
Constructive Reversible Logic Synthesis for Boolean
Functions with Special Properties

Anupam Chattopadhyay1, Soumajit Majumder1,
Chander Chandak2, and Nahian Chowdhury1

1 MPSoC Architectures Research Group, RWTH Aachen University, Germany
anupam.chattopadhyay@umic.rwth-aachen.de

2 IIT Kharagpur, India

Abstract. Reversible computation is gaining increasing relevance in the context
of several post-CMOS technologies, the most prominent of those being quan-
tum computing. The problem of implementing a given Boolean function using
a set of elementary reversible logic gates is known as reversible logic synthesis.
Though several generic reversible logic synthesis methods have been proposed
so far, yet the scalability and implementation efficiency of these methods pose a
difficult challenge. Compared to these generic synthesis methods, few reversible
logic synthesis approaches for restricted classes of Boolean functions demon-
strated better implementation efficiency and scalability. In this paper, we propose
a novel constructive reversible logic synthesis technique for Boolean functions
with special properties. The proposed techniques are scalable, fast and outper-
forms state-of-the-art generic reversible synthesis methods in terms of quantum
cost, gate count and the number of lines.

1 Introduction

From thermodynamic principles of computing, Landauer [11] pointed out that for every
bit of information lost, kT · ln 2 Joules of heat is generated in an irreversible computa-
tion, which is recently verified experimentally [3]. Bennett [2] proposed that the compu-
tation can be done in reversible manner to achieve theoretically zero power dissipation
by building upon Landauer’s observations. This concept helped to form the field of re-
versible computation, which also dictates that the physical reversibility must be accom-
panied at higher abstraction by logical reversibility. This is a cornerstone for serveral
post-CMOS technologies including quantum computing. Reversible logic synthesis ac-
cepts an (in)completely specified reversible Boolean function as input and generates a
logical representation of the function, where reversible logic gates are used.

Boolean functions serve as prime building block of symmetric-key cryptosystems
and error-correcting codes, for which several properties are highly desirable such as
nonlinearity, symmetry, correlation immunity and balancedness. The main motiva-
tion behind this work is to show that the combinatorial construction of the reversible
Boolean functions with specific properties can be done in order to improve the circuit
efficiency compared to automated logic synthesis method. In this paper, we focus to
two properties namely, symmetry and nonlinearity of Boolean functions.

S. Yamashita and S. Minato (Eds.): RC 2014, LNCS 8507, pp. 95–110, 2014.
© Springer International Publishing Switzerland 2014



96 A. Chattopadhyay et al.

2 Preliminaries

A Boolean function f is of the form f : {0, 1}n → {0, 1} (or equivalently f :
V

n
2 → V2). The output of the Boolean function f can be represented as a string s

of ones and zeros. It can also be represented as a multivariate polynomial over GF (2).
This polynomial can be expressed as a exclusive disjunction (EXOR) of a constant
a0 and one or more conjunctions of the function argument. This is called the Exclu-
sive Sum-Of-Product (ESOP) representation. A less general representation of the ESOP
form is known as the Algebraic Normal Form (ANF). The general ANF for a function
f(x1, .., xn) over n-variables can be written as,

f(x1, .., xn) =a0 ⊕ a1x1 ⊕ · · · ⊕ aixi ⊕ · · · ⊕ anxn

⊕ · · · ⊕ a1,2,...,nx1x2 · · ·xn

(1)

Reversible and Irreversible Boolean Functions. An n-variable vectorial Boolean
function is reversible if all its output patterns map uniquely to an input pattern and
vice-versa. It can be expressed as an n-input, n-output bijection or alternatively, as a
Boolean permutation function over the truth value set {0, 1, . . .2n−1}. An irreversible
Boolean function firr : {0, 1}n → {0, 1}m with n �= m can also be made reversible
with the help of extra input lines (ancilla) and/or output lines (garbage lines) such that,
input+ ancilla = output+ garbage.

Nonlinearity. The nonlinearity of a Boolean function f on n-variables, denoted by Nf

is the minimal Hamming Distance between f and all the affine functions on V
n
2 .

The class of Boolean functions having the highest nonlinearity are known as Bent
functions. They are defined only on V

2k
2 , i.e. Boolean functions of even number of

variables and their nonlinearity is given by 22k−1 − 2k−1. In contrast, the maximum
nonlinearity attainable for a Boolean function V

2k+1
2 with odd number of variables still

remains an open problem.

Symmetry. A Boolean function f : {0, 1}n → {0, 1} is called symmetric if its output
is invariant under any permutation of its input bits. Equivalently we can say that the
value of f(x) is constant for all x’s having the same weight.

Direct Sum. The direct sum of two strings x and y, of lengths n and m respectively,
denoted by xℵy is given by xℵy = (x ⊗ yc) ⊕ (xc ⊗ y), where x ⊗ y = (x0 AND
y)...(xn−1 AND y) denotes the Kronecker product of two strings producing a string
of length nm. yc denotes complement of y.

Reversible Logic Synthesis. Reversible Boolean logic synthesis is achieved with the
help of reversible logic gates. The gates are characterized by their implementation cost
in quantum technologies, which is dubbed as Quantum Cost (QC). We use the stan-
dard QC values from [13] along with the latest improvements reported in [30] for QC
computation. Few prominent reversible logic gates are as following.



Constructive Reversible Logic Synthesis for Boolean Functions 97

– CNOT gate: CNOT(a, b) = (a, a⊕ b).
– CCNOT gate (Toffoli gate): CCNOT(a, b, c)=(a, b, ab⊕ c). This gate can be gen-

eralized with Tofn gate, where first n− 1 variables are used as control lines. NOT
and CNOT gates are denoted as Tof1 and Tof2 respectively.

