
Chapter 10
Effects of Domain Shapes and Mesh
Discretization Error on the Morphological
Evolution of Nonaqueous-Phase-Liquid
Dissolution Fronts in Fluid-Saturated
Porous Media

In the field of contaminant hydrology, both land contamination and land reme-
diation problems are often encountered. Land contamination is known as the
distribution of chemical and pollutants on land sites, while land remediation is
known as the cleanup of chemical and pollutants on land sites that causes health
concerns to the humans and the environment. When nonaqueous phase liquids
(NAPLs), such as trichloroethylene, ethylene dibromide, benzene, toluene and so
forth (Miller et al. 1990), are released to groundwater, they can reside in the form
of disconnected ganglia or blobs as residual saturations within the pores of porous
media. This process belongs to the land contamination problem. Some NAPLs
(e.g. trichloroethylene and ethylene dibromide) are heavier than water, but others
(e.g. benzene and toluene) are lighter than water. Although their solubilities in
groundwater are very low, the effect of such NAPLs on the quality of groundwater
resources is severe because of their relatively high toxicity. Thus, it is necessary to
remove such NAPLs from the contaminated land site. This process belongs to the
land remediation problem, which is the main focus of this chapter.

To develop effective and efficient methods for removing the residual NAPLs
from contaminated land sites, the detailed transport mechanism of NAPLs in fluid-
saturated porous media has been studied, both experimentally and analytically,
during the past two decades (Miller et al. 1990, 1998; Geller and Hunt 1993;
Powers et al. 1994; Imhoff et al. 1994, 1996, 2002, 2003a; Soerens et al. 1998;
Willson et al. 1999; Seyedabbasi et al. 2008). Notable achievements from existing
laboratory experiments are as follows: (1) mass transfer rates between a NAPL and
an aqueous phase liquid can be determined in a quantitative manner; (2) the
fingering phenomena of NAPL dissolution fronts have been observed at the lab-
oratory (i.e. centimeter) scale; and (3) the linear stability theory has been
employed to derive the critical condition that can be used to assess the instability
of NAPL dissolution fronts in fluid-saturated porous media. For example, the Zhao
number (Zhao et al. 2010c), which is a comprehensive dimensionless number, was
proposed to represent the three major controlling mechanisms simultaneously
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taking place in a NAPL dissolution system. Based on the linear stability theory, a
NAPL dissolution system may physically have three different kinds of states
(Imhoff and Miller 1996; Zhao et al. 2008c, 2010b). In the supercritical state
NAPL dissolution fingering occurs, but it does not occur in the subcritical state.
The neutral condition (or state) is just the interface between the two. Corre-
spondingly, three kinds of the Zhao numbers, namely the subcritical Zhao number,
the critical Zhao number and the supercritical Zhao number, can be used to rep-
resent these three different kinds of states in the NAPL dissolution system. As a
direct result of these achievements, both mathematical and computational models
(Imhoff and Miller 1996; Miller et al. 1998; Zhao et al. 2010b) were developed to
simulate the morphological evolution of NAPL dissolution fronts in fluid-saturated
porous media. Nevertheless, the existing computational models are mainly limited
to either a square domain or a rectangular domain, so that it is necessary to
investigate the effects of different domain shapes on the morphological evolution
of NAPL dissolution fronts in fluid-saturated porous media.

It needs to be pointed out that NAPL dissolution fingering requires regions of
continuous NAPL saturation distribution (in the form of disconnected ganglia or
blobs as residual within the pores of the porous medium) and has been observed in
experiments with length scales of 7 cm and larger in the mean flow direction
(Imhoff et al. 2003b). This requirement is unlikely to be satisfied for most two-
dimensional experimental systems considered in the laboratory where a small
amount of NAPL is spilled (Chen and Jawitz 2008; DiFilippo et al. 2010).
However, as demonstrated previously (Parker and Park 2004; Christ et al. 2006,
2009; Gerhard et al. 2007), for large NAPL spill sites, continuous regions of
residual NAPL occurred so that the above-mentioned requirement can be met. For
example, in the work of Parker and Park (2004) a NAPL spillage event resulted in
vertical fingers that on average were 30 cm in diameter. These fingers primarily
contained residual NAPL. On the other hand, since most grid blocks used in
current field-scale simulations were on the order of 30–50 cm (in the x and
y dimensions), by necessity NAPL-contaminated grid blocks only represent con-
tinuous regions of NAPL (often residual) that exceed the 7 cm scale. As a result,
these simulations might ignore NAPL dissolution fingering. It is a sub grid-block
process that is not accounted for. The local (grid-block scale) rate of NAPL
dissolution may not be important for many field problems, since the bypassing of
water around NAPL-contaminated zones (Parker and Park 2004) is the slowest
process limiting NAPL dissolution into surrounding groundwater. However, recent
simulations indicate that for some systems local NAPL dissolution rates are
important in heterogeneous media (Maji and Sudicky 2008). For such systems,
NAPL dissolution fingering may be important. Thus, an understanding of NAPL
dissolution fingering may be important for developing innovative remediation
strategies and technologies to some NAPL contaminated groundwater systems.

In addition to NAPL dissolution fingering, preferential flow within NAPL
contaminated zones can be also caused by either medium heterogeneity (Maji and
Sudicky 2008) or variations in NAPL saturation, which in nature are not uniform
in space (Grant and Gerhard 2007; Zhang et al. 2007). Medium heterogeneity
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within NAPL-contaminated zones will result in a variation in aqueous-phase
permeability. Some of this variation is associated with the variation in intrinsic
permeability caused by the medium heterogeneity alone, while some is associated
with the variation in NAPL saturation, which alters the relative permeability.
Nevertheless, the mechanism of the preferential flow caused by NAPL dissolution
fingering is different from that caused by medium heterogeneity. From the physical
point of view, the former is considered as an emerging phenomenon due to the
instability of a nonlinear system (Chadam et al. 1986, 1988; Ortoleva et al. 1987;
Renard et al. 1998; Chen and Liu 2002, 2004; Chen et al. 2009; Zhao et al. 2008a,
b, c, 2009, 2010a), while the latter is considered as the conventional phenomenon
of a nonlinear system (Steefel and Lasaga 1990, 1994; Yeh and Tripathi 1991;
Raffensperger and Garven 1995; Ormond and Ortoleva 2000; Alt-Epping and
Smith 2001; Maji and Sudicky 2008).

Since the domain of a NAPL dissolution system in the real world may have
many different shapes, it is difficult, if not impossible, to use a typical domain
shape to represent all computational domains of NAPL dissolution systems
encountered in the real world. However, for the purpose of investigating the effect
of a domain shape on the interesting features associated with NAPL dissolution
fingering, it is feasible to use a generic model of a specific shape (that is, to some
extent, an artificial system) in the computational simulation, as long as some
fundamental flow characteristics associated with irregular domains can be rea-
sonably reflected in the generic model. On the other hand, due to the versatility and
robustness of computational methods, any complicated domain shapes can be
realistically simulated if their details can be precisely given. Compared with
rectangular and square domains that are widely used in the previous studies
(Imhoff and Miller 1996; Miller et al. 1998; Zhao et al. 2010b), some important
flow characteristics associated with irregular domains are as follows (Zhang et al.
2007; Maji and Sudicky 2008). First, the pore-fluid flow in an irregular domain of
a subcritical Zhao number is multi-directional (i.e. two-dimensional for a two-
dimensional problem domain and three-dimensional for a three-dimensional
problem domain) rather than unidirectional, just as what was observed in a rect-
angular or square domain of a subcritical Zhao. Second, the Darcy velocities of
pore-fluid flow in an irregular domain of a subcritical Zhao number are not con-
stant, but they are constant in a rectangular or square domain of a subcritical Zhao
number. To select the domain shape of a generic model, a trapezoidal domain may
be the reasonable choice from the following three points of view: (1) the above-
mentioned flow characteristics such as the multi-directional flow and non-constant
Darcy velocities can be simulated in a trapezoidal domain of a subcritical Zhao
number; (2) due to the relatively simple shape, it is convenient to carry out a
parameter study and theoretical estimation of mesh discretization error in the
generic model of a trapezoidal domain; (3) the simulations are intended to
investigate NAPL dissolution fingering in hypothetical systems to better under-
stand the fingering process with converging and diverging flow. If complicated
systems are used to represent the real world more realistically, there would be
competing processes (e.g., NAPL dissolution fingering and flow bypass) that
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would make it more difficult to understand NAPL dissolution fingering, which is
the focus of this work. For these reasons, different trapezoidal computational
domains are considered, in this chapter, to investigate the effects of domain shapes
on the morphological evolution of NAPL dissolution fronts in two-dimensional
fluid-saturated porous media.

To facilitate mathematical treatments in the process of deriving analytical
solutions, it is commonly assumed that the pore-fluid flow within a two-dimen-
sional fluid-saturated porous medium, which may be considered as an approximate
representation of a horizontal cross-section (plane) in an aquifer, is parallel to the
inflow at the entrance of the analytical domain, so that the second-order dispersion
tensor can be considered as a function of the averaged linear velocity component in
the inflow direction. This assumption may be valid for either a square domain or a
rectangular domain where the inflow is parallel to two lateral boundaries of the
domain. However, when the computational domain of a NAPL dissolution problem
has a complicated shape, the pore-fluid flow in the computational domain is no
longer parallel to the inflow, so that two components of the averaged linear velocity
need to be considered in the second-order dispersion tensor. By using the general
second-order dispersion tensor of two velocity components, it is also possible to
validate the assumption that was used to derive analytical solutions for the NAPL
dissolution problem in the fluid-saturated porous medium of a rectangular domain.

10.1 Governing Equations of NAPL Dissolution Problems
in Two-Dimensional Fluid-Saturated Porous Media

From the previous studies (Imhoff and Miller 1996; Zhao et al. 2010c), a NAPL
dissolution problem can be treated as a mass transport problem. As a result, the
governing equations of the NAPL dissolution problem in a two-dimensional fluid-
saturated porous medium can be expressed as follows:

/
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¼ � K

qn
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where / is the porosity; Sn is the NAPL saturation (i.e. the fraction of the void
space occupied by the NAPL); qa and qn are the aqueous phase and nonaqueous
phase densities; K is the mass transfer rate coefficient to express the exchange of
the NAPL species from the nonaqueous phase to the aqueous phase; C is the solute
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concentration of the NAPL species in the bulk aqueous phase and is equal to the
ratio of the NAPL mass in the solution to the unit volume of the solution; Ceq is
the equilibrium concentration of the NAPL species in the aqueous phase; Dh is the
general dispersion tensor; k(Sn) is the saturation-dependent permeability of the
porous medium to aqueous phase flow; la is the dynamic viscosity of the aqueous
phase; and pa is the aqueous phase pressure.

