iteratively. The parameters of the trans-
formation are the control points μ of the grid. We used a multiresolution ap-
proach by varying the control point spacing of the B-spline grid in a coarse to
fine manner [14]. Our implementations are based on the Insight Segmentation
and Registration Toolkit1 (ITK).

2.2 Adaptive Multiscale Similarity Measure

Encoding local spatial information into the NMI and MI measures has been
shown to improve their performance. One drawback of this approach is the lack
of a systematic method to select the region size over which to compute the
local statistics. Different regions can contain information at different scales, and

1 http://www.itk.org/

http://www.itk.org/
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choosing a single scale may miss deformations occuring at other levels. The idea
of measuring image similarity on multiple levels at spatially-varying locations
aims at addressing this issue.

The methodology is inspired from the idea of multiscale patch representation
[2,4,16]. In particular, in the context of manifold learning, this was used in [2]
to construct manifold embeddings that take into account local properties of the
image. We construct an image partition similar to a quadtree structure, i.e., the
full image is divided into four (or eight in 3D) regular quadrants or patches,
which in turn are recursively divided into four (or eight) subquadrants until the
desired number of levels is obtained (see Fig. 1). Thus, for each input image, a
set of hierarchical patches is obtained. Each level in the quadtree corresponds
to a different spatial resolution level, with the lowest level l = 0 corresponding
to the whole image (coarsest level) and the highest level l = L to the finest one.
At each level l there are up to 2d·l patches (4l for 2D and 8l for 3D images).

For each patch p at level l, we can compute a local similarity measure Sl,p and
a matching measure Ml,p that combines the current local similarity Sl,p with
a more global one (derived from all or a set of patches from previous levels).
On the coarsest level l = 0, there is only one patch p = 1, and the matching
measure is M0,1 = S0, which is the similarity measure over the entire image.
On the subsequent levels, the matching measure of each patch is computed by

Ml,p = (1− λl)Sl,p + λl

2d(l−1)∑
p′=1

αp′Ml−1,p′
, (3)

where λl ∈ [0, 1], αp′ ∈ IR are weighting parameters that determine the influence
of each term. Note that for each patch at a given level, the matching measure
Ml,p takes into account both local and global statistics, respectively measured
by Sl,p and a combination of matching measures at the previous coarser level
l−1. For a given number of levels L, the proposed adaptive multiscale similarity
measure is then computed as

M(L) =
1

2dL

2dL∑
p=1

ML,p , (4)

which is a function of all patches and levels. This allows capturing the local
structure of the images at different levels of granularity along with the global
image structure.

l = 2 l = 1 l = 0

Fig. 1. Division of a 2D image into hierarchical patches to obtain image information
at different levels. Each subdivision at a given level l is contained within one parent
patch at level l − 1.

For the computation of the proposed similarity measure, we introduced two
weighting parameters: λl ∈ [0, 1], to determine the influence of the current local
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patch similarity over the coarser ones, and αp′ ∈ IR, to weight the different
contribution of the coarser parent patches.

The choice of the weighting parameters is important to adapt the similarity
measure to both local and global stastistics, and hence to allow for a higher
accuracy of the registration algorithm. Here, we define an adaptive weight for
each patch, i.e., λl = λl(p), such that the lower the local similarity measure Sl,p,
the higher its weight is. In this way, local dissimilarities are emphasized during
optimization and the registration is guided to correct for such local mismatches.
On the other hand, when local similarity is high, a larger weight is assigned to

the most global similarity term (
∑2d(l−1)

p′=1 αp′Ml−1,p′
, computed from patches at

previous levels). This behavior can be obtained by defining λl(p) as an increasing
function of Sl,p. Since we use NMI as local similarity, which is bounded between
1 and 2, we set λl(p) = Sl,p − 1; hence λl(p) ∈ [0, 1]. For example, if images
are very similar in patch p of level l, Sl,p will be close to 2 and the local weight
1 − λl = 2 − Sl,p in Eq. (3) will be close to zero. Hence, only the more global
statistics will be considered for the patch matching measure Ml,p.

In [24], the authors combine local and global similarities at a single scale using
a weighting strategy opposite to ours: the higher the local statistics, the higher
its contribution to the overall similarity. They argued that if the local similarity
term is low, it means that local statistics do not provide sufficient information
for matching and therefore a global measure should be used. However, with
this weighting approach, the registration algorithm could fail in correcting small
local dissimilarities when the global similarity is already high. Experiments in
Section 3.1 demonstrate that this affects the correct alignment.

The weighting parameter αp′ determines the influence of each of the parents
patch similarities to the more global similarity term that is combined with the
local similarity Sl,p of the current patch. Since each patch p is contained in
exactly one patch p′ at the previous level (Fig. 1), a simple way to define the
weighting parameter would be to set αp′ = 1 for the patch p′ which contains
patch p at the next level, and αp′ = 0 otherwise. However, especially when patch
p lays on the border of patch p′ (as illustrated in Fig. 1 for the black-border patch
at level 2), the statistics of p′ may not capture the whole neighborhood of p. Thus,
we propose to take into account all parent patches p′ at the previous level, with

a weighting αp′ = 1
dp′

/
∑2d(l−1)

p′=1
1

dp′
, where dp′ is the Euclidean distance between

the center of patch p′ at level l − 1 and the current patch p at level l. This
weighting was also used in [2] to align patches with their parent patches.

3 Results

We validated the proposed adaptive multiscale image similarity measure on two
synthetic datasets (2D phantoms and simulated 3D brain images from BrainWeb
database2) and on a clinical brain dataset obtained from The Alzheimer’s Disease
NeuroImaging Initiative3 (ADNI) [11].

2 http://www.bic.mni.mcgill.ca/brainweb/
3 http://www.adni-info.org

http://www.bic.mni.mcgill.ca/brainweb/
http://www.adni-info.org
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The similarity measures to evaluate are: (i) NMI: the global NMI (i.e., S0),
(ii) L-NMI: a local NMI that computes the NMI value in local regions at a
single scale (here with a local region size of 32), (iii) LG-NMI: a combination of
local and global NMI at a single scale, using an adaptive weight as in [24], and
with a local region size of 32, (iv) LG∗-NMI: LG-NMI but with the adaptive
weight proposed in this work (opposite to [24]), and (v) AM-NMI: the proposed
adaptive multiscale similarity measure on three scales (L = 2, i.e., M(2), which
corresponds to one global and two local scales).

3.1 Synthetic Data

We start with a simple synthetic example to illustrate the advantages of consi-
dering both local and global statistics at multiple levels in the presence of high
intensity differences and intensity gradients. We used synthetic phantoms (shown
in Fig. 2) similar to those employed in [10]. Both images contain a circle, which
is black with a white background in one image and with an intensity gradient
in the other image. We examined the changes of the studied different similarity
measures with respect to horizontal translations. Similarity curves are plotted in
Fig. 2. It can be seen that global NMI fails in detecting a minimum for minimal
translation (Fig. 2b). A minimum is reached using only local information at a
fixed scale (Fig. 2c) but with translation of t = (−1, 0). Combining local and
global information with LG-NMI leads to the correct minimum of t = (0, 0), but
the similarity plot is not symmetric around the minimum. If we use a weighting
as proposed in section 2.2, the symmetry is restored and the correct minimum is
reached (Fig. 2g). Computing the local information only at one scale is sensitive
to the selected region size, as seen in Fig. 2f, where instead of 32 a region size
of 64 was set. The similarity plot still shows a minimum but with a translation
of t = (4, 0). This also happens using L-NMI or LG∗-NMI with a local region
size of 64. AM-NMI detects the correct translation corresponding to the ground
truth registration and provides smooth and symmetric similarity plot without
being dependent on the selected region size (Fig. 2h).