– Controlled Swap gate (Fredkin gate): Fred(a, b, c) = (a, ab ⊕ ac, ac ⊕ ab). This
is generalized with Fredn gate (n > 1), where first n − 2 variables are used as
control lines.

– Peres gate: Per(a, b, c) = (a, a⊕ b, ab⊕ c). This gate can be generalized with Pern
gate (n > 2) [30], where first n− 1 variables are used as control lines.

2.1 Related Work and Motivation

A Boolean function should possess certain properties for its use in cryptographic appli-
cations such as symmetry, balancedness and high nonlinearity. Matsui in [17] showed
that Boolean functions of low nonlinearity can be approximated and hence can be con-
sequently attacked using linear cryptanalysis attacks, which makes high nonlinearity
a desirable property of cryptographically strong Boolean function. To this effect, re-
searchers came up with multiple construction methods for highly nonlinear Boolean
functions with large number of variables. These constructive methods could be adopted
for reversible circuit construction, which has not been attempted before this work. This
constructive approach not only provides a scalable reversible logic synthesis method for
highly nonlinear Boolean functions but also, demonstrates increased efficiency of im-
plementation compared to generic reversible logic synthesis techniques. Symmetry of
Boolean functions, while a desirable property for cryptographic applications, has also
been shown to be important for general reversible logic synthesis [23].

Existing reversible logic synthesis methods can be broadly classified in two cate-
gories - generic [26] and property-specific. In the area of property-specific reversible
logic synthesis, Beth and Rötteler [4] suggested synthesis approach for linear re-
versible circuits using Gaussian Elimination and LU-Decomposition to yield circuits
with O(n2) gates. In [21], an improved algorithm with better speed and asymptotically
optimal performance for synthesis of linear reversible circuits is proposed. Younes [34]
proposed a factorization algorithm for synthesis of homogeneous Boolean functions.
For Symmetric Boolean functions, a synthesis technique is proposed at [15]. This is
improved further at [8], where a cascade of Peres gates is utilized to obtain reversible
circuits with improved QC.

It has been noted at [15] that the constructive reversible logic synthesis procedures
for Boolean functions with special properties are scalable and can outperform, in many
cases, the generic synthesis techniques. This forms the key motivation of this work. Be-
sides, it has been shown in a recent work that several Quantum algorithms do require
efficient reversible circuits for specific classes of Boolean functions [7]. In this work,
we make two contributions. First, we propose a constructive reversible logic synthesis
technique for highly nonlinear Boolean functions. Second, we propose a constructive re-
versible logic synthesis technique for symmetric Boolean functions. For both the cases,
we report improved results compared to the current literature.

In contrast to the state-of-the-art synthesis techniques [28,26] for Boolean functions
with special propertes, we explore deeper and draw from the classical Boolean function



98 A. Chattopadhyay et al.

construction techniques from the literature. The constructive approach presented in this
paper have multiple advantages, e.g., scalability, low synthesis runtime and significant
implementation efficiency, as we demonstrate via benchmarking with state-of-the-art
generic and property-specific reversible synthesis flows.

3 Synthesis of Highly Nonlinear Functions

In this section, several construction techniques for highly nonlinear Boolean functions
and Bent functions are discussed. Those are followed by their reversible circuit syn-
thesis approaches, corresponding theoretical results on the upper bounds of gate count
(GC), QC and the total number of lines (L) and comparison with state-of-the-art generic
synthesis techniques.

3.1 Construction Method I: [27]

Here, we follow the concatenation-based construction of n-variable, m-resilient
Boolean functions. (following Theorem 4,[27]). The idea is to utilize Boolean func-
tions with smaller number of variables to construct a highly nonlinear Boolean function
of large variable count. Before the concatenation, direct sum function is used. An op-
timized reversible circuit construction for the direct sum function (denoted as ℵ) is
developed for the same. We illustrate with the help of a construction of a 14-variable
Boolean function with 2nd order resiliency. The values of k and r, which are defined
as two parameters for the construction in [27] are chosen as 6. Following the theorem,
we concatenate 4 Boolean functions fi’s on V

12
2 as fi = giℵλi, where gi is maximum

nonlinear function on 6-variables. We choose 4 Bent functions on V
6
2 which are as fol-

lowing.

g1 = x1x2 ⊕ x3x4 ⊕ x5x6,

g2 = x1x2 ⊕ x3x4 ⊕ x5x6 ⊕ x2,

g3 = x1x2 ⊕ x3x4 ⊕ x5x6 ⊕ x2 ⊕ x3,

g4 = x1x2 ⊕ x3x4 ⊕ x5x6 ⊕ x2 ⊕ x3 ⊕ x4

(2)

The λi’s belong to ULk(m + 1) where, ULk(m + 1) = Lk(m + 1) ∪ · · ·Lk(k) (i.e.,
Lk(3) ∪ · · ·Lk(6)) The individual sets Lk(j) denote the set of all k-variable linear
Boolean functions which are non-degenerate on exactly j-variables. The choices for
the λi’s are,

λ1 = L6(3) = x7 ⊕ x8 ⊕ x9,

λ2 = L6(4) = x7 ⊕ x8 ⊕ x9 ⊕ x10,

λ3 = L6(5) = x7 ⊕ x8 ⊕ x9 ⊕ x10 ⊕ x11,

λ4 = L6(6) = x7 ⊕ x8 ⊕ x9 ⊕ x10 ⊕ x11 ⊕ x12

(3)

For reversible circuit implementation, constructions of gi and λis are straightfor-
ward. It is noted that, the reversible logic implementation of direct sum is nothing but
the ⊕ operation of the two functions gi and λi. This allows efficient implementation of



Constructive Reversible Logic Synthesis for Boolean Functions 99

this method also via ESOP-based approach. However, the constructive approach con-
siderably reduced the QC of the individual functions, resulting in overall improvement
(Table 1). In the table, the shaded cells represent equal or improved performance in
comparison with state-of-the-art synthesis methods.

