
Chapter 3
Interacting with Networks of Mobile Agents

Magnus Egerstedt, Jean-Pierre de la Croix, Hiroaki Kawashima,
and Peter Kingston

Abstract How should human operators interact with teams of mobile agents, whose
movements are dictated by decentralized and localized interaction laws? This chap-
ter connects the structure of the underlying information exchange network to how
easy or hard it is for human operators to influence the behavior of the team. “In-
fluence” is understood both in terms of controllability, which is a point-to-point
property, and manipulability, which is an instantaneous influence notion. These two
notions both rely on the assumption that the user can exert control over select leader
agents, and we contrast this with another approach whereby the agents are modeled
as particles suspended in a fluid, which can be “stirred” by the operator. The theoret-
ical developments are coupled with multirobot experiments and human user-studies
to support the practical viability and feasibility of the proposed methods.

Keywords Multi-agent robotics · Networked control · Human–robot interactions

3.1 Introduction

As networked dynamical systems appear around us at an increasing rate, questions
concerning how to manage and control such systems are becoming increasingly
important (e.g., [6]). Examples include multiagent robotics, distributed sensor net-
works, interconnected manufacturing chains, and data networks. In this chapter, we
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investigate how to interact with teams of distributed, mobile agents, and we pro-
pose two different ways of making the team amenable to human control. These two
different approaches can be though of as representing the Lagrangian and Eulerian
paradigms. The Lagrangian approach corresponds to a focus on the movements of
the individual agents, and control is exerted over select leader-nodes in the network.
In contrast to this, the Eulerian vantage-point corresponds to viewing the agents as
particles suspended in a fluid, and the description is given in terms of particle flows.
The human operator can influence such systems by manipulating the flows directly,
rather than the movements of individual agents.

The outline is as follows: In Sect. 3.2, the interaction models are defined
through information exchange graphs (networks), and we discuss how to design con-
trollers for achieving geometric objectives, such as rendezvous or formation control.
Leader-based interactions are the main topic of Sect. 3.3, and we show how human
control can be achieved through a direct interaction with leader agents. Notions such
as controllability and manipulability are used to evaluate the effectiveness of these
human–swarm interactions. These notions are further pursued in Sect. 3.4, where
user studies are conducted that connect the theoretical developments with how easy
or hard it is for human operators to actually control the multiagent team. In Sect. 3.5,
a fluid-based approach to human–swarm interactions is introduced, and its inter-
pretation within the Eulerian context is discussed and evaluated experimentally in
Sect. 3.6.

3.2 Multiagent Networks

The main objective when designing control, communication, and coordination
strategies for multiagent networks is to have a collection of agents achieve some
global objective using only local rules [3, 17]. If we associate a state xi ∈ R

d, i =
1, . . . ,N , with each of the N agents in the team, the global objectives can typically
be encoded in terms of costs or constraints on the states. Here d is the dimension
of the state, and if the agents are planar, mobile robots, xi could be the position of
agent i, in which case d = 2.

Central to the notion of a distributed strategy is the fact that each agent only has
access to a limited set of neighboring agent states, and the control decisions must be
made solely based on this limited information. If we let Ni denote the set of agents
that are available to agent i (this set may be time varying as the team evolves), and
we assume that the evolution of the agent’s state is directly under control in the
sense that ẋi = ui , then the design choice involves selecting appropriate interaction
laws fij (xi, xj ) with

ẋi =
∑

j∈Ni

fij (xi, xj ).

Note that more involved dynamics could be imagined, but they would inevitably
make the analysis more involved.
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3.2.1 The Graph Abstraction

As the set of neighboring agents is crucial when defining the interaction laws,
it is natural to view the system as one defined over a graph G = (V ,E). Here
V = {1, . . . ,N} is the set of agents, and the edge set E ⊂ V × V encodes neigh-
borhood information in the sense that j ∈ Ni ⇔ (j, i) ∈ E, that is, an edge points
from agent j to agent i if information is flowing from agent j to agent i. We will
assume that the edges are undirected, that is, j ∈ Ni ⇔ i ∈ Nj , which corresponds
to agent i having access to agent j ’s state if and only if agent j has access to agent
i’s state.

This graph abstraction is useful in that one can ask questions pertaining to
what information is needed to support various multiagent tasks, which translates
into finding the appropriate, underlying network graphs. As an example, if the
graph is disconnected, that is, there are nodes in-between which no paths exists
(possibly over multiple nodes), then there is no way information can be made
available that correlates the states of these two nodes. Disconnectedness is thus
a topological obstruction to achieving certain multiagent objectives. Similarly, if
the graph is complete, that is, all agents have immediate access to all other agents
(Ni ∪ {i} = V ∀i = 1, . . . ,N ), then what we in essence have is a centralized rather
than decentralized situation. As we will see in subsequent sections, there are tight
couplings between the network topology and how easy it is to interact with the net-
works. However, these couplings only become meaningful in the context of partic-
ular interaction protocols and global task objectives. We will start with a canonical
such objective, namely the consensus problem, whereby all agents should agree on
a common state value.

3.2.2 Consensus

The consensus problem is arguably the most fundamental of the coordinated con-
trols problems in that it asks the agents to agree, that is, make their state values
converge to a common value. One way of achieving this is to let each agent move
towards the centroid of its neighboring agents, that is, to let

ẋi = −
∑

j∈Ni

(xi − xj ),

which is known as the consensus equation [12, 17, 20, 25]. As long as the underlying
graph remains connected (there is a path between any two agents in the network),
this will indeed achieve consensus in the sense that ‖xi − xj‖ → 0 for all i, j as
t → ∞. An example of this is shown in Fig. 1.

Now, if we assume that the agents’ states are all scalars (without loss of gener-
ality), we can gather them together in the ensemble vector x = [x1, . . . , xN ]T and
write the ensemble-level dynamics associated with the consensus equation as

ẋ = −Lx.
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Fig. 1 Ten agents are
executing the consensus
equation. As a result, their
state values converge to a
common value

Here L is the graph Laplacian associated with the underlying network graph (e.g.,
[10]), and it is given by the difference between two other matrices associated with
the graph,

L = D − A.