Note that although many NAPLs at contaminated sites are mixtures of com-
pounds, only a single-species NAPL is considered in this chapter. This means that
the equations used here describe a special class of NAPL spills. As a result, Sn,
C and pa are three independent variables in these three equations. As demonstrated
previously (Imhoff and Miller 1996; Zhao et al. 2010c), Eq. (10.1) represents the
mass conservation of the nonaqueous phase, while Eq. (10.3) represents the mass
conservation of the aqueous phase. Since the nonaqueous phase is assumed to be
immobile, an advective term does not appear in Eq. (10.1). However, since the
aqueous phase is assumed to be mobile, an advective term must appear in
Eq. (10.3). In addition, Eq. (10.2) represents the mass conservation of the NAPL
species in the fluid-saturated porous medium.

Based on Darcy’s law, the averaged linear velocity vector of the aqueous phase
can be expressed as follows (Bear 1972):

va ¼
vax

vay

� �
¼ �kðSnÞ

/ð1� SnÞla
rpa; ð10:4Þ

where va is the averaged linear velocity vector of the aqueous phase; vax and vay

are the averaged linear velocity components in the x and y directions, respectively;
other quantities have the same meanings as defined previously.

The following expressions are used for the saturation-dependent permeability
(Imhoff and Miller 1996; Zhao et al. 2010c) and the dispersion tensor (Scheidegger
1961; Holzbecher 1998), respectively:
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where kf is the intrinsic permeability of the porous medium after the NAPL is
completely dissolved; Sai is the irreducible saturation of the aqueous phase; s is the
tortuosity of the porous medium; Dm is the molecular diffusivity of the NAPL
species in the aqueous phase; aT and aL are the transversal and longitudinal dis-
persivities of the NAPL species in the aqueous phase; and va is the amplitude of
the averaged linear velocity vector (va) of the aqueous phase as follows:
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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: ð10:7Þ

Note that the motivation of choosing a general form of the second-order dis-
persion tensor (expressed in Eq. (10.6)) is to consider the effect of two-dimen-
sional pore-fluid flow on the dispersion in a trapezoidal domain.

The previous experimental results (Imhoff and Miller 1996) indicate that the
mass transfer rate coefficient (K) can be expressed in the following form:

K ¼ b0Sb1
n ; ð10:8Þ

where b0 is a function of the porous medium, the NAPL, and the velocity, vis-
cosity and density of the aqueous phase fluid; b1 is a constant.

If the computational domain of a NAPL dissolution system has a trapezoidal
shape (as shown in Fig. 10.1), which may be considered either as the experimental
specimen used in a laboratory experiment or as the approximate representation of a
pie slice in a horizontal cross-section (plane) for radial flow in an aquifer, then the
boundary conditions of the problem can be expressed as follows:

C ¼ 0; Sn ¼ 0;
opa

ox
¼ p0axf 0 ðx ¼ 0Þ; ð10:9Þ

pa ¼ pa0 ðx ¼ LxÞ; ð10:10Þ

oC

on
¼ 0;

opa

on
¼ 0 at two lateral boundariesð Þ; ð10:11Þ

where Sn0 is the initial saturation of the NAPL; p0axf 0 is the pressure gradient of the
aqueous phase on the upstream boundary; pa0 is the pressure of the aqueous phase
on the downstream boundary; Lx is the length of the problem domain in the
x direction; and n is the normal vector of the lateral boundary. Since p0axf drives the
aqueous phase fluid flow continuously along the positive x direction, it has a
negative algebraic value (i.e. p0axf \0) for the problem under consideration.

Except for the upstream boundary, the initial conditions of the problem for the
rest of the computational domain are as follows:

C ¼ Ceq; Sn ¼ Sn0 ð0\x� LxÞ: ð10:12Þ

Since the use of dimensionless governing equations has some advantages in
dealing with problems of multi-scales and multi-processes (Zhao et al. 2009), it is
useful to transform the above-mentioned governing equations of the problem into
the following dimensionless form:
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Note that the following dimensionless quantities are used for deriving the above
dimensionless governing equations of the problem:
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Fig. 10.1 Geometry and boundary conditions for the NAPL dissolution problem on the basis of
dimensional quantities
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where wðSnf Þ is the value of wðSnÞ at Sn = 0. Physically, the dimensionless time
(i.e. �t) represents some scaling between the real time and intrinsic time (i.e. t*) of
the NAPL dissolution system (Zhao et al. 2010c).

It needs to be pointed out that a small dimensionless quantity (i.e. e) is defined
in Eq. (10.18), for representing the dissolution ratio of the NAPL equilibrium
concentration to the mass density of the NAPL. Since this small dimensionless
quantity, known as the NAPL dissolution ratio, can be used not only to mathe-
matically determine the instability conditions of NAPL dissolution fronts in
supercritical dissolution systems, but also to computationally simplify the
numerical algorithm in the related computational simulation (Zhao et al. 2010a), it
is kept as a parameter for the normalization of time.

Although the NAPL dissolution ratio (i.e. e) is equal to Ce/qn and qn is a
constant, it is the NAPL dissolution ratio (i.e. e), rather than the equilibrium
concentration (i.e. Ce) alone, that can have a significant effect on both the prop-
agation velocity and the morphological shape of a NAPL dissolution front. To
explain this point, it is necessary to briefly review the propagation mechanism of a
NAPL dissolution front in the fluid-saturated porous medium as follows. In a
NAPL dissolution system, the residual NAPL is resided in the form of discon-
nected ganglia or blobs within the pores of the porous medium. The amount of the
residual NAPL per unit pore volume of the porous medium is equal to the product
of the residual saturation (i.e. Sn) and the density of the residual NAPL. To remove
the residual NAPL from the porous medium, the fluid (e.g. water) is injected, with
a given velocity, into the region where the residual NAPL resides. Since the
equilibrium concentration (i.e. Ce) represents the maximum limit that the residual
NAPL can be dissolved in the fluid, the residual NAPL amount carried by the
flowing fluid when it passes the NAPL dissolution front is therefore limited. After
the previous flowing fluid passes the NAPL dissolution front, the fresh flowing
fluid reaches the NAPL dissolution front so that some of the undissolved residual
NAPL at the NAPL dissolution front can be dissolved into the fresh flowing fluid
and carried away from the NAPL dissolution front by the fresh flowing fluid. Such
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processes continue until all the residual NAPL at the NAPL dissolution front is
completely dissolved and carried away by the flowing fluid. At this stage, the
NAPL dissolution front will propagate forwards. This means that in a NAPL
dissolution system, there are two velocities (or speeds): one is the flowing fluid
velocity, another is the propagation velocity of the NAPL dissolution front.
Generally, the propagation velocity of a NAPL dissolution front is slower than that
of the flowing fluid. According to the above analysis, it is recognized that the
propagation velocity of a NAPL dissolution front depends directly on the NAPL
dissolution ratio (i.e. e), which can be used to determine how much flowing fluid
should pass the NAPL dissolution front to enable it to propagate, rather than the
equilibrium concentration (i.e. Ce) alone.

The boundary conditions can be also expressed in the following dimensionless
form:

�C ¼ 0; Sn ¼ 0;
o�pa

o�x
¼ �p0axf 0 ð�x ¼ 0Þ; ð10:21Þ

�pa ¼ �pa0 ð�x ¼ �LxÞ; ð10:22Þ

o�C

o�n
¼ 0;

o�pa

o�n
¼ 0 at two lateral boundariesð Þ; ð10:23Þ

where �p0axf 0 is the dimensionless pressure gradient of the aqueous phase on the
upstream boundary; �pa0 is the dimensionless pressure of the aqueous phase on the
downstream boundary.

Similarly, the initial conditions of the problem can be rewritten in a dimen-
sionless form as follows:

�C ¼ 1; Sn ¼ Sn0 ð0\�x� �LxÞ: ð10:24Þ

Note that Eq. (10.24) assumes a uniform distribution field of residual NAPL
saturation, which may be achieved either in the experimental specimen (of trap-
ezoidal shape) on the laboratory scale or in large NAPL spill sites where the
migration of the spilled NAPL has ceased in the system (Imhoff et al. 2003b;
Gerhard et al. 2007).

To solve the dimensionless governing equations of a NAPL dissolution problem
in a two-dimensional fluid-saturated porous medium, a numerical procedure
consisting of a combination of the finite difference and finite element methods
(Zienkiewicz 1977; Zhao et al. 2009) has been proposed in a previous study (Zhao
et al. 2010a). In the proposed numerical procedure, the finite difference method is
used to discretize time, while the finite element method is used to discretize space.
To ensure the correctness and accuracy of the resulting numerical simulations, the
proposed numerical procedure has been verified by some benchmark problems for
which analytical solutions are available for comparison. Since the dimensionless
governing equations of a NAPL dissolution system are highly nonlinear, the
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segregated algorithm, in which Eqs. (10.13)–(10.15) are solved separately and
iteratively in a sequential manner, was used to derive the formulation of the pro-
posed numerical procedure (Zhao et al. 2011). For the sake of completeness of this
chapter, only the final discretized equations of the NAPL dissolution system are
given below. If readers are interested in the detailed derivation processes of these
equations, please refer to Chap. 9 or a previous publication (Zhao et al. 2011).

By following the numerical procedure used in Chap. 9 or a previous study (Zhao
et al. 2011), the dimensionless governing equations (i.e. Eqs. (10.13)–(10.15)) of a
NAPL dissolution system under the condition of e � 1 can be expressed as follows:

1
D�t
ðSnÞ1�b1

�t þ b1ð1� �C�tþD�tÞ
� �

ðDSnÞ�tþD�t ¼ �ðSnÞ�tð1� �C�tþD�tÞ; ð10:25Þ

e
D�t
½1� ðSnÞ�tþD�t� þ ðSnÞb1

�tþD�t

n o
�C�tþD�t �r � ½ð1� ðSnÞ�tþD�tÞð�DhÞ�tþD�t� � r�C�tþD�t

�rð�paÞ�tþD�t � ½�wððSnÞ�tþD�tÞr�C�tþD�t� ¼
e
D�t
½1� ðSnÞ�tþD�t��C�t þ ðSnÞb1

�tþD�t;

ð10:26Þ

r � �wððSnÞ�tþD�tÞrð�paÞ�tþD�t

� �
¼ e 1� 1
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where ðSnÞ�t and ðSnÞ�tþD�t are the saturations of the NAPL at the previous and
current time-steps; ðDSnÞ�tþD�t is the saturation increment of the NAPL at the current
time-step; �C�t and �C�tþD�t are the dimensionless concentrations of the NAPL at the
previous and current time-steps respectively; ð�paÞ�tþD�t is the dimensionless pressure
of the aqueous phase at the current time-step; D�t is the dimensionless time
increment at the current time-step.

