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Preface

Modeling, analysis, and control of complex large-scale systems are becoming in-
creasingly important. Large-scale systems are often the result of networked interac-
tions among an ample number of subsystems. Examples of large-scale networked
systems include biochemical reaction networks, communication networks such as
mobile phone networks and the Internet, complex chemical production processes,
neural networks, fish and bird swarms, and circuit networks in microprocessors.
The objective of the 2011 summer school Large-Scale Networks in Engineering
and Life Sciences of the International Max Planck Research School Magdeburg was
to provide insights and tools for modeling, analysis, optimization, and control of
large-scale networks in life sciences and engineering. The chapters provided in this
book are based on the lectures given during this summer school. They cover a wide
range of applications and focus on mathematical modeling of the different network
structures in these areas. Thus, this book complements recent monographs on the
theory of networks such as “Networks: An Introduction” by Newman (Cambridge
University Press, 2010) and “The Structure of Complex Networks” by Estrada (Ox-
ford University Press, 2011) or the edited volume “Network Science. Complexity in
Nature and Technology” by Estrada, Fox, and Higham (Springer, 2010).

The chapters in this book are mostly self-contained introductions to network
modeling in various areas. They can be read independently and may serve as the
basis for a seminar series or, in combination with the introductory texts mentioned
above, as course supplements for a course on Network Theory and Applications.
We hope the book will be useful for graduate students or beginners in the respec-
tive fields with a solid mathematical background, but also as a compendium for
network researchers. Since different fields employ different techniques as outlined
below, we expect that fruitful ideas can result from studying how other disciplines
approach network structures.

Basically, the book can be partitioned into four parts. The first part, consisting
only of Chap. 1, treats the mathematical theory of (bio)-chemical reaction networks.
It can also serve as a self-contained introduction into the geometric theory of ordi-
nary differential equations. Two different applications of network theory in electri-
cal engineering areas are the topic of Chaps. 2 and 3; these can be considered as

v



vi Preface

the second part. Optimization of and on networks is a fundamental issue in discrete
mathematics and is treated in the fourth chapter, which can be considered again as
a part on its own. The last three chapters discuss biological networks from different
view points and together form a fourth part of the book.

In the following, we provide a brief introduction to the individual chapters of this
book. Chapter 1 by Flockerzi gives an “Introduction to the Geometric Theory of Or-
dinary Differential Equations with Applications to Chemical Processes”. Though
providing the fundamentals of the geometric theory of differential equations in a
general setting, it is tailored to applications to (bio-)chemical reaction networks and
chemical separation processes. Thus, quite often, the ordinary differential equations
under investigation are derived from underlying partial differential equations as in
the search for solutions of quasi-linear partial differential equations by the method
of characteristics. The geometric theory addresses invariant and integral manifolds,
e.g., center manifolds for bifurcation problems and slow invariant manifolds for net-
works with slow and fast variables and/or processes. In applications, the associated
reduction methods are based on suitable quasi-stationary approximations of such
(slow) invariant manifolds. Several model problems illustrate applications of the
derived methods to different instances of chemical reaction networks.

In the second chapter, Reis introduces “Circuit Modelling with Differential–
Algebraic Equations”. Electrical circuits underlie most electronic devices in every-
day life, ranging from computers to tablets and cell phones to car electronics. Math-
ematical models of these circuits are based on graph and network theory and are
the core of circuit and device simulation in industrial design processes. The chap-
ter provides a basic and self-contained introduction to the mathematical description
of electrical circuits consisting of resistances, capacitances, inductances, as well
as voltage and current sources. The standard methods for the modeling of circuits
by differential–algebraic equations—“modified nodal analysis” and “modified loop
analysis”—are presented, and a detailed analysis of the mathematical properties of
these equations is included.

The third chapter by Egerstedt, de la Croix, and Kingston on “Interacting with
Networks of Mobile Agents” discusses the design of control, communication, and
coordination strategies for multi-agent networks, a central issue in current research
in systems and control theory. Applications of distributed, mobile agent systems
or “swarms” include, but are by no means limited to, multi-agent robotics, dis-
tributed sensor networks, interconnected manufacturing chains, and data networks.
The question discussed is how humans can control or influence the behavior of
the swarm. Lagrangian and Eulerian models are proposed to model the movements
of the agents. Both of them are amenable to human manipulation. Interaction of
the agents are modeled by graphs/networks, and controllability and manipulability
notions for the human-swarm interaction are introduced, based on which control
strategies are developed.

Chapter 4 “Combinatorial Optimization: The Interplay of Graph Theory, Lin-
ear and Integer Programming Illustrated on Network Flow” by Wagler deals with
combinatorial optimization which is the main mathematical discipline dealing with
optimizing networks. It uses basic elements from graph theory, geometry, linear and
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integer programming. The network flow problem is used as a running example to
illustrate the concepts and methods introduced. It does not require prior knowledge
in advanced optimization techniques. Basic introductions into linear programming,
including the simplex method, and integer programming are provided.

The 5th chapter, by Klamt, Hädicke, and von Kamp, is dedicated to the “Stoi-
chiometric and Constraint-Based Analysis of Biochemical Reaction Networks”. Al-
though the methods presented therein rely solely on the stoichiometry of metabolic
networks, they provide essential information on key functional properties and de-
liver various testable predictions. The chapter presents the relevant mathematical
foundations of different approaches of this kind and discusses various applications
in biology and biotechnology.

The contribution of Blätke, Rohr, Heiner, and Marwan in Chap. 6 is focused on
“A Petri Net Based Framework for Biomodel Engineering”. Petri nets provide a
versatile framework for the computation of biochemical reaction networks and gene
regulatory networks, particularly useful in the context of systems biology. Starting
with basic definitions, the authors provide an introduction to different classes of
Petri nets, static and dynamic modeling applications, database-assisted automatic
composition and modification of Petri nets as well as automatic reconstruction of
networks based on time series data sets.

In Chap. 7, “Hybrid Modeling for Systems Biology”, von Stosch, Carinhas and
Oliveira deal with the theoretical fundamentals of hybrid semi-parametric model-
ing to integrate extensive experimental data sets obtained by “omics” technologies
developed over recent years into global quantitative models. Their approach com-
bines available knowledge about mechanisms in the form of parametric mathemati-
cal models (bottom-up) with nonparametric models that are determined from exper-
imental data (top-down). Examples are given for small metabolic networks of insect
cells (Spodoptera frugiperda, Sf9) used for production of baculoviruses, dynamic
models of metabolism of animal cells (baby hamster kidney, BHK) in fed-batch
cultures with unknown reaction kinetics, and a signal transduction network involv-
ing transcription factor A (TFA) with intrinsic time delays.

Finally, we would like to express our gratitude to all authors of the chapters in this
book for their dedicated effort to provide useful tutorials, a task often much more
time consuming than writing about latest research results to an informed community.
Numerous experts in network theory and applications served as reviewers for the
chapters. We are very grateful for their help in improving readability and tutorial
value of the individual manuscripts. Last but not least, our thanks go to Barbara
Hellriegel and Katherina Steinmetz from Springer Basel AG for their never ending
endurance in waiting for the final manuscript as well as their support throughout the
development of this project.

Peter Benner
Rolf Findeisen

Dietrich Flockerzi
Udo Reichl

Kai Sundmacher

Magdeburg
June 23, 2014
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Chapter 1
Introduction to the Geometric Theory of ODEs
with Applications to Chemical Processes

Dietrich Flockerzi

Abstract We give an introduction to the geometric theory of ordinary differen-
tial equations (ODEs) tailored to applications to biochemical reaction networks and
chemical separation processes. Quite often, the ordinary differential equations un-
der investigation are “reduced” partial differential equations (PDEs) as in the search
of traveling wave solutions. So, we also address ODE topics that have their origin
in the PDE context.

We present the mathematical theory of invariant and integral manifolds, in par-
ticular, of center and slow manifolds, which reflect the splitting of variables and/or
processes into slow and fast ones. The invariance of a smooth manifold is charac-
terized by a quasilinear partial differential equation, and the widely used approx-
imations of invariant manifolds are derived from such PDEs. So we also offer, to
some extent, an introduction to quasilinear PDEs. The basic ideas and crucial tools
are illustrated with numerous examples and exercises. Concerning the proofs, we
confine ourselves to outline the crucial steps and refer, especially in the first three
sections, to the literature.

The final Sects. 1.4 and 1.5 on reaction–separation processes and on chromato-
graphic separation present new results, including their proofs. They are the outcome
of many fruitful discussions with my colleagues Malte Kaspereit and Achim Kienle.

Keywords Stability · Integral manifolds and method of characteristics · Center
manifolds and asymptotic phases · Reduction methods and bifurcations ·
Quasi-stationary approximations and singular perturbations · Slow invariant
manifolds · Reactive and chromatographic separation networks

Outline This contribution is not written as an introduction to the basic theory of
ODEs. We assume the reader to have some experience with linear algebra (spec-
tral theory, Schur normal form), analysis (multidimensional integration, contraction
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principle), and ODEs (explicit solution methods, linear systems, stability, simple
bifurcations).

We recapitulate certain properties of ODEs in Sect. 1.1 in order to prepare the
stage and to open up new perspectives for the geometric theory of ODEs. Sec-
tion 1.2, dedicated to two-dimensional systems, introduces invariant manifolds in
the familiar form of invariant orbits and addresses computational aspects for the
associated partial differential equations (e.g., method of characteristics). Moreover,
Sect. 1.2 presents the necessary tools for discussing more complicated bifurcation
phenomena (normal forms, blow-up transformations). The concluding Sect. 1.2.5
sheds some new light on eigenspaces of linear systems and provides the key idea for
the general nonlinear geometric theory by characterizing the eigenspaces as the sets
of initial values leading to solutions of restricted exponential growth as t→±∞.

Section 1.3 deals with the classical local stable, unstable and center manifolds for
n-dimensional systems and introduces the fundamental reduction principle: Ques-
tions about the asymptotic behavior in an n-dimensional state space can often be
answered by reduced systems in a state space of dimension m with m< n. Ideally,
one has m = 1 or m = 2 as for the standard scenarios of stationary bifurcations or
Hopf bifurcations. For systems with two time scales t and τ = t/ε, we discuss ex-
tensively the validity of quasi-stationary approximations and of quasi-steady-state
approximations in Sects. 1.3.5 and 1.3.6. Considering reaction–separation networks,
Sect. 1.4 continues this study of two-time-scale systems and offers the reduction to
a separation model without a reactive part. Finally, Sect. 1.5 extends the method
of characteristics (Sect. 1.2.2) to systems of first-order quasilinear PDEs and ad-
dresses chromatographic separation processes using equilibrium theory. We obtain
innovative spectral results for adsorption equilibria, described by Langmuir-type
isotherms, in particular, by bi-Langmuir isotherms (see [36]).

All sections start with a short outline and are divided in various subsections. Their
titles and the headings of all the results and remarks may serve as a grasshopper’s
guide through this contribution. For readers who are especially interested in appli-
cations from systems biology and chemical engineering, we refer to the topics of

– activator–inhibitor models in Exercise 1.26, in Sect. 1.1.4.3, and in Sect. 1.3.6,
– volume transport and traveling waves in Sect. 1.1.2.3, Sect. 1.2.2 (see Exer-

cises 2.6 and 2.7), in Exercise 3.7(3) and Remark 3.16, and, finally, in Sect. 1.5,
– reaction networks in Sect. 1.1.4.3 and in Sects. 1.4.2 and 1.4.3 with the introduc-

tory Example 1.28,
– chromatographic separation in Sect. 1.5 with the introductory Exercise 2.7.

Over the years, I was inspired and influenced by the work of many authors: I would
like to refer to the ODE books [2, 16, 17, 63, 67, 77], the PDE books [11] and [25],
and the monographs [10, 23, 26, 68, 69, 83] and [22, 75, 76] from the more applied
side. I apologize for not mentioning all the other valuable sources. Finally, I thank
Hector Rubiera Landa for his assistance with the figures.
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1.1 Basic Theory of Ordinary Differential Equations

This introductory section discusses the basic questions and concepts in the theory of
ordinary differential equations. The presentation is tailored to the geometric theory
of systems of ordinary differential equations: It emphasizes the concepts and tools
in simple settings and introduces illustrating academic examples and “real-world”
processes from chemical engineering in their simplest versions.

Section 1.1.1 is dedicated to scalar differential equations, including their bifurca-
tion diagrams, and to n-dimensional linear systems. By introducing scalar differen-
tial inequalities, we arrive at comparison theorems and the crucial Gronwall lemma.
First consequences of the fundamental theorem on existence and uniqueness of so-
lutions are discussed in Sect. 1.1.2: We comment on sensitivity analysis, on volume
transport, and on bounded system response and establish Lyapunov’s theorem on
first approximations. The following Sects. 1.1.3 and 1.1.4 present the basic results
from stability theory, in particular LaSalle’s invariance principle, as they can be
found in any textbook on ODEs. Illustrations include activator–inhibitor systems
and reversible reaction networks from systems biology and chemical engineering
(see Sect. 1.1.4.3).

1.1.1 Questions of Existence and Uniqueness

We first pose the standing hypothesis and the formulation of initial value problems
and then address the basic questions of existence and uniqueness, of approximations
and reductions.