The matrix D is the degree matrix, which is a diagonal matrix

D = diag
(
deg(1), . . . ,deg(N)

)
,

where the degree of node i (deg(i)) is the cardinality of its neighborhood set Ni , that
is, it captures how many neighbors that node has. The matrix A is the adjacency
matrix, and it encodes the adjacency relationships in the graph in that A = [aij ],
where

aij =
{

1 if j ∈ Ni,

0 otherwise.

The ensemble-level description of the node dynamics will prove instrumental for
understanding how easy or hard it is to interact with such networks. However, before
we can discuss this issue, some more should be said about how one can augment
the consensus equation to solve more general problems, such as formation control
problems.

3.2.3 Formations

The reason for the consensus equation’s prominence is not necessarily in that it
solves the consensus problem, but rather that it can be augmented to solve other
types of problems. In fact, if we assume that agents i and j should end up at
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a distance dij apart from each other, we can associate an edge tension energy
Ei,j (‖xi − xj‖, dij ) to the edge between these two nodes, where this energy has
been designed in such a way that Ei,j > 0 as long as ‖xi − xj‖ 
= dij . If we do
this for all edges in the network, we can then use the total energy E as a Lyapunov
function to solve the “formation control problem” [13].

In fact, if we let

ẋi = −
∑

j∈Ni

∂Ei,j

∂xi

,

then this simplifies to a weighted consensus equation

ẋi = −
∑

j∈Ni

wi,j

(‖xi − xj‖
)
(xi − xj ),

where wi,j is a scalar weight function. Following this construction for all agents
results in a gradient descent with regards to the total energy in the network,

dE

dt
= −

∥∥∥∥
∂E

∂x

∥∥∥∥
2

,

that is, the energy is nonincreasing in the network, and, using LaSalle’s invariance
principle, this fact can be used to show convergence to the desired shape (under
reasonable choices of edge tension energies); see, for example, [13, 17–19]. An
example of this is shown in Fig. 2.

This way of adding weights to the consensus equation has been used not only
to solve formation control problems, but other geometric problems involving cover-
age control in sensor networks, boundary protection, and self-assembly problems in
multirobot networks. Is has also been used extensively in biologically defined prob-
lems, such as swarming (How make the agents form a tight spatial shape?), flocking
(How make the agents move in such a way that their headings align?), and schooling
(How make the agents move as a general shape without colliding with each other?).
For a representative sample, see [8, 12, 22, 23].

3.3 Leader-Based Interactions

Now that we have ways of describing the interagent interactions, we would like
to insert human inputs into the network. In fact, we assume that a subset of the
nodes Vf ⊂ V (the so-called follower nodes) in the network evolve according to
the consensus equation, whereas we inject control signals at the remaining nodes in
V� ⊂ V (the leader nodes) through

ẋi = ui, i ∈ V�,

or (which is equivalent from a controllability point of view)

xi = ui, i ∈ V�.
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Fig. 2 15 mobile robots are forming the letter “G” by executing a weighted version of the consen-
sus equation

If we index the nodes in such a way that the last M nodes are the leader nodes
and the first N − M nodes are the followers, we can decompose L as

L = −
[

A B

BT λ

]
,

where A = AT is (N − M) × (N − M), B is (N − M) × M , and λ = λT is M × M .
The point behind this decomposition is that if we assume that the state values are
scalars, that is, xi ∈ R, i = 1, . . . ,N , and gather the states from all follower nodes
as x = [x1, . . . , xN−M ]T and the leader nodes as u = [xN−M+1, . . . , xN ]T, then the
dynamics of the controlled network can be written as

ẋ = Ax + Bu,

as was done in [21]. This is a linear-time invariant control system,1 and the reason
for this formulation is that we can now apply standard tools and techniques when
trying to understand how easy or hard it is to interact with such systems.

3.3.1 Controllability

One interesting fact about this construction is that the followers tend to cluster to-
gether due to the cohesion provided by the consensus equation. This clustering effect
can actually be exploited when analyzing the network’s controllability properties.
We thus start with a discussion of how such clusters emerge.

By a partition of the graph G = (V ,E) we understand a grouping of nodes into
cells, that is, a map π : V → {C1, . . . ,CK }, where we say that π(i) denotes the cell

1Note that if the states were nonscalar, the analysis still holds even though one has to decompose
the system dynamics along the different dimensions of the states.
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Fig. 3 A graph with four
possible EEPs. The
leader-node (black node) is in
a singleton cell in the two
left-most figures, and, as such,
they correspond to
leader-invariant EEPs. Of
these two leader-invariant
EEPs, the top-left partition
has the fewest number of
cells, and that partition is thus
maximal. We note that this
maximal partition is not
trivial since one cell contains
two nodes

that node i is mapped to, and we use range(π) to denote the codomain to which π

maps, that is, range(π) = {C1, . . . ,CK }. Similarly, the operation π−1(Ci) = {j ∈
V | π(j) = Ci} returns the set of nodes that are mapped to cell Ci .

But, we are not interested in arbitrary groupings. Instead, we partition the nodes
into cells in such a way that all nodes inside a cell have the same number of neigh-
bors in adjacent cells. To this end, the node-to-cell degree degπ (i,Cj ) characterizes
the number of neighbors that node i has in cell Cj under the partition π ,

degπ (i,Cj ) = ∣∣{k ∈ V
∣∣ π(k) = Cj and (i, k) ∈ E

}∣∣.

A partition π is said to be equitable if all nodes in a cell have the same node-to-cell
degree to all cells, that is, if, for all Ci,Cj ∈ range(π),

degπ (k,Cj ) = degπ (�,Cj ), for all k, � ∈ π−1(Ci).

This is almost the construction one needs in order to obtain a characterization
of the controllability properties of the network. However, what we need to do is
produce partitions that are equitable between cells in the sense that all agents in a
given cell have the same number of neighbors in adjacent cells, but where we do not
care about the structure inside the cells themselves. This leads to the notion of an
external equitable partition (EEP) [6, 16], and we say that a partition π is an EEP
if, for all Ci,Cj ∈ range(π), where i 
= j ,

degπ (k,Cj ) = degπ (�,Cj ), for all k, � ∈ π−1(Ci).