Comparison with the state-of-the-art synthesis methods: We compare the proposed syn-
thesis technique with state-of-the-art reversible logic synthesis methods. The functions
are represented by the choice of the parameters - n, k, r and m. The nonlinearity of the
functions are denoted by Nf and the maximum achievable nonlinearity (in the case of
Bent functions) by nlmax. It can be observed that, with the proper choice of r and k,
the method can easily scale to large Boolean functions. On the other hand, the choice
of a large k and/or r, requires one to first synthesize a large Boolean function.

Table 1. Benchmarking Construction Method I

Function Nf/nlmax
BDD[32] ESOP[20,10] MMD[18] This work

Lines Gates QC Lines Gates QC Lines Gates QC Lines Gates QC
(14, 6, 6, 1) 7836/8028 26 67 179 15 17 157 14 40 886 18 20 88
(14, 6, 6, 2) 7836/8028 31 86 238 15 16 148 14 39 660 18 21 91
(16, 6, 8, 1) 31856/32368 31 80 208 17 22 262 16 168 5670 20 23 87
(16, 8, 6, 2) 31344/32368 36 93 241 17 16 136 16 172 5850 20 27 91

3.2 Construction Method II: Recursive Construction[22]

A construction method presented in [22] generates large Boolean functions of high
nonlinearity and resilience recursively like the previous one. A 10-variable, 4-resilient
Boolean function of degree 4 and of nonlinearity 480 is constructed using a 7-variable,
2-resilient Boolean function of degree 4 and nonlinearity 56 as described in Theorem
7 [22]. The 7-variable function is first presented below. Note that this function was again
found using a constructive method based on 6-variable functions.

f(x1, . . . , x7) = (1⊕ x7)(1⊕ x6)h1()⊕ (1⊕ x7)x6h2()⊕ (1⊕ x6)x7h3()⊕ x6x7h4(),
(4)

where

h1(x1, . . . , x5) = x1 ⊕ x2 ⊕ x1x4 ⊕ x3x4 ⊕ x2x5 ⊕ x3x5 ⊕ x4x5 ⊕ x1x4x5 ⊕ x2x4x5 ⊕ x3x4x5

h2(x1, . . . , x5) = 1 ⊕ x1 ⊕ x2 ⊕ x4 ⊕ x3x4 ⊕ x2x5 ⊕ x3x5 ⊕ x4x5 ⊕ x1x4x5 ⊕ x2x4x5 ⊕ x3x4x5

h3(x1, . . . , x5) = x3 ⊕ x1x3 ⊕ x1x2x3 ⊕ x1x4 ⊕ x2x4 ⊕ x1x2x4 ⊕ x3x4 ⊕ x1x3x4 ⊕ x5 ⊕ x1x5

⊕ x1x2x5 ⊕ x1x3x5

h4(x1, . . . , x5)=1 ⊕ x2 ⊕ x1x2 ⊕ x1x2x3 ⊕ x4 ⊕ x1x4 ⊕ x1x2x4 ⊕ x1x3x4 ⊕ x1x5 ⊕ x2x5 ⊕ x1x2x5

⊕ x3x5 ⊕ x1x3x5

(5)

In [22], an n-variable Boolean function Fd is defined to be in desired form if it
follows the construction

Fd = (1⊕ xn)f1 ⊕ xnf2, (6)



100 A. Chattopadhyay et al.

where f1 and f2 are (n − 1)-variable functions with their degree being 1 less than Fd.
The aforementioned 7-variable function is in desired form since, those are constructed
recursively using 6-variable functions. Based on the 7-variable function f(x1, . . . , x7),
a 10-variable, 4-resilient Boolean function of degree 4 and of nonlinearity 480 is con-
structed as following. Let F = xn+2 ⊕ xn+1 ⊕ f and G = (1 ⊕ xn+2 ⊕ xn+1)f1 ⊕
(xn+2 ⊕ xn+1)f2 ⊕ xn+2 ⊕ xn. Then the target 10-variable function F1 of specified
properties is constructed as F1 = (1 ⊕ xn+3)F ⊕ xn+3G. The construction of the 10-
variable function from the 7-variable function can be easily achieved with Toffoli and
Fredkin gates, as shown in the Figure 1. The detailed implementation of the constituent
functions h1, h2, h3 and h4 are not shown. These functions were synthesized using an
ESOP-based flow including common cube sharing.

The proposed synthesis technique is compared with the existing state-of-the-art syn-
thesis techniques in Table 2. It is interesting to note that, even though the recursive con-
struction allows direct implementation via simple reversible gates, none of the synthesis
methods had matching QC or gate count that could be achieved from our constructive
technique. The additional 6 lines, compared to the MMD method is contributed due to
the fact that the constituent functions were synthesized using ESOP, thereby requiring
4 lines for the constituent functions h1, h2, h3 and h4. Furthermore, 2 were required for
6-variable functions f1 and f2, which were used for constructing f(x1, . . . , x7) as well
as for constructing F1. The improvement in constructive method is due to the following
facts

– The desired form of a function directly translates to controlled swap gate
– Recursive construction method is based on basic CNOT gates

Evidently, these properties are not utilized by generic synthesis methods.

Fig. 1. Construction Method II:10-variable, 4-resilient Boolean function

Table 2. Comparison of Construction Method II with existing synthesis methods

Synthesis Method Lines Gates QC
BDD[32] 42 147 447

ESOP[20,10] 26 89 309
MMD[18] 10 654 55632
This work 16 44 230



Constructive Reversible Logic Synthesis for Boolean Functions 101

3.3 Construction Method III: [9]

An early construction method for Bent functions on V
2k
2 was originally proposed in [9].

