
Chapter 6
Privacy in Peer-to-Peer Networks

Diego Suárez Touceda, José María Sierra Cámara
and Jesús Téllez Isaac

6.1 Introduction

In the client-server connectivity model participants’ roles are clearly defined and are
not interchangeable: one or more servers offer a range of services used by a group
of clients. Although this model is a valid solution in most scenarios, there are
environments in which the model is not feasible for technical, financial, social, or
security reasons [1].

Conversely, P2P networks are designed to take advantage of dispersed network
resources and enable participants to act as servers or clients (without the need for a
fixed role); their main characteristics being the direct sharing of resources among
users, their self-organization, stability, and autonomy. Based on this connectivity
model, a multitude of applications have emerged, such as distributed computing
systems Seti@home [2] or Genome@home [3], distributed database systems such
as PIER [4] or Piazza [5], content distribution applications including Napster [6],
Gnutella [7], or BitTorrent [8], and communications systems such as P2PSIP [9] or
Skype [10].

D.S. Touceda (&)
Evalues IT Evaluation Lab, Universidad Carlos III de Madrid,
Avda. Gregorio Peces Barba 1, 28918 Leganés Madrid, Spain
e-mail: diego.suarez@uc3m.es

J.M.S. Cámara
Computer Science Department, Universidad Carlos III de Madrid,
Avda. de la Universidad 30, 28911 Leganés Madrid, Spain
e-mail: sierra@inf.uc3m.es

J.T. Isaac
Computer Science Department, Universidad de Carabobo,
Avda. Universidad, Valencia, Venezuela
e-mail: jtellez@uc.edu.ve

© Springer International Publishing Switzerland 2015
S. Zeadally and M. Badra (eds.), Privacy in a Digital, Networked World,
Computer Communications and Networks,
DOI 10.1007/978-3-319-08470-1_6

111



However, despite their assets, P2P networks offer little privacy protection. Data,
that can be sensitive, is no longer stored in trusted servers but in peers (potentially
untrusted), and can be openly accessed and used (e.g., for advertising, users pro-
filing and impersonation, etc.) [11]. Also, user accesses and publishing are no
longer done through large companies, such as Google or Facebook, that have
privacy policies protecting the users personal information from being public. These
accesses are done through less-trustworthy entities that can disclose the users
personal information or track its behavior [12]. Several P2P applications propose
mechanisms to ensure privacy such as OceanStore [13] or Past [14]. However, these
solutions remain insufficient. Managing privacy is not possible in current P2P
networks without adding new privacy functionalities [11].

Therefore, users need to be concerned about privacy in P2P networks. They
should know how to properly configure and use the software to restrict the infor-
mation being shared. It is very common for a user to share the entire hard drive,
including sensitive information, without knowing it. Hence, users have to be sure
that they are not sharing personal information which could be exploited by mali-
cious users [15].

With this problem in mind, in this chapter we analyze the existing privacy issues
in P2P networks and the solutions that can be used to prevent them, aiming to help
the reader to better understand privacy in P2P networks and applications.

The rest of the chapter is structured as follows. An overview of P2P networks is
given in Sect. 6.2. Section 6.3 analyzes the privacy issues of P2P networks. The
existing solutions that can be used to improve privacy in P2P networks are pre-
sented in Sect. 6.4. Section 6.5 discusses how the described solutions can be used to
mitigate the existing issues and explore the challenges that must be addressed in the
future. Finally, Sect. 6.6 outlines the conclusions of the contents presented in this
chapter.

6.2 Background

In this section, we present some basic knowledge on P2P including its definition,
classification, the layer architecture, and the applications.

6.2.1 P2P Definition

A review of the literature reveals that, due to the considerable number of different
definitions of “peer-to-peer”, there is no accurate definition of P2P today, mainly
distinguished by the “broadness” they attach to the term. Many definitions are
proposed trying to capture the main features of P2P systems. Some typical defi-
nitions include the following:

112 D.S. Touceda et al.



• A system to be P2P if the elements that form the system share their resources in order to
provide the service the system has been designed to provide. The elements in the system
both provide services to other elements and request services from other elements [16].

• Peer-to-peer systems are distributed systems consisting of interconnected nodes able to
self-organize into network topologies with the purpose of sharing resources such as
content, CPU cycles, storage and bandwidth, capable of adapting to failures and
accommodating transient populations of nodes while maintaining acceptable connec-
tivity and performance, without requiring the intermediation or support of a global
centralized server or authority [17].

• A distributed network architecture may be called a Peer-to-Peer (P-to-P, P2P, …)
network, if the participants share a part of their own hardware resources (processing
power, storage capacity, network link capacity, printers,…). These shared resources are
necessary to provide the Service and content offered by the network (e.g. file sharing or
shared workspaces for collaboration). They are accessible by other peers directly,
without passing intermediary entities. The participants of such a network are thus
resource (Service and content) providers as well as resource (Service and content)
requestors (Servent-concept) [18].

According to the above definitions, the following characteristics of P2P systems
can be identified [19]:

• Shared resources. Peers in P2P systems are designed for sharing resources, by
direct exchange, with each other in order to provide the services or content
offered.

• Self-organized. Peers in P2P systems are self-organized into network topolo-
gies, respecting the autonomy of peers.

• Dual role. Peers in P2P systems act both as clients (requesting resources from
others) and servers (providing resources to others) at the same time.

• Stability. P2P systems have the ability to adapt to peer failures (fault-tolerance)
and to accommodate a large number of participating peers (scalability).

• Autonomy. Each peer maintains and controls, without the support of a central
server or authority, its own content and resources.

Due to the absence of a centralized server, a P2P network is designed around the
concept of each peer being client and server simultaneously. This model of network
layout differs from the client-server model, which has a centralized server
responsible for controlling the access of shared resources within the network, giving
the clients limited privileges. Therefore, the P2P architecture is considered opposite
of the client-server model.

Although the P2P model is perceived as an advantage, it introduces many
management and security issues since there is no control over the content being
shared within the network. Hence, the participating peers become prone to various
threats and security violations [20]. Figure 6.1 illustrates the client-server archi-
tecture whilst Fig. 6.2 shows the P2P architecture.

6 Privacy in Peer-to-Peer Networks 113



Fig. 6.1 Client-server architecture

Fig. 6.2 P2P architecture

114 D.S. Touceda et al.



6.2.2 P2P Systems

A P2P system consists of three layers: underlying network, overlay network, and
application. Figure 6.3 illustrates the model of a P2P system in a layered archi-
tecture [19].

• Underlying network is the communication network to which peers connect for
routing packets.

• Overlay network is the network of peers that relies on the underlying network
for routing packets to each other. It is responsible for providing P2P services for
P2P applications built on top of it, performing many operations such as storing
and retrieving data, management of nodes, management of resources, man-
agement of security, and so on.

• The Application-level layer is concerned with the content and service provided
to users by P2P applications (such as P2P file-sharing applications, P2P instant
messaging applications, P2P video streaming applications, and so on) using the
P2P services provided by the overlay network.

In the following sections, we discuss the overlay network layer and the appli-
cation layer of P2P systems.

6.2.3 P2P Overlays

In the last decade, several P2P overlay networks have emerged with diverse net-
work structures, topologies, routing algorithms, and so on. Based on the network
structure, P2P overlays can be classified in several types (see Fig. 6.4) that will be
briefly discussed below.

Fig. 6.3 Layer architecture
of P2P systems

6 Privacy in Peer-to-Peer Networks 115



6.2.4 Unstructured P2P Networks

In this category, peers are organized by the P2P overlay network into a random
graph (in a flat or hierarchical manner), which means that it is not possible to
establish a correlation among a peer and the content handled by it; owing to the
arbitrary creation of the links between nodes. Therefore, in order to query content
stored by overlay peers, an unstructured P2P network has to use flooding, random
walks, or expanding-ring time to live (TTL) search, and so on on the graph. When a
peer is visited, it will evaluate the query locally on its own content, and will support
complex queries.

For the purpose of routing, a peer builds and maintains a local routing table
(which contains some neighbor peers) by periodically checking the aliveness of
these neighbors to remove the unavailable ones and to update them with new ones
available. The maximum number of neighbors that a peer has is limited in an
overlay to ensure the scalability.

