
Chapter 2
Mathematical Modeling and Analysis
of Nonlinear Time-Invariant RLC Circuits

Timo Reis

Abstract We give a basic and self-contained introduction to the mathematical de-
scription of electrical circuits that contain resistances, capacitances, inductances,
voltage, and current sources. Methods for the modeling of circuits by differential–
algebraic equations are presented. The second part of this paper is devoted to
an analysis of these equations.
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Modified nodal analysis · Modified loop analysis · Graph theory · Maxwell’s
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2.1 Introduction

It is in fact not difficult to convince scientists and nonscientists of the importance
of electrical circuits; they are nearly everywhere! To mention only a few, electrical
circuits are essential components of power supply networks, automobiles, television
sets, cell phones, coffee machines, and laptop computers (the latter two items have
been heavily involved in the writing process of this article). This gives a hint to their
large economical and social impact to the today’s society.

When electrical circuits are designed for specific purposes, there are, in prin-
ciple, two ways to verify their serviceability, namely the “construct-trial-and-error
approach” and the “simulation approach.” Whereas the first method is typically cost-
intensive and may be harmful to the environment, simulation can be done a priori
on a computer and gives reliable impressions on the dynamic circuit behavior even
before it is physically constructed. The fundament of simulation is the mathemat-
ical model. That is, a set of equations containing the involved physical quantities
(these are typically voltages and currents along the components) is formulated,
which is later on solved numerically. The purpose of this article is a detailed and
self-contained introduction to mathematical modeling of the rather simple but nev-
ertheless important class of time-invariant nonlinear RLC circuits. These are analog
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circuits containing voltage and current sources as well as resistances, capacitances,
and inductances. The physical properties of the latter three components will be as-
sumed to be independent of time, but they will be allowed to be nonlinear. Under
some additional, physically meaningful, assumptions on the components, we will
further depict and discuss several interesting mathematical features of circuit mod-
els and give back-interpretation to physics.

Apart from the high practical relevance, the mathematical treatment of electrical
circuits is interesting and challenging especially due to the fact that various different
mathematical disciplines are involved and combined, such as graph theory, ordinary
and partial differential equations, differential–algebraic equations, vector analysis,
and numerical analysis.

This article is organized as follows: In Sect. 2.3, we introduce the physical quan-
tities that are involved in circuit theory. Based on the fact that every electrical phe-
nomenon is ultimately caused by electromagnetic field effects, we present their
mathematical model (namely Maxwell’s equations) and define the physical vari-
ables voltage, current, and energy by means of electric and magnetic field and their
interaction. We particularly highlight model simplifications that are typically made
for RLC circuits. Section 2.4 is then devoted to the famous Kirchhoff laws, which
can be mathematically inferred from the findings of the preceding section. It will
be shown that graph theory is a powerful tool to formulate these equations and ana-
lyze their properties. Thereafter, in Sect. 2.5, we successively focus on mathematical
description of sources, resistances, inductances, and capacitances. The relation be-
tween voltage and current along these components and their energetic behavior is
discussed. Kirchhoff and component relations are combined in Sect. 2.6 to formulate
the overall circuit model. This leads to the modeling techniques of modified nodal
analysis and modified loop analysis. Both methods lead to differential–algebraic
equations (DAEs), whose fundamentals are briefly presented as well. Special em-
phasis is placed on mathematical properties of DAE models of RLC circuits.

2.2 Nomenclature

Throughout this article we use the following notation.

N set of natural numbers
R set of real numbers
R

n,m the set of real n × m

In identity matrix of size n × n

MT ∈ R
m,n, xT ∈R

1,n transpose of the matrix M ∈ R
n,m and the vector x ∈ R

n

imM , kerM image and kernel of a matrix M , resp.
M > (≥)0, the square real matrix M is symmetric positive

(semi)definite
‖x‖ = √

xTx, the Euclidean norm of x ∈R
n

V⊥ orthogonal space of V ⊂ R
n
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sign(·) sign function, i.e., sign :R → R with sign(x) = 1 if x > 0,
sign(0) = 0, and sign(x) = −1 if x < 0

t time variable (∈ R)

ξ space variable (∈ R
3)

ξx , ξy , ξz components of the space variable ξ ∈R
3

ex , ey , ez canonical unit vectors in R
3

ν(ξ) positively oriented tangential unit vector of a curve
S ⊂ R

3 in ξ ∈ S
n(ξ) positively oriented normal unit vector of an

oriented surface A ⊂ R
3 in ξ ∈A

u × v vector product of u,v ∈ R
3

gradf (t, ξ) gradient of the scalar-valued function f with respect to
the spatial variable

divf (t, ξ), curlf (t, ξ) divergence and, respectively, curl of an R
3-valued

function f with respect to the spatial variable
∂Ω (∂A) boundary of a set Ω ⊂ R

3 (surface A ⊂ R
3)´

S f (ξ) ds(ξ)

(
¸
S f (ξ) ds(ξ))

integral of a scalar-valued function f over a (closed)
curve A ⊂ R

3

˜
A f (ξ) dS(ξ)

(
‚

A f (ξ) dS(ξ))

integral of a scalar-valued function f over a (closed)
surface A ⊂ R

3

˝
Ω

f (ξ) dV (ξ) integral of a scalar-valued function f over a domain
Ω ⊂ R

3

The following abbreviations will be furthermore used:

DAE differential–algebraic equation (see Sect. 2.6)
KCL Kirchhoff’s current law (see Sects. 2.4 and 2.3)
KVL Kirchhoff’s voltage law (see Sects. 2.4 and 2.3)
MLA Modified loop analysis (see Sect. 2.6)
MNA Modified nodal analysis (see Sect. 2.6)
ODE ordinary differential equation (see Sect. 2.6)

2.3 Fundamentals of Electrodynamics

We present some basics of classical electrodynamics. A fundamental role is played
by Maxwell’s equations. The concepts of voltage and current will be derived from
these fundamental concepts and laws. The derivations will be done by using tools
from vector calculus, such as the Gauss and Stokes theorems. Note that, in this
section (as well as in Sect. 2.5, where the component relations will be derived),
we will not present all derivations with full mathematical precision. For an exact
presentation of smoothness properties on the involved surfaces, boundaries, curves,
and functions to guarantee the applicability of the Gauss theorem and the Stokes
theorem and interchanging the order of integration (and differentiation), we refer to
textbooks on vector calculus, such as [1, 31, 37].
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2.3.1 The Electromagnetic Field

The following physical quantities are involved in an electromagnetic field.

D: electric displacement, B: magnetic flux intensity,
E: electric field intensity, H : magnetic field intensity,
j : electric current density, ρ: electric charge density.

The current density and flux and field intensities are R
3-valued functions depend-

ing on time t ∈ I ⊂ R and spatial coordinate ξ ∈ Ω , whereas the electric charge
density ρ : I × Ω → R is scalar-valued. The interval I expresses the time period,
and Ω ⊂ R

3 is the spatial domain in which the electromagnetic field evolves. The
dependencies of the above physical variables are expressed by Maxwell’s equations
[40, 57], which read

divD(t, ξ) = ρ(t, ξ), charge induces electrical fields, (1a)

divB(t, ξ) = 0, field lines of a magnetic flux are closed,
(1b)

curlE(t, ξ) = − ∂

∂t
B(t, ξ), law of induction, (1c)

curlH(t, ξ) = j (t, ξ) + ∂

∂t
D(t, ξ), magnetic flux law. (1d)

Further algebraic relations between electromagnetic variables are involved. These
are called constitutive relations and are material-dependent. That is, they express
the properties of the medium in which electromagnetic waves evolve. Typical con-
stitutive relations are

E(t, ξ) = fe

(
D(t, ξ), ξ

)
, H(t, ξ) = fm

(
B(t, ξ), ξ

)
, (2a)

j (t, ξ) = g
(
E(t, ξ), ξ

)
(2b)

for some functions fe, fm,g : R3 × Ω → R
3. In the following, we collect some

assumptions on fe , fm, and g made in this article. Their practical interpretation is
subject of subsequent parts of this article.

Assumption 3.1 (Constitutive relations)

(a) There exists some function Ve : R3 × Ω → R (electric energy density) with
Ve(D, ξ) > 0 and Ve(0, ξ) = 0 for all ξ ∈ Ω , D ∈ R

3, which is differentiable
with respect to D and satisfies

∂

∂D
V T

e (D, ξ) = fe(D, ξ) for all D ∈R
3, ξ ∈ Ω. (3)
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(b) There exists some function Vm : R3 × Ω → R (magnetic energy density) with
Vm(B, ξ) > 0 and Vm(0, ξ) = 0 for all ξ ∈ Ω , B ∈ R

3, which is differentiable
with respect to B and satisfies

∂

∂B
V T

m(B, ξ) = fm(B, ξ) for all B ∈ R
3, ξ ∈ Ω. (4)

(c) ETg(E, ξ) ≥ 0 for all E ∈ R
3, ξ ∈ Ω .

If fe and fm are linear, assumptions (a) and (b) reduce to

Ve(D, ξ) = DTMe(ξ)−1D, Vm(B, ξ) = BTMm(ξ)−1B

for some symmetric and matrix-valued functions Me,Mm : Ω → R
3,3 such that

Me(ξ) > 0 and Mm(ξ) > 0 for all ξ ∈ Ω . The functional relations between field
intensities, displacement, and flux intensity then read

D(t, ξ) = Me(ξ)E(t, ξ) and B(t, ξ) = Mm(ξ)H(t, ξ).

A remarkable special case is isotropy. That is, Me and Mm are pointwise scalar
multiples of the unit matrix, that is,

Me = ε(ξ)I3, Mm = μ(ξ)I3

for positive functions ε,μ : Ω → R. In this case, electromagnetic waves propagate
with velocity c(ξ) = (ε(ξ) · μ(ξ))−1/2 through ξ ∈ Ω . In vacuum, we have

ε ≡ ε0 ≈ 8.85 · 10−12 A · s · V−1 · m−1,

μ ≡ μ0 ≈ 1.26 · 10−6 m · kg · s−2 · A−2.

Consequently, the quantity

c0 = (ε0 · μ0)
−1/2 ≈ 3.00 m · s−1

is the speed of light [30, 34].
As we will see soon, the function g has the physical interpretation of an energy

dissipation rate. That is, it expresses energy transfer to thermodynamic domain. In
the linear case, this function reads

g(E, ξ) = G(ξ) · E,

where G : Ω → R
3,3 is a matrix-valued function with the property that G(ξ) +

GT(ξ) ≥ 0 for all ξ ∈ Ω . In perfectly isolating media (such as the vacuum), the
electric current density vanishes; the dissipation rate consequently vanishes there.

Assuming that fe, fm, and g fulfill Assumptions 3.1, we define the electric en-
ergy at time t ∈ I as the spatial integral of the electric energy density over Ω at
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time t . Consequently, the magnetic energy is the spatial integral of the magnetic en-
ergy density over Ω at time t , and the electromagnetic energy at time t is the sum
over these two quantities, that is,

W(t) =
˚

Ω

(
Ve

(
D(t, ξ), ξ

)+ Vm

(
B(t, ξ), ξ

))
dV (ξ).

We are now going to derive an energy balance for the electromagnetic field: First,
we see, by using elementary vector calculus, that the temporal derivative of the total
energy density fulfills

∂

∂t

(
Ve

(
D(t, ξ), ξ

)+ Vm

(
B(t, ξ), ξ

))

= ∂

∂D
Ve

(
D(t, ξ), ξ

) · ∂

∂t
D(t, ξ) + ∂

∂B
Vm

(
B(t, ξ), ξ

) · ∂

∂t
B(t, ξ)

= ET(t, ξ) · ∂

∂t
D(t, ξ) + HT(t, ξ) · ∂

∂t
B(t, ξ)

= ET(t, ξ) · curlH(t, ξ) − ET(t, ξ) · g(E(t, ξ)
)− HT(t, ξ) · curlE(t, ξ)

= div
(
E(t, ξ) × H(t, ξ)

)− ET(t, ξ) · g(E(t, ξ)
)
. (5a)

The fundamental theorem of calculus and the Gauss theorem then implies the energy
balance

W(t2) − W(t1) =
ˆ t2

t1

˚

Ω

∂

∂t

(
Ve

(
D(t, ξ), ξ

)+ Vm

(
B(t, ξ), ξ

))
dV (ξ) dt

=
ˆ t2

t1

˚

Ω

div
(
E(t, ξ) × H(t, ξ)

)
dV (ξ) dt

−
ˆ t2

t1

˚

Ω

ET(t, ξ) · g(E(t, ξ)
)
dV (ξ) dt

=
ˆ t2

t1

‹

∂Ω

nT(ξ) · (E(t, ξ) × H(t, ξ)
)
dS(ξ)

−
ˆ t2

t1

˚

Ω

ET(t, ξ) · g(E(t, ξ)
)
dV (ξ) dt

≤
ˆ t2

t1

‹

∂Ω

nT(ξ)
(
E(t, ξ) × H(t, ξ)

)
dS(ξ). (5b)

A consequence of the above finding is that energy transfer is done by dissipation
and via the outflow of the Poynting vector field E × H : I × Ω →R

3.
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The electromagnetic field is not uniquely determined by Maxwell’s equations.
Besides imposing suitable initial conditions on electric displacement and magnetic
flux, that is,

D(0, ξ) = D0(ξ), B(0, ξ) = B0(ξ), ξ ∈ Ω. (6)

To fully describe the electromagnetic field, we further have to impose physically
(and mathematically) reasonable boundary conditions [40]. These are typically zero
conditions if Ω = R

3 (that is, lim‖ξ‖→∞ E(t, ξ) = lim‖ξ‖→∞ H(t, ξ) = 0) or, in
case of bounded domain Ω with smooth boundary, tangential or normal conditions
on electrical or magnetic field, such as, for instance,

n(ξ) × (
E(t, ξ) − Eb(t, ξ)

)= 0, n(ξ) × (
H(t, ξ) − Hb(t, ξ)

)= 0,

nT(ξ)
(
E(t, ξ) − Eb(t, ξ)

)= 0, nT(ξ)
(
H(t, ξ) − Hb(t, ξ)

)= 0, ξ ∈ ∂Ω.

(7)

2.3.2 Currents and Voltages

Here we introduce the physical quantities that are crucial for circuit analysis.

Definition 3.2 (Electrical current) Let Ω ⊂ R
3 describe a medium in which an elec-

tromagnetic field evolves. Let As ⊂ Ω be an oriented surface. Then the current
through A is defined by the surface integral of the current density, that is,

i(t) =
¨

A
nT(ξ) · j (t, ξ) dS(ξ). (8)

Remark 3.3 (Orientation of the surface) Reversing the orientation of the surface
means changing the sign of the current. The indication of the direction of a current
is therefore a matter of the orientation of the surface.

Remark 3.4 (Electrical current in the case of absent charges/stationary case) Let
Ω ⊂ R

3 be a domain, and A ⊂ Ω be a surface. If the medium does not contain
any electric charges (i.e., ρ ≡ 0), then we obtain from Maxwell’s equations that the
current through A is

i(t) =
¨

A
nT(ξ) · j (t, ξ) dS(ξ)

=
¨

A
nT(ξ) · curlH(t, ξ) dS(ξ) −

¨

A
nT(ξ) · ∂

∂t
D(t, ξ) dS(ξ)

=
¨

A
nT(ξ) · curlH(t, ξ) dS(ξ) − d

dt

¨

A
nT(ξ) · D(t, ξ) dS(ξ).



132 T. Reis

Elementary calculus implies that curlH is divergence free, that is,

div curlH(t, ξ) = 0.

The absence of electric charges moreover gives rise to

divD(t, ξ) = 0.

We consider two case scenarios:

(a) Ω ∈ R
3 is star-shaped. Poincaré’s lemma [1] and the divergence-freeness of

the electric displacement implies the existence of an electric vector potential
F : I × Ω →R

3 such that

D(t, ξ) = curlF(t, ξ).

The Stokes theorem then implies that the current through A reads

i(t) =
¨

A
nT(ξ) · curlH(t, ξ) dS(ξ) − d

dt

¨

A
nT(ξ) · curlF(t, ξ) dS(ξ)

=
˛

∂A
νT(ξ) · H(t, ξ) ds(ξ) − d

dt

˛

∂A
νT(ξ) · F(t, ξ) ds(ξ).

Consequently, the current through the surface A is solely depending on the
behavior of the electromagnetic field on the boundary ∂A. In other words, if
∂A1 = ∂A2 for A1,A2 ⊂ Ω , then the current through A1 equals the current
through A2.

Note that the condition that Ω ⊂ R
3 is star-shaped can be relaxed to the sec-

ond de Rham cohomology of Ω being trivial, that is, H 2
dR(Ω)=̃{0} [1]. This is

again a purely topological condition on Ω , that is, a continuous and continu-
ously invertible deformation of Ω does not influence the de Rham cohomology.

It can be furthermore seen that the above findings are true as well if the topo-
logical condition on Ω , together with the absence of electric charges, is replaced
with the physical assumption that the electric displacement is stationary, that is,
∂
∂t

D ≡ 0. This follows by

i(t) =
¨

A
nT(ξ) · j (t, ξ) dS(ξ)

=
¨

A
nT(ξ) · curlH(t, ξ) dS(ξ) −

¨

∂A
nT(ξ) · ∂

∂t
D(t, ξ)

︸ ︷︷ ︸
=0

dS(ξ)

=
¨

∂A
νT(ξ) · H(t, ξ) dS(ξ). (9)

Now consider a wire as presented in Fig. 1, which is assumed to be surrounded
by a perfect isolator (that is, the nT(ξ)j (ξ) = 0 at the boundary of the wire).
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Fig. 1 Electrical current
through surface A

Let A be a cross-sectional area across the wire. If the wire does not contain
any charges or the electric field inside the wire is stationary, an application of
the above argumentation implies that the current of a wire is well-defined in the
sense that it does not depend on the particular choice of a cross-sectional area.
This enables to speak about the current through a wire.

(b) Now assume that V ⊂ Ω is a domain with sufficiently smooth boundary and
consider the current though ∂V . Applying the Gauss theorem, we obtain that,
under the assumption ρ ≡ 0, the integral of the outward component of the cur-
rent density vanishes for any closed surface, that is,

‹

∂V
nT(ξ) · j (t, ξ) dS(ξ)

=
‹

∂V
nT(ξ) · curlH(t, ξ) dS(ξ) − d

dt

‹

∂V
nT(ξ) · D(t, ξ) dS(ξ)

=
˚

V
div curlH(t, ξ)︸ ︷︷ ︸

=0

dV (ξ) − d

dt

˚

V
divD(t, ξ)︸ ︷︷ ︸

=0

dV (ξ) = 0.