This construction, known as Maiorana-McFarland construction, has been further gen-
eralized in [5]. Numerous developments on Bent function construction followed the
basic Maiorana-McFarland technique, such as in [12], authors obtained Bent functions
with high resiliency. In this work, we focus on the basic construction as outlined in [9]
and [35]. The idea of the construction is to concatenate the linear functions on V

k
2 ,

thereby generating Bent functions on V
2k
2 .

f(y, x) = π(y) · x⊕ g(y), x, y ∈ V
k
2 (7)

where f is the resultant Bent function, π represents a permutation on V
k
2 and g is any

Boolean function on V
k
2 . There are 22

k

(2k!) such Bent functions, where the possible
permutations are covered by the factor (2k!). For our study, we restricted π to all possi-
ble linear functions, and assumed g to be 0, thereby generating 2k(2k!) Bent functions.
The general implementation is as shown in the Fig. 2.

Mapping to Reversible Circuits and Implementation Cost Determination: The afore-
mentioned construction can be realized by applying psuedo-optimal linear reversible
circuit synthesis [21] followed by a set of Fredkin gates. This construction has high L,
GC and QC due to the multiplexer type functionality where k lines act as control lines
and select one from all possible 2k linear functions on V

k
2 . This construction method

suffers from scalability issues since, with increasing variable count, the number of lin-
ear functions increases exponentially.

Comparison with state-of-the-art synthesis methods: The benchmarking results are pre-
sented in Table 3. Note that due to the size constraint, the complete functions are not
presented for the studied 8-variable Boolean functions. Instead, only the permutation of
the 16 linear functions for the sub-space V

4
2 are given, where 1 → 0, 2 → x1, 3 → x2,

· · · , 16 → x1⊕x2⊕x3⊕x4. The total number of lines required remain upper-bounded
by 20, which is due to 4 control inputs, 4 inputs for the linear functions, which are re-
used as part of the total 16 linear functions. Thereby, the upper bound of lines can be
generalized as k+2k for a bent function construction on V

k
2k. In this case, however, the

line counts could be further reduced by applying algebraic optimization based on the
ESOP formulation (see subsection 3.5). In the same manner, it is possible to determine
the generalized costs for the linear function generator part. However, the identification
of minimum swap count for a given permutation is non-trivial. Thankfully, the con-
struction method as shown in [35] includes the swaps. Except for the count of lines,
the constructive method outperformed ESOP and BDD-based methods both in gate
count and QC for most of the permutations. We did not benchmark against MMD as
it typically reports even higher gate count and QC compared to ESOP and BDD-based
methods.



102 A. Chattopadhyay et al.

Fig. 2. Construction Method III: Bent Func-
tion

Fig. 3. Construction Method IV: Bent Func-
tion

Table 3. Benchmarking Construction Method III

Permutation of Linear Functions Variable
BDD[32] ESOP[20,10] This work

Lines Gates QC Lines Gates QC Lines Gates QC
{11, 15, 10, 16, 4, 5, 2, 13, 8, 14, 6, 12, 9, 3, 7, 1} 8 22 71 219 9 32 488 18 33 97
{7, 14, 5, 13, 1, 16, 6, 3, 10, 12, 9, 2, 4, 11, 8, 15} 8 22 68 196 9 35 479 14 30 90
{15, 9, 14, 7, 5, 1, 16, 12, 6, 2, 11, 10, 4, 8, 3, 13} 8 22 62 174 9 25 353 13 23 71
{6, 14, 9, 4, 7, 13, 11, 1, 8, 15, 12, 5, 10, 3, 16, 2} 8 22 70 202 9 33 509 19 34 86
{11, 13, 16, 15, 8, 7, 2, 14, 10, 5, 4, 9, 3, 12, 1, 6} 8 20 62 174 9 36 516 16 35 99
{4, 7, 10, 9, 15, 16, 3, 8, 12, 11, 13, 6, 1, 5, 14, 2} 8 24 65 169 9 29 461 15 31 87
{9, 4, 2, 15, 6, 10, 7, 11, 12, 3, 16, 14, 5, 1, 13, 8} 8 22 72 208 9 34 506 15 29 81
{16, 9, 10, 7, 15, 4, 5, 12, 2, 1, 6, 13, 11, 8, 14, 3} 8 23 68 200 9 33 461 15 30 86
{16, 4, 15, 8, 9, 1, 14, 5, 10, 13, 2, 3, 12, 6, 7, 11} 8 22 73 201 9 34 490 18 34 98
{2, 7, 5, 6, 12, 3, 1, 4, 16, 10, 13, 11, 9, 14, 8, 15} 8 22 68 196 9 37 597 16 30 86

3.4 Construction Method IV: [33]

The authors in [33] proposed two theorems for construction of new Bent functions using
existing Bent functions. This is particularly interesting for Boolean functions with odd
number of variables, where direct constructions methods cannot be used [25].

Theorem 1: Let f and g be Boolean functions on V
m
2 and V

n
2 respectively. Then the

Boolean function h : Vm+n
2 → V2 defined by h(x, y) = f(x) ⊕ g(y) is bent iff f and

g are bent.

Theorem 2: If f is a Bent function on V
n
2 , then f ⊕ l is a Bent function for any affine

function l on V
n
2 .

