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Preface

Either through a deliberate desire for surveillance or an accidental consequence
of design, there are a growing number of systems and applications that record
and process sensitive information. As a result, the role of privacy-enhancing
technologies becomes increasingly crucial, whether adopted by individuals to
avoid intrusion in their private life, or by system designers to offer protection to
their users.

The 14th Privacy Enhancing Technologies Symposium (PETS 2014) ad-
dressed the need for better privacy by bringing together experts in privacy and
systems research, cryptography, censorship resistance, and data protection, fa-
cilitating the collaboration needed to tackle the challenges faced in designing
and deploying privacy technologies.

There were 86 papers submitted to PETS 2014, which were all assigned to
be reviewed by at least four members of the Program Committee (PC). Follow-
ing intensive discussion among the reviewers, other PC members, and external
experts, 16 papers were accepted for presentation, one of which was the result of
two merged submissions. Topics addressed by the papers published in these pro-
ceedings include study of privacy erosion, designs of privacy-preserving systems,
censorship resistance, social networks, and location privacy. PETS continues to
widen its scope by appointing PC members with more diverse areas of exper-
tise and encouraging the submission of high-quality papers outside of the topics
traditionally forming the PETS program.

We also continue to host the one-day Workshop on Hot Topics on Privacy En-
hancing Technologies (HotPETs), now in its seventh year. This venue encourages
the lively discussion of exciting but possibly preliminary ideas. The HotPETS
keynote was given by William Binney, a prominent whistleblower and advocate
for privacy, previously employed by the US National Security Agency. As with
previous years there are no published proceedings for HotPETs, allowing authors
to refine their work based on feedback received and subsequently publish it at a
future PETS or elsewhere.

PETS also included a keynote by Martin Ortlieb (a social anthropologist and
senior user experience researcher at Google), a panel discussing surveillance, and
a rump session with brief presentations on a variety of topics. This year, PETS
was co-located with the First Workshop on Genome Privacy, which set out to
explore the privacy challenges faced by advances in genomics.

We would like to thank all the PETS and HotPETs authors, especially those
who presented their work that was selected for the program, as well as the rump
session presenters, keynote speakers, and panelists. We are very grateful to the
PC members and additional reviewers, who contributed to editorial decisions
with thorough reviews and actively participated in the PC discussions, ensuring
a high quality of all accepted papers. We owe special thanks to the following
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PC members and reviewers who volunteered to shepherd some of the accepted
papers: Kelly Caine, Claude Castelluccia, Roberto Di Pietro, Claudia Diaz, Paolo
Gasti, Amir Houmansadr, Rob Jansen, Negar Kiyavash, Micah Sherr, and Reza
Shokri.

We gratefully acknowledge the outstanding contributions of the PETS 2014
general chair, Hinde ten Berge, and publicity chair, Carmela Troncoso, as well as
the PETS webmaster of eight years, Jeremy Clark. Moreover, our gratitude goes
to the HotPETs 2014 chairs, Kelly Caine, Prateek Mittal, and Reza Shokri who
put together an excellent program. Last but not least, we would like to thank
our sponsors, Google, Silent Circle, and the Privacy & Identity Lab, for their
generous support, as well as Microsoft for its continued sponsorship of the PET
award and travel stipends.

May 2014 Emiliano De Cristofaro
Steven J. Murdoch
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CloudTransport:

Using Cloud Storage
for Censorship-Resistant Networking

Chad Brubaker1,2, Amir Houmansadr2, and Vitaly Shmatikov2

1 Google, USA
2 The University of Texas at Austin, USA

Abstract. Censorship circumvention systems such as Tor are highly
vulnerable to network-level filtering. Because the traffic generated by
these systems is disjoint from normal network traffic, it is easy to recog-
nize and block, and once the censors identify network servers (e.g., Tor
bridges) assisting in circumvention, they can locate all of their users.

CloudTransport is a new censorship-resistant communication system
that hides users’ network traffic by tunneling it through a cloud storage
service such as Amazon S3. The goal of CloudTransport is to increase the
censors’ economic and social costs by forcing them to use more expen-
sive forms of network filtering, such as large-scale traffic analysis, or else
risk disrupting normal cloud-based services and thus causing collateral
damage even to the users who are not engaging in circumvention. Cloud-
Transport’s novel passive-rendezvous protocol ensures that there are no
direct connections between a CloudTransport client and a CloudTrans-
port bridge. Therefore, even if the censors identify a CloudTransport
connection or the IP address of a CloudTransport bridge, this does not
help them block the bridge or identify other connections.

CloudTransport can be used as a standalone service, a gateway to
an anonymity network like Tor, or a pluggable transport for Tor. It does
not require any modifications to the existing cloud storage, is compatible
with multiple cloud providers, and hides the user’s Internet destinations
even if the provider is compromised.

1 Introduction

Internet censorship is typically practiced by governments [3,45,53] to, first, block
citizens’ access to certain Internet destinations and services; second, to disrupt
tools such as Tor that help users circumvent censorship; and, third, to identify
users engaging in circumvention. There is a wide variety of censorship technolo-
gies [30]. Most of them exploit the fact that circumvention traffic is easy to
recognize and block at the network level. Traffic filtering is cheap, effective, and
has little impact on other network services and thus on the vast majority of
users in the censorship region who are not engaging in circumvention. Another
problem with the existing censorship circumvention systems is that they cannot
survive partial compromise. For example, a censor who learns the location of

E. De Cristofaro and S.J. Murdoch (Eds.): PETS 2014, LNCS 8555, pp. 1–20, 2014.



2 C. Brubaker, A. Houmansadr, and V. Shmatikov

a Tor bridge [6] can easily discover the locations of all of its users simply by
enumerating the IP addresses that connect to the bridge.

While there is no comprehensive, accurate data on the technical capabilities
of real-world censors, empirical evidence suggests that they typically perform
only line-speed or close-to-line-speed analysis of Internet traffic. In particular,
they neither store huge Internet traces for a long time, nor carry out resource-
intensive statistical analysis of all observed flows. Furthermore, many state-level
censors appear unwilling to annoy regular users, who are not engaged in circum-
vention, by significantly disrupting popular services—even if the latter employ
encrypted communications. This is especially true of services used by businesses.
For example, Chinese censors are not blocking GitHub because of its popularity
among Chinese users and the gigantic volume of traffic they generate [17], nor
are they blocking some of Google’s encrypted services [19].

Some censors are willing to risk popular discontent by taking more dras-
tic measures. Ethiopia has been reported to block Skype [13] (denied by the
Ethiopian government [14]), Iran occasionally blocks SSL [26], and the Egyptian
government cut the country off the Internet entirely during an uprising [12]. We
focus on the more common scenario where, instead of blocking all encrypted
communications, the censors aim to distinguish censorship circumvention traffic
from “benign” encrypted traffic and block only the former.

Our contributions. We design, implement, and evaluate CloudTransport, a
new system for censorship-resistant communications. CloudTransport is based
on the observation that public cloud storage systems such as Amazon S3 provide
a very popular encrypted medium accessible from both inside and outside the
censor-controlled networks. For example, Amazon’s cloud services are already
used to host mirrors of websites that are censored in China, yet Chinese censors
are not blocking Amazon because doing so would disrupt “thousands of services
in China” with significant economic consequences [20].

CloudTransport is a general-purpose networking system that uses cloud stor-
age accounts as passive rendezvous points in order to hide network traffic from
censors. Since censors in economically developed countries like China are not
willing to impose blanket bans on encrypted cloud services—even if these ser-
vices are known to be used for censorship circumvention [20]—they must rely on
network filters to recognize and selectively block circumvention traffic. Cloud-
Transport uses exactly the same cloud-client libraries, protocols, and network
servers as any other application based on a given cloud storage (we refer to this
property as entanglement). Consequently, simple line-speed tests that recognize
non-standard network protocols are not effective against CloudTransport.

CloudTransport’s passive-rendezvous protocol helps survive partial compro-
mise. Because CloudTransport clients never connect to a CloudTransport bridge
directly, a censor who discovers a CloudTransport connection or learns the IP
address of a bridge can neither block this bridge, nor identify its other users.
The bridge can also transparently move to a different IP address without any
disruption to its clients (e.g., if it experiences a denial of service attack). Our
rendezvous protocol may be useful to other censorship resistance systems, too.
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CloudTransport 
Client

Censorship Region

Uncensored 
Internet

Encrypted
Traffic

CloudTransport 
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Oblivious Cloud System
(e.g., Amazon S3)

Internet 
Traffic

Encrypted
Traffic

…..

Cloud File Backups

Games with Cloud-hosted Assets

Cloud-hosted Websites

Fig. 1. High-level architecture of CloudTransport

CloudTransport is versatile and lets the user select a trusted cloud storage
provider in a jurisdiction of the user’s choice. On the user’s machine, it presents
a universal socket abstraction that can be used as a standalone communication
system, a gateway for accessing proxies or Tor, or a pluggable transport for Tor.

The goal of CloudTransport is to raise the economic and social costs of cen-
sorship by forcing the censors to use statistical traffic analysis and other compu-
tationally intensive techniques. False positives of statistical traffic classification
may cause the censors to disrupt other cloud-backed services such as enter-
prise applications, games, file backups, document sharing, etc. This will result
in collateral damage, make censorship tangible to users who are not engaging in
circumvention, and increase their discontent.

We analyze the properties provided by CloudTransport against ISP-level cen-
sors, cloud providers, and compromised bridges. We also show that its perfor-
mance is close to Tor pluggable transports on tasks such as Web browsing,
watching videos, and uploading content.

2 Protocol Design

The overall architecture of CloudTransport is shown in Fig. 1. The user installs
CloudTransport client software on her machine and creates a rendezvous ac-
count with a cloud storage provider such as Amazon S3 in a jurisdiction of her
choice outside the censor’s control. The user must also choose a CloudTransport
bridge and send the rendezvous account’s access credentials to the bridge via
the bootstrapping protocol described in Section 3. We envision CloudTransport
bridges being run by volunteers in uncensored ISPs. A natural place to install
CloudTransport bridges is on the existing Tor bridges [6], so that CloudTrans-
port users benefit from Tor’s anonymity properties in addition to the censorship
circumvention properties provided by CloudTransport.

On the user’s machine, the CloudTransport client presents a socket that can
be used by any application for censorship-resistant networking. For example,
the user may run a Web browser or a conventional Tor client over CloudTrans-
port. The CloudTransport client uses the cloud storage provider’s standard client
library to upload application-generated network packets to the rendezvous ac-
count; the bridge collects and delivers them to and from their destinations.
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Application Client 

SOCKS5 connect

SOCKS5 response

Rendezvous account Bridge Destination 
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WriteFile('init',request)
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FetchAndDelete('init')

WriteFile('resp',responses)
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connections

Client chooses a random UUID
Enqueue initialization 

request

Fig. 2. Cirriform: connection initialization

CloudTransport uses existing cloud storage services “as is,” without any mod-
ifications. This is a challenge because cloud-storage APIs are designed for occa-
sional file uploads with many downloads, not for fast sharing of data between
two parties. They do not typically support file locking or quick notification of
file changes. CloudTransport clients and bridges, on the other hand, write to
cloud storage often and must learn as quickly as possible when the other party
has uploaded data to the shared account. To solve this challenge, each file used
by CloudTransport is written by only one connection and read by only one con-
nection. Writes happen only if the file does not already exist and all reads delete
the file, to signal that it is safe to create the file anew and write into it.

We designed and implemented two variants of CloudTransport, Cirriform and
Cumuliform. The protocol flow is the same, the only difference is how often they
write into the cloud-based rendezvous account and poll for updates.

Cirriform. Cirriform uses one file in the rendezvous account per connection
per direction, plus one file per direction for connection setup.

Figure 2 shows the protocol for setting up a new Cirriform connection. Con-
nection requests and responses are queued and uploaded in batches. The client
and the bridge periodically check the rendezvous account for pending messages.
Once the connection is established, Figures 3 and 4 show how data is transferred
from the application and the destination, respectively.

Typical cloud-storage API does not support pushing storage updates to cus-
tomers, thus the client and the bridge must poll the rendezvous account. In our
prototype, the polling rate for initialization requests and responses is set ran-
domly and independently by each client, with the expected value of once per
0.5 seconds. For maximum performance, polling for data connections starts at
once per 0.1 seconds, halves after every 20 failed checks, and resets to once per
0.1 seconds after every successful check. To avoid generating a regular signal,
random jitter is added or subtracted to the interval after each poll.

Cumuliform. Applications such as Web browsing create many parallel con-
nections, and polling cloud storage on all of them can incur a non-trivial cost
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FileExists('bridge-uuid')
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NOT FileExists('bridge-uuid')

FetchAndDelete('bridge-uuid')

Data

Application 

Fig. 4. Cirriform: destination sending data

Table 1. Prices charged by cloud storage providers (2013)

Provider Bandwidth cost Storage cost Operation cost

Amazon S3
$0.12/GB $0.0950/GB

$0.004/10000 GET
after first GB $0.005/1000 PUT

Rackspace $0.12/GB $0.1000/GB None
CloudFiles after first GB
Google $0.12/GB

$0.0865/GB

$0.01/10000 GET
Cloud (USA/Europe) $0.01/1000 PUT
Storage $0.21/GB

(Asia/Pacific)

if the provider charges per operation (see Table 1). To reduce the polling cost,
Cumuliform uses one file per direction rather than per connection. All requests
are enqueued; the client and the bridge check 5 times a second for pending re-
quests. Unlike Cirriform, which uploads data as soon as it is ready, Cumuliform
uploads in batches, which can add extra delays.

Usage modes. CloudTransport can be used directly to send and receive net-
work packets. We refer to this as the transport mode. The transport mode does
not provide any privacy against the cloud storage provider since the provider can
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Fig. 5. Usage modes of CloudTransport

observe all of the user’s packets in plaintext. To provide some protection against
malicious or curious cloud providers and CloudTransport bridges, we developed
three usage modes illustrated in Figure 5. These modes represent different points
in the tradeoff space between performance and censorship resistance.

The tunnel mode of CloudTransport hides the user’s Internet destinations—but
not the fact that she is using CloudTransport —from the cloud provider. In this
mode, the user uses a CloudTransport bridge as a gateway to censored desti-
nations. The traffic between the user’s CloudTransport client and the bridge is
encrypted, preventing the cloud provider from observing traffic contents. The
bridge runs an OpenSSH server and authenticates the client using the tempo-
rary public key from the client’s bootstrapping ticket (see Section 3.2). The client
connects to this server via the rendezvous account, as described in Section 2, and
tunnels all of its traffic over SSH.

In the proxified-light mode, the client uses CloudTransport to access a one-
step proxy, e.g., Anonymizer [2]. The user’s activities are thus hidden from the
bridge if the traffic between the client and the proxy is encrypted end-to-end.

For strongest privacy, the client can use a system that aims to provide protec-
tion against itself, e.g., the Tor anonymity network in conjunction with Cloud-
Transport. In the proxified-Tor mode, the client either runs a conventional Tor
client and forwards Tor traffic over CloudTransport, or else uses CloudTransport
as a pluggable transport [39] for Tor.

3 Bootstrapping

Bootstrapping is a critical part of any circumvention system. Many systems [4,7,
25,35,37,39,51] must send their clients some secret information—for example, IP
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addresses of circumvention servers or bridges, URLs of websites covertly serving
censored content, etc.—and hope that this information does not fall into the
censors’ hands. As shown in [33, 34], censors can easily obtain these secrets by
pretending to be genuine users and then block the system. Existing, trusted
clients can help bootstrap new clients [49, 50], but this limits the growth of the
system, especially in the early stages. Another way for the clients to discover
circumvention servers is by probing the Internet [23, 54].

By contrast, bootstrapping in CloudTransport is initiated by users and per-
formed “upstream”: clients send information to the bridges without needing
to obtain any secrets first. Therefore, insider attacks cannot be used to block
CloudTransport bridges or discover other users.

3.1 Selecting a Cloud Provider and a Bridge

To start using CloudTransport, the user must set up a rendezvous account with
a cloud storage provider. The user should select a cloud storage provider which
is (1) outside the censor’s jurisdiction, (2) already used by many diverse applica-
tions unrelated to censorship circumvention, and (3) unlikely to cooperate with
the censor. We believe that using a cloud storage account for CloudTransport
does not violate the typical terms of service, e.g., Amazon S3’s “Conditions of
Use” [1] or Dropbox’s “Acceptable Use Policy” [9], since CloudTransport does
not cause harm to other users or the provider itself.

Global providers such as Amazon S3 let customers specify a region for their
data, e.g., “US West (Oregon)”, “Asia Pacific (Tokyo)”, etc. To evade flow corre-
lation attacks discussed in Section 4.4, a CloudTransport bridge should access its
clients’ rendezvous accounts through the cloud provider’s servers located outside
the censorship region.

Due to the distributed nature of cloud storage, there is a delay between upload-
ing a file and this file becoming visible for download, as well as other temporary
inconsistencies between customers’ views of the same account. This is typically
a non-issue for conventional uses of cloud storage, but the primary source of
delays for CloudTransport. Delays are much smaller and consistency achieved
much faster by services such as Amazon S3 that charge per storage operation,
as opposed to services such as Google Drive that simply charge per amount of
storage regardless of how frequently this storage is accessed.

The monetary costs of using cloud storage is another consideration (see Ta-
ble 1). We hope that some providers would be willing to donate their storage
services (e.g., in the form of free accounts) to support censorship resistance.

The user must also select a CloudTransport bridge. Unlike Tor bridges [6],
which must remain hidden from the censors, the list of CloudTransport bridges,
along with other information needed for their usage, can be publicly advertised.
It can be hosted on a directory server similar to the directory server of Tor
relays [48]. For each CloudTransport bridge, this public directory should contain
(1) a certificate with the bridge’s public key, and (2) the URL of the bridge’s
dead drop, whose purpose is explained in Section 3.3.
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We distinguish between the login credentials (e.g., username and password)
and access credentials (e.g., API Key and Access Key in Amazon S3) for the
rendezvous account. Access credentials allow reading and writing files, but do
not give access to management data such as the billing information, IP addresses
from which the account was accessed, etc. Only the access credentials for the
rendezvous account should be sent to the bridge. The user can do this via one
of the methods described in Section 3.3.

3.2 Creating a Bootstrapping Ticket

To use a bridge, a CloudTransport client first obtains the bridge’s public key KB

from CloudTransport’s directory server. The client then creates a bootstrapping
ticket with (1) the name of the cloud provider chosen by the user, (2) the access
credentials for the rendezvous account (API Key and Access Key in the case of
Amazon S3), and (3) optionally, the client’s temporary public key, which is used
in the tunnel mode (Section 2) to authenticate the client. The ticket is encrypted
using KB as an S/MIME [42] message in the EnvelopedData format.

3.3 Delivering the Ticket to the Bridge

Dead drop. A bridge can set up its own cloud storage account, create a “dead
drop” in it as a world-readable and -writable file directory, and advertise its URL
in the bridge directory. Clients will write their tickets into the dead drop as files
with arbitrary names and the bridge will periodically collect them.

To protect tickets in network transit from tampering, the dead drop should be
accessible via HTTPS only (most cloud storage services use HTTPS by default).
Unlike rendezvous accounts used for actual networking, bootstrapping is not
latency-sensitive, thus free services like Dropbox, SkypeDrive, or Google Drive
can be used to set up the dead drop.

Out-of-band channels. Since latency is not critical for bootstrapping, a user
can deliver her bootstrapping ticket to the bridge by asking a trusted friend who
is already using CloudTransport, or by posting the ticket to an anonymous chat
room, social network, or public forum.

4 Analysis

Table 2 shows what information CloudTransport aims to hide from, respectively,
the censoring ISP, cloud storage provider, and CloudTransport bridges. The
cloud storage provider is trusted not to reveal to the censors the identities and
network locations of its customers who are using CloudTransport. The bridges
are trusted not to perform flow correlation (see Section 4.4). In the tunnel mode,
the bridges must also be trusted not to reveal the contents and destinations of
CloudTransport traffic; this assumption is not required in the proxified modes.

In the rest of this section, we discuss how CloudTransport resists different
types of attacks that may violate these properties.



CloudTransport: Using Cloud Storage for Censorship-Resistant Networking 9

Table 2. Intended properties of CloudTransport

Users’ ISP
Cloud storage
provider

CloudTransport bridge

Network locations of
CloudTransport users

Hidden Known Hidden

Destinations of Cloud-
Transport traffic

Hidden Hidden Known (tunnel mode)

Hidden (proxified modes)

Content of Cloud-
Transport traffic

Hidden Hidden Known (tunnel mode)

Hidden (proxified modes)

4.1 Recognizing CloudTransport Network Traffic

CloudTransport aims to increase the technological complexity of censorship and,
in particular, to force censors into using computationally expensive techniques
such as statistical traffic analysis [10] as opposed to simple network-level tests.

Protocol discrepancies. CloudTransport’s encrypted tunnels use exactly the
same clients, same protocols, and same network servers as any other applica-
tion based on a given cloud storage API. Due to this “entanglement” property,
CloudTransport is immune to attacks that find discrepancies [21, 47] between
genuine protocols like SSL and Skype and the imitations used by systems such
as Tor and SkypeMorph [35]. This significantly raises the burden on the censors
because simple line-speed tests based on tell-tale differences in protocol headers,
public keys, etc. cannot be used to recognize CloudTransport. Also, CloudTrans-
port’s reaction to active perturbations such as dropping and delaying packets is
similar to any other application based on the same cloud API.

The network servers used by Tor, SkypeMorph, Obfsproxy [37] and similar
systems are disjoint from those used by other services. Once these servers are
discovered, censors can block them without zero impact on non-circumvention
users and their traffic. By contrast, blocking the network servers used by Cloud-
Transport would effectively disable all uses of a given cloud provider, causing
economic damage to users and businesses in the censorship region [20].

Statistical analysis. We do not claim that no statistical classification algo-
rithm can distinguish CloudTransport traffic from the traffic generated by other
cloud applications. We believe, however, that it will be technically challenging
for the censors to develop an algorithm that simultaneously achieves low false
negatives (to detect a significant fraction of CloudTransport traffic) and low false
positives (to avoid disrupting non-CloudTransport cloud services).

First, note an important difference between the encrypted cloud traffic and the
encrypted traffic generated by Skype and other standalone applications. All of
Skype traffic is generated by copies of the same client or, at most, a few variations
of the same client. Therefore, censors can whitelist typical Skype patterns and
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block all traffic that deviates from these patterns (this includes traffic generated
by Skype imitators such as SkypeMorph or Stegotorus [21]).

By contrast, encrypted traffic to the cloud provider’s servers is generated by
thousands of diverse applications. This makes it difficult to create an accurate
whitelist of traffic patterns and block all deviations without disrupting permitted
services. Instead, censors must rely on blacklisting and use statistical analysis to
positively recognize traffic patterns characteristic of CloudTransport. Further-
more, this analysis must be performed on every cloud connection, increasing the
censors’ computational burden.

Detailed analysis of traffic patterns generated by CloudTransport vs. all the
diverse uses of cloud storage is beyond the scope of this paper. The main chal-
lenge for accurate statistical recognition of CloudTransport traffic is that Cloud-
Transport is unlikely to account for more than a tiny fraction of all monitored
connections. Due to the base-rate fallacy inherent in detecting statistically rare
events, we expect that even an accurate classifier will either fail to detect many
CloudTransport connections, or occasionally confuse CloudTransport with an-
other cloud service. In the former case, some CloudTransport traffic will escape
detection. In the latter case, censorship will cause collateral damage to at least
some non-CloudTransport cloud applications. This will make censorship visible
to non-circumvention users and potentially disrupt cloud-based business services,
thus increasing the economic and social costs of censorship.

4.2 Abusing the CloudTransport Bootstrapping Protocol

The dead-drop variant of the CloudTransport bootstrapping protocol described
in Section 3.3 can be potentially abused by censors to deny service to bona fide
CloudTransport users. Since bridges publicly advertise their dead drops, censors
can read and write them like any other user.

Even though reading other users’ tickets does not reveal who these users
are because the tickets are encrypted under the bridge’s public key, censors may
delete or tamper with them in order to deny service to genuine users. Fortunately,
many cloud storage providers store all versions of each file (e.g., a free Dropbox
account keeps all file versions for 30 days1). Therefore, the bridge should collect
the first version of every file in the dead drop.

Censors may also stuff the dead drop with tickets that contain credentials
for non-existing rendezvous accounts or real rendezvous accounts that are never
used. The bridge will be forced to repeatedly poll these accounts, potentially
exhausting its resources. To partially mitigate these attacks, the bridge backs
off on polling if the account remains inactive (see Section 2). If the rate at which
the censors can stuff the dead drop with fake tickets is significantly higher than
the rate at which the bridge can check and discard them, this attack may hinder
the bootstrapping process.

1 https://www.dropbox.com/help/11/en

https://www.dropbox.com/help/11/en
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4.3 Attacking a CloudTransport Bridge

It is relatively easy for the censors to discover the IP addresses of CloudTrans-
port bridges. For example, a censor can pretend to be genuinely interested in
circumvention, pick a bridge, set up a rendezvous account, and find out the
bridge’s IP address from the account’s access logs.

CloudTransport clients do not connect to bridges directly. Therefore, the cen-
sors cannot discover CloudTransport clients by simply enumerating all IP ad-
dresses inside the censorship region that connect to the bridges’ addresses. For
the same reason, blacklisting the addresses of known bridges has no effect on
CloudTransport if these addresses are outside the censorship region. Unless the
censors take over a bridge, they cannot observe or disrupt the connections be-
tween this bridge and the cloud provider because these connections take place
entirely outside the censorship region (see Fig. 1 and Section 3.1).

Censors may stage a denial-of-service attack by flooding the IP address of
a known bridge with traffic. In addition to standard defenses against network
denial of service, some operators may be able to move their bridges to another
IP address. This change is completely transparent to the users: as long as the
bridge is hosted at an address from which it can access the cloud storage, Cloud-
Transport remains operational even if the users don’t know this address. Censors
may also pose as genuine clients and send large volumes of requests via Cloud-
Transport, but this involves heavy use of rendezvous accounts and will incur
significant monetary costs. Furthermore, a bridge can throttle individual clients.

A denial-of-service attack on the bridge may cause a correlated drop in traffic
on CloudTransport connections utilizing that bridge, and thus help the censors
recognize CloudTransport connections by finding these correlations. This attack
requires large-scale traffic analysis, which will be more expensive for the censors
than simply enumerating all clients connecting to a bridge.

Finally, the censors may create their own bridge or take over an existing
bridge. In either case, they gain full visibility into the traffic passing through
this bridge, including the access credentials for the rendezvous accounts of all
CloudTransport users communicating through the bridge. These credentials do
not directly reveal these users’ identities or network locations. Furthermore, the
proxified modes of CloudTransport (see Section 2) encrypt traffic end-to-end
between the client and the apparent destination: either a proxy, or a Tor entry
node. Consequently, the censors in control of a bridge do not learn the true
destinations or contents of CloudTransport traffic.

By controlling the bridge, the censors gain the ability to perform flow corre-
lation attacks—see Section 4.4. Furthermore, the censors in control of a bridge
can write content into rendezvous accounts that is legally prohibited in the cloud
provider’s jurisdiction. They can then use the presence of such content to shut
down the accounts and/or convince the cloud provider to ban CloudTransport.

4.4 Performing Large-scale Flow Correlation

A censor who observes all traffic to and from the cloud storage provider may
attempt to identify flows that belong to the same CloudTransport connection
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by correlating packet timings and sizes [8,22] In particular, the censor may look
for flows between a user and the cloud provider that are correlated with the
flows between the provider and a known or suspected CloudTransport bridge.
A precondition for this attack is the ability to observe the traffic between the
provider and the bridge. As explained in Section 3.1, we assume that the bridge
is connecting to the provider through a server located outside the censorship
region. That said, flow correlation can be feasible if the censors set up their own
bridges or compromise an existing bridge.

Flow correlation is resource-intensive. Passive correlation attacks [8] require
recording hundreds of packets from each flow and cross-correlating them across
all flows. Active correlation [22] requires fine-grained perturbations and delays
to be applied to all suspected flows. Furthermore, correlation must be done
separately and independently for each flow reaching a given bridge.

The censor may attempt a side-channel attack such as website fingerprint-
ing [5, 38, 44] to infer websites being browsed over CloudTransport. This attack
exploits patterns in object sizes which are preserved by encryption. Random
padding used by some SSH2 [43] (respectively, TLS) implementations greatly
complicates this attack against CloudTransport’s tunnel (respectively, proxified-
light) mode. Tor’s use of equal-sized cells mitigates this attack in the proxified-
Tor mode, but may not completely prevent it [5, 38]. To address this, Tor plug-
gable transports use traffic morphing [28], replaying old traffic traces [35, 51],
and format-transforming encryption [11]. A CloudTransport client, too, can de-
ploy these countermeasures, which can be hosted on users’ machines [31, 32] or
network proxies [31, 41], at the cost of additional bandwidth overhead.

5 Performance

We evaluated CloudTransport on four use cases: browsing the front pages of
the Alexa Top 30 websites, uploading 300 KB images via SCP to a remote
server, watching 5 minutes of 480p streaming video from Vimeo, and uploading
a 10MB video to YouTube. All experiments involved a single client and a single
bridge. The client was running on a machine with 16 Mb down- and 4 Mb
up-bandwidth, while the bridge was running in a datacenter 2,400 kilometers
(1,500 miles) away. Evaluating the performance of CloudTransport in a realistic,
large-scale deployment is a topic of future work.

Table 3. Browsing, per-page costs

Provider Cirriform Cumuliform
Cirriform Cumuliform
Profixied Profixied

S3 0.00240¢ 0.00100¢ 0.00300¢ 0.00430¢
CloudFiles 0 0 0 0

Cloud
0.00570¢ 0.00234¢ 0.00600¢ 0.00900¢

Storage

2 http://www.gnutls.org/manual/gnutls.html#On-Record-Padding

http://www.gnutls.org/manual/gnutls.html#On-Record-Padding
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Fig. 6. Browsing (different providers)

Fig. 6 compares different cloud storage providers with CloudTransport oper-
ating in the tunnel mode. Table 3 shows the corresponding costs. Amazon S3 and
Google Cloud Storage have similar performance and costs; S3 is slightly cheaper
and quicker to propagate changes. RackSpace CloudFiles does not charge per
operation and is thus much cheaper, but also significantly slower.

All of the following experiments were performed with a rendezvous account
hosted on Amazon S3.

Performance. Fig. 7 shows that the performance of Cirriform in tunnel and
profixied-Tor modes is similar to Tor with Obfsproxy [37]. Note that in the
proxified-Tor mode, CloudTransport traffic enters the Tor network after passing
through the bridge and is therefore subject to the same performance bottle-
necks as any other Tor traffic. Unlike CloudTransport, Tor+Obfsproxy is easily
recognizable at the network level and thus marked “(observable)” in the charts.

Cumuliform is noticeably slower because it buffers messages for all connections
(as many as 30 when browsing). The variance for CloudTransport is much lower
than for Tor+Obfsproxy, mainly because delays in CloudTransport are due to
waiting for data to become available in the rendezvous account and S3 has fairly
consistent delays in propagating small files used by CloudTransport.

Uploading files involves a lot of back-and-forth communication to set up the
SCP connection. This puts CloudTransport at a disadvantage because of its per-
message overheads, but Fig. 8 shows that it still outperforms Tor+Obfsproxy in
all modes but one. Uploading a video to Youtube has similar issues to uploading
small images, but with larger data sizes and more back-and-forth communica-
tion. Fig. 9 shows that CloudTransport still outperforms Tor+Obfsproxy in all
Cirriform modes. Cumuliform in tunnel and proxified-Tor modes is, respectively,
similar to and slower than Tor+Obfsproxy.

CloudTransport in all modes consistently plays streaming videos without
pause after some initial buffering. Tor+Obfsproxy starts playing earlier but often
buffers again later in the clip. Fig. 10 shows the average time spent buffering.
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Fig. 7. Browsing (different usage modes)

Fig. 8. Image uploading

Bandwidth. CloudTransport connections have minimal bandwidth overhead
per message: 350-400 bytes for S3, 700-800 for CloudFiles, and 375-450 for Google
Cloud Storage. HTTPS uploads and downloads have extra 2-3% overhead. When
Cirriform polls an S3 account 3 times per second and 5 times per second per
connection, its total overhead is 1.2KB + 2KB/connection per second.

Costs. Cirriform’s performance is consistently superior to Cumuliform in all
modes, but Cumuliform uses many fewer operations and is thus almost half
as cheap when using providers who charge per operation (Table 3). In profix-
ied modes, connections are re-used, thus Cumuliform no longer enjoys the cost
advantage. Cirriform’s polling costs are higher because it takes longer to run.
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Fig. 9. Youtube Uploading

Fig. 10. Streaming Video

Table 4. Idle-polling costs

Provider Cirriform Cumuliform

S3
$0.185/day + $0.34/day$0.34/day/connection

CloudFiles 0 0

Cloud Storage
$0.215/day + $0.86/day$0.86/day/connection

The costs of idle-polling the rendezvous account regardless of whether com-
munication is taking place are shown in Fig. 4. These assume one write per every
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poll and are thus worst-case estimates. Real costs will be lower because uploads
to cloud storage propagate slower than CloudTransport’s polling rate.

6 Related Work

Proxy-based systems. IP address blacklisting is the most basic technique
used by many censors [30]. A natural way to circumvent the filter is to access
blacklisted destinations via a proxy, e.g., Psiphon [40]. GoAgent [18] is an HTTP
proxy implemented as a cloud-hosted application in Google App Engine [16]. In
contrast to CloudTransport, GoAgent has access to all of the user’s traffic in
plaintext and must be fully trusted.

The main challenge for proxies is how to securely distribute their locations
to genuine users while keeping them secret from insider attackers, i.e., censors
pretending to be genuine users [33,50]. As soon as the censor learns the proxy’s
location, he can blacklist it, identify past users from network traces, or even
leave the proxy accessible in order to identify and punish its future users [34].

Tor bridges. Tor is a popular anonymity network [7]. Cloud-based Onion
Routing (COR) [27] is a proposal to host Tor relays in the cloud. Whether
hosted in the cloud or not, the addresses of Tor relays are public, thus censors
can and do block them. A Tor bridge is a hidden proxy that clients can use as a
gateway to the Tor network [6]. The Tor Cloud project [46], currently deployed
by Tor, allows donors to run Tor bridges inside Amazon EC2. This idea was
previously proposed by Mortier et al. [36] in a position paper.

CloudTransport does not involve running relays or bridges in the cloud; it
uses the cloud solely as a passive rendezvous point for data exchange. This gives
CloudTransport several advantage over Tor bridges, Tor Cloud, COR, etc.

First, Tor traffic is easily recognizable at the network level because Tor clients
and bridges run their own unique protocol. Iranian censors were able to block
Tor by exploiting the difference between the Diffie-Hellman moduli in “genuine”
SSL and Tor’s SSL [47, Slide 27], as well as the expiration dates of Tor’s SSL
certificates [47, Slide 38]. By contrast, CloudTransport uses exactly the same
protocol, cloud-client library, and network servers as any other application based
on a given cloud storage service.

Second, blacklisting the IP address of a Tor bridge completely disables this
bridge with zero impact on other network services. By contrast, blacklisting the
IP addresses of CloudTransport bridges has no effect on CloudTransport, while
blacklisting the IP addresses of cloud servers used by CloudTransport disrupts
other cloud-based applications using the same servers.

Third, a censor who discover the IP address of a Tor bridge (e.g., via a
probe [52, 53] or insider attack [33, 34, 50]) can easily enumerate the network
locations of clients who connect to this bridge. By contrast, even a censor in
complete control of a CloudTransport bridge does not learn the locations of its
clients without computationally intensive flow correlation analysis.

Fourth, when a Tor bridge changes its IP address (e.g., when it is attacked or
blacklisted), all of its clients must be securely notified about the new address.



CloudTransport: Using Cloud Storage for Censorship-Resistant Networking 17

By contrast, when a CloudTransport bridge changes its IP address, this change
is completely transparent to its clients.

Fifth, bootstrapping Tor bridges is challenging because their addresses must
be distributed only to genuine users but not to censors pretending to be users.
By contrast, bootstrapping in CloudTransport is initiated by clients. Even if a
censor pretends to be a user, he cannot discover who the other users are.

CloudTransport’s reliance on rendezvous accounts hosted by cloud storage
providers has some disadvantages, too. Unlike Tor clients, which only require
Internet access, CloudTransport clients require every user to set up a cloud
storage account outside her region. This may negatively impact usability, impose
financial costs, generate a pseudonymous profile, and disclose the user’s identity
and the fact that she is using CloudTransport to the cloud storage provider, as
well as the financial institutions processing her payments.

Imitation systems. To remove characteristic patterns from Tor traffic, Tor
deployed pluggable transports [39]. For example, Obfsproxy [37] re-encrypts Tor
packets to remove content identifiers. Systems such as SkypeMorph [35], Stego-
Torus [51], and CensorSpoofer [49] proposed pluggable transports that aim to
imitate popular network protocols like Skype and HTTP. A recent study showed
multiple flaws in the entire approach of unobservability-by-imitation [21].

Hide-within systems. A promising alternative to imitation is to actually run
a popular protocol and hide circumvention traffic within its network channels,
thus entangling circumvention and non-circumvention traffic. This ensures that
the circumvention system is “bug-compatible” with a particular implementation
of the chosen protocol and therefore immune to tests that find discrepancies
between actual protocol implementations and partial imitations [21].

We call such systems hide-within. CloudTransport is a hide-within system
that tunnels circumvention traffic through cloud storage protocols. Other hide-
within designs include FreeWave [24], which encodes circumvention traffic into
acoustic signals sent over VoIP connections, and SWEET [25], which tunnels
circumvention traffic inside email messages.

Steganography-based systems. In Infranet [15], the client pretends to browse
an unblocked website that has secretly volunteered to serve censored content.
Requests for censored content are encoded in HTTP requests, the responses are
encoded in images returned by the site. By contrast, CloudTransport uses cloud
storage obliviously, without any changes to the existing services.

Collage [4] hides censored content in user-generated photos, tweets, etc. on
public, oblivious websites. It does not support interactive communications such
as Web browsing.

In decoy routing [23, 29, 54], ISPs voluntarily help circumvention by having
their routers recognize covert, steganographically marked traffic generated by
users from the censorship region and deflect it to the blocked destinations spec-
ified by the senders. Unlike CloudTransport, decoy routing is not deployable
without cooperation from at least some ISPs in the middle of the Internet.
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7 Conclusions

We presented the design and implementation of CloudTransport, a new system
for censorship-resistant communications. CloudTransport hides network traffic
from censors by reading and writing it into rendezvous accounts on popular
cloud-storage services. It can be used as a standalone networking medium or as
a pluggable transport for Tor, enhancing Tor’s censorship resistance properties.

Unlike Tor, SkypeMorph, and other systems utilizing network bridges to assist
in circumvention, CloudTransport can survive the compromise of one or more
of its bridges because its rendezvous protocol does not reveal the locations and
identities of CloudTransport users even to the bridge.

CloudTransport aims to increase the economic and social costs of censor-
ship. Empirical evidence shows that censors in relatively developed countries
like China are not willing to impose a blanket ban on encrypted cloud services
even when these services are used for censorship circumvention [20]. Because
CloudTransport uses exactly the same network tunnels and servers as the ex-
isting cloud-based applications, censors can no longer rely on simple line-speed
tests of protocol-level discrepancies to recognize and selectively block Cloud-
Transport connections. Instead, they must perform statistical classification of
every cloud connection. In contrast to systems like Tor, which can be recognized
and blocked with zero impact on the vast majority of users, any false positives in
the censors’ recognition algorithms for CloudTransport will disrupt popular and
business-critical cloud services. This will make censorship visible and increase
discontent among the users who are not engaging in censorship circumvention.
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Abstract. With the increasing popularity of GPS-enabled handheld devices, lo-
cation based applications and services have access to accurate and real-time lo-
cation information, raising serious privacy concerns for their millions of users.
Trying to address these issues, the notion of geo-indistinguishability was recently
introduced, adapting the well-known concept of Differential Privacy to the area
of location-based systems. A Laplace-based obfuscation mechanism satisfying
this privacy notion works well in the case of a sporadic use; Under repeated use,
however, independently applying noise leads to a quick loss of privacy due to the
correlation between the location in the trace.

In this paper we show that correlations in the trace can be in fact exploited in
terms of a prediction function that tries to guess the new location based on the
previously reported locations. The proposed mechanism tests the quality of the
predicted location using a private test; in case of success the prediction is reported
otherwise the location is sanitized with new noise. If there is considerable corre-
lation in the input trace, the extra cost of the test is small compared to the savings
in budget, leading to a more efficient mechanism.

We evaluate the mechanism in the case of a user accessing a location-based
service while moving around in a city. Using a simple prediction function and
two budget spending strategies, optimizing either the utility or the budget con-
sumption rate, we show that the predictive mechanism can offer substantial im-
provements over the independently applied noise.

1 Introduction

In recent years, the popularity of devices capable of providing an individual’s posi-
tion with a range of accuracies (e.g. wifi-hotspots, GPS, etc) has led to a growing use
of “location-based systems” that record and process location data. A typical example
of such systems are Location Based Services (LBSs) – such as mapping applications,
Points of Interest retrieval, coupon providers, GPS navigation, and location-aware social
networks – providing a service related to the user’s location. Although users are often
willing to disclose their location in order to obtain a service, there are serious concerns
about the privacy implications of the constant disclosure of location information.

In this paper we consider the problem of a user accessing a LBS while wishing to
hide his location from the service provider. We should emphasize that, in contrast to
several works in the literature [1,2], we are interested not in hiding the user’s identity,
but instead his location. In fact, the user might be actually authenticated to the provider,
in order to obtain a personalized service (personalized recommendations, friend infor-
mation from a social network, etc); still he wishes to keep his location hidden.

E. De Cristofaro and S.J. Murdoch (Eds.): PETS 2014, LNCS 8555, pp. 21–41, 2014.
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Several techniques to address this problem have been proposed in the literature,
satisfying a variety of location privacy definitions. A widely-used such notion is k-
anonymity (often called l-diversity in this context), requiring that the user’s location
is indistinguishable among a set of k points. This could be achieved either by adding
dummy locations to the query [3,4], or by creating a cloaking region including k loca-
tions with some semantic property, and querying the service provider for that cloaking
region [5,6,7]. A different approach is to report an obfuscated location z to the service
provider, typically obtained by adding random noise to the real one. Shokri et al. [8]
propose a method to construct an obfuscation mechanism of optimal privacy for a given
quality loss constraint, where privacy is measured as the expected error of a Bayesian
adversary trying to guess the user’s location [9].

The main drawback of the aforementioned location privacy definitions is that they
depend on the adversary’s background knowledge, typically modeled as a prior distri-
bution on the set of possible locations. If the adversary can rule out some locations
based on his prior knowledge, then k-anonymity will be trivially violated. Similarly,
the adversary’s expected error directly depends on his prior. As a consequence, these
definitions give no precise guarantees in the case when the adversary’s prior is different.

Differential privacy [10] was introduced for statistical databases exactly to cope
with the issue of prior knowledge. The goal in this context is to answer aggregate
queries about a group of individuals without disclosing any individual’s value. This
is achieved by adding random noise to the query, and requiring that, when executed
on two databases x, x′ differing on a single individual, a mechanism should produce
the same answer z with similar probabilities. Differential privacy has been successfully
used in the context of location-based systems [11,12,13] when aggregate location in-
formation about a large number of individuals is published. However, in the case of a
single individual accessing an LBS, this property is too strong, as it would require the
information sent to the provider to be independent from the user’s location.

Our work is based on “geo-indistinguishability”, a variant of differential privacy
adapted to location-based systems, introduced recently in [14]. Based on the idea that
the user should enjoy strong privacy within a small radius, and weaker as we move away
from his real location, geo-indistinguishability requires that the closer (geographically)
two locations are, the more indistinguishable they should be. This means that when lo-
cations x, x′ are close they should produce the same reported location z with similar
probabilities; however the probabilities can become substantially different as the dis-
tance between x and x′ increases. This property can be achieved by adding noise to the
user’s location drawn from a 2-dimensional Laplace distribution.

In practice, however, a user rarely performs a single location-based query. As a mo-
tivating example, we consider a user in a city performing different activities throughout
the day: for instance he might have lunch, do some shopping, visit friends, etc. Dur-
ing these activities, the user performs several queries: searching for restaurants, getting
driving directions, finding friends nearby, and so on. For each query, a new obfuscated
location needs to be reported to the service provider, which can be easily obtained by
independently adding noise at the moment when each query is executed. We refer to
independently applying noise to each location as the independent mechanism.
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However, it is easy to see that privacy is degraded as the number of queries increases,
due to the correlation between the locations. Intuitively, in the extreme case when the
user never moves (i.e. there is perfect correlation), the reported locations are centered
around the real one, completely revealing it as the number of queries increases. Tech-
nically, the independent mechanism applying ε-geo-indistinguishable noise (where ε is
a privacy parameter) to n location can be shown to satisfy nε-geo-indistinguishability
[14]. This is typical in the area of differential privacy, in which ε is thought as a privacy
budget, consumed by each query; this linear increase makes the mechanism applicable
only when the number of queries remains small. Note that any obfuscation mechanism
is bound to cause privacy loss when used repeatedly; geo-indistinguishability has the
advantage of directly quantifying this loss terms of the consumed budget.

The goal of this paper is to develop a trace obfuscation mechanism with a smaller
budget consumption rate than applying independent noise. The main idea is to actually
use the correlation between locations in the trace to our advantage. Due to this corre-
lation, we can often predict a point close to the user’s actual location from information
previously revealed. For instance, when the user performs multiple different queries
from the same location - e.g. first asking for shops and later for restaurants - we could
intuitively use the same reported location in all of them, instead of generating a new one
each time. However, this implicitly reveals that the user is not moving, which violates
geo-indistinguishability (nearby locations produce completely different observations);
hence the decision to report the same location needs to be done in a private way.

Our main contribution is a predictive mechanism with three components: a prediction
function Ω, a noise mechanism N and a test mechanism Θ. The mechanism behaves as
follows: first, the list of previously reported locations (i.e. information which is already
public) are given to the prediction function, which outputs a predicted location z̃. Then,
it tests whether z̃ is within some threshold l from the user’s current location using
the test mechanism. The test itself should be private: nearby locations should pass the
test with similar probabilities. If the test succeeds then z̃ is reported, otherwise a new
reported location is generated using the noise mechanism.

The advantage of the predictive mechanism is that the budget is consumed only when
the test or noise mechanisms are used. Hence, if the prediction rate is high, then we will
only need to pay for the test, which can be substantially cheaper in terms of budget.
The configuration of N and Θ is done via a budget manager which decides at each
step how much budget to spend on each mechanism. The budget manager is also al-
lowed to completely skip the test and blindly accept or reject the prediction, thus saving
the corresponding budget. The flexibility of the budget manager allows for a dynamic
behavior, constantly adapted to the mechanism’s previous performance. We examine
in detail two possible budget manager strategies, one maximizing utility under a fixed
budget consumption rate and one doing the exact opposite, and explain in detail how
they can be configured.

Note that, although we exploit correlation for efficiency, the predictive mechanism is
shown to be private independently from the prior distribution on the set of traces. If the
prior presents correlation, and the prediction function takes advantage of it, the mecha-
nism can achieve a good budget consumption rate, which translates either to better util-
ity or to a greater number of reported points than the independent mechanism. If there
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is no correlation, or the prediction does not take advantage of it, then the budget con-
sumption can be worse than the independent mechanism. Still, thanks to the arbitrary
choice of the prediction function and the budget manager, the predictive mechanism is
a powerful tool that can be adapted to a variety of practical scenarios.

We experimentally verify the effectiveness of the mechanism on our motivating ex-
ample of a user performing various activities in a city, using two large data sets of GPS
trajectories in the Beijing urban area ([15,16]). The results for both budget managers,
with and without the skip strategy, show considerable improvements with respect to
independently applied noise. More specifically, we are able to decrease average error
up to 40% and budget consumption rate up to 64%. The improvements are significative
enough to broaden the applicability of geo-indistinguishability to cases impossible be-
fore: in our experiments we cover 30 queries with reasonable error which is enough for
a full day of usage; alternatively we can drive the error down from 5 km to 3 km, which
make it acceptable for a variety of application.

Note that our mechanism can be efficiently implemented on the user’s phone, and
does not require any modification on the side of the provider, hence it can be seamlessly
integrated with existing LBSs.

Contributions The paper’s contributions are the following:
– We propose a predictive mechanism that exploits correlations on the input by means

of a prediction function.
– We show that the proposed mechanism is private and provide a bound on its utility.
– We instantiate the predictive mechanism for location privacy, defining a prediction

function and two budget managers, optimizing utility and budget consumption rate.
– We evaluate the mechanism on two large sets of GPS trajectories and confirm our

design goals, showing substantial improvements compared to independent noise.
All proofs can be found in the report version of this paper [17].

2 Preliminaries

Differential Privacy and Geo-indistinguishability. The privacy definitions used in
this paper are based on a generalized variant of differential privacy that can be defined
on an arbitrary set of secrets X (not necessarily on databases), equipped with a metric
dX [18,19]. The distance dX(x, x

′) expresses the distinguishability level between the
secrets x and x′, modeling the privacy notion that we want to achieve. A small value
denotes that the secrets should remain indistinguishable, while a large value means that
we allow the adversary to distinguish them.

Let Z be a set of reported values and let P(Z) denote the set of probability mea-
sures over Z . The multiplicative distance dP on P(Z) is defined as dP (μ1, μ2) =

supZ⊆Z | ln μ1(Z)
μ2(Z) | with | ln μ1(Z)

μ2(Z) | = 0 if both μ1(Z), μ2(Z) are zero and ∞ if only
one of them is zero. Intuitively dP(μ1, μ2) is small if μ1, μ2 assign similar probabilities
to each reported value.

A mechanism is a (probabilistic) function K : X → P(Z), assigning to each secret
x a probability distribution K(x) over the reported values. The generalized variant of
differential privacy, called dX -privacy, is defined as follows:
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Definition 1 (dX -privacy). A mechanism K : X → P(Z) satisfies dX -privacy iff:

dP(K(x),K(x′)) ≤ dX (x, x
′) ∀x, x′ ∈ X

or equivalently K(x)(Z) ≤ edX (x,x′)K(x′)(Z) ∀x, x′ ∈ X , Z ⊆ Z .

Different choices of dX give rise to different privacy notions; it is also common to scale
our metric of interest by a privacy parameter ε (note that εdX is itself a metric).

The most well-known case is when X is a set of databases with the hamming metric
dh(x, x

′), defined as the number of rows in which x, x′ differ. In this case εdh-privacy
is the same as ε-differential privacy, requiring that for adjacent x, x′ (i.e. differing on a
single row) dP (K(x),K(x′)) ≤ ε. Moreover, various other privacy notions of interest
can be captured by different metrics [19].

Geo-indistinguishability. In the case of location privacy, which is the main motiva-
tion of this paper, the secrets X as well as the reported values Z are sets of locations
(i.e. subsets of R2), while K is an obfuscation mechanism. Using the Euclidean metric
d2, we obtain εd2-privacy, a natural notion of location privacy called geo-indistingui-
shability in [14]. This privacy definition requires that the closer (geographically) two
location are, the more similar the probability of producing the same reported location
z should be. As a consequence, the service provider is not allowed to infer the user’s
location with accuracy, but he can get approximate information required to provide the
service.

Seeing it from a slightly different viewpoint, this notion offers privacy within any
radius r from the user, with a level of distinguishability εr, proportional to r. Hence,
within a small radius the user enjoys strong privacy, while his privacy decreases as r
gets larger. This gives us the flexibility to adjust the definition to a particular application:
typically we start with a radius r∗ for which we want strong privacy, which can range
from a few meters to several kilometers (of course a larger radius will lead to more
noise). For this radius we pick a relatively small ε∗ (for instance in the range from ln 2
to ln 10), and set ε = ε∗/r∗. Moreover, we are also flexible in selecting a different
metric between locations, for instance the Manhattan or a map-based distance.

Two characterization results are also given in [14], providing intuitive interpreta-
tions of geo-indistinguishability. Finally, it is shown that this notion can be achieved by
adding noise from a 2-dimensional Laplace distribution.

Protecting Location Traces. Having established a privacy notion for single locations,
it is natural to extend it to location traces (sometimes called trajectories in the litera-
ture). Although location privacy is our main interest, this can be done for traces having
any secrets with a corresponding metric as elements. We denote by x = [x1, . . . , xn] a
trace, by x[i] the i-th element of x, by [ ] the empty trace and by x :: x the trace obtained
by adding x to the head of x. We also define tail(x :: x) = x. To obtain a privacy
notion, we need to define an appropriate metric between traces. A natural choice is the
maximum metric d∞(x,x′) = maxi dX (x[i],x

′[i]). This captures the idea that two
traces are as distinguishable as their most distinguishable points. In terms of protection
within a radius, if x is within a radius r from x′ it means that x[i] is within a radius r
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from x′[i]. Hence, εd∞-privacy ensures that all secrets are protected within a radius r
with the same distinguishability level εr.

mechanism IM (x )
z := [ ]
f o r i := 1 t o |x|

z := N(εN )(x[i])
z := z :: z

re turn z

Fig. 1. Independent Mecha-
nism

In order to sanitize x we can simply apply a noise
mechanism independently to each secret xi. We assume
that a family of noise mechanisms N(εN) : X →
P(Z) are available, parametrized by εN > 0, where
each mechanism N(εN ) satisfies εN -privacy. The re-
sulting mechanism, called the independent mechanism
IM : Xn → P(Zn), is shown in Figure 1. As explained
in the introduction, the main issue with this approach is
that IM is nεd∞-private, that is, the budget consumed
increases linearly with n.

Utility. The goal of a privacy mechanism is not to hide completely the secret but to
disclose enough information to be useful for some service while hiding the rest to pro-
tect the user’s privacy. Typically these two requirements go in opposite directions: a
stronger privacy level requires more noise which results in a lower utility.

Utility is a notion very dependent on the application we target; to measure utility
we start by defining a notion of error, that is a distance derr between a trace x and a
sanitized trace z. In the case of location-based systems we want to report locations as
close as possible to the original ones, so a natural choice is to define the error as the
average geographical distance between the locations in the trace:

derr(x, z) =
1
|x|
∑

i d2(x[i], z[i]) (1)

We can then measure the utility of a trace obfuscation mechanismK : Xn → P(Zn)
by the average-case error, defined as the expected value of derr:

E[derr] =
∑

x π(x)
∑

z K(x)(z) derr(x, z)

where π ∈ P(Xn) is a prior distribution on traces.
On the other hand, the worst-case error is usually unbounded, since typical noise

mechanisms (for instance the Laplace one) can return values at arbitrary distance from
the original one. Hence, we are usually interested in the p-th percentile of the error, com-
monly expressed in the form of α(δ)-accuracy [20]. A mechanism K is α(δ)-accurate
iff for all δ: Pr[derr(x, z) ≤ α(δ)] ≥ δ. In the rest of the paper we will refer to α(0.9)
(or simply α) as the “worst-case” error.

Note that in general, both E[derr] and α(δ) depend on the prior distribution π on
traces. However, due to the mechanism’s symmetry, the utility of the Laplace mecha-
nism is independent from the prior, and as a result, the utility of the independent mech-
anism (using the Laplace as the underlying noise mechanism) is also prior-independent.
On the other hand, the utility of the predictive mechanism, described in the next section,
will be highly dependent on the prior. As explained in the introduction, the mechanism
takes advantage of the correlation between the points in the trace (a property of the
prior), the higher the correlation the better utility it will provide.
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3 A Predictive dX -private Mechanism

We are now ready to introduce our prediction-based mechanism. Although our main
motivation is location privacy, the mechanism can work for traces of any secrets X ,
equipped with a metric dX . The fundamental intuition of our work is that the presence of
correlation on the secret can be exploited to the advantage of the mechanism. A simple
way of doing this is to try to predict new secrets from past information; if the secret
can be predicted with enough accuracy it is called easy; in this case the prediction can
be reported without adding new noise. One the other hand, hard secrets, that is those
that cannot be predicted, are sanitized with new noise. Note the difference with the
independent mechanism where each secret is treated independently from the others.

Let B = {0, 1}. A boolean b ∈ B denotes whether a point is easy (0) or hard (1). A
sequence r = [z1, b1, . . . , zn, bn] of reported values and booleans is called a run; the
set of all runs is denoted by R = (Z × B)∗. A run will be the output of our predictive
mechanism; note that the booleans bi are considered public and will be reported by the
mechanism.

Main components. The predictive mechanism has three main components: first, the
prediction is a deterministic functionΩ : R → Z , taking as input the run reported up to
this moment and trying to predict the next reported value. The output of the prediction
function is denoted by z̃ = Ω(r). Note that, although it is natural to think of Ω as
trying to predict the secret, in fact what we are trying to predict is the reported value.
In the case of location privacy, for instance, we want to predict a reported location at
acceptable distance from the actual one. Thus, the possibility of a successful prediction
should not be viewed as a privacy violation.

Second, a test is a family of mechanisms Θ(εθ, l, z̃) : X → P(B), parametrized
by εθ, l, z̃. The test takes as input the secret x and reports whether the prediction z̃ is
acceptable or not for this secret. If the test is successful then the prediction will be used
instead of generating new noise. The purpose of the test is to guarantee a certain level of
utility: predictions that are farther than the threshold l should be rejected. Since the test
is accessing the secret, it should be private itself, where εθ is the budget that is allowed
to be spent for testing.

The test mechanism that will be used throughout the paper is the one below, which
is based on adding Laplace noise to the threshold l:

Θ(εθ , l, z̃)(x) =

{
0 if dX (x, z̃) ≤ l + Lap(εθ)
1 ow.

(2)

The test is defined for all εθ > 0, l ∈ [0,+∞), z̃ ∈ Z , and can be used for any metric
dX , as long as the domain of reported values is the same as the one of the secrets (which
is the case for location obfuscation) so that dX (x, z̃) is well defined.

Finally, a noise mechanism is a family of mechanisms N(εN) : X → P(Z),
parametrized by the available budget εN . The noise mechanism is used for hard secrets
that cannot be predicted.

Budget management. The parameters of the mechanism’s components need to be con-
figured at each step. This can be done in a dynamic way using the concept of a budget
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mechanism PM (x )
r := [ ]
f o r i := 1 to |x|

(z, b) := Step(r)(x[i])
r := (z, b) :: r

re turn r

(a) Predictive Mechanism

mechanism Step(r) (x )
(εθ, εN , l) := β(r)
z̃ := Ω(r)
b := Θ(εθ, l, z̃)(x)
i f b == 0 then z := z̃
e l s e z := N(εN)(x)
re turn (z, b)

(b) Single step of the Predictive Mechanism

manager. A budget manager β is a function that takes as input the run produced so far
and returns the budget and the threshold to be used for the test at this step as well as
the budget for the noise mechanism: β(r) = (εθ, εN , l). We will also use βθ and βN as
shorthands to get just the first or the second element of the result.

Of course the amount of budget used for the test should always be less than the
amount devoted to the noise, otherwise it would be more convenient to just use the
independent noise mechanism. Still, there is great flexibility in configuring the various
parameters and several strategies can be implemented in terms of a budget manager.

The mechanism. We are now ready to fully describe our mechanism. A single step of
the predictive mechanism, displayed in Figure 2b, is a family of mechanisms Step(r) :
X → P(Z × B), parametrized by the run r reported up to this point. The mechanism
takes a secret x and returns a reported value z, as well as a boolean b denoting whether
the secret was easy or hard. First, the mechanism obtains the various configuration
parameters from the budget manager as well as a prediction z̃. Then the prediction
is tested using the test mechanism. If the test is successful the prediction is returned,
otherwise a new reported value is generated using the noise mechanism.

Finally, the predictive mechanism, displayed in Figure 2a, is a mechanism PM :
Xn → P(R). It takes as input a trace x, and applies Step(r) to each secret, while
extending at each step the run r with the new reported values (z, b).

Note that an important advantage of the mechanism is that it is online, that is the san-
itization of each secret does not depend on future secrets. This means that the user can
query at any time during the life of the system, as opposed to offline mechanisms were
all the queries need to be asked before the sanitization. Furthermore the mechanism is
dynamic, in the sense that the secret can change over time (e.g. the position of the user)
contrary to static mechanism where the secret is fixed (e.g. a static database).

It should be also noted that, when the user runs out of budget, he should in prin-
ciple stop using the system. This is typical in the area of differential privacy where a
database should not being queried after the budget is exhausted. In practice, of course,
this is not realistic, and new queries can be allowed by resetting the budget, essentially
assuming either that there is no correlation between the old and new data, or that the
correlation is weak and cannot be exploited by the adversary. In the case of location
privacy we could, for instance, reset the budget at the end of each day. We are currently
investigating proper assumptions under which the budget can be reset while satisfying
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a formal privacy guarantee. The question of resetting the budget is open in the field of
differential privacy and is orthogonal to our goal of making an efficient use of it.

The main innovation of this mechanism if the use of the prediction function, which
allows to decouple the privacy mechanism from the correlation analysis, creating a
family of modular mechanisms where by plugging in different predictions (or updating
the existing) we are able to work in new domains. Moreover proving desirable security
properties about the mechanism independently of the complex engineering aspects of
the prediction is both easier and more reliable, as shown in the next sections.

3.1 Privacy

We now proceed to show that the predictive mechanism described in the previous sec-
tion is dX -private. The privacy of the predictive mechanism depends on that of its com-
ponents. In the following, we assume that each member of the families of test and noise
mechanisms is dX -private for the corresponding privacy parameter:

∀εθ, l, z̃. Θ(εθ, l, z̃) is εθdX -private (3)

∀εN . N(εN ) is εNdX -private (4)

In the case of the test Θ(εθ, l, z̃) defined in (2), we can show that it is indeed dX -private,
independently of the metric or threshold used.

Fact 1 (Privacy of Test function) The family of test mechanisms Θ(εθ, l, z̃) defined by
(2) satisfies assumption 3.

The global budget for a certain run r using a budget manager β is defined as:

εβ(r) =

{
0 if |r| = 0
βθ(r) + b(r)× βN (r) + εβ(tail(r)) o.w.

(5)

As already discussed, a hard step is more expensive than an easy step because of the
cost of the noise mechanism.

Building on the privacy properties of its components, we first show that the predictive
mechanism satisfies a property similar to dX -privacy, with a parameter ε that depends
on the run.

Lemma 1. Under the assumptions (3),(4), for the test and noise mechanisms, the pre-
dictive mechanism PM, using the budget manager β, satisfies

PM(x)(r) ≤ eεβ(r) d∞(x,x′)PM(x′)(r) ∀r,x,x′ (6)

This results shows that there is a difference between the budget spent on a “good” run,
where the input has a considerable correlation, the prediction performs well and the
majority of steps are easy, and a run with uncorrelated secrets, where any prediction
is useless and all the steps are hard. In the latter case it is clear that our mechanism
wastes part of its budget on tests that always fail, performing worse than an independent
mechanism.

Finally, the overall privacy of the mechanism will depend on the budget spent on the
worst possible run.
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Theorem 1 (dX -privacy). Under the assumptions (3),(4), for the test and noise mech-
anisms, the predictive mechanism PM, using the budget manager β, satisfies εd∞-
privacy, with ε = supr εβ(r).

Based on the above result, we will use ε-bounded budget managers, imposing an
overall budget limit ε independently from the run. Such a budget manager provides a
fixed privacy guarantee by sacrificing utility: in the case of a bad run it either needs to
lower the budget spend per secret, leading to more noise, or to stop early, handling a
smaller number of queries. In practice, however, using a prediction function tailored to
a specific type of correlation we can achieve good efficiency.

3.2 Utility

We now turn our attention to the utility provided by the predictive mechanism. The
property we want to prove is α(δ)-accuracy, introduced in Section 2. Similarly to the
case of privacy, the accuracy of the predictive mechanism depends on that of its compo-
nents, that is, on the accuracy of the noise mechanism, as well as the one of the Laplace
mechanism employed by the test Θ(εθ, l, z̃) (2). We can now state a result about the
utility of a single step of the predictive mechanism.

Proposition 1 (accuracy). Let r be a run, β a budget manager, let (εθ, εN , l) = β(r)
and let αN (δ), αθ(δ) be the accuracy of N(εN ), Lap(εθ) respectively. Then the accu-
racy of Step(r) is α(δ) = max(αN (δ), l + αθ(δ))

This result provides a bound for the accuracy of the predictive mechanism at each
step. The bound depends on the triplet used (εθ, εN , l) to configure the test and noise
mechanisms which may vary at each step depending on the budget manager used, thus
the bound is step-wise and may change during the use of the system.

It should be noted that the bound is independent from the prediction function used,
and assumes that the prediction gives the worst possible accuracy allowed by the test.
Hence, under a prediction that always fails the bound is tight; however, under an accu-
rate prediction function, the mechanism can achieve much better utility, as shown in the
evaluation of Section 5.

3.3 Skipping the Test

The amount of budget devoted to the test is still linear in the number of steps and can
amount to a considerable fraction; for this reason, given some particular conditions, we
may want to skip it altogether using directly the prediction or the noise mechanism. The
test mechanism we use (2) is defined for all εθ > 0, l ∈ [0,+∞). We can extend it to
the case εθ = 0, l ∈ {−∞,+∞} with the convention that Θ(0,+∞, z̃) always returns
1 and Θ(0,−∞, z̃) always returns 0. The new test mechanisms are independent of the
input x so they can be trivially shown to be private, with no budget being consumed.

Fact 2 (Privacy of Test function) The test functions Θ(0,+∞, z̃) and
Θ(0,−∞, z̃) satisfy assumption 3.
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Now if β returns (0, εN ,−∞) we always fallback to the noise mechanism N(εN);
this is especially useful when we know the prediction is not in conditions to perform
well and testing would be a waste of budget. For instance, consider a prediction function
that needs at least a certain number n of previous observables to be able to predict with
enough accuracy; in this case we can save some budget if we directly use the noise
mechanism for those n steps without testing. Note that the bound on utility is preserved
in this case, as we can rely on the αN (δ)-accuracy of N(εN ).

On the other hand, the budget manager can return (0, 0,+∞) which causes the pre-
diction to be reported without spending any budget. This decision could be based on
any public information that gives high confidence to the prediction. A good use of this
case can be found in Section 5 where timing information is used to skip the test.

Note that the prediction is computed from public knowledge, so releasing it has no
privacy cost. However in this case we loose any guarantee on the utility of the reported
answer, at least in the general case; based on the criteria for skipping the test (as in the
case of the user walking in the city), we could make assumptions about the quality of
the prediction which would allow to restore the bound.

4 Predictive Mechanism for Location Privacy

The applicability ofdX-privacy to location-based systems, called geo-indistinguishability
in this context, was already discussed in Section 2. Having studied the general properties
of our predictive mechanism, we are ready to apply it for location privacy.

As already described in the preliminaries the sets of secret and observables are sets
of geographical coordinates, the metric used is the euclidean distance and we will use
Θ(εθ, l, z̃) (2) as test function. We start with the description of a simple prediction
function, followed by the design of two budget managers and finally some heuristics
used to skip the test.

Prediction Function. For the prediction function we use a simple strategy, the parrot
prediction, that just returns the value of the last observable, which ultimately will be the
last hard observable.

parrot((z, b) :: r) = z (7)

Despite its simplicity, this prediction gives excellent results in the case when the secrets
are close to each other with respect to the utility required - e.g. suppose the user queries
for restaurants and he is willing to accept reported points as far as 1 km from the secret
point, if the next positions are tens of meters apart, then the same reported point will
be a good prediction for several positions. Similarly, the prediction is quite effective
when the user stays still for several queries, which is a typical case of a smartphone
user accessing an LBS.

More concretely, we define the step of a trace as the average distance between its
adjacent points σ(x) = avg0≤i<|x| d(xi, xi+1) and we compare it with the αN (0.9)-
accuracy of the noise mechanism. The intuition is that the parrot prediction works well
on a trace x if σ(x) is smaller than αN (0.9) or in the presence of clusters because once
we release a hard point we can use it as a good enough prediction for several other
secret points close to it.
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Furthermore the parrot prediction can be trivially implemented on any system and it
has the desirable property of being independent from the user; taking into account past
traces of the user, for instance, would give a more effective prediction, but it would be
restricted to that particular user.

Budget Managers. When configuring a mechanism we need to take into account 3
global parameters: the global privacy, the utility and the number of interactions, written
(ε, α, n) for brevity. All three are interdependent and fixing one we obtain a relation
between the other two. In our case we choose to be independent of the length of the
traces; to do so we introduce the privacy consumption rate (or just rate) which is the
amount of budget spent at each step on average: ρ(r) = ε(r)

|r| . This measure represent
the privacy usage of the mechanism or how fast we run out of budget and given this
value we can easily retrieve how many points we can cover given a certain initial budget.
As already done for derr, we also introduce the average-case rate for the mechanism as
the expected value of ρ, given a prior distribution π ∈ P(Xn) on traces:

E[ρ] =
∑

x π(x)
∑

r PM(x)(r) ρ(r)

Given that our main concern is privacy we restrict ourselves to ε-bounded budget man-
agers, that guarantee that the total budget consumed by the mechanism will never ex-
ceed ε, and divide them in two categories:

Fixed Utility: In the independent mechanism if we want to guarantee a certain level
of utility, we know that we need to use a certain amount of budget at each step, a fixed
rate, thus being able to cover a certain number n of steps. However in our case, if the
test is successful, we may save the cost of the noise and meet the fixed utility with a
smaller rate per point; smaller rates translates in additional interactions possible after
n. We fix the utility and minimize the rate.

Fixed Rate: Alternatively, if in the independent mechanism we want to cover just
n steps, thus fixing the rate, we would obtain a certain fixed utility. On the contrary
the predictive mechanism, in the steps where the test succeeds, spends less than the
chosen rate, allowing the next steps to spend more than the rate. This alternance creates
a positive behavior where hard points can use the saved budget to increase their accuracy
that in turn makes predicting more accurate and likely to succeed, leading to more
saving. Of course the average cost for all steps meets the expected rate. In this case we
fix the rate and maximize the utility.

Configuration of the Mechanism. We now give an overview of the constraints that
are present on the parameters of the predictive mechanism and a guideline to configure
them to obtain the desired levels of privacy and utility. The only settings that the user
needs to provide are ε and either α or ρ. The budget manager will define at each step the
amount of budget devoted to the test εθ , the noise mechanism εN and the test threshold
l, starting from the global settings.

Budget usage. First we define the prediction rate PR as the percentage points predicted
successfully; this property will be used to configure and to verify how effective is the
predictive mechanism. We can then introduce a first equation which relates εθ and εN
to the budget consumption rate: ρ = εθ + (1 − PR)εN . This formula is derived from
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budget manager β (r )
i f ε(r) ≥ ε then STOP
e l s e

εθ := η cθ
α (1 + 1

γ )

εN := cN
α

l := cθ
γεθ

re turn (εθ, εN , l)

(a) Fixed Utility configured with ε and α

budget manager β (r )
i f ε(r) ≥ ε then STOP
e l s e

εN := ρ
(1−PR)+

cθ
cN

η(1+ 1
γ )

εθ := εNη cθ
cN

(1 + 1
γ )

l := cθ
γεθ

re turn (εθ, εN , l)

(b) Fixed Rate configured with ε, ρ and PR

the budget usage of the mechanism (Lemma 1), with the two following approximations.
First, εθ and εN in future steps are assumed constant. In practice they will be variable
because this computation is re-done at each step with the actual remaining budget. Sec-
ond, we assume the hard steps are evenly distributed along the run. This allows us to
use PR, which is a global property of the trace, in a local computation.

Note that ρ is constant in the fixed rate case and is computed over the current run
for the fixed utility case. We already knew that the budget available at each step had to
be split between Θ and N , this result confirms the intuition that the more we manage
to predict (higher PR) the less we’ll need to spend for the noise generation (on average
over the run).

Utility. From the utility result given by Proposition 1 we obtain an equation that relates
all the parameters of the mechanism, εθ , εN and l. Given that the global utility will be
the worst of the two, we decide to give both the noise and predictive components the
same utility: αN = l + αθ . Moreover, as discussed in the utility section, this result is a
bound valid for every possible prediction function, even one that always fails, for this
reason the bound may be too pessimistic for the practical cases where the prediction
does work. In order to reduce the influence of the accuracy of the predictive component
we introduce a parameter 0 ≤ η ≤ 1 that can be set to 1 to retrieve the strict case or can
safely go as low as 0.5 as shown in our experiments. Finally we obtain the following
relation between the parameters: α = αN = η(l + αθ).

Noise-threshold ratio. Now we have two equations for three parameters and to com-
pletely configure the mechanism we introduce an additional parameter 0 ≤ γ ≤ 1 that
is used to tune, in the predictive component, the ratio between the threshold l and the
Laplacian noise added to it so that γ = αθ

l . The intuition is that γ should not be bigger
that 1, otherwise the noise could be more important than the threshold and we might as
well use a random test. For our experiments we found good values of γ around 0.8.

Note that both η and γ are values that should be determined using a representative
sample of the expected input, in a sort of tuning phase, and then fixed in the mechanism.
The same goes for the expected prediction rate that is used to configure the budget
managers, at least in the beginning this value is necessary to allocate some resource for
Θ, after some iterations it is computed from the actual run.

Relation between accuracy and epsilon. The final simplification that we apply is when
we compute the accuracy of the noisy components, for both the linear Laplacian and
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the polar Laplacian we can compute their maximum value up to a certain probability
δ using their inverse cumulative probability distributions, that we denote icll and
icpl respectively. Fixing δ to 0.9, both these functions can be expressed as the ratio of
a constant and the epsilon used to scale the noise αN (δ) = icpl(εN , δ) = cN (δ)

εN
and

αθ(δ) = icll(εθ, δ) = cθ(δ)
εθ

.
Now that we have the equations that relate the various parameters, from the settings

given by the user we can realize the two budget managers, shown in Figure 3a and 3b.
Furthermore we can compare the expected rate or accuracy of our mechanism with

those of an independent mechanism and find the prediction rate that we need to meet
to provide an improvement. We obtain in both cases a lower bound on the prediction
rate: PR ≥ η cθ

cN
(1 + 1

γ ). This gives an idea of the feasibility of a configuration before
actually running it, for example using the parameters of our experiments we find that it
is necessary to predict at least 46% of points to make up for the cost of the test.

5 Case Study

To evaluate our mechanism, we follow our motivating example stated in the introduction
of a user performing several activities while moving around the city throughout a day,
possibly using different means of transport. During these activities, the user performs
queries to an LBS using his mobile device, while wishing to keep his location private.

We assume that the user queries the LBS only when being still or moving at a slow
speed (less than 15 km/h); this reflect the semantic of a geo localized query: there is usu-
ally little value in asking information relative to one’s current position if the position is
changing quickly. We perform a comparison between the independent mechanism IM
and our predictive mechanism PM, both using polar Laplace noise as the underlying
noise mechanism. The mechanisms are evaluated on two data sets of real GPS trajecto-
ries, using both a fixed-utility and fixed-rate budget managers and a skip strategy.

Data sets. The first data set we tested our mechanism against, is the well known Ge-
oLife [15] which collects 18.670 GPS trajectories from 182 users in Beijing during a
period of over five years. In this set the users take a variety of means of transport, from
walking and biking to car, train, metro, taxi and even airplane. Regarding the trajecto-
ries length we can roughly divide them on three equal groups, less than 5 km, between
5 and 20 km and more than 20 km. As for duration 58% are less than 1 hour, 26%
between 1 and 6 hours and 16% more than 6 hours.

The second data set is Tdrive [16], a collections of about 9000 taxi trajectories, al-
ways in the city of Beijing. As opposed to the variety of Geolife in this set we have only
cars movements and the trajectories tends to be longer in both time and distance. The
interest of using this set, which does not exactly correspond to our target use case of a
user walking in a city, is to test the flexibility of the mechanism.

In order to use this sets some preprocessing is needed in order to model our use case.
GPS trajectories present the problem of having all the movements of the user, instead
of just the points where the user actually queried the LBS, which is a small subset of
the trajectory. For this reason we perform a probabilistic “sampling” of the trajectories
that, based on the speed and type of user, produces a trace of query points. First, we
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select the part of the trace where the speed is less than 15 km/h, and in these segments
we sample points depending on the type of user, as explained below.

Users are classified based on the frequency of their use of the LBS, from occasional
to frequent users. This is achieved by defining two intervals in time, one brief and the
other long (a jump), that could occur between two subsequent queries. Then each class
of users is generated by sampling with a different probability of jumping p, that is the
probability that the next query will be after a long interval in time. Each value of p
gives rise to a different prior distribution π on the produced traces, hence affecting the
performance of our mechanism.

The interval that we used in our experiments are 1 and 60 minutes, both with ad-
dition of a small Gaussian noise; frequent users will query almost every minute while
occasional users around every hour. In our experiments we generated 11 such priors,
with probability of jumping ranging from 0 to 1 at steps of 0.1, where each trace was
sampled 10 times.

Configuration. In order to configure the geo-indistinguishable application, first the user
defines a radius r∗ where she wishes to be protected, that we assume is 100 meters, and
then the application sets ε∗, the global level of privacy, to be ln 10. This means that
taken two points on the radius of 100 meters their probability of being the observables
of the same secret differ at most by 10, and even less the more we take them closer to
the secret. We think this is a reasonable level of privacy in a dense urban environment.
For what concerns the two budget managers, the fixed-rate was tested with a 3.3% rate,
which corresponds to about 30 queries, which in a day seems a reasonable number even
for an avid user. For the fixed-utility we set an accuracy limit 3 km, again reasonable if
we consider a walking distance and that these are worst cases.

Skip-the-test strategy. While the aim of the mechanism is to hide the user’s position,
the timestamp of a point is observable, hence we can use the elapsed time from the last
reported point to estimate the distance that the user may have traveled. If this distance
is less than the accuracy required, we can report the predicted value without testing it,
we know that the user can’t be too far from his last reported position. The risk of this
approach lies in the speed that we use to link elapsed time and traveled distance, if
the user is faster that expected (maybe he took a metro) we would report an inaccurate
point. To be on the safe side it should be set to the maximum speed we expect our
users to travel at, however with lower values we’ll be able to skip more, it is a matter
of how much we care about accuracy or how much we know about our users. In our
experiments we assumed this speed to be 0.5 km/h.

We would expect this approach to be more convenient in a context where accuracy
is not the primary goal; indeed skipping the test will provide the greatest advantage for
the fixed-utility case, where we just don’t want to exceed a worst case limit.

Additionally we use another skip-the-test strategy to use directly with the noise
mechanism when we are in the first step and thus there is no previous hard point for
the parrot prediction to report. This is a trivial example of skip strategy, yet it can lead
to some budget savings.



36 K. Chatzikokolakis, C. Palamidessi, and M. Stronati

 0

 20

 40

 60

 80

 100

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

P
e

rc
e

n
ta

g
e

Probability of Jumping

Testing Budget
Prediction Rate
Skipped Points

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

E
rr

o
r 

(m
e

te
rs

)

Probability of Jumping

Predictive avg
Independent avg

Predictive 90%
Independent 90%

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

B
u

d
g

e
t 

C
o

n
s
u

m
p

ti
o

n
 R

a
te

 (
%

)

Probability of Jumping

Predictive Independent

(a) Fixed-Rate 3% without skip
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Fig. 4. General statistics, Average Error and Rate for Fixed-Rate budget manager

Results. It should be noted that both the preprocessing and the sanitization were per-
formed with same configuration on both data sets. The results of running the mechanism
on the samples traces from the Geolife data set, are reported in figures 4, 5, the graphs
of Tdrive are omitted for reason of space as they show a very similar behavior to Geolife
(they can be found in [17]). In the horizontal axis we have the probability p that was
used during the sampling, to determine how often the user performs a jump in time: the
smaller the value the more frequent the queries. For each budget manager we plot: In
the first graph, some general statistics about the mechanism, such as the prediction rate
achieved, the amount of budget devoted to Θ and the amount of skipped points; In the
second column the average (E[derr]) and 90-th percentile (α(0.9)) of the error; In the
third the average budget consumption rate E[ρ]. Furthermore we run the experiments
with and without the skip the test strategy, for the sake of comparison.

The graphs present a smooth behaviour, despite the use of real data, because of the
sampling on each trace and the averaging over all traces of all users. As general remarks,
we can see that the prediction rate degrades as the users become more occasional, thus
less predictable, and the same goes for the number of skipped points. Notice that the
testing budget adapts with the prediction rate which is a sign that the budget managers
reconfigure dynamically.

Fixed-rate (Fig. 4): fixing the rate to 3.3% to cover 30 points, we can devote the
budget saved to improve the accuracy. In the right most graph we see that indeed the
rate is very stable even in the unpredictable cases, and very close to the rate of the inde-
pendent mechanism. The graph in the center shows great improvements in the average
error, 500 m in the worst case and 700 m in the best, and even more remarkable is the
improvement for the maximum error, 1.3km up to 1.9km. With the skip strategy we see
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(a) Fixed-Utility 3 km without skip
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Fig. 5. General statistics, Average Error and Rate for Fixed-Utility budget manager

a small improvement for p ≤ 0.5, again both in average and maximum error, which
correspond to a decrease in the testing budget in the left most graph: the budget saved
skipping the test is invested in more accurate noise.

Fixed-utility (Fig. 5): fixing the maximum utility (or in-accuracy) to 3 km, our mech-
anism manages to save up to 1.5% of budget rate. If we want to compare the number
of points covered, the independent mechanism can do around 17 points while the pre-
dictive 24. As expected the average and max errors are below the independent mecha-
nism corresponding values which confirms that the budget manager is working correctly
keeping the utility above a certain level. Despite this they don’t show a stable behavior
like the rate in the fixed-rate case, this is due to the fact that while we can finely control
the amount of budget that we spend, the error is less controllable, especially the one
produced by the predictive component. With the skip strategy in this case we obtain a
very noticeable improvement in this case, with rates as low as 2% in the best case which
translates to 50 points covered. As already pointed out, in this case the skip strategy is
more fruitful because we care less about accuracy.

Tdrive. This data set reports remarkably similar performance to Geolife when the prob-
ability of jumping p is less than 0.7. In this cases the predictive mechanism is consis-
tently a better choice than the independent mechanism on both budget managers. On
the contrary for higher values of p the independent mechanism performs better, it is
interesting to notice that the prediction rate at p = 0.7 starts to be lower than 46%,
as expected from Section 4. This difference between the best and worst case is more
accentuated in Tdrive precisely because the prediction function was not designed for
this scenario. The more sporadic users are even less predictable as they are moving at



38 K. Chatzikokolakis, C. Palamidessi, and M. Stronati

higher speeds and roaming larger areas. Also the skip strategy, again designed for walk-
ing users, shows some spikes in the average error, due to wrongly skipped points where
probably the taxi speeded up suddenly.

Figure 6 displays one of Geolife trajectories sanitized with fixed utility. The original
trace, in red, starts south with low speed, moves north on a high speed road and then
turns around Tsinghua University for some time, again at low speed, for a total of 18 km
traveled in 10 hours. The sampled trace was obtained with a probability 0.5 of jumping
and is plotted in light blue: as expected, 9 of the points are north, one south and the
middle part was skipped. Finally in yellow we have the reported trace with 3 locations,
which were used once for the point at the bottom, 7 times for the one in the middle and
twice for point in the top.

6 Conclusions and Future Work

Fig. 6. Original trace (red), sampled
trace (light blue) and reported trace
(yellow)

Future Work. As the experiments show the more
efficient use of budget allows us to cover a day
of usage, which was the goal we were aiming for
in order to attack realistic applications. The intu-
ition is that even if there is correlation between the
traces of the same user on several days (for exam-
ple we go to work and home every day) still it is
not enough to accurately locate the user at a pre-
cise moment in time (we might go to work later,
or follow a different road). It is not clear though
if one day is enough time to break the correlation
and possibly reset the budget, we leave to future
work to investigate in which cases it is indeed pos-
sible to reset the system and when on the contrary
the epsilon keeps increasing.

One other possibility to prolong even further
the use of the system is to improve the predic-
tion. An extension we plan to develop consist in
using the mobility traces of a user, or of a group
of users, to designate locations where the next po-
sition is likely to be. In [21] the authors already
developed inference attacks on the reported loca-
tions of users to discover points of interests and
future locations, among other things; the idea is
to use these attacks as a prediction.

We are also developing a linearizing prediction, that using past points tries to estab-
lish the next location using a linear regression method.

Alternatively we are considering the use of public geographic information to im-
prove the prediction, which could simply translate to using already developed map-
matching algorithms: typically in navigation systems an approximate location needs to
be matched to an existing map, for example to place the user on a road. Map matching
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would make trivial predicting the direction of the user moving on a road for example,
while in crossroads could be dealt with with the help of the mobility traces already dis-
cussed before: if on the left the is just countryside and on the right a mall, the user is
more likely to turn right. Ultimately if more than one prediction function prove effec-
tive, we are interested in the possibility to merge them, for instance using multiplicative
weights or related technique (e.g. Kalman filters).

Related Work. On the predictive mechanism side, our mechanism was mainly inspired
by the median mechanism [20], a work on differential privacy for databases based on
the idea of exploiting the correlation on the queries to improve the budget usage. The
mechanism uses a concept similar to our prediction to determine the answer to the
next query using only past answers. An analogous work is the multiplicative weights
mechanism [22], again in the context of statistical databases. The mechanism keeps a
parallel version of the database which is used to predict the next answer and in case of
failure it is updated with a multiplicative weights technique.

A key difference from our context is that in the above works, several queries are
performed against the same database. In our setting, however, the secret (the position
of the user) is always changing, which requires to exploit correlations in the data. This
scenario is explored also in [23] were the authors consider the case of an evolving secret
and develop a differentially private counter.

Concerning location privacy, there are excellent works and surveys [24,25,26] that
present the threats, methods, and guarantees. Like already discussed in the introduc-
tion the main trends in the field are those based on the expectation of distance error
[9,8,27,28] and on the notion of k-anonymity [3,4,5,6,7], both dependents on the adver-
sary’s side information, as are some other works [29] and [30].

Notions that abstract from the attacker’s knowledge based on differential privacy can
be found in [11] and [12] although only for aggregate information.

