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9.1            Definition 

 Male idiopathic (oligo) ± (astheno) ± (terato)-spermia (iOAT) is defi ned as a defective 
spermatogenesis of obscure etiology and is regarded as undetectable using common 
laboratory methods [ 1 ]. iOAT can be classifi ed from a clinical point of view as isolated 
astheno ± teratospermia (no alteration in sperm concentration), moderate iOAT (sperm 
concentration <20 × 10 6 /mL), or severe iOAT (sperm concentration <5 × 10 6 /mL) [ 2 ].  

9.2     Epidemiology 

 iOAT affects approximately 30 % of infertile men and is one of the most common 
causes of infertility [ 1 ]. It is likely that its prevalence is increasing, in association 
with the progressive declining sperm count in men today [ 3 ].  

9.3     Etiology 

 Descriptions of reputed causes of iOAT have at least two biases. Two patterns whose 
alterations are linked to male infertility with normal sperm parameters have been 
described: DNA damage and alterations of polymerase mitochondrial gamma gene 
( POLG ) [ 4 – 6 ] (see Chap.   10    ). The sum of the percentages of patients with different 
causes of iOAT gave a result much higher than 100 %. This fi nding implies that the 
causes overlap, that the primary cause (if any) of iOAT is still unknown, and/or that 
more than one cause is needed to affect sperm patterns. The most likely hypothesis 
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is the fi rst; it has been demonstrated that iOAT sufferers comprise at least two dif-
ferent populations of infertile men [ 7 ]. 

9.3.1     Age 

 There is evidence that sperm motility declines progressively after age 30 years, 
although there is less evidence that a similar decline in sperm volume and concen-
tration may also occur in typical presentations [ 8 ,  9 ].  

9.3.2     Noninflammatory Functional Alteration 
in Post-testicular Organs 

 Low seminal concentration of prostate-specifi c antigen, zinc, fructose, and prostatic 
acid phosphatase [ 10 ], and low seminal activity of neutral α-glycosidase are linked 
to isolated asthenospermia in addition to increased viscoelasticity [ 11 ] and osmolar-
ity of seminal plasma [ 12 ]. Alterations of epididymal methylation of spermatogen-
esis-specifi c genes have been suspected to be involved in the etiology of iOAT [ 13 , 
 14 ]. Demethylation is critical for gene transcription.  

9.3.3     Infective Agents 

  Chlamydia trachomatis  (CT) and adenovirus (AV) infections have been regarded as 
being associated with iOAT; however, proof regarding the role of asymptomatic CT 
and/or AV infection in infertility is inconclusive [ 15 ,  16 ].  

9.3.4     Genetic Factors 

 Approximately 10 % of rat genomes are specifi cally linked to spermatogenesis, and 
about 200 genes are regarded as critical for germ cell development [ 17 ]; this means that 
several genes might be involved in iOAT etiology. To be considered a key factor for 
iOAT, a gene must display all of the following characteristics: (1) it should be specifi -
cally expressed in the germ cell line, (2) its altered expression should be associated with 
iOAT; and (3) it should have an essential role in spermatogenesis [ 18 ]. Despite this 
restriction, several genes have been identifi ed as causes of iOAT [ 19 ,  20 ]. (Diaginic) 
heredity and de novo mutations are the theoretical causes of the bad gene expression [ 1 ].  

9.3.5     Mitochondrial Alterations 

 In asthenospermia, both mitochondrial membrane potential [ 21 ,  22 ] and DNA mito-
chondrial content [ 23 ,  24 ] are impaired.  
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9.3.6     Subtle Hormonal Alterations 

 A decreased luteinizing hormone (LH) pulse frequency has been found to occur in 
iOAT men whose amplitude parallels the severity of the disorder [ 25 ]. 

