
Concurrency and Reversibility

Irek Ulidowski1, Iain Phillips2, and Shoji Yuen3

1 Department of Computer Science, University of Leicester, England
2 Department of Computing, Imperial College London, England

3 Graduate School of Information Science, Nagoya University, Japan

Abstract. Reversible computation has attracted increasing interest in
recent years, with applications in hardware, software and biochemistry. In
this paper we show how to model reversibility in concurrent computation
as realised abstractly in terms of event structures. Two different forms of
event structures are presented and it is shown how to extend them with
reversibility.

1 Introduction

Reversing computation in concurrent and distributed systems has many promis-
ing applications as well as technical and conceptual challenges. Several different
forms of undoing of computation have been identified recently. Backtracking
and reversing of computation that preserves causal order were considered in,
for example, [8, 16, 13, 4, 14, 5, 9] with applications including recovery-oriented
systems and reversible debugging. Reversing out of causal order, however, which
is a very common mode of operation in, for example, biochemical systems has
not been studied widely. The first attempt was made by Phillips, Ulidowski and
Yuen [21] where an extension of the reversible process calculus CCSK with the
execution control operator was proposed. This was followed by a study of a form
of reversible event structure [22] based on a generalisation of Winskel’s enabling
relation [26]. Phillips and Ulidowski proposed then in [19] reversible event struc-
tures that focused on analysing conflict and causation as first-class notions in
the setting of reversible computation.

The last decade has produced a good understanding of how causal reversibil-
ity can be described in the settings of operational semantics and process calculi,
and how to model reversibility logically and in terms of behavioural equivalences.
Research on reversing process calculi can be traced back perhaps to Berry and
Boudol’s Chemical Abstract Machine [3]. Danos and Krivine reversed CCS in [6,
7], and Phillips andUlidowski proposed a generalmethod for reversing process cal-
culi in [16, 17]. Reversible structures that compute forwards and backwards asyn-
chronously were developed by Cardelli and Laneve [4]. Mechanisms for control-
ling reversibility based on a rollback construct were devised by Lanese, Mezzina,
Schmitt and Stefani [12] for a reversible higher-order π calculus [13], and an alter-
native mechanism based on the execution control operator was proposed in [21].
Event Identifier Logic (EIL), which extends Hennessy-Milner logic [11] with re-
verse modalities, was introduced in [20]. EIL corresponds to hereditary history-
preserving bisimulation equivalence [2] within a particular true-concurrencymodel

S. Yamashita and S. Minato (Eds.): RC 2014, LNCS 8507, pp. 1–14, 2014.
© Springer International Publishing Switzerland 2014



2 I. Ulidowski, I. Phillips, and S. Yuen

of stable configuration structures [10]. Moreover, natural sublogics of EIL corre-
spond to coarser equivalences, several of them defined in terms of reversible events,
sets of concurrent reversible events or pomsets of reversible events. These equiv-
alences and other behavioural equivalences based in the reversible setting were
studied for the first time in [18].

In this paper we show how to understand and model reversibility in concur-
rent computation as realised abstractly in terms of event structures. In Section 2
we introduce the notions of events, configurations, computation and configura-
tion systems. Then in Sections 3 and 4, we recall two different forms of event
structures and show how to extend them with reversibility. Numerous examples
are used to illustrate our approach. The last section contains conclusions and
lists some future challenges.

2 Events and Configurations

We represent the behaviour of systems and processes in the setting of event
structures where units of behaviour are modelled by events. Since we aim to
cover a wide range of systems and processes, events will represent activities such
as incrementing the value of a variable, sending a message, as well as entering
a room, putting a coin into a vending machine, or creating a bond between two
molecules. Events have names and we assume that no two different events have
the same name. We shall use a, b, c, d, e, f to denote events. A system or a process
is then represented as an event structure which is a set of events and a number
of relations on events. Event structures were defined by Winskel [26] following
earlier work by Nielsen, Plotkin and Winskel [15]. They were further developed
in, for example, [24, 23, 27] and [25]. There are many ways in which events can be
related, and this determines how events are performed or undone. For example,
a number of events can cause each other thus occurring in a sequence. Also,
events can be independent from each other, or some events may be in conflict
with other events. Alternatively, an enabling relation on events is used.

Event structures compute (or execute) by either performing events or undo-
ing events, thus moving from one state to another state. A state is simply a
set of events that have occurred and have not been undone yet, and is called
a configuration. The act of moving from a configuration to another configura-
tion is a computation step and is represented by a transition relation: C → C′

means that configuration C evolves to configuration C′ by performing and/or
undoing some events. A sequence of computation steps is called an execution (or
computation). For example, the execution ∅ → {a} → {a, b} says that, initially,
no event has occurred, then event a takes place, and finally event b occurs. We
note that any initial subsequence of an execution is also an execution. Events
can also be undone. We take the view that undoing an event e means that e
is removed from the current configuration, and it is as if e had never occurred,
apart possibly from indirect effects, such as e having caused another event f
before e was reversed. When we undo e in configuration {e, f} we regress to
{f}: this is often written as {e, f} ⇢ {f} instead of {e, f} → {f} to indicate that



Concurrency and Reversibility 3

an event is undone and to match the notation used in figures. The computation
of event structures is thus represented by a configuration system. Configuration
systems are closely related to configuration structures, which have a notion of
configuration and a notion of concurrent or step transition. These were intro-
duced by van Glabbeek and Goltz in [10] and later generalised by van Glabbeek
and Plotkin in [23]. Let P(E) denote the powerset of a set E. A configuration
structure is a pair C = (E,C) where E is a set of events and C ⊆ P(E) is a set
of configurations. For configurations X,Y , we let X → Y if X ⊆ Y and for every
Z, if X ⊆ Z ⊆ Y then Z is a configuration. Since all the events in Y ∖X are
independent, they can happen concurrently as a single step.