An example of this is given in Fig. 3.

3.3.1.1 A Necessary Controllability Condition for Single-Leader Networks

Assume that there is a single leader acting as the leader node, and we are
particularly interested in EEPs that place this leader node in a singleton cell,
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Fig. 4 Clockwise from the top-left: The first two networks are not completely controllable since
their partitions π∗ are not trivial. The partitions π∗ associated with the remaining three networks
are indeed trivial, but we cannot directly conclude anything definitive about their controllability
properties since the topological condition is only necessary. Indeed, the third network is completely
controllable, whereas the last two are not completely controllable

that is, in partitions where π−1(π(N)) = {N}, and we refer to such EEPs as
leader-invariant. Moreover, we say that a leader-invariant EEP is maximal if its
codomain has the smallest cardinality, that is, if it contains the fewest possible
cells, and we let π� denote this maximal, leader-invariant EEP. Examples of the
construction of π� are shown in Fig. 3, and in [16] it was shown that the net-
work is completely controllable only if G is connected and π� is trivial, that is,
π�−1(π�(i)) = {i} for all i ∈ V , and examples of this topological condition for
controllability are given in Fig. 4. What complete controllability means is that
it is possible to drive the system from any configuration to any other configura-
tion.

But, we can do even better than this in that we can characterize an upper bound
on what the dimension of the controllable subspace is, as shown in [5]. In fact, let
Γ be the controllability matrix associated with the controlled consensus equation.
Then

rank(Γ ) ≤ ∣∣range
(
π�

)∣∣ − 1.

We note that since this result is given in terms of an inequality instead of an equality,
we have only necessary conditions for controllability rather than a, as of yet elusive,
necessary and sufficient condition. One instantiation where this inequality is indeed
an equality is when π� is also a distance partition, as shown in [27]. What this means
is that when all nodes that are at the same distance from the leader (counting hops
through the graph) also occupy the same cell under π�, rank(Γ ) = | range(π�)|− 1.
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3.3.2 Manipulability

Controllability is ultimately a point-to-point property in that it dictates in-between
what states it is possible to move the system. This is a rather strong condition, and
one can also investigate a more localized notion of interactions, that is, one that
describes what instantaneous changes to the system the control signal can achieve.
To address the instantaneous effects that the inputs have on the team, we here discuss
the notion of manipulability of leader-follower networks.

3.3.2.1 Manipulability of Leader–Follower Networks

In robotics, manipulability indices have been proposed as means for analyzing the
singularity and efficiency of particular configurations and controls of robot-arm ma-
nipulators [1, 2, 26]. Let θ be the joint angles, and r = f (θ) be the state of the
end-effector, where the function f represents the kinematic relation of the robot-
arm manipulator. Then, a typical index of manipulability is defined in terms of the
ratio of a measure of performance (end-effector response) ṙ and a measure of effort
(joint-angular velocity) θ̇ as

mr = ṙTWrṙ

θ̇TWθ θ̇
,

where Wr = WT
r and Wθ = WT

θ 
 0 are positive definite weight matrices. If f is
differentiable, then we have the relation ṙ = Jr(θ)θ̇ with Jr(θ) being the Jacobian
matrix of the manipulator. Hence, the manipulability is given by the form of the
Rayleigh performance-to-effort quotient [2, 26],

mr = θ̇TJr(θ)TWrJr(θ)θ̇

θ̇TWθ θ̇
.

To establish a similar notion for leader-follower networks consisting of N� lead-
ers and Nf followers with states x� = [xT

Nf +1, . . . , x
T
N ]T and xf = [xT

1 , . . . , xT
Nf

]T,
respectively (where we have assumed that the indexing is done such that the leader
indices are last), one can simply define the manipulability index based on the ratio
between the norm of the follower velocities and those of the leader velocities:

m(x,E, ẋ�) = ẋT
f Qf ẋf

ẋT
� Qeẋ�

,

where Qf = QT
f 
 0 and Q� = QT

� 
 0 are positive definite weight matrices. Once
this kind of indices is successfully defined under given agent configurations x and
network topologies E, it can be used for estimating the most effective inputs to the
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network by maximizing the manipulability m with respect to the input ẋ�:

ẋ�,max(x,E) = argmax
ẋ�

m(x,E, ẋ�),

mmax(x,E) = max
ẋ�

m(x,E, ẋ�).

Another possible application is to use the manipulability index to find effective net-
work topologies, given agent configuration x and leader inputs, ẋ�, as

Emax(x, ẋ�) = argmax
E

m(x,E, ẋ�),

possibly under constraints on E (e.g., on the number of edges |E|).
For manipulability to be useful as a design tool, it needs to be connected to the un-

derlying agent dynamics in a meaningful way, which presents some difficulty. Let us
here, for example, consider the previously discussed agent dynamics for formation
control. Specifically, the followers are trying to maintain given desired distances,
whereas the leader agents are driven by exogenous inputs. As before, using the en-
ergy function E , we let the control law of the followers be given by the weighted
consensus equation

ẋf (t) = − ∂E

∂xf

T

.

Under this dynamics, the followers try to “locally” decrease the total energy E
through

Ė = ∂E

∂xf

ẋf + ∂E

∂x�

ẋ� = −
∥∥∥∥

∂E

∂xf

∥∥∥∥
2

+ ∂E

∂x�

ẋ�,

which ensures the desired behavior of the follower agents. (Note that E itself may
increase because of the leaders’ movement.)

In contrast to the manipulability of robot-arm manipulators, which can be ana-
lyzed through the kinematic relation, leader-follower network “links” are not rigid
in the same way, and indeed we need to introduce an integral action to see the
influence of ẋ�. However, the input velocity ẋ� can vary over the time interval of
integration. Thus, it is not possible to calculate an instantaneous performance-to-
effort measure given by the definition of the manipulability m. For this reason, an
approximate version of manipulability was introduced in [15] as a practically rele-
vant manipulability proxy.