 Molecular variants of LH have been associated with iOAT [ 26 ]. 
 IOAT displays a shift toward lower testosterone (T) serum levels, lower calcu-

lated T index, and lower T/LH ratio, and a shift toward higher serum LH levels, 
higher 17-β2-estradiol (E2), and higher E2/T levels [ 27 ]. Increased E2 levels are 
postulated to contribute to the central suppression of gonadotropin production 
which, in turn, may decrease both T production and spermatogenesis [ 28 ]. E2 is 
derived mainly from the intratesticular and peripheral aromatization of androstene-
dione and T by aromatase, a product of the CYP19 gene. CYP 19A1 is a single-copy 
gene located on chromosome15q21.2. Aromatase polymorphisms have been shown 
to affect various estrogen-dependent diseases in men and women. The most com-
monly studied aromatase polymorphism is the tetranucleotide Tyrosine-Tyrosine-
Tyrosine-Adenine [TTTA] repeat polymorphism [TTTAn] present in intron 4 of the 
CYP 19A1 gene. This polymorphism is associated with the activity of the aroma-
tase enzyme both in vivo and in vitro [ 29 ]. Higher numbers of TTTA repeats (>7 
repeats) in the aromatase gene are associated with a negative relationship between 
obesity and sperm count. The effect of obesity on E2 and sperm count appears to be 
absent in men with fewer (≤7) repeats [ 30 ].  

9.3.7     Environmental Pollutants 

 Environmental pollutants are regarded as capable of deteriorating semen quality. 
Chapter   16     is specifi cally dedicated to this aspect.   

9.4     Pathogenesis 

 The aforementioned causes affect spermatogenesis. Impaired spermatogenesis 
leads to increased reactive oxygen species (ROS) and unbalanced germ cell 
apoptosis. 

9.4.1     Increased ROS 

 ROS originate from the cellular physiologic metabolism of O 2  in aerobic condi-
tions, and are mainly produced by leukocytes and immature gametes. Immature 
gametes are common fi ndings in iOAT. ROS are short-lived chemical intermediates 
containing one or more electrons with unpaired spins. All spermatozoa structures 
can be attacked and denatured by ROS [ 1 ,  31 ], ultimately resulting in death and/or 
irreversible damage. Physiologic (low) levels of ROS exert critical function in nor-
mal sperm physiology, such as fertilizing ability (acrosome reaction, 
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hyperactivation, capacitation, and chemotaxis) and sperm motility; whereas 
increased ROS generation and/or decreased antioxidant capacity leads to the 
imbalance between oxidation and reduction in living systems, which is called 
sperm oxidative stress. This condition was widely considered to be a signifi cant 
contributory factor to sperm DNA damage/apoptosis, lipid peroxidation, and 
reduced motility, which, in turn, increased the risk of male factor infertility/subfer-
tility and birth defects [ 31 ].  

9.4.2     Modified Apoptosis 

 Apoptosis (programmed cell death) is a physiologic mechanism aimed at achieving 
optimal Sertoli cell/gamete ratio and removing damaged gametes [ 32 ]. The range of 
stimuli that triggers this activity is impressively broad and includes various forms of 
electromagnetic radiation, environmental toxicants, heavy metals, and chemothera-
peutic agents [ 33 – 37 ]. In addition, genetic perturbation of the germ cell line occurs 
through, for example, overexpression of SPATA17 [ 38 ] or androgen-binding protein 
[ 39 ], or deletion of key genes involved in the regulation of spermatogenesis [ 40 –
 42 ]. The impression given is that if spermatogenesis is disrupted in any way, the 
germ cells tend to default to an apoptotic state. The stage of spermatogenesis when 
apoptosis is induced appears to be predominantly pachytene spermatocytes, and the 
Fas (fi broblast-associated death receptor)/Fas ligand and caspase systems seems to 
be the major mediators of this process [ 34 ].   

9.5     Diagnosis 

 iOAT is commonly diagnosed by exclusion; the differential diagnosis is presented 
in Table  9.1 . 

   Table 9.1    Differential diagnosis of male infertility [ 2 ]   

 Reproductive failure mechanism  Methods of diagnosis 

 Chromosomal  X chromosome 
disorders 

 Objective examination, Y 
microdeletion detection, 
karyotype screening of cystic 
fi brosis, hormonal profi les, 
androgen receptor detection, 
semen analysis 

 Y chromosome 
disorders 

 Autosomal disorders 

 Developmental  Hypospadias  Clinical history, objective 
examination, semen analysis, 
scrotal echography 

 Ductal obstruction 

 Didymal-epididymal 
interruption 
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Table 9.1 (continued)

 Reproductive failure mechanism  Methods of diagnosis 

 Testicular pathology  Cryptorchidism  Clinical history, objective 
examination, semen analysis, 
scrotal echography 

 Ectopic testicle 

 Retarded descent 

 (Floating testicle?) 

