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A Petri-Net-Based Framework for Biomodel
Engineering
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Abstract Petri nets provide a unifying and versatile framework for the synthesis
and engineering of computational models of biochemical reaction networks and of
gene regulatory networks. Starting with the basic definitions, we provide an intro-
duction into the different classes of Petri nets that reinterpret a Petri net graph as
a qualitative, stochastic, continuous, or hybrid model. Static and dynamic analysis
in addition to simulative model checking provide a rich choice of methods for the
analysis of the structure and dynamic behavior of Petri net models. Coloring of Petri
nets of all classes is powerful for multiscale modeling and for the representation of
location and space in reaction networks since it combines the concept of Petri nets
with the computational mightiness of a programming language. In the context of
the Petri net framework, we provide two most recently developed approaches to
biomodel engineering, the database-assisted automatic composition and modifica-
tion of Petri nets with the help of reusable, metadata-containing modules, and the
automatic reconstruction of networks based on time series data sets. With all these
features the framework provides multiple options for biomodel engineering in the
context of systems and synthetic biology.
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6.1 Introduction

Petri nets are mathematical structures that form the core of a versatile framework for
the modeling, analysis, and simulation of (bio-)chemical networks and for the engi-
neering of biomodels. In this chapter, we will provide a comprehensive overview of
the different classes of Petri nets and review techniques for their static and dynamic
analysis. We will then explain some advanced Petri-net-based techniques for mod-
eling and engineering of biomodels: colored Petri net modeling, modular modeling,
and automatic network reconstruction. As an introduction to this chapter, we will
now provide a brief contextual overview on these topics and show how the different
components contribute to an integrative framework for biomodel engineering. At
the end of this chapter, we briefly introduce the widely used Petri net tools Snoopy,
Charlie, and MARCIE, which were used for all applications mentioned in this chap-
ter.

The basic idea of Petri nets has been introduced in the 1960s by Carl Adam
Petri [68]. They are directed bipartite multigraphs that have been widely studied.
Directed bipartite graphs consist of two disjoint sets of nodes U and V , where a
directed edge connects a node in U to one in V , or vice versa. Directed bipar-
tite multigraphs like Petri nets allow two nodes to be connected by multiple arcs.
Upon appropriate interpretation of the two types of nodes, places, and transitions,
Petri nets work as a formal modeling language for causally coupled processes that
may proceed concurrently as it is typically the case in (bio-)chemical reaction net-
works.

The first application of Petri nets to biological processes was published 1993 by
Reddy and coworkers [71]. Up to now there are numerous publications illustrat-
ing the versatility of Petri nets and their use for metabolic networks [52, 53, 83],
gene regulatory networks [14, 15], and signaling networks [11, 16, 37, 73], as
well as for the integration of different types of biological networks [76]. In addi-
tion, there are some review papers about the use of Petri nets in systems biology
like [69].

The semantics of Petri nets supports the direct and natural representation of
the kinetics of chemical reactions and even of complex mechanisms of molec-
ular interactions as they occur within a living cell. In quantitative Petri nets,
the kinetics are implemented via the firing rate equations of each transition.
They can be defined as the mass action law of chemical reactions or may fol-
low more complex kinetic laws like, for example, the Michaelis–Menten kinet-
ics for enzymatic reactions [64] or the Hill kinetics to represent cooperativity
[48] in continuous, stochastic, or hybrid scenarios. In describing complex molec-
ular mechanisms, the operational semantics of Petri nets is particularly useful
and easy to be used for obtaining realistic models and accordingly realistic sim-
ulations. Operational semantics means that the Petri net, here describing molec-
ular mechanisms, is equivalent to a protocol, which is immediately executable
on an abstract machine or on a real computer [27]. In this sense, molecular
mechanisms encoded as a Petri net can be directly executed on a computer, and
all possibly emerging combinatoric or nonlinear effects will be revealed accord-
ingly.
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Structural analysis of a Petri allows one to explore the behavior of the model by
employing appropriate tools. Structural analysis provides important options in addi-
tion to model checking. It is also a basis of certain advanced biomodel engineering
techniques like algorithmic mutation of models [10].

The graphical display of Petri nets is intuitive and similar to the way biochemists
usually draw their molecular reaction schemes. By using an appropriate tool like
Snoopy [44, 63], a given Petri net graph can be interpreted automatically as qual-
itative, continuous, stochastic, or hybrid model and directly run by one of the
built-in simulators. Accordingly, a Petri net is an executable graphical represen-
tation of a computational model. The WYSIWYG representation is of considerable
benefit since it enables mathematically less trained experimentalists to assess the
correctness and validity of a model. The Petri net editor Snoopy supports more-
over hierarchy and logical nodes, technical add-ons to the core concept of Petri
nets that facilitate the modeling and visualization of large networks, as we will
show.

The colored extension of low-level Petri nets, also supported by Snoopy [54],
combines the strengths of Petri nets with the expressive power and mightiness of
programming languages. Colored Petri nets are especially useful for the genera-
tion of multiscale models, but also for other scenarios where large populations of
molecules or populations of cells are considered in time and space. Unfolding algo-
rithms translate colored Petri nets into low-level Petri nets. Thus, colored Petri nets
can enjoy the low-level Petri net analysis techniques as well.

Petri nets provide an ideal framework for the engineering of biomodels; see
Fig. 1. There are two fundamental concepts of creating a biomodel: the forward
and the reverse engineering approach. Forward engineering, also called bottom-up
modeling, starts with biological knowledge about molecules and molecular inter-
action mechanisms, which is translated into a biomodel [51], a Petri net in our
case. Most common are coherent, monolithic models. Alternatively, forward en-
gineering may be performed by designing small Petri nets in the form of mod-
ules that allow the automatic composition for obtaining functional, executable Petri
nets [9]. These modules are more than just Petri nets. They may contain meta-
data documenting knowledge and encoding functionally relevant biological infor-
mation of the Petri net nodes [9]. Based on the modular organization and on the
metadata, these modules can be mutated through appropriate algorithms to mimic
genetic mutational analysis [10], which is quite common in wet biological re-
search.

The alternative way is reverse engineering, also called top-down modeling [51].
Here, experimental data sets are used to directly infer structure and dynamic be-
havior of a biomodel. Reverse engineered models may contain nodes that represent
experimentally evident comprehensive states of the system without necessarily re-
solving the molecular details as it is usually the case in forward engineered models.
One reverse engineering approach to be highlighted in this chapter is automatic net-
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Fig. 1 Integrative framework for biomodel engineering based on Petri nets. Petri net models can
be generated in various ways, manually or automatically, based on known molecular mechanisms
(forward engineering; bottom-up) or solely on data sets (reverse engineering; top-down) to reflect
the true or the desired behavior of a system of interest. Typically modeling is an iterative process
that includes the validation of the network against a given or pre-defined behavior and its modifi-
cation to meet the requirements. Petri net modules may be used as building blocks with validated
properties. Automatic network reconstruction is the name of a method for the reverse engineering
of Petri nets based on discrete optimization [62], which is described in this chapter. Note that there
are numerous other methods for the reverse engineering of molecular or gene regulatory networks
(for reviews, see [38, 60, 67, 78, 81, 82])

work reconstruction. This method converts a time series data set into a complete
set of Petri nets that all are able to reproduce this data set, eliminating any bias
introduced by the user. Experimental data sets can be enriched or replaced by the
description of how the system is wanted to behave. Networks modified or reengi-
neered to meet certain demands can be obtained through reverse engineering or
mutation algorithms [10]; see Fig. 1.

No matter how a biomodel was generated (forward or reverse) or modified, its
behavior should be explored or validated by simulation or model checking. Accord-
ingly, biomodel engineering typically is an iterative approach, see Fig. 1.

Before explaining in detail how Petri nets support the various options of creating
and simulating biomodels, we will give a brief overview of the different ways of how
biomodels in terms of (bio-)chemical reaction networks are usually represented.
As a simple, yet non-trivial small network, let us consider a simplified version of
the repressilator, here called simplified repressilator, which will be used as running
example throughout the chapter; see Fig. 2.

Simplified Repressilator In general, the repressilator is a cyclic negative feed-
back loop composed of three repressor genes and of their corresponding promo-
tors [25]. Each of the three interconnected transcriptional repressor systems (TRSs)
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Fig. 2 Schematic plot of the simplified repressilator. The repressilator is a cyclic negative-feed-
back loop composed of three repressor proteins and their corresponding genes. Each repressor
protein inhibits the transcription of its target gene [25] by reversibly binding to its specific binding
site on the DNA. The simplified repressilator shown in this figure is not more than a toy model
inspired by the repressilator originally implemented in E. coli as a synthetic circuit [25]. The sim-
plified repressilator neglects the formation of the mRNA and allows the degradation of a repressor
protein while it is bound to its DNA target to inhibit the transcription of the downstream gene. The
model is used as a running example throughout this chapter. Abbreviation: TRS—transcriptional
repressor system

consists of the gene encoding the mRNA from which the respective repressor pro-
tein is translated (synthesized). Each repressor protein reversibly binds to its spe-
cific repressor binding site. The bound repressor protein prevents the transcription
of the gene it controls. For the simplified repressilator, we assume that each gene di-
rectly catalyzes the synthesis of the repressor protein it encodes. We neglect the
mRNA intermediates and the explicit processes of transcription and translation;
see Fig. 2. However, we explicitly consider the binding and unbinding of the re-
pressor proteins to their target promotor sites and the degradation of the repres-
sor proteins in the free and bound forms [59]. Note that the simplified repressila-
tor is just a toy network to be used for demonstration purposes and not meant as
a computational model of the original repressilator that has been implemented in
E. coli [25].

There are different standard ways of representing reaction or signaling networks
like the simplified repressilator shown in Fig. 2:

• List (set of stoichiometric reactions in a reaction/species centric form).
• Hypergraph (graph where arcs connect to any number of nodes).
• Bipartite graph (graph consisting of arcs and two types of nodes, where nodes of

the same type cannot be connected, e.g. Petri nets).
• Incidence matrix (equivalent to stoichiometric matrix).
• ODE (ordinary differential equation).