Standing Hypothesis Let f : D→ R
n be a continuous function on a nonempty,

open, and connected set D ⊂R×R
n, and let (τ, ξ) be an element of D.

Problem Formulation Does there exist an open interval I � τ and does there exist
a continuously differentiable function ϕ : I → R

n (symbolically, ϕ ∈ C1(I,Rn))
with ϕ(τ)= ξ and

(
t, ϕ(t)

) ∈D, dϕ

dt
(t)= f (t, ϕ(t)) ∀t ∈ I?

In case a function ϕ(·) has these properties, it is called a solution of the initial
value problem (IVP)

dx

dt
= f (t, x), x(τ )= ξ, (1.1)

on I with respect to D or, in short terms, a solution of the differential equation
dx
dt
= f (t, x) for given initial data (τ, ξ) ∈D. With ẋ := dx

dt
, a more precise notation

of a solution of (1.1) (on I with respect to D) is given by ϕ(· ; τ, ξ):
ϕ̇(t; τ, ξ)= f (t, ϕ(t; τ, ξ)) for all t ∈ I with ϕ(τ ; τ, ξ)= ξ. (1.2)
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In case (τ, ξ) determines the solution uniquely, we will discuss ϕ(t; τ, ξ) as a func-
tion of all arguments (cf. Theorem 1.18). The variable t is often interpreted as time,
and the variable x as state, so that τ and ξ refer to the initial time and to the ini-
tial state, respectively. We call D a region in R× R

n. Typically, D is taken in the
form D = J ×G with an open interval J and a nonempty, open, and connected set
G⊂R

n.
In case f in (1.1) is independent of t , the initial value problem is called au-

tonomous or time-invariant. Of course, the right-hand side f of the differential
equation provides the slope of any solution x = ϕ(·). The first Taylor polynomial
at τ is given by ξ + f (τ, ξ)(t − τ).

Basic Questions

(1) When does a solution ϕ(·; τ, ξ) of the IVP (1.1) exist? When is it unique? What
is the maximal interval [τ, t+) of existence in forward time? What causes a
finite t+? When does one have t+ = ∞? How does a solution “behave” for
t→ t+?

(2) Are there special initial values ξ leading to simple solutions like constant or
periodic solutions? Given a particular solution, for example, a steady-state so-
lution ξ∗, how do solutions “behave” that start near ξ∗ at time τ?

(3) Can the asymptotic behavior of a solution ϕ(·) of (1.1) on [τ,∞) be determined
by some reduced system?

For example, by a scalar test function V = V (x), for instance, V (x)= xTx,
so that properties of v(t) := V (ϕ(t)) and v̇(t) = Vx(ϕ(t))f (t, ϕ(t)) allow one
to draw conclusions on the asymptotic behavior of ϕ(·) (comparison theorems,
Lyapunov functions). Or, for example, by a simpler reduced initial value prob-
lem ẏ = g(t, y), y(τ )= η, where the asymptotic behavior of y-solutions deter-
mines the asymptotic behavior of x-solutions? In more precise terms:

• Do there exist transformations S(t, ·) from the y-domain into the x-domain
and R(t, ·) from the x-domain into the y-domain such that the difference of
the solutions x(·)= ϕ(· ; τ, ξ) and y(·)= ψ(· ; τ, η) with η := R(τ, ξ) satis-
fies

lim
t→∞

∣∣ϕ(t; τ, ξ)− S(t,ψ(t; τ,R(τ, ξ)))∣∣= 0, (1.3)

so that η = R(τ, ξ) is the initial value in the y-space that synchronizes the
two solutions x(·) and y(·) asymptotically?

(4) Under what circumstances does a “good” approximation f̃ (t, x) of f (t, x) im-
ply that the corresponding solution ϕ̃(t; τ, ξ) is a “good” approximation of the
solution ϕ(t; τ, ξ)?

(5) When can solutions of (1.1) be computed analytically? What are sufficient con-
ditions for having robustness in numerical solvers? When is it a priori known
that a given IVP is a “delicate” one for numerical solvers?

All these questions can be stated for the past, that is, for backward time on (t−, τ ]
or (−∞, τ ]. This can be done by reversing the time via the substitution s := −t and
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ψ(s) := ϕ(t; τ, ξ). For a (1.1)-solution ϕ(· ; τ, ξ), the chain rule leads to

dψ(s)

ds
= dϕ(t; τ, ξ)

dt
(−1)=−f (t, ϕ(t; τ, ξ))=−f (−s,ψ(s))

and ψ(−τ)= ξ , so that ψ(·) is the solution of the IVP

dy

ds
= f (−s, y), y

(
τ ∗
)= ξ, (1.4)

with τ ∗ := −τ , now in “forward time” s.
We illustrate some phenomena and methods for initial value problems of the

form (1.1) in low space dimension n. The examples are chosen such that solutions
can be computed explicitly. In general, necessary conditions are exploited to derive
candidate solutions. Such candidate solutions have to be verified in the end.

Remark 1.1 (Separation of variables for ẋ = a(t)b(x)) We consider scalar initial
value problems with continuous f : D→ R for D = R× R. If f (t, x) in (1.1) is
independent of x and given by a continuous function t 	→ a(t), then the function
ϕ(t; τ, ξ)= ξ + ∫ t

τ
a(s)ds is a unique solution of the initial value problem (1.1).

Now, let the right-hand side f = f (t, x) in (1.1) be the product of a continuous
function t 	→ a(t) and a continuous function x 	→ b(x), and let ϕ(·) be a solution of

ẋ = f (t, x)= a(t)b(x), x(τ )= ξ, (1.5a)

on an open interval I containing τ . Then we have

ẋ(t)

b(ϕ(t))
= a(t) (1.5b)

as long as the division by b(ϕ(t)) is allowed. For b(ξ) 
= 0, the function b(ϕ(·))
does not vanish on an open interval J ⊂ I containing τ . In case of b(ξ) = 0, we
have the t-independent solution x∗(t) := ξ of (1.5a). Such a t-independent solution
is called an equilibrium, a stationary, or a steady-state solution. For initial value
problems (1.5a) with unique solutions, the equation b(ξ) = 0 entails ϕ(t) = ξ for
all t ∈R.

For initial values ξ with b(ξ) 
= 0, (1.5b) implies

∫ t

τ

ϕ̇(s)

b(ϕ(s))
ds =

∫ ϕ(t)

ξ

dx

b(x)

whenever the integration and the subsequent substitution are admissible. With anti-
derivatives A(t) of a(·) and B(x) of 1

b(·) and with

M(t, x) := B(x)−A(t)=
∫ x ds

b(s)
−
∫ t

a(s) ds, (1.5c)
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we arrive at the implicit representation

M(t, x)−M(τ, ξ)= B(x)−B(ξ)− [A(t)−A(τ)]= 0

of the solution x = ϕ(t). Because of d
dt
M(t, ϕ(t)) = 0, the expression M(t, x) is

equal to the constant M(τ,ϕ(τ)) =M(τ, ξ) along the solution x = ϕ(t); later on,
M will be called a first integral or a conservation law. Finally, if B is invertible in
a neighborhood of ξ with inverse function B−1, we are led to the explicit necessary
condition

x = ϕ(t)= B−1(B(ξ)+A(t)−A(t)) (1.5d)

wherever the preceding steps have been admissible. In a final step, we have to prove
the sufficiency, that is, we have to verify that (1.5d) defines indeed a solution of
(1.5a) on a suitable t-interval. The presented method for solving (1.5a) is called
separation of variables. Since it relies on the computation of antiderivatives and
inverse functions, it does not necessarily lead to explicit formulae for the solutions
of (1.5a).

1.1.1.1 Variation of Constants

Remark 1.2 (Variation of constants for scalar ẋ = a(t)x + u(t)) We first consider
scalar initial value problems of the form

ẋ = f (t, x)= a(t)x + u(t), x(τ )= ξ, (1.6a)

with continuous a : R→ R and u : R→ R, so that the right-hand side f : R ×
R→ R is continuous in (t, x) and affine in x. For u(·) ≡ 0, we have the uniquely
determined solution

x(t)=Φ(t, τ )ξ, Φ(t, τ ) := exp

(∫ t

τ

a(s) ds

)
(1.6b)

on the whole R (by separation of variables). For an inhomogeneity u(·) 
≡ 0, we
use the transformation x 	→ y =Φ(τ, t)x of the state variable x, which leads to the
“trivial IVP”

ẏ(t)= [Φ(t, τ )]−1
u(t)=Φ(τ, t)u(t), y(τ )= ξ,

with the solution

y(t)= ξ +
∫ t

τ

Φ(τ, s)u(s) ds.

Hence, we arrive at the explicit representation

ϕ(t; τ, ξ)=Φ(t, τ )ξ +
∫ t

τ

Φ(t, s)u(s) ds, t ∈R, (1.7)
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of the uniquely determined solution of (1.6a). Here, the claimed uniqueness is eas-
ily shown (see also Remark 1.12(c)). For a constant a(t) ≡ α, we have Φ(t, τ ) =
eα(t−τ).

This method of solving affine initial value problems is called variation of con-
stants because of x(t)=Φ(t, τ )ξ in (1.6b) is replaced by x(t)=Φ(t, τ )y(t) with a
time-varying y.

By a recursive application of Remark 1.2 we deduce the solution of n-
dimensional affine systems

ẋ = f (t, x)=A(t)x + u(t), x(τ )= ξ ∈R
n, (1.8)

with a continuous upper triangular (n× n)-matrix A(·) and a continuous n-vector
u(·). With the solution xn(t) of the last equation, we solve for xn−1(t), and so on.
The solution x(t) of (1.8) is then still given by an expression as in (1.7), where
Φ(t, τ ) now stands for a certain (n× n)-matrix that is continuously differentiable
in t .

In case of an n-dimensional system

ẋ =Ax + b(t), x(τ )= ξ, (1.9a)

with a constant (n× n)-matrix A and a continuous n-vector b(·), we first compute
the upper triangular Schur normal formR =Q∗AQ ∈C

n×n with unitaryQ ∈C
n×n,

for example, (1.15) for n = 2. The subsequent coordinate transformation x(t) =
Qy(t) along solutions of (1.9a) leads to the affine differential equation

ẏ(t)=Ry(t)+ u(t), y(τ )= η :=Q∗ξ, u(t) :=Q∗b(t) (1.9b)

for the vector-valued function y (y(t) ∈ C
n, t ∈ R). The complex-valued solution

y(t) of (1.9b), still of the form (1.7), then defines the real-valued solution x(t) of
(1.9a) via x(t)=Qy(t). With the matrix exponential

exp(Rt) :=
∞∑

j=0

1

j !R
j tj ∈R

n×n, t ∈R, (1.9c)

satisfying Q exp(Rt)Q∗ = exp(QRQ∗t)= exp(At), we have

x(t)=Qy(t)= exp
(
A(t − τ))ξ +

∫ t

τ

exp
(
A(t − s))b(s) ds. (1.9d)

We observe that the transformation x(t) = Qy(t) has led to a cascade of one-
dimensional affine differential equations. In the special case of a diagonal matrix R,
the transformation offers a reduction from an n-dimensional linear system to n one-
dimensional linear systems that are completely decoupled. We summarize these re-
sults in the following proposition.
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Proposition 1.3 (Fundamental matrix/Variation of constants)

(a) The n-dimensional linear initial value problem

ẋ =Ax, x(τ)= ξ, (1.10)

with A ∈ R
n×n possesses a unique solution x(t) = ϕ(t; τ, ξ) = Φ(t − τ)ξ ,

which is linear in ξ . The so-called “fundamental matrix”

Φ(t)≡ exp(At) :=
∞∑

j=0

1

j !A
j tj ∈R

n×n, t ∈R, (1.11a)

satisfies

Φ̇(t)=AΦ(t), Φ(0)= In×n, and det
(
Φ(t)

)= etrace(A)t 
= 0. (1.11b)

(b) If all eigenvalues λj of A satisfy the estimate

Re(λj ) < ρ for some ρ ∈R, (1.12a)

then there exists a constantM ≥ 1 such that

∣∣ϕ(t; ξ)∣∣≤M|ξ |eρt for t ≥ 0. (1.12b)

In case A is diagonalizable (over C), the estimate Re(λj ) ≤ ρ is sufficient for
(1.12b).

(c) The affine initial value problem

ẋ =Ax + b(t), x(τ )= ξ, (1.13a)

with continuous inhomogeneity b :R→R
n has a unique solution, given by the

variation-of-constants formula

x(t)= ϕ(t; τ, ξ)= exp
(
A(t − τ))ξ +

∫ t

0
exp
(
A(t − s))b(s) ds (1.13b)

as the sum of a particular solution of the inhomogeneous system (1.13a) and the
general solution of the associated homogeneous system (1.10).

The formula for det(Φ(t)) in (1.11b) proves Φ(t) to be regular for all t ∈R and
describes the volume transport. At the initial time t = 0, the expression det(Φ(0))
gives the volume det(Q)= 1 of the unit cube Q= [0,1]n, at time t > 0 it gives the
volume of the set ϕ(t;0,Q) := {Φ(t)ξ : ξ ∈Q}, that is, the volume of the evolution
of Q under the solution mapping ϕ(t;0, ·) : Q→ R

n. See Liouville’s formula in
Sect. 1.1.2.3.