Due to the absence of constraints about the topology of unstructured P2P overlay
networks, these systems are easy to build and maintain [21]. Moreover, they sup-
port complex queries in an easy way, and they are highly robust against high rates
of peers frequently joining and leaving the network (Churn) [19]. However, a
limitation of unstructured P2P overlays is their scalability because the usage of
flooding algorithms by peers produces a high network traffic [22, 23]. Also, because
queries for content are not widely replicated and must be sent to a large fraction of
peers, unstructured P2P overlays become inefficient [24].

Examples of unstructured P2P overlay networks are the following: Freenet [25]
Gnutella [26, 27], FastTrack [28] /KaZaA [29], Overnet [30]/eDonkey2000 [31],
and BitTorrent [32].

Fig. 6.4 Summary of overlay networks

116 D.S. Touceda et al.



6.2.5 Structured P2P Networks

In this category, in contrast to unstructured P2P networks, structured P2P overlay
networks provide a geometric topology that is tightly controlled and where contents
are placed in specific locations and not in random peers.

A Distributed Hash Table (DHT) is implemented on most of the structured
overlays based on an abstract key space. A unique key is assigned to each peer or
data item which is taken from the key space using consistent hashing. To store a
value in a node, a DHT must determine the node that has the minimal distance
among the value’s key and the node’s identifier [19].

Two operations are provided by a DHT: a store operation (put(key,value)) and a
retrieval operation (value = get(key)). The DHT will route the requested operation
for a given key to the node responsible for the key. Each node maintains, for routing
purposes, overlay links to a number of other nodes. Also, the IP address, the node’s
identifier, and other information of each of these nodes is stored in their routing
tables. Using these routing tables, nodes forward the requests that receive to their
closer link to the destination until these requests finally reach the destination node.

Structured P2P overlay networks provide a cooperative, stable, and robust
mechanism for storing and retrieving content when their algorithms are executed
correctly. Nevertheless, this class of systems does not support complex queries in
its simple form, hence it is necessary to store a copy or a pointer to each data object
(or value) at the peer responsible for the data object’s key. Also, most of them
deploy very minimalist security mechanisms that make them an attractive target for
attackers [19, 24, 33].

Examples of structured P2P overlay networks are the following: Content
Addressable Network (CAN) [34], Tapestry [35], Chord [36], Pastry [37], Viceroy
[38], and Kademlia [39].

6.2.6 Hybrid P2P Networks

Hybrid P2P systems combine unstructured and structured topologies in their hier-
archy with the intention of exploiting the advantages of kind of networks. These
systems employ structured overlay topologies at their upper level whilst unstruc-
tured overlay topologies are used at their lower level, or vice versa.

6.2.7 Hierarchical Overlays

A hierarchical overlay is an overlay architecture that uses multiple overlays to
organize its peers in a nested fashion (which are interconnected in a tree).
Therefore, a message can be sent to a peer in a different overlay by forwarding the

6 Privacy in Peer-to-Peer Networks 117



message to the nearest common parent overlay in the hierarchy with the destination
peer. Examples of hierarchical overlays include: Cyclon [40], Hieras [41], Canon
[42], and TOPLUS [43].

Hierarchical overlays can increase overall performance in P2P systems that
exhibit locality in their operations.

6.2.8 P2P Applications

Nowadays, P2P systems have become one of the most common technologies used
in the Internet. Although until 1999 the most common paradigm in the Internet was
the client-server model, the emergence of Napster [44] (a P2P file-sharing appli-
cation used to share music) has attracted attention and pushed P2P systems to
become one of the most used (and controversial) technologies [45].

The P2P architecture has been widely used worldwide because of the following
advantages [46]:

• Scalability. In P2P networks users contribute with resources, meaning that
while the number of users increases, the ability of the network will also increase
due to the additional resources brought by the new users.

• Resilience. P2P architecture prevents the single point of failure (inherent to
client-server systems), hence, increasing the robustness and reliability of the
system.

• Cost-efficiency. The installation and management cost are reduced in P2P
networks by incorporating the resources of the users and not using dedicated
servers.

Despite of the above advantages, P2P networks also have their limitations. One
example are the new security threats that can emerge due to the direct exchange of
resources among end-users without the participation of a secure server. Besides
their most famous application, file-sharing, P2P systems have also been used for a
variety of different application categories, including the following [17]:

• Communication and collaboration. Systems in this category provide the
necessary infrastructure to allow the direct communication and collaboration
between peer computers. Examples include instant messaging applications such
as Aol, Yahoo, and MSN.

• Distributed computation. The goal of this category of systems is to take
advantage of the available computer processing power (CPU cycles) of the peers
of the network by decomposing a computer-intensive task into small work units
which should be distributed among them. Every peer computer executes its
corresponding work unit once it has been received before returning the results.
Examples include projects such as Seti@home [47] and Genome@home [48].

• Internet service support: Many different applications have emerged based on
P2P infrastructures to support a variety of Internet services, such as P2P

118 D.S. Touceda et al.



multicast systems [49], Internet indirection infrastructures [36], and security
applications, providing protection [50].

• Content distribution. In this category fall most of the current P2P systems that
range from relatively simple direct file-sharing applications, to more sophisti-
cated systems which create a distributed storage medium for securely and effi-
ciently publishing, organizing, indexing, searching, updating, and retrieving
data. Within the P2P content distribution domain, applications can be grouped
as follows:

• P2P file-sharing: P2P is one of the most successful architectures for
file-sharing, both using structured and unstructured overlays. In this kind of
networks, information about shared files (frequently stored locally at the
owners machines) can be delivered to some specific peers or saved in a
central server. In order to download a file, a peer has to perform the fol-
lowing steps: searching and downloading. In the first step, a query is sent by
the initiating peer to the network. Once received, this query is replied by the
peers that keep files that match the search with the information about these
files. However, there are also alternatives to this searching mechanism. For
example, in BitTorrent [32] (a P2P system that uses a central location to
manage users’ downloads), contents are located using special types of files
called â€œtorrent files” (usually publicly accessible in web servers) which
contain information about the content file, its length, name, hashing infor-
mation, and the URL of a tracker (responsible for maintaining track of all the
peers storing, both partially and completely, the content file) [19, 24, 32]. In
the second step (downloading), the initiator peer reach directly the peers
where the file is stored in order to complete the exchange of the file.
In Fig. 6.5, the architecture and operation of BitTorrent are illustrated. A peer
P1 which host a file and acts as the seed, is responsible for the following

Fig. 6.5 BitTorrent architecture and operation

6 Privacy in Peer-to-Peer Networks 119



steps: upload the “torrent file” to a web server and register it to the tracker.
The peer P2 could download the file by sending a Get message to the tracker
whoever replies with a list of the peers that are hosting this file (P1, P2 and
P3 in this case). Once the list is received by P2, it contacts peers P1, P3 and
P4 to retrieve pieces of the file. Since P3 or P4 do not have the file com-
pletely, it can also retrieve the missing pieces from P2 (the ones P2 has
retrieved from P1 and that P3 or P4 do not have) [19].

• P2P streaming: This category of P2P systems have been deployed recently
to provide live and on-demand video streaming services on Internet at low
cost. P2P streaming solutions create an overlay network topology for
delivering content formed by the users of the network. These users can
download or upload video assets, thus becoming active participants in the
streaming process. rStream [51] is an example of this kind of application.

• Video-on-Demand (VoD): This is a technology that ensures the availability
of a whole video at the time of the transfer. Since no content is
generated/updated while data is transferred and rendered, users should be
able to watch any point of the video at any time. In a P2P-based VoD
(P2P-VoD) application, the entire stored media file needs to be retrieved at a
rate that allows the recovered pieces of the file to be played in sequential
order at the media playback rate. Therefore, if the retrieval rate is sufficient,
the playback phase extends beyond the transfer phase. Examples include
SplitStream [52] and pcVOD [53].