The notion we based our work on, geo-indistinguishability [14], other than abstract-
ing from the attacker’s prior knowledge, and therefore being suitable for scenarios
where the prior is unknown, or the same mechanism must be used for multiple users,
can be used for single users. In addition, being the definition an instantiation of the
more general notion of dX -privacy [19] we were able to generalize our mechanism as
well, being the prediction the only domain specific component.

Conclusions. We designed a general framework for private predictive dX -private mech-
anisms able to manage the privacy budget more efficiently than the standard approach,
in the cases where there is a considerable correlation on the data. The mechanism is
modular and clearly separates the privacy protecting components from the predictive
components, allowing ease of analysis and flexibility. We provide general configuration
guidelines usable for any notion of dX -privacy and a detailed instantiation for geo in-
distinguishability. We tested the geo private mechanism obtained with two large sets of
GPS trajectories and confirmed the goals set in the design phase. Experimental results
show that the correlation naturally present in a user data is enough for our mechanism
to outperform the independent mechanism in the majority of prior tested.
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Abstract. Data obfuscation is a well-known technique for protecting
user privacy against inference attacks, and it was studied in diverse
settings, including search queries, recommender systems, location-based
services and Online Social Networks (OSNs). However, these studies typ-
ically take the point of view of a single user who applies obfuscation,
and focus on protection of a single target attribute. Unfortunately, while
narrowing the scope simplifies the problem, it overlooks some significant
challenges that effective obfuscation would need to address in a more
realistic setting. First, correlations between attributes imply that obfus-
cation conducted to protect a certain attribute, may influence inference
attacks targeted at other attributes. In addition, when multiple users
conduct obfuscation simultaneously, the combined effect of their obfus-
cations may be significant enough to affect the inference mechanism to
their detriment. In this work we focus on the OSN setting and use a
dataset of 1.9 million Facebook profiles to demonstrate the severity of
these problems and explore possible solutions. For example, we show that
an obfuscation policy that would limit the accuracy of inference to 45%
when applied by a single user, would result in an inference accuracy of
75% when applied by 10% of the users. We show that a dynamic pol-
icy, which is continuously adjusted to the most recent data in the OSN,
may mitigate this problem. Finally, we report the results of a user study,
which indicates that users are more willing to obfuscate their profiles
using popular and high quality items. Accordingly, we propose and eval-
uate an obfuscation strategy that satisfies both user needs and privacy
protection.

1 Introduction

With the growing popularity of Online Social Networks (OSNs) in the past
decade, users are sharing an increasing amount of personal information, ranging
from their personal details and interests, to their habits and opinions. Access
to some of this personal information can be restricted by configuring the OSNs’
built-in privacy settings, but despite the OSN users’ growing privacy awareness,
a lot of this data is still considered harmless and made publicly accessible. This

E. De Cristofaro and S.J. Murdoch (Eds.): PETS 2014, LNCS 8555, pp. 42–62, 2014.
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and other user-generated data is collected and mined by companies that pro-
vide personalized services, including recommendations and targeted advertising.
Users’ privacy can be compromised when the public information in their profiles
is used to derive information they are not willing to reveal. Previous studies
have shown that private attributes1 can indeed be easily inferred based on in-
formation from others who revealed those attributes, either by utilizing social
graph characteristics like social connections of the target user (the homophily
principle) [8,11,13], or based on publicly shared items in common with other
users, utilizing statistical inference/maximum likelihood approaches [3].

As users have full control of the publicly available OSN information, they can
combat inference by obfuscating their public profiles, i.e., by adding or removing
selected information, while still keeping their true purpose of information shar-
ing. Obfuscation has been proposed to protect users’ privacy against inference
attacks in the context of search queries [14,18], movie ratings [17] and location-
based services [1]. In the OSN domain, He and Chu [7] assumed that social
relationships are publicly available, and proposed a protection method based
on obfuscating (removing specific existing, or adding fake) social links. In this
paper, we study generic statistical inference in OSNs, using a machine learn-
ing approach. We consider both the inference and the protection mechanisms,
based on easily accessible interest items (activities, movies, music, etc.) from
the OSN profiles. We assume that obfuscation is based on, e.g., an obfuscation
application, that recommends a choice of items to users who wish to protect
selected (one or more) attributes. These recommendations are based on a sam-
ple dataset collected from other OSN users. We show how obfuscation can be
applied to protect user privacy and derive a practical (acceptable to users) and
effective obfuscation strategy. We evaluate the practical aspects of obfuscation
when users are protecting multiple attributes and in a system where there is a
mix of privacy conscious users and users who do not share privacy concerns. Our
contributions are as follows.

Using a dataset of close to 1.9 million Facebook profiles, we evaluate the
effectiveness of different obfuscation strategies (to select items to be used for
obfuscation) and obfuscation policies, including adding, removing or replacing
selected items, with respect to a number of commonly used classifiers. We pro-
pose a novel obfuscation strategy, based on the χ2 feature selection metric, which
does not require knowledge of the classifier that the attacker is using (in general
such knowledge is required for optimum obfuscation strategies). We show that
this strategy can significantly reduce the inference accuracy, e.g., by 45% for
the case when 40% of interest items are added to the user profile, compared to
60% reduction offered by the optimum strategy. The advantage of the optimum
strategy decreases for the case when the same proportion of items are removed
or replaced, or when a lower proportion of items are obfuscated.

This is the first work that evaluates the obfuscation of multiple attributes. We
show that a strategy targeted towards protecting a single attribute can also offer

1 We use the term “private attribute” to describe the information a user does not
share publicly or, more generally, information that is not available online.
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protection to other sensitive attributes. For example, our results show that while
obfuscation targeting the gender attribute can reduce the inference accuracy by
a factor of 3 (from 87% to 30%) when all users obfuscate 50% of their items,
having a strategy targeting a different attribute, relationship, still results in
an improvement factor of 1.3 for gender. A strategy targeting both attributes
simultaneously can, for the same percentage of obfuscated items, increase this
to 1.45. When attributes are correlated, however, a comparable protection level
can be achieved while targeting both, e.g., for the case of gender and interested
in, with a reduced inference accuracy of close to 30%.

We evaluate the effect of the obfuscation strategy that a group of users adopt
on the privacy of all users, both in a static setting, and in a dynamic setting in
which the strategy is adjusted based on the most recent OSN system data. We
show that a static obfuscation strategy will not protect users in a system where
other users share the same strategy. For example, with only 20% of users obfus-
cating their profiles by adding (or replacing) items, the accuracy of inference is
increased from 45% when a single user obfuscates their profile, to 85%. Remov-
ing items results in a less significant, but still notable increase. Using a dynamic
strategy can improve the resulting obfuscation gain for privacy conscious users,
although a significant gain is only achieved for a small proportion of all users,
indicating the need for further study of dynamic obfuscation strategies.

We evaluate the user preferences for various obfuscation strategies via a user
study and show how the study results can be applied to derive a user-friendly
obfuscation mechanism, which is both effective and practical. Our results indi-
cate that quality and popularity are important factors in the choice of items
for obfuscation and that having a mechanism that incorporates these factors is
imperative for an effective solution.

The remainder of the paper is organized as follows. In Section 2, we discuss
the background on inference techniques, we present the attack model and dis-
cuss the performance of different classifiers. Obfuscation is addressed in Section
3, including the obfuscation approaches and performance evaluation. Section 4
evaluates the performance of static and dynamic obfuscation techniques. The
user preference study is presented in Section 5. We discuss the related work on
inference and obfuscation techniques in Section 6 and conclude in Section 7.

2 Inferring Personal Information

In this section we evaluate the efficiency of private attribute inference attacks
using machine learning in the context of OSNs. We first describe our attacker
model, and then we introduce the feature selection process and the classifiers
used in this study. Using a dataset consisting of 1.9 million Facebook profiles, we
evaluate the performance of different classifiers on different types of background
information.
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2.1 Attack Model

The goal of the inference attack is to obtain the value of a user’s private (not
publicly accessible) attribute of their OSN profile, by analyzing publicly avail-
able background information using machine learning techniques. We assume the
adversary is able to learn from a large set of static public profiles. We note that
in this section we do not consider the impact of obfuscation on the performance
of inference, this will be addressed in Section 4. We also note that, while finding
the optimal inference attack model or inference algorithm is not the main focus
of this study, our evaluations are based on state-of-the-art inference techniques
that are used in the literature, e.g., in [17] and [9].

Assume an OSN profile comprises a total of k attributes (both public and
private): P = {A1, A2, ..., Ak}. The attributes can have either a single value, e.g.
for age, gender, and relationship status, or a list of values, e.g., for interest related
items in favourite movies, music, books, etc. We define the target attribute of the
attacker as Ax ∈ P , and the background attribute used for learning as Ab ∈ P .
Throughout the paper, we use the terms “items” and “features” to refer to
specific attribute values.

To infer the value of Ax based on Ab, we model the inference task as a doc-
ument classification problem. We split the dataset into training and test groups
of user profiles. First, from the training set and based on the background at-
tribute Ab belonging to a set of users N = {1, 2, ..., n} and a set of items (fea-
tures) M = {1, 2, ...,m} , we construct a n × m binary matrix Xtrain. Matrix
elements xij ∈ {0, 1}, where i ∈ N and j ∈ M , represent the user-item relation-
ship: xij = 1 indicates the item j is in user i’s profile, and xij = 0 otherwise.
Similarly, vector Ytrain = {y1, y2, ..., yn}, yi ∈ C, represents the user-class rela-
tionship, with values of the target attribute Ax taken as classes C = {1, 2, .., c}.
The classifier is trained with Xtrain and Ytrain, resulting in a prediction func-
tion F (·). The test profiles are used to construct Xtest and Ytest and the value
Ax is then predicted by the trained classifier function F (·) as Y ′

test = F (Xtest),
where the output Y ′

test is the predicted value of Ax. The predicted results Y ′
test

are compared to the actual values in Ytest to evaluate the classifier performance,
E(Y ′

test, Ytest), where E denotes the performance metrics. For E, we use accuracy
(the sum of all correct classifications divided by the total number of classifica-
tions) and Area Under Curve (AUC).

2.2 Feature Selection: χ2

Feature selection is the process of selecting a subset of the terms occurring in
the training set and using this subset as features in the classification task. This
not only reduces the size of the training and test sets, but also increases the
classification accuracy, by eliminating noise introduced by feature overfitting.
Considering that wrapper and embedded feature selection methods are com-
putationally expensive and specific to a prediction algorithm [6], we adopt the
filter method [12], as it provides a fast pre-processing step while still retaining
the utility of the feature set. Most importantly, the filter method is independent
from the used prediction algorithm.
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The filter method first computes a utility measure S(t, c) for each term t and
class c, and then selects k features that have the highest value of S(t, c). In this
study, we use the chi-square (χ2) correlation coefficient, one of the most effective
feature selection metrics for text classification [19], as the utility measure. The
χ2 score for term t to class c is computed by:

χ2(t, c) =
∑

et∈{0,1}

∑
ec∈{0,1}

(Netec − Eetec)
2

Eetec

(1)

Where et is an indication of the document containing the term t and ec indicates
whether the document is in class c. Netec is the observed frequency of t in the
document with class c and Eetec is the expected frequency, with et ∈ {0, 1} and
ec ∈ {0, 1}. E.g., E11 is the expected frequency of the term t = 1 and class c = 1
occurring jointly in a document.

2.3 Selected Classifiers

A number of techniques can be used for document classification. After evaluat-
ing the performance of a number of state-of-the-art classifiers (including Näıve
Bayes, Decision Tree, Random Forest, Support Vector Machines and Logistic
Regression), we selected the top three performing classifiers for our experiments
(we assume an attacker could easily perform a similar evaluation).

Bernoulli Näıve Bayes Classifier. Näıve Bayes classifier assumes the inde-
pendence of features, in our case the presence of background attribute values in
Ab, and that each of the features contributes independently to the probability
that the prediction instance belongs to a class. We select the Bernoulli Näıve
Bayes classifier because the features are binary values (corresponding to the pres-
ence of these features, or of interest related items, in a user profile). Maximum
a posteriori (MAP) decision rule is used for class prediction, i.e., to select the
most probable hypothesis. Given the background attribute contains m features,
the predicted class label c is calculated below:

y′ = argmax
c

p(y = c)
m∏
i=1

p(Ai = ai|y = c) (2)

Logistic Regression Classifier. The logistic regression classification model
is used for predicting the outcome of dependent features. Logistic Regression
assumes a parametric form for the distribution P (Y |X), then directly estimates
its parameters W = {w0, w1, ..., wm} from the training data. The prediction is
based on the following probability:

p(y = c|A) = 1

1 + exp(w0 +
∑m

i=1 wiAi)
(3)
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Logistic regression is a binary classifier. For multi-class target attributes, we
have used One-Versus-All strategy.2

Random Forest Classifier. Random Forest is an ensemble classification ap-
proach that combines a set of binary decision trees. At the learning stage, each
tree is constructed using a portion of the training data and a subset of data
features. Given a fixed set of features Φ that model the training data, log(Φ)
features and around 2/3 of the training data are randomly selected to construct
each tree. Within the forest trees, each node uses for the decision making a single
feature f ∈ Φ, which is the best performing feature out of the selected subset
of features. The class of an instance is determined by the majority voting of the
terminal nodes reached when traversing the trees [2].

Table 1. Target attribute availability and their classes; total users: 249,847

Age: 13,308 users (5.3%) Gender: 169,509 users (67.8%)

classes code percentage classes code percentage

13-17 0 35.59% female 0 57.4%

18-24 1 42.85% male 1 42.6%

25-34 2 13.49%

35+ 3 8.05%

Interested in : 70,476 users (28.2%)

Relationship: 93,855 users (37.5%) classes code percentage

classes code percentage men 0 23.89%

in a relationship 0 62.2% women 1 39.32%

single 1 37.8% men and women 2 36.78%

2.4 The Performance of the Inference Attack

Dataset Used for Evaluation. We use a dataset of randomly sampled Face-
book public profiles, comprising approximately 1.9 million profiles. We extract
users’ interest related items, i.e., activities, books, films, interests, movies, mu-
sic, television, etc., and user personal information attributes, i.e., age, gender,
relationship and interested in. The availability of target attributes in the used
dataset is summarized in Table 1, and the distribution of the number of items
per attribute and per user are summarized in Tables 2 and 3, respectively.

Table 2. Distribution of the number of items per attribute

attribute # records unique avg # users 25% 50% 75% 95%

activities 918,525 11,405 80.54 15 27 66 277

books 371,142 5,125 72.42 13 21 45 240

films 313,679 3,577 87.69 15 28 66 303

interests 233,478 2,862 81.58 13 21 44 250

movies 975,105 6,693 145.69 15 30 89 555

music 2,055,576 16,313 126.01 13 22 53 375

television 1,362,780 6,462 210.89 14 26 72 658

all attributes 6,230,285 52,437 118.81 14 24 61 373

2 http://scikit-learn.org/stable/modules/multiclass.html

http://scikit-learn.org/stable/modules/multiclass.html
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Table 3. Distribution of the number of items per user

attribute # users avg # items 25% 50% 75% 95%

activities 95,779 9.59 2 3 7 28

books 134,219 2.77 1 2 4 6

films 50,547 6.21 2 4 7 18

interests 65,730 3.55 1 3 4 9

movies 174,119 5.6 3 5 5 15

music 236,653 8.69 3 5 8 29

television 233,893 5.83 3 5 6 15

all attributes 249,847 24.94 12 15 24 69

Inference Results. The inference attack on selected attributes is evaluated
using the Facebook dataset, for gender, age, relationship and interested in (the
actual values of classes are shown in Table 1), using the following shared interest
attributes: activities, books, films, interests, movies, music, television and also all
attributes, where we consider all possible public interest items from users’ profiles
as features. We use 10-fold cross validation and compute the average accuracy
and AUC across all folds. For each combination of target attribute and interest
type, we first extract all users who have revealed this target attribute and at
least one item in the selected interest type, we then construct the user-item
matrix based on this subset of users.

(a) Accuracy vs. the number of
selected features (χ2)

(b) Accuracy vs. the number of
features that a user has

Fig. 1. Accuracy for inferring gender based on movie features, using different classifiers

To understand how the number of selected features affects the inference, we
perform two preliminary measurements on (a) accuracy vs. the number k of
features selected for inference, (b) accuracy vs. the number of features per user.
As an example, Figure 1(a) shows the results for the accuracy of inferring gender
using movie items. We observe that the accuracy improves as the number of
selected features increases, for all classifiers, and becomes stable when k reaches
1000. Interestingly, we observe that by selecting only 10 features, all classifiers
achieved an accuracy higher than 74%. Based on this observation, we use k =
1000 features for the remainder of this study.
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Figure 1(b) shows the performance of gender inference when using movie
features, and for a varying number of features that a user has (regardless of
whether they were selected). We can again observe improved accuracy, in line
with an increasing amount of available information. We note that the accuracy
become stable when a user has more than 10 features.

Table 4. Performance of inferring age, gender, relationship, interested in, using
different information and classifiers; ACC: accuracy, AUC: area under curve, NB: Näıve
Bayes, LR: Logistic Regression, RF: Random Forest

age inference gender inference

Attribute
NB LR RF NB LR RF

ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

activities 0.501 0.536 0.502 0.529 0.551 0.556 0.80 0.718 0.777 0.604 0.813 0.643

books 0.502 0.536 0.533 0.509 0.494 0.522 0.843 0.709 0.795 0.535 0.809 0.564

films 0.591 0.564 0.616 0.505 0.598 0.52 0.814 0.800 0.763 0.70 0.80 0.77

interests 0.444 0.500 0.456 0.496 0.452 0.509 0.841 0.649 0.806 0.548 0.823 0.604

movies 0.545 0.581 0.520 0.528 0.551 0.571 0.837 0.824 0.774 0.712 0.827 0.785

music 0.594 0.595 0.568 0.547 0.585 0.575 0.752 0.724 0.703 0.654 0.737 0.698

television 0.601 0.605 0.552 0.558 0.572 0.586 0.85 0.823 0.790 0.686 0.834 0.774

all attributes 0.624 0.613 0.568 0.573 0.605 0.586 0.822 0.808 0.736 0.723 0.796 0.778

relationship inference interested in inference

Attribute
NB LR RF NB LR RF

ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

activities 0.629 0.620 0.592 0.570 0.589 0.563 0.526 0.474 0.476 0.510 0.518 0.508

books 0.593 0.591 0.561 0.539 0.577 0.567 0.47 0.549 0.456 0.488 0.456 0.523

films 0.591 0.591 0.556 0.553 0.567 0.567 0.485 0.473 0.518 0.497 0.541 0.604

interests 0.560 0.499 0.581 0.498 0.568 0.503 0.464 0.561 0.440 0.532 0.467 0.565

movies 0.610 0.609 0.561 0.560 0.578 0.577 0.745 0.783 0.688 0.729 0.726 0.771

music 0.604 0.607 0.549 0.546 0.565 0.562 0.529 0.508 0.463 0.510 0.480 0.511

television 0.614 0.608 0.572 0.557 0.578 0.570 0.542 0.573 0.472 0.584 0.495 0.559

all attributes 0.640 0.632 0.573 0.563 0.602 0.591 0.740 0.487 0.617 0.489 0.6876 0.465

Predictive Power of Interests. Table 4 shows the inference accuracy and
AUC of predicting age, gender, relationship and interested in for all interest
types and for the three selected classifiers. The values corresponding to the best
performance are highlighted in each column. We observe that predicting gender
is the least challenging target, with prediction accuracy of up to 85% using
television (program) items. This is followed by interested in, where the classifier
can predict as high as 74% of the cases correctly and with AUC of 78.36%.
Inferring age is more difficult, as there are more classes and little difference
between classes. Comparing the performance of different classifiers, we observe
that Bernoulli Näıve Bayes classifier outperforms the other classifiers for this
inference task. We can observe that the predictive power for different types of
interests changes when inferring a different attribute, e.g., movie items are a
good indicator of interested in and using television items results in the best
performance when inferring gender. It is interesting to note that considering all
available items from different interest categories does not always result in the
best performance.
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3 Obfuscating User Profiles

We assume that obfuscation of a user profile would be realized via an applica-
tion, which would recommend changes to specific attribute values based on the
knowledge of profiles of other users (contributed by users in, e.g., a crowdsourced
scenario, and/or collected by the application back-end). The goal of obfuscation
is to mitigate the inference attack on a selected (target) attribute, or a set of
such attributes. We stress that in this work, we do not aim to provide provable
privacy properties, but rather propose an empirical analysis of the state-of-the-
art obfuscation techniques to protect users from inference attacks that leverage
machine-learning approaches.

3.1 Obfuscating a Single Attribute: Strategies and Performance
Evaluation

We first define the terms used to describe and evaluate the obfuscation ap-
proaches. For the sake of simplicity, we consider the case when a single attribute
is targeted (and protected by obfuscation), although the following is also appli-
cable to multiple target attributes. Obfuscation is accomplished by altering one
or more background attributes Ab, so that the accuracy of inferring the class
(value) of the target attribute Ax is minimized.

The attribute value (item) is chosen in the following way. In the initial step,
all available items (from all users) are organized into classes, corresponding to
the target attribute. Obfuscation is done using a selected item, from a class
different from the one the target attribute belongs to. The user profile is modified
according to a selected obfuscation policy, that can be: adding, removing or
replacing an item. The item is chosen in line with a specific obfuscation strategy.
The resulting improvement is measured as the reduction of the inference accuracy
for the target attribute class, which can be perceived as obfuscation gain.

We consider a number of obfuscation strategies to choose the obfuscation
items, based on rankings corresponding to selected metrics. For the purpose of
obfuscation strategy evaluation, we first consider the optimal case of obfuscation,
where the classifier used by the attacker is known to the (obfuscating) applica-
tion. Therefore, we can choose the feature that achieves the highest obfuscation
gain, based on the available data. To compute the obfuscation gain δk of a feature
k ∈ {1, 2, ...,m}, we first set the kth element in each user’s profile to 1, resulting in
the test set X̂test. Then, we compute δk = E(F (Xtest), Ytest)−E(F (X̂test), Ytest),
where E(X,Y ) represents accuracy.

Figure 3.1 shows the distribution of obfuscation gain for the gender attribute,
and for three representative classifiers using all features. For all classifiers, the
effect of adding a single feature to the profile has a limited effect on the predic-
tion accuracy, as more than 90% of the features only result in a 10% accuracy
reduction. The CDF curves indicate that Logistic Regression is most resilient
to obfuscation using a single feature, while Näıve Bayes has the lowest level of
resilience.
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Fig. 2. Accuracy reduction distribution (CDF) for all features, using selected classifiers:
Näıve Bayes, Logistic Regression and Random Forest

However, there are many possible classifiers an attacker may use and, in prac-
tice, the assumption of prior knowledge of the classifier is not realistic. We there-
fore consider the following classifier-independent obfuscation strategies :

– χ2: Ranking the candidate obfuscation items based on the χ2 feature selec-
tion metrics, defined in Section 2.3.

– Popularity: Ranking the candidate items based on the number of users who
have these items.

– Majority: Ranking the items based on the proportion of users in a specific
class who possess them.

– Random: Randomly selecting the obfuscation items from a specific class.

For the evaluation, the set of items from a user’s profile Ab is transformed
into a binary vector v, with elements corresponding to the presence of items
in the profile. Adding an item to the profile is equivalent to changing the cor-
responding element from 0 to 1; removing an item is equivalent to reversing
a 1 to 0; and replacing an item is the combination of removing one item and
adding another. The performance of obfuscation is evaluated by comparing the
accuracy of inference for the original profile v and the obfuscated profile v̂. To
simplify the evaluation, we use movies as the background attribute to infer the
target attribute gender. The obfuscation framework can be easily applied to
other attribute combinations.

Figure 3 shows the performance of different obfuscation strategies for selected
classifiers, with inference accuracy computed for a varying level of obfuscated
items in the user profiles. As expected, the classifier-optimized obfuscation strat-
egy results in the best performance. However, as noted, this requires prior knowl-
edge of the classifier and the metric is computationally expensive to generate.
The obfuscation policy of replacing items results in the highest level of obfusca-
tion. Comparing the classifiers, Random forest and Logistic regression are more
resilient to random noise than the Bernoulli Näıve Bayes. Finally, the χ2 obfusca-
tion strategy is closest in performance to the optimal strategy for all classifiers,
indicating that this would be a good choice for a practical and cost effective
solution.
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(a) Bernoulli Näıve Bayes
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(b) Logistic Regression
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(c) Random Forest
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(d) Bernoulli Näıve Bayes
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(e) Logistic Regression
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(f) Random Forest
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(g) Bernoulli Näıve Bayes

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0  10  20  30  40  50  60  70  80  90  100

A
cc

ur
ac

y

% of replaced items

obfGainLR
random
majority

popularity
2

(h) Logistic Regression
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(i) Random Forest

Fig. 3. Obfuscating gender inference by adding, removing and replacing movie items to
user profiles using three selected classifiers: (a) - (c): Adding items; (d) - (f): Removing
items; (g) - (i): Replacing items

(a) PDF (b) CDF

Fig. 4. Distribution of the number of (selected) movie items per user

To better understand the number of items that are needed to effectively ob-
fuscate a user profile, Figure 4 shows the distribution of the number of items
for all the users in our dataset, including the number of features before and
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after the χ2 feature selection. Recall that for a meaningful inference, we filter
out the users who have less than 10 items before the experiments, therefore the
distribution starts with 10 items. The values shown in Figure 3 indicate that
only 20-30% of added items are sufficient to obfuscate a profile (the resulting
inference accuracy is below 50%). The CDF curve in Figure 4(b) indicates that
over 60% of the users have less than 10 selected items, which suggests that they
only need to add 2 to 3 items to obfuscate their profile.

3.2 Obfuscating Multiple Attributes

We now consider how obfuscating a selected attribute may impact the inference
of a different attribute and how multiple attributes may be jointly obfuscated.

We study the problem using two example pairs of target attributes: gender
and relationship status, and gender and interested in. We focus on the χ2 fea-
ture selection metric, shown to be a successful obfuscation strategy for single
attributes in Section 3.1. To understand how each feature may contribute to the
obfuscation of both target attributes, we show the χ2 score distribution of each
movie item in a 2-dimensional Cartesian plane in Figure 5. As the χ2 score only
indicates the inference strength of an item, but does not indicate the class it
belongs to, we represent one of the classes related to an attribute by negative
χ2 values. In the example on Figure 5, we define gender “female”, relationship
status “in a relationship” and interested in “female” as negative values.

We observe that χ2 score values are distributed in all four quadrants for
the gender-relationship pair shown in Figure 5(a), while the values for gender-
interested in combination in Figure 5(b) are mainly distributed in quadrants II
and IV, indicating that the latter two attributes are strongly correlated. We note
that our dataset contained no features indicating a combination of “male” and
“interested in male”, and included only a few weak features indicating “female”
and “interested in female.”

Female Male

Single

In a relationship

I II 

III IV 

(a)

Female Male

Interested in male

Interested in female

I II 

III IV 

(b)

Fig. 5. χ2 score of items for inferring pairs of attributes: (a) gender vs. relationship;
(b) gender vs. interested in
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We now evaluate the impact of obfuscating both single and multiple attributes
on the inference of the selected attributes. Figures 6(a) and 6(b) show the infer-
ence accuracy for varying levels of obfuscation, for gender and for relationship,
respectively, using the obfuscation policy of adding items, when either a single or
multiple attribute classes are obfuscated. The obfuscation strategy is χ2, modi-
fied for the case when both attribute classes are obfuscated. For this, we choose
items from a quadrant (see Figure 5) determined by both attribute classes, e.g.,
if a user is protecting the “male” and “single” classes, obfuscating items are cho-
sen from quadrant III (“female” and “in a relationship” classes). For the case of
an attribute having multiple classes, or for multiple target attributes, a general
rule would be to select items that are not in the target class, for all attributes
that the user wishes to protect.

We observe from Figure 6(a) that, in line with Figure 5(b), gender and in-
terested in are strongly correlated, and therefore obfuscating interested in also
obfuscates gender, achieving a similar obfuscation gain as obfuscation based on
gender. We can also observe that obfuscating based on relationship decreases
the inference accuracy of gender, but by a much lower value, indicating that
items introduced by obfuscating relationship are less relevant to gender. When
considering multiple attributes, both relationship-gender and, in Figure 6(b),
relationship-gender strategy, are very close, respectively, to the performance of
obfuscation based on the gender and relationship attributes alone. However,
when jointly targeting interested-gender, it is difficult to achieve a high obfusca-
tion performance level.
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Fig. 6. (a) Gender inference accuracy while obfuscating relationship and interested
in, and when considering multiple attributes. (b) relationship inference accuracy when
obfuscating gender, and when considering both gender and relationship.

4 The Impact of Obfuscation

In the previous section, we assumed that the attacker learns from an initial
version of user profiles, where no obfuscation was applied. As the number of
obfuscating users increases, it is reasonable to assume that the attacker becomes
aware of the obfuscation activity and adjusts the attack model. In this section,
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we examine how the obfuscation may affect the efficiency of the inference attacks,
when the attacker re-learns constantly from the most up-to-date dataset (which
includes obfuscated profiles). Then we discuss how the attacker may use the
knowledge of the users’ obfuscation strategy to further improve the attack.

For ease of presentation, we use the example of gender inference, however
we note that very similar results and trends were observed for other attributes
we tested. In the following, we observe the impact of attribute obfuscation on
the inference accuracy of (i) regular users who do not take part in the obfus-
cation process (non-obfuscated), and as such keep their original public profiles
unchanged; (ii) users who have adopted a specific obfuscation strategy; and (iii)
all users in the system.

4.1 Static Obfuscation Strategy

We start by studying a static obfuscation strategy that relies on an initial (non-
obfuscated) dataset, and always delivers a fixed set of items to users. We split
the dataset into a training set, representing the background knowledge of the
attacker, and a test set, representing the set of target users. Then, we “pollute”
a portion of the training set using χ2 obfuscation strategy we discussed in the
previous section. We assume that the obfuscating users modify (add, remove
or replace) 50% of their profile items (this achieves a reasonably low inference
accuracy, as per Section 3).

(a) Adding items (b) Removing items (c) Replacing items

Fig. 7. The impact of obfuscation on users’ privacy: regular users, obfuscating users
and overall users, with different portions of obfuscated profiles

The inference accuracy for different percentages of obfuscated profiles in the
training set is shown in Figure 7, for the cases of adding, removing and re-
placing items from user’s profiles. Our results show that the inference accuracy
for obfuscated profiles increases as the proportion of other obfuscated profiles
becomes higher. This suggests a paradox, where privacy loss increases as more
users become privacy-conscious.

To better understand why the obfuscation fails as the obfuscating population
increases, we analyze the new information that is injected into the system (as
part of the training data) by the obfuscating users. A static obfuscation strategy
always suggests the same set of items to achieve the best obfuscation. As a result,
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% of male users
it

em

0% obfuscated

10% obfuscated

20% obfuscated

Fig. 8. The change in class bias for top 10 obfuscating features, as the percentage of
obfuscated users increases

the suggested items establish strong correlation with the value that the user is
trying to hide. For example, Figure 8 shows the percentage of male users who
have one of the top-10 female-associated items (based on the χ2 score) when
there are 0%, 10% and 20% of obfuscated profiles. Initially all items are female
dominant and hence have strong association with female during inference. As
the number of male users who obfuscate their profiles by injecting these items
increases, the male/female ratio changes and the male users become dominant
at 10% and 20% obfuscated profiles in the system. Adding these (reversed) items
to users’ profiles hence becomes a strong indication for the class the users are
attempting to hide.

Notably, the inference accuracy for regular users decreases as the number
of users applying the obfuscation increases. This is again due to the attacker
learning from a set of items consisting of more obfuscated items, which equates
to adding noise to the “clean” profiles.

4.2 Dynamic Obfuscation Strategy

The main issue for the static strategy is that the injection of a similar set of
false items into the system, eventually results in those items becoming indica-
tive of the attributes users are attempting to keep private. We now investigate
two obfuscation strategies that recommend items dynamically: first we revisit
the experiment using a random obfuscation strategy; second, we assume the
obfuscation engine refreshes the strategy based on the most up-to-date data.

Recall that the random strategy chooses items from a different class randomly,
regardless of the obfuscation strength of the items. Although this approach has
inferior performance compared to more optimal strategies, it introduces diversity,
which increases the difficulty of identifying the obfuscated items. We perform
the same experiment as in Section 4.1 using the random obfuscation strategy,
and show the inference accuracy in Figure 9(a). We observe a similar result to
what was achieved by the static χ2 strategy (Figure 7(c)), which suggests that
spreading the recommended items randomly does not resolve the issue.

We then consider two dynamic obfuscation scenarios: first, we assume there
is a baseline of x% obfuscated profiles using the initial static strategy (static
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(a) random replace (b) static baseline replace (c) dynamic baseline replace

Fig. 9. Impact of obfuscation on users’ privacy using dynamic strategy, (a) random
strategy is used by all users. (b) training set polluted using the baseline static strategy
(c) training set polluted using the baseline dynamic strategy.

baseline). We evaluate the obfuscation gain for newcomers who obfuscate their
profile based on up-to-date data; the results are shown in Figure 9(b). We ob-
serve that the early adopters (baseline users) of obfuscation face a high risk of
successful inference. In contrast, newcomers who adopt the dynamic strategy,
have well obfuscated profiles.

In the second scenario, we consider a realistic situation where obfuscation is
adopted by users gradually over time; at each time period, we introduce 1% ob-
fuscated profiles to the training dataset (dynamic baseline). We then show how
the inference accuracy evolves as the portion of obfuscated profiles increases for
both early obfuscation adopters (baseline users) and newcomers. The results are
shown in Figure 9(c). We observe an increase in the inference accuracy for be-
tween 0% to 20% of the obfuscated profiles in the system, both for baseline users
and newcomers. Unlike the previous scenarios, the inference accuracy becomes
stable for both strategies. This observation suggests that using dynamic and the
most up-to-date strategy is beneficial both for early adopters of obfuscation and
for newcomers.

4.3 Limitations of the Obfuscation Strategies

In response to the obfuscation activities, the attacker can adopt stronger attack
models that actively identify polluted items and detect obfuscated profiles and
attributes. With such a capability, an attacker may use the knowledge of the
obfuscating items as recommended by the obfuscation engine to filter out noisy
items before launching the inference attacks. Likewise, an attacker may take
advantage of detected obfuscation behavior to infer the private attribute that
the user is trying to hide.

There are several ways to detect an obfuscated profile. Firstly, the attacker
may access the obfuscation application in the same way as a legitimate user.
This method is effective for static obfuscation strategies as the attacker can
easily obtain a list of the most likely obfuscation items.

For the dynamic strategies, a powerful attacker may detect obfuscation by
monitoring abrupt changes of profile items that are inconsistent with previous
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inference results. Arguably, the use of dynamic obfuscation strategy and progres-
sive introduction of obfuscation items would benefit the users towards resisting
more sophisticated inference attacks.

5 Considering User Preferences

We examined users’ preferences for the choice of obfuscation items via a survey,
performed on the online crowdsourcing survey platform CrowdFlower.3

Our survey first asked the respondents to rate the level of sensitivity of the
personal information in their profiles on a scale of 1− 5. Then, the survey asked
them to rate the preference for adding specific movies to their profile, in order
to protect their gender and relationship information from being inferred by a
third-party. The evaluation focused on three factors that may affect a user’s
decision to include an item in his/her profile: (1) privacy protection level : we
included three levels, high, medium and low, corresponding to values of χ2; (2)
popularity: high or low, related to the number of users with this item in our
dataset; and (3) quality: high or low, based on IMDb4 movie ratings. The list of
movies in the survey was carefully selected so that each item could be related
to a combination of these factors. For different user groups, i.e., for different
combinations of gender and relationship status, we provided a bespoke version
of the survey. The full survey can be found in the technical report [4].

We received 254 responses, with 158 responses that we considered valid (we
removed completed surveys that took less than 2 minutes to complete or that
had identical responses to almost all questions). We restricted the survey to users
from English speaking countries, with the respondents being from: US 36.7%,
Canada 35.4%, UK 17.7%, Australia 6.3%, New Zealand 3.8%. The gender-
relationship status distribution of the respondents was: male-single 17%, male-in
a relationship 19.6%, female-single 12.6% and female-in a relationship 50.6%.

Based on the average rating for the level of sensitivity of their personal in-
formation, we classified users into two groups: privacy conscious users (rating
above 3) and non-privacy aware users (rating below 3). The proportion of pos-
itive ratings (movies that were rated as acceptable for obfuscation) for the two
groups is shown in Figure 10. We observe that the privacy conscious users have
a higher likelihood of accepting movies that provide high protection, with a 17%
difference between the high and low protection levels; the trend is less noticeable
for non-privacy aware users, with only 7% difference between the two. Similarly,
the respondents also prefer movies that are popular and of high quality.

In addition, we also sought participants’ opinion about obfuscating OSN pro-
files in general. As this was an open question, we did not quantify the opinions,
but based on the received comments the participants can be categorized to users
who: (1) do not understand the inference attack; (2) do not wish to add any
non-genuine content to their profiles; (3) would add any items to protect their
privacy; (4) accept only items that are consistent with the image that they wish

3 http://crowdflower.com/
4 http://imdb.com/

http://crowdflower.com/
http://imdb.com/
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Fig. 10. User provided ratings for different criteria; privacy conscious user: average
attribute sensitivity rating higher than 3; non-privacy aware user: average attribute
sensitivity rating lower than 3
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to present to others, i.e., items the users genuinely like. The last comment is
representative of a non-negligible portion of users (12 out of 65 who answered
this question) and motivates the design of a user-friendly obfuscation strategy.

5.1 User-friendly Obfuscation Strategy

We now consider the results of the user study, which indicate that popularity
and quality of items need to be considered to have an acceptable obfuscation
strategy. As shown in Figure 11, if we apply the obfuscation strategy solely
based on these factors, the performance of the obfuscation is quite poor, i.e.,
similar to the random strategy.

We therefore propose a user-friendly obfuscation strategy that while taking
into account both factors of popularity and quality, yields a significant improve-
ment in obfuscation performance compared to the strategy that exclusively uses
these factors. We first select items that are in the top n most popular and top n
highest quality lists, where n is a variable that controls the size of the intersec-
tion between the popularity and quality sets. We heuristically choose n = 100,
which results in a subset of 69 common items (that is sufficient for the majority
of users to obfuscate their profiles). We then apply the χ2 score metric to the
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set of items as the obfuscation strategy; χ2 provides a solid obfuscation perfor-
mance, as shown in Section 3.1. The performance of the new strategy is close to
χ2, as shown in Figure 11, while satisfying users’ preferences for the choice of
obfuscation items.

6 Related Work

Kosinski et al [9] have shown that potentially sensitive attributes like sexual ori-
entation and political views can be inferred, with high precision, using Facebook
likes. A number of other research works [8,13] address the inference of users’
sensitive attributes from social links, and the protection mechanisms based on
selective adding or removal of such links [7]. Ryu et al. [15] evaluated the perfor-
mance of inferring sensitive attributes using a deterministic algorithm, logistic
regression and matrix factorization. They also studied the impact of friends’
privacy policies (for selected sensitive attributes) on the potential to infer these
attributes for users who do not publicly reveal them. Their approach bases the
inference on social links and contact information, while in this paper we only
relied on on the information publicly available in the user’s own profile.

Weinsberg et al. [17] studied the performance of obfuscation methods using
different classifiers, and the impact of obfuscation on the utility of recommen-
dations, in a movie recommender system scenario. They evaluated a number
of classifiers and selected obfuscation methods, including greedy, sampled and
random choice of obfuscation items. Their work is closest to the study presented
in this paper, however their obfuscation approaches assume prior knowledge
of the classifier used for the inference attack. Salman et al. [16] proposed a
practical methodology to prevent statistical inference (relying on the theoretical
framework of [5]); the proposed mechanism distorts the data before making it
publicly available, while providing a guarantee of the data utility. Li at al. [10]
also present a mechanism for preventing inference attacks (association rules)
in a data publishing scenario. All these works considered, in a system setting,
only the resulting loss of data utility for other system users and a static pri-
vacy mechanism. Our work evaluates the impact of obfuscation on the privacy
of other users, and also considers a dynamic mechanism.

7 Conclusion

This paper investigated a set of practical problems related to the design of a us-
able obfuscation system, to mitigate inference attacks in OSNs. The user study
indicates that a number of factors, not directly related to the performance of ob-
fuscation mechanisms, need to be considered to progress towards a system that
may be acceptable to privacy-conscious users. We believe that our user-friendly
obfuscation strategy, which is designed to integrate the user preferences into an
effective solution is a first step in the direction of user acceptability. However,
there are a number of additional challenges. The proposed strategy needs to be
verified in a real world setting, with development of such an application planned
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for future work. Then, although the dynamic obfuscation mechanism can pro-
vide improved performance compared to the static case, a level of coordination
between users may be required in order to achieve an acceptable obfuscation
performance in the long term.
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Abstract. The goal of Private Information Retrieval (PIR) is the ability to query
a database successfully without the operator of the database server discovering
which record(s) of the database the querier is interested in. There are two main
classes of PIR protocols: those that provide privacy guarantees based on the com-
putational limitations of servers (CPIR) and those that rely on multiple servers not
colluding for privacy (IT-PIR). These two classes have different advantages and
disadvantages that make them more or less attractive to designers of PIR-enabled
privacy enhancing technologies.

We present a hybrid PIR protocol that combines two PIR protocols, one from
each of these classes. Our protocol inherits many positive aspects of both classes
and mitigates some of the negative aspects. For example, our hybrid protocol
maintains partial privacy when the security assumptions of one of the component
protocols is broken, mitigating the privacy loss in such an event. We have imple-
mented our protocol as an extension of the Percy++ library so that it combines a
PIR protocol by Aguilar Melchor and Gaborit with one by Goldberg. We show
that our hybrid protocol uses less communication than either of these compo-
nent protocols and that our scheme is particularly beneficial when the number of
records in a database is large compared to the size of the records. This situation
arises in applications such as TLS certificate verification, anonymous communi-
cations systems, private LDAP lookups, and others.

1 Introduction

One major goal of privacy enhancing technologies (PETs) is to give control over the
dissemination of personal information to the users that the information pertains to. PETs
rely on underlying primitives to provide a guarantee of privacy to users; these are gen-
erally primitives from fields such as cryptography and information theory. Many PETs
protocols use the former, relying on assumptions about the infeasibility of solving a
specific problem with a limited amount of computing resources. The advantage of the
latter (information theory) approach, on the other hand, is that it provides the guarantee
that no amount of computing resources will allow an adversary to discover the user’s
private information. However, using information-theoretic primitives instead of cryp-
tographic ones requires some alternative assumption to support the protocol’s privacy
guarantees. An assumption used in many PETs, including mix networks [9], secret shar-
ing [29], onion routing [13] and some voting protocols [5,25], is that no more than some
threshold of agents are colluding against the user to discover the private information.

E. De Cristofaro and S.J. Murdoch (Eds.): PETS 2014, LNCS 8555, pp. 63–82, 2014.
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1.1 Private Information Retrieval

Private Information Retrieval (PIR) is a PET that allows a user to query a database for
some records without letting the operator of the database server learn anything about
the query or the retrieved records. The most trivial form of PIR is for the client to down-
load the entire database from the server and do the query herself. This is private because
the user has not revealed any information about which record she is interested in, yet
she still retrieves the record by finding it in the content of the entire database. In a 2007
study, Sion and Carbunar concluded that no single-server PIR protocol would likely out-
perform this trivial download PIR protocol [30]. However, more recent work has shown
that there are indeed non-trivial PIR protocols that perform better than downloading
the entire database [23]. PIR has applications in many privacy-sensitive applications,
including patent databases [3], domain name registration [22], anonymous email [27],
anonymous communication networks [21], and electronic commerce [17].

As a PET, a PIR protocol gets its privacy guarantees from its underlying primitives.
One class of PIR protocols, called computational PIR (CPIR) encodes the query in
such a way that the database server can serve records, while learning nothing about
the queries or retrieved records. These privacy guarantees are based on the assumption
that some problem is hard or impossible to solve given a limit on computational power.
Olumofin and Goldberg [23] showed in 2011 that it is possible for a CPIR protocol to
outperform the trivial download protocol. In particular, they showed using empirical
results that the CPIR protocol by Aguilar Melchor and Gaborit [2] is faster than trivial
download when using typical network connections. One advantage of many CPIR pro-
tocols is the ability to use recursion to reduce the communication costs. This technique
is illustrated by Aguilar Melchor and Gaborit with their CPIR protocol [2].

The other class of PIR protocols, called information-theoretic PIR (IT-PIR) does
not rely on the assumption that a cryptographic primitive is hard to solve with limited
computing resources. In 1995, Chor et al. showed that non-trivial IT-PIR is impossible
when there is only a single database server [8]. To combat this result, they designed a
multi-server IT-PIR protocol that guarantees privacy as long as not all of the servers
are colluding together against the user. Several IT-PIR protocols have since been pro-
posed [4, 14, 16, 17] that use similar non-collusion assumptions. Olumofin and Gold-
berg [23] also showed that a number of these multi-server IT-PIR protocols perform
better than the trivial download PIR.

There are five contributing factors to the speed of a PIR query for a particular proto-
col:

1. the time for the client to generate a private query;
2. the communication time required to send the query to the server(s);
3. the time for the server(s) to apply the query to the database;
4. the communication time required for the response from the server to the client; and
5. the time for the client to decode the response(s).

Over time, proposed PIR protocols have incrementally improved some or all of these
time factors. This paper begins by comparing two PIR protocols, one from each of these
two classes. We analyze the costs of the five factors listed above for these protocols in
an attempt to improve their performance.
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Our main contribution is a novel hybrid PIR protocol that incorporates aspects
of both classes, including the recursive property of single-server CPIR and the low
communication and computation costs of IT-PIR. Our protocol has lower costs, while
incorporating the positive properties of both classes.

Our protocol is particularly well suited for databases that consist of a large number
of relatively small records. As a practical example of where PIR over databases of this
shape would be beneficial, consider the problem of determining the validity of TLS
web server certificates. A web client, on receiving a TLS certificate from a server, must
check to see whether the certificate is revoked, typically with the Online Certificate Sta-
tus Protocol (OCSP) [26], or with the recently proposed Certificate Transparency (CT)
Protocol [20]. However, doing these lookups will reveal the site the client is visiting to
the OCSP or CT servers. PIR has been proposed [18] as a way for clients to privately de-
termine the validity of these certificates. Other applications of PIR over databases of this
shape could include sensor network data retrieval [31], private LDAP lookups [28], and
efficient retrieval of network information in anonymous communications systems [21].

1.2 Notation

For clarity, we will use the following notation throughout the paper:

– D denotes the database.
– Di denotes the ith record of the database D.
– n is the number of records in the database.
– s is the size of each record in bits.
– i0 is the index of the database record that a client wants to retrieve.

Additional notation will be introduced in Sections 2.1, 3.1 and 4.1 to support the proto-
cols presented in those sections.

2 Computational PIR

One class of PIR contains all protocols that assume that the server(s) are computation-
ally bounded to make their privacy guarantees. These protocols generally show that
breaking the security of their system would require an adversary to solve a problem that
is believed to be hard. These types of assumptions are often used in cryptography, secu-
rity and privacy; for example, the RSA public-key cryptosystem assumes that factoring
large numbers is hard when an adversary has limited resources.

Computational PIR was first introduced by Chor and Gilboa in 1997 [7]. They showed
that weakening the adversary to a computationally bounded entity improves the commu-
nication costs of PIR. Their work was soon followed by a protocol by Kushilevitz and
Ostrovsky [19] that used the same computationally bounded adversary in their model,
but did not require multiple servers as previous CPIR protocols did.

One advantage of single-server CPIR protocols is that they can be used recursively
to improve the communication cost of PIR. This idea was introduced by Kushilevitz
and Ostrovsky in addition to their new single-server CPIR protocol [19]. To do this,
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we evenly split our database into a set of virtual records, each one containing an equal
number of the actual records. The client then queries the server for a particular virtual
record, but instead of returning the result to the client, the server holds on to it. The
result of the first query is treated as a virtual database containing smaller virtual records.
The client then queries for one of the virtual records of this virtual database. The scheme
continues in this fashion until we are left with the response for a single (actual) record,
which is sent to the client. This idea will be further explored in the next section.

2.1 Aguilar Melchor and Gaborit’s Protocol

Without being faster than the trivial download protocol for modest-sized databases, a
PIR protocol is not very useful. The main problem with the CPIR protocols already
discussed is that they do not generally perform queries faster than the trivial protocol.
In 2007, Aguilar Melchor and Gaborit introduced a lattice-based single-server CPIR
scheme with promising results [2]; we denote this protocol as AG07. In 2011, Olu-
mofin and Goldberg [23] empirically showed that this protocol outperforms the trivial
protocol, thus suggesting that CPIR may indeed be practical.

The idea behind their protocol is to add noise to the query in a way that the server
cannot discover which record the client is interested in, but with the secret information
that the client has, she can remove the noise from the server’s response.

Notation: For this protocol we add the following notation:

– Each record in the database is encoded as an L × N matrix of wAG-bit words,

where N is a security parameter and L =
⌈

s
wAG·N

⌉
.

– q ≈ 22·wAG is the hard noise constant.
– p ≈ 23·wAG is the prime modulus of the field used for arithmetic. All matrices in the

protocol are over Zp; the entries in the above database record matrices just happen
to have relatively small values (< 2wAG) in Zp.

Aguilar Melchor and Gaborit [2] suggest the values wAG = 20, N = 50, q = 240,
and p = 260 + 325 for the above parameters.

Protocol: A client wants to retrieve record i0 from the database. For each database
record, she generates two matrices, one that has been made noisy and one that has not.
For the query matrices corresponding to record i0 she adds hard noise (relatively large
disturbances) and for the others she adds soft noise (small disturbances). The privacy
guarantees for this protocol assume that the server can not distinguish between query
matrices with hard noise and soft noise.

When the client sends the query to the server, the amount of communication (in bits)
is 6N2wAG · n.

To process the query, each record in the database is represented as an L × N ma-
trix whose terms are words of size wAG bits. When the server receives the query, it
multiplies each database record Di by the corresponding query matrix Mi and adds the
results to get R.
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The server sends the response R back to the client. The amount of communication
(in bits) for this step is six times the size of each record, or 6s.

Finally, when the client receives the response, she removes the soft noise to reveal
the database record Di0 that she requested.

For more details on this protocol, see the extended version of this paper [11, Ap-
pendix A].

The privacy of this protocol relies on the assumption that the Hidden Lattice Prob-
lem and the Differential Hidden Lattice Problem are hard to solve by computationally
bounded adversaries [2]. Aguilar Melchor and Gaborit use related problems in coding
theory to justify these assumptions.

Recursive AG07: As stated above, this CPIR protocol can be performed recursively to
improve the communication cost of the scheme. We get optimal communication for a
given recursive depth d if we split our database into d

√
n virtual records at each iteration.

For example, if we have a database with 125 records and we are performing this
recursive protocol with depth 3, in the first iteration we separate the database into
3
√
125 = 5 virtual records, each containing 25 actual records. This client will query

the server for the virtual record that her wanted record belongs to, but instead of send-
ing the result R1 back to the client, the server will hold onto it. In the second iteration,
we split up the result R1 from the first iteration into 5 virtual records, each containing
the encoding of 5 actual records. The client will query the server for the virtual record
that contains her desired record and again the server holds onto the result R2. Finally,
for the last iteration, the server will split the result R2 from the second iteration into 5
virtual records, each containing the encoding of one actual record. The client queries
the server for the record that she is interested in and server sends the result R3 of this
last iteration to the client. The client must then perform the decoding algorithm 3 times,
once for each iteration, to recover the database record.

In general, this improves the client-to-server communication cost to 6N2wAG · d
√
n

bits. However, each iteration of the protocol increases the size of the result by a factor
of 6. This makes the server-to-client communication cost 6ds bits. Thus, it is important
to find the appropriate recursive depth to balance out this decrease in client-to-server
communication and the increase in server-to-client communication.

Advantages and Disadvantages: One advantage of this protocol is that it only requires
a single server. As shown later in Section 3, multi-server protocols generally assume that
some threshold of the servers are not colluding. CPIR protocols, however, remain secure
even if all servers (or the one server in the single-server case) are trying to discover the
client’s private query.

The AG07 protocol also has the advantage that it can be used recursively, with a rela-
tively low compounding overhead factor (6). As shown above, we can use this property
to significantly improve the communication cost incurred by the protocol.

The main disadvantage of this scheme is that the security is based on lattice problems
that are not well understood. Because of this, some clients may not completely trust the
privacy of their queries. As stated by Aguilar Melchor et al. in a subsequent paper [1]
and by Olumofin and Goldberg [23], the protocol resists known lattice-based attacks,
but the protocol and its privacy assumptions are new and may not be secure.
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Another disadvantage of the AG07 protocol is that it is considerably slower than
many IT-PIR schemes [23]. This is due to the amount of computation involved in encod-
ing the queries and because the server is performing a matrix-by-matrix multiplication
(as compared to a vector-by-matrix multiplication used by some IT-PIR schemes).

3 Information-Theoretic PIR

The other class of PIR protocols, information-theoretic PIR (IT-PIR), includes all PIR
schemes whose privacy guarantees hold no matter how computationally powerful and
adversarial the server(s) may be. In 1995, Chor et al. [6] showed that any single-server
IT-PIR scheme must have communication cost at least that of the trivial protocol. To
avoid this problem, they developed IT-PIR protocols that used multiple servers. Since
then, a variety of multiple-server IT-PIR schemes have been formulated [4, 14, 16, 17],
making improvements on Chor et al.’s protocols. One of these improvements is robust-
ness—the ability to retrieve the correct database records even when some of the servers
are down or return incorrect or malicious responses.

An advantage to multiple-server IT-PIR is that it generally incurs smaller commu-
nication and computation costs. Like CPIR protocols, multiple-server IT-PIR protocols
also need to make some assumptions to guarantee privacy; a commonly used assump-
tion is that at most some threshold of the servers are colluding to discover the contents
of a client’s query.

3.1 Goldberg’s Protocol

In 2007, Goldberg introduced a multiple-server IT-PIR protocol that was both efficient
and provided for greater robustness than previous schemes. The idea is to use Shamir se-
cret sharing [29] to split the client’s query across multiple servers, and error-correcting
codes to combine the responses. We denote this protocol by G07.

Notation: For this protocol we add the following notation:

– The database is laid out as an n × m matrix of wG-bit words. Each record is one

row of this matrix, and m =
⌈

s
wG

⌉
.

– � is the number of servers.
– k is the number of servers that respond to the query.
– t is the privacy level—no coalition of t or fewer servers can learn the query.
– v is the number of Byzantine servers—these are servers that may give incorrect

responses.
– F is the field used for arithmetic (|F| ≥ 2wG). All vectors and matrices in the

protocol are over F.

Typically, wG = 8, F = GF (28), and records are an integer number of bytes, so that
s is a multiple of 8, and m · wG = s exactly.
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Protocol: To query the server for record i0, a client creates the elementary vector ei0
with a 1 in the i0th place, and 0 everywhere else. She then creates � Shamir secret shares
v1, . . . ,v
 for ei0 in the field F.

Each server is then sent one of these shares. The communication cost from the client
to each server is then n · wG bits.

The server simply multiplies their query vectorvj by the databaseD to get a response
vector rj, and sends it back to the client. This makes the communication cost from each
server to the client mwG = s bits.

In this protocol, we assume that some number of servers k ≤ � respond to the query.
Even if k �= �, meaning that not all servers responded, the client may still be able
to recover the database record. This is because the use of Shamir secret sharing in the
query makes the server responses Shamir secret shares for the database record Di0 . This
implies that the client only needs k > t of the responses (where t < �) to successfully
recover the record.

Similarly, we also do not need to assume that all of the servers are behaving correctly.
The client can treat the responses as Reed-Solomon error correction codewords and use
a Reed-Solomon decoding algorithm to recover the database record Di0 . As shown by
Devet et al. [12], the client can decode the database record in polynomial time as long
as the number of Byzantine servers v is bounded by v < k− t− 1. They also show that
this bound is the optimal bound on the number of tolerable Byzantine servers.

The Shamir secret shares are generated from a degree-t polynomial where t < k. By
the properties of Shamir secret sharing, any coalition of at most t servers will not gain
any information about the secret ei0 . However, if at least t + 1 of the servers collude,
they will be able to discover ei0 ; that is, the query is information-theoretically private
assuming that at most t servers are allowed to collude. We note that there is a trade off
between the level of robustness and the privacy level—the client can chose a value of t
to provide the wanted privacy up to and including t = � − 1 (all but one of the servers
colluding), but then there is no robustness.

For more details on this protocol, see the extended version of this paper [11, Ap-
pendix B].

Advantages and Disadvantages: As discussed above, the main advantage of the G07
protocol over other protocols is that is it robust and can handle missing and/or incor-
rect server responses. This allows us to combat some stronger adversarial servers that
maliciously alter their responses in an attempt to block the client from recovering the
database record. We note that the AG07 single-server CPIR scheme has no robustness
since there is only one server and missing or incorrect responses from that server can
not be overcome.

The G07 protocol has low communication cost and computation time. It is also very
simple to implement on the server side. A series of works since 2011 have shown that
Goldberg’s protocol is faster than the trivial protocol [23] and have added improve-
ments to the performance by using distribution of computation [10] and advanced error-
correction algorithms [12].

This protocol sacrifices some level of privacy to gain robustness. Because of this
we need to assume that there is no collusion between some number of servers. In some
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settings, it is unclear how this requirement can be enforced or detected. This uncertainty
may make this protocol less desirable than others with different privacy guarantees.

Adaptation for Hybrid Security: When he introduced his IT-PIR scheme in 2007 [16],
Goldberg proposed an extension to create a scheme whose privacy relied on a hybrid
of information-theoretic and computational primitives. This extended scheme provides
information-theoretic protection of the query as long as no more than t servers collude,
but retains computational protection when any number of the servers collude.

This is accomplished by encrypting the query with an additive homomorphic cryp-
tosystem—G07 used the Pailler cryptosystem. The client will encrypt the query before
it is sent to the servers. When the servers receive the query, they multiply it by the
database, but use the homomorphic property. In the case of the Pailler cryptosystem,
the server would use multiplication in the place of addition and exponentiation in the
place of scalar multiplication. The response that the client receives is decrypted before
the regular G07 decoding operations are performed.

Though this hybrid scheme relies on two assumptions for privacy (the information-
theoretic assumption that no more than t servers collude and the assumption that ad-
versaries do not have the computational resources to break the additive homomorphic
cryptosystem used), as long as one of them holds, the protocol still guarantees perfect
privacy of the query.

This added protection comes at an extreme cost, however: the hybrid version of G07
is 3–4 orders of magnitude slower [16] than the pure information-theoretic version. In
the next section, we will introduce a new approach to hybrid PIR that combines the
benefits of CPIR and IT-PIR without the overhead of previous proposals.

4 Hybrid PIR

In this work, we propose a hybrid protocol that combines a multiple-server IT-PIR pro-
tocol with a single-server CPIR protocol. Our goal is to incorporate the positive aspects
of each protocol into our hybrid protocol, while mitigating the negative aspects of each.
In particular, we want to join the low communication and computation cost of multiple-
server IT-PIR schemes with the recursion of single-server CPIR schemes to improve
the communication cost of PIR queries relative to both classes of protocols.

Our scheme will use a recursive depth of d as in the AG07 CPIR scheme. However,
the first layer of recursion will be performed using the chosen multiple-server IT-PIR
protocol. On each server, the remainder of the recursive steps will be done on the result
of each previous step using the chosen recursive single-server CPIR scheme.

4.1 Notation

Our hybrid protocol will use the notation outlined in Sections 1.2, 2.1, and 3.1 as well
as:

– Ψ is the multiple-server IT-PIR protocol being used.
– Φ is the single-server recursive CPIR protocol being used.
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– γu is the number of virtual records that the database is split into for the uth step of

recursion of the hybrid scheme. It is required that n ≤
d∏

u=1

γu.

– δu is the number of actual records in each virtual record at the uth step of recursion
of the hybrid scheme. If the database does not evenly split, dummy records are
appended to the end of the database to make each virtual record the same size.

– πu is the index of the virtual record that the client’s desired actual record i0 is in at
the uth step of recursion.

We outline how to optimally choose the values for γu and δu in Section 5.1.

4.2 Protocol

Our protocol is generalized to use the implementer’s choice of inner protocols. We use
Ψ to denote the multiple-server IT-PIR inner protocol and use Φ to denote the single-
server recursive CPIR inner protocol. We use this notation because our protocol is very
well suited for a modular implementation. That is, an implementation of this scheme
could easily swap inner protocols for other suitable protocols.

Algorithm 4.1 outlines how to generate a query for this protocol. To query the
database servers, the client must determine the index πu of the virtual record that her
desired record i0 is contained in, at each step u of the recursion. She then creates a
multiple-server IT-PIR Ψ -query for index π1 and sends each server its part of the query.
Then for each remaining recursive step u ∈ {2, . . . , d}, she creates single-server CPIR
Φ-queries for index πu and sends this same query to each of the servers.

Algorithm 4.2 outlines the server-side computations for this protocol. In each recur-
sive step u, the server splits the database into γu virtual records, each containing δu
actual records. For the first step, the server uses the IT-PIR Ψ server computation algo-
rithm. For the remainder of the steps, the server uses the CPIR Φ server computation
algorithm. The result of the last recursive step is sent back to the client.

We note that we can somewhat improve the performance of this scheme by start-
ing the server-side computations for each recursive step before reading the queries for
subsequent recursive steps, thus overlapping computation and communication.

When the client receives the servers’ responses, she applies the corresponding decod-
ing algorithms using the information stored during query generation in reverse order.

Algorithm 4.1. Hybrid Query Generation
Input: Desired record index: i0

1. For each recursive step u ∈ {1, . . . , d} find the index of the virtual record πu that record i0
belongs to.

2. Generate a multiple-server Ψ -query Q1 for index π1 and send each server its part of the
query.

3. for u = 2 → d do
4. Generate a single-server Φ-query Qu for index πu and send each server a copy of the

query.
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Algorithm 4.2. Hybrid Server Computation
Input: Query from client: Q1, . . . , Qd

1. Split the database D into D(1), a virtual database of γ1 consecutive virtual records, each
containing δ1 actual records.

2. Apply the Ψ -query Q1 to database D(1) using the Ψ server computation algorithm. The result
is R1 which will be used as the database for the next recursive step.

3. for u = 2 → d do
4. Split the result Ru−1 into D(u), a virtual database of γu consecutive virtual records, each

containing the encoding of δu actual records

5. Apply the Φ-query Qu to database D(u) using the Φ server computation algorithm to get
result Ru.

6. Send the final result Rd to the client.

Algorithm 4.3. Hybrid Response Decoding

Input: Responses from the servers: X(d)
1 , . . . , X

(d)
k

1. for u = d → 2 do
2. for j = 1 → k do
3. Decode X

(u)
j from server j using the Φ single-server decoding algorithm to get result

X
(u−1)
j .

4. Decode X
(1)
1 , . . . , X

(1)
k simultaneously using the Ψ multiple-server decoding algorithm to

recover the database record Di0 .

That is, she first uses the information from query Qd to decode the received responses.
Treating the results of that decoding as virtual responses themselves, she uses infor-
mation from Qd−1 to decode those, and so on until she uses information from Q1 to
decode the final step. This yields the desired record. The procedure for decoding server
responses for this protocol is outlined in Algorithm 4.3. We note that for all but the
last step of decoding, the result from each server must be decoded separately using the
single-server decoding algorithm for protocol Φ. In the last step of decoding, all server
results are decoded simultaneously using the multiple-server decoding algorithm for
protocol Ψ .

5 Analytical Evaluation

This evaluation of the hybrid scheme uses the G07 IT-PIR scheme for Ψ and the AG07
CPIR scheme for Φ.

5.1 Communication

The communication cost of the response from the server to the client is simply

Cdown = 6d−1s.
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If we combine the communication costs for the queries at each recursive step, we get
the following total cost for the query (in bits) from the client to each server:

Cup = γ1wG +

d∑
u=2

(
6N2wAG · γu

)
.

To optimize Cup, we first find the optimal choices for the γu values for any given d.
After the first recursive step the result will encode δ1 = � n

γ1
 records. We can

optimize the CPIR query sizes by splitting the database at each remaining step into
γu = (d−1)

√
δ1 virtual records. The cost becomes:

Cup = γ1wG +

d∑
u=2

(
6N2wAG ·

(
n

γ1

) 1
d−1

)
= γ1wG + (d− 1) · 6N2wAG ·

(
n
γ1

) 1
d−1

.

We then find the value of γ1 that minimizes Cup to be:

γ1 =

(
6N2wAG

wG

(d−1)
√
n

) d−1
d

.

Therefore, at recursive step u, we split the database as follows:

γu =

⎧⎪⎨⎪⎩
(

6N2wAG

wG

(d−1)
√
n
) d−1

d

: u = 1(
n
γ1

) 1
d−1

: 2 ≤ u ≤ d

δu =

(
n

γ1

) d−u
d−1

With these values, our query communication cost simplifies to:

Cup = d
(
6N2wAG

) d−1
d d

√
wG

d
√
n.

We observe that both the query and response cost functions (Cup and Cdown) are
concave up in d. Therefore, the combined communication cost can be minimized for
some depth d. Since d is an integer, we evaluate the cost functions at each d starting at
1 and incrementing until we find a value for d such that the cost at d is less than the cost
at d+ 1. This value of d is our optimal depth.

Note that the combined cost function should ideally, if such information is available,
take the bandwidths of both directions of our connection into account and that the dif-
ferent directions may have different bandwidths. This is accomplished with a simple
linear weighting, such as 4Cdown+Cup if the downstream bandwidth is 4 times that of
the upstream.

Table 1 shows a comparison of the communication cost for each of the protocols in
this paper.
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Table 1. A comparison of the communication costs (in bits) for the PIR protocols discussed in
this paper

Protocol Query Cost Response Cost

AG07 [2]
(
6N2wAG

)
n 6s

Recursive AG07 [2] d
(
6N2wAG

)
d
√
n 6ds

G07 [16] �wGn �s

Our hybrid (with AG07 and G07) �d
(
6N2wAG

) d−1
d d

√
wG

d
√
n �6d−1s

If we use our hybrid protocol with a depth of d = 1, then we are simply using the
G07 protocol (with no CPIR component) and so will clearly have the same amount of
communication as the G07 protocol. Since we choose the value of d that minimizes
the communication cost for our hybrid protocol, we only use d > 1 if doing so results
in a lower communication cost. Hence when we use a depth of d > 1, we will have
a lower communication cost than the G07 scheme. Therefore, our hybrid scheme will
not have a higher communication cost than G07 for any depth. For typical values of
the parameters, we find that for 1 KB records, we will select d > 1 (and so strictly
outperform G07) whenever n > 160, 000. For 10 KB records, we see an improvement
for n > 240, 000.

Comparing the formulas in Table 1, we see that the upstream cost of our hybrid
protocol is no worse than that of Recursive AG07 when �d ≤ 6N2wAG

wG
(= 37500 for

the recommended parameters), and similarly for the downstream cost when � ≤ 6. For
many reasonable PIR setups, these inequalities are easily satisfied. Even if they are not,
however, the computational savings of our scheme over Recursive AG07 (see below)
more than makes up for the difference. A slight complication in the analysis arises
in cases in which the optimal recursive depth d differs between the Recursive AG07
scheme and our hybrid scheme; however, we will see in Section 6 that our scheme
nonetheless outperforms the Recursive AG07 scheme.

5.2 Computation

Unlike our analysis of communication, we do not have simple expressions for our com-
putation costs. In this section we reason about the computational cost of our protocol
compared to others; in Section 6.2, below, we directly measure the computation costs of
our scheme using empirical experimentation. The key observation, however, is that the
slower CPIR protocol is being performed over a much smaller database than the orig-
inal. The protocol effectively consists of IT-PIR over the whole database of n records,
followed by recursive CPIR over a sub-database of δ1 records.

Query Encoding: AG07 is expensive when generating the query because it involves
matrix multiplications. However, G07 is relatively cheap because it is essentially just
generating random values and evaluating polynomials. We expect the hybrid scheme
will be better than AG07 for this step because it replaces one iteration with the cheap
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G07 scheme encoding. Our hybrid scheme may also be faster in this stage than G07
because of the addition of recursion. As when recursion is added to the AG07 protocol,
we change the request from one large (size n) query into d much smaller (size a constant
multiple of d

√
n) queries.

Server Computation: The AG07 scheme is also expensive compared to the G07
scheme for server-side computation. This is because AG07 uses matrix-by-matrix mul-
tiplication for the bulk of its work, whereas G07 uses vector-by-matrix multiplication.
Our hybrid scheme will use the relatively cheap server computation of G07 for the first
iteration where the database is its full size. The subsequent iterations will use a much
smaller subset of the database, so using AG07’s server computation will not add much
additional expense.

Response Decoding: The last recursive step of decoding for our hybrid scheme will
take the same amount of computation as the G07 scheme. Since we have d− 1 steps of
AG07 decoding as well, our hybrid protocol will not outperform G07 in the decoding
step. Our hybrid protocol will also need to do any AG07 decoding once for every server
at every recursive step. However, the response being decoded at each recursive step is
smaller than that of the recursive AG07 protocol by a factor of 6 in our hybrid scheme.
Therefore, when d > 1, the decoding for our hybrid protocol will be comparable to that
of recursive AG07.

If there are a significant number of Byzantine servers—those who attempt to mali-
ciously alter the result of the query—then the decoding time will be increased for the
G07 iteration of our hybrid scheme, though this increase will not be very significant
compared to the server computation of the G07 scheme [12].

5.3 Privacy

The AG07 scheme keeps the client’s query private as long as the servers are computa-
tionally bounded and as long as the Hidden Lattice Problem and the Differential Hidden
Lattice Problem are indeed hard to solve. Our hybrid scheme relies on these assump-
tions for perfect privacy.

The G07 scheme keeps the query private as long as no more than t servers are collud-
ing to find the contents of the query. Our hybrid scheme also relies on this non-collusion
assumption for perfect privacy.

One advantage of our hybrid scheme is that if the privacy assumptions for one of
the inner protocols is broken, then the query will still be partially private as long as we
use depth d > 1. For example, if the G07 non-collusion assumption is broken, then
the colluding servers will be able to find out a subset of the database that the desired
record is in, but they will not find out which record in that subset is the wanted one
as long as the AG07 assumptions still hold. We similarly have partial privacy if the
AG07 computational assumptions are broken and the G07 non-collusion assumptions
still hold.

This “defence in depth” is a benefit because it may dull some of the fears about using
a scheme that a user thinks does not adequately enough guarantee privacy. For example,
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if someone does not feel that the non-collusion assumption is adequate enough for the
G07 scheme, they may be more comfortable using this hybrid scheme because they
know that even in the event that too many servers collude, they will still maintain some
privacy.

Unlike the hybrid protection extension to G07 (Section 3.1), our protocol does not
provide perfect privacy if one of the two privacy assumptions fails. The advantages of
using our protocol over hybrid G07 are a significant reduction in computation time and,
as will be illustrated in Section 6.1, improved communication cost.

5.4 Robustness

As stated previously, the G07 scheme has the ability to correct for servers not respond-
ing or responding incorrectly. The single-server AG07 scheme, however, does not have
any robustness.

In 2012, Devet et al. [12] observed that the G07 protocol can be slightly modified to
be able to withstand up to v < k−t−1 misbehaving servers, with no extra computation
or communication cost over the original protocol, in a typical setting where clients
aim to fetch multiple records from the database. (The original G07 bound [16] is v <
k − √

kt when only one record is retrieved.)
An advantage of using G07 in our hybrid protocol is that our hybrid protocol re-

tains exactly the same robustness properties as that scheme: any misbehaviour will be
detected at the Ψ IT-PIR multiple-server decoding step.

6 Implementation and Empirical Evaluation

We have implemented these protocols as an extension to the Percy++ [15] library, an im-
plementation of Goldberg’s scheme from Section 3.1. We incorporated both the AG07
CPIR scheme and our hybrid scheme. Our implementation will be available in the next
release of Percy++.

The implementation of our hybrid PIR system combines the implementations of the
two inner protocols (G07 and AG07), using them as black boxes. Given all of the other
parameters, our implementation will find the optimal depth (d) and the best way to
split the database for the first (IT-PIR) iteration of the scheme (γ1) to minimize the
communication cost.

All of our multi-server queries were run on � = 4 servers and we used t = 1 for the
G07 privacy parameter. For our client machine, we used a 2.4 GHz Intel Xeon 8870, and
each server machine was a 2.0 GHz Intel Xeon E5-2650. All computations reported
here were done in a single thread, so that the reported times reflect total CPU time.
However, all of the computations are almost completely parallelizable [10], and using
multiple cores would greatly reduce end-to-end latency, though not total CPU time.

6.1 Communication

The plots in Figure 1 illustrate the amount of communication needed for our hybrid
scheme and the schemes of which it is comprised. We see that our hybrid protocol uses
less communication than that of AG07, and no more than that of G07, verifying the
analysis in Section 5.1, above.
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Fig. 1. Comparison of communication used by each scheme. Plot (a) shows the communication
used for queries on a 1 GB database for different database shapes. In plot (b), the record size
is fixed at 1 KB and we see the communication for different numbers of records. Non-recursive
AG07 imposes a limit of approximately 10,000 records so we do not have data points for larger
numbers of records. Error bars are present for all data points, but may be too small to see. The
datapoint labels for the Hybrid and Recursive AG07 schemes indicate the recursive depth used.

6.2 Computation

Figure 2 illustrates computation time involved in all three of the computational parts of
a PIR system.

Query Encoding: Our experimental results show us that the encoding time is very
much related to the size of a PIR request. This is evidenced by how similar Figure 2b is
to Figure 1b (the communication associated with the same tests). The query encoding
time for G07 is linear in the number of records. On the other hand, the query encoding
time for the AG07 scheme is dominated by the dth root of the number of records. Be-
cause of this, for larger numbers of records, the hybrid protocol encodes queries faster
than G07.

Server Computation: As expected, Figures 2c and 2d show that the server compu-
tation time of our hybrid PIR system is very comparable to that of the G07 protocol.
The figures also show that our hybrid system performs its server computation approxi-
mately 2 orders of magnitude faster than Recursive AG07. As noted above, this time is
also highly parallelizable; the times reported in the figure use only a single thread, and
so represent total CPU time.

Response Decoding: Figures 2e and 2f show us that when we have a depth of at
least 2 for the hybrid PIR system (i.e. we have at least one iteration of AG07) , the
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Fig. 2. Comparison of the time used by the schemes at each computation step. Plots (a,c,e) show
the computation time for queries on a 1 GB database for different database shapes. In plots (b,d,f),
the record size is fixed at 1 KB and we see the computation time for different numbers of records.
Non-recursive AG07 imposes a limit of approximately 10,000 records so we do not have data
points for larger numbers of records. Error bars are present for all data points, but may be too
small to see.
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decoding time approaches that of recursive AG07. This is because, unlike the server
computation where the cheap G07 computation is being done on the first iteration when
the database is large, the cheap G07 decoding is happening on the last iteration, when
the response has been reduced in size by d − 1 iterations of AG07 decoding. For this
reason, the decoding step of our hybrid PIR system is comparable to that of recursive
AG07 and not the quicker G07. Even so, we note that the time of the decoding step is
quite insignificant compared to the server computation step of a query.

6.3 Total Query Time

In Figure 3 we plot the total time for a query on our hybrid PIR system as well as
its component protocols. We show the total time for three different connection speeds
between the client and server(s). Figures 3a and 3b use a connection with 9 Mbps down-
load and 2 Mbps upload. This connection was used by Olumofin and Goldberg [23] to
represent a home user’s connection in 2010. Using the same source [24], we represent
a home user in 2014 in Canada or the U.S. with 20 Mbps download and 5 Mbps upload
in Figures 3c and 3d. Figures 3e and 3f model a connection over 100 Mbps Ethernet.

Our results show us that the total query time needed for our hybrid PIR system is
similar or better than that of G07. We also see that the total query time of recursive
AG07 is approximately 2 orders of magnitude larger than that of our system.

These plots also illustrate that our hybrid PIR system does not use much communi-
cation time. This is because the total query time of the hybrid system does not improve
much when the network capacity is increased. Contrast this with G07 when there are a
large number of records—in this case we see a significant improvement in total query
time as the network capacity increases.

7 Future Work

Parallel Server Computation. We note that the bulk of the computation is on the
server side of the protocol. Devet [10] describes experiments showing that the G07
protocol is almost completely parallelizable: using m threads or worker processes will
improve the computation latency of G07 by a factor of m. We believe similar results are
attainable for our hybrid system and as future work we intend to implement distributed
server computation for this scheme.

AG07 using GPUs. Aguilar Melchor et al. [1] demostrate how the AG07 scheme can
be made much faster by implementing the server-side computations on GPUs instead of
CPUs. Our implementation does not include this feature, but we plan on implementing
it in the future and investigating how much this will speed up our hybrid protocol.

Security of AG07. AG07’s privacy guarantees rely on the hardness of the Hidden Lat-
tice Problem and the Differential Hidden Lattice Problem, as specified by Aguilar Mel-
chor and Gaborit [2]. According to Aguilar Melchor et al. [1] and Olumofin et al. [23]
the security of this scheme is not well understood. Future work could involve investi-
gating the security of the scheme and either developing a security proof or altering the
scheme to make it provably secure.
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Fig. 3. Comparison of total query time for each scheme. Plots (a,c,e) show the time used for
queries on a 1 GB database for different database shapes. In plots (b,d,f), the record size is fixed at
1 KB and we see the time for different numbers of records. Non-recursive AG07 imposes a limit
of approximately 10,000 records so we do not have data points for larger numbers of records.
Error bars are present for all data points, but may be too small to see. Connections specified as
A/B Mbps indicate A Mbps download bandwidth and B Mbps upload bandwidth.
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8 Conclusion

We introduce a hybrid Private Information Retrieval protocol that combines the low
communication and computation costs of multiple-server IT-PIR protocols with the
ability of single-server CPIR protocols to do recursion. We show that our protocol
inherits several positive aspects of both types of protocols and mitigates the negative
aspects. In particular, our protocol maintains partial privacy of client query information
if the assumptions made by one of the inner protocols is broken.

We have implemented our protocol as part of the open-source Percy++ library for
PIR, and using this implementation, demonstrated that our protocol performs as well
or better than PIR schemes by Aguilar Melchor and Gaborit and by Goldberg. Our
hybrid scheme is particularly effective when the number of records in a database is
large relative to the size of each record—a situation that arises naturally in a number of
network scenarios, including TLS certificate checking, private LDAP lookups, sensor
networks, and more.

Acknowledgements. We thank Ryan Henry for the idea that inspired us to explore
this new type of Hybrid PIR. We gratefully acknowledge NSERC and ORF for funding
this research. This work benefited from the use of the CrySP RIPPLE Facility at the
University of Waterloo.

References

1. Aguilar Melchor, C., Crespin, B., Gaborit, P., Jolivet, V., Rousseau, P.: High-Speed Private
Information Retrieval Computation on GPU. In: SECURWARE, pp. 263–272. IEEE (2008)

2. Aguilar-Melchor, C., Gaborit, P.: A Lattice-Based Computationally-Efficient Private Infor-
mation Retrieval Protocol. In: WEWORC 2007 (July 2007)

3. Asonov, D.: Private Information Retrieval: An overview and current trends. In: ECDPvA
Workshop (2001)

4. Beimel, A., Ishai, Y., Malkin, T.: Reducing the Servers’ Computation in Private Information
Retrieval: PIR with Preprocessing. J. Cryptology 17(2), 125–151 (2004)

5. Chaum, D., Carback, R., Clark, J., Essex, A., Popoveniuc, S., Rivest, R.L., Ryan, P.Y.A.,
Shen, E., Sherman, A.T., Vora, P.L.: Scantegrity II: End-to-end verifiability by voters of opti-
cal scan elections through confirmation codes. IEEE Transactions on Information Forensics
and Security 4(4), 611–627 (2009)

6. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private Information Retrieval. In: 36th
Annual IEEE Symposium on Foundations of Computer Science (FOCS 1995), pp. 41–50
(October 1995)

7. Chor, B., Gilboa, N., Naor, M.: Private Information Retrieval by Keywords. Technical Report
TR CS0917, Department of Computer Science, Technion, Israel (1997)

8. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private Information Retrieval. J.
ACM 45, 965–981 (1998)

9. Danezis, G., Dingledine, R., Mathewson, N.: Mixminion: Design of a Type III Anonymous
Remailer Protocol. In: IEEE Symposium on Security and Privacy, pp. 2–15. IEEE Computer
Society (2003)

10. Devet, C.: Evaluating Private Information Retrieval on the Cloud. Technical Report 2013-05,
CACR (2013), http://cacr.uwaterloo.ca/techreports/2013/
cacr2013-05.pdf

http://cacr.uwaterloo.ca/techreports/2013/cacr2013-05.pdf
http://cacr.uwaterloo.ca/techreports/2013/cacr2013-05.pdf


82 C. Devet and I. Goldberg

11. Devet, C., Goldberg, I.: The Best of Both Worlds: Combining Information-Theoretic and
Computational PIR for Communication Efficiency. Technical Report 2014-07, CACR,
http://cacr.uwaterloo.ca/techreports/2014/cacr2014-07.pdf

12. Devet, C., Goldberg, I., Heninger, N.: Optimally Robust Private Information Retrieval. In:
21st USENIX Security Symposium (2012)

13. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The Second-Generation Onion Router. In:
13th USENIX Security Symposium (2004)

14. Gertner, Y., Goldwasser, S., Malkin, T.: A Random Server Model for Private Information
Retrieval or How to Achieve Information Theoretic PIR Avoiding Database Replication. In:
Rolim, J.D.P., Serna, M., Luby, M. (eds.) RANDOM 1998. LNCS, vol. 1518, pp. 200–217.
Springer, Heidelberg (1998)

15. Goldberg, I.: Percy++ project on SourceForge, http://percy.sourceforge.net
(accessed February 2014)

16. Goldberg, I.: Improving the Robustness of Private Information Retrieval. In: 2007 IEEE Sym-
posium on Security and Privacy, pp. 131–148 (2007)

17. Henry, R., Olumofin, F.G., Goldberg, I.: Practical PIR for Electronic Commerce. In: ACM
Conference on Computer and Communications Security, pp. 677–690 (2011)

18. Kikuchi, H.: Private Revocation Test using Oblivious Membership Evaluation Protocol. In:
3rd Annual PKI R&D Workshop (2004)

19. Kushilevitz, E., Ostrovsky, R.: Replication Is Not Needed: Single Database,
Computationally-Private Information Retrieval. In: FOCS, pp. 364–373 (1997)

20. Laurie, B., Langley, A., Kasper, E.: Certificate Transparency. RFC 6962 (June 2013)
21. Mittal, P., Olumofin, F., Troncoso, C., Borisov, N., Goldberg, I.: PIR-Tor: Scalable Anony-

mous Communication Using Private Information Retrieval. In: 20th USENIX Security Sym-
posium, pp. 475–490 (2011)

22. Olumofin, F., Goldberg, I.: Privacy-Preserving Queries over Relational Databases. In:
Atallah, M.J., Hopper, N.J. (eds.) PETS 2010. LNCS, vol. 6205, pp. 75–92. Springer,
Heidelberg (2010)

23. Olumofin, F., Goldberg, I.: Revisiting the Computational Practicality of Private Informa-
tion Retrieval. In: Danezis, G. (ed.) FC 2011. LNCS, vol. 7035, pp. 158–172. Springer,
Heidelberg (2012)

24. Ookla: Net Metrics for Canada and the United States,
http://www.netindex.com (accessed February 2014)
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Abstract. High-status decision makers are often in a position to make
choices with security and privacy relevance not only for themselves but
also for groups, or even society at-large. For example, decisions about
security technology investments, anti-terrorism activities, and domestic
security, broadly shape the balance between security and privacy. How-
ever, it is unclear to what extent the mass of individuals share the same
concerns as high-status individuals. In particular, it is unexplored in the
academic literature whether an individual’s status position shapes one’s
security and privacy concerns.

The method of investigation used is experimental, with 146 subjects
interacting in high- or low-status assignments and the subsequent change
in the demand for security and privacy being related to status assignment
with a significant t-statistic up to 2.9, depending on the specification.
We find that a high-status assignment significantly increases security
concerns. This effect is observable for two predefined sub-dimensions of
security (i.e., personal and societal concerns) as well as for the composite
measure. We find only weak support for an increase in the demand for
privacy with a low-status manipulation.

We complement these results with a second experiment on individuals’
time preferences with 120 participants. We show that the high-status
manipulation is correlated with increased patience, i.e., those individuals
exhibit more robust long-term appreciation of decisions. Given that many
security and privacy decisions have long-term implications and delayed
consequences, our results suggest that high-status decision makers are
less likely to procrastinate on important security investments, and are
more likely to account for future risks appropriately. The opposite applies
to privacy and low-status roles.

Keywords: Privacy, Security, Social status, Time Preferences, Experi-
ment, Laboratory.

1 Introduction and Research Objectives

With the heightened impact of a broad range of cybercriminal activites and
the threat from diffuse terrorist groups, countermeasures and policy activities

E. De Cristofaro and S.J. Murdoch (Eds.): PETS 2014, LNCS 8555, pp. 83–101, 2014.
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that influence the balance between privacy and security have become central
societal issues. Many commentators have argued that there is an inherent trade-
off related to these two concepts. The common adage is that better security
always necessitates concessions on the side of privacy [45].

This belief has been challenged by several security and privacy researchers
and advocates. Further, computer scientists have worked on key technologies
to gather security-relevant information without unduly impacting individuals’
privacy, e.g., in the context of video surveillance [40]. Progress has also been
made to disambiguate important overgeneralizations about the privacy-security
trade-off. For example, Solove provided a succinct discussion of the nothing-to-
hide argument [43].

In contrast, our knowledge about the behavioral trade-off, or to put it differ-
ently, the joint demand for security and privacy, remains lackluster. Most studies
focus on either security or privacy, but rarely on both variables at the same time.
For example, starting with Westin’s surveys, countless studies have reported a
typically moderate to high average concern for privacy in the subject population
(see, for example, [32]). Similarly, the perceived threat of terrorism and cyber-
crime is reflected by a heightened overall concern for security (e.g., [15,55]). From
an economic perspective, some studies document the existence of a positive (but
usually small) willingness-to-pay for additional privacy or information security
measures [22,39,48].