In Fig. 3, we illustrate these representation styles by taking one TRS of the simpli-
fied repressilator as example.
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Box 1: Petri nets in the context of major alternative formalisms used in bi-
ological modeling and simulation

Determinism of modeling languages
Model type BN (col)PN ODE SDE

Deterministic 0/1 + + − −
N0 (+) + − −
R

+
0 − + + −

Stochastic 0/1 + + − −
N0 (+) + − −
R

+
0 − − − +

Hybrid 0/1 − + − −
N0 − + − −
R

+
0 − + − −

Areas of application
BN PN ODE SDE

Metabolism − + + −
Signaling + + + +
Gene Regulation + + + +
Populations − + + (+)

To compare common frameworks for modeling and simulation of molecular
regulatory networks, one may distinguish between computational and math-
ematical models [27]. Starting from a network defined by the causal (molec-
ular) interactions of its components, computational and mathematical models
are obtained in alternative ways. Mathematical models describe with the help
of equations how the network and its components are expected to quantita-
tively behave, usually as functions of time. The mechanisms per se are not
necessarily captured by the mathematical semantics, and the mathematical
model of the molecular mechanisms is in praxi often based on certain as-
sumptions or simplifications as the result of a considerable degree of abstrac-
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tion. Simulation results are then usually obtained by numerically solving the
system of ordinary or stochastic differential equations (ODEs, SDEs). In con-
trast, computational models like Boolean networks (BN), cellular automata
(CA), Petri nets (PN), or process algebras (PA) are obtained by translating
the interaction mechanisms with the help of an operational semantics. Com-
putational models can then be directly executed on an abstract machine or
on a real computer in order to perform a simulation. Alternatively, compu-
tational models may be translated into differential equations which are then
solved numerically. In other words, mathematical models are primarily ob-
tained by interpretation and computational models primarily by translation of
the mechanisms of causal interaction of the physical (molecular) components
of the network. It depends on the class of computational model how direct this
translation can be. Petri nets and process algebras allow the most direct repre-
sentation of simple and complex molecular mechanisms, whereas translation
into Boolean networks or cellular automata involves simplifications and ab-
stractions. The way of how to obtain a model matters when nonlinear effects
determine the dynamic behavior of a network. Nonlinear effects are caused
by complex kinetic interactions of network components, which are prevalent
in molecular biology. In this case, translation of the molecular mechanisms
is straightforward in predicting the dynamic behavior and in implicitly rep-
resenting functionally relevant combinatoric effects that may occur e.g. in
clusters of interacting molecules. For obtaining deterministic, stochastic, and
hybrid models, Petri nets are the most versatile framework in terms of allow-
ing discrete and continuous approaches. In contrast to the other frameworks,
Petri nets allow one to avoid abstractions as much as possible. The graphical
representation of a Petri net representing a mechanism of interest remains the
same no matter whether the Petri net is executed as deterministic, stochastic,
hybrid, discrete, or continuous model.

6.2 Petri Net Framework

The Petri net framework consists of four Petri net classes according to the four mod-
eling paradigms (qualitative, continuous, stochastic, and hybrid; see Fig. 4), which
we will now explain in more detail. For formal definitions of the different classes of
Petri nets and standard Petri net notation, see [4, 41] and references therein.

6.2.1 Qualitative Paradigm

Qualitative Petri nets QPN provide the basis for the definition of all other classes of
Petri nets. With QPN describing the qualitative structure of a reaction network or
gene regulatory network, one can apply different modeling paradigms (continuous,
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Fig. 3 Different representation styles of the simplified repressilator. Here, we show one TRS of
the simplified repressilator with (i, j) = {(1,3), (2,1), (3,2)}. The simplified repressilator is rep-
resented as (a) list of reactions, (b) incidence matrix, (c) ODEs, (d) hypergraph, and (f) bipartite
graph (e.g. Petri net). As in [59], we apply mass action and assume that the kinetic constants
are the same for each TRS. For simulation purposes, we set the parameters to g = 0.05 s−1,
d = dr = 0.003 s−1, α0 = 0.5 s−1 and α1 = 0.01 s−1 [59]. Abbreviations: ei—free repressor bind-
ing site, ri—bound repressor binding site, Xi – free repressor protein

stochastic, hybrid) by switching the Petri net class. QPN are referred to as “Petri
nets” throughout this section.

Definition 1 (Petri net) A Petri net is a quadruple N = (P,T ,f,m0), where:

• P,T are finite, non-empty, disjoint sets. P is the set of places, and T is the set of
transitions.

• f : (P × T ) ∪ (T × P) → N0 defines the set of directed arcs, weighted by non-
negative integer values.

• m0 : P → N0 gives the initial marking.

6.2.1.1 Elements

A Petri net is a finite bipartite directed multigraph consisting of two types of nodes,
places (drawn as circles) and transitions (drawn as rectangles), that are intercon-
nected by weighted directed arcs. Places are exclusively connected to transitions
and vice versa. Depending on the definable properties of a Petri net, a place can be
empty or marked by one or more tokens. Upon firing, tokens move from transition’s
pre-places to its post-places [66]; see Fig. 5.

Places (= circles) refer to conditions or entities. In a biological context, places
may represent populations, species, organisms, multicellular complexes, single
cells, proteins (enzymes, receptors, transporters, etc.), other molecules, or ions. But
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Fig. 4 Conceptual framework. The standard low-level Petri net formalism offers four classes,
qualitative Petri nets (QPN ), stochastic Petri nets (SPN ), continuous Petri nets (CPN ), and
generalized hybrid Petri nets (GHPN ) that differ in their type of state space and their relation
with respect to time. Each Petri net class can be derived from one of the others by abstraction,
extension, or approximation. All Petri net classes can be projected to the high-level colored Petri
net framework. Colored Petri nets can be obtained by folding of the corresponding low-level Petri
net, and low-level Petri nets can be obtained through unfolding colored Petri nets. Taken from [58]

places can also represent physical variables like temperature, pH-value, or mem-
brane potential. Only places carry tokens; see Fig. 5(a), (b).

Transitions (= squares) describe state shifts, system events, or activities in a net-
work. In a biological context, transitions refer to (bio-)chemical reactions, molec-
ular interactions, or conformational changes. Places giving input to (getting output
from) a transition are called pre-places •t (post-places t•). Pre-transitions •p and
post-transitions p• of a place are accordingly defined. Transitions consume tokens
from their pre-places and produce tokens on their post-places according to the arc
weights; see Fig. 5(a), (d).

Directed arcs (= arrows) specify the causal relationships between transitions
and places. Thus, they indicate the effect of firing a transitions on the local token
distribution. Arcs define the direction in which (bio-)chemical reactions take place.
Arcs connect only nodes of different types; see Fig. 5(c). Each arc has an integer
arc weight greater than zero. The arc weight sets the number of tokens that are
consumed or produced upon firing of a transition and represents the stoichiometry
of a (bio-)chemical reaction.

Tokens (= dots or numbers within a place) are variable elements of a Petri net
and represent the discrete value of a condition or an entity. Tokens are consumed
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Fig. 5 Petri net formalism. (a) Petri nets consist of places, transitions, arcs, and tokens. (b) Just
places are allowed to carry tokens. (c) Two nodes of the same type cannot be connected with each
other. (d) The Petri net shown here represents the chemical reaction of the formation of water.
Oxygen atoms (molecules) are shown in red and hydrogen atoms (molecules) are shown in grey.
The arc weights indicate the stoichiometry of the reaction. A transition is enabled and may fire if
its pre-places are sufficiently marked by tokens

and produced by firing transitions; see Fig. 5(a), (d). In (bio-)chemical reaction net-
works, tokens may refer to a concentration level or to a discrete number of individ-
uals of a species, for example, proteins, ions, organic, and inorganic molecules. To-
kens may also represent the value of physical variables like temperature, pH value,
or membrane voltage according to the definition of places they mark. A particular
arrangement of tokens over a net is called the marking m. For a given marking m of
the Petri net, m(p) refers to the number of tokens in a given place p.

6.2.1.2 Semantics

The Petri net semantics describes the behavior of the net, which is defined by the
firing rule consisting of a precondition and the firing itself; see also Definition 2
for a formal description. The firing of a transition depends on the marking of its
pre-places. A transition is enabled and may fire if all pre-places are sufficiently
marked; see also Fig. 5(b). If a transition has no pre-places, it is always enabled
to fire. The firing of a transition moves tokens from its pre-places to post-places
and accordingly changes the number of tokens in these places. As a result, some
transitions may not be enabled any more, whereas others get enabled. In the case
that more than one transition is enabled in a given marking, only one of the enabled
transitions is allowed to fire. Compared to boolean networks, transitions in Petri net
fire asynchronously.

Definition 2 (Firing rule) Let N = (P,T ,f,m0) be a Petri net:

• A transition is enabled in marking m, written as m[t〉, if ∀p ∈ •t : m(p) ≥ f (p, t),
else disabled.
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• A transition t , which is enabled in m, may fire.
• When t in m fires, a new marking m′ is reached, written as m[t〉m′, with ∀p ∈ P :

m′(p) = m(p) − f (p, t) + f (t,p).
• The firing happens atomically and does not consume any time.

6.2.1.3 State Space

The behavior of a net emerges from the repeated firing of transitions. All ordered
firing sequences define the behavior of the Petri net model. The set of all mark-
ings of the Petri net reachable from the initial marking m0 defines the state space;
see Fig. 4. The sequential individual firing of enabled transitions generates a possi-
ble path through the discrete state space. The two most common representations of
the discrete state space and its transition relation are the labeled transitions system
(LTS), also known as reachability graph, and the finite prefix of maximal branch-
ing process (PO prefix for short). The LTS describes the behavior of the Petri net
by all (totally ordered) interleaving sequences, whereas the PO prefix describes the
network behavior through all partially ordered sequences of transition firing events.
Both kinds of representations of the discrete state space can be used for analysis
purposes, for example, model checking, see Sect. 6.3.2.

Figure 4 shows that QPN are characterized to be time-free, meaning there is
no time associated with transitions or sojourn time of tokens. Thus, the discrete
state space represents all possible markings of a net that can sequentially occur
independently of the time.

Simplified Repressilator The complete model of the simplified repressilator with
degradation of the bound repressor protein (the repressor protein bound to its spe-
cific regulatory binding site on the DNA), which we are using throughout this chap-
ter, is given in Fig. 6(a), as well as the kinetic rate functions and constants that we
use further to obtain the quantitative behavior through simulations.

Every QPN model, for example, the model of the simplified repressilator in
Fig. 6(a), can be extended to a quantitative model, stochastic, continuous, or hybrid
by adding kinetic rates to the transitions. Adding kinetic rates does not induce any
changes in the qualitative network structure. Since the qualitative network structure
is maintained in all modeling paradigms, the same powerful analysis techniques can
be applied to all Petri net classes; see Sect. 6.3. In the following sections, we explain
the realization of the quantitative modeling paradigms in Petri nets.

6.2.2 Continuous Paradigm

A widely used approach in the modeling and simulation of (bio-)chemical reaction
networks is to represent a system and its behavior as a continuous model in the form
of a set of ODEs. Figure 4 shows that a time-dependent continuous Petri net (CPN )
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Fig. 6 Petri net of the simplified repressilator. (a) depicts the complete Petri net model of the
simplified repressilator consisting of three TRSs (compare also Figs. 2 and 3) with rate functions
and parameters given in (b)

Fig. 7 Continuous simulation of the simplified repressilator. The diagram illustrates the results of
the continuous simulation and shows copy numbers of the free repressor proteins Xi (repressor
protein molecules currently not bound to the DNA) over time. The continuous simulation was
performed with one copy of each of the three genes

can be derived from the time-free QPN by adding deterministic firing rates; see
[41] for a formal definition. The marking of a place is now represented by continu-
ous values, rather than by the integer number of tokens as in the case of QPN . The
semantics of CPN is described through the corresponding set of ODEs, which is
encoded by the network structure and the added deterministic firing rates. Thus, the
firing of the transitions is continuous itself.