• Live streaming: In P2P live streaming applications, a root server generates
video content in real time while peers connect to it as clients forming a tree.
Content dissemination is acted upon by other peers (clients). The video
playback is synchronized among all peers unlike peers in a VoD-like net-
work, where each peer may be positioned in a different part of the video [45].
Anysee is an example of this kind of application [54].

• P2PTV: In a typical architecture of P2PTV, there are trackers that contains
the information of the peers which distribute a specific channel. Therefore, to
view a channel, a peer needs to query the tracker that is distributing the
channel; to finally contact the peers of the trackers directly to receive the
video stream from them. In these systems, each user is able to download a
video stream and simultaneously upload it to other users in order to con-
tribute to the overall available bandwidth. [19]. Examples of P2PTV appli-
cation are Zattoo [55] and PPLive [56].

• Other content distribution systems: There are other content distribution
applications developed using P2P technologies such as systems for
pre-recorded TV program distribution (such as BBC-iplayer [57]), game
updates, and so on [19].

120 D.S. Touceda et al.



6.3 Privacy Issues in P2P Networks

As noted in [58], the term privacy is an umbrella term, referring to a wide and
disparate group of related things. The use of such a broad term is helpful in some
contexts yet quite unhelpful in others. One of these contexts is security. In order to
analyze the existing privacy issues in P2P Networks, we need to be more specific
and not talk about privacy in general, but about specific users private attributes that
may be under threat.

6.3.1 Privacy of User Identity

In order to connect to a P2P network users need to reveal some information about
themselves (at least to the peers they are directly connected to), such as their IP
address and port number. Also, if some kind of enrollment mechanism is in place,
users may have to provide more information to satisfy the enrollment policy, for
example, an ID, password, and so on. In some cases, a centralized mechanism, such
as the offline certification authority (CA) used in RELOAD [9], can be used to
control the enrollment to the network. In this way, users credentials are stored in a
trusted third party (TTP) that can protect the privacy of the users attributes.
However, to join the network, some information (credentials) must still be revealed
to other peers (that may be malicious) to prove that the user is an authorized
member of the network. Furthermore, when a user requests access to a resource
stored in another peer it may need to reveal some information about itself to satisfy
the resource access control policy. And, in the same way, the resource provider may
need to reveal some information too, for example, for proving it is a valid content
provider, to provide access to the resource.

Therefore, as privacy issues related to the users identity, we identify:

• Internet service provider (ISP) identification of peers through relating an IP
address and port with the users subscription data.

• TTP identification of peers using the provided users attributes requested during
the enrollment process.

• Directly connected peers identification of users through their IP address and port
and (when used) the credentials needed to prove membership to the network.

• Resource owner identification of users through the credentials needed to satisfy
the resources access control policy.

• User identification of resources providers through the credentials used while
providing access.

The first two cases are common to most of the Internet applications: users have
to reveal some private attributes to both their ISP, to contract a line to access the
Internet, and to their service providers server (mail account, cloud storage, etc.), to
be able to access their services. However, the last three threats are new. The first of

6 Privacy in Peer-to-Peer Networks 121



these three cases appears due to the fact that in P2P networks users are directly
connected to other (usually unknown) peers of the networks that may be malicious.
The second and the third appear because users no longer access resources stored in
a trusted server but in (usually unknown) peers that, again, may be malicious.

6.3.2 Privacy of User Location

As presented already, peers of a P2P network know the IP address and port of the
peers they are directly connected to. Also, some applications need to make public
these attributes of a user to all the participants of the network in order to allow them
to communicate with each other. For example, in P2PSIP applications users IDs and
locations (IP addresses and port numbers) are published in a DHT formed by all the
peers of the network. This information can be used by other users of the network
that wish to communicate with them to start VoIP phone calls or to send chat
messages. However, as noted in [59], since this location information is stored in the
DHT, the user cannot know which peers have requested it. Therefore, it is possible
for malicious peers to lookup the user regularly and to map its IP addresses to
geographic locations without the user being aware of it. This information can be
used by those with malicious intent to make profiles of the users location. The same
happens with other similar applications, such as Skype, as commented in [12].

Summarizing, the main location privacy issue for a P2P user is other peers
having access to its location and being able to make a profile about its mobility.

6.3.3 Privacy of the User Access

In Sect. 6.3.1 we have already talked about the privacy of users identity when
requesting access to a resource. Another related but different privacy issue appears
during this access: the peer responsible for a resource also can monitor the accesses
of the users of the network to it. In the same way, as noted in [15], the searched
keywords and the downloaded files can be gathered. This information in con-
junction with the users IP addresses can be used to create a database about the users
accesses. One example of an application suffering this threat is P2PSIP. In response
to this concern, the research [60] states that the P2P routing protocol opens the
possibility for P2P users to record the activities of other users in the network. On
the one hand, all the communications of a user are done through the fingers in its
routing table that can monitor its activities. On the other hand, the peer responsible
for storing a resource can monitor all the accesses over the resource it controls.

So, basically, the main threats here are users being monitored in the system by
other peers; both when accessing and looking for a resource. This is also known as
sender anonymity.

122 D.S. Touceda et al.



6.3.4 Privacy of User Publishing

Another privacy issue appears for a user publishing a resource: the party accessing
or looking for a resource also learns which resources the user has published. This
could be used, for example, for censorship governments to make a search for
forbidden contents and ban or even prosecute the users of the network providing
them. This is also known as recipient anonymity.

6.3.5 Privacy of Contents

In general, before reaching their final destination, Internet communications traverse
several systems that may spy or even modify the exchanged data. This is even more
notorious in P2P networks, where users rely on other peers to access the systems
resources, providing the possibility for an intermediate peer to monitor the contents
of a users communication.

Also, unlike the client-server model where data is centrally stored, in P2P
contents are spread among all the peers of the network; being each peer responsible
for a specific part of it. These contents can be public information, available for other
users of the network, or non-public data, only available for the users private access.
Due to the fact that the peer responsible for storing these contents may be mali-
cious, a security mechanism should be implemented in order to prevent the storing
peer or an attacker from accessing this data without authorization [60].

6.3.6 Application Misconfiguration and Misuse

In P2P networks computers act simultaneously as clients and servers. However, as
noted in [15], to properly configure a server is not an easy task that typical
end-users can do. To configure a secure Internet server requires professional
experience. Therefore, despite configuring and using P2P software being easy,
using it in a controlled way is much more complicated. As an example, in [61] a
study about Kazaa usability is presented showing that it is very common for users to
share private data: emails, text documents, configuration files, or even the whole
disk without being aware of it. Since a user would not do this on purpose, it seems
clear that we are facing an application misconfiguration problem.

Application misconfiguration therefore clearly represents another threat to pri-
vacy that should be taken into account.

6 Privacy in Peer-to-Peer Networks 123



6.3.7 Spyware and Malware

Spyware and Malware are further privacy threats for P2P applications. Spyware
spies on the user by collecting information about its activities without the user’s
knowledge. For its part, malware goes a step further performing more harmful
activities such as collecting more sensible information (credit card numbers,
passwords, etc.) or giving remote control to an attacker over the users device.

Several P2P applications are bundled with spyware that gather and send infor-
mation about the users activities to a third party. In turn, that third party uses the
gathered data to gain information about their potential customers [15]. However, it
is hard to check the spying activities and information leaked by these applications
because most of them are closed-source. One example of such an application that
includes spyware is Kazaa.

Other related threats to users privacy are the programs downloaded from P2P
networks. Since the sources in a P2P network may not be trustworthy, these pro-
grams can contain spyware or malware that compromise the privacy of the user.

6.4 Solutions for Privacy Issues in P2P Networks

Most communications over the Internet lack privacy protection: the messages are
not encrypted nor are the sender and the receivers identities protected. It is really
difficult to achieve full protection against privacy threats on the Internet, either P2P
based or not, just as normal people do not have the necessary means to be fully
protected against professional thieves in the physical world [62]. However, average
protection for the vast majority of scenarios is definitely possible. In the rest of this
section, we analyze different solutions that could help a user to achieve a desirable
level of privacy.