3.3.2.2 Approximate Manipulability

Let us consider the rigid-link approximation of the agent dynamics as an ideal sit-
uation, where all the given desired distances {dij }(i,j)∈E are perfectly maintained.
Note that this approximation is reasonable if the scale of the edge-tension energy
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E is large enough compared to that of the leader velocities ẋ�(t). Note also that,
in real situations, E (t) needs to be greater than zero in order for the followers to
move, whereas this approximation implies that E (t) = 0 for all t ≥ 0. Nevertheless,
this approximation gives us a good estimate of the actual response of the network to
inputs injected through the leader agents, unless the leaders move much faster than
the followers.

To analyze the approximated dynamics, we need the notion of a rigidity ma-
trix [7, 24]. If the connections between agent pairs associated with the edges can be
viewed as rigid links, the distances between connected agents do not change over
time. Assume that the trajectories of xi(t) are smooth and differentiable. Then

d

dt
‖xi − xj‖2 = 0 ∀(i, j) ∈ E,

and therefore

(xi − xj )
T(ẋi − ẋj ) = 0 ∀(i, j) ∈ E.

This set of constraints can be written in matrix form as

R(x)

[
ẋf

ẋ�

]
= [

Rf (x)
∣∣ R�(x)

][
ẋf

ẋ�

]
= 0,

where R(x) ∈ R
|E|×Nd , Rf (x) ∈R

|E|×Nf d , R�(x) ∈R
|E|×N�d , and |E| is the num-

ber of edges. The matrix R(x) is known as the rigidity matrix. Specifically, con-
sidering that R consists of |E| × N blocks of 1 × d row vectors, its (k, ik) and
(k, jk) blocks are (xik − xjk

)T and −(xik − xjk
)T, respectively (the signs can be

swapped), and other blocks are zeros, where ik and jk are the agents connected by
edge k ∈ {1, . . . , |E|}.

Assume that the leaders move in a feasible manner so that the rigid-link approx-
imation stays valid. Solving the constraint equation, the possible set of follower
velocities ẋf associated with ẋ� can be obtained as the following general solution:

ẋf = −R
†
f R�ẋ� + [

null(Rf )
]
q,

where R
†
f is the Moore–Penrose pseudo inverse of Rf , q is an arbitrary vector

whose dimensionality is nullity(Rf ), and [null(Rf )] is a matrix whose columns
span null(Rf ). This means that there may exist infinite possibilities of ẋf (i.e., ro-
tational freedom and/or formation flexibility) for a given input ẋ�. For instance, the
rotational freedom around the leader always remains in a single-leader case. In such
indeterminate cases, the manipulability index cannot be determined uniquely. And,
one option is to modify the definition of manipulability, for example, by using the
“worst-case approach” [1], namely, to analyze the impact of given inputs based on
the least response (i.e., the smallest norm of the generated follower velocities, in our
case). However, in [15] it was shown that ẋf is uniquely determined as

ẋf = −R
†
f R�ẋ�,
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that is, q = 0 even in the indeterminate cases, once one considers the original agent

dynamics ẋf = ∂E
∂xf

T
and then applies the rigid-link approximation. This is the key

to the notion of approximate manipulability of formation-controlled leader-follower
networks.

Using the fact that, under the rigid-link approximation, the followers’ response is
given by ẋf = J ẋ�, where J (x,E) = −R

†
f R�, the approximate manipulability can

be defined as the Rayleigh quotient

m(x,E, ẋ�) = ẋT
� J TQf J ẋ�

ẋT
� Q�ẋ�

,

which is similar to the robot-arm manipulability mr . One can moreover see that J

is analogous to the Jacobian matrix for robot-arm manipulators. Hence, in a manner
similar to the robot-arm manipulability mr , the maximum and minimum values of
the manipulability index are determined by a spectral analysis. In other words, mmax
is dictated by the maximum eigenvalue λmax of the generalized eigenvalue problem
J TQf Jv = λQ�v, and ẋ�,max is obtained from its corresponding eigenvector vmax
as ẋ�,max = αvmax (α 
= 0). Similarly, the minimum value of the manipulability m

and its corresponding inputs can be obtained from the minimum eigenvalue and its
corresponding eigenvector, respectively.

As a final exercise, we use the notion of approximate manipulability of multia-
gent networks to describe effective input directions, in the case where Q� is the iden-
tity matrix. In fact, for the robot-arm manipulability with the identity weight matri-
ces, that is, ṙTṙ/(θ̇Tθ̇ ), the manipulability ellipsoid is defined as ṙT(JrJ

T
r )†ṙ = 1;

this ellipsoid depicts which direction the end-effector can be effectively moved by
given inputs (joint-angular velocities) θ̇ with the same norm ‖θ̇‖ = 1. In contrast,
since what we are interested in is the effective direction (axis) of inputs, the follow-
ing leader-side manipulability ellipsoid can be used to characterize the effectiveness
of injected inputs in the space of leader velocities:

ẋT
�

(
J TQf J

)†
ẋ� = const.

As such, the longest axis of the ellipsoid corresponds to the eigenvector that gives
the maximum eigenvalue of J TQf J and hence the most effective, instantaneous
direction in which to interact with the network.

3.4 Leader–Follower User Studies

The discussions in the previous sections tell us what is possible in terms of network
interactions. And, if the inputs are computationally generated, controllability and
manipulability tell a rather comprehensive story. However, just because something
is theoretically possible, it does not follow that it is easy to do. As such, user studies
are needed to see if the developed human–swarm interaction theories line up with
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Table 1 Network
configuration, leader location,
and target configuration for
each task

Tasks Network Leader Notation Targets

1, 8 L7 Head L7,h Ellipse, Wedge

2, 9 L7 Offset L7,o Ellipse, Wedge

3, 10 L7 Center L7,c Ellipse, Wedge

4, 11 C7 Any C7 Ellipse, Wedge

5, 12 K7 Any K7 Ellipse, Wedge

6, 13 S7 Center S7,c Ellipse, Wedge

7, 14 S7 Periphery S7,p Ellipse, Wedge

user experiences when interacting with networks of mobile agents. In particular, we
wish to understand what properties of a network make it easy or hard for a human
to reasonably interact with it. To answer this question, participants were tasked with
controlling different networks and to rate the difficulty of interacting with these
networks (see [4]).