Mapping to Reversible Circuits and Implementation Cost Determination: The basic
idea of this construction according to theorem 1 is given by Fig. 3. The second con-
struction method can be achieved similarly by performing a CNOT operation between
the Bent function and the linear function. The QC of the resulting circuit using this
method of construction is simply the sum of QCs of the constituent functions added



Constructive Reversible Logic Synthesis for Boolean Functions 103

with 1, which is due to the CNOT gate. The total number of lines for the resulting cir-
cuit is L(f1)+L(f2)+m+n, where f1 denotes a Bent function on n-variables and f2
is a Bent function on m-variables for Theorem 1. Here, an ESOP-based implementation
of the constituent Bent functions is assumed. f2 is a linear function on n-variables for
Theorem 2 (hence, m = 0 for the second construction).

The QC, GC and L for this construction are enlisted in Table 4.

Table 4. Implementation Costs for Construction Method IV

Gate Count GC(f1) +GC(f2) + 1

Quantum Cost QC(f1) +QC(f2) + 1

Lines L(f1) + L(f2) +m+ n

Comparison with state-of-the-art synthesis methods: This simple construction of Bent
function is compared with BDD-based and ESOP-based methods, when the final
Boolean function is subjected to synthesis. We observed an improved performance in
most of the cases. The constructive method is scalable to large number of variables, in
contrast to the generic methods. An 1-hour timeout set to the benchmarked synthesis
methods failed to return a valid circuit in one case (indicated by ’-’).

3.5 Post-synthesis Optimization

Aforementioned construction techniques show strong algebraic structure and hence
there is a wide scope for optimizing the synthesis by using common cube sharing.
Common cube sharing is a well-studied problem in classical logic synthesis as it helps
in minimization of cost and size by identifying the sub-circuits which form the basis for
larger functional blocks. This optimization is applied on the Boolean functions obtained
following the construction techniques. The implementation costs of these functions, as
presented in the following Table 5, is computed after application of the cube sharing
algorithm [20]. Note that, such optimizations are present also for the ESOP-based syn-
thesis flows that we compared against and hence, do not provide any undue advantage
to the proposed constructive synthesis flow.

Table 5. Benchmarking Construction Method IV

Function Variable
BDD[32] ESOP[20,10] This work

Lines Gates QC Lines Gates QC Lines Gates QC
fx = x1x2 2 3 1 5 3 1 5 3 1 5
gy = y1y2 ⊕ y3y4 ⊕ y5y6 6 9 11 31 7 3 15 7 3 15
hx,y = fx ⊕ gy 8 12 17 45 9 4 20 10 5 21
fx = x1x2 ⊕ x3x4 4 6 7 19 5 2 10 5 2 10
gy = y1y2 ⊕ y3y4 ⊕ y5y6 ⊕ y7y8 ⊕ y9y10 ⊕ y11y12 12 19 30 78 13 12 88 13 6 30
hx,y = fx ⊕ gy 16 22 40 92 17 24 112 18 9 41
fx = x1x2 ⊕ x3x4 ⊕ x5x6 ⊕ x7x8 ⊕ x9x10 ⊕ x11x12 16 22 40 92 17 26 214 17 12 44

⊕x13x14 ⊕ x15x16

gy = y1y2 ⊕ y3y4 ⊕ y5y6 ⊕ y1 ⊕ y2 ⊕ y6 6 9 12 28 7 6 18 7 6 18
hx,y = fx ⊕ gy 22 - - - - - - 24 19 53



104 A. Chattopadhyay et al.

4 Synthesis of Symmetric Functions

In contrast to nonlinear Boolean functions, constructive approach for synthesizing sym-
metric Boolean functions have been studied in the past [15,8], possibly due to their
usage in efficient synthesis of general reversible Boolean functions [23]. Before pro-
ceeding further, we present some recent results on generalized Peres gates as well as
show how cascaded multi-control Peres gates can be realized with lower Quantum costs.

4.1 Quantum Cost of Cascaded, Generalized Peres Gates

Generalization of Peres gates is introduced in [30] with the following definition,

Pern(x0, x1, · · · , xn) = (x0, x0 ⊕ x1, x0x1 ⊕ x2, · · · , x0x1 · · ·xn−1 ⊕ xn), n ≥ 2
(8)

Such gates are implemented in an optimized manner with controlled kth-root-of-NOT
gates. In the following Fig. 4, Per3 and its corresponding reversible circuit realization
is shown. Here, controlled-V , controlled-V + represents controlled kth-root-of-NOT for
k = 2 and controlled-W , controlled-W+ represents the same for k = 4. In the lower
part of the same Fig. 4 an alternative reversible circuit is presented, which locally re-
orders the controlled kth-root-of-NOT gates. Since the control lines are exclusive, the
resultant Boolean function remains the same.

In lemma 1 of [30], the number of elementary gates for Pern is proved to be n2,
which is same as its QC since the elementary gates have a QC of 1. We explore this
further considering cascaded, generalized Peres gates. The re-ordering of controlled

Fig. 4. Generalized Peres Gate Implementation



Constructive Reversible Logic Synthesis for Boolean Functions 105

kth-root-of-NOT gates provides an opportunity to reduce a few adjacent gates. This
has been explored in the context of basic Peres gate [19] and for multi-control Toffoli
gates [29].

Lemma 1. Cascading 2 Pern gates require n2 + n gates.

Proof. From lemma 1 of [30], 2 cascaded Pern gates require 2n2 elementary gates.
An n-controlled Peres gate, i.e., Pern consists of three parts. The part in middle imple-
ments a Pern−1 gate. The first and the last part of the circuit consists of n and n − 1
controlled Quantum gates respectively. For two adjacent Pern gates, by re-ordering,
(n − 1) controlled Quantum gates can be cancelled out with their corresponding in-
verses. This leads to a reduction of 2(n− 1) elementary gates. Every Pern contains a
Pern−1 inside it, which, in the same manner allows a reduction of 2(n− 2) gates. This
continues till there is a Per2 gate, for which a reduction of 2(n − (n − 1)) gates are
possible. Hence, by summing the reductions, we obtain the elementary gate count as
following.
2n2 −∑n−1

i=1 2(n− i)
= 2n2 − n(n− 1)
= n2 + n 
�
Corollary 1. Cascading t Pern gates require n2 + (t− 1)n gates.