Even less is known about factors that moderate the trade-off between security
and privacy, and that might be able to explain the apparent heterogeneity of
individuals’ preferences and behaviors. Our research targets this problem area.
In particular, we argue that the relative social status of an individual is an
important factor influencing concerns for security and privacy.

Social status may be broadly defined as power and influence hierarchy of the
members of a society with accompanying dominance and submissive behaviors
[6,7]. Social status is thus a relative, rather than absolute, measure. Social status
may include measures of socioeconomic status such as occupation, education,
income and wealth. Further, intelligence, age and ethnicity may function as
status cues that lead to power and influence within groups [50].

Our method of investigation is experimental with subjects being assigned a
role with high or low status, respectively. This allows us to demonstrate causation
(instead of merely statistical correlation) from a low/high-status assignment to
a shift in the variables under observation. In this paper, we present results from
two experiments.

First, we study the impact of the social status manipulation on the demand for
security and privacy. We subdivide security concerns into societal and personal
dimensions [8].

Second, we report results from a parallel investigation into individuals’ time
preferences. Specifically, we measure the level of patience, which is the willingness
to delay pleasure for an ultimately greater benefit.

Lower socioeconomic status is correlated with less patience (or more im-
patience), whether it is measured using education, income, or even age [37].
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Similarly, many field behaviors that are more prevalent in low-status groups are
associated with a high level of impatience, including lack of exercise, smoking
and body mass index [10], substance abuse [31,38], and delinquency in juveniles
[53]. This literature demonstrates the importance of impatience in shaping un-
healthy behaviors, with individuals from lower status groups more frequently
procrastinating on important investments into their future wealth or health, or
seeking immediate gratification when patience would be to their benefit. How-
ever, the existing literature is merely correlational with regards to status and
does not demonstrate causation from status to impatience.

Together, the two experiments contribute to a better understanding of how
subjects from different social status categories perceive threats to their privacy
and security, and whether they are likely able to act upon their preferences in
an effective manner.

First, privacy and security decisions by high-status individuals can be aligned
or misaligned with the interests of low-status individuals. Our work suggests
that social status differences contribute to a misalignment of these interests. Sec-
ond, effective privacy and security decision-making usually involves the economic
evaluation of positive or negative consequences over time [2,3]. For example, re-
vealing data on a social networking site may have short-term benefits, but may
also increase the individual’s vulnerability to cybercrime (e.g., social phishing
[28]) or mass surveillance. However, such negative events typically happen at
an unspecified later date. Decision-makers need to be able to account for such
scenarios to be able to make privacy and security decisions that limit their ex-
posure to negative events in the future. However, a higher degree of impatience
(as evidenced with low-status individuals) would hinder the correct evaluation
of such scenarios [18].

The remainder of the paper is structured as follows. We discuss related work in
Section 2. In Section 3, we discuss the experimental setup in detail. In Section 4,
we present the results of the experiments. Finally, we engage in a discussion of
the results and present concluding remarks in Sections 5 and 6, respectively. The
Appendix includes the key elements of the experimental instructions and survey
measures.

2 Background

Going back to Westin’s seminal work [51], the study of individuals’ valuation
of privacy has been identified as a complex issue and continues to present re-
searchers with theoretical challenges and contradictory empirical revelations
(see, for example, Solove [44] and Spiekermann et al. [46]). A number of re-
view articles have summarized findings about the various factors that influence
individuals’ perceptions, preferences and behaviors regarding privacy (see, for
example, Brandimarte and Acquisti [9] and Hui and Png [27]).

Capturing this complexity (and lessons learned) in an adequate decision-
making model may appear as an insurmountable task. However, Acquisti and
Grossklags provided a high level classification of important factors [3]. First, in-
dividuals are hampered in their decision-making due to information boundaries
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in the marketplace (such as asymmetric or incomplete information). Second, in-
dividuals suffer from their bounded rationality and have to avail themselves of
learned or innate heuristics to respond in complex privacy scenarios (such as,
for example, by applying rational ignorance about too complex matters). Third,
certain psychological biases lead to systematic deviations of expected behaviors
(e.g., time-inconsistent discounting).

Responding to the third factor, work by Acquisti and colleagues has shown
that privacy preferences are malleable, i.e., preferences can be easily changed
or influenced (see, for example, the previously cited review article [9]). Our
work is related to these findings, however, we argue that privacy and security
preferences are dependent on the relative social status of an individual within a
target population.

Given our careful reading of the related work, our approach is novel from at
least three perspectives. First, by utilizing a test-manipulation-retest methodol-
ogy we can demonstrate causality with respect to privacy and security prefer-
ences as a result of the manipulation of social status in the subject population.
We are not aware of many studies in the privacy and security fields that apply
this methodology (see [4] for an example in the security education context). Sec-
ond, as described in the introduction, the relative social status of an individual
may depend on many important factors such as wealth, professional achievement,
and education/skills. It is, therefore, a central aspect of our society that has not,
yet, found adequate consideration in the privacy/security literature. Third, we
conduct an experiment measuring privacy and security preferences at the same
time; a timely topic given the recent revelations about mass surveillance that
demand a sophisticated response from decision-makers in business and policy,
and the general population.

3 Experimental Setup

In the following, we present the essential building blocks of the two experiments
(see Figure 1).

3.1 Overview

Similar to clinical trials for new drugs and experiments in psychology and biology,
we conduct measurements (in the form of a survey) of variables of interest before
and after a manipulation. This test-manipulation-retest methodology has been
applied less often in social science and economic research. The main benefit is
that it allows us to clearly address questions of causation between important
behavioral measures.

In the first experiment, we measured subjects’ privacy and security concerns.
The key survey instrument in the second experiment is addressing individuals’
time preferences, i.e., how patient are individuals when they are presented with
delayed payments. We varied the questions between the test and retest phase to
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Fig. 1. Overview of Experiments

avoid individuals anchoring on specific responses (i.e., to avoid a carryover effect
from the first survey stage to the second survey stage).1

3.2 Social Status Manipulation

The status manipulation utilized is similar to others in the literature (see, for
example, [5,23,42,54]), with two subjects working together on a shared task.
One subject is assigned to a high-status role (i.e., the Supervisor) and the other
subject to a low-status role (i.e., the Worker).

For the manipulation, subjects were seated in same-sex pairs.2 After complet-
ing the initial questionnaire, the experimenter approached each pair and offered
the subject seated closest to the aisle a choice between two pieces of paper. The
subject could not see the contents of the paper until after he or she had se-
lected it. The other piece of paper was then given to the second person in the
pair. The two pieces of paper described the roles of Supervisor and Worker that
the subjects would take in a 2-person work group. These role instructions are
included in the Appendix. In brief, the Supervisor was responsible for writing
down the group’s answers to the task, and the Worker was responsible for ad-
vising and helping the Supervisor. To eliminate bias due to the top or bottom
piece of paper being chosen more frequently, the order of the two pieces of paper
was alternated; if the Supervisor description was on top for one pair, then the
Worker description would be on top for the next pair. The verbal instructions
given to the subjects were minimal. Subjects were paid the same amount.

1 Common across both experiments, we also included demographic variables and mea-
sures of affect (emotion). The latter we do not discuss in detail in this paper.

2 This requirement was introduced to eliminate a potential confound related to the in-
teraction of participants with different genders. For example, previous experimental
research has provided evidence for performance differences in competitive environ-
ments when individuals were part of either same-sex and mixed-sex groups [19].
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After the roles had been assigned, the Supervisor was then handed the task
instructions. The first page described the task of assigning social responsibility
scores to fictitious organizations. The subsequent 5 pages had approximately
2,000 words of text describing 8 fictitious organizations. To encourage the groups
to work diligently, an $80 prize was given to the team with the “best” answers,
where “best” was defined as being closest to the average answers of all the
groups. The subjects were given 20 minutes to complete the task. Most groups
finished the task in about 15 minutes and then continued talking quietly until
the experimenter announced the end of this period. We observed that in almost
all cases the Supervisor retained the task instructions and, as instructed, wrote
down the answers of the group. Since there was only one set of instructions, the
Worker had to look over to the Supervisor’s desk to read them.

The experimental setup was designed to isolate the status interaction as the
manipulated factor. Hence the two subjects were treated equally, apart from
the instructions, and the assignment of roles was transparently random. There
was no attempt to devalue either subject or to suggest the Supervisor in any
way deserved the role by being “better” than the Worker. Since social status
was manipulated, we refer to the Supervisors as the High-Status Group and the
Workers as the Low-Status Group.

3.3 Measures for Security and Privacy Experiment

We measured security concern for two different dimensions. First, we considered
how participants evaluated security risks from a societal perspective. Specifically,
we asked “how concerned are you about the following internet security issues as
they may affect society in general?” The sub-questions targeted issues such as
terrorism, domestic wiretapping, online crime, child pornography. Second, we
asked a number of questions to address individuals’ personal sense of security.
We asked “how concerned are you about the following internet security issues
as they may affect you personally?” The sub-questions addressed security issues
related to the usage of the Internet and personal computers such as viruses,
spyware, and online banking. The personal security questions were modeled after
surveys conducted, for example, by the National Cyber Security Alliance (e.g.,
[35]), and inspired by academic research on, e.g., phishing [14], and spyware [20].

The question about privacy was focused on potential concerns about infor-
mation revelation by the subjects themselves. We asked “how comfortable [you]
would be providing [a certain] type of information to Web sites.” The informa-
tion categories included the subject’s full name, social security number, political
orientation etc. This measure of privacy concern was first introduced by Acker-
mann et al. [1] and reutilized, for example, by Acquisti and Grossklags [3] and
Spiekermann et al. [46].

All sub-questions were presented to the participants with a 9-point scale to
accurately state the level of their concerns (examples are given in the Appendix).
We then averaged the data for each category of questions to derive three quasi-
continuous (9-point) rating scales (i.e., Likert-type scales) for social security
concerns, personal security concerns, and privacy concerns, respectively. The
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summary statistics are provided in Table 1. As previously stated, to reduce
anchoring and potential carryover effects, we asked different sub-questions before
and after the experimental manipulation.

3.4 Measures for Discounting Experiment

The financial questions are broadly modeled after those of Thaler [47], with
the subjects being told they had received a hypothetical prize from their bank
with a fixed delay. The subjects were then asked for the amount of money they
would need to receive now to make them indifferent compared to receiving the
larger amount with a fixed delay. The subjects were asked for their indifference
point over amounts that varied widely in magnitude (from tens of dollars to
thousands of dollars) and for fixed delays of 1 week, 2 months, and 2 years.
To reduce anchoring, slightly different payment amounts were presented after,
compared to before, the experimental manipulation.

These financial questions are matching tasks, as defined by Frederick et al.
[17]. The subjects were required to state the amount of money that would make
them indifferent to the proposed payout. We selected this in preference to a
choice task, where subjects make a choice between two alternatives. Choice tasks
generate a coarse filtration of preferences unless many questions are asked, and
since the experimental manipulation was expected to have only a moderate ef-
fect on preferences, it was considered important to have tightly defined financial
preferences. Choice tasks allow real, versus hypothetical, decisions to be made,
usually with one of the choices having some probability of actually being paid.
But the large magnitude of some payment amounts would make such real pay-
ments impractical. Other researchers find little difference between the real and
hypothetical answers, e.g., [29,30,34], obviating the need for real rewards. Choice
tasks can also be easier to understand than matching tasks and, indeed, several
subjects reported difficulty understanding the financial questions. This was per-
haps the main disadvantage of using a matching task.

The financial questions allowed us to estimate discount factors for each subject
for the three time periods (1 week, 2 months, and 2 years) for the questions
asked before and after the experimental manipulation. For each future payment
amount, we took the subject’s immediate value and then divided by the future
amount to calculate a discount factor for that payment. For example, the subjects
were asked how much they would need to receive now to make them indifferent
to receiving $80 in 2 months. If the subject stated they would need to receive
$60 now, then their discount factor for that payment would be 0.75 ($60/$80).
The discount factors for each time period were then averaged for each subject,
as presented in Table 3.

3.5 Apparatus and Subject Payments

The questionnaires were conducted on computers using z-Tree [16]. The experi-
mental manipulation was a group interaction with instructions given on paper.
The complete experimental sessions lasted just under an hour and the subjects
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were paid $15 for their participation (plus a potential bonus payment as dis-
cussed above; the bonus payment was divided equally between the Supervisor
and Worker).

Our research protocol and apparatus has been reviewed and approved by an
Institutional Review Board for experiments with human subjects.

4 Data and Results

4.1 Subject Recruiting and Demographics

A total of 266 undergraduate students from the University of California at Berke-
ley participated in the experiments which were held at the Experimental Social
Science Laboratory (Xlab). The experiments were advertised to a pool of stu-
dents who previously indicated their interest to participate in economic studies.

Table 1. Summary statistics for the demand for security and privacy

Security Personal Societal Privacy

No. Obs. 146 146 146 146
Mean 6.482 6.988 5.976 5.331
StDev 1.491 1.638 1.778 1.486
Skew -0.626 -1.040 -0.398 -0.044
Kurtosis 0.315 0.932 -0.178 0.016

For the security and privacy experiment, we successfully invited 146 individu-
als. We did not exclude any subjects from the analysis. Of the 146 participants,
96 (64.4%) were female. On average, participants had already gained over two
years of college experience which is roughly equivalent to the level of junior
students in the United States undergraduate system.

For the discounting experiment, we recruited 120 subjects. The 9 subjects who
answered zero to any of the financial questions were excluded from the analysis
because placing a zero value on future cash flows indicates that they may not
have fully understood the questions. This left 111 subjects whose responses we
analyze. Of the 111 participants, 64 (57.7%) were female. Similar to the group of
participants in the security/privacy experiment, participants had (on average)
already gained over two years of college experience equivalent to the level of
junior students.

4.2 Results for the Security and Privacy Experiment

The summary statistics for the security and privacy experiment are reported in
Table 1. For these static measurements, security concerns trump privacy concerns
by about one point on the 9-point rating scale, and personal security concerns
are somewhat larger than societal security concerns. On average, individuals are
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more than “somewhat concerned” about security, and less than “somewhat com-
fortable” to share personal information online which (i.e., these levels constitute
the middle points of the given rating scales; see selected questions and scales in
the Appendix).

Table 2. Impact of experimental manipulation on the demand for security and privacy

Change in Dependent Variables: Security Personal Societal Privacy

Supervisor 0.425 0.335 0.514 0.061
Worker 0.068 -0.006 0.143 0.248
Difference 0.356 0.341 0.371 -0.187
Robust Standard Error 0.124 0.152 0.177 0.158
(t-statistic) 2.876 2.244 2.095 -1.189
p-value 0.005** 0.026* 0.038* 0.237

To test the impact of the experimental manipulation, we conducted an ordi-
nary least-squares (OLS) regression with Huber-White (robust) standard errors
[25,52]. Regressions with robust standard errors are a standard approach in
economics and finance to account for data with some imperfections and minor
concerns about failure to meet assumptions about normality, heteroscedasticity,
or some observations that exhibit large residuals, leverage or influence [11].

The experimental manipulation leads to a relative increase of security concerns
for the high-status assignment (see Table 2). This effect is statistically significant
for the two components of security concern as well as the composite measure.
In contrast, privacy concerns are relatively higher for subjects in the low-status
condition, but this effect is not statistically significant.

4.3 Results for the Discounting Experiment

Table 3 captures the discount factors observed for the 111 experimental subjects
that supplied us with valid data. As expected, participants’ indifference point
for equating an amount now in comparison with a delayed fixed payment is
decreasing with an increase in advertised delay. That is, individuals’ indifference
point for receiving an amount now instead of a dollar after one week is about 82
cents. Whereas a payment delay of two years pushes the indifference point down
to about 62 cents. Put differently, individuals are satisfied with lower monetary
amounts now when facing longer delays. This effect is rational since a longer
delay prevents individuals from accomplishing alternative objectives (such as
purchasing goods or investing the money) for a longer period of time.

However, individuals behave less rationally concerning the magnitude of their
discounting choices. Equating 82 cents now with a one dollar payment after one
week resembles an extraordinarily large discount rate. The same applies to the
other two time intervals.

Taken together, participants consistently adapt their valuation when shifting
between different delay options, however any delay at all is treated very harshly.
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Table 3. Summary statistics for discounting behavior

1 Week 2 Months 2 Years Average

No. Obs. 111 111 111 111
Mean 0.821 0.785 0.624 0.744
StDev 0.235 0.218 0.250 0.203
Skew -1.591 -1.307 -0.492 -0.875
Kurtosis 1.824 1.117 -0.575 0.014

In general, this will lead subjects to seek rewards that are available now, and
delay investments that yield benefits in the future. Similar findings have been
reported in a survey study by Acquisti and Grossklags [3].

Our analysis regarding the impact of the experimental manipulation follows
the same approach as outlined in Section 4.2. When evaluating the impact of
the experimental manipulation, we observe that the different status assignments
lead to relative changes in the discounting behavior. The high-status Supervisors
experience an increase in the value of the delayed payments with, for example, the
value of $1.00 in 1 week increasing by $0.010. Conversely, the low status Workers
experience a decrease in the value of the delayed payments with, for example,
the value of $1.00 in 1 week decreasing by $0.049. The difference between the
preference changes of the Supervisors and Workers is $0.059 for the 1 week period
and $0.056 for the 2 month period; both are statistically significant. Furthermore,
the average difference across the 3 time periods is $0.051, which is statistically
significant at the 1% level. Hence this experiment demonstrates that a low, rather
than high, status level leads to a relatively greater focus on immediate rewards.

Table 4 also enables us to estimate the impact of the social status manipula-
tion on an impulsiveness metric that is defined as one minus the 1-week discount
factor. The average initial metric is 0.179 (1.00 − 0.821). Following the status
manipulation, the high status group’s impulsiveness falls to 0.169 (0.179−0.010)
while the low status group’s impulsiveness increases to 0.228. The level of im-
pulsiveness is 35 percent (i.e., 0.228/0.169− 1.00) higher for the low-status role
compared to the high-status role as a result of the status manipulation.

Table 4. Impact of experimental manipulation on discounting factor

Change in Dependent Variables 1 Week 2 Months 2 Years Average

Supervisor 0.010 0.026 0.020 0.018
Worker -0.049 -0.030 -0.018 -0.032
Difference 0.059 0.056 0.037 0.051
Robust Standard Error 0.025 0.024 0.027 0.019
(t-statistic) 2.317 2.309 1.395 2.632
p-value 0.021* 0.021* 0.163 0.008**
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5 Discussion

Our results are derived from an experimental laboratory study. We designed a
controlled environment to carefully isolate and manipulate an important factor,
and created experimental manipulations to demonstrate causation as a result
of these manipulations. Experimental economics studies that intersect with the
field of computer science have become more popular in recent years, and our
work contributes to this literature [21].

Our experiment is run in the tradition of experimental economics [41]. Ac-
cording to the standard in this research field, the experiment has taken place in
a laboratory which exclusively runs experiments without deception, and we did
not utilize any such techniques [36].

With our experiment, we did not aim for an experimental environment that
closely mimics a realistic privacy and security decision-making situation. Our re-
search question is novel in the literature, and we attempted to create a relatively
abstract experimental setup that will be the basis for follow-up studies which can
be conducted outside the laboratory, or with a more complex decision-making en-
vironment in the laboratory. For example, as a next step, a status manipulation
within the framework of a valuation of private information study would be suit-
able [22].

Our experimental subjects were drawn from a standard student pool for exper-
iments. While the degree of their privacy and security concerns may not have been
fully representative of the wider population (e.g., students may be more computer
literate), it is reasonable to assume that their preferences changed in response to the
same stimuli that other types of subjects would react to [24]. Hence, ourmanipula-
tion has relevance for the wider policy discussion. Nevertheless, a useful validation
stepwould be to conduct the experimentwith different subject populations;maybe
even drawn from societies that differ from the Western cultures [24].

Exploring our research question in a more complex laboratory environment
or outside the laboratory may give us insights about the relative importance of
the observed factors in relation to other real-world factors. However, the lack of
control and the need to consider multiple decision-making factors makes these
approaches a less suitable first research step. Research exists to guide researchers
into the direction of incrementally increasing the realism of studies inside and
outside the laboratory [33].

Returning to our experimental findings, we provide robust evidence for the
assertion that high-status decision-makers are likely to express higher concerns
for security issues than low-status individuals. This applies to personal and soci-
etal concerns. Questions about personal concerns included whether participants
were concerned about using an internet café with unencrypted data transfer,
or about a virus deleting data from their hard disk. Questions about societal
matters included whether individuals were concerned about governments snoop-
ing on their citizens, or whether they were concerned about terrorists using the
Internet for attacks. Questions about personal concerns were aimed at affect-
ing the individual more directly, whereas the questions about societal concerns
addressed issues of broader concerns.
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As with most experimental results, the findings may appear easy to rational-
ize in hindsight and, indeed, they are consistent with observations about the real
world [49]. After all, individuals of high social status (which also include those
with high socioeconomic status) may feel, for example, that they have more to
protect (e.g., according to absolute measures of net wealth, but also other mea-
sures of social status). In contrast, one could argue that low-status individuals
may feel more concerned about any loss due to security incidents. By providing
actual data, our experimental finding is, therefore, from a psychological per-
spective surprising and provides insights into the reasoning of individuals from
different social status categories.

We also find initial evidence for a second observation, i.e., that low-status
assignments trigger a relatively higher demand for privacy. This observation is,
however, not statistically significant (presumably for lack of power) and requires
follow-up research. Assuming that this evidence would be validated in future
research, it can be partly explained with individuals’ desire to shield themselves
from scrutiny if they perceive themselves as deviating from a more desirable
state [26]. Participants with a low-status assignment may have found themselves
at a disadvantage relative to their partners and this effect then triggered an
increased demand for privacy.

We also noted that effective privacy and security decision-making usually in-
volves the economic evaluation of decisions that may cause positive or negative
consequences over long periods of time [2,3]. For example, investing into addi-
tional security measures now, may deter an attack or may defend an individual
against an intrusion attempt at a much later time. From previous research, we
know that individuals suffer from a desire for immediate gratification and exhibit
often signs of procrastination. Our results from the experiment on time prefer-
ences shed light at the question whether individuals from different social status
categories share the same magnitude of impatience in their decision-making. We
find that low-status individuals are significantly more impatient, and we measure
the strength of this effect on tasks that involve monetary comparisons.

Combining the findings from the two experiments, we conclude that high-status
individuals are less prone to procrastinate on important security investments (or
also privacy-enhancing activities) that address theirpersonal and societal concerns.
In contrast, low-status individuals are more likely failing to take appropriate
actions that reflect their increased concerns for privacy due to their heightened ten-
dency for procrastination. These findings have direct implications for the utiliza-
tion of security andprivacy-enhancing technologies. For example,while individuals
may be capable to state their specific concerns about security and privacy, the like-
lihood to act to protect themselvesmaydiffer based on the level of impatience. This
is a further factor that contributes to the explanation of the gap between privacy
preferences andprivacy behaviors exhibited in previous experimental research [46].

Security and privacy decisions taken by individuals will affect others through
externalities. For example, individuals on social networking sites may (through
their actions) reveal private information about their peers to undesirable third-
parties. Similarly, individuals who suffer from security breaches may have their
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resources being abused for spam or may contribute to the weakening of the
defenses of an organization.

In addition, individuals may act as decision-makers for groups or even larger
populations, and may exercise power and influence over these groups. Typically,
such positions are associated with a higher relative social status. Our findings
may also apply to these scenarios. That is, high-status individuals may focus on
their own heightened concerns for security; and may not appropriately consider
the increased privacy-concerns of low-status individuals. It is, therefore, conceiv-
able that the privacy and security interests of different social status categories
are misaligned. Another finding is that high-status decision-makers will also be
more patient in their actions, and less prone to procrastinate on decisions. De-
pending on what privacy and security measures are considered this could be a
benefit or a disadvantage from the perspective of low-status individuals.

In practice, (self-)regulatory efforts in the domains of privacy and security are
subject to many factors of influence. Our findings are one contributory factor
for decision-making in the public domain, but need to be considered in light of
the increasing complexity of privacy and security policy [13].

6 Conclusions

By introducing social status as a mediating factor in a test-manipulation-retest
study format we were able to demonstrate causality between high/low-status
assignments and their relative impact on the demand for security and privacy,
and timing preferences.

Our results complement the sparse empirical literature on the privacy/security
trade-off (e.g., [39]) and shift the focus away from mere descriptive work on
privacy and security concerns towards studies that increase our understanding
of the impact of several important mediating variables.

Our research is timely given the heated debate about the appropriate bal-
ance between the enactment of (secret) security measures and the protection
of privacy and civil liberties. In particular, the report and recommendations of
the Presidents Review Group on Intelligence and Communications Technologies
clearly highlight the various battlegrounds related to the unprecedented use of
mass surveillance technologies [12].

High-status individuals are typically in the position to make decisions for
many others who may have other personal preferences. Our findings highlight
one contributory factor of why high-status decision-makers may favor security
measures at the expense of civil liberties and privacy.
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A Appendix: Experimental Materials

A.1 Instructions for Worker

CONGRATULATIONS! You have been assigned to the role of WORKER in
your group. You are expected to help the other group member, the SUPERVI-
SOR, in a decision-making task. The task involves making a series of decisions
concerning the social responsibility of organizations. While all decisions are the
responsibility of the SUPERVISOR, you should have an important contribu-
tion by giving the SUPERVISOR a second opinion and generally acting in a
supporting role.

The pay for each group member has been set at $15 for the experiment. In
addition, your group may receive a performance bonus of $80, to be split equally.
When you are finished reading these instructions, please turn the sheet over and
display it prominently at your workspace so the experimenter can see your role.
Then read the instructions for the social responsibility task. The SUPERVISOR
will write down the answers to the questions on that task.

(On reverse, in large font:) WORKER

A.2 Instructions for Supervisor

CONGRATULATIONS! You have been assigned to the role of SUPERVISOR in
your group. You are responsible for the performance of your group in a decision-
making task. The task involves making a series of decisions concerning the social
responsibility of organizations. The other group member, the WORKER, is ex-
pected to help you and provide a second opinion, but all decisions are your
responsibility.

The pay for each group member has been set at $15 for the experiment.
In addition, your group may receive a performance bonus of $80, to be split
equally. When you are finished reading these instructions, please turn the sheet
over and display it prominently at your workspace so the experimenter can see
your role. Then read the instructions for the social responsibility task. As the
SUPERVISOR, you will write down the answers to the questions on that task.

(On reverse, in large font:) SUPERVISOR

A.3 Task Instructions

Organizations vary in their level of social responsibility. They go to different
lengths to protect the interests of local communities, the environment, their
employees, their suppliers and customers, and the disadvantaged members of
society. Ratings of social responsibility can be based either on objective criteria
or on the public’s perception of the organization. Surveys are one method of
eliciting the public’s perception of social responsibility, and those surveys may
be completed in a group setting.

Your task is to rate organizations on their social responsibility. You will be
given descriptions of fictitious organizations that you will rate on a scale of 1-
9, where 9 denotes an organization that is extremely socially responsible. As a
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reward for performance, the group that has the best answers will be given a
bonus payment of $80. The “best answers” are defined as those closest to the
average of all the groups completing the exercise. Hence, one strategy is to rate
each organization based on your expectation of the average response for all the
groups.

Please discuss the answers quietly in your group. No communication with
other groups is allowed. To prevent cheating, each group has a different set of
questions, with organizations shown in a different order and assigned different
letters. Write your rating for each organization immediately below the descrip-
tion of the organization.

You will have approximately 2 minutes to rate each organization. The exper-
imenter will let you know when there are 5 minutes and 1 minute remaining on
the task. At the completion of the task, you must stop writing and hand back
the questions and answers.

A.4 Discounting Experiment Question

You have won a NOW-or-LATER Prize in a lottery organized by your bank. The
bank will either pay you a smaller amount NOW or a larger amount LATER
(assume there is no risk of the payment not happening).

Consider the following LATER amounts and dates. For each, you must decide
on the NOW amount that would make you indifferent between receiving the
NOW amount and the LATER amount.

(If the NOW amount is too high, you would rather receive that. If it is too low,
you would rather receive the LATER amount. You will be indifferent somewhere
between the two.)

(Note there is no “correct” answer - the question is merely asking about your
preference.)

– $4,400 in 2 months vs. $ Now:
– $2,500 in 2 years vs. $ Now:
– $1,900 in 1 week vs. $ Now:
– $240 in 1 week vs. $ Now:
– $300 in 2 years vs. $ Now:
– $27 in 1 week vs. $ Now:
– $48 in 2 years vs. $ Now:
– $80 in 2 months vs. $ Now:
– $730 in 2 months vs. $ Now:

A.5 Questions for Security and Privacy Experiment

How concerned are you about the following internet security issues as they may
affect society in general? (1 = Not concerned at all; 5 = somewhat concerned; 9
= Very concerned)



Social Status, Security and Privacy 101

– The use of the internet by race-hate groups to spread propaganda
– Oppressive governments using the internet to snoop on their populations
– Social networking sites being used by pedophiles to contact children
– The limited resources of law enforcement agencies to deter online crime
– Online users bullying and intimidating one another
– Profits from internet activities funding organized crime groups
– The vulnerability of the national internet infrastructure to attack by hostile

governments and terrorists
– The use of the internet by terrorist groups to organize attacks

How concerned are you about the following internet security issues as they
may affect you personally? (1 = Not concerned at all; 5 = somewhat concerned;
9 = Very concerned)

– People using the internet to withdraw money from your bank account
– Using internet cafes with unencrypted data transfer
– Employers searching for information about you online
– Your ISP selling your data
– Spyware becoming installed on your computer
– Your computer being taken over as part of a botnet
– A virus deleting data from your hard disk

When visiting Web sites that collect information, many people find there is
some information that they generally feel comfortable providing, some informa-
tion they feel comfortable providing only under certain conditions, and some
information that they never or rarely feel comfortable providing. For each of
the types of information in the left most column, please indicate how comfort-
able you would be providing that type of information to Web sites. (1 = Very
comfortable; 5 = Somewhat comfortable; 9 = Not comfortable at all)

– Full name
– Home address
– Your weight
– Outside work and study interests
– Social network user name/address
– Social security number
– Political orientation
– Driving record
– High school grades
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Abstract. Due to the abundance of attractive services available on the
cloud, people are placing an increasing amount of their data online on
different cloud platforms. However, given the recent large-scale attacks
on users data, privacy has become an important issue. Ordinary users
cannot be expected to manually specify which of their data is sensitive,
or to take appropriate measures to protect such data. Furthermore, usu-
ally most people are not aware of the privacy risk that different shared
data items can pose. In this paper, we present a novel conceptual frame-
work in which privacy risk is automatically calculated using the sharing
context of data items. To overcome ignorance of privacy risk on the part
of most users, we use a crowdsourcing based approach. We use Item Re-
sponse Theory (IRT) on top of this crowdsourced data to determine the
sensitivity of items and diverse attitudes of users towards privacy. First,
we determine the feasibility of IRT for the cloud scenario by asking work-
ers feedback on Amazon mTurk on various sharing scenarios. We obtain
a good fit of the responses with the theory, and thus show that IRT,
a well-known psychometric model for educational purposes, can be ap-
plied to the cloud scenario. Then, we present a lightweight mechanism
such that users can crowdsource their sharing contexts with the server
and determine the risk of sharing particular data item(s) privately. Fi-
nally, we use the Enron dataset to simulate our conceptual framework
and also provide experimental results using synthetic data. We show that
our scheme converges quickly and provides accurate privacy risk scores
under varying conditions.

1 Introduction

1.1 Motivation and Challenges

Cloud computing platforms have become a ubiquitous presence in our digital
lives. Given the pervasiveness of useful cloud services such as storage, online
document editing, media streaming, etc., data which would normally be on the
user’s local machine, now invariably lies in the cloud. Recent large scale leakage
of data [1] has raised serious concerns about users privacy. Prior to designing
privacy mechanisms, it is important to identify the challenges of privacy provision
in the cloud, which can inform potential solutions. In particular, we notice three
major stumbling blocks towards privacy provision in the cloud:

E. De Cristofaro and S.J. Murdoch (Eds.): PETS 2014, LNCS 8555, pp. 102–122, 2014.
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a) Privacy vs Services Dilemma: To tackle privacy concerns, some cloud
computing companies provide the users with the option of client-side encryp-
tion to protect the data before it leaves the users’ device, thus preventing any
other entity from data decryption, including the cloud provider itself. However,
while this approach eliminates most of the data privacy concerns, its main disad-
vantage is that the user cannot readily utilize existing cloud services. For some
services, attempts exist at designing alternatives that operate over encrypted
data, benefiting from the recent breakthroughs in homomorphic encryption [2].
In addition to resulting in services orders of magnitude less efficient than their
counterparts, homomorphic encryption is provably not sufficient for construct-
ing several essential services involving multiple users [3]. Furthermore, resorting
to homomorphic encryption as the ultimate solution requires rewriting most of
the cloud applications’ code to operate over the encrypted data. New versions
of existing LATEXcompilers, photo filters, music recommenders, etc., based on
homomorphic encryption, will need to be programmed with the goal of keeping
all data private, which is evidently non-realistic.

b) Difficulty of manually assessing data privacy levels: Users cannot
be expected to individually assess the sensitivity level for each item before they
share it as that can require a lot of investment in terms of time and effort,
coupled with technical expertise. A recent survey [4] has shown that, in one out
of four organizations, the management has little or no understanding of what
constitutes sensitive data. Evidently, this fraction is expected to be significantly
higher for individual users.

c) General lack of awareness about privacy: This includes limited no-
tions about privacy being restricted to hiding ‘sensitive’ content, such as personal
identification numbers, credit card details etc. Often, the metadata associated
with the data item, the location and device from which the item is shared, the
entity with whom the data is shared, etc., can be as important as the content of
the data itself.

In our solution for privacy provision in the cloud, we seek to overcome these
above hurdles.

1.2 Approach and Contributions

How do we address the ‘stumbling blocks’ that we identified in Section 1.1?
First, we show how we can use a centralized solution to facilitate crowdsourcing
for privacy without requiring revelation of users preferences. We argue that to
achieve this, cryptographic methods are infeasible, and we present a novel design
that allows users to reveal their preferences to the central server privately. We
show how an existing psychologically grounded method for analyzing users pref-
erences and data properties, can be rigorously used to analyze this crowdsourced
information. Users can then reap the benefits of this crowdsourced information
as the server analyzes it to provide them with sensitivity indicators when they
share new data.

By crowdsourcing the solution, users are no longer isolated individuals who
lack privacy awareness. They can now be guided by the Wisdom of the Crowd.
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Also, they do not have to exert manual effort to find the sensitivity associ-
ated with each item they share, as the server can guide them automatically.
Furthermore, they need not worry about getting stuck with ‘bad’ crowdsourced
information, i.e., about majority of users being as clueless about privacy as them.
This is because the psychometric method we use for analyzing this information,
Item Response Theory, ensures that computed parameters of data items do not
only apply to a specific sample of people. The solution would ensure, for exam-
ple, that sharing compromising photos of oneself with the public is deemed risky
even when majority of the people in the system are doing so. Only a few con-
servative users in the system are enough to keep the system risk-averse. Finally,
we validate our design with both simulation and empirical data, thus showing
the feasibility of our solution.

Specifically, we make the following main contributions in this paper:

– We propose a privacy framework, which is specific to the cloud scenario and
incorporates the nuances of data sharing within cloud, such as the Privacy
vs Services Dilemma and Lack of Privacy Awareness and Effort on part of
most users.

– We create a realistic vocabulary for a personal cloud, and use it to create
‘Human Intelligence Tasks’ on the Amazon Mechanical Turk. We measure
people’s responses, in terms of their privacy attitudes, against the Item Re-
sponse Theory (IRT) and find a good fit. We thereby demonstrate that Item
Response Theory, a well-used psychometric model for diverse purposes, can
be applied fruitfully in the cloud scenario.

– Our solution depends on crowdsourcing the contexts and policies associated
with shared items. The sensitivity associated with different items is deter-
mined by grouping together same (or similar) contexts and analyzing differ-
ent policies set by people with different privacy attitudes. However, we also
have to ensure the privacy of this aggregated context information. Towards
that aim, we provide a lightweight mechanism based on K-Anonymity [5] for
privately calculating similarity between items in a centralized way, without
depending on infeasible cryptographic methods.

– We perform a set of experiments using synthetic data, with various graphs for
user activities, item distribution, and types of users (honest vs. malicious).

– Finally, we use the Enron email dataset for evaluating our framework. This
dataset gives us a good model of users sharing activities and the diversity
of data items (and their contexts). Under both datasets, we show that our
scheme bootstraps quickly and provides accurate privacy scores in varying
conditions.

2 System Model

2.1 Interacting Entities

We consider a system involving interactions between two types of entities: end-
users and cloud service providers (CSPs). The end-user can play one of two
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roles: data sharer or data observer while the cloud provider can only be a data
observer. A data sharer is an end-user who shares data items she possesses. A
data observer is any entity that is given access to observe the shared items by
the data sharer.

We assume that the user sends her data to a single CSP, called the interme-
diary that acts as the repository for this user’s data. The user can select to give
other CSPs access to her data through that CSP (e.g. when the latter has an
API that the other CSPs can use). The interaction between these two types of
entities is in the form of data sharing operations. Each such operation is initiated
by an end-user s0 who shares a data item d (e.g. document, picture, etc.) with a
CSP or another user s1. Additionally, the data sharer intends from the sharing
operation to obtain a certain service of interest from the CSP, such as music
streaming, document viewing, file syncing, etc. The network is dynamic, in the
sense that these entities can enter and leave the network, and the user items can
be shared over time, not necessarily concurrently.

2.2 Threat Model

We assume that the user is interested in hiding her sensitive data from the
CSPs. Existing privacy threat models consider an adversary who attempts at
discovering quantifiable sensitive information, such as location, browsing history,
credit card information, etc. In our model, we do not set an a priori definition
of sensitive information due to the heterogeneity of the shared data items we
consider. Instead, we develop a protocol that quantifies the sensitivity of a certain
sharing operation (determined by its context), based on the privacy policies that
people use. Furthermore, we assume that the CSP is honest but curious, in the
sense it follows the protocol, but it can arbitrarily analyze the protocol transcript
offline to infer extra information.

2.3 Our Conceptual Framework

We now discuss the key concepts and components that underlie our conceptual
framework for privacy provision in the cloud.

Context Vocabulary. In Section 3, we use the notion of Context vocabulary
to define the contexts of items shared in a given domain. A context accounts
for the content features of the items, the metadata associated with it, and the
environment of the sharing operation (e.g. data observers, device used, etc.).

Sharing Policy. People can share different data items with different policies,
where a policy is in the range [0, 1] and 0 signifies full transparency while 1
signifies full obscurity. We discuss this in more detail in Section 3.2.

Crowd-Sourcing. In our framework, after each sharing operation, the context
of the item and the policy applied are eventually aggregated at the cloud via a
privacy preserving mechanism. This aggregation is required so that the Lack of
Privacy Awareness may be overcome, and individual decisions could be guided
by the Wisdom of the Crowd.
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Fig. 1. Sequence diagram of the system

Risk Evaluation. Basedon theprocessing andanalysis of the crowdsourced infor-
mation, the system can guide others about the privacy risk that is posed by sharing
different items in different contexts. Towards that aim, we use Item Response The-
ory (IRT) which is a well-known psychometric function that has been widely used
in psychology, education, public health, and computer adaptive testing.

Policy Recommendation. The final component in our framework is a suite of
risk mitigation applications. By this, we mean system recommended policies that
can guide the general user in minimizing risk while still availing services. In this
work, we do not focus on Policy Recommendation and leave it for future work.

In Figure 1, we show a sequence diagram summarizing the steps taken in one
run of the system. The client contacts the server with a private query about the
sensitivity of the current context (t=1), in a way that the server remains oblivious
about the actual context. Upon receiving the response with the sensitivity (t=2),
the client locally computes the privacy risk of sharing the data (t=3) and decides
on the relevant privacy policy (t=4). Next, the client sends the data at t=5. At a
later round (t=i), the client sends the context along with the used policy after it
makes sure that the server cannot associate the context with the actual sharing
operation. The server determines the similarity of this item with other items
that users have crowdsourced to it. Using psychometric functions, the server
computes the sensitivity associated with the item being shared, which is used to
respond to future sensitivity queries.

3 Context Vocabulary and Sharing Policies

We begin by describing the fundamental building blocks of our framework, which
refer to the context in which an item is shared and the policy with which the
item is shared.
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Fig. 2. An example vocabulary for data sharing in the personal cloud

3.1 Context Vocabulary

We introduce the technical notion of ‘Context’, which includes the metadata
associated with a particular data item, user supplied information about the
data item (such as tags), and the environment features in which the data is
being shared (such as the device information or the relationship with the ob-
server). Furthermore, ‘Context’ also includes information extracted through con-
tent analysis of the data item, such as topic modeling statistics in case of a text
document and face recognition in the case of images.

For an illustration of ‘Context’, consider a case where Bob shares a word
document about financial risk authored by sharer (i.e. Bob himself) on Bob’s
laptop and shared with a colleague. The words in italics capture the context
of the data item. For a specific domain, ‘Context Vocabulary’ is the set of all
fields that can be used to represent any shared item in that domain. Put another
way, the context vocabulary is the vocabulary that can be used to represent all
possible contexts in a given domain. We give an example of such a vocabulary
in Figure 2.

The general template for a context of an item would be a tuple of the general
form (field1=value1, field2=value2,. . . ), containing f fields. Thus, the context
of the data item in the above example would be (data type=word document,
topic=financial risk, device=laptop, author=sender, observer=colleague).

It should be noted that there are usually two kinds of fields associated with
a data item. The first are those which are by default associated with the data
item, e.g., data type, and other metadata information, e.g., author, which are
available (or can be extracted by anyone) if the data item is shared completely
transparently as in plaintext. We term these explicit fields. The second are de-
fined by the sharer while sharing the data item, e.g., observer, topic, device, or
other tags that might be associated with the data item. We term these implicit
fields.

We note here that it is not necessary (or even usual) for all data items to
have all context fields available. An item’s context is defined by whatever fields
are available. For example if we have a pdf file which does not have its author
present, then obviously the file’s context would not include the author. Put
another way, the value of the author field would be considered empty.
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3.2 Sharing Policies

When a user decides to share a data item, it does so with a policy. This pol-
icy ranges from 0 to 1, where 0 signifies full transparency while 1 signifies full
obscurity. For example, if the user decides to encrypt a file, then this would be
symbolized by a policy value of 1. On the other hand, sharing an unencrypted
file while hiding some meta-data fields (such as e.g., author, modified by etc)
would result in a policy value between 0 and 1.

4 Crowd-Sourcing and Risk Evaluation

As shown in Figure 1, a client can privately query the server about the sensitivity
of a specific sharing operation and get a response based on that. In this section,
we describe these parts of our framework in more detail. Informally speaking,
the privacy guarantee that we achieve throughout is that, at any time, the server
has multiple contexts that can be associated with each sharing operation. Ac-
cordingly, the context of each operation is never deterministically disclosed to
the server.

Q1=

✔

✔
✖

✔

Fig. 3. QuerySet formation and anonymity subset definition

4.1 Privacy Aware Querying

Directly sending the context to the server allows it to associate the sharing
operation with that context, which we aim to avoid. Instead, we describe a
scheme, where the client queries the server about multiple dummy contexts, in
a way that hides the actually requested one.

QuerySet Formation. We denote by targetContext the context for which the
client is querying. This context is sent as part of a QuerySet, containing other
contexts, which we term as homonyms. As shown in Figure 3, suppose that the
targetContext is c1 : (f1 = x1, f2 = v1, f3 = w1). The client forms a list of
alternative values for each field, e.g. L = [{x1, x2, x5}, {v1, v3, v6}, {w1, w2, w3}]
so that, in total, each field has k possible values. Then the homonyms are formed
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by producing the cartesian product of all the sets in L. This results in contexts
having different combinations of field values.

The choice of the alternative values is not totally at random. In order to allow
targetContexts to appear faster in multiple QuerySets, thus approaching the
privacy condition formalized in this section, the client keeps a Pending List (PL),
containing previously queried targetContexts. It selects at random a fraction of
t × k values1 from PL when available and fills the rest of the values from the
domain of each field.

The client sends this QuerySet to the server. The server, on receiving a Query-
Set, responds with a subset of all those contexts for which it knows the sensi-
tivity2. If the sensitivity of the targetContext is also returned by the server, the
client decides to apply a policy on the data item based on this; otherwise the
client can choose to do the same uninformed. In both cases, the actual data item
is sent afterwards to the server. Once the server receives the actual data item, it
can easily infer the exposed part of the targetContext. This part includes those
explicit fields as defined in Section 3.1, which the client did not choose to hide.
It is evident to notice that, by the construction of the QuerySet, the server is
not able to deterministically infer any field of the unexposed part of the context
(containing all implicit fields and those explicit fields which have been hidden
by the client). In particular, the server has k possible values for each such field.
Moreover, assuming there are u fields in the unexposed part, we will have ku

contexts that match the exposed part of the targetContext. We call this set of
contexts the Anonymity Subset (Ai) of the targetContext ci, and we illustrate
its contents with an example in Figure 3. With respect to the server, one of the
elements of this subset is the targetContext, but no element can be ruled out
without further information.

We now add the following definition:

Definition 1. We say that a context c can be validly associated with the
sharing operation of item di if c has appeared in Ai and if the server cannot
assert with certainty that c exclusively belongs to one or more anonymity subsets
other than Ai.

Hence, at this stage, we have the following guarantee:
Guarantee 1. At the querying phase, the server receives ku contexts that can
be validly associated with the current sharing operation.

Crowdsourcing. Up till now, we have shown how the client privately queries
the server about the sensitivity. In order to compute this sensitivity, the server
relies on crowdsourcing, through privately collecting targetContexts along with
the corresponding policies (together called the Crowdsourcing Information (CI))
from different clients. We alternatively say that a context c is crowdsourced
when CI(c) is sent to the server. The client should not send dummy information
as in the querying phase in order to not affect the accuracy of the sensitivity
computation. Thus, we now present the scheme in which client sends the CI in

1 k is a constant (0 < k < 1) (we take t = 2/3 in our experiments).
2 We shall discuss how the server calculates this sensitivity in Section 4.2.
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a way that continues to maintain Guarantee 1 for all the sharing operations. As
a result, the server will be able to know, for example, that a client Bob shared
a financial document with a colleague in an plaintext form, but it will not be
able to link the document topic or his relationship with the observer to a specific
sharing operation.

One way this guarantee might be weakened is if the client sends the CI in
a way that allows the server to discover the anonymity subset in which the
context was the targetContext. For example, sending CI(c) after c has appeared
in a single anonymity subset A1 will reveal to the server that c corresponds to
data d1. Hence, the first intuitive measure for preventing this association is to
wait until a context appears in multiple anonymity subsets before sending the
CI.

However, this measure is not sufficient. Consider the case of two contexts cx
and cy, both only appearing in anonymity subsets A4 and A6. Suppose that we
require that a context appears in at least two anonymity subsets before it is sent.
Then, both CI(cx) and CI(cy) will be sent directly after item d6 (with anonymity
subset A6) is sent. At this point, the server is sure that one of cx and cy is the
targetContext for A4 and the other for A6. All of the other ku − 2 contexts
that have appeared in A4 and A6 are no more possible candidates for being
the actual targetContext from the viewpoint of the server. Hence, Guarantee 1
for these two sharing operations is weakened as the ku − 2 contexts are now
deterministically associated with other anonymity subsets. The guarantee will
be weakened further if there was a third item d8 that has been subsequently
sent, with its context c8 appearing in A4 and A8. From the server’s viewpoint,
A4 is no more a valid possibility for c8 due to the mapping deduced when cx and
cy were sent. Therefore, the server can deterministically associate A8 to c8, and
the whole context for d8 is revealed. The main weakness in this naive method
is that it does not account for the fact the server can link multiple sending
instances and reduce the possibility of mapping to a single case. Our strategy
to counteract that and keep Guarantee 1 is to verify that crowdsourcing the
next context preserves the property that each sent context item is still validly
associated with all the anonymity subsets it has appeared in.

At this point we add another definition:

Definition 2. We say that there is a valid mapping from a list of contexts to
a list of anonymity subsets if each context in the former can be validly associated
with a distinct anonymity subset from the latter.

Suppose the client has just completed the sharing operation i, and is attempt-
ing to crowdsource the contexts that have not been sent yet, which are kept in
its Pending List (PLi). We also denote by SLi the Sent List, containing all con-
texts that have been crowdsourced previously, and by Ģi the group of all client’s
anonymity subsets up to (and including) Ai. Towards achieving Guarantee 1, a
context c ∈ PLi can be crowdsourced only when the following two conditions
are true:
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Fig. 4. Checking privacy conditions before crowdsourcing context c2

1. c appears in at least r anonymity subsets
2. For each A ∈ Ģi, there exists a valid mapping from the list SL′

i = SL
⋃{c}

of contexts to the list Ģi \A of anonymity subsets.

Going back to the previous example, after each of cx and cy has appeared in two
anonymity subsets, condition 1 is satisfied. However, condition 2 is not satisfied
since excluding A4 will lead to G \ A4 = {A6}, and then we cannot map each
context to a distinct anonymity set.

Figure 4 illustrates with another example how the two conditions can be
verified. For each targetContext, the client maintains a list of the anonymity
subsets it has appeared in. In addition, it maintains two lists: U1, containing
the targetContexts that have not satisfied the first condition yet3, and S1U2,
containing the list of items that have satisfied the first condition but not the
second. The figure shows a valid mapping that exists for each anonymity subset
in Ģ when c2 is considered for crowdsourcing. It is worth noting that PL =
U1

⋃
S1U2. Also, as discussed in Section 4.1, when the contexts of PL appear

in more anonymity subsets, the above privacy conditions will be satisfied faster;
hence, they were used in the construction of the QuerySet.

Lemma 1. Checking conditions 1 and 2 allows to preserve Guarantee 1.

Proof. Consider any context that is about to be crowdsourced. Condition 2 im-
plies that for each A ∈ Ģ, there is a possibility that the targetContext of A has
not been sent yet. Hence, each context in c ∈ SL′, can still be validly associated
with all the r subsets it appeared in. Let Zi be the list of all contexts that ap-
peared in the elements of Ģi. It is evident that there is no new information being
sent about the contexts in Z \ SL′. Therefore, all the contexts in Zi can still
be validly associated with the anonymity subsets they appeared in. Accordingly,
Guarantee 1 is preserved. ��
Discussion:We note that an alternative scheme for crowdsourcing that includes
encrypting the context before sharing it would not work. In our framework, the
server is required to use a similarity function to match the context with other
ones sent by people in order to compute the context sensitivity. Even if we
encrypt the context before we send it, the server will be able to know it by
computing its similarity with all the possible contexts in the vocabulary (as the

3 Regardless of whether the second condition is satisfied.
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latter are not large enough to prevent being iterated over easily). Another place
where encryption might be applied is at the querying phase, where Private In-
formation Retrieval (PIR) techniques with constant communication complexity
might replace the QuerySet technique. However, as the complexity gain is ab-
sent, and the privacy guarantee obtained by the querying phase is limited by the
crowdsourcing phase, we do not resort to the encryption-based method, which
is more complex to implement.

4.2 Sensitivity and Risk Evaluation

When the server receives the crowdsourcing information, it seeks to determine
the sensitivity associated with this item based on same or similar items shared
with different policies in the past by different users. The client, upon receiving
this sensitivity, locally computes the privacy risk of sharing. In this paper, for
computing the sensitivity, we use Item Response Theory (IRT), a well-known
psychometric function, which we describe next.

Sensitivity Computation by the Server. Item Response Theory (IRT) is
a modern test theory typically used for analyzing questionnaires to relate the
examinees’ probability of answering a question correctly (or in general a correct
response probability Pij) to two elements: (1) the difficulty of the question (or
in general a latent threshold parameter βi of item i) and (2) the examinees’
abilities to answer questions (or in general a latent parameter θj for each person
j). In contrast to Classical Test Theory (CTT), which measures a person’s ability
based on averages and summations over the items, IRT has two distinguishing
features: (1) the group invariance of calculated item parameters (i.e. a single
item’s parameters do not only apply to the current user sample, assuming the
social norms won’t vary significantly) and (2) the item invariance of a person’s
latent trait (i.e. the trait is invariant with respect to the items used to determine
it) [6].

In this work, we apply IRT by mapping the item’s difficulty to the sensitivity,
the user’s trait to the privacy attitude (or willingness to expose the items),
and the response probability to the policy level of the item (similar to previous
works [7,8]).

We focus on the unidimensional IRT models, which make three main assump-
tions about the data: (1) unidimensionality (i.e. there is a single underlying trait
θ that determines the person’s response), (2) local independence (i.e. for each
underlying trait θ, there is no association between responses to different items),
and (3) model fit (i.e. the estimated item and person parameters can be used to
reproduce the observed responses) [9]. An IRT model is termed as dichotomous
if the responses to the questions are binary ones (correct/incorrect) and poly-
tomous if there are multiple levels of the response (e.g. a five-level Likert scale
with responses: strongly disagree/disagree/neutral/agree/strongly agree).

The Rasch model, one of the most common IRT models, assumes that the
probability of correct response is a function of θ and β only and that the items
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are equally discriminative for testing the underlying trait. It is particularly ad-
vantageous with smaller sample sizes, due to its simplicity and few parameters,
and, as we show in Section 5.1, it also fits well in the scenario of cloud data
sharing. The parameters of the dichotomous Rasch model for an item i and a
person with parameter θ are related by the following function, called the Item
Response Function (IRF):

Pi =
1

1 + e−(θ−βi)
(1)

With polytomous models, we will make the assumption that the policies chosen
by the users are on the same scale for all the items. It is similar to the case of
Likert scale, where the same set of categories are applied for each item in the
test. Accordingly, the most suitable model for us, and whose fit to the cloud
scenario will be demonstrated in Section 5.1, is the Rasch Rating Scale Model.
For estimating the parameters of the different models, we used Marginal Max-
imum Likelihood estimation, which is an expectation-maximization algorithm.
The estimation technique relies on having enough responses for multiple items
by different people. For more details about item response theory models, the
reader is referred to the following works [6,9,10].

Risk Computation by the Client. The sensitivity is an indication of the
magnitude of privacy loss incurred when data is lost. The client can combine
this measure with another measure of the likelihood that this event happens,
using information that is kept locally, such as the level of trust for the current
observer, the level of protection (i.e. the policy), etc. The privacy risk is then a
combination of the sensitivity and the likelihood.

5 Evaluation and Experiments

5.1 Experiments for Validating IRT

Since we shall be using Item Response Theory (IRT) to calculate the sensitivity
of shared items, the first question that needs to be answered is this: Can IRT
be meaningfully applied in the cloud scenario in which people share data items
in a variety of contexts? In order to investigate this and to empirically ground
our design and subsequent experiments, we validated IRT for the cloud scenario
using real people’s feedback on Amazon Mechanical Turk. Next, we explain our
methodology for this validation.

Methodology. We created a realistic vocabulary for the personal cloud, and,
based on it, we developed a list of questions that we submitted as Human Intel-
ligence Tasks (HITS) on Amazon mTurk4. We created two separate HITs for the
dichotomous and polytomous cases of IRT. For the dichotomous case, we asked
96 questions to which we received answers from 81 people. For the polytomous

4 The vocabulary and the survey are available online: http://goo.gl/xjuvvj

http://goo.gl/xjuvvj
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Fig. 5. Bond-and-Fox Pathway Map on the mTurk data (a dot represents a context
item)

case (with 3 categories), we asked 16 questions to which we received answers
from 50 people5. Here each question represents a context item while the users
responses represent their policies for sharing in the given context.

We analyzed the results using the eRm Package in R [12]. For testing the
model fit, we used the standardized (STD) and the mean square (MSQ) infit
statistics. An infit statistic is a weighted fit statistic derived from the squared
standardized residual between the observed data and the one predicted by the
model [13]. The STD infit indicates whether the data fits the model perfectly and
is also an approximate t-statistic. In Figure 5, we show the STD infit statistic in
the two cases of dichotomous and polytomous items, along with the sensitivity
value of items (threshold values in the polytomous case) in each graph, also
called the Bond-and-Fox Pathway Map. We notice that all the values in the
polytomous case and all but one in the dichotomous case lie between -2 and 2,
which are the typically acceptable bounds [13]. We also derived the MSQ infit
which serves as an indication of whether the data fits the model usefully, i.e.
if it is productive for measurement. We found that the MSQ infit was in the
range [0.7, 1.312] for dichotomous items and [0.683,1.287] for polytomous items,
which are both within the typically accepted [0.5, 1.5] range [13].

Having shown the applicability of IRT to the cloud sharing scenario, we pro-
ceed to the evaluation of our framework.

5.2 Synthetic Datasets

In this section we detail our methodology for evaluating our framework with
synthetic data, followed by the experimental results and discussion.

Methodology. The context items in this dataset were generated by selecting
a generic vocabulary with 5 fields per context. Each field of a context had 5

5 The numbers of respondents is generally considered a good number for testing
IRT[11].
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possible values for a total of 3125 possible contexts. From these contexts, we
selected 200 ones at random. There are 500 sharers (or people) who share these
items. In total, for each experiment we allocated 30000 sharing instances, each
of which represents a data item (corresponding to the context item) shared by
a certain person with another person at a specific time. The item to share at
each instance is drawn according to a predetermined item distribution (zipf with
exponent 2, or uniform, depending on the experiment). In our implementation,
the distance (and hence similarity) between each pair of contexts is based on
considering the hamming distance over their fields6. The people connections for
sending data were modeled using two types of graphs: (i) small world (using the
Watts-Strogatz model with a base degree of 2 and β = 0.5) and (ii) random
(with average degree of 4). Our simulation is a discrete event based simulation,
punctuated by sharing events. The person who instantiates a sharing event is
selected randomly from the graph, weighted by her degree, so that people who
have more neighbors share more items than those with less. The data receiver
is selected randomly from the list of neighbors of the sender. Each person sends
data at a time rate modeled by a Poisson process so that the time between her
two sharing instances is exponentially distributed with an average of 3,6, or 12
hours, depending on the experiment.

At each sharing instance, the context item’s QuerySet is sent according to our
scheme. The server maintains clusters of contexts it receives, grouped according
to a similarity parameter (whose value of 1 implies that each cluster’s contexts
differ by one field from their cluster center, etc.). When the server receives a
new context, it either maps it to an existing cluster or assigns it as the center
of a new one. All the contexts of a certain cluster are assumed to have the same
sensitivity. The server replies with all the sensitivities it knows for the clusters
to which the contexts in the QuerySet were mapped. If the reply contains the
requested item, this is considered as a Hit.

In the crowdsourcing phase, upon receiving new Crowdsourcing Information
(CI) from a client, the server matches it to a cluster S and tries to compute the
sensitivity for S if it is not yet computed. To achieve an acceptable sample for
IRT, we require that (1) S has a minimum of 15 contexts with their policies,
(2) that there are 4 other clusters satisfying requirement 1, and (3) that each of
these 4 clusters has at least 8 CIs by people who have also sent CIs appearing
in S. The sensitivities are computed using the marginal maximum likelihood
estimation technique. In all the experiments, unless otherwise stated, the default
setting is a small world social network with zipf item distribution, six hours
average sharing interval, and a similarity parameter of 1. In addition, the value
for parameter r is equal to k, which is 3 by default. Hence, k is the anonymity
parameter we use henceforth.

6 System designers can use any similarity measure best suited for their needs, e.g.,
those dealing specifically with semantic similarity. However, that is beyond the scope
of this work.
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Fig. 6. Synthetic dataset graphs

Results and Discussion. Figure 6a shows the Hit Rate of users queries over
time, where Hit Rate is defined as:

HitRate =
# of queried items with available sensitivity

total# of queried items
(2)

The Hit Rate is calculated per day unless otherwise specified. In Figure 6a we
can see that the Hit Rate for anonymity parameter 3 is better than the Hit Rate
for 4. As discussed earlier, anonymity parameter k implies that a targetContext
for sensitivity must have appeared in k different anonymity subsets and that
k different values for each field in the targetContext must be present in the
QuerySet. The above conditions suggest that lower the anonymity parameter
value, more targetContexts would be sent to the server for crowdsourcing, and
thus more quickly would IRT be able to respond with sensitivity values.

The anonymity parameter 1 implies no anonymity at all. We plot this curve
to see the ‘overhead’ of our K-anonymity scheme on top of the time required
by IRT. Simply put, the curve for the anonymity parameter 1 represents the
time it takes IRT to provide Hit Rates when there is no anonymity scheme in
place. Thus the difference between the curves for anonymity parameters 1 and 3
represents the overhead of our anonymity scheme in terms of reduced Hit Rate.
However, we see that the curve for 3 converges to the same Hit Rate as 1 in
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ten days time. This suggests that our anonymity scheme bootstraps quickly and
does not pose significant overhead7

Figure 6b shows the Hit Rate with different sharing intervals in hours. An
interval of 3 means that all users query for the sensitivity of an item every
3 hours on average. It can be seen from the Figure that initially, longer the
interval, the slower the increase in the Hit Rate. This is most noticeable around
the 5th day, when the Hit Rate with an interval 12 is still around 0.5 and lags
significantly behind. Eventually, as the server collects more and more items, the
Hit Rates of all sharing intervals converge to similar values.

Figure 6c shows the Hit Rate with different similarity parameters. Similarity
parameter has been defined in Section 5.2 A similarity parameter of 0 signifies
that there is no (zero) difference between two context items while calculating
sensitivity8. Precisely, what this means is that to calculate the sensitivity of an
item, IRT would require other items, which are exactly the same as this item, to
have been shared with different policies. A similarity parameter 1 implies that
two items that differ by a distance of 1 would be considered the same while 2
implies that items differ by a distance of 2 would be considered the same. This
in turn implies that IRT would be able to more quickly calculate the sensitivity
of an item (as opposed to case 0) since there would be more items which are
considered the same. Thus we can see in Figure 6c that Hit Rate with similarity
parameter 0 is the worst since IRT does not have enough items for calculation.

In Figure 6d, we investigate the effects of the ‘item distribution’ on the Hit
Rate. By ‘item distribution’ we mean the distribution of the context items, i.e.,
the different contexts in which users share data. This is an important feature be-
cause different organizations and different systems would naturally have different
item distribution. For our experiments, we use two different item distributions.
One is the zipf distribution, which has been shown to be most common in social
networks [14]. The other is the random distribution in which all context items
are randomly distributed. A look at the Figure 6d reveals that a zipf distribu-
tion ‘bootstraps’ faster than a random distribution. The Hit Rate with random
distribution lags behind zipf by a day, i.e., it reaches the same Hit Rate a day
later, till the fifth day. We argue this is because, given a zipf distribution, users
share more similar items, and thus the crowdsourcing is more effective, and IRT
is able to calculate the sensitivity of items quickly. Given a random distribution,
it takes more time for IRT to accumulate enough similar items for the calculation
of sensitivity. However, as the times goes by and more items are accumulated,
both random and zipf converge to around the same values.

In Figure 7a we observe the effect of changing the underlying social network.
We use two graphs for the social network structure: small world and random.
These affect the sharing patterns of the users. We see that the effect of the
underlying graphs on the Hit Rate is not significant and both lead to similar
values, with the small world doing slightly better than the random network.

7 This overhead can be further reduced through bootstrapping the system with initial
data collected from surveys, thus increasing the Hit Rate at the beginning.

8 This was the case for example in the experiments for validating IRT in Section 5.1.



118 H. Harkous, R. Rahman, and K. Aberer

● ●

●

●

●
● ● ● ● ●

0.00

0.25

0.50

0.75

2.5 5.0 7.5 10.0

Time (days)

H
it
 R

a
te

People
Network

● random small world

(a) Effect of social networks

●

●

●
●

●

●

●
●

●

●

0

10

20

30

0 0.25 0.5 0.75
Malicious Fraction

S
e
n
s
it
iv

it
y
 D

if
fe

re
n
c
e
 (

%
)

●

0

5

10

0 1 2
Similarity Parameter

S
e
n
s
it
iv

it
y
 D

if
fe

re
n
c
e
 (

%
)

(b) Sensitivity
difference with
malicious users

●

0

5

10

0 1 2
Similarity Parameter

S
e
n
s
it
iv

it
y
 D

if
fe

re
n
c
e
 (

%
)

(c) Sensitivity
difference with

similarity

Fig. 7. Hit rate and sensitivity difference under various conditions

Finally, Figures 7b and 7c show the effect of malicious users and changing
similarity parameters on the sensitivity values. For this particular set of exper-
iments, we begin by assigning different sensitivity values to the items and also
different attitudes to the users. As the experiment runs, the policy of the users
on sharing the items is dictated by their attitude and the item sensitivity given
at the beginning. The sensitivity of the items is then calculated by our scheme.
We then measure the absolute difference between the actual sensitivity of the
items and the calculated sensitivity. Ideally, there should be no significant dif-
ference between the actual sensitivity and the calculated sensitivity. However,
differences could arise under certain conditions. The first condition is the pres-
ence of malicious users. A malicious user sends random policies for items, i.e.,
she does not have a fixed attitude but rather a random and unpredictable one.

Figure 7b shows the effect of such malicious users on our scheme. The figure
shows the box plots for each item’s normalized sensitivity difference in terms of
percentage. We observe that when there are no malicious users, the difference
is pretty low (in the range [2%, 6%]), with most items calculated sensitivity
very near the actual sensitivity (the individual dots represent the outliers). This
keeps getting progressively worse as the proportion of malicious users increases.
Finally, with a fraction of 0.75 malicious users, most of the items’ calculated
sensitivity differs by as much as 30% from the actual sensitivity.

In Figure 7c, we see that the effect of different similarity parameters on the
calculated sensitivity. We can see that, with similarity parameters 0 and 1, the
difference between actual and calculated sensitivity is very low. The reader will
recall that similarity parameter 0 means that two items would only be grouped
together if they are identical. Therefore, when IRT calculates sensitivity value of
an item, it does so on the basis of other identical items for which it has received
policies from different users. Thus the calculated sensitivity value would be in
high agreement with actual sensitivity. With increasing similarity parameter
values, the system would group together items which are not identical, therefore
sacrificing accuracy in sensitivity calculation. We observe that the difference of
actual and calculated sensitivity with similarity parameter 2 is greater than 0
and 1. However, as we discussed while explaining the results of Figure 6c, a
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Fig. 8. Enron dataset graphs

higher value for the similarity parameter signifies a better Hit Ratio. Therefore,
we discover that there is a tradeoff between accuracy of calculated sensitivity
and Hit Rate, as far as similarity parameter is concerned.

5.3 Enron Experiments

We want to evaluate our scheme in a realistic setting. However, as there is no
dataset of users sharing activities in the cloud that is publicly available, we use
the Enron email dataset. Sharing data of various types with certain entities in
the cloud is analogous to sharing attachments via emails. Specifically, what we
get from this dataset, is a variety of items (hence variety of contexts in which
real people share these items with others) and also the level of trust that they
have in each other. We explain these points as well as our data extraction and
analysis methodology below.

Methodology. The dataset was obtained from (http://info.nuix.com/
Enron.html) in the form of 130 personal storage folders (pst). It was processed
using the PST File Format SDK9 and the MIME++ toolkit10. We only consid-
ered emails with attachments, whose metadata was extracted using the GNU
Libextractor library11. Precisely, the main metadata we extracted from files is:
(revision history, last saved by, resource type, file type, author name, and cre-
ator). We then collected all the email addresses mentioned in the dataset and
grouped the ones corresponding to the same person, based on the patterns of
occurrence of email aliases. Next, the emails of each person were used to obtain
the list of companies she is affiliated with according to the email domain, filter-
ing out public email services (e.g. AOL, Yahoo). We matched all the processed
metadata with a specific vocabulary we created for the Enron Dataset. In total
the obtained dataset contained 2510 people sharing 184 distinct contexts over

9 http://pstsdk.codeplex.com/
10 http://www.hunnysoft.com/mimepp/
11 http://www.gnu.org/software/libextractor/

http://pstsdk.codeplex.com/
http://www.hunnysoft.com/mimepp/
http://www.gnu.org/software/libextractor/
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19415 sharing instances. Moreover, for each file sender, we calculated a measure
of the trust associated with each receiver based on the frequency of emails ex-
changed with her. The trust value T (i, j) = F (i, j)/Max(i), where F (i, j) is the
number of emails sent from user i to user j, and Max(i) is the maximum number
of emails sent by user i to any receiver. In our experiments, the policies we asso-
ciate with each sending event are dictated by this degree of trust by the sender
in the receiver. We use a similar timing scale as the synthetic experiments, where
each person shares all his items in the sequence the emails were originally sent
but with a rate modeled as a Poisson process.

Results and Discussion. Figure 8a shows the Hit Rate of users queries over
time, where Hit Rate is the same as defined in Equation 2. The graph is over
a period of 10 days. We can see that with anonymity parameter 1, i.e. with
no anonymity scheme in place, the Hit Rate jumps very quickly. However,
anonymity parameter 3 and 4 eventually catch up and all the curves show a
Hit Rate of 1 by the third day. We argue that this improvement in Hit Rate over
the case of synthetic experiments (see Figure 6a) is because the sharing contexts
in the Enron dataset are not diverse and more similar items are collected faster,
thus leading to an increase in the Hit Rate.

In Figure 8b we can see that with the similarity parameter equal to 2, the
Hit Rate remains at 0 consistently. Our investigation into this reveals to us the
reason behind this strange result. We discover that the context items shared
in the Enron dataset are not very diverse. Hence, having a similarity value of
2 means that most items are clustered together since most items in the Enron
dataset differ from each other by at most 2 fields. As most items are clustered
in very few clusters, this means that IRT is not able to work since it does not
find enough different items to sensitivity calculation. The number of different
items that IRT requires for working differs on the implementation being used.
Our implementation requires that there must be at least 5 different items for
IRT to work. In case of similarity 2, these clusters are not available.

However, with similarity 1, enough clusters are found and this in turn implies
that IRT would be able to more quickly calculate the sensitivity of an item (as
opposed to case 0) since there would be more items which are considered the
same. Therefore, similarity 1 shows better Hit Rate than similarity 0.

These results suggest that using IRT in a scenario where most people share
similar items, the similarity parameter should be low. However, we note that
the Enron dataset, being an email dataset, does not have the same diversity as
would be available in a cloud setting. Thus, we have shown the feasibility of our
scheme using synthetic and empirical data.

6 Related Work

One of the relevant attempts at privacy risk estimation was in the field of social
networks. Liu and Terzi [7] used IRT in quantifying the privacy risk of exposing
user profile items on Facebook (e.g. birthday, political affiliation, etc.). Kosinki
et al. [8] also modeled the process of information disclosure in Facebook using
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IRT and found correlations between disclosure scores and personality traits. Our
work is distinct from these in that IRT is shown to apply in the case of privacy
aware sharing in the cloud and in that it utilizes context extraction to work with
any data file, without being limited to a predefined set of profile items.

The concerns about the privacy of user data in the cloud were confirmed by
Ion et al. [15] through surveys highlighting the users’ beliefs about the intrinsic
insecurity of the cloud. A client-centric system was also developed by Ion et
al. [16], enabling users to share text and image files on web-based platforms while
keeping the data encrypted and hiding the fact that confidential data has been
exchanged from a casual observer. From one angle, our work is complementary
to theirs as we design the framework to help users decide on what data to keep
confidential. From another perspective, our work is distinct as we allow multiple
levels of privacy policies that can be controlled by the user.

The work by Garg et al. [17] highlights the peer produced privacy paradigm,
which treats privacy as a community good and considers individuals who share
the risk of information sharing. The authors argue that such an approach can
result in more socially optimal privacy decisions. Our work shares similar mo-
tivations, among which are the suboptimal privacy decisions taken by average
users and the inability of users to keep track of the changing contextual fac-
tors affecting privacy. We envision that extensions of our work can exploit this
paradigm for producing socially optimal privacy policy recommendations.

The concept of contextual privacy has also received significant attention re-
cently. Nissenbaum’s work (e.g. [18]) was one of the notable contributions that
called for articulating context-based rules and expectations and to embed some
of them in law. Several works have developed context-aware systems for pri-
vacy preservation in scenarios like sensor data sharing [19] and mobile social
networks [20].

7 Future Work

In this paper, we have provided a novel framework for preserving the privacy
of data shared to the cloud. One of the future directions we are planning to
investigate is further improving the privacy guarantee of our scheme to resist
probabilistic attacks by a server trying to link a context with a sharing operation.
Moreover, we are currently investigating alternative techniques to IRT, such as
Bayesian Networks, that can also serve to model people’s privacy aware sharing.
Also, developing techniques for recommending privacy policies to users is one of
the main pillars of the final system. As of writing, we are working on developing
the first prototype for our system, which will be released in the near future.

Acknowledgment. The research leading to these results has received funding
from the EU in the context of the project CloudSpaces : Open Service Platform
for the Next Generation of Personal clouds (FP7-317555).
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Abstract. Distributed encryption is a cryptographic primitive that implements
revocable privacy. The primitive allows a recipient of a message to decrypt it only
if enough senders encrypted that same message. We present a new distributed
encryption scheme that is simpler than the previous solution by Hoepman and
Galindo—in particular it does not rely on pairings—and that satisfies stronger se-
curity requirements. Moreover, we show how to achieve key evolution, which is
necessary to ensure scalability in many practical applications, and prove that the
resulting scheme is forward secure. Finally, we present a provably secure batched
distributed encryption scheme that is much more efficient for small plaintext do-
mains, but that requires more storage.

1 Introduction

Revocable privacy [6,14] has been proposed as a means for balancing security and pri-
vacy. A system implements revocable privacy if “the architecture of the system guaran-
tees that personal data is revealed only if a predefined rule has been violated” [6]. For
an in-depth discussion of the complex interactions between security and privacy, and
the value of revocable privacy therein we refer to [6].

The distributed encryption scheme proposed by Hoepman and Galindo [7] is a prim-
itive that can be used to implement revocable privacy. In particular it can be used to
implement the rule “if a person or an object generates more than k events, its identity
should be revealed.” To do so, senders in the distributed encryption scheme encrypt
the corresponding identity for every event that occurs. The scheme guarantees that the
recipient of these ciphertexts can recover the identity only if it can combine k cipher-
text shares, i.e., encryptions, of the same message created by different senders. We
refer to [9] for other applications, but for the purpose of this paper we will examine the
following two in more detail:

1. Consider the notarized sale of valuable objects like houses. Objects that change
hands frequently may indicate fraud or money laundering and may therefore be
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(10532). Sentinels is being financed by Technology Foundation STW, the Netherlands Or-
ganization for Scientific Research (NWO), and the Dutch Ministry of Economic Affairs.
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suspicious. A distributed encryption scheme can be used to identify the suspicious
sales, while learning nothing about the others. To do so, every notary encrypts a
record of every transaction under the distributed encryption scheme and submits
the ciphertext share to a central authority. The authority can then recover only the
details of the suspicious objects.

2. A distributed encryption scheme can enforce speed limits in a privacy-friendly man-
ner as follows. Place automatic number plate recognition (ANPR) systems at the
start and end of a stretch of highway, like in the SPECS system [13]. Suppose that
a car is speeding if it takes at most t seconds to traverse this stretch. The ANPR
systems generate ciphertext shares for every passing car. The system restarts after
time t, so speeding cars generate two shares instead of one. They can be detected
with a distributed encryption scheme with two senders and threshold one. To re-
liably detect speeding cars, the detection system needs to run multiple, staggered
instances of the distributed encryption scheme. The higher the number of parallel
instances, the better the accuracy. See Sect. 7 for the details.

The second application is especially challenging: the time frames are short and the
number of observations is high. In this paper we propose two new schemes that can
deal with these situations much more efficiently than the distributed encryption scheme
by Hoepman and Galindo [7].

In the speed-limiting application, two-way interaction between the cars and ANPR
systems is infeasible: adding communication facilities to cars would be costly. There-
fore, distributed encryption schemes should be non-interactive to offer privacy in these
situations. Techniques based on k-times anonymous credentials [2] and threshold en-
cryption schemes—see [7] for a detailed discussion—are thus not appropriate. Also,
when using a distributed encryption scheme the senders can immediately encrypt their
observations. Storing a plaintext copy, as would be needed for a secure multi-party com-
putation between the senders, is therefore not necessary. We see this as an advantage.
The non-interactivity does imply, however, that the senders have to be trusted, and that
framing is possible otherwise.

Our first contribution is a simpler distributed encryption scheme that does not use
pairings, and satisfies stronger security requirements than the original scheme by Hoep-
man and Galindo [7]. We present this scheme in Sect. 4. We extend it with a non-trivial
key-evolution method [5] to forward-securely [8] generate as many keys as necessary
while keeping the key-size constant, see Sect. 5. The ability to restart the system with
fresh keys is important in almost all applications, including the speed-limiting example,
because it ensures that only shares generated within the same time frame can be com-
bined. Hoepman and Galindo’s original solution requires that the keys for every time
frame are generated in advance, and therefore scales less well.

Our second contribution is a batched distributed encryption scheme. It addresses
the issue of inefficiency in traditional distributed encryption schemes in practice. In
the speed-limiting use case, for example, the cost to recover all encrypted plaintexts
from a set of ciphertexts shares is exponential: the only option is to try all possible
combinations of shares. Our batched solution, which we present in Sect. 6, is much
more efficient, at the cost of increased storage requirements. The amount of storage is
linear in the number of plaintexts. Hence this solution is feasible only if the domain is
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small, as is the case for license plates. Nevertheless, we believe this to be a worthwhile
trade-off.

Finally, in Sect. 7 we analyze the performance of our schemes, suggest additions to
our scheme that may be useful in practice and present conclusions.

2 The Idea

The idea of our new distributed encryption scheme is that a ciphertext share can be
generated by first encoding the plaintext, and then transforming the ciphertext into a
ciphertext share. If enough of these ciphertext shares are collected, the combiner can
recover the plaintext.

Let G be a cyclic group of prime order q, such that DDH is hard in G. The protocol
uses an injection χ : {0,1}�p → G to encode plaintexts elements into group elements.
The function χ−1 is the inverse of χ , i.e., χ−1(χ(p)) = p. This mapping is redundant,
i.e., with high probability a random group element g ∈ G has no inverse under χ−1. We
construct this map in the next section.

Every sender i is given a secret share si ∈ Zq, corresponding to a k-out-of-n Shamir
secret sharing of a publicly known value, 1. Let f be the corresponding degree k − 1
secret-sharing polynomial, i.e., f (0) = 1 and si = f (i). Sender i produces a ciphertext
share for plaintext p as follows. First, it encodes the plaintext into a generator χ(p)∈ G.
Then, it uses its secret share to produce the ciphertext share αi = χ(p)si . Given enough
of these shares for the same plaintext, the exponents can be removed, and the original
ciphertext can be recovered. More precisely, consider a set {αi1 , . . . ,αik} of shares with
I = {i1, . . . , ik} the set of indices, then there exist Lagrange coefficients λ I

i1
, . . . ,λ I

ik
such

that ∑i∈I λ I
i si = f (0) = 1. So, we can calculate

α = ∏
i∈I

αλ I
i

i = χ(p)∑i∈I siλ I
i = χ(p) f (0) = χ(p).

Then, p= χ−1(α). If the shares do not belong to the same plaintext the resulting encod-
ing will, with high probability not be an encoding of a plaintext element, and therefore
fail to decode using χ−1.

If χ is not redundant, the scheme is insecure. Let p= χ−1(g) and p′ = χ−1(g2). Then
given a share αi = χ(p)si = gsi it is trivial to make a share α ′

i = χ(p′)si = g2si = (gsi)2

for p′ without help of the sender. As will become clear later, this breaks the scheme.

3 Preliminaries

We first recall some definitions. The security of our new distributed encryption schemes
requires the following problem to be hard.

Definition 1 (Decisional Diffie-Hellman problem). The Decisional Diffie-Hellman
problem (DDH) in a group G of order q takes as input a tuple (g,A = ga,B = gb,C =
gc) ∈ G4 and outputs ‘yes’ if c = ab (mod q), and else ‘no.’

We define Lagrange coefficients as used in Shamir’s secret sharing scheme [12].



126 W. Lueks, J.-H. Hoepman, and K. Kursawe

Definition 2 (Lagrange coefficients). For a set I ⊆ {1, . . . ,n} and field Zq with q > n,
we define the Lagrange polynomials λ I

i (x) as λ I
i (x) = ∏t∈I\{i} x−t

i−t ∈ Z∗
q[x], and the

Lagrange coefficients as λ I
i = λ I

i (0). Then, for any polynomial P ∈ Zq[x] of degree at
most |I|− 1, P(x) = ∑i∈I P(i)λ I

i (x) and P(0) = ∑i∈I P(i)λ I
i .

Notation. We write |A| to denote the cardinality of the set A, [n] to denote the set
{1, . . . ,n} and x ‖ y to denote the concatenation of the strings x and y. Finally, x ∈R A
denotes that x is drawn uniformly at random from the set A.

Redundant Injective Map. We now describe how to construct the map χ described in
the previous section. The first step is a redundant injective map.

Definition 3. We call a map ψ : A → B, with inverse ψ−1 : B → A∪{⊥} a redundant
injective map with security parameter �H if it satisfies the following properties:

Computable The functions ψ and ψ−1 are efficiently computable.
Reversible For all a ∈ A we have ψ−1(ψ(a)) = a.
Redundant For any b ∈R B we have ψ−1(b) =⊥ with probability 1− 2−�H.

The redundancy prevents the attack described at the end of Sect. 2, but requires |B| to
be at least 2�H |A|. In our scheme, B must be a group. We therefore use the following
group encoding that maps strings to group elements.

Definition 4. A group encoding (φ ,φ−1,{0,1}�,G,E) consists of a bijective function
φ : {0,1}� → E ⊂ G and its inverse φ−1. The functions φ and φ−1, and membership
tests in E run in polynomial time, and |G|/ |E| is polynomial in �.

The Elligator map [1] is one such encoding, where |G|/ |E| ≈ 2, and the group is an
elliptic curve.

Definition 5. Our Redundant Injective Map consists of the three algorithms RIM.GEN,
RIM.MAP and RIM.UNMAP—the latter two correspond to χ and χ−1.

RIM.GEN(1�p ,1�H ,(φ ,φ−1,{0,1}�p+�H ,G,E)) Given a plaintext size �p, a security
parameter �H, and a group encoding (φ ,φ−1,{0,1}�p+�H ,G,E), it outputs two
cryptographic hash functions H1 : {0,1}�p →{0,1}�H and H2 : {0,1}�H →{0,1}�p.

RIM.MAP(p) This function takes as input a plaintext p ∈ {0,1}�p and returns the
group element φ(p⊕H2(r) ‖ r) ∈ E ⊂ G where r = H1(p).

RIM.UNMAP(c) Given a group element c ∈ G this function returns ⊥ if c �∈ E. Else,
it sets b1 ‖ b2 = φ−1(c) and p = b1 ⊕ H2(b2). If H1(p) = b2 it returns p, else it
returns ⊥.

Computability and reversibility are clearly satisfied. For any c ∈R E the inverse b1 ‖
b2 = φ−1(c) is uniformly distributed over {0,1}�p+�H . Therefore, since H1 is a hash-
function, H1(b1 ⊕H2(b2)) = b2 with probability 2−�H , so the map is redundant.

We need the following lemma in our security proof.
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Lemma 1. Our Redundant Injective Map from Definition 5 is programmable in the
random oracle model for H1 and H2. This means that we can adaptively ensure that
RIM.MAP(p) = g for any p ∈ {0,1}�p and g ∈R E with overwhelming probability, pro-
vided that H1 was not queried with p.

Proof. Suppose we wish to set RIM.MAP(p) = b1 ‖ b2 = φ−1(g). We set H1(p) = b2.
Then, since b2 is random, with overwhelming probability it was not queried before and
we can set H2(b2) = p ⊕ b1. Since b1 and b2 are random, so is p⊕ b1, therefore, the
outputs are set to random values as required. ��

4 A New DE Scheme

Our new DE scheme, which we sketched in Sect. 2, directly creates shares of the plain-
text instead of shares of an identity-based decryption key that decrypts the plaintext, as
in Hoepman and Galindo’s scheme [7]. The resulting scheme is simpler and no longer
requires pairings. Furthermore, the new structure allows us to define a non-trivial key-
evolution method, which seems impossible for the original scheme without compromis-
ing forward security. We formally introduce this scheme now.

4.1 Syntax

First, we recall the syntax of a key-evolving distributed encryption scheme from [7].
Note that we have made the safety requirement explicit.

Definition 6 (Key-evolving Distributed Encryption). A k-out-of-n key-evolving dis-
tributed encryption scheme with lifetime divided into s stages, or (k,n,s)-KDE scheme,
consists of the following four algorithms.
KDE.GEN(1�,k,n,s, �p) This key generation algorithm takes as input a security pa-

rameter 1�, a threshold k, the number of senders n, the number of stages s and a
plaintext size �p.1 For each sender it generates initial encryption keys S1,1, . . . ,S1,n

and returns these, the system parameters, and the plaintext space P .
KDE.UPDKEY(Sσ ,i) The key update function KDE.UPDKEY takes as input Sσ ,i and

outputs the key Sσ+1,i for the next stage. This function aborts if σ + 1 > s.
KDE.ENC(Sσ ,i, p) Given an encryption key Sσ ,i and a plaintext p, this function re-

turns a ciphertext share c.
KDE.COMB(C) Given a set C = {c1, . . . ,ck} consisting of k ciphertext shares, the

function KDE.COMB(C) either returns a plaintext p or ERROR.
Every key-evolving distributed encryption scheme must satisfy the following correctness
and safety requirements.
CORRECTNESS Create the encryption keys Sσ ,1, . . . ,Sσ ,n by running the algorithm

KDE.GEN and then repeatedly updating them using KDE.UPDKEY to reach the
required stage σ . For all plaintexts p and pairwise disjoint senders i j we have
KDE.COMB(C) = p if C = {KDE.ENC(Sσ ,i1 , p), . . . ,KDE.ENC(Sσ ,ik , p)}.