We sometime write X
A
→ Y where A = Y ∖X instead of X → Y . Note that

if Y = X ∪ {a} and X,Y ∈ C then X → Y . This may no longer hold in the
reversible setting. Consider E = {a, b}. Suppose that a causes b, so that b cannot
occur unless a has already occurred. Then {b} is not a possible configuration
using forwards computation. However, if a is reversible, we can do a (namely,
∅ → {a}) followed by b ({a} → {a, b}), followed by reversing a ({a, b} ⇢ {b}) to

reach {b}. Thus both ∅ and {b} are configurations, but we do not have ∅
b
→ {b}.

A definition of configuration systems appropriate for the reversible setting was
first given in [19]. We first establish our notation before we recall the definition.
We let A,B,X,Y,Z, . . . range over sets of events. If an event e is reversible, we
have a corresponding reverse event e. We write B for {e ∶ e ∈ B}.

Definition 2.1. A configuration system is a quadruple C = (E,F,C,→) where
E is a set of events, F ⊆ E are the reversible events, C ⊆ P(E) is the set of
configurations and → ⊆ C ×P(E ∪ F ) × C is a labelled transition relation such

that if X
A∪B
→ Y then:

– A ∩X = ∅ and B ⊆X ∩F and Y = (X ∖B) ∪A;

– X
A′∪B′

→ Z
(A∖A′)∪(B∖B′)

→ Y (where Z = (X ∖ B′) ∪A′ ∈ C) for every A′ ⊆ A
and B′ ⊆ B.

We say that A∪B is enabled at X if there is Y such that X
A∪B
→ Y . A transition

X
A∪B
→ Y is mixed if both A and B are non-empty. If B = ∅ we say the transition

is forwards, and if A = ∅ the transition is reverse.

For simplicity, we do not discuss in depth mixed transitions in this paper. Most
examples concern transitions where A and B are singleton sets. As a result, the
transitions denote either performing an event or undoing an event.

Finally, we define reachable configurations. Let C = (E,F,C,→) be a con-
figuration system. We say that configuration X is a reachable configuration if

∅

A1∪B1
→ ⋯

An∪Bn
→ X where Ai ⊆ E and Bi ⊆ F for each i = 1, . . . , n.

3 Reversible Event Structures with Causality and
Precedence

In this section we consider event structures where the causation, concurrency
and precedence relations on events dictate how they compute.



4 I. Ulidowski, I. Phillips, and S. Yuen

In order to explore different forms of relations between events and how this
impacts on performing and undoing of events, we shall consider mostly very small
event structures, namely those that have three events a, b and c.

a
b

c

Fig. 1.

Even in such a simple setting we will be able to describe
most of the important forms of executing events forwards
and in reverse. The events a, b, c are depicted by the three
dimensions of the cube in Figure 1. Note that any of the
four edges of any dimension (representing an event) de-
notes an occurrence of the event. The bottom-left vertex
represents the empty configuration ∅ (the origin of com-
putation) and the top-right vertex represents the configu-
ration {a, b, c}. If there are no constraints the events can
happen in any order, denoted by following the edges from
the origin, or simultaneously, denoted by taking some diagonals in the cube. For
simplicity we do not display transitions of simultaneous events in our figures.

Causality is a binary irreflexive relation on events. It tells us which events
cause which other events. We write a ≺ b to mean a causes b, so b cannot take
place before a has occurred.

If a ≺ b and b ≺ c and a ≺ c, namely ≺ is transitive, then we know that an exe-
cution contains b if it contains a, and c is in an execution if b is. The execution is

aa
b b

c
c

Fig. 2.

∅ → {a} → {a, b} → {a, b, c}. This is
depicted in the left cube in Figure 2
by the sequence of thick arrows. An
alternative way to represent an execu-
tion is with a sequence of events, for
example, abc is the execution of the
system with a ≺ b, b ≺ c and a ≺ c. And

we can also write ∅
a
→ {a}

b
→ {a, b}

c
→

{a, b, c}.
The cube on the right in Figure 2

shows all possible executions when a, b and c are independent, except those exe-
cutions that involve steps (sets of simultaneous events) which we do not display
for clarity. If events are not related by causality or other relations, then they are
independent. This means that the events can take place in any order; hence six
complete executions abc, acb, bac, bca, cab and cba are depicted. Each square of
thick arrows represents graphically the independence of the events; we see that
the events can happen in any order so we call them concurrent events. We have
step transitions here, for example ∅ → {a, b, c} and {a} → {a, b, c}, but we do not
display them in Figure 2. Also, there are several mixed transitions, for example,

performing b and undoing a from {a} is represented by {a} → {b}, or {a}
b,a
→ {b}.