Since a CPN is a continuous and deterministic model, each simulation run gives
the same result for a given CPN .

Simplified Repressilator The continuous behavior of the simplified repressilator
given in Fig. 6 yields a sustained oscillation of the three repressor proteins with
alternating peaks; see Fig. 7.
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Further Reading CPN directly represent the molecular kinetic mechanisms
within a biochemical reaction network in the form of an operational semantics and
at the same time uniquely specify an ODE system that mathematically describes
the dynamic behavior of the system [77]. Vice versa, the extraction of the reaction
network underlying a given ODE system is unique only under certain conditions,
see [77].

6.2.3 Stochastic Paradigm

Since (bio-)chemical reactions are inherently stochastic at the molecular level, the
application of the stochastic paradigm is most natural. The network structure and the
discrete marking of QPN and thus the discrete state space are maintained in a quan-
titative time-depended stochastic Petri net (SPN ); see Fig. 4 and [41] for a formal
definition. In SPN , transitions become enabled if their pre-places are sufficiently
marked. The time dependency is added by assigning exponentially distributed firing
rates (resulting in waiting times) to the transitions. An enabled transition will only
fire if its current specific waiting time has elapsed. The firing event as such does
not consume any time. Thus, all reactions defined in the network structure of an
SPN occur with a likelihood, depending on the probability distribution for each
given transition. Continuous-time Markov chains (CTMCs) describe the semantics
of an SPN . Each simulation run yields one out of many possible traces through
the CTMC. The stochastic simulation of the token flow can be computed by, for
example, Gillespie’s direct method [33].

Simplified Repressilator In Fig. 8, we show the results of the stochastic sim-
ulation of the simplified repressilator given in Fig. 6 for different initial settings
concerning the simulation runs and number of copies per gene. The continuous sim-
ulation in Fig. 7 can be approximated by using a high number of copies per gene
in the SPN . (Many copies of a gene within a bacterial cell can be obtained by
transforming the cell with a multi-copy plasmid [35].) Performing the simulation
with only a single copy of each gene still results in an oscillation superimposed by
random fluctuations. Averaging the results over several simulation runs reduces the
amplitude of the oscillation as random fluctuations superimpose.

Further Reading The modeling of (bio-)chemical networks by SPN was first
proposed in [34], where the authors applied SPN to a gene regulatory network. In
the following years, SPN have been applied to several biological case studies; see,
for example, [18, 61, 74, 75, 80].

6.2.4 Hybrid Paradigm

In (bio-)chemical reaction networks, especially in signaling or genetic networks,
reacting molecules may be of highly different copy numbers and react on highly
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Fig. 8 Stochastic simulation of the simplified repressilator. The diagrams illustrate the results of
stochastic simulations and show copy numbers of the free repressor proteins Xi over time. The
number of gene copies and the number of simulation runs were varied. In (a) and (b), we used
1000 copies of each gene to approximate the continuous behavior. The stochastic simulation in
(c) and (d) is performed with only one token according to situations where a single cell would
carry only one copy of the gene. In (b) and (d), we averaged the stochastic simulation results over
1000 runs

different time scales, which ultimately results in a stiff system [50]. Simulating these
networks stochastically would provide exact results, but the high copy number of
components makes the simulation computationally expensive.

SPN are well suited to capture the naturally occurring fluctuations and the dis-
creteness of molecular event, when only a few number of molecules are turned over
per time interval. CPN are poor in modeling fluctuations and discreteness, but de-
terministic ODE solvers are computationally efficient in simulating reactions that
involve a high number of molecules with molecule numbers encoded in the form of
continuous concentration values. Whereas stochastic simulation is more accurate,
continuous simulation is much faster. Certainly, both modeling paradigms comple-
ment each other.

Generalized hybrid Petri nets (GHPN ) integrate the formalism and semantics
of SPN and CPN . Thus, GHPN are tailored to model and simulate systems,
where species of highly different copy numbers react with each other. A GHPN
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Fig. 9 Hybrid simulation of
the simplified repressilator.
The diagram illustrates the
results of the hybrid
simulation with dynamic
partitioning and shows the
copy numbers of the free
repressor protein Xi versus
time. The hybrid simulation
was performed with one copy
of each gene

may contain stochastic and continuous places, as well as stochastic and continu-
ous transitions. Stochastic places contain a discrete number of tokens, whereas the
marking of continuous places is given by a real number. Arcs indicating mass flow
link stochastic transitions to stochastic or continuous places. However, continuous
transitions are exclusively linked to continuous places by standard arcs. Continu-
ous transitions can also depend on discrete places by special arcs, which however
are introduced later in this chapter. The state space of a GHPN is the combination
of both the discrete and continuous state spaces; see Fig. 4. A formal definition of
GHPN and their semantics can be found in references [46, 47].

In GHPN , the so-called partitioning of the net in stochastic and continuous parts
may be static as set by user. Since the numerical values of the marking of places
may drastically change during the simulation, static partitioning may not be always
appropriate and efficient. Dynamic partitioning accounts for the drastic variation
in marking and firing rates during a GHPN simulation. Here, an algorithm deter-
mines after certain time periods if a transition has to be considered as continuous or
stochastic depending on a lower and upper threshold for the firing rate. If one tran-
sition violates the partitioning criteria, repartitioning of the net takes place. With the
help of dynamic partitioning, it is possible to increase the accuracy and speed of a
hybrid simulation [46].

Simplified Repressilator For completeness, we show in Fig. 9 the hybrid simu-
lation of the simplified repressilator given in Fig. 6 with dynamic partitioning. The
oscillation can still be obtained with dynamic partitioning.

Further Reading Case studies exemplifying the application of GHPN to bio-
logical system, for example, T7-phage, eukaryotic cell cycle, and circadian clock,
as well as further references on hybrid modeling can be found in [46].

6.2.5 Extensions and Useful Modeling Features

For the clear graphical structuring and neat arrangement of a Petri net, logical nodes
and coarse nodes are especially useful for the modeling of larger networks. Both
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Fig. 10 Logical nodes. The figure shows the enzymatic reaction A + E ↔ AE → E + B , where
E is the enzyme, and A and B are substrate and product, respectively. With the help of logical
nodes, the coherent Petri net model of this enzymatic reaction is displayed to show the individual
reactions that link the components (a) or the individual components that link the reactions (b). Due
to the declarations of the nodes shaded in grey as logical nodes, (a) and (b) show the same coherent
Petri net model of the reaction sequence A + E ↔ AE → E + B . Execution in Snoopy gives the
same results for (a) and (b). The figure was redrawn from [63]

types of nodes do not change the expressiveness of a Petri net. Although the graph-
ical appearance of a model will be different when logical or coarse nodes are used,
the network topology in the different representations is the same.

• Logical nodes (= grey-shaded nodes) can be used to replace a single node with a
large number of connections to other nodes by multiple graphical copies. Logical
nodes are useful when the model structure due to a high number of crossing arcs
becomes confusing. This can occur, when a component, for example, ATP, is
involved in many different reactions. The ordinary process centered view of a
Petri net graph can be changed to a reaction centered view using logical places or
a component centered view using logical transitions; see Fig. 10.

• Coarse nodes (= boxed nodes) allow one to hierarchically structure a network.
Each coarse node in a network induces a new panel containing a subnet. Coarse
nodes can be arbitrarily nested. Composing a Petri net by using coarse places
and coarse transitions helps to structure the network into subnets according to
its functional subsystems or to represent natural hierarchical organization of a
biological system. Coarse places are bordered by places and coarse transitions
are bordered by transitions, see Fig. 11. Coarse nodes may also exist in isolation,
but two coarse nodes cannot be directly linked by arcs.

Furthermore, advanced arc types have been introduced. Read arcs and inhibitory
arcs, for example, can be used to connect places with transitions, but not vice versa.

• Read arc (= edge with filled dot). If a place p is connected with a transition t

via a read arc, the transition t is enabled if place p and all other pre-places of
transition t are sufficiently marked. By firing transition t , the amount of tokens
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Fig. 11 Coarse nodes. Coarse nodes allow the refinement of (a) transitions or (b) places by a
detailed subnets on a deeper hierarchical level. The introduced subnets may be of arbitrary com-
plexity

Fig. 12 Read arc and inhibitory arc. (a) Read arc: Transition t1 is enabled if places A and B are
sufficiently marked. After firing, tokens are deleted from place B, but not from place A, which is
connected with transition t1 by a read arc. (b) Inhibitory arc: Transition t1 is enabled if place B is
sufficiently marked and place A, which is connected with transition t1 by an inhibitory arc, is not
sufficiently marked. After firing tokens are deleted from place B, but not from A

on place p is not changed; see Fig. 12(a). Read arcs are equivalent to two opposed
standard arcs.

• Inhibitory arc (= edge with empty dot). If a place p is connected with a transi-
tion by an inhibitory arc, the transition t is enabled if place p is not sufficiently
marked, meaning that the amount of tokens must be less than the respective arc
weight, and if all other pre-places of transition t are sufficiently marked; see
Fig. 12(b). Tokens are not deleted from the place p if the transition t fires. In-
hibitory arcs enhance the expressiveness of a Petri net and turn Petri nets into a
Turing complete (computationally universal) language.

More extensions of Petri nets can be found in references [6] and [63].
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Fig. 13 Alternative representations of the simplified repressilator. In (a) logical places and in
(b) logical transitions are used to split the Petri net model of the simplified repressilator as shown
in Fig. 6 into subnets. Each subnet corresponds to one of three TRS (TRS1 to TRS3, see Fig. 2).
While the subnets are graphically separated, they are still connected through logical nodes shown
in grey. (c) shows how to encapsulate the two states of each repressor binding site of the genes into
a coarse place. In (d) all reactions that are responsible for the regulation of each gene are given
encapsulated by a coarse transition

Simplified Repressilator By using logical nodes and coarse nodes, the visual-
ization of the simplified repressilator model can be changed without changing the
structure of the underlying Petri net; see Fig. 13. The double arcs in Fig. 6 can be
replaced by a read arc. Inhibitory arcs are not specifically useful for the simplified
repressilator model, without drastically changing its structure.
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Table 1 Analysis techniques

Static analysis
(no state space construction)

Dynamic analysis
(state space construction)

Methods

• graph theory
• linear algebra
• linear programming
• combinatorics
• etc.

• analytical state space generation
• simulative state space generation
• model checking (temporal logics)
• search algorithms
• etc.