Further note that, again, under the alternative assumption that the field of electric
displacement is stationary, the surface integral of the current density over ∂Ω

vanishes as well (compare (9)).
In each of the above two cases, we have

‹

∂Ω

nT(ξ) · j (t, ξ) dS(ξ) = 0.

Now we focus on a conductor node as presented in Fig. 2 and assume that no
charges are present or that the electric field inside the conductor node is stationary.
Again assuming that all wires are surrounded by perfect isolators, we can choose
a domain Ω ⊂ R

3 such that, for k = 1, . . . ,N , the boundary ∂Ω intersects with
the kth wire to the cross-sectional area Ak . Define the number sk ∈ {1,−1} to be
positive if Ak has the same orientation of ∂Ω (that is, ik(t) is an outflowing current)
and sk = −1 otherwise (that is, ik(t) is an inflowing current). Then, by making use

Fig. 2 Conductor node
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of the assumption that the current density is trivial outside the wires we obtain

0 =
¨

∂Ω

nT(ξ) · curlH(t, ξ) dS(ξ) =
N∑

k=1

sk

¨

Ak

nT(ξ) · curlH(t, ξ) dS(ξ)

=
N∑

k=1

sk

¨

Ak

nT(ξ) · j (t, ξ) dS(ξ) =
N∑

k=1

skik(t),

where ik is the current of the kth wire. This is known as Kirchhoff’s current law.

Theorem 3.5 (Kirchhoff’s current law (KCL)) Assume that a conductor node is
given that is surrounded by a perfect isolator. Further assume that the electric field
is stationary or the node does not contain any charges. Then the sum of inflowing
currents equals to the sum of inflowing currents.

Next, we introduce the concept of electric voltage.

Definition 3.6 (Electrical voltage) Let Ω ⊂ R
3 describe a medium in which

an electromagnetic field evolves. Let S ⊂ Ω be a path (see Fig. 3). Then the voltage
along S is defined by the path integral

u(t) =
ˆ

S
νT(ξ)E(t, ξ) ds(ξ). (10)

Remark 3.7 (Orientation of the path) The sign of the voltage is again a matter of the
orientation of the path. That is, a change of the orientation of S results in replacing
u(t) be −u(t) (compare Remark 3.3).

Remark 3.8 (Electrical current in the stationary case) If the field of magnetic flux
intensity is stationary ( ∂

∂t
B ≡ 0), then the Maxwell equations give rise to curlE ≡ 0.

Moreover, assuming that the spatial domain in which the stationary electromagnetic
field evolves is simply connected [31], the electric field intensity is a gradient field,
that is,

E(t, ξ) = gradΦ(t, ξ)

for some differentiable scalar-valued function Φ , which we call an electric poten-
tial. For a path Ss ⊂ Ω from ξ0 to ξ1, we have

ˆ

Ss

νT(ξ) · E(t, ξ) ds(ξ) = Φ(t, ξ1) − Φ(t, ξ0). (11)

In particular, the voltage along Ss is solely depending on the initial and end point
of Ss . This enables to speak about the voltage between the points ξ0 and ξ1.

Note that the electric potential is unique up to addition of a function indepen-
dent on the spatial coordinate ξ . It can therefore be made unique by imposing the
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Fig. 3 Voltage along S

Fig. 4 Grounding of ξg

Fig. 5 Conductor loop

additional relation Φ(t, ξg) = 0 for some prescribed position ξg ∈ Ω . In electrical
engineering, this is called grounding of ξg (see Fig. 4).

Now we take a closer look at a loop of conductors (see Fig. 5) in which the field
of magnetic flux is assumed to be stationary:

For k = 1, . . . ,N , assume that Sk is a path in the kth conductor connecting its
nodes. Assume that the field of magnetic flux intensity is stationary and let uk(t)

be the voltage between the initial and terminal point of Sk . Define the number sk ∈
{1,−1} to be positive if Sk is in the direction of the loop and sk = −1 otherwise.
Taking a surface A ⊂ Ω that is surrounded by the path

S1∪̇ · · · ∪̇SN = ∂A,

we can apply the Stokes theorem to see that

N∑

k=0

sk · uk(t) =
N∑

k=0

sk ·
ˆ

Sk

νT(ξ) · E(t, ξ) ds(ξ)

=
˛

∂A

νT(ξ) · E(t, ξ) ds(ξ)

=
¨

A
nT(ξ) · curlE(t, ξ) dS(ξ) = 0.

Theorem 3.9 (Kirchhoff’s voltage law (KVL)) In an electromagnetic field in which
the magnetic flux is stationary, each conductor loop fulfills that the sum of voltages
in direction of the loop equals the sum of voltages in the opposite direction to the
loop.
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In the following, we will make some further considerations concerning energy
and power transfer in stationary electromagnetic fields ( ∂

∂t
D ≡ ∂

∂t
B ≡ 0) evolving

in simply connected domains. Assuming that we have some electrical device in the
domain Ω ⊂ R

3 that is physically closed in the sense that no current leaves the
device (i.e., nT(ξ)j (t, ξ) = 0 for all ξ ∈ ∂Ω), an application of the multiplication
rule

div
(
j (t, ξ)Φ(t, ξ)

)= div j (t, ξ) · Φ(t, ξ) + jT(t, ξ) · gradΦ(t, ξ)

and the Gauss theorem lead to
˚

Ω

jT(t1, ξ) · E(t2, ξ) dV (ξ)

=
˚

Ω

jT(t1, ξ) · gradΦ(t2, ξ) dV (ξ)

= −
˚

Ω

div j (t1, ξ) · Φ(t2, ξ) dV (ξ) +
˚

Ω

div
(
j (t1, ξ) · Φ(t2, ξ)

)
dV (ξ)

= −
˚

Ω

div j (t1, ξ)
︸ ︷︷ ︸

=0

·Φ(t2, ξ) dV (ξ)

+
‹

∂Ω

nT(ξ)j (t1, ξ)
︸ ︷︷ ︸

=0

·Φ(t2, ξ) dV (ξ) = 0. (12)

In other words, the spatial L2-inner product [17] between j (t1, ·) and the field
E(t1, ·) vanishes for all times t1, t2 in which the stationary electrical field evolves.

Theorem 3.10 (Tellegen’s law for stationary electromagnetic fields) Let a station-
ary electromagnetic field inside the simply connected domain Ω ⊂ R

3 be given, and
assume that no electrical current leaves Ω . Then for all times t1, t2 in which the field
evolves, the current density field j (t1, ·) and the electrical field density field E(t, ·)
are orthogonal in the L2-sense.

The concluding considerations in this section are concerned with energy inside
conductors in which stationary electromagnetic fields evolve. Consider an electrical
wire as displayed in Fig. 3. Assume that S is a path connecting the incidence nodes
ξ0, ξ1. Furthermore, for each ξ ∈ S, let Aξ be a cross-sectional area containing ξ and
assume the additional property that the spatial domain of the wire Ω is the disjoint
union of the surfaces Aξ , that is,

Ω =
•⋃

ξ∈S
Aξ .

The KCL implies that the current through Aξ does not depend on ξ ∈ S . Now mak-
ing the (physically reasonable) assumptions that the voltage is spatially constant in
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each cross-sectional area Aξ and using the Gauss theorem and the multiplication
rule, we obtain

(curlE)T(t, ξ) · H(t, ξ) − ET(t, ξ) · curlH(t, ξ) = div
(
E(t, ξ) × H(t, ξ)

)
.

From this we see that the following holds for the product between the voltage along
and the current through the wire:

u(t)i(t) =
ˆ

S
νT(ξ) · E(t, ξ) ds(ξ) ·

¨

Aξ1

nT(ξ) · j (t, ζ ) dS(ζ )

=
ˆ

S
νT(ξ) · E(t, ξ) ·

¨

Aξ

nT(ξ) · j (t, ζ ) dS(ζ ) ds(ξ)

=
˚

Ω

ET(t, ξ) · j (t, ξ) dV (ξ)

=
˚

Ω

ET(t, ξ) · curlH(t, ξ) dV (ξ)

=
˚

Ω

(curlE)T(t, ξ) · H(t, ξ) − ET(t, ξ) · curlH(t, ξ) dV (ξ)

=
˚

Ω

div
(
E(t, ξ) × H(t, ξ)

)
dV (ξ)

=
‹

∂Ω

nT(ξ)
(
E(t, ξ) × H(t, ξ)

)
dV (ξ).

In other words, the product between u(t) and i(t) therefore coincides with the out-
flow of the Poynting vector field of the wire, whence the integral

W =
ˆ

I

u(t) · i(t) dt

is the energy consumed by the wire.

2.3.3 Notes and References

(i) The constitutive relations with properties as in Assumptions 3.1 directly consti-
tute an energy balance via (5a), (5b). Further types of constitutive relations can
be found in [30].

(ii) The existence of global (weak, classical) solutions of Maxwell’s equations in
the general nonlinear case seems to be not fully worked out so far. A functional
analytic approach to the linear case is, with boundary conditions sightly differ-
ent from (7), in [66].
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Fig. 6 Circuit as a graph

2.4 Kirchhoff’s Laws and Graph Theory

In this part, we will approach the systematic description of Kirchhoff’s laws inside
a conductor network. To achieve this aim, we will regard an electrical circuit as
a graph. Each branch of the circuit connects two nodes. To each branch of the cir-
cuit we assign a direction, which is not a physical restriction but rather a definition
of the positive direction of the corresponding voltage and current. This definition is
arbitrary, but it has to be however done in advance (compare Remarks 3.3 and 3.7).
We assume that the voltage and current of each branch are equally directed. This is
known as a load reference-arrow system [34]. This allows us to speak about an ini-
tial node and a terminal node of a branch.

Such a collection of branches can, in an abstract way, be formulated as a directed
graph (see Fig. 6).

2.4.1 Graphs and Matrices

We present some mathematical fundamentals of directed graphs.

Definition 4.1 (Graph concepts) A directed graph (or graph for short) is a triple
G = (V ,E,ϕ) consisting of a node set V and a branch set E together with an inci-
dence map

ϕ : E → V × V, e �→ ϕ(e) = (
ϕ1(e), ϕ2(e)

)
.

If ϕ(e) = (v1, v2), we call e to be directed from v1 to v2; v1 is called the initial node,
and v2 the terminal node of e. Two graphs Ga = (Va,Ea,ϕa) and Gb = (Vb,Eb,ϕb)

are called isomorphic if there exist bijective mappings ιE : Ea → Eb and ιV : Va →
Vb , such that ϕa,1 = ι−1

V ◦ ϕb,1 ◦ ιE and ϕa,2 = ι−1
V ◦ ϕb,2 ◦ ιE .

Let V ′ ⊂ V , and let E′ be a set of branches fulfilling

E′ ⊂ E|V ′ := {
e ∈ E : ϕ(e) ∈ V ′ × V ′}.
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Further, let ϕ|E′ be the restriction of ϕ to E′. Then the triple K := (V ′,E′, ϕ|E′) is
called a subgraph of G. In the case where E′ = E|V ′ , we call K the induced sub-
graph on V ′. If V ′ = V , then K is called a spanning subgraph. A proper subgraph
is that with E �= E′.

G is called finite if both the node and the branch set are finite.
For each branch e, define an additional branch −e, which is directed from the

terminal to the initial node of e, that is, ϕ(−e) = (ϕ2(e), ϕ1(e)) for e ∈ E. Now
define the set Ẽ = {e,−e : e ∈ E}. A tuple w = (w1, . . . ,wr) ∈ Ẽr where

vki
:= ϕ2(wi) = ϕ1(wi+1) for i = 1, . . . , r − 1

is called a path from vk0 to vkr ; w is called an elementary path if vk1, . . . , vkr are
distinct. A loop is an elementary path with vk0 = vkr . A self-loop is a loop consist-
ing of only one branch. Two nodes v, v′ are called connected if there exists a path
from v to v′. The graph itself is called connected if any two nodes are connected.
A subgraph K := (V ′,E′, ϕ|E′) is called connected component if it is connected and
Kc := (V \ V ′,E \ E′, ϕ|E\E′) is a subgraph.

A tree is a minimally connected (spanning sub)graph, that is, it is connected
without having any connected proper spanning subgraph.

For a spanning subgraph K = (V ,E′, ϕ|E′), we define the complementary span-
ning subgraph by G −K := (V ,E \E′, ϕ|E\E′). The complementary spanning sub-
graph of a tree is called a cotree. A spanning subgraph K is called a cutset if its
branch set is nonempty, G −K is a disconnected graph, and additionally, G −K′ is
connected for any proper spanning subgraph K′ of K.

We can set up special matrices associated to a finite graph. These will be useful
to describe Kirchoff’s laws.

Definition 4.2 Let a finite graph G = (V ,E,ϕ) with n branches E = {e1, . . . , en}
and m nodes V = {v1, . . . , vm} be given. Assume that the graph does not contain
any self-loops. The all-node incidence matrix of G is defined by A0 = (ajk) ∈ R

m,n,
where

ajk =

⎧
⎪⎨

⎪⎩

1 if branch k leaves node j,

−1 if branch k enters node j,

0 otherwise.

Let L = {l1, . . . , lb} be the set of loops of G. Then the all-loop matrix B0 = (bjk) ∈
R

l,n is defined by

bjk =

⎧
⎪⎨

⎪⎩

1 if branch k belongs to loop j and has the same orientation,

−1 if branch k belongs to loop j and has the contrary orientation,

0 otherwise.
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2.4.2 Kirchhoff’s Laws: A Systematic Description

Let A0 ∈ R
m,n be the all-node incidence matrix of a graph G = (V ,E,ϕ) with n

branches E = {e1, . . . , en} and m nodes V = {v1, . . . , vm} and no self-loops. The
j th row of A0 is, by definition, at the kth position, equal to 1 if the kth branch leaves
the j th node. On the other hand, this entry equals to −1 if the kth branch enters the
j th node. If the kth node is involved in the j th node, then this entry vanishes. Hence,
defining ik(t) to be the current through the kth branch in the direction to its terminal
node and defining the vector

i(t) =
⎛

⎜
⎝

i1(t)
...

in(t)

⎞

⎟
⎠ , (13)

the kth row vector ak ∈ R
1,n gives rise to Kirchhoff’s current law of the kth node

via aki(t) = 0. Consequently, the collection of all Kirchhoff laws reads, in compact
form,

A0i(t) = 0. (14)

For k ∈ {1, . . . , n}, let uk(t) be the voltage between the initial and terminal nodes of
the kth branch, and define the vector

u(t) =
⎛

⎜
⎝

u1(t)
...

un(t)

⎞

⎟
⎠ . (15)

By the same argumentation as before, the construction of the all-loop matrix gives
rise to

B0u(t) = 0. (16)

Since any column of A0 contains exactly two nonzero entries, namely 1 and −1, we
have

AT
0 ·
⎛

⎜
⎝

1
...

1

⎞

⎟
⎠

︸︷︷ ︸
∈Rm

= 0. (17)

This give rise to the fact that the KCL system A0i(t) = 0 contains redundant equa-
tions. Such redundancies occur more than ever in the KVL B0u = 0.

Remark 4.3 (Self-loops in electrical circuits) Kirchhoff’s voltage law immediately
yields that the voltage along a branch with equal incidence nodes vanishes. Kirch-
hoff’s current law further implies that the current from a self-loop flows into the
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corresponding node and also flows out of this node. A consequence is that self-
loops are physically neutral: Their removal does not influence the behavior of the
remaining circuit. The assumption of their absence is therefore no loss of generality.

The next aim is to determine a set of (linearly) independent equations out of
the so far constructed equations. To achieve this, we present several connections
between some properties of the graph and its matrices A0, B0. We generalize the
results in [7] to directed graphs. As a first observation, we may reorder the branches
and nodes of G = (V ,E,ϕ) into according to connected components such that we
end up with

A0 =
⎡

⎢
⎣

A0,1
. . .

A0,k

⎤

⎥
⎦ , B0 =

⎡

⎢
⎣

B0,1
. . .

B0,k

⎤

⎥
⎦ , (18)

where A0,i and B0,i are, respectively, the all-node incidence matrix and all-loop
matrix of the ith connected component.

A spanning subgraph K of the finite graph G has an all-node incidence matrix
AK, which is constructed by deleting rows of A0 corresponding to the branches
of the complementary spanning subgraph G − K. By a suitable reordering of the
branches, the incidence matrix has a partition

A0 = [
A0,K A0,G−K

]
. (19)

Theorem 4.4 Let a finite graph G = (V ,E,ϕ) with n branches E = {e1, . . . , en}
and m nodes V = {v1, . . . , vm} and no self-loops. Let A0 ∈ R

m,n be the all-node
incidence matrix of G. Then

(a) rankA0 = m − k.
(b) G contains a cutset if and only if rankA0 = m − 1.
(c) G is a tree if and only if A0 ∈R

m,m−1 and kerA0 = {0}.
(d) G contains loops if and only if kerA0 = {0}.

Proof

(a) Since all-loop incidence matrices of nonconnected graphs allow a representa-
tion (18), the general result can be directly inferred if we prove the statement
for the case where G is connected. Assume that A0 is the incidence matrix of
a connected graph, and assume that AT

0 x = 0 for some x ∈ R
m. Utilizing (17),

we need to show that all entries of x are equal for showing that rankA0 = m−1.
By a suitable reordering of the rows of A0 we may assume that the first k entries
of x are nonzero, whereas the last m − k entries are zero, that is, x = [xT

1 0]T,
where all entries of x1 are nonzero. By a further reordering of the columns we
may assume that A0 is of the form

A0 =
[
A11 0
A21 A22

]
,
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where each column vector of A11 is not the zero vector. This gives AT
11x1 = 0.

Now take an arbitrary column vector a21,i of A21. Since each column vector
of A0 has exactly two nonzero entries, a21,i either has no, one, or two nonzero
entries. The latter case implies that the ith column vector of A11 is the zero vec-
tor, which contradicts the construction of A21. If a21,i has exactly one nonzero
entry at the j th position, the relation x1A11 = 0 gives rise to the fact that the j th
entry of x1 vanishes. Since this is a contradiction, the whole matrix A21 van-
ishes. Therefore, the all-node incidence matrix is block-diagonal. This however
implies that none of the last m− k nodes is connected to the first k nodes, which
is a contradiction to G being connected.

(b) This result follows from (a) by using the fact that a graph contains cutsets if and
only if it is connected.

(c) By definition, G is a tree if and only if it is connected and the deletion of an arbi-
trary branch results in a disconnected graph. By (a) this means that the deletion
of an arbitrary column A0 results in a matrix with rank smaller than m− 1. This
is equivalent to the columns of A0 being linearly independent and spanning an
(n − 1)-dimensional space, in other words, rankA0 = m − 1 and kerA0 = {0}.