Second, we evaluated the accuracy of registration with our approach on simu-
lated normal brain images from the BrainWeb database. Triplets of pre-registered
T1-, T2- and proton density- (PD) weighted MR images were generated with a
slice thickness of 1 mm, a noise level of 3% and intensity non-uniformity (INU)
fields of 0%, 20% and 40%. We created five random deformations (maximal
voxel displacement of 4 mm) using random displacements of the control points
of a dense B-Spline grid and used them to deform the three modalities. The
inverse deformation field was used as ground truth. Next, we performed pair-
wise registrations with the deformed T1, T2 and PD as moving images and the
undeformed T1 as fixed image. Each image pair used for registration had the
same INU. The error of the registration was computed as the root mean square
error (RMSE) between the ground truth deformation and the estimated one.
Results are shown in Table 1. For monomodal registrations (T1-T1), the error is
small for all measures. For registrations with an INU field of 0%, the errors are
very similar for all measures, although L-NMI, LG∗-NMI and AM-NMI have the
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(a) Fixed image (b) NMI (c) L-NMI (32) (d) LG-NMI (32)

(e) Moving image (f) LG-NMI (64) (g) LG∗-NMI (32) (h) AM-NMI

Fig. 2. Similarity plots on synthetic phantoms (left). Similarity curves are obtained
from horizontally translating the moving image over the fixed image using different
similarity measures. The local region sizes, if needed, are given in brackets.

smallest errors. For multimodal registrations (T1-T2, T1-PD), errors are bigger
than those for T1-T1. However, results show that AM-NMI achieves the best
performance.

The distribution of errors is shown in Fig. 3 for each deformation. The differ-
ence in the performance of the different similarities becomes more evident when
INU field increases. For monomodal registration, INU does not affect too much
the results (see Table 1), whereas for multimodal registrations (Fig. 3) results
are sensitive to increasing INU. NMI is adversely affected when the INU fields
become stronger (error increases from 0.446 mm for 0% INU level up to 1.269
mm for 40% level). In contrast, using local information alleviates the effect of
INU, being the AM-NMI the more robust. Note that the registration errors with
LG∗-NMI are always smaller than with LG-NMI.

Table 1. Root mean square error of the displacement error using different similarity
measures. Five pairwise registrations are conducted between T1 (fixed image) and each
deformed T1, T2 and PD (moving images). For each modality pair class, mean error
and standard deviation are shown. Errors are in mm.

Mod. INU NMI L-NMI LG-NMI LG∗-NMI AM-NMI

T1-T1 0.459 ± 0.012 0.415± 0.013 0.440 ± 0.018 0.415± 0.012 0.419 ± 0.013
T1-T2 0% 0.965 ± 0.012 0.931 ± 0.005 0.937 ± 0.03 0.932 ± 0.002 0.929 ± 0.012
T1-PD 0.821 ± 0.009 0.796± 0.009 0.799 ± 0.013 0.804 ± 0.015 0.806 ± 0.010

T1-T1 0.465 ± 0.011 0.413± 0.014 0.501 ± 0.159 0.419 ± 0.006 0.420 ± 0.020
T1-T2 20% 1.164 ± 0.011 0.974 ± 0.005 1.067 ± 0.004 1.001 ± 0.006 0.940 ± 0.026
T1-PD 1.237 ± 0.031 0.962 ± 0.012 1.053 ± 0.021 0.983 ± 0.020 0.913 ± 0.025

T1-T1 0.468 ± 0.010 0.420± 0.011 0.449 ± 0.019 0.427 ± 0.009 0.421 ± 0.007
T1-T2 40% 1.329 ± 0.016 1.089 ± 0.015 1.149 ± 0.030 1.084 ± 0.016 1.007 ± 0.046
T1-PD 1.485 ± 0.050 1.060 ± 0.022 1.194 ± 0.021 1.080 ± 0.022 0.972 ± 0.025
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(a) T1 - T2 (b) T1 - PD

Fig. 3. Root mean square errors using different similarity measures with different inten-
sity non-uniformity fields (black: 0%, blue: 20%, red: 40%). Each symbol corresponds
to one random deformation.

3.2 Clinical Data

We applied the proposed AM-NMI image similarity measure on a clinical dataset
of longitudinal MR brain images from the ADNI database [11]. This database
contains subjects with normal cognition, mild cognitive impairment and with
Alzheimer’s disease. We registered T2-weighted MR images of the same patient
at two different timepoints (with a time difference of twelve months) using as
similarity measures the standard global NMI and the proposed AM-NMI. In
Fig. 4 the difference images between the fixed and the registered images for two
axial slices are shown. By visually inspecting the registered images, one can see
that global NMI leads to misregistrations in some local regions, while registration
artifacts are diminished when using AM-NMI.

4 Discussion

We have proposed an adaptive multiscale image similarity measure based on
NMI for non-rigid image registration. The AM-NMI similarity measure combines
image information across hierarchical levels to capture differences in image fea-
tures of varying granularity. We validated our measure on simulated and clinical
MR brain images. Results show that, especially for multimodal registration, the
AM-NMI is an accurate and robust similarity measure for non-rigid image re-
gistration. AM-NMI registration results outperform the ones obtained with the
typically global NMI, the local NMI and the combination of local and global
statistics at a single scale, in terms of registration accuracy measured by the
RMSE of the voxel displacements. Additionally, the AM-NMI is more robust to
intensity non-uniformities than the aforementioned measures.

For the definition of local regions in our measure, we do not need to select a
region size a priori for statistics computation, which is an advantage over other
methods that use local information. In our approach, the region size is automa-
tically set by the number of levels used for the AM-NMI computation. However,
the selection of the finest level is important, since too small regions may lead
to poor histogram estimations, and therefore to poor registration results. In
[8], the authors found that if the local region size is too small, the probabilities
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Fixed - Moving Fixed - NMI Fixed - AM-NMI

Fig. 4. Registration example from the ADNI dataset. Difference images between fixed
and moving image (left) and fixed and registered image using NMI (middle) and
AM-NMI (right) are displayed in fake colors for an easier visualization of the errors.
Each row corresponds to a different axial slice. Red arrows show misregistered regions
using global NMI, while AM-NMI leads to more accurate results.

estimations may not be correct. Additionally, the finest patch level should be also
related to the finest deformation scale. If there is a large non-rigid deformation
between the images to be registered, the region size on the finest level should
be smaller than if the deformation between the images is small. In this work,
we used regular patches and a fixed number of levels L = 2 (corresponding to
a minimum patch size of 32 × 32 × 32 for the BrainWeb and 32 × 32 × 16 for
the ADNI data). For a better adaptation to the underlying anatomy and image
properties, one could define non-regular patches, which capture specific features
of the images at different scales, and dynamically adapt the number of levels
during the registration process.
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Abstract. Image registration is a ubiquitous technique in medical imaging. How-
ever, finding correspondences reliably between images is a difficult task since
the registration problem is ill-posed and registration algorithms are only capable
of finding local optima. This makes it challenging to find a suitable registration
method and parametrization for a specific application. To alleviate such prob-
lems, multiple registrations can be fused which is typically done by weighted
averaging, which is sensitive to outliers and can not guarantee that registrations
improve. In contrast, in this work we present a Markov random field based tech-
nique which fuses registrations by explicitly minimizing local dissimilarities of
deformed source and target image, while penalizing non-smooth deformations.
We additionally propose a registration propagation technique which combines
multiple registration hypotheses which are obtained from different indirect paths
in a set of mutually registered images. Our fused registrations are experimen-
tally shown to improve pair-wise correspondences in terms of average defor-
mation error (ADE) and target registration error (TRE) as well as improving
post-registration segmentation overlap.

1 Introduction

Image registration is at the core of a multitude of medical image analysis techniques. It
enables ubiquitous methods such as atlas generation, atlas-based segmentation, multi-
modal information fusion, pre-operative planning and intra-operative guidance. High
registration reliability and accuracy are critical for the success of any applied method.
However, it is well known that the registration problem is ill-posed [1] when anatomical
correspondences are established using image similarity. Artefacts from the imaging pro-
cess (noise, bias) and from discretizing the continuous spatial domain into pixels/voxels
further complicate the image registration process. Numerous techniques have been de-
veloped to cope with these challenges. Firstmost, registration algorithms typically in-
clude regularization terms that penalize anatomically unreasonable deformations such
as due to folding or tearing. For example, Markov random field (MRF) based regis-
tration penalizes deformations with large Euclidean distance between displacements of
neighboring points [2]. Other approaches include Gaussian smoothing of velocity and
update fields [3], or they restrict the type of deformation to be diffeomorphic (smoothly
invertable) [4]. A comprehensive overview of registration regularization is given in [5].
Higher-level prior knowledge can also be used to regularize registration algorithm. For
example, it is reasonable to expect that the outcome of registering image A to B should
be the same as inverting the registration from B to A. Such registration symmetry has
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been succesfully enforced for example in the demons [6] and SyN registration algo-
rithms [7]. One key challenge of regularized registration is that the resulting elastic
matching problem is NP-complete [8] and therefore solutions can be found only approx-
imatively, typically following the gradient of the objective function. To avoid poor local
optima in such optimizations, most non-rigid registration methods require a suitable
initialisation from another robust rigid or affine registration algorithm. Multi-resolution
pyramids are frequently used to prevent algorithms from falling into local minima due
to fine detail in early stages of the registration [9]. Despite these advances, medical
image registration is still an open problem.