1 In the original description the plaintext size was implicit.
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SAFETY Generate Sσ ,1, . . . ,Sσ ,n as for correctness. If C = {KDE.ENC(Sσ ,i1 , pi1), . . . ,
KDE.ENC(Sσ ,ik , pik)} with not all pi equal, then with overwhelming probability
KDE.COMB(C) = ERROR.

To make the system secure in practice, senders need to get their keys in a secure manner,
and, to ensure forward security, senders have to destroy the old key after updating it.

A distributed encryption scheme is a special case of a key-evolving distributed en-
cryption scheme.

Definition 7 (Distributed Encryption). A k-out-of-n distributed encryption scheme,
or (k,n)-DE scheme, is a (k,n,1)-KDE scheme were the functions are called DE.GEN,
DE.ENC and DE.COMB instead.

4.2 Security Definition

We define the forward security of a key-evolving distributed encryption scheme by
recalling its security game. We present the security game by Hoepman and Galindo [7]
in a slightly more general setting: plaintexts that have been queried before may be used
in the challenge phase, provided this does not lead to a trivial win for the adversary.

Definition 8 (KDE forward-security game). Consider a (k,n,s)-KDE key-evolving
distributed encryption scheme with security parameter 1� given by the four algorithms
KDE.GEN, KDE.UPDKEY, KDE.ENC and KDE.COMB. Define the following game
between a challenger and an adversary A .
Setup The challenger runs KDE.GEN(1�,k,n,s) to obtain (S1,1, . . . ,S1,n) and sends a

description of the plaintext space P and system parameters to the adversary.
Find The challenger initializes the current stage σ to 1, and the set of corrupted

senders I1,c to the empty set. The adversary can issue the following three types
of queries:

– A corrupt(i) query is only allowed before any encryption query enc(i, p) has
been made for the current stage. If the query is allowed, the challenger sends
Sσ ,i to the adversary and it adds i to Iσ ,c.

– On encryption queries enc(i, p), where i ∈ [n], i /∈ Iσ ,c and p ∈ P , the adver-
sary receives the ciphertext KDE.ENC(Sσ ,i, p).

– On next-stage queries next(), the challenger updates the encryption keys of
senders i ∈ {1, . . . ,n}\ Iσ ,c by setting Sσ+1,i ← KDE.UPDKEY(Sσ ,i). The ad-
versary is responsible for updating the keys of the other senders i∈ Iσ ,c.Finally,
the challenger sets Iσ+1,c ← Iσ ,c and σ ← σ + 1.

Challenge The adversary A outputs a challenge stage number σ� < s, indices Inc =
{i1, . . . , it} corresponding to senders from which it wants to receive challenge ci-
phertexts and two equal length plaintexts p0, p1 ∈P . Let r denote the cardinality of
Iσ�,c and C0 and C1 denote the senders at which plaintexts p0 and p1 were queried
respectively in stage σ�. The challenger aborts if the challenge is not valid, i.e., if
one of the following conditions holds

– p0 or p1 was queried at a challenge sender, i.e., if (C0 ∪C1)∩ Inc �= /0;
– a challenge sender was already corrupted, i.e., if Inc ∩ Iσ�,c �= /0; or
– too many shares are known to the adversary for either p0 or p1. This is the

case if max(|C0 ∪ Iσ�,c| , |C1 ∪ Iσ�,c|)+ |Inc| ≥ k.
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Finally, the challenger chooses β ∈R {0,1} and returns a challenge ciphertext share
cσ∗,i = DE.ENC(Eσ∗,i, pβ ) for each i ∈ Inc.

Guess The adversary A outputs a guess β ′ ∈ {0,1}. The adversary wins if β = β ′.
The advantage of adversary A is given by AdvKDE

A (1�) = 2
∣∣Pr[β ′ = β ]−1/2

∣∣. An KDE
scheme is called forward secure if AdvKDE

A (1�) is negligible for every PPT adversary
A .

The solution by Hoepman and Galindo is only secure in a more restricted attacker
model (which they call the static adversary model), where the attacker announces up
front which senders it will corrupt in what stage, what the challenge stage σ� is, and
which senders it will query in this challenge phase. Our scheme does not need these
restrictions.

4.3 A New Distributed Encryption Scheme

In Sect. 2 we gave a sketch of our new distributed encryption scheme. Here we fill out
the details. Correctness and safety follow from the earlier discussion.

Definition 9 (DE scheme). The new distributed encryption (DE) scheme is given by the
following algorithms, where RIM.GEN,RIM.MAP and RIM.UNMAP are as in Def. 5.
DE.GEN(1�,k,n, �p) Create a group G of prime order q, where q ≈ 2�, such that

DDH is hard in G, and create a group encoding δ = (φ ,φ−1,{0,1}�p+�,G,E).
Call RIM.GEN(1�p ,1�,δ ) to setup the redundant injective map. Let P = {0,1}�p

be the plaintext space. Share the public value 1 using Shamir’s k-out-of-n secret
sharing as follows. Choose ε1, . . . ,εk−1 ∈R Zq and define the k− 1 degree polyno-
mial f (x) = 1+∑k−1

i=1 εixi, then f (0) = 1. Every sender i is given a share Si = (i,si)
where si = f (i). Output Si for each sender, and publish (G,q,E,φ ,φ−1,P).

DE.ENC(Si, p) Given an encryption key Si = (i,si) let αi = RIM.MAP(p)si . Return
ci = (i,αi).

DE.COMB(C) Let C =
{

ci1 , . . . ,cik

}
. Each share ci j is parsed as

(
i j,αi j

)
. Construct2

I = {i1, . . . , ik}, let c = ∏i∈I(αi)
λ I

i and return RIM.UNMAP(c).

In Sect. 7.1 we sketch how to handle arbitrary-length plaintexts.

4.4 Security of the DE Scheme

In this section we sketch the proof of the following theorem.

Theorem 1. In the random oracle model for H1 and H2 the new distributed encryption
scheme from Def. 9 is secure assuming the DDH assumption holds in the group G.

We first give an ideal model for this scheme, and show that in this model the DE scheme
is secure. We then prove that the ideal model and the actual scheme are indistinguish-
able, hence proving the security of the actual scheme as well.

2 The index i j is part of c j to be able to explicitly reconstruct I and thus compute λ I
i j

given a set
C.
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The Ideal Scheme. In the ideal scheme the secret sharing is made specific to the plain-

text. So, sender i uses a plaintext-specific secret share s(p)
i to construct a ciphertext share

αi = RIM.MAP(p)s(p)
i for plaintext p. For each p, the secret shares s(p)

1 , . . . ,s(p)
n form a

random k-out-of-n sharing of the secret 1.
The reader may wonder at this point, if it still suffices to use a degree k − 1 poly-

nomial. Traditional uses of a secret sharing scheme suggest that the degree should be
k instead, since one secret share is already known. This is not the case, for the follow-
ing two reasons. First, knowing the secret itself does not help in the recovery as the
generator, i.e., the encryption of the plaintext, is actually unknown. Second, while it is
possible to guess the generator, thus giving k shares in total, an extra share is needed to
verify that guess.

Lemma 2. The ideal DE scheme is secure.

Proof. By construction of the secret shares we only need to consider the shares for
the challenge plaintexts p0 and p1; all others are completely independent. After the
challenge the attacker knows at most k− 1 ciphertext shares. Hence, no information is
leaked as with only k − 1 shares, both sets of shares are equally likely to combine to
RIM.MAP(p0) as they are to RIM.MAP(p1). In fact, for each set of shares there exists
a kth share that reconstructs the desired value. ��

Indistinguishability of Ideal and Real Scheme. Suppose an attacker can break DDH,
i.e., given (g,A = ga,B = gb,C = gc) it can decide whether c = ab. Then it can break
our scheme as follows. It picks three different plaintexts p, p0, p1, and calculates g =
RIM.MAP(p) and A = RIM.MAP(p)si , for the latter it uses one query. Then it sets
B = RIM.MAP(p0) and obtains C = RIM.MAP(pd)

si as a response to its challenge
query on p0 and p1. Now, d = 0 if and only if c= ab in the DDH problem, thus breaking
the DE security as well.

The indistinguishability proof that we present here shows that any attacker has to
solve a DDH problem. The proof is in the hybrid model, see Fig. 1. Queries for the
first κ − 1 plaintexts will be answered using ideal shares, then the κ th plaintext will
get either ideal or real shares depending on whether c = ab in the DDH instance, and
the remaining plaintext will have real shares. We use Lem. 1 to ensure that the correct
generators are used for those plaintexts. Induction on κ shows that any distinguisher
between ideal and real shares thus solves the DDH instance.

To construct the shares corresponding to the different senders while still ensuring
proper secret-sharing we duplicate the DDH instance, combine it with the corrupted
shares, and derive the remaining shares based on the underlying secret sharing scheme.

Lemma 3. In the random oracle model for H1 and H2 (as used by the redundant in-
jective mapping), the ideal and the real DE schemes are indistinguishable provided the
DDH assumption holds in G.

Proof. For this proof we use a hybrid scheme that is parametrized by κ . Let (g,A =
ga,B = gb,C = gc) be a DDH instance for G, our task is to decide whether c = ab.
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Fig. 1. The table on the left shows which type of secret shares are used to answer the queries for
the plaintexts while the table on the right shows how these answers are constructed

This proof is in the random oracle model for H1 and H2, so the adversary has oracle
access to each of them. Let PQ = (p1, . . . , pqE ) be the plaintexts queries made by the
adversary to the H1 oracle.

In the hybrid scheme, the ciphertext shares corresponding to plaintexts in the set
PI = {p1, . . . , pκ−1} will be created using ideal shares, whereas the ciphertext shares
for plaintexts in PR =

{
pκ+1, . . . , pqE

}
will be created using the real shares, see Fig. 1.

If c = ab (of the DDH instance) then the hybrid scheme uses real shares for pκ and
ideal shares otherwise. Any distinguisher for the two variants will thus solve the DDH
instance. Induction over κ completes the proof.

We now show how to play the security game. Initially we generate γp ∈R Zq for all
p ∈PR such that gγp ∈ E and we generate γpκ ∈R Zq such that Aγpκ ∈ E . This is possible
since |G|/ |E| is polynomial and can be done without knowing the queries in advance.
As queries for p’s come in to the H1 oracle, use Lemma 1 to set RIM.MAP(p) = gγp for
p ∈PR and to set RIM.MAP(pκ) = Aγpκ . All other queries are answered normally.

Then we play the game as follows. The attacker only makes corruption queries at
the start of the game. For every corrupt(i) query, add i to Ic and generate an arbitrary
secret-share si ∈R Zq and send Si = (i,si) to the challenger.

We now consider three cases of enc(i, p) queries. The first, where p ∈PI , for which
the answers will be using ideal shares, the second when p = pκ and the third when
p ∈PR, for which the answers will be using real shares.

Without loss of generality, we assume that the r corrupted senders are numbered k−
r, . . . ,k−1, see Fig. 1. As we cannot play with the corrupted senders, the corresponding
shares are always given by enc(i, p) = RIM.MAP(p)si for i > n − r and all plaintexts
p ∈ P .3 This determines r shares. Furthermore, RIM.MAP(p)1 is also a valid share,
giving r+ 1 determined shares. In the following we show how to answer the enc(i, p)
queries with 1 ≤ i ≤ k− (r+ 1) for all three cases.

For plaintexts p ∈PI generate ideal secret shares s(p)
i for senders 1 ≤ i ≤ k−(r+1).

The ciphertext shares are given by enc(i, p) = RIM.MAP(p)s
(p)
i .

For the remaining plaintexts we use the DDH instance (g,A = ga,B = gb,C = gc)
to compute the answers to the enc(i, p) queries. First, create an extension as follows.
Generate di,ei ∈R Zq for 1 ≤ i ≤ k − (r + 1) and set Bi = Bdigei and Ci = CdiAei . It
can be shown that (g,A,Bi = gbi ,Ci = gci) are DDH tuples such that ci = abi when

3 In this proof we omit the sender’s index and just write enc(i, p) = RIM.MAP(p)si .
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Fig. 2. Graphical representation of an evolving zero-sharing scheme

c = ab in the original problem, and ci ∈R Zq otherwise [10]. We then act as if si = bi

for 1 ≤ i ≤ k− (r+ 1).
For pκ the ciphertext shares for 1 ≤ i ≤ k− (r+ 1) are given by enc(i, pκ ) = C

γpκ
i .

If ci = abi then we have enc(i, pκ) = (gaγpκ )bi = RIM.MAP(pκ)
si , making the shares

real. Otherwise, the ci’s are random, thus the shares are ideal.
For all other plaintexts p ∈ PR the ciphertexts for 1 ≤ i ≤ k − (r+ 1) are given by

cpi = B
γp
i = (gγp)bi = RIM.MAP(p)si , as desired.

We now determined k shares for every plaintext p, the responses for senders k, . . . ,n,
see Fig. 1, are calculated from these by interpolating the exponents

enc(i, p) = RIM.MAP(p)1λ I
0(i)enc(1, p)λ I

1(i) · · ·enc(k− 1, p)λ I
k−1(i)

We have now described how to answer the queries.
Since DDH is hard, two subsequent hybrid schemes are indistinguishable. Thus, the

ideal scheme and the real scheme are indistinguishable as well. ��

5 Forward-Secure DE Scheme

The keys of our DE scheme consist of Shamir secret shares, to create a forward secure
scheme we need to forward-securely evolve these shares. In this section we show how to
do this. When we combine this technique with our new distributed encryption schemes
the result is forward secure. In this section we prove this for the scheme in Sect. 4. In
the next section we prove this for the batched scheme.

5.1 A Key-evolution Scheme

The scheme we present in this section forward securely generates sharings of the value
0. It combines ideas from Cramer et al. [4] and Ohkubo et al. [11]. We take the fol-
lowing approach, see also Fig. 2. Time is split into stages. Every sender i has an internal
state Zσ ,i for the current stage σ . The states of all senders combined implicitly define a
zero-sharing polynomial zσ . The states are constructed in such a way that every sender
can, without interacting with other senders, derive its zero-share zσ ,i = zσ (i) for that
stage. To move to the next stage, every party can individually update the internal state.
After destroying the previous internal state it is not possible to retrieve any information
on it from the current internal state.

Syntax. The informal description of the scheme captured in the previous section can
be formalized as follows.
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internal Zσ ,1 . . . Zσ ,r Zσ ,r+1 . . . Zσ ,n

external zσ ,1 . . . zσ ,r zσ ,r+1 . . . zσ ,n

Fig. 3. The highlighted section illustrate the adversary’s view for a set of corrupted senders Ic =
{1, . . . ,r}. In the next stage, σ +1, the adversary gets the complete internal state.

Definition 10 (Evolving zero-sharing). The next three algorithms describe an evolv-
ing zero-sharing scheme. See also Fig. 2.

– GZS(k,n,s,K ) takes as input the threshold k, the number of senders n, the number
of stages s, and secret sharing field K . It outputs initial states Z1,1, . . . ,Z1,n.

– UZS(Zσ ,i) is a non-interactive protocol that takes as input the current state Zσ ,i and
outputs a new state Zσ+1,i or aborts.

– EZS(Zσ ,i) takes as input the current state Zσ ,i and outputs a zero share zσ ,i.

This definition describes a non-interactive scheme because our use cases require this.
Interactive schemes are easier to build, but are not considered in this paper.

Intuitively, forward security requires that no matter what an adversary learns in later
stages, it cannot use this knowledge to obtain additional information on the current
stage. We formalize this notion for evolving zero-sharing schemes, which we call trans-
parency, as we need it to prove forward-security of our key-evolving distributed encryp-
tion scheme.

Consider a stage σ . Clearly, an adversary has the biggest advantage in learning more
about stage σ , if it gets the complete state of the system in stage σ + 1. The follow-
ing definition formalizes the notion that every zero-sharing polynomial in stage σ is
equally likely, as long as it matches the view the adversary already had obtained through
corruptions—note this fixes the polynomial if the adversary has corrupted k−1 senders.
The adversary gets access to the full zero-sharing polynomial in stage σ . We note that
this is very liberal, as in the actual combination with the DE schemes the zero-shares
will be kept secret.

Definition 11 (Transparency). Let k be the threshold, n the total number of senders,
q the group order and s the maximum number of stages. Let an evolving zero-sharing
given by the algorithms GZS, UZS and EZS be defined for these parameters. Let Zσ ,1,
. . . ,Zσ ,n be the result of calling GZS and then running UZS σ −1 times for each sender.
Furthermore, let zσ ,i = EZS(Zσ ,i) and Zσ+1,i = UZS(Zσ ,i). Let A be an adversary. It
outputs a set Ic ⊂ [n] of senders corrupted in stage σ and receives

– the internal state Zσ ,i, for all senders i ∈ Ic,
– the external state zσ ,i for all senders, and
– the internal state Zσ+1,i for all senders,

see also Fig. 3. We say the evolving zero sharing scheme is transparent if adversary A
cannot distinguish the following two situations:
1. the normal situation with zσ ,i = zσ ,i and
2. a situation in which the secret changes, i.e. zσ ,i = zσ ,i + z(i) where z is a degree

k− 1 zero-sharing polynomial, such that z(i) = 0 for all i ∈ Ic.
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Key-evolution Scheme. We follow Cramer et al. [4] in constructing a zero-sharing
polynomial in such a way that sender i can only evaluate the polynomial at the point i.
For every set A ⊂ [n] of cardinality n− (k− 2) we define the k− 1 degree polynomial
gA(x) = x∏i∈[n]\A(x− i). Our zero-sharing polynomial is then given by

zσ (x) = ∑
A⊂[n]

|A|=n−(k−2)

rσ ,A ·gA(x),

where a factor rσ ,A is known only to the senders i ∈ A. Note that by construction, z is of
degree k− 1 and zσ (0) is indeed 0. It can be shown that k− 2 colluding parties cannot
recover zσ (x). Furthermore, for every zero-sharing polynomial z of degree k− 1, there
exist values for the rσ ,As such that zσ (x) = z(x). This gives the following scheme.

Definition 12 (Evolving zero-sharing scheme). Let �h be a security parameter and let
h1 : {0,1}�h → {0,1}�h and h2 : {0,1}�h → Zq be hash functions. The evolving zero-
sharing scheme is implemented as follows.

– GZS(k,n,s,Zq) For each A ⊂ [n] of cardinality n− (k−2) generate a random share
r̄1,A ∈R {0,1}�h and for each sender i set Z1,i = (r̄1,A)A�i.

– UZS(Zσ ,i) This algorithm is non-interactive. First, parse Zσ ,i as (r̄σ ,A)A�i, and set
r̄σ+1,A = h1(r̄σ ,A) for A such that i ∈ A. Then return Zσ+1,i = (r̄σ+1,A)A�i.

– EZS(Zσ ,i) To derive the zero-share parse Zσ ,i as (r̄σ ,A)A�i. Then, set rσ ,A = h2(r̄σ ,A)
for A such that i ∈ A and determine

zσ ,i = zσ (i) = ∑
A⊂[n]

|A|=n−(k−2)

rσ ,A ·gA(i).

Finally, return zσ ,i.

The construction and the proof of the following lemma are inspired by the Ohkubo et
al. scheme [11]. See the appendix for the proof.

Lemma 4. The evolving zero-sharing scheme from Def. 12 is transparent in the random
oracle model for h2.4

5.2 A Key-Evolving DE Scheme

In this section we build a key-evolving DE scheme using the evolving zero-sharing
scheme of the previous section. The latter scheme generates as many distributed zero-
sharing polynomials as we want. By adding the constant polynomial g(x) = 1 to this
polynomial we obtain the key-sharing polynomial in our DE scheme.

Definition 13 (KDE scheme). The key-evolving distributed encryption (KDE) scheme
is constructed from the new distributed encryption scheme given by the algorithms
DE.GEN, DE.ENC and DE.COMB, and the evolving zero-sharing scheme from Def-
inition 12 given by the algorithms GZS, UZS and EZS. It is defined by the following four
algorithms.

4 Actually, it is not really necessary to use a random oracle for this part of the proof. In fact, one
can use k-wise independent functions, see for example Canetti et al. [3], and thus prove this
lemma in the standard model.
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– KDE.GEN(1�,k,n,s, �p) The KDE.GEN algorithm first runs DE.GEN(1�,k,n, �p)
to obtain (G,q,E,φ ,φ−1,P), which it outputs as well. Here group G is of order
q. It then calls GZS(k,n,s,Zq) to obtain Z1,1, . . . ,Z1,n, sets s1,i = 1+ EZS(Z1,i) and
outputs S1,i = (i,s1,i,Z1,i) for each sender.

– KDE.UPDKEY(Sσ ,i) Let Sσ ,i = (i,sσ ,i,Zσ ,i). It then sets Zσ+1,i = UZS(Zσ ,i) and
sσ+1,i = 1+ EZS(Zσ+1,i) and returns Sσ+1,i = (i,sσ+1,i,Zσ+1,i) or aborts if UZS

aborts.
– KDE.ENC(Sσ ,i, p). Let Sσ ,i = (i,sσ ,i,Zσ ,i). To encrypt a plaintext p algorithm

KDE.ENC returns the result of DE.ENC((i,sσ ,i), p).
– KDE.COMB(C) To combine ciphertexts KDE.COMB runs DE.COMB(C).

Efficiency. The evolving zero-sharing scheme has complexity
( n

k−2

)
in both space and

time to store and evaluate the zero-shares. While this number is exponential, it is al-
most always much smaller than the cost of combining in a real scenario (see Table 1 on
page 139). In particular, it is comparable to recovering a single plaintext in the batched
scheme which we will present in the next section. Furthermore, its space complexity
is independent of the number of stages, which is a big gain with respect to the origi-
nal scheme [7] where the space complexity is linear in the number of stages. In many
practical applications this number will be a lot bigger than

( n
k−2

)
.

Security. The security of the KDE scheme can easily be reduced to that of the DE
scheme by using the properties of the evolving zero-sharing scheme. We give a sketch
of the proof; we refer to App. B for the full proof.

Theorem 2. The new KDE scheme is (k,n,s)-KDE secure provided that the DE is
(k,n,1)-KDE secure and the evolving zero-sharing scheme is transparent. The proof
is in the random oracle model for h2

5.

Proof (Sketch). We reduce the security of the KDE scheme to that of the DE scheme.
To setup the system we generate random r̄1,As. We guess the challenge phase σ� and
simulate all stages except σ�, where we use our DE oracle. To ensure that this is not
detected we must ensure that corrupted hosts have the correct secret shares. We do this
by modifying h2(r̄σ�,A) in the random oracle model on r̄σ�,A that were not yet known
to the adversary. Then queries in stage σ� can be answered by our DE oracle. The
distribution of the secret shares does not correspond to the initial r̄1,As, however, the
transparency of the evolving zero-sharing scheme ensures this cannot be detected. ��
This proof easily translates to other evolving zero-sharing schemes where the challenge
phase can be incorporated.

6 Efficient Solutions for Small Domains

As was already analyzed by Hoepman and Galindo [7], any distributed encryption so-
lution will be rather inefficient. The main culprit is the combination phase. We do not

5 Again, it is not really necessary to use a random oracle for this proof either. However, the
security of the DE scheme uses non-standard assumptions anyway.
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add indicators, like the hash of a plaintext, to the ciphertexts as they allow an attacker
to trivially test if they belong to given plaintext. Therefore, it is not clear which shares
might belong to the same plaintext. The only solution is to try all combinations of k
shares, from different senders, of the received shares. Depending on the situation this
can become prohibitive. We now propose a variant of our new scheme that is much
more efficient for small plaintext domains.

The crucial difference is that we will now operate in a batched setting. At the end of
a stage the sender generates a share for every plaintext. It generates a proper share for
every plaintext it needs to send, as before, and a random value for all other plaintexts.
Now we know directly which shares belong to a given plaintext. This reduces the ex-
ponential term in the combing phase considerably. Also, since the plaintext is known
a priori, the only remaining task of the combiner is to determine whether this plain-
text was encrypted by a sufficient number of senders. In particular we can replace the
integrity preserving encryption scheme with a hash function.

6.1 Syntax

For small plaintext spaces, the following definition of a batched key-evolving distributed
encryption scheme makes sense.

Definition 14 (Batched KDE). A k-out-of-n batched key-evolving distributed encryp-
tion scheme with lifetime divided into s stages, or (k,n,s)-BKDE scheme, consists of the
following four algorithms.
BKDE.GEN(1�,k,n,s,P) Given the security parameter 1�, the threshold k, the num-

ber of senders n, the number of stages s and a plaintext space P it generates initial
encryption keys S1,1, . . . ,S1,n for each sender i ∈ [n]. It returns these encryption keys
as well as the system parameters.

BKDE.ENC(Sσ ,i,P) Given an encryption key Sσ ,i corresponding to sender i at stage
σ and a set of plaintexts P ⊂ P , this function returns a vector Ci of ciphertext
shares of length |P|.

BKDE.UPDKEY(Sσ ,i) The key update function takes as input Sσ ,i and outputs the key
Sσ+1,i for the next stage. This function aborts if σ + 1 > s.

BKDE.COMB(C1, . . . ,Cn,s) Given the ciphertext share vectors C1, . . . ,Cn produced
by the senders, the function BKDE.COMB returns a set of plaintexts P.

A key-evolving batched distributed encryption scheme must satisfy the following com-
bined correctness and safety requirement.
CORRECTNESS & SAFETY Let the encryption keys Sσ ,i be generated as described

above. Let Ci = BKDE.ENC(Sσ ,i,Pi) for each sender i and for all Pi ⊂ P . Then
the result P of BKDE.COMB(C1, . . . ,Cn) is such that p ∈ P if p ∈ Pi for at least k
different Pi.

6.2 Security Definition

The following game captures the security properties of our protocol.

Definition 15 (Batched KDE forward-security game). Consider a (k,n,s)-BKDE
batched key-evolving distributed encryption scheme. The batched KDE forward-security



Forward-Secure Distributed Encryption 137

game is very similar to the KDE forward-security game for a (k,n,s)-KDE scheme. We
only note the changes. The algorithms BKDE.GEN and BKDE.UPDKEY replace the
algorithms KDE.GEN and KDE.UPDKEY.
Setup First, the adversary outputs a plaintext space P it wants to attack, then the

setup phase runs as before.
Find In the find phase the adversary is allowed to make bcorrupt(i), bnext() and

benc(i,P) queries. The first two are implemented using corrupt(i) and next() re-
spectively. On input of a query benc(i,Pi), where i ∈ [n], i /∈ Iσ ,c and P ⊂ P , the
challenger sends the vector BKDE.ENC(Sσ ,i,Pi) to the adversary.

Challenge If the challenge on p0 and p1 at hosts Inc is valid (see Definition 8) the
challenger chooses β ∈R {0,1}, sets C = BKDE.ENC(Sσ�, j,

{
pβ
}
), and returns

the ciphertext share Cpβ to the challenger for each j ∈ Inc.
Guess The guess phase is unchanged.
The adversary A ’s advantage is defined as AdvBKDE

A (1�) =
∣∣Pr[β ′ = β ]− 1/2

∣∣. An
BKDE scheme is called forward secure if AdvBKDE

A (1�) is negligible for every PPT
adversary A .

6.3 The Scheme

In the batched scheme a sender will output a complete vector of ciphertext shares
(cpi)p∈P at the end of a stage. Let H : {0,1}∗ → G be a cryptographic hash func-
tion. An element cpi equals H(p)si when sender i been asked to encrypt p, and cpi ∈R G
otherwise. Intuitively, when the secret shares are unknown, these two are indistinguish-
able. The full scheme is given by the following definition. Note the similarities with our
new KDE scheme.

Definition 16 (Batched KDE scheme). Let (GZS,UZS,EZS) be an evolving zero-sha-
ring scheme. The following algorithms define a batched key-evolving distributed en-
cryption (BKDE) scheme.
BKDE.GEN(1�,k,n,s,P) Generate a cyclic group G such that its order q is of size

� bits. Then construct a hash function H : {0,1}∗ → G. Create the secret sharing
of zero by calling GZS(k,n,s,Zq) to obtain Z1,1, . . . ,Z1,n. Let s1,i = 1+ EZS(Z1,i).
Output S1,i = (s1,i,Z1,i) for each sender, together with a description of G and the
hash function H.

BKDE.ENC(Sσ ,i,P) Let Sσ ,i = (sσ ,i,Zσ ,i), and let Ci = (cpi)p∈P be the resulting ci-
phertext share vector such that for all p ∈P

cpi =

{
H(p)sσ ,i if p ∈ P

h ∈R G otherwise.

BKDE.UPDKEY(Sσ ,i) Let Sσ ,i = (sσ ,i,Zσ ,i). Set Zσ+1,i = UZS(Zσ ,i) and sσ+1,i = 1+
EZS(Zσ+1,i). Return Sσ+1,i = (sσ+1,i,Zσ+1,i) or abort if UZS does.

BKDE.COMB(C1, . . . ,Cn) For each p ∈ P , do the following. Consider all shares
(cp1, . . . ,cpn) corresponding to plaintext p from senders 1 trough n. For all pos-
sible combinations of index sets I ⊆ {1, . . . ,n} of size k verify whether
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∏
i∈I

(cpi)
λ I

i = H(p)1 = H(p).

If so, add p to the set of plaintexts to return.

The structure of this scheme is similar to that of our new DE and KDE schemes. Cor-
rectness and safety are easy to check. The security proofs of the DE and KDE schemes
can readily be adapted to this setting directly by replacing the redundant injective map
by one hash function in the random oracle model. We will not do this here. Instead we
prove that the security of the BKDE scheme can be reduced to that of the KDE scheme.
This theorem is slightly weaker as it requires us to also model H1 and H2 in the random
oracle model. However, it nicely illustrates how the schemes relate.

Theorem 3. The batched key-evolving distributed encryption scheme is (k,n,s)-BKDE
secure, provided that the KDE scheme is (k,n,s)-KDE secure. The proof is in the ran-
dom oracle model for H,H1 and H2.

Proof. Suppose we have an adversary A against the batched scheme, then we build an
adversary B against the KDE scheme. First, A requests a plaintext space P for the
batched scheme. Then, B gets a description of the group and the plaintext space P ′
from its challenger. It forwards the group description to A . Furthermore, it chooses a
hash function H ′ : P → P ′ onto the plain text space required by the KDE scheme.
Then we answer its queries as follows.

Adversary B answers a bcorrupt(i) query from A with the result of a corrupt(i)
query to its oracle. On input of a bnext(i) query B makes a next() query to its oracle.
Adversary B answers a hash query H(x) with H(x) = RIM.MAP(H ′(x)).

The answer Ci to a batched encryption query benc(i,Pi) is constructed as follows:

cpi =

{
enc(i,H ′(p)) if p ∈ Pi

h ∈R G otherwise

By choice of H(x) this is indeed correct, as

enc(i,H ′(p)) = RIM.MAP(H ′(p))sσ ,i = H(p)sσ ,i ,

as desired. The challenge made by A is forwarded to B’s challenge oracle, and the
results relayed back. The advantage of A against the BKDE scheme is the same as B’s
advantage against the KDE scheme. ��

7 Analysis and Conclusions

7.1 Practical Considerations

We propose two small extensions that can improve the scheme in practice. Our scheme
works only with fixed-length plaintexts. It is, however, possible to handle longer plain-
texts as well. First, append a hash of the message to authenticate the message as a whole.
Then, split the message into appropriately sized chunks and run the DE scheme for each
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Table 1. Performance comparison between the KDE scheme and the batched KDE (BKDE)
scheme. The time complexity gives the approximate number of combine actions needed. The
space complexity gives the number of ciphertext shares stored. Here m is the average number of
plaintexts encrypted by each sender.

KDE BKDE

Parameters Time Space Time Space

Formula
(n

k

)
mk nm

(n
k

) |P | n |P |
Speed limiting

n = 2, |P | = 107

k = 2,m = 600
1×360 ·103 2,250 1×10 ·106 50 ·106

Canvas cutters
n = 8, |P | = 107

k = 4,m = 400
70×26 ·109 3,200 70×10 ·106 80 ·106

of them. After recovering the multiple blocks, combine them and check the hash before
outputting the plaintext. This procedural extension allows encrypting arbitrary length
plaintexts.

The second improvement deterministically encrypts the message with the public
key of the combiner before running the DE scheme itself. This ensures that only the
combiner—which is still assumed to be honest—can successfully recover the encrypted
plaintexts even if ciphertexts leak.

7.2 Performance

Tab. 1 shows the two methods’ time complexity, in terms of combine operations, and
the space complexity, in terms of stored ciphertext shares. It also gives numbers for two
specific use cases. In both, we assume the total number of vehicles is 10 million, like in
the Netherlands. For the first, a speed-monitoring example, we choose the parameters
to monitor a 20 kilometer stretch of highway—for simplicity, we assume there are no
exits—with one ANPR system placed at the beginning, and one at the end. We set the
epoch length to 10 minutes. Every minute, we start a parallel instance of the system.
This setting guarantees that every car going at least 120/(9/60)≈ 133 km/h will gener-
ate two shares in the same epoch, and is thus always caught, while cars going between
120 km/h and 133 km/h may be caught. Using 20 parallel instances, instead of 10, will
lower this bound to 126 km/h.

Suppose that 600 cars pass the ANPR systems during an epoch. The regular KDE
scheme is more efficient in this setting due to the relatively low number of shares. In
fact, it can be optimized significantly, because the first station needs to create a share for
only the newest epoch, instead of all parallel ones. This modification reduces the com-
bining cost by another factor of 10. In this setting, our key-evolution schemes ensure
that the senders do not need to store 60 ·24 keys for every day the system is operational,
instead they store only two.

The second use case comes from Hoepman and Galindo [7]. They describe a scenario
where criminals, so-called canvas-cutters, frequently visit rest stops along a highway,
cut open the canvas on lorries, and rob them. The criminals can typically be recognized
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by looking for cars that visit rest stops rather frequently. Suppose we monitor 8 rest
stops, and consider a car suspicious if it visits at least 4 within a 4 hour period. Suppose
400 (different) cars visit each rest stop per period. Here, the BKDE scheme is clearly
better. The exponential factor in the regular scheme quickly drives up the number of
combines needed. In fact, this would be exacerbated if traffic increases. Nevertheless,
these cases also illustrate that if storage is an issue, or fewer shares are expected, then
it is better to use the non-batched scheme.

7.3 Conclusion

In this paper, we presented a new distributed encryption scheme that is simpler than
previous solutions, and uses weaker assumptions. Furthermore, we described a key-
evolving variant that offers proper key evolution and is therefore forward secure. Addi-
tionally, we demonstrated a batched variant of our new distributed encryption scheme
that is much more efficient for small plaintext domains.

None of the known distributed encryption schemes offer semantic security; senders
always produce the same ciphertext for a given plaintext. It would be very interesting
to see solutions that use randomization to avoid this problem.

References

1. Bernstein, D.J., Hamburg, M., Krasnova, A., Lange, T.: Elligator: elliptic-curve points indis-
tinguishable from uniform random strings. In: Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.)
ACM Conference on Computer and Communications Security, pp. 967–980. ACM (2013)

2. Camenisch, J., Hohenberger, S., Kohlweiss, M., Lysyanskaya, A., Meyerovich, M.: How to
win the clonewars: efficient periodic n-times anonymous authentication. In: Juels, A., Wright,
R.N., De Capitani di Vimercati, S. (eds.) ACM Conference on Computer and Communica-
tions Security, pp. 201–210. ACM (2006)

3. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme. J. Cryptol-
ogy 20(3), 265–294 (2007)

4. Cramer, R., Damgård, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing and appli-
cations to secure computation. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 342–362.
Springer, Heidelberg (2005)

5. Franklin, M.K.: A survey of key evolving cryptosystems. International Journal of Security
and Networks 1(1/2), 46–53 (2006)

6. Hoepman, J.H.: Revocable privacy. ENISA Quarterly Review 5(2) (June 2009)
7. Hoepman, J.H., Galindo, D.: Non-interactive distributed encryption: a new primitive for revo-

cable privacy. In: Chen, Y., Vaidya, J. (eds.) Proceedings of the 10th Annual ACM Workshop
on Privacy in the Electronic Society, WPES 2011, Chicago, IL, USA, October 17, pp. 81–92.
ACM (2011)

8. Itkis, G.: Forward security – adaptive cryptography: Time evolution. In: Bidgoli, H. (ed.)
Handbook of Information Security, pp. 927–944. John Wiley and Sons (2006)

9. Lueks, W., Everts, M.H., Hoepman, J.H.: Revocable privacy 2012 – use cases. Tech. Rep.
35627, TNO (2012)

10. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random func-
tions. J. ACM 51(2), 231–262 (2004)



Forward-Secure Distributed Encryption 141

11. Ohkubo, M., Suzuki, K., Kinoshita, S.: Efficient Hash-Chain Based RFID Privacy Protec-
tion Scheme. In: International Conference on Ubiquitous Computing – Ubicomp, Workshop
Privacy: Current Status and Future Directions, Nottingham, England (September 2004)

12. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
13. Speed Check Services: SPECS3 network average speed check solutions,

http://www.speedcheck.co.uk/images/SCS_SPECS3_Brochure.pdf (ac-
cessed: January 27, 2013)

14. Stadler, M.: Cryptographic Protocols for Revocable Privacy. Ph.D. thesis, Swiss Federal In-
stitute of Technology, Zürich (1996)

A Proof of Lemma 4

Proof. Let Zσ ,i = (r̄σ ,A)A�i and let zσ (x) be the zero-sharing polynomial in stage σ ,
corresponding to situation one. Now, we show how to change this to zσ (x) + z(x)
by modifying the random oracle for h2. Let r = |Ic| , and w.l.o.g. assume that Ic =
{n− r+ 1, . . . ,n}. Since z(i) is zero for all i ∈ Ic the polynomial is fully determined by
c = k− 1− r extra values. We need to ensure that

zσ ,i + z(i) = ∑
A⊂[n]

|A|=n−(k−2)

rσ ,AgA(i) = ∑
A∩Ic �= /0

rσ ,AgA(i)︸ ︷︷ ︸
fixed

+ ∑
A∩Ic= /0

rσ ,AgA(i)︸ ︷︷ ︸
not fixed

.

The fixed part contains values that are known to the adversary, and hence cannot be
changed. The not-fixed part can, however, be changed. Consider the sets:

Ai = [n]\ ({1, . . . , i− 1, i+ 1, . . .c}∪ Ic)

for i ∈ [c]. These sets are such that only set Ai influences the value for sender i, i.e.

zσ ,i + z(i) =

⎡⎢⎢⎣ ∑
A⊂[n]

|A|=n−(k−2),∀ j:A �=A j

rσ ,AgA(i)

⎤⎥⎥⎦+ rσ ,AigAi(i), (1)

for i ∈ [c]. Let rσ ,A = h2(r̄σ ,A) for all A �= Ai as always. Then choose the rσ ,Ais such
that equation (1) holds for i ∈ [c]. Finally, set h2(r̄σ ,Ai) to the new value rσ ,Ai . This
cannot be detected by the adversary due to the one-wayness of h1, so the situations are
indistinguishable. ��

B Full Proof of Theorem 2

Proof. Suppose we have an adversary A against the KDE scheme. We then build an
adversary B against the underlying DE scheme. Adversary B receives the system pa-
rameters from the challenger and forwards them to A . Next, adversary B makes a
guess σ� for the challenge stage and initializes the set of corrupted senders Ic to /0.

Adversary B will fully simulate all stages, except stage σ�, where it will use its
oracle to answer the queries. For all A ⊂ [n], such that |A|= n− (k−2) generate r̄1,A ∈R

{0,1}�h.

http://www.speedcheck.co.uk/images/SCS_SPECS3_Brochure.pdf
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We now look into the details of the evolving zero-sharing scheme. By generating
r̄1,A’s we have completely fixed the system, but we still need to ensure that epoch σ�

can be answered using our oracles. To this end we will change the value of the hash
function h2(r̄σ�,Ai) for specific sets Ai belonging to corrupted parties i. These sets Ai

will be chosen in such a way, that r̄σ�,Ai is not known to any previously corrupted party.
We handle corrupt(i) queries in or before stage σ� as follows. Let Ic be the set of

senders that were corrupted earlier and fσ� the secret-sharing polynomial induced by
the values r̄σ�,A. First, we corrupt sender i using our oracle to obtain its internal state
(i,sσ�,i) = corrupt(i). We need to ensure that fσ�(i) = sσ�,i. Pick a set Ai of cardinality
n− (k− 2) such that Ic ∩Ai = /0 and i ∈ Ai. This is possible, since the constraints in the
challenge phase require |Ic ∪{i}|< k, therefore, |Ic| will be at most k− 2. For all other
sets A � i obtain rσ�,A = h2(r̄σ�,A) as usual. Then choose rσ�,Ai such that:

sσ�,i = fσ�(i) = 1+ ∑
A⊂[n]

|A|=n−k+1

rσ�,A ·gA(i).

By the choice of the set Ai the coefficient r̄σ�,Ai is not known to any corrupted host,
hence we can use the random oracle model to ensure that h2(r̄σ�,Ai) = rσ�,Ai . With very
high probability this will not be detected by the adversary as the r̄σ�,Ais are random.
Finally, we return (i,(r̄σ�,A)A�i) to the adversary.

Now B proceeds as follows. For all stages except σ� it knows the complete state of
the system, and can thus answer all A ’s queries. For epoch σ�, all corrupted hosts will,
by construction of the hash-function, have the correct secret shares for this epoch. All
other queries can be answered by the oracle.

The transparency of the evolving zero-sharing scheme ensures that it is not possible
for the adversary to detect that we do something different in stage σ�6.

In the challenge phase A will announce its challenge phase σ ′. If σ ′ �= σ� then B
aborts. Otherwise, B will pass the challenge from A on to its own oracle. Finally, B
outputs whatever A outputs. Adversary B has the same advantage as A up to a factor
1/s for guessing the stage. This proves the result. ��

6 This proof only changes h2 for corrupted hosts, whereas the proof of Lemma 4 (see Appen-
dix A) changes h2 for non-corrupted hosts, so they can indeed be combined.
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Abstract. Revelations of large scale electronic surveillance and data
mining by governments and corporations have fueled increased adop-
tion of HTTPS. We present a traffic analysis attack against over 6000
webpages spanning the HTTPS deployments of 10 widely used, industry-
leading websites in areas such as healthcare, finance, legal services and
streaming video. Our attack identifies individual pages in the same web-
site with 90% accuracy, exposing personal details including medical con-
ditions, financial and legal affairs and sexual orientation. We examine
evaluation methodology and reveal accuracy variations as large as 17%
caused by assumptions affecting caching and cookies. We present a novel
defense reducing attack accuracy to 25% with a 9% traffic increase, and
demonstrate significantly increased effectiveness of prior defenses in our
evaluation context, inclusive of enabled caching, user-specific cookies and
pages within the same website.

1 Introduction

HTTPS is far more vulnerable to traffic analysis than has been previously dis-
cussed by researchers. In a series of important papers, a variety of researchers
have shown a number of traffic analysis attacks on SSL proxies [1,2], SSH tun-
nels [3,4,5,6,7], Tor [3,4,8,9], and in unpublished work, HTTPS [10,11]. Together,
these results suggest that HTTPS may be vulnerable to traffic analysis. This pa-
per confirms the vulnerability of HTTPS, but more importantly, gives new and
much sharper attacks on HTTPS, presenting algorithms that decrease errors
3.9x from the best previous techniques. We show the following novel results:

– Novel attack technique capable of achieving 90% accuracy over 500 pages
hosted at the same website, as compared to 60% with previous techniques

– Impact of caching and cookies on traffic characteristics and attack perfor-
mance, affecting accuracy as much as 17%

– Novel defense reducing accuracy to 25% with 9% traffic increase; significantly
increased effectiveness of packet level defenses in the HTTPS context

We evaluate attack, defense and measurement techniques on websites for health-
care (Mayo Clinic, Planned Parenthood, Kaiser Permanente), finance (Wells
Fargo, Bank of America, Vanguard), legal services (ACLU, Legal Zoom) and
streaming video (Netflix, YouTube).

E. De Cristofaro and S.J. Murdoch (Eds.): PETS 2014, LNCS 8555, pp. 143–163, 2014.
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We design our attack to distinguish minor variations in HTTPS traffic from
significant variations which indicate distinct webpages. Minor traffic variations
may be caused by caching, dynamically generated content, or user-specific con-
tent including cookies. To distinguish minor variations, our attack employs clus-
tering and Gaussian similarity techniques to transform variable length traffic
into a fixed width representation. Due to similarity with the Bag-of-Words ap-
proach to text analysis, we refer to our technique as Bag-of-Gaussians (BoG).
We augment our technique with a hidden Markov model (HMM) leveraging
the link structure of the website and further increasing accuracy. Our approach
achieves substantially greater accuracy than attacks developed by Panchenko et
al. (Pan) [8], Liberatore and Levine (LL) [6], and Wang et al. [9].1

We also present a novel defense technique and evaluate several previously
proposed defenses. In the interest of deployability, all defenses we evaluate have
been selected or designed to require minimal state. Our evaluation demonstrates
that some techniques which are ineffective in other traffic analysis contexts have
significantly increased impact in the HTTPS context. For example, although
Dyer et al. report exponential padding as decreasing accuracy of the Panchenko
classifier from 97.2% to 96.6% on SSH tunnels with website homepages [5], we
observe a decrease from 60% to 22% in the HTTPS context. Our novel defense
reduces the accuracy of the BoG attack from 90% to 25% while generating only
9% traffic overhead.

We conduct our evaluations using a dataset of 463,125 page loads collected
from 10 websites during December 2013 and January 2014. Our collection in-
frastructure includes virtual machines (VMs) which operate in four separate
collection modes, varying properties such as caching and cookie retention across
the collection modes. By training a model using data from a specific collection
mode and evaluating the model using a different collection mode, we are able to
isolate the impact of factors such as caching and user-specific cookies on anal-
ysis results. We present these results along with insights into the fundamental
properties of the traffic itself.

Our evaluation spans four website categories where the specific pages accessed
by a user reveal private information. The increased importance of contents over
existence of communication is present in traditional privacy concepts such as
patient confidentiality or attorney-client privilege. We examine three websites
related to healthcare, since the page views of these websites have the potential
to reveal whether a pending procedure is an appendectomy or an abortion, or
whether a chronic medication is for diabetes or HIV/AIDS. We also examine
legal websites, offering services spanning divorce, bankruptcy and wills and legal
information regarding LGBT rights, human reproduction and immigration. As
documented by Chen et al., specific pages accessed within financial websites
may reveal income levels, investment and family details; hence we examine three
financial websites [12]. Lastly, we examine two streaming video sites, as the
Netflix privacy breach demonstrates the importance of streaming video privacy.

1 To facilitate further research, code and data from this work are available for download
at http://secml.cs.berkeley.edu/pets2014.

http://secml.cs.berkeley.edu/pets2014
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Table 1. Prior works have focused almost exclusively on website homepages accessed
via proxy. Cheng and Danezis work is preliminary and unpublished. Note that “?”
indicates the author did not specify the property.

Privacy Page Set Page Set Accuracy Traffic Analysis Active
Author Technology Scope Size (%) Cache Cookies Composition Primitive Content

Miller HTTPS Closed 6388 90 On Individual Single Site Packet On

Hintz [1] SSL proxy Closed 5 100 ? Individual Homepages Request ?

Sun [2] SSL proxy Open
2,000 75 (TP)

Off Universal Single Site Request Off
100,000 1.5 (FP)

Cheng [10] HTTPS Closed 489 96 Off Individual Single Site Request Off
Danezis [11] HTTPS Closed ? 89 n/a n/a Single Site Request n/a

Herrmann [3] SSH tunnel Closed 775 97 Off Universal Homepages Packet ?
Cai [4] SSH tunnel Closed 100 92 Off Universal Homepages Packet Scripts
Dyer [5] SSH tunnel Closed 775 91 Off Universal Homepages Packet ?
Liberatore [6] SSH tunnel Closed 1000 75 Off Universal Homepages Packet Flash
Bissias [7] SSH tunnel Closed 100 23 ? Universal Homepages Packet ?

Wang [9] Tor Open
100 95 (TP)

Off Universal Homepages Packet Off
1000 .06 (FP)

Wang [9] Tor Closed 100 91 Off Universal Homepages Packet Off
Cai [4] Tor Closed 100 78 On Universal Homepages Packet Scripts
Cai [4] Tor Closed 800 70 Off Universal Homepages Packet Scripts
Panchenko [8] Tor Closed 775 55 Off Universal Homepages Packet Off

Panchenko [8] Tor Open
5 56-73 (TP)

Off Universal Homepages Packet Off
1,000 .05-.89 (FP)

Herrmann [3] Tor Closed 775 3 Off Universal Homepages Packet ?

Coull [13]
Anonymous

Open
50 49

On Universal Homepages NetFlow
Flash &

Trace 100 .18 Scripts

2 Prior Work

In this section we review attacks and defenses proposed in prior work, as well
as the contexts in which work is evaluated. Comparisons with prior work are
limited since much work has targeted specialized technologies such as Tor.

Table 1 presents an overview of prior attacks. The columns are as follows:

Privacy Technology The protection mechanism analyzed for traffic analysis
vulnerability. Note that some authors considered multiple mechanisms.

Page Set Scope Closed indicates the evaluation used a fixed set of pages known
to the attacker in advance. Open indicates the evaluation used traffic from
pages both of interest and unknown to the attacker. Whereas open conditions
are appropriate for Tor, closed conditions are appropriate for HTTPS.

Page Set Size For closed scope, the number of pages used in the evaluation.
For open scope, the number of pages of interest to the attacker and the
number of background traffic pages, respectively.

Accuracy For closed scope, the percent of pages correctly identified. For open
scope, the true positive (TP) rate of correctly identifying a page as being
within the censored set and false positive (FP) rate of identifying an uncen-
sored page as censored.

Cache Off indicates caching disabled. On indicates default caching behavior.
Cookies Universal indicates that training and evaluation data were collected

on the same machine or machines, and consequently with the same cookie
values. Individual indicates training and evaluation data were collected on
separate machines with distinct cookie values.
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Traffic Composition Single Site indicates the work identified pages within a
website or websites. Homepages indicates all pages used in the evaluation
were the homepages of different websites.

Analysis Primitive The basic unit on which traffic analysis was conducted.
Request indicates the analysis operated on the size of each object (e.g. image,
style sheet, etc.). Packet indicates meta-data observed from TCP packets.
NetFlow indicates network traces anonymized using NetFlow.

Active Content Indicates whether Flash, JavaScript, Java or any other plugins
were enabled in the browser.

Several works require discussion in addition to Table 1. Chen et al. study
side-channel leaks caused by AJAX in web applications. As Chen focuses on
traffic generated after a page loads, we view the work as both complimentary
and orthogonal [12]. Danezis focused on the HTTPS context, but evaluated his
technique using HTTP server logs at request granularity, removing any effects
of fragmentation, concurrent connections or pipelined requests [11]. Cheng et
al. also focused on HTTPS and conducted an evaluation which parsed request
sizes from unencrypted HTTP traffic at a website intentionally selected for its
static content [10]. Like Cheng and Danezis, Sun et al. and Hintz et al. assume
the ability to parse entire object sizes from traffic [1,2]. For these reasons, we
compare our work to Liberatore and Levine, Panchenko et al. and Wang et al.
as these are more advanced and recently proposed techniques.

Herrmann [3] and Cai [4] both conduct small scale preliminary evaluations
which involve enabling the browser cache. These evaluations only consider web-
site homepages and all pages are loaded in a fixed, round-robin order. Herrmann
additionally increases the cache size from the default to 2GB. We evaluate the
impact of caching on pages within the same website, where caching will have a
greater effect due to increased page similarity, and load pages in a randomized
order for greater cache state variation.

Separate from attacks, we also review prior work relating to traffic analysis
defense. Dyer et al. conduct a review of low level defenses operating on individ-
ual packets [5]. Dyer evaluates defenses using data released by Liberatore and
Levine and Herrmann et al. which collect traffic from website homepages on a
single machine with caching disabled. In this context, Dyer finds that low level
defenses are ineffective against attacks which examine features aggregated over
multiple packets. Our evaluation finds that low level defenses are considerably
more effective in the HTTPS context.

In addition to the packet level defenses evaluated by Dyer, many defenses
have been proposed which operate at higher levels with additional cost and
implementation requirements. These include HTTPOS [14], traffic morphing [15]
and BuFLO [4,5]. HTTPOS manipulates features of TCP and HTTP to affect
packet size, object size, pipelining behavior, packet timing and other properties.
BuFLO sends a constant stream of traffic at a fixed packet size for a pre-set
minimum amount of time. Given the effectiveness and advantages of packet level
level defenses in our evaluation context, we do not further explore these higher
level approaches in our work.
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Fig. 1. The dashed line separates training workflow from attack workflow. Bubbles
indicate the section in which the system component is discussed. Note that the attacker
may conduct training in response to a victim visiting a website, recording victim traffic
and inferring contents after browsing has occurred.

3 Attack Presentation

Figure 1 presents the workflow of the attacker as well as the subsections in which
we discuss his efforts. In section 3.1, we present a formalism for labeling webpages
and generating a link graph relating labeled webpages. Section 3.2 presents the
core of our classification approach: Gaussian clustering techniques that capture
significant variations in traffic and allow logistic regression to robustly identify
objects that reliably differentiate pages. Having generated isolated predictions,
we then leverage the site graph and sequential nature of the data in section 3.3
with a hidden Markov model (HMM) to further improve accuracy.

Throughout this section we depend on several terms defined as follows:

Webpage A set of resources loaded by a browser in response to a user clicking a
link or entering a URL into the browser address bar. Webpages representing
distinct resources are considered the same if a user would likely view their
contents as substantially similar, regardless of the specific URLs fetched
while loading the webpages or dynamic content such as advertising.

Sample A traffic instance generated when a browser displays a webpage.
Label A unique identifier assigned to sets of webpages which are the same.

For example, webpages differing only in advertising receive the same label.
Samples are labeled according to the webpage in the sample’s traffic.

Website A set of webpages such that the URLs which cause each webpage to
load in the browser are hosted at the same domain.

Site Graph A graph representing the link structure of a website. Nodes corre-
spond to labels assigned to webpages within the website. Edges correspond
to links, represented as the set of labels reachable from a given label.

3.1 Label and Site Graph Generation

Although initially appealing, URLs are poorly suited to labeling webpages within
a website. URLs may contain arguments which do not impact content and result
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in different labels aliasing webpages which are the same. URL redirection further
complicates labeling, allowing the same URL to refer to multiple webpages (e.g.
error pages or A/B testing). Similar challenges affect web crawlers, creating an
infinite web of dynamically generated pages [16]. We present a labeling solution
based on URLs and designed to accommodate these challenges.

Our approach contains two phases, each composed of a crawling and a graph
building step. The crawling step systematically visits the website to gather URLs
and record links. The graph building step uses a canonicalization function that
transforms webpage URLs into labels and generates a graph representing the
structure of the website. The URLs observed and site graph produced in the first
phase guide the second, larger crawl which is necessary to observe the breadth
of non-deterministic URL redirections. We present our approach below.2

Execute Initial Crawl. The crawl can be implemented as either a depth- or
breadth-first search, beginning at the homepage and exploring every link on a
page up to a fixed maximum depth. We perform a breadth first search to depth
5. This crawl will produce a graph G = (U,E), where U represents the set of
URLs seen as links during the crawl, and E = {(u, u′) ∈ U × U | u links to u′}
represents links between URLs in U .

Canonicalize Initial Graph. First, we construct a canonicalization function
of the form C : U → L, where C denotes the canonicalization function, U
denotes the initial set of URLs, and L denotes the set of labels. We then use our
canonicalization function to produce an initial site graph G′ = (L,E′) where L
represents the set of labels on the website and E′ represents links. We construct
E′ as follows:

E′ = {(C(u), C(u′)) | (u, u′) ∈ E} (1)

We define a reverse canonicalization function R : L → P(U) such that

R(l) = {u ∈ U | C(u) = l} (2)

Note that P(X) denotes the power set of X , which is the set of all subsets of X .

Execute Primary Crawl. The primary crawl allows the attacker to more fully
observe the URL redirection behavior of the website. The attacker conducts the
primary crawl in a series of browsing sessions; we fixed the length of each session
to 75 labels. The attacker builds browsing sessions using a random walk through
G′, prioritizing labels not yet visited. The attacker then executes each browsing
session by visiting a URL u for each label l such that u ∈ R(l). The attacker
records the value of document.location once u and all associated resources
are done loading to identify any URL redirections. U ′ denotes the set of final
URLs which are observed in document.location. We define a new function
T : U → P(U ′) such that T (u) = {u′ ∈ U ′ | u resolved at least once to u′}. We
use this to define a new translation T ′ : L → P(U ′) such that

2 A more detailed description of the crawling infrastructure, canonicalization process
and graph generation is available on arXiv [17].
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Table 2. “Selected Subset” denotes the subset of the initial site graph randomly
selected for inclusion in our evaluation, “Avg. Links” denotes the average number
of links per label, and “URLs” indicates the number of URLs seen as links in the
preliminary site graph corresponding to an included label.

Initial Site Graph G′ Selected Subset Final Site Graph G′′′

Website URLs Labels Avg. Links URLs Labels Avg. Links Labels Avg. Links

ACLU 54398 28383 130.5 1061 500 41.7 506 44.7
Bank of America 1561 613 30.2 1105 500 30.3 472 43.2
Kaiser Permanente 1756 780 29.7 1030 500 22.6 1037 141.1
Legal Zoom 5248 3973 26.8 602 500 11.8 485 12.2
Mayo Clinic 33664 33094 38.1 531 500 12.5 990 31.0
Netflix 8190 5059 13.8 2938 500 6.2 926 9.0
Planned Parenthood 6336 5520 29.9 662 500 24.8 476 24.4
Vanguard 1261 557 28.4 1054 500 26.7 512 30.8
Wells Fargo 4652 3677 31.2 864 500 17.9 495 19.5
YouTube 64348 34985 7.9 953 500 4.3 497 4.24

T ′(l) =
⋃

u∈R(l)

T (u) (3)

Refine Initial Graph To produce the final site graph, we construct a new
canonicalization function C′ : U ′ → L′, where U ′ denotes the final set of URLs
and L′ denotes a new set of labels. The final graph G′′′ must maintain the
property that for any browsing path in the initial graph G′ and any URL redi-
rections in T ′, after canonicalization with C′ the path must also be valid in the
final graph. Therefore, the attacker defines an intermediary graphG′′ = (U ′, E′′)
such that E′′ is defined as

E′′ = {(u, u′) | u ∈ T ′(l) ∧ u′ ∈ T ′(l′) ∀ (l, l′) ∈ E′} (4)

We apply our canonicalization function C′ to produce a final graph G′′′ =
(L′, E′′′) where

E′′′ = {(C′(u), C′(u′)) ∀ (u, u′) ∈ E′′} (5)

guaranteeing that we have strictly increased the connectivity of the site graph.
In the interest of balancing, given available resources, the amount of collection

modes, samples of each label, websites surveyed, and pages included from each
website, we selected a 500 page subset of each initial site graph. Consequently,
we were able to complete data collection in about four weeks during December
2013 and January 2014 using four virtual hosts. We initialize the selected subset
to include the label corresponding to the homepage, and iteratively expand the
subset by adding a randomly selected label reachable from the selected subset
via the link structure of the initial site graph until 500 labels are selected. The
set of links for the graph subset is defined as any links occurring between the
500 selected labels. Table 2 presents properties of the initial site graph G′, se-
lected subset, and the final site graph G′′′ for each of the 10 websites we survey.
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Burst Pairs (KB)
Domain A B

Sample x (0.5, 60) (1.6, 22) (4.2, 30) (1.1, 75) (2.0, 25)
Sample + (1.1, 22) (4.0, 75) (4.2, 21)
Sample o (1.8, 22) (2.4, 83) (4.2, 25) (1.4, 75) (4.0, 50)

(c)

Feature Values
Domain A B

Index 1 2 3 4 5 6 7 8

Sample x .9 1 0 0 1 .8 1 0
Sample + .9 .8 1 0 0 0 0 0
Sample o 1 .9 0 1 0 .8 0 1

(d)

Fig. 2. Table 2c displays the burst pairs extracted from three hypothetical samples.
Figures 2a and 2b show the burst pair clusters. Figure 2d depicts the Bag-of-Gaussians
features for each sample. Our Gaussian similarity metric enables our attack to distin-
guish minor traffic variations from significant differences.

Note that the second crawl also serves as the data collection process; samples
are labeled as C′(u′) ∈ L′ where u′ denotes the value of document.location

when the sample finished loading. Each model uses only redirections observed in
training data when generating the site graph used by the HMM for that model.

3.2 Feature Extraction and Machine Learning

This section presents our individual sample classification technique. First, we
describe the information which we extract from a sample, then we describe
processing to produce features for machine learning, and finally describe the
application of the learning technique itself.

We initially extract traffic burst pairs from each sample. Burst pairs are de-
fined as the collective size of a contiguous outgoing packet sequence followed by
the collective size of a contiguous incoming packet sequence. Intuitively, con-
tiguous outgoing sequences correspond to requests, and contiguous incoming
sequences correspond to responses. All packets must occur on the same TCP
connection to minimize the effects of interleaving traffic. For example, denot-
ing outgoing packets as positive and incoming packets as negative, the sequence
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[+1420, +310, -1420, -810, +530, -1080] would result in the burst pairs
[1730, 2230] and [530, 1080]. Analyzing traffic bursts removes any fragmen-
tation effects. Additionally, treating bursts as pairs allows the data to contain
minimal ordering information and go beyond techniques which focus purely on
packet size distributions.

Once burst pairs are extracted from each TCP connection, the pairs are
grouped using the second level domain of the host associated with the desti-
nation IP of the connection. All IPs for which the reverse DNS lookup fails are
treated as a single “unknown” domain. Pairs from all samples from each domain
undergo k-means clustering to identify commonly occurring and closely related
tuples. We fit a Gaussian distribution to each cluster using a maximum likelihood
estimates of the mean and covariance.3 We then treat each cluster as a feature
dimension, producing our fixed width feature vector. Features are extracted from
samples by computing the extent to which each Gaussian is represented in the
sample.

Figure 2 depicts the feature extraction process using a fabricated example
involving three samples and two domains. Clustering results in five clusters for
Domain A and three clusters for Domain B, ultimately producing an eight-
dimensional feature vector. Sample x has traffic tuples in clusters 1, 2, 5, 6 and
7, but no traffic tuples in clusters 3, 4, 8, so its feature vector has non-zero values
in dimensions 1, 2, 5, 6, 7, and zero values in dimensions 3, 4, 8. We create feature
vectors for samples + and o in a similar fashion.

Analogously to the Bag-of-Words document processing technique, our ap-
proach projects a variable length vector of tuples into a finite dimensional space
where each dimension “occurs” to some extent in the original sample. Whereas
occurrence is determined by word count in Bag-of-Words, occurrence in our
method is determined by Gaussian likelihood. For this reason, we refer to our
approach as Bag-of-Gaussians (BoG).

We specify our approach formally as follows:

– Let X denote the entire set of tuples from a sample, with Xd ⊆ X denoting
the set all tuples observed at domain d.

– Let Σd
i , μ

d
i denote the covariance and mean of Gaussian i at domain d.

– Let F denote all features, with F d
i denoting feature i from domain d.

F d
i =

∑
x∈Xd

N (x|Σd
i , μ

d
i ) (6)

To determine the best number of Gaussian features for each domain, we divide
the training data into two parts to train and evaluate models using K values
of 4000, 1000 and 500. We then retrain using all training data and the best
performing K values for each domain.

Once Gaussian features have been extracted from each sample the feature set
is augmented to include counts of packet sizes observed over the entire trace. For

3 For clusters where all samples occur at the same point, we set the covariance matrix
to a scalar matrix with λ = N−1, where N denotes the size of the cluster.
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example, if the lengths of all outgoing and incoming packets are between 1 and
1500 bytes, we add 3000 additional features where each feature corresponds to
the total number of packets sent in a specific direction with a specific size. We
linearly normalize all features to be in the range [0, 1] and train a model using
L2 regularized multi-class logistic regression with the liblinear package [18].
We use C = 128 for all sites as we observed varying C did not improve accuracy
enough for any site to justify the additional computational cost.

3.3 Hidden Markov Model

The basic attack presented in section 3.2 classifies each sample independently.
In practice, samples in a browsing session are not independent since the link
structure of the website guides the browsing sequence. We leverage this ordering
information, contained in the site graph produced in section 3.1, to improve
results using a hidden Markov model (HMM). Recall that a HMM for a sequence
of length N is defined by a set of latent (unknown) variables Z = {zn | 1 ≤ n ≤
N}, a set of observed variables X = {xn | 1 ≤ n ≤ N}, transition matrix
A such that Ai,j = P (zn+1 = j|zn = i), an initial distribution π such that
πj = P (z1 = j) and an emission function E(xn, zn) = P (xn|zn).

To apply the HMM, we treat sample labels as latent variables and the traffic
contained in the samples as observed variables. We then use the Viterbi algorithm
to find the most likely sequence of labels Z visited by a user given the observed
traffic X produced by the user. Given a traffic sample, the logistic regression
model specifies the likelihood of each label and acts as the emission function E
required by the Viterbi algorithm. We assume in the initial distribution π that
the user is equally likely to begin browsing with any label in the website, and
construct the transition matrix A such that if the site graph contains a link from
label i to label j, then Ai,j = N−1

i , where Ni denotes the number of links leading
from label i. If there is no link leading from label i to label j, then Ai,j = 0.

4 Impact of Evaluation Conditions

In this section we demonstrate the impact of evaluation conditions on accuracy
results and traffic characteristics. First, we present the scope, motivation and
experimental methodology of our investigation. Then, we present the results of
our experiments on four attack implementations, with the most affected attack
decreasing accuracy from 68% to 51%. We discuss attack accuracy only insofar
as is necessary to understand the impact of evaluation conditions; we defer a full
attack evaluation to section 5.

Cache Configuration. The browser cache improves page loading speed by stor-
ing previously loaded web resources; this poses two challenges to traffic analysis.
Providing content locally decreases the total amount of traffic, reducing the
information available for use in an attack. Additionally, differences in browsing
history cause differences in cache contents and further vary network traffic. Since
privacy tools such as Tor frequently disable caching, many prior evaluations have
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disabled caching as well [19]. General HTTPS users are unlikely to modify cache
settings, so we evaluate the impact of enabling caching to default settings.

User-Specific Cookies. If an evaluation collects all data with either the same
browser instance or repeatedly uses a fresh browser image, there are respective
assumptions that the attacker and victim will either share the same cookies or
use none at all. While a traffic analysis attacker will not have access to victim
cookies, privacy technologies which begin all browsing sessions from a clean
browsing image effectively share the null cookie. We compare the performance
of evaluations which use the same (non-null) cookie value in all data, different
(non-null) cookie values in training and evaluation, a null cookie in all data, and
evaluations which mix null and non-null cookies.

Pageview Diversity. Many evaluations collect data by repeatedly visiting a
fixed set of URLs from a single machine and dividing the collected data for
training and evaluation. This approach introduces an unrealistic assumption
that an attacker will be able to collect separate training data for each victim,
visiting the exact same set of webpages as the victim. We examine the impact
of allowing the victim to intersperse browsing of multiple websites, including
websites outside our attacker’s monitoring focus.4

Webpage Similarity. Since HTTPS usually allows an eavesdropper to learn
the domain a user is visiting, our evaluation focuses on differentiating individ-
ual webpages within a website protected by HTTPS. Differentiating webpages
within the same website may pose a greater challenge than differentiating website
homepages. Webpages within the same website share many resources, increasing
caching and decreasing data available for analysis. We examine the relative traffic
volumes of browsing both website homepages and webpages within a website.

To quantify the impact of evaluation conditions on accuracy results, we design
four modes for data collection designed to isolate specific effects. Our approach
assumes that data will be gathered in a series of browsing sessions, each consist-
ing of a fixed number of samples. The four modes are as follows:

1. Cache disabled, new virtual machine (VM) for each browsing session
2. Cache enabled, new VM for each browsing session
3. Cache enabled, persistent VM for all browsing sessions, single site per VM
4. Cache enabled, persistent VM for all browsing sessions, all sites on same VM

We fixed the session length to 75 samples and collected at least 16 samples
of each label under each collection mode. The first two modes differ only with
respect to cache configuration and begin each browsing session with a fresh
VM image to eliminate any cookie persistence in browser or machine state. In
effect the second, third and fourth modes each represent a distinct cookie value,
with the second mode representing a null cookie and the third and fourth modes

4 This is different from the open-world vs. closed-world distinction in section 2, as
we assume that the attacker will train a model for each website in its entirety and
identify the correct model based on traffic destination. Here, we are concerned with
effects on browser cache or personalized content which may impact traffic analysis.
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Fig. 3. Impact of evaluation conditions on traffic characteristics. Figure 3a presents
the increase in number of unique packet sizes per sample of a given label caused by
disabling the cache. For each label l we determine the mean number lm of unique
packet sizes for samples of l with caching enabled, and normalize the unique packet
size counts of all samples of label l using lm. We present the normalized values for
all labels separated by cache configuration. Figure 3b presents the decrease in traffic
volume caused by browsing webpages internal to a website as compared to website
homepages. Similar to the effect of caching, the decreased traffic volume is likely to
increase classification errors.

having actual, distinct, cookie values set by the site. The third and fourth modes
differ in pageview diversity. In the context of HTTPS evaluations, the fourth
mode most closely reflects the behavior of actual users and hence serves as
evaluation data, while the second and third modes generate training data.

Our analysis reveals that caching significantly decreases the number of unique
packet sizes observed for samples of a given label. We focus on the number of
unique packet sizes since packet size counts are a commonly used feature in
traffic analysis attacks. Figure 3a contrasts samples from the first and second
collection modes, presenting the effect of caching on the number of unique packet
sizes observed per label for each of the 10 websites we evaluate. Note that the
figure only reflects TCP data packets. We use a normalization process to present
average impact of caching on a per-label basis across an entire website, allowing
us to depict for each website the expected change in number of unique packet
sizes for any given label as a result of disabling the cache.

Since prior works have focused largely on website homepages, we present data
demonstrating a decrease in traffic when browsing webpages within a website.
Figure 3b presents the results of browsing through the Alexa top 1,000 websites,
loading the homepage of each site, and then loading nine additional links on
the site at random with caching enabled. By partitioning the total count of data
packets transferred in the loading of webpages internal to a website into five equal
size buckets we see that there is a clear skew towards homepages generating more
traffic. Similar to the traffic increase from disabled caching, the increased traffic
of website homepages is likely to increase accuracy.
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Mode Number Cache Cookie Retention Browsing Scope

1 Disabled Fresh VM every 75 samples Single website
2 Enabled Fresh VM every 75 samples Single website
3 Enabled Same VM for all samples Single website
4 Enabled Same VM for all samples All websites

(d)

Fig. 4. “Train: X, Eval: Y” indicates training data from mode X and evaluation data
from mode Y as shown in Table 4d. For evaluations which use a privacy tool such
as the Tor browser bundle and assume a closed world, training and evaluating using
mode 1 is most realistic. However, in the HTTPS context training using mode 2 or 3
and evaluating using mode 4 is most realistic. Figure 4c presents differences as large as
17% between these conditions, demonstrating the importance of evaluation conditions
when measuring attack accuracy.

Beyond examining traffic characteristics, our analysis shows that factors such
as caching, user-specific cookies and pageview diversity impact attack accuracy
measurements. We examine each of these factors by training a model using data
from a specific collection mode, and comparing model accuracy when evaluated
on a range of collection modes. Since some models must be trained and evaluated
using the same collection mode we must select a portion of the data from each
mode for training and leave the remainder for evaluation. We perform a three-
fold evaluation for each attack, varying the evaluation data used for each fold.
Figure 4 presents the results of our analysis:

Cache Effect Figure 4a compares the performance of models trained and eval-
uated using mode 1 to models trained and evaluated using mode 2. As these
modes differ only by enabled caching, we see that caching has moderate
impact and can influence reported accuracy by as much as 10%.

Cookie Effect Figure 4b measures the impact of user-specific cookies by com-
paring the performance of models trained and evaluated using browsing
modes 2 and 3. We observe that both the null cookie in mode 2 and the
user-specific cookie in mode 3 generally perform 5-10 percentage points bet-
ter when the evaluation data is drawn from the same mode as the training
data. This suggests that any difference in cookies between training and eval-
uation conditions will impact accuracy results.



156 B. Miller et al.

Total Effect Figure 4c presents the combined effects of enabled caching, user-
specific cookies and increased pageview diversity. Recalling Figure 4b, notice
that models trained using mode 2 perform similarly on modes 3 and 4, and
models trained using mode 3 perform similarly on modes 2 and 4, confirm-
ing the importance of user-specific cookies. In total, the combined effect of
enabled caching, user-specific cookies and pageview diversity can influence
reported accuracy by as much as 17%. Figure 4b suggests that the effect is
primarily due to caching and cookies since mode 2 generally performs better
on mode 4, which includes visits to other websites, than on mode 3, which
contains traffic from only a single website.

5 Attack Evaluation

In this section we evaluate the performance of our attack. We begin by presenting
the selection of previous techniques for comparison and the implementation of
each attack. Then, we present the aggregate performance of each attack across
all 10 websites we consider, the impact of training data on attack accuracy, and
the performance each attack at each individual website.

We select the Liberatore and Levine (LL), Panchenko et al. (Pan), and Wang
et al. attacks for evaluation in addition to the BoG attack. The LL attack offers
a view of baseline performance achievable from low level packet inspection, ap-
plying naive Bayes to a feature set consisting of packet size counts [6]. We imple-
mented the LL attack using the naiveBayes implementation in scikit-learn [20].
The Pan attack extends size count features to include additional features related
to burst length as measured in both packets and bytes as well as total traffic vol-
ume [8]. For features aggregated over multiple packets, the Pan attack rounds fea-
ture values to predetermined intervals. We implement the Pan attack using the
libsvm [21] implementation of the RBF kernel support vector machine with theC
and γ parameters specified by Panchenko.We select the Pan attack for comparison
to demonstrate the significant benefit of Gaussian similarity rather than predeter-
mined rounding thresholds.TheBoGattack functions as described in section 3.We
implement the BoG attack using the k-means package from sofia-ml [22] and lo-
gistic regressionwith class probability output from liblinear [18], withNumpy [23]
performing intermediate computation.

The Wang attack assumes a fundamentally different approach from LL, Pan
and BoG based on string edit distance [9]. There are several variants of the Wang
attack which trade computational cost for accuracy by varying the string edit
distance function. Wang reports that the best distance function for raw packet
traces is the Optimal String Alignment Distance (OSAD) originally proposed by
Cai et al. [4]. Unfortunately, the edit distance must be computed for each pair of
samples, and OSAD is extremely expensive. Therefore, we implement the Fast
Levenshtein-Like (FLL) distance,5 an alternate edit distance function proposed

5 Note that the original attack rounded packet sizes to multiples of 600; we operate
on raw packet sizes as we found this improves attack accuracy in our evaluation.
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Fig. 5. Performance of BoG attack and prior techniques. Figure 5a presents the perfor-
mance of all four attacks as a function of training data. Figure 5b presents the accuracy
of the BoG attack trained with 16 samples as a function of browsing session length.
At one sample, the HMM has no effect and reveals the effectiveness of the BoG attack
without the HMM. Note that the BoG attack achieves 90% accuracy as compared to
60% accuracy with the best prior work.

byWang which runs approximately 3000x faster.6 Since Wang demonstrates that
FLL achieves 46% accuracy operating on raw packet traces, as compared to 74%
accuracy with OSAD, we view FLL as a rough indicator of the potential of the
OSAD attack. We implement the Wang - FLL attack using scikit-learn [20].

We now examine the performance of each attack implementation. We evaluate
attacks using data collected in mode 4 since this mode is most similar to the
behavior of actual users. We consider both modes 2 and 3 for training data to
avoid any bias introduced by using the same cookies as seen in evaluation data
or browsing the exact same websites. As shown in Figure 4, mode 2 performs
slightly better so we train all models using data from mode 2.

Consistent with prior work, our evaluation finds that accuracy of each attack
improves with increased training data, as indicated by Figure 5a. Note that since
we only collect 16 samples of each label in each collection mode, we are unable to
conduct a multi-fold evaluation since all data is required for a single 16 training
sample model. Notice that the Pan attack is most sensitive to variations in the
amount of training data, and the BoG attack continues to perform well even at
low levels of training data. In some cases an attacker may have ample oppor-
tunity to collect training data, although in other cases the victim website may
attempt to actively resist traffic analysis attacks by detecting crawling behavior
and engaging in cloaking, rate limiting or other forms of blocking.

6 OSAD has O(mn) runtime where m and n represent the length of the strings,
whereas FLL runs in O(m + n). Wang et al. report completing an evaluation with
40 samples of 100 labels each in approximately 7 days of CPU time. Since our eval-
uation involves 10 websites with approx. 500 distinct labels each and 16 samples of
each label for training and evaluation, we would require approximately 19 months
of CPU time (excluding any computation for sections 4 or 6).
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Fig. 6. Accuracy of each attack for each website. Note that the BoG attack performs
the worst at Kaiser Permanente, Mayo Clinic and Netflix, which each have approx.
1000 labels in their final site graphs according to Table 2. The increase in graph size
during finalization suggests potential for improved performance through better canon-
icalization to eliminate labels aliasing the same webpages.

The BoG attack derives significant performance gains from the application
of the HMM. Figure 5b presents the BoG attack accuracy as a function of the
browsing session length. Although we collect browsing sessions which each con-
tain 75 samples, we simulate shorter browsing sessions by applying the HMM to
randomly selected subsets of browsing sessions and observing impact on accu-
racy. At session length 1 the HMM has no effect and the BoG attack achieves
71% accuracy, representing the improvement over the Pan attack resulting from
the Gaussian feature extraction. The HMM accounts for the remaining perfor-
mance improvement from 71% accuracy to 90% accuracy. We achieve most of
the benefit of the HMM after observing two samples in succession, and the full
benefit after observing approximately 15 samples. Although any technique which
assigns a likelihood to each label for each sample could be extended with a HMM,
applying a HMM requires solving the labeling and site graph challenges which
we present novel solutions for in section 3.

Although the BoG attack averages 90% accuracy overall, only 4 of the 10
websites included in evaluation have accuracy below 91%. Figure 6 presents the
accuracy of each attack at each website. The BoG attack performs the worst at
Mayo Clinic, Netflix and Kaiser Permanente. Notably, the number of labels in the
site graphs corresponding to each of these websites approximately doubles during
the finalization process summarized in Table 2 of section 3. URL redirection
causes the increase in labels, as new URLs appear whose corresponding labels
were not included in the preliminary site graph. Some new URLs may have been
poorly handled by the canonicalization function, resulting in labels which alias
the same content. Although we collected supplemental data to gather sufficient
training samples for each label, the increase in number of labels and label aliasing
behavior degrade measured accuracy for all attacks.

Despite the success of string edit distance based attacks against Tor, the Wang
- FLL attack struggles in the HTTPS setting. Wang’s evaluation is confined
to Tor, which pads all packets into fixed size cells, and does not effectively
explore edit distance approaches applied to unpadded traffic. Consistent with
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Byte Packet Burst
Defense Overhead Overhead Entropy

No Defense 1.000 1.000 8.164
Linear 1.032 1.000 5.309
Exponential 1.055 1.000 5.241
Fragmentation 1.000 1.450 8.164
Burst: 1.03 1.025 1.022 5.994
Burst: 1.05 1.043 1.032 5.568
Burst: 1.10 1.090 1.065 5.010

(b)

Fig. 7. Figure 7a presents the impact of defenses on attack accuracy. Figure 7b presents
defense costs and entropy of burst sizes. The Burst defense is a novel proposal, sub-
stantially decreasing accuracy at a cost comparable to a low level defense. Entropy
provides useful but limited insight into defense effectiveness, as rare values minimally
impact entropy but may uniquely identify content.

the unpadded nature of HTTPS, we observe that Wang’s attack performs best
on unpadded traffic in the HTTPS setting. Despite this improvement, the Wang
- FLL technique may struggle because edit distance treats all unique packet sizes
as equally dissimilar; for example, 310 byte packets are equally similar to 320 byte
packets and 970 byte packets. Additionally, the application of edit distance at the
packet level causes large objects sent in multiple packets to have proportionally
large impact on edit distance. This bias may be more apparent in the HTTPS
context than with website homepages since webpages within the same website are
more similar than homepages of different websites. Replacing the FLL distance
metric with OSAD or Damerau-Levenshtein would improve attack accuracy,
although the poor performance of FLL suggests the improvement would not
justify the cost given the alternative techniques available.

6 Defense

This section presents and evaluates several defense techniques, including our
novel Burst defense which operates between the application and TCP layers to
obscure high level features of traffic while minimizing overhead. Figure 7 presents
the impacts and costs of the defenses we consider.We find that evaluation context
significantly impacts defense performance, as we observe increased effectiveness
of low level defenses in our evaluation as compared to prior work [5]. Additionally,
we find that the Burst defense offers significant performance improvements while
maintaining many advantages of low level defense techniques.

We select defenses for evaluation on the combined basis of cost, deployability
and effectiveness. We select the linear and exponential padding defenses from
Dyer et al. as they are reasonably effective, have the lowest overhead, and are
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Algorithm 1. Threshold Calculation

Precondition: bursts is a set containing the length of each burst in a given direction
in defense training traffic

Precondition: threshold specifies the maximum allowable cost of the Burst defense
1: thresholds ← set()
2: bucket ← set()
3: for b in sorted(bursts) do
4: inflation ← len(bucket+ b) ∗ max(bucket+ b)/sum(bucket+ b)
5: if inflation ≥ threshold then
6: thresholds ← thresholds+max(bucket)
7: bucket ← set() + b
8: else
9: bucket ← bucket+ b
10: end if
11: end for
12: return thresholds+ max(bucket)

Algorithm 2. Burst Padding

Precondition: burst specifies the size of a directed traffic burst
Precondition: thresholds specifies the thresholds obtained in Algorithm 1
1: for t in sorted(thresholds) do
2: if t ≥ burst then
3: return t
4: end if
5: end for
6: return burst

implemented statelessly below the TCP layer. The linear defense pads all packet
sizes up to multiples of 128, and the exponential defense pads all packet sizes up
to powers of 2. Stateless implementation at the IP layer allows for easy adoption
across a wide range of client and server software stacks. Additionally, network
overhead is limited to minor increases in packet size with no new packets gener-
ated, keeping costs low in the network and on end hosts. We also introduce the
fragmentation defense which randomly splits any packet which is smaller than
the MTU, similar to portions of the strategy adopted by HTTPOS [14]. Fragmen-
tation offers the deployment advantages of not introducing any additional data
overhead, as well as being entirely supported by current network protocols and
hardware. We do not consider defenses such as BuFLO or HTTPOS given their
complexity, cost and the effectiveness of the alternatives we do consider [5,14].

The exponential defense slightly outperforms the linear defense, decreasing the
accuracy of the Pan attack from 60% to 22% and the BoG attack from 90% to
60%. Notice that the exponential defense is much more effective in our evaluation
context than Dyer’s context, which focuses on comparing website homepages
loaded over an SSH tunnel with caching disabled and evaluation traffic collected
on the same machine as training traffic. The fragmentation defense is extremely
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effective against the LL and Wang - FLL attacks, reducing accuracy to below 1%
and 7% for each respective attack, but less effective against the Pan and BoG
attacks as these attacks perform TCP stream reassembly. Since TCP stream re-
assembly is expensive and requires complete access to traffic, the fragmentation
defense may be a superior choice against many adversaries in practice.

Although the fragmentation, linear and exponential defenses offer the deploy-
ment advantages of functioning statelessly below the TCP layer, their effective-
ness is limited. The Burst defense offers greater protection, operating between
the TCP layer and application layer to pad contiguous bursts of traffic up to pre-
defined thresholds uniquely determined for each website. Reducing the number
of thresholds allows the Burst defense to achieve greater privacy at the expense
of increased padding.

Algorithms 1 and 2 present the training and application of the Burst defense
respectively. Unlike the BoG attack which considers bursts as a tuple, for the
purposes of the Burst defense (and Figure 7b) we define a burst as a contigu-
ous sequence of packets in the same direction on the same TCP connection.
Hence, we apply Algorithm 1 in each direction. We evaluate the Burst defense
for threshold values 1.03, 1.05 and 1.10, with the resulting cost and performance
shown in Figure 7. The Burst defense outperforms defenses which operate solely
at the packet level by obscuring features aggregated over entire TCP streams. Si-
multaneously, the Burst defense offers deployability advantages over techniques
such as HTTPOS since the Burst defense is implemented between the TCP and
application layers. The cost of the Burst defense compares favorably to defenses
such as HTTPOS, BuFLO and traffic morphing, reported to cost at least 37%,
94% and 50% respectively [4,15].

7 Discussion and Conclusion

This work examines the vulnerability of HTTPS to traffic analysis attacks, focus-
ing on evaluation methodology, attack and defense. Although we present novel
contributions in each of these areas, many open problems remain.

Our examination of evaluation methodology focuses on caching and user-
specific cookies, but does not explore factors such as browser differences, operat-
ing system differences, mobile/tablet devices or network location. Each of these
factors may contribute to traffic diversity in practice, likely degrading attack
accuracy. Additional future work remains in the area of attack development. To
date, all approaches have assumed that the victim browses the web in a single
tab and that successive page loads can be easily delineated. Future work should
investigate actual user practice in these areas and impact on analysis results. For
example, while many users have multiple tabs open at the same time, it is un-
clear how much traffic a tab generates once a page is done loading. Additionally,
we do not know how easily traffic from separate page loadings may be delineated
given a contiguous stream of user traffic.

Defense development and evaluation also require further exploration. Attack
evaluation conditions and defense development are somewhat related since con-
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ditions which favor attack performance will simultaneously decrease defense ef-
fectiveness. Defense evaluation under conditions which favor attack creates the
appearance that defenses must be complex and expensive, effectively discourag-
ing defense deployment. To increase likelihood of deployment, future work must
investigate necessary defense measures under increasingly realistic conditions
since realistic conditions may substantially contribute to effective defense.
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Abstract. eBay is an online marketplace which allows people to easily
engage in commerce with one another. Since the market’s online nature
precludes many physical cues of trust, eBay has instituted a reputation
system through which users accumulate ratings based on their trans-
actions. However, the eBay Feedback System as currently implemented
has serious privacy flaws. When sellers leave feedback, buyers’ purchase
histories are exposed through no action of their own. In this paper, we
describe and execute a series of attacks, leveraging the feedback system
to reveal users’ potentially sensitive purchases. As a demonstration, we
collect and identify users who have bought gun-related items and sensi-
tive medical tests. We contrast this information leakage with eBay users’
privacy expectations as measured by an online survey. Finally, we make
recommendations towards better privacy in the eBay feedback system.