It should be pointed out that the main advantages in using dimensionless
variables and governing equations are as follows (Zhao et al. 2008c): (1) solutions
for dimensionless variables describe the behaviour of a family of problems rather
than that of a particular problem. This makes the solutions more generally
applicable. (2) Dimensionless variables can be used to measure the relative
importance of various terms in governing equations, so that the dominant physical
phenomenon can be identified for the problem. This provides a clear focus for the
effective and efficient modelling of the problem. (3) Dimensionless equations can
result in a significant reduction in the large differences between orders of mag-
nitude for some terms in the corresponding dimensional equations, just like the
partial differential equations that are used to describe the NAPL dissolution
instability problem in this chapter. This generally makes the numerical solution
more accurate and stable. For these reasons, dimensionless variables and gov-
erning equations are used in the following computational simulations. Neverthe-
less, the obtained dimensionless solutions can be easily transferred, if necessary,
into dimensional solutions, as demonstrated in a previous study (Zhao et al.
2008c). As a result, the parametric study of a NAPL dissolution system can be
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directly carried out through the related dimensionless solutions. For instance, from
the Zhao number (Zhao et al. 2010c), we can immediately know that an increase in
the Darcy velocity of the dissolved region (i.e. Vaxf) will cause an increase in the
Zhao number of the NAPL dissolution system, so that the NAPL dissolution
system becomes more unstable. On the other hand, an increase in the NAPL
dissolution rate (i.e. b0) will cause a decrease in the Zhao number of the NAPL
dissolution system, so that the NAPL dissolution system becomes more stable.

10.2 Effects of Domain Shapes on the Morphological
Evolution of NAPL Dissolution Fronts
in Supercritical Systems

As mentioned previously, trapezoidal domains can be used to appropriately rep-
resent some fundamental flow characteristics that occur in irregular domains. For
this reason, different trapezoidal computational domains are considered to inves-
tigate the effects of domain shapes on the morphological evolution of NAPL
dissolution fronts in two-dimensional fluid-saturated porous media of supercritical
Zhao numbers (Zhao et al. 2010c). Figure 10.1 shows the geometrical and
boundary conditions for the NAPL dissolution problem of a typical trapezoidal
domain, which is geometrically symmetrical to the x axis. Since the geometrical
shape of such a trapezoidal computational domain can be represented by the
divergent angle (i.e. h) between a horizontal line and a lateral boundary, this angle
is defined as a geometrical parameter in the corresponding computations. Note that
if h is equal to zero, then the trapezoidal shape degenerates to a rectangular one.

Based on the previous experimental measurement results that were calibrated
by several laboratory tests (Imhoff and Miller 1996; Imhoff et al. 1996; Miller
et al. 1998), the following parameters are selectively used in the corresponding
computational models: the initial saturation (Sn0) of the NAPL (i.e. trichloroeth-
ylene (TCE)) is 0.2; the irreducible saturation (Sai) of the aqueous phase fluid is
0.15; the dimensionless longitudinal and transverse dispersivities (�aL and �aT ) are
0.2 and 0.02, respectively; the ratio (e) of the equilibrium concentration of the
NAPL species in the aqueous phase fluid to the density of the NAPL itself is 0.001;
the density ratio (�qa) of the aqueous phase fluid to the NAPL is 1.0/1.46; the value
of b1 is 0.87. Since the dimensionless governing equations (i.e. Eqs. (10.13)–
(10.15)) are used in the numerical simulation, we do not need to use specific values
of the quantities such as b0, medium porosity and tortuosity, molecular diffusivity
of the NAPL and the Darcy flux at the inlet in this investigation. These quantities
are represented by a comprehensive dimensionless number, known as the Zhao
number (Zhao et al. 2012), in the corresponding numerical simulation.

To simulate the propagation of NAPL dissolution fronts appropriately, the finite
element size has been varied to ensure that the numerical dispersion does not affect
the numerical simulation results in a rectangular domain, for which analytical
solutions are available for comparison with the numerical solution. Through the
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mesh size sensitivity analysis, it is confirmed that as long as the finite element size
satisfies the mesh Peclet criterion (Daus et al. 1985), the numerical dispersion can
be minimized in the computational simulation. As a result, the whole computa-
tional domain is simulated by 120,000 four-node quadrilateral elements of 120,701
nodal points in total. For the purpose of investigating the instability of a NAPL
dissolution system, it is common practice to perturb the homogeneous distribution
field of the initial NAPL saturation (Sn0) with a small amount (Zhao et al. 2010c).
If the NAPL dissolution system is in a stable state, then such a small perturbation
does not affect the propagation behaviour of the NAPL dissolution front in the
homogeneous distribution field of the initial NAPL saturation (Sn0), so that an
initial planar NAPL dissolution-front remains the planar shape. However, If the
NAPL dissolution system is in an unstable state, then such a small perturbation can
significantly affect the propagation behaviour of the NAPL dissolution front in the
homogeneous distribution field of the initial NAPL saturation (Sn0), so that an
initial planar NAPL dissolution-front can evolve into different irregular shapes.
For this reason, the initial residual saturation field of the NAPL is randomly
perturbed by a small amount of 1 % of the originally-input saturation of the NAPL
(i.e. Sn0 = 0.2) before running the computational model. This means that the
resulting initial residual saturation is of a random distribution, which has a mean
value of the homogeneous residual saturation (i.e. Sn0 = 0.2) and a variation of
0.002 (i.e. 1 % of Sn0 = 0.2) in the whole computational domain. Thus, the initial
homogeneous distribution field of the NAPL saturation (Sn0) is replaced and
reassigned by a slightly perturbed non-homogeneous distribution field of the
NAPL saturation before running the computational model. Using the characteristic
length (i.e. L*) as the length scaling factor, the dimensionless length (i.e.
�Lx ¼ Lx=L�) of the computational domain is 6284 in the �x direction, while the
dimensionless length (i.e. �Ly1 ¼ Ly1=L�) of the left boundary is fixed to 3142,
2734, 2329 and 2046 in the �y direction, respectively, when four different com-
putational domains, namely h = 0�, 4�,11� and 20�, are used to investigate the
effects of domain shapes on the morphological evolution of NAPL dissolution
fronts in supercritical systems. The Zhao number used for all the four computa-
tional models (at the entrance of the flow) is 1.0, while the dimensionless time-step
length is 3.2. From the previous theoretical study (Zhao et al. 2010c), the critical
Zhao number is 3.34 9 10-3 in the case of h = 0�. As the Zhao number is much
greater than its critical value, it is expected that the NAPL dissolution system
under consideration is in a supercritical state. Although different values of the
Zhao number can have significant effects on the morphological evolution of NAPL
dissolution fronts, this issue is not considered here because it has been addressed in
a rectangular domain (Zhao et al. 2011) and the main focus of this chapter is to
investigate the effect of domain shapes on the morphological evolution of NAPL
dissolution fronts in the fluid-saturated porous medium.

Figures 10.2, 10.3, 10.4 and 10.5 show the effects of domain shapes on the
morphological evolution of NAPL dissolution fronts in the fluid-saturated porous
medium at four different time instants, namely �t ¼ 160; 640; 1120 and 1600,
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respectively. In these figures, the residual saturation of a NAPL is used to represent
the NAPL dissolution front. It is observed that domain shapes can significantly
affect not only the propagating speed of a NAPL dissolution front, but the mor-
phological evolution pattern of the NAPL dissolution front as well. At the early
stage of the computational simulation, the NAPL dissolution front evolves from
the injected planar shape at the left boundary of the computational model into an
irregular shape. For a planar NAPL dissolution-front propagating in an infinite
domain, the previous theoretical analysis demonstrated that the propagating speed
of the planar NAPL dissolution-front is directly proportional to the Darcy velocity
of the aqueous phase fluid within the fluid-saturated porous medium. In the case of
a trapezoidal domain, an increase in the divergent angle (i.e. h) of the trapezoidal

(a) (b)

(c) (d)

Fig. 10.2 Effects of domain shapes on the evolution of NAPL dissolution fronts represented by
residual saturation in the fluid-saturated porous medium (�t ¼ 160): a h ¼ 0; b h ¼ 4�; c h ¼ 11�;
d h ¼ 20�
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domain can lead to an increase in the area (or the length in the two-dimensional
case) of a vertical cross-section that is perpendicular to the inflow direction of the
aqueous phase fluid within the trapezoidal domain. From the mass conservation
point of view, such an increase in the divergent angle of the trapezoidal domain
can cause a decrease in the Darcy velocity of the aqueous phase fluid on the area of
the vertical cross-section within the trapezoidal domain. Thus, with an increase in
the divergent angle of a trapezoidal domain, the propagating speed of a planar
NAPL dissolution-front decreases accordingly within the fluid-saturated porous
medium. Since this theoretical prediction has good agreement with the numerical
results (as shown in Fig. 10.2) at the early stage of the computational simulation, it
has demonstrated that the computational model used in this investigation can

(a) (b)

(c) (d)

Fig. 10.3 Effects of domain shapes on the evolution of NAPL dissolution fronts represented by
residual saturation in the fluid-saturated porous medium (�t ¼ 640): a h ¼ 0; b h ¼ 4�; c h ¼ 11�;
d h ¼ 20�
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produce reliable numerical results for simulating the evolution of a planar NAPL
dissolution-front in the fluid-saturated porous medium of a trapezoidal shape.

However, it is very difficult, if not impossible, to predict theoretically the
propagating speed of an irregular NAPL dissolution-front within the fluid-satu-
rated porous medium of supercritical Zhao numbers. In this situation, the average
Darcy velocity on the area of a vertical cross-section can be used to investigate the
effect of domain shapes on the average propagating speed of the irregular NAPL
dissolution-front. Since the aqueous phase fluid should be conservative on a ver-
tical cross-section perpendicular to the inflow direction of the aqueous phase fluid
within the trapezoidal domain, the average Darcy velocity on this vertical cross-
section can be expressed in the weighted form as follows:

(a) (b)

(c) (d)

Fig. 10.4 Effects of domain shapes on the evolution of NAPL dissolution fronts represented by
residual saturation in the fluid-saturated porous medium (�t ¼ 1120): a h ¼ 0; b h ¼ 4�;
c h ¼ 11�; d h ¼ 20�
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�vDarcy ¼

RþLy
2

�Ly
2

vDarcydy

Ly
; ð10:28Þ

where Ly is the length of the vertical cross-section; vDarcy is the Darcy velocity at a
point of the vertical cross-section; �vDarcy is the average Darcy velocity on the
vertical cross-section.