6.4.1 Anonymous Systems

Anonymity can enable censorship resistance and freedom of behavior without fear
of persecution. Anonymity is mostly used to hide user identity. If anonymous
communication channels are used, a channel listener is not able to understand the
messages sent on the channel or who has sent them [11]. Since one of the first
papers on anonymity was published [63] by D. Chaum in 1981 outlining an
electronic mail system to hide who a participant communicates with through the use
of mixes (nodes hiding the correspondences between their input and output mes-
sages in a cryptographically strong way), several protocols and applications to
protect anonymity have emerged [60]. However, most of them follow a similar
process: with the idea of preserving the privacy of the identity of the sender and the

124 D.S. Touceda et al.



receiver of a message, as described in [64]: â€œWhen a sender Alice sends a
message to a receiver Bob via a message router Rob, she first encrypts the message
under Bob’s public key and then encrypts the results together with Bob’s name
under Rob’s public key. She then sends this final encryption to Rob who decrypts it,
sees another encryption plus Bob’s name and thus forwards this encryption to Bob.
Upon receiving it, Bob decrypts and then can read the message from Alice. Thus,
from the communication packets sent between Alice, Rob, and Bob one can only
tell that Alice sent some message to Rob and that Rob sent some message to Bob”.

Using this initial concept, several different approaches appear to improve ano-
nymity: cache and mix messages before they are sent, use several routers in a row to
increase the probability that at least one of them keeps the relation between the
input and the output node secret, or randomly choose at each routing hop whether
the message is sent to the final destination or to another intermediate routing
hop. Examples of protocols to do so are Mix-networks, Mix-cascades, and Onion
Routing.

What follows is a brief overview of the more relevant anonymous systems,
focusing on those specifically designed for P2P networks:

• Tarzan [65] is an anonymous P2P network. A peer that wants to send a message
through the network, instead of sending it directly, creates an encrypted tunnel
to another peer and asks that peer to forward the message in its behalf. This
process is repeated several times, creating an onion encrypted connection, that
relays the message through a succession of intermediate peers.

• MorphMix [66] is very similar to Tarzan. The main difference between them is
how the route a communication follows through the network is chosen. In
Tarzan, the route is chosen by the source, while in MorphMix the intermediate
nodes determine the next step.

• SwarmScreen [67] is a privacy preserving layer for P2P applications that tries to
obfuscate the user’s network behavior. Since a users behavior can be deduced
by his or her interests, SwarmScreen connects the user to other users outside of
their community of interest (by adding some percentage of extra random con-
nections that are indistinguishable from the real ones), which can disguise the
users interests and thus their behavior.

• Pr2-P2PSIP [59] has been created with the idea of providing P2PSIP user
registration and session establishment, while preserving the privacy of the
network participants. It is based on a central authentication server (AS). After
the user authenticates with the AS, the AS provides the user with a certificate
that binds the identity of the user with its public key. Besides its identity, each
user has two pseudonyms fi and si (temporal identities that cannot be linked with
the identity of the user). These pseudonyms allow the user to participate in two
different overlays: one used to store the users contact information and another
for forwarding messages.

All of the summarized systems have their advantages and drawbacks (this dis-
cussion is beyond the scope of this chapter). However, all of them have two main

6 Privacy in Peer-to-Peer Networks 125



characteristics in common: they improve the anonymity of the user, but at a high
performance cost.

6.4.2 Routing Modifications

Using an anonymous system, such as the ones presented in Sect. 6.4.1, may have an
appreciable impact on the systems performance. In some cases, when performance
is a key factor, another mechanism, such as routing modifications, can be used in
order to improve the users privacy while maintaining a good performance. Router
modifications can be carried out in two different ways: varying the routing algo-
rithm and obfuscating routing headers. Both mechanisms help to improve a users
privacy, mainly in structured P2P networks where routing is more deterministic and
can reveal more information about the users behavior. The rest of this section is
based on the authors previous research presented in [60].

6.4.2.1 Routing Variations

The study [68] analyzes the anonymity of the Chord protocol and concludes that the
implemented recursive routing algorithm provides a high degree of sender ano-
nymity against passive observers.

The proposal described in [69] goes a bit further and compares the anonymity of
different alternatives with the original recursive routing algorithm:

• Random recursive routing. In this variation, peers forward the message at
random to whatever finger is closer to the destination, instead of routing mes-
sages to the finger closest to its destination. Random recursive routing improves
anonymity, but unfortunately it also increases the path length.

• Weighted random routing. Instead of picking the next forwarding hop at
random from the closer fingers, fingers are weighted and picked with different
probabilities: for example 1/2 for the closest, 1/4 for the second closest, and so
on. In comparison to the random one, it reduces the average path length while
maintaining a degree of anonymity that is nearly as good.

• Indirect routing. In this routing algorithm, when a peer wants to send a mes-
sage, instead of routing it directly to its destination, it chooses at random an
intermediary peer in the network to route the message on its behalf. Also, the
query to the intermediary is secured using an m-of-n secret sharing scheme, that
is, the message is split into n shares sent using independent routes and at least
m shares (of n sent) need to be captured in order to reconstruct the message. This
way, it is very difficult for an attacker to know the true destination of the query.
Indirect routing improves the anonymity of the sender but it also increases the
number of messages needed to route a query and its latency. A similar routing
alternative is used in the AP3 system [70].

126 D.S. Touceda et al.



6.4.2.2 Headers Obfuscation

Besides the routing algorithm used, it could be also helpful, in order to improve
users privacy, not to use header fields that may reveal information about the route
followed by a message:

• Avoid setting fixed default values for TTL counters. Alternative methods, such
as those implemented in Freenet [71], may be used.

• Methods such as the forwarding tables in AP3 [70] or the Truncated Via-Lists in
RELOAD [9] should be used to obfuscate the information needed to route back
the response of a query.

6.4.3 Protection of Contents in Transit

The most widely accepted measure to obfuscate the content of a message is
encryption. However, as the authors presented in previous work [60], the special
properties of routing in P2P networks suggest a clarification of how this mechanism
should be implemented. In typical Internet routing, security is normally ensured
end-to-end, that is, the sender encrypts and signs the message and delivers it to the
recipient using some specific protocol for this task, such as TLS [72], DTLS [73], or
IPsec [74]. Unfortunately, this approach is not valid in P2P networks, because the
intermediate hops need access to some information of the message in order to route
it properly. Therefore, the routing protocol needs to implement two features: it must
separate the routing information (needed for the intermediate nodes to route the
message) from the content of the message per se (that must be only accessed by the
addressee). Also, it must permit use of both hop-by-hop and end-to-end security.
First the sender encrypts and signs the content of the message with the public key of
the ultimate receiver and the sender’s private key respectively (end-to-end security
at the application layer), then the sender appends to it the routing information and
encrypts and signs the whole message for the first hop using TLS, DTLS, or IPsec
(hop-by-hop security at the network/transport layer). This way, every hop can check
and modify the routing information of the query in order to properly route it, but
only the receiver can see its content. An example of a P2P protocol implementing
both features is RELOAD [9].

6.4.4 Protection of Contents at Rest

Following the security analysis conducted in [60], there are mainly three mecha-
nisms to protect the privacy of contents at rest in P2P networks: local control,
cryptography, and dedicated security services.

6 Privacy in Peer-to-Peer Networks 127



6.4.4.1 Local Control

In this mechanism the node responsible for the resource is in charge of its access
control and, therefore, of its privacy protection. Local control can be implemented
in different ways. In the RELOAD protocol [9], for example, each resource iden-
tifier may contain multiple kinds of data identified by a Kind-ID. The definition of
each data kind specifies rules for determining which certificates can access each
Resource-ID and Kind-ID pair, controlling the data access. Another possibility is to
use an access control list (ACL) to determine the privileges of each user over an
object like in OceanStore [13] or Fairsite [75].

The main drawback of this approach is that, if the node responsible for the
resource is malicious, it can access the resources content or allow unauthorized
users to access it.