1 Geometric Theory of ODEs 9

Example 1.4 (Time-varying matrices and growth rates) Part (b) of the above propo-
sition does not apply to general time-varying matricesA(t) as the following example
shows:

The eigenvalues λj (t) of the matrix A(t)=Ω(t)A0Ω
−1(t), defined via

A0 =
(−1 −4

0 −2

)
, Ω(t)= eJ t =

(
cosωt − sinωt
sinωt cosωt

)
for J =

(
0 −ω
ω 0

)
,

are given by λ1(t)=−1 and λ2(t)=−2 (ω 
= 0). Nevertheless, there exist ωs and
ξ s such that the IVP

ẋ =A(t)x, x(0)= ξ, (1.14)

allows unbounded solutions on [0,∞). This can be easily seen with the help of
the transformation x = Ω(t)y along solutions x(t) of (1.14) since it leads to ẏ =
[A0 − J ]y.

Example 1.5 (Resonance) Given a two-dimensional linear system ẋ =Ax with real
(2× 2)-matrix A and initial condition x(0)= ξ , we first establish its Schur normal
form: We choose a unitary transformation

x ∈R
2 	→ y := S∗x ∈C

2 with S = (u1, u2) ∈C
2×2, S∗S = I = SS∗,

leading to the equivalent initial value problem

ẏ = S∗ASy =
(
λ1 μ

0 λ2

)
y =:Ry, y(0)= η := S∗ξ (1.15)

with λj = u∗jAuj , j = 1,2, and μ = u∗1Au2. This system is in cascade form, so
variation of constants leads to

y = Ψ (t)η=
(
eλ1t μm(t)

0 eλ2t

)
η, m(t)=

{
eλ1t t, λ1 = λ2,

[eλ2t − eλ1t ]/[λ2 − λ1], λ1 
= λ2.

Hence, we have Ψ (t)=∑∞
j=0

1
j !R

j tj = exp(Rt) and

x = ϕ(t;0, ξ)= SΨ (t)S∗ξ =
∞∑

j=0

1

j !
[
SRS∗

]j
tj ξ = exp(At)ξ =:Φ(t)ξ (1.16)

for the solution of the above IVP in R
2. The exceptional case where the eigenval-

ues satisfy λ1 = λ2 =: λ and where Ψ (t) is given by eλt
( 1 t

0 1

)
is called a case of

resonance. Here, χ(t) := e−λt‖ϕ(t, ξ)‖ is not bounded on [0,∞).
Remark 1.6 (Saddle, node, focus, center) Given a two-dimensional linear system
ẋ = Ax with real (2× 2)-matrix A, we choose a real similarity transformation x ∈
R

2 	→ y := T −1x ∈R
2 to arrive at a real system

ẏ =Ry (1.17)



10 D. Flockerzi

with R being equal to one of the following matrices Rj :

R1 =
(
λ1 0
0 λ2

)
, R2 =

(
λ μ

0 λ

)
, or R3 =

(
α −β
β α

)
(1.18)

for μ 
= 0 and β 
= 0. The solutions of ẏ = Ry as functions of time can easily be
determined (see Example 1.5).

(i) In case of R = R1 and negative λ1, λ2, the origin is called an (exponen-
tially) stable node of (1.17) and hence of ẋ = Ax. For λ2 < λ1 < 0, the axis
Y1 := {(y1,0) ∈ R

2} is invariant in the sense that, for an initial value η ∈ Y1,
the corresponding solution remains in Y1 for all t . The axis Y1 represents the
slow stable eigenspace corresponding to the exponential decay eλ1t , and the
invariant axis Y2 := {(0, y2) ∈ R

2} represents the fast stable or strongly stable
eigenspace corresponding to the (faster) exponential decay eλ2t . All initial val-
ues outside of Y2 lead to solutions that decay exponentially toward the origin
along the slow stable eigenspace with the rate eλ1t .

In case of R = R1 and λ1 > 0 > λ2, the two invariant axes Y1 and Y2 rep-
resent the unstable and stable eigenspaces with associated exponential decay
rate eλ1t as t →−∞ and eλ2t as t →+∞, respectively. The origin is then
called a saddle point of (1.17) and hence of ẋ =Ax.

By separation of variables (for λ1 
= 0 
= λ2), we obtain the “invariant
curves” in the y-space

y2 = Γ1(y1)= η2

(
y1

η1

)λ2/λ1

or y1 = Γ2(y2)= η1

(
y2

η2

)λ1/λ2

(1.19)

whenever the right-hand sides are well defined. For example, any (1.17)-
solution y(t) = ϕ(t;0, η) with η2 = Γ1(η1) satisfies y2(t) = Γ1(y1(t)) on its
interval of existence. Of course, the shape and the smoothness of the function
y2 = Γ1(y1) depends heavily on the quotient λ2/λ1. For example, in the case
of λ2 < λ1 < 0, Γ1 is in class Cm if and only if λ2 ≤mλ1.

(ii) In case of R = R2 and negative λ, the origin is still called an (exponentially)
stable node of (1.17) and hence of ẋ = Ax. Here, there is just one invariant
linear subspace, namely Y1. In case of R = R3, the origin is called an (expo-
nentially) stable focus for negative α and a center for α = 0.

(iii) The origin y = 0 of (1.17) or, equivalently, the origin x = 0 of ẋ = Ax is
called hyperbolic if each eigenvalue has a nonzero real part. Otherwise it is
called nonhyperbolic or critical.

In Examples 1.27, 2.5, and 2.10 and in Sect. 1.2.5, we present alternative ways to
discuss such linear systems. These alternatives prepare the stage for the discussion
of nonlinear systems.
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1.1.1.2 Uniqueness and Comparison Theorems

We address questions on the maximal interval of existence and on the uniqueness of
solutions.

Exercise 1.7 (Maximal interval of existence for ẋ = axγ ) Consider initial value
problems of the form ẋ = axγ , x(τ)= ξ , for constant a 
= 0 and various positive γ
and show:

(a) The IVP ẋ = ax2, x(τ ) = ξ ≥ 0, on D = R× R with positive a possesses for
each ξ a uniquely determined solution on an interval (−∞, t+). The maximal
t+ = t+(ξ) is finite, and the solution becomes unbounded as t→ t+.

(b) The IVP ẋ =− 1
2x , x(1)= ξ > 0, on D =R× (0,∞) possesses for each ξ > 0

a uniquely determined solution on an interval (−∞, t+). The maximal t+ =
t+(ξ) is finite, and the solution approaches the boundary of D.

(c) The IVP ẋ = ax1/3, x(τ )= ξ ≥ 0, on D = R×R with negative a provides an
example where solutions of initial value problems are not uniquely determined.
Compare Example 1.8.

Example 1.8 (Fluid level in a tank (Torricelli’s law)) We consider the autonomous
scalar IVP (1.1) on R×R with f (x)= 0 for x < 0 and f (x)=−√x for x ≥ 0. We
take the initial value x(0)= ξ to be nonnegative. One might interpret the state x as
the fluid level in a tank. Then, the chosen right-hand side f reflects Torricelli’s law.

We always have the trivial solution ϕ0(t)≡ 0 in case of ξ = 0. If ϕ(t) is a solution
with a positive initial value ξ , then we arrive, by separation of variables, at

ϕ(t)=
(√
ξ − t

2

)2

for 0≤ t < 2
√
ξ

satisfying ϕ(t)→ 0 as t→ 2
√
ξ . It is easily verified that the function

ϕ∗(t)=
{
ϕ(t) on [0,2√ξ),
0 on [2√ξ,∞)

is a continuously differentiable solution of (1.1). The tank runs empty in finite time
T = 2

√
ξ and remains empty afterwards. In backward time, we do not have the

uniqueness: If the tank is empty at some time T∗ > 0, that is, x(T∗)= 0, we cannot
derive the initial fluid level ξ . We note that, given two solutions x1(t) and x2(t) of
the present IVP, the function δ(t) := |x2(t)−x1(t)|2 ≥ 0 satisfies δ̇(t)≤ 0, implying
the uniqueness in forward time.

Example 1.8 shows that the continuity of f (t, x) is not sufficient for the unique
solvability of the initial value problem (1.1). We introduce a slightly stronger hy-
pothesis by asking f to satisfy local Lipschitz conditions with respect to x, that is,
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by asking f to be continuous in (t, x) and to be Lipschitz-continuous in x. We
formulate this more restrictive hypothesis as

Hypothesis 1.9 (HLip) The function f :D→R
n, defined on a regionD ⊂R×R

n,
is Lipschitz-continuous, that is, for any (τ, ξ) ∈D, there exist a box

Qα,β =
{
(t, x) : |t − τ | ≤ α, |x − ξ | ≤ β}⊂D

and a (Lipschitz) constant L≥ 0 such that

∣∣f (t, x2)− f (t, x1)
∣∣≤ L|x2 − x1| onQα,β. (1.20)

Remark 1.10 (Lipschitz continuity) The Lipschitz constant L provides a (locally
uniform) bound for the difference quotient |f (t, x2)− f (t, x1)|/|x2 − x1|, x1 
= x2,
of f . In case f is continuous in (t, x) and continuously differentiable with respect
to x in a neighborhood U of ξ , it satisfies such a local Lipschitz condition because
of

∣∣f (t, x2)− f (t, x1)
∣∣≤
∫ 1

0

∣∣fx
(
t, x1 + s(x2 − x1)

)∣∣ds|x2 − x1| ≤ L|x2 − x1|,
(1.21)

where L stands for an upper bound of |fx(t, x1 + s(x2 − x1))| for s ∈ [0,1] and
(t, x1), (t, x2) ∈Qα,β ⊂U .

Theorem 1.11 (Scalar comparison theorem/Differential inequalities) We suppose
that f is a scalar continuous function on a neighborhood of

Q= {(t, x) ∈R
2 : τ ≤ t ≤ τ + α, |x − ξ | ≤ β}

with the Lipschitz property

∣∣f (t, x2)− f (t, x1)
∣∣≤ L|x2 − x1| onQ. (1.22a)

If continuously differentiable functions ϕ(t) and ψ(t) satisfy on [τ, τ + α]
(
t, ϕ(t)

) ∈Q, (
t,ψ(t)

) ∈Q,
ϕ̇(t)≥ f (t, ϕ(t)), ψ̇(t)≤ f (t,ψ(t)), ϕ(τ )≥ψ(τ),

(1.22b)

then ϕ(t)≥ψ(t) on [τ, τ + α].
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Proof The assumption thatΔ(t)= ϕ(t)−ψ(t) satisfies (i) Δ(s)= 0 for s ∈ [τ, τ +
α] and (ii) Δ(t) < 0 on an interval of the form (s, s + ε), ε > 0, leads by (1.22b)
to a contradiction: We have Δ̇(t)≥−L|Δ(t)| = LΔ(t) on [s, s+ ε] with Δ(s)= 0,
implying d

dt
[e−LtΔ(t)] ≥ 0 and Δ(t)≥ 0 on (s, s + ε). �

This proof reveals the key feature of the Lipschitz continuity of f : Locally, the
derivative Δ̇(t) = f (t,ψ(t) +Δ(t)) − f (t,ψ(t)) is bounded below by the linear
expression LΔ(t).

Remark 1.12 (Comparison theorem and uniqueness)

(A) The special case ψ̇(t)= f (t,ψ(t)), ϕ(τ)= ψ(τ), in (1.22b) tells us that ϕ(t)
is above ψ(t) for t ≥ τ . Hence, ϕ(t) is called a supersolution. Similarly, the
special case ϕ̇(t)= f (t, ϕ(t)), ϕ(τ)= ψ(τ), in (1.22b) leads to a subsolution
ψ(t).

(B) In case ψ̇(t)= f (t,ψ(t)), ϕ̇(t)= f (t, ϕ(t)), and ϕ(τ)=ψ(τ), we deduce the
uniqueness: ϕ(t)≡ ψ(t) on [τ, τ + α]. So we have the following corollary in
the scalar case:

• Given an IVP ẋ = f (t, x) , x(τ)= ξ , on a neighborhood of the setQαβ with
continuous f satisfying (1.21), any two solutions ϕ1(t; τ, ξ) and ϕ2(t; τ, ξ)
with (t, ϕ1(t)) and (t, ϕ1(t)) in Q on [τ − α, τ + α] are identical on [τ −
α, τ + α].

(C) We now derive the uniqueness result for the n-dimensional system (1.1) in the
setup of (HLip). Let Δ(t) = ϕ2(t; τ, ξ) − ϕ1(t; τ, ξ) be the difference of two
solutions on [τ − α, τ + α] with respect to Qα,β . We have

Δ̇(t)= f (t, ϕ2(t; τ, ξ)
)− f (t, ϕ1(t; τ, ξ)

)
, Δ(τ)= 0.

Together with the Lipschitz condition (1.20), an integration with respect to t ,
t ≥ τ , leads to a linear differential inequality for V (t) := ∫ t

τ
|Δ(s)|ds ≥ 0,

namely

V̇ (t)= ∣∣Δ(t)∣∣≤ L
∫ t

τ

∣
∣Δ(s)

∣
∣ds =: LV (t), V (τ)= 0. (1.23a)

This implies d
dt
[e−LtV (t)] ≤ 0 with e−LτV (τ) = 0. To the right of τ , we de-

duce e−LtV (t)≤ 0, and hence V (t)≡ 0. In an analogous manner we argue for
t ≤ τ .