If a ≺ b and a ≺ c, meaning that a causes both b and c, and b, c are independent,
then there are only two complete executions: abc and acb. Correspondingly, a ≺ c
and b ≺ c (namely, both a and b cause c) results in abc and bac.

So far we have illustrated how causality or independence (concurrency) af-
fects the execution. Another very useful relation on events is precedence: a ◁ b,



Concurrency and Reversibility 5

read as event a precedes event b, means that if both a and b occur then a oc-
curs first. The precedence relation has a dual interpretation: b ▷ a says that b
prevents a, meaning that if b is present in a configuration, then a cannot occur.

aa
b

c
c

c

Fig. 3.

Precedence is a form of asymmetric
conflict [1]. Consider a system where
a◁ b and b◁ a, meaning that once ei-
ther a or b occurs the other event can-
not occur afterwards. In other words,
a and b are in conflict, often denoted
as a ♯ b. If, additionally, a ≺ c, then we
have two complete executions ac and
b depicted by the left cube in Figure 3.
We can use the precedence relation to
disable events. For example, if b◁ b, then b can never occur, and if we also have
a◁ c then ac and c are the only complete executions (see the cube on the right
in Figure 3).

There are other forms of execution of the three events a, b, c which cannot
be achieved by any combination of the causation, concurrency and precedence
relations: we discuss this in the next section.

Next, we recall three forms of undoing events. Backtracking is when events are
undone in the inverse order they occurred. The system a ≺ b ≺ c in configuration
{a, b, c} backtracks by undoing c first, then undoing b and, lastly, undoing a.
The left cube in Figure 4 shows the system backtracking c and then b (dashed
arrows pointing in the opposite direction) from {a, b, c}, which is written as
{a, b, c} ⇢ {a, b} ⇢ {a}.

aa

b b
cc

Fig. 4.

Consider a ≺ b and a ≺ c: a oc-
curs first and then b, c can occur inde-
pendently. Once in the configuration
{a, b, c} we have no way of working
out which of b and c occurred last.
Since the events are independent, the
order of performing or undoing them
does not matter. So causal reversing,
or simply reversing, is undoing where
(a) independent events can be undone in any order irrespective of the order
they have actually occurred, and (b) events that cause other events can only be
undone after the caused events are undone first.

Both backtracking and reversing are cause-respecting, meaning that events
caused by other events are undone first before the other events can be undone.
There are, however, many important examples of undoing things out-of-causal
order. In fact, this form of undoing plays the vital rôle the mechanisms driving
long-running transactions and biochemical reactions. As an example, consider
the following pattern of behaviour shown in the right cube of Figure 4. Event
a causes event b. Once we have b, a is not needed so it is undone. Finally, c
occurs and cannot be undone, and then b is undone. Informally speaking, a can



6 I. Ulidowski, I. Phillips, and S. Yuen

be thought as the catalyst of b, and b as the catalyst of c. The execution is
∅ → {a} → {a, b} ⇢ {b} → {b, c} ⇢ {c}. Note that we undo a, the cause of b,
before we undo b. Overall, we can reach {c} from ∅ via a combination of forwards
and reverse moves but we cannot reach {c} by executing forwards only.

Since there are different forms of undoing events, the question is how to model
undoing of events formally. In [19] we extend the causation and precedence rela-
tions to define additionally undoing of events. Recall that a, b, c denote undoing
of a, b, c. We can extend the causation relation ≺ with pairs x ≺ y, meaning
that event y can be undone if y has occurred and x has occurred and has not
been undone yet. For example, a ≺ a means that a can be undone if it has oc-
curred. Correspondingly, we also extend our precedence relation ◁ with pairs
x◁ y, meaning that x cannot be undone if y is present. What we have described
informally so far are reversible asymmetric event structures ([19]):

Definition 3.1. A reversible asymmetric event structure (RAES) is a quadruple
E = (E,F,≺,◁) where E is a set of events and F ⊆ E are those events of E which
are reversible, and for any a, b, c, e ∈ E and α ∈ E ∪F :

1. ◁ ⊆ (E ∪F ) ×E is the precedence relation (with a ◁ b if and only if b ▷ a),
which is irreflexive;

2. ≺ ⊆ E × (E ∪ F ) is the direct causation relation, which is irreflexive and
well-founded, and such that {e ∈ E ∶ e ≺ α} is finite and ◁ is acyclic on
{e ∈ E ∶ e ≺ α};

3. a ≺ a for all a ∈ F ;
4. if a ≺ α then not a▷ α;
5. a ≺≺ b implies a ◁ b, where sustained direct causation a ≺≺ b means that a ≺ b

and if a ∈ F then b▷ a;
6. ≺≺ is transitive;
7. if a ♯ c and a ≺≺ b then b ♯ c, where ♯ is defined to be ◁ ∩ ▷.

Causation can be explained in two different ways. Event a causes event b (a ≺ b)
means either (1) in any execution (computation), if b occurs then a occurs earlier
or (2) if b is enabled at configuration X then we must have a ∈X . The two views
are equivalent if there is no reversing. Consider three events with a ≺ b ≺ c.
Taking view (1) we deduce that a ≺ c. View (2) also allows us to deduce that
a ≺ c, provided that X is left-closed (downwards closed under ≺), which will be
the case for forward-only computation. Thus causation is transitive.