6.4.4.2 Cryptography

The more effective way to prevent malicious users from accessing the private data
of other users within the network is to use cryptography. If a user wants to store a
private resource for personal use, symmetric cryptography, such as the AES
algorithm [76], could be used to encrypt the data before storing them in the net-
work. On the other hand, if the private resource is intended to be accessed by other
users, such as a voice-mail, it may be encrypted using the public key of the reci-
pient, as described in [77]. If the publisher wants the resource to be accessible by a
group of users, three possibilities arise: (1) to extend the scenario of a single
recipient by storing one copy of the resource for each recipient encrypted with his
or her corresponding public key; (2) to encrypt the symmetric key using the public
key of all authorized readers and store the encrypted keys with the resource [75], or
(3) to store only one copy of the resource encrypted with a symmetric key and send
a private message to each recipient with the location of the resource in the network
and the key needed to access it [13].

6.4.4.3 Dedicated Security Servers

Another solution is to add dedicated security servers to the architecture. The users
rely on these servers for storing their private resources. Unfortunately, as noted in
[78], these servers reduce the advantage of the P2P architecture by introducing an
extra cost in its development, and issues such as load balancing and capacity
problems.

128 D.S. Touceda et al.



6.4.5 Private and Split Credentials

Only a small number of elementary tasks can be carried out completely in an
anonymous way. Usually, the user has to perform some kind of authentication,
therefore revealing some private information [64]. As stated in [79], in P2P
applications with anonymous authentication, if the privacy of peers is increased, the
difficulties of ensuring authenticity and security are increased too. There is a clear
trade-off between authentication and anonymity that is to be catered by P2P
application developers.

A way to protect users access is to give users fake identities. Fake identities can
be ensured by smartcard techniques where the real identity of the user is only
known by the authority which distributes the smartcards. In this case, the authority
must be considered as a TTP [11]. For example, in Past [14], smartcards are used to
allow users to obtain necessary credentials to access resources in an anonymous
fashion. However, the use of trusted party for authentication can be risky. Thus,
there is a trade-off between accountability and trusted party for authentication.
Users have to be able to manage their identities in order to reduce to the minimum
the information about them disclosed during their operations in the network.

Private credentials [80] provide the same functionalities and security guarantees
as the classical X.509 certificates, but give the user the possibility of controlling and
separating its different identities. They are based on a very similar approach to the
X.509 certificates, but with two particular features:

• Single secret key, many public keys (cryptographic pseudonyms). Users can
create several public keys related to their secret key, instead of having only one
public key for each private key. Also, it is not possible to link these public keys
to each other, being unfeasible to know if they are held by several different users
or by the same user.

• Transformable. Credentials are linked to the users secret key not to their public
key. In this way, a credential related to one public key of the user can be
transformed into a credential related to another and different users public key.
Furthermore, the new created credential may only include a chosen subset of the
attributes includes in the original credential.

Private credentials “provide the same level of security (as classical certificates),
but additionally guarantee privacy during the process”, as stated in [62].

Another certificate variation that can be used together with private credentials is
split certification, as presented in the authors previous work [81]. Split certification
separates the identity of the user from the identity of the device the user is operating
from. This way, overlay maintenance and routing communications are performed
between nodes without the unnecessary knowledge of which users are connected to
them. Likewise, user operations are not linked to its devices, so users perform actions
in the networkwithout having to explicitly announce the node they are operating from.
Combining split certification with private credentials can reduce the users provided
information when fulfilling an access control policy necessary to access a resource.

6 Privacy in Peer-to-Peer Networks 129



6.4.6 Hidden Services

We have already introduced (Sect. 6.4.2.1) the possibility of using an intermediate
peer to route messages on a users behalf in order to protect the senders anonymity.
A similar approach for P2P data sharing, presented in [82], uses buddies (com-
munity members the user has established trust relationships with) as “proxies”
during data requesting. The mechanism used to hide the identity of the requester is,
rather than sending the request by itself, the requester asks one or several of its
buddies to look up the data on its behalf. This process can be improved by having
the supplier respond to a request via its own buddies; protecting, therefore, not only
the identity of the requester but also the identity of the supplier.

In this vein, but using a more sophisticated and privacy preserving approach, are
the hidden services used in Tor [83]. Location hidden services allow a user to offer
a service without revealing its IP address. Using Tor “rendezvous points”, other
users can connect to these hidden services, each without knowing the other’s
identity. The steps to do so are:

1. The provider picks some introduction points (peers acting as intermediates) and
builds circuits (hop-by-hop encrypted random path) to them.

2. The provider publishes the service using a hidden service descriptor (including a
summary of each introduction point) in a distributed hash Table

3. The requester learns about the service from its hidden service descriptor and sets
up a circuit with a rendezvous point (peer acting as intermediate for the
requester).

4. The requester sends a message to one of the introduction points requesting
access to the service and including its rendezvous point.

5. Finally, the provider creates a circuit to the requesters rendezvous point and
provides the service.

6.4.7 Application Configuration

The default configuration of a P2P application should be as strict as possible, so that
the user willing to share a file had configured the application for doing so.
Unfortunately, as noted in [15], this is not desirable for P2P developers. They fear
that only a few users will change the configuration to allow sharing, if the default
settings of the application are no sharing, therefore, reducing the interesting content
available in the P2P network and forcing the users to use a different application with
more content.

With this in mind, one of the most simple and useful solutions a user can
implement in order to protect its privacy is to properly configuring a P2P appli-
cation to only share the information the user wants before starting to use it.

130 D.S. Touceda et al.



6.4.8 Application Hardening

Users should use trusted applications, either open-source where the code can be
checked for malicious behavior or, at least, downloaded from trusted sources, to
prevent spyware or malware being installed on its computer. Also, P2P applications
need to have some privileges in order to be able to carry out their activities [84]:
network access, write and read permissions over the hard disk, and so on, that can
be used maliciously to disclose private information or install malware on the users
machine. To remedy this, [85] recommends to run the P2P application in a sandbox
that isolates the portion of the hard disk the application has access to and restricts
the operations it can perform. In the same way, the integrity and behavior of the
whole users devices system should be checked using anti-virus and anti-malware
solutions.

6.5 Recommendations, Challenges, and Opportunities

In Sect. 6.3 we presented P2P privacy issues and in Sect. 6.4 we discussed P2P
privacy solutions. It is time now to see how the described solutions can be used to
mitigate the existing issues and explore the challenges that must be addressed in the
future, along with opportunities for new research directions. Table 6.1 presents a
summary of the recommendations described during the rest of this section to protect
privacy in P2P networks.

6.5.1 User Identity

As we have described already, there are five main issues related to the user identity
privacy in P2P networks, two of them being common to any Internet-based system
and the three others being unique to P2P networks due to the special conditions they
present.

For the first issue, related to the ISP identification of peers, two possible solu-
tions arise. The first one is to accept that in order to contract an Internet line the user
should give some private information to the Internet provider and trust that it will
not release it to third parties compromising the users privacy. When this solution is
not acceptable, a second option is to use a public Internet access point, such as the
free wireless access point provided in some public places like coffee shops, train
stations, or airports.

For the second issue, related to the P2P application providers TTP identification
of peers, three possible solutions arise. The first one is, again, to trust that the
provider will not release the users identity information to other third parties. The
second one, when possible (users are not requested to give personal identifiable

6 Privacy in Peer-to-Peer Networks 131



information such as an account or credit card number but less identifiable infor-
mation such as an e-mail that can be from an open provider), is to connect to the
application using a pseudonym that cannot be related to the users real identity.
Finally, the third solution is to only use P2P applications that accept anonymous
users and that do not need the user to follow an enrollment process.

For the third issue, related to the directly connected peers identification of users,
two possibilities arise. The first one is to trust that the Internet provider will not
reveal to the other peers which user is behind the visible IP address used. The
second is, again, to use public Internet access points so that the IP address can not
be related to the users identity. Also, in both cases, when some kind of credential is
needed in order to prove membership of the network, private and split credentials
should be used.

For the fourth and fifth issues, related to the mutual identification of the
resources requester and provider, the best solution is to use private and split cre-
dentials in order to hide their real identities.