1 Introduction

Online commerce has introduced new risks and rewards for consumers. It of-
fers ease and convenience, allowing for in-depth comparison shopping from the
comfort of one’s home computer or mobile device. However, the impersonal and
intangible nature of online transactions gives rise to trust-based issues as well:
how can users know that they will actually receive the goods they bought? Will
the goods arrive intact and in a timely fashion? In response to these issues, online
marketplaces have instituted reputation systems, where parties to the market are
rated based on their behavior in transactions.

eBay is somewhat unique among online marketplaces in that its reputation
system is symmetric: not only can buyers rate sellers, sellers can also provide
feedback on the users who have bought their wares. At first, this seems like a
helpful mechanism; users receive recognition for prompt payment, and a sense of
reciprocity may motivate them to contribute feedback to their seller in return.
This makes the reputation system robust and popular. However, as we will show
in this paper, the current implementation has some serious privacy implications.

In this research, we explore the privacy issues that are byproducts of the
symmetric and public nature of the eBay feedback system. We first describe the
purchase history attack: given a user’s eBay username, we show how to discover
his purchases by correlating his feedback page with the feedback pages of the

E. De Cristofaro and S.J. Murdoch (Eds.): PETS 2014, LNCS 8555, pp. 164–183, 2014.
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sellers with whom he has interacted. If the attacker knows the real identity of
the username in question, this is potentially a serious privacy breach. If he does
not know the identity, we show that the attacker may still be able to link the
username to an online social network and identify the buyer.

We also show how a large set of eBay buyer usernames can be indirectly
obtained from eBay. Given such a large set, an attacker can execute the broad
profiling attack, namely, determine the purchase history for each of the users
in the large set. The attacker can then perform the category attack, namely,
determine a subset of users who have purchased items in a specific sensitive
category, such as gun equipment or medical tests. If the attacker makes the data
from the broad profiling attack publicly available, then a third-party can also
use side information to de-anonymize a specific target user, giving rise to the
side-information attack.

In particular, we make the following contributions:

– Show how it is possible to recover a user’s purchase history given his eBay
username, despite the privacy measures included in the system.

– Describe several attacks compromising the privacy of eBay users. We discuss
three variations: the broad profiling attack, the category attack, and the side-
information attack.

– Provide a landscape of user beliefs and expectations regarding eBay privacy,
based on a survey of nearly 1,000 subjects.

– Recommend several modifications to the feedback system to allow for better
privacy on eBay.

This paper is organized as follows: in Section 2, we introduce the eBay feed-
back system and some preliminaries. In Section 3, we explain how an attacker
can discover the purchase history of a target. In Section 4, we present the broad
profiling attack. In Section 5, we describe the category attack, using purchases of
gun-related items and medical tests as illustrations. We also briefly discuss the
side information attack. Section 6 examines eBay users’ privacy expectations via
a survey. In Section 7, we make recommendations to mitigate the risk of privacy
attacks. Section 8 summarizes related work. Finally, in Section 9, we conclude.

2 Preliminaries

In this paper, we examine the privacy leaks inherent in eBay’s feedback system.
This section describes the eBay feedback system. We also discuss the ethical
considerations involved in this research.

2.1 Description of the eBay Feedback System

Feedback Interface. The eBay feedback page for a given user is accessible
at http://feedback.ebay.com/ws/eBayISAPI.dll? ViewFeedback2&userid=

<username>, where <username> is replaced with the username in question.

http://feedback.ebay.com/ws/eBayISAPI.dll? ViewFeedback2&userid=<username>
http://feedback.ebay.com/ws/eBayISAPI.dll? ViewFeedback2&userid=<username>
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A viewer need not sign in to access a specific user’s feedback page; it is entirely
public. As shown in Figure 1, there are several tabs allowing one to filter the
feedback shown. One may view all feedback, feedback left on purchases, feedback
left on sales, or feedback left for others by the user.

Of particular interest to our work is the tab entitled “Feedback as a Buyer”.
This tab displays the feedback left by all sellers from whom the user has made
a purchase. Each entry includes the feedback rating (uniformly positive, due to
the policies detailed above), the specific feedback message, the seller’s username,
and the date and time when the feedback was left. In order to protect the user’s
privacy, no item description or link to the item page is included on the buyer’s
feedback page.

Another tab, entitled “Feedback Left for Others” displays the feedback that
the user has left for others. When the user in question is a seller, this primarily
contains the feedback he or she has left for customers. Each record includes the
item description, a link to the item page, the feedback left, and a pseudonym for
the user. The user’s actual username is not included.

It is especially important to note that the item’s link can posted even when
the buyer does not leave any feedback for the transaction. If the seller leaves
feedback (which is estimated to happen in 60-78% of transactions, see Section
8), then the purchase effectively becomes public through no action of the buyer,
as we will show.

Public Feedback as a Default. As just described, an eBay user’s feedback
profile contains a list of the feedback he has given and received. Generally, the
comments are public. However, if a user chooses to have a private profile, only
his aggregate feedback score is visible; no individual feedback records are shown.
eBay states the following regarding feedback profiles1:

Feedback Profiles are public by default. Members have the option of
making their Feedback Profiles private. However, it’s important to re-
member that keeping your profile public builds trust by letting potential
trading partners see what others have said about you.
When you choose the “private” setting for your Feedback Profile:

– You can’t sell items on eBay.
– Only the Feedback comments are hidden from other members. Your

Feedback Score - the number of positive, neutral, and negative Feed-
back ratings you’ve received - is still public.

Private Listings. Though sellers cannot hide their own feedback history,
they can provide additional privacy to buyers by creating a listing with private
feedback. Feedback on such a listing will be visible on the seller’s and buyer’s feed-
back page, but no description or link will be attached to the feedback.Additionally,
the bidding history for a private auction is hidden. In all otherways, such as product
search and sale procedure, the listing follows standard procedure.

1 http://pages.ebay.com/help/feedback/profile-public-private.html

http://pages.ebay.com/help/feedback/profile-public-private.html
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(a) Buyer Feedback

(b) Seller Feedback

Fig. 1. Condensed versions of the buyer and seller feedback pages. We have removed
the buyer’s username and profile picture from the buyer’s profile.
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Interestingly, eBay advocates limited use of this feature2:

While there are some cases where private listings are appropriate, such as
the sale of high-priced ticket items or approved pharmaceutical products,
you should only make your listing private if you have a specific reason.

Sellers Leaving Feedback for Buyers. In the current system, sellers can only
leave positive feedback scores for buyers; complaints against buyers are routed
through the eBay customer service system instead of being reflected in their
feedback. eBay also has additional measures in place to ensure that buyers do
not abuse their feedback privileges.3

2.2 Ethical Considerations

To implement this research, we built crawlers that visited public eBay feedback
pages and downloaded their contents. We then automated content extraction
and storage via a customized parser to build inferences from the data.

Performing real-life research in online privacy can be ethically sensitive. Two
stakeholders must be considered: the online service provider and the user. While
crawling data from online service providers imposes a load upon their servers,
we attempted to minimize the load by using a single process to sequentially
download pages. Regarding the user, we point out that any inferences we made
were based on publicly available data; however, we have taken steps to store our
data in a secure manner.

Moreover, this research benefits the eBay ecosystem by encouraging more
private methods of displaying feedback. Users benefit from increased privacy
measures, and eBay may benefit since users are more likely to buy from online
retailers who visibly promote privacy, as shown by Tsai et al. [28].

3 Recovering Purchase History

In this section, we detail the purchase history attack, namely, how an attacker
can recover the purchase history of a target when given the target’s username.

At first glance, it does not seem possible to recover a user’s purchase history
from the feedback pages. Indeed, on the buyer’s page, the items that the buyer
bought are not listed; on the seller’s page, although the items sold are listed,
the buyers of the items are not provided. However, we show that a buyer’s
purchase history can be determined by exploiting the timestamp information on
the feedback pages.

Each feedback record is displayed with a timestamp, both on the seller’s page
and the buyer’s page. This allows for linking of feedback records from a seller’s
account to a buyer’s account through the following process:

2 http://pages.ebay.com/help/sell/private.html
3 http://pages.ebay.com/services/forum/sellerprotection.html

http://pages.ebay.com/help/sell/private.html
http://pages.ebay.com/services/forum/sellerprotection.html
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1. Retrieve the user’s feedback page.
2. Extract the seller’s name and the timestamp for each feedback entry.
3. For each feedback entry, visit the seller’s page. Then search among the feed-

back listings for feedback with an identical timestamp. Retrieve the item
link and description.

4. Output the list of the user’s sale records.

However, in some cases a seller may have left feedback for more than one
purchase simultaneously (perhaps through an automated system). Thus, relying
solely on the timestamp may introduce false records into the target’s purchase
history. To study this issue, we examined 5,580 randomly chosen purchases. We
found that 49% of the timestamps on buyers’ pages matched with only one dis-
tinct listing from the seller’s feedback page. On average, each buyer feedback
record matched the timestamps of 6.5 records from the seller’s feedback; the
median was 2 matches. In one specific case, the timestamp on one buyer’s cor-
responded to as many as 279 feedback records from the seller in question. (The
buyer in this case had made several purchases from a seller who used an auto-
mated system to post large batches of feedback.) To resolve this ambiguity that
occurs in approximately half of the transactions, we extend the above attack by
leveraging the pseudonyms included in the seller’s feedback page.

While the seller’s feedback page uses only a pseudonym to identify the buy-
ers, each user’s pseudonym remains consistent across the site. eBay assigns
pseudonyms according to a specific algorithm: randomly select two character’s
from the user’s real username and insert three asterisks in between them to form
the pseudonym4. This allows an attacker to definitively rule out any pseudonyms
that could not be generated by a specific username. For example, if the targeted
user goes by the user ID “catlady24”, then the pseudonym “u***v” cannot cor-
respond to that user.

The number of possible pseudonyms per username is bounded by n(n − 1),
where n is the length of the username. As such, the pseudonym is not random,
but is rather chosen from a relatively small space of potential pseudonyms.

Based on this additional data, we modify the above process for purchase
recovery for a given user to reduce false associations:

1. Retrieve the user’s feedback page.
2. Extract the seller’s name and the timestamp for each feedback entry.
3. For each feedback entry, visit the seller’s page. Then search among the feed-

back listings for feedback with an identical timestamp. Retrieve the item
link and description.

4. When all the purchases are retrieved, remove all feedback entries which have
pseudonyms that could not be generated by the username.

By utilizing the pseudonym as a heuristic to rule out listings with invalid
pseudonyms, we were able to reduce the number of potential matches in our

4 http://community.ebay.com/t5/Bidding/Bid-History-Changes-including-a-

b-userIDs/m-p/2443087#M26865

http://community.ebay.com/t5/Bidding/Bid-History-Changes-including-a-b-userIDs/m-p/2443087#M26865
http://community.ebay.com/t5/Bidding/Bid-History-Changes-including-a-b-userIDs/m-p/2443087#M26865
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sample database by roughly 70%. However, after filtering by timestamp and
invalid pseudonyms, there were still false matches remaining in the database,
with an average of 1.9 potential matches for each listing in a buyer’s feedback. To
reduce the number of false matches, we leverage the fact that a user’s pseudonym
is consistent across the feedback system. Since each user has only one actual
pseudonym in the system, we attempt to find this pseudonym and thus eliminate
any potential matches using other pseudonyms. In our sample database, 73% of
users had more than one potential pseudonym remaining at this point in the
process. We aim to resolve this ambiguity with the following steps:

5. If more than one pseudonym remains among the buyer’s matched records:

(a) Conduct a vote where each seller nominates the pseudonym that domi-
nates its corresponding records for the user.

(b) Select as the correct pseudonym the one which has the most votes.

(c) Eliminate all records which use a different pseudonym

6. Output the list of the user’s sale records.

Through the steps above, it is possible to recover both a user’s purchase
history and their pseudonym, given their real username. Not only does this
allow one to see the user’s past purchase behavior, it makes it easier to monitor
future behavior since the attacker has learned the user’s persistent pseudonym.

Fig. 2. The distribution of matches found per buyer feedback listing when using the
different filtering methods. The precision of the matches increases considerably with
the more advanced filtering methods.

When testing the database of 5,580 feedback records, extending the tech-
nique with pseudonym information enabled us to match 96% of buyers’ feedback
records to a single seller feedback record complete with purchase details. Like-
wise, we were able to learn a single persistent pseudonym for 96% of the sampled
users. Figure 2 shows the how the modifications to the filtering method reduce
the number of matches found per purchase.
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4 Broad Purchase Profiling

To further illustrate the privacy leakage potential of the eBay feedback system,
we introduce a broad purchase profiling attack where we find users on eBay and
associate their purchase history with a real name drawn from Facebook.

4.1 Motivation

The ability to collect widespread eBay purchase data and associate it to real
people is of use to several actors. Advertisers and content publishers would like to
collect user purchasing behavior in order to present targeted ads, and marketers
would like to analyze which purchases are bought together in order to aim their
products at specific segments. Additionally, companies providing background
checks for employers or insurance companies may want to include purchasing
behavior in their classification methods. Finally, malicious parties may want
to build detailed dossiers on eBay users in order to enable sophisticated spear
phishing attempts.

In each of these cases, eBay feedback information can be utilized to engineer
a privacy breach by inferring potentially sensitive facts about users which were
not previously known. The association of these records to real people constitutes
a privacy liability.

4.2 Execution

Given a list of eBay user IDs, we detail how to infer the name and purchase
history of each user. Here, we make the assumption that the attacker has access
to a substantial amount of computing and bandwidth resources. Also, when
crawling eBay, we assume the attacker is clever enough to introduce sufficient
delays between queries so that eBay does not block his requests; to expedite the
attack, he may also use multiple IP addresses.

The first step of the attack involves identification of users’ real names. To
accomplish this, we leveraged the Facebook Graph API5, a tool for building
applications integrated with the Facebook social graph. (Using the Graph API
via a browser does not require a developer account; however, integrating it into
an automated crawler program requires developer and app tokens, which can
be accessed for free after a short sign-up procedure requiring only a Facebook
account.)

To test each eBay username for a match, we sent an HTTP request to
http://graph.facebook.com/<username>, where <username> was replaced
with the eBay username in question. If a match was found, then a response
(pictured in Figure 3) was received, detailing the matched account’s name, gen-
der, locale, a unique numerical Facebook ID, and (in most cases) a link to their
profile.

5 http://developers.facebook.com/docs/reference/api/

http://developers.facebook.com/docs/reference/api/
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This produced a list of eBay user IDs and corresponding potential real names.
To recover the users’ feedback history, we followed the process in Section 3,
but with a slight modification to reduce the network and processing overhead.
Instead of individually retrieving the sellers on a buyer-by-buyer basis, and thus
perhaps retrieving duplicate pages, each buyer page was parsed to compile a
comprehensive list of all sellers who had engaged with our list of buyers. We
then downloaded each seller’s page once and proceeded with the above methods
of matching purchase histories to users.

Fig. 3. A sample response from the Facebook Graph tool. Note that the tool per-
forms some simple string-matching to match the term “johnsmith” with the account
“John.Smith”.

4.3 Results

We began with a list of 130,991 usernames. In order to limit the extent of our
crawling, we first attempted to match the usernames to Facebook accounts and
names before proceeding with purchase profiling. 22,478 matches were found, for
a match rate of 17.2% (see Table 1). It is important to note that this method does
not conclusively match accounts. For example, the accounts using a common
name such as “bob123” on Facebook and eBay may very well belong to two
different people [22]. As such, the match rate of 17.2% should be considered an
upper bound which includes some false positives.

The 22,478 usernames were then used to recover their recent purchase his-
tory. In total, this produced a list of 414,483 purchases, for an average of ap-
proximately 18 purchases per customer. Matching the information from user
feedback with seller feedback provided item descriptions and links, based on the
timestamp and pseudonym information.

In summary, we were able to match 17% of 130,991 users with a potential
real name on Facebook. For the matched users, we discovered on average 18
purchases per person, complete with purchase description.
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Table 1. The number of user IDs, Facebook names matched, and the match rate for
each experiment

Case Study List of User IDs Names Found Match Rate

Broad user profiling 130,991 22,478 17.2%
Gun accessories 228,332 35,262 15.4%
Pregnancy tests 27,261 4,694 17.2%
H.I.V. tests 221 37 16.7%

4.4 Collecting Usernames

The above method assumes that the attacker has access to a large set of eBay
usernames. An attacker can obtain a list of eBay usernames through several
avenues:

– eBay social features: eBay provides a feature where buyers
can follow sellers. Each seller’s list of followers is publicly ac-
cessible at http://www.ebay.com/usr/<sellername>/followers, where
<sellername> is replaced with the seller’s user ID. The buyer IDs are pro-
vided in cleartext. This enables an attacker to crawl buyers’ user IDs by
iteratively visiting a seller page to collect followers and then collecting more
sellers from each of the follower’s feedback pages.

– Seller’s names: eBay users can both buy and sell; many eBay users engage
in both activities. It is possible to discover eBay sellers via the search inter-
face. By searching for many items, one can thus compile an extensive list of
eBay sellers and then determine their purchase histories. As we show via a
survey in Section 6, 60% of eBay users have sold at least one item; therefore,
this approach can expose many usernames.

– Username reuse: the attacker can use a list of usernames that are publicly
available on some other service (such as Twitter or Facebook6). By using the
feedback interface as an oracle, the attacker can determine if the usernames
are in use at eBay as well.

– Social engineering: the attacker can sell popular items on eBay to collect
eBay usernames (since sellers can view the usernames of users who purchased
from them).

– Brute force: the attacker can generate potential usernames and use the
feedback interface as an oracle to determine if the usernames are in use.

5 Category and Side Information Attack

Beyond exposing the feedback history of many users, the feedback history can
also be exploited to generate a list of users who have engaged in specific, poten-
tially sensitive categories of transactions. In this section, we elaborate an attack

6 http://www.facebook.com/directory/

http://www.ebay.com/usr/<sellername>/followers
http://www.facebook.com/directory/
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to reveal users who have bought specific items from eBay. This more vividly
demonstrates the privacy risks embodied in the eBay feedback system.

This method can be accomplished using the basic techniques laid out in Sec-
tion 4. Here, we introduce some modifications to streamline the attack further.
Using the eBay search interface, it is possible to perform keyword search for
completed sales of a specific item. This provides a list of sellers who sell the
merchandise in question. This list allows the attacker to reduce the network
overhead of his attack; instead of attempting to discover the purchase history of
all the user IDs in his database, he can restrict his search to the users who have
interacted with the sellers who sell this item. The process would be as follows:

1. Using eBay’s keyword search, curate a list of sellers who have sold the item
in question.

2. For each buyer in the database, download their feedback page.
3. For each buyer’s feedback, discard any feedback not related to a seller on

the list.
4. For the remaining records, recover the purchase history as detailed in Section

3.

We now introduce a few case studies that are enabled by this approach.

5.1 eBay Gun Registry

Gun control and ownership in the United States is a highly charged topic, as
illustrated by the public uproar in December 2012 when a newspaper in Westch-
ester County, NY published a list of local gunowners and their addresses [30].
Readers and residents considered this to be a massive privacy breach and the
paper later removed the list [11].

Crawling eBay to find gun owners could be of interest to several parties.
Firstly, law enforcement or private investigators may want to search for unreg-
istered gun owners. Secondly, background check providers or data aggregators
may want to include gun ownership in their records. In certain municipalities,
a list of registered gun owners in a county can be accessed by filing a Freedom
of Information request; however, the approach described here has several advan-
tages. Firstly, it leaves no legal trail, a fact which may be appealing to actors
(both criminal and innocent) operating outside of the legal framework. Secondly,
it can help to uncover unregistered gun owners who have purchased gun supplies
or accessories online. Thirdly, since guns are generally registered at the local
level, compiling an extensive list would require many FOIA requests to different
authorities; this approach is not subject to such limitations.

We began our data collection of eBay users by searching eBay for purveyors
of gun accessories. (Actual firearms are not sold on eBay, so we use purchase of
firearm accessories, such as holsters, as a proxy for gun ownership.) A search of
“gun holster” on eBay’s web site enabled us to curate a list of 11 sellers who sell
firearm accessories at high volume.

Using a second external list of usernames, we narrowed down the users to those
who had interacted with the identified gun-accessory sellers. For each matched
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purchase, a simple text-based classifier was applied to ascertain that the purchase
was gun-related. Afterwards, we used Facebook’s Graph tool to find potential
names for each buyer.

Based on a list of 11 firearms-accessory sellers, we found records of 292,827
gun accessory purchases, made by 228,332 unique buyers. After matching for
names on Facebook, we had names and sale records for 35,262 suspected gun
owners.

5.2 Medical Test Purchases

In this second case study, we present an attack against users who have purchased
sensitive medical tests, namely pregnancy or fertility tests and H.I.V. tests.

As a health-related issue, pregnancy is a private concern for many people.
Pregnant women may wish to keep their reproductive status secret for a variety
of reasons: they may be concerned about the pregnancy’s medical viability, afraid
of job discrimination or social stigma, or desirous of quietly ending the pregnancy
without censure. In nearly all cases, expectant parents prefer to have control
over who gains access to their news. This issue was highlighted when the retail
giant Target began to track buyers’ purchases in order to predict pregnancy
among buyers (and subsequently advertise to them); buyers were unsettled by
the fact that a retail store had estimated their due date even before they had
told their parents [8]. Pregnancy is clearly private information, and people who
are pregnant or trying to conceive deserve privacy for related purchases.

Even more private is H.I.V.-positive status. People with H.I.V. may find them-
selves subject to discrimination in a number of ways due to social stigma related
both to the disease itself and its associated risk factors. As such, it is of prime im-
portance that purchases related to H.I.V. testing remain hidden from the public
eye.

These attacks were executed in the same manner as the gun registry attack.
Specifically, we collected a list of eBay accounts that sell tests for these medical
conditions and then matched them against a list of users’ feedback pages to find
users who had bought these items. Having found eBay usernames, we then fed
these identifiers to the Graph API to find matching Facebook accounts and real
names.

After building a list of pregnancy test sellers, comparing with a list of user-
names and feedback, and filtering out non-fertility-related purchases, we had
collected a list of 27,261 unique eBay users that purchased fertility-related
tests. (We use this term to include ovulation tests, pregnancy tests, and gender-
prediction tests.) Of these users, we found 4,694 matching Facebook accounts
for a matching rate of 17.2%. This supplied us with a list of nearly 5,000 real
names for potentially pregnant people.

The number of users returned for the targeted pregnancy test crawl was much
smaller than the number returned for the gun crawl. This can be explained by
the observation that, as of the the time of writing, there are more than 15 as
many listings on eBay for the search “gun holster” than for the search term
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“pregnancy test.” This indicates a a greater market for gun accessories than for
medical tests on eBay, enabling a larger-scale crawl for gun-related purchases.

The crawl for buyers of H.I.V. test yielded much more meager results, for
a number of reasons. Firstly, H.I.V. is a much rarer condition than pregnancy,
and therefore is not as commonly tested. Secondly, H.I.V. tests are significantly
more expensive than pregnancy tests and therefore less likely to be bought often.
Thirdly, H.I.V. tests are commonly administered in a medical setting, not at
home (unlike pregnancy tests). Fourthly, many sellers of H.I.V. tests had taken
precautions to keep the listings private.

Nonetheless, an extensive crawl did discover 221 unique users who had pur-
chased H.I.V. tests online. 37 of these users were matched to accounts and names
on Facebook. Of the matched users with a specified gender, 28% were female and
72% were male; this correlates roughly with the general rates of H.I.V. infection
in the USA [4].

5.3 Side Information Attack

We now briefly describe another possible attack, utilizing side information. For
concreteness, we state this problem in terms of employer who is suspicious of
his employee with regard to health, interests, or other sensitive information that
could be revealed in eBay purchase data. The employer knows that his employee
uses eBay, but he does not know his employee’s eBay user name. Finally, suppose
he has some side information; namely, that his employee made a specific purchase
on a specific day.

Now assume that an attacker has carried out the broad profiling attack on
a set of users containing the employee and makes the corresponding database
publicly available on a website.

For each piece of side-channel purchase data that the boss knows about his
employee, he can narrow down the set of prospective matches. Intuitively, the
more side information he has, the smaller the set of candidate matches will
become. Once he has a small enough set of candidate matches, he can then
attempt to pinpoint a specific username as corresponding to his target. This
enables him to learn the entire purchase history of his target, and it also makes
it easy for him to continue monitoring any future eBay purchases made by the
employee.

6 User Expectations for Privacy on eBay

Are users aware of the eBay feedback policies, and how accessible do they expect
their purchase data to be? We conducted a survey of eBay users on Amazon
Mechanical Turk7, a crowdsourcing microtask market, to answer these questions.
To maintain a uniform high quality of responses, we followed the guidelines
established by Kelley and Patrick [14] while designing our survey to make sure
that users stayed engaged, attentive, and honest.

7 http://www.mturk.com

http://www.mturk.com


I Know What You’re Buying: Privacy Breaches on eBay 177

6.1 Survey Design

Our questions were designed to answer a few specific questions about eBay users’
expectation and behavior.

– Are usernames considered private information by users?
– Is eBay a place where people purchase sensitive items?
– Whom do users expect to be able to see their purchase history?

We limited participation in our study to US-based Mechanical Turk workers.
We screened subjects to make sure they were actually users of eBay. We also
incorporated demographic questions. Each worker was paid $0.25 for a multiple-
choice survey that took 3 or 4 minutes to complete.

6.2 Survey Results

We gathered 1114 responses from Mechanical Turk. After removing “click spam”
as detected by attention-measuring questions, we had 913 responses. To assess
the representative qualities of our sample, we compared the reported demo-
graphics to those measured by the Google AdWords Display Planner Tool8.
The gender proportions of our sample exactly matched the eBay users mea-
sured by AdWords, and the sample also followed the general age trends reported
by AdWords, albeit with less precision. Some variance may be due to the gen-
erally younger population of Mechanical Turk workers, as measured by Ross
[24]. Overall, the sample proved to be highly representative of the general eBay
population.

Fig. 4. The percentage of users who have bought items from specific categories on eBay

Purchase Behavior on eBay. Do users buy sensitive items on eBay? We asked
our subjects if they had purchased items from several categories, listed in Figure
4. Notably, 10.7% of users answered that they had bought health-related items
on eBay, and 4.3% of users had bought sexual/adult items on eBay.

8 https://adwords.google.com/da/DisplayPlanner/Home

https://adwords.google.com/da/DisplayPlanner/Home
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While we consider health- and adult-related purchases to be uniformly private
information, there may also be sensitive purchases made in other categories. In
order to gain a broader view of how users view eBay, we asked them to answer the
following question: “If I need to buy something sensitive or embarrassing, I would
probably buy it from...” The available answers were “a physical store,” “eBay,”
and “other (please specify).” eBay edged out physical stores as the most likely
place to buy sensitive items. 38.6% of users chose eBay, 35.6% of users chose a
physical store, and 25.8% chose other. From these numbers, it is clear to see that
users see eBay as a leading way to easily and anonymously conduct transactions
that may be embarrassing or sensitive.

Users and Feedback. Do eBay users leave feedback? Do they understand the way
it works? Our survey included a series of questions about usage and perception of
the feedback system. 50.7% of the respondents reported that they leave feedback
all the time, with only 10.7% answering that they never leave feedback. The
remaining respondents have left feedback somewhat often (17.4%) or a few times
(21.1%). Despite their extensive use of the feedback system, users did not seem
to understand the complexities of the system. Only 18% of users correctly agreed
with the statement that “sellers cannot leave negative feedback for buyers on
eBay”. 66.4% disagreed with the statement, and 15.7% were not sure. This is
despite the fact that 63.3% of the users reported that they had sold at least one
item on eBay.

Privacy Expectations. Users understood that feedback was public: 76.6% of users
agreed with the statement that “anyone can see the feedback that sellers leave
on my account.” However, it was unclear to many users just how this related to
their purchase privacy. In answer to the question, “Who can see the purchases
I make on eBay?” the largest portion (38%) of users selected “just me.” Only
8.7% of users selected the most correct answer, “anyone, even if they are not
signed in.” See Figure 5 for a breakdown of their answers.

Fig. 5. Users selected one answer that they believed to best include who could view
their purchases on eBay. The correct answer is highlighted.
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7 Recommendations

In many ways, eBay’s system for buyer reputation seems to be an artifact of an
older era. Since 2008, the feedback system on eBay allows sellers to leave only
positive feedback for buyers. As such, a buyer’s feedback score reflects merely
the quantity, not the quality, of his transactions.

Additionally, buyers’ reputations matter less to the success of the eBay mar-
ketplace than those of sellers. In contrast to sellers, who can easily defraud
consumers by failing to ship or shipping incorrect items, buyers have a much
more limited scope of possible fraud. While a buyer might fail to pay, eBay pol-
icy advises sellers not to ship their wares until buyers have paid. Additionally,
there are internal methods by which sellers can report fraudulent buyers.

Allowing sellers to leave feedback about buyers may benefit the eBay mar-
ketplace by encouraging buyers to then reciprocate with feedback about the
buyers. Moreover, since feedback from purchases counts towards the user’s gen-
eral feedback score, it may give experienced eBay shoppers an advantage when
they first begin to sell goods on eBay. However, it is unclear why feedback left
by sellers for buyers should be made public. Since the feedback is uniformly pos-
itive, it does not offer helpful guidance for future transactions. Considering the
privacy leakage which public buyer reputations enable, we make the following
recommendations:

– Recommendations to eBay: We recommend that the Private Listing op-
tion should become the default listing method. This removes any visible
link between the buyers and sellers. Alternatively, we propose that eBay use
a non-persistent pseudonym for buyers on the sellers’ feedback pages; this
would make it harder to link feedback. Additionally, the timestamp of the
feedback left could be generalized (for example, by displaying only the date)
in order to make linkage attacks more difficult.

– Recommendations to buyers:
Buyers on eBay can make their feedback profile private by changing a setting
in their Feedback Forums page9. However, accounts with private feedback
profiles cannot be used for selling. We therefore recommend that eBay users
maintain two separate accounts, a private profile for buying and a public
account for selling. (However, this does not obviate the need for an eBay
policy change, since it prevents a user’s selling account from reaping the
benefits of the positive feedback he has earned as a buyer on eBay.)
We also recommend that users avoid reusing usernames across different web-
sites in order to retain stronger pseudonymity.

– Recommendations to sellers: eBay offers a selling option called a Private
Listing10 which operates exactly like a regular listing while keeping all buyer
information anonymous. This is a way for sellers to offer their buyers all
buying benefits while retaining privacy. Other users cannot see the list of
bids on the item, and all feedback on the item is anonymous for feedback

9 http://pages.ebay.com/help/feedback/profile-public-private.html
10 http://pages.ebay.com/help/sell/private.html

http://pages.ebay.com/help/feedback/profile-public-private.html
http://pages.ebay.com/help/sell/private.html
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profile views. The listing is included in searches as usual, and it has no extra
fees associated with it.

8 Related Work

Feedback and Reputational Systems. The eBay reputation system has been stud-
ied in depth by the economics and management science communities to assess
the impact of ratings on sale statistics. Lucking-Reiley et al. [17] found that in-
creases in negative ratings were associated with significantly lower selling prices.
While Resnick et al. [23] found that the impact of reputation was inconsistent
across areas, Houser et al. [12] found that better seller reputations tended to
raise prices in auctions.

How widely is the eBay feedback system used? Do buyers and sellers take the
time to submit ratings and comments? Based on a 1999 dataset of more than
30,000 postcard sales, Resnick et al. [23] found that 52.1% of buyers and 60.8%
of sellers left feedback on transactions. In 2008, Dellarocas and Wood [7] found
in a study of over 50,000 rare coins that 78% of sellers and 68% of buyers left
feedback on a purchase. 20% of the auctions in their dataset had feedback from
sellers only, with no feedback from buyers (as opposed to feedback from both,
neither, or only the buyer).

Klein [15] found that buyers’ fear of retaliatory feedback from sellers led them
to leave feedback at the last available moment, and may have even suppressed
feedback rates due to fear of retaliation. Chwelos and Dehar [5] found that the
two-way nature of the system, where sellers and buyers rate one another, has
a dual effect: it encourages buyers to leave more feedback, but it also inflates
positive feedback. Klein et al. [16] suggest that removing the ratings of buyers
would create a less sugar-coated feedback system while introducing little risk,
since there is little need for the seller to trust buyers in any case.

Deanonymization. Robust data anonymization has been a high-profile problem
since 2006, when a woman was identified based on her “de-identified” queries in
the publicly released AOL search logs [3]. External data sources were also used by
Narayanan and Shmatikov [19] to reidentify the anonymous NetFlix dataset with
matching members on IMDB, using only the sparse vector of movies watched
and reviewed. Approaches for deanonymization of social networks are presented
by Backstrom et al. [2], Narayanan and Shmatikov [20], and Wondracek et al.
[29]. Goga et al. [10] correlate user accounts from Twitter, Flickr, and Yelp by
using only temporal, geographic, and language features.

These attacks have given rise to several frameworks with the aim of providing
a more disciplined and guarantee-based approach to data anonymization. These
approaches add anonymity at the expense of specificity; namely, they generalize
the dataset until there are fewer distinctive records. The first of these approaches,
by Sweeney, was k-anonymity [27], which iteratively generalizes information un-
til there are at least k records present in the dataset that match any specific
tuple. More recently, Machanavajjhala et al. [18] proposed l-diversity, which
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extends k-anonymity to disallow uniform generalizations about specific popula-
tions. Finally, differential privacy, by Dwork [9], advocates systematically adding
Laplacian noise to query answers in order to provide numeric privacy guarantees
that can quantify the risk of a privacy breach.

Username Reuse. While users are warned about the dangers of password reuse
across online accounts (see for example Ives et al. [13]), there is little work
discussing the phenomenon of username reuse. Perito et al. [22] research the
entropy of usernames, finding that certain usernames are more unique (and thus
more traceable) than others. Using measures such as Levenshtein Distance and
TF/IDF, they were able to achieve a recall of 71% in matching related usernames.

Privacy-Preserving Reputation Systems. For the most part, reputation systems
have focused on accountability rather than privacy. However, there are cases
where reviewers may wish to hide their identity, both from other users and
from a centralized authority. This has led to the research topic of decentralized
reputation systems [26]. Schemes have been implemented to retain properties
such as security against forged reviews and persistent reputations in the face of
multiple pseudonyms to allow for anonymity [1].

Notably, Pavlov et al. [21] propose a decentralized system allowing for privacy
on the reviewer’s part as well as easy additive aggregation of users’ reputations
from across the decentralized system. This deals with the problem of privacy
from the reviewer’s perspective; however, it does not focus on privacy breaches
from the viewpoint of the party receiving feedback.

Schiffner et al. [25] point out theoretical limits on the utility of any fully private
reputational system. Consequently, in [6], Clauß et al. construct a reputation
system that conforms to the more relaxed privacy definition of k-anonymity.

Our Contributions Existing research has explored the utility of reputation sys-
tems; however, there has not been any in-depth investigation into the privacy
implications of the eBay feedback system. What risks are inherent in its setup,
and how can they be exploited? How does this comply with user expectations
of privacy? In this work, we explore these questions and offer recommendations
based on our findings.

9 Conclusion

This research brings to light several important issues. Firstly, we show how an
attacker can determine a target’s purchases if he knows the target’s eBay user-
name. Though the feedback interface does not explicitly link buyers to purchases,
we leverage feedback timestamps and pseudonym information to infer a list of
purchases made by a user. We present several classes of attacks complete with
case studies to show how serious the breach is. In the feedback history attack, we
show how to recover one user’s history. In the broad profiling attack, we mod-
ify the technique to recover purchase histories of many users. In the category
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attack, we show how to collect a list of users who have bought specific items.
We demonstrate this attack by uncovering buyers of gun accessories, pregnancy
tests, and H.I.V. tests. Subsequently, we examine user expectations of privacy
on eBay and find a serious clash with reality; eBay is much less private than
users believe. Finally, we recommend several techniques to mitigate the privacy
risks of the system.
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Abstract. Mobile users increasingly report their co-locations with other
users, in addition to revealing their locations to online services. For in-
stance, they tag the names of the friends they are with, in the messages
and in the pictures they post on social networking websites. Combined
with (possibly obfuscated) location information, such co-locations can be
used to improve the inference of the users’ locations, thus further threat-
ening their location privacy: as co-location information is taken into ac-
count, not only a user’s reported locations and mobility patterns can be
used to localize her, but also those of her friends (and the friends of their
friends and so on). In this paper, we study this problem by quantifying
the effect of co-location information on location privacy, with respect to
an adversary such as a social network operator that has access to such
information. We formalize the problem and derive an optimal inference
algorithm that incorporates such co-location information, yet at the cost
of high complexity. We propose two polynomial-time approximate infer-
ence algorithms and we extensively evaluate their performance on a real
dataset. Our experimental results show that, even in the case where the
adversary considers co-locations with only a single friend of the targeted
user, the location privacy of the user is decreased by up to 75% in a
typical setting. Even in the case where a user does not disclose any lo-
cation information, her privacy can decrease by up to 16% due to the
information reported by other users.

Keywords: Location privacy, co-location, statistical inference, social
networks.

1 Introduction

Increasingly popular GPS-equipped mobile devices with Internet connectivity
allow users to enjoy a wide range of online location-based services while on the
go. For instance, mobile users can search for nearby points of interest and get
directions, possibly in real time, to their destinations. Location-based services
raise serious privacy concerns as a large amount of personal information can
be inferred from a user’s whereabouts. The research community has extensively
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(a) (b)

Fig. 1. Examples showing how co-location information can be detrimental to privacy.
(a) A user reports being in a given area, and a second user reports being in another
(overlapping) area and that she is co-located with the first user. By combining these
pieces of information, an adversary can deduce that both users are located in the
intersection of the two areas, thus narrowing down the set of possible locations for both
of them. (b) Two users (initially apart from each other, at 10am) declare their exact
individual location. Later (at 11am), they meet and report their co-location without
mentioning where they are. By combining these pieces of information, the adversary
can infer that they are at a place that is reachable from both of the initially reported
locations in the amount of time elapsed between the two reports.

studied the problem of location privacy; more specifically, location-privacy pro-
tection mechanisms (so-called LPPMs), that can anonymize and obfuscate the
users’ locations before sending them to online location-based services, have been
proposed [16]. In addition, formal frameworks to quantify location privacy in
the case where users disclose their (possibly obfuscated) locations have been
proposed [19, 20]. In such frameworks, the mobility profiles of the users play an
important role in the inference of the users’ locations, namely in a localization
attack.

In parallel, social networks have become immensely popular. Every day, mil-
lions of users post information, including their locations, about themselves, but
also about their friends. An emerging trend, which is the focus of this paper, is to
report co-locations with other users on social networks, e.g., by tagging friends
on pictures they upload or in the messages they post. Our preliminary survey
involving 132 Foursquare users, recruited through Amazon Mechanical Turk,
reveals that 55.3% of the participants do report co-locations in their check-ins
and that for the users who do so, on average, 2.84%±0.06 of their check-ins do
contain co-location information. In fact, co-location information can be obtained
in many different ways, such as automatic face recognition on pictures (which
can contain the time and location at which the picture was taken in their EXIF
data), Bluetooth-enabled device sniffing and reporting neighboring devices. Sim-
ilarly, users who connect from the same IP address are likely to be attached to
the same Internet access point, thus providing evidence of their co-location.

Attacks exploiting both location and co-location information (as mentioned
in [22]) can be quite powerful, as we show in this paper. Figure 1 depicts and
describes two example situations in which co-location can improve the perfor-
mance of a localization attack, thus degrading the location-privacy of the users
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involved. At the same time, it is clear that the proper exploitation of such in-
formation by an attacker can be complex because he has to consider jointly the
(co-)location information collected about a potentially large number of users.

This family of attacks and their complexity is precisely the focus of this pa-
per. More specifically, we make the following three contributions. (1) We identify
and formalize the localization problem with co-location information, we propose
an optimal inference algorithm and analyze its complexity. We show that, in
practice, the optimal inference algorithm is intractable due to the explosion of
the state space size. (2) We describe how an attacker can drastically reduce the
computational complexity of the attack by means of well-chosen approximations.
We present two polynomial-time heuristics, the first being based on a limited set
of considered users and the second relying on an independence approximation.
(3) We extensively evaluate and compare the performance of these two heuris-
tics in different scenarios, with different settings, based on a mobility dataset.
Our experimental results show that, even in the case where the adversary con-
siders co-locations with only a single friend of the targeted user, the median
location privacy of the user is decreased by up to 75% in a typical setting. Even
in the case where a user does not disclose any location information, her privacy
can decrease by up to 16% due to the information reported by other users. A
paramount finding of our work is that users partially lose control over their lo-
cation privacy as co-locations and individual location information disclosed by
other users substantially affect their own location privacy. To the best of our
knowledge, this is the first work to quantify the effects of co-location informa-
tion, that stems from social relationships, on location privacy; thus making a
connection between privacy implications of social networks and location privacy.

The remainder of the paper is organized as follows. In Section 2, we define and
formalize the system model. In Section 3, we present the optimal localization
attack for N users and assess its complexity. In Section 4, we show how this
complexity can be reduced by means of approximations. In Section 5, we report
on the experimental evaluation of the localization attack with co-locations. In
Section 6, we survey the related work. In Section 7, we conclude the paper and
suggest directions for the future work.

2 System Model and Formalization

We consider a set of mobile users who move in a given geographical area. While
on the go, users make use of some online services to which they communicate
potentially obfuscated location (i.e., where they are) and accurate co-location
information (i.e., who they are with). We consider that a curious service provider
(referred to as the adversary) wants to infer the location of the users from this
information, hence tracking them over time. In order to carry out the inference
attack, based on which the location privacy of the users is evaluated, the adver-
sary would model the users as described below. Our model is built upon [20] and
uses similar notations. Figure 2 gives an overview of the considered scenario.
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Fig. 2. Scenario of (co-)location exposure. Three users move in a given geographical
area. They communicate their potentially obfuscated locations and accurate co-location
information to a service provider (i.e., the adversary) who wants to infer their locations.

2.1 Users

We consider a set U = {u1, . . . , uN} of N mobile users who move within a
given geographical area that is partitioned into M regions (locations) R =
{R1, . . . , RM}. Time is discrete and we consider the state of the system (in-
cluding the locations of the users) at the successive time instants {1, . . . , T }.
The region in which a user u ∈ U is at time instant t ∈ {1, . . . , T } is called the
actual location of the user and is denoted by au(t). The mobility of the users is
modeled by a first order time-homogeneous Markov chain. We denote by pu(ρ, r)
the probability that user u moves from region ρ to region r during one time in-
stant, and by πu(r) the probability that user u is in region r at time t (i.e., the
stationary distribution of pu). We call a co-location the fact that two users are
at the same location at some point in time. The fact that users u and v are
co-located at time t means that au(t) = av(t); we denote by u ↔t v the fact
that a co-location between users u and v at time t is reported, and we denote by
cu(t) the set of all reported co-locations that involve user u at time t. We define
Ct =

⋃
u∈U cu(t) and C =

⋃
t=1..T Ct.

2.2 Location-Privacy Protection Mechanisms

In order to protect their privacy, users rely on location-privacy protection mech-
anisms (LPPM) for obfuscating their individual location information before they
communicate it to an online service provider. We denote by u@t r

′ the fact that
user u reports being at location r′ at time t to the online service. The online service
observes only the obfuscated location of the users, which we denote by ou(t) for a
user u at time t.We denote byR′ the set of obfuscated locations; typicallyR′ is the
power set ofR, as LPPMs can return a set of locations instead of a single one. Typ-
ical LPPMs replace the actual location of a user with another location (i.e., adding
noise to the actual location) ormerge several regions (i.e., reducing the granularity
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of the reported location). We model an LPPM by a function that maps a user’s ac-
tual location to a random variable that takes values inR′, that is, the user’s obfus-
cated location. Thismeans that the locations of a user at different time instants are
obfuscated independently from each other and from those of other users. Formally,
an LPPM is defined by the function fu(r, r

′) which denotes the probability that
the LPPM used by u obfuscates location r to r′, i.e., Pr (ou(t) = r′ | au(t) = r).
Let alone the co-location information, our model corresponds to a hidden Markov
model (HMM) [1]. We assume that co-location information is not obfuscated and
users do not rely on pseudonyms.1 We denote by o(t) the vector of the observed
locations of all the users at time t. More generally, we use bold notations to denote
a vector of values of all users.

2.3 Adversary

The adversary, typically an online service provider (or an external observer who
has access to this information, e.g., another user of the social network), has ac-
cess to the observed locations and co-locations of one or several users and seeks
to locate users, at a given time instant, namely carry out a localization attack.
Because the locations of the users are not independent, given the co-location in-
formation, when attacking the location of a given user, the adversary takes into
account information potentially about all the users. The attack is performed a
posteriori, meaning that the adversary has access to the observed traces over
the complete period, namely {o(t)}t=1..T and C, at the time of the attack. In
addition to the observations during the time period of interest (i.e., {1, . . . , T }),
the adversary has access to some of the users’ past location traces, from which
he builds individual mobility profiles for these users, under the form of transition
probabilities {pu}u∈U . See [20] for more details about the knowledge construc-
tion, in particular on how the mobility profiles can be built from obfuscated
traces with missing locations. The mobility profiles constitute, together with the
knowledge of the LPPMs used by the users (including their parameters), the
adversary’s background knowledge K = {pu, fu}u∈U .

The output of a localization attack that targets a user u at a time instant t,
is a posterior probability distribution over the set R of locations.

hu
t (r) � Pr (au(t) = r | {o(t)}t=1..T , C,K) . (1)

2.4 Location Privacy Metric

The location privacy LPu(t) of a user u at time t, with respect to a given ad-
versary, is captured by the expected error of the adversary when performing a
localization attack [20]. Given the output hu

t (·) of the localization attack, the
location privacy writes:

LPu(t) �
∑
r∈R

hu
t (r) · d(r, au(t)) , (2)

1 Note that even if pseudonyms are used, the identity of the users can be inferred by
using their social network [18] or their locations [20].
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where d(· , ·) denotes a distance function on the set R of regions, typically the
Haversine distance between the centers of the two regions.

3 Optimal Localization Attack

Without co-location information (as in [20]) and under the assumptions de-
scribed in the previous section, the localization problem translates to solving a
HMM inference problem, for which the forward-backward algorithm is a known
solution. Essentially, the forward-backward algorithm defines forward and back-
ward variables that take into account the observations before and after time
t, respectively. The forward variable is the joint probability of location of user
at time t and all the observations up to, and including, time t. The backward
variable is the conditional probability of all observations after time t, given the
actual location of user at that time instant. Then, the posterior probability dis-
tribution of the possible locations for the targeted user is obtained by combining
(i.e., multiplying and normalizing) the forward and backward variables. With
co-location information, the locations of the users are not mutually independent:
as soon as two users are co-located at some point in time t, their locations, be-
fore and after time t, become dependent. Actually, the fact that two users meet
a same third user (even if they meet her at different time instants) suffices to
create some dependencies between their locations; this means that, to perform
the localization attack on a user, the adversary must take into account the loca-
tions (i.e., the obfuscated location information and the co-location information)
of all the users who are connected to u by a chain of co-location (i.e., the con-
nected component of u in the co-location graph). Formally speaking, it means
that the adversary cannot rely only on the marginal distributions of the users’
location; instead he must consider the joint distributions. In other words, co-
locations turn N disjoint inference problems (i.e., HMM problems solved by the
forward-backward algorithm) into a joint inference problem.

To solve the localization problem, we consider the users jointly; we show
that it translates to an HMM problem that we solve using a forward-backward
algorithm. For a set U of users and a time t, we define the following forward and
backward variables:

αU
t (r) � Pr (o(1) . . . ,o(t), C1, . . . , Ct, a(t) = r | K) (3)

βU
t (r) � Pr (o(t+ 1) . . . ,o(T ), Ct+1, . . . , CT | a(t) = r,K) , (4)

where r denotes a vector of size N ,i.e., r ∈ RN , and represents the actual
locations of all users at a single time instant. These variables can be defined
recursively (over t) and, unlike in the case where no co-location observations are
available, their expressions involve the co-location information. More specifically,
it can be proved that for all r ∈ RN , we have2

2 For the sake of simplicity and clarity, we define the variables at t = 0 even though
no observations are made at this time instant.
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αU
t (r) =

⎧⎪⎨⎪⎩
πU (r) if t = 0

1t(r, C)∑
C′ 1t(r, C′)

· fU (r,o(t))
∑

ρ∈RN

αU
t−1(ρ) · pU (ρ, r) if t > 0 (5)

and

βU
t (r) =

⎧⎪⎨⎪⎩
∑

ρ∈RN

1t(ρ, C)∑
C′ 1t(ρ, C′)

· βU
t+1(ρ) · pU (r,ρ) · fU (ρ,o(t+ 1)) if t < T

1 if t = T

(6)

where for r = (r1, . . . , rN ) ∈ RN, ρ = (ρ1, . . . , ρN ) ∈ RN, r′=(r′1, . . . , r
′
N ) ∈ R′N,

πU (r) =
∏N

i=1 πui(ri), fU (r, r′) =
∏N

i=1 fui (ri, r
′
i) , pU (ρ, r) =

∏N
i=1 pui(ρi, ri),

and 1(· , ·) is the indicator function that returns 1 if the locations of the users are
consistent with the co-location information reported at time t, and 0 otherwise.
That is, formally,

1t(r, C) =

{
1 if ∀(ui ↔t uj) ∈ Ct, ri = rj

0 otherwise
. (7)

In other words, the indicator function captures whether the users for which a
co-location was reported are indeed at the same locations in r. As the adversary
has no knowledge about the way co-locations are reported, the distribution of the
sets of reported co-locations, given the actual locations of the users, is modeled
with a uniform distribution.

The intuition behind Equation (5) is that the forward variable at time t can
be expressed recursively, with respect to time, by combining, for all possible
locations of the users at time t − 1: (1) the joint probability that the users
were at location ρ at time t− 1 and reported the obfuscated locations observed
by the adversary up to time t − 1 (this is captured by αU

t−1), (2) the joint
probability that the users move from the locations ρ to the locations r (this is
captured by pU), (3) the joint probability that the users obfuscate their locations
r to that observed by the adversary o(t) (this is captured by fU) and that the
locations r of the users are consistent with the co-locations reported at time t.
Because users obfuscate their locations independently from each other, the joint
obfuscation probability is the product of the individual obfuscation probabilities
(hence the expression of fU ). The same applies to pU . The same intuition lies
behind Equation (6).

The indicator function 1t(· , ·) accounts for the co-location information in
the localization attack by ruling out the impossible (i.e., inconsistent with the
reported co-locations) user locations, hence further narrowing down the set of
possible locations for the users involved in a co-location. Schematically speaking
(with a deterministic vision, for the sake of clarity), the set of possible locations
for a user ui (at time t), co-located with a user uj , consists of the locations that
can be obfuscated into the location reported by ui at time t and that can be
reached (according to ui’s mobility profile) from a possible location of ui at time



Quantifying the Effect of Co-location Information on Location Privacy 191

t− 1 and that can be obfuscated into the location reported by uj at time t and
that can be reached (according to uj’s mobility profile) from a possible location
of uj at time t− 1.

Finally, the posterior probability distribution of the users’ locations can be
computed based on the forward and backward variables, by using the following
formula, for ui ∈ U and at time t:

hui
t (r) = Pr (aui(t) = r | {o(t)}t=1..T , C,K) =

∑
r∈RN | ri=r

αU
t (r) · βU

t (r)∑
r∈RN

αU
t (r) · βU

t (r)
. (8)

We now evaluate the complexity of the joint localization attack. The first ob-
servation is that the size of the state space (i.e., the locations of all users) is
MN . To attack a user at time t, the adversary needs to compute the values of α
up to time t and the values of beta down to time t.3 At each time instant, the ad-
versary needs to compute the values of these two variables for all possible values
of their inputs r ∈ RN (there are MN possible values for r). The computation
of each of these values requires summing over the MN possible locations ρ at
time t− 1; for each of the possible locations, the computation of one element of
the sum takes Θ(N) operations. Therefore, the computation of the forward and
backward variables, at all time instants, for all possible values of the localiza-
tions is Θ(NTM2N) operations. Note that the complexity is the same whether
the adversary attacks one or all the users at one or all time instants. In fact, the
adversary can pre-compute the hu

t for all u and all t with a complexity that is
dominated by that of the computations of the forward and backward variables.
In summary, the complexity of the localization attack on one or all of the users
in U is

copt(N, T,M) = Θ(NTM2N) . (9)

The complexity of the optimal localization attack is prohibitively high and
prevents its use for the entire set of users of a mobile social network; the optimal
localization attack is tractable only for small values of N , i.e., 2 and 3. In the
next section, we propose heuristics for performing low-complexity approximate
localization attacks.

4 Approximate Localization Attack

We propose two low-complexity heuristics for performing approximate localiza-
tion attacks. Essentially, the first selects a small set of users to consider when

3 The best way to do this is to use dynamic programming, i.e., compute the αt (and
storing its values) iteratively for increasing t and compute the βt (and store the
values) iteratively for decreasing t.
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attacking a target user and performs an optimal joint localization attack on this
small set of users (i.e., considering only the co-locations between these users).
The intuition behind this heuristic is that the locations of a user are significantly
correlated with those of only a limited number of users (e.g., a few co-workers
during work hours, and her family and close friends the rest of the time). The
second makes use of individual forward-backward variables (one for each user of
the entire set of users) and computes their values at each time instant, based on
the considered user’s individual variable at time t−1 and the reported locations
of the users co-located with her at time t, hence disregarding the dependencies
stemming from past co-locations. The intuition behind this heuristic is that the
dependency between two users’ locations fades relatively quickly over time after
they meet.

4.1 Heuristic 1: Limited User Set Approximation

As discussed in Section 3, the optimal localization attack can be efficiently per-
formed only on small sets of users. This is because location of a target user u
depends on locations of all other users that are connected to u in the co-location
graph (where there is an edge between two users u and v if u ↔t v for some time
t). The rationale of our first approximation is to limit the number of users, on
which the target user’s location depends, and to consider only those that have
high location correlation with u. Concretely, we choose the user(s) that have the
largest number of reported co-locations with the targeted user and we perform
an optimal localization attack on the resulting set of users. We call these users
the co-targets of the targeted user. Depending on his computational power, the
adversary can choose one or two such users (i.e., N = 2 or N = 3) to attack the
target with. The co-targets of a user u are chosen as follows:

co-target1(u) � argmax
v∈U\{u}

|{t ∈ {1, . . . , T } |u ↔t v}| (10)

co-target2(u) � argmax
v∈U\{u,u′}

|{t ∈ {1, . . . , T } |u ↔t v}|+ |{t ∈ {1, . . . , T } |u′ ↔t v}|

(11)

where u′ = co-target1(u) and | · | denotes the cardinality of the set. More specifi-
cally, the first co-target of a user u is the user with whom u has the more reported
co-locations during the time interval considered for the localization attack. The
second co-target of u is chosen so as to maximize the number of co-locations
with u plus the number of co-locations with u’s first co-target. Note that the
set of considered users can be different for every targeted user; in particular
v = co-target1(u) /=⇒ u = co-target1(v). The complexity of this heuristic is
Θ(TM4) for N = 2 and Θ(TM6) for N = 3 (obtained by replacing N by its
value in the generic expression (9) of the complexity of the optimal attack).

4.2 Heuristic 2: Independence Approximation

As discussed in Section 3, the need to jointly consider the locations of all the
users, which cause the explosion of the state space size and thus the high
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complexity of the attack, stems from the fact that their locations are not in-
dependent as soon as co-locations are reported. The rationale behind our second
heuristic is to ignore the mobility profiles of the co-located users, hence allevi-
ating the need to take into account their past locations, which causes the state
space explosion) and to consider only their reported co-locations to improve the
inference of the target user’s location at the considered time instant. This comes
down to considering the locations reported by the users co-located with u, as if
u had reported these obfuscated locations herself (as depicted in Figure 1a). We
define individual forward and backward variables for each user and we couple
them upon co-locations, as follows:

α̂u
t (r) �

⎧⎪⎨⎪⎩
πu(r) if t = 0∏
u′|u↔tu′

fu′ (r, ou′(t)) · fu (r, ou(t)) ·
∑
ρ∈R

α̂u
t−1(ρ) pu(ρ, r) otherwise (12)

and

β̂u
t (r) �

⎧⎪⎨⎪⎩
1 if t = T∑
ρ∈R

β̂u
t+1(ρ) pu(r, ρ) fu(ρ, ou(t+ 1))

∏
u′|u↔t+1u′

fu′(ρ, ou′(t+ 1)) otherwise

(13)
Finally, when performing a localization attack on user u, the posterior distri-
butions of the locations of the users co-located with u at time t are taken into
account. More specifically, we estimate the probability distribution of user u’s
location at time t by

ĥu
t (r) �

α̂u
t (r) · β̂u

t (r) ·
∏

u′|u↔tu′
α̂u′
t (r) β̂u′

t (r)

∑
r′∈R

⎛⎝α̂u
t (r

′) β̂u
t (r

′)
∏

u′|u↔tu′
α̂u′
t (r′) β̂u′

t (r′)

⎞⎠ . (14)

We now compute the complexity of this heuristic. To perform a localization
attack on a user, the adversary needs to compute the individual variables of all
the users that are connected to the target by a chain of co-location, that is N
users at most. The computation of a value α̂ and β̂ (for a given t and a given
r), in the worst case (i.e., when all the users are co-located), takes Θ(NM)
operations; and TM such values need be computed for each user. Therefore, the
complexity of this heuristic is Θ(N2TM2).

5 Experimental Evaluation

We evaluate the effect of co-locations on users’ location privacy, with respect to
the various localization attacks presented in the previous sections, by using a
dataset of real mobility traces.
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Fig. 3. Illustration of the dataset used in the evaluation. Most traces are located in the
region of Beijing (left); we focus on a small active area that corresponds to the campus
of the Tsinghua University and we partition it by using a 5 × 5 square grid (middle).
The heat-map (right) shows the number of samples in each region (logscale).

5.1 Dataset, Methodology and Experimental Setup

The dataset was collected by Microsoft Research Asia, in the framework of
the GeoLife project [24]. It comprises the GPS traces (i.e., sequences of time-
stamped latitude-longitude couples, sampled at a rate of one point every 1-5
seconds) of 182 users, collected over a period of over three years. The GPS
traces are scattered all over the world; but most of them are located in the re-
gion of Beijing, China. We processed the data as follows, in order to fit in our
formalism.

Space Discretization. We select the area of ∼4.4 km×4.4 km, within Beijing,
that contains the largest number of GPS samples, and we filter out GPS samples
that are outside of this area. This geographic area corresponds to the campus
of the Tsinghua University (longitude ranging from 116.3 to 116.35 and latitude
ranging from 39.97 to 40.01, see Figure 3). We partition the selected area into
25 regions by using a 5×5 square grid. The GPS coordinates of each sample are
translated into the region (i.e., the grid cell) they fall into.

Time Discretization. We split the continuous time interval into one-hour
time sub-intervals, which correspond to time instants in our formalism. For each
time sub-interval t and for each user u, we set the user’s actual location in that
time interval (i.e., au(t)) to the region corresponding to the sample that is the
closest to the midpoint of the considered time sub-interval. If a user’s trace does
not contain any sample in a given time sub-interval, the user’s actual location
is set to a dummy region r⊥, leaving us with partial user traces.

Co-location Generation. As the dataset does not contain explicit co-location
information reported by the users, we use synthetic co-locations that we generate
as follows: At each time instant, we generate a co-location between two users if
their discretized actual locations are the same (and different from r⊥). Because
in real-life not all such situations correspond to actual co-location and because
even actual co-locations are not necessarily reported, in our evaluation we take
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into account only a proportion ω (ranging from 0% to 100%) of the synthetic
co-locations.

For each user, we compute the number of co-locations she has with every
other user in the dataset, across the full user traces. We keep only the users for
which there exists another user with whom they have at least 200 co-locations.
For these users, we consider their common time interval (i.e., the longest time
interval during which all these users have at least one sample); we obtained an
interval of ∼6000 hours. Within the common interval, we sample 10 short traces
of 300 continuous hours such that (1) all users have at least 10% of valid samples
(i.e., , different from r⊥) and (2) all users have at least 20 co-locations with their
co-target1 (as defined in Equation (11)). This leaves us with a total of 5 users.

User Mobility Profiles Construction. We build the mobility profiles
{pu}u∈U of the users based on their entire discretized traces by counting the
transitions from any region to any region (in R) in one time instant.

Obfuscation. We consider that users report a single (or none), potentially
obfuscated, location at each time instant.4 This means that the set R′ in which
the obfuscated location ou(·) takes values is R∪{r⊥}. We consider, for each user
u, that two location-privacy protection mechanisms are used together: First, the
location is hidden (i.e., obfuscated to r⊥) with a probability λu and then, if the
location has not been hidden, it is replaced by a region (chosen uniformly at
random) at a distance of at most du from the user’s actual discretized location
(i.e., a region). If the actual location of a user is not known (i.e., set to r⊥), the
LPPM returns r⊥ with probability 1. In our evaluation, we vary λu from 0 to 1
and we set du to the size of one grid cell; this means that, if it is not hidden, a
user’s location is obfuscated either to its actual value (with probability 0.2) or
to one of the four adjacent regions (e.g., 2, 6, 8 and 12 for region 7 in Figure 3),
each with probability 0.2.

Privacy Evaluation. We evaluate the location privacy of the users, and the
effect of co-locations on it, based on the metric defined in (2). For each user and
for each short trace, we generate 20 random obfuscated traces (remember that
obfuscation is a random process) and we perform a localization attack on each of
them. We compute the average location privacy of each user across the different
obfuscated traces and across the different time instants. Time instants for which
the location of a user is not known (i.e., set to r⊥) are not taken into account
in the computation of their average over time.

Limitations. Due to the synthetic nature of the reported location and co-
location information in our data source, our experimental setup does not per-
fectly reflect on a real usage case. Therefore, the results presented in this section
cannot directly be interpreted as the magnitude of the threat in real-life. Yet,
we believe that it suffices to get insight into the effect of co-locations on location

4 We make this assumption because of the limited size of the considered grid and we
leave the case where LPPMs output a set of locations to future work.
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privacy, the sources of privacy loss, and the relative performance of the pro-
posed heuristics. Also, the number of users considered in our evaluation (i.e., 5)
is relatively small. Hence, the results may not be representative of the entire
population. In order to overcome the aforementioned shortcomings, we intend
to collect a large-scale dataset from an existing social network. We also intend
to run experiments on large grids (i.e., larger than the 5×5 grid used in the
evaluation).

5.2 Experimental Results

We now experimentally evaluate the algorithms, presented in Section 4, in dif-
ferent scenarios, with different settings. The goal of our evaluation is to assess
the raw performance of our heuristics, but also to compare them. In addition,
we analyze the effect of the different parameters of the model (including the
individual LPPM settings of the users and the differences between the individ-
ual LPPM settings of the users) and of the set of co-locations considered in the
localization attack.

Effects of Co-locations and LPPM Settings. We begin our evaluation by
analyzing the effect of (1) the proportion ω of reported co-location and (2) the
LPPM settings (i.e., w/ or w/o obfuscation and the location hiding probability
λ, assumed to be the same across users) in the case of two users, i.e., the tar-
get user and her first co-target are considered jointly in an optimal localization
attack, namely the limited user set approximation with N = 2. The results are
depicted in Figure 4. The left sub-figure shows the case where no obfuscation is
used (i.e., the users disclose their actual locations with probability 1−λ and hide
them completely otherwise), whereas the right sub-figure shows the case where
obfuscation is used (i.e., the users disclose their obfuscated locations, specifically
a region chosen uniformly at random among the actual location and the four im-
mediate neighboring regions, with probability 1 − λ and hide them otherwise).
The top graphs show a box-plot representation (i.e., first quartile, median, third
quartile and outliers) of the users’ location privacy expressed in terms of the
expected error of the adversary, in kilometers (left axis) and in proportion of
the size of the considered geographic area (right axis). For each couple of values
(λ, ω), we draw one box-plot to aggregate the data-points obtained for all users
and for all the 20 randomly generated obfuscated versions of each of the consid-
ered actual trace. Note that without obfuscation, the case λ = 0 leads to zero
privacy as users always disclose their actual locations. It can be observed that
the proportion of reported co-locations consistently decreases the location pri-
vacy of the users. To quantify this decrease, we plot (middle and bottom graphs)
the privacy loss caused by the use of co-location information, with respect to the
case where co-locations are ignored (or not available), i.e., ω = 0%. We show
both the median absolute privacy loss (in kilometers, middle graph) and the
median relative privacy loss (in percentage of the privacy in the case ω = 0%,
bottom graph). Note that the median privacy loss is not equal to the difference
of the median privacy. Consider for example, the case λ = 0.4 and ω = 50%:



Quantifying the Effect of Co-location Information on Location Privacy 197

 0

 0.5

 1

 1.5

 2

 2.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

Pr
iv

ac
y 

[k
m

]

N
or

m
al

iz
ed

 p
ri

va
cy

% of co-location (ω = 0%)
(ω = 25%)
(ω = 50%)
(ω = 75%)

(ω = 100%)

 0

 0.1

 0.2

 0.3

Pr
iv

ac
y 

L
os

s 
[k

m
]

 0

 20

 40

 60

 80

0.2 0.4 0.6 0.8 1.0

Pr
iv

ac
y 

L
os

s 
[%

]

Location hiding probability (λ)

(a) Without obfuscation

 0

 0.5

 1

 1.5

 2

 2.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

Pr
iv

ac
y 

[k
m

]

N
or

m
al

iz
ed

 p
ri

va
cy

% of co-location (ω = 0%)
(ω = 25%)
(ω = 50%)
(ω = 75%)

(ω = 100%)

 0

 0.1

 0.2

 0.3

Pr
iv

ac
y 

L
os

s 
[k

m
]

 0

 20

 40

 60

 80

0 0.2 0.4 0.6 0.8 1

Pr
iv

ac
y 

L
os

s 
[%

]

Location hiding probability (λ)

(b) With obfuscation

Fig. 4. Privacy (top), absolute privacy loss (middle) and relative privacy loss (bottom)
for the limited user set attack with N = 2 users. The privacy loss is expressed wrt the
case where no co-locations are reported (ω = 0%); the histograms show median values.
Co-location information decreases privacy. The relative privacy loss is higher for small
values of the hiding probability and without obfuscation.

in the case without obfuscation the median privacy loss is approximately 125m,
which corresponds to a decrease of 25%. The median absolute privacy loss can
go up to 290m (λ = 0.6, ω = 100%) and the median relative privacy loss up to
75% (λ = 0.2 and ω = 100%). We observe the same trend, with a more modest
loss, in the case where obfuscation is used. For the rest of the evaluation, we
focus on the case where users do obfuscate their locations and report ω = 50%
of the co-locations.

Effects of the differences of Individual LPPM Settings. Here, we analyze
the effect of the differences, in the users’ LPPM settings, on the location privacy
(loss) due to co-locations. To do so, we focus on the case of two users, a target
and her co-target, both who obfuscate their location but with different hiding
probabilities λtarget and λco-target. We perform a joint optimal localization attack.
The results are depicted in Figure 5 under the form of heat-maps that represent
the target user’s location privacy (a) as well as her absolute (b) and relative (c)
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(c) Relative privacy loss (wrt to ω = 0%)

Fig. 5. Median values of the target’s location privacy (loss), for the limited user set
attack with N = 2 users, when the target and her co-target have different values of λ
(with obfuscation and ω = 50%). The diagonals correspond to the values of Figure 4b.

privacy loss (wrt the case ω = 0%) as functions of the respective LPPM settings
λco-target (x-axis) and λtarget (y-axis).

A first observation is that co-locations always decrease the privacy of the
target (i.e., all values in Figure 5b are positive) and that the more information
the co-target discloses, the worse the privacy of the target is (i.e., the cells of
the heat-map depicted in Figure 5a become lighter, when going from right to
left on a given row).

The diagonals of the heat-maps correspond to the case λco-target = λtarget,
which is depicted in more details in Figure 4. The region of the heat-map above
the diagonal corresponds to the case where the target is more conservative, in
terms of her privacy attitude, than her co-target (i.e., λco-target < λtarget). It can
be observed that the information disclosed by the target herself compromises her
privacy more than the information disclosed by her co-target, e.g., the cell (0.6,0)
is lighter (which means that the target’s privacy is lower) than the cell (0,0.6).
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By comparing the columns “λco-target = 1” and “no co-target” (two right-most
columns in Figure 5a), we can observe the privacy loss stemming from the use,
through the co-location information, of the co-target’s mobility profile alone (as
the co-target never discloses her location). This is substantial.

Finally, in the extreme case where the target never discloses location informa-
tion and her co-target always does (top-left cell of the heat-maps in Figures 5b
and 5c), the privacy loss for the target is 330m, which corresponds to a decrease
of 16%. This case (and in general the cases where the target never discloses lo-
cation information, i.e., the top row of the heat-maps) highlights the fact that,
as reported co-locations involve two users, users lose some control over their pri-
vacy: Without revealing any information about herself, a user can still have her
privacy decreased by other users, due to co-location information.

For the rest of the evaluation, we focus on the case where all users have the
same LPPM settings (i.e., same values of λ).

Comparison of the Proposed Heuristics. Here, we compare, through ex-
perimentation (we leave the analytical comparison to future work), the proposed
inference algorithms for the localization attack, by taking into account different
scenarios, as depicted in Figure 6. In scenario (a), we consider, in turn, all target
users in our set and perform an individual localization attack on each of them,
using only their own reported locations and no co-locations. This corresponds
to the baseline case ω = 0%, which was presented in detail in Figure 4b. We
then consider the case of an adversary that exploits co-locations. We assume the
adversary observes a limited proportion, ω = 50%, of the existing co-locations.
Scenario (b) corresponds to the case of an adversary that, in order to attack a
target user, performs an optimal joint inference attack on the target and her co-
target, as described in Section 3. This scenario corresponds to the case ω = 50%
in Figure 4b. Scenarios (c) and (d) correspond to the case of an adversary that
performs an optimal joint attack on the target and her two co-targets. We
distinguish two cases, (c) – in which the co-locations between the co-targets are
ignored and (d) – in which all co-locations between any of the three users are
considered. We make this distinction solely to quantify the privacy loss stem-
ming from the use of co-locations that do not directly involve the target. In
practice, an adversary would always consider scenario (d) as it takes into ac-
count more information at no extra cost. Finally we consider scenario (e), that
corresponds to an adversary that uses reported all co-locations but solves an
individual inference problem for each user, as described in 4.2.

Figure 7 shows the results of our comparison. The graph on the left shows a
box-plot representation of users’ privacy, for each of scenarios (a)-(e). To quantify
the different effects on the users’ privacy of the set of considered co-locations
and of the heuristic used, we show (right) the absolute and relative privacy loss,
with respect to scenario (a), for each of the scenarios (b)-(e). It can be observed
by comparing scenarios (a)-(d) that, unsurprisingly, the users’ privacy decreases
with the amount of considered co-locations. However, the comparison between
scenarios (c) and (d) shows that co-locations between the target’s co-targets
does not significantly improve the performance of the localization attack. Finally,
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we observe that the second heuristic, which takes into account all co-locations
outperforms the first heuristic (N ≤ 3), at a lower computational cost.

u

(a)

u

(b)

u

(c)

u

(d)

all users

u

(e)

Fig. 6. Co-locations considered in the evaluation: (a) no co-locations, (b) only co-
locations between the target and co-target1 (Heuristic 1, N = 2), (c) only co-locations
between the target and co-target1 and between the target and co-target2 (Heuristic 1,
N = 3), (d) all co-locations between the target, co-target1 and co-target2 (Heuristic 1,
N = 3), (e) all co-locations (Heuristic 2). In scenarios (b)-(e), we consider that ω = 50%
of the co-locations are reported.
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Fig. 7. Comparison of the different localization attacks for the scenarios (a)-(e) de-
picted in Figure 6. The privacy loss (right) is evaluated wrt scenario (a).

6 Related Work

Location is identity. Even if the set of locations shared by a user is anonymized,
and her true identity is hidden from the location-based service provider, the ob-
served trajectories can be re-identified [5,9,12,15]. This attack is made by link-
ing available information about users’ mobility in the past with their observed
traces. To protect against such attacks, many location obfuscation mechanisms
have been proposed in the literature; they suggest users hide their locations
at certain locations, or reduce the accuracy or granularity of their reported lo-
cations [4, 8, 13]. These techniques increase users’ privacy by making it more
difficult for an adversary to de-anonymize users and localize or track them over
time. The location privacy of users in such settings can be computed using the
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expected error of an adversary in estimating their true locations [20]. In such an
inference framework, an adversary has a background knowledge on users’ mo-
bility models; this is used to reconstruct the full trajectories of the users, given
the anonymized and obfuscated observed traces.

The adversary’s information, however, is not limited to mobility models. With
most users being members of social networks, an adversary can de-anonymize lo-
cation traces by matching the graph of co-traveler users with their social network
graph [21]. Co-travelers are those who have been in each others’ physical prox-
imity for a considerable number of times. Researchers have extensively studied
the problem of inferring social ties between users based on their physical proxim-
ity [3,7]. Recent revelations about NSA surveillance programs also show that this
type of information is of great use for tracking and identifying individuals [2].

The correlation between different users’ information also opens the door to a
new type of privacy threat. Even if a user does not reveal much information about
herself, her privacy can be compromised by others. In [11], the authors study
how information revealed, from pictures, by a user’s friends in social networks
can be used to infer private information about her location. Private information
about, for example, user profile and her age can also be inferred from shared
information on online social networks [6,17]. Mobile users, connecting to location-
based services from a same IP address, can also compromise the privacy of those
who want to keep their location private [23]. The loss in privacy, due to other
users, has also been shown in other contexts such as genomics [10, 14].

Extracting co-location information about users, i.e., who is with whom, is
becoming increasingly easier. More specifically, with the proliferation of mobile
social networks, where users can check-in themselves and others to different loca-
tions, the threat of available co-location information on users’ location privacy
is clear (as pointed out in [22]). Despite the mentioned works on quantifying
the location privacy and the privacy of users in social networks, as well as the
extensive research on privacy loss due to others, there has not been a study on
evaluating location privacy considering co-location information. We bridge the
gap between studies on location privacy and social networks, and we propose
the first analytical framework to quantify the effects of co-location information
on location privacy, where users can also make use of obfuscation mechanisms.

7 Conclusion

In this paper, we have studied the effect on users’ location privacy when co-
location information is available, in addition to individual (obfuscated) location
information. To the best of our knowledge, this is the first paper to quantify
the effects of co-location information, that stems from social relationships be-
tween users, on location privacy; as such it constitutes a first step towards bridg-
ing the gap between studies on location privacy and social networks. We have
shown that, by considering the users’ locations jointly, an adversary can exploit
co-location information to better localize users, hence decreasing their individ-
ual privacy. Although the optimal joint localization attack has a prohibitively
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high computational complexity, the polynomial-time approximate inference al-
gorithms that we propose in the paper provide good localization performance.
An important observation from our work is that a user’s location privacy is
no longer entirely in her control, as the co-locations and the individual location
information disclosed by other users significantly affect her own location privacy.

The message of this work is that protection mechanisms must not ignore
the social aspects of location information. Because it is not desirable to report
dummy lists of co-located users (as this information is displayed on the users’
profiles on social networks), a location-privacy preserving mechanism needs in-
stead to generalize information about co-located users (i.e., replace the names of
the co-located users by the type of social tie, e.g., “with two friends”) or to gen-
eralize the time (i.e., replace the exact time of the co-location with the period of
the day, e.g., replacing 11am with “morning”, when the co-location is declared
a posteriori) of a social gathering as well as the locations of users at other lo-
cations, in order to reduce the effectiveness of the attacks we suggested in this
paper. We intend to tackle the design of social-aware location-privacy protection
mechanisms (running on the users’ mobile devices) to help the users assess and
protect their location privacy when co-location information is available.

Acknowledgments. The authors are thankful to Stefan Mihaila for his help
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work was partially funded by the Swiss National Science Foundation with grant
200021-138089.
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Hübner, S., Hopper, N. (eds.) PETS 2011. LNCS, vol. 6794, pp. 57–76. Springer,
Heidelberg (2011)

20. Shokri, R., Theodorakopoulos, G., Le Boudec, J.Y., Hubaux, J.P.: Quantifying
location privacy. In: S&P 2011: Proc. of the 32nd IEEE Symp. on Security and
Privacy, pp. 247–262 (2011)

21. Srivatsa, M., Hicks, M.: Deanonymizing mobility traces: Using social network as
a side-channel. In: CCS 2012: Proc. of the 19th ACM Conf. on Computer and
Communications Security, pp. 628–637 (2012)

22. Vicente, C., Freni, D., Bettini, C., Jensen, C.S.: Location-related privacy in geo-
social networks. IEEE Internet Computing 15(3), 20–27 (2011)

23. Vratonjic, N., Huguenin, K., Bindschaedler, V., Hubaux, J.P.: How others compro-
mise your location privacy: The case of shared public IPs at hotspots. In: De Cristo-
faro, E., Wright, M. (eds.) PETS 2013. LNCS, vol. 7981, pp. 123–142. Springer,
Heidelberg (2013)

24. Zheng, Y., Liu, L., Wang, L., Xie, X.: Learning transportation mode from raw GPS
data for geographic applications on the web. In: WWW 2008: Proc. of the 17th
ACM Int’l Conf. on World Wide Web, pp. 247–256 (2008)



Do Dummies Pay Off? Limits of Dummy Traffic

Protection in Anonymous Communications

Simon Oya1, Carmela Troncoso2, and Fernando Pérez-González1,2
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Abstract. Anonymous communication systems ensure that correspon-
dence between senders and receivers cannot be inferred with certainty.
However, when patterns are persistent, observations from anonymous
communication systems enable the reconstruction of user behavioral pro-
files. Protection against profiling can be enhanced by adding dummy
messages, generated by users or by the anonymity provider, to the com-
munication. In this paper we study the limits of the protection provided
by this countermeasure. We propose an analysis methodology based on
solving a least squares problem that permits to characterize the adver-
sary’s profiling error with respect to the user behavior, the anonymity
provider behavior, and the dummy strategy. Focusing on the particular
case of a timed pool mix we show how, given a privacy target, the per-
formance analysis can be used to design optimal dummy strategies to
protect this objective.

Keywords: anonymous communications, disclosure attacks, dummies.

1 Introduction

Anonymization is a popular mechanism to provide private communications.
Anonymous communication [1] ensures that relationships between senders and
receivers of messages cannot be inferred with certainty by the adversary. These
schemes hide communication patterns by delaying and changing the appearance
of messages [2] in such a way that sent messages can be ascribed to a set of
potential receivers, often denoted as anonymity set. In practice, user behavior
and latency constrain the composition of anonymity sets, which in turn enables
an adversary observing the anonymous communication system to reconstruct
persistent behavioral user profiles [3–6].

A common approach to improve users’ protection against profiling is to intro-
duce dummy traffic, either generated by users [7] or by the anonymity provider [8].
The effectiveness of this countermeasure has been studied theoretically from the
perspective of individual messages in [9]. With respect to profiling, dummy traffic
has been tackled in [5, 10], where the authors empirically compute the number
of rounds that the attacker takes to correctly identify some or all recipients of

E. De Cristofaro and S.J. Murdoch (Eds.): PETS 2014, LNCS 8555, pp. 204–223, 2014.
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a sender. The analyses in [5, 10] are limited in two aspects. On the one hand,
the results strongly depend on the specific cases considered in the experiments,
and it is difficult to get insight on their applicability to other scenarios. On the
other hand, the analyses only consider the ability of the adversary in identifying
communication partners, but not her accuracy at estimating the intensity of the
communication; i.e., the users’ profiles.

In this paper we propose an analysis methodology based on the least squares
approach introduced in [6] that permits system designers to characterize the
adversary’s profiling error with respect to the user behavior, the anonymity
provider behavior, and the dummy strategy. Our estimator can be used to cha-
racterize the error for bilateral relationships, individual user profiles, or the popu-
lation as a whole. Our approach can accommodate a wide range of high-latency
anonymous communication schemes providing the analyst with a bound on the
protection achievable through the use of dummy traffic.

Another shortcoming of previous works [5, 9, 10] is that the proposed evalua-
tion strategies cannot be used to guide the design of effective dummy generation
strategies, which is recognized to be a hard problem [11]. This has lead the
deployed high latency anonymous communication systems to either implement
arbitrary dummy strategies [12] or no dummy traffic at all [11]. Our metho-
dology can be used to support the design of dummy strategies by approaching
strategy selection as an optimization problem in which the error of the adver-
sary is maximized. The optimization criteria can be chosen by the designer to
satisfy different privacy objectives, e.g., balancing the protection among users,
or favoring individual users or relationships.

We illustrate the operation of our methodology using a timed binomial pool
mix. We provide a performance analysis of this mixing strategy in presence of
both static sender-based and mix-based dummy traffic, showing that their con-
tribution to the adversary’s error can be decoupled and analyzed independently.
Departing from this analysis we design dummy traffic strategies according to two
privacy criteria: increasing the estimation error for all relationships by a con-
stant factor, and guaranteeing a minimum estimation error for any relationship.
By hiding relationships, both criteria hinder the inference of user profiles.

Next section describes an abstract model of an anonymous communication
system with dummies, and Section 3 introduces a least squares-based profile
estimator. We analyze in Sect. 4 the performance of this estimator when the
anonymous channel is a timed binomial pool mix. The result of this analysis
is used in Sect. 5 to design optimal dummy strategies, evaluated in Sect. 6. We
discuss practical aspects of our method in Sect. 7 and finally conclude in Sect. 8.

2 System and Adversary Model

In this section we introduce the system and adversary model considered in the
paper, as well as the general notation of the paper (summarized in Table 1).
Throughout the document we use capital letters to denote random variables and
lower-case letters to denote their realizations. Vectors and matrices are denoted
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by boldface characters. Vectors of random variables are upper-cased, while their
realizations are lower cased. Matrices are always denoted by upper-case boldface
characters; whether they are random matrices or realizations will be clear from
the context. Furthermore, we use 1n to denote the all-ones column vector of size
n, 1n×m to denote the all-ones n×m matrix and In for the n×n identity matrix.

System Model. Our system consists of a population of N senders, designated
by index i ∈ {1, 2, · · · , N}, which exchange messages with a set of M receivers,
designated by index j ∈ {1, 2, · · · ,M}, through a high-latency mix-based anony-
mous communication channel. Messages in the system may be real or dummy
messages: decoy messages indistinguishable from real traffic. We consider two
types of dummy traffic:

– Sender-based dummies: senders may send dummy messages to the mix
along with their real messages. Sender-based dummies are recognized and
discarded by the mix.

– Mix-based dummies: the mix-based system may send dummy messages
to the receivers along with the real messages from the senders. Receivers are
able to identify dummy messages and discard them.

Mix-based anonymous communication channels protect profiles by delaying
messages and outputting them in batch in what are called rounds of mixing.
We consider that the total number of messages generated by user i in round r
is modeled by the random variable Xr

i . User messages can be real, modeled by
random variable Xr

λ,i, or dummy, modeled by Xr
δ,i. These messages are sent to

an anonymous communication channel in which a round of mixing consists of
the following sequence of four stages, shown in Fig. 1. In the first stage, dummy
messages are identified and discarded (Stage 1), while the real messages go inside
the pool (Stage 2). Messages inside the pool are delayed until a specific firing
condition is fullfilled, and then a number of them, chosen according to a batch-
ing strategy, exit the pool. Messages leaving the pool (modeled by Xr

s,i) traverse
a mixing block (Stage 3), which changes their appearance cryptographically to
avoid bit-wise linkability. Messages staying in the pool are mixed with incoming
real messages from subsequent rounds until they are fired. Finally, mix-based
dummies are added the output traffic and messages are delivered to their recipi-
ents (Stage 4). The number of mix-based dummies sent in round r is modeled by
Xr

MIX, and random variables Y r
λ,j , Y

r
δ,j and Y r

j model the number of real, dummy,
and total messages received by receiver j in round r, respectively.

We also define the following vectors and matrices, which shall come handy
later: matrix U is an ρ×N matrix which contains all the input observations, i.e.,
its (r, i)-th element is Xr

i . Similarly, matrix Us contains in its (r, i)-th position
the random variable Xr

s,i. Moreover, H
.
= IM ⊗ U and Hs

.
= IM ⊗ Us, where

⊗ denotes the Kronecker product. Vectors Yj
.
= [Y 1

j , · · · , Y ρ
j ]

T and Ŷδ,j
.
=

[Y 1
δ,j , · · · , Y ρ

δ,j]
T contain the random variables modeling the total (or just dummy)

number of messages received by j in each round. Finally, Y
.
= [YT

1 , · · · ,YT
M ]T

and Ŷδ
.
= [ŶT

δ,1, · · · , ŶT
δ,M ]T .
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Fig. 1. Abstract model of a round in a mix-based anonymous communications channel
(we omit the subscript r for the sake of clarity.)

We model the sending behavior of users in our population with two parame-
ters:

– Probability of real message: the probability of real messages models how
frequently users send real messages, and is denoted by Pλi , i = 1, · · · , N .
In other words, a message sent by i is real with probability Pλi , dummy
otherwise. We make no assumptions on the values of Pλi other than 0 ≤
Pλi ≤ 1, and that the probabilities of real messages are static during the
observation period. Note that Pλi does not constrain the distributions that
model the number of messages sent by users (Xr

i , X
r
λ,i and Xr

δ,i).
– Sender profile: the sender profile of user i models this sender’s choice of re-

cipients for her messages. It is defined as the vector qi
.
= [p1,i, p2,i, · · · , pM,i]

T ,
where pj,i denotes the probability that sender i sends a real message to re-
ceiver j. We also define the unnormalized receiver profile pj

.
= [pj,1, · · · , pj,N ]T

and the vector containing all transition probabilities p
.
= [pT

1 , · · · ,pT
M ]T . We

make no assumptions on the shape of the sender profiles other than qi is in

P , the probability simplex in R
M , i.e., P .