(d) Assume that the kernel of A0 is trivial. Seeking for a contradiction, assume that
G contains a loop l. Define the vector bl = [bl1, . . . , bln] ∈R

1,n \ {0} with

blk =

⎧
⎪⎨

⎪⎩

1 if branch k belongs to l and has the same orientation,

−1 if branch k belongs to l and has the contrary orientation,

0 otherwise.

Let a1 . . . , an be the column vectors of A0. Then, by construction of bl , each
row of the matrix

[
bl1a1 . . . blnan

]

contains exactly one entry 1 and one entry −1 and zeros elsewhere. This implies
A0b

T
l = 0.

Conversely, assume that G contains no loops. By separately considering the
connected components and the consequent structure (18) of A0, it is again no
loss of generality to assume that G is connected. Let e be a branch of G, and
let K be the spanning subgraph whose only branch is e. Then G − K results
in a disconnected graph (otherwise, (e, el1, . . . , elv) would be a loop, where
(el1, . . . , elv) is an elementary path in G − K from the terminal node to the
initial node of e). This however implies that the deletion of an arbitrary column
of A0 results in a matrix with rank smaller than n − 1, which means that the
columns of A0 are linearly independent, that is, kerA0 = {0}. �
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Since, by the dimension formula, dim kerAT
0 = k, we can infer from (14) and

(17) that kerAT
0 = span{c1, . . . , ck}, where

ci =
⎛

⎜
⎝

c1i

...

cmi

⎞

⎟
⎠ with cji =

⎧
⎪⎨

⎪⎩

1 if branch j belongs to the i-th connected
component,

0 else.
(20)

Furthermore, using the argumentation of the first part in the proof of (d), we obtain
that

A0B
T
0 = 0. (21)

We will show that the row vectors of B0 even generate the kernel of A0.
Based on a spanning subgraph K of G, we may, by a suitable reordering of

columns, perform a partition of the loop matrix according to the branches of K
and G −K, that is,

B0 = [
B0K B0G−K

]
. (22)

If a subgraph T is a tree, then any branch e in G − T defines a loop in G via
(e, el1, . . . , elv), where (el1, . . . , elv) is an elementary path in T from the terminal
node to the initial node of e. Consequently, we may reorder the rows of BT and
BG−T to obtain the form

B0T =
[
B11
B21

]
, B0G−T =

[
In−m+1

B22

]
. (23)

Such a representation will be crucial for the proof of the following result.

Theorem 4.5 Let G = (V ,E,ϕ) be a finite graph with no self-loops, n branches
E = {e1, . . . , en}, and m nodes V = {v1, . . . , vm}, and let the all-node incidence ma-
trix A0 ∈ R

m,n and b loops {l1, . . . , lb} be given. Furthermore, let k be the number
of connected components of G. Then

(a) imBT
0 = kerA0;

(b) rankB0 = n − m + k.

Proof The relation imBT
0 ⊂ kerA0 follows from (21). Therefore, the overall result

follows if we prove that rankB0 ≥ n − m + k. Again, by separately considering
the connected components and using the block-diagonal representations (18), the
overall result immediately follows if we prove the case k = 1. Assuming that G is
connected, we consider a tree T in G. Then we may assume that the all-loop matrix
is of the form B0 = [B0T B0G−T ] with submatrices as is (23). However, since the
latter submatrix has full column rank and n − m + 1 columns, we have

rankB0 ≥ rankB0G−T = n − m + 1,

which proves the desired result. �
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Statement (a) implies that the orthogonal spaces of imBT
0 and kerA0 coincide as

well. Therefore,

imAT
0 = kerB0.

To simplify verbalization, we arrange that, by referring to connectedness, the inci-
dence matrix, loop matrix, etc. of an electrical circuit, we mean the corresponding
notions and concepts for the graph describing the electrical circuit.

It is a reasonable assumption that an electrical circuit is connected; otherwise,
since the connected components do not physically interact, they can be considered
separately.

Since the rows of A0 sum up to the zero row vector, one might delete an arbitrary
row of A0 to obtain a matrix A having the same rank as A0. We call A the incidence
matrix of G. The property rankA0 = rankA implies imAT

0 = imAT. Consequently,
the following holds.

Theorem 4.6 (Kirchhoff’s current law for electrical circuits) Let a connected elec-
trical circuit with n branches and m nodes and no self-loops be given. Let A ∈
R

m−1,n, and let, for j = 1, . . . , n, ij (t) be the current in branch ej in the direction
of initial to terminal node of ej . Let i(t) ∈ R

n be defined as in (13). Then for all
times t ,

Ai(t) = 0. (24)

We can furthermore construct the loop matrix B ∈ R
n−m+1,n by picking n −

m + 1 linearly independent rows of B0. This implies imBT
0 = imBT, and we can

formulate Kirchhoff’s voltage law as follows.

Theorem 4.7 (Kirchhoff’s voltage law for electrical circuits) Let a connected elec-
trical circuit with n branches and m nodes be given. Let B ∈ R

n−m+1,n, and let,
for j = 1, . . . , n, uj (t) be the voltage in branch ej between the initial and terminal
node of ej . Let u(t) ∈R

n be defined as in (15). Then for all times t ,

Bu(t) = 0. (25)

A constructive procedure for determining the loop matrix B can be obtained from
the findings in front of Theorem 4.5: Having a tree T in the graph G describing an
electrical circuit, the loop matrix can be determined by

B = [
BT In−m+1

]
,

where the j th row of BT contains the information on the path in T between the
initial and terminal nodes of the (m − 1 + j)th branch of G.

The formulations (24) and (25) of Kirchhoff’s laws give rise to the fact that a con-
nected circuit includes n = (m − 1) + (n − m + 1) linearly independent Kirchhoff
equations. Using Theorem 4.5 and imAT

0 = imAT, imBT
0 = imBT, we further have

imBT = kerA.
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Kirchhoff’s voltage law may therefore be rewritten as u(t) ∈ imAT. Equivalently,
there exists some φ(t) ∈R

m−1 such that

u(t) = ATφ(t). (26)

The vector φ(t) is called the node potential. Its ith component expresses the voltage
between the ith node and the node corresponding to the deleted row of A0. This
relation can therefore be interpreted as a lumped version of (11). The node potential
of the deleted row is set to zero, whence the deletion of a row of A0 can therefore
be interpreted as grounding (compare Sect. 2.3).

Equivalently, Kirchhoff’s current law may be reformulated in the way that there
exists a loop current ι(t) ∈ R

n−m+1 such that

i(t) = BTι(t). (27)

The so far developed graph theoretical results give rise to a lumped version of The-
orem 3.10.

Theorem 4.8 (Tellegen’s law for electrical circuits) With the assumption and no-
tation of Theorems 4.6 and 4.7, for all times t1, t2, the vectors i(t1) and u(t2) are
orthogonal in the Euclidean sense, that is,

iT(t1)u(t2) = 0.

Proof For the incidence matrix A of the graph describing the electrical circuit, let
Φ(t2) ∈ R

m−1 be the corresponding vector of node potentials at time t2. Then

iT(t1)u(t2) = iT(t1)A
Tφ(t2) = (

Ai(t1)
)T

φ(t2) = 0 · φ(t2) = 0. (28)

�

2.4.3 Auxiliary Results on Graph Matrices

This section closes with some further results on the connection between properties
of subgraphs and linear algebraic properties of the corresponding submatrices of
incidence and loop matrices. Corresponding for undirected graphs can be found
in [7]. First, we declare some manners of speaking.

Definition 4.9 Let G be a graph, and let K be a spanning subgraph.

(i) L is called a K-cutset if L is a cutset of G and a spanning subgraph of K.
(ii) l is called a K-loop if l is a loop and all branches of l are contained in K.
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Lemma 4.10 Let G be a connected graph with n branches and m nodes, no self-
loops, an incidence matrix A ∈ R

m−1,n, and a loop matrix B ∈ R
n−m+1,n. Further,

let K be a spanning subgraph. Assume that the branches of G are sorted so that

A = [
AK AG−K

]
, B = [

BK BG−K
]
.

(a) The following three assertions are equivalent:

(i) G does not contain K-cutsets;
(ii) kerAT

G−K = {0};
(iii) kerBK = {0}.

(b) The following three assertions are equivalent:

(i) G does not contain K-loops;
(ii) kerAK = {0};

(iii) kerBT
G−K = {0}.

Proof

(a) The equivalence of (i) and (ii) follows from Theorem 4.4 (b). To show that (ii)
implies (iii), assume that BKx = 0. Then

(
x

0

)
∈ ker

[
BK BG−K

]= im

[
AT
K

AT
G−K

]

,

that is, there exists y ∈R
m−1 such that

(
x

0

)
=
[

AT
K

AT
G−K

]

y.

In particular, we have AT
G−Ky = 0, whence, by assumption (ii), y = 0. Thus,

x = AT
Ky = 0.

To prove that (iii) is sufficient for (ii), we can perform the same argumenta-
tion by interchanging the roles of AT

G−K and BK.
(b) The equivalence of (i) and (ii) follows from Theorem 4.4 (d). The equivalence

of (ii) and (iii) can be proven analogously to part (a) (by interchanging the roles
of K and G −K and of the loop and incidence matrices). �

The subsequent two auxiliary results are concerned with properties of subgraphs
of subgraphs and gives some equivalent characterizations in terms of properties of
their incidence and loop matrices.

Lemma 4.11 Let G be a connected graph with n branches and m nodes, no self-
loops, an incidence matrix A ∈ R

n−1,m, and a loop matrix B ∈ R
n−m+1,n. Further,
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let K be a spanning subgraph of G, and let L be a spanning subgraph of K. Assume
that the branches of G are sorted so that

A = [
AL AK−L AG−K

]
, B = [

BL BK−L BG−K
]
,

and define

AK = [
AL AK−L

]
, BK = [

BL BK−L
]
,

AG−L = [
AK−L AG−K

]
, BG−L = [

BK−L BG−K
]
.

Then the following four assertions are equivalent:

(i) G does not contain K-loops except for L-loops;
(ii)

kerAK = kerAL × {0}.
(iii) For a matrix ZL with imZL = kerAT

L,

kerZT
LAK−L = {0}.

(iv)

kerBT
G−L = kerBT

K−L.

(v) For a matrix YG−K with imYG−K = kerBT
G−K,

Y T
K−LBG−K = 0.

Proof To show that (i) implies (ii), let B̃K be a loop matrix of the graph K (note
that, in general, B̃K and BK do not coincide). The assumption that all K-loops are
actually L-loops implies that B̃K is structured as

B̃K = [
B̃L 0

]
.

Since im B̃K = kerAK, we have kerAK = im B̃T
L × {0}. This further implies that

im B̃T
L = kerAL or, in other words, (b) holds.

Now we show that (ii) is sufficient for (i). Let l be a loop in K. Assume that K
has nK branches and L has nL branches. Define the vector bl = [bl1, . . . , blnK

] ∈
R

1,m \ {0} with

blk =

⎧
⎪⎨

⎪⎩

1 if branch k belongs to l and has the same orientation,

−1 if branch k belongs to l and has the contrary orientation,

0 otherwise.

Then (ii) gives rise to blnL+1 = · · · = bnK
= 0, whence the branches of K − L are

not involved in l, that is, l is actually an L-loop.
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Aiming to show that (iii) holds, assume (ii). Let x ∈ kerZT
LAK−L. Then

AK−Lx ∈ kerZT
L = (imZL)⊥ = (

kerAT
L
)⊥ = imAL.

Thus, there exists a real vector y such that

AK−Lx = ALy.

This gives rise to
(−y

x

)
∈ ker

[
AL

AK−L

]
= kerAK = kerAL × {0},

and, consequently, x vanishes.
For the converse implication, it suffices to show that (c) implies kerAK ⊂

kerAL × {0} (the reverse inclusion holds in any case). Assume that
(

y

x

)
∈ kerAK,

that is, ALy+AK−Lx = 0. Multiplying this equation from the left by ZT
L, we obtain

x ∈ kerZT
LAK−L = {0}, that is, x = 0 and ALy = 0. Hence,

(
y

x

)
∈ kerAL × {0}.

The following proof concerns the sufficiency of (ii) for (iv): It suffices to show that
(ii) implies

kerBT
G−L ⊂ BT

K−L

since the converse inclusion holds in any case. Assume that BT
G−Lx = 0. Then

BTx =
⎛

⎜
⎝

BT
Lx

BT
K−Lx

0

⎞

⎟
⎠ ∈ kerAK = kerAL × {0},

whence BT
K−Lx.

Conversely, assume that (iv) holds and let
(

y

x

)
∈ kerAK.

Then
⎛

⎝
y

x

0

⎞

⎠ ∈ kerA = imBT = im

⎡

⎢
⎣

BT
L

BT
K−L

BT
G−K

⎤

⎥
⎦ ,
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that is, there exists a real vector z such that y = BT
Lz, x = BT

K−Lz and BT
G−Kz = 0.

The latter implies that x = BT
K−Lz = 0, that is, (b) holds.

It remains to show that (iv) and (v) are equivalent. Assume that (iv) holds. Then

kerBT
G−K ⊂ kerBT

K−L = imYK−L,

whence

Y T
K−LBG−K = (

BT
G−KYK−L

)T = 0.

Finally, assume that Y T
K−LBG−K = 0 and let BT

G−Kx = 0. Then x ∈ imYK−L, that
is, there exists a real vector y such that x = YK−Ly. This implies

BT
G−Lx =

(
BT
Lx

BT
G−Kx

)

=
(

BT
K−LYK−Ly

BT
G−KYK−Ly

)

=
(

0
0

)
.

So far, we have shown that Y T
K−LBG−K = 0 implies kerBT

G−K ⊂ kerBT
G−L. Since

the other inclusion holds in any case (BT
G−K is a submatrix of BT

G−L), the overall
result has been proven. �

Lemma 4.12 Let G be a connected graph with n branches and m nodes, no self-
loops, an incidence matrix A ∈ R

m−1,n, and a loop matrix B ∈ R
n−m+1,n. Further,

let K be a spanning subgraph of G, and let L be a spanning subgraph of L. Assume
that the branches of G are sorted so that

A = [
AL AK−L AG−K

]
, B = [

BL BK−L BG−K
]
.

Then the following four assertions are equivalent:

(i) G does not contain K-cutsets except for L-cutsets;
(ii) The initial and terminal nodes of each branch of K−L are connected by a path

in G −K.
(iii)

kerAT
G−K = kerAT

G−L.

(iv) For a matrix ZG−K with imZG−K = kerAT
G−K,

ZT
K−LAG−K = 0.

(v)

kerBK = kerBL × {0}.
(vi) For a matrix YL with imYL = kerBT

L,

kerY T
LBK−L = {0}.
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Proof By interchanging the roles of loop and incidence matrices, the proof of equiv-
alence of the assertions (c)–(f) is totally analogous to the proof of equivalence of
(ii)–(v) in Lemma 4.11. Hence, it suffices to show that (i), (ii), and (iii) are equiva-
lent:

First, we show that (i) implies (iii): As a first observation, note that since AK−L
is a submatrix of AK, (iii) is equivalent to imAK−L ⊂ imAG−K. Now seeking for
a contradiction, assume that (iii) is not fulfilled. Then, by the preliminary consider-
ation, there exists a column vector a1 of AK−L with a1 /∈ imAG−K. Now, for k as
large as possible, successively construct column vectors ã1, . . . , ãk of AK with the
property that

a1 /∈ imAG−K + span{ã1, . . . , ãi} for all i ∈ {1, . . . , k}. (29)

Let a2, . . . , aj be the set of column vectors of AK that have not been chosen by
the previous procedure. Since the overall incidence matrix A has full row rank, the
construction of ã1, . . . , ãk leads to

AG−K + span{ã1, . . . , ãk, ai} = R
n−1 for all i ∈ {1, . . . , j}. (30)

Now construct the spanning graph C by taking the branches a1, . . . , aj . Due to (29),
G − C is disconnected. Furthermore, C contains a branch of K − L, namely the
one corresponding to the column vector a1. Since, furthermore, (30) implies that
the addition of any branch of C to G − C results is a connected graph, we have
constructed a cutset in K that contains branches of K −L.

The next step is to show that (iii) is sufficient for (ii): Assume that the nodes are
sorted by connected components in G −K, that is,

AG−K = diag(AG−K,1, . . . ,AG−K,n). (31)

Then the matrices AG−K,i i = 1, . . . , n, are all-node incidence matrices of the con-
nected components (except for the component ig connected to the grounding node;
then AG−K,ig is an incidence matrix). Seeking for a contradiction, assume that e is
a branch in K − L whose incidence nodes are not connected by a path in G − K.
Then ak has not more than two nonzero entries, and one of the following two cases
holds:

(a) If e is connected to the grounding node, then ak is the multiple of a unit vector
corresponding to a position not belonging to the grounded component, whence
ak /∈ AG−K.

(b) If e connects two nongrounded nodes, then ak has two nonzero entries, which
are located at rows corresponding to two different matrices AG−K,i and AG−K,j

in AG−K. This again implies ak /∈ AG−K. This is again a contradiction to (iii).
For the overall statement, it suffices to prove that (ii) implies (i). Let C be

a cutset of G that is contained in K and assume that e is a branch of C that
is contained in K − L. Since there exists some path in G − K that connects
the incidence nodes of e, the addition of e to G − C (which is a supergraph of
G − K) does not connect two different connected components. The resulting
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graph is therefore still disconnected, which is a contradiction to C being a cutset
of G. �

2.4.4 Notes and References

(i) The representation of the Kirchhoff laws by means of incidence and loop ma-
trices is also called nodal analysis and mesh analysis, respectively [16, 19, 32].

(ii) The part in Proposition 4.10 about incidence matrices and subgraphs has also
been shown in [22]; the parts in Lemmas 4.11 and 4.12 about incidence matri-
ces and subgraphs have also been shown in [22]. The parts on loop matrices is
novel.

(iii) The correspondence between subgraph properties and linear algebraic proper-
ties of the corresponding incidence and loop matrices is an interesting feature.
It can be seen from (20) that the kernel of a transposed incidence matrix can
be computed by a determination of the connected components of a graph. As
well, we can infer from (23) and the preceding argumentation that loop ma-
trices can be determined by a simple determination of a tree. Conversely, the
computation of the kernel of an incidence matrix leads to the determination of
the loops in a (sub)graph. It is further shown in [9, 28] that a matrix ZT

LAK−L
(see Lemma 4.11) has an interpretation as an incidence matrix of the graph,
which is constructed from K − L by merging those nodes that are connected
by a path in L. The determination of its nullspace thus again leads a graph
theoretical problem.

Note that to determine nullspaces, graph computations are by far prefer-
able to linear algebraic method. Efficient algorithms for the aforementioned
problems can be found in [18]. Note that the aforementioned graph theoreti-
cal features have been used in [20, 21] to analyze special properties of circuit
models.