Based on the average Darcy velocity concept, it is possible to examine how the
domain shape of a computational model affects the average propagating speed of
an irregular NAPL dissolution-front within the fluid-saturated porous medium. For

(a) (b)

(c) (d)

Fig. 10.5 Effects of domain shapes on the evolution of NAPL dissolution fronts represented by
residual saturation in the fluid-saturated porous medium (�t ¼ 1600): a h ¼ 0; b h ¼ 4�;
c h ¼ 11�; d h ¼ 20�
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the given location of a vertical cross-section in a trapezoidal domain, an increase
in the divergent angle of the trapezoidal domain leads to an increase in the length
of the vertical cross-section parallel to the y direction, so that there is a decrease in
the average Darcy velocity on this vertical cross-section in the trapezoidal domain.
Generally, the average propagating speed of an irregular NAPL dissolution-front
decreases gradually as a result of an increase in the divergent angle of the trap-
ezoidal domain. This phenomenon can be observed from the numerical simulation
results shown in Figs. 10.3, 10.4 and 10.5. However, in the case of h = 4�, the
strong mergence of several irregular fingering fronts takes place within the com-
putational domain. Due to this mergence, the fluid flow in the merged fingers of
wider flow channels becomes much stronger than that in the unmerged small
fingers, so that the tip of the dissolution front represented by the strongly merged
finger in the case of h = 4� has propagated faster than that represented by the
weakly merged finger in the rectangular case.

In terms of the morphological evolution pattern of an irregular NAPL dissolution-
front, the domain shape of a computational model can affect the total numbers of
irregular fingers in the fluid-saturated porous medium of supercritical Zhao
numbers. For a given position at the x axis, the trapezoidal domain of a large
divergent angle (i.e. h) can provide more space in the vertical direction, compared
with the trapezoidal domain of a small divergent angle. As a result, the total
number of irregular fingers obtained from the trapezoidal domain of a large
divergent angle is usually greater than that obtained from the trapezoidal domain
of a small divergent angle. For example, in the case of �t ¼ 1600, the total number
of irregular fingers in the rectangular domain is equal to 8, while it is equal to 14 in
the trapezoidal domain with a divergent angle of 20�. Nevertheless, as shown in
Figs. 10.3, 10.4 and 10.5, the irregular fingers in the trapezoidal domain of a small
divergent angle can grow much wider than those in the trapezoidal domain of a
large divergent angle.

Figure 10.6 shows the effects of domain shapes on the distributions of the
NAPL dimensionless concentration in the fluid-saturated porous medium at
�t ¼ 1600. Since the small perturbation grows with time for a supercritical NAPL
dissolution system, the initial planar front of the NAPL dimensionless concen-
tration evolves gradually into an irregular fingering one. With an increase in the
dimensionless time, the amplitude of the irregular fingering NAPL concentration
front increases significantly, indicating that the NAPL concentration front is
morphologically unstable during its propagation within the computational domain.
Compared with the computational simulation results shown in Fig. 10.5, both the
NAPL residual saturation and the NAPL dimensionless concentration have similar
propagation fronts because the dimensionless concentration of the NAPL
approaches zero when the NAPL is completely dissolved in the upstream direction
of the NAPL dissolution front. Once the NAPL is completely dissolved, the NAPL
residual saturation also becomes zero in the upstream direction of the NAPL
dissolution front.

It is interesting to examine NAPL dissolution fingering in a convergent trape-
zoidal domain where the divergent angle (as defined in Fig. 10.1) has a negative
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value for h. Since convergent trapezoidal domains can result in Darcy velocities
increasing with an increase in the distance from the entrance of the injected flow,
they may produce some interesting effects on NAPL dissolution fingering. For this
purpose, a negative value of h (i.e. h = -20�) is used to run the corresponding
computational simulation of NAPL dissolution fingering in a convergent trape-
zoidal domain. Figure 10.7 shows the effects of the convergent domain shape (in
the case of h = -20�) on the evolution of NAPL dissolution fronts (represented by
residual saturation) in the fluid-saturated porous medium at four different time
instants, namely �t ¼ 160, 640, 1120 and 1440, respectively. Compared with the
computational simulation results in the divergent trapezoidal domain of h = 20�
(see Figs. 10.2, 10.3, 10.4 and 10.5), NAPL fingers grow much faster in the
convergent trapezoidal domain of h = -20�. For example, in the case of �t ¼ 1440,

(a) (b)

(c) (d)

Fig. 10.6 Effects of domain shapes on the distributions of the NAPL dimensionless concen-
tration in the fluid-saturated porous medium (�t ¼ 1600): a h ¼ 0; b h ¼ 4�; c h ¼ 11�; d h ¼ 20�
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one major finger has penetrated through the whole domain in the horizontal
direction of the convergent trapezoidal domain in the case of h = -20�, while it
only propagates about one third of the whole domain in the horizontal direction of
the divergent trapezoidal domain in the case of h = 20�. This further demonstrates
that domain shapes can have significant effects on the formation of NAPL

(a) (b)

(c) (d)

Fig. 10.7 Effects of convergent domain shape on the evolution of NAPL dissolution fronts
represented by residual saturation in the fluid-saturated porous medium (h ¼ �20�): a �t ¼ 160;
b �t ¼ 640; c �t ¼ 1120; d �t ¼ 1440
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dissolution fingering in the fluid-saturated porous medium. The implication of this
recognition is that in terms of land remediation, the divergent flow might be more
efficient than the convergent flow because faster finger growth will lead to earlier
breakthrough of clean water, which then will extend the remediation process for
some period. This indicates that from the residual NAPL removal point of view,
flow injection through an injection well might be more efficient than flow pumping
through a pumping well.

Next, the computational model of a rectangular shape (h = 0�) is used to test
the assumption that the second-order dispersion tensor can be treated as a function
of the averaged linear velocity component in the inflow direction because it has
been widely used in the previous theoretical analyses (Chadam et al. 1986; Imhoff
and Miller 1996; Zhao et al. 2008a, b, c). For this purpose, two cases are con-
sidered in the corresponding computations. In the first case (known as the current
dispersion model here), both the horizontal and vertical components of the aver-
aged linear velocity vector are considered in the evaluation of the second-order
dispersion tensor, while in the second case (known as the previous dispersion
model in this investigation), only the horizontal component of the averaged linear
velocity vector is considered in the evaluation of the second-order dispersion
tensor. In this situation, the dimensionless lengths (i.e. �Lx and �Ly1) of the com-
putational domain are 4,713 and 3,142 in the �x and �y directions, while the whole
computational domain is simulated by 99,301 four-node square elements of
100,000 nodal points in total. To eliminate any errors caused by finite element
meshes, the finite element mesh with the same initially-perturbed residual satu-
ration field is used for both the current and previous dispersion models. The
dimensionless time-step length is 1.9 in the computational simulation. Other
parameters used here is exactly the same as those used in the previous computa-
tional models of trapezoidal shapes.

Figure 10.8 shows the comparison of the simulation results for the NAPL residual
saturation from the current dispersion model with those from the previous dispersion
model at four different time instants, namely�t ¼ 190, 380, 570 and 950, respectively.
In this figure, the simulation results shown in the left column are obtained from using
the current dispersion model, while the simulation results shown in the right column
are obtained from using the previous dispersion model. Even though the fluid flow is,
strictly speaking, no longer one-dimensional at the NAPL dissolution front (see
Fig. 10.9), it can be clearly observed (from Fig. 10.8) that the morphological evo-
lution patterns of a NAPL dissolution front predicted from the current dispersion
model is almost the same as those predicted from the previous dispersion model. This
demonstrates that for the NAPL dissolution-front instability problem of a rectan-
gular domain, the previous dispersion model can produce accurate theoretical and
numerical solutions for the prediction of morphological evolution patterns of NAPL
dissolution fronts in fluid-saturated porous media of supercritical Zhao numbers.
Except for remarkable savings in computational efforts, the major benefit of using
the previous dispersion model is that it enables the theoretical analysis of this kind of
instability problems to become possible (Zhao et al. 2010a).

286 10 Effects of Domain Shapes and Mesh Discretization Error



(Current dispersion model, 190)=t (Previous dispersion model, 190) =t

(Current dispersion model, 380)=t (Previous dispersion model, 380) =t

(Current dispersion model, 570)=t (Previous dispersion model, 570) =t

(Current dispersion model, 950)=t (Previous dispersion model, 950) =t

Fig. 10.8 Comparison of the simulation results from the current dispersion model with those
from the previous dispersion model (NAPL residual saturation)
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It is noted that on the basis of the numerical results shown in Figs. 10.2, 10.3,
10.4 and 10.5, it clearly indicates that the saturation of the NAPL is 0 and 0.2
behind and in front of the NAPL dissolution interface, respectively. This means
that oSn=ot should be equal to zero, leading to either Sn = 0 (behind the NAPL
dissolution interface) or C = Ceq (in front of the NAPL dissolution interface) from
Eqs. (10.1) and (10.3). As a result, the pressure gradient of the aqueous phase fluid
can be equal to a nonzero constant in Eq. (10.3), from the mathematical point of
view. This inference is certainly in good coincidence to the boundary condition,
which states that there exists a pressure gradient of the aqueous phase fluid in the
computational domain between x = 0 and x = Lx.

In summary, the related numerical simulation results have demonstrated that:
(1) domain shapes have a significant effect on both the propagating speed and the
morphological evolution pattern of a NAPL dissolution-front in the fluid-saturated
porous medium; (2) an increase in the divergent angle of a trapezoidal domain can
lead to a decrease in the propagating speed of the NAPL dissolution front; (3) the
morphological evolution pattern of the NAPL dissolution-front in a rectangular
domain is remarkably different from that in a trapezoidal domain of a large
divergent angle; (4) for a rectangular domain, the simplified dispersion model,

( 570=t )

( 950=t )

(a)

(b)

Fig. 10.9 Streamline
distributions in the
rectangular domain at two
time instants: a �t ¼ 570;
b �t ¼ 950
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which is commonly used in the theoretical analysis and numerical simulation, is
valid for solving NAPL dissolution-front instability problems in fluid-saturated
porous media; and (5) compared with diverging flow (when the trapezoidal domain
is inclined outward), converging flow (when the trapezoidal domain is inclined
inward) can enhance the growth of NAPL fingers, indicating that pump-and-treat
systems by extracting contaminated groundwater might enhance NAPL dissolution
fingering and lead to less uniform dissolution fronts.

10.3 Effects of Mesh Discretization Error
on the Morphological Evolution of NAPL Dissolution
Fronts in Supercritical Systems

Compared with the simulation of a rectangular domain, the simulation of a trap-
ezoidal domain may involve the following two effects: (1) since the two neighbour
boundaries are not perpendicular each other, the inflow perpendicular to the
entrance (i.e. one side of the trapezoidal domain) may change the flow direction
just when it passes the entrance of the domain. This phenomenon can be called the
entrance corner effect (or just the corner effect for short). (2) Since irregular
quadrilateral elements, in which two neighbour sides are not perpendicular each
other, must be used to simulate the trapezoidal domain, mesh discretization
including mesh inclination (i.e. grid orientation) is inevitable in the computational
model. This phenomenon can be called the mesh discretization effect. The main
purpose of this section is to investigate both the corner effect and mesh discreti-
zation effect on the morphological evolution of NAPL dissolution fronts in trap-
ezoidal domains consisting of fluid-saturated porous media through conducting
detailed theoretical analysis and running several computational models.