=
{
r ∈ R

M : ri ≥ 0,
∑M

i=1 ri = 1
}
.

We assume, nevertheless, that users’ behavior is stationary during the ob-
servation period (the transition probabilities pj,i do not change between
rounds), independent (the behavior of a user does not affect the behavior
of the others) and memoryless (the messages sent by a user in a round do
not affect the behavior of that user in subsequent rounds). We discuss the
implications of the hypotheses above being false in Sect. 7.

The behavior of the mix-based anonymous communication channel is modeled
by four parameters:

– Firing condition: the firing condition is an event, e.g., the arrival of a
message (theshold mix) or the expiration of a timeout (timed mix), that
causes the mix to forward some of the messages it has stored in its pool to
their recipients.

– Batching strategy: the batching strategy models how messages are chosen
to leave the pool. This strategy is determined by the function Fr,k, which
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models the probability that a message arriving in round k leaves the mix
in round r (r ≥ k). We do not make any assumption on the values of these
parameters, other than

∑∞
r=k Fr,k = 1, i.e., every message will eventually

leave the pool and get to its recipient. This function can for instance model
a threshold mix (Fk,k = 1), or a binomial pool mix [10, 5].

– Average mix-based dummies: this parameter, denoted as δMIX, defines
the average number of dummy messages generated by the mix each round.
Note that our model does not assume any specific distribution for the number
of mix-based dummies that are generated each round.

– Mix dummy profile: we denote by qMIX the vector modeling the distribu-
tion of mix-based dummies among the receivers, qMIX

.
= {p1,MIX, · · · , pM,MIX}

where pj,MIX is the probability that a dummy message generated by the mix
is sent to receiver j (qMIX ∈ P).

Adversary Model. We consider a global passive adversary that observes the
system during ρ rounds. The adversary is able to see the identity of each sender
and receiver communicating through the mix, but she is not able to link any two
messages by their content nor distinguish between real and dummy messages.
We assume that the adversary knows all the parameters of the system (e.g., the
batching strategy determined by Fr,k, the parameters modeling the generation
of dummy messages Pλi and δMIX, the mix dummy profile qMIX). The goal of
the adversary is to infer the sending profiles of the users in the system from
the observations, i.e., to obtain an estimator p̂j,i of the probabilities pj,i given
the input and output observations xr

i and yrj , for every i ∈ {1, 2, · · · , N}, j ∈
{1, 2, · · · ,M} and r ∈ {1, 2, · · · , ρ}.

3 A Least Square Profile Estimator for Dummy-Based
Anonymization Systems

We aim here at deriving a least squares estimator for the probabilities pj,i for
every i = 1, 2, · · · , N and j = 1, 2, · · · ,M , given the observation of ρ rounds of
mixing, xr

i and yrj for r = 1, · · · , ρ and ∀i, j. Following the methodology in [13],
we derive the estimator of pj,i by looking for the vector of probabilities p which
minimizes the Mean Squared Error (MSE) between the random vector Y and
the observed realization y:

p̂ = argmin
qi∈P, i=1,··· ,N

E
{||y −Y(p)||2} (1)

where we have written Y(p) to stress the fact that the output distribution
depends on all the transition probabilities p. Note that, for notational simplicity,
we are dropping the conditioning on U here. Even though the estimator in (1)
minimizes the average error in the outputs, this does not mean it necessarily
minimizes the error in the estimation of the probabilities p. As shown in the
derivations in [13], one can set the alternative problem

p̂ = argmin
qi∈P, i=1,··· ,N

{||y − E {Y(p)} ||2} (2)
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Table 1. Summary of notation

Symbol Meaning

N Number of senders in the population, denoted by i ∈ {1, 2, · · · , N}
M Number of receivers in the population, denoted by j ∈ {1, 2, · · · ,M}
Fr,k Probability that a message arriving in round k leaves in round r
pj,i Probability that user i sends a real message to receiver j
pj,MIX Probability that the mix sends a mix-based dummy message to receiver j
qi Sender profile of sender i, qi

.
= [p1,i, p2,i, · · · , pM,i]

T

qMIX Mix dummy profile, qMIX
.
= [p1,MIX, p2,MIX, · · · , pM,MIX]

T

pj Unnormalized receiver profile for receiver j, pj
.
= [pj,1, pj,2, · · · , pj,N ]T

p Vector of transition probabilities, p
.
= [pT

1 ,p
T
2 , · · · ,pT

M ]T

Pλi Probability that user i sends a real message instead of a dummy
δMIX Average number of mix-based dummies generated by the mix each round

ρ Number of rounds observed by the adversary
xr
λ,i(x

r
δ,i) Number of real (dummy) messages sent by user i in round r

xr
i Total number of messages sent by user i in round r, xr

i
.
= xr

λ,i + xr
δ,i

xr
s,i Number of real messages sent by user i that leave the pool in round r

yr
λ,j(y

r
δ,j) Number of real (dummy) messages received by j in round r

yr
j Total number of messages received by j in round r, yr

j
.
= yr

λ,j + yr
δ,j

xr
MIX Number of mix-based dummies generated by the mix in round r

U (Us) ρ×N matrix with all input observations (U)r,i = xr
i ((Us)r,i = xr

s,i)
H (Hs) IM ⊗U (IM ⊗Us)
yj Column vector containing the values yr

j for r = 1, · · · , ρ
yδ,j Column vector containing the values yr

λ,j for r = 1, · · · , ρ
y Column vector containing all the output messages y

.
= [yT

1 ,y
T
2 , · · · ,yT

M ]T

yδ Vector of output dummies yδ
.
= [yT

δ,1,y
T
δ,2, · · · ,yT

δ,M ]T

p̂j,i, p̂j , p̂, Adversary’s estimation of pj,i, pj and p, respectively.
ŷδ, ŷδ,j Adversary’s estimation of yδ,j and yδ.

Ûs, Ĥs Adversary’s estimation of Us and Hs.

in order to get an estimator p̂ that is not only unbiased, but also asymptotically
efficient, i.e., the vector of estimated probabilities p̂ converges to the true value
as the number of observations increases ρ → ∞.

From the relations among the variables in Fig. 1, we can compute the expected
value of the output Y(p) given the input observations U obtaining E {Y(p)} =

Ĥs · p+ ŷδ (see Appendix), where

– Ĥs
.
= IM ⊗ Ûs, and Ûs (see (31)) is the matrix containing the attacker’s

estimation of the hidden random variables Xr
s,i, which model the number of

messages from user i that leave the mix in round r (cf. Fig. 1).
– ŷδ is the adversary’s estimation of the number of mix-based dummies that are

sent to each receiver in each round, and is given by ŷδ = (IM ⊗ δMIX1ρ) ·qMIX.

Interestingly, removing the constraints from (2) leads to an estimator which
is still unbiased and asymptotically efficient, as proven in [13], and also makes a
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detailed performance analysis manageable as we show in Sect. 4. In the rest of
this section we focus on the unconstrained estimator and refer to [13] for further
information about the constrained variant. The solution to the unconstrained
problem

p̂ = argmin
qi i=1,··· ,N

{
||y − Ĥs · p− ŷδ||2

}
(3)

is given by the Moore-Penrose pseudo-inverse, i.e., p̂ = (ĤT
s Ĥs)

−1ĤT
s (y − ŷδ).

This solution can be decoupled [13] resulting in a more tractable and efficient
equation, where ŷδ,j

.
= δMIXpj,MIX1ρ contains the expected number of mix-based

dummies sent to receiver j in each round,

p̂j = (ÛT
s Ûs)

−1ÛT
s (yj − ŷδ,j) j = 1, · · · ,M (4)

Given the system parameters as well as the input and output observationsU and
y, the adversary can use (4) to get an estimation of the users’ sending profiles.

4 Performance Analysis of the Least Squares Estimator
in a Timed Pool Mix Anonymous Communication
System with Dummies

In this section, we assess the performance of the least-squares estimator in (4)
with respect to its profiling accuracy, measured as the Mean Squared Error of the
estimated transition probabilities pj,i (MSEj,i = |p̂j,i − pj,i|2) representing users’
behavior. We have chosen to analyze the performance of this estimator because
it is, to the best of our knowledge, the best estimator of the users’ profiles that
accounts for dummy traffic. The only attack in the literature extended to cover
dummy traffic is the Statistical Disclosure Attack (SDA) [10, 11] and it is already
shown in [13, 14] that the least squares-based approach performs asymptotically
better than SDA. It must be noted that the Bayesian inference estimator (Vida)
in [4] may return a better estimation than our least squares estimator. However,
its computational cost is huge even for a threshold mix [13] and it would become
prohibitive in a pool mix with dummies.

For the performance analysis in this section, we consider the particular case
when the anonymous communication channel is a binomial timed pool mix [15],
and the number of messages sent by the users, as well as the dummies generated
by the mix, are Poisson-distributed. In a binomial timed pool mix, the firing
condition is a timeout and the batching strategy mandates that individual mes-
sages leave the pool with probability α every round, i.e., Fr,k = α(1 − α)r−k.
The behavior of this mix is stationary, since the value of Fr,k only depends on
the difference r − k. Using λi as the sending rate, and δi as the dummy rate,
representing the average number of real messages, respectively dummies, sent by
user i, this scenario can be summarized as

Xr
λ,i ∼ Poiss (λi) , Xr

δ,i ∼ Poiss (δi) , Xr
MIX ∼ Poiss (δMIX)

Pλi = λi/(λi + δi), Fr,k = α(1− α)r−k
(5)
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Even though the results we provide correspond to the above case we must stress
that the reasoning followed in the derivation is applicable to any other system
that can be represented by the model in Sect. 2.

4.1 Profiling Error of the Least Squares Estimator

Under the hypotheses stated in (5), the least squares estimator is unbiased and,
defining αq

.
= α/(2−α) and αr

.
= α(2−α)/(2−α(2−α)), the MSEj,i of a single

transition probability estimated is given by [16]:

MSEj,i ≈ 1

ρ
· 1

αq
· 1

λi
·
(
1 +

δi
λi

)
·
(
1− λi + δi∑N

k=1(λk + δk)

)
·

(
N∑

k=1

λkpj,k + δMIXpj,MIX − αq

αr

N∑
k=1

λkPλk
p2j,k

) (6)

This result holds when: i) the probability that each sender sends a message to
receiver j is negligible when compared to the rate at which receiver j receives
messages from all users (pj,i �

∑
k λkpj,k), ii) the number of rounds observed is

large enough (ρ → ∞), and iii) λi + δi � (
∑

k(λk + δk))
2
.

Interestingly, the terms in (6) that depend on i and j in can be decoupled,

MSEj,i ≈ 1

ρ
· 1

αq
· εs(i) · εr(j) (7)

where εs(i) and εr(j) denote functions that only depend on the sender i and the
receiver j respectively. This property proves to be very useful when designing
strategies to distribute the dummy traffic as we later see in Sect. 5.

The latter expression allows to extract qualitative conclusions on the protec-
tion dummy traffic offers to senders and receivers. As it was already shown in
[13], the MSE decreases with the number of rounds observed as 1/ρ, and delay-
ing messages in the pool increases the MSEj,i by a factor (2− α)/α with respect
to a scenario with no delay (i.e., α = 1).

We now analyze the contribution to the MSE of the users’ behavior. The
sender-side contribution εs(i) consists of three terms:

εs(i) =
1

λi
·
(
1 +

δi
λi

)
·
(
1− λi + δi∑N

k=1(λk + δk)

)
(8)

1. The term 1/λi implies that the error when estimating the profile qi =
[p1,i, · · · , pM,i]

T decreases as that user participates in the system more often.
Naturally, when more information about the user becomes available to the
adversary, it becomes easier to accurately estimate her behavior.

2. The second term, 1+ δi/λi, is always larger or equal than one, meaning that
sender-based dummies always hinder the attacker’s estimation. The weight
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of this component depends on the ratio between the dummy rate and the
sending rate. Hence, a user who sends real messages very often would need
to send many more dummies to get the same level of protection than a user
who rarely participates in the system.

3. The last term is in general negligible since, in a normal scenario, the parti-
cipation of a single user is negigible when compared to the total traffic, i.e.,
λi + δi �

∑N
k=1(λk + δk). However, when user i’s traffic is clearly dominant

among the others, this term decreases the overall gain i gets from dummies.
Therefore, although sender-based dummies always increase the protection of
a user, they offer diminishing returns when only one user is trying to protect
herself by sending dummies.

On the other hand, receiver-side contribution, εr(j), consists of three sum-
mands:

εr(j) =
N∑

k=1

λkpj,k + δMIXpj,MIX − αq

αr

N∑
k=1

λkPλk
p2j,k (9)

1. The first summand is the rate at which j receives real messages from the
senders. We call this term receiver rate and denote it by λ′

j . It is interesting to
note that, contrary to the sending rates where large values of λi compromise
the anonymity of the senders; large values of receiver rates increase the
protection of the receivers. In other words, it is harder for the attacker to
estimate probabilities related to a receiver which is contacted by a large
number of senders than related to one receiving few messages.

2. The second summand is the rate at which j receives dummy messages from
the mix. The interesting part about this summand is that it can be adjusted
by the mix, to give more protection to a specific receiver j by increasing the
number of dummies addressed to that recipient, i.e., increasing pj,MIX.

3. The last summand depends on the mix parameters and the users’ behavior.
Since αq/αr ≤ 1 and Pλk

≤ 1, when users do not focus their messages
in few others, i.e., pj,i � 1, this summand becomes negligible. However, if
there is no dummy traffic (Pλk

= 1 and δMIX = 0) and no pool is implemented
(αq/αr = 1), this term must be taken into account. In this case εr(j) depends

on the variance of the outputs, i.e.
∑N

k=1 λkpj,k(1 − pj,k), meaning that it
would easier for the attacker to estimate probabilities pj,k of receivers that
get messages from senders whose behavior has low variance (i.e., senders
that always choose the same receiver, pj,k = 1, or users that never send to
a receiver, pj,k = 0). Adding delay or introducing dummy traffic increases
the variance of the output, thus reducing the dependency of the error on the
sending profiles.

The fact that we can differentiate the contribution of i and j in (6) also allows
for a graphic interpretation of the adversary’s estimation error. Figure 2a repre-
sents the values of MSEj,i as a function of i and j, in a scenario without dummies
where for simplicity we have assumed that the sending rates are distributed in
ascending order according to the senders’ index i, and the receiving rates are
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Fig. 2. (a) MSEj,i as a function of i and j in a scenario where λi are sorted in ascending
order and λ′

j in descending order. (b) Comparison of the average MSEj,i along j and i
with and without dummies. (N = 100, M = 100, ρ = 10 000, α = 0.5,

∑
λk = 500. In

(b), δSEND = δMIX = 250).

distributed in descending order according to the receivers’ index j. Fig. 2b shows
the average MSEj,i over j and i, offering a comparison with a system where the
distribution of the dummies is uniform in both the input and output flows: εs(i)
determines the evolution of MSEj,i with i (top) and εr(j) the evolution with j
(bottom). This means that by distributing dummies among sender-based and
mix-based dummies, which in turn modify the value of εs(i) and εr(j), we can
shape the MSEj,i. We use this idea in the next section to design dummy strategies
that satisfy different privacy criteria.

5 Designing Dummy Traffic Strategies

In this section, we study how to distribute dummy traffic in order to guarantee
different privacy criteria. In other words, we aim at finding the values of the
parameters δi for i ∈ {1, · · · , N} and pj,MIX for j ∈ {1, · · · ,M} that maximize a
certain cost function representing some privacy objective. We consider that the
mix performs this optimization and informs each user i of the amount of dummies
δi she must send on average. The implementation of the return channel is left
out of the scope of this paper. We assume that the total number of dummies δTOT
that can be sent on average per round is constrained. We denote the average
number of sender-based dummies on each round as δSEND

.
=
∑N

i=1 δi, and the
average number of mix-based dummies as δMIX. We put no restriction on the
distribution of dummies among senders and mix other than δSEND + δMIX ≤ δTOT.
For notational simplicity, in the remainder of the section we omit the constraints
0 ≤ pj,MIX ≤ 1,

∑M
j=1 pj,MIX, δi ≥ 0 and

∑N
i=1 δi = δSEND in the equations.

In order to keep the optimization problems tractable, we assume that the
contribution of a single user to the total input traffic is negligible (i.e., λi+ δi �
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k=1(λk + δk)) and that users do not focus their traffic in a specific receiver

(i.e., pj,i � 1). In this case, defining the receiver rate of j as λ′
j
.
=
∑N

k=1 λkpj,k,
we can approximate (6) as:

M̃SEj,i =
1

ρ
· 1

αq
· 1

λi
·
(
1 +

δi
λi

)
· (λ′

j + δMIXpj,MIX
)
=

1

ρ
· 1

αq
· ε̃s(i) · ε̃r(j) (10)

5.1 Increasing the Protection of Every Sender-Receiver Relation by
the Largest Factor β given a Budget of Dummies δTOT

In this section we design a dummy strategy that, given a budget of dummies
δTOT, increases MSEj,i of each transition probability pj,i by a factor β ≥ 1 as large
as possible with respect to the MSE when there are no dummies, denoted by
MSE0j,i. Departing from (10) we can formalize this problem as:

maximize
δ1,··· ,δN ,qMIX

M̃SEj,i, ∀i, j

subject to M̃SEj,i = β · M̃SE0j,i, ∀i, j
δSEND + δMIX = δTOT

(11)

Since the effects of the sender-based and mix-based dummies can be decoupled,
we can split the optimization into three subproblems:

1. Find the distribution of δi that increases ε̃s(i) by a factor βSEND for all i.
2. Find the distribution of pj,MIX that increases ε̃r(j) by a factor βMIX for all j.

3. Find the distribution of δTOT between δSEND and δMIX that maximizes the overall
increase β = βSEND · βMIX.

Optimal Distribution of Sender-Based Dummies. We want to find the
distribution of δi among senders that increases ε̃s(i) by a factor βSEND compared to

the dummy-free case. Since ε̃s(i) = 1/λi

(
1 + δi

λi

)
, sending δi dummies increases

the MSE in a factor βSEND = 1 + δi/λi. We can now obtain the sender based

dummy distribution, ensuring the that
∑N

i=1 δi = δSEND, as follows:

βSEND = 1 +
δSEND∑N
k=1 λk

=⇒ δi =
λi∑N

k=1 λk

· δSEND, ∀i (12)

This confirms the intuition given in Sect. 4, that the number of dummies a
user should send to achieve a certain level of protection is proportional to her
sending rate of real messages.

Optimal Distribution of Mix-Based Dummies. Similarly, we want to find
the distribution of pj,MIX among receivers that increases ε̃r(j) by a factor βMIX

compared to the dummy-free case. Since ε̃r(j) = λ′
j + δMIXpj,MIX, assigning send-

ing dummies with probability pj,MIX to receiver j increases the MSE by a factor
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βMIX = 1 + δMIXpj,MIX/λ
′
j . We can now obtain the sender-based dummy distribu-

tion, ensuring that
∑M

j=1 pj,MIX = 1, as follows:

βMIX = 1 +
δMIX∑M
m=1 λ

′
m

=⇒ pj,MIX =
λ′
j∑M

m=1 λ
′
m

, ∀j (13)

As said in Sect. 4, the protection that receivers enjoy is proportional to their re-
ceiving rate. Therefore, to increase all MSEj,is by the same factor, more mix-based
dummies have to be given to those receivers that receive more real messages.

Optimal Distribution of the Overall Amount of Dummies. Using the
distributions obtained, and since

∑N
k=1 λk =

∑M
m=1 λ

′
m, we can write M̃SEj,i as

M̃SEj,i = M̃SE
0

j,i · βSEND · βMIX = M̃SE
0

j,i

(
1 +

δSEND∑N
k=1 λk

)(
1 +

δMIX∑N
k=1 λk

)
(14)

The distribution of the total amount of dummies that maximizes the increase in
M̃SEj,i is therefore δSEND = δMIX = δTOT/2. This result is particularly interesting:
if we are to increase the relative protection of each user equally, the protection
we get from sender-based and mix-based dummies is the same regardless of the
system parameters. That is, assigning all our available dummies to the senders
or to the mix is equivalent in terms of MSE, and distributing the dummies evenly
between the input and output flow is optimal, being the maximum achievable

gain β ≈
(
1 + δTOT

2
∑

k λk

)2
.

5.2 Increasing the Minimum Protection to Every Sender-Receiver
Relation given a Budget of Dummies δTOT

Our second design strategy consists in ensuring that, given a budget of dum-
mies δTOT, the distribution maximizes the minimum level of protection for all
relationships in the system. This implies that dummies are assigned to senders i
and receivers j in relationships whose estimation error MSEj,i is low, in order to
increase the minimum MSEj,i in the system. From a graphical point of view, we
can see this as a two-dimensional waterfilling problem: we need to increase the
lower MSEj,i in Fig. 2a up to a minimum, which can be larger as more dummies
δTOT are available. More formally, we want to solve:

maximize
δ1,··· ,δN ,qMIX

min
i,j

M̃SEj,i

subject to δSEND + δMIX = δTOT
(15)

As in the previous problem, we can separate the problem in three steps:

1. Find the distribution of δi that maximizes min
i

ε̃s(i).

2. Find the distribution of pj,MIX that maximizes min
j

ε̃r(j).

3. Find the distribution of δTOT among δSEND and δMIX that maximizes the mini-
mum MSEj,i in the system.
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Optimal Distribution for Sender-Based Dummies. We aim at finding the

distribution of {δi} that increases the minimum value of ε̃s(i) = 1
λi

(
1 + δi

λi

)
over i, making it as large as possible given the budget of dummies. Formally,

maximize
δ1,··· ,δN

min
i

ε̃s(i)

subject to

N∑
i=1

δi = δSEND
(16)

Let A be the set containing the indices of those senders to whom we assign
dummies, i.e., A .

= {i : δi > 0}. Let ε̃s,MIN be the minimum value of ε̃s(i) we
achieve with this strategy. Then, the following statements are true:

– We do not assign sender-based dummies to those users k whose ε̃s(k) ≥
ε̃s,MIN without dummies; i.e., we only use sender-based dummies to help users
achieve that minimum.

– There is no gain in assigning dummies to a user k if by doing so we are
increasing ε̃s(k) above any other ε̃s(i); every user k ∈ A fullfills ε̃s(k) = ε̃s,MIN.

Given ε̃s(k) = ε̃s,MIN, and to ensure
∑N

k=1 δk =
∑

k∈A δk = δSEND we can get
an expression for ε̃s,MIN:

ε̃s,MIN =
1

λk

(
1 +

δk
λk

)
=⇒ ε̃s,MIN =

δSEND +
∑

k∈A λk∑
k∈A λ2

k

(17)

In order to compute A, we assume w.l.o.g. that the indices are given to users
such that their sending frequencies are sorted in descending order, λ1 ≥ · · · ≥ λN

and we let Ai
.
= {1, · · · , i}. Then, A = An where n is the minimum value that

meets1

1

λn
≤ δSEND +

∑
k∈An

λk∑
k∈An

λ2
k

≤ 1

λn+1
(18)

Finally, we assign

δi =

{
λi (λiε̃s,MIN − 1) , if i ∈ An

0, otherwise.
(19)

Optimal Distribution for Mix-Based Dummies. Similarly, we aim at find-
ing the distribution of pj,MIX among receivers that increases the minimum value
of ε̃r(j), making it as large as possible given the budget of dummies. Using
ε̃r(j) = λ′

j + δMIXpj,MIX, the problem can be formulated as:

maximize
p1,MIX,··· ,pM,MIX

min
j

ε̃r(j)

subject to

M∑
j=1

pj,MIX = 1
(20)

1 If the condition is not met because all 1/λn ≤ ε̃s,MIN(An), then we can assume that
n = N , i.e., all users will send dummies.
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We define the set B as the send of receivers that get mix-based dummies,
B .

= {j : pj,MIX > 0} and the minimum value of our optimization function we
achieve with this strategy as ε̃r,MIN. Then, following the procedure described
above, we get

ε̃r,MIN =
δMIX +

∑
j∈B λ′

j

|B| (21)

where |B| denotes the number of elements of B. If the receiver rates are sorted
in ascending order, λ′

1 ≤ λ′
2 ≤ · · · ≤ λ′

M and Bj
.
= {1, 2, · · · , j}, then the set of

receivers that receive dummy messages is B = Bn where the value of n is the
smallest that meets

λ′
n ≤ δMIX +

∑
j∈Bn

λ′
j

|Bn| ≤ λ′
n+1 (22)

Finally, we assign

pj,MIX =

⎧⎨⎩
1

δMIX

(
ε̃r,MIN − λ′

j

)
, if j ∈ Bn

0, otherwise.
(23)

Optimal Distribution of the Overall Amount of Dummies. In this case
we cannot get a closed-form expression for the optimal distribution of δTOT among
δSEND and δMIX, since it depends on the sizes of the sets A and B. The minimum
M̃SEj,i we achieve is for relationships where both sender and receiver are allocated
dummies. Plugging the distributions (19) and (23) into (10), we obtain

min
j,i

M̃SE =
1

ρ
· 1

αq
· δSEND +

∑
k∈A λk∑

k∈A λ2
k

· δMIX +
∑

m∈B λ′
m

|B| (24)

Optimal values for δSEND and δMIX can be computed by performing an exhaus-
tive search along δSEND + δMIX = δTOT, computing each time the sets A and B
as explained above. It is interesting to note that, if the number of dummies
available is large enough, i.e., δTOT → ∞, every sender and receiver is assigned
dummies. In this case, since

∑N
k=1 λk =

∑M
m=1 λ

′
m, the optimal strategy would

be to distribute the total amount of dummies evenly between the input and the
output traffics, i.e., δSEND = δMIX = δTOT/2.

6 Evaluation

In this section we evaluate the performance of the dummy traffic design strategies
designed in Sect. 5, and validate them against the theoretical bound for the
adversary’s error in (6) through a simulator written in the Matlab language.2

The scope of this analysis is focused on supporting our theoretical findings rather
than comparing our estimator with existing attacks.

2 The code will be available upon request.
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Experimental Setup. We simulate a system with N = 100 senders and M =
100 receivers. The sending frequencies of the users are sorted in ascending order,
in such a way that λi is proportional to i, and the average total number of real
messages sent by all users is

∑
λi = 500. The sending profiles qi are set such

that user i sends messages to herself and all other users k < i with the same
probability, i.e., pj,i = 1/i if j ≤ i and pj,i = 0. This ensures that receiving
rates λ′

j are sorted in descending order. The probability that a message is fired
after each round is set to α = 0.5, and the number of rounds observed by the
attacker is ρ = 10 000. The theoretical MSEj,i for this scenario without dummies
is shown in Fig. 2a. Though not realistic, this experiment is sufficient to illustrate
the operation of the strategies in Sect. 5. The amount of dummies that users
and mix send and their distribution change between experiments. We run four
experiments, two for each dummy strategy in Sect. 5. We repeat each experiment
200 times and plot the average results.

6.1 Increasing the Protection of Every Sender-Receiver Relation by
the Largest Factor β Given a Budget of Dummies δTOT

First, we study the influence of the distribution of dummies among senders and
mix in the factor β that can be achieved with this strategy, when on average
δTOT = 500 dummies per round are available. Figure 3a shows the evolution of
β for different distributions of dummy messages between senders (δSEND) and
mix (δMIX). We see that the maximum increase is achieved when dummies are
divided equally between the senders and the mix, as predicted in Sect. 5.1. We
note that the maximum β in the figure is slightly higher than β = 2.25 that
would be obtained using the approximation (10) used to design the dummy
traffic strategy, meaning that the adversary estimation is worse than predicted
by the theory.

For the particular case where δSEND = δMIX = δTOT/2, we plot in Fig. 3b the
average MSEj,i over i (top) and j (bottom) with and without dummies (note
the vertical axis logarithmic scale). We see that indeed all MSEj,i increase by a
constant factor, β = 2.261. The figure also shows that (6) accurately models the
profiling error.

6.2 Maximizing the Minimum Protection to Every Sender-Receiver
Relation Given a Budget of Dummies δTOT

First, we study the influence of the distribution of dummies among senders and
mix on the maximum minimum MSEj,i that can be achieved with this strategy,
when on average δTOT = 500 dummies per round are available. Fig. 4a shows
the evolution of the average minimum MSEj,i depending on the distribution of
dummies between the senders and the mix. In the scenario considered in our
experiment, the maximum minimum MSEj,i achievable is obtained when approx-
imately 40% of the dummies are assigned to the senders and the remaining 60%
to the mix. This is because, in this strategy, the rate of sender-based dummies
depends quadratically on the real sending rate (c.f. (19)), while the number of
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Fig. 3. (a) Evolution of β with the fraction of dummies distributed among senders
and mix. (b) Average MSEj,i evolution over i (top) and j (bottom) when dummies
are distributed uniformly among senders and mix. (N = 100, M = 100, ρ = 10 000,
α = 0.5, δTOT = 500).

mix-based dummies depends linearly on the real receiving rate (c.f. (23)). Hence,
mix-based dummies can be distributed more efficiently and it is preferable to as-
sign the mix a larger budget than to the senders. We note that this result depends
strongly on the users behavior. In fact, if the real traffic is distributed uniformly
among receivers but few senders generate the majority of the traffic, allocating
a large fraction of dummy traffic to the senders becomes the best option.

This is better shown in Fig. 4b. The top plot shows the MSEj,i along i when
there are no dummies, and when only sender-based dummies are available (δSEND =
δTOT; δMIX = 0). As expected, more dummies increase the minimum MSEj,i, but,
since the average number of sender-based dummies depends quadratically on
the real sending rate, few senders with high rates exhaust the budget, which
constrains the maximum minimum error achievable in the system. On the other
hand, allocating all the dummies to the mix (Fig. 4b, bottom) allows to spread
the distribution of dummies among more relationships, which in turn provides
better overall protection than the previous case.

7 Discussion

In this section we discuss how to adapt the derivation of the least squares esti-
mator in Sect. 3 to scenarios where pool and users’ behavior are outside of the
model considered throughout the document.

Non-static Sending Profiles. In practice users’ behavior is expected to change
over time. Our estimator can be adapted to account for dynamic profiles by im-
plementing the Recursive Least Squares algorithm [17]. This algorithm includes
a forgetting factor, which determines how fast the algorithm “forgets” past obser-
vations. Tuning this parameter, one can choose between getting a high-variance
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Fig. 4. (a) Evolution of the minimum MSEj,i with the fraction of dummies distributed
among senders and mix. (b) Average MSEj,i evolution over i when only sender-based
dummies are available (top), and j when only mix-based dummies are available (bot-
tom). (N = 100, M = 100, ρ = 10 000, α = 0.5, δTOT = 100, 500).

estimator of the recent users’ sending profile or obtaining a more stable long-term
sending profile.

Non-independent Users with Memory. Although our model considers dis-
joint sets of senders and receivers, it can easily accommodate the case where users
both send and receive messages. In this scenario, users’ sending behavior may be
dependent on messages sent or received in the past (e.g., email replies). Given a
model of these interactions between users one can compute the expected value of
the output observations given the inputs, and then proceed with the derivation
of the estimator as in Sect. 3.

Non-static Dummy Strategies. If the probability of sending a real message
(Pλi) changes over time, a per-round probability P r

λi
could be defined. This

dynamic probability can be used in the derivations in the Appendix (c.f. (30))
to account for the effect of this variation on the attacker’s estimation of the
hidden variables Xr

s,i. When the average mix-based dummies (δMIX) or the mix
profile (qMIX) vary over time, an aware attacker can include this behavior in
(26), modifying the expected value of the outputs. Designing adaptive dummy
strategies is left as subject for future work.

Complex Batching Strategies.Our anonymous channel model does not cover
pool mixes whose batching strategy depends on the number of messages in the
pool, such as that used by Mixmaster [12]. However, extending our model to this
scenario is straightforward: the adversary can estimate the average number of
messages in the pool by discarding a percentage of the incoming messages that
are expected to be dummy, and therefore she can get an estimate of the average
number of messages from each user that leave in each round, Xr

s,i. The estimator
would still be formulated as (4).
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8 Conclusions

In this paper, we have proposed a methodology to analyze mix-based anonymous
communication systems with dummy traffic. Following a least squares approach,
we derive an estimator of the probability that a user sends messages to a re-
ceiver. This estimator allows us to characterize the error of the adversary when
recovering user profiles, or individual probabilities, with respect to the system
parameters. Furthermore, it can be used to design dummy strategies that satisfy
a wide range of privacy criteria.

As an example, we have studied the performance of the least squares esti-
mator on a timed binomial pool mix, which enables us to derive qualitative
conclusions about the effects of static dummy traffic on the adversary’s error.
We have used this estimator to design dummy strategies that, given a budget of
dummies, achieve two privacy targets: increase the protection of each sender and
receiver relationship equally, and maximize the minimum protection provided to
any relationship between users. The empirical evaluation of these strategies vali-
dates our theoretical results and confirms the qualitative intuitions drawn in the
performance analysis.

Our methodology improves our understanding on the effect of dummy traffic
on privacy in anonymous communication systems. It can be seen as a step for-
ward towards the development of a systematic method to design dummy traffic,
especially important to evaluate and improve privacy protection in deployed
mix-based systems such as [11, 12].

Appendix A: Derivation of the Expected Value of the
Output Messages Given the Inputs

We aim here at deriving an expression for the expected value of the random
vector of the output observations Y(p) given the input observations U, i.e.,
E {Y(p)|U}. For simplificy, we assume that by the time the adversary starts
observing the system the pool is empty. In practice, the initial messages in the
pool would appear as noise in the initial output observations and its effect can
be disregarded when the number of observations in large, as explained in [13].
For notational simplicity, we also omit writing the conditioning on U explicitly.

In order to relate in a statistical way the input and output flows of the mix,
we follow the abstract model for the timed pool mix in Fig. 1. The different
variables in this model can be related backwards in the following way:

– The number of output messages for receiver j in round r is Y r
j

.
= Y r

λ,j +Y r
δ,j .

We can model the components refering to the real and dummy messages as:
• Given the messages exiting the pool block xr

s,i for every sender i, the
number of real messages leaving the mix Y r

λ,j for each receiver j is the

sum of N multinomials, where qi
.
= [p1,i, · · · , pM,i]

T :

{
Y r
λ,1, · · · , Y r

λ,M

∣∣ xr
s,1, · · · , xr

s,N

} ∼
N∑
i=1

Multi
(
xr
s,i,qi

)
(25)
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• Likewise, given the number of mix-based dummies generated in round r,
xr
MIX, and qMIX

.
= [p1,MIX, · · · , pM,MIX]

T ; Y r
δ,j can be modeled as:{

Y r
δ,1, · · · , Y r

δ,M

∣∣ xr
MIX

} ∼ Multi (xr
MIX,qMIX) (26)

Later, we use: E
{
Y r
δ,j

}
= E {Xr

MIX} · pj,MIX = δMIX · pj,MIX.
– The messages leaving the pool from user i in round r, Xr

s,i, may come from
any of the real messages sent by that user in the current and previous rounds.
We can writeXr

s,i =
∑r

k=1 X
r,k
s,i , whereX

r,k
s,i is the random variable modeling

the number of messages from user i that were sent in round k and leave the
mix in round r (r ≥ k). These random variables can be modeled, given the
number of real messages sent by i in round r, xr

λ,i, as:{
Xk,k

s,i , X
k+1,k
s,i , · · · , Xk+l,k

s,i , · · ·
∣∣∣xk

λ,i

}
∼ Multi

(
xk
λ,i, {Fk,k, Fk+1,k, · · · , Fk+l,k, · · · }

)
(27)

– Finally, given the total number of messages from user i that were sent in
round r, xr

i , the number of real messages sent in that round Xr
λ,i follows{

Xr
λ,i

∣∣xr
i

} ∼ Bin (xr
i , Pλi) (28)

We now compute E {Y(p)}. From (25) and (26), we get E {Yj(pj)|Us} =
Us·pj+δMIX1ρ·pj,MIX and thus E {Y(p)|Us} = (IM ⊗Us)·p+(IM ⊗ δMIX1ρ)·qMIX.
Using this last equality together with the law of total expectation, we can write

E {Y(p)} = E {E {Y(p)|Us}} = (IM ⊗ E {Us}) · p+ (IM ⊗ δMIX1ρ) · qMIX (29)

For notational simplicity, let ŷδ
.
= E {Yδ} = (IM ⊗ δMIX1ρ) · qMIX be the

attacker’s estimation of the number of mix-based dummies sent each round.
Likewise, let Ûs

.
= E {Us} be the estimation the attacker makes of the non-

observable random matrix Us and Ĥs
.
= IM ⊗ E {Us}. In order to compute an

element of Ûs, i.e., x̂
r
s,i, we use the law of total expectation repeatedly

x̂r
s,i

.
= E

{
Xr

s,i

∣∣U} =
∑r

k=1 E
{
Xr,k

s,i

∣∣∣X i
k

}
=
∑r

k=1 E
{
E
{
Xr,k

s,i

∣∣∣Xk
λ,i

}∣∣∣X i
k

}
=
∑r

k=1 E
{
Xk

λ,i

∣∣∣X i
k

}
· Fr,k =

∑r
k=1 x

k
i PλiFr,k

(30)
For compactness, we define the ρ × ρ matrix B, which contains in its (r, k)-
th position the value Fr,k if r ≥ 0 and 0 otherwise; and the diagonal matrix
Pλ

.
= diag {Pλ1 , Pλ2 , · · · , PλN }. Then, we can write

Ûs = B ·U ·Pλ (31)

Plugging (31) into (29), we get E {Y(p)} = (IM ⊗ Ûs) · p + ŷδ; with ŷδ =

(IM ⊗ δMIX1ρ) · qMIX and Ûs in (31), which concludes the proof.
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Abstract. A surprisingly high number of mobile carriers worldwide do not block
unsolicited traffic from reaching their mobile devices from the open Internet or
from within the cellular network. This exposes mobile users to a class of low-
resource attacks that could compromise their privacy and security. In this work
we describe a methodology that allows an adversary to identify a victim device
in the cellular network by just sending messages to its user through one or more
messaging apps available today on the mobile market. By leveraging network
delays produced by mobile devices in different radio states and the timeliness
of push notifications, we experimentally show how our methodology is able to
quickly identify the target device within 20 messages in the worst case through
measurements on a large mobile network.

Keywords: Cellular Networks, Security, Privacy.

1 Introduction

The shift from a peer-to-peer to a cloud-based, centralized communication model has
made todays mobile devices less exposed to many of the network security threats that
characterise desktop computers, such as intrusions through vulnerable listening ser-
vices. This might be one of the reasons why an unexpectedly high number of cellular
network carriers do not block unsolicited traffic from reaching their devices either from
the open Internet, or from within the cellular network itself [18]. Unsurprisingly, this
configuration is far from secure, and could be exploited to provide harm to the net-
work [18], or, most importantly, to compromise the privacy and security of the end
users. For instance, by monitoring the characteristics of the Internet path towards a
mobile device, the user location may be tracked in a fine-grained way [21]. Using a
“stealth-spam” attack like that described by Peng et al. [14], instead, an adversary may
quickly drain the user device battery or data plan with a simple stream of UDP packets.
Finally, an accurate characterization of RRC radio states of the device [17] could be
leveraged to monitor the Internet traffic patterns of the user. Interestingly, these attacks
do not necessarily require a powerful adversary, but can be launched by virtually any-
one who either knows the IP of the victim user device in the cellular network, or, at
least, can individuate a small set of candidate IPs. Given the wide range of IPs that may
be assigned to a device, this may sound like a very strong requirement at first. Actually,
in many cases it is not. In this paper, we describe a methodology that allows to leverage
push-notification services to detect the user IP address in a cellular network.

Our main contributions are the following.

E. De Cristofaro and S.J. Murdoch (Eds.): PETS 2014, LNCS 8555, pp. 224–243, 2014.
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– We define a lightweight methodology for matching users with their IPs in cellular
networks. The methodology leverages the delay patterns produced at different radio
states together with the near-real-time characteristics of push-based services. To
the best of our knowledge, we are the first to show how network delays on cellular
networks constitute an effective side-channel that can be used to undermine user
privacy.

– We show how our methodology works with the most popular instant messaging
apps and is robust with respect to various network and signal-strength conditions.

– We give a precise evaluation of the amount of resources the methodology requires,
both in terms of bandwidth and number of instant messages.

– We experimentally validate our methodology through measurements on over 260K
IPs of a large cellular network and show that it is able to correctly individuate the
user device IP with less than 20 messages.

The rest of this paper is organised as follows. Section 2 introduces the attacker model.
In Section 3 we show how network delays can be used as a side channel to infer the
recent network activity on a remote mobile device. In Section 4, we describe our IP
detection methodology, and present the experimental results in Section 5. Section 6 dis-
cusses the feasibility of our methodology. Related work and future research directions
are presented in Section 7 and Section 8.

2 Attacker Model

We are interested in knowing whether an adversary can detect, in a cellular network, the
IP address of the mobile device of a given user. Note that the IP could be either private
or public, depending on whether the operator deployed NAT or not. In the case NAT is
used, the attack has to be carried out from within the cellular network. If the adversary
owns a popular website, mobile app, or cloud-based service, obtaining the user IP may
be trivial. In fact, such an adversary has a larger number of options to violate end-users
privacy and security, and falls outside the scope of this paper. In our scenario, instead,
the adversary is a malicious small entity, or even a single person that is not necessarily
trusted by the user, but that, at the same time, the user does not perceive as a particular
privacy or security threat because of its apparently limited power. This model, which
is similar to that assumed by Le Blond et al. [11], includes people in the user social
circle (e.g., friends, coworkers) or entities such as the user employer. These are weak
adversaries potentially interested in knowing the whereabouts or habits of the user, or
in provoking the user some kind of damage, such as depleting her monthly data plan or
systematically consuming the smartphone battery for the rest of the day. Adversaries of
this kind may have strong personal reasons to attack the user and, at the same time, may
already have some information about their target that they could use, such as the user
cellular network operator, phone number, e-mail address, phone model (e.g., Android,
iPhone, BlackBerry), or coarse-grained geographical location (e.g., a city, or a state).

Assumptions. Given the above adversarial model, we assume the adversary is some-
one socially close enough to the victim user that they share a connection through a
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social app or service that includes a near real-time messaging facility, such as Facebook
Messenger, Google Hangouts, Skype, WhatsApp, Viber, and SnapChat. Our concept of
social strength is therefore not necessarily measured in terms of real-life friendship but
is much more relaxed. In fact, it is not uncommon for users to have several hundreds of
online friends [1]. Considering how easy it is to establish relationships in some online
services [3], an adversary may even create one or more fake identities to use for the
attack, depending on the case. Another assumption is that the cellular network operator
of the user is known, and that it allows unsolicited traffic to reach the mobile devices
from the Internet or from the cellular network itself. According to recent statistics on
over 180 UTMS carriers worldwide [18], this is true in more than 50% of the cases.
Given that the popularity of cellular network operators in various countries is typically
very skewed, knowing the cellular network operator of the victim user does not repre-
sent an issue. Moreover, getting this type of information from an online friend may not
be hard, considering that, for instance, Facebook has a mobile phone number field in
the contact description. Finally, we do not make strong assumptions about the amount
of bandwidth resources available to the adversary, although there is a relation between
bandwidth and detection time, as we discuss in Section 4.3.

3 Delay-Based Network Activity Detection in Cellular Networks

The cornerstone of our user IP detection methodology in cellular networks is a method
that leverages network delays to accurately infer the transmission patterns of a mobile
device, such as a smartphone. In this section we describe the characteristics of cellular
network radio resource assignment that enable it.

3.1 Radio Resource Assignment in Cellular Networks

Radio resources in cellular networks are allocated to mobile devices in relation to the
volume of data they are sending or receiving from the network. This process is regu-
lated by means of transitions in a Radio Resource Control (RRC) state machine that is
associated to each device [20]. In 3G networks, these states are typically three: IDLE,
CELL FACH, and CELL DCH, corresponding to no, low, or full radio resources allo-
cated, respectively. Transitions from lower to higher resources states are triggered by
some network activity, and are referred to as a promotions. The opposite transitions
are instead referred to as a demotions. Although state transitions parameters can be
independently defined by each mobile network operator [17,18], two general rules al-
ways apply. First, a promotion from IDLE is triggered when any amount of data has
to be transferred, whereas a CELL FACH to CELL DCH promotion is triggered when
the data rate exceeds a given threshold defined by the operator (e.g., 2Kbit/s). Second,
state demotions are triggered from the CELL FACH and CELL DCH state after a period
of no network activity referred to as tail time. Tail times relative to the CELL FACH
and CELL DCH states are operator-defined, although the former is typically longer than
the latter as it consumes less radio and energy resources. As an example, we show the
state machine configuration of a popular network carrier in Figure 1. We can notice
how in this configuration a transition to the CELL FACH state is first required in order
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to get the full-resources available in the CELL DCH state. Other operators may use a
more aggressive configuration, allowing a direct promotion from the IDLE directly to
the CELL DCH state.

CELL DCH

IDLE CELL FACH
Idle for 15 seconds

Send/Receive data
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Fig. 1. Example of RRC state ma-
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Fig. 2. Example of effect of network usage on ob-
served RTT (round-trip time) towards the device

3.2 Inferring RRC States from Network Delay Measurements

The device current RRC state and its responsiveness to network events are tightly re-
lated. This comes for two reasons. First, state promotions, especially those from the
IDLE state, are time expensive, as they require a number of control messages to be ex-
changed between the device and the Radio Network Controller (RNC). Second, a device
in the CELL FACH state typically observes higher delays due to the lower amount of al-
located radio resources and to its lower transmission power. A key observation is that the
extra delays caused by promotions from the IDLE state and by the low resources of the
CELL FACH state are significantly higher than typical network delays, and can be eas-
ily distinguished from each other. To give an example, in Figure 2 we show a sequence
of round-trip time (RTT) measurements performed every 17 seconds towards a device
using the RRC machine state configuration shown in Figure 1. When the device is idle,
the RTTs fall in the [1s, 2.5s) range. Such high delays are not produced at the network
level, but are caused by promotions from the IDLE to the CELL FACH state. Indeed,
RTT measurements are spaced by an amount of time larger than the CELL FACH tail
time, which is large enough to make the state machine transit back to the IDLE state
between measurements. After 5 minutes, a concurrent traffic on the device is generated
with a rate of 0.5 kbit/s, enough to keep its RRC state machine in the CELL FACH state.
In this state, the RTTs drop into the [250ms, 1s) range, although they are still higher than
expected, due to the low resources associated to the device. Finally, when the device is
allocated full radio resources in the CELL DCH state, the RTTs fall in the [0ms, 250ms),
which is the actual network round-trip time between the measuring host and the mo-
bile device. Overall, the strong difference between delays imposed at the various states
makes a single round-trip time measurement a surprisingly robust and effective way to
remotely infer the recent network activity of any given device in a cellular network.

4 User IPs Identification in Cellular Networks

In this section we present a novel methodology that leverages the delay-based RRC
state inference to spot the IP of a target user in the cellular network. With this method,
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an adversary who has some indirect way to produce traffic on the target device can en-
sure it to be in a high-power state (i.e., CELL FACH, CELL DCH) at specific moments,
producing a distinctive network delay pattern on the mobile device. At the same time,
the adversary looks for similar patterns across all the devices of the cellular network
operator. This results in a set of candidate IPs which can be iteratively reduced in size
by repeating the same procedure. The detection methodology, detailed in Algorithm 1,
works in rounds.

Algorithm 1. Pseudocode of the IP identification method

1. INPUT: IP Range, nrounds, Twait
2. for i := 1 to nrounds do
3. RTTs := new map()
4. generate traffic start()
5. for all IP ∈ IP Range do
6. RTTs[IP] := measure RTT()
7. end for
8. generate traffic stop()
9. for all IP ∈ IP Range do

10. if is match(RTTs[IP]) = False then
11. IP Range := IP Range \ {IP}
12. end if
13. end for
14. sleep(Twait)
15. end for
16. return IP range

At each round, the generate traffic function is used to generate traffic on
the target device by sending messages to the its user through an instant messaging
app. In the meanwhile, the current RRC state of all the devices in the IP Range set
is identified by measuring their round-trip times, as explained in Section 3. Round-
trip times can be performed through ICMP echo requests (pings), or by sending SYN
packets to a closed port and waiting for the relative RST packet. At the end of the
measurements, traffic generation is paused and the is match function is used to filter-
out the set of all the devices whose radio was not at a high power state. Aside from
the target device, this includes all the other devices in the network that were using the
radio during the measurement. What enables this methodology to filter them out is the
fact that mobile devices, as opposite to laptops or mobile hotspots, are not likely to
constantly use the network resources for long periods of time, whereas the target device
can be forced to transmit at will.

Methodology Parameters. Our detection methodology takes three parameters, namely
IP Range, nrounds, and Twait. The first one, IP Range, is the initial candidate set
of IPs assigned to the target user device. In case the operator assigns public IPs to its
devices, a simple whois query with the operator AS name or number(s) reveals the
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initial IP set1. In case private IPs are used, the set of potential IPs may be very large,
such as the private 10.0.0.0/8 subnet which is approximately 16M IPs wide. Starting
from the whole subnet does not constitute an obstacle, but it still may slow down the
detection procedure, requiring more rounds to shrink the candidate set of IPs to rea-
sonable values. The initial IP Range set can be considerably restricted if the user’s
coarse-grained geographical location is known. In fact, although the correspondence
between IP address and location in cellular networks is not as strong as in wired net-
works [25], several other network features can be found (e.g., the minimum round-trip
time, and the RRC state machine configuration parameters) to effectively map IP ad-
dresses of mobile devices to a geographic area, like a big city or a state [18]. This would
not require a large amount of bandwidth, and would not violate our attacker model.

The nrounds parameter determines the number of refinements the procedure can
perform. A larger number of rounds helps reducing the candidate set, but, at the same
time, requires a higher number of messages to be sent to the target user. Ideally, the ad-
versary should use the smallest possible number of rounds, depending on his objective.
For instance, to perform a DoS to the user device, the adversary may be satisfied to save
the bandwidth needed for the attack by reducing the IP Range to a few thousand de-
vices, in line with our weak attacker model. For other tasks, the final IP Range should
be smaller. In any case, in Section 5 we show how just 10 rounds are sufficient to reduce
the final IP Range set to a handful of devices.

Lastly, the Twait parameter determines the frequency with which instant messages
are sent to the target user. In general, the higher the frequency, the less time it takes for
the adversary to individuate the user IP. However, a very high message frequency may
make the user suspicious about the adversary’s intent, and may actually require more
rounds (messages) to detect the target device IP (more on this in Section 5). In this case,
a stronger social relationship with the user may help disguising the instant messages as
a regular chat.

4.1 Indirectly Generating Traffic on the Target User Device

Our IP identification method requires the adversary to ensure that, in the time span
the round-trip time to all the mobile devices is measured, the target user device radio
is in a high power state (e.g., CELL FACH or CELL DCH), yielding a distinctive se-
quence of low round-trip times. According to our attacker model (cf., Section 2), the
adversary is able to send the victim an instant message through one or more social mes-
saging apps. These apps typically include a push-notification facility to notify users of
incoming messages in a timely fashion, representing an ideal way to indirectly gener-
ate traffic on the victim user device at specific moments. To confirm this intuition, we
experimentally tested the responsiveness of the push notification systems used by the
most popular messaging apps available on the market today, namely, WhatsApp, Viber,
Google Hangouts, Skype, Facebook Messenger and SnapChat. More specifically, we
measured the time span between the instant the adversary sends a message to the victim
and the instant the victim device actually receives it, forcing the RRC state to be either
CELL FACH or CELL DCH, depending on the configuration (cf., Section 3). According

1 https://www.team-cymru.org/Services/ip-to-asn.html

https://www.team-cymru.org/Services/ip-to-asn.html
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to our measurements, push notifications of all the aforementioned apps alert the user
always within a timespan of at most 5 seconds after the message has been sent, depend-
ing also on the initial RRC state of the device. Push notifications delays are therefore
low enough for the adversary to control the observed delays towards the victim device
in a relatively fine-grained way and with good accuracy. It is worth noticing that we
did not observe any difference in responsiveness between messages sent when the de-
vice is active (i.e., the screen is on and unlocked) or in sleep mode (i.e., the device
has not been recently used, and the screen is off). This allows an adversary to generate
traffic on the device even without the user being immediately aware of it (e.g., when
the phone is muted, or at night). As an example, we show in Figure 3 the sequence of
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Fig. 3. Example of traffic generation on the target device by means of WhatsApp messages. To
detect the CELL FACH state, round-trip times are measured every 17 seconds.

radio states inferred while generating traffic towards a test device through WhatsApp
messages. Round-trip time measurements are spaced by 17 seconds, which are slightly
higher than the tail time of the CELL FACH state in Figure 1. The figure shows how
the state inferred 5 seconds after a message was sent is always CELL FACH (i.e., RTT
∈ [300ms, 1s)). We can also observe how the state machine does not transit back to
the IDLE state when another instant message is sent before the CELL FACH tail time
expires. This is an important detail, as it enables an adversary to extend the time the
target device radio is at a high power at will, if needed. Finally, observe how the traffic
generated by the push notifications may not be high enough to trigger a transition to the
CELL DCH state. The adversary should therefore conservatively assume that the target
device is in the CELL FACH state after a message is received, even though concurrent
traffic on the user device may actually make the radio transit at a CELL DCH state. This
does not represent a limitation though, as the difference between round-trip times at
CELL FACH and at IDLE is high enough to reliably tell the two states apart.

Overall, this experiment shows that a single round-trip time measurement can easily
detect the network activity triggered by an instant message. We argue that, aside from
those we experimentally tested, most of the instant messaging apps available on the
market today can be leveraged, given their real-time nature. In fact, according to our
experience, any messaging app using the Google Cloud Messaging (GCM) push notifi-
cations is a good candidate. This is, for instance, the case of not just Google Hangouts,
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but also of Skype and Facebook Messenger. In principle, other apps may be used too,
such as Facebook, Twitter, or GMail. However, having no strict real time requirements,
their notifications may be delayed by several seconds, or even minutes, making it harder
to detect the user IP.

Setting Up the Attack. As a preliminary step, the adversary should compare the time
it takes to perform a single round-trip time measurement towards the devices in the
IP Range set with the amount of time the traffic generated by the push notifications
can keep the target user device radio at a high power state. Depending on the RRC state
machine configuration, the latter may be the CELL FACH tail time only, or the sum
of CELL FACH and CELL DCH tail times. If this time is too short, the adversary may
need to extend it by sending a sequence of well-spaced instant messages, as we have
shown in Figure 3. To learn the RRC state machine configuration, the adversary can
use the technique described by Qian et al. [17] either remotely or from a device under
his control in the cellular network, as we did for our experiments. If the approximate
geographical area where the victim device resides (i.e., a city, or a state) is not known,
the adversary may need to account for different possible CELL FACH and CELL DCH
tail times. To avoid false negatives, the adversary should conservatively assume that the
shortest tail times are used on the target device. This makes our detection methodology
adaptive to any RRC state machine configuration an operator might use in his network.

4.2 Factors Affecting the Detection Accuracy

For our detection methodology to succeed in real-life scenarios, packet loss and delay
variations caused by cross traffic or wireless signal interferences have to be taken into
account. In this section, we quantify the impact these factors have on the IP detection
accuracy.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  50  100  150  200  250

R
T

T
 (

m
s)

Time (seconds)

Fig. 4. Round-trip time measurements in
presence of cross-traffic produced by a
Youtube video streaming

 0

 0.2

 0.4

 0.6

 0.8

 1

No cross traffic With cross traffic

S
uc

ce
ss

 r
at

e

 

Low RSSI High RSSI

Fig. 5. Probability of measuring a low RTT
(≤ 1s) after a push notification under dif-
ferent signal strength and cross traffic con-
ditions



232 V.C. Perta, M.V. Barbera, and A. Mei

Cross-Traffic. Cross traffic represents a potential issue, as it is well known that, due to
the use of large buffers, it might introduce extra network delay variations. However, the
relative increase in round-trip time produced by cross traffic is still small with respect
to the much higher delays observed when the device is in the IDLE state (i.e., 500ms
against more than 1 second). Only when cross traffic is close to the bottleneck link ca-
pacity for long time, the extra delay can reach the order of seconds [9] and the adversary
could mistakenly infer that the RRC state was IDLE. Given the bursty nature of traffic
in mobile networks [19] we deem this as an extreme scenario. In fact, mobile devices
are typically used for short periods of time, and non-user generated traffic is produced
by background apps and services regularly downloading short updates from the net-
work (e.g., social network status updates, emails, and so on). Moreover, even streaming
apps, which are considered to be resource-hungry services, use temporary buffers to
store up to several seconds of pre-fetched media content. To experimentally confirm
the low impact of cross traffic on our detection procedure, we measured the round-trip
time towards a device under our control that was downloading a Youtube video. This
well represents one of the most intensive network activities that can be triggered by a
user. Results, presented in Figure 4, show that, despite the video being downloaded, for
most of the time the measured round-trip times match very closely those typical of the
CELL DCH state, like those shown in Figure 2. As expected, only a few measurements
show the effect of some queueing delay (e.g., 400ms), but never reach values close to
those typical of the IDLE state.

Wireless Signal Interferences. Due to the loss-recovery mechanisms typically used in
cellular networks, wireless signal interferences can introduce extra delays too. Garcia et
al. [4] have experimentally shown that, in exceptional cases, this can introduce spikes
of delay of up to 400 milliseconds in UTMS networks. These delays are still lower than
the round-trip times generated at the IDLE state, thus not producing false negatives.

Network Packet Loss. Since we can exclude wireless interferences as a direct cause of
packet loss, in typical scenarios we do not expect packet loss to be very high or to last
for long periods of time. To account for sporadic packet losses, if a round-trip time mea-
surement fails, the adversary may conservatively assume the device is in CELL FACH
and keep it in the IP Range set for an extra round.

Experimental Validation. We experimentally evaluated the resilience of our detec-
tion mechanism to all the above factors with a device under our control. In our exper-
iments, we simulated both the traffic generation and detection method by first sending
a WhatsApp message to the target device, and then inferring the RRC radio state after
5 seconds the message was sent in order to account for the time it may take for the
push notification to reach the device. During each test, the device was put under dif-
ferent cross-traffic and signal strength conditions. More specifically, cross traffic was
produced by downloading a Youtube video, as in Figure 4. For what concerns the signal
strength, we tested two different scenarios: One with poor and one with good signal,
corresponding to RSSI ∼ −95dBm and RSSI ∼ −79dBm, respectively. Each combi-
nation of cross-traffic and signal strength was tested 300 times. According to our results,
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shown in Figure 5, measured round-trip times are within the expected threshold in both
cross traffic and poor signal strength conditions for more than 99% of the cases. Given
these results, allowing a small percentage of round-trip times measurement to fail would
make our detection mechanism resistant to a wide range of conditions.

4.3 Scanning the Mobile Operator’s Network

To reduce the number of messages required to be sent at each round, the adversary
should minimize the time needed to measure the round-trip times towards the devices
in the IP Range. For this task, a tool like ZMap could be used. ZMap is a network
scanner by Durumeric et al. [6] that is specifically tailored for performing fast, large-
scale network scans with commodity hardware. As a proof-of-concept we developed an
ICMP echo request (ping) scanner module for ZMap and tested it against the 1.7M IPs
wide address space of a popular cellular network that assigns public, reachable IPs to
its devices. Taking as a reference the 15 seconds CELL FACH tail time in Figure 1, and
the 5 second to be waited before the messages arrive to the device, to perform a single
round-trip time measurement on all the IP space in time would require 46Mbit/s using
ICMP echo packets of 36 bytes. In practice, we observed that the number of IPs that
are active at any given time in the address space is much smaller, that is, around 500K
(30% of the total), which is consistent to what observed by Qian et al. in a U.S. mobile
network carrier public address space [18]. This allows to restrict the initial IP Range
and reduce the bandwidth needed to just 14Mbit/s.
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Fig. 6. Results with different scan strategies

We experimentally verified whether large network scans produce some bottleneck in
the cellular network infrastructure, which could have an impact on the detection accu-
racy. To do so, we compared the results obtained by scanning the whole public IP space
of the operator in two different ways. First, with a simultaneous scan over the whole
address space range. Then, by dividing the address space in smaller chunks (i.e., 65K
devices) and scanning each of them separately, waiting for 30 seconds between subse-
quent scans. The results obtained are shown in Figure 6. In Figure 6a, we can observe
how the number of replies received is in both cases very close to 30%, showing that no
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extra packets loss was introduced during the simultaneous scan. Figure 6b, comparing
the two round-trip time distributions obtained, shows that no relevant extra queueing
delay is produced either.

In Figure 7 we study the relation between size of the IP Range set to be scanned,
the bandwidth available to the adversary, and the number of messages to be sent at
each round to keep the radio of the target device at a high power state for enough time,
according to the state machine configuration of our test operator (shown in Figure 1).
We can observe how, even with lower bandwidths (i.e., 5Mbit/s), just one message buys
the adversary enough time to scan a whole /16 subnet (∼ 65K IPs). As we are going to
show next, the exponential drop in size of IP Range allows to use just one message
per round in the majority of the cases.

5 Experimental Results

We experimentally evaluated our IP detection methodology on a popular cellular net-
work operator which assigns public, reachable IPs to its devices. As the target device,
we used a Samsung Galaxy S Plus. As initial IP Range set, we used four /16 subnets
(i.e., 262K IPs) from which IP addresses are typically assigned to the devices in our
geographical region. The RRC state machine configuration used by the operator in the
area is the one shown in Figure 1. Consistently with our experiments in Section 4.1,
we conservatively instrumented the is match function to keep in the IP Range set
all the devices that are either in CELL FACH or CELL DCH state (i.e., RTT ≤ 1s), as
our push notifications were not necessarily able to trigger a transition to CELL DCH on
the target device. Having fixed IP Range and nrounds, the only parameter left to
be chosen is Twait, which determines the amount of time the adversary waits before
starting a new round. We already discussed the pros and cons of using a low or high
Twait in Section 4, but during our experiments we observed that this parameter has also
a strong impact on the number of rounds required to reduce the IP Range set: The
lower the Twait, the less IP Range is reduced in size at each round. This effect can
be explained by considering that network activity on mobile devices is typically pro-
duced in bursts (e.g., when the device is being used, or when some background service
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downloads an update). Thus, the closer two rounds are in time, the higher is the prob-
ability that the devices that were transmitting (i.e., not in IDLE) at the previous round
will be still transmitting during the following one, and will not be removed from the
IP Range set. Using a larger Twait, instead, increases the probability that the devices
in IP Range go back to the IDLE state between rounds. Starting from this observa-
tion, to test our detection methodology we used three different values of Twait, namely
1, 5, and 10 minutes. We want to stress here that these values are just representative of
what an adversary could use, and that the Twait parameter does not necessarily need to
be fixed. For instance, the adversary may very well disguise the messages sent to the
victim user as a regular chat. In this case, the timings between messages (i.e., rounds)
to the victim could vary according to the conversation.

We performed 5 independent tests for each of the Twait parameters in the timespan
of three days, between 10am to 8pm. The measurement machine was hosted in our
university’s network, and we used the custom ping-probe module for ZMap. Our ma-
chine, an Intel Core2Duo with a 100Mbit network interface, takes around 10 seconds
to perform round-trip time measurement when the IP Range size is maximum (i.e.,
262K IPs), which corresponds to a rate of around 27 Mbit/s. For the instant messages
we used WhatsApp, as it provides a handy API through which automated tests can be
performed. A number of other apps may be used as well, as discussed in Section 4.1. In
order to account for packet losses, if a device stops replying for at most two rounds, we
assume it was in CELL FACH and we don’t remove it from the IP Range set. Finally,
we used 1 second as a round-trip time threshold to detect the IDLE state, consistently
with the experiments presented in Section 4.1.

Results in Figure 8 show the number of remaining candidates in IP Range after
each round, averaged across all the tests. First of all, we can observe how, during the
first round, the size of IP Range suddenly drops from 262K to just around 80K. This
is caused by IPs not always being active, as we already observed in Section 4.3. As
we anticipated, when the Twait parameter is too low (i.e., 1 minute), the size of the
IP Range decreases very slowly with respect to the other two cases, which, instead,
show similar performances. Using wait time larger than 10 minutes may further improve
the results, but would also be more time expensive for the adversary. Surprisingly, with
Twait set to 5 minutes and 10 minutes, in just 10 rounds the IP Range gets reduced
to between 2K and 3K IPs, that is, 7% and 3% of the initial size of the IP Range set.
This result may be good enough if the objective of the adversary is to save the resources
needed to perform a DoS attack against the victim user. For other type of attacks, the
adversary may want to get an even smaller set of candidate IPs of the victim device.
As we show next, this can be achieved with just a slightly more accurate model of the
Internet usage pattern of the victim.

5.1 Monitoring the Network Usage

One characteristic we observed about the set of devices that stay in the IP Range for
more than 10 rounds across all our experiments, is that they are mostly characterised
by periods of network activity that are exceptionally long with respect to those typical
of mobile devices [10,18]. To get a more clear view of this phenomenon, we randomly
selected 10K IP addresses that resulted to be online and measured their round-trip time
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every minute for one hour. Figure 9 shows that around 80% of the devices were found
to be in IDLE for more than 60% of the time. This idle time should be consistent to the
typical traffic patterns of mobile devices [10,18], who are also very limited in terms of
energy autonomy [16]. Following this intuition, we believe that typical mobile devices,
such as smartphones or tablets, are unlikely to exhibit traffic patterns with very long
periods of network activity. In fact, it is reasonable to expect that the cellular network
operator uses its IP address space for other type of services too (e.g., 3G hotspots,
publicly accessible WiFis, 3G USB sticks, and so on). For this reason, the adversary
may safely assume that, in the long run, the target IP will be found to be idle for at least a
Pidle percentage of time, and remove from the IP Range set the devices with a higher
percentage of transmission time. This could computed by keep measuring the round-trip
time of the devices even in the time period between consecutive rounds, that is, when no
message is sent to the user with generate traffic(). After a sufficient number of
rounds, an accurate profile of the network usage over time of the devices in IP Range
can be built and used to filter out devices with an unexpectedly high network activity.
We tested the effectiveness of this profiling technique in our experiments by monitoring
the state of the devices in IP Range every minute and using different values of Pidle.
The results, presented in Figure 10, show that, after 10 rounds, even conservatively
assuming an at most 40% of idle time, we can remove up to 87% of the devices when
Twait set to both 5 and 10 minutes, corresponding to 50 minutes and 1 hour and 40
minutes, respectively. If the adversary can make a stronger assumption on the idle time
of the target device, such as by setting Pidle to be 80%, then the final IP Range set
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gets reduced to just 6 and 3 devices respectively. Using a larger number of rounds helps
further decreasing the possible number of user IPs with a less restrictive assumption on
their idle time. For instance, with 15 rounds, corresponding to 1 hour and 15 minutes
and 2 hours and 30 minutes, assuming Pidle to be 60%, the number of final IPs is less
than 10. We exactly identified the target device IP using 15 rounds and Pidle = 80% or
with 20 rounds and Pidle ≥ 60%. Although we leave a thorough analysis of the typical
activity patterns of smartphones as a future work, our results show that this filtering
technique can achieve a very high accuracy with just 10 or 15 instant messages to the
victim user. Moreover, our results show that using a Twait time of 10 minutes does not
provide a significant advantage. So, if only a limited amount of time is available for the
adversary to restrict the user IP, Twait may be set to 5 minutes.

In general, depending on what additional information is available about the victim,
the adversary will always choose a time window that maximizes Pidle of the target
device during the attack. In fact, there are several scenarios in which the interaction
between a user and the mobile device may be minimum: while driving (maybe during
commute), during lectures (if the target is a student or professor), during trials (if the
target is a judge or lawyer), at night, etc..

5.2 Fingerprinting the Mobile OS

Perhaps surprisingly, the operating system is another information that can be inferred
while measuring the round-trip times towards the devices in IP Range, and that the
adversary can exploit for an easier individuation of the target user IP. This is made
possible by the choice that different operating systems make of the initial time-to-live
(TTL) values to the ICMP echo reply they generate. For instance, the TTL distribution
obtained during a sample scan, reported in Figure 11, is characterised by three steps in
the vicinity of 64, 128 and 255, which correspond to the initial TTLs used by Linux
(including Android) and Apple OSes (TTL 64), Windows (TTL 128), and BlackBerry
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(TTL 255) devices.2 A similar TTL-based fingerprinting technique has been described
by Vanaubel et al. [24]. Interestingly, although they use the same initial TTL, iOS de-
vices can be told apart from Linux and OSX ones by observing that iOS listens for
external connections on the TCP port 62078, which is reported as iphone-sync by
nmap. Thus, using ZMap to perform a parallel SYN scan on this port the adversary
can identify Apple mobile devices with just the same amount of effort and time re-
quired by a round-trip time measurement towards the devices in the IP Range set.
Overall, if the operating system of the victim user’s device is known to the adversary,
this mix of TTL-based and port-based OS detection methods allows to easily restrict
the initial IP Range set, reducing the number of rounds required to find the IP of the
target device. As an example, in Figure 12 (left column) we show the distribution of the
inferred OSes on the initial IP Range we used for our experiments. We can observe
how the low percentage of Windows and BlackBerry devices makes their users partic-
ularly vulnerable to our detection method. For instance, the IP of a BlackBerry user
can be identified with just 15 rounds and Pidle of just 40%. To conclude, notice that, as
the number of rounds increases, the OSes distribution changes considerably (compare
left and right column of Figure 12). In particular, the percentage of Windows devices
after 10 rounds increases more than 4 times, whereas the percentage of iOS devices
decreases. Considering that devices that stay in the IP Range set for several rounds
are those with the lowest idle time (cf., Section 5.1), we deem this as a confirmation of
the intuition that these devices may not be actual smartphones, but, rather, other devices
getting connectivity from the cellular network.

6 Discussion

In this section we investigate the feasibility of our detection methodology, and discuss
alternatives and possible countermeasures.

6.1 Firewalls and NATs

A requirement of our detection methodology is the possibility of directly reaching the
target mobile device in the cellular network. Thus, NATs or firewalls in the path be-
tween the adversary measurement host and the device may constitute an issue. In cellu-
lar networks, these mechanisms are typically deployed at the edge of the Radio Access
Network (RAN), immediately before the public Internet. According to our experience,
further confirmed by recent findings [18], todays’ cellular networks can show a wide
variety of configurations, which differ on whether firewalls blocking unsolicited traffic
towards the mobile devices are deployed, or whether NAT is used (or both). In the for-
mer case, the detection methodology would not work, as the packets needed to measure
the round-trip times would be blocked. In the latter case, the only potential obstacle is
NAT. However, we observed that when mobile devices are assigned an address in the
private IP space, they are still freely reachable by other devices in the same cellular
network, allowing NAT to be circumvented by an adversary that has access to a device

2 We could only use a limited number of BlackBerry phones to confirm their initial TTL value.
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Table 1. Number of mobile network carriers whose mobile devices are assigned public, reachable
IP addresses. Subscribers percentage is a coarse estimation based on publicly available data.

Africa Asia Europe Oceania N. America S. America
# Carriers 5 33 35 3 9 14
Subscribers % 7 56 27 40 54 73

in the target cellular network. Considering that subscribing to a mobile data plan is rel-
atively cheap, we believe this is not a strong requirement, even for reasonably weak
adversaries.

Finding Public IP Operators. To get a more complete view of the cellular network op-
erators worldwide that allow their devices to be directly reached from the open Internet,
we independently collected a list of mobile network operators that assign public, reach-
able IP addresses to their devices. As opposed to previous approaches [18], we used a
centralised approach. As in Section 5.2, we leveraged the fact that iOS devices listen for
external connections on iphone-sync port. This allowed us to spot all the publicly
reachable iOS devices by scanning the entire Internet IP space for hosts listening on
this port using ZMap. The scan took 10 hours, and yielded ∼ 9.4M IPs in 6315 unique
Autonomous Systems (AS) distributed across 189 countries. We were able to associate
∼ 7.5M of these devices (∼ 83% of all the hosts we detected) to 103 among the main
network operators in each country 3, by looking at the name of their originating ASes.
Table 1 gives, the number of operators found in each continent, and their total estimated
share of customers. Given the strong market penetration of iOS devices, we believe this
is a fairly accurate preliminary list of mobile operators that provide unrestricted ac-
cess to their devices from the open Internet. Our results show that the potential number
of users that can be identified with our methodology is far from negligible. In fact, in
all the continents, the mobile carriers allowing a direct access to their devices own a
substantial part of the market share (in terms of number of subscribers). Overall, our
evaluation provides a much broader view of this phenomenon with respect to previous
studies, with a significantly smaller effort. This comes at a price of a lower accuracy.
For instance, associating an AS to its corresponding mobile carrier is not always trivial,
and may require a manual examination of the AS names.

6.2 IP Duration

The amount of time a mobile device is assigned a given IP address in the cellular net-
work is another aspect that may affect our detection methodology. The longer the time,
the easier will be for the adversary to spot the device IP, and greater it will be the possi-
bility to harm the end-user. Typically, the IP address assigned to a mobile device never
changes as long as the device gets not disconnected from the network. This holds for
both cellular networks that assign addresses in the public IP space, and for operators
that, instead, use NAT. In the latter case, the public IP assigned to connections origi-
nating from the device may change in an unpredictable fashion, depending on how the

3 http://en.wikipedia.org/wiki/List_of_mobile_network_operators

http://en.wikipedia.org/wiki/List_of_mobile_network_operators
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network is configured, as also reported by Balakrishnan et al. [2]. This does not con-
stitute an issue, though, because, when NAT is used, the adversary would need to get
access to the private side of the cellular network, where IP typically change only when
a disconnection occurs. For these reasons, the habits of mobile users play an important
role in our attack scenario. For instance, if the user switches to a WiFi network, or turns
the device off, then the device IP will almost surely change the next time a data con-
nection to the cellular network is established. However, even for users that have access
to WiFi during the day, there are still large time windows across the day in which their
mobile devices are connected to the mobile network, such as when the user is on the
move, or in some public place (e.g., a pub), and so on. This is confirmed by a mobile
app dataset used by Qian et al. [18], according to which for more than 80% of the times,
a mobile device is continuously connected to the mobile network for more than 4 hours.
This is a time frame that leaves more than enough time for the adversary to both iden-
tify the user device with good accuracy and to perform a focused attack, like a resource
drain attack [14].

6.3 Alternative Approaches

An alternative to our attack could be that of tricking the user to visit a malicious web-
site under the adversary’s control that keeps a record of the connecting IPs. While this
would require less resources on the adversary’s side, there are two main reasons to pre-
fer our detection methodology. First, it does not assume the active participation of the
victim user, which allows the adversary to detect the device IP even when the device
is left unattended, as mentioned in Section 5.1. This would reduce the chances that the
user takes any countermeasure on time, assuming that the push notifications triggered
by the adversary raise any suspicion at all. This highlights the second advantage of our
methodology, that is, the fact that it is harder to be detected as it leverages the (mislead-
ing?) perception that push notifications represent a safe channel that cannot be exploited
by external adversaries. On the other hand, we believe that being repeatedly asked to
follow a certain link is more likely to raise some suspicion. For this reason, our method-
ology is more suitable in cases where the adversary is interested in attacking the user
multiple times, like in the location tracking scenario mentioned in Section 1.

6.4 Countermeasures

The most obvious countermeasure the operator can implement to block our IP detection
methodology is to deploy a firewall that does not allow incoming unsolicited traffic to-
wards the devices inside the network. From the user’s perspective, this may come at the
cost of limiting the possibility of using P2P applications or of hosting publicly accessi-
ble services in the cellular network. However, this does not constitute a real issue as it
is very uncommon to have such services hosted on mobile devices. From the operator’s
perspective, instead, completely blocking all incoming traffic makes it very difficult to
troubleshoot faults or misconfigurations inside the network. For this reason, a very com-
mon practice is to allow at least ICMP messages in echo-reply mode. We believe that
the most effective way would be to implement a firewall directly on the mobile devices
themselves, without relying on the intervention of the operator. This way, all outgoing
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ICMP traffic and unsolicited TCP connections it could be safely blocked, preventing
an adversary to remotely probe the device. A less obvious but more effective way for
the operator to countermeasure this attack would be to deploy IPv6, with an address-
ing scheme robust to network scanning (e.g., DHCPv6 with non sequential addresses).
Given the huge address space of typical IPv6 subnets, this would make the scanning
unfeasible even if we consider a much stronger adversarial model.

7 Related Work

Our mechanism for inferring RRC states from network delay measurements builds upon
recent findings about the characteristics of cellular network resource allocation. Qian et
al. [17] propose a way to fully characterise the RRC state machine by just externally
probing a device. In [16] they improve on their previous characterisation methodology.
Perala et al. [15] introduce a 3G Transition Triggering Tool (3G3T), to determine RRC
state transition parameters used in 4 target cellular networks across 3 different countries.

A number of attacks on cellular networks have been presented so far. Traynor et
al. [23] study how even relatively small botnets of mobile phones can degrade the net-
work service in large-sized regions. Peng et al. [14] provide a detailed security eval-
uation of the mobile data accounting architecture. They also describe a stealth-spam
attack that drains the mobile data plan of a target user. Lee et al. [12], show that it is
possible to overload the radio network controller in a UMTS network by means of con-
trol messages. Qian et al. [18] present a way to create a map of IPs in a geographical
area that can be used in a focused signaling DoS attack to the network.

Several attacks have been proposed that use network delay as a side-channel. Hop-
per et al. [8] show how round-trip times allow malicious web servers to link client
requests traversing the same circuit in Tor. Ling et al. [13] investigate a network-delay
based side-channel attack to infer web sites accessed by a user trough a VPN/SOCKS
proxy. Gong et al. [7] show how the same information can be inferred from the round-
trip time between a probing host and a home DSL router.

Stober et al. [22] show that an UMTS eavesdropper can identify a smartphones by
means of the network traffic it generates. Le Blond et al. [11] show how inconspicuous
Skype calls can be used to get coarse-grained users mobility over time. Their method
allows to identify the public IP address of a mobile device, which does not correspond
to the actual IP address if the user is behind NAT. On the opposite, our technique works
also from within the private cellular network address space, exposing mobile also users
behind NAT. Moreover, our method is more general, as it can leverage any instant mes-
sage application, Skype included.

8 Conclusions and Future Work

In this work, we presented a novel method that leverages the delay-based radio state in-
ference in combination with real-time push notification subsystems to identify the IP of
a target user in the cellular network. The information obtained in this way represents a
potential threat to mobile users, as it permits even weak adversaries to perform focused
attacks on users using a small amount of resources, such as inferring the user location,



242 V.C. Perta, M.V. Barbera, and A. Mei

depleting the user data plan, or inferring the user Internet activity. Our results, per-
formed on over 260K IPs of a large cellular network, show that, with just 10 messages,
the potential set of IP addresses gets reduced to just 3%. With a more accurate model of
the victim user Internet usage pattern, the target user device can be correctly identified
with just 15 messages. A further improvement can be achieved assuming the OS run-
ning on the target device (e.g., Android, iOS, Windows, or BlackBerry) is known. As
a future work, we are investigating the possibility of using the radio state identification
technique to deanonymize Tor [5] users in the cellular network. In addition, we plan
to evaluate whether remotely monitoring the sequence radio states of a mobile device
can be used to build an accurate fingerprint of the Internet traffic of its user. We believe
our work may introduce a new, more general research direction on delay-based user
fingerprinting on cellular networks, which we intend to explore in the near future.
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Abstract. End-to-end encryption has been heralded by privacy and security
researchers as an effective defence against dragnet surveillance, but there is no ev-
idence of widespread end-user uptake. We argue that the non-adoption of
end-to-end encryption might not be entirely due to usability issues identified by
Whitten and Tygar in their seminal paper “Why Johnny Can’t Encrypt”. Our in-
vestigation revealed a number of fundamental issues such as incomplete threat
models, misaligned incentives, and a general absence of understanding of the
email architecture. From our data and related research literature we found ev-
idence of a number of potential explanations for the low uptake of end-to-end
encryption. This suggests that merely increasing the availability and usability
of encryption functionality in email clients will not automatically encourage in-
creased deployment by email users. We shall have to focus, first, on building
comprehensive end-user mental models related to email, and email security. We
conclude by suggesting directions for future research.

Keywords: email, end-to-end encryption, privacy, security, mental model.

1 Introduction

Email was introduced in MIT’s CTSS MAIL around 1965 [46]. At this point privacy
was not a primary concern. Subsequently, STARTTLS [36,25] led to the deployment of
opportunistic transport layer encryption for email transmission. Recently, more email
providers have started applying it by default, effectively protecting email privacy in
transit. However, email providers themselves, and those who might be able to hack
into the email servers, have full access to our email communication. End-to-end (E2E)
encryption by end-users would protect emails from access by email providers and hack-
ers too. Facilitating tools are readily available, including PGP/OpenPGP [4,10,9], PEM
[30,31,32,33], MOSS [13], PKCS#7 [26], and S/MIME [39,40,41] according to Davis
[14]. However, they generally have minimal real-world application outside of specific
use cases.

The “Summer of Snowden” [23] has put digital security back in the limelight, and
there has been a slew of new proposals for facilitating E2E encrypted secure messaging
(e.g. DarkMail, LEAP, Pond, Mailpile, Brair), but there is, as yet, little evidence of mass
uptake of E2E email encryption. The question that remains is “Why is the use of end-to-
end email security so limited?” Previously, the poor usability of E2E encryption tools
was advanced as the most likely explanation [50,44]. However, usability has improved

E. De Cristofaro and S.J. Murdoch (Eds.): PETS 2014, LNCS 8555, pp. 244–262, 2014.
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in the interim and this might no longer be the primary obstacle it used to be. Other
papers cite interoperability difficulties between different tools and technical problems
as contributing factors [34]. The research question we want to answer is: “which other
explanations, besides the previously highlighted problems, could explain the low uptake
of E2E encryption?” If other reasons exist, they will need to be addressed before we can
hope to increase the uptake of E2E encryption.

To explore other potential explanations, we need to consider more human related
than purely usability aspects because E2E email encryption is undeniably effortful.
Hence the user has to be convinced of the need for E2E encryption, and the rewards
that will accrue as a result [7]. Consequently, it makes sense to study end-user mental
models of email and email security; i.e. do users actually understand the threats to their
emails and do they know which particular threats could be ameliorated by means of
E2E encryption? Note that if users don’t have the correct mental models, or don’t have
any mental model of email architecture and potential threats at all, they are unlikely
to encrypt their emails. If this is so, then in addition to addressing the technical and
usability issues of email encryption, we will have to work on developing the correct
mental models, so that these can eventually lead to a desire to encrypt and subsequent
adoption. Some researchers have reported issues with respect to flawed end-user mental
models in other security related contexts: with respect to anonymous credentials [49],
wrt. firewalls [38,15], wrt. warnings [6], and wrt. mobile security [29]. Thus it is very
likely, that similar issues wrt. mental models related to email, and email security, exist.

We conducted semi-structured interviews with lay people and a survey (containing
the same questions) with a class of computer science students because we chose to focus
on these two different groups to explore their respective end-user mental models. We
anticipated that their mental models would differ given their very different backgrounds.

In order to answer our research question, we proposed seven possible explanations
why people do not generally use E2E email encryption deduced from a natural pro-
gression from awareness, to understanding, to acting (Section 2). These seven possible
explanations were evaluated based on an analysis of the interviews and survey responses
as well as by examining related research literature in the context of usable security and
mental models (Sections 3 and 4). We confirmed six of the seven explanations. Obvi-
ously, in order to change the situation in the future towards more privacy protection in
email communication, all of these need to be addressed. We thus conclude the paper
by suggesting that future work focus on finding ways to address these different themes
(Section 5). Due to the general nature of our findings and proposals, we expect that
amelioration will apply equally to email communication and to other privacy-critical
applications.

2 Proposed Explanations

Here we provide a list of possible explanations for non-uptake of E2E encryption. To
generate these explanations we formulated a developmental pathway to adoption of
E2E email encryption. We identified seven different states starting with general, then
usability-related and then states related to interoperability and technology (see Fig. 1):

1. They do not have any awareness of privacy as a concern.
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2. They are aware of the possibility of privacy violation of their emails but do not take
any action for a variety of different reasons, perhaps because it does not concern
them.

3. They know that the privacy of their emails can be violated but are not aware that
this can happen in transit or at the mail server side. They may subsequently attempt
to protect themselves against client-based threats, but do not use E2E encryption.

4. They know that the privacy of their emails can be violated in transit or at the mail
server side but they do not take any action because they fail to see the need to act.

5. They know that the privacy of their emails can be violated (transit/server) and they
want to prevent this but they do not know how to protect their emails against these
types of threats, i.e. that they should use E2E encryption. They lack the knowledge,
or have only partial knowledge.

6. They are concerned that the privacy of their emails can be violated (transit/server)
and they understand that they can use E2E encryption to prevent this, but they can’t
do it.

7. They are concerned that the privacy of their emails can be violated and they under-
stand that they can use E2E encryption to prevent this, and they are able to do it,
but still they have reasons not to — they get side-tracked for some or other reason.

Fig. 1. Progression Towards E2E Encryption Deployment

For each of these explanations we will examine the relevant research literature and
statements made by the participants in our study to see whether each is supported or
challenged.

3 The Study

We performed an exploratory study consisting of semi-structured interviews, and sub-
sequent qualitative analysis in order to identify users’ mental models of email security
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and thereby to answer the question “Which of the Proposed Explanations for the Non-
Uptake of E2E Encryption Can be Validated?”. The research philosophy of this study
is interpretivistic [51]. This is typical for research carried out where explanations are
sought for activities in natural settings where we hope to make cautious generalisations
based on a study of a limited number of participants. The research approach is inductive,
seeking to construct theories by means of identification of patterns in the data [5].

From 2 to 6 December 20131, we performed 21 interviews in Glasgow, of whom 18
participants consented to having their interview recorded and transcribed. The partici-
pants were a convenience sample of students and staff at The University of Glasgow,
and were recruited through personal and social networks.

The questions in the study were based on several discussion sessions among the
authors. As there is no ‘one’ widely-accepted method for identifying mental models,
we decided to use both drawings with think-aloud and semi-structured interviews in
order to gather both types of data.