Proof. For each pair of Pern gates, a reduction of n(n−1) is obtained. For t number of
cascaded Pern gates, the total reduction from a basic tn2 gate count is (t−1)n(n−1).
Hence, the final gate count is,
tn2 − (t− 1)n(n− 1)
= tn2 − (t− 1)n2 + (t− 1)n
= n2 + (t− 1)n 
�

Evidently, the above results also lead to the QC values as we are only considering
gates with 1 QC. An application of the above lemma is shown graphically for 2 cascaded
Per3 gates in Fig. 5. It is clear that by cascading as much as possible Peres gates with
same control lines, one can obtain a significant reduction in gate count and QC. In the
constructive synthesis of symmetric Boolean functions, this property is exploited.

4.2 Constructive Synthesis for Symmetric Functions

Since the symmetric Boolean functions have unique output for a given Hamming weight
of the input n-variable Boolean vector V

n
2 , we propose an approach based on two

phases. First, the Hamming weight computation in (�log2 n
 + 1) lines followed by
an evaluation of the function on those lines. Note that, due to the sharing of one target
Hamming weight line with one input line, (�log2 n
) ancilla lines are needed. The cir-
cuit complexity largely depends on the Hamming weight computation, which is done
using a ripple-carry adder approach as shown in Fig. 6. This approach is earlier used
for Hidden Weighted Bit (HWB) functions in [13]. It can be observed that the Ham-
ming weight computation circuitry is nothing but a series of cascaded, generalized Peres
gates. In case of rd73, the Hamming weight computation is done with 2 cascaded Per2



106 A. Chattopadhyay et al.

Fig. 5. Cascaded Generalized Peres Gate Implementation

gates and 4 cascaded Per3 gates, resulting into a total QC of 24. Please note, that to re-
duce garbage count, an input line is re-used for storing the LSB of the Hamming weight
value. The Hamming weight values directly result into the output. Hence, no further
gate is required. In providing the gate count, we report the number of mixed-control
Tofn gates for ease of comparison with previous results.

Table 6. Benchmarking with Property-specific Synthesis Techniques

Function I/O
[8] (Low Garbage) [8] (Low QC) [15] This work
Garbage QC Garbage QC Garbage Gates QC Garbage Gates QC

2of5 5/1 - - - - 6 12 32 6 9 15
rd53 5/3 5 28 6 20 5 12 36 4∗ 10 18
rd73 7/3 7 46 10 32 7 20 64 6∗ 16 24
rd84 8/4 9 66 13 44 11 28 98 7 20 27
6sym 6/1 - - - - 9 20 62 8 16 32
9sym 9/1 14 88 19 59 11 28 94 10 22 30

The computation of Hamming weight is further optimized by taking the desired out-
put into consideration. For example, the benchmark function 2of5 produces an output
of 1 when the Hamming weight is 2 or 010. However, 110 is not a valid Hamming
weight for 5-variable circuit. Therefore, the Hamming weight computation can opti-
mize the carry propagation circuitry and an additional line used for the most significant



Constructive Reversible Logic Synthesis for Boolean Functions 107

Fig. 6. Generation of Hamming Weight for rd73 Fig. 7. Reversible Ciruit: 2of5

bit. Similarly for rd84, the Per4 gate can be avoided by putting an inverted-control
Toffoli gate at the end, which sets the output line indicating Hamming weight of 1000
to true if none of the less Hamming weight values are true. This allows cascading of 5
Per3 gates. For 9sym, computing the final two Hamming weights 1000 and 1001 can
be avoided, since those do not influence the output. Neither of the Hamming weight
values influencing the output, i.e. 3, 4, 5 and 6, has any overlapping bit-pattern in the 3
least significant bits. The complete reversible circuit for 2of5 is shown in Fig. 7.

Comparison with state-of-the-art synthesis methods: This construction technique easily
outperforms both the previous property-specific synthesis flows for symmetric functions
in all the efficiency metrics as shown in Table 6. In [8], a cascade of 2-control Peres gates
are used followed by an extraction-elimination module. In contrast, we do not require
any follow-up module and obtain the individual Hamming weight values directly. The
values with ∗ in the garbage count are shown to be minimal [13]. Further, it is likely
that any approach based on adder circuit and generalized Peres gates may benefit from
the results presented in this paper.

4.3 Upper Bounds of Symmetric Functions

In this subsection, we establish novel upper bounds for the gate count and QC for sym-
metric Boolean functions based on the proposed constructive approach. To the best of
our knowledge, no such upper bound for symmetric Boolean functions exist.

Based on a recent result [30], we have an expression of the QC of Tofn gate as
following.

2(n− 1)2 − 2(n− 1) + 1 (9)

While this result is for positive-control Tofn gates, we use it also for mixed-polarity
Tofn gates. It has been showed in the case of mixed-polarity Tofn gates, a realization
with equivalent QC can be obtained [16]. The only case, where the QC for mixed-
polarity is higher, is when all the control inputs are negated. In that case, the QC is

2(n− 1)2 − 2(n− 1) + 3 (10)



108 A. Chattopadhyay et al.

Using the proposed constructive approach, we explore the following upper bound
calculation based on the circuit for Hamming weight computation using cascaded Pern
gates.

Lemma 2. The upper bound of QC for an n-variable Hamming weight computation
circuit is (�log2 n
)2 + n(�log2 n
) + n− 1.