It is known from information theory that many weak information sources can be
combined into strong information for example via boosting [10]. This is reflected by
the trend in medical image segmentation, where state-of-the art results are achieved
by fusing segmentation hypotheses obtained from multiple atlases [11]. Optical flow
can be computed by fusing multiple hypotheses using a mixed continuous-discrete ap-
proach [12]. There also exist studies that present methods to fuse multiple hypotheses
for landmark detection [13,14], which can be seen as a sparse registration problem.
Some of the fusion methods are specific to the chosen detection method, for example
choosing landmarks based on the cumulative score of multiple support vector machines
that are independently trained [14]. A more general technique was presented in [13],
where multiple landmark hypotheses obtained from different atlases were fused using
similarity weighted averaging. Such averaging can be also applied to dense registration
fusion, but has two drawbacks: First, averaging can give no guarantee that the result
improves the registration fidelity, or that it even improves any image-to-image similar-
ity. Second, the average may easily result in anatomically unreasonable deformations
since there is no straight-forward way to regularize the result.

In this paper, we formulate the registration fusion as an optimization problem where
the objective function is designed such that post-registration image similarity is max-
imized while non-smooth deformations are penalized. We cast this as a discrete en-
ergy minimization problem, which can be solved using a Markov random Field (MRF).
Our MRF-based registration fusion (MRegFuse) then locally selects one of the candidate
displacement hypotheses, while penalizing non-smooth deformations in a first-order
neighborhood system. We show experimentally that MRegFuse is capable to successfully
fuse independent registrations obtained from randomly selected registration algorithms
and parametrizations, alleviating the common need to carefully select those. In order to
avoid explicitly calculating multiple registrations for a pair of images, we also adapt a
technique presented to generate multiple segmentation hypotheses from a single image
in a population of mutually registered images [11,15]. Similarly to this method, we gen-
erate multiple registration hypotheses by composing deformations along indirect paths
from a source to a target image, and subsequently fuse them using our algorithm.

2 Registration Fusion Using an MRF

Let image X be a function that maps points in the D-dimensional spatial domain Ω to
a space F of image intensities, e.g. CT Hounsfield units. A non-rigid deformation T is
a mapping from Ω to Ω which is based on a displacement field D such that T (p) = p+
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Fig. 1. Schematic of the proposed MRF fusion (MRegFuse). The MRF computes a labelling L̂
(colored disks, right) which locally selects displacements from the input registrations Tn accord-
ing to a joint image similarity and deformation smoothness criterion. L̂ is then converted to the
fused deformation T̂ (arrows). Best viewed in color.

D(p) for all points p in Ω. Note that both X and D are commonly defined on a discrete
(Cartesian) regular grid, where non-grid values can be obtained by interpolation. In this
notation, deforming an image is a function composition X ◦ T = X(T ). A set of
registrations R(X,Y ) = {T1, . . . , TN} may contain N different registrations between
images X and Y . The goal of registration fusion is then to combine such registrations
into a new registration estimate. Ideally, such fused registrations should maximize post-
registration image similarity while penalizing anatomically unreasonable deformations.

We propose a discrete optimization method which locally selects one displacement
of N hypotheses based on local image similarity and global registration smoothness
(Fig. 1). To this end, we define a discrete label domain L = {1, . . . , N}, such that each
label l uniquely refers to a registration Tl ∈ R(X,Y ). Then, a labelling L : Ω → L
assigns a label lp to every pixel/voxel p of an image. Finally, such labelling defines the
corresponding registration TL as follows:

TL : Ω → Ω : p → Tlp(p). (1)

This allows us to define the discrete optimization problem as energy minimization
in a first-order Markov random field (MRF), for which efficient solvers exist. The MRF
energy is commonly defined as a sum of potential functions defined on a graph which
typically is the lattice of pixels/voxels in computer vision. The goal of the MRF is then
to assign a label lp to each graph node p such that an energy-criterion is minimized. The
registration fusion problem can then be formalized as follows:

L̂ = argmin
L′

∑
p∈Ω

⎛⎝Vp(lp) + λ
∑

q∈N (p)

Vpq(lp, lq)

⎞⎠ , (2)

where the unary term Vp(lp) is the data fitness at point p for label lp, and Vpq is a
pairwise energy term which allows implementing prior knowledge about the spatial
smoothness of the solution, and λ is the weighting for the latter.
Unary Term Vp. This term penalizes choosing labels that result in low similarity Φ of
image X and deformed image Y (Tlp) at location p as follows:

Vp(lp) = 1− Φ
(
X,Y (Tlp), p

)
. (3)
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Fig. 2. Left: Unary potential computation for one label l, σ=4 and γ=10. Right: Generating regis-
tration hypotheses by composing deformations along indirect paths in a population-based setting
(c.f. Sec. 2.2).

We use local normalized cross correlation (LNCC) [16] as a robust similarity metric,
which was successfully utilized earlier to locally rank segmentation hypotheses in [17].
LNCC is smooth, and can be efficiently computed using convolutions with Gaussian
kernels of size σ. From the LNCC metric, we compute the similarity

Φ
(
X,Y (Tlp), p

)
=

(
1 + LNCCσ(X,Y (Tlp), p)

2

)γ

, (4)

which normalizes LNCC to the range [0, 1]. γ is used to scale the similarity such that
contributions from individual registrations are well spread [13]. An example of such
unary potentials is shown in Fig. 2(left).

Pair-wise Term Vpq . We penalize non-smooth deformations based on squared Eu-
clidean distance between the displacements of neighboring points:

Vpq(lp, lq) = ||Tlp(p)− Tlq (q)||2. (5)

Solving the MRF. Although the number of labels is typically relatively small, the un-
derlying MRF graph can become huge, which makes solving (2) on the lattice of image
pixels prohibitive. Since registrations can be represented on a coarse grid of control
points [9], we define our MRF over a coarse graph G, and interpolate displacements at
non-grid locations using B-splines after R̂ is estimated. Since there is no guarantee that
the pairwise potential in (5) satisfies any metricity or submodularity criteria, it is not
possible to use common discrete optimization methods such as α-expansion [18]. We
thus use tree-reweighted message passing TRW-S, which allows using arbitrary pair-
wise potentials [19] and additionally gives a lower bound on the energy which can be
used to assess the quality of the solution. If the energy of the solution is equal to the
lower bound, TRW-S arrives at the globally optimal solution.
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2.1 MRegFuse with Folding Removal (MRegFuseR)

Since labels and hence deformations are selected in a locally discrete fashion, displace-
ment continuity at label seams cannot be guaranteed. We therefore propose the follow-
ing post-processing step to remove folding if the minimum of the Jacobian determinant,
min(|J |), of a deformation field T̂ is smaller than zero: T̂ is smoothed with K Gaus-
sian kernels each of size σk=0.5 · 2k mm, resulting in K deformation fields T̂σk

. K is
increased sequentially until T̂σK has a positive min(|J |). We then fuse the resulting set
of registration {T̂ , T̂σ1 , . . . , T̂σK} using MRegFuse as before. If the min(|J |) is still neg-
ative, we repeat the fusion step with an increased pair-wise potential weight λ ← 2λ
until folding is removed. To avoid over-smoothing the result and to increase computa-
tional efficiency, we update any labels for folding removal solely for nodes that are in
the vicinity (3σ) of negative Jacobian determinants.