2.5 Circuit Components: Sources, Resistances, Capacitances,
Inductances

We have seen in the previous section that, for a connected electrical circuit with
n branches and m nodes, the Kirchhoff laws lead to n = (m − 1) + (n − m + 1)

linearly independent algebraic equations for the voltages and currents. Since, al-
together, voltages and currents are 2n variables, mathematical intuition gives rise
to the fact that n further relations are missing to completely describe the circuit.
The behavior of a circuit does, indeed, not only depend of interconnectivity, the
so-called network topology, but also on the type of electrical components located
on the branches. These can, for instance, be sources, resistances, capacitances, and
inductances. These will either (such as in case of a source) prescribe the voltage or
the current, or they form a relation between voltage and current of a certain branch.
In this section, we will collect these relations for the aforementioned components.
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Fig. 7 Symbol of a voltage
source

Fig. 8 Symbol of a current
source

Fig. 9 Model of a resistance

2.5.1 Sources

Sources describe physical interaction of an electrical circuit with the environment.
Voltage sources are elements where the voltage uV (·) : I →R is prescribed. In cur-
rent sources, the current iI(·) : I → R is given beforehand. The symbols of voltage
and current sources are presented in Figs. 7 and 8.

We will see in Sect. 2.6 that the physical variables iV (·), uI(·) : I → R (and
therefore also energy flow through sources) are determined by the overall electrical
circuit. Some further assumptions on the prescribed functions uV (·), iI(·) : I → R

(such as, e.g., smoothness) will also depend on the connectivity of the overall circuit;
this will as well be a subject of Sect. 2.6.

2.5.2 Resistances

We make the following ansatz for a resistance: Consider a conductor material in the
cylindric spatial domain (see Fig. 9)

Ω = [0, 
] × {
(ξy, ξz) : ξ2

y + ξ2
z ≤ r2}⊂ R

3 (32)

with length 
 and radius r .
For ξx ∈ [0, 
], we define the cross-sectional area by

Aξx = {ξx} × {
(ξy, ξz) : ξ2

y + ξ2
z ≤ r2}. (33)
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To deduce the relation between the resistive voltage and current from Maxwell’s
equations, we make the following assumptions.

Assumption 5.1 (The electromagnetic field inside resistances)

(a) The electromagnetic field inside the conductor material is stationary, that is,

∂

∂t
D ≡ ∂

∂t
B ≡ 0.

(b) Ω does not contain any electric charges.
(c) For all ξx ∈ [0, 
], the voltage between two arbitrary points of Aξx vanishes.
(d) The conductance function g : R3 × Ω → R

3 has the following properties:

(i) g is continuously differentiable.
(ii) g is homogeneous, that is, g(E, ξ1) = g(E, ξ2) for all E ∈ R

3 and ξ1, ξ2 ∈
Ω .

(iii) g is strictly incremental, that is, (E1 − E2)
Tg(E1 − E2, ξ) > 0 for all dis-

tinct E1,E2 ∈ R
3 and ξ ∈ Ω .

(iv) g is isotropic, that is, g(E, ξ) and E are linearly dependent for all E ∈ R
3

and ξ ∈ Ω .

Using the definition of the voltage (10), property (c) implies that the electric field
intensity is directed according to the conductor, that is, E(t, ξ) = e(t, ξ) · ex , where
ex is the canonical unit vector in the x-direction, and e(·, ·) is some scalar-valued
function. Homogeneity and isotropy, smoothness, and the incrementation property
of the conductance function then imply that

j (t, ξ) = g
(
E(t, ξ), ξ

)= gx

(
e(t, ξ)

) · ex

for some strictly increasing and differentiable function gx : R → R with gx(0) = 0.
Further, by using (9) we can infer from the stationarity of the electromagnetic field
that the field of electric current density is divergence-free, that is, div j (·, ·) ≡ 0.
Consequently, gx(e(t, ξ)) is spatially constant. The strict monotonicity of gx then
implies that e(t, ξ) is spatially constant, whence we can set up

E(t, ξ) = e(t) · ex

for some scalar-valued function e only depending on time t (see Fig. 12).
Consider now the straight path S between (0,0,0) and (
,0,0). The normal of

this path fulfills n(ξ) = ex for all ξ ∈ S . As a consequence, the voltage reads

u(t) =
ˆ

S
νT(ξ) · E(t, ξ) ds(ξ)

=
ˆ

S
eT
x · e(t) · ex ds(ξ)
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=
ˆ

S
e(t) ds(ξ)

=
ˆ 


0
e(t) dξ = 
e(t). (34)

Consider the cross-sectional area A0 (compare (33)). The normal of A0 fulfills
n(ξ) = ex for all ξ ∈ A0. Then obtain for the voltage u(t) between the ends of
the conductor and the current i(t) through the conductor that

i(t) =
¨

A0

nT(ξ)j (t, ξ) dS(ξ)

=
¨

A0

nT(ξ)gx

(
e(t)

) · ex dS(ξ)

=
¨

A0

eT
x gx

(
e(t)

) · ex dS(ξ)

=
¨

A0

gx

(
e(t)

)
dS(ξ)

= (
πr2) · gx

(
e(t)

)= (
πr2) · gx

(
u(t)




)

︸ ︷︷ ︸
=:g(u(t))

.

As a consequence, we obtain the algebraic relation

i(t) = g
(
u(t)

)
, (35)

where g : R → R is a strictly increasing and differentiable function with g(0) = 0.
The symbol of a resistance is presented in Fig. 10.

Remark 5.2 (Linear resistance) Note that in the case where the friction function
is furthermore linear (i.e., g(E(t, ξ), ξ) = cg · E(t, ξ)), the resistance relation (35)
becomes

i(t) = G · u(t), (36)

where

G = πr2 · cg



> 0

is the so-called conductance value of the linear resistance.
Equivalently, we can write

u(t) = R · i(t), (37)



2 Mathematical Modeling and Analysis of Nonlinear Time-Invariant RLC Circuits 155

Fig. 10 Symbol of
a resistance

where

R = 


πr2 · cg

> 0.

Remark 5.3 (Resistance, energy balance) The energy balance of a general resistance
that is operated in the time interval [t0, tf ]

Wr =
ˆ tf

t0

u(τ)i(τ ) dτ =
ˆ tf

t0

u(τ)g
(
u(τ)

)
dτ ≥ 0,

where the latter inequality holds since the integrand is positive. A resistance is there-
fore an energy-dissipating element, that is, it consumes energy.

Note that, in the linear case, the energy balance simplifies to

Wr = G ·
ˆ tf

t0

u2(τ ) dτ ≥ 0.

2.5.3 Capacitances

We make the following ansatz for a capacitance: Consider again an electromagnetic
medium in a cylindric spatial domain Ω ⊂ R

3 as in (32) with length 
 and radius r

(see also Fig. 9). To deduce the relation between capacitive voltage and current from
Maxwell’s equations, we make the following assumptions.

Assumption 5.4 (The electromagnetic field inside capacitances)

(a) The magnetic flux intensity inside the medium is stationary, that is,

∂

∂t
B ≡ 0.

(b) The medium is a perfect isolator, that is, j (·, ξ) ≡ 0 for all ξ ∈ Ω .
(c) In the lateral area

Alat = [0, 
] × {
(ξy, ξz) : ξ2

y + ξ2
z = r2}⊂ ∂Ω

of the cylindric domain Ω , the magnetic field intensity is directed orthogonally
to Alat. In other words, for all ξ ∈ Alat and all times t , the positively oriented
normal n(ξ) and H(t, ξ) are linearly dependent.
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(d) There is no explicit algebraic relation between the electric current density and
the electric field intensity.

(e) Ω does not contain any electric charges.
(f) For all ξx ∈ [0, 
], the voltage between two arbitrary points of Aξx (com-

pare (33)) vanishes.
(g) The function fe : R3 × Ω → R

3 has the following properties:

(i) fe is continuously differentiable.
(ii) fe is homogeneous, that is, fe(D, ξ1) = fe(D, ξ2) for all D ∈ R

3 and
ξ1, ξ2 ∈ Ω .

(iii) The function fe(·, ξ) : R3 → R
3 is invertible for some (and hence any)

ξ ∈ Ω .
(iv) fe is isotropic, that is, fe(D, ξ) and D are linearly dependent for all D ∈

R
3 and ξ ∈ Ω .

Using the definition of the voltage (10), property (c) implies that the electric field
intensity is directed according to the conductor, that is, E(t, ξ) = e(t, ξ) · ex for
some scalar-valued function e(· , ·). Isotropy, homogeneity, and the invertibility of
fe then implies that the electrical displacement is as well directed along the conduc-
tor, whence

D(t, ξ) = f −1
e

(
E(t, ξ), ξ

)= qx

(
e(t, ξ)

) · ex

for some differentiable and invertible function qx : R →R. Further, by using that, by
the absence of electric charges, the field of electric displacement is divergence-free,
we obtain that it is even spatially constant. Consequently, the electric field intensity
is as well spatially constant, and we can set up

E(t, ξ) = e(t) · ex

for some scalar-valued function e(·) only depending on time.
Using that the magnetic field is stationary, we can, as for resistances, infer that

the electrical field is spatially constant, that is,

E(t, ξ) = e(t) · ex

for some scalar-valued function e(·) only depending on time, and we can use the
argumentation in as in (34) to see that the voltage reads

u(t) = 
e(t).

Assume that the current i(·) is applied to the capacitor. The current density inside
Ω is additively composed of the current density induced by the applied current
jappl(·, ·) and the current density jind(·, ·) induced by the electric field. Since the
medium in Ω is an isolator, the current density inside Ω vanishes. Consequently,
for all times t and all ξ ∈ Ω ,

0 = jappl(t, ξ) + jind(t, ξ).
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The definition of the current yields

i(t) =
¨

A0

nT(ξ)jappl(t, ξ) dS(ξ).

The definition of the cross-sectional area A0 and the lateral surface Alat yields
∂A0 ⊂ Alat. By Maxwell’s equations, Stokes theorem, stationarity of the magnetic
flux intensity, and the assumption that the tangential component magnetic field in-
tensity vanishes in the lateral surface, we obtain

i(t) =
¨

A0

nT(ξ) · jappl(t, ξ) dS(ξ)

= −
¨

A0

nT(ξ)︸ ︷︷ ︸
=eT

x

·jind(t, ξ) dS(ξ)

=
¨

A0

eT
x · ∂

∂t
D(t, ξ) − eT

x · curlH(t, ξ) dS(ξ)

= d

dt

¨

A0

eT
x · D(t, ξ) dS(ξ) −

˛

∂A
νT(ξ) · H(t, ξ)︸ ︷︷ ︸

=0

ds(ξ)

= d

dt

¨

A0

eT
x · f −1

e

(
E(t, ξ), ξ

)
dS(ξ)

= d

dt

¨

A0

eT
x · qx

(
e(t)

) · ex dS(ξ)

= d

dt
πr2 · qx

(
e(t)

)

= d

dt
πr2 · qx

(
u(t)




)

︸ ︷︷ ︸
=:q(u(t))

.

That is, we obtain the dynamic relation

i(t) = d

dt
q
(
u(t)

)
(38)

for some function q :R → R. Note that the quantity q(u) has the physical dimension
of electric charge, whence q(·) is called a charge function. It is sometimes spoken
about the charge q(u(t)) of the capacitance. Note that q(u(t)) is a virtual quantity.
Especially, there is no direct relation between the charge of a capacitance and the
electric charge (density) as introduced in Sect. 2.3. The symbol of a capacitance is
presented in Fig. 11.

Remark 5.5 (Linear capacitance) Note that, in the case where the constitutive rela-
tion is furthermore linear (i.e., fe(D(t, ξ), ξ) = cc ·D(t, ξ)), the capacitance relation
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Fig. 11 Symbol of
a capacitance

(35) becomes

i(t) = C · u̇(t), (39)

where

C = πr2


cc

> 0

is the so-called capacitance value of the linear capacitance.

Remark 5.6 (Capacitance, energy balance) Isotropy and homogeneity of fe and the
construction of the function qx further implies that the electric energy density fulfills

∂

∂D
V T

e

(
qx(e) · ex, ξ

)= fe

(
qx(e) · ex, ξ

)= e · ex.

Hence, the function qx :R → R is invertible with

q−1
x (q) = eT

x

∂

∂D
V T

e (q · ex) = d

dq
Ve,x(q),

where

Ve,x : R →R,

q �→ Ve(q · ex).

In particular, this function fulfills Ve,x(0) = 0 and Ve,x(q) > 0 for all q ∈ R \ {0}.
The construction of the capacitance function and assumption (3) on fe implies

that q :R → R is invertible with

q−1(·) = 
 · q−1
x

( ·
πr2

)
= d

dq
lπr2Ve,x

( ·
πr2

)

︸ ︷︷ ︸
=:VC (·)

.

Moreover, VC (0) = 0 and VC (qC ) > 0 for all qC ∈R \ {0}.
Now we consider the energy balance of a capacitance that is operated in the time

interval [t0, tf ]

WC =
ˆ tf

t0

u(τ)i(τ ) dτ

=
ˆ tf

t0

q−1(q
(
u(τ)

)) · d

dτ
q
(
u(τ)

)
dτ
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=
ˆ tf

t0

d

dq
VC
(
q
(
u(τ)

) · d

dτ
q
(
u(τ)

))
dτ

=
ˆ tf

t0

d

dτ
VC
(
q
(
u(τ)

))
dτ

= VC
(
q
(
u(τ)

))∣∣τ=tf
τ=t0

. (40)

Consequently, the function VC has the physical interpretation of an energy storage
function. A capacitance is therefore a reactive element, that is, it stores energy.

Note that, in the linear case, the storage function simplifies to

VC
(
q(u)

)= 1

2
· C−1 · q2(u) = 1

2
· C−1 · (C(u)

)2 = 1

2
· C · u2,

whence the energy balance then reads

WC = 1

2
· C · u2(τ )|τ=tf

τ=t0
.

Remark 5.7 (Capacitances and differentiation rules) The previous assumptions im-
ply that the function q : R → R is differentiable. By the chain rule, (38) can be
rewritten as

i(t) = C
(
u(t)

) · u̇(t), (41)

where

C(uC ) = d

duC
q(uC ).

Monotonicity of q further implies that C(·) is a pointwise positive function.
By the differentiation rule for inverse functions, we obtain

C(uC ) = d

duC
q(uC ) =

(
d

dq
VC
(
q(uC )

))−1

.

2.5.4 Inductances

It will turn out in this part that inductances are components that store magnetic en-
ergy. We will see that there are certain analogies to capacitances if one replaces
electric by accordant magnetic physical quantities. The mode of action of an in-
ductance can be explained by a conductor loop. We further make the (simplifying)
assumption that the conductor with domain Ω forms a circle that is interrupted by
an isolator of width zero (see Fig. 12). Assume that the circle radius is given by r ,
where the radius is here defined to be the distance from the circle midpoint to any
conductor midpoint. Further, let lh be the conductor width.
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Fig. 12 Model of an inductance

To deduce the relation between inductive voltage and current from Maxwell’s
equations, we make the following assumptions.

Assumption 5.8 (The electromagnetic field inside capacitances)

(a) The electric displacement inside the medium Ω is stationary, that is,

∂

∂t
D ≡ 0.

(b) The medium is a perfect conductor, that is, E(·, ξ) ≡ 0 for all ξ ∈ Ω .
(c) There is no explicit algebraic relation between the electric current density and

the electric field intensity.
(d) Ω does not contain any electric charges.
(e) The function fm :R3 × Ω → R

3 has the following properties:

(i) fm is continuously differentiable.
(ii) fm is homogeneous, that is, fm(B, ξ1) = fm(B, ξ2) for all B ∈ R

3 and
ξ1, ξ2 ∈ Ω .

(iii) The function fm(·, ξ) : R3 → R
3 is invertible for some (and hence any)

ξ ∈ Ω .
(iv) fm is isotropic, that is, fm(B, ξ) and B are linearly dependent for all B ∈

R
3 and ξ ∈ Ω .

Let ξ = ξxex + ξyey + ξzez, and let hs : R →R be a differentiable function such
that

hs(x) = 0 for all x ∈ [0, r − lh/2] ∪ [r + lh/2,∞),

and

hs(x) > 0 for all x ∈ (r − lh/2, r + lh/2).



2 Mathematical Modeling and Analysis of Nonlinear Time-Invariant RLC Circuits 161

We make the following ansatz for the magnetic flux intensity:

H(t, ξ) = hs

(
ξ2
y + ξ2

z

) · h(t) · ex,

where h(·) is a scalar-valued function defined on a temporal domain in which the
process evolves (see Fig. 12).

Using the definition of the current (8), Maxwell’s equations, property (c), and the
stationarity of the electric field yields

i(t) =
¨

{0}×[r−lh/2,r+lh/2]×[0,ld ]
νT(ξ) · j (t, ξ) dS(ξ)

=
¨

{0}×[r−lh/2,r+lh/2]×[0,ld ]
νT(ξ) · curlH(t, ξ) dS(ξ)

=
¨

{0}×[r−lh/2,r+lh/2]×[0,ld ]
eT
x · 2b′

s

(
ξ2
y + ξ2

z

) · ex · h(t) dS(ξ)

= 2
¨

{0}×[r−lh/2,r+lh/2]×[0,ld ]
b′
s

(
ξ2
y + ξ2

z

)
dS(ξ)

︸ ︷︷ ︸
=:cm

·h(t).

Assume that the voltage u(·) is applied to the inductor. The electric field intensity
inside the conductor is additively composed of the field intensity induced by the
applied voltage Eappl(· , ·) and the electric field intensity Eind(· , ·) induced by the
magnetic field. Since the wire is a perfect conductor, the electric field intensity van-
ishes inside the wire. Consequently, for all times t and all ξ ∈R

3 with

0 ≤ ξx ≤ ld and (r − lh)
2 ≤ ξ2

y + ξ2
z ≤ (r + lh)

2,

we have

0 = Eappl(t, ξ) + Eind(t, ξ).

Let A ⊂ R
3 be a circular area that is surrounded by the midline of the wire, that is,

A = {
(ξx, ξy, ξz) ∈R

3 : ξx = ld/2 and ξ2
y + ξ2

z ≤ r2}.