In the preceding argument, the implicit estimate (1.23a) for |Δ(t)| has led to an
explicit estimate for V (t). The following result, often called the Gronwall lemma,
deals with a more general case. We would like to point out that, besides the variation-
of-constants formula, the Gronwall lemma is one of the crucial tools in the theory
of differential equations.
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Lemma 1.13 (Gronwall lemma) Let u,μ,ρ be nonnegative continuous functions
on the interval I = [τ, T ] with values in R. Then the implicit estimate

u(t)≤ μ(t)+ v(t), v(t) :=
∫ t

τ

ρ(s)u(s) ds on I (1.24)

entails the explicit estimate

u(t)≤ μ(t)+
∫ t

τ

μ(s)ρ(s) exp

[∫ t

s

ρ(σ ) dσ

]
ds on I. (1.25)

In case μ(t) satisfies μ(τ)≤ μ(s)≤ μ(t) for all τ ≤ s ≤ t ≤ T , (1.25) implies

u(t)≤ μ(t) exp

[∫ t

τ

ρ(σ ) dσ

]
on I. (1.26)

Proof Estimate (1.24) yields v̇(t) = ρu(t) ≤ ρ(t)μ(t) + ρv(t). A multiplication
with the positive

m(t, τ )= exp

[
−
∫ t

τ

ρ(σ ) dσ

]

leads to (mv)· ≤mρμ, then, by integrating over [τ, t], to

u(t)≤ μ(t)+ 1

m(t, τ )

∫ t

τ

m(s, τ )ρ(s)μ(s) ds = μ(t)+
∫ t

τ

μ(s)ρ(s)m(s, t) ds,

and hence to (1.25). In case of a monotone μ, we use the estimate μ(s) ≤ μ(t) in
the integrand of (1.25) to arrive at (1.26). �

1.1.1.3 Scalar Bifurcations

Example 1.14 introduces an argument that can be applied to any autonomous scalar
initial value problem ẋ = f (x), x(τ)= ξ , with a continuously differentiable right-
hand side f :R→R when “uniqueness” and “existence on R” are guaranteed:

• Let x− and x+ be zeros of f , and let f be positive on (x−, x+). For ξ ∈ (x−, x+),
the solution ϕ(t; τ, ξ) is strictly increasing in t with limt→±∞ ϕ(t; τ, ξ)= x±.

Example 1.14 (Logistic growth model—Outlook on Lyapunov functions) We con-
sider the scalar model of logistic growth

ẋ = f (x) := ax
(

1− x

K

)
, x(0)= ξ ≥ 0, (1.27a)

with a quadratic polynomial f :R→R and positive parameters a andK . Stationary
solutions are given by ϕ0(t)= ϕ(t;0,0)≡ 0 and ϕK(t)= ϕ(t;0,K)≡K .
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In the discussion to follow, we use the fact that IVPs of the form (1.27a) have
unique solutions. Initial values ξ ∈ (0,K) will lead to strictly increasing solutions
in (0,K), whereas initial values ξ > K will entail strictly decreasing solutions in
(K,∞). In case such solutions exist for all t ≥ 0, they will be convergent as t→∞.
By an indirect argument, the limiting value of such solutions ϕ(t;0, ξ) with ξ > 0
is necessarily given by K : The stationary solution K acts as a supersolution for
solutions ϕ(t; τ, ξ) with ξ ∈ (0,K) and as a subsolution for ϕ(t; τ, ξ) with ξ > K .

On the other hand, solutions ϕ(t;0, ξ) with ξ > 0 and ξ 
=K can be easily found
by separation of variables. With the help of partial fractions we arrive, formally, at

eat = ∣∣x(K − ξ)∣∣/∣∣ξ(K − x)∣∣.
Because of the above a priori bounds, we can drop the absolute values to obtain

x(t)= Kξ

Ke−at + ξ(1− e−at ) , t ≥ 0. (1.27b)

It is easily verified that x(t) is indeed the solution ϕ(t;0, ξ) of the IVP (1.27a) on
the time interval [0,∞) with the asymptotic value K = limt→∞ ϕ(t;0, ξ).

It is worth noting that the two assumptions on “uniqueness” and on “existence
on R

+” have already led to the asymptotic value K (without the explicit formula
(1.27b)).

For an alternative argument, we may consider the scalar nonnegative function

V (x)=−
∫ x

K

(
1− s

K

)
ds = 1

2K
(x −K)2, x ∈R,

vanishing only at x =K . Along a solution x(t)= ϕ(t;0, ξ) of (1.27a) with ξ > 0,
existing on [0,∞), we have

d

dt
V
(
x(t)

)= Vx
(
x(t)

)
f
(
x(t)

)=−ax
(

1− x(t)
K

)2

≤ 0.

Therefore, V (x(t)) is convergent as t →∞, necessarily toward 0. This implies
the convergence of x(t) toward K . Test functions of this type will later be called
Lyapunov functions.

Remark 1.15 (Bifurcation diagrams) In analogy to the logistic growth model
(1.27a), we may discuss the following parameter-dependent initial value problems:

ẋ = f1(x,α)= α − x2, x(0)= ξ, (1.28a)

ẋ = f2(x,α)= x(α − x), x(0)= ξ, (1.28b)

ẋ = f3(x,α)= x
(
α − x2), x(0)= ξ, (1.28c)

for (x,α) ∈R
2 and all t ∈R. We note that α can be considered as the state variable

by adjoining the trivial equation α̇ = 0. Each of the three IVPs in (1.28a)–(1.28c)
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Fig. 1 Bifurcation diagrams in the (α, x)-plane: To the left, saddle-node bifurcation for (1.28a)
showing an attractive branch of equilibria in the first and a repulsive branch in the fourth quadrant.
To the right: Pitchfork bifurcation for (1.28c) showing two attractive branches for α > 0 separated
by the branch (α,0) of trivial equilibria x = 0. Theses are attractive for α ≤ 0 and repulsive for
α > 0

reveals for α < 0, α = 0, and α > 0 a drastically different behavior for its solutions
and their asymptotic limiting sets. A sketch in the (α, x)-plane of these limiting
sets as t→±∞, that is, of the zero-set of f (x,α), is called a bifurcation diagram
offering a saddle-node bifurcation in (1.28a), a transcritical bifurcation in (1.28b),
and a pitchfork bifurcation in (1.28c) (see Fig. 1).

In each of the three cases, the trivial steady state x ≡ 0 is critical for the param-
eter value α0 = 0 in the sense that the derivative (fj )x vanishes at (x,α) = (0,0).
Hence, the sufficient conditions of the implicit function theorem for the unique solv-
ability of f (x,α) = 0, in terms of x = x(α) near (x,α) = (0,0), are not satisfied.
In general, Descartes’s rule and Newton’s diagram are helpful tools to discuss the
zeros of polynomial right-hand sides f (x,α).

A trivial extension of (1.28c) into a two-dimensional state space is provided by

ṙ = r(α − r2), θ̇ = ω > 0 (1.29a)

in polar coordinates (r, θ) with x = (r cos(θ), r sin(θ))T, r ≥ 0, θ ∈ [0,2π). The
corresponding x-system reads

ẋ = F(x,α) :=
(
α − r2 −ω
ω α − r2

)
x. (1.29b)

If α passes from negative to positive values, the trivial solution r = 0 changes
from being attractive to being repulsive. For α > 0, all nontrivial solutions approach
the circle C(α) := {(r, θ) : r =√α} in the x-space, called “limit cycle”; see Fig. 2.
One solution generating this limit cycle is given by

x∗(t)=√α(cos(ωt + θ∗), sin(ωt + θ∗)
)T

for a fixed θ∗ ∈ [0,2π). A solution x(t)= r(t)(cos(θ(t)), sin(θ(t)))T is asymptoti-
cally in phase with x∗(t) if and only if θ(t) = ωt + θ0 = ωt + θ∗, that is, θ0 = θ∗.
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Fig. 2 Phase portraits for
(1.29b) in the (x1, x2)-plane:
To the left, inward spiraling
solutions tending to the origin
(α < 0). To the right, all
nontrivial solutions tend
toward the limit cycle given
by x2

1 + x2
2 = α > 0

The half-line {(r, θ∗) : r > 0} is the so-called asymptotic phase of the special solu-
tion x∗(t) on C(α). We note that the Jacobian Fx(0, α) at the trivial solution x ≡ 0
possesses the eigenvalues λ±(α)= α ± iω so that the limit cycle C(α) arises when
the real parts of λ±(α) become positive; see Sect. 1.2.4.

A particularly interesting bifurcation example is provided by the one-parameter
differential equation

ẋ = h(x,α) := α− x2(3+ x) (1.30)

for (α, x) ∈ R
2. Here, two saddle-node bifurcations occur, one for (α, x) = (0,0)

and one for (α, x)= (4,−2). Depending on the value of α. the set of equilibria, that
is, the zero-set of h, consists of 1, 2, or 3 steady states x (see Fig. 3).

Equation (1.30) provides a prototype of a scalar differential equation with a
parameter-dependent cubic polynomial on its right-hand side. It presents a sim-
ple model for multistationarity, bistability, hard excitation, and hysteresis; see Re-
mark 3.17 and Remark 4.1. We refer to two famous applications: the continuous
stirred tank reactor from chemical engineering (see Sect. 1.4.1 and [1, 24]) and the
spruce budworm model from population dynamics (see [10, 68]).

1.1.1.4 Transformations in Time and Space

Given a certain problem formulation for a differential equation, one often seeks co-
ordinate transformations (t, x)→ (s, y) for a problem-oriented simplification. One
might recall the transformation (1.6b) in the derivation of the variation-of-constants
formula. We formally introduce time- and space-transformations, where we let
t 	→ ϕ(t) denote a solution of the n-dimensional differential equation ẋ = f (t, x)
with initial value ξ at time τ .

• The time transformation t = λ(s) with a strictly increasing C1-function λ and the
definition ψ(s)≡ ϕ(t) lead to

ψ ′(s)= λ′(s)f (λ(s),ψ(s)) with ψ
(
λ−1(τ )

)= ξ.
• The state transformation x = Φ(y) with a diffeomorphism Φ and the definition
ψ(t)=Φ−1(ϕ(t)) lead to

ψ̇ = [DΦ(ψ)]−1
f
(
t,Φ(ψ)

)
with ψ(τ)=Φ−1(ξ).
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Fig. 3 Bifurcation diagram for (1.30) in the (α, x)-plane: Steady-state branches with two saddle-
node bifurcations (S-shaped hysteresis curve). The middle branch (in red), joining the two saddle
nodes, is formed by repulsive, the upper and lower branches (in green) are formed by attractive
steady states. The lines in blue represent solutions starting slightly below and above the saddle
notes (0,0) and (4,−2), respectively

A standard example is given by the Bernoulli equation

ẋ = c(t)x + d(t)xp, p 
= 0, p 
= 1, (1.31)

where the transformation x(t) = y(t)q along nontrivial solutions x(t) is turning
(1.31) into an affine equation of the form (1.6a) (q = 1/(1− p)).

Polar coordinates serve for a second example (see (1.29a), (1.29b)): The trans-
formation x1 = r cos θ, x2 = r sin θ with y = (r, θ) transforms

ẋ =
(
λ −1
1 λ

)
x − |x|2x

into ṙ = λr(1− r2), θ̇ = 1. A third example is provided by the transformation to
Schur normal form in the discussion of (1.9a)–(1.9d).

Of course, simultaneous time-state-transformations (t, x)=Φ(s, y) can be consid-
ered too. A simple example is provided by the class of homogeneous equations of
the form

ẋ = f (t, x), f (at, ax)= f (t, x) for all a 
= 0. (1.32)

Here, the transformation x(t) = ty(t) might be used to generate a separable dif-
ferential equation for y(t). See also Remark 2.2 and Sect. 1.2.3.2. We note that,
when separating variables, the mapping (t, x)→ (t,M(t, x)) =: (t, y) from (1.5c)
trivializes the differential equation for x since the resulting differential equation for
y reads ẏ = 0. In some applications, such a function M is known a priori. It often
plays the role of a conservation law for energy or mass. Hamiltonian systems always
possess such a conserved quantity (see Example 2.3).
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Remark 1.16 (Transformations toward an existence theorem) Let Ω ⊂ R
p be

a nonempty open set, and let G be a region in R × R
n. We assume that

f :G×Ω→R
n and Dxf are continuous on G×Ω and consider the initial value

problem

ẋ(t)= f (t, x(t), λ), x(t0)= ξ0,
for (t0, ξ0) ∈G. Given a solution x(t)≡ ϕ(t; t0, ξ0, λ) on [t0 − α, t0 + α], we set

s = (t − t0)/α and y(s)= ϕ(αs + t0, t0, ξ0, λ)− ξ0,
leading to the IVP

y′(s)= αf (αs + t0, y(s)+ ξ0, λ
)
, y(0)= 0,

for s belonging to the fixed interval [−1,1] (and vice versa). Let X and Y denote
the function spaces

X = {ψ ∈ C1([−1,1],Rn) :ψ(0)= 0
}

and Y = C([−1,1],Rn)

with C1- and C0-norms, respectively, and define

F(α, τ, ξ, λ,ψ)(s)=ψ ′(s)− αf (αs + τ,ψ(s)+ ξ,λ)

on a suitable small neighborhood U of (0, t0, ξ0, λ0,0). the function F will
be continuous there and, in addition, continuously differentiable in ψ with
DψF(0, t0, ξ0,0, λ0) = d

ds
being a bounded operator from X to Y . Its inverse

y ∈ Y → ∫ ·
0 y(ζ ) dζ ∈ X will be a bounded operator too. Hence, locally, by the

uniform contraction principle or the implicit function theorem, there exists a unique
solution of

F(α, τ, ξ, λ,ψ)= 0 with F(0, t0, ξ0,0, λ0)= 0

near the trivial solution (0, t0, ξ0,0, λ0). Hence, there exists a solution ϕ∗(t;α, τ,
ξ, λ) of the given IVP, and it is uniquely determined. Moreover, this solution will
be as smooth in (α, τ, ξ, λ) as the right-hand side f . We note that the contraction
principle provides an algorithm for the successive approximation of the solution
ϕ∗(· ;α, τ, ξ, λ), also called the Picard–Lindelöf method.