In the setting of reversible computation the second view of causation is sim-
pler, and is adopted in this paper. If all reversing is causal, then all configurations
are left-closed, and so it is still natural to require ≺ to be transitive. If, however,
there is non-causal reversing, which leads to non-left-closed configurations (such
as {b, c} and {c} in our example), it is no longer reasonable to insist on ≺ being
transitive. If a ≺ b ≺ c then a may have been reversed after b occurs, and before
c occurs. Therefore, direct causation in RAESs is non-transitive. We introduce
additionally the concept of sustained causation, where a ≺≺ b means that a causes
b and a cannot reverse until b reverses. This is the analogue of standard causa-
tion for forwards computation, and we therefore take sustained causation to be
transitive (condition 6 in Definition 3.1).



Concurrency and Reversibility 7

Next we consider the issue of conflict inheritance, namely if a ≺ b and a ♯ c
then b ♯ c, in the reversible setting. If a < b and a ♯ c and a is reversible, then
we can undo a in {a, b} to reach {b}. And there is nothing in {b} to prevent
c from taking place, so we expect that {b, c} is a configuration, and b and c
are not in conflict. Hence, there is no conflict inheritance with respect to ≺.
However, we still have conflict inheritance with respect to sustained causation
a ≺≺ b (condition 7 in Definition 3.1).

Definition 3.2. Let E = (E,F,≺,◁) be an RAES. We define the associated
configuration system C(E) = (E,F,C,→) as follows. Let C consist of those X ⊆ E
such that ◁ is well-founded on X . For X ∈ C and A ⊆ E, B ⊆ F , we define

X
A∪B
→ Y if and only if X,Y ∈ C and Y = (X ∖B) ∪A and A ∪B is enabled at

X , which is

– A ∩X = ∅, B ⊆X ;
– for every a ∈ A, if c ≺ a then c ∈ X ∖B;
– for every a ∈ A, if c ▷ a then c /∈ X ∪A;
– for every b ∈ B, if d ≺ b then d ∈ X ∖ (B ∖ {b});
– for every b ∈ B, if d ▷ b then d /∈ X ∪A.

We are now able to model undoing of events. If we add x ≺ x, for all x ∈ {a, b, c},
and a◁ b, b ◁ c to a ≺ b ≺ c and a ≺ c, then we achieve backtracking in Figure 4.
Note that only c can be undone in {a, b, c} because a◁ b, b ◁ c and the presence
of b, c prevents undoing of a, b, respectively.

In order to achieve causal reversing we impose the following global conditions:
all events are reversible (x ≺ y if and only if x = y for all x), and causes are undone
if and only if their effects are not present (x ≺ y if and only if x◁ y for all x, y).
In the case of the system a ≺ b, a ≺ c we add the following to achieve causal
reversibility: a ≺ a, b ≺ b, c ≺ c and a ◁ b, a ◁ c. Here, once {a, b, c} is reached,
b, c can be undone in any order, and a can only be undone when b, c are not
present (due to a ◁ b, a ◁ c). Overall, we have {a, b, c} ⇢ {a, b} ⇢ {a} and
{a, b, c} ⇢ {a, c} ⇢ {a}, and clearly {a} ⇢ ∅.

Finally, we model the out-of-causal-order RAES in Figure 4. We have a ≺ b ≺ c
but no a ≺ c (so ≺ is not transitive) and a ≺ a, b ≺ b (there is no c ≺ c since c is
irreversible). That a, b are undone only when b, c are present is ensured by b ≺
a, c ≺ b, respectively. In order to stop reversing b immediately after it occurs we
add b◁ a. And, a◁ b, a◁ c prevent a from re-occurring when b or c are present.
As a result, there is a single execution ∅ → {a} → {a, b} ⇢ {b} → {b, c} ⇢ {c}.

The work on reversing asymmetric event structures in [19] led to several inter-
esting results concerning reachable configurations. For example, we have given
conditions under which finite and reachable configurations are guaranteed to
be reachable without intermediate infinite configurations. Our models are gen-
eral enough to allow several forms of reversibility to be defined and analysed,
including the causal and inverse causal disciplines.



8 I. Ulidowski, I. Phillips, and S. Yuen

4 Reversible Event Structures with Enablings

There are forms of execution of three events a, b, c which cannot be achieved
by any combination of the causation, concurrency and precedence relations. For
example, consider an event that is caused by a disjunction of events: namely
a or b causes c. This is called disjunctive causation. If no other relation holds
of a, b, c, then there is an execution where only a occurs before c, there is an-
other execution where only b occurs prior to c, and there are two executions
where both a and b precede c. These complete executions acb, bca, abc and bac
are depicted in the left cube in Figure 5. This event structure can be defined
using the enabling relation as in [15, 26] as we shall see below. Another ex-
ample of a relation on events that cannot be expressed in terms of causality,

aa
bb

c c
c

Fig. 5.

concurrency and precedence is resolv-
able conflict. Consider a temporary
conflict between a and b which be-
comes resolved once a third event c
occurs. This is represented by the ex-
ecutions acb, bca, cab and cba in the
cube on the right in Figure 5. This
event structure cannot be expressed
with the traditional enabling relation;
instead a more general enabling rela-
tion from [23] or our enabling with prevention relation, that we recall below, are
necessary.