Proof. For an n-variable Boolean function, the Hamming weight computation requires
(n−1) cascaded Perk gates, where the maximum value of k can be �log2 n
+1. Con-
sidering the worst-case scenario, total (n−1) cascaded Per�log2 n�+1 gates are needed.
By using the result from Corollary 1, the upper bound on QC is (�log2 n
+ 1)2+(n−
2)(�log2 n
+ 1). Simplification of this leads to the result. 
�
Theorem 1. The upper bound of QC for an n-variable Symmetric Boolean function is
(2n+ 1)(�log2 n
)2 − n(�log2 n
) + 4n− 1.

Proof. The computation of Symmetric function is composed of Hamming weight calcu-
lation followed by a set of comparators. Each comparator is due to one Hamming weight
value. There can be (n+1) different Hamming weights for an n-variable Boolean func-
tion. However, at most n Hamming weights can contribute to the generation of the Sym-
metric function, as otherwise, it will become a constant function. The Hamming weights
are stored in (�log2 n
+1) lines. Each comparator for a specific Hamming weight value
require a mixed-polarity Tofk gate, where k is at most (�log2 n
+1). This leads to the
worst-case QC value from the comparator circuit as n(2(�log2 n
)2−2(�log2 n
)+3).
By adding the upper bound of QC from the Hamming weight circuit with the compara-
tor circuit, we obtain the result. 
�
Clearly, the upper bound derived in Theorem 1 based on the constructive approach is
tighter compared to the generic upper bounds presented recently in [1].

It can be also noted that the QC values obtained for benchmark circuits, presented
in Table 6 is significantly less than the upper bound presented in Theorem 1. To predict
a tighter bound of QC for individual circuits compared to theorem 1, we need to enu-
merate the number of Per1, Per2 · · ·Per�log2 n�+1 gates, which follows a piecewise
function. Let us define the number of Perk gates for an n-variable Hamming weight
computation circuit as Cn(Perk). It can be easily shown that,

Cn(Perk) =

⎧
⎪⎨

⎪⎩

0 if n < 2k−1

(n+ 1)− 2�log2 n� if 2k−1 ≤ n ≤ 2k − 1

2k−1 if n ≥ 2k

5 Summary and Future Work

In this paper, a novel, constuctive reversible logic synthesis method is presented for
Boolean functions with special properties. It has been shown that this synthesis meth-
ods outperforms state-of-the-art, general reversible logic synthesis methods. Detailed
experimental studies are presented to support the claim.



Constructive Reversible Logic Synthesis for Boolean Functions 109

Due to the desirability of Boolean functions with specific properties, new construc-
tions are continuously being proposed. The presented techniques can be extended to
cover further Boolean function construction methods. The interdependence between the
Boolean function properties and the implementation efficiency is an interesting open re-
search problem. Further, we will like to explore the usage of efficient reversible circuits
for symmetric Boolean functions in the context of reversible logic synthesis and adder
circuit realizations.

Acknowledgement. The authors will like to thank the anonymous reviewers, whose
critical feedback helped to improve the paper considerably. The first author will like to
acknowledge the help of Prof. Subhamoy Maitra, Indian Statistical Institute, Kolkata,
India for understanding several Boolean function construction techniques.

References

1. Abdessaied, N., Soeken, M., Thomsen, M.K., Drechsler, R.: Upper bounds for reversible
circuits based on Young subgroups. Information Processing Letters 114(6), 282–286 (2014)
ISSN 0020-0190, http://dx.doi.org/10.1016/j.ipl.2014.01.003

2. Bennett, C.H.: Logical Reversibility of Computation. IBM Journal of Research and
Development 6, 525–532 (1973)

3. Bérut, A., Arakelyan, A., Petrosyan, A., Ciliberto, S., Dillenschneider, R., Lutz, E.: Experi-
mental verification of Landauer’s principle linking information and thermodynamics. Nature,
187–189 (March 2012)

4. Beth, T., Rötteler, M.: Quantum algorithms: Applicable Algebra and Quantum physics. In:
Quantum Information, pp. 96–150. Springer (2001)

5. Carlet, C.: Boolean Functions for Cryptography and Error Correcting Codes. In: Crama, Y.,
Hammer, P. (eds.) Boolean Methods and Models, pp. 257–397. Cambridge University Press
(2010), http://www.math.univ-paris13.fr/˜carlet/pubs.html

6. Chee, S., Lee, S., Lee, D., Sung, S.H.: On the Correlation Immune Functions and Their
Nonlinearity. In: Kim, K.-C., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163,
pp. 232–243. Springer, Heidelberg (1996)

7. Chakrabory, K., Maitra, S.: Quantum algorithm to check Resiliency of a Boolean function.
In: International Workshop on Coding and Cryptography (2013)

8. Deb, A., Das, D.K., Rahaman, H., Bhattacharya, B.B., Wille, R., Drechsler, R.: Reversible
Circuit Synthesis of Symmetric Functions Using a Simple Regular Structure. In: Workshop
on Reversible Computation, pp. 182–195 (2013)

9. Dillon, J.F.: Elementary Hadamard Difference Set, PhD Dissertation, University of
Maryland, College Park, MD (1974)

10. Gupta, P., Agrawal, A., Jha, N.K.: An Algorithm for Synthesis of Reversible Logic Circuits.
IEEE TCAD 25(11), 2317–2330 (2006)

11. Landauer, R.: Irreversibility and heat generation in the computing process. IBM Journal of
Research and Development 5, 183–191 (1961)

12. Maitra, S., Pasalic, E.: A Maiorana–McFarland type Construction for Resilient Boolean
functions on n variables (n even) with nonlinearity. Discrete Applied Mathematics 154(2),
357–369 (2006)