For a rectangular domain, the dimensionless pressure gradient, �p0axf , of the
aqueous phase liquid on a vertical cross-section is constant in the NAPL com-
pletely dissolved region, while for a trapezoidal domain shown in Fig. 10.10, it is a
function of the location of the vertical cross-section in the NAPL completely
dissolved region. From the mass conservation of the aqueous phase liquid, this
function can be determined and expressed in the following form:

�p0axf ¼
�Ly1

�Ly1 þ 2�xtgh
�p0axf 0; ð10:29Þ

where �p0axf 0 is the dimensionless pressure gradient of the aqueous phase on the
upstream boundary; �x is the location of the vertical cross-section in the NAPL
completely dissolved region within the trapezoidal domain.
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10.3.1 The Theoretical Basis of Mesh Discretization Error
Estimation for NAPL Dissolution Problems

10.3.1.1 The Dynamic Behaviour of a NAPL Dissolution System

To facilitate the discussion of the mesh discretization error associated with the
computational simulation results in the forthcoming subsections, it is necessary to
briefly describe the dynamic behaviour of a NAPL dissolution system in a rect-
angular domain. Since the governing equations of a NAPL dissolution problem in
a rectangular domain is exactly the same as those of a NAPL dissolution problem
in a trapezoidal domain, the dynamic behaviour for both the rectangular domain
and the trapezoidal domain should be similar so that the previous theoretical
results from a rectangular domain may have some reference values when the mesh
discretization error associated with the computational simulation results from a
trapezoidal domain are discussed.

For the purpose of describing the dynamic behaviour of a NAPL dissolution
system, the dimensionless Zhao number is defined as follows (Zhao et al. 2010c):

Zh ¼ ��p0axf ¼
Vaxfffiffiffiffiffiffiffiffiffiffiffiffi
/sDm
p

ffiffiffiffiffi
1
b0

s
¼ FadvectionFdispersionFdissolution; ð10:30Þ

where Vaxf is the Darcy velocity of the aqueous phase fluid after the NAPL is
completely dissolved in the NAPL dissolution system; / and s are the porosity and
tortuosity of the porous medium, respectively; Dm is the molecular diffusivity of the
NAPL species in the aqueous phase; b0 is the dissolution rate of the NAPL. It needs
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Fig. 10.10 Geometry and boundary conditions for the NAPL dissolution problem on the basis of
dimensionless quantities
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to be pointed out that in Eq. (10.30), Fadvection = Vaxf, representing the aqueous
phase fluid advection in the NAPL dissolution system; Fdispersion ¼ 1

 ffiffiffiffiffiffiffiffiffiffiffiffi
/sDm
p

,
representing the NAPL solute diffusion/dispersion in the NAPL dissolution system;

and Fdissolution ¼
ffiffiffiffiffiffiffiffiffiffi
1=b0

p
, representing the kinetics of the NAPL dissolution. Thus

the Zhao number is a comprehensive dimensionless number to represent the three
major controlling mechanisms (i.e. advection, dispersion and NAPL dissolution)
simultaneously taking place in the NAPL dissolution system.

When the domain of a NAPL dissolution system is rectangular, then the critical
Zhao number of the system has been mathematically derived in a previous study
(Zhao et al. 2010c) as follows:

Zhcritical ¼
3� kðSn0Þ

kðSnf Þ

	 

1þ kðSn0Þ

kðSnf Þ

	 


2 1� kðSn0Þ
kðSnf Þ

	 
 ; ð10:31Þ

where Zhcritical is the critical Zhao number of the NAPL dissolution system of a
rectangular shape; k(Sn0) is the saturation-dependent permeability of the porous
medium to aqueous phase flow at Sn = Sn0; k(Snf) is the saturation-dependent
permeability of the porous medium to aqueous phase flow at Sn = Snf; Snf = 0 is
the saturation of the NAPL after it is completely dissolved in the NAPL dissolution
system.

By means of both the Zhao number and the critical Zhao number, the instability
of NAPL dissolution fronts in fluid-saturated porous media of rectangular domains
can be assessed. Note that if the domain of a NAPL dissolution system is of a
rectangular shape, then the Darcy velocity of the aqueous phase fluid after the
NAPL is completely dissolved (i.e. Vaxf) is constant, while if the domain of an
NAPL dissolution system is of a trapezoidal shape, then the Darcy velocity of the
aqueous phase fluid after the NAPL is completely dissolved (i.e. Vaxf) is no longer
constant. In the latter case, the instability criterion derived from the rectangular
shape can be applicable, provided that an appropriate Darcy velocity of the
aqueous phase fluid is selected in the NAPL dissolved region.

It is interesting to note that the Zhao number can be expressed by a combination
of the Peclet number and the Thiele modulus (Hong et al. 1999). If the effective
diffusion/dispersion coefficient is defined as Deffective ¼ /sDm, then the Thiele

modulus of the dissolution system can be expressed as Tm ¼ L�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0


Deffective

q
,

where L* is the intrinsic characteristic length of the dissolution system. Similarly,
the Peclet number of the dissolution system can be expressed as
Pe ¼ ðVaxf L�Þ


Deffective. Consequently, the Zhao number of the dissolution system

can be expressed as follows:

Zh ¼ Vaxf L�

Deffective

� �
1
L�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Deffective

b0

s !
¼ Pe

Tm
: ð10:32Þ
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This indicates that the Zhao number of a NAPL dissolution system is equal to
the ratio of the Peclet number to the Thiele modulus of the dissolution system.
Clearly, the Peclet number can be only used to describe the interaction between the
advection and diffusion/dispersion processes, while the Thiele modulus can be
only used to describe the interaction between the NAPL dissolution and diffusion/
dispersion processes. On the contrary, the Zhao number can be used to simulta-
neously describe all three processes, namely the advection, NAPL dissolution and
diffusion/dispersion processes, in a NAPL dissolution system. This is the main
reason why the Zhao number needs to be used to describe the overall characteristic
of a NAPL dissolution system.

From the linear stability theory, the NAPL dissolution front can be expressed as
(Zhao et al. 2010c):

Sðn; �y; �tÞ ¼ n� �dA expð�x�tÞ cosð�m�yÞ; ð10:33Þ

where �x is the dimensionless growth rate; dA is the amplitude of an initial small
perturbation; �t is the dimensionless time after the perturbation is applied to the
NAPL dissolution system; �m is the dimensionless wavenumber of the perturbation;
n is the coordinate of the moving coordinate system in the �x direction and can be
expressed as follows:

n ¼ �x� �vfront�t; �vfront ¼ �
�p0axf

Sn0
¼ Zh

Sn0
: ð10:34Þ

Since Eq. (10.34) indicates that the initial planar NAPL dissolution-front is
always represented by n ¼ 0, the amplitude of the finger when a NAPL dissolution
system is in an unstable state (in the case of Zh [ Zhcritical), can be expressed as:

AFinger ¼ dAe�x�t; ð10:35Þ

where AFinger is amplitude of the finger when the NAPL dissolution system is in an
unstable state.

Equation (10.35) clearly indicates that for a given time, the greater the
amplitude of an initial small perturbation, the greater the amplitude of the finger.
Also, for a given small perturbation, the earlier the perturbation is applied to the
NAPL dissolution system, the greater the amplitude of the finger.

10.3.1.2 The Propagation Characteristic of Mesh Discretization Error
and the Concept of Equivalent Initial Perturbation

As demonstrated by the previous study (Zhao et al. 2010c), the basic characteristic
of a NAPL dissolution-front instability problem in a fluid-saturated porous med-
ium is that the NAPL dissolution front divides the whole problem domain into the
following two sub-domains: a NAPL un-dissolved sub-domain (in the downstream
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direction of the NAPL dissolution front) and a NAPL completely-dissolved sub-
domain (in the upstream direction of the NAPL dissolution front). Thus, the
instability of the NAPL dissolution system can only take place on the NAPL
dissolution front. This is the main reason why the instability of the NAPL dis-
solution system is commonly called the NAPL dissolution-front instability prob-
lem. For this reason, the mesh discretization error associated with the NAPL
dissolution-front instability problem can only propagate with the propagation of
the NAPL dissolution front in the fluid-saturated porous medium.

To understand the propagation characteristic of the mesh discretization error
associated with a NAPL dissolution-front instability problem, we consider a
common boundary between several four-node rectangular elements (that are used
to simulate a part of a rectangular domain) and assume that this common boundary
contains N nodal points. For the sake of facilitating the analysis, we can assume
that N = 6, as shown in Fig. 10.11. Suppose the distance between any two adja-
cent nodal points is equal, we can represent this distance by D�x, so that the mesh
discretization error associated with each nodal point is equal and can be expressed
by dd: If the NAPL dissolution front is located at node 1 and the initial dimen-
sionless time is considered as �t0 ¼ 0, then the dimensionless times can be
expressed as �t1; �t2; �t3; �t4 and�t5 when the NAPL dissolution front propagates from
node 1 to nodes 2, 3, 4, 5, and 6 respectively. For a rectangular domain, the

propagation speed (i.e. �vfront ¼ ��p0axf

.
Sn0 ¼ Zh=Sn0) of the NAPL dissolution

front is constant (Zhao et al. 2010c), so that the time period when the NAPL
dissolution front propagates between any two adjacent nodal points is also constant
and can be expressed as D�t. Thus, when the NAPL dissolution front propagates
from node 1 to node 2, the mesh discretization error associated with D�x between
nodes 1 and 2 grows and the resulting error at node 2 can be expressed as follows:

dd2 ¼ dde�x�t1 ¼ dde�xD�t: ð10:36Þ

However, when the NAPL dissolution front propagates from node 2 to node 3,
the total mesh discretization error associated with node 2 is equal to the sum of dd2

and dd (i.e. the mesh discretization error associated with D�x between nodes 2 and 3).