Isotropy, homogeneity, and the invertibility of fm then implies that the magnetic
flux is as well directed orthogonally to A, that is,

B(t, ξ) = f −1
m

(
H(t, ξ), ξ

)

= ψx

(
hs

(
ξ2
y + ξ2

z

) · h(t)
) · ex

= ψx

(
hs(ξ

2
y + ξ2

z )

cm

· i(t)
)

· ex

for some differentiable function ψx : R →R.
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Fig. 13 Symbol of
an inductance

By Maxwell’s equations, Stokes theorem, the definition of the voltage, and
a transformation to polar coordinates we obtain

u(t) =
˛

∂A

νT(ξ) · Eappl(t, ξ) ds(ξ)

= −
˛

∂A

νT(ξ) · Eind(t, ξ) ds(ξ)

= −
¨

A

nT(ξ)︸ ︷︷ ︸
=eT

x

· curlEind(t, ξ)︸ ︷︷ ︸
=− ∂

∂t
B(t,ξ)

dS(ξ)

= − d

dt

¨

A

eT
x · B(t, ξ)︸ ︷︷ ︸

=ψx(
hs (ξ2

y +ξ2
z )

cm
·i(t))·ex

dS(ξ)

= d

dt

¨

A

ψx

(
hs(ξ

2
y + ξ2

z )

cm

· i(t)
)

dS(ξ)

= d

dt
2π

ˆ r+lh/2

r−lh/2
yψx

(
hs(y

2)

cm

· i(t)
)

dy

︸ ︷︷ ︸
=:ψ(i(t))

.

That is, we obtain the dynamic relation

u(t) = d

dt
ψ
(
i(t)

)
(42)

for some function ψ :R → R, which is called a magnetic flux function. The symbol
of an inductance is presented in Fig. 13.

Remark 5.9 (Linear inductance) Note that, in the case where the constitutive rela-
tion is furthermore linear (i.e., fm(B(t, ξ), ξ) = ci ·H(t, ξ)), the inductance relation
(35) becomes

u(t) = L · i̇(t), (43)

where

L = 2πci

cm

ˆ r+lh/2

r−lh/2
s · hs

(
s2)dξ > 0

is the so-called inductance value of the linear inductance.
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Remark 5.10 (Inductance, energy balance) Isotropy and homogeneity of fm and
the construction of the function ψx further implies that the magnetic energy density
fulfills

∂

∂B
V T

m

(
ψx

(
hs

(
ξ2
y + ξ2

z

)
h(t)

) · ex, ξ
)

= fm

(
ψx

(
hs

(
ξ2
y + ξ2

z

) · h(t)
) · ex, ξ

)= H(t, ξ)

= hs

(
ξ2
y + ξ2

z

) · h(t) · ex.

Hence, the function ψx :R → R is invertible with

ψ−1
x (h) = eT

x

∂

∂D
V T

e

(
(h) · ex

)= d

dq
Vm,x(h),

where

Vm,x : R → R,

h �→ Vm(h · ex).

In particular, this function fulfills Vm,x(0) = 0 and Vm,x(h) > 0 for all h ∈ R \ {0}.
The latter, together with the continuous differentiability of fm(·, ξ) and f −1

m (·, ξ),
implies that the derivatives of both the function ψ−1

x and ψx are positive and, fur-
thermore, ψx(0) = 0. Thus, the function ψ :R → R is differentiable with

ψ ′(i) = 2π

ˆ r+lh/2

r−lh/2
yψ ′

x

(
hs(y

2)

cm

· i
)

hs(y
2)

cm

dy > 0.

Consequently, ψ possesses a continuously differentiable and strictly increasing in-
verse function ψ−1 : R → R with signψ−1(p) = sign(p) for all p ∈ R. Now con-
sider the function

VL : R →R,

ψL �→
ˆ ψL

0
ψ−1(p)dp.

The construction of VL implies that VL(0) = 0 and VL(ψL) > 0 for all ψL ∈R \ {0}
and, furthermore,

ψ−1(ψL) = d

dψL
VL(ψL) for allψL ∈R.

Now we consider the energy balance of an inductance that is operated in the time
interval [t0, tf ]

WL =
ˆ tf

t0

u(τ)i(τ ) dτ

=
ˆ tf

t0

d

dτ
ψ
(
i(τ )

)
ψ−1(ψ

(
i(τ )

))
dτ
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=
ˆ tf

t0

d

dτ
ψ
(
i(τ )

) d

dψ
VL
(
ψ
(
i(τ )

))
dτ

=
ˆ tf

t0

d

dτ
VL
(
ψ
(
i(τ )

))
dτ

= VL
(
ψ
(
i(τ )

))∣∣τ=tf
τ=t0

. (44)

Consequently, the function VL has the physical interpretation of an energy storage
function. An inductance is therefore again a reactive element.

In the linear case, the storage function simplifies to

VL
(
ψ(u)

)= 1

2
· L−1 · ψ2(i) = 1

2
· L−1 · (L(i)

)2 = 1

2
· L · i2,

whence the energy balance then reads

WL = 1

2
· L · i2(τ )|τ=tf

τ=t0
.

Remark 5.11 (Inductances and differentiation rules) The previous assumptions im-
ply that the function ψ : R → R is differentiable. By the chain rule, (42) can be
rewritten as

u(t) = L
(
i(t)

) · i̇(t), (45)

where

L(uL) = d

diL
ψ(iL).

The monotonicity of ψ further implies that the function L(·) is pointwise positive.
By the differentiation rule for inverse functions we obtain

L(iL) = d

diL
ψ(iL) =

(
d

dψ
VL
(
ψ(iL)

))−1

.

2.5.5 Some Notes on Diodes

Resistances, capacitances, and inductances are typical components of analogue elec-
trical circuits. The fundamental role in electronic engineering is however taken by
semiconductor devices, such as diodes and transistors (see also Notes and Refer-
ences). A fine modeling of such components has to be done by partial differential
equations (see, e.g., [36]).

In contrast to the previous sections, we are not going to model these components
on the basis of the fundamental laws of the electromagnetic field. We are rather pre-
senting a less accurate but often reliable ansatz to the description of their behavior
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Fig. 14 Symbol of a diode

by equivalent RCL circuits. As a showcase, we are considering diodes. The symbol
of a diode is presented in Fig. 14.

An ideal diode is a component that allows the current to flow in one specified di-
rection while blocking currents with opposite sign. A mathematical lax formulation
of this property is

iD(t) = gD
(
uD(t)

) · uD(t),

where gD(u) =
{

∞ if u > 0,

0 if u ≤ 0.

A mathematically more precise description is given the specification of the behavior

(
iD(t), uD(t)

) ∈ {0} ×R≤0 ∪R≥0 × {0}.
Since the product of voltage and current of an ideal diode always vanishes, this
component behaves energetically neutral.

It is clear that such a behavior is not technically realizable. It can be neverthe-
less be approximated by a component consisting of a semiconductor crystal with
two regions, each with a different doping. Such a configuration is called an np-
junction [55].

The most simple ansatz for the modeling of a nonideal diode is by replacing it by
a resistance with highly nonsymmetric conductance behavior, such as, for instance,
the Shockley diode equation [55]

iD(t) = iS · (e
uD (t)

up − 1
)
,

where iS > 0 and up > 0 are material-dependent quantities. Note that the behavior
of an ideal diode is the more approached, the bigger is up .

A refinement of this model also includes capacitive effects. This can be done by
adding some (small) capacitance in parallel to the resistance model of the diode [61].

2.5.6 Notes and References

(i) In [16, 19, 32, 34, 60], component relations have also been derived. These how-
ever go with an a priori definition of capacitive charge and magnetic flux as
physical quantities. In contrast to this, our approach is based on Maxwell’s
equations with additional assumptions.
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(ii) Note that, apart from sources, resistances, and capacitances, there are various
further components that occur in electrical circuits. Such components could, for
instance, be controlled sources [22] (i.e., sources with voltage or current explic-
itly depending on some other physical quantity), semi-conductors [12, 36] (such
as diodes and transistors), MEM devices [48, 53, 54], or transmission lines [42].

2.6 Circuit Models and Differential–Algebraic Equations

2.6.1 Circuit Equations in Compact Form

Having collected all relevant equations describing an electrical circuit, we are now
ready to set up and analyze the overall model. Let a connected electrical circuit
with n branches be given; let the vectors i(t), u(t) ∈ R

n be defined as in (13) and
(15), that is, their components are containing voltages and current of the respective
branches. We further assume that the branches are ordered by the type of component,
that is,

i(t) =

⎛

⎜⎜⎜⎜
⎝

iR (t)

iC (t)

iL(t)

iV (t)

iI(t)

⎞

⎟⎟⎟⎟
⎠

, u(t) =

⎛

⎜⎜⎜⎜
⎝

uR (t)

uC (t)

uL(t)

uV (t)

uI(t)

⎞

⎟⎟⎟⎟
⎠

, (46)

where

iR (t), uR (t) ∈R
nR , iC (t), uC (t) ∈R

nC , iL(t), uL(t) ∈ R
nL ,

iV (t), uV (t) ∈R
nV , iI(t), uI(t) ∈R

nI .

The component relations then read, in compact form,

iR (t) = g
(
uR (t)

)
, iC (t) = d

dt
q
(
uC (t)

)
, uL(t) = d

dt
ψ
(
iL(t)

)

for

g: R
nR → R

nR ,

⎛

⎜
⎝

u1
...

unR

⎞

⎟
⎠ �→

⎛

⎜
⎝

g1(u1)
...

gnR (unR )

⎞

⎟
⎠ ,

q: R
nC →R

nC ,

⎛

⎜
⎝

u1
...

unC

⎞

⎟
⎠ �→

⎛

⎜
⎝

q1(u1)
...

qmC (unC )

⎞

⎟
⎠ ,

ψ : R
mL → R

nL ,

⎛

⎜
⎝

i1
...

inL

⎞

⎟
⎠ �→

⎛

⎜
⎝

ψ1(u1)
...

ψnC (inC )

⎞

⎟
⎠ ,
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where the scalar functions gi, qi,ψi : R → R are respectively representing the
behavior of the ith resistance, capacitance, and inductance. The assumptions of
Sect. 2.5 imply that g(0) = 0, and for all u ∈ R

mC \ {0},

uTg(u) > 0. (47)

Further, since q−1
k (qCk) = d

dqCk
VCk(qCk) and ψ−1

k (ψLk) = d
dψLk

VLk(ψLk), the func-

tions q :RnC →R
nC and ψ :RnL → R

nL possess inverses fulfilling

q−1(qC ) = d

dqC
VC (qC ), ψ−1(ψL) = d

dψL
VL(ψL), (48a)

where

VC (qC ) =
nC∑

k=1

VCk(qCk), VL(ψL) =
nL∑

k=1

VLk(ψLk). (48b)

In particular, VC (0) = 0, VL(0) = 0, and

VC (qC ) > 0, VL(ψL) > 0 for all qC ∈ R
nC ,ψL ∈R

nL .

Using the chain rule, the component relations of the reactive elements read (see
Remarks 5.7 and 5.11)

iC (t) = C
(
uC (t)

) · u̇C (t), uL(t) = L
(
iL(t)

) · i̇C (t), (49a)

where

C(uC ) = d

duC
q(uC ), L(iL) = d

diL
ψ(iL). (49b)

In particular, the monotonicity of the scalar charge and flux functions implies that
the ranges of the functions C : RnC → R

nC ,nC and L : RnL → R
nL ,nL are contained

in the set of diagonal and positive definite matrices.
The incidence and loop matrices can, as well, be partitioned according to the

subdivision of i(t) and u(t) in (46), that is,

A = [
AR AC AL AV AI

]
, B = [

BR BC BL BV BI
]
.

Kirchhoff’s laws can now be represented in two alternative ways, namely the
incidence-based formulation (see (24) and (26))

AR iR (t) + AC iC (t) + AL iL(t) + AV iV (t) + AI iI(t) = 0,

uR (t) = AT
R φ(t), uC (t) = AT

C φ(t), uL(t) = AT
Lφ(t),

uL(t) = AT
Lφ(t), uV (t) = AT

V φ(t), uI(t) = AT
Iφ(t)

(50)
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or the loop-based formulation (see (25) and (27))

BR uR (t) + BC uC (t) + BLuL(t) + BV uV (t) + BIuI(t) = 0,

iR (t) = BT
R ι(t), iC (t) = BT

C ι(t), iL(t) = BT
L ι(t),

iL(t) = BT
L ι(t), iV (t) = BT

V ι(t), iI(t) = BT
I ι(t).

(51)

Having in mind that the functions uV (·) and iI(·) are prescribed, the overall circuit
is described by the resistance law iR (t) = g(uR (t)), the differential equations (49a)
for the reactive elements, and the Kirchhoff laws either in the form (50) or (51). This
altogether leads to a coupled system of equations of pure algebraic nature (such as
the Kirchhoff laws and the component relations for resistances) together with a set
of differential equations (such as the component relations for reactive elements).
This type of systems is, in general, referred to as differential–algebraic equations.
A more rigorous definition and some general facts on type is presented in Sect. 2.6.2.
Since many of the above-formulated equations are explicit in one variable, several
relations can be inserted into one another to obtain a system of smaller size. In the
following, we discuss two possibilities:

(a) Modified nodal analysis (MNA)
We are now using the component relations together with the incidence-based

formulation of the Kirchhoff laws: Based on the KCL, we eliminate the resistive
and capacitive currents and voltages. Then we obtain

AC C
(
AT

C φ(t)
)
AT

C
d

dt
φ(t)+AR g

(
AT

R φ(t)
)+AL iL(t)+AV iV (t)+AI iI(t) = 0.

Plugging the KVL for the inductive voltages into the component relation for
inductances, we are led to

−AT
Lφ(t) + L

(
iL(t)

) · d

dt
iL(t) = 0.

Together with the KVL for the voltage sources, this gives the so-called modified
nodal analysis

AC C
(
AT

C φ(t)
)
AT

C
d

dt
φ(t) + AR g

(
AT

R φ(t)
)+ AL iL(t) + AV iV (t)

+ AI iI(t) = 0,

−AT
Lφ(t) + L

(
iL(t)

) d

dt
iL(t) = 0,

−AT
V φ(t) + uV (t) = 0.

(52)

The unknown variables of this system are the functions for node potentials, in-
ductive currents, and currents of voltage sources. The remaining physical vari-
ables (such as the voltages and the resistive and capacitive currents) can be
algebraically reconstructed from the solutions of the above system.



2 Mathematical Modeling and Analysis of Nonlinear Time-Invariant RLC Circuits 169

(b) Modified loop analysis (MLA)
Additionally assuming that the characteristic functions gk of all resistances

are strictly monotonic and surjective, the conductance function possesses some
continuous and strictly monotonic inverse function r : RnR → R

nR . This func-
tion as well fulfills r(0) = 0 and

iR · r(iR ) > 0 for all iR ∈R
nR \ {0}.

Now using the component relations together with the loop-based formulation
of the Kirchhoff laws, we obtain from the KVL, the component relations for
resistances and inductances, and the KCL for resistive and inductive currents
that

BL L
(
BT

L ι(t)
)
BT

L
d

dt
ι(t)+ BR r

(
BT

R ι(t)
)+BC uC (t)+ BIuI(t)+ BV uV (t) = 0.

Moreover, the KCL, together with the component relation for capacitances,
reads

−BT
C ι(t) + C

(
uC (t)

) · d

dt
uC (t) = 0.

Using these two relations together with the KVL for the voltage sources, we are
led to the modified loop analysis

BL L
(
BT

L ι(t)
)
BT

L
d

dt
ι(t) + BR r

(
BT

R ι(t)
)+ BC uC (t) + BIuI(t)

+ BV uV (t) = 0,

−BT
C ι(t) + C

(
uC (t)

) d

dt
uC (t) = 0,

−BT
I ι(t) + iI(t) = 0.

(53)

The unknown variables of this system are the functions for loop currents, ca-
pacitive voltages, and voltages of current sources.

2.6.2 Differential–Algebraic Equations, General Facts

Modified nodal analysis and modified loop analysis are systems of equations with
a vector-valued function in one indeterminate as unknown. Some of these equations
contain the derivative of certain components of the to-be-solved function, whereas
other equations are of purely algebraic nature. Such systems are called differential–
algebraic equations. A rigorous definition and some basics of this type are presented
in the following.

Definition 6.1 (Differential–algebraic equation, solution) Let U,V ⊂ R
n be open

sets, let I = [t0, tf ) be an interval for some tf ∈ (t0,∞]. Let F : U × V × I → R
k

be a function. Then an equation of the form



170 T. Reis

F
(
ẋ(t), x(t), t

)= 0 (54)

is called a differential–algebraic equation (DAE). A function x(·) : [t0,ω) → V is
said to be a solution of the DAE (54) if it is differentiable with ẋ(t) for all t ∈ [t0,ω)

and (54) is pointwise fulfilled for all t ∈ [t0,ω).
A vector x0 ∈ V is called a consistent initial value if (54) has a solution with

x(t0) = x0.

Remark 6.2

(i) If F : U × V × I → R
k is of the form F(ẋ, x, t) = ẋ − f (x, t), then (54)

reduces to an ordinary differential equation (ODE). In this case, the assumption
of continuity of f : V × I gives rise to the consistency of any initial value. If,
moreover, f is locally Lipschitz continuous with respect to x (that is, for all
(x, t) ∈ V × I , there exist a neighborhood U and L > 0 such that ‖f (x1, τ ) −
f (x2, τ )‖ ≤ ‖x1 − x2‖ for all (x1, τ ), (x2, τ ) ∈ U ), then any initial condition
determines the local solution uniquely [8, §7.3]. The local Lipschitz continuity
is, for instance, fulfilled if f is continuously differentiable.

(ii) If F(·, ·, ·) is differentiable and d
dẋ
F(ẋ0, x0, t0) is an invertible matrix at some

(ẋ0, x0, t0) ∈ U × V × I , then the implicit function theorem [59, Sect. 17.8]
implies that the differential–algebraic equation (54) is locally equivalent to an
ODE.

Since theory of ODEs is well understood, it is—at least from a theoretical point
of view—desirable to lead back a differential–algebraic equation to an ODE in a cer-
tain way. This is done in what follows.

Definition 6.3 (Derivative array, differentiation index) Let U,V ⊂ R
n be open sets,

let I = [t0, tf ) be an interval for some tf ∈ (t0,∞]. Let l ∈N, F : U ×V × I → R
k ,

and let a differential–algebraic equation (54) be given. Then the μth derivative array
of (54) is given by the first μ formal derivatives of (54) with respect to time, that is,

Fμ

(
x(μ+1)(t), x(μ)(t), . . . , ẋ(t), x(t), t

)=

⎛

⎜⎜⎜⎜⎜
⎝

F(ẋ(t), x(t), t)

d
dt
F(ẋ(t), x(t), t)

...

dμ

dtμ
F(ẋ(t), x(t), t)

⎞

⎟⎟⎟⎟⎟
⎠

= 0. (55)

The differential–algebraic equation (54) is said to have a differentiation index
μ ∈ N if for all (x, t) ∈ V × I , there exists a unique ẋ ∈ V such that there exist
ẍ, . . . , x(μ+1) ∈ U such that Fμ(x(μ+1), x(μ), . . . , ẋ, x(t), t) = 0. In this case, there
exists a function f : V × I → V with (x, t) �→ ẋ for t , x, and ẋ with the above
properties. The ODE

ẋ(t) = f
(
x(t), t

)
(56)

is said to be an inherent ordinary differential equation of (54).
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Remark 6.4

(i) By the chain rule, we have

0 = d

dt
F
(
ẋ(t), x(t), t

)

= ∂

∂ẋ
F
(
ẋ(t), x(t), t

) · ẍ(t) + ∂

∂x
F
(
ẋ(t), x(t), t

) · ẋ(t)

+ ∂

∂t
F
(
ẋ(t), x(t), t

)
.