1.1.2 The Main Theorem and First Consequences

1.1.2.1 Existence and Uniqueness Theorems

We first provide an existence proof for initial value problems where the right-hand
side satisfies the global Lipschitz condition. Thereby we demonstrate, in a rather
simple setup, the use of Banach spaces C([0, T ]) with (exponentially) weighted
norms. Later on, such weighted Banach spaces turn out to be crucial for proving the
existence of invariant manifolds by the contraction principle.
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Theorem 1.17 (Existence theorem for integral equations and ODEs ([40])) Let
a continuous function F : [0, T ] × [0, T ] × R

n→ R
n satisfy the global Lipschitz

condition

∀x, y ∈R
n: ∣∣F(t, s, x)− F(t, s, y)∣∣≤ L|x − y|,

and let ξ : [0, T ]→R
n be continuous. Then the integral equation

x(t)= ξ(t)+
∫ t

0
F
(
t, s, x(s)

)
ds

possesses a unique continuous solution x ∈ C([0, T ]), which can be computed iter-
atively by successive approximations (the Picard–Lindelöf method).

In the special case of a constant ξ(t) ≡ ξ0 and a t-independent F(t, s, x) =:
f (s, x), this refers to the existence and uniqueness of the solution of the initial value
problem

ẋ = f (t, x), x(0)= ξ0,
on a prescribed time interval [0, T ].
Proof With the Banach space B of continuous functions h : [0, T ] → R

n with the
exponentially weighted norm ‖h‖ :=max[0,T ] e−Lt |h(t)|Rn , we consider the opera-
tor A :B→B given by

A(h)(t)= ξ(t)+
∫ t

0
F
(
t, s, h(s)

)
ds

and satisfying the Lipschitz estimate

∥∥A(g)−A(h)∥∥≤ L max
[0,T ]

e−Lt
∫ t

0
eLse−Ls

∣∣g(s)− h(s)∣∣ds

≤ L‖g− h‖max
[0,T ]

e−Lt e
Lt − 1

L
≤ (1− e−LT )‖g− h‖.

Because of 1− e−LT ∈ (0,1), the theorem follows from the contraction principle
(Banach fixed point theorem). We recall that the contraction principle provides an
algorithm for the successive approximation of the fixed point by picking, for exam-
ple, the initial function h0 ≡ 0 ∈B and applying A iteratively. �

The following result is the main theorem on existence and uniqueness for systems
satisfying (HLip). It includes the parameter-dependent case ẋ = f (t, x,α) when α
is taken as an additional state vector by adjoining the equation α̇ = 0.

Theorem 1.18 (Existence and uniqueness under (HLip), cf. [17, 61, 77]) In the
setup of the Hypothesis 1.9 (HLip), for any (τ, ξ) ∈D, there exist a unique maximal
open interval

ID(τ, ξ)=
(
t−, t+

) � τ
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and a unique C1-function ϕ(·; τ, ξ) : ID(τ, ξ)→ R
n such that ϕ(·; τ, ξ) solves the

IVP (1.1) on ID(τ, ξ). Consequently, we have

ϕ(t; τ, ξ)= ϕ(t; s, ϕ(s; τ, ξ)) for all t, s ∈ ID(τ, ξ). (1.33)

As t→ t+—and analogously as t→ t−, we have:

(a) either t+ =∞,
(b) or t+ <∞ and ϕ(·; τ, ξ) is unbounded on (τ, t+),
(c) or t+ <∞ and limt→t+ dist(t, ϕ(t; τ, ξ), ∂D)= 0.

In addition, ϕ(t; τ, ξ) is continuous and Lipschitz-continuous with respect to x. Un-
der the strengthened hypothesis

(HLip) and “f is m-times continuously differentiable with respect to x,” (1.34)

the solution ϕ(· ; τ, ξ) is also m-times continuously differentiable with respect to ξ .

For an illustration of cases (b) and (c), we refer to Exercise 1.7. The crucial
relation (1.33) can be interpreted in the following way: Starting in ξ at time τ and
proceeding to ϕ(t; τ, ξ) are equivalent to going first to ϕ(s; τ, ξ) at time s and then
to ϕ(t; s, ϕ(s; τ, ξ)) at time t .

The following corollary, based on the Gronwall lemma, Lemma 1.13, presents
a first result that ensures solutions to exist for all t ≥ τ (t+ =∞).

Corollary 1.19 (Maximal interval of existence for linearly bounded systems) We
suppose that, in the setup of (HLip) with D = (a, b) × R

n, the right-hand side f
satisfies

∣∣f (t, x)
∣∣≤ ρ(t)|x| +μ(t) on D (1.35)

for nonnegative continuous functions ρ,μ on (a, b). Then the maximal interval of
existence ID(τ, ξ), (τ, ξ) ∈D, of the solution ϕ(t; τ, ξ) equals (a, b).

In the special case of a finite interval (a, b) and of continuous and bounded
functions ρ and μ on (a, b), the solution ϕ(·; τ, ξ) can be continued to [a, b].

1.1.2.2 Variational Equations—Sensitivity Analysis

For right-hand sides f = f (t, x) that are continuous and continuously differentiable
in x, we consider the solution ϕ of the initial value problem (1.1), that is,

ẋ = f (t, x), x(τ )= ξ, (1.36)

on the maximal existence interval I = ID(τ, ξ) with respect to D as a function of
all arguments, that is, of t , τ and the components ξi of ξ , on the set

D = {(t, τ, ξ) : t ∈ ID(τ, ξ), (τ, ξ) ∈D
}
. (1.37)
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We first state the general result and then present the interpretation in terms of sensi-
tivities in the subsequent remarks.

Theorem 1.20 (Variational equations [61]) The set D from (1.37) is open in R
2+n,

and ϕ is continuously differentiable with respect to t, τ , and ξi . Moreover, ∂2

∂t∂τ
ϕ

and ∂2

∂t∂ξ
ϕ are continuous and equal to ∂2

∂τ∂t
ϕ and ∂2

∂ξ∂t
ϕ, respectively.

For fixed τ, ξ, i, the partial derivatives y(t) = ∂
∂ξi
ϕ(t, τ, ξ) and z(t) =

∂
∂τ
ϕ(t, τ, ξ) satisfy the “variational or sensitivity equations”

Δ̇= fx
(
t, ϕ(t, τ, ξ)

)
Δ (1.38)

with initial values Δ(τ)= ei and Δ(τ)=−f (τ, ξ), respectively.
In case f is m-times continuously differentiable with respect to all xi , the solu-

tion is m-times continuously differentiable with respect to all ξi .

In a general setting, the above result is just local in time, the initial states, and the
parameters. We refer to Remark 1.21, in particular to system (1.41), where we also
present the idea for proving Theorem 1.20. We offer a first interpretation:

(A) The above theorem says that, on compact subintervals J ⊂ ID(τ, ξ), close-by
initial values lead to close-by solutions. In more precise terms: For given ε > 0
and J , there exists a ball B around ξ with the following property:

• For all η ∈ B , the solution difference |ϕ(t, τ, η)−ϕ(t, τ, ξ)| is less ε over J .
In addition, the boundary ∂(ϕ(t, τ,B)) of ϕ(t, τ,B) is equal to the image
ϕ(t, τ, ∂B) of the boundary ∂B over J under ϕ(t; τ, ·).

(B) Given a reference solution ϕ(t, τ, ξ0), we define h(t, s) := ϕ(t, τ, ξ0+s(ξ−ξ0))
and consider the solution difference

δ(t)= h(t,1)− h(t,0)=
∫ 1

0

d

ds
h(t, s) ds

=
∫ 1

0
ϕξ
(
t, τ, ξ0 + s(ξ − ξ0)

)
ds(ξ − ξ0).

Here, the integrand Δ(t; τ, ξ, s) := ϕξ (t, τ, ξ0 + s(ξ − ξ0)) satisfies, as a func-
tion of t , the variational equation (1.38) with Δ(τ ; τ, ξ, s) = I . In case the
solutionΔ(t; τ, ξ, s) of this linear initial value problem satisfies an exponential
estimate of the form

∥∥Δ(t; τ, ξ, s)∥∥≤Ke−λ(t−τ), t ≥ τ,

for all s ∈ [0,1] and ξ near ξ0 (K > 0, λ > 0), the solution difference δ(t) is
decaying exponentially to 0 as t→∞.
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Remark 1.21 (Sensitivity with respect to parameters) Suppose that x0(t)= ϕ(t, α0)

is a given reference solution of

ẋ = f (t, x,α), x(τ )= ξ(α), (1.39)

and consider a second solution ϕ(t, α).
On a compact time interval [τ, T ] and for small |α− α0|, the solution difference

δ(t)= ϕ(t, α)− x0(t) has the first Taylor polynomial

A0(t)(α − α0), A0(t) := ϕα(t, α0). (1.40a)

For a computation of the matrix A0(t) without the explicit knowledge of ϕ(t, α),
we differentiate the identities

d

dt
ϕ(t, α)= f (t, ϕ(t, α)), ϕ(τ )= ξ(α),

with respect to α and evaluate at α0. By interchanging the order of differentiation,
we obtain the inhomogeneous IVP

Ȧ0(t)= fx
(
t, ϕ0(t)

)
A0(t)+ fα

(
t, ϕ0(t)

)
, A0(τ )= ξα(α0). (1.40b)

We note that this is exactly the system one arrives at when linearizing the right-hand
side of the error differential equation, that is, of

δ̇ = fx
(
t, x0(t)

)
δ+ fα

(
t, x0(t)

)
(α − α0)+ h.o.t.

In a general setting, the compactness of the underlying time interval [τ, T ] is essen-
tial for having a reliable approximation (1.40a) of δ(t) for sufficiently small |α−α0|
as the example

ẋ =
(

0 −α
α 0

)
x, x(0)= e1 :=

(
1
0

)
, α0 = 0, (1.41)

shows. Here, we have the constant reference solution x0(t)= e1 for α0 = 0 and the
solution x(t, e1) = (cos(αt), sin(αt), α)T. For the second component of the differ-
ence, we have the α-expansion

(
x(t, e1)− x0(t)

)
2 = sin(αt)= tα+R2(t, α)α

2,

where the remainder term R2(t, α) is bounded just on compact t-intervals. So the
linear approximation tα is a good approximation for sin(αt) just on compact inter-
vals [0, T ] for sufficiently small α. Note the trade-off between the size of T and the
size of α!

In applications, one computes the entries of A0(t), often called sensitivity func-
tions, by coupling the systems (1.39) and (1.40b), respectively. One then looks for a
suitable measure for the “size” of these matrices A0(t), for example, for the largest
singular value σmax(A0(t)) or for the largest L1-norm of the A0(t)-elements, to de-
cide about the most and the least sensitive variations in parameters. Of course, the
sensitivity analysis with respect to the initial states follows the same lines.
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1.1.2.3 Volume Transport and Liouville’s Formula

We have seen that, for time-invariant linear systems ẋ =Ax, the exponential growth
rate for the volume transport is connected to the trace of A (see Proposition 1.3).
Based on the variational equations, we now investigate the general nonlinear case.
We consider an n-dimensional C1-system ẋ = f (x) and some box Q ⊂ R

n. We
denote the solution of the initial value problem with initial time τ = 0 by ϕ(t, ξ) and
set ϕ(t,Q)= {ϕ(t, x0) : ξ ∈Q}. By the chain rule we arrive at Liouville’s formula
for the volume Vol(ϕ(t,Q)):

∫

ϕ(t,Q)

dξ =
∫

Q

∣∣detϕξ (t, ξ)
∣∣dξ =

∫

Q

exp

(∫ t

0
divf

(
ϕ(s, ξ)

)
ds

)
dξ. (1.42)

In case of a divergence-free vector field f , that is, div(f )= 0 on the underlying do-
main, the volume stays constant in forward time. Under the assumption div(f ) < 0,
the volume is contracted. Concerning the second equality in (1.42), we note that the
matrix function X(t) := ϕξ (t, ξ) satisfies the variational equations

Ẋ = fx
(
ϕ(t, ξ)

)
X, X(0)= I, (1.43a)

so that δ(t)≡ det(X(t)) is a solution of

δ̇ = trace
(
Df
(
ϕ(t, ξ)

))
δ = div

(
f
(
ϕ(t, ξ)

))
δ, δ(0)= 1. (1.43b)

Hence, we have

δ(t)= exp

(∫ t

0
div
(
f
(
s, ϕ(s, ξ)

))
ds

)
. (1.43c)

So, the chain rule and (1.43a)–(1.43c) lead to Liouville’s formula (1.42) (see [7],
Appendix B).