2.2 Pair-Wise and Population-Based Registration Fusion

For a given pair of images, the proposed MRegFuse can fuse multiple registration hy-
potheses obtained from running different registration algorithms or parametrizations
thereof. This can, for example, be useful when a universally optimal registration algo-
rithm/parametrization is difficult to find or does not exist.

MRegFuse can also be used when a population of images is to be mutually registered.
Here, it is possible to obtain multiple registration hypotheses by composing deforma-
tions along indirect paths between images. This principle was used succesfully to gener-
ate and fuse segmentation hypotheses in [11,15]. Formally, if a registration Tij registers
images Xi and Xj , an indirect registration Tikj is the composition of Tik and Tkj , i.e.
Tikj=Tkj ◦ Tik . The set of registration hypotheses is then R(Xi, Xj)={Tij , Tikj , Tilj ,
. . .}, which we illustrate in Fig. 2(right). For a set of N images, it is therefore possible
to obtain N -1 registration hypotheses per image pair without explicitly re-computing
registrations. It is also possible to iteratively improve the results by using the fused
pairwise registrations themselves to compute new hypotheses, which can then again be
fused. We perform this iterative improvement until the average post-registration image
similarity stops improving significantly.

3 Experimental Results

We evaluate our method in two experiments on two datasets. First, we fuse regis-
trations obtained from running different registration algorithms with several different
parametrizations each. Then, we evaluate the performance of MRegFuse in a group-wise
registration approach.

Data Sets. To evaluate the accuracy of dense registrations, we generated a dataset
of medical images with known dense correspondences as follows: We used 19 mid-
saggital slices of brain MRI with 481×374 px2 resolution and 0.3 mm spacing. We
first registered one randomly chosen image to the remaining 18 images using Markov-
random field (MRF) based registration [2]. The computed registrations were then used
to deform the source image, and the 18 deformed images plus the source image were
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Table 1. Results using independently computed registrations and their fusion. Different param-
eter sets p were obtained for each registration method, and the resulting registrations then fused
using globally and locally weighted averaging (GWA and LWA) and our proposed MRegFuse and
MRegFuseR. mJD denotes the minimum Jacobian determinant of all pair-wise registrations, while
ADE and NCC are averaged over the set.

Independent Registrations Fusion

Demons MRF-reg GWA LWA MRegFuse MRegFuseR

pd1 pd2 pd3 pd4 pm1 pm2 pm3 pm4 pm5 pm6

ADE 4.00 4.44 3.50 3.61 2.64 2.43 2.96 4.05 1.92 2.28 1.91 1.68 1.11 1.11
NCC 0.77 0.81 0.84 0.81 0.91 0.88 0.91 0.78 0.94 0.94 0.94 0.96 0.97 0.97
mJD 0.64 -165 0.05 0.36 0.03 0.09 0.02 0.28 0.05 0.01 0.09 -229.06 -9.25 3e-4

pd1 pd2 pd3 pd4 pm1

pm2 pm3 pm4 pm5 pm6 MRF labelling L̂ Fused reg. error

Fig. 3. Example fusion result for independently computed registrations for the 2D MR image
pair shown in Fig. 2(left). The small images on the left side show the local deformation error
magnitude of the computed registration with regard to the known ground-truth (log-scale). The
frame of each image is colored such that the resulting MRF labelling (center) locally selects one
of the registrations based on its color. The right-most image then shows the deformation error
magnitudes of the fused registration.

used as a new dataset. This dataset then exhibits true anatomical variability, and ground-
truth registrations can be inferred from the deformation process.

The second dataset consists of 15 clinical 3D CT scans of the head of different in-
dividuals, with 160×160×129px3 resolution and unit spacing. The presence and the
number of teeth vary substantially in this dataset. To evaluate registration accuracy,
landmarks were placed at anatomically identifiable locations on the jawbone and the
skull for all images. Additionally, the jawbone was manually segmented by experts,
which allows us to also report post-registration segmentation overlap for this dataset.

Pair-Wise Registration Fusion. In this experiment, we evaluated the fusion of multi-
ple independently computed pair-wise registrations. This is a relevant scenario, as it is
frequently not known a-priori which registration algorithm with which parametrization
would be best suited for a given registration problem. We registered each image pair
of the 2D MR dataset multiple times using different parametrizations of well-known
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Example with little folding

MRegFuse MRegFuseR

Example with substantial folding

MRegFuse MRegFuseR

|J |

Fig. 4. Two registration examples showing the Jacobian determinant values for MRegFuse and
MRegFuseR, with little folding (left) and substantial folding (right). The left example also cor-
responds to the images/results presented both in Figs. 2 and 3. In both examples, MRegFuseR is
seen to completely remove folding.

demons- and MRF-based registrations [4,2]. For each image pair, we fuse all available
registrations using globally and locally weighted averaging (GWA and LWA) in addi-
tion to the proposed MRegFuse. For each method we report the average (dense) deforma-
tion error (ADE), average post-registration image similarity (NCC), and the minimum
of the local determinants of the Jacobian, which indicates folding [20]. The free pa-
rameters were optimized for each fusion method separately, yielding γ=20 for GWA,
γ=16 and σ=8 for LWA, and γ=10, σ=4 and λ=0.02 for our MRegFuse. For our MRF
fusion, we used MRFs with 4 px spacing, resulting in control grids of size 121×94 in
2D. Results are reported in Tab. 1. MRegFuse is seen to achieve lower ADE compared to
both averaging-based registration fusion techniques, meanwhile leading to less folding
compared to locally weighted averaging. Note that globally weighted averaging leads
to no folding overall, as the initial registrations are diffeomorphic. However, it does not
yield much improvement over the best individual registration. On the other hand, LWA,
which is seen to improve ADE over all input registrations, meanwhile causes strong
image folding as spatial smoothness of the deformations is not considered. MRegFuse, in
contrast, leverages such smoothness information to find an optimal partitioning of input
registrations. In Tab. 1, it is also seen that the proposed MRegFuseR is able to remove
folding completely, as shown exemplary in Fig. 4, without deteriorating registration ac-
curacy as indicated by ADE and average NCC. Jacobian determinants before and after
two such sample folding removals are seen in Fig. 4.

Population-Based Registration Fusion. We also evaluated the performance of
MRegFuse when registration hypotheses are obtained from indirect paths in a popula-
tion of images. For the 2D MR dataset, we chose the best performing parametrizations
from the previous experiment. For the fusion, we then used the same parameters as in
the experiment above, except for λ, which was changed to 0.002 in the 3D experiment
to account for the larger physical image spacing. The MRF grid-size was the same as
above for the 2D data and was set to 40×40×33 in 3D using the same grid spacing of
4 px. Results on both datasets are reported in Tab. 2. MRegFuse results in lower ADE and
TRE compared to averaging-based registration fusion, while generating less folding.
For the 3D CT dataset, we also report pairwise post-registration segmentation overlap
which was computed using Dice’s coefficient. We also compare the results to a typical
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Table 2. Fusing registrations obtained by automatic hypothesis generation in sets of mutually
registered images. mJD denotes the minimum Jacobian determinant of all pair-wise registrations,
while ADE,NCC,TRE and Dice are averaged over the set.

2D MRI 3D CT

Demons MRF Demons MRF

ADE NCC mJD ADE NCC mJD TRE Dice mJD TRE Dice mJD

Registration 3.5 0.84 0.05 1.92 0.93 0.05 9.62 0.65 -53.51 5.25 0.81 -1.8
+ LWA 2.34 0.94 -65.1 1.83 0.93 -593 7.33 0.78 -70 4.67 0.87 -19
+ MRegFuse 0.78 0.98 -2.29 0.94 0.96 -3.82 6.92 0.81 -8.3 4.31 0.88 -4.6
+ MRegFuseR 0.71 0.98 3e-4 0.94 0.96 5e-5 6.67 0.78 8e-6 4.33 0.88 1e-4
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Fig. 5. Left: MRegFuse with different regularization weights λ on the pair-wise fusion experiment
for the 2D MR dataset. Right: Histogram of local Jacobian determinants for LWA, MRegFuse and
MRegFuseR for all pair-wise registrations on the 2D data.

group-wise registration method, in which all images of a set are iteratively registered
to an evolving mean image using residual complexity [21,22]. From the registrations
to this mean, we compute pair-wise registrations by inversion and composition. The
resulting ADE is then 1.84 mm for the 2D MR dataset, and TRE is 8.1 mm in 3D CT,
which are inferior to MRegFuse results. MRegFuseR is seen to succesfully remove folding.