A further successive application of the chain and product rules leads to a deriva-
tive array of higher order.

(ii) Since the inherent ODE is obtained by differentiation of the differential–
algebraic equation, any solution of (54) solves (56) as well.

(iii) The inherent ODE is obtained by picking equations of the μth derivative ar-
ray that are explicit for the components of ẋ. In particular, the equations in
Fμ(x(μ+1)(t), x(μ)(t), . . . , ẋ(t), x(t), t) = 0 that contain higher derivatives of
x can be abolished. For instance, a so-called semiexplicit differential–algebraic
equation, that is, a DAE of the form

0 =
(

ẋ1(t) − f1(x1(t), x2(t), t)

f2(x1(t), x2(t), t)

)
(57)

may be transformed to its inherent ODE by only differentiating the equation
f2(x1(t), x2(t), t) = 0. This yields

0 = ∂

∂x1
f2
(
x1(t), x2(t), t

)
ẋ1(t) + ∂

∂x2
f2
(
x1(t), x2(t), t

)
ẋ2(t)

= ∂

∂x1
f2
(
x1(t), x2(t), t

)
f1
(
x1(t), x2(t), t

)+ ∂

∂x2
f2
(
x1(t), x2(t), t

)
ẋ2(t).

(58)

If ∂
∂x2

f2(x1(t), x2(t), t) is invertible, then the system is of differentiation index
μ = 1, and the inherent ODE reads
(

ẋ1(t)

ẋ2(t)

)

=
(

f1(x1(t), x2(t), t)

−( ∂
∂x2

f2(x1(t), x2(t), t))
−1 ∂

∂x1
f2(x1(t), x2(t), t)f1(x1(t), x2(t), t)

)

.

(59)

In this case, (x1(·), x2(·)) solves the differential–algebraic equation (57) if and
only if it solves the inherent ODE (59) and the initial value (x10, x20) fulfills
the algebraic constraint f2(x10, x20, t0) = 0.
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In case of singular ∂
∂x2

f2(x1(t), x2(t), t), some further differentiations are
necessary to obtain the inherent ODE. A semiexplicit form may then be ob-
tained by applying a state space transformation x̄(t) = T (x(t), t) for some dif-
ferentiable mapping T : V × I → V̄ with the property that T (·, t) : V × V̄ is
bijective for all t ∈ I and, additionally, by applying some suitable mapping
W : Rk × I × I → R

k to the differential–algebraic equation that consists of
ẋ1(t) − f1(x1(t), x2(t), t) and the differentiated algebraic constraint. The al-
gebraic constraint obtained in this way is referred to as a hidden algebraic
constraint. This procedure is repeated until no hidden algebraic constraint is
obtained anymore. In this case, the solution set of the differential–algebraic
equation (57) equals the solution set of its inherent ODE with the additional
property that the initial value fulfills all algebraic and hidden algebraic con-
straints.

The remaining part of this subsection is devoted to a differential–algebraic equa-
tion of special structure comprising both MNA and MLA, namely

0 = Eα
(
ETx1(t)

)
ETẋ1(t) +Aρ

(
ATx1(t)

)+ B2x2(t) + B3x3(t) +f1(t),

0 = β
(
x2(t)

)
ẋ2(t) −BT

2 x1(t),

0 = −BT
3 x1(t) +f3(t),

(60)

with the following properties.

Assumption 6.5 (Matrices and functions in the DAE (60)) Given are matrices
E ∈ R

n1,m1 , A ∈ R
n1,m2 , B2 ∈ R

n1,n2 , B3 ∈ R
n1,n3 and continuously differentiable

functions α : Rm1 →R
m1,m1 , β : Rn2 →R

n2,n2 , and ρ : Rm2 →R
m2 such that

(a) rank[E , A, B2 , B3 ] = n1;
(b) rankB3 = n3;
(c) α(z1) > 0, β(z2) > 0 for all z1 ∈R

m1 , z2 ∈ R
m2 ;

(d) ρ′(z) + (ρ′)T(z) > 0 for all z ∈R
n2 .

Next we analyze the differentiation index of differential–algebraic equations of
type (60).

Theorem 6.6 Let a differential–algebraic equation (60) be given and assume
that matrices E ∈ R

n1,m1 , A ∈ R
n1,m2 , B2 ∈ R

n1,n2 , B3 ∈ R
n1,n3 and functions

α : Rm1 → R
m1,m1 , ρ : Rm2 → R

m2,m2 , β : Rn2 → R
n2,n2 have the properties as

in Assumptions 6.5. Then, for the differentiation index μ of (60), we have

(a) μ = 0 if and only if n3 = 0 and rankE = n1.
(b) μ = 1 if and only if it is not zero and

rank[E,A,B3] = n1 and ker
[
ET,B3

]= kerET × {0}. (61)

(c) μ = 2 if and only if μ /∈ {0,1}.
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We need the following auxiliary results for the proof of the above statement.

Lemma 6.7 Let A ∈ R
n1,m, B ∈ R

n1,n2 , C ∈R
m,m with C + CT > 0. Then for

M =
[
ACAT B

−BT 0

]
,

we have

kerM = ker[A, B]T × kerB. (62)

In particular, M is invertible if and only if kerA ∩ kerBT = {0} and kerB = {0}.

Proof The inclusion “⊂” in (62) is trivial. To show that the converse subset relation
holds as well, assume that x ∈ kerM and partition

x =
(

x1
x2

)

according to the block structure of M . Then we obtain

0 = xTMx = 1

2
xT

1 A
(
C + CT)ATx1 = 0,

whence, by

C + CT > 0

we have ATx1 = 0. The equation Mx = 0 then implies that Bx2 = 0 and
BTx1 = 0. �

Note that, by setting n2 = 0 in Lemma 6.7, we obtain kerACAT = kerAT.

Lemma 6.8 Let matrices E ∈ R
n1,m1 , A ∈ R

n1,m2 , B2 ∈ R
n1,n2 , B3 ∈ R

n1,n3 and
functions α : Rm1 → R

m1,m1 , ρ : Rm2 → R
m2,m2 , β : Rn2 → R

n2,n2 with the prop-
erties as in Assumptions 6.5 be given. Further, let

W ∈R
n1,p, W ∈ R

n1,p̃,

W1 ∈R
p,p1, W ∈ R

p,p̃1,

W2 ∈R
n3,p2 , W2 ∈R

n3,p̃2

(63a)

be matrices with full column rank and

imW = kerET, imW = imE,

imW1 = ker[A,B3 ]TW, imW1 = imWT[A,B3],
imW2 = kerWTB3, imW2 = imBT

3 W.

(63b)

Then we have:
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(a) The matrices [W, W], [W1, W1], and [W2,W2] are invertible;
(b) kerETW = {0};
(c) kerWTB3 = {0} if and only if ker[ET,B3] = kerET × {0};
(d) WW1 has full column rank, and imWW1 = ker[E,A,B3]T;
(e) kerWT

1 ZTB3W2 = {0};
(f) ker[A,B3W2]TWW1 = {0};
(g) kerBT

2 WW1 = {0};
(h) kerWTB3W2 = {0}.
Proof

(a) The statement for [W , W ] follows by the fact that both W and W have full
column rank together with

imW = kerET = (imE)⊥ = (imW)⊥.

The invertibility of the matrices [W1, W1] and [W2, W2] follows by the same
arguments.

(b) Let x ∈ kerETW . Then, by the definition of W and W , Wx ∈ kerET and Wx ∈
imW = imE = (kerET)⊥, and thus Wx = 0. Since W has full column rank,
we have x = 0.

(c) Assume that kerWTB3 = {0}, and let x1 ∈ R
n1 , x3 ∈ R

n3 with

[
ET B3

](x1
x3

)
= 0.

Multiplication of this equation from the left by WT leads to WTB3x3 = 0, and
thus x3 = 0.

To prove the converse direction, assume that WTB3x3 = 0. Then

B3x3 ∈ kerWT = (imW)⊥ = (
kerET)⊥ = imE.

Hence, there exists x1 ∈ R
m1 such that Ex1 = B3x3, that is,

(−x1
x3

)
∈ ker

[
E B3

]= kerE × {0},

whence x3 = 0.
(d) The matrix WW1 has full column rank as a product of matrices with full column

rank.
The inclusion imWW1 ⊂ ker[E,A,B3]T follows from

⎡

⎢
⎣

ET

AT

BT
3

⎤

⎥
⎦WW1 =

⎡

⎣
(ETW)W1
([AT

BT
3

]
W
)
W1

⎤

⎦= 0.

To prove imWW1 ⊃ ker[E, A, B3]T, assume that x ∈ ker[E, A, B3]T. Since,
in particular, x ∈ kerET, there exists y ∈ R

p with x = Wy, and thus
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[
AT

BT
3

]
Wy = 0.

By the definition of W2, there exists y ∈ R
p2 with y = W2z, and thus

x = WW2z ∈ imWW2.

(c) Assume that z ∈R
p2 with WT

1 WTB3W2z = 0. Then

WTB3W2z ∈ kerWT
1 = (imW1)

⊥

= (
imWT[A, B3]

)⊥

= ker[A, B3]TW ⊂ kerBT
3 W = (

imWTB3
)⊥

,

whence

WTB3W2z ∈ (imWTB3
)⊥ ∩ imWTB3 = {0}.

This implies WTB3W2z = 0, and thus

W2z ∈ kerWTB3 = imW2 = (imW2)
⊥.

Therefore, we have W2z ∈ imW2 ∩ imW2 = {0}. The property of W2 having
full column rank then implies z = 0.

(f) Let z ∈ ker(ATW) ∩ kerBT
3 W . Since Wz ∈ kerE by the definition of W , we

have

Wz ∈ ker

⎡

⎣
ET

AT

BT
3

⎤

⎦= {0},

whence z = 0.
(g) Let z ∈ kerBT

2 WW1. Then WW1 ∈ kerBT
2 , and, by assertion d),

WW1z ∈ ker[E,A,B2]T.

By the assumption that [E, A, B2, B3] has full row rank we now obtain that
WW1z = 0. By the property of WW1 having full column rank (see (d)) we may
infer that z = 0.

(h) Assume that zkerWTB3W2. Then W2z ∈ kerWTB3, and W2z ∈ kerWTB3 by
the definition of W2. Thus, we have

W2z ∈ ker[W,W]TB3,

and, by the invertibility of [W, W] (see (a)), we can conclude that

W2z ∈ kerB3 = {0}.
The property of Z2 having full column rank then gives rise to z = 0. �



176 T. Reis

Now we prove Theorem 6.6.

Proof of Theorem 6.6

(a) First assume that E has full row rank and n3 = 0. Then by Lemma 6.7 we see
that the matrix Eα(ETx1)E

T is invertible for all x1 ∈ R
n1 . Since, furthermore,

the last equation in (60) is trivial, the differential–algebraic equation (60) is
already equivalent to the ordinary differential equation

ẋ1(t) = −(Eα
(
ETx1(t)

)
ET)−1(

Aρ
(
ATx1(t)

)+ B2x2(t)

+ B3x3(t) + f1(t)
)
,

ẋ2(t) = β
(
x2(t)

)−1
BT

2 x1(t).

(64)

Consequently, the differentiation index of (60) is zero in this case.
To prove the converse statement, assume that kerET �= {0} or n3 > 0. The

first statement implies that no derivatives of the components of x1(t) that are
in the kernel of ET occur, whereas the latter assumption implies that (60) does
not contain any derivatives of x3 (which is now a vector with at least one com-
ponent). Hence, some differentiations of the equations in (60) are needed to
obtain an ordinary differential equation, and the differentiation index of (60) is
consequently larger than zero.

(b) Here (and in part (c)) we will make use of the (trivial) fact that, for invert-
ible matrices W and T of suitable size, the differentiation indices of the DAEs
F(ẋ(t), x(t), t) = 0 and WF(T ż(t), T z(t), t) = 0 coincide.

Let W ∈ R
n1,p and W ∈ R

n1,p̃ be matrices of full column rank with the
properties as in (63a), (63b). Using Lemma 6.8, we see that there exists a unique
decomposition

x1(t) = Wx11(t) +Wx12(t).

By a multiplication of the first equation in (60) respectively from the left by WT

and WT, we can make use of the initial statement to see that the index of (60)
coincides with the index of the differential–algebraic equation

0 = WTEα
(
ETWTx12(t)

)
ETW ẋ12(t) +WTAρ

(
ATWx11(t) + ATWx12(t)

)

+WTB2x2(t) +WTB3x3(t) +WTf1(t), (65a)

0 = β
(
x2(t)

)
ẋ2(t) − BT

2 Wx11(t) − BT
2 Wx12(t), (65b)

0 = WTAρ
(
ATWx11(t) + ATWx12(t)

)

+ WTB2x2(t) + WTB3x3(t) + WTf1(t), (65c)

0 = −BT
3 Wx11(t) + BT

3 Wx12(t) + f3(t). (65d)

Now we show that, under the assumptions that the index of the differential–
algebraic equation (65a)–(65d) is nonzero and the rank conditions in (61) hold,
the index of the DAE (65a)–(65d) equals one:
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Using Lemma 6.7, we see that Eqs. (65a) and (65b) can be solved for ẋ12(t)

and ẋ2(t), that is,

ẋ12(t) = −(WTEα
(
ETWTx12(t)

)
ETW

)−1WT(Aρ
(
ATWx11(t)

+ ATWx12(t)
)+ B2x2(t) + B3x3(t) + f1(t)

)
, (66a)

ẋ2(t) = β
(
x2(t)

)−1
BT

2

(
Wx11(t) +Wx12(t)

)
. (66b)

For convenience and better overview, we will further use the following abbrevi-
ations:

ρ
(
ATWx11(t) + ATWx12(t)

)
� ρ,

ρ′(ATWx11(t) + ATWx12(t)
)
� ρ′,

α
(
ETWTx12(t)

)
� α,

β
(
x2(t)

)
� β.

The first-order derivative array F1(x
(2)(t), ẋ(t), x(t), t) of the DAE (60) further

contains the time derivatives of (65c) and (65d), which can, in compact form
and by making further use of (66a), (66b), be written as

[
WTAρ′ATW WTB3

−BT
3 W 0

]

︸ ︷︷ ︸
=:M

(
ẋ11(t)

ẋ3(t)

)

= −
(

WTAρ′ATW ẋ12(t) + WTB2ẋ2(t) + WTḟ2(t)

BT
3 W ẋ12(t) + ḟ3(t)

)

=
(

WTAρ′ATW(WTEαETW)−1WT(Aρ + B2x2(t) + B3x3(t) + f1(t)),

BT
3 W(WTEαETW)−1WT(Aρ + B2x2(t) + B3x3(t) + f1(t)) + ḟ3(t)

)

−
(

WTB2β
−1BT

2 (Wx11(t) +Wx12(t)) +WTḟ2(t)

0

)
. (67)

Since, by assumption, there holds (61), we obtain from Lemma 6.8 (c) and (d)
that

kerWTB3 = {0} and ker[A,B3]TW = {0}.
Then by using of ρ′ + ρ′T > 0 we may infer from Lemma 6.7 that M is invert-
ible. As a consequence, ẋ11(t) and ẋ3(t) can be expressed by suitable functions
depending on x12(t), x2(t), and t . This implies that the index of the differential–
algebraic equation equals one.

Now we show that conditions (61) are also necessary for the index of the
differential–algebraic equation (60) not to exceed one:
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Consider the first-order derivative array F1(x
(2)(t), ẋ(t), x(t), t) of the

DAE (60). Aiming to construct an ordinary differential equation (56) for

x(t) =
⎛

⎝
x1(t)

x2(t)

x3(t)

⎞

⎠

from F1(x
(2)(t), ẋ(t), x(t), t), it can be seen that the derivatives of Eqs. (66a)

and (66b) cannot be used to form the inherent ODE (the derivatives of these
equations explicitly contain the second derivatives of x12(t) and x2(t)). As
a consequence, the inherent ODE is formed by Eqs. (66a), (66b) and (67). Aim-
ing to seek for a contradiction, assume that one of the conditions in (61) is
violated:

In case of rank[E,A,B3] < n1, Lemma 6.8 (d) implies that

ker[E,B3]TW �= {0}.
Now consider matrices W1, W1 of full column rank with the properties as in
(63a), (63b). By Lemma 6.8 (a) there exists a unique decomposition

x11(t) = W1x111(t) +W1x112(t).

Then the right-hand side of Eq. (67) reads

[
WTAρ′ATWW1 0 WTB3

−BT
3 WW1 0 0

]⎛

⎝
ẋ111(t)

ẋ112(t)

ẋ3(t)

⎞

⎠ .

Consequently, it is not possible to use the first-order derivative array to ex-
press ẋ112(t) as a function of x(t). This is a contradiction to the index of the
differential–algebraic equation (60) being at most one.

In case of ker[ET,B3] �= kerET ×{0}, by Lemma 6.8 (c) we have ker(WTB3) �=
{0}. Consider matrices W2, W2 of full column rank with the properties as in
(63a), (63b). By Lemma 6.8 a) there exists a unique decomposition

x3(t) = W2x31(t) +W2x32(t).

Then the right-hand side of Eq. (67) reads

[
WTAρ′ATW WTB3W2 0

−BT
3 W 0 0

]
⎛

⎜
⎝

ẋ11(t)

ẋ31(t)

ẋ32(t)

⎞

⎟
⎠ .

Consequently, it is not possible to use the first-order derivative array to ex-
press ẋ32(t) as a function of x(t). This is a contradiction to the index of the
differential–algebraic equation (60) being at most one.
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(c) To complete the proof, we have to show that the inherent ODE can be con-
structed from the second-order derivative array F2(x

(3)(t), x(2)(t), ẋ(t), x(t), t)

of the DAE (60). With the matrices W , W , W1, W1, W2, W2 and the corre-
sponding decompositions, a multiplication of (67) from the left with

[
WT

1 0
0 WT

2

]

leads to
[
WT

1 WTAρ′ATWW1 WT
1 WTB3W2

−WT
2 BT

3 WW1 0

]

︸ ︷︷ ︸
=:M1

(
ẋ112(t)

ẋ32(t)

)

=
(

WT
1 WTAρ′ATW(WTEαETW)−1WT(Aρ + B2x2(t) + B3x3(t) + f1(t))

WT
2 BT

3 W(WTEαETW)−1WT(Aρ + B2x2(t) + B3x3(t) + f1(t)) +WT
2 ḟ3(t)

)

−
(
WT

1 WTB2β
−1BT

2 (Wx11(t) +Wx12(t)) +WT
1 WTḟ2(t)

0

)
. (68)

By Lemma 6.8 (e) and (f) we have

kerWT
1 WTB3W2 = {0} and ker[A,B3W2]T = {0}.