Outline of a proof for (1.43a)–(1.43c) By intertwining the partial derivatives with
respect to t and the ξj we arrive at

d

dt
ϕξ (t, ξ)= d

dξ
ϕt (t, ξ)= d

dξ

[
f
(
t, ϕ(t, ξ)

)]

= fx
(
t, ϕ(t, ξ)

)
ϕξ (t, ξ), ϕξ (0, ξ)= I.

With the Landau symbol o(|h|p) standing for a “remainder term” R(h) satisfying
|h|−pR(h)→ 0 as h→ 0, the identity ϕ(t+h, ξ)= ϕ(t, ξ)+[f (t, ϕ(t, ξ))+o(1)]h
implies

δ(t + h)= det
[
I + [fx

(
t, ϕ(t, ξ)

)+ o(1)]h]δ(t),
and thus,

δ(t + h)= [1+ [trace
(
fx
(
t, ϕ(t, ξ)

))+ o(1)]h]δ(t),
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d

dt
δ(t)= trace

(
fx
(
t, ϕ(t, ξ)

))
δ(t)= div

(
f
(
t, ϕ(t, ξ)

))
δ(t), δ(0)= 1,

and thereby (1.42). �

Remark 1.22 (Transport and heat equation) Liouville’s formula is a crucial tool in
deriving the classical partial differential equations like the heat or wave equation.
For a given smooth vector function ρ(t, x), we derive the transport equation

d

dt

∫

ϕ(t,Q)

ρ(t, x)dx =
∫

ϕ(t,Q)

[
ρt + ρxf + ρ div(f )

]
(t, x) dx, (1.44a)

which for scalar-valued ρ, for example, for a mass density ρ(t, x), can be written as

d

dt

∫

ϕ(t,Q)

ρ(t, x)dx =
∫

ϕ(t,Q)

[
ρt + div(ρf )

]
(t, x) dx. (1.44b)

Hence, if the mass is conserved so that the left-hand side in (1.44b) vanishes for
arbitrary Q, we deduce the transport equation

ρt + div(ρf )= 0. (1.45)

Some laws in physics, for example, the Fourier or Fick law, ask for ρf = −c∇ρ
with a positive constant c. In this case, the transport equation (1.45) becomes the
heat equation ρt = cΔρ with the Laplacian Δ.

Example 1.23 (Transport equation—time delays) A very simple example of the
transport equation (1.45) is given by

ρt (t, x)+ cρx(t, x)= 0= (ρt (t, x), ρx(t, x)
)(1

c

)

for a scalar variable x and a constant c > 0. It describes a scalar-valued ρ(t, x) that
is constant along the solutions (t, x)= (s + t0, cs + x0) of

dt

ds
= 1,

dx

ds
= c. (1.46)

With the notation u(t) := ρ(t,0), we arrive at the solution ρ(t, x)= u(t− x
c
). Thus,

given a smooth “input” u(t) at x = 0, the solution will be ρ(t, x) = u(t − x
c
), so

that the “output” ρ(t,1)= u(t − 1
c
) just represents a time delay. Similarly, a smooth

input v(x) at t = 0 leads to the solution ρ(t, x)= v(x − ct).

We take up the discussion of transport equations of type (1.45) in Sect. 1.2.2,
where we present the solution approach via the method of characteristics. In
Sect. 1.5 on chromatographic separation processes, we will address systems of n
such transport equations.
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1.1.2.4 Bounded System Response

In what follows, we seek bounds on the solutions x(t)= ϕ(t; τ, ξ) of affine initial
value problems

ẋ =A(t)x + b(t), x(τ )= ξ, (1.47)

with a continuous matrix A(·) : R→ R
n×n and a continuous bounded vector func-

tion b(·) :R→R
n with finite

β0 := ‖b‖0 ≡ sup
t∈R

∣∣b(t)
∣∣. (1.48a)

Hereby, the fundamental matrixΦ(t, τ ) of the homogeneous system ẋ =A(t)x with
Φ̇(t, τ )=A(t)Φ(t, τ ), Φ(τ, τ )= I , is to satisfy the exponential estimate

∥∥Φ(t, τ )
∥∥≤Me−ρ(t−τ) for t ≥ τ (1.48b)

for certain constants M ≥ 1 and ρ > 0. In this case, each solution of the homoge-
neous system ẋ = A(t)x tends exponentially to 0 as t→∞. In case of a constant
matrix A, a sufficient condition for (1.48b) is that all eigenvalues of A are in the left
half-plane C− (see (1.12b)). With the fundamental matrix Φ(t, τ ) and the variation-
of-constants formula

x(t)= ϕ(t; τ, ξ)=Φ(t, τ )ξ +
∫ t

0
Φ(t, s)b(s) ds, (1.49a)

we arrive at the solution estimate

∣∣x(t)
∣∣≤Me−ρ(t−τ)|ξ | +

∫ t

τ

Me−ρ(t−s)β0 ds

≤Me−ρ(t−τ)|ξ | + Mβ0

ρ
for t ≥ τ. (1.49b)

Formula (1.49a) may be written as Φ(τ, t)x(t)= ξ + ∫ t
τ
Φ(τ, s)b(s) ds. In case the

solution x(t) is bounded on the whole R, we can take t→−∞ to obtain

ξ =−
∫ −∞

τ

Φ(τ, s)b(s) ds =−
∫ τ

−∞
Φ(τ, s)b(s) ds. (1.49c)

These integrals exist because of (1.48a) and (1.48b). The above argumentation leads
to the following theorem on the boundedness of the solutions of (1.47) for bounded
inputs b(·). It represents a corner stone in the geometric theory of ODEs.

Theorem 1.24 (Bounded system response) In the above setup of (1.47) and
(1.48b), the solution of (1.47) is bounded on [τ,∞) (cf. (1.49b)). Moreover,

x∗(t)=
∫ t

−∞
Φ(t, s)b(s) ds (1.50)
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is a solution of (1.47) for the initial value ξ from (1.49c). Indeed, x∗(t) is the only
solution of ẋ =A(t)x + b(t) that is bounded on the whole R.

1.1.2.5 Lyapunov’s First Theorem

On D = R× BR with BR = {x ∈ R
n; |x| < R}, we consider the autonomous non-

linear system

ẋ = f (x)≡Ax + g(x) (1.51)

with a continuously differentiable g ∈ C1 satisfying g(0) = 0 and gx(0) = 0, and
hence g(x) = o(|x|). System (1.51) possesses the trivial solution x ≡ 0, and the
linearized system reads ẋ = fx(0)x =Ax. We will show that the spectral condition

Re(λj ) < 0 for all eigenvalues λj of A (1.52)

implies that, locally, the solutions of the nonlinear system exist up to t+ =∞ and
that they decay exponentially to 0 as t→∞. Note that, for the linear system ẋ =
Ax, this is true globally.

Theorem 1.25 (Lyapunov’s first theorem/Stability by first approximation) Given
the fundamental matrix Φ(t, τ )= exp(A(t − τ)), suppose that there exist constants
M ≥ 1, η > 0, and γ > 0 such that

(a)
∥∥Φ(t, τ )

∥∥≤Me−η(t−τ) for t ≥ τ ≥ 0,

(b)
∣∣g(x)

∣∣≤ γ |x| for |x|<R, (1.53)

(c) γ < η/M,

and let ξ be in BR/M . Then the solution ϕ(t; τ, ξ) of (1.51) exists on [τ,∞) and
obeys the exponential estimate

∣∣ϕ(t, τ, ξ)
∣∣≤M|ξ | exp

[−(η−Mγ)(t − τ)] for t ≥ τ ≥ 0. (1.54)

In addition, there does not exist a nontrivial solution of (1.51) tending to 0 as
t→−∞.

Outline of a proof Along a solution x(t) of (1.51) and for t ≥ τ , the variation of
constants leads to the implicit estimate

∣∣x(t)
∣∣≤Me−η(t−τ)|ξ | +

∫ t

τ

Me−η(t−s)γ
∣∣x(s)

∣∣ds,

as long as |x(t)| ≤ R. A multiplication by eηt and a subsequent application of the
Gronwall lemma, Lemma 1.13, entail |x(t)| ≤ M|ξ | exp[−(η − γM)(t − τ)] for
t ≥ τ as long as |x(t)| ≤ R is guaranteed. Under the assumptions of the theorem,
this is true on [τ,∞). �
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An alternative proof is based on the existence of a positive definite solution ma-
trix P for the Lyapunov equation ATP +PA=−I and the generalized norm given
by V (x)= xTPx (see Example 1.36).

Exercise 1.26 (Activator–inhibitor model (see Sect. 1.1.4.3)) We consider a class
of two-dimensional Lotka–Volterra competition models, that is, a class of activator–
inhibitor systems. In these models, the variable u takes the role of the activator
(prey), and the variable v the one of the inhibitor (predator). The prototype Lotka–
Volterra model would be

u̇= u[1− u− v], v̇ = μv[u− α − βv] (1.55)

for u≥ 0, v ≥ 0 with positive parameters α and β . Let us consider a smooth system
of the form

u̇= p(u)[a(u)− b(v)], v̇ = q(v)[c(u)− d(v)] (1.56)

on the first quadrant Q = {(u, v) : u ≥ 0, v ≥ 0} with p(u) > 0 and q(v) > 0 for
u > 0 and v > 0, respectively. Let us assume the existence of a unique equilibrium
E∗ = (u∗, v∗) ∈ o

Q with p(u∗) > 0, q(v∗) > 0. Show that

au
(
u∗
)
< 0, dv

(
v∗
)≥ 0 and bv

(
v∗
)
> 0, cu

(
u∗
)
> 0 or

au
(
u∗
)≤ 0, dv

(
v∗
)
> 0 and bv

(
v∗
)
> 0, cu

(
u∗
)
> 0.

(1.57)

are sufficient conditions for E∗ to be exponentially stable in the sense of (1.54).

1.1.3 Autonomous Systems and ω-Limit Sets

We now turn to autonomous initial value problems of the form (1.1) under (HLip)-
Hypothesis 1.9 with f (t, x) ≡ F(x). So we consider a region G ⊂ R

n, the region
D =R×G, and a Lipschitz-continuous F :G→R

n and investigate

dx

dt
= F(x), x(τ )= ξ, (1.58)

for given (τ, ξ) ∈D. The (unique) solution is denoted by ϕ(·; τ, ξ).

1.1.3.1 Invariant Orbits

Given a solution ϕ(t; τ, ξ) ≡ y(t) of (1.58) on its maximal interval Iy = ID(τ, ξ),
we consider the function

z(t)≡ ϕ(t − τ,0, ξ) on Iz ≡ τ + ID(0, ξ).
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We have y(τ) = z(τ ) and ż(t) = F(z(t)) and thus, by uniqueness, y(t) ≡ z(t) on
Iy = Iz. In other words, the mappings

t ∈ ID(τ, ξ) 	→ ϕ(t, τ, ξ) and t ∈ ID(0, ξ) 	→ ϕ(t,0, ξ)

are parameter representations of one orbit in the state space, namely of

γ (ξ) := {ϕ(t,0, ξ) ∈G : t ∈ ID(0, ξ)
}
. (1.59a)

The positive (negative) semiorbit will be denoted by

γ±(ξ) := {ϕ(t,0, ξ) ∈G : t ∈ ID(0, ξ),±t ≥ 0
}
. (1.59b)

Consequently, we introduce the shorter notation

ϕ(t, ξ)≡ ϕ(t;0, ξ) on ID(ξ)≡ ID(0, ξ) (1.60a)

for autonomous systems where the initial time τ is set w.l.o.g. to 0. The relation
(1.33) then reads

ϕ(t + s, ξ)= ϕ(t, ϕ(s, ξ)) (1.60b)

for all t, s, and t + s in the maximal interval of existence of the solution ϕ(·, ξ).
With the notation

F t (ξ )= ϕ(t, ξ), F t :G→R
n, (1.61a)

one speaks of the flow F t of the differential equation ẋ = F(x) and recovers the
group property

F t+s =F t ◦F s (1.61b)

from (1.60b). We might think of (1.61b) as the generalization of exp(A(t + s)) =
exp(At) exp(As) with a constant (n× n)-matrix A.

Each orbit γ (ξ) is invariant in the sense that any solution ϕ(t;η) with initial
value η in γ (ξ) remains inside γ (ξ) on its maximal interval of existence. In (1.59a),
the time t provides one smooth parameterization of the orbit. So an orbit is either
a singleton (hence, an equilibrium) or a one-dimensional smooth manifold, loosely
speaking a smooth “curve.” In the latter case, it is either a closed “curve” (periodic
orbit) or a “curve” without doublings and without endpoints. Having in mind a cer-
tain goal, we might ask whether there exist better suited smooth parameterizations.
Suppose that the orbit γ (ξ) is contained in the zero-set of some smooth function H
with values in R

n−1. The test for the invariance then reads H(ϕ(t, ξ)) = 0 for all
t ∈ ID(ξ) or equivalently

H(x)= 0 and Hx(x)F (x)= 0. (1.62)

Geometrically, this analytic condition requires that the vector field F(x) with x
satisfying H(x)= 0 points in the same direction as the tangent of the orbit. In the
nonautonomous case, there does not exist such a concept of an orbit, as the scalar
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example ẋ = (1− 2t)x, x(0)= ξ , with the solution ϕ(t, ξ)= ξ exp(t − t2) shows.
Here the projections of solutions in (t, x)-space into the x-space can intersect.