Firstly, we recall some definitions from [26]. Event structures are triples E =
(E,Con,⊢) where E is a set of events with typical elements e, e′, Con ⊆ Pfin(E)
is the consistency relation which is non-empty and satisfies the property Y ⊆
X ∈ Con implies Y ∈ Con (downwards closure), and ⊢ ⊆ Con ×E is the enabling
relation which satisfies the weakening condition X ⊢ e and X ⊆ Y ∈ Con implies
Y ⊢ e for all e ∈ E. We omit brackets for singleton sets in expressionsX ⊢ e where
convenient. Informally, configurations are the sets of events that have occurred
(in accordance with Con and ⊢). More formally, we let E = (E,Con,⊢) be an
event structure. The set S(E) of configurations of E consists of X ⊆ E which are

– consistent : every finite subset of X is in Con;
– secured : for all e ∈ X there is a sequence of events e0, . . . , en ∈ X such that

en = e and for all i < n, {e0, . . . , ei−1} ⊢ ei.

We shall now present several examples of event structures with enablings and
their corresponding configurations.

Consider the events a, b with all subsets of {a, b} in Con, and the enabling
relation ∅ ⊢ a, a ⊢ b. We notice that {a} is a configuration because {a} ∈ Con
and a is enabled without any preconditions: ∅ ⊢ a. Once a takes place, b can
happen because {a, b} ∈ Con and b is enabled by the already performed a: a ⊢ b.
We can say here that a causes b and b cannot take place before a happens first.

Some events are in conflict : they cannot happen in the same computation.
Consider the events a, b as above and the event c which is conflict with a. This



Concurrency and Reversibility 9

is represented by {a, c} ∉ Con and, by the downwards closure property, {a, b, c} ∉
Con. The enabling relation is ∅ ⊢ a, a ⊢ b and ∅ ⊢ c. The configurations are
∅, {a},{a, b} and {c} representing that either a or c can happen initially, but
once one has taken place the other cannot happen; see left cube in Figure 6.

aa

b b
cc

Fig. 6.

Some events are independent of each
other, or concurrent. Consider the
events a, b and c, with no events in
conflict. The enabling relation is ∅ ⊢
a, a ⊢ b and ∅ ⊢ c. Since a and c are
not in conflict, ∅ ⊢ a, ∅ ⊢ c imply that
a, c can happen independently of one
another, in any order. Moreover, b and
c are independent and can happen in
any order provided that b always fol-
lows a. The configurations are ∅, {a},{a, b}, {c}, {a, c},{a, b, c}, and can be seen
in the cube on the right in Figure 6.

We now show how to define the disjunctive causation event structure from
Figure 5. If we let the enabling relation as ∅ ⊢ a, ∅ ⊢ b, and a ⊢ c with b ⊢ c,
then we can deduce that {c} is not a configuration since we have no ∅ ⊢ c. All
other subsets of {a, b, c} are configurations.

As we aim to generalise event structures with enablings to the reversible set-
ting, we shall use this equivalent definition of a configuration. Let E = (E,Con,⊢)
be an event structure. A set X ⊆ E is a configuration of E if there is an infinite
sequence X0, . . . with X = ⋃∞n=0Xn, X0 = ∅, Xn ⊆ Xn+1 and Xn consistent (all
n ∈ N), where for every n ∈ N, and every e ∈ Xn+1 ∖Xn, there is a rule X ′ ⊢ e
with X ′ ⊆fin Xn.

As in Section 3, there is a natural notion of computation for configurations
in this setting. A transition relation can now be defined to represent how a
new event can happen in a configuration giving rise to a bigger configuration.
Given configurations X,Y we have X → Y if Y = X ∪ {e} (with e /∈ X) and
X ′ ⊢ e, for some e and X ′ ⊆fin X . A computation of the event structure E is a
computation (sequence of transitions) starting from ∅E , the empty configuration
of E . Subsequently we omit E in ∅E . As an illustration, ∅ → {c} → {a, c} →
{a, b, c} is a computation of the event structure in the right cube in Figure 6.
We also have ∅ → {a} → {a, c} → {a, b, c} and ∅ → {a} → {a, b} → {a, b, c}.

Finally, we consider undoing of events. Let E be a set of events. We define
the corresponding set of undone events (strictly speaking, events that are to be
undone) to be E = {e ∶ e ∈ E}, where E is disjoint from E. For e ∈ E, let e∗ be
either e or e; we sometimes use the notation X + e∗ to mean either X ∪ {e} or
X ∖ {e} respectively. Reversible event structures were first introduced in [22]:

Definition 4.1. A reversible event structure (RES for short) is a triple E =
(E,Con,⊢) where E and Con are as before and ⊢ ⊆ Con×P(E) × (E ∪E) is the
enabling relation satisfying:

1. if X � Y ⊢ e∗ then (X ∪ {e}) ∩ Y = ∅;
2. if X � Y ⊢ e then e ∈X ;



10 I. Ulidowski, I. Phillips, and S. Yuen

3. weakening: if X � Y ⊢ e∗ and X ⊆ X ′ ∈ Con then X ′ � Y ⊢ e∗, provided
X ′ ∩ Y = ∅.