Both parts were tested in a pre-study. For the test run, the survey was given to six
people to fill in on paper, and the drawing tasks were also tried in-person with two
individuals, as well as generally asking around to get an impression of people’s frame
of mind. From the pre-study we became aware of unclear question framing. For the
study design we removed stickers with concrete threats (e.g. NSA, anonymous, viruses),
created a custom diagram to be used in the debrief, added think-aloud, updated the
way that questions were asked (e.g. specifically asking about security problems), and
reworked the stickers based on icons from Microsoft Outlook 2013.

For the interviews, first the participant received a warm-up exercise for think-aloud,
was handed the questionnaire, and then the questions were asked while the responses
were recorded over audio. They were debriefed afterwards. These question categories
were included in the study:

Free-hand drawing. Participants were asked to draw the transmission infrastructure
and process that allows an email from a friend to arrive in their inbox. They were
asked if they would change the drawing if they were sending the email, or if the
email was sent by a bank.

Template drawing. In the second stage, a sheet of stickers was given to the partici-
pants, and they were asked to make another drawing of the transmission infrastruc-
ture. They were told they did not have to use all stickers and that they could draw
additional items.

Security problems. Participants were asked what security problems they were aware
of regarding email, who causes these problems, and where they are caused. They
were asked to mark the location where the problem takes place on the diagram
made from the stickers.

Security concerns. They were also asked about their general level of concern around
the security problems of email that they mentioned, which problems they were most
and least concerned about (as well as the reason), and what coping mechanisms they
put in place to deal with the concerns they had.

1 We obtained ethical approval from the College of Science and Engineering at Glasgow Uni-
versity (#CSE01327).
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Demographics. Participants were asked whether they used webmail and/or a desktop
client, which email client they use, their occupation, sex, and age group.

Debriefing and Closing Remarks. At the end of the study the interviewed partici-
pants were debriefed about the true goal of the study.
Permission was requested for a transcript of the recording to be made and used in a
publication. They were also asked whether they were willing to take part in future
studies, and whether they would like to receive a copy of the paper resulting from
this research.

Participants were informed about the topic of the study (transmission of email), but
were not briefed about the precise goal of the study (determining understanding of
email security). Note that we did not mention the concept of end-to-end encryption to
the participants, nor did we suggest that they ought to encrypt their emails. They were
told that they could stop at any time, and that they would not be penalised in any way
for doing so when participating in any courses taught by the researchers.

The interview group consisted of 9 females and 12 males, with 7 individuals in age
group 18-24 and 14 individuals in age group 25-34. Of the participants, 8 used webmail,
11 used webmail and desktop email clients, and 2 weren’t sure.

In addition to the data collected from lay persons, we also wanted to collect data from
computer science students as they ought to have a better understanding of the email
infrastructure and the potential threats. However, due to resource limitations, it was
not possible to conduct and transcribe another twenty interviews, so we administered a
survey containing the same questions to a classroom context. We acknowledge that this
stoppes us from collecting individual think-aloud transcripts or speaking to the students
personally but we did gain valuable insights despite these limitations.

Both the survey and interview groups stepped through the same survey: the same
materials were used for both. The interviewer walked through all questions with the
interview participants. The classroom group completed the survey individually without
assistance.

The survey group consisted of 8 females and 16 males (1 blank answer), with 12
individuals in age group 18-24, 11 individuals in age group 25-34, and 1 individual
in age group 35-44 (1 blank answer). Of the participants, 13 used webmail, 8 used
webmail and desktop email clients, 3 used desktop clients, and one was not sure.

4 Results and Reflection

We performed a qualitative analysis of the results, based on an inductive approach, to
determine which of the explanations could be supported. We independently analysed
our participants’ responses, then conferred in order to agree.

Since this was a qualitative study we, like Wash [48], do not report how many users
alluded to each of the explanations in their statements. We do attempt to give a flavour
of our findings, in order to allow the reader to understand the different mental models
that are revealed by our study.

In the following subsections we report on whether any statements made by the partic-
ipants support or challenge the explanations we advanced in Section 2. We also discuss
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the results in relation to existing findings from the literature. As described in the study
section, we performed the study with two groups: lay people and experts. We did not
detect any differences between the two groups, however, so the rest of this section is an
analysis of both the interviews and the surveys.

4.1 Explanation 1: No Privacy Awareness

A possible reason why E2E encryption is not widely used might be that people do not
have any awareness of privacy as a concern.

Analysis from interviews/survey. We did not find any general evidence for this explana-
tion from the interviews and surveys — the participants were indeed aware of the fact
that their privacy could be violated when using email. Quotes that support the case that
people are aware of privacy are:

“.. it kind of gets more into the privacy of people’s life, somehow”
“it’s just like a virtual ... loss ... of privacy”
“it’s about privacy concern and he is collecting data, and based on that data

maybe he is profiling”
“mitigate by not sending emails containing sensitive information.

In particular, general privacy-related violations were mentioned far more frequently
than specific concerns such as the integrity, authenticity and availability of email. There
is also some evidence that the NSA’s activities have had some influence as shown by
quotes like

“... NSA, a group of intelligence; they are just monitoring normal people”

Findings from literature. In the literature there are similar findings that people are more
aware of privacy violations than of any other type of violations [47]. Few people men-
tioned specific aspects such as integrity and availability in a study into online security
understanding [19]. In a study on connection security, people only considered confiden-
tiality and encryption in their definitions [18]. For smartphones the issue of theft and
loss made availability salient in a study on smartphone security [35].

Summary. While the majority appeared aware of privacy concerns related to email,
there was at least one who did not mention privacy, sensitive data, private data or any-
thing related to this.

4.2 Explanation 2: Privacy Aware, But Not Concerned

Another explanation that can be advanced is that they are not concerned about the prob-
lems even though they are aware of the potential privacy violations that can occur.
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Analysis from interviews/survey. From the interviews and surveys, different reasons
have been identified that may help to explain why people may not see the need to protect
their privacy in the email context even though they are aware of potential privacy issues.
Relevant statements and corresponding quotes from the study are:

Theme 1: Nothing to hide: “And I don’t feel that I have something to [laughs] to
hide, though I don’t like people, uh, getting in my stuff”; “[I’m least concerned about]
[s]nooping. I think that unless I have something to hide it doesn’t bother me.”; “But in
general, I don’t know if that is that, uh, important or is it that interesting. I don’t know.
It, it’s not very sensitive, so the risk is not that high,”; “Given for me as a private person
because I don’t have, you know, so private data which I’m concerned about that no one
ever should read that and I—like 99% of my emails are just formal stuff ”.

Theme 2: No harm “But they are not affected directly.”; “Not to do any harm to me,
rather he is actually collecting data.”; “I think, umm, that would always happen, the
monitoring thing. So, I would say that yeah ... the, the hacking thing is more, more of a
concern.”

Theme 3: They don’t feel important enough “Emails of some high officials, high-
position officials in government so ... they may ... cause problems.”; “I think it just, um,
depends on your personality if you have someone famous.”

Theme 4: Private emails are not critical “I would be more concerned if it was my
official Inbox, of my company, but this I’m, I’m since I am a student and I am right now
only talking about my personal email box”; “I’m talking about personal emails there.”;
“So I think there are possibly two main cyber threats for me as a private person, and
then if you’re an institution or a business company, then there might be more”

Theme 5: Someone else’s responsibility “There has to be the clients, or the, the, the
person providing the client services is responsible for making sure that it’s secure. So
if you have a decent email service provider they should be able to ensure that you can
only see emails that are on your account and you only see emails after you’ve logged
on, and things like that”; ”You-the whole thing about not just email security but the
whole cyber security in general, you have to ... we’re most of the time at the mercy of
the people providing the service.”

Theme 6: Assuming that security is already taken care of “I’m not, I’m not aware
of any, sort of, like, when I’m sending just a general email, umm, I assume [laughs] that
it’s quite safe and it hasn’t been commandeered by an external source, or anything like
that.”; “That’s why it’s personal computer and personal email. That’s-I think that’s the,
the, the worst case scenario if every time I send an email or had a conversation online,
someone else can see it. It’s not good.”; “It works, but I suppose that the securities
during the, during that path we draw before, it should be really h-hard to break, first of
all.”

Findings from literature. Other researchers studying privacy issues in other contexts
such as social networks also concluded that there was often a mismatch between being
aware of privacy issues and taking action. Acquisti and Grossklags found that “even if
individuals have access to complete information about their privacy risks and modes
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of protection, they might not be able to process vast amounts of data to formulate a
rational privacy-sensitive decision” [2]. Users might also be driven by immediate grat-
ification over rational decision-making [1]. Gross and Rosson [24] confirm the attitude
of generally feeling that security was the IT department’s job, not that of their study’s
participants.

Summary. There is plenty of evidence, both from our study and from the literature, that
if people are generally aware of privacy issues with email communication this does not
mean that they will expend the effort to protect their privacy. Thus, we can conclude that
this second explanation is indeed a feasible reason why E2E encryption is not widely
used.

4.3 Explanation 3: Privacy Concerned with Misconceptions

A third possible explanation is that users know that the privacy of their emails can be
violated but do not know that this can happen both in transit and at the mail server.
They may subsequently attempt to protect themselves against other types of threats and
might not use E2E encryption.

Analysis from interviews/survey. Analysing the interviews and the surveys reveals that
neither threats at the email server side in terms of either hacking the server or internals
having access, nor threats on the network, are those that are most often mentioned. The
threats that are most often mentioned are related to password security and malicious
attachments.

Theme 1: Password Issues: Quotes which clearly provide evidence that most people
have password problems in mind when thinking about how to secure email communi-
cation are: “I think this is the main thing, related... basically, if your password is secure
with you, then I think your mailbox is secure.”; “If your password is... you know, falls
into the wrong hands... most concerned obviously is someone getting access into my
mailbox, obviously, by logging in”;

The responses to the question on countermeasures show that people mentioning
password-related threats also mention corresponding countermeasures such as: “Try-
ing to use as many different passwords as possible without keeping, uh, keep forgetting
them.”; “Good password, change password regulary.”; “Set a very good password, in-
cluding numericals and alphabets, lowercase, uppercase, special characters.”;

Theme 2: Malicious Attachment: Quotes indicating that people have malicious at-
tachments in mind when thinking about email related threat are: “files you don’t really
want to . you might receive viruses”; “if you open an attachment which includes viruses
or something like that”; “you can receive any virus”.

Similarly, responses to the question on countermeasures show again that people men-
tioning malicious attachments also mention anti-virus software (e.g.“From the sending
side, well, you might actually, ahh, send something you’re not aware to send somehow,
ahh, or you might actually end up sending emails even though you don’t know it”) or
advocating careful usage as a corresponding countermeasure. Examples for careful us-
age are: “Don’t open any emails from an unknown.”; “I do my own mental virus scan
in my limited abilities, in my head.”.
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Theme 3: Further Mentioned Threats: Other mentioned threats not related to the
server or transit threats are:

– Concerned about security of end-point devices
“I’m not an expert at all but, ahh, got a virus, and for that reason it kept on sending
automatic emails from his ... his email address”, “But for some reason these random
emails pop up and ... on my Hotmail before. I had to cancel it because all these
people were getting emails from me that I had ... um, when I was in the military.
And they were all getting emails, and I hadn’t sent any emails.”.

– Concerned about someone having physical access to their device
“[A]t the university, sometimes I open my mailbox and I just forget to, ahh, sign
out.”;
“I work with my laptop, and sometimes I leave my laptop alone.”

Findings from literature. People in our study were most likely to mention password
security and virus as malicious attachments which is related to Wash’s [48] findings
on “names for viruses models about viruses, spyware, adware, and other forms of mal-
ware [were] which referred to [by everyone] under the umbrella term virus’” [48]. Also
related to Wash’s and others’ findings is that one of the issues with security is that peo-
ple’s s are incomplete i.e. they try to apply countermeasures against those threats they
are aware of and they think these will address all threats.

Finally with respect to encryption in particular, Garfinkel suggests that the trust
model of PGP (Web of Trust) is too hard for many users to grasp [21]. Keller et al.
[27] report that the detailed properties of the cryptographic primitives that are used in
public-key cryptography can be hard to grasp. Additionally the public-key infrastruc-
tures, on which many E2E encrypted email programmes are built, might be difficult to
comprehend: “[T]he usability problems uncovered in the Johnny user study were not
driven by the PGP 5.0 program itself, nor by the lack of training offered within the
program, but by the underlying key certification model used by PGP.” [21].

Summary. While this shows that when people are aware of a concrete threat, in this case
passwords being hacked and malicious attachments, they take or try to take remedial
actions. However, our analysis also provides evidence that some people are not aware
of any other threats and in particular are not aware of threats related to the server and the
transit. Correspondingly there is evidence for explanation 3, that many participants have
various (mis)understandings that direct them towards specific countermeasures that are
not relevant for adoption of E2E encryption.

4.4 Explanation 4: Privacy Concerned, with Sound Understanding, But Does
Not See Need to Act

The fourth possible explanation is that users know that the privacy of their emails can
be violated, and have a sound understanding that this can happen during transit or at the
mail server side, and also know that they can use E2E encryption. However, they do not
take any action for different reasons.

First, we validated whether there were actually people who were aware of threats
related to the server and transmission. There is strong evidence that at least some people
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Fig. 2. Understanding of the email architecture of participant B-24: “here be dragons”

are aware of these threats as the following quotes show (as well as Figure 2): “I don’t
like my personal emails to be accessible by the email provider”, ”it’s always that they
have control on everything”; “It’s a bit strange that Google can read what I am, uh,
sending or, uh, receiving from-from friends, or-or-or partners or businessmen.; “The
data transmission in general, from server to Internet, should... could be, could be a
problem.”; “I would imagine it would be somewhere from leaving her computer to
being out here, and then before coming then in my computer.”

Analysis from interviews/survey. In order to validate this explanation from the inter-
views and surveys, we checked whether people who mentioned threats related to the
server or the transit necessarily saw the need to protect against these threats. We identi-
fied reasons why it might be worthwhile for people to take action themselves to protect
against hackers gaining access to the mail servers, against email service providers hav-
ing access, or even against anyone listening on the network. For each of the three themes
we provide quotes:

Theme 1: No need to protect against hackers gaining access “... or to the server, but
I don’t know how, ... how easy it is to ... have access in the whole server for a company”;
“With the cyber security in place, I think Gmail would not allow someone to get into
its stuff like that. So probably, I might be a little less concerned about that.”; “I’m the
least concerned about hackers. Okay. That’s mainly because I use two-step verifica-
verification on my email, and I will see if it works.”; “I think the server is most sensitive
one, but for me it’s less concern because, um, I care about the money I have to pay and
if I want it very secure I have to invest money.”

Theme 2: No need to protect against email providers having access in general...
“You can say that for security reason it might be useful” [having access to the e-mails];
“But sometimes it looks at patterns and words in the email. Most of them, they will
actually read the email. Maybe then scan through the message and they see things that
sound fishy, they, they can highlight to you that the message looks like it’s not very
genuine”

– ... as they only scan to enable targeted advertisements ... “Who can scan your email
and know the content. And then based an advertising”; “They you need to be able
to parse it, right, for targeted ads”; “Possibly least concerned is if something, uh,
if my email provider is reading or like scripting my emails and therefore showing
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me possible or targeted ads. ... Because to be honest, if I don’t want them I’ll just
switch the email provider.”

– ... as they only access because security agencies require access: “[NSA] they re-
quested Facebook or Google to pass certain information so the problem can appear
here as well when they request them to release certain data or maybe my, ahh, email
service provider, they can also actually access my email and see what’s going on”

Theme 3: No Need to Protect against network related attacks “And there’s always
the chance that it could be intercepted and read, and maybe even duplicated and stuff
like that. [..] So I really don’t see that as a big problem.”

Findings from literature. There is an interesting aspect regarding paying for security
and how much people are willing to pay. Will they accept insecure or less secure ser-
vices as long as these are free? This has also been studied and presented in the literature.
“[I]ndividuals are willing to trade privacy for convenience or bargain the release of per-
sonal information in exchange fore relatively small rewards.” [2], and “Many perverse
aspects of information security that had been long known to practitioners but just dis-
missed as ‘bad weather’ turn out to be quite explicable in terms of the incentives facing
individuals and organisations, and in terms of different kinds of market failure.” [3]. Fi-
nally, the “nothing to hide” fallacy [45] comes across strongly. Conti and Sobiesk [12]
found that many of the respondents in their study also exhibited this perception.

Summary Our data provides evidence that this fourth explanation (that is, that users
know that the privacy of their emails can be violated, and have a sound understanding
that this can happen during transit or at the mail server side, but do not take any action)
is a viable explanation for the poor uptake of E2E encryption.

4.5 Explanation 5: Privacy Concerned, with Sound Understanding, But Does
Not Know How to Act

Another possible explanation is that while people are aware that their privacy can be
violated, are concerned about privacy problems, and see the need to prevent these, they
may not be aware of the efficacy of E2E encryption to protect their communications.
They may believe that other measures are efficacious. Because they do not know, or
are only partially aware, that they can use E2E encryption as a precaution, they do not
use/consider it but may consider other options.

Findings from interviews/surveys. The analysis of the surveys, in particular, revealed
a number of themes why people do not use E2E encryption although they see a need to
protect themselves (against server side privacy violations ans against network attacks).
The identified themes are ‘think there is nothing they can do’, ‘unclear about counter-
measures’, and ‘wrong understanding of encryption’. In the following we explain these
themes and provide quotes for each of the themes:

Theme 1: Think there is nothing they can do: Due to the lack of knowledge about
encryption and, in particular, about E2E encryption, some people believe that they
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cannot prevent email providers from gaining access to their emails. Quotes providing
evidence for this theme are: “Is never gonna change.”; “There’s no solution for that.”;
“It’s always that they have control on everything.”

Theme 2: Other types of (more or less effective) countermeasures: “So whenever,
uh, I have to send some very, like, uh, highly, uh, you know, secret information, I do
not prefer mail. I prefer talking on phone; “Like to split up into different things, and
I would say that send some of them by Facebook, but some of them by emails; “I am
definitely not sending my credit card information or stuff like that or very-very personal
data within, um, an email. I try to do that personally or within different steps.”

Theme 3: Wrong understanding of encryption: Overall, only very few participants
mentioned the term ‘encryption’ at all. Most of those who mentioned it seem to have a
wrong understanding of encryption and in particular E2E encryption as the following
quotes show: “Definitely encrypt the email, make sure I knew it wasn’t a fake.”; “[I’m
aware of problems related to] firewall and cryptography, public and private passwords”
Of particular interest is this statement from one of the participants using https: “The
only thing that I use is I actually enable https for my Facebook, Gmail, etcetera. So I
use secured connection to login, so that like I use SSL and there... it’s a secure.”. This
is only a first step however, and only secures the connection between the device and
the mail provider but does not mitigate against the amail provider or any connection
afterwards as https might not be enabled.

Findings from literature. Wash [48] postulates that people had some idea of some kinds
of threats and tried to use countermeasures that they believed would address the threats
they were aware of. If their threat models are incorrect these countermeasures will prob-
ably not help, but the invisibility of breaches will keep them blissfully unaware of this.
Gross and Rosson [24] reported that the participants in their study had an incorrect and
dated understanding of the actual threats they were subject to. They seemed to conflate
security with functionality in many cases.

Summary. Based on the findings from the interviews and surveys, and the findings
in the literature, we can confirm the explanation that some people do not use E2E en-
crypted email because they are not aware, or do not understand, the protection tech-
niques that are available.

4.6 Explanation 6: Privacy Concerned, Wants to Act, But Cannot

In this subsection we analyse whether the theoretical explanation of “They know that
the privacy of their emails can be violated (transit/server) and they understand that they
can use E2E encryption to prevent this, but they are not able to use it”.

Findings from interviews/surveys. The analysis of the interviews and the surveys does
not provide much evidence that this is actually a reason, i.e. not being able to encrypt
was not something our participants complained about. The only related quote is:

“[Encrypting email is] less effective because not everyone knows to to user this
/ decrypt / etc.)”
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The fact that participants did not mention more related issues might be because we did
not use the term “E2E encryption” in our questions and, in particular, we did not ask our
participants whether they ever tried to use E2E encryption or to relate their experiences
with using it. This omission was deliberate: we wanted to gauge their mental models,
not prompt them by mentioning E2E encryption.

Findings from literature. One of the mantras of the field of usable security is that
security systems are not used because they are too complicated, because people cannot
use them. Whitten & Tygar published their seminal “Johnny” paper in 1999 [50]. They
suggest that security software is intrinsically harder to use than “normal” software [50].

Many of the papers published about email encryption and the difficulties users ex-
perience with it make a basic assumption that the problem is that they can’t encrypt
[50,11,44,20,52,34,43]. This suggests that the user wants to do something but is pre-
vented from doing so by the complexity of the system and the poor design of the
interface. Some researchers have worked on creating better interfaces to address this
problem [17].

Summary. While the Whitten and Tygar paper states that poor usability is discouraging
adoption, many people do not even reach this stage, and are stuck in different mindsets.
Thus, while users with good understanding and motivation may be foiled by poor user
interface design or a lack of technological support, many have different reasons for non-
adoption that will need to be resolved before contributions to the usability challenge
become meaningful.

4.7 Explanation 7: Privacy Concerned, Knows How to Act, Can Act But Does
Not

In this subsection we analyse whether the theoretical explanation of “They know that
the privacy of their emails can be violated (transit/server), and they understand that
they can use E2E encryption to prevent this, and they are able to use the tools, but
they get side-tracked for some reason.’ was mentioned by our participants or by other
researchers.

Findings from interviews/surveys. From the data we collected there is no evidence to
confirm this explanation.

Findings from literature. Users appear to have an over-optimistic bias in their risk per-
ceptions, especially with respect to information security. This self-serving bias is also
related to a perception of controllability with respect to information security threats,
i.e. what we control we consider less risky than that which we do not control [42,37].
Furthermore, interoperability and availability of keys on different devices are issues
mentioned by [34]. Another possibility is that users are simply mimimising effort, and
encryption, being effortful, seems too much trouble.

Dingledine and Mathewson [16] studied the tendency of users to not use security fea-
tures. In general, in case of high effort and only a nebulous nature of the consequences,
it was not used. Unfortunately, it is difficult to compute the cost of security, or even
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the lack thereof [28]. Furthermore, Gaw et al. [22] offers another potential reason. In
the analysed organisation where employees did have the knowledge and ability, email
was not universally encrypted. As reasons they identified that employees considered it
paranoid to encrypt all emails, suggesting a social element to their decision making.

Summary. While there is not much evidence from our interviews and surveys to support
this explanation there is some evidence from the literature supporting this explanation.
It is possible that we would also have identified similar themes from interviews if we
had included people who either do use, or have discontinued using, E2E encryption.

4.8 Summary and Discussion

Table 1 summarises our findings, in terms of whether our explanations were confirmed
by our studies and literature review, or not.

Table 1. Support for the Seven Explanations

Proposed Explanation Literature Participant Statements
1. No Awareness (�)
2. No Concern � �
3. Misconceptions of How to Protect � �
4. No Perceived Need to Take Action � �
5. Needs to Take Action But Does Not Know How to Act � �
6. Inability to use E2E Encryption �
7. Becoming Side-Tracked �

We were not able to find strong evidence for a non-awareness of privacy as an expla-
nation for non-adoption of E2E encryption. However, the gap between theoretical and
practical privacy awareness pointed out by Burghardt et al. [8] could be confirmed in
the context of email from our studies as increased awareness does not have converted
into widespread adoption of E2E email encryption. Their lack of understanding, mis-
conceptions and incomplete mental models of email security (refering to explanation
2-5) meant they did not even think about using E2E encryption. Correspondingly, it is
not too surprising that from the qualitative studies was that not being able or willing to
encrypt (poor usability - explanation number 6 and becoming side-tracked - explanation
number 7) was rarely mentioned by the participants. These misconceptions also explain
why people taking action to protect themselves mainly deploy (traditional) mechanisms
such as secure passwords, anti-virus software, and careful usage. From our data, we
identified three cross-cutting factors that could contribute towards the explanations we
cited in Section 2. The first contributory factor could be their lack of understanding,
misconceptions and incomplete mental models of email security might be that there
was, in general, very little understanding of how email was transmitted and stored and
how the email architecture works. We could observe this from their drawings - e.g. in
Figure 3 (computers directly connecting and email floating across to the recipient) and
Figure 4 (here the lock and key may indicate that users think that more technologies are
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in place than HTTPS, and possibly have an expectation of end-to-end encryption) - as
well as from their statements:

Fig. 3. Examples from first set of drawings

Fig. 4. Examples from second set of drawings

“[I]t’ll go into the sky somewhere, and then it will [go] down to my computer”
“[I]t’s all an invisible process to me. The way that I understand is that you liter-

ally just click send’ then a second later it appears in their inbox [laughs].”
“Umm, well, yeah, this type of thing is actually, ahh, quite a ... a mysterious

thing for me.”

A second contributory factor might be that they lack understanding of the possible
consequences of not protecting themselves. For instance, most of those who were aware
of email providers having full access to their emails rationalised this instead of being
concerned. They advanced several reasons for why this was acceptable, e.g. that it facil-
itated scanning of emails which they considered needed to occur for security purposes
or to allow targeted advertisements (the price they pay for a free email service). Others,
with more understanding and a greater level of concern, often did not act to protect their
privacy because they considered it futile in the face of surveillance actions by power-
ful governments. Interestingly, there did not seem to be significant differences between
mental models held by lay persons and computer science students taking part in our
study.
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A third contributory factor that emerged from our data was that problems might be
attributable to the information sources that inform people generally. Our study provided
evidence for the fact that people gain knowledge primarily via stories told by others or
based on personal experience:

“I have friends that, uh, their per-their personal accounts w-was hacked.”
“And also I think I’ve heard from my friend that they could catch everything

from here [laughs] somehow.”
“[A friend] got a virus, and for that reason it kept on sending automatic emails

from his ... his email address.”

This would explain why many people seem to have an awareness of “good password
practice”, but not about privacy protection using E2E encryption, which has enjoyed
much less attention in the media.

5 Conclusion and Future Work

The Snowden revelations have highlighted the importance of end-to-end encryption as
a privacy preserving tool. We posed the question “Why is the use of end-to-end email
security so limited?”. In order to answer this question, we set out by proposing a devel-
opmental pathway, a progression to E2E encryption, comprising of seven explanatory
states.

We carried out a qualitative study (both semi-structured interviews and a survey) in
order to identify mental models from both lay persons and computer science students.
We considered that this study would serve to confirm or challenge our proposed expla-
nations. We also carried out a literature review to determine whether the explanations
could be verified from the established research literature. We did confirm four of the
seven explanations from our study, and an extra two from the research literature.

As future work it would be beneficial to come up with ways of ameliorating the
situation, finding ways of advancing users along the pathway to awareness, concern,
knowledge, understanding, usage, and eventual adoption. Since we identified flawed or
incomplete mental models in states two to five, specific questions that can be investi-
gated in future to address these mental model related issues could include:

– How can we help users to understand the threats to their emails?
– How can we elicit a sense of concern in end-users with respect to privacy violations

such that they make an attempt to explore privacy preservation tools?
– How can we communicate countermeasures and desirable precautionary behaviours

effectively?
– How can we dispel the “nothing to hide” myth, so that end users do indeed see the

need to act to preserve their privacy once they know how, i.w. better understand the
consequences at least in the long run?

– In general, how can we nurture and foster comprehensive and complete mental
models of E2E to ensure that users want to encrypt, know how to encrypt and, most
importantly, do encrypt.
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Abstract. Freenet, a fully decentralized publication system designed for
censorship-resistant communication, exhibits long delays and low success
rates for finding and retrieving content. In order to improve its perfor-
mance, an in-depth understanding of the deployed system is required.
Therefore, we performed an extensive measurement study accompanied
by a code analysis to identify bottlenecks of the existing algorithms and
obtained a realistic user model for the improvement and evaluation of
new algorithms.

Our results show that 1) the current topology control mechanisms are
suboptimal for routing and 2) Freenet is used by several tens of thousands
of users who exhibit uncharacteristically long online times in comparison
to other P2P systems.

1 Introduction

Systems that allow users to communicate anonymously, and to publish data
without fear of retribution, have become ever more popular in the light of re-
cent events1. Freenet [1–3] is a widely deployed completely decentralized system
focusing on anonymity and censorship-resilience. In its basic version, the Open-
net mode, it provides sender and receiver anonymity but establishes connections
between the devices of untrusted users. In the Darknet mode, nodes only con-
nect to nodes of trusted parties. Freenet aims to achieve fast message delivery
over short routes by arranging nodes in routable small-world network. However,
Freenet’s performance has been found to be insufficient, exhibiting long delays
and frequent routing failures [4].

In this paper, we investigate the reasons for the unsatisfactory performance
of the deployed Freenet. The evaluation of Freenet so far has mainly been based
on theoretical analyses and simulations, relying on vague assumptions about the
user behavior. Such analytical or simulative user models, however, often differ
significantly from reality. We consequently measured the deployed system to shed
light on two critical points. First, we analyzed the topology of Freenet and its
impact on the routing performance. In particular, we considered the neighbor
1 http://www.theguardian.com/world/the-nsa-files
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selection in the Opennet and the interaction between Opennet and Darknet.
Secondly, we measured the user behavior in Freenet with regard to number of
users, churn behavior, and file popularity.

Our results indicate that the real-world topology differs largely from the as-
sumptions made in the design, thus identifying a potential reason for the lack of
performance. Over a period of 8 weeks, we discovered close 60,000 unique Freenet
installations. With respect to their online behavior, the Freenet users exhibit a
medium session length of more than 90 minutes, which is slightly longer than in
other Peer-to-Peer systems. The session length distribution can be well modeled
by a lognormal distribution and a Weibull distribution.

The results were obtained using both passive and active large-scale monitor-
ing adapted to deal with the specific constraints of the Freenet protocol. They
provide new insights into the actual workings of Freenet and can be used to
design improved algorithms.

2 Background

In this Section, we introduce Freenet and present related work on measurements
in P2P systems in general.

2.1 Freenet

Freenet was originally advertised as a censorship-resilient publication system [1,
2], referred to as Opennet. During the last years, the system has been extended
to include a membership-concealing Darknet [3], where connections are only
established to trusted users. Furthermore, the functionalities of Freenet have
been extended beyond simple publication of content: Freesites, complete web-
sites hosted in Freenet, offer the possibility to store and retrieve vast amounts
of information2. An instant messaging system3 and an email system4 have been
built on top of Freenet as well. All of these components use the same application-
independent algorithms and protocols for storing, finding, and retrieving content,
which are discussed in the following. First, we explain how users and files are
identified in Freenet. Afterwards, we discuss how data is stored and retrieved,
before detailing how the topology of Opennet and Darknet is created. Our de-
scriptions are based upon [1,2] for the Opennet, and [3] for the Darknet, as well
as on the source code at the time of the respective measurement.

In Freenet, users and files are identified and verified using cryptographic keys.
A user’s public and private key are created upon initialization of her node and
used to sign published files. In addition, each node has a location, i.e., a key
from the key space that files are mapped to. In analogy to a peer’s identifier in
a distributed hash table, Freenet nodes are responsible for storing files whose
key is close to their location. For files, various keys exist that all share the
2 https://wiki.freenetproject.org/Freesite
3 https://freenetproject.org/frost.html
4 https://freenetproject.org/freemail.html
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same key space derived from the SHA-1 hash function: The content hash key
(CHK ) is the hash of the file itself and can be used for checking its integrity.
Keyword signed keys (KSK s) are the hash of a descriptive human-readable string
enabling keyword searches. The signed subspace key (SSK ) contains the author’s
signature for validating a file’s origin. Recently, SSK s are often replaced by
updateable subspace keys (USK s), which allow versioning of files. Public keys,
required for the validation of signatures, can be obtained directly from the owner
or from Freenet indexes, i.e., Freesites that provide lists of publicly available files,
their descriptions, and keys.

File storage, discovery, and retrieval is based on a deterministic routing scheme,
a distance-directed depth-first search. Unless a node can answer a request, it for-
wards the message to its neighbor whose location is closest to the target key.
Each request is identified by a random message ID enabling nodes to detect and
prevent loops. In case a node cannot forward the message to another neighbor,
backtracking is applied (see [1]).

During a storage request, the file is stored by any node on the path whose
location is closer to the file key than any of its neighbors, by the last node on
the path, and by any node that was online for at least 20 hours during the
last two days. When a file is found, it is sent back to the requesting node on
the inverse path. The contact information of the responding node is added but
probabilistically changed by any node on the path to conceal the origin’s address.
This should provide plausible deniablility, i.e., uncertainty which node actually
provided the file.

In Opennet and Darknet, the overlay topology is established differently. Open-
net nodes send join requests to publicly known seed nodes that forward the request
based on the joining node’s location. The endpoints of such requests can be added
as neighbors. The maximum number of neighbors depends on a node’s bandwidth.
Binding the degree of a node to the bandwidth provides an incentive to contribute
more bandwidth because high-degree nodes receive a better performance on av-
erage.5. Based on their performance in answering requests, neighbors can also be
dropped to make room for new ones. In the Darknet mode, nodes only connect to
trusted contacts,which have to be addedmanually. Instead of accepting newneigh-
bors with close locations, Darknet nodes adapt their location to establish a better
embedding into the key space [5]. Both the neighbor selection in Opennet and the
location adaption in Darknet are supposed to structure the network such that the
probability to have a neighbor at distance d scales with 1/d for d ≥ c > 0 for some
constant c. The design is motivated by Kleinberg’s model: Nodes are arranged in
a m-dimensional lattice with short-range links to those closest on the lattice. Fur-
thermore, nodes at distance x are chosen as long-range contacts with a probability
proportional to 1/dr. Kleinberg showed that the routing is of polylog complexity
if and only if r = m equals the number of dimensions [6]. Consequently, a distance
distribution between neighbors that asymptotically scales with 1/d would be op-
timal for the 1-dimensional namespace of Freenet.

5 https://wiki.freenetproject.org/Configuring_Freenet#Connecting_to_the
_Opennet
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2.2 Related Work

Most scientific publications on Freenet focus on the performance [5, 7] and at-
tack resilience [8–10] of the routing algorithm. Their evaluations are based on
theoretical analysis, simulations, and small-sized testbeds. The simulations in
the original paper are based upon rather unrealistic assumptions such as no or
uniform node churn, uniform content popularity, and uniform storage capaci-
ties [1,3]. So far, only two measurement studies have been performed in the real
system, both with a rather small scope: The first, conducted in 2004, was an
18 days passive monitoring of the connection duration between neighbors. The
average observed connection time was 34 seconds, indicating that Freenet nodes
frequently change neighbors [11]. The second study, aiming at an estimation of
Freenet’s network size, was performed in 2009. For measurement purposes, 80
Freenet nodes were inserted into the network. These nodes were then manip-
ulated to drop and establish new connections at a higher rate to increase the
number of discovered nodes. During 80 hours of measurements, 11, 000 unique
node location were found. The number of concurrently online nodes was mea-
sured to be between 2, 000 and 3, 000 [4]. Hence, measurements on Freent so far
are outdated and focus on single aspects of the protocol or user behavior only.
The results are too general to suggest improvements and provide an accurate
churn model for evaluating them. Alternative designs to Freenet for anonymous
or membership-concealing P2P systems have been discussed in [4, 12–14]. How-
ever, they have not been widely deployed or rely on unstructured systems, which
do not allow efficient resource discovery.

In contrast, there is vast related work on measurements in P2P systems in
general. We briefly summarize their results regarding the user behavior in order
to compare Freenet users to users of large-scale file-sharing networks without
enhanced security protocols. The most frequently studied aspects of such systems
are network size and churn. For the latter, the session length, i.e., the time a
node stays online at a time, is of particular interest. The network size is usually
determined by counting all nodes encountered during a certain time period. A
subset of these nodes is then regularly contacted to track their online time and
then derive a churn model from the observed data. How such a concept can be
realized highly depends on the system under observation. In Freenet, contacting
arbitrary nodes other than a node’s direct neighbors is not possible. Hence,
existing approaches can not be applied directly and are thus not discussed here
in detail. The churn behavior of users has been measured in most large-scale P2P
systems, in particular Napster [15], Gnutella [15], FastTrack [16], Overnet [17],
Bittorrent [18, 19], and KAD [20, 21]. The observed median session length lies
between 1 minute and 1 hour [22]. Measurements indicate that the shape of the
session length distribution resembles a power-law: Exponential [18], Pareto [23],
Weibull [21], and lognormal [21] distributions have been fitted. Our results show
that the Freenet session length can be fitted reasonably well to a lognormal
distribution, but the median online time is slightly higher than in all existing
measurements of P2P-based systems.
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3 Methodology

The data required for addressing most questions could be obtained using passive
monitoring, i.e., using nodes that only observe the system and output additional
log information. The analysis of users’ churn behavior required us to perform
active monitoring, i.e., running instrumented nodes that periodically request
information.

We used Freenet version 1407 for all measurements prior to August 2012,
version 1410 for measurements in September and October 2012, version 1442
for measurements in Spring 2013 and version 1457 for all later measurements6.

In the remainder of this Section, we detail the two different monitoring ap-
proaches and describe how we extracted the desired information from the col-
lected logs.

Locations of monitoring nodes were chosen uniformly at random unless stated
otherwise. More sophisticated placement strategies would require additional
knowledge of the global topology, which is not straightforward to obtain. The
number of monitoring nodes varies over the experiments, depending both on the
type of the measurement (e.g. local samples vs. global information needed) and
the available resources at the time.

3.1 Passive Monitoring

We applied passive monitoring by inserting a set M of monitoring nodes in
the network. They executed the normal code and followed the protocol like any
regular node. We extended the Freenet logging mechanism to store all messages
sent to and received from other nodes. The logged data allowed us to observe
all changes in the neighborhood as well as all requests and the corresponding
replies passing through these monitoring nodes.

Passive monitoring was used to collect data for the analysis of the neighbor
selection, for determining the network size and the origin of users, for investi-
gating file popularity and user activity, and for analyzing the impact of parallel
Darknets.

Distance and Degree Distribution : The goal was to find out if the distances
between neighbors in the overlay actually follow the distribution from Kleinberg’s
model [6]. In addition, we measured the degree distribution, which influences the
routing success observed in the system.

Upon establishing a connection, nodes provide each other with their own loca-
tion and the locations of their neighbors. Whenever the neighborhood changes,
all neighbors are informed of the change. Hence, by logging all such messages,
we obtained the degree of all neighbors of monitoring nodes and the distances
between them and their neighbors. Denote the measurement duration by T . We
took snapshots of the neighborhood of our monitoring nodes each t time units.

Let Gk = (Vk, Ek) be a snapshot after t · k minutes for k = 0 . . .K with
K =  T/t!. The node set Vk consisted of our monitoring nodes M , the neighbors
6 https://github.com/freenet/fred-staging/releases
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of nodes in M , and their neighbors. The subgraph Gk was induced, i.e., the edge
set Ek consisted of all edges between nodes in Vk. We determined the empirical
distance distribution of neighbors as the weighted average over all snapshots. Let
l(e) be the distance between the endpoints of edge e. Recall that for any set A,
the indicator function 1A(x) is 1 if x ∈ A and 0 otherwise. Then the empirical
distance distribution L̂ was computed by

P (L̂ ≤ x) =

K∑
k=0

∑
e∈Ek

1[−∞,x)(l(e))∑K
k=0 |Ek|

. (1)

When obtaining the degree distribution, our own nodes might not represent
a good sample for the average user with regard to bandwidth and uptime. Since
both influence the degree of a node, we only considered the sets Nk(m) \ M
of neighbors of m ∈ M at time t · k. Let deg(v) denote the degree of a node
v. Analogously to the distance distribution, the empirical degree distribution of
neighbors D̂′ was then obtained as 7

P (D̂′ = x) =

K∑
k=0

∑
m∈M

∑
v∈Nk(m)\M

1x(deg(v))∑K
k=0

∑
m∈M |Nk(m)| . (2)

Then, note the probability of being a neighbor of a node is proportional to the
degree of a node. If the degree distribution of the network is D, the degree
distribution D′ of randomly chosen neighbors is given by

P (D′ = x) =
xP (D = x)

E(D)
. (3)

Our measurements provided the empirical degree distribution of neighbors D̂′.
So an empirical degree distribution D̂ was obtained by solving a system of linear
equations based on Eq. 3. Let dm denote the maximal observed degree. The
system of linear equations consisted of dm + 1 equations with dm + 1 variables
P (D̂ = x) for x = 1 . . . dm and E(D̂). The first dm equations were derived from
transforming Eq. 3 to xP (D = x)−P (D′ = x)E(D) = 0. The last equation used
that D̂ is a probability distribution, so that

∑dm

x=1 P (D̂ = x) = 1. The system
of equations thus could be solved using Gaussian elimination.

Darknet : In order to evaluate the impact of small Darknets with few links into
the Opennet, we manually created a Darknet topology consisting of 10 nodes.
These nodes were connected in a ring topology of which 4 nodes established
a connection to a monitoring node m that participated in the Opennet. The
node m logs all file requests and the corresponding responses that pass through
it. Based on the logs, we then distinguish between requests forwarded into the
Opennet by m and requests forwarded into the Darknet. The difference of the
success rate between forwarding to Opennet and to Darknet nodes then indicates
the impact of such small Darknets.
7 It is intended that nodes in the intersection of two neighborhoods are counted mul-

tiple times in order to obtain D̂ from D̂′.
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Network Size and User Origin : We logged Freenet locations, IP addresses and
ports of the Opennet neighbors of monitoring nodes. Each Opennet node is
uniquely characterized by a persistent location, in contrast to Darknet nodes,
which change location in order to adapt to the topology. For the Opennet, we
hence uniquely identify Freenet instances by their location. Note that a user
participating with multiple instances is counted several times. In contrast to the
location, the IP address of a user changes over time. Furthermore, a Freenet
node might advertise several IP port combinations. We logged the IP address
only for obtaining the geolocation of users, not as an identifying feature.

Popularity Analysis : All requests for files seen by a monitoring node were logged,
in particular the routing key of each file. We then obtained a popularity score for
a key k by dividing the number of requests for k by the total number of requests.

3.2 Active Monitoring

We used active monitoring for tracking the online times of nodes. In the active
mode, monitoring nodes periodically sent messages into the network to determine
if a certain node is online. This approach allowed us to determine to what extend
it is possible to track a user’s online time in Freenet. Also, we established a
churn model for Freenet users including session length, intersession length, and
connectivity factor.

Up to September 2012, using messages of type FNPRoutedPing allowed us to
query for nodes by their location. The message is routed through the network
like any normal request. If a node with the specified location is found, a reply
is sent back to the requester. From September 2012, information about nodes
outside of the second neighborhood could only be obtained by using the FN-
PRHProbeRequest. As a reply to this message, one specified information, e.g.
the location or the uptime, about a random node from the network is returned.
The node is chosen by executing an random walk with Metropolis-Hastings cor-
rection for 18 hops, so that every node should be selected close to uniformly at
random 8. Note that the message type FNPRoutedPing clearly allowed track-
ing of nodes, whereas FNPRHProbeRequest abolishes the possibility to query
for a specific node. Hence, we also show that tracking is possible with FNPRH-
ProbeRequest, a message that is still supported by the current Freenet version
(1459 ).

In both approaches, we estimated the session starts S(u) and endpoints E(u)
of a node u based on our measurements. From these sets, we characterized churn
behavior as follows: Let sj(u) and ej(u) denote the j-th smallest element in S(u)
and E(u), respectively. The total time of the measurement was T . The length of
the j-th session of node u was then computed as sessj(u) = ej(u)− sj(u) given
that u is online for at least j sessions. Similarly, the j-th intersession length was
computed as interj(u) = sj+1(u)−ej(u). Session and intersession length provide
information on the reliability of nodes and the amount of maintenance required
8 https://wiki.freenetproject.org/index.php?title=FCPv2/ProbeRequest
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to keep the structure of the network intact. The connectivity factor of a node u is

then defined as the fraction of time u was online, i.e., conn(u) =
∑|S(u)|

j=1 sessj (u)

T .
The connectivity factor is decisive for determining how often a file is available
at a node. Moreover, we analyzed the number of nodes in the network to see if
there are diurnal patterns. The fraction of online nodes for each point in time t

and set of observed nodes Q are given by f(t) =
|{u∈Q:∃j:sj(u)≤t,ej(u)≥t}|

|Q| .

Using FNPRoutedPing. The methodology using FNPRoutedPing was to first
collect locations of nodes and then ping each of those locations every X time-
units. However, pings are routed within the Freenet network and are thus not
guaranteed to find a node even if it is online. We solved this problem by pinging
a node multiple times from different monitoring nodes. The maximal number
of pings per node was chosen empirically such that the probability that a node
would answer at least one of our pings was found to be sufficiently high.

We hence conducted the measurement as follows: First, we distributed our
monitoring M equally in the key space, i.e., at locations i/|M | for i = 0 . . . |M |−
1. We divided n nodes to ping in sets of size n/|M |. Every X timeunits, each mon-
itoring node pinged n/|M | nodes and reported to a central server, which nodes
had answered the requests. Nodes that had not been found were rescheduled to
be pinged by a different monitoring node. After a node had been unsuccessfully
pinged by k monitors, it was considered to be offline. k was chosen empirical by
pinging our own monitoring and choosing k such that an online node would be
detected with probability at least p9. We obtained the session starts and ends
from the logged data as follows: The total time of our measurement was divided
into K intervals I1, . . . , IK of length X . For any node u, we determined a se-
quence of boolean values on0(u), on1(u), . . . , onK(u), onK+1(u), so that oni(u)
is true if u has been detected in interval i = 1 . . .K and oni(u) = false for
i = 0,K + 1. Then S(u) consisted of the start times of all intervals in which
u was discovered but has not been discovered in the proceeding interval, i.e.,
S(u) = {(i − 1)X : i ∈ {1, . . .K}, oni(u) = true, oni−1 = false}. Analogously,
E(u) = {iX : i ∈ {1, . . .K}, oni(u) = true, oni+1 = false}.

Using FNPRHProbeRequest. The methodology using FNPRHProbeRequest
was to send a large number of requests for node locations into the network from
different locations and gather all replies together with a timestamp. A node was
considered offline if no reply from it had been received for at least time τ .

More precisely, we obtained an ordered set R(u) = {r1(u), . . . , r|R(u)|(u)} with
ri(u) ∈ [0, T ] of reply dates for each user/location u. The start of a session was
assumed to be the first time a node had replied after not replying for τ timeunits,
i.e., S(u) = {ri(u) ∈ R(u) : i = 1 or ri(u) − ri−1(u) ≥ τ}. Analogously, the
end of a session was defined as the point in time of the last received reply
E(u) = {ri(u) ∈ R(u) : i = |R(u)| or ri+1(u) − ri(u) ≥ τ}. For choosing
9 We are aware that the estimation is only valid under the assumption that our mon-

itoring nodes are representative for all nodes.
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a suitable value for τ , let req be the number of answered requests per time
unit. Assuming that indeed all nodes are selected with equal probability, the
probability that a node does not respond to any of the req · τ(p) requests is
given by

1− p = (1− 1/n)
req·τ(p) (4)

for a network of n nodes. p ∈ {0.9, 0.925, 0.95, 0.975, 0.99, 0.999} was used. A
low p indicates that the probability to accidentally cut one session into multiple
session is high, in particular for long sessions. With increasing p, the probability
to merge multiple sessions into one increases as well.

3.3 Data Set and Privacy

Our research was conducted in agreement with the German Federal Data Protec-
tion Act (in particular §28 and §40). In order to protect the privacy of Freenet’s
users, we carefully made sure to erase all identifying information from our col-
lected data after computing the necessary statistics. The collected IP addresses
were the potential link between Freenet users and their real-world identity. Note
that the IP addresses were only required for obtaining the geolocation and the
count of diverse IPs, and were deleted afterwards. We did not record the IP ad-
dress in our database for all remaining measurements, in particular the tracking
of users was done solely based on their Freenet location, which is unrelated to
the real-world identity. The recorded data is available upon request.

4 Topology Characteristics

In this Section, we present the results regarding the distance and degree distri-
bution of the Opennet. Using simulations, we then show that Freenet’s current
ID selection fails to provide the desired routing performance. Finally, we discuss
the impact that separate Darknets attached to the main Opennet topology have
on the routing quality of the overall system.

4.1 Distance and Degree Distribution

The number of hops, also called the routing length, needed to discover a file is
essential for the performance of a P2P system. It is mainly influenced by the
number of neighbors a node has and the locations of these neighbors in the key
space.

The distance distribution between neighbors is supposed to be close to Klein-
berg’s model. However, nodes connect to those answering requests independently
of their location, so that we would rather expect the distance between neighbors
to be distributed uniformly at random. The degree distribution is directly related
to the bandwidth of the nodes, i.e., a higher degree should correspond to a high
bandwidth. The degree distribution of neighbors is expected to show nodes with
a degree above average, since they are more likely to be selected as neighbors.
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Setup: The data for this analysis was obtained from a two week measurement
in May 2013 using 12 instrumented Freenet clients.

Results: Figure 1a shows the cumulative distance distribution observed in our
measurements in comparison to the function 1/d for d > 0.01. Indeed, each node
had a high number of close neighbors. However, contacts at distance exceeding
0.05 seemed to be chosen uniformly at random, as indicated by the linear increase
of the distribution function.

With regard to the degree distribution, there are several peaks in the degree
distribution around 13, 50, 75 and 100 (cf. Figure 1b). Indeed, these seem to
correspond to typical bandwidth, e.g. for 2 Mbit/s 100 neighbors are allowed.
Note that we observed nodes with a degree of up to 800, but nodes with a degree
of more than 100 make up less than 1 %. Nodes with a degree of less than 10
are likely to be in the start-up phase since by default a node is allowed at least
14 neighbors.

Discussion: We have seen that nodes have a high number of close neighbors.
These are probably found by announcements sent via the seed nodes and routed
towards a node’s own location. However, the long-range contacts are chosen
uniformly at random, i.e., with a probability proportional to 1

d0 rather than with
probability of 1

d1 . The routing cost when nodes are connected independently of
their locations is of order n2/3 [6].

4.2 Simulation Study of Freenet’s Routing Performance

To illustrate the impact of our previous derivation, we performed a simulation
study of the Freenet routing algorithm.

Setup: We generated a ring topology with 15, 000 nodes corresponding to the
network size estimated in Section 5.1. Each node was assigned a random location
in [0, 1), corresponding to Freenet’s key space. Each node was connected to the
k closest nodes on the ring. In addition, for each node a random integer l was
chosen according to the empirical degree distribution we observed in the Freenet
network. The node was then given d = max{l−2k, 0} long-range contacts chosen
proportional to 1/dr for r = 0 (independent of the distance as in Freenet) and
r = 1 (anti-proportional to the distance suggested by Kleinberg).

Reults: The average routing length was less than 13 hops for an optimal distance
distribution (r = 1), but 37.17 hops for r = 0, i.e., the distance distribution we
found in Freenet. When connecting each node to the 3 closest nodes on the ring,
i.e., k = 3, the average routing length for r = 0 decreased to 28 because progress
was made using the additional short-range links, but the average routing length
for r = 1 increased by 30% to 17 hops. These results show that Freenet’s per-
formance can be drastically improved by, e.g., dropping and adding connections
based on the distance of node identifiers. A Kademlia-like bucket system [24]
could be used to achieve the desired distance distribution while still allowing a
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Fig. 1. Distance Distribution of neighbors, Degree Distribution, and the Degree Dis-
tribution of neighbors

wide choice of neighbors. So, the decision of dropping a neighbor can be made
both on its performance and its location. The number of buckets of the number
of contacts per bucket and hence the degree can be chosen dependent on the
bandwidth a node contributes to the system, in order to retain this incentive of
the current neighbor selection scheme. An alternative approach can be to include
Opennet in the location swapping algorithm used by Darknet nodes, which has
been shown to achieve a Kleinberg-like distance distribution in [5] for a static
network. An in-depth simulation study is required to give concrete guidelines.

4.3 Darknet

We expected that requests forwarded into the Darknet would fail more frequently
because the Opennet node responsible for the requested key is not topologically
close to Darknet nodes with similar locations.

Setup: The measurement was conducted for a duration of 140 hours in April
2014. We manually set up a small Darknet consisting of 10 nodes and connected
two of these nodes to one monitoring node in the Opennet.

Results: In total, the monitoring node received 3, 540, 000 requests and forwarded
47.94% into the Darknetnet. While 8.46% of the requests forwarded into the
Opennet were successful, only 0.08% of the Darknet requests returned the re-
quested resource. Overall, only 4.4% of the requests forwarded by the monitor
were successful.

Discussion: The performance decrease only considers requests forwarded via
our monitoring node, and thus the impact of one small Darknet on the overall
performance is low. However, we have seen that forwarding messages into the
Darknet can clearly decrease the success rates if Darknet and Opennet are only
connected by one link. If such Darknets exist in large numbers, they might
be partly responsible for low success rate of Freenet routing. Including Opennet
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nodes into the location swapping can potentially solve the problem of parallel ID
spaces, but as stated a detailed study is needed to show if the overall performance
is actually improved.

5 User Behavior

In this Section, we present the results of our measurements in Freenet concerning
the actual network size, origin of nodes, churn behavior and file popularity.

5.1 Network Size and Origin

We expected to discover a few thousand of concurrently online nodes, as observed
in earlier measurements [4]. As the main goal of Freenet is to provide censorship-
resilience, we also expected to find users from countries where either Internet
censorship is applied or at least heavily discussed. While in the first case, services
such as Tor [25] or Freenet are needed to retrieve the desired content, the use of
anonymous and censorship-resilient communication might be increased due to a
heightened awareness of potential privacy breaches in the second case.

Setup: Our measurements were conducted for 8 weeks in June to August 2012
using 55 instrumented Freenet clients.

Results: During the eight week measurement period, we observed a total of
58, 571 unique locations. The number of distinct IP addresses was 102, 376. Most
locations were discovered during the first two weeks, afterwards only one or two
new locations were found most days. On some days, however, several tens of
new locations were discovered within one hour. The sudden increase was proba-
bly due to measurement activities by other institutions. Excluding these bursts,
we see a convergence in the number of discovered locations, indicating that we
were aware of most active Freenet clients. The observed difference between the
number of locations and IPs is explained by the frequent use of non-static IPs.
While the increase in discovered IPs is largest in the first days, the numbers
grow constantly throughout the measurement, as can be expected if active users
regularly change their IP. In addition, nodes can advertise more than one IP
address at a time. Whereas the majority of nodes (84.4%) had only a single IP
address over the whole period, about 10% advertised 2 and 3.6% 3 different IPs.
On a closer look, nodes with more than 10 IP addresses were commonly located
at universities, but also at the Tor proxy network TKTOR-NET, indicating that
some users aim to hide their IP address in the Opennet by using Tor. At the time
of the measurement, TKTOR-NET provided three exit nodes that participated
in Freenet. IPs from various anonymous VPN were discovered as well. The dis-
covered nodes were mainly traced back to Europe and North America, as can be
seen in Figure 2. Nearly a quarter of the discovered installations were located in
the USA, an eighth in Germany. Together with France and Great Britain, these
countries made up more than half of all encountered nodes.
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Fig. 2. Distribution of Freenet nodes over
countries

p τ (p) θ(qi(p)): mean,min,max
0.900 3:27 0.993,0.989,0.996
0.925 3:53 0.993,0.989,0.996
0.950 4:29 0.992,0.989,0.995
0.975 5:31 0.991,0.987,0.994
0.990 6:54 0.989,0.983,0.993
0.999 10:22 0.984,0.979,0.989

Fig. 3. FNProbeRequest Statistics:
Time τ (p) without reply until a node is
declared offline, and the estimation qi(p)
of detecting an online node

Discussion: Our results show that Freenet is widely used. We discovered close
to 60,000 active Freenet installations. So there clearly is demand for privacy-
preserving communication and publication. Nevertheless, the typical Opennet
user does not seem to be located in countries typically associated with Internet
censorship. However, our study does not shed light on Darknet and Tor users.

5.2 Churn

In this Section, we discuss and compare the results for the two methods to
measure churn behavior in Freenet introduced in Section 3.2. In all measurement
studies of file-sharing systems, very short medium session length of less than 1
hour were observed. We expected to see such short sessions as well, corresponding
to down- or uploads of one specific data item, especially if the content is sensitive
and online times are short to minimize the risk of capture. However, Freenet users
are advised to leave their clients running for at least 24 hours, so that we expected
a comparable high fraction of long session as well. For both measurements, we
first state the set-up and the results, but leave the discussion until the end of this
subsection. In addition, we shortly discuss both the accuracy of our measurement
as well as the additional load on the network created by the measurement.

Setup: The first measurement study was used to analyze the long-term behavior
of a large set of nodes over more than a month, identifying daily and weekly pat-
terns. The second measurement was needed because nodes were not contacted
frequently enough to provide an accurate description of the session length distri-
bution. The differences in the methodology were due to a change in the Freenet
code between the first and the second measurement, which abolished the FN-
PRoutedPing message used for locating specific nodes.

Using FNPRoutedPing. We performed the measurements querying every
node at most k = 5 times. In order to observe the long-term behavior of nodes,
the measurement period was chosen to be X = 1h. The value of k was chosen,
such that our own nodes replied with a probability of 99.9%. The measurements
were executed over a period of 28 days in August and September 2012 using 55
instrumented Freenet clients.
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Fig. 4. Churn characteristics using FNPRoutedPing for node discovery

Results: The session length distribution is shown in Figure 4a, using bins of
1 hours in agreement with our measurement period. The majority of session
lasted less than two hours, only 1.7% of the sessions lasted longer than 100
hours. The longest observed session was 357 hours. Note that there was a drop
in the session length at about 8 and 17 hours, most probably because some nodes
are only online during certain parts of the day.

The inter-session time follows a similar distribution: Roughly 10% of the inter-
sessions are between 1 and 2 hours. Potential reasons are the missed probing due
to the probabilistic nature of the measurements, crashes, and short-time connec-
tivity breaks, e.g., when moving a laptop from home to work. Furthermore, there
is a peak at the about 8 hours, in agreement with the corresponding peak of ses-
sion length of roughly 16-17 hours. The results indicate that some users only
run their clients during the day. The average connectivity factor of all nodes was
rather high, namely 0.19.

The average number of discovered nodes was 3, 207 of the 15, 503 pinged
nodes. The number of discovered nodes over time can be seen in Figure 4b.
Diurnal patterns can be clearly identified. There was a maximum in the number
of users at 10 PM CEST and a minimum at 10 AM CEST. In general, the
number of online nodes in our sample varied between 2, 500 and 3, 600. So the
network size changed periodically, but not drastically.

Accuracy and Load: The session length is only estimated within an accuracy
of 2X = 2 hours, hence we only considered the long term behavior in this
measurement. Note that the results represent a lower bound on the fraction of
long session because nodes can be accidentally declared offline during a session.
As for the measurement cost, we found that without an measurement, a Freenet
node forwarded on average around 13, 000 file requests and replies per hour, not
considering maintenance costs. The average maintenance traffic produced by our
measurement was less than 500 messages per node per hour.
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Fig. 5. Session length for a) all considered p, and b) p = 0.99 fitted to common session
length models, c) inter-session length, and d) connectivity factor

Using FNPProbeRequest. The measurement was conducted in November
2013 over a period of 9 days using 150 instrumented clients. We varied p, the
lower bound on the probability that an online node replies within a time τ(p),
between 0.9, 0.925, 0.95, 0.975, 0.99, and 0.999 as described in Section 3.2. Our
monitoring nodes received at least req = 10, 000 replies per minute. Choosing
τ(p) according to Eq. 4 with an estimate of n = 15, 000 resulted in intervals of
roughly 3 (p = 0.9) to 10 (p = 0.99) minutes as can be seen in Table 3. Note
that p is a lower bound on the probability to discover a node since we consider
a lower bound on req and an upper bound on n.

Results: The median session length of the second measurement was between 49
to 110 minutes, depending on p. In particular, the median session lengths for
p = 0.975 and p = 0.99 were 95 and 99 minutes, respectively. The distribution
of the session length is shown in Figure 5a. We fitted the distribution to the
most commonly used models for the session length (e.g., [21]), in order to see if
they provide adequate accuracy to be used as models of Freenet user behavior
in simulations. The non-linear least square fit function in R10 was used to fit
10 http://stat.ethz.ch/R-manual/R-patched/library/stats/html/nls.html

http://stat.ethz.ch/R-manual/R-patched/library/stats/html/nls.html
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the distribution for p = 0.99: an exponential distribution with cdf 1− exp(−ax)
for a = 4.086 · 10−3, a shifted Pareto distribution 1− (1 + x/b)−a for a = 1.054
and b = 116.3, a Weibull distribution 1− exp(−(b ∗ x)a) for a = 0.4788 and b =
5.355·10−3, and a lognormal distribution Φ((log(x)−a)/b) for a = 4.5773610 and
b = 1.8235325 with Φ denoting the cumulative normal distribution. The residual
errors were minimized for the Weibull distribution (about 8 · 10−3). However,
the lognormal distribution also achieved an residual error of only 0.019. The
error of the lognormal distribution is mostly due to its underestimation of the
fraction of short sessions, as can be seen from Figure 5b. Since the session length
was underestimated by our measurement methodology in general, the error is
acceptable and can be seen as a correction. The fitted Weibull distribution, on the
other hand, overestimated the fraction of short sessions, while the exponential
and Pareto distribution did not model the shape of the distribution accurately.

The distribution of the inter-session length is displayed in Figure 5c. The
median inter-session length varied greatly between less than 10 minutes (p = 0.9)
and close to 6 hours (p = 0.999). All distributions show a strong increase in the
distribution function of the inter-session length at roughly 8 to 10 hours as well
as at roughly 16 to 17, indicating that a lot of users only run their clients during
certain hours of the day. Due to these spikes, the inter-session length could not
be fit to any of the standard models. The distribution of the connectivity factor,
displayed in Figure 5d, shows that most users were online during a small fraction
of the measurement, but also more than 5% of the users have a connectivity
factor of nearly 1. Note that in contrast to the session length, the results for the
connectivity factor are very close for all p, due to the fact that the overall online
time is not largely influenced by splitting one session into multiple sessions. The
average connectivity factor is around 0.22.

Accuracy and Load: We show that indeed our method selected nodes uniformly
at random, and captured more than 98% of all online nodes. As stated in Section
3, assuming that the htl counter is set high enough, all nodes should reply with
roughly equal probability. In particular, the number of requests answered by our
monitoring nodes should be approximately normal distributed. We performed
a Kolmogorov-Smirnoff test, which indicates a normal distribution (p-value of
roughly 0.06). So nodes seem to be selected uniformly at random, which allowed
us to obtain a lower bound on the probability of detecting an online node as
follows. The size of a static network can be estimated by performing two sam-
ples and considering the size of their intersection [26]. Note that in a dynamic
network only a lower bound is obtained since the population changes in consec-
utive intervals and the intersection consists of at most all nodes online in both
intervals. We split the measurement period into intervals of length τ(p), and de-
termined the sample Ai of all nodes responding to a probe in interval i. We then
computed the fraction of the intersection fi =

|Ai∩Ai+1|
|Ai∪Ai+1| . For the probability qi

to sample a node during interval i. The probability that a node is sampled in
interval i and i + 1 is qiqi+1, and the probability that it is sampled in at least
one interval is 1− (1− qi)(1− qiqi+1). For a static network and constant qi, the
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expected value of fi would be E(fi) =
q2i

1−(1−qi)2
. We hence obtained an unbiased

estimate θ(qi) = 2fi
1+fi

by transforming fi =
q2i

1−(1−qi)2
. The values computed

for mean,minimal, and maximum θ(qi) over all intervals exceed 0.98 (but for
the minimum in case of p = 0.999 as displayed in Table 3), so that indeed we
captured the majority of online nodes per interval. For long intervals τ(p), the
estimate on the accuracy decreases below p since the changes in the population
outweighed the improved accuracy of an increased number of probes. However,
the probability to be detected in every interval decreases exponentially with the
session length and the reciprocal of interval length τ(p). For a probability of 0.98
to detect a node, the chance to be accidentally declared offline during 1 hour
(more than 15 times τ(p)) is still close to 30 % for p = 0.9 and p = 0.95, explain-
ing the short median session length for low values of p and the high number of
short intersessions of less than 10 minutes. Hence, the higher values

The overhead produced by FNPRoutedPing is about 2000 messages per hour,
which makes up a noticeable but not large fraction of the roughly 13, 000 requests
and replies that need to be processed normally.

Discussion: We conducted two measurements. The first one was a long-term
measurement over more than 4 weeks, in order to find diurnal and weekly pat-
tern. We found that the fraction of long sessions was considerably higher in
Freenet than in BitTorrent. Pouwelse [19] found that at most 3.8% of BitTor-
rent users stay longer than 10 hours and only 0.34% longer than 100 hours. In
comparison, we observed close to 2% of sessions lasting longer than 100 hours.
We clearly observed diurnal patterns, though they are not as distinct as in other
applications, such as in Facebook [27]. The second measurement study was con-
ducted to obtain more fine-grained results on the session and inter-session length,
in order to evaluate the applicability of common churn models used in simulators.
We discovered that the session length is reasonably well modeled by lognormal
or Pareto distributions, but not by a Weibull or exponential distribution. In
contrast, Stutzbach’s results from 2006 indicate that churn in structured P2P
systems is well modeled by lognormal and Weibull distributions [21]. The median
session length was 4 hours in the first measurement, but less than 2 hours in
the second measurement. Potential reasons are the high inaccuracy of the first
measurement. For example, a session length of slightly more than 2 hours can
accidentally be declared as 3 hours. Furthermore, nodes are only pinged every
hour, so that short inter-sessions can be missed. However, both measurements
indicate a longer median session length than the 1 to 60 minutes observed in
Napster [15], Gnutella [15], FastTrack [16], Overnet [17], Bittorrent [19], and
KAD [20,21]. The inter-session length could not be modeled by commonly used
distributions such as Pareto, because both measurements exhibited local max-
ima at about 8 and 16 hours. Such behavior has not been remarked in the related
work, to the best of our knowledge. In summary, our results indicate that Freenet
users are online longer than users of common file-sharing applications. Further-
more, clear diurnal patterns can be observed by considering the number of online
nodes and the inter-session length.
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An ulterior result of the churn analysis is that the online time of nodes can
be reliably tracked, even without the possibility to ping a specific node. In this
measurement, we only tracked the nodes by their location. However, locations
of Opennet nodes can be mapped to IP addresses by inserting monitoring nodes
in the system and tracking the location and IP of neighbors as presented in Sec-
tion 5.1. The knowledge of online time now enables intersection attacks on the
anonymity [28]. As a consequence, the seemingly harmless FNPProbeRequest,
which returns information of a random node in the network, can potentially be
abused for harming the anonymity. Because the focus of our study was the effi-
ciency rather than the security of the system, we did not perform a detailed study
on the potential damage. However, the reliability in tracking our own nodes in-
dicates that FNPProbeRequest should be removed from the set of Freenet’s func-
tionalities. It mainly seems to be used by Freenet developers to obtain statistics
about the network, but as seen above, the data is poorly anonymized and can
be potentially abused.

5.3 File Popularity, User Activity, and Content

The popularity of files in file-sharing systems is assumed to be Zipf-distributed,
i.e., the majority of requests address a small number of files. In contrast to P2P-
based content distribution systems, Freenet provides the storage and retrieval
of Freesites and blogs, which are clearly different from regular popular media.
Hence, it is unclear if the aforementioned properties also hold for Freenet.

Setup: The measurement was conducted in Autumn 2012 using 11 instrumented
Freenet clients. Their locations were chosen uniformly at random.

Results: During the measurement, we logged several hundred thousands of file
requests. The 1,000 most popular files all received more than 21,000 requests,
indicating that the majority of regular Freenet users requested those files. Our re-
sults indicate a Zipf-distribution for file popularity in agreement with the results
on BitTorrent [20,29]. The most popular file accounts for 0.73% of seen requests,
the second most popular file only for 0.45%. The 30-th popular file only accounts
for 0.25% of the requests. Hence, after the fast decrease in popularity for the
first files, the decrease is then slower and steadier.

Discussion: Our analysis of file popularity and user activity mostly agrees with
the common assumptions. There are few very popular files, and the majority
of the files is not requested frequently. Similarly, most files are published by a
small set of users. We did not fit the popularity distribution, since local caching
of popular files is bound to reduce the number of actually observed requests for
popular files in comparison to less popular files. Consequently, our measurements
underestimate the popularity of popular files, and the actual numbers are not
reliable. However, the existence of a Zipf-like distribution can be assumed from
the results, even if the actual shape of the distribution is skewed. Hence, the
Least-Recently-Seen caching used in Freenet and designed for such popularity
distributions should be very effective.
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6 Conclusion

We showed how to conduct measurements in Freenet despite its obfuscation pro-
tocols. The results verify that the routing in Freenet is insufficient with regard
to the neighbor selection and the interaction between Opennet and Darknet.
Furthermore, we obtained a realistic churn model of Freenet users. In the fu-
ture, we aim to evaluate our proposed neighbor selection and routing algorithms
in a trace-driven simulation model based on the user behavior measurements
and integrate them into the Freenet client code.
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Abstract. Given current research initiatives advocating “clean slate”
Internet designs, researchers have the opportunity to design an internet-
work layer routing protocol that provides efficient anonymity by decou-
pling identity from network location. Prior work in anonymity for the
next-generation Internet fully trusts the user’s ISP. We propose Dove-
tail, which provides anonymity against an active attacker located at any
single point within the network, including the user’s ISP. A major design
challenge is to provide this protection without including an application-
layer proxy in data transmission. We address this in path construction
by using a matchmaker node (an end host) to overlap two path segments
at a dovetail node (a router). The dovetail then trims away part of the
path so that data transmission bypasses the matchmaker. We develop a
systematic mechanism to measure the topological anonymity of our de-
signs, and we demonstrate their privacy and efficiency by Internet-scale
simulations at the AS-level.

1 Introduction

When we use the Internet, a wide range of identifying information is commonly
revealed, but one of the hardest forms of identity to remove is that defined by
the network routing protocol (layer 3 ), since this identity is used to deliver
data. In today’s Internet, IP is the primary layer 3 protocol and IP addresses
are in every data packet. Recording a user’s IP address can allow an adversary
to uniquely identify her, link that identity with her online activity, correlate
connections to different services, and partially reveal her geographical and net-
work locations. Previous work has proposed low-latency anonymity systems to
conceal a user’s identity [1, 2], including her IP address. Tor in particular has
been adopted by hundreds of thousands of privacy-concious users worldwide [3].
Current anonymity systems, however, work by creating an overlay network on
top of the layer 3 protocol, requiring a sequence of IP transmissions to disguise
the original sender. This sequential forwarding and the queueing and processing
required in intermediary nodes create substantial delay and overhead.

We prefer an alternative formulation for this problem: Rather than attempting
to conceal a global layer 3 identifier by adding complexity in application pro-
tocols, we believe that the layer 3 protocol should not reveal a global identity.

E. De Cristofaro and S.J. Murdoch (Eds.): PETS 2014, LNCS 8555, pp. 283–303, 2014.
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Instead, we leave identity management to higher layers in the protocol stack, in
only those applications where it provides mutual benefit.

While privacy by itself is unlikely to motivate a change away from IP rout-
ing, a range of additional concerns have emerged within the networking field [4],
including scalability, security, mobility, challenged environments, and network
management, leading to major research initiatives investigating “clean slate”
Internet designs [5–7] that could be used to build the next-generation Inter-
net (NGI). A wide range of different NGI routing concepts have already been
proposed as a result of these activities [8–14]. Network virtualization research,
showcased in testbeds such as GENI [15], offers hope for a progressive transition
to a future routing protocol. These initiatives in NGI provide an opportunity to
imagine anonymous communications that do not rely on an overlay network.

We thus propose Dovetail, an NGI routing protocol that prevents associa-
tion of source and destination by an attacker located at any fixed point within
the network. Recently, Hsiao et al. proposed LAP, a lightweight NGI anony-
mity protocol [16]. Unlike LAP, however, Dovetail provides protection against
observation by local eavesdroppers and by an untrusted ISP, which is a critical
requirement for many privacy-conscious users.

A major design challenge is to provide this protection without including a
proxy in data transmission, which would be much slower than only traversing
routers. We address this challenge in path construction by asking a matchmaker
node (an end host) to put together two path segments so that they overlap at
a dovetail node (a router), and enabling the dovetail to trim away the part of
the path with the matchmaker. This technique is implemented using public-key
operations only at the source and the matchmaker, while routers use only sym-
metric encryption and decryption of short header fields and a simple hash chain.
The protocol enables the choice of many different paths through the network
and does not require a trusted third party.

In brief, our key contributions are: (1) a novel privacy-preserving NGI rout-
ing protocol, (2) a systematic mechanism for measuring anonymity in terms of
topological identity, and (3) evaluation of our protocol in terms of topological
anonymity using an Internet-scale simulation.

2 Objectives

In this section, we describe the goals of the system we intend to deliver and the
attacker we design against.

2.1 Anonymity Objectives

We refer to the party who initiates a connection as the source and the opposite
party as the destination, although data is able to pass in both directions once the
connection is established. Using the terminology of Pfitzmann and Hansen [17],
we aim to provide unlinkability between the source and destination, such that
no network location is able to sufficiently distinguish whether the source and
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destination are related, except for the source itself. This implies that network
locations with good information on the source identity have little information
on the destination identity, and vice versa. Throughout our work, we constrain
ourselves to the identifying properties defined at the network layer: network
identity and network location, or topographical anonymity [16].

We do not protect the packet contents, which reside in higher network layers and
are thus out of scope for this paper. Content should be protected end-to-end using
a protocol such as IKEv2, which protects sender and receiver identities [18]. Such
protection is effectively mandatory for strong anonymity protections, as many
other forms of Internet identification exist, such as device fingerprinting [19] and
persistent cookies [20]. Additionally, higher-level protocols like IKEv2 should be
used with restricted options and implementations to limit the possibility of finger-
printing.

2.2 Performance and Practicality Objectives

Any anonymity system must route traffic fast enough to gain widespread adop-
tion and thus provide a large set of potential message sources [21]. Performance
problems with Tor have been widely discussed, and they are considered an impor-
tant factor limiting its adoption [22,23]. We aim to provide a lightweight system
where all communication for an established connection remains within the core
networking infrastructure and occurs at layer 3. This avoids the frequently slow
last mile connections [24] in overlay anonymity systems and also the queuing
required to move between layers in the protocol stack. Finally, we require that
our system provides mechanisms to trade anonymity for performance.

Another key to widespread adoption is recruiting service providers. Our work
targets a future Internet, so Dovetail need only compete with other future routing
protocols rather than motivate service providers to switch away from IP. Today’s
ISP business models may not apply, but it is unlikely that service providers are
willing to spend substantial time and infrastructure for privacy. Our goal is to
ensure that costs for service providers are limited, such that benefits for privacy-
aware consumers are enough incentive to participate in the protocol. To this
end, we recognize that Internet routers have high throughput and low computing
resources per flow, so we limit cryptographic operations and avoid maintenance
of any per-connection routing state. Additionally, our design does not require
significant extra traffic and does not violate basic notions of consumer-provider
relationships that exist in today’s Internet.

2.3 Attack Model

Selecting an attack model for anonymity systems is a challenging task in its own
right, as the adversary may be different for different users and its capabilities
are not known in advance. A few key points guide our choices. First, protecting
a low-latency connection from an adversary who can observe traffic at multiple
points of the network is very difficult. Tor uses layered encryption and fixed
packet sizes to prevent trivial linkability, but this comes with significant expense



286 J. Sankey and M. Wright

and does not hide traffic patterns, which are linkable with a small chance of
error [25]. Adding sufficient delays and cover traffic to mask traffic patterns is
expensive and can be undermined by manipulating the patterns [26, 27]. Sec-
ond, users may be suspicious of any service provider that can link them with
their Internet activities. This applies to anonymity service providers, such as
Anonymizer.com, and also to Internet service providers. ISPs have proved to
not be fully trustworthy with private browsing data [28,29]. We therefore aim to
prevent any element of our system from being able to deanonymize users. Third,
a user’s local communication may be subject to eavesdropping, e.g. at a wireless
hotspot or by an employer. Unlike LAP, we aim to protect against such adver-
saries. Fourth, many of the adversaries that we aim to protect against would be
capable of various active attacks, such as replay or packet header manipulation,
so we also aim to limit the exposure that such attacks might cause.

We thus consider an adversary who is active but local. Active means the ad-
versary is able to initiate connections and to violate the rules of the protocol
for the connections in which she is involved, in addition to passively monitoring
these connections. We define local as confined to a single Autonomous System
(AS) within the Internet. ASes are the level at which routing information and
policies are commonly shared, so a compromise in security at one router may
affect multiple routers controlled by the same AS. In contrast, in order to span
multiple ASes, an attack must either compromise multiple organizations or in-
volve collusion between these organizations. We note that if a particular set of
ASes were suspected of collusion, our client logic could easily be modified to in-
clude no more than one member of the set in each connection. Our adversary is
assumed to have local knowledge of traffic, but global knowledge of the network
topology and routing data.

More concretely, the possible attackers we aim to protect against include: a
local eavesdropper, the source ISP, the destination ISP, any single AS in between,
any node facilitating our protocol operations, and the destination itself. Thus, we
aim for significantly greater protection than LAP or a centralized proxy server
like Anonymizer.com.

Given that we only protect against a single observation point, we offer no
protection against attacks that require multiple observation points, even though
such attacks may be practical for state-level adversaries [30] or Internet exchange
points [31]. In common with LAP, but not Tor, we do not try to prevent trivial
linkability based on packet contents and sizes. This means that linking attacks
with multiple observation points need lower computational and storage resources
and succeed with fewer observations than against Tor. Additionally, if both the
source and destination are customers of the same ISP, it is simple for the ISP
to correlate traffic. Again, Tor provides basic protection that makes this attack
slightly harder, while both LAP and Dovetail provide no protection.
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3 Background

In this section, we cover two research areas of direct relevance to our problem:
source-controlled routing protocols and low-latency anonymity systems. Within
each area, we describe a proposal that our design builds upon.

3.1 Source-Controlled Routing

One theme spanning a number of next-generation Internet routing proposals is
that of source-controlled routing, in which the originator of a data packet has
some control over the route it takes, usually using routing control information
carried in the data packet. In some protocols, the source has influence over the
route but not complete control [12, 14]; in others, the source explicitly declares
the route that should be taken [10, 13]. As we explain in Sect. 4.1, this ability
to express a route at the source has benefits for anonymity in addition to the
robustness and flexibility considerations that initially motivated the research.

Pathlet Routing. Pathlet routing [10] is one example of a source-controlled
routing system. Each entity within a network defines a number of virtual nodes
(or vnodes) and advertises path segments (or pathlets) that pass between these
vnodes. Vnodes are a virtual construct, so a single physical router may process
packets for multiple vnodes, or a single vnode may be distributed across multiple
physical routers. Each vnode is defined by a forwarding table containing the set of
allowed outgoing pathlets. All packets arriving from a particular communication
peer are processed by one vnode whose forwarding table defines the set of allowed
routes for that peer. The pathlet protocol provides an expressive system that is
able to represent many different types of routing policy.

To send a packet, the source assembles a list of adjacent pathlets defining the
intended route and includes this list in the packet header. Each pathlet is repre-
sented by a variable length Forwarding ID (FID), an index into the forwarding
table of the vnode that defined the pathlet. When a vnode receives a packet, it
removes the first FID and uses this as an index into its forwarding table to deter-
mine which link the packet should be sent over. Only legal routes are defined in
the forwarding tables. Therefore, it is impossible to violate the routing policy by
invoking unannounced routes, since no such routes exist. Pathlet routing moves
the responsibility for network route creation from the network infrastructure to
the end hosts originating traffic. This provides two features that are helpful for
the design of Dovetail: First, the large routing information base embodying net-
work topology need only be consulted each time a new route is constructed, and
not each time a packet is forwarded. Second, it provides flexibility for an end
host to control how its packets will traverse the network.

3.2 Low-Latency Anonymity Systems

A number of low-latency anonymity systems have been proposed with response
times that are sufficient for general-purpose interactive use, such as Web brows-
ing. Some of these have been fielded [1, 2, 32]. Current low-latency anonymity
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systems may be categorized as either centralized or distributed. Centralized sys-
tems pass all traffic though an anonymizing proxy, which must be trusted. Dis-
tributed systems overlay an additional network on top of the current layer 3
protocol and therefore require multiple IP transmissions to deliver each packet
from source to destination. These multiple transmissions, together with process-
ing inside the intermediate hosts, contribute to latencies that are substantially
higher than Internet usage without anonymization [33].

Lightweight Anonymity and Privacy. In Lightweight Anonymity and Pri-
vacy (LAP) [16], Hsiao et al. propose the anonymity scheme that inspires our
work. Their protocol relies upon packet-carried forwarding state, where the in-
formation required to deliver a packet is stored within the packet itself. To
establish a connection, the source constructs a packet containing a sequence
of autonomous domains (ADs) describing the route. As each AD receives the
packet, it encrypts its own routing instruction using a private symmetric key and
forwards the packet to the next AD. Once a connection has been constructed in
this manner, data may be exchanged between the endpoints using the resulting
encrypted header. Each path construction request contains a nonce that influ-
ences the encryption process, allowing a source to construct multiple unlinkable
connections over the same route by using different nonces. Header padding may
be included to partially obfuscate the path length. During construction, each
AD on the path learns the identity of all ADs that follow it but not the identity
of the ADs before it. Some information on predecessor identity may be inferred
based on knowledge of the preceding AD, network topology, routing policy, ob-
served header length, and observed response time, but these are not quantified.
LAP assumes the user’s own ISP is trustworthy, and it provides no protection of
source-destination unlinkability against a local eavesdropper or an observer at
the source ISP. Given previous well-publicized ISP indiscretions [28,29] and the
possibility of a hacker infiltrating this single point of failure, it seems unlikely
that privacy-conscious users will share this assumption.

Other than LAP, ANDāNA is the only other next-generation Internet anony-
mity protocol that we know of [34]. It is only designed for named-data networks
and it is built using onion routing, both of which are very different from Dovetail.

4 Design

In this section, we first provide context for our design point and then describe
the protocol from four different perspectives in increasing detail.

4.1 Layer 3 Anonymity Design Space

To provide a broadly applicable anonymity system, we assert that any layer 3
solution should provide two features:

Deviation from Shortest Path. An eavesdropper can measure information
on the length of the network path before and after her vantage point. If a routing
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protocol always selects the shortest possible route, then when the shortest route
between participants is significantly shorter or longer than the Internet average,
the protocol will reveal this information and limit their anonymity.

Partitioned Routing Information. When the routing information is stored
as a single field, such as an IP address, any entity with access to the field may
calculate the destination identity. When routing information is divided across
multiple fields, then an entity must access multiple fields to learn the destination
identity. Fields may be protected independently to prevent this access.

Source-controlled routing is useful since it accommodates both of these fea-
tures: when the source of a message can dictate a path, she is free to pick one
that is not the shortest, and she may express the path as a separate instruction
for each entity along the route. Dovetail builds upon the pathlet source routing
protocol presented by Godfrey et al. [10]. Pathlet routing works well for our sys-
tem, but we are not reliant on any unique feature of this protocol. The principles
we describe could be applied to any protocol that provides complete control over
the selected route and a wide range of allowable routes.

4.2 Network Model

We propose a clear distinction in routing at the AS boundary; each AS should
expose the minimum number of vnodes and pathlets necessary to satisfy its rout-
ing policies. This distinction provides two practical benefits: First, minimizing
the number of externally visible vnodes reduces the size of the routing informa-
tion base that must be held in end hosts. Second, distinguishing between internal
and external connectivity allows an AS to retain a flexible and dynamic internal
routing policy. Adjacent ASes share routing information to establish the net-
work topology. This communication should be secured against MITM attacks
that could selectively filter the topology. We assume that hosts know the nu-
meric identity of the vnodes they wish to contact. An equivalent to DNS would
be required to translate human-readable identities into vnode identities. The
translation service itself could be accessible using Dovetail to protect privacy,
but is outside the scope of our current work.

The most common form of routing policy used in the Internet today is valley-
free routing [35], which reflects the contractual relationships between ASes. A
customer AS is one who pays a provider AS to forward its traffic, while two ASes
with a peer relationship will each forward each other’s traffic without payment.
In valley-free routing, each AS will only forward traffic when there is a financial
incentive to do so, i.e. when the traffic originates from or is destined for a paying
customer. As illustrated in Figure 1a, two vnodes are required per AS to enforce
this strict definition of a valley-free routing policy: one to receive traffic from
customer ASes and one to receive traffic from peer and provider ASes. Although
valley-free routing is common, Internet routing allows for arbitrarily complex
policies, and valley-free routing is not ubiquitous [36]. In particular, there are
a growing number of Internet exchange points (IXPs), which offer ASes the
ability to peer with each other and thereby save money [37]. Most transit and
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Fig. 1. AS vnode and pathlet structure by routing policy

access provider ASes will peer with any non-customer AS [38]. This suggests
that peering is compatible with ASes’ incentives and is likely to continue to be
common.

We thus consider a slightly relaxed routing policy, which we refer to as loose
valley-free. In this scheme, an AS will allow traffic to pass between its peers.
The AS would not receive payment from a customer for performing this service,
but also is not required to make a payment and could avoid payments at other
times if peers provide a reciprocal service. As shown in Figure 1b, three vnodes
are required per AS to enforce a loose valley-free routing policy: one to receive
traffic from customer ASes, one to receive traffic from provider ASes, and the
third to send and receive peer traffic.

For good anonymity properties as described in Section 4.4, Dovetail relies on
a modest fraction of ASes using the loose valley-free policy or other policies that
are less strict than valley-free routing. If all ASes use strict valley-free routing,
Dovetail still provides anonymity, but with smaller anonymity sets.

4.3 Path Construction

Figure 2 illustrates the Dovetail path creation process. A Dovetail path comprises
multiple path segments. As with LAP, an AS that is present on a path segment
may learn the identity of subsequent ASes and its direct predecessor, but not
earlier ASes.

The path cannot be constructed directly from the source to the destination,
since the source’s ISP would be able to link source and destination. Instead, we
make use of a randomly selected, untrusted third-party vnode called the match-
maker. This matchmaker may either be an end host or functionality exposed by
a service provider. Providing matchmaker services should cost little relative to
enabling our protocol in routers. The identities of vnodes willing to act as match-
makers could be distributed as a part of routing information maintenance.