Table 6.1 P2P Privacy issues and possible solutions

P2P Privacy Issues and solutions

Privacy issues Solutions

User identity Trust internet provider

Use public access point

Trust P2P application provider

Use pseudonymous

Use anonymous access applications

Private and split credentials

User location Privacy of user identity solutions

Anonymous systems

Hidden services

User access Anonymous systems

Routing modifications

Protection of contents in transit

Privacy of user identity solutions

Private and split credentials

User publishing Anonymous systems

Hidden services

Privacy of user identity solutions

Protection of content at rest

Contents Protection of contents in transit

Protection of contents at rest

Application misconfiguration and misuse Application configuration

Spyware and malware Application hardening

132 D.S. Touceda et al.



6.5.2 User Location

It is impossible for a peer to hide its IP address, and therefore its location, from the
peers it is directly connected to. It is, however, possible for a user to hide its
location if the peers the user is directly connected to do not know the identity of the
user behind the peer it is using. In order to do so, the user has to use one of the
solutions presented in the previous point to hide its identity. But, what happens
when the user necessarily has to make some attributes public (like an ID and IP
address in P2PSIP) to allow the other users of the system to communicate with it. In
this case, the best option for the user seems to be accessing the applications through
an anonymous system and using a hidden service to hide its real location from the
users trying to contact them. Unfortunately, the hops introduced in this commu-
nication may not be viable for a real-time communication such as P2PSIP needs.
The challenge here would be to find a system that could hide the location of the user
while providing it with viable connection for real-time communication. One pos-
sible approach would be to hide the real location of the user (through a hidden
service) until it accepts the communication with the calling user and, once accepted,
to reveal its real location to establish a direct communication valid for real-time
applications. This would not hide the location of the user from an accepted caller
but, at least, it would prevent a malicious user from building a profile of the user
location without the user realizing it; since the real location of the user is not
released until the call is accepted. However, this is still an open area of research.

6.5.3 User Access

The best way to keep private the resources accessed by a user is to use an anon-
ymous system. This would prevent the peers directly connected to the user from
knowing which resources the user requests and, also, it would prevent those
responsible for a specific resource from knowing the origin of a request.
Unfortunately, in some cases this solution may not be available or perhaps too
costly. In such cases, a less secure option, but one that can provide some level of
privacy, is to combine routing modifications with protection of the contents in
transit. Another possible option is not trying to hide the access itself but the identity
of the user that is behind. In this case, the user should use the solutions already
described to retain the privacy of the user identity. In any case, if the access to the
resource is protected by an access control policy the user should use private and
split credentials in order keep the privacy of its access.

6 Privacy in Peer-to-Peer Networks 133



6.5.4 User Publishing

Protection against content censorship mechanism is best achieved using an anon-
ymous system and publishing resources under a hidden service. Obtaining this
protection when this solution is not possible is an ongoing problem. One possibility
is to publish the content anonymously and hide the identity of the publisher using
one of the solutions already described in order to protect the user identity privacy.
Another possibility would be to try to implement the proxy solution, described in
Sect. 6.4.6, for content distribution. One final option would be to use cryptography
to protect the content of the resource at rest. Nevertheless, the last presented
solution would only hide the contents of the publishing user from non authorized
users. Furthermore, if one of the authorized users disclosed the content, it would be
possible to prove that the user published it if the encryption for the disclosed
content matched the published one.

6.5.5 Contents

In order to protect the privacy of content, both solutions for the protection of
content in transit and at rest should be used. For the case of protection at rest,
cryptography is the recommend solution, because it not only prevents an unau-
thorized user from seeing content, but it also prevents a malicious container from
disclosing users private information stored in the P2P network.

6.5.6 Application Misconfiguration and Misuse

So far, we have seen how to protect the privacy of different users’ attributes: its
identity, location, accessed information, published resources, and private stored
information. However, all these mechanisms are useless if the application used by
the user to access the P2P network is not well configured and is sharing its personal
private information. It is, therefore, crucial to do a proper and secure configuration
of the application used before accessing a P2P network.

6.5.7 Spyware and Malware

Similarly to application misconfiguration and misuse, having spyware or malware
that leaks the user’s personal information can render all the privacy protecting
mechanisms described before useless. So, it is very important to check that the user
device is clean of spyware and malware using an application hardening solution
before accessing a P2P network in order to protect the users privacy.

134 D.S. Touceda et al.



6.6 Conclusions

As we have seen, there are several privacy issues that must be taken into account
when using P2P applications: privacy of user’s identity, location, access, and
publishing; privacy of contents; application misconfiguration and misuse; and
spyware and malware. Also, several solutions exist that can be used to try to
address these issues: anonymous systems, routing modifications, protection of
contents in transit and at rest, private and split credentials, hidden services, and
application configuration and hardening.

However, the choice of the one to be used in each case is a complicated task.
Some solutions may be effective to protect the privacy of some attributes but inef-
fective in protecting others. Furthermore, implementing some of them (e.g., using an
anonymous system) while neglecting others (e.g., application misconfiguration
sharing documents with personal identifiable information) may render useless the
solutions in place. It is, therefore, of great importance to have a holistic view of the
existing issues and solutions in order to protect privacy in P2P networks.

References

1. Bryan DA, Lowekamp BB, Jennings C (2005) SOSIMPLE: A Serverless, Standards-based,
P2P SIP Communication System. In: Proceedings of the First international workshop on
advanced architectures and algorithms for internet delivery and applications, Washington, DC,
USA. IEEE Computer Society, pp 42–49

2. The seti@home project website (1997) http://setiathome.berkeley.edu
3. The genome@home Project Website (2000) http://genomeathome.stanford.edu
4. HueBsch R, Hellerstein J, Lanham N, Thau Loo B (2003) Querying the internet with pier. In:

Proceedings of the 29th VLDB conference
5. Halevy A, Ives Z, Mork P, Tatarinov I (2003) Piazza: data management infrastructure for

semantic web applications. In: Proceedings of the 12th international conference on world wide
web, pp 556–567

6. The Napster Website (2003) http://free.napster.com/
7. Gnutella A Protocol for a Revolution (2000) http://rfc-gnutella.sourceforge.net/index.html
8. Cohen B (2003) Incentives build robustness in BitTorrent. In: Proceedings of the 1st workshop

on economics of peer-to-peer systems, P2PECON’03
9. Jennings C, Lowekamp B, Rescorla E, Baset S, Schulzrinne H (2011) Internet-draft: resource

location and discovery (RELOAD) base protocol. draft-ietf-p2psip-base-13 (work in progress)
10. Skype Official Website (2003) http://www.skype.com, 2003
11. Jawad M, Serrano-Alvarado P, Valduriez P (2013) Supporting data privacy in p2p systems. In:

Chbeir R, Al Bouna B (eds) Security and privacy preserving in social networks. Lecture notes
in social networks, pp 195–244. Springer Vienna

12. Le Blond S, Zhang C, Legout A, Ross K, Dabbous W (2011) I know where you are and what
you are sharing: Exploiting p2p communications to invade users’ privacy. In: Proceedings of
the 2011 ACM SIGCOMM conference on internet measurement conference, IMC ‘11, pp 45–
60, New York, NY, USA. ACM

13. Kubiatowicz J, Bindel D, Chen Y, Czerwinski S, Eaton P, Geels D, Gummadi R, Rhea S,
Weatherspoon H, Weimer W, Wells C, Zhao B (2000) OceanStore: an architecture for
global-scale persistent storage. ACM SIGPLAN Notices 35(11):190–201

6 Privacy in Peer-to-Peer Networks 135

http://setiathome.berkeley.edu
http://genomeathome.stanford.edu
http://free.napster.com/
http://rfc-gnutella.sourceforge.net/index.html
http://www.skype.com


14. Druschel P, Rowstron A (2001) PAST: a large-scale, persistent peer-to-peer storage utility. In:
Proceedings of the Eighth workshop on hot topics in operating systems, pp 75–80,
Washington, DC, USA, 2001. IEEE Computer Society

15. Suvanto M (2005) Privacy in peer-to-peer networks. In: Helsinki University of Technology
T-110.551 Seminar on Internetworking

16. Camarillo G (2009) Peer-to-peer (p2p) architecture: definition, taxonomies, examples, and
applicability. Request for comments