Properties

• graph properties
• structural features (T -/P -invariants, traps,
siphons)
• general behavioral properties

• general behavioral properties
• user-defined behavioral properties
• paths

︸ ︷︷ ︸ ︸ ︷︷ ︸

primary consistency checks customized in-depth analysis

6.3 Analysis Techniques

The Petri net community offers a rich body of powerful techniques and tools for
analysis purposes, which apply standard and well-established mathematical ap-
proaches like graph theory, linear algebra, combinatorics, state space construction,
model checking based on temporal logic, etc. (see Table 1). Some of those anal-
ysis techniques, so-called static analysis techniques consider the qualitative graph
structure. Since the structure of a Petri net is maintained in all Petri net classes, the
analysis results are valid for QPN , as well as for SPN , CPN , and HPN . The
dynamic analysis techniques are based on the discrete state space, which can be con-
structed analytically. Results of the dynamic analysis are only valid for QPN and
SPN , but not for CPN and HPN , because CPN and HPN do not have a dis-
crete state space; see Fig. 4. Model checking can be applied to all Petri net classes;
the temporal logic used for the respective Petri net class depends on the approach
used to construct the state space, either analytically or by simulation, and on the
chosen modeling paradigm. Please note that the static analysis techniques do only
consider standard arcs and read arcs, they are not defined for the use of inhibitory
arcs.

The techniques listed in Table 1 can be used for (adapted from [12]):

• Model analysis to examine general properties and the behavior of a model.
• Model verification to check if a model has been correctly implemented.
• Model validation to check if a model exhibits the expected behavior.
• Model characterization to assign specified properties to a model, for example,

in a database of alternative models.
• Model comparison to determine similarities among models.
• Model modification to alter the model (kinetic parameters, initial conditions,

structure) in order to obtain a desired behavior.



336 M.A. Blätke et al.

We will now briefly motivate the potential of static and dynamic analysis tech-
niques applied to Petri net models.

6.3.1 Static Analysis

Static analysis techniques pay no attention to the state space and thus neglect any
aspects of time. Even if kinetic data are missing, static analysis sheds light on fun-
damental structural and behavioral properties of a Petri net model. This information
can be used for some basic characterization, consistency checks, and to verify the
model structure in order to exclude implementation errors. The static analysis al-
lows one to compute (i) graph properties and (ii) structural features of the Petri net
model and also to decide on (iii) general behavioral properties.

(i) Graph Properties

Graph properties are elementary properties of the Petri net topology and are thus
independent of the marking. Some of those properties are listed below; see reference
[41] for formal definitions.

• Pure, there exists no pair of nodes connected in both directions.
• Ordinary, all arc weights are equal to 1.
• Homogeneous, all outgoing arcs of a place have the same arc weight.
• Connected (Strongly Connected), there exists an undirected (directed) path be-

tween each pair of nodes.
• Non-blocking Multiplicities, the minimal arc weight of all ingoing arcs of a place

is not less than the arc weight of its outgoing arcs.
• Conservative, each transition adds exactly as many tokens to its post-places as it

subtracts from its pre-places.
• Static Conflict Free, there exists no pair of transitions sharing the same pre-place.
• Boundary Nodes, there exist places (transitions) with either no pre-transitions

(pre-places) or no post-transitions (post-places).

Simplified Repressilator The model of the simplified repressilator given in Fig. 6
is strongly connected and has no boundary nodes. Since the arc weights of all arcs
are equal to 1, the net is ordinary, homogeneous, and has no blocking multiplicities.
The double arc in the synthesis step of repressor proteins Xi by transitions ti,1 is in
contrast to the pureness of the net. Static conflicts are given by {ti,1, ti,3}, {ti,2, ti,3},
and {ti,4, ti,5}, and the transitions of each set share pre-places. Only transitions ti,5
are conservative since all other transitions differ from this rule by adding more to-
kens to their post-places than subtracting from their pre-places, or vice versa.

(ii) Structural Features

Structural features refer to sets of nodes forming subnets of a Petri net, which have
special properties. Those structural features constrain the general behavior of the
net. The four most important structural features in the Petri net context are defined
as follows:
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• A P -invariant is a set of places over which the weighted sum of tokens is constant
and independent of the firing of any transition in the net; see Fig. 14(a). In the
biological context, P -invariants ensure mass conservation and/or describe sets
of molecular states that are interconverted. A minimal P -invariant is basically a
P -invariant which does not contain another P -invariant.

• A T -invariant is a multiset of transitions, which reproduce, by their partially or-
dered (sequential) firing, a given marking of the induced subnet; see Fig. 14(b).
In the biological context, T -invariants correspond to subnets that are capable of
reinitialization. Another interpretation leads to the steady-state behavior: the rela-
tive transition rates follow the multiplicities prescribed by the transition multiset.
A minimal T -invariant is basically a T -invariant that does not contain another
T -invariant.

• A trap is a set of places inducing a subnet that always contains at least one token
as soon as it becomes marked by a token, irrespective of whether or not the subnet
is alive; see below and Fig. 14(c). In the biological context, traps are subsystems
where at least one component of the subsystem always remains available after
being introduced. A minimal trap is a trap that does not contain another trap.

• A siphon is a set of places inducing a subnet that may release all of its tokens and
then can never be marked again; see Fig. 14(c). In the biological context, places
of a siphon may represent finite sources of molecules or energy that become ex-
hausted. A minimal siphon is a siphon that does not contain another siphon.

Formal definitions of those structural features can be found in [41].
In the context of metabolic networks, a P -invariant is also known as a conserva-

tion law, and a T -invariant as an elementary mode or stationary flux distribution. All
analysis methods that are based on those terms can be adapted to Petri nets as well.

The existence of P -invariants, T -invariants, siphons, and traps in a Petri net de-
cides on four more properties (formal definitions are given in reference [41]):

• Siphon-trap property, every siphon (a set of places that cannot switch from un-
marked to marked) includes an initially marked trap (a subnet that cannot switch
from marked to unmarked). The property can be used to decide about dead state
freedom and liveness for specific graph structures of Petri nets [19, 36].

• Covered with P-invariants, every place is part of a P -invariant.
• Covered with T-invariants, every transition is part of a T -invariant.
• Strongly covered with T-invariants, the net is covered with T -invariants, where

each T -invariant consists of more than two transitions.

Simplified Repressilator Each TRS of the simplified repressilator consists of one
minimal P -invariant:

• PINV1 = {ei, ri}—the repressor binding site of the gene is free or occupied by its
repressor protein.

There are three minimal T -invariants

• TINV1 = {ti,1, ti,2}—synthesis and degradation of the free protein Xi ,
• TINV2 = {ti,3, ti,5, ti−1,1}—synthesis, binding, and degradation of the bound re-

pressor protein Xi ,
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Fig. 14 Structural features of the simplified repressilator. (a) The free and the repressed binding
site of each gene form a minimal P -invariant PINV1 = {ei , ri}. (b) Each component of the sim-
plified repressilator consists of three minimal T -invariants: synthesis and degradation of the free
repressor protein Xi , TINV1 = {ti,1, ti,2}, synthesis, binding and degradation of the bound repressor
protein Xi , TINV2 = {ti,3, ti,5, ti−1,1}, binding and dissociation of the repressor protein Xi from
the repressor binding site of the corresponding gene, TINV3 = {ti,3, ti,4}. (c) The P -invariant sub-
net PINV1 = {ei , ri} with transitions {ti,1, ti,3, ti,4, ti,5} constitutes a minimal siphon and a minimal
trap
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• TINV3 = {ti,3, ti,4}—binding and dissociation of the repressor protein Xi from
the repressor binding site of the corresponding gene binding site ej .

Figure 14 illustrates those invariants. The places of the repressor proteins Xi are
not part of any P -invariant, whereas all transitions are part of T -invariants. There-
fore, the net is not covered with P -invariants, but with T -invariants. Since TINV1
and TINV3 comprise only two transitions, the net is not strongly covered with T -
invariants. The minimal P -invariant PINV1 = {ei, ri} is a minimal siphon and a
minimal trap as well. The token marking the place of the repressor binding site is
always contained in the P -invariant PINV1 = {ei, ri}. Thus, the siphon includes
an initially marked trap. The production of protein Xi through transition ti,1 will
always continue. Nevertheless, place Xi can be emptied through ti,2.

(iii) General Behavioral Properties

Based on the structure of a Petri net and previously explained properties, it is pos-
sible to decide on some so-called general behavioral properties as well: bounded-
ness, liveness, and reversibility. These properties might be independent of the spe-
cial functionality of the network; see reference [41] for formal definitions:

• Boundedness—For every place it holds that: Whatever happens, the maximum
number of tokens on this place is bounded by a constant. Overflow by unlimited
increase of tokens does not occur.

• Liveness—For every transition, it holds that: Whatever happens, it is always pos-
sible to reach a state where this transition gets enabled. In a live net all transitions
are able to contribute to the net behavior forever. Dead states, that is, states where
none of the transitions is enabled do not occur.

• Reversibility—For every state, it holds that: Whatever happens, the net is always
able to reach this state again. Thus—since this includes the initial state—the net
has the capability of self-reinitialization.

Simplified Repressilator Due to the unlimited synthesis of each repressor protein
Xi by ti,1, which is permitted by the network structure, the number of proteins can
infinitely increase, and thus, the model of the simplified repressilator is not bounded.
However, the repressor proteins are degraded independently of whether they are
bound to the repressor binding site of the gene or free. Furthermore, the repressor
binding site of the gene permanently switches between free and occupied rendering
the gene active or inactive, respectively. Obviously, there is the chance that each
state can be reached again, that is, there is no transition in the model of the simplified
repressilator that will become finally inactive. Thus, the net is also alive.

Further Reading Reference [41] gives a more comprehensive overview about
analysis techniques of the Petri net theory. Case studies demonstrating the strength
of the static analysis techniques can be found in [41] (signaling cascades), [31]
(biosensor gene regulation), and [43] (signal transduction network). More specific
examples of applications of static analysis techniques and their usefulness are listed
in [39].
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Fig. 15 Bounded Petri net model of the simplified repressilator. To limit the synthesis of the
repressor proteins Xi , we introduce a precursor place Pi with the marking k. The constant k deter-
mines the upper bound for each repressor protein on place Pi

6.3.2 Dynamic Analysis

As it has been mentioned before, dynamic analysis techniques require the construc-
tion of the (partial) state space. The state space can either be constructed analytically
(see Sect. 6.2.1) or by simulation (see Sects. 6.2.2–6.2.4).

The analytical exhaustive state space construction is limited to bounded Petri
nets and gets computationally expensive with increasing complexity of the model.
The state space explosion in complex models occurs for two main reasons: (a) con-
currency is resolved by all interleaving sequences, and (b) many tokens contained
in a P -invariant can redistribute themselves in multiple ways. When analytical ap-
proaches fail, the state space can be approximated by simulation. Simulative state
space construction can be applied to either bounded or unbounded nets. But simu-
lative approaches can only be used to partially construct the state space.

6.3.2.1 Behavioral Properties

The general behavioral properties, which sometimes can be determined by static
analysis (see Sect. 6.3.1), can also be computed by dynamic analysis. Determining
the general behavioral properties by dynamic analysis is only possible if the net is
bounded and if the state space can be constructed completely. Constructing the state
space by simulation is not sufficient. Based on the complete state space of bounded
nets, there are additional behavioral properties that can be checked; see reference
[41] for formal definitions:

• Dynamically Conflict Free, there exists no state, in which more than one transition
is enabled and where firing of one of those transitions creates a new state in which
the other transitions are not enabled any more.