When Y = ∅ we shall write X � Y ⊢ e∗ as X ⊢ e∗. Also we omit brackets for
singleton sets in expressions X � Y ⊢ e∗ where convenient.

Our enabling relation ⊢ extends the enabling relation of Winskel in two di-
rections. Firstly, it permits reversing of events as e∗ in X � Y ⊢ e∗ can be an
undone event. Secondly, it allows us to specify some of the events that prevent
e∗ (here those in Y ) in addition to the events that enable e∗ (those in X). For
example, {a, b}� {c, d} ⊢ a says that a can be undone in a configuration which
contains a and b and does not contain c and d.

We are ready to define an RES for resolvable conflict in Figure 5.

Example 4.2. We let Con be P({a, b, c}). The enabling relation is as follows:
∅ ⊢ c, ∅�b ⊢ a and ∅�a ⊢ b, meaning that initially, either a or b can take place
if the other event is not present. We also have c ⊢ a and c ⊢ b, which imply that
both a and b can happen after c.

Example 4.3. Consider an RES with a single event e and the enabling rule ∅ ⊢ e.
The sets ∅ and {e} are configurations. If we add another rule e ⊢ e then this
allows us to regress from {e} to ∅. The sets ∅ and {e} are reachable from ∅ in
any number of steps; they are configurations according to Definition 4.5 below.
And, there is an infinite computation sequence ∅,{e},∅,{e}, . . ..

This example shows that sets of events can grow and and shrink as reversible
computation progresses. Also, sets of events may grow non-monotonically as,
for example, in a0, b, a1, b, a2, b, a3, b, a4, . . .. So we shall use limits of infinite se-
quences of subsets of E in order to define configurations as in [22] (recall that
S ⊆ N is cofinite if N ∖ S is finite):

Definition 4.4. Let X0, . . . be an infinite sequence of subsets of E. We say that
X = limn→∞Xn if for every e ∈ E:

1. {n ∈ N ∶ e ∈Xn} is either finite or cofinite;
2. e ∈X if and only if {n ∶ e ∈Xn} is cofinite.

We note that a sequence of sets does not necessarily have a limit. The sequence
∅,{e},∅,{e}, . . . in Example 4.3 has no limit, since e belongs to infinitely many
sets and does not belong to infinitely many sets. However if Xn ⊆ Xn+1 (all
n ∈ N) then limn→∞Xn exists and is ⋃∞n=0Xn. A finite sequence X0, . . . ,Xn

can be extended to an infinite sequence by letting Xm = Xn for all m > n; the
extended sequence has the limit Xn. In Example 4.3 the sequence ∅,{e} can be
extended to an infinite sequence ∅,{e},{e}, . . . and has the limit {e}.

Next we state the definition of a configuration for an RES ([22]). As the
notational convention we write e ∈ A ∖B to mean e ∈ B ∖A.

Definition 4.5. Let E = (E,Con,⊢) be an RES. A set X ⊆ E is a configuration
of E if there is an infinite sequence X0, . . . with X = limn→∞Xn, X0 = ∅ and
Xn∪Xn+1 consistent (all n ∈ N), where for every n ∈ N, and every e∗ ∈ Xn+1∖Xn,
there is a rule X ′ � Y ′ ⊢ e∗ such that:



Concurrency and Reversibility 11

1. X ′ ⊆fin Xn and X ′ + e∗ ⊆Xn+1;
2. Y ′ ∩ (Xn ∪Xn+1) = ∅.

We require Xn∪Xn+1 to be consistent, as configurations can only be extended in
a consistent fashion. However, there is no requirement that Xi∪Xj is consistent
if j > i + 1 because events in Xi which are inconsistent with Xj can be reversed
in constructing Xi+1, . . . ,Xj−1. Also, we note that the Xis in the above defini-
tion can grow smaller as well as bigger as computation progresses. Moreover, a
finite sequence X0, . . . ,Xn = X that satisfies the conditions of Definition 4.5 is
sufficient for X to be a configuration. The sequence ∅,{e} in Example 4.3 can
be extended to an infinite sequence and, since the conditions of Definition 4.5
are satisfied, its limit {e} is a configuration.

We return to Example 4.2. We note that although {a, b} ∈ Con, {a, b} is not a
configuration according to Definition 4.5. Consider ∅, {a}, {a, b} and b: there is
no enablingX ′�Y ′ ⊢ b such thatX ′ ⊆fin {a} and Y ′∩{a, b} = ∅. Correspondingly
for the sequence ∅, {b}, {a, b} and a. Hence, {a, b} is not a configuration.

It can be easily shown that RESs are a generalisation of event structures: RESs
with enablings X � ∅ ⊢ e are just event structures of Winskel [26]. Moreover,
our configurations in such setting are just the traditional configurations. We can
also show that our generalised enabling rules are powerful enough that we no
longer need the consistency relation.

We are now ready to define a transition relation between configurations of an
RES. Again, as in Section 2, we shall use the dashed arrow notation for the part
of the transition relation that represents undoing of events. Given configurations
X,Y of an RES E we let

– X → Y if Y =X ∪{e} and X ′�Z ⊢ e for some e,X ′, Z with e /∈X , X ′ ⊆fin X
and Z ∩ (X ∪ {e}) = ∅;

– X ⇢ Y if Y = X ∖ {e} and X ′ �Z ⊢ e for some e,X ′, Z with X ′ ⊆fin X and
Z ∩X = ∅.