3.4.1 Experimental Results

The experiments were organized in such a way that 18 participants rated the diffi-
culty of forming two different geometries with a network of seven agents organized
according to one of four topologies. Table 1 provides a list of the 14 tasks performed
in random order by each participant.

The leader-based interaction topology is defined by the second and third
columns. We selected a representative set of canonical topologies: the line graph
LN , the cycle graph CN , the complete graph KN , and the star graph SN . The agents
in an LN graph are organized like points on a line, where each agent is connected to
two immediate neighboring agents. We appoint three different agents as a possible
leader of an LN graph: an agent at the head of line, an agent behind the head of the
line, and an agent in the center of the line. The CN graph can be formed from an LN

graph by forming an edge between the head and tail agents of the line. If all agents
in the network share an edge with all other agents, then this topology is referred to
as the KN graph. If all agents in the network share a single edge with a common
agent, then this topology is referred to as the SN graph. We appoint two agents as a
possible leader of an SN graph: the central agent and a peripheral agent. The fourth
table column defines the notation that we used to define a particular single-leader
network topology.

Each of the 14 tasks requires the participants to move the network from an initial
geometry (sufficiently different from the geometry of the target formation) to one of
two target geometries listed in the fifth table column. A participant is briefly shown
the interaction topology of the network before starting the task. Once the task is
started, the interaction topology, like wireless links, is not visually observable by
the participant, and the participant has to infer the interactions over the network
from the motion of the agents. The participant is able to directly control the motion
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of the leader agent using a joystick to achieve the target geometry with the network.
A translation, rotation, and assignment invariant least squares fit (see [14]) is used
to measure a participant’s performance. This score is not shown at any time to the
participant to ensure that the participant is simply focused on completing the task
and rating its difficult. The participant rates the difficulty of each task on a contin-
uous numeric scale from 0.0 (very easy) to 20.0 (very hard). In addition, we asked
each participant to complete the NASA Task Load Index (TLX) workload survey
(see [11]), which consists of six questions that cover physical, mental, and temporal
demands, as well as a self-evaluation of performance, effort, and frustration.

The ratings provided by participants, the LSQ fit errors, and the total raw TLX
scores for each tasks were analyzed and visualized as histograms in Fig. 5. The
mean is denoted by the height of the bar, and the standard error is denoted by the
error bars.

However, to make any sort of comparisons between tasks from this data, we apply
a series of one-way ANOVA statistical tests (see [9]). These tests reveal that the LSQ
fit error (p < 0.0000001), ratings (p = 0.00138), and workload scores (p = 0.0256)
are all statistically significant at a 95 % confidence level, meaning that one can dis-
tinguish between the different tasks given the three measures. Second, we use the
one-way ANOVA statistical test again to compare tasks within the three measures.
If, for example, this test revealed that there is a statistically significant difference be-
tween tasks 1 and 2 with respect to the rating score, then we are justified in claiming
that the topology in task 1 is rated as easier or harder than the topology in task 2.

Each of the three measures—LSQ fit error, rating, and workload scores—demon-
strates a similar trend. First, the task of forming an ellipse is generally easier than
forming a wedge independent of network topology. Second, line graphs are mostly
the easiest to control regardless of the target geometry. We have to be careful and
use the modifier mostly here because not all pairwise comparisons yield statistically
significant differences. Specifically, for those measures with a higher p-value, the
difference between any two tasks is going to be less significant. However, almost
without exception L7 networks have a statistically significant lower (better) score
than C7, K7, and S7 topologies regardless of target formation. Similarly, S7 topolo-
gies have in almost all cases a statistically significant higher (worse) score than all
other topologies. It is not surprising that some network topologies were significantly
more difficult to control than others. However, to make these types of observations
stand on a more firm mathematical footing, we need to tie the results of the user
study to controllability and other system and graph theoretic properties of networks
with multiple agents.

3.4.2 Connecting Back to the Network

After the results of the user study are gathered, it is interesting to connect these back
to interaction notions previously defined, such as network controllability. The reason
for this is that we would like to know whether or not these theoretical properties
also correspond to practically useful notions human operators are to interact with
networks of mobile agents.
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Fig. 5 Mean (a) LSQ, (b)
rating, and (c) workload
scores for each task
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3.4.2.1 Controllability

A rank-deficient controllability matrix associated with the controlled consensus
equation implies that there are certain things that the human operator simply cannot
do. Therefore, the rank of the controllability matrix ought to be a good indicator of
whether a network is easy or hard to control.

Since we are not only interested in whether a network is controllable or not, but
also how controllable it is, we need to look at properties of the network beyond the
rank of the controllability matrix. Therefore, we will use degree centrality, close-
ness, betweenness, and eigenvector centrality to try to quantify the importance of
the leader v�. Degree centrality is defined by

CD(v�) = deg(v�), where v� ∈ V,

which only measures the importance of the leader by the size of its neighborhood
set. Closeness on the other hand is defined by the length of the shortest paths from
the leader to all other nodes on the network:

CC(v�) =
∑

v∈V \v�

2−dist(v�,v), where v, v� ∈ V.

Betweenness measures the ratio of the number of shortest paths between any two
agents that passes through the leader agent:

CB(v�) =
∑

v 
=w∈V \v�

σv,w(v�)

σv,w

,

where σv,w(v�) is the total number of shortest paths between v and w that intersect
the leader, and σv,w is the total number of shortest paths between v and w. Last,
eigenvector centrality measures the influence of a node on the network, which can be
computed by solving the eigenvalue problem Ay = λmaxy, where A is the adjacency
matrix, and λmax is its largest eigenvalue. Assuming that the leader is node N , the
N th entry of the vector y is the centrality score given to the leader:

CE(v�) = yN, where yN is the N th entry of y.

Since the leader agent is the point of interaction for the human operator in these
leader-based networks, we expect that the node centrality of the leader is an indicator
of how easy or hard a network is to control.

3.4.3 Correlation to the User Study

Table 2 summarizes the results of connecting the candidate measure to the results of
the user study.