The source encrypts the identity of the final destination using a public key for
the matchmaker and builds a head path segment to the matchmaker, who then
extends the path to the destination with a tail path segment. Here, the source
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Fig. 2. Construction of a Dovetail connection

ISP no longer learns the identity of the destination, only of the matchmaker. The
matchmaker learns the identity of the destination, but cannot identify the source
through the intervening ASes. The source may learn the matchmaker’s public key
without compromising anonymity by requesting a signed certificate over the same
path used to establish the connection. To improve performance and minimize the
trust we must place in the matchmaker, we prefer that the matchmaker not be
involved in the exchange of data. Therefore, we require that the head and tail
segments cross at some vnode, referred to as the dovetail1. The source encrypts
the identity of the dovetail and provides it to the matchmaker for inclusion on
the tail segment. The dovetail detects the crossing condition and joins the two
segments, removing the loop in the path along with the matchmaker.

The tail path segment would ideally be selected by the source, but the source
does not have complete knowledge of distant Internet topology. The matchmaker
has sufficient knowledge to construct a path to the destination, but the user’s
anonymity can be degraded if an AS appears on both the head and tail segments,
and therefore we prefer that the tail segment avoids ASes already used on the
head segment. Providing a list of head ASes to the matchmaker would reveal
substantial information on the source identity, so instead we ask the matchmaker
to return a set of potential tail routes that the source selects from. The source
then sends its choice to the matchmaker to complete the route.

4.4 Segment Route Selection

A source-controlled routing system may attempt to obfuscate path length, but
an attacker located on the path will be able to infer some information about

1 We use the term to reflect a dovetail joint in carpentry, where two elements are
joined securely and compactly.
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her distance to the source and destination through round trip timing, packet
length and structure analysis, and active probing. We prefer a system that is
robust even when an attacker learns path length to one that relies on keeping it
hidden. For the remainder of the discussion, we assume the attacker has perfect
knowledge of the number of ASes preceding and following her own, but limit the
value of this knowledge through a non-deterministic path selection process.

Our mechanism for routing each path segment is based upon the principle of
path diversity, where a large number of possible paths may be taken from any
given source to any given destination. We note that this is beneficial for the
robustness of the system in addition to its anonymity. To achieve path diversity,
each host must have a comprehensive, but not necessarily complete, map of the
network. We extend the pathlet routing protocol by exporting extra pathlets in
addition to the shortest path tree (SPT). The optimal set of additional path-
lets depends on network size and topology, but our experiments show that for
the current Internet, is it appropriate to export 50% of the SPT size, selecting
pathlets closest to the sender. An important consequence is that routing knowl-
edge varies across the network, and so any assessment of available path options
can only be made in the context of the vnode (in our case, the source or the
matchmaker) selecting the path. Maintenance of routing information in response
to network changes could be performed using path vector distribution methods
similar to BGP [39], but this is not relevant to the anonymity properties of the
system and so is not discussed further.

When a host constructs a path segment, it will normally have a wide range
of options available with different costs, where we define cost as the number of
times the route changes AS. Other cost metrics such as latency or bandwidth
could also be integrated into the protocol. The distribution of options across
cost reflects the network topology between the source and destination. Selecting
a random path uniformly from among the complete set of options would reveal
information about this distribution, such as picking the most common path cost
most frequently, and thus leak information about the topology. Instead, we use
a cost window approach: we select a path by first selecting a path cost and then
randomly selecting one of the paths at this cost.

4.5 Data Packet Structure

Dovetail extends the basic packet format used in pathlet routing, providing a
set of different packet types composed of variable-length segments. Each dovetail
path is constructed using a path construction packet and a construction return
packet. Data is then exchanged over the path using a sequence of encrypted data
and encrypted response packets. The data formats and processing algorithms
for these packets are provided in our technical report [40]. In summary, these
algorithms provide the following security properties:

1. An AS does not learn the identity of ASes before its immediate predecessor.
2. AS routing information is protected by a key known only to the AS.
3. Different connections travelling over the same route do not produce the same

ciphertext.
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4. The final ciphertext for each AS depends on the entire path.
5. An AS may only create a removable loop in the path when given access to

privileged information. This information is only given to the matchmaker.

5 Security Analysis

In this section, we assess the security of the Dovetail protocol. We consider
a range of anonymity attacks that might be applied against the protocol and
then analyze the information available to a passive attacker at each point in
the network. We end with brief discussions of timing attacks and attacks on
availability and integrity.

5.1 Attacks on Anonymity

As Dovetail is lightweight, it does not protect against attacks that succeed
against an overlay system like Tor. In particular, an entity who can observe
traffic at multiple points in the connection can link both of those points, which
can link a source to her destinations. In Dovetail, this is trivial, as the packet
contents are not encrypted differently at different points in the network. In Tor,
however, timing analysis can enable this linking with high accuracy [26,27]. Other
attacks that rely on multiple points of observation, such as selective denial of
service [41] and predecessor [42] attacks will be just as effective in Dovetail. Ad-
ditionally, Dovetail is vulnerable to the same types of side-channel attacks that
impact Tor [43–47].

The primary information available to a passive attacker in the network is the
cost to the source and destination and the preceding and following ASes in the
path, and we examine the affect of these on anonymity in Section 5.2. Beyond
this, however, we need to examine additional attacks that could leverage the
unique aspects of the Dovetail protocol. These attacks include:

Observe or Correlate Packet Content. Dovetail is a layer 3 protocol and
does not provide any protections for the data it carries. In cases where packet
content would reveal identity, or where confidentiality is important, a higher
layer protocol such as IKEv2 should be used to provide encryption [18].

Correlate Connections from a Source. Each connection includes a source-
defined nonce. When the source changes this nonce, a different ciphertext will
be produced, preventing an observer from associating multiple connections over
the same path from their header content. When connections between a source-
destination pair are distinctive, and may hence be correlated by some other
property, the source could reuse the same matchmaker and path to prevent
intersection and predecessor attacks.

Replay Packets. A replayed packet will take the same path as its original
transmission and therefore not provide an attacker with new information. An
adversary might try to probe for the source by prepending an unencrypted path
to a recorded packet, but each AS empties the unencrypted segment on receipt
to prevent this attack.
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Probe for a Later AS. To determine the destination of an observed connec-
tion, an attacker on the head segment may try to construct many new connec-
tions through the same dovetail and search for matches in the header ciphertext.
Dovetail protects against this attack by including a hash of the entire path in the
IV for encrypted transit segments. Any change in the selected path will therefore
perturb the ciphertext for all segments.

Probe for an Earlier AS. The joining of a Dovetail path provides confirma-
tion that the joining AS appeared on the path twice, and an attacker may wish
use this feature to probe for suspected predecessors. During connection con-
struction, an attacker may attempt to extend the path to a suspect and then
back to herself, where she could observe whether a join occurred. Our use of
hash chaining prevents this attack, since the attacker cannot replicate the nonce
initially presented to the suspect. The matchmaker is provided with an earlier
nonce to create a legal join and may perform some probing, but this is heavily
constrained by the dovetail-matchmaker cost limit.

Matchmaker Intersection. The matchmaker provides the source with a set
of possible tail segments from which the source picks one. Since the source will
not select an AS already on the head segment, including it’s own ISP, the match-
maker could try to offer tail segments that help it isolate possible source ASes. In
particular, if there is a source AS of interest A, then the matchmaker could pick
tail segments that include likely ASes between itself and A. If the source avoids
these tail segments, it adds to the likelihood that the source is in A. However,
fully unmasking the source AS with this type of intersection attack would re-
quire a large number of requests. As matchmakers are selected randomly from a
large set, an attacker located at any particular matchmaker is unlikely to receive
many connection requests from the same source.

Modify the Requested Path. An AS along the path could modify the un-
encrypted header segment to alter the route taken for the remainder of the
path segment, but gains little from doing so. All vnodes along a path segment
can identify the destination, and earlier vnodes have a better knowledge of the
source. Thus, an attacker that places herself later in the same path segment does
not learn any additional information regarding source or destination.

Modify the Tail Path. The matchmaker could use a different tail option than
that selected by the source. However, the matchmaker does not learn whether
unselected paths were acceptable and cannot identify the source and so cannot
predict whether a particular path will be bad for that source. A matchmaker
could speculatively route all connections through a particular ISP to allow iden-
tification of any sources within that ISP. This attack may be effective given
a sufficient number of matchmakers, but widespread collusion falls outside our
attack model.
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5.2 Anonymity Analysis

A passive adversary who observes a dovetail path segment during construction
learns the destination of the segment, the preceding AS, and may measure the
cost to the source. In our technical report [40], we show how these properties
may be used by an eavesdropper to calculate an anonymity set for the source of
a path segment. The size of this set increases as the attacker moves further from
the source, but also depends upon the algorithm used to select the segment path.
We consider two different algorithms, showing that our cost window approach is
superior or equal to shortest path selection in all cases. In addition, we present
an entropy based assessment of effective anonymity set size, utilizing differences
between the routing tables of potential sources.

We now discuss the complete set of source and destination identity information
available to a passive adversary at each location on a Dovetail path, using both
the path construction packet and the construction return packet. Whenever a
measurable cost is discussed, this infers that a set of possible identities can be
constructed.

Source Identity. The source identity is known to the source ISP. An attacker
at each subsequent AS towards the matchmaker (which includes the dovetail
node) can use its knowledge of the preceding AS identity, cost from the source,
and all subsequent pathlets up to the matchmaker to limit the possible source
identities. At the matchmaker itself, for paths of more than three or four hops,
the number of possible sources should be quite large. After the matchmaker, the
amount of information about the source will be even less.

Destination Identity. The destination identity is known to every AS from
the matchmaker to the destination ISP due to the construction request. Any AS
on the head segment between the dovetail and the matchmaker, but that does
not appear on the data path, has no knowledge of the destination. Between the
source and the dovetail, an attacker can measure the cost from the destination
to her own AS using the data return path. If the attacker is able to guess which
AS on the head segment serves as the dovetail, she can infer cost from the
destination to the dovetail.

As intended, locations where the source is easily identified have little infor-
mation about the destination and vice versa. The dovetail is the closest AS to
the source that learns destination identity; it is typically the strongest location
for a passive attacker. To avoid elevating the capability of an attacker located
at the dovetail AS, we require that this AS only appear on the head segment
once. Any other AS that appears twice in a given segment gains no additional
information from its second inclusion.

Each segment of the dovetail path serves a purpose in maintaining a particular
anonymity property; this should be considered when setting the segment length.
The head segment must be long enough to conceal source identity from the
dovetail, and the tail segment must be long enough to conceal destination identity
from the source ISP. Finally, we note that uniform random selection of the
matchmaker, uncorrelated with either the source or destination, is effective in
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isolating the anonymity properties of our system. An AS on the head segment
can identify the matchmaker, but this does not help to identify the destination;
an AS on the tail segment may be able to identify the matchmaker, but this
does not help to identify the source.

5.3 Response Timing Attacks

The path diversity used to select each segment should hinder an attacker’s ability
to identify participants from response timing data. Each potential source could
have used one of many thousand possible routes to reach the destination, and
each of these routes has its own latency distribution. The superposition of these
distributions blurs the range of possible response times for a source significantly
when compared to shortest path routing and thus makes distinguishing between
different sources harder.

5.4 Availability and Integrity Attacks

Violate routing policy. As with pathlets, all forwarding tables entries are
valid expressions of the routing policy, and hence it is not possible to construct
a path that violates this policy.

Construct Arbitrarily Long Paths. Our packet design constrains the max-
imum length of both encrypted and unencrypted packet header segments and
thus limits the longest path an adversary intending to waste resources can con-
struct.

Overload a Matchmaker. A matchmaker could be overloaded by sending a
large number of continuation requests, but matchmakers are distributed through-
out the network and the effect on clients is minor if the first matchmaker they
contact is unavailable.

Overload a Routing vnode. Our forwarding operations are simple and in-
tended to operate at the full data rate of a router. Connection construction
requires more operations, but a maximum connection rate could be enforced to
constrain this resource utilization.

Modify Packet Contents. Dovetail is a layer 3 protocol and does not pro-
vide any protections for the data it is used to carry. In cases where integrity is
important, a higher layer protocol should be used to provide authentication.

Discard Packet Data. If the quality of service provided by a connection drops
below some threshold, this would be observed as a failure, for which the recom-
mended remedy is to reconnect over a different path. Paths are constructed by
random selection from the available routes, and so this reconnection is likely to
remove any intermediate AS discarding data.

6 Evaluation

Our proposal is evaluated primarily by simulation, using a model of the complete
Internet at the AS level. In this section, we first introduce our simulation and
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input data, then discuss the anonymity and cost results for path segments and for
complete paths, and conclude by estimating a variety of resource requirements
for our system.

6.1 Simulation Scope

Our simulation models a network of ASes, each containing up to three routing
vnodes plus host vnodes to represent its end users and matchmaking capability.
ASes are connected by pathlets that codify their contractual arrangement; cus-
tomer, provider, or peer. All pathlets within an AS have a cost of zero and all
pathlets between different ASes have a cost of one. We simulate the exchange of
routing information at initialization, leading to a unique routing perspective for
each AS that contains all routing vnodes but not all pathlets. Separately, we sim-
ulate packets at a bit level during a connection, allowing us to test header design
to ensure that routers and the matchmaker could correctly run the protocol.

Our Internet topology is derived from the CAIDA inferred AS relationship
dataset [48]. The dataset contains sibling relations, which permitted infinitely
long valley-free routes in some circumstances. To avoid optimistic bias, we re-
placed all sibling relationships with the more restrictive peer relationship. This
reclassification causes 5.5% of the network to lose complete reachability, so we
disallow traffic originating from or terminating at these ASes. We consider each
AS without customer ASes to be a service provider for end users and add a host
vnode to represent these users. Ideally, we would model the number of users, but
accurate ISP customer size data are not available. Rather than risk skewing our
conclusions, we restrict ourselves to measuring anonymity based on the number
of possible source or destination ISPs, recognizing that some ISPs are far larger
than others. We consider a mixture of ASes following the strict and loose valley-
free routing policies defined in Section 4.2. Experimentation shows that when all
ASes follow a strict valley-free routing policy, the number of routing options is
limited, but introducing even a small proportion of loose valley-free ASes leads
to far greater diversity. 10% loose valley-free ASes gives a median of 91,000 op-
tions for each path, and we use this topology for the remainder of our evaluation.
Studies show that strict valley-free routing is not universal today [36], but we
acknowledge that our selection of 10% is arbitrary.

6.2 Single Segment Performance

To select a path segment, the source compiles a set of available routes using a
modified depth first search. Our implementation limits this set to a maximum
cost of 13, based on the longest distance present in the network, and also a
maximum of 20,000 routes at each path cost to limit computation. We first select
a cost from the set of available costs (i.e. costs with at least one route) and then
select a random route of this cost. In our technical report [40] we evaluate four
selection algorithms that differ in their probability of selecting a given cost. Based
on this evaluation we use the Exponential4 algorithm, which selects longer paths
less frequently but never selects a path with a cost under four. The Exponential4
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algorithm results in an average cost approximately 25% greater than shortest
path routing, and yet it achieves an anonymity set containing over half the
network in 98% of the tests.

6.3 Complete Path Performance

We now evaluate the anonymity and cost properties of complete paths. Dovetail
includes parameters that users can configure to trade performance against an-
onymity. Our objective here is to demonstrate the anonymity limit of this sliding
scale, but many users will prefer a lower setting. The parameter settings we use
are:

Dovetail to Matchmaker Cost = Two. Provides strong limits on match-
maker capability without requiring that dovetail and matchmaker are adjacent.

Source to Matchmaker Algorithm = Exponential6. Effectively delivers
Exponential4 at the dovetail.
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Fig. 3. Source and destination anonymity set size along the complete path
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Dovetail to Destination Algorithm = Exponential4. Shown to provide
near maximum anonymity [40].

In our experiment, we select source and destination hosts at random and con-
struct a dovetail path between them. The matchmaker generates eight tail path
options and the source selects one from this set. Where possible, the source se-
lects an option that does not reuse a head AS, but in 23% of paths constructed
all options required such reuse.2 We measure the source and destination anony-
mity set size observable by an attacker at each location in the path. Random
selection of a matchmaker decouples the source and destination anonymity sets,
and therefore we can also consider the source-destination unlinkability, i.e. the
number of potential source-destination pairs associated with an observed con-
nection, to be the product of the source and destination anonymity set sizes.
Figure 3 presents the distribution of these three properties at a series of key
locations along the path, and Figure 4 presents the cost distribution, with the
cost of shortest path routing included for comparison with IP and LAP.

Each successive step adds ambiguity to the source identity. At the dovetail
AS, source anonymity is approximately equal to network size in 80% of cases.
Destination identity is known at the dovetail and all subsequent locations, but
locations prior to the dovetail are unable to calculate a meaningful destination
identity. No location except the source is able to clearly link source and destina-
tion. The AS immediately preceding the dovetail is most likely to be duplicated
in head and tail segments, being adjacent to an AS that is always present in both.
As illustrated by the destination anonymity for “Before Dovetail”, this occurred
in 5% of our experiments. The dovetail may partially calculate source identity in
around 20% of cases, but this is limited to around one thousand possible source
ISPs, each containing many users.
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2 We plan in future work to develop a heuristic to select dovetail vnodes with a lower
probability of reuse.
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Figure 4 shows that a Dovetail path passes through approximately 2.5 times
more ASes than the shortest path routing used in the current Internet. This is
a modest penalty when compared to the prevailing option for anonymity today;
an anonymous circuit in Tor typically passes through three relays for a total of
four IP paths, including six more last-mile connections than a direct path, and
incurs additional processing and queuing delays at each relay.

6.4 Resource Utilization

Rather than proposing a near-term solution, we aim to show that privacy is
a feasible feature to include in future routing protocol designs. Nevertheless,
we now briefly consider a variety of resource requirements to demonstrate that
implementation would be feasible.

Host Memory Utilization. Each Dovetail host must maintain a model of the
Internet to generate routes. In the 2012 dataset we use there are 252,666 visible
pathlets, of which an average of 22% are known, requiring 680kB.

Router Memory Utilization. A Dovetail forwarding table scales with the
number of local peers and not the total number of Internet prefixes as with
BGP. All forwarding information is carried by the packet itself, and so a router
need not store any information per connection.

Router Latency. The only cryptographic operation required to forward a data
packet is a symmetric decryption of one word. This is the same task performed
by LAP; Hsiao et al. measure an additional latency of under one microsecond in
a software-based implementation of their system [16].

Transmission Efficiency. A Dovetail packet must specify a complete path
rather than only an endpoint, potentially leading to large headers and low effi-
ciency. The average header length in our experiments is 92 bytes. Given an MTU
of 1500 bytes, this represents a 3.5% reduction in payload compared to IPv6.
LAP would require a 60 byte header.

7 Conclusion

In this paper we presented Dovetail, a next-generation Internet routing proto-
col, and have demonstrated that it provides a workable solution for anonymity
at the network layer. The overhead is approximately 2.5 times that of shortest
path routing when configured to provide near complete anonymity against our
chosen attacker, and we include mechanisms to exchange anonymity for perfor-
mance. We have demonstrated key aspects of the feasibility and effectiveness of
this direction and hope this this motivates serious consideration of privacy as a
requirement in the development of other next-generation routing protocols.
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Abstract. Tor exit relays are operated by volunteers and together push
more than 1 GiB/s of network traffic. By design, these volunteers are able
to inspect and modify the anonymized network traffic. In this paper, we
seek to expose such malicious exit relays and document their actions.
First, we monitored the Tor network after developing two fast and mod-
ular exit relay scanners—one for credential sniffing and one for active
MitM attacks. We implemented several scanning modules for detecting
common attacks and used them to probe all exit relays over a period of
several months. We discovered numerous malicious exit relays engaging
in a multitude of different attacks. To reduce the attack surface users are
exposed to, we patched Torbutton, an existing browser extension and
part of the Tor Browser Bundle, to fetch and compare suspicious X.509
certificates over independent Tor circuits. Our work makes it possible to
continuously and systematically monitor Tor exit relays. We are able to
detect and thwart many man-in-the-middle attacks, thereby making the
network safer for its users. All our source code is available under a free
license.

1 Introduction

As of January 2014, nearly 1,000 exit relays [30] distributed all around the globe
serve as part of the Tor anonymity network [10]. As illustrated in Fig. 1, the
purpose of these relays is to establish a bridge between the Tor network and the
“open” Internet. A user’s Tor circuits—which are basically encrypted tunnels—
are terminated at exit relays and from there, the user’s traffic proceeds to travel
over the open Internet to its final destination. Since exit relays can see traffic
as it is sent by clients, Tor users are advised to use end-to-end encryption. By
design, exit relays act as a “man-in-the-middle” (MitM) in between a user and
her destination. This renders it possible for exit relay operators to run various
MitM attacks such as traffic sniffing, DNS poisoning, and SSL-based attacks
� This work is the result of merging two PETS submissions. The original titles and
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such as HTTPS MitM and sslstrip [22]. An additional benefit for attackers is
that exit relays can be set up quickly and anonymously, thus making it very dif-
ficult to trace attacks back to their origin. While it is possible for relay operators
to specify contact information such as an e-mail address,1 this is optional and as
of January 2014, only 56% out of all 4,962 relays publish contact information.
Even fewer relays publish valid contact information.

Tor client

Destination

Exit relay

Entry guard

Middle relay

Tor
network

Encrypted by Tor
Not encrypted by Tor

Fig. 1. The structure of a three-hop Tor
circuit. Exit relays constitute the bridge be-
tween encrypted circuits and the open In-
ternet. As a result, exit relay operators can
see—and tamper with—anonymized traffic
of users.

To thwart a number of pop-
ular attacks, TorBrowser [26]—the
Tor Project’s modified version of
Firefox—ships with the two exten-
sions HTTPS-Everywhere [11] and
NoScript [17]. While the former con-
tains rules to rewrite HTTP to
HTTPS traffic, NoScript seeks to pre-
vent many script-based attacks. How-
ever, there is little clients can do in the
face of web sites implementing poor
security such as the lack of site-wide
TLS, session cookies being sent in the
clear, or using weak cipher suites in
their web server configuration. Often,
such bad practice enables attackers to
spy on users’ traffic or, even worse,
hijack accounts. Besides, TorBrowser
cannot protect against attacks targeting non-HTTP(S) protocols such as SSH.
All these attacks are not just of theoretical nature. In 2007, a security researcher
published 100 POP3 credentials he captured by sniffing traffic on a set of exit
relays under his control [25]; supposedly to show the need for end-to-end encryp-
tion when using Tor. Section 2.1 discusses additional attacks which were found
in the wild.

The main contributions of this paper are:

– We discuss the design and implementation of exitmap, a flexible and fast exit
relay scanner which is able to detect several popular MitM attacks.

– We introduce HoneyConnector, a framework to detect sniffing Tor exit relays
based on FTP and IMAP bait connections.

– Using exitmap and HoneyConnector, we monitored the Tor network over a
period of multiple months in two independent studies. In total, we identified
65 exit relays that conducted MitM attacks or reused sniffed credentials.

– To detect MitM attacks against HTTPS, we propose the design and pro-
totype of a patch for the Torbutton browser extension which fetches and
compares X.509 certificates over diverging Tor circuits.

1 Contact information is useful to get in touch with relay operators, e.g., if their relay
is not configured correctly.
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The remainder of this paper is structured as follows: Section 2 gives a brief
background on how misbehaving relays are handled in the Tor network and gives
an overview of related work. Section 3 discusses the design and implementation
of exitmap and HoneyConnector, our scanners to detect malicious relays. We
ran both frameworks for multiple months consecutively and present the attacks
we discovered in Section 4 and discuss them in Section 5. Section 6 presents
countermeasures to protect against HTTPS MitM attacks. Finally, Section 7
concludes this paper.

2 Background

The Tor Project has a way to prevent clients from selecting bad exit relays as
the last hop in their three-hop circuits. After a suspected relay is communicated
to the project, the reported attack is first reproduced. If the attack can be
verified, a subset of two (out of all nine) directory authority operators manually
blacklist the relay using Tor’s AuthDirBadExit configuration option. Every hour,
the directory authorities vote on the network consensus which is a signed list of
all relays, the network is comprised of. Among other information, the consensus
includes the BadExit flag. As long as the majority of the authorities responsible
for the BadExit flag—i.e., two out of two—agree on the flag being set for a
particular relay, the next network consensus will label the respective relay as
BadExit. After the consensus was signed by a sufficient number of directory
authorities, it propagates and is eventually used by all Tor clients after 24 hours
have passed. From then on, clients will no longer select relays labeled as BadExit
as the last hop in their circuits. Note that this does not mean that BadExit
relays become effectively useless. They keep getting selected by clients as their
entry guards and middle relays. Most of the malicious relays we discovered were
assigned the BadExit flag after we reported them to the Tor Project. The relays
which escaped the BadExit flag were either merely misconfigured or already
offline when we reported them to the Tor Project.

Note that the BadExit flag is not only given to relays which are believed to be
malicious. It is also assigned to relays which are misconfigured or are otherwise
unable to fulfill their duty of providing unfiltered Internet access. A frequent
cause of misconfiguration is the use of third-party DNS resolvers which block
certain web site categories such as “pornography” or “proxy/anonymizer”. Apart
from the BadExit flag, directory authorities can blacklist relays by disabling its
Valid flag which prevents clients from selecting the relay for any hop in its circuit.
This option can be useful to disable relays running a broken version of Tor or
are suspected to engage in end-to-end correlation attacks.

2.1 Related Work

In 2006, Perry began developing the framework “Snakes on a Tor” (SoaT) [31].
SoaT is a Tor network scanner whose purpose is to detect misbehaving exit relays.
Similar to the less advanced torscanner [35], decoy content is first fetched over



Spoiled Onions: Exposing Malicious Tor Exit Relays 307

Tor, then over a direct Internet connection, and finally compared. Over time,
SoaT was extended with support for HTTP, HTTPS, SSH and several other
protocols. However, SoaT is no longer maintained and makes use of deprecated
libraries. Compared to SoaT, exitmap is more flexible and significantly faster.
Similar to SoaT, Marlinspike implemented tortunnel [23] which exposes a local
SOCKS interface. Incoming data is then sent over exit relays using one-hop
circuits. By default, exitmap does not use one-hop circuits as that could be
detected by attackers which could then act honestly.

A first academic attempt to detect malicious exit relays was made in 2008 by
McCoy et al. [24]. The authors established decoy connections to servers under
their control. They further controlled the authoritative DNS server responsible
for the decoy hosts’ IP addresses. As long as a malicious exit relay sniffed network
traffic with reverse DNS lookups being enabled, the authors were able to map
reverse lookups to exit relays by monitoring the authoritative DNS server’s traf-
fic. By exploiting that side channel, McCoy et al. were able to find one exit relay
sniffing POP3 traffic at port 110. However, attackers can easily avoid that side
channel by disabling reverse lookups. The popular tool tcpdump implements the
command line switch -n for that exact purpose. In 2011, Chakravarty et al. [5]
attempted to detect sniffing exit relays by systematically transmitting decoy
credentials over all active exit relays. Over a period of ten months, the authors
uncovered ten relays engaging in traffic snooping. Chakravarty et al. could ver-
ify that the operators were sniffing exit traffic because they were later found to
have logged in using the snooped credentials. While the work of Chakravarty et
al. represents an important first step towards monitoring the Tor network, their
technique only focused on SMTP and IMAP. At the time of our writing, only
20 out of all ∼1,000 exit relays allow connections to port 25. Instead, Honey-
Connector focuses on FTP and IMAP. Also, similar to McCoy et al., the authors
only discussed traffic snooping attacks which are passive. Active attacks remain
entirely unexplored until today.

The Tor Project used to maintain a web page documenting misbehaving relays
which were assigned the BadExit flag [18]. As of January 2014, this page lists 35
exit relays which were discovered in between April 2010 and July 2013. Note that
not all of these relays engaged in attacks; almost half of them ran misconfigured
anti virus scanners or used broken exit policies.2 Since Chakravarty et al., no
systematic study to spot malicious exit relays was conducted. Only some isolated
anecdotal evidence emerged [34]. Our work is the first to give a comprehensive
overview of active attacks. We further publish our code under a free license.3 By
doing so, we enable and encourage continuous and crowdsourced measurements
rather than one-time scans.

2 An exit relay’s exit policy determines to which addresses and ports the relay forwards
traffic to. Often, relay operators choose to not forward traffic to well-known file
sharing ports in order to avoid copyright infringement.

3 The code is available at http://www.cs.kau.se/philwint/spoiled_onions.

http://www.cs.kau.se/philwint/spoiled_onions
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3 Monitoring Tor Exit Relays

We now discuss the design and implementation of exitmap as well as Honey-
Connector which are both lightweight Python-based exit relay scanners. Their
purpose is to systematically create circuits to exit relays which are then probed
by modules which establish decoy connections to various destinations. While ex-
itmap focuses on active attacks, HoneyConnector seeks to uncover traffic snoop-
ing. We aim to provoke exit relays to tamper with or snoop on our connections,
thereby revealing their malicious intent. By doing so, we seek to discover and
remove all “spoiled onions” in the Tor network. Our adversary model is thus
a relay operator who exploits the fact that traffic can be modified or might be
unencrypted once it leaves the Tor network. We will also show that our scanners’
modular design enables quick prototyping of new scanning modules and exitmap’s
event-driven architecture makes it possible to scan all exit relays within a matter
of only seconds while at the same time sparing their resources.

3.1 The Design of exitmap

exitmap is an active scanner that is designed to detect MitM attacks of various
kinds. The schematic design of exitmap is illustrated in Fig. 2. Our tool is run
on a single machine and requires the Python library Stem [32]. Stem implements
the Tor control protocol [33] and we use it to initiate and close circuits, attach
streams to circuits as well as to parse the network consensus. Upon starting
exitmap, it first invokes a local Tor process which proceeds by fetching the newest
network consensus in order to know which exit relays are currently online.

Exit
relays

Local Tor

exitmap

Stemprobing
module

control
port

SOCKS
port

Entry
relay

Decoy
destination

Fig. 2. The design of exitmap. Our scanner invokes
a Tor process and uses the library Stem to control
it. Using Stem, circuits are created “manually” and
attached to decoy connections which are initiated by
our probing modules.

Next, our tool is fed with
a set of exit relays. This set
can consist of a single re-
lay, all exit relays in a given
country, or the set of all
Tor exit relays. Random per-
mutation is then performed
on the set so that repeated
scans do not probe exit re-
lays in the same order. This
is useful while developing
and debugging new scanning
modules as it equally dis-
tributes the load over all
selected exit relays. Once ex-
itmap knows which exit relays
it has to probe, it initiates cir-
cuits which use the respective
exit relays as their last hop.
All circuits are created asynchronously in the background. Once a circuit to
an exit relay is established, Tor informs exitmap about the circuit by sending
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an asynchronous circuit event over the control connection. Upon receiving the
event, exitmap invokes the desired probing module which then proceeds by estab-
lishing a connection to a decoy destination (see Section 3.1). Tor creates stream
events for new connections to the SOCKS port which are also sent to exitmap.
When a stream event is received, we attach the stream of a probing module to
the respective circuit. Note that stream-to-circuit attaching is typically done by
Tor. In order to have control over this process, our scanner invokes Tor with
the configuration option __LeaveStreamsUnattached which instructs Tor to leave
streams unattached. For performance reasons, Tor builds circuits preemptively,
i.e., a number of circuits are kept ready even if there is no data to be sent yet.
Since we want full control over all circuits, we prevent Tor from creating circuits
preemptively by using the configuration option __DisablePredictedCircuits. ex-
itmap’s probing modules can either be standalone processes or Python modules.
Processes are invoked using the torsocks wrapper [36] which hijacks system calls
such as socket() and connect() in order to redirect them to Tor’s SOCKS port.
We used standalone processes for our HTTPS and SSH modules. In addition,
probing modules can be implemented in Python. To redirect Python’s network-
ing API over Tor’s SOCKS port, we extended the SocksiPy module [13]. We
used Python for our sslstrip, DNS, XMPP, and IMAPS modules.

Performance Hacks. A naive approach to probing exit relays could be a non-
trivial burden to the Tor network; mostly computationally but also in terms
of network throughput. We implemented a number of tweaks in order for our
scanning to be as fast and cheap as possible.

exitmap Destination

Exit relays

Static
relay

Tor
network

"Spoiled" exit
doing MitM

Fig. 3. Instead of establishing a full three-
hop circuit, our scanner is able to use a
static middle relay; preferably operated by
whoever is running our scanner. By doing
so, we concentrate the load on one machine
while making our scanning activity slightly
less stealthy.

First, we expose a configuration op-
tion for avoiding the default of three-
hop circuits. Instead, we only use two
hops as illustrated in Fig. 3. Tor’s mo-
tivation for three hops is anonymity
but since our scanner has no need
for strong anonymity, we only se-
lect a static entry relay—ideally op-
erated by exitmap’s user—which then
directly forwards all traffic to the re-
spective exit relays. We offer no op-
tion to use one-hop circuits as that
would make it possible for exit relays
to isolate scanning connections: A ma-
licious exit relay could decide not to
tamper with a circuit if it originates
from a non-Tor machine. Since we use
a static first hop which is operated by
us, we concentrate most of the scan-
ning load on a single machine which is well-suited to deal with the load. Other
entry and middle relays do not have to “suffer” from exitmap scans.
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However, note that over time malicious exit relays are able to correlate scans
with relays, thus determining which relays are used for scans. To avoid this
problem, exitmap’s first hop should be changed periodically and we hope that by
crowdsourcing our scanner, isolating middle relays is no longer a viable option
for attackers. Another computational performance tweak can be achieved on
Tor’s authentication layer. At the moment, there are two ways how a circuit
handshake can be conducted; either by using the traditional TAP or the newer
NTor handshake. TAP—short for Tor Authentication Protocol [12]—is based
on Diffie-Hellman key agreement in a multiplicative group. NTor, on the other
hand, uses the more efficient elliptic curve group Curve25519 [2]. A non-trivial
fraction of a relay’s computational load can be traced back to computationally
expensive circuit handshakes. By favoring NTor over TAP, we slightly reduce
the computational load on exit relays. As NTor supersedes TAP and is becoming
more and more popular as Tor clients upgrade, we believe that it is not viable
for attackers to “whitelist” NTor connections.

Scanning Modules. After discussing exitmap’s architecture, we now present
several probing modules we developed in order to be able to detect specific
attacks. When designing a module, it is important to consider its indistinguisha-
bility from genuine Tor clients. As mentioned above, malicious relay operators
could closely inspect exit traffic (e.g., by examining the user agent string of
HTTP requests) and only target connections which appear to be genuine Tor
users.

HTTPS. McCoy et al. [24] showed that HTTP is the most popular protocol in
the Tor network, clearly dominating other protocols such as instant messaging
or e-mail.4 While HTTPS lags behind, it is still widely used and unsurprisingly,
several exit relays were documented to have tampered with HTTPS connec-
tions [18] in the past. We implemented an HTTPS module which fetches a decoy
destination’s X.509 certificate and extracts its fingerprint. This fingerprint is
then compared to the expected fingerprint which is hard-coded in the module.5
If there is a mismatch, an alert is triggered. Originally, we began by fetching
the certificate using the command line utility gnutls-cli. We later extended the
module to send a TLS client hello packet as it is sent by TorBrowser to make
the scan less distinguishable from what a real Tor user would send. Note that an
attacker might become suspicious after observing that a Tor user only fetched
an X.509 certificate without actually browsing the respective web site. However,
at the point in time an attacker would become suspicious, we already have what
we need; namely the X.509 certificate.

4 This is particularly true for connections but not so much for bytes transferred.
5 Note that it is also possible for modules to fetch the certificate over a direct Internet

connection instead of hard-coding the fingerprint.
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1 function probe( fingerprint, command ) {

2
3 ssh_public_key = "11:22:33:44:55:66:77:88:99:00:aa:bb:cc:dd:ee:ff";

4
5 output = command.execute("ssh -v decoy.host.com");

6
7 if (ssh_public_key not in output) {

8 print("Possible MitM attack by " + fingerprint);

9 }

10 }

Fig. 4. Pseudo code illustrating a scanning module which probes SSH. It establishes
an SSH connection and verifies if the fingerprint matches the expected value. If the
observed fingerprint differs, an alert is raised.

XMPP and IMAPS. Analogous to the HTTPS module, these two modules
establish a TLS connection to a decoy destination, extract the server certificate’s
fingerprint, and compare it to the respective hard-coded fingerprint.

sslstrip. Instead of interfering with TLS connections, an attacker can seek
to prevent TLS connections. This is the purpose of the tool sslstrip [22]. The
tool achieves this goal by transparently rewriting HTML documents while on
their way from the server to the client. In particular, it rewrites HTTPS links
to HTTP links. A secure login form pointing to https://login.example.com is
subsequently rewritten to HTTP which causes a user’s browser to submit her
credentials in the clear. While the HTTP Strict Transport Security policy [15]
prevents sslstrip, it is still an effective attack against many large-scale web sites
with Yahoo! being only one of them as of January 2014. From an attacker’s
point of view, the benefit of sslstrip is that it is a comparatively silent attack
because browsers will not show certificate warnings. Vigilant users, however,
might notice the absence of browser-specific TLS indicators such as lock icons.
Our probing module fetches web sites containing HTTPS links over unencrypted
HTTP. Afterwards, the module simply verifies whether the fetched HTML doc-
ument contains the expected HTTPS links or if they were “downgraded” to
HTTP.

SSH. The Tor network is also used to transport SSH traffic. This can easily be
done with the help of tools such as torsocks [36]. Analogous to HTTPS-based
attacks, malicious exit relays could run MitM attacks against SSH. In practice,
this is not as easy as targeting HTTPS given SSH’s “trust on first use” model.
As long as the very first connection to an SSH server was secure, the public key
is then stored by the client and kept as reference for subsequent connections.
As a result, a MitM attack has to target a client’s very first SSH connection.
Nevertheless, this practical problem might not stop attackers from attempting
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to interfere with SSH connections. Our SSH module—conceptually similar to
the pseudo code shown in Fig. 4—makes use of OpenSSH’s ssh and torsocks to
connect to a decoy server. Again, the server’s key fingerprint is extracted and
compared to the hard-coded fingerprint. However, compared to the HTTPS mod-
ule, it is difficult to achieve indistinguishability over time. After all, a malicious
relay operator could monitor an entire SSH session. If it looks suspicious, e.g.,
it only fetches the public key, or it lasts only one second, the attacker could de-
cide to whitelist the destination in the future. To work around this problem, we
could establish SSH connections to random hosts on the Internet. This, however,
is often considered undesired scanning activity and does not constitute good In-
ternet citizenship. Instead, we again seek to solve this problem by publishing
our source code and encouraging people to crowdsource exitmap scanning. Every
exitmap user is encouraged to use her own SSH server as decoy destination. That
way, we hope to achieve destination diversity without bothering arbitrary SSH
servers on the Internet.

DNS. While the Tor protocol only transports TCP streams, clients can ask
exit relays to resolve DNS records by wrapping domain names in a RELAY_BEGIN

cell [9]. Once a circuit is established, this cell is then sent to the exit relay for
resolution. In the past, some exit relays were found to inadvertently censor DNS
queries, e.g., by using an OpenDNS configuration which blocks certain domain
categories such as “pornography” or “proxy/anonymizer” [18]. Our probing mod-
ule maintains a whitelist of domains together with their corresponding IP ad-
dresses and raises an alert if the DNS A record of a domain name is unexpected.
This approach works well for sites with a known set of IP addresses but large sites
frequently employ a diverse—and sometimes geographically load-balanced—set
of IP addresses which is difficult to enumerate. Our module probes domains in
the categories finance, social networking, political activism, and pornography.

3.2 The Design of HoneyConnector
HoneyConnector is a framework for establishing bait connections over Tor using
unique credentials over FTP and IMAP and detecting their subsequent use to
identify sniffing exit relays. The framework can be divided into several compo-
nents. It consists of the HoneyConnector client which is written in Python, a
copy of the Tor client, the Stem [32] library for controlling Tor connections, and
a backend database for storing our bait credentials and timestamps, as well as
additional exit relay information. The HoneyConnector client is responsible for
creating new credentials, establishing the actual bait connection over the respec-
tive exit relays, and communicating them to the deployed services over a secure
channel for creating the accounts and bait data. Furthermore, HTTPS certifi-
cates are fetched by the client and compared with the real certificates to detect
MitM attacks against HTTPS. Credentials are checked for duplicates prior to
using them, to prevent reusing usernames or passwords. For each protocol—in
our current implementation FTP and IMAP—a virtual machine is used for host-
ing these services, and accessed over the Tor network using bait credentials. This
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makes it possible to quickly deploy multiple instances for each service. Analo-
gous to exitmap, HoneyConnector uses the library Stem to have control over which
exit relay is selected for a circuit and to check if a given exit relay’s exit policy
allows connections to our bait services. We manually looked for peculiarities in
our bait sessions which could have been used to identify them. Afterwards, we
changed the status messages sent by pyFTPdlib to match those of vsFTPd. It
was not necessary to change the behavior of Dovecot as it is a common mail
server found on GNU/Linux systems. Once a scan is started, the network con-
sensus is downloaded and all exit relays are processed sequentially after random
permutation.

FTP Scanning. Our HoneyConnector client made use of the Python library
ftplib to connect to our bait FTP server. The credentials for the FTP server were
generated by the HoneyConnector client, stored in a database, and then forwarded
to the FTP server over a secure channel. All FTP usernames are generated by
randomly choosing a prefix out of “web”, “user”, “ftp”, “usr”, or two random
letters followed by a random number between 1 and 999 in combination with
a randomly generated password. After sending the credentials, our client waits
for 30 seconds in order to assure that the server had enough time to populate
the FTP user directory. The client then connects over the Tor network to the
FTP server and downloads a random file before closing the connection. After
the connection was closed, the client sends a message directly (i.e., not over Tor)
to the server, instructing it to delete the user from the server. On the server
side we used the pyFTPdlib Python library as it allowed us to modify the source
code for logging plaintext credentials; a feature which was hard to find in other
FTP server software. The concatenation of username and password allowed us
to identify which exit relay sniffed a given pair of credentials.

IMAP Scanning. For implementing our IMAP scan, we used Python’s built-in
library imaplib. On the server side we used Dovecot due to it being a popular
IMAP server and offering the possibility of verbose authentication logging, in-
cluding writing usernames and passwords to a log file. We believe that for sniffers,
IMAP is more interesting than POP3 since messages are kept on the server. As
a result, it is stealthier for an attacker to browse the victim’s e-mails as they
are kept on the server rather than being deleted after downloading them. We
reused password lists from the Honeynet Project [27] instead of generating them
randomly. These passwords mimic real user passwords, and we manually verified
that we do not falsely count regular bruteforce attacks as reconnection (i.e. no
other connection attempts within close time vicinity). We further populated all
mailboxes with dummy e-mails (the exact amount was randomly chosen from
{1..6000}). The e-mails do not need actual content as only the amount of e-mails
in the mailbox is transferred but no content. We designed our IMAP setup anal-
ogous to the FTP setup discussed above; login credentials are first generated
and then sent to the server after their uniqueness was verified. The HoneyCon-
nector client then sleeps for a while to give the server time to populate the newly
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created mailbox. Subsequently, HoneyConnector simulates an e-mail client check-
ing for new mails. Finally, the client instructs the server to delete the e-mail
account and thereby terminates the bait IMAP connection.

4 Experimental Results

The following two sections present the results we obtained by monitoring all
Tor exit relays over a period of several months. We begin by presenting active
attacks in Section 4.1 which is then followed by sniffing attacks in Section 4.2.

4.1 Detecting MitM Attacks with exitmap
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Fig. 5. The performance of some of our
probing modules. The DNS module is
slower because it resolves several do-
main names at once. All other modules
can scan at least 98% of all responsive
Tor exit relays under 40 seconds.

Scanning Performance. On September
19th, we ran our first full scan over all
∼950 exit relays which were part of the
Tor network at the time. From then on,
we scanned all exit relays several times a
week. Originally, we began our scans while
only armed with our HTTPS module
but as time passed, we added additional
modules which allowed us to scan for ad-
ditional attacks. In this section, we will
discuss the results we obtained by mon-
itoring the Tor network over a period of
seven months.

exitmap is also useful to measure the
reliability of exit relays. While running
our scans, we observed that 84%–88% of
circuit creations succeeded. The remain-
ing circuits either timed out or were torn
down by the respective exit relay using
a DESTROY cell. The performance of our
probing modules for all responsive exit re-
lays is illustrated in Fig. 5. The ECDF’s x-axis shows the amount of seconds it
takes for a module to finish successfully. The y-axis shows the cumulative fraction
of all exit relays. The diagram shows that all modules are able to scan at least
98% of all responsive Tor exit relays under 50 seconds. Note that it is possible to
artificially slow down exitmap in order to make scans more difficult to detect. At
maximum speed, it would be easier for colluding exit relays to correlate decoy
connections and mark them as possibly coming from exitmap.

Malicious Relays. Table 1 contains all 40 malicious and misconfigured exit
relays we found. We discovered the first two relays “manually” before we had
developed exitmap. All data illustrated in the table was gathered on the day we
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found the respective attack. It includes the first 4 bytes of the relay’s unique 20-
byte SHA-1 fingerprint, the IPv4 addresses or netblocks the relay was found to
have used over its life time, the advertised bandwidth and the country in which
the relay resided according to MaxMind’s GeoIP lite database. Furthermore, the
relay’s configuration problem or the attack it was running, the day the relay was
set up and the day we discovered the relay’s malicious activity.

Apart from all the conspicuous HTTPS MitM attacks which we will discuss
in Section 5.2, we exposed several relays running sslstrip. The relay 5A2A51D4 in-
jected custom HTML code into HTTP traffic (see Appendix B and Section 5.1).
The injected HTML code was discovered by our sslstrip module which assures
that the returned HTML code is exactly as expected. Besides, relays in Malaysia,
Hong Kong, and Turkey were subject to DNS censorship. The relays in Hong
Kong seem to have fallen prey to the Great Firewall of China’s DNS poisoning;
perhaps, the relays made use of a DNS resolver in China. Several domains such
as torproject.org, facebook.com and youtube.com returned invalid IP addresses
which were also found in previous work [21]. Finally, four relays were misconfig-
ured as they used an OpenDNS policy which censored at least web sites in the
category “pornography”. The last two relays in the table ran anti virus prod-
ucts which broke into IMAPS sessions; presumably for content inspection. All
the remaining relays engaged in HTTPS, SSH, and XMPP MitM attacks. Upon
establishing a connection to the decoy destination, these relays exchanged the
destination’s certificate with their own, self-signed version. Since these certifi-
cates were not issued by a trusted authority stored in TorBrowser’s certificate
store, a user falling prey to such a MitM attack would be redirected to the
about:certerror warning page. We will discuss some attacks in greater detail in
Section 5.

4.2 Detecting Traffic Sniffing with HoneyConnector

We deployed HoneyConnector on October 13th, 2013, and after an initial test-
ing phase of two weeks on a residential service provider network we deployed it
on multiple hosting providers across Europe. The evaluation period lasted until
February 10th, 2014, resulting in approximately four months overall deployment.
The modified FTP server was deployed in Germany with Hetzner Hosting while
the modified IMAP server was deployed with OVH. HoneyConnector can be con-
figured to use multiple server instances of the services, but for the evaluation we
decided to go with the baseline minimum of two virtual machines. We cannot
ascertain whether the destination’s network location was an additional incentive
for sniffers, e.g., due to its IP range or hostname. Furthermore, these hosting
services might be of particular interest for sniffers since (in the attackers per-
ception) there is no central software update mechanism available to customers,
the servers have high availability and high bandwidth, and are prone to mis-
configuration due to inexperienced customers. The client establishing the bait
connections was run locally on our own machines.

During the four month deployment of HoneyConnector, we registered a total
of 255 login attempts with 128 sniffed plaintext credentials, tracing back to 27

about:certerror
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Table 1. All 40 malicious and misconfigured exit relays we discovered over a period
of seven months. The data was collected right after a relay was discovered. We have
reason to believe that all relays whose fingerprint ends with a † were run by the same
attacker

Fingerprint IP addresses Country Bandwidth Problem First active Discovery
F8FD29D0† 176.99.12.246 Russia 7.16 MB/s HTTPS MitM 2013-06-24 2013-07-13

8F9121BF† 64.22.111.168/29 U.S. 7.16 MB/s HTTPS MitM 2013-06-11 2013-07-13

93213A1F† 176.99.9.114 Russia 290 KB/s HTTPS MitM (50%) 2013-07-23 2013-09-19

05AD06E2† 92.63.102.68 Russia 5.55 MB/s HTTPS MitM (33%) 2013-08-01 2013-09-19

45C55E46† 46.254.19.140 Russia 1.54 MB/s SSH & HTTPS MitM (12%) 2013-08-09 2013-09-23

CA1BA219† 176.99.9.111 Russia 334 KB/s HTTPS MitM (37.5%) 2013-09-26 2013-10-01

1D70CDED† 46.38.50.54 Russia 929 KB/s HTTPS MitM (50%) 2013-09-27 2013-10-14

EE215500† 31.41.45.235 Russia 2.96 MB/s HTTPS MitM (50%) 2013-09-26 2013-10-15

12459837† 195.2.252.117 Russia 3.45 MB/s HTTPS MitM (26.9%) 2013-09-26 2013-10-16

B5906553† 83.172.8.4 Russia 850.9 KB/s HTTPS MitM (68%) 2013-08-12 2013-10-16

EFF1D805† 188.120.228.103 Russia 287.6 KB/s HTTPS MitM (61.2%) 2013-10-23 2013-10-23

229C3722 121.54.175.51 Hong Kong 106.4 KB/s sslstrip 2013-06-05 2013-10-31

4E8401D7† 176.99.11.182 Russia 1.54 MB/s HTTPS MitM (79.6%) 2013-11-08 2013-11-09

27FB6BB0† 195.2.253.159 Russia 721 KB/s HTTPS MitM (43.8%) 2013-11-08 2013-11-09

0ABB31BD† 195.88.208.137 Russia 2.3 MB/s SSH & HTTPS MitM (85.7%) 2013-10-31 2013-11-21

CADA00B9† 5.63.154.230 Russia 187.62 KB/s HTTPS MitM 2013-11-26 2013-11-26

C1C0EDAD† 93.170.130.194 Russia 838.54 KB/s HTTPS MitM 2013-11-26 2013-11-27

5A2A51D4 111.240.0.0/12 Taiwan 192.54 KB/s HTML Injection 2013-11-23 2013-11-27

EBF7172E† 37.143.11.220 Russia 4.34 MB/s SSH MitM 2013-11-15 2013-11-27

68E682DF† 46.17.46.108 Russia 60.21 KB/s SSH & HTTPS MitM 2013-12-02 2013-12-02

533FDE2F† 62.109.22.20 Russia 896.42 KB/s SSH & HTTPS MitM (42.1%) 2013-12-06 2013-12-08

E455A115 89.128.56.73 Spain 54.27 KB/s sslstrip 2013-12-17 2013-12-18

02013F48 117.18.118.136 Hong Kong 538.45 KB/s DNS censorship 2013-12-22 2014-01-01

2F5B07B2 178.211.39 Turkey 204.8 KB/s DNS censorship 2013-12-28 2014-01-06

4E2692FE 24.84.118.132 Canada 52.22 KB/s OpenDNS 2013-12-21 2014-01-06

A1AF47E3 207.98.174.40 U.S. 98.3 KB/s OpenDNS 2013-12-20 2014-01-24

BEB0BF4F† 37.143.14.176 Russia 1.54 MB/s XMPP MitM 2013-12-16 2014-01-25

C37AFA7F 81.219.51.206 Poland 509.3 KB/s OpenDNS 2014-02-03 2014-02-06

975ACB99 54.200.151.237 U.S. 2.73 MB/s sslstrip 2014-01-26 2014-02-08

B40A3DC6 85.23.243.147 Finland 50 KB/s IMAPS anti virus 2013-11-04 2014-02-10

E5A75EE1 132.248.80.171 Mexico 102.4 KB/s IMAPS anti virus 2013-04-24 2014-02-10

423BCBCE 54.200.102.199 U.S. 702.66 KB/s sslstrip 2014-02-13 2014-02-14

F7B4BC6B 54.213.13.21 U.S. 431.78 KB/s sslstrip 2014-02-14 2014-02-15

DB7C7DDD 37.143.8.242 Russia 267.86 KB/s sslstrip 2014-02-18 2014-02-18

426E8E2F 54.201.48.216 U.S. 2.25 MB/s sslstrip 2014-02-09 2014-02-18

D81DAC47 117.18.118.136 Hong Kong 166.31 KB/s DNS censorship 2014-01-27 2014-02-14

BDBFBBC3 209.162.33.125 U.S. 806.46 KB/s OpenDNS 2014-03-06 2014-03-06

564E995A 67.222.130.112 U.S. 204.8 KB/s sslstrip 2013-08-19 2014-03-13

7F2240BF 198.50.244.31 Canada 721.47 KB/s sslstrip 2014-03-27 2014-04-04

DA7A2EDC 121.121.82.198 Malaysia 82.79 KB/s DNS censorship 2014-03-07 2014-04-15
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sniffing exit relays. Among all 255 login attempts, 136 were targeting FTP and
119 were targeting IMAP. From all 128 sniffed credentials, 97 were for FTP and
31 for IMAP. We observed one of the relays using two different Tor identity
fingerprints for different login attempts and sniffed credentials, but since the
nickname and IP address stayed the same and Tor’s software version changed,
we counted it only once. The identity fingerprint can be changed during soft-
ware updates if no precautions are met by the operator. Overall, 2,611 distinct
servers (based on the identity fingerprints) have seen bait connections, but this
is considered an upper bound since there was a Tor software update from ver-
sion 0.2.3 to 0.2.4 in December and there were up to approximately 1,000 exit
relays online during the evaluation. Even though the HoneyConnector architec-
ture was initially unstable, a login attempt with sniffed credentials was already
registered during the very first night of stability testing (October 13th). In total,
we conducted approximately 27,000 bait connection for FTP and IMAP each,
resulting in approximately 54,000 plaintext credentials created by the Honey-
Connector client software. A total of 0.24% of these credentials were used during
reconnects by the sniffing exit relay operators.

Table 2 shows the details of all sniffing exit relays we discovered. Again, it
includes the first 4 bytes of the relay’s unique 20-byte SHA-1 fingerprint, the re-
lay’s bandwidth and country (also resolved using the GeoIP lite database). The
triple in angle brackets represents the 1) unique number of plaintext credentials
sent, the 2) number of different plaintext credentials used by the malicious oper-
ator (a subset of the set of unique credentials sent) as well as the 3) total number
of connection attempts conducted with these credentials. If a relay’s exit policy
permitted it, both IMAP and FTP were used for bait connections. Furthermore,
the table shows whether the operator tried to log in using the FTP or the IMAP
credentials, or both. The distribution of login attempts over the four month pe-
riod can be seen in Fig. 6. FTP login attempts are shown as triangles and IMAP
as squares. At most, there were ten FTP login attempts a day, whereas IMAP
peaked at 33 login attempts a day. On average and across all sniffing nodes,
about 60% of the bait credentials sent were used.

Another aspect is the time interval in between the bait connection made
by HoneyConnector and the subsequent reconnect by the exit node operator.
Fig. 7 shows the time in interval between the transmission of the bait credentials
and the reconnection attempts, clustered in (non-linear) time intervals. While
the light gray bars only account for the first reconnection attempt, the darker
bars account for all reconnection attempts, including repeatedly using the same
credentials. About 25% of all login attempts were made within the first eight
hours, while half of all reconnection attempts were made within 48 hours. The
shortest time period until the first observed reconnection attempt was only three
minutes and ten seconds and done by the Estonian exit node “FreedomFighter”.
The longest observed time interval was related to the reconnection made by
“default” located in Hong Kong, with credentials that were sent more than two
months before (63 days).
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Table 2. All 27 exit relays which were found sniffing login credentials. The triple reads
<no. of credentials sent, no. of credentials tried, no of connection attemtps>, dynamic
refers to multiple IPs from 120.56.0.0/14 and 59.176.0.0/13.

Fingerprint IP addresses Country Bandwidth Sniffed Protocol HoneyConnection Reconnection
08F097F8 58.120.227.83 South Korea 1136.64 KB/s FTP <36,35,70> 2013-10-17 2013-10-17

0FE41A85 46.246.108.146 Sweden 4326.85 KB/s FTP <1,1,6> 2014-01-20 2014-01-21

229C3722 121.54.175.51 Hong Kong 168.74 KB/s FTP <2,1,14> 2013-11-04 2014-01-07

28619F94 dynamic India 51.94 KB/s IMAP & FTP <15,4,50> 2013-11-07 2013-11-13

319D548B 91.219.238.139 Hungary 1075.2 KB/s FTP <2,1,47> 2013-12-24 2013-12-14

3A484AFC dynamic India 73.4 KB/s IMAP & FTP <15,7,55> 2013-10-27 2013-10-30

52E24E09 dynamic India 57.15 KB/s IMAP & FTP <7,6,44> 2013-10-17 2013-10-18

5761CB9C 109.87.249.227 Ukraine 2.05 KB/s FTP <6,2,4> 2013-11-28 2013-11-28

5A2A51D4 111.240.0.0/12 Taiwan 75.47 KB/s IMAP <1,1,57> 2013-11-02 2014-01-20

5A3B2DEC 66.85.131.84 U.S. 512.0 KB/s IMAP <6,2,33> 2013-11-30 2013-12-03

6018E567 51.35.183.211 U.K. 312.1 KB/s FTP <1,1,6> 2014-01-24 2014-01-24

61288460 88.150.227.162 U.K. 353.0 KB/s IMAP & FTP <31,3,11> 2013-11-14 2013-11-15

6C9AAFEA dynamic India 53.95 KB/s IMAP & FTP <20,12,44> 2013-10-17 2013-10-18

46B3ADE6 85.17.183.69 Netherlands 234.18 KB/s FTP <2,1,6> 2013-12-27 2014-01-09

8450F3CA moved once Germany 2938.88 KB/s FTP <12,7,16> 2013-12-16 2013-12-16

8A47C9B0 100.42.236.34 U.S. 237.4 KB/s FTP <3,1,4> 2013-12-03 2013-12-05

9F7DBC53 76.74.178.217 U.S. 133.57 KB/s FTP <1,1,1> 2013-12-16 2013-12-17

A68412BA moved once U.S. 989.67 KB/s FTP <7,5,13> 2013-12-16 2013-12-17

AA6D6919 85.25.46.189 Germany 59.52 KB/s FTP <2,1,2> 2013-10-17 2013-10-19

ADE35AA1 dynamic India 35.53 KB/s IMAP & FTP <3,3,15> 2013-10-18 2013-10-18

BF74938A 89.79.83.166 Poland 1979.39 KB/s FTP <7,1,7> 2013-12-23 2013-12-23

C5398CD1 dynamic India 53.82 KB/s IMAP & FTP <14,9,43> 2013-10-14 2013-10-15

EBCA226D 46.246.95.193 Sweden 2737.89 KB/s FTP <1,1,1> 2014-01-21 2014-01-23

F0AAFC6D dynamic India 56.65 KB/s IMAP & FTP <30,16,56> 2013-10-17 2013-10-18

F0DD7385 76.189.8.28 Canada 111.42 KB/s FTP <1,1,21> 2013-10-14 2013-10-14

F57E0775 151.217.63.51 Germany 537.62 KB/s IMAP & FTP <24,2,2> 2013-12-29 2013-12-29

FEE8C068 46.22.211.36 Estonia 119.51 KB/s FTP <5,5,57> 2013-11-21 2013-11-22

Fig. 6. The diagram illustrates the amount of rogue login attempts over time. While
we did not witness any login attempts for most days, some days saw up to 33 login
attempts.
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5 Discussion

After having presented an overview of our results in Section 4, we now focus on
and discuss several interesting aspects of our data sets. In particular, we found
several instances of colluding exit relays, destination targeting, and human errors
among malicious exit relay operators.

5.1 Data Set Overlap

Only two exit relays were caught by both of our scanners, exitmap as well as
HoneyConnector. The first one, 5A2A51D4, was located in Taiwan and was found
to sniff IMAP credentials as well as to inject HTML code (see Appendix B).
While the HTML code was not malicious at the time we tested the relay, it
is possible that the injected code changed over time or that the code changed
depending on the HTTP Host header sent by the Tor user. The second relay
which was located in Hong Kong, 229C3722, ran sslstrip as well as sniffed FTP
credentials.

Fig. 7. The time interval between the honey connection and the login attempts

5.2 The “Russian HTTPS Group”

Interestingly, we have reason to believe that all relays in Table 1 whose fin-
gerprint ends with a † were run by the same person or group of people. This
becomes evident when analyzing the self-signed certificates which were injected
for the MitM attacks. In every case, the certificate chain consisted of only two
nodes which both belonged to a “Main Authority” and the root certificate of
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all chains—shown in Appendix A—was identical. This means that these attacks
can be traced back to a common origin even though it is not clear where or
what this origin is as we will discuss later. Apart from the identical root cer-
tificate, these relays had other properties in common. First, with the exception
of 8F9121BF which was located in the U.S., they were all located in Russia.
Upon investigating their IP addresses, we discovered that most of the Russian
relays were run in the network of a virtual private system (VPS) provider. Sev-
eral IP addresses were also located in the same netblock, namely 176.99.12.246,
176.99.9.114, 176.99.9.111, and 176.99.11.182. All these IP addresses are part
of the netblock GlobaTel-net which spans 176.99.0.0/20. Furthermore, the ma-
licious exit relays all used Tor version 0.2.2.37.6 Given its age, this is a rather
uncommon version number among relays. In fact, we found only two benign exit
relays—in Switzerland and the U.S.—which are running the same version. We
suspect that the attackers might have a precompiled version of Tor which they
simply copy to newly purchased systems to spawn new exit relays. Unfortunately,
we have no data which would allow us to verify when this series of attacks began.
However, the root certificate shown in Appendix A indicates that it was created
on February 12, 2013.

Connection Sampling. Whenever our hunt for malicious relays yielded an-
other result, we first tried to confirm the attack by rerunning the scan over the
newly discovered relay. However, in the case of the Russian relays, this did not
always result in the expected HTTPS MitM attack. Instead, we found that only
every nth connection seemed to have been attacked. We estimated the exact
sampling rate by establishing 50 HTTPS connections over every relay. We used
randomly determined sleep periods in between the scans in order to disguise our
activity. The estimated sampling rate is shown in Table 1 next to the respective
attack in parentheses. For all Russian relays, it varies between 12% and 68%. We
do not have an explanation for the attacker’s motivation to sample connections.
One theory is that sampling makes it less likely for a malicious exit relay to be
discovered; but at the cost of collecting fewer MitM victims. Interestingly, the
sampling technique was implemented ineffectively. This is due to the way how
Firefox (and as a result TorBrowser) reacts to self-signed certificates. When fac-
ing a self-signed X.509 certificate, Firefox displays its about:certerror page which
warns the user about the security risk. If a user then decides to proceed, the
certificate is fetched again. We observed that the malicious exit relays treat the
certificate re-fetching as a separate connection whose success again depends on
the relay’s sampling rate. As a result, a sampling rate of n means that a MitM
attack will only be successfully with a probability of n2 rather than n.

Who Is the Attacker?. An important question is where on the path from the
exit relay to the destination the attacker is located. At first glance, one might
6 For comparison, as of January 2014, the current stable version is 0.2.4.20. Version

0.2.2.37 was declared stable on June 6th, 2012.

about:certerror
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blame the exit relay operator. However, it is also possible that the actual attack
happens after the exit relay, e.g., in the exit relay’s ISP, the network backbone,
or the destination’s ISP. In fact, such an incident was documented in 2006 for
a relay located in China [7]. With respect to our data, we cannot entirely rule
out that the HTTPS MitM attacks were actually run by an upstream provider
of the Russian exit relays. However, we consider it unlikely for the following
reasons: 1) the relays were located in diverse IP address blocks and there were
numerous other relays in Russia which did not exhibit this behavior, 2) one of
the relays was even located in the U.S., 3) there are no other reported cases
on the Internet involving a certification authority called “Main Authority”, and
4) the relays frequently disappeared after they were assigned the BadExit flag.
The identity of the attacker is difficult to ascertain. The relays did not publish
any contact information, nicknames, or revealed other hints which could enable
educated guesses regarding the attacker’s origin.

Destination Targeting. While Tor’s nature as an anonymity tool renders tar-
geting individuals difficult,7 an attacker can target classes of users based on
their communication destination. For example, an attacker could decide to only
tamper with connections going to the fictional www.insecure-bank.com. Inter-
estingly, we found evidence for exactly that behavior; at some point the Russian
relays began to target at least facebook.com. We tested the HTTPS version
of the Alexa top 10 web sites [1] but were unable to trigger MitM attacks de-
spite numerous connection attempts. Popular Russian web sites such as the mail
provider mail.ru and the social networking site vk.com also remained unaffected.
Note that it is possible that the relays targeted additional web sites we did not
test for. Enumerating targeted web sites would mean probing thousands of differ-
ent web sites. We have no explanation for the targeting of destinations. It might
be another attempt to delay discovery by vigilant users. However, according to
previous research [16], social networking appears to be just as popular over Tor
as it is over the open Internet. As a result, limiting the attack to facebook.com
might not delay discovery significantly.

5.3 The “International Sniffer Group”

A group of international exit relays in Table 2 is obviously colluding with the
clear intent of sniffing credentials as the credentials that were sent over these
nodes were tested in batches. Since the relays are spread over Europe and the
U.S., we called it the International group, even though it is possible that they
are all operated by the same single person. It consists of the five relays “Chu-
pacabras”, “AlleyCAT”, “NennoExit”, “Aragaun” (Previously “UMBRELLAx-
CORP” at the same IP address), and “ShredOwl”, located in the U.S., Germany,
Netherlands, and Sweden. One of the nodes, “Chupacabras”, moved from Ger-
many to the U.S. during our evaluation.
7 We assume of course that Tor users do not deliberately reveal their real identity,

e.g., by posting on Internet forums under their real name.
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5.4 The “Indian Sniffer Group”

The second group that stuck out during our evaluation is a group of seven
Indian exit relays in Table 2. These relays were responsible for 104 out of all
255 reconnection attempts (41%) and employed a number of distinguishable
reconnect patterns that are unique to this group. All of the seven nodes within
this group were operated on dynamic allocated IP addresses belonging to the
ISP “Mahanagar Telephone Nigam Ltd.”, and had a bandwidth between 50 and
80 KB/s. All relays ran Tor in version 0.2.3.25 on Microsoft Windows; four
relays ran Windows 7, while three relays ran Windows Vista. Furthermore, the
nodes seemed to change their IP address every six hours, resulting in bad uptime
statistics for them. Because of the low bandwidth bundled with the poor uptime
statistics, the probability of Tor exit traffic being routed over these nodes is very
low.

Most login attempts were made by using the Mail2Web service [28] which
obfuscates the real source of the connection. In fact, Mail2Web was solely used by
the group of Indian nodes. However, fingerprints of Mozilla Thunderbird version
3.1.20 on Windows Vista was used over Tor on two occasions in November. For
reconnecting with FTP, either Microsoft Internet Explorer or Mozilla Firefox
was used. All connections made with Internet Explorer originated from one of
the nodes which was running at this time which suggests that this browser
used the Internet connection directly. All login attempts made with Firefox were
conducted through the Tor network but from different exit relays which suggests
the use of TorBrowser. The variety of software used and the number of concurrent
IP addresses point in the direction that those nodes are operated by more than
one individual, although not conclusively.

5.5 Who Reused the Bait Credentials?

For HoneyConnector, the majority of reconnects—145, or 57%—was conducted
over the Tor network, i.e., the IP address was part of the Tor network (verified
using ExoneraTor [29]) but not the relay which sniffed the credentials. This
comes as no surprise since exit relay operators are expected to be familiar with
the Tor network. Therefore, it is difficult to conclude who initiated the reconnect.
However, 45 reconnections (18%) originated from the same IP address as the
exit relay which originally sniffed the credentials. This means that the malicious
operator could have used the exit relay for a direct connection (i.e., not over
Tor) or Tor was manually configured to use this particular relay as exit. 16%
(41) of all reconnections used the service Mail2Web. Since the servers of this
service connect directly to a given IMAP server, it is not possible to assess if
the user was additionally using Tor, or used this service directly. However, this
service was only used by the operator or group of operators from the Indian exit
nodes. In 22 cases (9%) of all reconnections, the source IP address was no Tor
relay and we were unable to associated the IP address with any VPN service,
meaning that the connection was likely originating from a host under the direct
control of the relay operator. Within this subset, we found connections from IP
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addresses that belonged to hosting companies, mobile UMTS Internet services,
and private home connections by consumer Internet service providers. One IP
address was found to belong to a Japanese university. In two cases, the reverse
DNS record of the respective IP address suggests that a VPN service was used.

The software used for the reconnections can also reveal information about the
relay operator as its default configuration can be unsuitable for the Tor net-
work [8], and improper usage of client software can lead to deanonymization [3,
4]. This includes default login credentials such as “mozilla@example.com” as
password for an anonymous FTP login with Mozilla Firefox, attempts to fetch
data over side channels, e.g., Mozilla Thunderbird trying to fetch an XML file
containing data for automatic configuration, or simply the IP address of freely
available web services such as Mail2Web. The largest amount of reconnections—
117, or 46%—contained no hints or direct information on the software used.
Mail2Web was used in 41 (or 16%) reconnections, but since it is a web service
connecting to IMAP accounts through a web interface, no additional informa-
tion could be inferred. All credentials used were sent over Indian relays (see
Section 5.4). The connections by Mail2Web were easily recognizable due to the
reverse record of the respective IP addresses. The Indian nodes as well as the
operator of the British node “AstralNode” used Thunderbird for IMAP reconnec-
tions (20% or 51 reconnections) since Thunderbird issues a request for an XML
file during account setup containing instructions for automatic configuration.
The German exit node “h0rny30c3” is also very likely to have used Thunderbird
due to connection patterns, but the request for the auto configuration XML file
was not found. As for FTP reconnections, we could identify the use of Firefox
and Internet Explorer. The Firefox-based TorBrowser is the browser of choice in
the Tor Browser Bundle (TBB), and as such the recommended way of accessing
the Tor network. Firefox was used in 25 reconnection (10%), Internet Explorer
was used for 21 reconnections (9%).

5.6 Human Errors During Reconnections

Using sniffed credentials is harder than it seems, and we found multiple peculiar-
ities in our logs that we would like to share as well. Out of all 255 reconnection
attempts, 31 (or 12%) were made with incorrect credentials, in most cases with
apparent copy-paste errors by omitting characters at the beginning or the end
of a password; specifically when punctuation or special characters were used.
Other instances included multiple pastes of the same password, omitted parts of
the IMAP username or typographical errors showing that these passwords were
typed manually. We were also able to observe that sniffers monitoring multiple
protocols can become confused as to what credentials to use for which service:
the node “SuperDuperLative” for example used IMAP bait credentials for FTP
reconnections, twice. The operator also tried the password with and without
quotation marks in another instance. The operator of the Indian node “atlas”
was mixing two different username and password combinations, trying to authen-
ticate for one username with the password of another username. The operator
of the relay “pcrrtor1” used a seemingly random password that was not sent as
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part of any bait connection at all from our side. The operators of “Chupacabras”
and “ShredOwl” seem to have pasted the FTP URL into the wrong browser—in
both cases they revealed their true IP address by using Google Chrome before
switching to Firefox through Tor, clearly visible due to the default anonymous
credentials tried by Firefox.

The two biggest spikes of IMAP logins seen in Fig. 6 were made by using the
configuration wizard of Mozilla Thunderbird for creating a new connection to
an IMAP server, in which the e-mail client uses multiple login attempts to auto-
mate setup and to verify if the connection was configured properly. The logs also
indicate that further attempts were done afterwards to test and troubleshoot the
configuration but since it was not possible to log in with the snooped credentials,
Thunderbird would only display error messages. However, most of the recorded
logins had either errors in their sequences, certain erratic-appearing client fin-
gerprints with differing reconnection times, pointing us to the conclusion that all
reconnections were conducted manually. One exception here could be the recon-
nections related to the relay “SuperDuperLative”: most of these reconnections
were made either around a static time or by processing a whole batch of sniffed
credentials within a certain timeframe while using Tor.

5.7 Implications for Tor Users
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Fig. 8. The amount of hours, all 6,835
unique exit relays spent online in between
Sept. 2014 and Mar. 2014. 2,698 exit relays
vanished after being part of the network for
50 hours or less.

A question which is of interest to Tor
users is “what fraction of exit relays
is malicious?”. To answer this ques-
tion, it is tempting but insufficient to
divide our results by the total num-
ber of exit relays, e.g., 65

1000 ≈ 6%.
This calculation is biased as it does
not consider the change of exit relays
over time. This metric is captured by
the churn rate, i.e., the rate at which
new exit relays join the network and
existing ones leave.

We obtained an idea of the net-
work’s churn rate by determining the
amount of unique exit relays (based
on the relay’s identity fingerprint)
which were part of the network from
September 2013 to March 2014. For
every unique relay, we also calculate
the amount of hours, it served the net-
work. In total, we observed 6,835 unique exit relay identity fingerprints. The
distribution—with intervals of 50 hours—is illustrated in Fig. 8. A total of 2,698
exit relays was online for only 50 hours or less in these seven months. 137 exit
relays were online for 5,052 hours or more—which is close to the maximum of
5,088 hours. The diagram clearly shows that given the network’s considerable
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churn rate, our scanners tested many more relays than the overall amount of
exit relays at a given point in time. An estimate for the probability of selecting a
malicious exit relay in a circuit would also require the consideration of a relay’s
observed bandwidth.

To protect against sniffing exit relays, end-to-end encryption should be used
whenever possible. In particular, HTTPS should be preferred over its unen-
crypted alternative. The same applies to other protocols which have more se-
cure TLS-based alternatives, e.g., SMTPS or IMAPS. Note that TorBrowser’s
HTTPS-Everywhere extension automatically redirects the user to many HTTPS-
enabled web sites whenever possible. Outside the Tor network, server operators
can and should help by enabling ubiquitous encryption for all services they run,
e.g., by making use of HTTP Strict Transport Security [14].

5.8 Limitations

For both our frameworks, exitmap and HoneyConnector, performing attribution
is problematic, meaning that it is difficult to distinguish if the attacker is the
relay operator or any other entity along the path from the exit relay to the
destination. This can be for example the relay’s ISP, any other ISP along the
path, or a nation-state adversary. Even though it is in our opinion unlikely (due
to the ease of running a malicious Tor exit relay), it cannot be ruled out entirely.
Nevertheless, if such attacks seem to be run by an exit relay whereas they are
in fact conducted by the network backbone, it is beneficial to all Tor users that
this relay is assigned the BadExit flag.

5.9 Ethical Aspects

Due to exitmap’s modular architecture, it can be used for various unintended and
even unethical purposes. For example, modules for web site scraping or online vot-
ing manipulation come to mind. All sites which naively bind identities to IP ad-
dresses might be an attractive target. While we do not endorse such actions, we
point out that these activities are hard to stop and will continue to happen and
already happen regardless; with or without scanner. If somebody decides to abuse
our scanner for such actions, it will at least spare the Tor network’s resources more
than a naive design. As a result, we believe that by publishing our code, the benefit
to the public outweighs the damage caused by unethical usage.

6 Thwarting HTTPS MitM Attacks

The discovery of destination targeting made us reconsider defense mechanisms.
Unfortunately, we cannot rule out that there are additional, yet undiscovered exit
relays which target low-profile web sites. If we wanted to achieve high coverage,
we would have to probe millions of web sites; and considering the connection
sampling discussed in Section 5.2, this has to be done repeatedly! After all, an
attacker is able to arbitrarily reduce the scope of the attack but we are unable to
arbitrarily scale our scanner. This observation motivated another defense mech-
anism which is discussed in this section.
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6.1 Threat Model

We consider an adversary who is controlling the upstream Internet connection
of a small fraction of exit relays.8 The adversary’s goal is to run HTTPS-based
MitM attacks against Tor users. We further expect the adversary to make an
effort to stay under the radar in order to delay discovery. The actual MitM
attack is conducted by injecting self-signed certificates in the hope that users
are not scared off by the certificate warning page. Our threat model does not
cover adversaries who control certificate authorities which would enable them
to issue valid certificates to avoid TorBrowser’s warning page. This includes
several countries as well as organizations which are part of TorBrowser’s root
certificate store. Furthermore, we cannot defend against adversaries who control
a significant fraction of the Tor network’s exit bandwidth.

6.2 Multi Circuit Certificate Verification

As long as an attacker is unable to tamper with all connections to a given des-
tination,9 MitM attacks can be detected by fetching a public key over differing
paths in the network. This approach was picked up by several projects including
Perspectives [37], Convergence [19] and Crossbear [6]. In this section, we discuss
a patch for TorBrowser which achieves the same goal but is adapted to the Tor
network. Apart from NoScript and HTTPS-Everywhere, TorBrowser contains
another important extension: Torbutton. This extension provides the actual in-
terface between TorBrowser and the local Tor process. It directs TorBrowser’s
traffic to Tor’s SOCKS port and exposes a number of features such as the pos-
sibility to create a new identity. Torbutton already contains rudimentary code
to talk to Tor over the local control port. The control port—typically bound
to 127.0.0.1:9151—provides local applications with an interface to control Tor.
For example, Torbutton’s “New Identity” feature is implemented by sending
the NEWNYM signal which instructs Tor to switch to clean circuits so that new
application requests do not share circuits with old requests. Torbutton already
implements a useful code base for us which made us decide to implement our
extension as a patch for Torbutton rather than build an independent extension.

6.3 Extension Design

Our patch hooks into the browser event DOMContentLoaded which is triggered
whenever a document (but not necessarily stylesheets and images) is loaded
and parsed by the browser. We then check if the URI of the page contains
“about:certerror” as TorBrowser displays this page whenever it encounters a self-
signed certificate. However, it is not clear whether the certificate is genuinely
self-signed or part of an attack. In order to be able to distinguish between these
two cases, our patch now attempts to re-fetch the certificate over at least one
8 By “fraction”, we mean a relay’s bandwidth as it determines how likely a client is

to select the relay as part of its circuit.
9 This would be the case if an attacker controls the destination.

about:certerror
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additional and distinct Tor circuit as illustrated in Fig. 9. We create a fresh cir-
cuit by sending SIGNAL NEWNYM to Tor’s control port. Afterwards, we re-fetch the
certificate by issuing an XMLHttpRequest. If the SHA-1 fingerprints of both cer-
tificates match, the certificate is probably genuine.10 Otherwise, the user might
have fallen prey to a MitM attack. False positives are possible, though: large
sites could have different certificates for different geographical regions. Note that
we are not very likely to witness many false positives as our code is only run
upon observing self-signed certificates or certificates which somehow trigger the
about:certerror warning page.

User running Tor
Browser Bundle

Destination
Entry
guard

Tor
network

"Spoiled" exit
doing MitM

Benign
exit

Middle
relay

Middle
relay

1
2

Fig. 9. A user stumbles across a self-signed
certificate ➊ which could be an indication
for an HTTPS MitM attack ran by a mali-
cious exit relay. To verify if the certificate
is genuine, the client re-fetches it over an
independent exit relay ➋ and checks if the
two certificates match or not.

Our extension also informs the user
about a potential MitM attack. In
case of differing certificates, we open
a browser dialog which informs the
user about the situation. A screenshot
of our design prototype is shown in
Fig. 10. The dialog points out that
this is likely an attack and asks the
user for permission to send the data
to the Tor Project for further inspec-
tion. The submitted data contains the
exit relays used for certificate fetching
as well as the observed certificates. We
transmit no other data which could
be used to identify users; as a re-
sult, certificate submission is anony-
mous. While it is technically possible
to transmit the data silently, we believe that users would not appreciate this and
consider it as “phoning home”. As a result, we seek to obtain informed consent.

6.4 Limitations

Fig. 10. The popup window in TorBrowser
which informs the user about the potential
HTTPS MitM attack. The user can agree
to submitting the gathered information to
the Tor Project for further inspection.

Our threat model does not consider
adversaries with the ability to issue
valid certificates. While our extension
could easily be extended to conduct
certificate comparison for all observed
certificates, it would flood the Tor
network with certificate re-fetches. To
make matters worse, the overwhelm-
ing majority of these re-fetches would
not even expose any attacks. There
exist other techniques to foil CA-
capable adversaries such as certificate
10 Note that powerful adversaries might be able to control multiple exit relays, network

backbones, or even the destination.

about:certerror
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pinning [20]. By default, our patch re-fetches a self-signed X.509 certificate only
once. An attacker who is controlling a significant fraction of exit relays might be
able to conduct a MitM attack for the first as well as for the second fetch. Nev-
ertheless, we would eventually expose the attack; it would simply be a matter of
time until a client selects two independent exit relays for certificate comparison.

7 Conclusions

In this paper, we revisited the trustworthiness of Tor exit relays. After develop-
ing two exit relay scanners, we closely monitored the Tor network over a period
of several months. This effort led to the discovery of 65 relays which were ei-
ther misconfigured or outright malicious. Interestingly, we have evidence that
a non-trivial fraction of all attacks were coordinated rather than isolated. Our
results further suggest that the attackers made an active effort to remain un-
der the radar and delay detection. To protect the Tor network from malicious
exit relays, we developed exitmap and HoneyConnector; easily extensible scanners
which are able to probe exit relays for a variety of MitM and traffic sniffing at-
tacks. Furthermore, we developed a patch for TorBrowser’s Torbutton extension
which is able to fetch self-signed X.509 certificates over different network paths
in order to verify their trustworthiness. All our source code is freely available at
http://www.cs.kau.se/philwint/spoiled_onions.
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A Malicious X.509 Root Certificate
Below, the root certificate which was shared by all Russian and the single U.S.
exit relay is shown. While the domain authority.com does exist as of May 2014,
it appears to be unrelated to the CA “Main Authority”, the issuer.
1 Certificate:
2 Data:
3 Version: 3 (0x2)
4 Serial Number: 16517615612733694071 (0xe53a5be2bd702077)
5 Signature Algorithm: sha1WithRSAEncryption
6 Issuer: C=US, ST=Nevada, L=Newbury, O=Main Authority,
7 OU=Certificate Management,
8 CN=main.authority.com/emailAddress=cert@authority.com
9 Validity

10 Not Before: Feb 12 08:13:07 2013 GMT
11 Not After : Feb 10 08:13:07 2023 GMT
12 Subject: C=US, ST=Nevada, L=Newbury, O=Main Authority,
13 OU=Certificate Management,
14 CN=main.authority.com/emailAddress=cert@authority.com
15 Subject Public Key Info:
16 Public Key Algorithm: rsaEncryption
17 Public-Key: (1024 bit)
18 Modulus:
19 00:da:5d:5f:06:06:dc:8e:f1:8c:70:b1:58:12:0a:
20 41:0e:b9:23:cc:0e:6f:bc:22:5a:05:12:09:cf:ac:
21 85:9d:95:2c:3a:93:5d:c9:04:c9:4e:72:15:6a:10:
22 f1:b6:cd:e4:8e:ad:5a:7f:1e:d2:b5:a7:13:e9:87:
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23 d8:aa:a0:24:15:24:84:37:d1:69:8e:31:8f:5c:2e:
24 92:e3:f4:9c:c3:bc:18:7d:cf:b7:ba:b2:5b:32:61:
25 64:05:cd:1f:c3:b5:28:e1:f5:a5:1c:35:db:0f:e8:
26 c3:1d:e3:e3:33:9c:95:61:6d:b7:a6:ad:de:2b:0d:
27 d2:88:07:5f:63:0d:9c:1e:cf
28 Exponent: 65537 (0x10001)
29 X509v3 extensions:
30 X509v3 Subject Key Identifier:
31 07:42:E0:52:A7:DC:A5:C5:0F:C5:
32 AF:03:56:CD:EB:42:8D:96:00:D6
33 X509v3 Authority Key Identifier:
34 keyid:07:42:E0:52:A7:DC:A5:C5:0F:C5:
35 AF:03:56:CD:EB:42:8D:96:00:D6
36 DirName:/C=US/ST=Nevada/L=Newbury/O=Main Authority
37 /OU=Certificate Management
38 /CN=main.authority.com/emailAddress=cert@authority.com
39 serial:E5:3A:5B:E2:BD:70:20:77
40
41 X509v3 Basic Constraints:
42 CA:TRUE
43 Signature Algorithm: sha1WithRSAEncryption
44 23:55:73:1b:5c:77:e4:4b:14:d7:71:b4:09:11:4c:ed:2d:08:
45 ae:7e:37:21:2e:a7:a0:49:6f:d1:9f:c8:21:77:76:55:71:f9:
46 8c:7b:2c:e8:a9:ea:7f:2f:98:f7:45:44:52:b5:46:a4:09:4b:
47 ce:88:90:bd:28:ed:05:8c:b6:14:79:a0:f3:d3:1f:30:d6:59:
48 5c:dd:e6:e6:cd:3a:a4:69:8f:2d:0c:49:e7:df:01:52:b3:34:
49 38:97:c5:9a:c3:fa:f3:61:b8:89:0f:d2:d9:a5:48:e6:7b:67:
50 48:4a:72:3f:da:28:3e:65:bf:7a:c2:96:27:dd:c0:1a:ea:51:
51 f5:09

B Injected HTML Code
The following HTML code was injected by the relay 5A2A51D4 (see Table 1 and
Table 2). It was appended right in front of the closing HTML tag.
1 <br>

2 <img src="http://111.251.157.184/pics.cgi"

3 width="1" height="1">

When requesting the image link inside the HTML code, the server responds
with another HTML document. The full HTTP response is shown below.
1 HTTP/1.1 200 OK

2 Date: Tue, 14 Jan 2014 17:12:08 GMT

3 Server: Apache/2.2.22 (Ubuntu)

4 Vary: Accept-Encoding

5 Transfer-Encoding: chunked

6 Content-Type: text/html

7
8
9 <HTML>

10 <HEAD>

11 <TITLE>No Title</TITLE>

12 </HEAD>

13 <BODY>

14
15 </BODY>

16 </HTML>
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