17. Androutsellis-Theotokis S, Spinellis D (2004) A survey of peer-to-peer content distribution
technologies. ACM Comput Surv (CSUR) 36(4):335–371

18. Schollmeier R (2001) Definition of peer-to-peer networking for the classification of
peer-to-peer architectures and applications. In: Proceedings of the first international
conference on peer-to-peer computing, pp 101–102

19. Ngo HG (2013) From Inter-connecting P2P overlays to co-operating P2P systems. PhD thesis,
University of Nice—Sophia Antipolis

20. Bashir A (2012) Classifying p2p activities in netflow records: a case study (bittorrnet &
skype). Master’s thesis, Carleton University, Ottawa, Ontario

21. Chervenak A, Bharathi S (2008) Peer-to-peer approaches to grid resource discovery. In:
Proceedings of the CoreGRID workshop on programming models grid and P2P system
architecture grid systems, tools and environments, pp 59–76

22. Ripeanu M, Foster I, Iamnitchi A (2002) Mapping the gnutella network: properties of
large-scale peer-to-peer systems and implications for system design. IEEE Internet Comput J 6

23. Markatos EP (2002) Tracing a large-scale peer to peer system: an hour in the life of gnutella.
In: The second international symposium on cluster computing and the grid, pp 65–70

24. Lua EK, Crowcroft J, Pias M (2005) A survey and comparison of peer-to-peer overlay
network schemes. IEEE Commun Surv Tutor 7(2):72–93

25. Clarke I, Miller SG, Hong TW, Sandberg O, Wiley B (2002) Protecting free expression online
with freenet. IEEE Internet Comput 6(1):40–49

26. Ripeanu M (2001) Peer-to-peer architecture case study: Gnutella network. In: Proceedings of
the first international conference on peer-to-peer computing (P2P 2001), pp 99–100

27. Klingberg T, Manfredi R (2002) Gnutella 0.6. http://rfc-gnutella.sourceforge.net/src/rfc-0_6-
draft.html

28. Liang J, Kumar R, Ross KW (2006) The fasttrack overlay: a measurement study. Comput
Netw 50(6):842–858

29. Liang J, Kumar R, Ross KW (2004) Understanding kazaa. http://infosec.pku.edu.cn/p2p/
slides/2004

30. Bhagwan R, Savage S, Voelker GM (2003) Understanding availability. In: Peer-to-peer
systems II. Springer, Berlin, pp 256–267

31. Heckmann O, Bock A (2002) The edonkey 2000 protocol, kom technical report 08/2002, ver.
0.8, dec. 2002. Technical report, Darmstadt University of Technology

32. Pouwelse J, Garbacki P, Epema D, Sips H (2005) The bittorrent p2p file-sharing system:
measurements and analysis. In: 4th international workshop on peer-to-peer systems (IPTPS
2005), pp 205–216

33. Trifa Zied, Khemakhem Maher (2012) Taxonomy of structured p2p overlay networks security
attacks. World Acad Sci Eng Technol 6(4):469–475

34. Ratnasamy S, Francis P, Handley M, Karp R, Shenker S (2001) A scalable
content-addressable network. In: Proceedings of the 2001 conference on applications,
technologies, architectures, and protocols for computer communications (SIGCOMM 2001),
pp 161–172

35. Zhao BY, Kubiatowicz J, Joseph AD (2001) Tapestry: an infrastructure for fault-resilient
wide-area location and routing. Technical Report UCB/CSD-01-1141, Computer Science
Division (EECS), University of California, Berkeley

36. Stoica I, Morris R, Karger D, Kaashoek MF, Balakrishnan H (2001) Chord: a scalable
peer-to-peer lookup protocol for internet applications. In: Proceedings of the 2001 conference

136 D.S. Touceda et al.

http://rfc-gnutella.sourceforge.net/src/rfc-0_6-draft.html
http://rfc-gnutella.sourceforge.net/src/rfc-0_6-draft.html
http://infosec.pku.edu.cn/p2p/slides/2004
http://infosec.pku.edu.cn/p2p/slides/2004


on applications, technologies, architectures, and protocols for computer communications
(SIGCOMM 2001), pp 149–160

37. Rowstron A, Druschel P (2001) Pastry: scalable, distributed object location and routing for
large-scale peer-to-peer systems. In: Proceedings of the IFIP/ACM international conference on
distributed systems platforms, Heidelberg (Middleware 2001), pp 329–350

38. Malkhi D, Naor M, Ratajczak D (2002) Viceroy: A scalable and dynamic emulation of the
butterfly. In: Proceedings of the twenty-first annual symposium on principles of distributed
computing (PODC 2002), pp 183–192

39. Maymounkov P, Mazières D (2002) Kademlia: A peer-to-peer information system based on
the xor metric. In: First international workshop peer-to-peer systems (IPTPS 2002), pp 53–65

40. Sanchez Artigas M, Garcia Lopez P, Pujol Ahullo J, Gomez Skarmeta AF (2005) Cyclone: a
novel design schema for hierarchical dhts. In: Proceedings of the Fifth IEEE international
conference on peer-to-peer computing (P2P 2005), pp 49–56

41. Xu Z, Min R, Hu Y (2003) Hieras: a dht based hierarchical p2p routing algorithm. In:
Proceedings. 2003 international conference on parallel processing, pp 187–194

42. Ganesan P, Gummadi K, Garcia-Molina H (2004) Canon in g major: designing dhts with
hierarchical structure. In: IEEE international conference on distributed computing systems
(ICDCS 2004), pp 263–272

43. Garces-Erice L, Ross KW, Biersack E, Felber PA, Urvoy-Keller G (2003) Toplus: topology
centric lookup service. In: Fifth international workshop on networked group communications
(NGC 2003), pp 58–69

44. Saroiu S, Gummadi KP, Gribble SD (2003) Measuring and analyzing the characteristics of
napster and gnutella hosts. J Multim Syst 9(2):170–184

45. Deaconescu R (2011) Protocol measurements and improvements in peer-to-peer systems. PhD
thesis, University POLITEHNICA of Bucharest

46. Babaoglu Ö (2012) Introduction to peer-to-peer systems. Complex Syst Universitã 1/2 di
Bologna 12:7

47. Anderson DP, Cobb J, Korpela E, Lebofsky M, Werthimer D (2002) Seti@home: an
experiment in public-resource computing. Commun ACM 45(11):56–61

48. Larson SM, Snow CD, Shirts M, Pande VS (2002) Folding@home and genome@home: using
distributed computing to tackle previously intractable problems in computational biology

49. van Renesse R, Birman K, Bozdog A, Dumitriu D, Singh M, Vogels W (2003)
Heterogeneity-aware peer-to-peer multicast. In: Proceedings of the 17th international
symposium on distributed computing (DISC2003)

50. Keromytis AD, Misra V, Rubenstein D (2002) Sos: secure overlay services. In: Proceedings of
the 2002 conference on Applications, technologies, architectures, and protocols for computer
communications (SIGCOMM 2002), pp 61–72

51. Wu C, Li B (2008) rstream: Resilient and optimal peer-to-peer streaming with rateless codes.
IEEE Trans Parallel Distrib Syst 19(1):77–92

52. Castro M, Druschel P, Kermarrec A-M, Nandi A, Rowstron A, Singh A (2003) Splitstream:
high-bandwidth multicast in cooperative environments. In: Proceedings of the nineteenth
ACM symposium on operating systems principles (SOSP 2003), pp 298–313

53. Ying L, Basu A (2005) cvod: internet peer-to-peer video-on-demand with storage caching on
peers. In: 11th international conference on distributed multimedia systems (DMS 2005),
pp 218–223

54. Liao X, Jin H, Liu Y, Ni LM, Deng D (2006) Anysee: peer-to-peer live streaming. In: 25th
IEEE international conference on computer communications (INFOCOM 2006)

55. Chang H, Jamin S, Wang W (2009) Live streaming performance of the zattoo network. In:
Proceedings of the 9th ACM SIGCOMM conference on internet measurement conference
(IMC 2009), pp 417–429