What we want to know is how the rank of the controllability matrix and the
node centrality measures correlate to the LSQ error fit, ratings, and workload scores
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Table 2 Mean LSQ, rating, and workload scores with controllability matrix rank, ρ, and node
centrality measures for each task

Task Network Target ρ CD CC CB CE LSQ Rating Workload

1 L7,h Ellipse 6 1 0.984 0 0.191 0.035 5.83 27.33

2 L7,o Ellipse 6 2 1.469 10 0.354 0.061 9.65 43.37

3 L7,c Ellipse 3 2 1.750 18 0.500 0.137 12.82 57.40

4 C7 Ellipse 3 2 1.750 6 0.378 0.090 8.72 38.46

5 K7 Ellipse 1 6 3.000 0 0.378 0.157 10.11 39.14

6 S7,c Ellipse 1 6 3.000 30 0.707 0.273 16.47 63.42

7 S7,p Ellipse 2 1 1.750 0 0.289 0.276 14.46 63.98

8 L7,h Wedge 6 1 0.984 0 0.191 0.141 9.93 45.14

9 L7,o Wedge 6 2 1.469 10 0.354 0.229 10.54 50.88

10 L7,c Wedge 3 2 1.750 18 0.500 0.415 12.57 56.94

11 C7 Wedge 3 2 1.750 6 0.378 0.486 13.26 55.59

12 K7 Wedge 1 6 3.000 0 0.378 0.606 15.16 52.32

13 S7,c Wedge 1 6 3.000 30 0.707 0.627 14.64 59.90

14 S7,p Wedge 2 1 1.750 0 0.289 0.602 14.81 60.86

collected from the user study. First, we observe that the rank of the controllability
matrix is negatively correlated (r2

LSQ = −0.60, r2
Rating = −0.73, r2

Workload = −0.54)
to the scores. This correlation implies that a configuration with a higher rank was
almost without exceptions given a better score than a configuration with a lower
rank. We conclude that the rank of the controllability matrix is a strong predictor
of how easy it is to control a network of multiple agents. As a corollary, it is not
surprising that networks with a rank-deficient controllability matrix are more dif-
ficult to control because the human operator is likely to move the network into an
uncontrollable subspace from which the task cannot be completed.

Second, the node centrality measures of the leader are positively correlated (e.g.,
for CE , r2

Rating = 0.58, r2
Workload = 0.54) to the scores. This correlation implies that

given two configurations with the same ranks, CD , CB , CC , and CE all serve as
reasonable tie breakers for which network is easiest to control. In other words, given
two networks with equally ranked controllability matrices, the network with the
least central leader is likely to be the easiest to control by a human operator. It is
important to note, however, that rank and node centrality are by no means absolute
measures of the difficulty of controlling a given network, but good predictors of the
difficulty for human operators to control these networks of multiple agents.

3.5 A Fluid-Based Approach

If the interactions are not based on influencing the behaviors of select agents, then
one first has to understand by which means the interactions are physically supported.
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For instance, one can envision scenarios where boundary control is exerted at some
part of the swarm or where general flows (or other types of behavioral modifica-
tions) are imposed on the swarm as a whole. But, both of these types of interactions
either require a broadcast to the entire swarm, which is not scalable as the swarm
size scales up, or the information is injected at select nodes and then propagated
through the network, which is inherently just a small variation to the leader-based
interaction paradigm.

So what can one do about this? It is clear that the interactions have to have a
physical manifestation, and one possible way forward is to take advantage of the
fact that many mobile multiagent systems are in fact interacting over a fixed com-
munications infrastructure. Examples include wireless LAN (802.11) routers, cel-
lular networks (e.g., GSM), or air traffic control mechanisms (ATCT, TRACON,
ARTCC). Common to these physical infrastructure networks is that they themselves
are static, whereas the mobile agents are routed around in-between “cells.” So one
possible way of injecting information might be to interface directly with the nodes
in the infrastructure network and have those nodes then interact with the agents that
they are currently influencing.

3.5.1 The Infrastructure Network

Without committing to any particular interpretation of the state of an infrastructure
node, assume that the state pi ∈ R is associated with node i, i = 1, . . . ,N . These
nodes will be interacting with the mobile agents. But they will also be interacting
among themselves. Following the developments in previous sections, assume that
the nodes are interacting through a controlled linear consensus equation

ṗi = −
∑

j∈Ni

(pi − pj ) + ui,

where Ni is the set of nodes adjacent to node i. This can, as before, be written on
ensemble form as

ṗ = −Lp + u,

where p = (p1, . . . , pN)T and u = (u1, . . . , uN)T, and where L is the graph Lapla-
cian associated with the infrastructure network. What we will do in subsequent sec-
tions is understand just what the correct interpretation of the node state p is as well
as the corresponding interpretation of the control input u.

3.5.2 A Least-Squares Problem

If we associate an arbitrary orientation to the edges in the infrastructure network,
we can factor the Laplacian as

L = DDT,



3 Interacting with Networks of Mobile Agents 217

where D is the incidence matrix, with dij = 1 if node i is the head to edge j ,
dij = −1 if it is the tail, and dij = 0 if node i is not incident to edge j . The impor-
tant aspect of this factoring is that L is a Gramian. And Gramians have interpreta-
tions.

Consider for a moment the standard problem of finding a solution x to the prob-
lem Ax = b. If there is no such solution, the next best thing is the least-squares
problem

min
x

‖Ax − b‖2,

and the derivative of this cost is 1/2(ATAx − ATb). Setting the derivative equal to
zero yields the normal equation

AATx = ATb,

where we have the Gramian AAT play a central role.
In light of this discussion, we can reverse engineer a least-squares problem where

the graph Laplacian takes on the role of AAT. In other words, the corresponding
least-squares problem is

min
p

∥∥DTp − f
∥∥2

,

which in turn tries to find a solution p to DTp = f .
If we iteratively try to solve this problem, using a gradient descent strategy, we

get

ṗ = −DDTp + Df

or, put another way,

ṗ = −Lp + Df.