Lemma 6.7 then implies that M1 is invertible, and, consequently, the vectors
ẋ112(t) and ẋ32(t) are expressible by suitable functions of x111(t), x112(t), x2(t),
x31(t), x32(t), and t . It remains to show that the second-order derivative array
might also be used to express ẋ111(t) and ẋ31(t) as functions of x111(t), x112(t),
x2(t), x31(t), x32(t), and t : A multiplication of (67) from the left by

[
WT

1 0
0 WT

2

]

yields, by making use of WT
1 WTA = 0, that

0 = WT
1 WTB2β

−1BT
2

(
WW1x111(t) + WW1x112(t) +Wx12(t)

)

+ WT
1 WTḟ2(t), (69a)

0 = WT
2 BT

3 W
(
WTEαETW

)−1WT

· (Aρ + B2x2(t) + B3W2x31(t) + B3W2x32(t) + f1(t)
)+ WT

2 ḟ3(t).

(69b)

The second-order derivative array of (60) contains the derivative of these equa-
tions. Differentiating (69a) with respect to time, we obtain
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WT
1 WTB2β

−1BT
2 W1Wẋ111(t)

= −WT
1 WTB2β

−1BT
2

(
WW1ẋ112(t) +W ẋ12(t)

)

− WT
1 WTB2

d

dt

(
β−1)BT

2

(
WW1x112(t) +Wx12(t)

)− WT
1 WTf̈2(t).

(70)

Using Lemma 6.8 (g) and Lemma 6.7, we see that the matrix

WT
1 WTB2β

−1BT
2 WW1 ∈R

p1,p1

is invertible. By using the quotient and chain rule it can be inferred that d
dt

(β−1)

is expressible by a suitable function depending on x2(t) and ẋ2(t). Conse-
quently, the derivative of x111(t) can be expressed as a function depending
on x112(t), x12(t), x2(t), their derivatives, and t . Since, on the other hand,
ẋ112(t), ẋ12(t), and ẋ2(t) already have representations as functions depending
on x111(t), x112(t), x12(t), x2(t), x31(t), x32(t), and t , this is true for ẋ112(t) as
well.

Differentiating (69b) with respect to t , we obtain

WT
2 BT

3 W
(
WTEαETW

)−1WTB3W2ẋ31

= WT
2 BT

3 W
(
WTEαETW

)−1WT

· (Aρ′AWW1ẋ111(t) + Aρ′AWW1ẋ112(t) + Aρ′AW ẋ12(t)

+ B2ẋ2(t) + B3W2ẋ31(t) + ḟ1(t)
)

+ WT
2 BT

3 W
d

dt

(
WTEαETW

)−1WT

· (Aρ + B2x2(t) + B3W2x31(t) + B3W2x32(t) + f1(t)
)+ WT

2 ḟ3(t).

Lemma 6.8 h) and Lemma 6.7 give rise to the invertibility of the matrix

WT
2 BT

3 W
(
WTEαETW

)−1WTB3W2 ∈R
p2,p2 .

Then arguing as for the derivative of Eq. (69a), we can see that ẋ31 is express-
ible by a suitable function depending on x111(t), x112(t), x12(t), x2(t), x31(t),
x32(t), and t .

This completes the proof. �

Remark 6.9 (Differentiation index of differential–algebraic equations)

(i) The algebraic constraints of (60) are formed by (69a), (69b). Note that (69a)
is trivial (i.e., it is an empty set of equations) if rankE = n1. Accordingly, the
hidden constraint (69a) is trivial in the case where n3 = 0.
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(ii) The hidden algebraic constraints of (60) are formed by (69a), (69b). Note
that (69a) is trivial if rank[E, A, B3] = n1, whereas, in the case where
ker[ET, B3] = kerET × {0}, the hidden constraint (69a) becomes trivial.

(iii) From the computations in the proof of Theorem 6.6 we see that derivatives of
the “right-hand side” f1(·), f3(·) enter the solution of the differential–algebraic
equation. The order of these derivatives equals μ − 1.

We close the analysis of differential–algebraic equations of type (60) by formu-
lating the following result on consistency of initial values.

Theorem 6.10 Let a differential–algebraic equation (60) be given and assume that
the matrices E ∈ R

n1,m1 , A ∈ R
n1,m2 , B2 ∈ R

n1,n2 , B3 ∈ R
n1,n3 and functions α :

R
m1 → R

m1,m1 , ρ : Rm2 → R
m2,m2 , β : Rn2 → R

n2,n2 have the properties as in
Assumptions 6.5. Let W , W , W1, W1, W2, and W2 be matrices of full column rank
with the properties as in (63a), (63b). Let a continuous function f1 : [t0,∞) → R

n1

be such that

WTf : [t0,∞) →R
p

is continuously differentiable and

WT
1 WTf : [t0,∞) → R

p2

is twice continuously differentiable. Further, assume that f3 : [t0,∞) → R
n3 is con-

tinuously differentiable and such that

WT
2 f : [t0,∞) → R

p2

is twice continuously differentiable. Then the initial value

⎛

⎝
x1(t0)

x2(t0)

x3(t0)

⎞

⎠=
⎛

⎝
x10
x20
x30

⎞

⎠ (71)

is consistent if and only if

0 = WT(Aρ
(
ATx10

)+ B2x20 + B3x30 + f1(t0)
)
, (72a)

0 = −BT
3 x10 + f3(t0), (72b)

0 = WT
1 WTB2β(x20)

−1BT
2 x10 + WT

1 WTḟ1(t0), (72c)

0 = WT
2 BT

3 W
(
WTEα

(
ETx10

)
ETW

)−1WT

· (Aρ
(
ATx10

)+ B2x20 + B3x30 + f1(t0)
)+ WT

2 ḟ3(t0). (72d)

Proof First, assume that a solution of (60) evolves in the time interval [t0,ω). The
necessity of the consistency conditions (72a)–(72d) follows by the fact that, by
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(65c), (65c), (69a), (69a) and the definitions of x111(t), x112(t), x12(t), x31(t), and
x32(t), the relations

0 = WT(Aρ
(
ATx1(t)

)+ B2x2(t) + B3x3(t) + f1(t)
)
,

0 = −BT
3 x1(t) + f3(t),

0 = WT
1 WTB2β

(
x2(t)

)−1
BT

2 x1(t) + WT
1 WTḟ1(t),

0 = WT
2 BT

3 W
(
WTEα

(
ETx1(t)

)
ETW

)−1WT

· (Aρ
(
ATx1(t)

)+ B2x2(t) + B3x3(t) + f1(t)
)+ WT

2 ḟ3(t)

hold for all t ∈ [t0,ω). The special case t = t0 gives rise to (72a)–(72d).
To show that (72a)–(72d) is sufficient for consistency of the initialization, we

prove that the inherent ODE of (72a)–(72d), together with the initial value (71)
fulfilling (72a)–(72d), possesses a solution that is also a solution of the differential–
algebraic equation (60):

By the construction of the inherent ODE in the proof of Theorem 6.6 we see that
the right-hand side is continuously differentiable. The existence of a unique solution

x(·) =
⎛

⎝
x1(·)
x2(·)
x3(·)

⎞

⎠ : [t0,ω) →R
n1 ×R

n2 ×R
n3

is therefore guaranteed by standard results on the existence and uniqueness of solu-
tions of ordinary differential equations.

The inherent ODE further contains the derivative of the equations in (70) with
respect to time. In other words,

0 = d

dt

(
WT

1 WTB2β
(
x2(t)

)−1
BT

2 x1(t) + WT
1 WTḟ1(t)

)
,

0 = d

dt

(
WT

2 BT
3 W

(
WTEα

(
ETx1(t)

)
ETW

)−1WT

· (Aρ
(
ATx1(t)

)+ B2x2(t) + B3x3(t) + f1(t)
)+ WT

2 ḟ3(t)
)

for all t ∈ [t0,ω). Then we can infer from (72c) and (72d) together with (71) that

0 = WT
1 WTB2β

(
x2(t)

)−1
BT

2 x1(t) + WT
1 WTḟ1(t),

0 = WT
2 BT

3 W
(
WTEα

(
ETx1(t)

)
ETW

)−1WT

· (Aρ
(
ATx1(t)

)+ B2x2(t) + B3x3(t) + f1(t)
)+ WT

2 ḟ3(t)

for all t ∈ [t0,ω). Since, furthermore, Eq. (68) is a part of the inherent ODE, we can
conclude that the solution pointwise fulfills Eq. (67). However, the latter equation is
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by construction equivalent to

0 = d

dt

(
WT(Aρ

(
ATx1(t)

)+ B2x2(t) + B3x3(t) + f1(t)
))

,

0 = d

dt

(−BT
3 x1(t) + f3(t)

)
.

Analogously to the above arguments, we can infer from (72a) and (72b) together
with (71) that

0 = WT(Aρ
(
ATx1(t)

)+ B2x2(t) + B3x3(t) + f1(t)
)
,

0 = −BT
3 x1(t) + f3(t)

for all t ∈ [t0,ω). Since these equations, together with

0 = WT(Eα
(
ETx1(t)

)
ETẋ1(t) + Aρ

(
ATx1(t)

)+ B2x2(t) + B3x3(t) + f1(t)
)
,

0 = β
(
x2(t)

)
ẋ2(t) − BT

2 x1(t),

form the differential–algebraic equation (60), the desired result is proven. �

Remark 6.11 (Relaxing Assumptions 6.5) The solution theory for differential–
algebraic equations of type (60) can be extended to the case where conditions (a)
and (b) in Assumptions 6.5 are not necessarily fulfilled: Consider matrices

V1 ∈R
n1,q1 , V1 ∈ R

n1 ,̃q1 ,

V3 ∈R
n3,q3 , V3 ∈ R

n3 ,̃q3

of full column rank such that

imV1 = ker[E,A,B2,B3]T, imV1 = im[E,A,B2,B3],
imV3 = kerB3, imV3 = imBT

3 .

Then, multiplying the first equation in (60) from the left by V1 and the third equation
in (60) from the left by V3, and setting

x1(t) = V1x̄1(t) + V1x̃1(t), x3(t) = V3x̄3(t) + V3x̃3(t),

we obtain

0 = VT
1 Eα

(
ETV1x̃1(t)

)
ETV1 ˙̃x1(t) + VT

1 Aρ
(
ATṼ1x̃1(t)

)+ VT
1 B2x2(t)

+ VT
1 B3Ṽ

T
3 x̃3(t) + VT

1 f1(t),

0 = β
(
x2(t)

)
ẋ2(t) − BT

2 Ṽ1x̃1(t),

0 = −VT
3 BT

3 V1x̃1(t) + VT
3 f3(t).

(73)
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Note that, by techniques similar as in the proof of Lemma 6.8, it can be shown
that (73) is a differential–algebraic equation that fulfills the presumptions of Theo-
rem 6.6 and Theorem 6.10.

On the other hand, multiplying the first equation from the left by V1 and the third
equation from the left by V3, on the right-hand side, we obtain the constraints

V T
1 f1(t) = 0, V T

3 f3(t) = 0, (74)

or, equivalently,

f1(t) ∈ im[E,A,B2,B3], f3(t) ∈ imBT
3 for all t ∈ [t0,∞). (75)

Solvability of (60) therefore becomes dependent on the property of f1(·) and f3(·)
evolving in certain subspaces. Note that the components x̄1(t) and x̄3(t) do not
occur in any of the above equations. In case of existence of solutions, this part can
be chosen arbitrarily. Consequently, a violation of (a) or (b) in Assumptions 6.5
causes the nonuniqueness of solutions.

2.6.3 Circuit Equations—Structural Considerations

Here we will apply our findings on differential–algebraic equations of type (60) to
MNA and MLA equations. It will turn out that the index structural property of the
circuit can be characterized by means of the circuit topology. The concrete behavior
of the capacitance, inductance, and conductance functions does not influence the
differentiation index.

In the following, we will use expressions like an “LI-loop” for a loop in the
circuit graph whose branch set consists only of branches corresponding to voltage
sources and/or inductances. Likewise, by a CV -cutset, we mean a cutset in the circuit
graph whose branch set consists only of branches corresponding to current sources
and/or capacitances.

The general assumptions on the electric circuits are formulated as follows.

Assumption 6.12 (Electrical circuits) Given is an electrical circuit with nV volt-
age sources, nI current sources, nC capacitances, nL inductances, nR resistances,
n nodes, and the following properties:

(a) there are no I-cutsets;
(b) there are no V -loops;
(c) the charge functions q1, . . . , qnC : R → R are continuously differentiable with

q ′
1(u), . . . , q ′

nC
(u) > 0 for all u ∈ R;

(d) the flux functions ψ1, . . . ,ψnL : R → R are continuously differentiable with
ψ ′

1(i), . . . ,ψ
′
nL

(i) > 0 for all i ∈R;
(e) the conductance functions g1, . . . , gnR : R → R are continuously differentiable

with g′
1(u), . . . , g′

nR
(u) > 0 for all u ∈ R;
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Remark 6.13 (The assumptions on circuits) The absence of V -loops means, in
a nonmathematical manner of speaking, that there are no short circuits. Indeed, a V -
loop would cause that certain voltages of the sources cannot be chosen freely (see
below).

Likewise, an I-cutset consequences induces further algebraic constraints on the
currents of the current sources.

Note that by Lemma 4.10 (b) the absence of V -loops is equivalent to

kerAV = {0}, (76)

whereas by Lemma 4.10 (a) the absence of I-cutsets is equivalent to

ker
[
AC AR AL AV

]T = {0}. (77)

Consequently, the MNA equations are differential–algebraic equations of type (60)
with the properties described in Assumptions 6.5.

Further, we can use Lemma 4.10 (b) to see that the circuit does not contain any
V -loops if and only if

ker
[
BL BR BC BI

]T = {0}. (78)

A further use of Lemma 4.10 (a) implies that the absence of I-cutsets is equivalent
to

kerBI = {0}. (79)

If, moreover, we assume that the functions g1, . . . , gnR : R → R possess global
inverses, which are, respectively, denoted by r1, . . . , rnR : R → R, then the
MLA equations are as well differential–algebraic equations of type (60) with the
properties as described in Assumptions 6.5.

Theorem 6.14 (Index of MNA equations) Let an electrical circuit with the proper-
ties as in Assumptions 6.12 be given. Then the differentiation index μ of the MNA
equations (52) exists. In particular, we have:

(a) The following statements are equivalent:

(i) μ = 0;
(ii) rankAC = n − 1 and nV = 0;

(iii) the circuit neither contains RLI-cutsets nor voltage sources.

(b) The following statements are equivalent:

(i) μ = 1;
(ii) rank[AC ,AR ,AV ] = n − 1 and ker[AC ,AV ] = kerAC × {0};

(iii) the circuit neither contains LI-cutsets nor CV -loops except for C -loops.

(c) The following statements are equivalent:
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(i) μ = 2;
(ii) rank[AC ,AR ,AV ] < n − 1 or ker[AC ,AV ] �= kerAC × {0};

(iii) the circuit contains LI-cutsets or CV -loops which are no pure C -loops.

Proof Since the MNA equations (52) form a differential–algebraic equation of
type (60) with the properties as in Assumptions 6.5, the equivalences between (i)
and (ii) in (a), (b), and (c) are immediate consequences of Theorem 6.6.

The equivalence of (a) (ii) and (a) (iii) follows from the definition of nV and the
fact that, by Lemma 4.10 (a), the absence of RLI-cutsets (which is the same as the
absence of RLIV -cutsets since the circuit does not contain any voltage sources) is
equivalent to kerAT

C = {0}.
Since, by Lemma 4.10 (a),

ker[AC ,AR ,AV ]T = {0}
⇔ the circuit does not contain any LI-cutsets,

and, by Lemma 4.11,

ker[AC ,AV ] = kerAC × {0}
⇔ the circuit does not contain any CV -cutsets except for C -cutsets,

assertions (b) (ii) and (b) (iii) are equivalent. By the same arguments we see that
(c) (ii) and (c) (iii) are equivalent as well. �

Theorem 6.15 (Index of MLA equations) Let an electrical circuit with the proper-
ties as in Assumptions 6.12 be given. Moreover, assume that the functions

g1, . . . , gnR :R → R

possess global inverses, which are, respectively, denoted by

r1, . . . , rnR :R →R.

Then the differentiation index μ of the MLA equations (53) exists. In particular, we
have:

(a) The following statements are equivalent:

(i) μ = 0;
(ii) rankBL = n − m + 1 and nI = 0;

(iii) the circuit contains neither CRV -loops nor current sources.

(b) The following statements are equivalent:

(i) μ = 1;
(ii) rank[BL ,BR ,BI ] = n − m + 1 and ker[BL ,BI ] = kerBL × {0};
(iv) the circuit contains neither CV -loops nor LI-cutsets except for L-cutsets.
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(c) The following statements are equivalent:

(i) μ = 2;
(ii) rank[BL ,BR ,BI ] < n − m + 1 or ker[BL ,BI ] �= kerBL × {0};

(iii) the circuit contains CV -loops or LI-cutsets that are not pure L-loops.

Proof The MLA equations (52) form a differential–algebraic equation of type (60)
with the properties as formulated in Assumptions 6.5. Hence, the equivalences of (i)
and (ii) in (a), (b), and (c) are immediate consequences of Theorem 6.6.

The equivalence of (a) (ii) and (a) (iii) follows from the definition of nI and the
fact that, by Lemma 4.10 (b), the absence of CRV -loops (which is the same as the
absence of RLIV -cutsets since the circuit does not contain any current sources), is
equivalent to kerBT

L = {0}.
By Lemma 4.12 we have

ker[BL ,BI ] = kerBL × {0}
⇔ the circuit does not contain any LI-cutsets except for L-cutsets,

and by Lemma 4.11 we have

ker[BL ,BR ,BI ]T = {0}
⇔ the circuit does not contain any CV -loops.