 Testicular tumors 

 Bilateral atrophy 

 Trauma 

 Testicular torsion 

 Genital tract infl ammation  Urethritis  Clinical history, objective 
examination, semen analysis, 
scrotal echography, urethral 
swab, urine analysis, sperm and 
urine cultural analysis 

 Prostatitis 

 Epididymitis 

 Orchitis 

 Varicocele  Objective examination, scrotal 
bilateral echo-color Doppler 
examination, semen analysis 

 Endocrine  Pituitary disorders  Hormonal profi les 

 Hypothalamic 
disorders 

 Semen analysis 

 Testicle disorders 

 Thyroid disorders 

 Adrenal gland 
disorders 

 Iatrogenic  Surgery  Clinical history, objective 
examination, semen analysis  Drugs 

 Radiation 

 Sexually related causes  Erectile defi ciency  Clinical history, semen analysis 

 Disturbed ejaculation 

 General diseases  Renal diseases 

 Liver diseases 

 Neurologic diseases 

 Gastrointestinal 
diseases 

 Hematologic diseases 

 Autoimmune diseases 

 Infectious diseases 
(AIDS) 

 Psoriasis 

 Sarcoidosis 

 Diabetes 

 Idiopathic 
oligoasthenoteratospermia 

 Semen analysis, exclusion 
criteria 
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9.6       Therapy 

 Therapy for iOAT is commonly regarded as empiric, because it is not possible in the 
current outpatient clinical setting to defi ne the exact etiology of the spermatogenetic 
disorder of each iOAT patient. A number of therapies have been proposed, the most 
effective of which, according to author’s experience and literature review, are 
reported here. Obviously these therapies might improve the sperm count in the 
majority of patients but not in all, and these therapies should be intended as symp-
tomatic therapies: i.e., sperm count is improved as long as these therapies are 
administered, and decrease immediately after their suspension. Therapies should be 
administered for at least 3 months, because a stem cell requires about 61 days to 
achieve the fi nal status of mature spermatozoon [ 43 ]. A rough therapeutic classifi ca-
tion can be compiled on the basis of sperm analysis results. 

9.6.1     Isolated (Astheno) ± (Terato)-Spermia 

  Coenzyme Q10  100 mg twice daily for at least 3 months. Coenzyme Q10 is a lipo-
philic antioxidant agent and should be administered after meals. Galenic prepara-
tions should use lipophilic excipients (e.g., cocoa butter) [ 44 ].  

9.6.2     Oligo-Astheno-Teratospermia with Sperm 
Concentration >5 × 106/mL 

  l - Carnitine  1 g twice daily;  acetyl - l - carnitine  500 mg twice daily;  cinnoxicam  
30 mg, one tablet every 4 days after the main meal. These drugs are antioxidant 
agents [ 45 ,  46 ].  

9.6.3     All Degrees of Dyspermia with Serum 
Follicle-Stimulating Hormone <2 mIU/mL 

 Intramuscular  recombinant Follicle-Stimulating Hormone  ( FSH ) 100–300 IU every 
2 days. FSH stimulates Sertoli cell function and spermatogenesis [ 47 ,  48 ].  

9.6.4     All Degrees of Dyspermia with a low (<10) T/E2 Ratio 

 These dyspermias have exhibited an increased sperm count after  letrozole  (2.5 mg/
day) and/or  anastrozole  (1 mg/day) treatment. Nonobstructive azoospermic patients 
with T/E2 ratio <10 also had their sperm count increased with letrozole and/or anas-
trozole treatment. Letrozole and anastrozole are members of a novel class of nonste-
roidal, hormone-targeting agents used for breast cancer therapy. They reversibly 
inhibit the aromatase enzyme, which converts the androgen precursors in adipose 
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tissue to E2. Blocking of estrogen production has been shown to provoke increased 
gonadotropin and androgen levels in the blood and a parallel E2 decrease, resulting 
in spermatogenesis stimulation [ 49 ,  50 ].   

9.7     Prognosis 

 Prognosis is diffi cult to defi ne in these patients, mainly because of the empiric 
nature of the therapies. However, antioxidant drugs and aromatase inhibitors signifi -
cantly lower the number of couples that might require treatment with assisted repro-
duction to achieve a pregnancy [ 51 ].     
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