This dynamical system is both decentralized and converges asymptotically to a so-
lution to the normal equation Lp = Df .

But, the real benefit behind this detour to a least-square problem is that we now
see what u really “is” in the controlled consensus equation, that is, we now know
that

u = Df.

It remains to interpret this in a way that makes sense and use this interpretation as a
basis for human–swarm interactions.

3.5.3 A Fluid-Based Interpretation

We directly note from the equation DTp = f that p is simply assigning a number
to each node in the network. Similarly, f assigns a number to each edge, whereas
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DT computes differences between nodes across edges. Using a continuous analog,
p acts like a scalar field, f acts like a vector field, and DT acts like a gradient.
With this interpretation in mind, we see that the choice of letters p and f was not
arbitrary. Instead, we can think of p as pressure and f as flow.

This interpretation gives us the means to interact with the infrastructure network
directly. By specifying what we would like the flow to be in a particular cell around
a given node, we in essence specify f . As we will see in subsequent sections, this
specification will be done by moving a physical wand through cell boundaries, and
the direction and magnitude of that movement will dictate the corresponding desired
flow.

Once a flow vector has been established, the nodes update their individual pres-
sure values using the decentralized controlled consensus equation, which on node-
level form becomes

ṗi =
∑

j∈Ni

(−(pi − pj ) + σijfij

)
,

where σij is the orientation of the edge between nodes i and j , and fij is the speci-
fied flow in-between those nodes.

3.6 Eulerian Swarms

In order to use the fluid-based interpretation of how one can interact with swarms
of mobile agents, we first have to change the way we view said swarms. Since the
leader-based interaction model is based on controlling individual agents, and the
control design is done by focusing on the individual agents directly, we can call
this the Lagrangian approach to swarm-interactions. The reason for this terminol-
ogy is that Lagrangian fluid mechanics takes the point of view that the motions of
individual particles in the fluid should be characterized. The alternative view, the
Eulerian approach to fluid mechanics, instead focuses on particular spatial loca-
tions and models how the fluid passes through those locations. And, using the idea
of a fixed infrastructure network, with spatial cells associated with the nodes in the
infrastructure network through which the agents pass, we thus arrive at an Eulerian
approach to multiagent swarms rather than the standard, Lagrangian approach.

3.6.1 From Lagrange to Euler

Given a static infrastructure network GI = (VI ,EI ), one way of thinking about
the nodes is as zero-dimensional objects, or 0-simplexes. Similarly, an edge is a 1-
simplex. This notion can of course be extended to surfaces, and we let a 2-simplex
be given by “triangles” in the network (i, j, k) ∈ VI × VI × VI in the sense that
(i, j) ∈ EI , (j, k) ∈ EI , and (k, i) ∈ EI . These triangles (or rather, their spatial
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footprint) constitute the spatial locations needed for the Eulerian view of multiagent
swarms.

At any given time, inside each such triangle, we have a certain amount of agents.
And, through the fluid-based equation ṗ = −Lp + Df , we also have a pressure as-
sociated with the triangles. By computing differences in pressure across boundaries
in the triangles (through DTp), we thus get the desired flow of agents across those
boundaries. So, if we somehow could turn those desired flows into control laws for
the individual agents (back to a Lagrangian view again), then we would have come
full circle and would be able to specify desired flows in the infrastructure network
and then translate those flows into control laws for the individual agents, which is
the topic of the next section.

3.6.2 Local Stream Functions

Stream functions are used in fluid dynamics to define two-dimensional flows, which
is exactly what we have in this situation. In particular, the difference between the
stream function at different points gives the flow through a line connecting those
points. As the infrastructure agents are really regions, we will endow these regions
with a dynamics in the sense that the mobile agents in that region will move ac-
cording to that dynamics. Assuming that the regions are triangular, on an individual
triangle (or 2-simplex), we can let the nodes that define the vertices of the triangle be
given by x1, x2, x3. The local, so-called stream function on this 2-simplex is given
by

φ(x) = cT(B1x + B2),

where c ∈ R
3 for some choice of c (to be specified later), and B1 ∈ R

3×2 and B2 ∈
R

3×1 satisfy
[
X

1T

]−1

= [B1,B2],

where X = [x1, x2, x3]. The corresponding Hamiltonian, divergence-free dynamics,
that is, the dynamics that an agent located at point x on the triangle should execute,
is given by

ẋ = J gradφ(x) = JBT
1 c,

with J being the π/2 rotation matrix

J =
[

0 1
−1 0

]
.

What this means is that the flow inside a given triangle is constant, that is, it does
not matter where inside the triangle an agent is. Moreover, all the agent needs to do
is contact the infrastructure node inside the region to access that region’s flow.
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Fig. 6 An infrastructure network K (a), its triangular footprint (b), and the corresponding new
network K

Philosophically speaking, the stream functions will be derived from the applied,
user-specified flows, and they will be stitched together across the different triangles
in order to obtain a global, piecewise linear stream function that will be used to
dictate the motion of the individual agents. Since, for an individual region, c ∈ R

3

is associated with the vertices in the region, we just need to map the input flow
f associated with flows in-between regions to the nodes that make up the region.
If we let G denote the infrastructure graph, then the new graph that we obtain by
identifying edges in the triangles with edges in the new graph, and vertices with
its vertices, we get a new graph K that has more edges than the original graph G

since boundary edges are included as well. Letting LK and DK be the Laplacian
and incidence matrices associated with the new graph, we (again) have to solve the
least-squares problem

ċ = −LKc + DKf̂ ,

where the old input flow f has been augmented to f̂ to incorporate the new bound-
ary edges that are present in K . For those edges, we set the flow equal to zero in
order to not have agents leave the region.

As an example of this, consider the infrastructure network given in Fig. 6(a),
with vertex set {v1, . . . , v5} and edge set {e1, . . . , e4}. Given an arbitrary orientation
of the edges, the corresponding matrices are

D =

⎡

⎢⎢⎢⎢⎣

−1 0 0 0
1 −1 0 0
0 1 −1 −1
0 0 1 0
0 0 0 1

⎤

⎥⎥⎥⎥⎦
, L =

⎡

⎢⎢⎢⎢⎣

1 −1 0 0 0
−1 2 −1 0 0
0 −1 3 −1 −1
0 0 −1 1 0
0 0 −1 0 1

⎤

⎥⎥⎥⎥⎦
.