dtotal
d2 ¼ dd2 þ dd ¼ dde�xD�t þ dd ¼ ddð1þ e�xD�tÞ: ð10:37Þ

This means that when the NAPL dissolution front propagates from node 2 to
node 3, the resulting error at node 3 can be expressed as follows:

dd3 ¼ dtotal
d2 e�xD�t ¼ ddð1þ e�xD�tÞe�xD�t ¼ ddðe�xD�t þ e2�xD�tÞ: ð10:38Þ

Similarly, the resulting mesh discretization errors at nodes 4, 5 and 6 can be
expressed in the following equations:
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dd4 ¼ ddðe�xD�t þ e2�xD�t þ e3�xD�tÞ; ð10:39Þ

dd5 ¼ ddðe�xD�t þ e2�xD�t þ e3�xD�t þ e4�xD�tÞ; ð10:40Þ

dd6 ¼ ddðe�xD�t þ e2�xD�t þ e3�xD�t þ e4�xD�t þ e5�xD�tÞ: ð10:41Þ

Generally, when the NAPL dissolution front propagates from node 1 to node N,
the resulting mesh discretization error at node N can be expressed as follows:

ddN ¼ dd

XN�1

i¼1

eðN�iÞ�xD�t ¼ dd
e�xD�tðeðN�1Þ�xD�t � 1Þ

e�xD�t � 1

� �

	 dd
e�xD�tðeðN�1Þ�xD�tÞ

e�xD�t � 1

� �
¼ dd

e�xD�t

e�xD�t � 1

� �
e�x�t ðfor large NÞ

ð10:42Þ

Note that for a fine mesh of finite elements, dd can be controlled to be much less
than unity (i.e. dd � 1), so that ðeðN�1Þ�xD�t � 1Þ should be much greater than unity
when the finger grows to a visible size. As a result, ðeðN�1Þ�xD�t 
 1Þ, so that
ðeðN�1Þ�xD�t � 1Þ 	 eðN�1Þ�xD�t in the process of deriving Eq. (10.42). Thus, when the
NAPL dissolution front propagates from node 1 to node N, the amplitude of the
finger caused by the mesh discretization error (in a rectangular domain) can be
determined by the following equation:

Amesh
Finger ¼ ddN ¼ dd

XN�1

i¼1

eðN�iÞ�xD�t 	 dd
e�xD�t

e�xD�t � 1

� �
e�x�t; ð10:43Þ

where Amesh
Finger is the amplitude of the finger caused by the mesh discretization error

in the NAPL dissolution system of a rectangular domain.
Note that for a NAPL dissolution-front instability problem in a rectangular

domain, the dimensionless growth rate of perturbation can be theoretically
determined as follows (Zhao et al. 2010c):

xΔ×5

5t4t3t00 =t

6542 31

1t 2t

Fig. 10.11 Propagation
characteristic of the mesh
discretization error associated
with a NAPL dissolution
front propagating along the
line containing 6 nodal points
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r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�p0axf

1��aL�p0axf

	 
2
þ 4�m2ð1��aT �p0axf Þ

1��aL�p0axf

r
� �p0axf

1��aL�p0axf

2
; ð10:45Þ

where �p0axf is the dimensionless pressure gradient of the aqueous phase liquid on a
vertical cross-section in the NAPL completely dissolved region; Sn0 is the initial
saturation of the NAPL; �aT and �aL are the dimensionless transversal and longi-
tudinal dispersivities of the NAPL species in the aqueous phase; b is the ratio of
the permeability of the NAPL un-dissolved region to that of the NAPL completely-
dissolved region; �m is the dimensionless wavenumber of the perturbation.

Equations (10.43)–(10.45) clearly indicate that if the mesh discretization error
associated with the NAPL dissolution instability system of a rectangular domain is
known, then the amplitude of the finger caused by the mesh discretization error (in
a rectangular domain) can be theoretically determined. Unfortunately, the main
purpose of this study is to find the mesh discretization error associated with the
NAPL dissolution instability system, so that an inverse problem needs to be
solved. This means that if the amplitude of the finger caused by the mesh dis-
cretization error (in a rectangular domain) is numerically evaluated, then the mesh
discretization error associated with the NAPL dissolution instability system of a
rectangular domain can be determined using the following equation:

dd ¼
Amesh

FingerPN�1
i¼1 eðN�iÞ�xD�t

	 Amesh
Finger

e�xD�t � 1
e�xD�t

� �
e��x�t: ð10:46Þ

Although Eq. (10.46) is not easy to be evaluated, it provides a theoretical basis
for estimating the mesh discretization error associated with the NAPL dissolution
instability system of a rectangular domain.

To solve this inverse problem better, the concept of equivalent initial pertur-
bation associated with the mesh discretization error of a NAPL dissolution system
is presented below. The basic idea behind the concept of equivalent initial per-
turbation associated with the mesh discretization of a NAPL dissolution system is
that the amplitude of the finger caused by the mesh discretization error can be
approximately represented by the following equation:
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Amesh
Finger ¼ dequivalent

d e�x�t; ð10:47Þ

where dequivalent
d is the equivalent initial perturbation associated with the mesh

discretization error of a NAPL dissolution system.
Considering Eqs. (10.43) and (10.47) simultaneously yields the following

equation:

dequivalent
d ¼ dd

e�x�t

XN�1

i¼1

eðN�iÞ�xD�t 	 dd
e�xD�t

e�xD�t � 1

� �
¼ add; a ¼ e�xD�t

e�xD�t � 1
: ð10:48Þ

Equation (10.48) indicates that since �xD�t is a constant (as demonstrated later),
the equivalent initial perturbation associated with the mesh discretization error of a
NAPL dissolution system is also a constant and theoretically computable. Since dd

remains unknown in this equation, Eq. (10.47) is directly used to calculate the
equivalent initial perturbation associated with the mesh discretization error of a
NAPL dissolution system in Sect. 10.3.2. Therefore, Eq. (10.47) may be consid-
ered as the core of the proposed finger-amplitude growing theory associated with
the mesh discretization error in the NAPL dissolution system.

10.3.1.3 The Product of �xD�t Associated with the NAPL Dissolution
System of a Trapezoidal Domain

The proposed propagation theory of mesh discretization error associated with the
NAPL dissolution system of a rectangular domain can be also extended to the
mesh discretization error estimation associated with the NAPL dissolution system
of a trapezoidal domain. For this purpose, we can approximately divide the
trapezoidal domain into a series of rectangular sub-domains. Obviously, if the
number of these rectangular sub-domains approaches infinity, then the shape of
the trapezoidal domain could be accurately represented. This is equivalently to use
the limit concept in mathematics. However, for each rectangular sub-domain of the
same dimensionless width (i.e. D�x) in the horizontal direction, as shown in
Fig. 10.12, the dimensionless pressure gradient, �p0axf , of the aqueous phase liquid
on its left-hand-side vertical boundary, which is assumed to be the current location
of the NAPL dissolution front in the trapezoidal domain, is no longer constant, as
indicated by Eq. (10.29) in the previous section. This means that the propagation

speed (i.e. �vfront ¼ ��p0axf

.
Sn0) of the NAPL dissolution front in each rectangular

sub-domain is also no longer constant. This is one of the main differences between
the NAPL dissolution system of a rectangular domain and that of a trapezoidal
domain.

For the purpose of determining the product of �xD�t associated with the NAPL
dissolution system of a trapezoidal domain, we need to consider a typical rect-
angular sub-domain shown in Fig. 10.12. For this rectangular sub-domain, the time
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period (i.e. D�t), when the NAPL dissolution front propagates from its left-hand-
side vertical boundary to its right-hand-side vertical boundary, can be expressed as
follows:

D�t ¼ D�x

�vfront
¼ �D�xSn0

�p0axf

¼ �ð
�Ly1 þ 2�xtghÞD�xSn0

�Ly1�p0axf 0

: ð10:49Þ

To determine the dimensionless growth rate (i.e. �x) in the typical rectangular
sub-domain shown in Fig. 10.12, we need to use Eq. (10.44) to investigate how the
dimensionless growth rate varies with the dimensionless pressure gradient, �p0axf , of
the aqueous phase liquid on its left-hand-side vertical boundary. Figure 10.13
shows the variation of the dimensionless growth rate with the Zhao number due to
different dimensionless wavenumbers in the NAPL dissolution problem. In this
figure, Zh ¼ ��p0axf by definition. It is obvious that for a given dimensionless
wavenumber, the dimensionless growth rate varies linearly with the Zhao number
of the NAPL dissolution system.

Thus, Eq. (10.44) can be approximately rewritten in the following simplified
form:

�x 	 ��p0axf f ðSn0; �aL; �aT ; bÞ ¼ �
�Ly1

�Ly1 þ 2�xtgh
�p0axf 0f ðSn0; �aL; �aT ; bÞ; ð10:50Þ

where f is a function of Sn0; �aL; �aT and b. This function represents the constant
slope of the straight line. Thus, f ðSn0; �aL; �aT ; bÞ should be independent of the
geometrical shape of the problem domain.

Note that for the NAPL dissolution system of a rectangular domain, the value of
h is equal to zero, so that the product of �xD�t in the case of the NAPL dissolution
front propagating in a rectangular domain can be expressed as follows:
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Fig. 10.12 A typical sub-domain of rectangular shape in the trapezoidal domain
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ð�xD�tÞrectangular ¼ D�xSn0f ðSn0; �aL; �aT ; bÞ: ð10:51Þ

Similarly, considering Eqs. (10.49) and (10.50) simultaneously yields the fol-
lowing product for the NAPL dissolution front propagating in a trapezoidal domain.

ð�xD�tÞtrapezoidal ¼ �
�Ly1

�Ly1 þ 2�xtgh
�p0axf 0f ðSn0; �aL; �aT ; bÞ

� �
� �ð

�Ly1 þ 2�xtghÞD�xSn0

�Ly1�p0axf 0

 !

¼ D�xSn0f ðSn0; �aL; �aT ; bÞ
ð10:52Þ

Equations (10.51) and (10.52) indicate that although both the dimensionless
growth rate (i.e. �x) and the time period (i.e. D�t) when the NAPL dissolution front
propagates the same horizontal distance (i.e. D�x) are totally different, their prod-
ucts are exactly the same for the NAPL dissolution-front propagation in both the
rectangular and trapezoidal domains. When the NAPL dissolution front propagates
through N elements with the equal dimensionless width of D�x, it can be easily
proven that the product of N �xD�t, where N is a positive integer of any value, is also
exactly the same for the NAPL dissolution front propagation in both the rectan-
gular and trapezoidal domains. This theoretical finding demonstrates that if the
horizontal width of the finite elements that is used to simulate a trapezoidal domain
is exactly the same as that is used to simulate a rectangular domain, the mesh
discretization error propagation theory presented for the rectangular domain (in
Sect. 10.3.1.2) can be, in principle, used to estimate the mesh discretization error
associated with the NAPL dissolution-front propagation in the trapezoidal domain.
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Fig. 10.13 Variation of the dimensionless growth rate with the Zhao number due to different
dimensionless wavenumbers in the NAPL dissolution problem
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Thus, Eq. (10.47) is also valid for estimating the mesh discretization error asso-
ciated with the NAPL dissolution-front propagation in the trapezoidal domain.
This is another reason why we consider a trapezoidal domain in this investigation.