13. Maslov, D.: Reversible Benchmarks (2014),
http://webhome.cs.uvic.ca/˜dmaslov (last accessed March 2014)

14. Maslov, D., Mathew, J., Cheung, D., Pradhan, D.K.: An O(m2)-depth quantum algorithm
for the elliptic curve discrete logarithm problem over GF(2m)a. In: Quantum Information &
Computation, pp. 610–621 (2009)

http://dx.doi.org/10.1016/j.ipl.2014.01.003
http://www.math.univ-paris13.fr/~carlet/pubs.html
http://webhome.cs.uvic.ca/~dmaslov


110 A. Chattopadhyay et al.

15. Maslov, D.: Efficient reversible and quantum implementations of symmetric Boolean
functions. IEE Proceedings of Circuits, Devices and Systems 153(5), 467–472 (2006)

16. Maslov, D., Dueck, G.W., Miller, D.M., Negrevergne, C.: Quantum Circuit
Simplification and Level Compaction. IEEE TCAD 27(3), 436–444 (2008),
doi:10.1109/TCAD.2007.911334

17. Matsui, M., Yamagishi, A.: A new method for known plaintext attack of FEAL cipher. In:
Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 81–91. Springer, Heidelberg
(1993)

18. Miller, D.M., Maslov, D., Dueck, G.W.: A Transformation Based Algorithm for Reversible
Logic Synthesis. In: Proceedings of DAC, pp. 318–323 (2003)

19. Moraga, C., Hadjam, F.Z.: On Double gates for Reversible Computing Circuits. In: Proceed-
ings of International Workshop on Boolean Problems (2012)

20. Nayeem, N.M., Rice, J.E.: Improved ESOP-based Synthesis of Reversible Logic. In:
Proceedings of the Reed-Muller Workshop (2011)

21. Patel, K.N., Markov, I.L., Hayes, J.P.: Optimal synthesis of linear reversible circuits. Quan-
tum Information & Computation 8(3), 282–294 (2008)

22. Pasalic, E., Maitra, S., Johansson, T., Sarkar, P.: New constructions of resilient and correla-
tion immune Boolean functions achieving upper bound on nonlinearity. Electronic Notes in
Discrete Mathematics 6, 158–167 (2001)

23. Perkowski, M., Kerntopf, P., Buller, A., Chrzanowska-Jeske, M., Mischenko, A., Song, X.,
Al-Rabadi, A., Jozwiak, L., Coppola, A., Massey, B.: Regularity and Symmetry as a Base
for Efficient Realization of Reversible Logic Circuits. In: Proceedings of IWLS, pp. 90–95
(2001)

24. Pieprzyk, J., Finkelstein, G.: Towards Effective Nonlinear Cryptosystem Design. In:
Proceedings of IEEE Computers and Digital Techniques, vol. 135(6), pp. 143–7062 (Novem-
ber 1988) ISSN:0143-7062

25. Preneel, B., Van Leekwijck, W., Van Linden, L., Govaerts, R., Vandewalle, J.: Propagation
characteristics of Boolean functions. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS,
vol. 473, pp. 161–173. Springer, Heidelberg (1991)

26. Saeedi, M., Markov, I.L.: Synthesis and Optimization of Reversible Circuits - A Survey.
CoRR abs/1110.2574 (2011), http://arxiv.org/abs/1110.2574

27. Sarkar, P., Maitra, S.: Construction of nonlinear Boolean functions with important crypto-
graphic properties. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 485–506.
Springer, Heidelberg (2000)

28. Soeken, M., Frehse, S., Wille, R., Drechsler, R.: RevKit: A toolkit for reversible circuit
design. In: Workshop on Reversible Computation, pp. 69–72 (2010)

29. Szyprowski, M., Kerntopf, P.: Reducing Quantum Cost of Pairs of Multi-Control Toffoli
Gates. In: International Workshop on Boolean Problems (2012)

30. Szyprowski, M., Kerntopf, P.: Low Quantum Cost Realization of Generalized Peres and
Toffoli Gates with Multiple-Control Signals. In: 13th IEEE International Conference on
Nanotechnology, pp. 802–807 (2013)

31. Tarannikov, Y.V.: New Constructions of Resilient Boolean Functions with Maximal Nonlin-
earity. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, p. 66. Springer, Heidelberg (2002)

32. Wille, R., Drechsler, R.: BDD-based Synthesis of Reversible Logic for Large Functions. In:
Proceedings of DAC, pp. 270–275 (2009)

33. Yarlagadda, R., Hershey, J.E.: Analysis and synthesis of bent sequences. IEEE Proceedings
on Computers and Digital Techniques 136(2), 112–123 (1989)

34. Younes, A.: Synthesis and Optimization of Reversible Circuits for Homogeneous Boolean
Functions. arXiv:0710.0664 [quant-ph] (2007)

35. Zhang, F., Hu, Y., Ma, H., Xie, M.: Constructions of Maiorana-McFarland’s Bent Func-
tions of Prescribed Degree. In: International Conference on Computational Intelligence and
Security (CIS), pp. 315–319 (2010)

http://arxiv.org/abs/1110.2574

	Constructive Reversible Logic Synthesis for Boolean Functions with Special Properties
	1 Introduction
	2 Preliminaries
	2.1 Related Work and Motivation


	3 Synthesis of Highly Nonlinear Functions
	3.1 Construction Method I: [27]

	3.2 Construction Method II: Recursive Construction[22]

	3.3 Construction Method III: [9]

	3.4 Construction Method IV: [33]

	3.5 Post-synthesis Optimization

	4 Synthesis of Symmetric Functions
	4.1 Quantum Cost of Cascaded, Generalized Peres Gates
	4.2 Constructive Synthesis for Symmetric Functions
	4.3 Upper Bounds of Symmetric Functions

	5 Summary and Future Work
	References