Example 1.27 (2D linear system (cf. Remark 1.6)) We illustrate these concepts by
ẋ1 = λ1x1 + μx2, ẋ2 = λ2x2, a two-dimensional real linear system. In case x1 =
s(x2) is a smooth parameterization of an orbit segment and in case the initial value
satisfies ξ1 = s(ξ2), the corresponding solution x = ϕ(t;0, ξ) fulfills, on a suitable
time interval,

λ1s(x2)+μx2 = ẋ1 = ∂s

∂x2
(x2)λ2x2. (1.63)

For nonvanishing s(x2), Eq. (1.63) represents a scalar affine equation for s as a
function of x2. It can be solved by variation of constants. For H(x) := x1 − s(x2),
Eq. (1.63) corresponds to Eq. (1.62).

Example 1.28 (Reduced model for a single reversible reaction) Here, we consider
a single reversible reaction

ν1X1 + ν2X1
k+−−⇀↽−
k−
ν3X3 (1.64)

with mass action kinetics for positive rates k+ and k− and positive integers νj . In
Sects. 1.1.4.3 and 1.4, we will investigate the dynamics of reaction networks de-
scribing the interaction of m such reactions. For a general introduction to biochem-
ical reaction networks, we refer the reader to the contribution [60] of Klamt et al. in
the present volume. The corresponding ODE model in the nonnegative orthant reads

ẋ =
⎛

⎝
−ν1 ν1
−ν2 ν2
ν3 −ν3

⎞

⎠
(
k+xν1

1 x
ν2
2

k−xν3
3

)

(1.65)

or, in a shorter notation,

ẋ =NR(x, k), N = (−ν1,−ν2, ν3)
T, R(x)= k+xν1

1 x
ν2
2 − k−xν3

3 . (1.66)

The example Na+ +OH−
k+−−⇀↽−
k−

NaOH leads to

ẋ =NR(x, k) with N = (−1,−1,1)T, R(x)= k+x1x2 − k−x3. (1.67)

Here, the left-kernel (row) vectors �1 = (1,0,1) and �2 = (0,1,1) of N define a
function H with (1.62) by H = (H1,H2)

T = (�1x, �2x)
T, so that one arrives at

Ḣ1 = 0, Ḣ2 = 0, and thus at

H1 = x1 + x3 = ξ1 + ξ3, H2 = x2 + x3 = ξ2 + ξ3, (1.68a)

ẋ3 = k+x1x2 − k−x3, x3(0)= ξ3. (1.68b)
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Because of ẋj ≥ 0 on {xj = 0}, the orthant R3+ is positive invariant, so that x3
belongs to the interval [0, (H1 + H2)/2]. Inserting the solution of the algebraic
equations of (1.68a) into the differential equation (1.68b) results in a reduced one-
dimensional model for x3 alone:

ẋ3 = k+[H1 − x3][H2 − x3] − k−x3, x3(0)= ξ3. (1.68c)

Since the right-hand side is a quadratic function Q(x3) satisfying Q(0) > 0 and
Q((H1 + H2)/2) < 0, there exists a unique positive equilibrium x∗3 = x∗3 (ξ) for
(1.68c). The solutions of (1.67) with positive initial value ξ remain in the coset
ξ + range(N) and tend asymptotically to the unique positive equilibrium therein.

1.1.3.2 Asymptotics and Limit Sets

We turn to the asymptotic behavior of solutions of (1.58) that exist on [0,∞). We
will present the so-called ω-limit set of such a solution ϕ(t, ξ) for autonomous C1-
systems

ẋ = F(x), x(0)= ξ (1.69)

with F ∈ C1(G,Rn) over a regionG⊂R
n, and we takeD =R×G. In case ϕ(t, ξ)

converges as t →∞ toward some point x∗ ∈ G, this limiting value already is the
limit set ω(ξ). Nontrivial limit sets ω(ξ) are depicted in Fig. 4.

Definition 1.29 (ω- and α-limit set) For a given ξ ∈G and the corresponding so-
lution ϕ(t, ξ) of (1.69), the set

ω(ξ) :=
⋂

t≥0

γ+
(
ϕ(t, ξ)

)
(1.70a)

is called the ω-limit set of ξ , or of ϕ(t, ξ), or of γ+(ξ). The elements are called
ω-limit points. Analogously, for a solution ϕ(t, ξ) existing on (−∞,0], the set

α(ξ) :=
⋂

t≤0

γ−
(
ϕ(t, ξ)

)
(1.70b)

is called the α-limit set of ξ . Its elements are called α-limit points.

Lemma 1.30 (Characterization of limit points)

(a) An element y ∈G is a ω-limit point of ξ (i.e., y ∈ ω(ξ)) if and only if there exists
a sequence (tk) converging monotonically to ∞ with y = limtk→∞ ϕ(tk, ξ).

(b) The closure γ+(ξ) is given by γ+(ξ)∪ω(ξ).
The next result introduces sufficient conditions for a solution ϕ(t, ξ) to converge

toward its limit set ω(ξ). In applications, one will then localize ω(ξ) as well as pos-
sible, for example, via inclusion theorems (cf. LaSalle’s invariance principle (The-
orem 1.35)).
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Fig. 4 ω-limit sets in the (u, v)-plane. To the left, the solution (in red) spirals toward its ω-limit
set in form of the lemniscate (in green). To the right, the solution (in red) spirals toward its ω-limit
set in form of the boundary of the triangle (in green). The respective ODE models are given by
(1.78b) and (1.78c)

Theorem 1.31 (Properties of limit sets, cf. [45, 61, 67]) The limit set ω(ξ) is closed
and invariant in the sense

y ∈ ω(ξ)⇒∀t ∈ Imax(y) : ϕ(t, y) ∈ ω(ξ).
If the positive semiorbit γ+(ξ) of ϕ(t, ξ) is bounded with γ+(ξ) ⊂ G, then the
maximal interval Imax of existence is the whole R, and we have:

• ω(ξ) is nonempty, compact, invariant , and connected,
• limt→∞ dist(ϕ(t, ξ),ω(ξ))= 0.

In particular, if ω(ξ) is a singleton {E}, then E is an equilibrium of (1.69).

For an illustration of what can happen in case of unbounded positive semiorbits,
one might discuss

u̇= v+ α(1− v2)u, v̇ =−u(1− v2)+ α(1− v2)v (1.71)

in the (u, v)-plane for initial values u(0), v(0) with |v(0)| ≤ 1. One might employ
the test functionH(u,v)= 1

2 (v
2−1) exp(−u2), obtained by separation of variables

for the “unperturbed” system (1.71) at α = 0.

1.1.4 Stability, Lyapunov Functions, and LaSalle’s Principle

1.1.4.1 Stability Concepts

We consider an autonomous C1-system

ẋ = f (x), x(0)= ξ (1.72)
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onD =R×G for a regionG⊂R
n. LetM ⊂G be a compact subset that is invariant

with respect to (1.72), that is,

ξ ∈M⇒ γ (ξ)⊂M (
with ID(ξ)=R

)
. (1.73)

For example,M may be an equilibrium or a periodic orbit, or it may be the lemnis-
cate or the full triangle in Fig. 4.

Definition 1.32 (Stability concepts) M is called

(a) stable if, for each neighborhood V ofM in G, there exists a neighborhood U of
M such that

ξ ∈U ⇒ t+ =∞ and γ+(ξ)⊂ V,
(b) unstable ifM is not stable,
(c) attractive if there exists a neighborhoodW ofM in G such that

ξ ∈W ⇒ t+ =∞ and lim
t→∞dist

(
ϕ(t, ξ),M

)= 0,

(d) asymptotically stable ifM is stable and attractive,
(e) exponentially stable if there exist a neighborhood Z of M in G and positive

scalars K,α such that

ξ ∈Z⇒ t+ =∞ and dist
(
ϕ(t, ξ),M

)≤Ke−αt dist(ξ,M) for all t ≥ 0.

E ≡ {ξ ∈G : limt→∞ dist(ϕ(t, ξ),M)= 0} is called the region of attraction ofM .

In this context, we refer to our discussion in Sect. 1.1.2.5 where Lyapunov’s first
theorem, Theorem 1.25, deals with the exponential stability of the trivial equilibrium
x = 0.

Remark 1.33 (Illustrations)

(a) One may test these stability concepts for the following differential equations:

• ẋ = 0 or ẋ =−x3 forM = {0}.
• ṙ = r(1− r), θ̇ = 1− cos θ forM = {(r, θ) : r = 1} orM = {(r, θ)= (1,0)}.

(b) Given the scalar-valued function H(x,y)= y2

2 − x2

2 + x4

4 and its zero-setM =
{(x, y) :H(x,y)= 0} (cf. Fig. 4), one may test the above concepts for:

• ẋ =Hy = y, ẏ =−Hx = x − x3,
• ẋ =Hy −HxH , ẏ =−Hx −HyH .

1.1.4.2 Lyapunov Functions and LaSalle’s Invariance Principle

Definition 1.34 (Lyapunov function) Given system (1.72), let U be an open subset
of G with U ⊂ G. A scalar-valued function V is called a Lyapunov function of
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(1.72) with respect to U if V is continuously differentiable on a neighborhood of U
and if V satisfies V̇ (x)= Vx(x)f (x)≤ 0 on U .

A Lyapunov function V is monotonically decreasing along solutions ϕ(t, ξ) of
(1.72) since v(t) := V (ϕ(t, ξ)) satisfies

v̇(t)= d

dt

[
V
(
ϕ(t, ξ)

)]= Vx
(
ϕ(t, ξ)

)
f
(
ϕ(t, ξ)

)≤ 0. (1.74)

The prototype systems possessing such Lyapunov functions are the gradient systems
of the form ẋ =−∇V (x) for a C2-function V :R→R

n.
If V is in addition bounded below and if the solution ϕ(t, ξ) exists on [0,∞), the

“test function”V (ϕ(t, ξ)) converges as t→∞. So, in favorable settings, one may
gain information about the localization of the limit set ω(ξ).

If V is a Lyapunov function of (1.72) with respect to the sublevel set U := {x ∈
G : V (x) < ρ}, then, for any ρ′ < ρ and for any ξ with V (ξ)= ρ′, there exists ε > 0
such that

V
(
ϕ(t, ξ)

)≤ V (ξ)≤ α for t ∈ [0, ε).
This implies the positive invariance of the sublevel set {x ∈G : V (x) < ρ′}, that is,

ξ ∈ {V (x)≤ ρ′}⇒∀t ∈ Imax(ξ)∩R
+ : ϕ(t, ξ) ∈ {V (x)≤ ρ′}. (1.75)

Thereby we have a first inclusion result for the ω-limit set. The following theorem
provides a tighter localization.

Theorem 1.35 (LaSalle’s invariance principle ([45, 61, 67])) Suppose that we are
given a Lyapunov function V of (1.72) with respect to some U . Then we have:

(a) γ+(ξ)⊂U implies ω(ξ)⊂ {V (x)= r} for some r and thus ω(ξ)⊂ {V̇ = 0}.
(b) If, in addition, γ+(ξ) is bounded, then the solution ϕ(t, ξ) tends asymptotically

to the maximal invariant setMinv inside the zero-set {x ∈U : V̇ (x)= 0}:
lim
t→∞dist

(
ϕ(t, ξ),Minv

)= 0. (1.76)

Proof

(a) First, γ+(ξ)⊂U implies ω(ξ)⊂U . Let now ω(ξ) be nonempty. Because of the
monotone decrease of V (ϕ(t, ξ)), there exists r with inf{V (ϕ(t, ξ)) : t ≥ 0} = r .
In case y = limk→∞ ϕ(tk, ξ) is an ω-limit point in ω(ξ), the continuity of V
entails V (y) = limk→∞ V (ϕ(tk, ξ)) = r , so that V is constant and equal to r
on ω(ξ). This implies v(t) := V (ϕ(t, y)) = V (y) = r , and hence 0 = v̇(t) =
V̇ (ϕ(t, y))≡ 0 for all t ∈ Imax(y). The evaluation at t = 0 thus leads to ω(ξ)⊂
{V̇ = 0}.

(b) For a bounded γ+(ξ), we have a compact γ+(ξ). Thus, we can apply Theo-
rem 1.31 to conclude the nonemptiness of ω(ξ). This implies (1.76). �



1 Geometric Theory of ODEs 35

An immediate consequence can be stated for Lyapunov functions V with respect
to U = {V (x) < ρ} in case U is compact. Hence, the solutions ϕ(t, ξ) with ξ ∈ U
exist on R

+ and approachMinv asymptotically.

Remark 1.36 (Local version for positive definite Lyapunov functions) Let E = 0
be an equilibrium, and let V be a local Lyapunov function with V (x) > V (0) for
small |x| > 0. Then E = 0 is stable. If, in addition, V̇ < 0 for small |x| > 0, then
E = 0 is attractive too and hence asymptotically stable.