10.3.1.4 The Corner Effect at the Entrance of a Trapezoidal Domain

For a trapezoidal domain, as shown in Fig. 10.10, the two neighbour boundaries
are not perpendicular each other, so that the inflow perpendicular to the entrance
(i.e. one side of the trapezoidal domain) may change the flow direction just when it
passes the entrance of the domain. Due to this special kind of shape, the overall
flow pattern turns into a radial flow pattern at some distance away from the
entrance of the flow. This means that such a corner effect can be treated as an
equivalent perturbation that is just applied at the corner points of the flow entrance
in the trapezoidal domain. Following the same procedures as those used in
Sect. 10.3.1.2, the amplitude of the finger caused by the corner effect can be
approximately represented by the following equation:

Acorner
Finger ¼ dequivalent

c e�x�t; ð10:53Þ

where dequivalent
c is the equivalent initial perturbation associated with the corner

effect at the entrance of a NAPL dissolution system; Acorner
Finger is the amplitude of the

finger caused by the corner effect.
As a counterpart of Eq. (10.47), Eq. (10.53) may be considered as the core of

the proposed finger-amplitude growing theory associated with the corner effect in
the NAPL dissolution system of a trapezoidal domain. Consequently, the total
amplitude of the finger (caused by both the corner effect and the mesh discreti-
zation error), which grows at either the top or the bottom boundary of the trape-
zoidal domain, should be equal to the sum of Eqs. (10.47) and (10.53) as follows:

Acornerþmesh
Finger ¼ ðdequivalent

c þ dequivalent
d Þe�x�t: ð10:54Þ

where Acornerþmesh
Finger is the total amplitude of the finger caused by both the corner

effect and the mesh discretization error at either the top or the bottom boundary of
the trapezoidal domain.

10.3.2 Corner and Mesh Discretization Effects
on the Morphological Evolution of NAPL Dissolution
Fronts in Supercritical Systems of Trapezoidal
Domains

As shown in Fig. 10.10 in the previous section, the geometrical shape of a trap-
ezoidal computational domain, which is symmetrical to the �x axis, can be
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represented by the divergent angle (i.e. h) between a horizontal line and the top
boundary. This angle is defined as a geometrical parameter in the corresponding
computations. If h is equal to zero, then the trapezoidal domain degenerates to a
rectangular one.

On the basis of the previous experimental measurement results that were cal-
ibrated by several laboratory tests (Imhoff and Miller 1996; Imhoff et al. 1996;
Miller et al. 1998), the following parameters are selectively used in the corre-
sponding computational models: the initial saturation (Sn0) of the NAPL is 0.2; the
irreducible saturation (Sai) of the aqueous phase fluid is 0.15; the dimensionless
longitudinal and transverse dispersivities (�aL and �aT ) are 0.2 and 0.02, respec-
tively; the ratio (e) of the equilibrium concentration of the NAPL species in the
aqueous phase fluid to the density of the NAPL itself is 0.001; the density ratio
(�qa) of the aqueous phase fluid to the NAPL is 1.0/1.46; the value of b1 is 0.87. To
simulate the propagation of NAPL dissolution fronts appropriately, the whole
computational domain is simulated by 120,000 four-node quadrilateral elements of
120,701 nodal points in total. Figure 10.14 shows the meshes of finite elements
used for modeling both the rectangular domain (i.e. h = 0�) and the trapezoidal
domain (i.e. h = 20�). Note that each element in this figure is further divided into
100 finer elements before the computation.

For the purpose of investigating the instability of a NAPL dissolution system, it
is common practice to perturb the homogeneous distribution field of the initial
NAPL saturation (Sn0) with a small amount (Zhao et al. 2010c). For this reason, the
initial residual saturation field of the NAPL is randomly perturbed by a small
amount of 1 % of the originally-input saturation of the NAPL (i.e. Sn0 = 0.2)
before running the computational model. This means that the initial homogeneous
distribution field of the NAPL saturation (Sn0) is replaced and reassigned by a
slightly perturbed non-homogeneous distribution field of the NAPL saturation
before running the computational model. The dimensionless length (i.e. �Lx) of the
computational domain is 6,284 in the �x direction, while the dimensionless length
(i.e. �Ly1) of the left boundary is fixed to 3,142 and 2,046 in the �y direction for two
different computational domains, namely h = 0� and 20�, respectively. The Zhao
number used for the two computational models (at the entrance of the flow) is 1.0,
while the dimensionless time-step length is 3.2.

10.3.2.1 Corner and No-Flow Boundary Effects of Computational
Domains

Figure 10.15 shows the morphological evolution of NAPL dissolution fronts in
both the rectangular (h = 0�) and the trapezoidal (h = 20�) domains consisting of
the fluid-saturated porous media at two different time instants, namely �t ¼ 160 and
1600, respectively. In this figure, the residual saturation of a NAPL is used to
represent the NAPL dissolution front. It is observed that the NAPL dissolution
front propagates much faster along the top and bottom boundaries, especially in
the trapezoidal domain. This may be caused by both the no-flow boundary and

300 10 Effects of Domain Shapes and Mesh Discretization Error



corner effects. In the case of a rectangular domain, Kalia and Balakotaiah (2009)
observed the same phenomenon in the numerical simulation of acid dissolution
induced wormhole formation in carbonates. Regarding the physical reason to cause
this phenomenon, they made the following explanation: ‘‘When no-flow bound-
aries are present in a system, an inconsistency may occur at these boundaries
because of Darcy’s law. As the fluid is injected in the medium, it is transported in
both the axial and transverse directions. Darcy’s law allows for streamwise or axial
flow at the boundaries although the transverse velocity component is zero because
of the boundary conditions. This leads to a deflection of the fluid carried by the

(a)

(b)

Fig. 10.14 Finite element meshes used for simulating the NAPL dissolution problem:
a Rectangular domain; b Trapezoidal domain
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perpendicular velocity component at the boundaries to the axial direction resulting
in a velocity slip. This leads to more fluid going to the boundaries and in turn
resulting in relatively higher dissolution at the boundaries.’’ Thus, the no-flow
boundary effect is not a numerical artifact and has previously been mentioned for
the viscous fingering phenomenon where a less viscous fluid displaces a more
viscous one (Morris and Ball 1990; Yang and Yortsos 1998). Although this
explanation may be valid for the flow in a rectangular domain, it cannot be used to
explain why the NAPL dissolution front propagates much faster along the top and
bottom boundaries in the trapezoidal domain (i.e. h = 20�). Nevertheless, this
phenomenon can be better explained using the proposed finger-amplitude growing
theory associated with the corner effect at the entrance of a trapezoidal domain (in
Sect. 10.3.1.4). In the case of the rectangular domain (where no corner effect
exists) and �t ¼ 1600 (in Fig. 10.15), the amplitude of the finger at either the top or
the bottom boundary is of the same order of magnitude as that of the finger within
the interior of the rectangular domain. However, in the case of the trapezoidal
domain (where there exists the corner effect) and �t ¼ 1600 (in Fig. 10.15), the
amplitude of the finger at either the top or the bottom boundary is much greater
than that of the finger within the interior of the trapezoidal domain. This dem-
onstrated that the proposed finger-amplitude growing theory associated with the
corner effect at the entrance of a trapezoidal domain is useful for correctly
explaining why the finger at either the top or the bottom boundary grows much
faster than that within the interior of the trapezoidal domain.

10.3.2.2 Mesh Discretization Effects of Computational Domains

When the finite element and finite difference methods are used to solve the NAPL
dissolution problem in a fluid-saturated porous medium, the continuum domain of
the problem needs to be discretized into many elements, so that the dimensionless
governing equations (i.e. the partial differential equations) of the system can be
approximately represented by a set of algebraic equations. This discretization
process will cause the mesh discretization error, which may result in numerical
diffusion during the numerical computation. Compared with the use of rectangular
and square elements in the simulation of a rectangular domain, the use of general
quadrilateral elements in the simulation of a trapezoidal domain can cause extra
mesh discretization error (or extra numerical diffusion) due to the involvement of
mesh inclination (i.e. grid orientation). For this reason, the total diffusion/disper-
sion tensor of the computational model for simulating the NAPL dissolution
problem in a trapezoidal domain is equal to the sum of the physical diffusion/
dispersion tensor and the numerical diffusion/dispersion tensor. Since the
numerical diffusion/dispersion tensor is caused by the mesh discretization error, it
is desirable to reduce the numerical diffusion/dispersion tensor so that the com-
putational simulation result can converge to the physical solution.

To examine the effect of numerical diffusion/dispersion due to mesh discreti-
zation error on the computational simulation of a NAPL dissolution problem in a
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trapezoidal domain, it is necessary to understand the constituents of the physical
diffusion/dispersion tensor in a NAPL dissolution system. For this purpose, the
physical diffusion/dispersion tensor in the NAPL dissolution system can be
expressed in the following dimensional form:

(a) (b)

(c) (d)

Fig. 10.15 Effects of corner and no-flow boundary on the evolution of NAPL dissolution fronts
in the fluid-saturated porous medium (Supercritical system): a h ¼ 0;�t ¼ 160; b h ¼ 20�;
�t ¼ 160; c h ¼ 0;�t ¼ 1600; d h ¼ 20�;�t ¼ 1600
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where s is the tortuosity of the porous medium; Dm is the molecular diffusivity of
the NAPL species in the aqueous phase; vax and vay are the averaged linear velocity
components in the x and y directions, respectively; aT and aL are the transversal
and longitudinal dispersivities of the NAPL species in the aqueous phase; va is the
amplitude of the averaged linear velocity vector of the aqueous phase as follows:

va ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

ax þ v2
ay

q
: ð10:56Þ

Equation (10.55) indicates that the total physical diffusion/dispersion tensor in a
NAPL dissolution system can be divided into two parts: an isotropic part (i.e. Dh1)
and an anisotropic part (i.e. Dh2). Since the anisotropic part is directly proportional
to the flow velocity, it can only vanish when there is no flow in the system.
Otherwise, both the isotropic part and the anisotropic part of the total physical
diffusion/dispersion tensor will exist in the NAPL dissolution system, no matter
whether the problem domain is rectangular or trapezoidal. This means that even
though mesh discretization error in a trapezoidal domain might cause an aniso-
tropic numerical diffusion/dispersion tensor, the computational simulation results
should converge to the physical solution, as long as the anisotropic numerical
diffusion/dispersion tensor due to mesh discretization is much smaller than the
total physical diffusion/dispersion tensor in the NAPL dissolution system.
Although it is very difficult, if not impossible, to quantitatively evaluate the
anisotropic numerical diffusion/dispersion tensor associated with mesh discreti-
zation error, it is possible to qualitatively judge its effect on the computational
simulation through comparing the simulation results with the theoretical expec-
tations, as discussed later.