56. Hei X, Liang C, Liang J, Liu Y, Ross KW (2006) Insights into pplive: a measurement study of
a large-scale p2p iptv system. In: Workshop on Internet Protocol TV (IPTV) services over
World Wide Web in conjunction with WWW2006

6 Privacy in Peer-to-Peer Networks 137



57. Carlsson N, Eager DL, Mahanti A (2009) Peer-assisted on-demand video streaming with
selfish peers. In: Proceedings of the 8th international IFIP-TC 6 networking conference
(NETWORKING 2009), pp 586–599

58. Solove DJ (2006) A taxonomy of privacy. Technical report, 154 U Pa L Rev 477
59. Fessi A, Evans N, Niedermayer H, Holz R (2010) Pr2-P2PSIP: privacy preserving P2P

signaling for VoIP and IM. In: Principles, systems and applications of IP telecommunications,
IPTComm ‘10, New York, NY, USA. ACM, pp 134–145

60. Touceda D, Sierra JM, Izquierdo A, Schulzrinne H (2012) Survey of attacks and defenses on
P2PSIP communications. IEEE Commun Surv Tutor 14(3):750–783

61. Good N, Krekelberg A (2003) Usability and privacy: a study of kazaa p2p file-sharing. In:
Cockton G, Korhonen P (eds) CHI. pp 137–144. ACM

62. Camenisch Jan (2012) Information privacy?! Comput Netw 56(18):3834–3848
63. Chaum D (1981) Communications of the ACM. In: Rivest R, Chaum DL (eds) Untraceable

electronic mail, return addresses, and digital pseudonyms. Commun ACM 24:84–90
64. Sandhu R, Zhang X (2005) Peer-to-peer access control architecture using trusted computing

technology. In: Proceedings of the tenth ACM symposium on access control models and
technologies, SACMAT ‘05, pp 147–158, New York, NY, USA. ACM

65. Freedman MJ, Morris R (2002) Tarzan: a peer-to-peer anonymizing network layer. In:
Proceedings of the 9th ACM conference on computer and communications security, CCS ‘02,
pp 193–206, New York, NY, USA. ACM

66. Rennhard M, Plattner B (2002) Introducing MorphMix: peer-to-peer based anonymous
internet usage with collusion detection. In: De Capitani di Vimercati S, Samarati P
(eds) Proceeding of the ACM workshop on privacy in the electronic society (WPES-02), New
York. ACM Press, pp 91–102

67. Choffnes DR, Duch J, Malmgren D, Guierma R, Bustamante FE, Amaral L (2009)
Swarmscreen: privacy through plausible deniability in P2P systems. Technical report,
Northwestern EECS Technical Report

68. O’Donnell CW, Vaikuntanathan V (2004) Information leak in the chord lookup protocol. In:
Proceedings of the fourth international conference on peer-to-peer computing, P2P ‘04,
Washington, DC, USA. IEEE Computer Society, pp 28–35

69. Borisov N, Waddle J (2005) Anonymity in structured peer-to-peer networks. Technical Report
UCB/CSD-05-1390, EECS Department, University of California, Berkeley

70. Mislove A, Oberoi G, Post A, Reis C, Druschel P, Wallach DS (2004) AP3: cooperative,
decentralized anonymous communication. In: Proceedings of the 11th workshop on
ACM SIGOPS European workshop, EW 11, New York, NY, USA. ACM

71. Clarke I, Sandberg O, Wiley B, Hong TW (2001) Freenet: a distributed anonymous
information storage and retrieval system. In: international workshop on designing privacy
enhancing technologies: design issues in anonymity and unobservability, New York, NY,
USA. Springer, New York, Inc, pp 46–66

72. Dierks T, Rescorla E (2008) The transport layer security (TLS) protocol version 1.2. RFC
5246 (Proposed Standard)

73. Rescorla E, Modadugu N (2006) Datagram transport layer security. RFC 4347 (Proposed
Standard)

74. Kent S, Seo K (2005) Security architecture for the internet protocol. RFC 4301 (Proposed
Standard)

75. Adya A, Bolosky WJ, Castro M, Cermak G, Chaiken R, Douceur JR, Howell J, Lorch JR,
Theimer M, Wattenhofer RP (2002) FARSITE: federated, available, and reliable storage for an
incompletely trusted environment. In: Proceedings of the 5th symposium on operating systems
design and implementation, OSDI ‘02, New York, NY, USA. ACM, pp 1–14

76. Information Technology Laboratory, NIST, Gaithersburg, USA. In: FIPS 197. Advanced
Encryption Standard (AES)

77. Bryan DA, Lowekamp B (2006) Innovations in peer-to-peer communications. In: Proceedings
of the 2006 Virginia Space Grant consortium research conference

138 D.S. Touceda et al.



78. Cao F, Bryan DA, Lowekamp BB (2006) Providing secure services in peer-to-peer
communications networks with central security servers. In: AICT-ICIW ‘06: Proceedings of
the advanced international conference on telecommunications and int’l conference on internet
and web applications and services, p 105, Washington, DC, USA, 2006. IEEE Computer
Society

79. Qureshi A, Rifa-Pous H, Megias D (2013) A survey on security, privacy and anonymity in
legal distribution of copyrighted multimedia content over peer- to-peer networks. Technical
report, IN3-Universitat Oberta de Catalunya

80. Brands SA (2000) Rethinking public key infrastructures and digital certificates: building in
privacy. MIT Press

81. Touceda DS, Camara JMS, Villalba LJG, Marquez JT (2011) Advantages of identity
certificate segregation in P2PSIP systems. IET Commun 5(6):879–889

82. Lu Y, Wang W, Bhargava B, Xu D (2006) Trust-based privacy preservation for peer-to-peer
data sharing. IEEE Trans Syst Man Cybern Part A: Syst Hum 36(3):498–502

83. Dingledine R, Mathewson N, Syverson P (2004) TOR: the second-generation onion router. In:
Proceedings of the 13th conference on USENIX security symposium, vol 13. SSYM’04,
Berkeley, CA, USA. USENIX Association, pp 21–21

84. Wallach DS (2003) A survey of peer-to-peer security issues. In: Proceedings of the 2003
Mext-NSF-JSPS international conference on Software security: theories and systems, ISSS’03.
Springer, Heidelberg, Germany, pages 42–57

85. Gheorghe G, Lo Cigno R, Montresor A (2010) Security and privacy issues in p2p streaming
systems: a survey. In: Peer-to-peer network and applications

6 Privacy in Peer-to-Peer Networks 139


	6 Privacy in Peer-to-Peer Networks
	6.1 Introduction
	6.2 Background
	6.2.1 P2P Definition
	6.2.2 P2P Systems
	6.2.3 P2P Overlays
	6.2.4 Unstructured P2P Networks
	6.2.5 Structured P2P Networks
	6.2.6 Hybrid P2P Networks
	6.2.7 Hierarchical Overlays
	6.2.8 P2P Applications

	6.3 Privacy Issues in P2P Networks
	6.3.1 Privacy of User Identity
	6.3.2 Privacy of User Location
	6.3.3 Privacy of the User Access
	6.3.4 Privacy of User Publishing
	6.3.5 Privacy of Contents
	6.3.6 Application Misconfiguration and Misuse
	6.3.7 Spyware and Malware

	6.4 Solutions for Privacy Issues in P2P Networks
	6.4.1 Anonymous Systems
	6.4.2 Routing Modifications
	6.4.2.1 Routing Variations
	6.4.2.2 Headers Obfuscation

	6.4.3 Protection of Contents in Transit
	6.4.4 Protection of Contents at Rest
	6.4.4.1 Local Control
	6.4.4.2 Cryptography
	6.4.4.3 Dedicated Security Servers

	6.4.5 Private and Split Credentials
	6.4.6 Hidden Services
	6.4.7 Application Configuration
	6.4.8 Application Hardening

	6.5 Recommendations, Challenges, and Opportunities
	6.5.1 User Identity
	6.5.2 User Location
	6.5.3 User Access
	6.5.4 User Publishing
	6.5.5 Contents
	6.5.6 Application Misconfiguration and Misuse
	6.5.7 Spyware and Malware

	6.6 Conclusions
	References