3.1 Discussion
MRegFuse can be seen to result in lower ADE/TRE in all experiments compared to
averaging-based fusion. The latter can only improve results when local weights are
used, which cannot guarantee that the resulting deformation is smooth even when using
large-kernel LNCC weighting. In contrast, the optimization of MRegFuse allows for a
trade-off between smooth deformations and local similarity as shown in Fig. 5(left).

We are also very interested in exploring the robustness of MRegFuse with regard to
the number and quality of registrations to be fused. As seen in our experimental vali-
dation, MRegFuse is more robust with regard to poor input registrations in comparison
to averaging-based fusion. One downside of MRegFuse is that it cannot achieve a better
performance locally than the best of its the input registrations due to its selection-based
approach. However, the inputs can be augmented with additional registration hypothe-
ses such as the (weighted) mean of the registrations.
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Our MRF fusion is also fast and memory efficient. Average run-time of the MRF-
solver for fusing 14 registrations is 30.5 seconds in 3D, while requiring less than 800
MB memory. The local similarity computation is also efficient. The entire process of
generating indirect deformations in the group-wise experiment, computing all local sim-
ilarities, and fusion using the MRF was completed in under two minutes in all cases.
Consequently, finer resolution grids or more registrations/parametrizations can be fused
in reasonable timeframes, which we will explore in the future.

The employed iterative TRW-S optimizer was stopped when the relative change
of the lower bound was small (1e-7) or a maximum number of iterations (1000) was
reached. We observed that TRW-S was able to find the globally optimal solution in
about 69% of the cases for the 2D pair-wise fusion experiment, and the final energy
being within 0.5% of the lower bound in all remaining cases of that experiment. For the
3D experiments, the final energy was within 0.03% of the lower bound in all cases.

As can be seen from the experimental results, the fused registrations still exhibit
folding as indicated by the negative Jacobian determinants. However, both the minima
presented in the tables, as well as the distribution of all such values that can be seen in
Fig. 5(right) show that the folding is less severe compared to LWA-fusion. Addition-
ally, the proposed MRegFuseR algorithm can be used to remove folding by fusing the
original MRegFuse result with smoothed versions of itself. This process is seen to re-
tain the high registration accuracy of MRegFuse, even with potential (minor) ADE/TRE
improvements as seen in the population-based demons experiments in Tab. 2. Using
the described kernel pyramid, the folding removal in 3D examples needed on average
K=4.4 additional smoothed deformation fields and 12 iterations to remove folding en-
tirely. Since the number of graph labels during folding removal is significantly smaller
compared to the MRegFuse step, the random field is solved much quicker at 1.5 s on aver-
age. The folding removal adds less than one minute on average to the registration fusion
process. Potentially, such folding removal can be applied as a post-processing step to
any other registration method that may yield non-positive Jacobian determinants.

4 Conclusions

We have presented a novel algorithm for registration fusion, which locally selects dis-
placements from multiple registration hypotheses. An MRF is used to find an optimal
solution in terms of local post-registration similarity and registration smoothness. This
algorithm can furthermore be used to automatically remove inevitable folding at label
seams. The proposed MRegFuse algorithm has been shown to be able to fuse registrations
from random parametrizations of different registration algorithms such that the fused
registrations exhibit higher accuracy than any of the input registrations. This is a rele-
vant scenario for many image registration applications, where it is typically challenging
to choose and parametrize a registration method correctly. We have also demonstrated
that registration hypotheses can be obtained automatically within a set of mutually reg-
istered images, which allows improving the average pair-wise registration accuracy by
using the proposed registration fusion.
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Abstract. Theoretically, inverse consistency in an image registration
problem can be achieved by employing a diffeomorphic scheme that uses
transformations parametrized by stationary velocity fields (SVF). The
displacement from a given SVF, formulated as a series of self composi-
tions of a transformation function, can be obtained by Euler integration
in the time domain. However in practice, the discrete time integration
produces results that are inverse inconsistent, and inverse consistency in
the final solution needs to be explicitly ensured. One way of achieving this
is to penalize the endpoint displacement offset obtained by evaluating a
composition of the transformation with its inverse at an arbitrary point.
In this paper, we propose a variation in which the displacement penaliza-
tion is required only in the first composition step of the transformation
thereby bringing down the computational complexity. We compare these
two ways of enforcing inverse consistency by applying the registration
framework on four pairs of brain magnetic resonance images. We ob-
serve that the proposed stepwise scheme maintains both precision and
level of inverse consistency similar to the endpoint scheme.

1 Introduction

Inverse consistency is particularly important in studies where voxel-wise statis-
tics are used to characterize anatomical changes over time [1]. Diffeomorphic
(differentiable transformation with differentiable inverse) methods in image reg-
istration are attractive because they yield transformations that are invertible.
However, inverse consistency is in practice achievable only if the discrete integral
of the similarity measure and regularization are symmetrically approximated [2].
Several diffeomorphic approaches have been proposed and the two most promi-
nent among them are: large deformation diffeomorphic metric mapping (LD-
DMM) [3, 4] and Log-Euclidean framework based on stationary velocity fields
(SVFs) [5].

In SVF based image registration, paths of diffeomorphism are generated us-
ing one parameter subgroups parameterized by SVFs through the Lie group
exponential. The Lie group exponential is realized through a series of self com-
positions of a transformation function [6]. The generated diffeomorphism paths
are geodesic with respect to the canonical Cartan connection [7]. Applications
of SVF have found widespread success in image registration [7–9].
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Deformations generated by SVFs are invertible. However, due to discretization
errors, inverse consistency needs to be explicitly enforced, most often through
a regularization. Inverse consistency has been addressed by [10] where both the
forward and backward transformations were jointly estimated by minimizing the
displacement offset obtained by composing the forward and backward transfor-
mations at an arbitrary point. Other methods that enforce inverse consistency
(both diffeomorphic and non-diffeomorphic schemes) are, but not limited to,
constraining the transformation [11], penalizing the Jacobian [12], symmetrizing
every gradient descent step [13], log-average of forward and backward trans-
formations during optimization [14] and finding a mid-space to make sure the
transformations are evenly applied [15] .

In this paper, we propose to use a modified version of the inverse consistency
term defined in [10] where we will apply the displacement offset penalization
only on the first composition of the flow field (or stepwise scheme) as opposed to
using the entire flow field (or endpoint scheme) . Section 2 will briefly introduce
the concept of SVFs based image registration, followed by an introduction to
the inverse consistency enforcing regularization. In Section 3, we will present a
comparison of the proposed stepwise regularization and endpoint regularization
by applying the framework on four pairs of brain magnetic resonance images
(MRIs).

2 Registration

Given an image pair I1, I2, registration is formulated as a variational optimiza-
tion problem, where the cost function that needs to be minimized is represented
as,

E(I1, I2;ϕ) =

∫
Ω

M(I1(ϕ
−1), I2) + λR(ϕ) dx (1)

where E is the overall energy, M is the similarity measure, normalized mutual
information (NMI) [16] in this study, R is a regularization term, ϕ is a warp and
x = (x, y, z) is a voxel position. Here, we focus on SVF based registration using
B-splines where the warp ϕ is parametrized as

ϕ(x) = φ1 where

{
dφt

dt = B(x; p)

φ0 = x
, (2)

B(x; p) =
3∑

i=0

3∑
j=0

3∑
k=0

βi(x)βj(y)βk(z)pi,j,k, (3)

where p is the B-spline parameter and β is a cubic B-spline basis function. A
displacement can be realized as an Euler integration with unit time step [6]. For
example, given n steps, the Euler integration approximation will be;

φ
1
n = x+

B(x; p)

n

φt+ 1
n = φt ◦ φ 1

n .