• Dead States, no transition can fire any more.
• Dead Transitions, a transition that is enabled in none of the states that are reach-

able from the initial marking.

Simplified Repressilator Since the model of the simplified repressilator is not
bounded and thus the state space is infinite, we cannot decide on the above men-
tioned properties. Restricting the number of protein copies for the repressor protein
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Fig. 16 Reachability graph of the bounded simplified repressilator. The structure of the simplified
repressilator allows in principle an infinite increase for each repressor protein resulting into an
unbounded net. For simplicity reasons, we convert the model of the simplified repressilator into
a bounded model by restricting the number of proteins for each gene to one (Fig. 15). Each node
in the reachability graph refers to a specific marking mi , arcs connecting two nodes represent the
firing of a specific transition. The markings are given on the right by the sets of marked places

Table 2 State space of the
simplified Repressilator
model for different values of
k computed with
MARCIE [45]

k States

1 27

10 9261

20 68,921

50 1,030,301

100 8,120,601

1000 8,012,006,001

Xi to k results in a bounded model. A bounded Petri net could be obtained by
adding place Pi representing a virtual precursor of the repressor protein Xi . The
sum of tokens in Pi and Xi is equal to k (Fig. 15). Now, transition ti,1 transforms
the precursor of Xi into the actual repressor protein Xi . The degradation of Xi by
ti,2 and ti,5 restores the precursor. The complete state space for k = 1 in the form of
a reachability graph is given in Fig. 16. The reachability graph has no dead transi-
tions, no dead states, and is free of dynamic conflicts. Table 2 gives the size of the
reachability graph for different values of k to illustrate the state space explosion.
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Table 3 State space construction and corresponding temporal logics

State space
construction

Temporal logic QPN SPN CPN HPN

Analytical Computational Tree Logic (CTL) + +
Linear-time Temporal Logic (LTL) + +

Analytical/
simulative

Continuous Stochastic Logic (CSL) +

Simulative Probabilistic Linear-time Temporal Logic
with Constraints (PLTLc)

+

Linear-time Temporal Logic with Constraints
(LTLc)

+ +

6.3.3 Model Checking

Powerful model checking approaches that are well established in computer science
are also useful for systems and synthetic biology applications. In general, model
checking is an automatic, model-based approach for the verification of properties
defined by the user and revealed by applying the unambiguous expressiveness of
temporal logics. In the biological context, model checking can be specifically ap-
plied to verify properties in terms of transient behavior, which reflects the intended
functionality of the modeled system.

Model checking is possible in all modeling paradigms. Thus, it can be applied to
the analytically constructed state space (analytical model checking) and to the state
space constructed by simulation (simulative model checking). The type of temporal
logic used for each Petri net class depends on the approach used to construct the
state space and the modeling paradigm; see Table 3.

The general elements of temporal logics are:

• Atomic propositions:
Atomic propositions consist of statements describing the current token sit-

uation in a given place. Discrete places are read as Boolean variables (inte-
ger variables) for 1-bounded (k-bounded or unbounded) Petri nets, and con-
tinuous places as (non-negative) real-valued variables. Each atomic proposition
φ1, φ2, . . . , φn ∈ Φ is a temporal logics formula.

• Standard logical operators:
Atomic propositions can be combined by logical operators to build more com-

plex propositions. ¬φ1 (negation), φ1 ∧ φ2 (conjunction), φ1 ∨ φ2 (disjunction),
φ1 → φ2 (implication) are temporal logics formulas.

• Temporal operators:

Xφ (NeXt): The proposition φ is valid in the next, directly following state.
Fφ (Finally): The proposition φ is eventually valid at some time in the future.
Gφ (Globally): The proposition φ is always globally valid forever.
φ1 Uφ2 (Until): The proposition φ1 continually holds until φ2 becomes valid. At
this position, φ1 does not have to be valid any more.
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Fig. 17 Linear-time and branching-time logics. Temporal logics are used to specify properties of
a model. They can be categorized into linear-time logics (left) and branching-time logics (right)
with distinct properties

Analytical model checking of bounded models, can be performed with either the
computational tree logic (CTL) [17], the linear-time temporal logic (LTL) [70], or
the continuous stochastic logic (CSL) [1, 2], which is the stochastic counterpart of
CTL. Since only QPN and SPN allow for the analytical construction of the state
space, CTL and LTL can be applied to both net classes, whereas CSL can only be
applied to SPN .

Both, CTL and CSL are branching-time logics; see Fig. 17(a). In addition to the
standard elements of temporal logics, CTL uses two path quantifiers:

• Eφ (Existence): The proposition φ is valid for at least one path.
• Aφ (All): The proposition φ is valid for all computed paths.

The combination of temporal operators and path quantifiers creates eight operators,
which can be used to specify temporal properties of a model. Let φ[1,2] be an arbi-
trary temporal-logic formula. Then, the following formulas are valid in state m:

• E Xφ: if there is a state reachable by one step where φ holds.
• E Fφ: if there is a path where φ holds finally, that is, in some state of this path.
• E Gφ: if there is a path where φ holds globally, that is, in all states of this path.
• E(φ1 Uφ2): if there is a path where φ1 holds until φ2 holds.

The other operators can be obtained by replacing the Existence operator by the All
operator. In this case, the explanations start with “for all paths” instead of “there is
a path”.

CSL replaces the path quantifiers (E, A) in CTL by the probability operators
P�p (transient analysis) and S�p (steady-state analysis) whereby �p specifies
the probability of the given formula (the comparison operator � can be replaced by
<,≤,=, �=,>,≥). The operator P=? is used to return the probability (rather than
compare probabilities).
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As the name suggests, LTL is a linear-time logic; see Fig. 17(b). Linear-time
logics do not require path quantifiers, because they operate implicitly over all paths.
CTL and LTL are both subsets of CTL∗ [26], but are not equivalent to each other.
The CTL formula E Fφ can not be expressed in LTL, neither can the LTL formula
F Gφ be written as CTL.

In addition, LTL with constraints (LTLc) [13] can be applied to the continuous
state space; thus, it is used for CPN and HPN . A probabilistic extension of LTLc
is called PLTLc [20]. PLTLc can be used for model checking with SPN .

It adds the probability operators P (transient analysis) [20] and S (steady-state
analysis) [72]. Both operators appear only once in a formula at the top level and
may not be nested as in CSL.

Since the paths generated with linear-time logics refer to sequences of states,
Linear-time logics might be more convenient for reasoning about time-series be-
havior in biology [39].

Simplified Repressilator For the analytical model checking, we rely again on
the bounded model of the simplified repressilator with a restricted copy number
k of each repressor proteins Xi ; see Fig. 15. Furthermore, we assume that each
TRS consists of only gene, ei + ri = 1. We applied CTL to formalize some basic
properties of the simplified repressilator.

• The repressor binding site of each TRS in the simplified repressilator model is
either free ei or repressed ri :

A G
[

(ei = 1 ∧ ri = 0) ∨ (ei = 0 ∧ ri = 1)
]

• Each protein Xi is intended to oscillate, that is, it fluctuates around a value Xi = c.
Furthermore, we have to take some noise n into account because of the stochastic
nature of the model. A noise filtered oscillation [3] of protein Xi can be charac-
terized in CTL by the formula

A G
[(

(Xi = c) → E F
[

(Xi > c + n) ∨ (Xi < c + n)
])

∧ ((

(Xi > c + n) ∨ (Xi < c + n)
) → E F[Xi = c])]

The domain of c is (0, k), and a typical value for checking the oscillation is k/2.
The noise n is a fraction of c, so the domain of n is (0, c), for example, c/10 or
c/20. The above CTL formula is read as follows: at any time point in the future,
if the number of copies of the repressor protein gets Xi = c (c ≤ k), then it has to
be possible to reach a state where Xi < c + n or Xi > c + n, and vice versa.

• Sequential oscillation [3] of proteins X1, X2, and X3:

A G
[((

(X1 = c) ∧ (X2 �= c) ∧ (X3 �= c)
)

→ E F
[(

(X1 �= c) ∧ (X2 = c) ∧ (X3 �= c)
)])

∧ ((

(X1 �= c) ∧ (X2 = c) ∧ (X3 �= c)
)
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→ E F
[(

(X1 �= c) ∧ (X2 �= c) ∧ (X3 = c)
)])

∧ ((

(X1 �= c) ∧ (X2 �= c) ∧ (X3 = c)
)

→ E F
[(

(X1 = c) ∧ (X2 �= c) ∧ (X3 �= c)
)])]

At any time point in the future, if the number of copies of the repressor protein
Xi = c and Xi+1, Xi+2 are unequal to c, it has to be possible to reach a state
where Xi+1 = c and Xi , Xi+2 are unequal to c.

The given CTL formulas can be translated to CSL, by replacing the path quanti-
fiers with the probability operator P, and thus compute how likely the oscillation is.
A transformation into LTL is not possible because of the path quantifier E. But this
formula can be transformed into a PLTLc formula by removing the path quantifier E
and enclosing the whole formula with the probability operator P. Now we can com-
pute how unlikely (or likely) the oscillation is, even for the unbounded simplified
repressilator model via simulative model checking.

Using model checking of quantitative models, properties can be expressed
by distinct descriptive approaches, with increasing specificity: qualitative, semi-
qualitative, semi-quantitative, and quantitative [20].

The basic qualitative formula consists of derivatives of biochemical species con-
centrations or mass, given by the function d(·). Together with the temporal opera-
tors, we can now express the general trend of the behavior. The semi-qualitative ex-
tension adds to the qualitative formula the relative concentration by applying func-
tions like, for example, max(·), min(·), average(·) to the formulae. Semi-quantitative
approaches consider in addition to semi-qualitative formulas absolute time values by
referring to the predefined systems variable time. Moreover, a quantitative descrip-
tion extends the semi-quantitative formula by expressing absolute concentration val-
ues as well.

Simplified Repressilator We exemplify the four distinct descriptive approaches
mentioned above by applying them to the repressor protein Xi of the simplified
repressilator model (formulas adapted from [20]):

• Qualitative. The repressor protein Xi raises, then falls:

P=?
[

d(Xi) > 0 U
(

G
(

d(Xi) < 0
))]

• Semi-qualitative. The repressor protein Xi raises, then falls to less than 50 % of
its peak concentration:

P=?
[

d(Xi) > 0 U
(

G
(

d(Xi) < 0
)

∧ F
(

Xi < 0.5 · max(Xi)
))]
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• Semi-quantitative. The repressor protein Xi raises then falls to less than 50 % of
its peak concentration at 5000 s:

P=?
[

d(Xi) > 0 U
(

G
(

d(Xi) < 0
)

∧ F
(

time = 5000 ∧ Protein < 0.5 · max(Xi)
))]

• Quantitative. The repressor protein Xi raises then falls to less than 10 Molecules
at 5000 s:

P=?
[

d(Xi) > 0 U
(

G
(

d(Xi) < 0
)

∧ F(time = 5000 ∧ Xi < 10)
)]

Compare properties with Fig. 8(c).