The association of triangular regions to the different infrastructure nodes are
shown in Fig. 6(b), and the new graph K with vertex set {ν1, . . . , ν7} and edge set
{ε1, . . . , ε11}. We see that some of the edges in K are indeed corresponding to edges
in G. In particular, we have the following correspondences: e1 ∼ ε2, e2 ∼ ε5, e3 ∼
ε6, e4 ∼ ε9. If the original input flow is specified through f = [f1, . . . , f4]T, then
we have the corresponding input flow f̂ for the K graph given by f1 = f̂2, f2 =
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Fig. 7 Computational results are shown. Given a force field as input (left; arrow sizes indicate
force magnitudes), a flow on the infrastructure graph, and a stream function over the environment
are produced (center). The “pressure” computed as an intermediate step is also shown (right)

f̂5, f3 = f̂6, f4 = f̂9. The remaining edges in K (ε1, ε3, ε4, ε7, ε8, ε10, ε11) are the
boundary edges, and the corresponding f̂ -values are all 0, that is, f̂1 = f̂3 = f̂4 =
f̂7 = f̂8 = f̂10 = f̂11 = 0.

Examples are helpful to demonstrate the qualitative characteristics of the flows
obtained using the proposed interaction method. Figure 7 shows a typical solution.
In that figure, a large force (desired flow) is exerted across a single face at the upper
right of the complex, and this is propagated through the “jughandle” at the upper
right. By contrast, the forces exerted lower in the complex, in less confined areas,
result in pairs of vortices that have mostly local effects. Nevertheless, even in this
case, small flows are produced throughout the complex. These qualitative character-
istics are typical of the kinds of flows obtained; where necessary, flows propagate
globally, but otherwise most effects are manifested locally.

It is the pressure field that propagates this information. Essentially, “shocks” are
created across the faces where large forces are exerted, and elsewhere the pressure
is smoothed throughout the environment by diffusion. The force exerted at the up-
per right demonstrates this well; it creates a “shock” in the pressure field (black
triangle next to white triangle), which is spread by diffusion into linearly decreas-
ing pressure around the upper right “jughandle.” Where vortices are produced, the
stream function exhibits a pair of local extrema, a maximum for a clockwise vor-
tex and a minimum for a counterclockwise one, as can be observed in the left part
of the complex. Vehicles then follow level sets of the stream function around the
environment.

3.6.3 Conducting Swarms

A key goal of human–swarm interaction methods is to present human operators
with high-level aggregate properties of swarms that they can manipulate, rather than
requiring that they take on the cognitive workload of managing large numbers of
agents individually. The fluid-based approach described in the previous sections
gives an attractive way to do this by using “flows” of the agents as the aggregate
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Fig. 8 Whenever the projection of the motion capture wand’s center onto the floor plane crosses
an edge between two triangles, a force in the direction of motion is superimposed across that edge.
If the center of the motion-capture wand is q and its projection onto the ground plane is p, then a
signed flow is superimposed across that edge of value f̃ = ṗTJ (v − u)/(‖v − u‖). Here, J is the
π/2 rotation matrix used to define the stream function. Geometrically, f̃ is the component of the
wand’s projected velocity that is orthogonal to the edge

properties and by presenting humans with a physically inspired means of “pushing”
and “pulling” on those flows.

In the context of the Eulerian approach to multiagent networks, what we are now
concerned with is how to produce the vector f of “external forces” from human
input that describes the “pushing” and “pulling.” Our goal is to provide the human
with a simple, intuitive interface that she can use to manipulate the swarm.

The implementation demonstrates how this can work, using motion capture as
the user interface. The human makes physical motions that are tracked, and forces
are generated on the fluid as she moves through it. Specifically, the human moves a
wand with reflective markers that are tracked by cameras, and, as the wand crosses
over edges between triangles, flows are created over them, as illustrated by Fig. 8.

There are a variety of options for how precisely to evolve the force vector f . In
the implementation shown in Fig. 9, the force vector f is evolved by adding flows
according to Fig. 8, and otherwise letting the forces decay according to first-order,
linear dynamics. This means that if at times t1, t2, . . . , edges indexed i1, i2, . . . are
crossed, and flow increments f̃1, f̃2, . . . are calculated according to Fig. 8, then f

is evolved as

ḟ = −γf +
∞∑

k=1

f̃kδ(t − tk)eik ,

where γ ≥ 0 is a choice of decay rate; if there are m edges, ei is the ith element
of the m × m identity matrix; and δ is the Dirac delta distribution. This is one rep-
resentative example of how motions can be mapped to (time-varying) force vectors
and happens to be the one used in the implementation shown in Fig. 9.
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Fig. 9 Khepera III mobile robots in a simplicial complex (left) (internal edges are shown in pur-
ple and boundary edges in blue) and robots moving in the same complex according to a stream
function, overlaid (right)

3.7 Conclusions

This chapter discusses a number of different ways in which human users can in-
teract with networks of mobile agents. In particular, a Lagrangian approach is pre-
sented, where the user takes active control of a select number of leader nodes. Within
this context, controllability and the instantaneous notion of manipulability are intro-
duced. User studies where furthermore conducted that connected controllability and
centrality notions to the ease by which human operators could interact with the net-
work.

The other approach presented in this chapter is an Eulerian approach. This is
characterized by the fact that the user no longer controls individual agents. Instead,
the agents are assumed to be suspended in a fluid, and the user “stirs” this fluid by
injecting desired flows across edges in the underlying infrastructure network. This
second approach was experimentally tested, and a human operator could success-
fully move 10 mobile agents over the infrastructure network.

Despite the recent advances described in this chapter, the study of human–swarm
interactions is still in its infancy. We still do not understand what the correct abstrac-
tions should be when interacting with complex networks, nor what the appropriate
performance measures might be that ultimately determine the viability of the ab-
stractions. As such, much work yet remains to be done in this increasingly relevant
area of research.
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