(4)
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2.1 Inverse Consistency

In [10], inverse consistency was enforced by penalizing the displacement error
generated after composing a transformation with its inverse. However, in this
method, the computation of inverse is a computationally expensive approxima-
tion [13]. We instead combine both the forward and backward registration in
the same cost function and explicitly compute the inverse transformation, thus
removing the lag due to computing the forward and backward transformations
sequentially. With the Euler’s scheme, inverse consistency can be achieved in
two different ways. The first being the endpoint scheme, where the displacement
offset is generated by using the entire flow field,

Eendpoint(I1, I2;ϕ) =∫
Ωb

M(I1(φ
1
b), I2)+ λ||x−φ1

f (φ
1
b)||2 dx+

∫
Ωf

M(I1, I2(φ
1
f ))+ λ||x−φ1

b(φ
1
f )||2dx

(5)

where Ωf,b are the region of interest in the source and target images and x ∈
Ωf,b depending on the direction of registration. Note that ϕ = {φf , φb}. The
advantage of using the Euler’s scheme is that, parametrization of the flow field
is required only at the first composition. Hence, if the first composition is made
inverse consistent, so will their compositions be. Therefore, the cost function
(from (5)) for the stepwise scheme can be re-written as,

Estepwise(I1, I2;ϕ) =∫
Ωb

M(I1(φ
1
b), I2) + n2 λ||x− φ

1
n

f (φ
1
n

b )||2 dx+∫
Ωf

M(I1, I2(φ
1
f )) + n2 λ||x− φ

1
n

b (φ
1
n

f )||2 dx

(6)

where n is the number of compositions used to realize a deformation.

2.2 Scaling and Squaring

The scaling and squaring method [5] speeds up the integration of the SVF.
Although B-spline based SVF implementations that use scaling and squaring
exist [12], scaling and squaring in this context is limited by the fact that a new
B-spline must be fit at each squaring step. As this fitting cannot be exact, the
control over the parametrization is lost and folds may occur. Furthermore, if
displacement offsets are to be used for ensuring inverse consistency, the entire
velocity field needs to be traversed in both directions to measure the offset.
Therefore, we focus on inverse consistency only with Euler integration without
scaling and squaring.
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2.3 Volume Change Computation

Since the transformations are a composition of B-splines and using Jacobian
integration might amplify numerical noise in the deformation, we use cube prop-
agation [17] instead to compute local volume changes.

3 Experiments

Four pairs of 1.5T MRIs randomly chosen from the Alzheimer’s disease neu-
roimaging initiative database (2 normal controls and 2 mild cognitively im-
paired) were co-registered. Bias correction and segmentations were done using
the Freesurfer crossectional pipeline. The dimension of the images (both bias
corrected and segmentations) was 2563 mm with 13 mm isotropic voxels.

To perform a simple assessment of the methods, only one resolution of con-
trol points with a spacing of ≈5 mm was used. The images were filtered with
a Gaussian kernel of size 0.2 mm. Number of compositions used were n =
1, 2, 4, 8, 12, 16 and 24. Registrations were run in 3 variations;

– No IC: Using (5) by setting λ = 0,
– Endpoint: Using (5) by setting λ = 0.03,
– Stepwise: Using (6) by setting λ = 0.03,

3.1 Evaluation Metrics

To evaluate the performance of the registration itself, we will inspect the correla-
tion coefficient between the source and the registered target image [18]. Inverse
consistency was checked by computing; the displacement offset (Δx) and atrophy
error (AE);

Δx =
1

N

∑
Ω

||x− φ1
b(φ

1
f (x))||,AE =

1

N
|
∑
Ω

(Cf − 1

Cb(φ1
f (x))

)|

where Cf is the forward voxel-wise volume change map computed using cube
propgation, Cb(φ

1
f (x)) is the backward change map transformed to the target

domain using the forward transformation, x are random N (253) points in the
image and Ω is a region of interest, whole brain in this case.

4 Results

Figure 1 illustrates the mean correlation coefficient between the source and the
registered target image over the 4 image registrations. The correlation coeffi-
cient improves with the number of compositions for the non-inverse consistent
registration scheme. However, the correlation coefficient tends to remain the
same with both the inverse consistent schemes, but better than the non-inverse
consistent scheme regardless of the number of compositions used.
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Fig. 1. Mean correlation coefficient between source and registered target image as a
function of number of composition
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Fig. 2. Δx as a function of number of composition

Initially, we compute displacement offset using the deformations from the
inverse inconsistent registration scheme by shooting a set of random points using
both the entire flow field and only the first composition of the flow field with
the offset multiplied by n2. We observed that the latter approximates the former
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well. AE and the displacement offsets can be seen in Figures 2, 3. Both AEs and
displacement offsets are quite similar for both stepwise and endpoint schemes.

The runtimes for both stepwise and non-inverse consistent scheme were the
same and lower than the endpoint scheme (a scale up factor of ≈3), i.e., for
an optimization iteration of a registration (with 8 compositions) run with step-
wise/no inverse consistency scheme, the runtime was 10 secs when compared to
the 30 secs with the endpoint scheme (single core implementation on a 2.5 Ghz
Xeon). It is important to note that the mean numbers presented (correlation
coefficient, AE and Δx) were only from the forward runs since the errors were
similar with the backward runs.
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Fig. 3. Mean AE as a function of number of composition. 0.1 is 10% atrophy error

5 Discussion and Conclusions

In this article, we proposed a stepwise inverse consistent Euler’s scheme for
diffeomorphic image registration that enforces inverse consistency on the first
composition of the transformation as opposed to enforcing it on the endpoint
of the full composition, hereby reducing computational complexity. In addition,
we presented an implementation of SVF based image registration parametrized
by B-splines and in conjunction with the Euler’s scheme. The proposed regular-
ization is at a discretization level and can enable symmetric realization of large
deformations.

We performed a pairwise comparisons of the stepwise and the endpoint inverse
consistency scheme. For comparison we report the registration error (intensity
correlation coefficient), displacement offset and bidirectional atrophy difference.
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The stepwise scheme reduces computational cost while maintaining registration
and inverse consistency precision when compared to the endpoint scheme.

This method can be utilized in realizing symmetric large deformations par-
simoniously since it parametrizes SVF with the computationally efficient B-
splines. In the future, we would like to investigate the impact of this registration
scheme in separating diagnostic groups (Alzheimer’s disease and normal con-
trols) based on atrophy in both the whole brain and in subcortical structures.
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Abstract. Biomedical image registration faces challenging problems
induced by the image acquisition process of the involved modality. A
common problem is the omnipresence of noise perturbations. A low
signal-to-noise ratio – like in modern dynamic imaging with short
acquisition times – may lead to failure or artifacts in standard image
registration techniques. A common approach to deal with noise in regis-
tration is image presmoothing, which may however result in bias or loss
of information. A more reasonable alternative is to directly incorporate
statistical noise models into image registration. In this work we present
a general framework for registration of noise perturbed images based on
maximum a-posteriori estimation. This leads to variational registration
inference problems with data fidelities adapted to the noise character-
istics, and yields a significant improvement in robustness under noise
impact and parameter choices. Using synthetic data and a popular soft-
ware phantom we compare the proposed model to conventional methods
recently used in biomedical imaging and discuss its potential advantages.

1 Introduction

Motion estimation using variational methods, e.g., via optical flow [5] or regis-
tration [2,11,13], has become a powerful tool in many areas of imaging in the
last years. While these methods have originally been designed to be applied on
conventional images of relatively high quality, several biomedical imaging devices
like ultrasound, PET, SPECT, or low intensity fluorescence imaging have a low
signal-to-noise ratio (SNR) and rather lead to significant problems in presence
of strong degradations. A common way to suppress noise in biomedical image
registration is presmoothing of the given data by image filters. However, filtering
can lead to bias and loss of information, in particular small details are canceled
out in this process, e.g., in plaque imaging [3]. An appropriate incorporation of
statistical noise models into variational methods has gained a lot of interest in
several image processing tasks, such as denoising [4] or deconvolution [9].
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Until today there are only few approaches that explicitly consider noise in im-
age registration, e.g., in [1] the authors propose a coherent statistical framework
for dense deformable templates explicitly assuming an additive Gaussian noise
model. In [17] the authors propose a method to adapt an elastic regularization en-
ergy for non-rigid image registration to the given data via a hierarchical Bayesian
model. Directly incorporating noise information into similarity measures for reg-
istration has been investigated by [14]. Without prior information on the motion
field the latter authors propose an expectation maximization (EM) framework.
In this context for specific classes of transformations (like affine transformations
in [16]) several registration criteria have been developed. As these works are de-
signed for a specific transformation or noise model, the aim of this paper is to
give a general unified registration framework for dealing with noise for a large
set of admissible transformations. Using Bayesian methods we derive a maxi-
mum a-posteriori (MAP) estimation in Section 2.1, which allows to incorporate
statistical information into the process of image registration. To illustrate the
flexibility of this approach we discuss two common noise models for biomed-
ical imaging exemplarily in Section 2.2. We compare the proposed approach
to conventional registration methods recently used for biomedical imaging on
perturbed synthetic data in Section 3.1 and demonstrate its robustness under
image noise and parameter choice. Furthermore, we apply the proposed method
on a realistic software phantom for PET imaging in Section 3.2 to investigate its
potential in a first experiment. We conclude by a short discussion in Section 4.