Further Reading We recommend reference [6] for a general gentle introduction
into model checking and the different temporal logics. In [41–43], model checking
has been applied in several advanced case studies for all three modeling paradigms.
In [57], another repressilator version serves as a running case study demonstrat-
ing various analysis techniques and, among them, model checking in the different
paradigms.

6.4 Multiscale Modeling with Colored Petri Nets

Computational modeling of multicellular systems at different levels of molecu-
lar and cellular organization requires powerful computational multiscale modeling
frameworks. In general, biological systems consist of similar components and struc-
tures, which are hierarchically organized into subsystems. Modeling of such subsys-
tems introduces various challenges [40]:

• Repetition of components; multiple components with the same definition, for ex-
ample, cells of the same type.

• Variation of components; multiple components with defined variability in their
definition, for example, wild-type cells versus mutated cells.

• Organization of components; one-, two-, or three-dimensional organization of
components of a specific shape, for example, organization of cells of a certain
shape in a tissue.

• Hierarchical organization of components; components containing sub-compo-
nents, for example, cells consisting of defined compartments.

• Pattern formation by components; (self-)organization of components within ap-
propriate one-, two-, or three-dimensional structures in time and space, for exam-
ple, chemotaxis involved in developmental phenomena.

• Irregular/semi irregular organization of components; deviating organization or
interrupted patterns of components, for example, mutated epidermal cells.
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• Communication between components; defined exchange of information between
components restricted by their spatial relation and position in a spatial network,
for example, signal transduction between neurons.

• Mobility/Motility of components; active or passive transport of components within
a spatial network, for example, motile cells in a tissue or transport of molecules
via microtubules.

• Replication of components; formation of new components in a system, for exam-
ple, cell division.

• Deletion of components; removing components form a system, for example, cell
death.

• Differentiation of components; components gaining (or losing) functionality, for
example, stem cells differentiate into immune cells.

• Dynamic grid size; variable dimension and composition of components/systems,
for example, grid changing in size and/or structure (required to remove and insert
items).

In multiscale modeling of biological systems, components can be either molecules,
organelles, cells, tissues, organs, organisms, populations, or eco-systems.

Multiscale systems can certainly be modeled using the standard approaches, but
the models become unhandy and impractical with increasing complexity. Reflecting
on the structure and organization of complex components in a conceptual way is
difficult, if not impossible, with the standard approaches, but it might be necessary
to understand a system based on the interaction of its components.

6.4.1 Colored Petri Nets

Colored Petri nets turn low-level Petri nets (which we considered so far, see
Sect. 6.2) into a high-level modeling framework, see also Fig. 4. Each modeling
paradigm in low-level Petri nets (qualitative, continuous, stochastic, hybrid) has its
colored counterpart. In colored Petri nets, the formalism and semantics of low-level
Petri nets are combined with the capability and flexibility of a programming lan-
guage to express various data types and operations. With the defined data types,
groups of similar subnets can be implemented as one subnet and distinguished by
the color of the tokens that move through the net. Colored Petri nets can be con-
structed from low-level Petri nets for a given partitioning of places and transitions.
Vice versa, colored Petri nets can be unfolded to low-level Petri nets. Thus, colored
Petri nets provide a parameterized and compact representation of complex low-level
Petri nets while sustaining the analysis capabilities of low-level Petri nets (Sect. 6.3).
A formal definition of colored Petri nets can be found in [54].

A convenient way to construct a colored Petri net is to first start with the low-level
representation of a single subnet; see Fig. 18; for application examples, see below.
The next step is to define a suitable color set by setting its data type, for example,
integer, boolean, enumeration, string, etc., and its values (colors). The number of
values in a color set may be defined by suitable constants. Subsequently, the defined
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Fig. 18 Colored Petri net example. The color set species of the places A, B , and C is of the type
enumerate (enum) with the colors black, grey, white. Thus, the places can carry black, grey, or white
tokens. Transition t can only fire if there are tokens of the same color at place A and B , except for
grey according to the guard x <> grey of transition t . The variable x of the arc expressions must
be bound to either black or white. Since a white token is missing at place B , transition t is only
enabled and can fire if x is bound to black. After firing of transition t , the black tokens are deleted
at place A and B as usual, and a new token of the successor color is produced at place C, which is
defined by the arc expression (+x). Here, a grey token is produced at place C

color set is assigned to the places of the subnet. Each color set needs at least one
variable. The variable is used in the arc expressions to carry the token of a specific
color to the transition, or vice versa.

Boolean expressions can be used along with places, transitions, and arcs to ex-
press the variability between subnets or their interactions. Using boolean expres-
sions to define the marking of places allows one to set how many tokens of a color
are initially available, for example, resources of a component. Arc expressions might
use boolean expressions to define which tokens of a color of a color set can move
via an arc. Boolean expressions can also be used to distinguish varying firing rates
for different colors of a transition, for example, a reaction might be slower or faster
depending on the component. In addition, it is also possible to set guards for a tran-
sition with the help of boolean expressions to define constraints on the token colors
that eventually can enable the respective transition.

Not all places have to be of the same color set and places with different color
sets can interact via common transitions. An example are subnets of a Petri net that
represent components of the system of different copy number, for example, three
cells of type A communicating with five cells of type B within the tissue of an or-
ganism. Even more, color sets can be combined in a compound color set via their
union or product. By combing color sets one-, two-, and three-dimensional grids
can be easily implemented to consider spatial aspects, for example, spatial organi-
zation of molecules, specific shapes of cells, pattern formation, mobility/motility,
etc. [40]. The hierarchical design of color sets can reflect the inherent hierarchy in
a system and thus allows the abstraction over network motifs and the hierarchical
representation of locality.

The flexibility of compactly representing a Petri net in the form of a colored
Petri net allows one to arbitrarily scale a model by creating multiple copies of its
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Fig. 19 Colored version of the simplified repressilator. It is obvious from the graph structure that
the model of the simplified repressilator consists of three similar subnets marked by red, green,
and blue outlines. These subnets can be folded into a single one using color. Therefore, we take the
structure of one TRS and define a color set component of the type integer with the colors 1,2,3
(equivalent to red, green, blue). Variable x is used for the color set TRS. The color set component
is assigned to the places X, e, r . The arc expression −x denotes always the (modulo) predecessor
of the current color bound to x

subsystems. Colored Petri nets preserve the advantages of low-level Petri nets and
thus enjoy the rich choice of analysis approaches.

Simplified Repressilator Since the model of the simplified repressilator consists
of three similar subnets, it is an ideal example for folding a low-level Petri net into a
colored Petri net; see Fig. 19. In the colored version, only the structure of one TRS
is needed, whereas the number of TRS is defined through the color set. Therefore,
we use the color set TRS of type integer with colors 1,2,3. The variable x is of
type TRS, and −x refers to the (modulo) predecessor in TRS. It is easy to increase
the number of TRS in the colored model of the simplified repressilator model by
changing the number of colors in the color set TRS, for example, to 20; see Fig. 20.

A complex biological phenomenon that could also be implemented as part of the
simplified repressilator model is protein biosynthesis through explicitly consider-
ing transcription and translation. In bacterial cells, the two processes are coupled
in the sense that the translation of nascent transcripts starts before transcription of
the gene is finished; see Fig. 21. The polymerase slides along the DNA and multi-
ple ribosomes are engaged with each nascent mRNA molecule, forming a polysome
(polyribosomes). Both processes, transcription and translation, are one-dimensional,
directed walks. Before the polymerase can slide along the DNA, it has to bind to the
promotor region of the gene to initialize transcription. Translation starts when the
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Fig. 20 Stochastic simulation of the simplified multi-gene-repressilator. (a) We implement
20 TRS (see Fig. 2) arranged in a negative-feedback loop of the colored simplified repressilator
model shown in Fig. 19 by accordingly increasing the number of colors in a color set TRS to 20.
(b) For stochastic simulation, we used 1000 copies of each gene and performed one simulation
run. The diagram shows the copy numbers of free repressor proteins versus time

Fig. 21 Simultaneous transcription of a gene and translation of the nascent mRNAs in a bacterial
cell. The cartoon was redrawn from [65]

assembled ribosome has reached the start codon of the mRNA. Colored Petri nets
can easily express the processes of transcription and translation as polymerization
reactions; see Fig. 22. The polymerization and depolymerization of cytoskeletal pro-
teins could be modeled in a similar way.
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Fig. 22 Colored Petri net model of simultaneous transcription and translation. The compound
color set biosynthesis is the product of two simple color sets sequence and init, which are both
of type int. The number of entities in the color set sequence is defined by the sequence length N

of the polypeptide chain {1, . . . ,3 · N} with the variable x. The color set init has only two values
{0,1} and is used for the variable i. If i = 0, then initialization is needed to start transcription by
the polymerase at the first DNA base of the start codon or to start translation by the ribosome at
the first three RNA bases (corresponding to the start codon of the coding sequence). There are two
other color sets used here, polymerase and ribosome, both are again of type int and have only one
color. The variables used are p for polymerase and r for ribosome. The color set polymerase is
assigned to the respective place polymerase and ribosome to the place ribosome. All other places
use the compound color set biosynthesis. To start the transcription, the polymerase needs to bind to
the first base (the initialization step), which is notated by (x = 1, i = 0). The polymerase then can
move to the next DNA base (+x, i = 1) while transcribing the first one and so on. Moving to the
next base means to increment the color value by +x. The process ends when the last base is reached
(x = 3 · N, i = 1). As soon as the first base is no longer occupied by the recent polymerase, a new
one can bind. Once the first three mRNA bases (start codon) have been produced, a ribosome can
bind to the nascent mRNA molecule and translate the mRNA into a polypeptide while transcription
is still proceeding. The process of translation is represented by a similar model of polymerization
as transcription; the only difference is that three sequential mRNA bases yield one amino acid of
the polypeptide chain. Thus, the color is now incremented by 3, which makes the arc expressions
more complex. If the start codon is free, then a new ribosome can bind to the mRNA. After the
translation is finished, the ribosome is available for the next round. Please note that this example
just illustrates how colored Petri nets can be used to implement highly complex processes such as
coupled polymerization reactions in the form of a very simple Petri net. To understand the meaning
of the blue arc expressions, one needs to be familiar with the standard formalism of colored Petri
nets as it is used in Snoopy [54]
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In our model, transcription starts when the DNA-polymerase binds to the first
nucleotide of the coding sequence of the DNA strand and proceeds until the third
base of the stop codon has been incorporated. The next DNA-polymerase molecule
can start transcription as soon as the preceding polymerase has released the first
base of the start codon (note that this is a simplification as the initiation and the
termination of transcription are complex processes). While a polymerase molecule
synthesizes an mRNA molecule, it slides along the coding sequence of the gene. The
progressing polymerization of the mRNA molecule is modeled by delivering tokens
of incremental color into the mRNA place. If, for example, the first 25 bases of
an mRNA molecule have been synthesized, the mRNA place contains 25 tokens of
sequential colors. The total number of colors in the color set represents the number
of bases in the coding sequence. Once the mRNA is synthesized, the mRNA place
contains a token of each color of the color set. Multiple mRNA molecules give
multiple tokens of the same color. The same principle is used for polymerization
of the proteins, only that three tokens of successive colors are consumed from and
restored to the mRNA place for each incorporated amino acid. For further details,
see Fig. 22. Note that the amino acid sequence of a synthesized protein could be
easily encoded by tokens by creating a two-dimensional color set (P × I ), where
the color set P defines the position of the amino acid with respect to the N-terminus
of the protein, and colorset I encodes the chemical identity of the incorporated
amino acid in terms of an ordinal number.