In contrast to Section 2, this transition relation represents only either performing
a single event or undoing a single event. Having given the transition relation, we
can now define a configuration system for an RES. Given an RES E = (E,Con,⊢),
the associated configuration system C(E) is (E,E,C,→) where C is the set of
configurations for E as in Definition 4.5.

We now show how to represent different forms of undoing of events in RESs.
Consider events a and b with ∅ ⊢ a and a ⊢ b. We have that a causes b so if we
wish to achieve causal reversing we need to add the following to the definition
of ⊢: b ⊢ b and a� b ⊢ a. The configuration {a, b} can regress to {a} by undoing
b as allowed by b ⊢ b. But it cannot regress to {b} because a� b ⊢ a can only be
applied in a configuration that contains a and does not contain b. See Figure 7(i).

If undoing events in the same order as they occurred is required, we instead
add to the definition of ⊢ the following: a ⊢ a and b � a ⊢ b. This means that a
can be reversed in any configuration that contains a (with or without b), and b
can be reversed only when a is not present. Since a causes b, this means that b can
be reversed only when a is reversed. See Figure 7(ii) where reverse transitions are



12 I. Ulidowski, I. Phillips, and S. Yuen

(i) (ii) (iii)

aaa
b

b

b

Fig. 7.

indicated by dashed lines. Finally, if we would like instead that a and b are reversed
in any order, then we would extend the enabling relation simply with b ⊢ b and
a ⊢ a. See Figure 7(iii).

Finally, we give an example where we get an infinite configuration as a limit
of a non-monotonically increasing sequence ([22]).

Example 4.6. Let E = (E,Con,⊢) where E = {ai ∶ i ∈ N} ∪ {bj ∶ j ∈ N} and Con
consists of {ai, b0, . . . , bj} (any i, j ∈ N) plus deducible subsets, with

∅ ⊢ a0 ai ⊢ bi {ai, bi} ⊢ ai bi ⊢ ai+1 (all i ∈ N)

Informally, ai is the catalyst of bi, for all i, so once bi occurs ai can be undone.
The only possible computation of E is a0, b0, a0, a1, b1, a1, . . .. It produces the

following sequence of sets of events, which grow non-monotonically:

∅,
{a0}, {a0, b0}, {b0},
{b0, a1}, {b0, a1, b1}, {b0, b1},
{b0, b1, a2}, {b0, b1, a2, b2}, {b0, b1, b2}, . . .

Each of the sets is a configuration and this sequence has limit the infinite set
{bj ∶ j ∈ N}, so {bj ∶ j ∈ N} is also a configuration. Note that each ai appears
finitely often in the sequence, while each bj appears cofinitely often.

5 Discussion and Conclusions

We indicate briefly several areas of ongoing research in reversing event structures.
We aim to investigate the expressiveness of event structures defined with our

enabling relation with prevention (for forwards-only events), and compare them
with other forms of event structures. In particular, it remains to be seen whether
or not we can encode event structures of van Glabbeek and Plotkin [23], which
are defined by a very general form of enabling relation (X ⊢ Y where X,Y are
sets of events), as our event structures from Section 4, or vice versa.

The examples in the previous section indicate that it ought to be possible
to represent an arbitrary RAES as a special form of RES. Given an RAES if
Xa = {e ∣ e ≺ a} and Ya = {f ∣ a◁ f}, then the enabling rule Xa�Ya ⊢ a captures
the idea that a can occur if all events in Xa have occurred (and are present) and



Concurrency and Reversibility 13

if no events from Ya are present. It should be then routine to define conditions 3
to 7 of RAESs in terms of our enabling relation. For example, condition 3 is
expressed as if X � Y ⊢ α and a ∈ X , then a ∉ Y : this is already guaranteed by
condition 1 in Definition 4.1. Since disjunctive causation cannot be expressed in
RAESs, RESs are strictly more expressive that RAESs.

Another challenge is to define step and mixed transitions between configura-
tions in the RES setting. In order to define the notion of a set of enabled events
and past events (as in Definition 3.2), we need to devise a way of dealing with
enabling rules that are obtained via weakening (Definition 4.1). Assume that
we wish to check if A ∪ B is enabled at X . Clearly, we require A ∩X = ∅ and
B ⊆ X . If a ∈ A and Xa � Ya ⊢ a, then we also require that Xa ⊆ X ∖ B and
(X ∪A) ∩ Ya = ∅. However, the last condition will not necessarily hold for rules
gotten from Xa � Ya ⊢ a by weakening. Assume that Xa ∪ {d} is consistent and
d ∉Xa, Ya,X . Then (Xa∪{d})�Ya ⊢ a is an enabling obtained from Xa�Ya ⊢ a
by weakening, but Xa ∪ {d} is not a subset of X ∖B.

Concluding, we have shown how to model reversibility in concurrent com-
putation as realised by two different forms of events structures, namely event
structures defined in terms of the causation and precedence relations and event
structures defined by the enabling relation. We have presented causal reversibil-
ity as well as out-of-causal-order reversibility.