In the computational simulation, the mesh discretization error decreases with the
decrease of the grid size, so that numerical diffusion/dispersion can be minimized
by choosing the grid size appropriately (Zhao et al. 2011). When the numerical
results, which are obtained from the mesh of a given grid size, agree well with the
corresponding analytical solutions and experimental results, the numerical diffu-
sion/dispersion is considered to be minimum, compared with the physical diffusion/
dispersion of the problem. To examine mesh discretization effects on the numerical
results, we have simulated a subcritical NAPL dissolution system in the trapezoidal
domain. In this case, the Zhao number used for the computational model (at the
entrance of the flow) is reduced from 1.0 to 0.01, while the dimensionless time-step
length is increased from 3.2 to 32. Figure 10.16 shows the corresponding compu-
tational simulation results. As expected theoretically (Tan and Homsy 1987), the
NAPL dissolution front converges to the arc shape, which is controlled by the
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dynamic behaviour of the subcritical NAPL dissolution system. This is clearly
evidenced in the computational simulation results. Since the numerical results have
good agreement with the related theoretical expectation for the subcritical NAPL
dissolution systems of trapezoidal domains, it can be concluded that the mesh
discretization effect is negligible in the computational simulations of subcritical

(a) (b)

(c) (d)

Fig. 10.16 The evolution of NAPL dissolution fronts in the trapezoidal domain consisting of the
fluid-saturated porous medium (Subcritical system): a h ¼ 20�;�t ¼ 320; b h ¼ 20�;�t ¼ 1600;
c h ¼ 20�;�t ¼ 3200; d h ¼ 20�;�t ¼ 4800
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NAPL dissolution systems. This means that the computational model used in this
investigation can produce reliable numerical results for simulating subcritical
NAPL dissolution systems in the trapezoidal domain consisting of a fluid-saturated
porous medium. However, to examine whether the computational model used in
this investigation is suitable for simulating the supercritical NAPL dissolution
system of a trapezoidal domain, it is necessary to estimate the mesh discretization
error of the supercritical NAPL dissolution system through using both the proposed
propagation theory of mesh discretization error and the proposed finger-amplitude
growing theory associated with the mesh discretization error in the NAPL disso-
lution system of a trapezoidal domain.

10.3.2.3 Approximate Estimation of the Mesh Discretization Error

In terms of estimating the discretization error of a numerical method, it is common
practice to compare the numerical solution with the corresponding analytical
solution (if any) or benchmark solution that is obtained using a very fine mesh
(Zhao and Steven 1996a, b, c). Unfortunately, such practice works well for sub-
critical NAPL dissolution systems, but does not work for supercritical NAPL
dissolution systems. This is because in the latter case, the related analytical
solution is not available at all. In addition, the related benchmark solution of a
supercritical NAPL dissolution system is hardly to be obtained for the following
two main reasons: (1) the numerical solution of a supercritical NAPL dissolution
system is strongly dependent on the perturbation applied to the system; and (2) any
two different meshes (i.e. a coarse mesh and a fine mesh) of a system will result in
different perturbations so that their numerical solutions lose the common ground
for comparison. To overcome this difficulty, it is necessary to find a new way to
approximately estimate the mesh discretization error of a supercritical NAPL
dissolution system in this study.

Based on the proposed finger-amplitude growing theory associated with the
mesh discretization error in the NAPL dissolution system of a trapezoidal domain,
it is possible to approximately estimate the discretization error of the system
through using Eq. (10.47) that is presented in the previous section. The specific
procedure associated with the approximate estimation of the discretization error
can be divided into the following three steps. The first step is to determine the
dimensionless growth rate of the supercritical NAPL dissolution system. This can
be done through considering the amplitudes of the fingers at two early computa-
tional simulation steps. For example, if the amplitudes of the finger are A1Finger ¼
dAe�x�t1 and A2Finger ¼ dAe�x�t2 at �t ¼ �t1 and �t ¼ �t2 respectively, then the ratio of these
two amplitudes can be expressed as follows:

R1 ¼
A2Finger

A1Finger
¼ e�xð�t2��t1Þ: ð10:57Þ
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From Eq. (10.57), the dimensionless growth rate of the supercritical NAPL
dissolution system can be obtained as follows:

�x ¼ ln R1

�t2 ��t1
: ð10:58Þ

The second step is to determine the amplitude ratio of the equivalent initial
perturbation (due to the discretization error) to the total initial perturbation in the
supercritical NAPL dissolution system. In this situation, the discretization error is
viewed as an equivalent initial perturbation, which can be determined from the
computational simulation results of a supercritical NAPL dissolution system in
which no any other initial perturbation is applied. On the other hand, the total
initial perturbation, which is the sum of the equivalent initial perturbation (due to
the discretization error) and the applied initial perturbation (due to some physical
considerations), can be determined from the computational simulation results of a
supercritical NAPL dissolution system in which an initial perturbation (due to
some physical considerations) is applied. If the amplitudes of the fingers are
A1Finger ¼ dA1e�x�t1 (at �t ¼ �t1) for the supercritical NAPL dissolution system without
any other initial perturbation applied and A2Finger ¼ dA2e�x�t2 (at �t ¼ �t2) for the
supercritical NAPL dissolution system with an initial perturbation applied, then
the amplitude ratio of the equivalent initial perturbation (due to the discretization
error) to the total initial perturbation can be evaluated under the condition of
A1Finger ¼ A2Finger . This can result in the following formula:

R2 ¼
dA1

dA2
¼ e�xð�t2��t1Þ; ð10:59Þ

where dA1 is the amplitude of the equivalent initial perturbation due to the dis-
cretization error; dA2 is the amplitude of the total initial perturbation.

The third step is to determine the amplitude of the equivalent initial pertur-
bation due to the discretization error in the supercritical NAPL dissolution system.
Since the initially applied perturbation is known, it can be represented by dAinitial,
so that dA2 ¼ dAinitial þ dA1. With consideration of Eq. (10.59), this leads to the
following formula for evaluating dA1:

dA1 ¼
R2

1� R2
dAinitial: ð10:60Þ

Based on the proposed procedure above, we have rerun the previously-used
computational model of the supercritical NAPL dissolution system in the trape-
zoidal domain by setting the applied initial perturbation to be zero. Figure 10.17
shows the related computational simulation results, from which it can be observed
that due to the dynamic behaviour of the supercritical NAPL dissolution system,
the fingering phenomenon indeed takes place in the trapezoidal domain. This
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indicates that the mesh discretization error, although it may be very small, can
serve as a kind of small perturbation to trigger the fingering growth during the
computational simulation of a supercritical NAPL dissolution system in the
trapezoidal domain consisting of a fluid-saturated porous medium.

(a) (b)

(c)
(d)

Fig. 10.17 The evolution of NAPL dissolution fronts in the trapezoidal domain consisting of
fluid-saturated porous medium (Without applying initial perturbation): a h ¼ 20�;�t ¼ 160;
b h ¼ 20�;�t ¼ 320; c h ¼ 20�;�t ¼ 640; d h ¼ 20�;�t ¼ 1600
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With two sets of computational simulation results of the supercritical NAPL
dissolution system at hand, namely one obtained from the simulation with
including an initial small perturbation and the other obtained from the simulation
without including an initial small perturbation, it is possible to estimate the
amplitude of the equivalent initial perturbation due to the discretization error in
the supercritical NAPL dissolution system. As shown in Fig. 10.18, the ratio of the
finger amplitude at �t ¼ 160 to that at �t ¼ 128 is equal to about 2.0 when the initial
small perturbation, which has an amplitude of 0.002 (i.e. 0.01 Sn0 as mentioned
previously), is applied to the computational model of the NAPL dissolution sys-
tem. This results in a dimensionless growth rate of 0.02166 (from Eq. (10.58)) for
the NAPL dissolution system. On the other hand, the finger amplitude at �t ¼ 224
when the initial small perturbation is not applied to the computational model is
almost equal to that at �t ¼ 160 when the initial small perturbation is applied to the
computational model. From Eq. (10.59), this leads to a value of about 0.25 for R2.
Finally, substituting the value of R2 into Eq. (10.60) yields a value of 0.00067 for
the amplitude of the equivalent initial perturbation (i.e. dA1) due to the discreti-
zation error. Since dA1 is smaller than 0.002 (i.e. dAinitial = 0.002), it is demon-
strated that the effect of the total discretization error of the computational model is
negligible in the computational simulations, compared with that of the initial small
perturbation applied to the computational model. This also demonstrated that the
proposed finger-amplitude growing theory associated with the mesh discretization
error in the NAPL dissolution system of a trapezoidal domain in this study is
useful for quantitatively assessing the correctness of computational simulations of
NAPL dissolution-front instability problems in trapezoidal domains. If the
amplitude of the equivalent initial perturbation due to the numerical discretization
error is significantly smaller than the amplitude of the fingers generated by the
numerical simulations of interest in the same geometry of the same finite element
mesh, then one may safely neglect the numerical discretization effects on the
numerical simulations of supercritical NAPL dissolution systems.

In summary, the propagation theory of the mesh discretization error associated
with a NAPL dissolution system is first presented for a rectangular domain and
then extended to a trapezoidal domain. This leads to the establishment of the
finger-amplitude growing theory that is associated with both the corner effect and
the mesh discretization effect in the NAPL dissolution systems of trapezoidal
domains. This theory can be used to make the approximate error estimation of the
corresponding computational simulation results. The related theoretical analysis
and numerical results have demonstrated that: (1) both the corner effect and the
mesh discretization effect can be quantitatively viewed as a kind of small per-
turbation so that they can have some considerable effects on the computational
results of supercritical NAPL dissolution systems; (2) the proposed finger-ampli-
tude growing theory associated with the corner effect at the entrance of a trape-
zoidal domain is useful for correctly explaining why the finger at either the top or
the bottom boundary grows much faster than that within the interior of the trap-
ezoidal domain; (3) the proposed finger-amplitude growing theory associated with
the mesh discretization error in the NAPL dissolution system of a trapezoidal
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(a)

(b)

( o20=θ , 128=t )  ( o20=θ , 160=t ) 

(With applying initial perturbation, 160=t ) (Without applying initial perturbation, 224=t ) 

Fig. 10.18 Determination of the growth rate and equivalent initial perturbation in the
supercritical NAPL dissolution system: a Determination of the growth rate; b Determination
of the equivalent initial perturbation amplitude
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domain can be used for quantitatively assessing the correctness of computational
simulations of NAPL dissolution-front instability problems in trapezoidal
domains, so that we can ensure that the computational simulation results are
controlled by the physics of the NAPL dissolution system, rather than by the
numerical artifacts.
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