Further Readings A more comprehensive review on biomodel engineering for
multiscale modeling in systems biology is given in [40]. In [32], it is shown how
spatial attributes of dynamic systems can be encoded by the use of colored Petri
nets. Some examples of case studies demonstrating the power of colored Petri nets
for multiscale modeling are: (1) phase variation in bacterial colony growth [30],
(2) planar cell polarity in Drosophila wing [29], (3) membrane systems [55], and
(4) coupled calcium channels [56].

6.5 Composing Models from Molecule-Centered Modules

In biomodel engineering, molecular networks of biological processes are most fre-
quently designed as monolithic models in the form of ODEs. Since the amount
of data produced by technically advanced high-throughput (omics) approaches is
increasing, the integration of those data into coherent models is a considerable
challenge. In this context, we propose an approach, which is successfully used in
engineering, namely the modular construction of a system. In its general form,
modules—as we use them—are molecule-centered Petri nets with a standardized in-
terface [5, 7–9]. The advantage of producing one module for each type of molecule
is that one can arbitrarily compose these Petri nets into complex models without re-
building the models from scratch. Specifically, recombining modules allows one to
easily, quickly, and safely generate different versions of a model. This may include
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Fig. 23 Alternative models.
Modules can be reused and
recombined in various
combinations. The obtained
models can be used to test for
the effect of alternative or
modified reaction
mechanisms

the exchange of different versions of a module within a model for comparative sim-
ulation; see Fig. 23. The management and composition of modules are supported by
the BioModelKit database (see below). The database helps to:

• maintain and update modules easily,
• compose models arbitrarily from modules to generate alternative models,
• handle arbitrary levels of abstraction, and
• integrate top-down and bottom-up models.

Using molecule-centered modules provides a variety of options for the advanced
engineering of biomodels with the help of appropriate algorithms. Algorithms for
modification of modules and the composition of models from modules also in com-
bination with the database allows one to [8, 10]:

• modify, mutate, or redesign modules and thus models,
• automatically compose large-scale models to simulate omics data sets, and
• reverse engineer models from omics data sets.

Proteins as compared to nucleic acids (RNAs, DNAs) display a high variety in
their (bio-)chemical and kinetic reaction mechanisms. Although the reaction mech-
anisms for members of a given class of proteins (e.g. heterotrimeric G-proteins) are
similar and will show up in the modules representing these proteins, the modules
for each individual protein have to be designed at the very end by hand accord-
ing to the specific knowledge that is available for this protein. In contrast, biosyn-
thesis and degradation processes, which may be very similar for nucleic acids or
proteins from the kinetic point of view, can be simply modeled by cloning appro-
priate modules in the form of module prototypes. For this reason, it is advisable
to implement special module types for proteins, mRNAs, and genes and for the
(controlled) degradation of proteins [8]; see Table 4. For maximal flexibility in the
context of reverse engineering approaches, causal interaction modules and allelic in-
fluence modules were introduced. Causal interaction modules are used to represent
cellular processes of ill-defined or unclear molecular mechanisms. Allelic influence
modules account for differences in the network behavior, which is due to the ef-
fect of gene mutations (Table 4) [8]. These two module types are obviously not
molecule-centered.
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Table 4 Module types

Molecular interaction Causal dependency

Protein module Protein degradation module Causal interaction modules

• binding and unbinding
reactions
• formation and cleavage of
covalent bonds
• conformational changes

• inactivation and degradation • causal influence on
molecular and cellular
processes

Gene module RNA module Allelic influence modules

• transcriptional activity
• binding and unbinding
reactions
• covalent modification

• transcription
• processing (alternative
splicing)
• binding and unbinding
reactions
• translation
• degradation

• allelic influence of genes
on molecular and cellular
processes

The Biomodelkit database (BMKdb, www.biomodelkit.org) is a tool with pub-
lic access to organize modules. The modules are organized in BMKdb in such a
way that each node (transitions, places) and their directed connections (arcs) are
stored, as well as their appearance in the respective modules. This allows one to
tag modules, in particular, each node or arc with specific metadata, for example,
general documentation, functional descriptions, literature references, or suitable
identifiers of other molecular databases. The metadata can be used to formulate
queries in order to find modules of interest and connections between modules. In
addition, BMKdb supports the module versioning. Thus, related modules, for ex-
ample, modules with different resolution in mechanistic details or with reaction
mechanisms according to competing hypotheses on molecular mechanism, can be
stored and organized in BMKdb. Furthermore, purposefully designed features fa-
cilitate the automatic composition of models from an ad hoc chosen set of mod-
ules and the algorithmic generation of biological relevant mutations of those mod-
ules [10].

We successfully demonstrated the applicability of our approach using two case
studies (1) JAK/STAT signaling [9] and (2) pain signaling [5], which both involve
complex networks with massive crosstalk. The JAK/STAT pathway is one of the
major signaling pathways in multicellular organisms controlling cell development,
growth, and homeostasis by regulating the gene expression. The modular network
of the JAK/STAT pathway in IL-6 signaling comprises seven protein modules (IL6,
IL6-R, gp130, JAK1, STAT3, SOCS3, and SHP2). Overall, the model consists of 92
places, 102 transitions spread over 58 panels with a nesting depth of 4. The nocicep-
tive network in pain signaling consists of several crucial signaling pathways, which
are hitherto not completely revealed and understood. The latest version of the noci-
ceptive network consists of 38 modules; among them, there are several membrane
receptors, kinases, phosphatases, and ion-channels. So far, the model is made up of

http://www.biomodelkit.org
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713 places and 775 transitions spread over 325 panels, again with a nesting depth
of 4.

In [10], we formalize our modular modeling framework for biomodel engineer-
ing and explain in detail the principles of constructing a module and how the com-
position of modules is performed. Composing Petri nets from modules can be easily
and quickly done and is safe in obtaining the correct structure. In the case that kinetic
parameters for the interaction of molecules represented by the modules have been
estimated, they automatically apply to the composed model as well. Afterwards,
the dynamic behavior of the composed model has to be checked for consistency. In
addition, we explain the algorithmic structural modification of modules supported
by BMKdb in order to generate in silico biological meaningful mutations. We sug-
gested three algorithms to systematically (1) knockout genes by deleting modules,
(2) mutate structural protein units by altering the module structure, or (3) affect-
ing nodes that are specifically tagged according to their (bio-)chemically defined
function.

With all these possibilities of biomodel engineering at hand, it seems straight-
forward to devise bioinformatic pipelines for the generation of models optimized to
obey a pre-defined behavior.

Modules of the types described above can be combined with a completely differ-
ent type of module that represents space in general and compartments in particular.
Combination of such space modules with models composed of molecule-oriented
modules allows one to model the positioning of molecular species and their dif-
fusion or movement through space. This is important when compartmentalization
of biomolecules is of functional relevance (e.g. the translocation of a transcription
factor into the nucleus, which induces the transcription of a target gene). Spatial
organization of molecules or even cells is also highly relevant in many developmen-
tal processes ranging from embryonic development to the generation of functional
structures in populations of entire organisms. For details, see reference [9].

Simplified Repressilator Each TRS of the simplified repressilator can be decom-
posed into a set of modules (Fig. 24): (1) protein modules describing the bind-
ing/unbinding process of the repressor proteins to the respective genes, (2) gene
modules switching on and off the genes by binding the respective repressor protein,
(3) mRNA modules illustrating the biosynthesis of the repressor proteins, and (4) the
protein degradation modules. Indeed, in this trivial case, protein modules and gene
modules are identical since both model the same interaction. The modules when
composed as shown Fig. 24 give a functional model of the simplified repressilator,
which is directly executable in Snoopy, meaning that the token flow can either be
animated or simulated in all Petri net classes. Our modular modeling concept might
seem unnecessary complicated for the small network of the simplified repressilator,
but it becomes of tremendous advantage as soon as the complexity of the involved
modules increases [9].
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Fig. 24 Modular composition of the simplified repressilator. The model of the simplified repres-
silator can be composed through a gene, protein, mRNA, and protein degradation module for each
of the three components. The connection is established through identical subnets (places and tran-
sitions), called interface subnetworks (logical nodes indicated in grey). In this trivial example, the
modules in each row seem at the very first glance to look like instances of one and the same
module, but each repressor protein has its own individual protein, mRNA, gene, and degradation
module. One could easily extend the modules individually to represent the original repressor pro-
teins (lacI, tetR, cI) [25], their interactions, biosynthesis, and degradation in more detail. Note that
the model as depicted here is directly executable in Snoopy, meaning that the token flow can either
be animated or simulated in all Petri net classes

6.6 Automatic Network Reconstruction

By simulation one can determine the time-dependent dynamic behavior of a Petri
net. However, it remains unclear whether or not Petri nets of alternative structure
would display a similar or even almost identical behavior.

When simulation results cannot be fitted to experimental data no matter which
parameter sets are used, it can be concluded that the model is invalid in a sense that
the model does not provide a sufficiently good abstraction of the reality. With other
words, simulations can demonstrate that the underlying assumptions were wrong.

On the other hand, when simulation results obtained with a Petri net model fit a
set of experimental data, this unfortunately does not mean that the model correctly
reflects the real mechanisms. It only means that the given model is able to reproduce
the experimental data. This is true in systems biology, but it is also a basic fact in
chemical kinetics. Potentially, there might be thousands of models that could behave
in a very similar way. From the scientific point of view, the first case, disagreement,
is more helpful for the experimental researcher. Disproving a model definitely jus-
tifies further research while being in agreement may motivate to not design new
experiments, although this would in principle be necessary. In this respect, mod-
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Fig. 25 Steps on the way from time series data to a proof-based dynamic Petri net model. The
alternative network structures as determined by the ANR algorithm can be summarized in the
form of an implicit representation telling which structural features all models have in common
(nodes shown in red) and which nodes of the network might be wired up alternatively as dis-
played. By considering the nodes with alternative connections one can design new experiments
that specifically discriminate between the alternatives to finally obtain a model structure based on
mathematical proof

eling and simulation can even lead to very counter-productive results in retarding
research.

Based on these thoughts, we wanted to go the alternative way by developing
a reverse engineering approach to reconstruct Petri nets from experimental time
series data sets. The approach should work in a fully automatic manner, that is,
without heuristic input, as this might introduce a bias by the operator and hence
give different results for different persons working on the same data set. The idea
behind automatic network reconstruction therefore was to have an algorithm that
automatically gives all possible Petri nets that comply with a set of experimental
results or observations. To be trustworthy, the completeness of this list should be
proven mathematically.