Acknowledgements. The first author thanks the University of Leicester for
granting Academic Study Leave and acknowledges partial support from the JSPS
Invitation Fellowship grant S13054.

References

[1] Baldan, P., Corradini, A., Montanari, U.: Contextual Petri nets, asymmetric event
structures, and processes. Information and Computation 171(1), 1–49 (2001)

[2] Bednarczyk, M.A.: Hereditary history preserving bisimulations or what is the
power of the future perfect in program logics. Technical Report ICS PAS, Polish
Academy of Sciences (1991)

[3] Berry, G., Boudol, G.: The chemical abstract machine. Theoretical Computer
Science 96(1), 217–248 (1992)

[4] Cardelli, L., Laneve, C.: Reversible structures. In: 9th International Conference
on Computational Methods in Systems Biology, pp. 131–140. ACM (2011)

[5] Cristescu, I., Krivine, J., Varacca, D.: A compositional semantics for the reversible
p-calculus. In: Proceedings of LICS 2013, pp. 388–397. IEEE Computer Society
(2013)

[6] Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer, Hei-
delberg (2004)

[7] Danos, V., Krivine, J.: Transactions in RCCS. In: Abadi, M., de Alfaro, L. (eds.)
CONCUR 2005. LNCS, vol. 3653, pp. 398–412. Springer, Heidelberg (2005)

[8] Danos, V., Krivine, J.: Formal molecular biology done in CCS-R. In: Proceedings
of BioConcur 2003. ENTCS, vol. 180, pp. 31–49 (2007)



14 I. Ulidowski, I. Phillips, and S. Yuen

[9] Giachino, E., Lanese, I., Mezzina, C.A.: Causal-consistent reversible debugging. In:
Gnesi, S., Rensink, A. (eds.) FASE 2014 (ETAPS). LNCS, vol. 8411, pp. 370–384.
Springer, Heidelberg (2014)

[10] van Glabbeek, R.J., Goltz, U.: Refinement of actions and equivalence notions for
concurrent systems. Acta Informatica 37, 229–327 (2001)

[11] Hennessy, M., Milner, R.: Algebraic laws for non-determinism and concurrency.
Journal of the ACM 32, 137–161 (1985)

[12] Lanese, I., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Controlling reversibility
in higher-order pi. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS,
vol. 6901, pp. 297–311. Springer, Heidelberg (2011)

[13] Lanese, I., Mezzina, C.A., Stefani, J.-B.: Reversing higher-order pi. In: Gastin, P.,
Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 478–493. Springer,
Heidelberg (2010)

[14] Lanese, I., Mezzina, C.A., Stefani, J.-B.: Controlled reversibility and compensa-
tions. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS, vol. 7581, pp. 233–240.
Springer, Heidelberg (2013)

[15] Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and domains,
part I. Theoretical Computer Science 13, 85–108 (1981)

[16] Phillips, I.C.C., Ulidowski, I.: Reversing algebraic process calculi. In: Aceto, L.,
Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 246–260. Springer,
Heidelberg (2006)

[17] Phillips, I.C.C., Ulidowski, I.: Reversing algebraic process calculi. Journal of Logic
and Algebraic Programming 73, 70–96 (2007)

[18] Phillips, I.C.C., Ulidowski, I.: A hierarchy of reverse bisimulations on stable con-
figuration structures. Mathematical Structures in Computer Science 22, 333–372
(2012)

[19] Phillips, I., Ulidowski, I.: Reversibility and asymmetric conflict in even structures.
In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013. LNCS, vol. 8052,
pp. 303–318. Springer, Heidelberg (2013)

[20] Phillips, I.C.C., Ulidowski, I.: Event Identifier Logic. Mathematical Structures in
Computer Science 24, 1–51 (2014)

[21] Phillips, I.C.C., Ulidowski, I., Yuen, S.: A reversible process calculus and the
modelling of the ERK signalling pathway. In: Glück, R., Yokoyama, T. (eds.) RC
2012. LNCS, vol. 7581, pp. 218–232. Springer, Heidelberg (2013)

[22] Phillips, I.C.C., Ulidowski, I., Yuen, S.: Modelling of bonding with processes and
events. In: Dueck, G.W., Miller, D.M. (eds.) RC 2013. LNCS, vol. 7948, pp. 141–
154. Springer, Heidelberg (2013)

[23] van Glabbeek, R.J., Plotkin, G.D.: Configuration structures, event structures and
Petri nets. Theoretical Computer Science 410(41), 4111–4159 (2009)

[24] van Glabbeek, R.J., Plotkin, G.D.: Event structures for resolvable conflict.
In: Fiala, J., Koubek, V., Kratochv́ıl, J. (eds.) MFCS 2004. LNCS, vol. 3153,
pp. 550–561. Springer, Heidelberg (2004)

[25] Varacca, D., Yoshida, N.: Typed event structures and the linear π-calculus. The-
oretical Computer Science 411(19), 1949–1973 (2010)

[26] Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
APN 1986. LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987)

[27] Winskel, G.: Events, causality and symmetry. Computer Journal 54(1), 42–57
(2011)


	Concurrency and Reversibility
	1 Introduction
	2 Events and Configurations
	3 Reversible Event Structures with Causality and Precedence
	4 Reversible Event Structures with Enablings
	5 Discussion and Conclusions
	References