2 Methods

In the following we introduce a general unified framework to incorporate statis-
tical noise models in biomedical image registration. For the sake of simplicity we
restrict our attention on two consecutive (noisy) images f0, f1 : Ω → R for which
Ω ⊂ RN denotes the image domain; typically one has N ∈ {2, 3} in biomedical
imaging. We interpret the images f0 and f1 as stochastic samples of an unper-
turbed image u in motion. A key observation is that in many imaging devices
the noise is generated independently for f0 and f1, hence a direct matching of
these two would be severely corrupted. Thus, we are interested in estimating the
ground truth image u without assuming any additional prior knowledge about
its actual form. Using maximum a-posteriori probability (MAP) estimation si-
multaneously for the unperturbed image u and for the velocity v : Ω → RN with
appropriate priors, we are able to deduce a relatively general motion estimation
formulation for arbitrary noise models in biomedical imaging.

2.1 MAP Estimation for Image Registration

In order to derive a statistical model for motion estimation we use formal com-
putations with probability densities, implicitly assuming all variables to be finite
dimensional as in [14]. An expansion from a derived MAP model to the contin-
uous function space setting can be performed in a straight-forward way.
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Given two images f0, f1 ∈ U , we want to estimate an underlying image u ∈ U
and a motion variable v ∈ V . Here, U denotes an appropriate image space and
V the set of admissable transformations. We model the motion of the noise-free
image u under v in a general way via a continuous linear operator T (v) : U → U .
For simplicity we restrict the discussion to forward motion, i.e., f0 is a noisy
version of u and f1 a noisy version of T (v)u. Note that other transformations
can also be considered in this setting, e.g., for small motion asymptotics the
operators Ti are given by Ti(v) = I + τS(v) for a small parameter τ > 0.

The images f0 and f1 can be interpreted as independent realizations under
a stochastic noise model with probability density p0(f0|u) and p1(f1|T (v)u),
respectively. Hence, one is interested in the posterior distribution of the unper-
turbed image u and in particular the unknown motion v, given the observation
of f0 and f1, i.e., by using Bayes’ theorem,

p(u, v | f0, f1) =
p(f0, f1 |u, v) p(u, v)

p(f0, f1)
. (1)

Using the assumption that the noise is context-free analogously to [14], the
likelihood for the data can further be written as

p(f0, f1 |u, v) = p0(f0 |u) p1(f1 |T (v)u) .
Assuming no prior knowledge on the image u, we can set p(u, v) = p(v).

In order to compute the MAP estimate we maximize the posterior density,
respectively minimize its negative logarithm. Ignoring terms independent of u
and v and denoting with R(v) = − log p(v) a regularization of the motion field
and with Di(u, fi) = − log pi(fi|u) the data fidelities, we deduce:

Find a minimizer (u, v) ∈ (U ,V) for the energy

F (u, v) = D0(u, f0) + D1(T (v)u, f1) + R(v) .
(2)

This formulation allows to incorporate statistical noise models for biomedical
image registration as well as appropriate regularization functionals to enforce
reasonable solutions. Instead of using an alternating minimization scheme to
solve (2) as in the EM setting in [12], we choose a different way: assuming the
fidelities Di to be differentiable in the first variable, the first-order optimality
condition for a minimizer u ∈ U for fixed variables v, f0, and f1 yields

∂uD0(u, f0) + T ∗(v) ∂uD1(T (v)u, f1) = 0 , (3)

where U is an appropriate Lebesgue space for images with its respective standard
dot product and T ∗ is the adjoint operator of T . This equation can be solved
uniquely for u if the data fidelity terms Di are strictly convex. Consequently, we
are able to define a map

U : V × U2 → U , (v; f0, f1) �→ u ,

for which u solves (3). Inserting this map into the original functional F in (2),
we obtain an effective functional J to be minimized only with respect to the
unknown motion v,

J(v) = F (U(v), v) = D0(U(v; f0, f1), f0)+D1(T (v)U(v; f0, f1), f1)+R(v) . (4)
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2.2 Physical Noise Modeling

In order to give a better understanding of the general framework given in Section
2.1, we discuss specific noise models which are common in biomedical imaging
applications, i.e., additive Gaussian noise and multiplicative photon counting
noise (Poisson distributed). For the sake of brevity we restrict ourselves to the
case D0 = D1 = D and omit the dependence of the operator T on the motion
v, i.e., T := T (v). However, it is possible to combine different statistical noise
models, which is interesting in multi-modal registration settings [14,16].

Additive Gaussian Noise. The most commonly assumed noise model in the
literature is additive Gaussian noise since it affects a majority of imaging modal-
ities [1,14]. The image degradation process is given by

f = u + η , η ∼ N (0, σ2I) ,

for which η is Gaussian random variable with variance σ2 > 0. In this case the
resulting data fidelity is the popular L2 fidelity,

D(u, f) =
1

2σ2
‖u − f‖2L2(Ω) , and thus ∂uD(u, f) =

u − f

σ2
.

Inserting the derivative into (3) we compute the map U :

U(v; f0, f1) = (I + T ∗T )−1
(f0 + T ∗f1) .

The map U is potentially nonlinear in v due the dependence of T on v and the
inversion to be carried out but the dependence on f0 and f1 remains linear. After
some elementary computations we arrive at:

J(v) = 〈Tf0 − f1, (I + TT ∗)−1(Tf0 − f1)〉 + R(v) , (5)

which is a generalized form of the registration criterion in [16]. Thus, we effec-
tively match f1 and the transformed image T (v)f0 as in standard models based
on an intensity constancy constraint with a norm depending on v.

We can state these relations more precisely for two standard transformation
models: the intensity constancy Tic and the mass-preserving transformation Tmp,

Tic(v)u = u ◦ v , Tmp(v)u = u ◦ v det(∇v) . (6)

The respective adjoint operators can be formally computed via the transforma-
tion theorem for integrals (cf. [6]) and w ∈ U∗ (for the case of U = Lp one has
U∗ = Lq with 1

p + 1
q = 1) as,

Tic(v)
∗w = w ◦ v−1 det(∇v−1) , Tmp(v)

∗w = w ◦ v−1 . (7)

Hence, in both cases (I+TT ∗)−1 reduces to the multiplication of the image with
a factor depending on det(∇v), which leads to the following functionals,

Jic(v) =
1

2σ2

∫
Ω

(f0 ◦ v − f1)
2

1 + det(∇v)
det(∇v) dx + R(v) , (8)

Jmp(v) =

∫
Ω

(f0(v) det(∇v) − f1)
2

1 + det(∇v)
dx + R(v) . (9)
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Poisson noise Another important noise model for biomedical image registra-
tion is the Poisson noise model, also known as ’photon counting noise’, as used,
e.g., in fluorescence microscopy and positron emission tomography [18]. As one
counts natural numbers k ∈ N of occurring random events, the signal f(x) in
each point is modeled as a Poisson random variable with mean u(x). The result-
ing data fidelity term is given (ignoring terms independent of u and v) by

D(u, f) =

∫
Ω

u − f log(u) dx , and thus ∂uD(u, f) = 1 − f

u
.