Since Petri nets in their plain form model discrete events, the developed method
relies on discrete optimization [62]. Before we explain the basic principle, let us first
consider what input data are required and what kinds of results the method delivers.

Input data used for network reconstruction are usually time series data reflecting
the response of the system to perturbation. Often, experimental data obtained in the
bio-lab are innately discrete, for example, like the occurrence of a certain phenotype
in response to stimulation of a cell. In other cases the response to perturbation will
be measured through the change in the cellular concentration of biomolecules. Such
data then have to be discretized to be used for automatic network reconstruction.
In doing so, one will not count the number of molecules or focus on small changes
in concentrations even if they should be statistically significant. Instead, perturba-
tions are chosen that cause a considerable, extensive response of the system. In
other words, experiments are designed in a way that discretization of quantitative
(continuous) time series data is uncritical for the performance of the reconstruction
algorithm as long as the qualitative behavior of the system is concerned.

Starting from discrete time series data sets, the method gives a complete list of
all Petri nets that are able to quantitatively reproduce the input data; see Fig. 25.
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Since this list may contain many thousands of nets, the alternative network struc-
tures found may be displayed in the form of implicit representations. The implicit
representations tell which structural features all models have in common and which
nodes of the network might be wired up alternatively. By considering the nodes that
may have alternative connections one can design new experiments that specifically
discriminate between these alternatives. In the best case, a model structure can be
obtained, which is finally proven mathematically through exclusion of all possible
alternatives; see Fig. 25. Certainly, this is an iterative process that requires high-
quality data at high density. Continuous data have to be discretized to fit the algo-
rithm. In the simplest form, the result of discretization is boolean (0/1), but discrete
numbers would be possible as well. Using discrete values is entirely in agreement
with the format, in which experimental results are obtained in the bio-wetlab. Often,
entities are measured quantitatively, but the findings are stated in a discrete man-
ner anyway. “If the gene XYZ is deleted, cells lose the ability to use mannitol as
a food source” is be a typical way of how experimental findings are stated in the
literature. Mechanistic models are widely based on such kind of statements. Often,
perturbation and response both appear in discrete format as an experimental result.
Of course, once a Petri net is established through reverse engineering, stochastic
or continuous simulations can be run, and quantitative experimental data, as far as
available, can be used accordingly to fit kinetic parameters.

The basic concept of automatic network reconstruction (ANR) is simple. Con-
sider a time series where three components (or states of components) A, B, and C
are measured as functions of time; see Fig. 26. Each component corresponds to a
place. At time t1, places A and B are both marked by a token, whereas C is not
marked. At time t2, the tokens in A and B have disappeared, but C is marked. The
difference between the two time points t1 and t2 in the time series data set defines
the difference vector d = (−1,−1,1)T. This difference vector can be realized by the
corresponding reaction vector r = (−1,−1,1)T (a column in the incidence matrix),
which means that one token is removed from A and B, whereas one token appears
in place C upon firing of the transition T1; see Fig. 26. For this trivial example, the
principle of ANR is easy to illustrate. The mathematical challenge of ANR arises
from the fact that a given difference vector d can be the sum of different reaction
vectors d = ∑n

i=1 ri . This results in Petri nets of different structure since the mark-
ing of a Petri net may have changed n − 1 times in between two experimentally
measured states; see Fig. 26. These changes of the marking may escape from be-
ing measured because they are simply missed by the measurement or because they
involve components (places) that are not measured at all or not even known to be
involved in the overall process [62]. In other words, more than one transition may
fire in between two measurements. The task of the algorithm is to find the minimal
set of places P connected with a minimal set of transitions such that all observed
difference vectors dj can be reached in the sequential order as given by the data
set [21, 62]. In order to exactly reproduce the experimental observations, we addi-
tionally use priorities among transitions to enforce an order in which the competing
transitions fire [21]. These priorities reflect relative kinetic rate constants. A pre-
requisite for the algorithm to give correct results is that the number of time points
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Fig. 26 Illustration of the basic principle of automatic network reconstruction. (a) The input for
the reconstruction algorithm is a time series data set describing the time course of the components
of interest (A, B, C) in the form of discrete values. At a given time point, the value for each compo-
nent corresponds to the marking of the places representing each of the respective components. The
difference in marking of the places between two successive time points in the time series defines
a difference vector. (b) Relationship between difference vectors d, reaction vectors r, incidence
matrix, and the corresponding graphical representations of the Petri net. In the example given, the
same difference vector can be decomposed into sums of different reaction vectors. For the recon-
struction of plain Petri nets, the reaction vectors of each difference vector directly correspond to
columns in the incidence matrix that defines the structure of the Petri net. Note however that for
extended Petri nets, this is not necessarily the case since a given reaction vector can result from dif-
ferent transitions, which are controlled by different places, as seen in Fig. 27. The figure is redrawn
from [23] and [21]

taken for a series needs to be sufficiently high to correctly capture the time-discrete
characteristics of the components that change in time.

It makes sense that the described reconstruction algorithm [21] considers only
macroscopic changes, which can be observed at the time scale at which the mea-
surements are performed. The algorithm does not consider periodically changing
components if their cyclic formation and decay are so fast that these reactions can-
not even be observed at the time scale of interest. This restriction prevents an ex-
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plosion of solutions [21]. However, fast periodic processes like formation and decay
of enzyme-substrate-complexes during enzymatic (catalytic) reactions, which are
of fundamental importance in biochemical networks, are systematically excluded
if the reconstructed networks are restricted to plain (simple) Petri nets [21]. This
limitation is even more severe as genes in general catalyze the biosynthesis of the
proteins they encode. A way to overcome this limitation is to model a catalyst (e.g.
an enzyme or a gene) as place coupled by a read arc to the transition mediating the
catalyzed reaction [23]. Inhibition, an essential phenomenon in regulatory networks,
is represented accordingly using an inhibitory arc instead of a read arc. Hence, we
are left with the task of reconstructing extended Petri nets. Extended Petri nets are
Petri nets that contain read and/or inhibitory arcs [66].

An extended Petri net can be viewed as consisting of two parts. One part is com-
posed of the places and transitions that are linked with each other by standard arcs.
The complementing part is composed of places and transitions that are connected
to each other with read arcs or inhibitory arcs. Accordingly, the problem of recon-
structing extended Petri nets is split into two tasks: (1) reconstruct how places and
transitions are linked through standard arcs, as described above, and (2) reconstruct
how places do control transitions by read arcs or inhibitory arcs. Accordingly, each
set of transitions that connect the same places in the same direction is encoded by
a controlled reaction Rc = (r, fr). The reaction vector r indicates the change in the
marking of places caused by firing of any of the transitions of the set. The control
function fr encodes the read arcs and inhibitory arcs connected to the transitions;
see Fig. 27 [23]. For the control function fr = 1, the transition with the correspond-
ing reaction vector is controlled neither by a read arc nor by an inhibitory arc. Tran-
sitions that are controlled can only fire if the marking of the controlling places is
according to the boolean expression of the control function; see Fig. 27. Any tran-
sition could be under the control of multiple places. Finally, a set of possible con-
trolled reactions (r, fr ) is obtained for each difference vector of a given sequence
of difference vectors as defined by the time series data set, which has been used for
network reconstruction. A table displaying these controlled reactions is an implicit
representation of all Petri nets that can simulate the data set. Any arbitrary sequence
of controlled reactions composed by taking one set of controlled reactions (r, fr )

from each of the columns of the table displaying subsequently occurring difference
vectors (see Fig. 28) gives one functional extended Petri net. The obtained extended
Petri net is fully compatible with the time series data set that originally served as
input [23]. Again, it is guaranteed that a complete set of Petri nets all of which
comply with the input data is obtained [24]. A unique solution in terms of a single
Petri net is obtained if the algorithm finds only one entry of controlled reactions
for each difference vector. Recently, both answer set programming [22] and integer
logic programming [79] have been employed to solve the network reconstruction
problem.

Simplified Repressilator In Fig. 28(b), the model of the simplified repressilator
is displayed by a set of controlled reactions. An extended Petri net is obtained by
interpreting places with identical names as logical places.
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Fig. 27 Implicit representation of extended Petri nets by controlled reactions. A controlled reac-
tion is a pair (ri , fi) composed of the reaction vector ri and the associated control function fi .
The arcs of an extended Petri net can be thought as consisting of two sets. (1) The standard arcs
and (2) the control arcs (read arcs/bidirected arcs and inhibitory arcs). A reaction vector describes
how the marking of the connected places changes upon firing of a transition. The control function
defines the conditions under which the firing of at least one among all transitions with the same
reaction vector may occur. The marking of the places of all four Petri nets shown in panels (a) to
(d) has been chosen such that all transitions can fire. In panel (d), the reaction vector r4 of the
controlled reaction (ri , fi) represents the set of two transitions, each of which connects the places
A and B in the same direction through standard arcs while the transitions are connected to differ-
ent control arcs. The figure and legend are taken from [23] with slight modifications. Symbols: ∧,
logic AND; ∨, logic OR; ¬, logic NOT

6.7 Petri Net Tools

We used the sophisticated toolkit consisting of Snoopy, Charlie, and MARCIE, pro-
vided and publicly available at http://www-dssz.informatik.tu-cottbus.de.

Snoopy [44, 63] is a tool to model and animate/simulate hierarchically structured
graphs, among them, QPN , SPN , CPN , and HPN . Furthermore, it comprises
the colored counterparts of those net classes. Petri nets can be exported in systems
biology markup language (SBML) code to be coherent with the systems biology
community [49]. Models given in SBML can also be imported in Snoopy and
represented as a Petri net.

http://www-dssz.informatik.tu-cottbus.de
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Fig. 28 A composition of Petri nets from controlled reactions. (a) The algorithm for reconstructing
extended Petri nets provides for each difference vector di the complete set of possible controlled
reactions (ri , fi), as schematically arranged in a table where all possible controlled reactions of
subsequent difference vectors are listed in subsequent columns. Any arbitrary sequence of con-
trolled reactions obtained by taking one difference vector from each of the subsequent columns
gives one extended Petri net that behaves according to the time series data set that originally served
as input. Red boxes indicate one possible trajectory for the assembly of a valid Petri net. Panel (b)
shows the Petri net structures corresponding to six controlled reactions as part of the simplified
repressilator. If the places with the same name are interpreted as logic places, then the six net-
works corresponding to the controlled reactions give a functional extended Petri net. (a) is redrawn
from [23]

Charlie [28] is a multi-thread analysis tool for basic Petri net properties and
techniques like structural boundedness check, invariant computation, siphon-trap
property, etc. Moreover, Charlie supports the basic vocabulary of explicit CTL
and LTL model checking.
MARCIE [45] is a symbolic CTL model checker for QPN and a multi-thread
symbolic CSL model checker for generalized SPN . Additionally, MARCIE sup-
ports simulative PLTLc model checking of extended stochastic Petri nets.
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