As a consequence, assertions (b) (ii) and (b) (iii) are equivalent. By the same argu-
ments, we see that (c) (ii) and (c) (iii) are equivalent as well. �

Next, we aim to apply Theorem 6.10 to explicitly characterize consistency of
the initial values of the MNA and MLA equations. For the result about consistent
initialization of the MNA equations, we introduce the matrices of full column rank

ZC ∈R
n−1,pC , ZC ∈R

n−1,p̃C ,

ZRV −C ∈R
pC ,pRVC , ZRV −C ∈R

pC ,p̃RVC ,

ZV −C ∈R
nV ,pV −C , ZV −C ∈ R

nV ,p̃V −C

(80a)

such that

imZC = kerAT
C , imZC = imAC ,

imZRV −C = ker[AR ,AV ]TZC , imZRV −C = imZT
C [AR , AV ],

imZV −C = kerZT
C AV , imZV −C = imAT

V ZC .

(80b)

The following result (as the corresponding result on MLA equations) is an immedi-
ate consequence of Theorem 6.10.
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Theorem 6.16 Let an electrical circuit with the properties as in Assumptions 6.12
be given. Let ZC , ZC , ZRV −C , ZRV −C , ZV −C , and ZV −C be matrices of full column
rank with the properties as in (80a), (80b). Let iI [t0,∞) →R

nI be continuous and
such that

ZT
C AI iI : [t0,∞) → R

pC

is continuously differentiable and

ZT
RV −C ZT

C AI iI : [t0,∞) →R
pRVC

is twice continuously differentiable.
Further, assume that uV : [t0,∞) →R

nV is continuously differentiable and such
that

Z
T
V −C uV : [t0,∞) →R

pV −C

is twice continuously differentiable.
Then the initial value

⎛

⎝
φ(t0)

iL(t0)

iV (t0)

⎞

⎠=
⎛

⎝
φ0
iL0
iV 0

⎞

⎠ (81)

is consistent if and only if

0 = ZT
C
(
AR g

(
AT

R φ0
)+ AL iL0 + AV iV 0 + AI iI0

)
, (82a)

0 = −AT
V φ0 + uV 0, (82b)

0 = ZT
RV −C ZT

C AL L(iL0)
−1AT

Lφ0 + ZT
RV −C ZT

C AI i̇I(t0), (82c)

0 = Z
T
V −C AT

V ZC
(
ZT

C AR g
(
AT

R φ0
)
AT

R ZC
)−1ZT

C

· (AR g
(
AT

R φ0
)+ AL iL0 + AV iV 0 + AI iI(t0)

)+ Z
T
V −C u̇V (t0). (82d)

To formulate a corresponding result for the MLA, consider the matrices of full
column rank

YL ∈R
m−n+1,qL , YL ∈R

m−n+1,̃qL ,

YR I−L ∈R
qL ,qR I−L , YR I−L ∈R

qL ,̃qR I−L ,

Y I−L ∈R
nI ,pI−L , ZI−L ∈R

nI ,̃qI−L

(83a)

such that

imYL = kerBT
L , imYL = imBL ,

imYRV −C = ker[BR ,BI ]TYL , imYR I−L = imY T
L [BR ,BI ],

imYI−L = kerY T
L BI , imYI−L = imBT

IYL .

(83b)
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These matrices will be used to characterize consistency of the initial values of
the MLA system.

Theorem 6.17 Let an electrical circuit with the properties as in Assumptions 6.12
be given. Moreover, assume that the functions g1, . . . , gnR : R → R possess global
inverses, which are, respectively, denoted by r1, . . . , rnR : R → R. Let YL , YL ,
YR I−L , YR I−L , ZI−L , and ZI−L be matrices of full column rank with the prop-
erties as in (80a), (80b). Let iI : [t0,∞) → R

nI be continuously differentiable and
such that

Y
T
I−L iI : [t0,∞) → R

qI−L

is twice continuously differentiable.
Further, assume that uV [t0,∞) →R

nV is continuous and such that

ZT
LBV uV : [t0,∞) →R

qL

is continuously differentiable and

Y T
R I−LY T

L BV uV : [t0,∞) → R
qR IL

is twice continuously differentiable.
Then the initial value

⎛

⎜
⎝

ι(t0)

uC (t0)

uI(t0)

⎞

⎟
⎠=

⎛

⎝
ι0

uC0
uI0

⎞

⎠ (84)

is consistent if and only if

0 = Y T
L
(
BR r

(
BT

R ι0
)+ BC uC0 + BIuI0 + BV uV 0

)
, (85a)

0 = −BT
I ι0 + iI0, (85b)

0 = Y T
R I−LY T

L BC C(uC0)
−1BT

C ι0 + Y T
R I−LY T

L BV u̇V (t0), (85c)

0 = Y
T
I−LBT

IYL
(
YT

L BR r
(
BT

R ι0
)
BT

R YC
)−1YT

C

· (BR r
(
BT

R ι0
)+ BC uC0 + BIuI0 + BV uV (t0)

)+ Y
T
I−L i̇I(t0). (85d)

Remark 6.18 (V -loops and I-cutsets) If a circuit contains V -loops and I-cutsets
(compare Remark 6.13), we may apply the findings in Remark 6.11 to extract
a differential–algebraic equation of type (60) that satisfies Assumptions 6.5. More
precisely, we consider matrices of full column rank

ZCRLV ∈ R
n−1,pCRLV , ZCRLV ∈ R

n−1,p̃CRLV ,

ZV ∈ R
nV ,pV , ZV ∈R

nV ,p̃V
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such that

imZCRLV = ker[AC ,AR ,AL ,AV ]T, imZCRLV = im[AC ,AR ,AL ,AV ],
imZV = kerAV , imZV = imAT

V .

Then, by making the ansatz

φ(t) = ZCRLVI φ̄(t) +ZCRLVI φ̃(t),

iV (t) = ZV īV (t) +ZV ĩV (t),

we see that the functions φ̄(·) and ūV (·) can be chosen arbitrarily, whereas the solv-
ability of the MNA equations (52) is equivalent to

ZCRLV AI iI(·) ≡ 0, ZV uV (·) ≡ 0.

The other components then satisfy

0 = ZT
CRLVIAC C

(
AT

CZCRLVI φ̃(t)
)
AT

CZCRLVI
d

dt
φ̃(t)

+ZT
CRLVIAR g

(
AT

R ZCRLVI φ̃(t)
)+ZT

CRLVIAL iL(t)

+ZT
CRLVIAV ZV ĩV (t) +ZT

CRLVIAI iI(t), (86)

0 = −AT
LZCRLVI φ̃(t) + L

(
iL(t)

) d

dt
iL(t),

0 = −ZT
V AT

V ZCRLVI φ̃(t) +ZT
V uV (t).

To perform analogous manipulations to the MLA equations, consider matrices
full column rank

YLRCI ∈R
m−n+1,qLRCI , YLRCI ∈ R

m−n+1,p̃CRLV ,

YI ∈R
nI ,qI , YI ∈R

m−n+1,̃qI

such that

imYLRCI = ker[BL ,BR ,BC ,BI ]T, imZLRCI = im[BL ,BR ,BC ,BI ],
imYI = kerBI , imYI = imBT

I .

Then, by making the ansatz

ι(t) = YLRCI ῑ(t) +YLRC Ĩ ι(t),

uI(t) = YI ūI(t) +YI ũI(t),
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Fig. 15 Serial
interconnection of current
sources

Fig. 16 Parallel
interconnection of voltage
sources

we see that the functions ῑ(·) and īI(·) can be chosen arbitrarily, whereas the solv-
ability of the MLA equations (53) is equivalent to

YLRCIBV uV (·) ≡ 0, YI iI(·) ≡ 0.

The other components then satisfy

0 = YT
LRCIBL L

(
BT

LYLRC Ĩ ι(t)
)
BT

LYLRCI
d

dt
ι̃(t)

+YT
LRCIBR r

(
BT

R YLRC Ĩ ι(t)
)+YT

LRCIBC uC (t)

+YT
LRCIBIY

T
I ũI(t) +YT

LRCIBV uV (t),

0 = −BT
C YLRC Ĩ ι(t) + C

(
uC (t)

) d

dt
uC (t),

0 = −YT
IBT

IYLRC Ĩ ι(t) +YT
I iI(t).

(87)

Note that both ansatzes have the practical interpretation that for each V -loop, one
voltage is constrained (for instance, by the equation ZV uV (·) ≡ 0 or equivalently
by YLRCIBV uV (·) ≡ 0), and one current can be chosen arbitrarily.

An according interpretation can be made for I-cutsets: In each I-cutset, one cur-
rent is constrained (for instance, by the equation ZCRLV AI iI(·) ≡ 0 or equivalently
by YI iI(·) ≡ 0), and one voltage can be chosen arbitrarily.

To illustrate this by means of an example, the configuration in Fig. 15 causes
iI1(·) = iI2(·), whereas the reduced MLA equations (87) contain uI1(·) + uI2(·)
as a component of ũI(·). Likewise, the configuration in Fig. 16 causes uV 1(·) =
uV 2(·), whereas the reduced MNA equations (86) contain iV 1(·) + iV 2(·) as a com-
ponent of ĩV (·).

Remark 6.19 (Index one conditions in MNA and MLA)

(i) The property that LV -loops and LI-loops cause higher index is quite intuitive
from a physical perspective: In a CV -loop, the capacitive currents are prescribed
by the derivatives of the voltages of the voltage sources (see Fig. 17). In an LI-
cutset, the inductive voltages are prescribed by the derivatives of the currents of
the current sources (see Fig. 18).
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Fig. 17 Parallel
interconnection of a voltage
source and a capacitance

Fig. 18 Serial
interconnection of a current
source and an inductance

Fig. 19 L-cutset

Fig. 20 C -loop

(ii) An interesting feature is that LI-cutsets (including pure L-cutsets, see Fig. 19)
cause that the MNA system has differentiation index two, whereas the cor-
responding index two condition for the MLA system is the existence of LI-
cutsets without pure L-cutsets.

For CV -loops, situation becomes, roughly speaking, vice versa: CV -loops
(including pure C -loops, see Fig. 20) cause that the MLA system has differen-
tiation index two, whereas the corresponding index two condition for the MNA
system is the existence of CV -loops without pure C -loops.

Remark 6.20 (Consistency conditions for MNA and MLA equations) Note that, for
an electrical circuit that contains neither V -loops nor L-cutsets, the following holds
for the consistency conditions (82a)–(82d) and (85a)–(85d):

(i) Equation (82a) becomes trivial (that is, it contains no equations) if and only
if the circuit does not contain any RLIV -cutsets.

(ii) Equation (82b) becomes trivial if and only if the circuit does not contain any
voltage sources.

(iii) Equation (82c) becomes trivial if and only if the circuit does not contain any
LI-cutsets.
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(iv) Equation (82d) becomes trivial if and only if the circuit does not contain any
CV -loops except for pure C -loops.

(v) Equation (85a) becomes trivial if and only if the circuit does not contain any
RCIV -loops.

(vi) Equation (85b) becomes trivial if and only if the circuit does not contain any
current sources.

(vii) Equation (85c) becomes trivial if and only if the circuit does not contain any
CV -loops.

(viii) Equation (85d) becomes trivial if and only if the circuit does not contain any
LI-cutsets except for pure L-cutsets.

We finally glance at the energy exchange of electrical circuits: Consider again
the MNA equations

AC
d

dt
q
(
AT

C φ(t)
)+ AR g

(
AT

R φ(t)
)+ AL iL(t) + AV iV (t) + AI iI(t) = 0,

−AT
Lφ(t) + d

dt
ψ
(
iL(t)

)= 0, (88)

−AT
V φ(t) + uV (t) = 0.

A multiplication of the first equation from the left by φT(t), of the second equation
from the left by iT

L (t), and of the third equation from the left by iT
I(t) and then

a summation and according integration of these equations yields

0 =
ˆ tf

t0

φT(t)

(
AC

d

dt
q
(
AT

C φ(t)
)+ AR g

(
AT

R φ(t)
)

+ AL iL(t) + AV iV (t) + AI iI(t)

)
dt

+
ˆ tf

t0

iT
L (t)

(
−AT

Lφ(t) + d

dt
ψ(iL)(t)

)
dt

+
ˆ tf

t0

iT
V (t)

(−AT
V φ(t) + uV (t)

)
dt.

Due to φT(t)AL iL(t) = iL(t)AT
Lφ(t), φT(t)AV iV (t) = iV (t)AT

V φ(t), this equation
simplifies to

0 =
ˆ tf

t0

φT(t)AC︸ ︷︷ ︸
=uT

C (t)

d

dt
q
(
AT

C φ(t)
︸ ︷︷ ︸
=uC (t)

)+ φT(t)AR︸ ︷︷ ︸
=uT

R (t)

g
(
AT

R φ(t)
︸ ︷︷ ︸
=uR (t)

)+ φT(t)AI︸ ︷︷ ︸
=uT

I (t)

iI(t) dt

+
ˆ tf

t0

iT
L (t)

d

dt
ψ(iL)(t) dt +

ˆ tf

t0

iT
V (t)uV (t) dt
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=
ˆ tf

t0

uT
C (t)

d

dt
q
(
uC (t)

)
dt +

ˆ tf

t0

iT
L (t)

d

dt
ψ(iL)(t) dt +

ˆ tf

t0

uT
R (t)g

(
uR (t)

)
dt

+
ˆ tf

t0

uT
I(t)iI(t) dt +

ˆ tf

t0

iT
V (t)uV (t) dt.

Using the nonnegativity of uT
R (t)g(uR (t)) (see (47)) and, furthermore, the represen-

tations (40), (44), and (48a) for capacitive and inductive energy, we obtain

VC
(
q
(
uC (t)

))∣∣t=tf
t=t0

+ VL
(
ψ
(
iL(t)

))∣∣t=tf
t=t0

≤ VC
(
q
(
uC (t)

))∣∣t=tf
t=t0

+ VL
(
ψ
(
iL(t)

))∣∣t=tf
t=t0

+
ˆ tf

t0

uT
R (t)g

(
uR (t)

)
dt

= −
ˆ tf

t0

uT
I(t)iI(t) dt −

ˆ tf

t0

iT
V (t)uV (t) dt, (89)

where VC : RnC → R and VL : RnL → R are the storage functions for capacitive
and, respectively, inductive energy. Since, the integral of the product between volt-
age and current represents the energy consumptions of a specific element, relation
(89) represents an energy balance of a circuit: The energy gain at capacitances and
inductances is less than or equal to the energy provided by the voltage and current
sources. Note that the above deviations can alternatively done on the basis of the
modified loop analysis.

The difference between consumed and stored energy is given by
ˆ tf

t0

uT
R (t)g

(
uR (t)

)
dt,

which is nothing but the energy lost at the resistances. Note that, for circuits without
resistances (the so-called LC resonators), the balance (89) becomes an equation.
In particular, the sum of capacitive and inductive energies remains constant if the
sources are turned off.

Remark 6.21 (Analogies between Maxwell’s and circuit equations) The energy bal-
ance (89) can be regarded as a lumped version of the corresponding property of
Maxwell’s equations; see (5a), (5b). Note that this is not the only parallelism be-
tween circuits and electromagnetic fields: For instance, Tellegen’s law has a field
version and a circuit version; see (12) and (28).

It seems to be an interesting task to work out these and further analogies between
electromagnetic fields and electric circuits. This would, for instance, enable to in-
terpret spatial discretizations of Maxwell’s equations as electrical circuits to gain
more insight.

2.6.4 Notes and References

(i) The applicability of differential–algebraic equations is not limited to electrical
circuit theory: The probably most important application field outside circuit
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theory is in mechanical engineering [56]. The power of DAEs in (extramath-
ematical) application has led to differential–algebraic equations becoming an
own research field inside applied and pure mathematics and is the subject of
several textbooks and monographs [13, 27, 33, 35, 47].

By understanding the notion index as a measure for the “deviation of a DAE
from an ODE,” various index concepts have been developed that modify and
generalize the differentiation index. To mention only a few, there is, in al-
phabetical order, the geometric index [41], the perturbation index [25], the
strangeness index [33] and the tractability index [35].

(ii) The seminal work on circuit modeling by modified nodal analysis has been
done by Brennan, Ho, and Ruehli in [26], see also [16, 65]. Graph modeling of
circuits has however been done earlier in [19]. Modified loop analysis has been
introduced for the purpose of model order reduction in [45] and can be seen as
an advancement of mesh analysis [19, 32]. Further circuit modeling techniques
can be found in [46, 49, 50].

There exist various generalizations and modifications of the aforementioned
methods for circuit modeling. For instance, models for circuits including so-
called MEM devices has been considered in [48, 53]. The incorporation of
spatially distributed components (i.e., devices that are modeled by partial dif-
ferential equations) leads to so-called partial differential–algebraic equations
(PDAEs). Such PDAE models of circuits with transmission lines (these are
modeled be the Telegraph equations) have been considered and analyzed in
[42]. Incorporation of semiconductor models (by drift diffusion equations) has
been done in [12].

(iii) The characterization of index properties by means of the circuit topology is not
new: Index determination by means of the circuit topology has been done in
[22–24, 29, 38, 39, 58]. The first rigorous proof for the MNA system has been
presented by Estévez Schwarz and Tischendorf in [22]. In this work, the result
is even shown for circuits that contain, under some additional assumption on
their connectivity, controlled sources.

Not only the index but also stability properties can be characterized by
means of the circuit topology. By energy considerations (such as in Sec. 2.6.3)
it can be shown that RLC circuits are stable. However, they are not necessarily
asymptotically stable. Sufficient criteria for asymptotical stability by means of
the circuit topology are presented by Riaza and Tischendorf in [51, 52]. These
conditions are generalized to circuits containing MEM devices in [54] and to
circuits containing transmission lines in [42].

The general ideas of the topological characterizations of asymptotic stability
have been used in [10, 11] to analyze the asymptotic stability of the so-called
zero dynamics for linear circuits. This allows the application of the funnel con-
troller, a closed-loop control method of striking simplicity.

(iv) A further area in circuit theory is the so-called network synthesis. That is, from
a desired input-output behavior, it is sought for a circuit whose impedance be-
havior matches the desired one. Network synthesis is a quite traditional area
and is originated by Cauer [14], who discovered that, in the linear and time-
invariant case, exactly those behaviors are realizable that are representable by
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a positive real transfer function [15]. After the discovery of the positive real
lemma by Anderson, some further synthesis methods have been developed
[2–6, 67], which are based on the positive real lemma and argumentations
in the time domain. A numerical approach to network synthesis is presented
in [43].

(v) An interesting physical and mathematical feature of RLC circuits is that they
do not produce energy by themselves. ODE systems that provide energy bal-
ances such as (89) are called port-Hamiltonian (also passive) and are treated
from a systems theoretic perspective by van der Schaft [62]. Port-Hamiltonian
systems on graphs have recently be analyzed in [64], and DAE system with
energy balances in [63]. Note that energy considerations play a fundamental
role in model order reduction by passivity-preserving balanced truncation of
electrical circuits [44].
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