Inserting the derivative into (3) leads to the optimality condition(
1 − f0

u

)
+ T ∗

(
1 − f1

Tu

)
= 0 . (10)

Due to the nonlinearity in u we cannot give a solution of (10) for general T . How-
ever, it can be computed for Tic and Tmp as in the case of additive Gaussian noise
above. In the intensity-constancy case we thus have for f(v) = f0(v) det(∇v)+f1

Jic(v) =

∫
Ω

f(v) − f(v) log

(
f(v)

1 + det(∇v)

)
dx + R(v) , (11)

while in the case of mass-preservation we find

Jmp(v) =

∫
Ω

f(v) − f(v) log

(
f(v)

2

)
dx + R(v) . (12)

2.3 Hyperelastic Regularization

The MAP estimation in (2) allows to incorporate a-priori knowledge about the
expected motion field via a regularization energy. A way to introduce penalizing
functionals into the setting above is to use Gibbs probability densities [8] by

p(v) ∝ e−R(v) and hence R(v) = − log p(v) ,

where usually R : V → R is a non-negative, convex regularization functional.
Since the presented functionals depend on the Jacobian determinant of the trans-
formation we choose hyperelastic regularization for det(∇v) as proposed in [2]:

Rhyper(v) =

∫
Ω

α1 len(∇v) + α2 surf(cof(∇v)) + α3 vol(det(∇v)) dx , (13)

with αi ≥ 0,
∑

αi > 0 for i = 1, 2, 3 and the penalty functions

len(s) = ‖s− I‖2Fro , surf(s) =
(
‖s‖2Fro − 3

)2
, vol(s) =

(s− 1)4

s2
.

The hyperelastic regularization is a good choice in presence of highly non-rigid
motion and simultaneously yields regular (weak) local diffeomorphic deforma-
tions, which is a desirable feature in biomedical imaging applications [2].
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3 Experimental Results

In the following we demonstrate the validity of the proposed registration frame-
work in Section 2 qualitatively and quantitatively and perform preliminary eval-
uation experiments on synthetic data. In particular, we compare the MAP esti-
mation approach with hyperelastic SSD registration as realized in the popular
FAIR toolbox [2,11] on noisy images as well as presmoothed versions of the latter
ones.

For assessing the quality of an estimated transformation between two noisy
images we compute the phantom matching error (PME) from [10],

PME(v;u1, u2) =

∫
Ω

(T (v)u1 − u2)
2 dx . (14)

Additionally, we evaluate the regularity of the estimated transformation by com-
puting the energy functional value of the regularization from Section 2.3 and
validate these observations by visual inspection of the displacement and the
associated Jacobian determinants. We choose the regularization parameters as
α1 = α3 = α > 0 and α2 = 0, i.e., the overall impact of the regularization
energy in the used multi-level framework is controlled by an adaptive parameter
α, which is roughly linked to the noise variance on each level similar to [17].

3.1 Synthetic Noisy Images

We present preliminary experiments on two synthetic images which represent a
rather challenging target for image registration. The goal is to estimate the mo-
tion of a ring shaped object in a template image (cf. Figure 1b), which contracts
towards the image center and thus gets more dense, leading to an increase of
signal intensities in the reference image (cf. Figure 1a). However, the integral
of the image intensities is constant, thus the mass-preserving model is appro-
priate in this setting. We added synthetic noise of different levels according to
the noise models in Section 2.2, e.g., additive Gaussian noise with σ = 125 as
shown in Figure 1c and 1d, and Poisson noise with a scaling factor of s = 60
as shown in Figure 1e and 1f. Note that due to the signal-dependent nature of
Poisson noise, the noise characteristics change significantly between the latter
two images, hence making physical noise modeling even more important.

First, we quantitatively assess the performance and registration accuracy of
the three tested methods by computing the PME in (14) for different noise levels
and regularization parameters. Figure 2 plots the results of this test and clearly
shows the potential of the proposed general framework for biomedical image
registration. In presence of a significant amount of noise the MAP estimation
yields the best registration performance with respect to the PME as can be seen
in Figure 2a-2b. The standard methods achieve similar results only for a very
low regularization parameter α. However, these results can be neglected as the
respective regularization energy is larger by magnitudes indicating unreasonable
transformations as visualized in Figure 2c-2d. Furthermore, the occurrence of



Registration of Noisy Images via Maximum A-Posteriori Estimation 237

(a) Reference
(ground-truth)

(b) Template
(ground-truth)

(c) Reference
(Gaussian noise)

(d) Template
(Gaussian noise)

(e) Reference
(Poisson noise)

(f) Template
(Poisson noise)

Fig. 1. Ground truth data and noisy images for mass preserving registration: intensity
distributed over a wide area (template) and the same amount concentrated in a small
circle (reference). Respective image pairs are identically scaled and illustrated in color
for better visual comparability.

intersections and overlaps in the computed motion field can be expected for
these cases. Additionally, one can observe the high robustness of the proposed
registration formulation with respect to the choice of parameters in comparison
to the problems of conventional registration methods. A cross validation with a
different data fidelity term inserted into the registration formulation shows that
choosing the right noise model is crucial for accurate image registration.

Finally, we visualize the magnitude of the Jacobian determinant and trans-
formed ground truth image with respect to the estimated transformations in Fig-
ure 3 for the case of additive Gaussian noise. The Jacobian determinants det(∇v)
resulting from the proposed method are significantly smoother compared to the
FAIR registration result and its presmoothed version (Figure 3a-3c), thus indi-
cating a higher robustness in presence of noise perturbations. This can also be
observed for the transformed images T (v)u when applying the estimated motion
field in Figure 3d-3f. As can be seen the impact of noise is much lower for the
proposed registration formulation.

3.2 XCAT Phantom Data for PET Imaging

In the following we aim to give a proof-of-concept by applying the proposed
method on the well-known XCAT software phantom [15]. We use the latter to
generate noise corrupted positron emission tomography (PET) images simulat-
ing measurements of a human body during a radioactive FDG metabolism study
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(a) Phantom matching error
Add. Gaussian noise (σ = 125)

(b) Phantom matching error
Poisson noise (s = 60)

(c) Regularization energy
Add. Gaussian noise (σ = 125)

(d) Regularization energy
Poisson noise (s = 60)

Fig. 2. Plot of the PME in Eq. (14) and the values of the hyperelastic regularization
energy for different noise levels and regularization parameters α

in data of size 175×175×47 voxel. The target of interest in this data is the human
heart in different phases of the myocardial cycle and we use the end-diastolic
phase (reference) and the end-systolic phase (template) in Figure 4a and 4b,
respectively. As one can see in Figure 4d for a representative 2D slice, the es-
timated transformation warps the template image reasonably to the reference
image, without matching the noise inherent in the data set. Additionally, one
can interpret from the deformation grid in Figure 4c, that the estimated trans-
formation is very smooth and convolution-free. Due to missing ground truth
information a evaluation on real biomedical images turns out to be difficult and
thus remains an open question for future investigations.

4 Discussion and Outlook

In this paper we proposed a general unified framework for biomedical image
registration on noise perturbed images. By incorporating statistical a-priori
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(a) Jacobian
determinant
(FAIR)

(b) Jacobian
determinant

(presmoothed FAIR)

(c) Jacobian
determinant

(proposed method)

(d) Transformed image
(FAIR)

(e) Transformed image
(presmoothed FAIR)

(f) Transformed image
(proposed method)

Fig. 3. Visualization of the Jacobian determinants det(∇v) and the transformed
ground truth images T (v)u for the investigated methods in case of additive Gaussian
noise as illustrated in Figure 1c and 1d

(a) Reference (b) Template (c) Deformation grid (d) Warped image

Fig. 4. Registration results for simulated noisy PET images (XCAT phantom)

knowledge into the registration process, we increased both accuracy as well as
robustness of image registration. Using a maximum a-posteriori estimation ap-
proach we are able to control the regularity of the transformations and thus to
enforce reasonable motion fields for biomedical applications. Preliminary exper-
iments on synthetic data showed promising results but a thorough evaluation on
real biomedical data and detailed analysis of the proposed model still have to be
investigated in the future. Furthermore, the extension of this approach to other
noise models, such as speckle noise, will be object of future research as well.
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