Outline of a proof We choose an ε-ball Bε = {x : |x|2 < ε} ⊂U and put

2β := min|x|2=ε
V (x), W := {x ∈ Bε : V (x)≤ β

}
.

The connected componentW0 of 0 ∈ o

W then has a compact closure. So, the above-
mentioned consequence of Theorem 1.35 is applicable (withMinv = {0}).

In case A := fx(0) has all its eigenvalues in the left half-plane C
−, one may em-

ploy a Lyapunov function V (x)= xTPx for a positive definite matrix P satisfying
the Lyapunov equation

ATP + PA+Q= 0 (1.77)

for a positive definite matrix Q. With a suitable positive constant c, it leads to

V̇ (x)= ẋTPx + xTP ẋ = xT([ATP + PA]x +O
(|x|2))≤−cV (x)

for small |x|. Thus, V (x) = xTPx is exponentially decaying along solutions. So,
solutions decay exponentially, too. One way to compute P satisfying (1.77) is based
on Theorem 1.24: We seek the unique solution P(t) of Ṗ =ATP +PA+Q that is
bounded on the whole R. We proceed as in the proof of Theorem 1.24 to arrive at
the constant solution

P =
∫ ∞

0
exp
(
ATs

)
Q exp(As) ds.

This integral exists because of the exponential estimates we have for ‖exp(At)‖ (see
Theorem 1.3), and it is obviously positive definite. �

Exercise 1.37 (First integrals as candidate Lyapunov functions)

(a) The function H(u,v) = 1
2v

2 + G(u) is a first integral and hence a Lyapunov
function for

u̇=Hv(u, v)= v, v̇ =−Hu(u, v)=−Gu(u)≡−g(u) (1.78a)

because of Ḣ = 0. System (1.78a) can also be written as the second-order dif-
ferential equation ü + g(u) = 0. If some friction term is introduced, H(u,v)
may still be a Lyapunov function.
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(b) This is easily verified for ü+ u3 − u+ αu̇= 0 with α > 0 and for

ü+ u3 − u± vH(u, v)= 0, H(u, v) := 1

2
v2 − 1

2
u2 + 1

4
u4. (1.78b)

What are the maximal invariant setsMinv? Depending on the initial values, what
can be said about the limit sets ω(ξ)? See the ∞ in Fig. 4.

(c) Given H(u,v)= uv(1− u− v) and

u̇=Hv(u, v)−H(u,v)Hu(u, v), v̇ =−Hu(u, v)−H(u,v)Hv(u, v),
(1.78c)

what is the maximal invariant set Minv? What can be said about the limit sets
ω(ξ) for initial values ξ = (u0, v0)

T inside the triangle {(u, v) : u,v ∈ [0,1],0≤
u+ v ≤ 1}? See the triangle in Fig. 4.

Example 1.38 (Explosion of an ω-limit set) The three-dimensional system in polar
coordinates x = r cos θ, y = r sin θ , given by

ṙ = (1− r2)r, θ̇ = 1+ r cos θ + z2, ż=−az3 (1.79)

with positive a, shows a simple dynamical behavior on the plane {z= 0} which any
solution of (1.79) tends to asymptotically: All nontrivial initial values ξ ∈R

3 inside
{z = 0} lead to the ω-limit set ω(ξ)= (−1,0,0)T. In contrast, for all initial values
ξ ∈ R

3 with ξ2
1 + ξ2

2 
= 0 and ξ3 
= 0, the ω-limit set ω(ξ) is the unit circle {r = 1,
z= 0}. For a proof, we may consider the function V (r, z)= 1

2 (r
2−1)− ln(r)+ 1

2z
2

as a candidate Lyapunov function for r > 0. So, for any a > 0, solutions starting off
{z= 0} cannot be synchronized to solutions of the reduced system on {z= 0}.

1.1.4.3 Activator–Inhibitor Models and Reversible Reaction Networks

We first discuss Lyapunov functions V for a scalar differential equation ẋ = xf (x)
on x ≥ 0 with a smooth function f that is positive on [0, x∗) and negative on
(x∗,∞). The equation V̇ (x) = Vx(x)xf (x) suggests the “trivial” Lyapunov func-
tion

V (x)=−
∫ x

x∗
f (s)

s
ds for x > 0 (1.80)

satisfying V (x) > 0 and V̇ (x) = −f 2(x) < 0 for x 
= x∗. For f (x) = 1 − x, we
thus have the positive definite Lyapunov function V (x)= x − ln(x) with a negative
definite derivative V̇ (x) for x > 0. Moreover, this V (x) has a convex graph with
V (x)→∞ as x→ 0+ and x→∞ so that the level sets {x > 0 : V (x)≤ α} exhaust
R
+ as α→∞. Hence, the region of attraction for x∗ is the whole R+.

(I) Activator–Inhibitor Models
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We resume the discussion of two-dimensional activator-inhibitor systems (cf. Ex-
ample 1.26) where the variable u takes the role of the activator, and the variable v
the one of the inhibitor. So let us consider, as in Example 1.26, a smooth system of
the form

u̇= p(u)[a(u)− b(v)], v̇ = q(v)
[
c(u)− d(v)] (1.81)

on the first quadrant Q = {(u, v) : u ≥ 0, v ≥ 0} with p(u) > 0 and q(v) > 0 for
u > 0 and v > 0, respectively. We assume the existence of a unique equilibrium
E∗ = (u∗, v∗) ∈ o

Q such that

p
(
u∗
)
> 0, q

(
v∗
)
> 0,

[
a
(
u∗
)= b(v∗), c(u∗)= d(v∗)]. (1.82)

With the notations Δa(u)= a(u)− a(u∗), etc., system (1.81) can be rewritten as

u̇= p(u)[Δa(u)−Δb(v)], v̇ = q(v)
[
Δc(u)−Δd(v)]. (1.83)

For V to be a Lyapunov function, we will require

V̇ (u, v)= Vu(u, v)p(u)
[
Δa(u)−Δb(v)]+ Vv(u, v)q(v)

[
Δc(u)−Δd(v)]≤ 0

at least near E∗. Motivated by (1.80), we take V of the form

V (u, v)=
∫ u

u∗
Δc(s)

p(s)
ds +

∫ v

v∗
Δb(s)

q(s)
ds

and are led to

V̇ (u, v)=Δc(u)Δa(u)−Δb(v)Δd(v). (1.84)

It is now straightforward to formulate conditions for V to be a positive definite
Lyapunov function. One such set of sufficient conditions is given as follows:

b′ ≥ 0, c′ ≥ 0 with c′
(
u∗
)
> 0, b′

(
v∗
)
> 0, (1.85a)

(
u− u∗)Δa(u) < 0 for u ∈ (u1, u2), u 
= u∗, (1.85b)
(
v − v∗)Δd(v)≥ 0 for v ∈ (v1, v2). (1.85c)

The function V is then nonnegative, on
o

Q and vanishes exactly for (u, v) = E∗.
Moreover, it satisfies

V̇ ≤ 0 on R := (u1, u2)× (v1, v2), (1.86)

V̇ (u, v)= 0 ⇔ (u, v) ∈ L := {u= u∗,Δd(v)= 0
}
. (1.87)

For the computation of Minv, we note that 0 = u̇ = p(u∗)[a(u∗) − b(v)] =
p(u∗)[b(v∗) − b(v)] on L and thus v = v∗ because of (1.85a). Hence, the maxi-
mal invariant subsetMinv in {V̇ = 0} is the singleton E∗.
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Proposition 1.39 (Cf. [46] and [66]) Let system (1.81) satisfy the above assump-
tions (1.82) and (1.85a)–(1.85c). Then the neighborhoods

Wα :=
{
(u, v) ∈R : V (u, v)≤ α} with α < μ := min

i=1,2

{
V
(
u∗, vi

)
,V
(
ui, v

∗)}

of E∗ are compact and positive invariant subsets in the region of attraction of the
asymptotically stable equilibrium E∗. In case R is the whole

o

Q and theWα exhaust
o

Q as α→∞, the positive quadrant
o

Q is the region of attraction of E∗.

Of course, there is an analogous result when (1.85b) and (1.85c) are replaced by
(u−u∗)Δa(u)≤ 0 for u ∈ (u1, u2) and (v−v∗)Δd(v) > 0 for v ∈ (v1, v2), v 
= v∗,
respectively.

Example 1.40 (Some classical models) The models will be defined for positive
variables u and v and for positive parameters. As for the classical Lotka–Volterra
model (1.55), the application of the above proposition leads to estimates for the
region of attraction of the respective positive equilibria.

• Chemostat model: u̇= 1− u− muv
a+u , v̇ = v[ mua+u − 1] (see [83]).

• Holling model: u̇= u[1− u− v
u+K ], v̇ = v[ cuu+K − d] (see [3, 49]).

• Holling–Tanner model: u̇= u(1− u)− auv
u+K , v̇ = bv[1− v

u
] (see [3]).

(II) Reversible Reaction Networks

We turn to a second application of LaSalle’s invariance principle and derive a
Lyapunov function for reversible reaction networks (cf. Prüß et al. [74], see also
Sect. 1.4.3.1). For a general introduction to biochemical reaction networks, we refer
to Klamt et al. [60] in the present volume.

We consider reaction systems with n species X1, . . . ,Xn and m reactions of the
form

n∑

h=1

ν+h,jXh
k+j−−⇀↽−
k−j

n∑

h=1

ν−h,jXh (1.88)

with nonnegative integers ν±h,j (ν+h,j + ν−h,j > 0, j = 1, . . . ,m) and mass action ki-

netics. Hereby we assume the reversibility of the network, that is, we take all k±j to
be positive. The corresponding ODE model in the nonnegative orthant reads

ẋ =NR(k, x) (1.89)

with the stoichiometric matrix N = (νh,j ) := (ν−h,j − ν+h,j ) in R
n×m and the m-

dimensional reaction rate vector R = (R1, . . . ,Rm)
T given by

Rj (k, x)= k−j
{ ∏

νh,j<0

x
−νh,j
h − keqj

∏

νh,j>0

x
νh,j
h

}
, k−j k

eq
j = k+j . (1.90)

For a concrete example, we refer to the model (4.2) of synthesis gas.



1 Geometric Theory of ODEs 39

A kinetic equilibrium x is defined via NR(k, x)= 0. A genuine kinetic equilib-
rium x satisfies x > 0, that is, xj > 0 for j = 1, . . . , n, and R(k, x)= 0. Given such
a genuine kinetic equilibrium x, we write

0=Rj (k, x)= k−j
{ ∏

νh,j<0

x
−νh,j
h − keqj

∏

νh,j>0

x
νh,j
h

}
=Rrj (x)

{
zj (x)− 1

}

with

Rrj (x)= k+j
∏

νh,j>0

x
νh,j
h and zj (x)=

[
k
eq
j

∏

νh,j

x
νh,j
h

]−1

. (1.91a)

Hence, we arrive at

− lnkeqj = ln

[∏

νh,j

x
νh,j
h

]
=
∑

h

νh,j lnxh

and, in a shorter notation, at

NT lnx + lnkeq = 0. (1.91b)

Two such equilibria x∗ > 0 and x∗ > 0 with x∗ − x∗ ∈R(N) fulfill

NT[lnx∗ − lnx∗
]= 0, i.e., lnx∗ − lnx∗ ∈

[
R(N)

]⊥
, (1.92)

implying

0= [lnx∗ − lnx∗
]T[
x∗ − x∗

]
(1.93)

and thus x∗ = x∗. So we have the “uniqueness” in the coset. The function

V (x)= xT[lnx − lnx∗] − eT[x − x∗] (1.94)

with V (x∗)= 0, Vx(x)= [lnx− lnx∗]T, andD2V (x)= diag(1/x1, . . . ,1/xn) turns
out to be a Lyapunov function for (1.89) with respect to R

n+. The point x∗ is the
unique minimizer of V , and the minimum 0 is a strict one. Denoting by Nj the j th
column of N (and employing the notation yz =∏yzjj = yz11 · · ·yznn for n vectors y
and z), we compute

V̇ (x)=
∑

j

[
(lnx − lnx∗)TN

]
j
Rrj (x)

[
zj (x)− zj (x∗)

]

=
∑

j

ln(x/x∗)Nj Rrj (x)zj (x∗)
[
(x∗/x)Nj − 1

]≤ 0

with V̇ (x)= 0⇒ zj (x)= 1. (1.95)
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Given an initial value ξ > 0 with the solution ϕ(t, ξ) and given a genuine kinetic
equilibrium x∗ ∈ ξ + R(N), the positive invariance and the boundedness of M :=
(ξ +R(N) ∩R

n
≥0 imply that the ω-limit set ω(ξ) inside M is nonempty, compact,

invariant, and simply connected (see Theorem 1.31). Under the assumption

ω(ξ)∩R
n
>0 
= ∅, (1.96)

we arrive at ω(ξ) = x∗ since x∗ is unique in the coset and since ω(ξ) ∩ R
n
>0 is

a subset of {x ∈ R
n+ : V̇ (x) = 0}. The alternative case ω(x0) ⊂ ∂Rn>0 will not be

discussed here.

1.2 Geometric Theory of Nonlinear Autonomous Systems in R
2

This second section introduces the concepts of invariant and integral manifolds
for two-dimensional systems in the (u, v)-plane, where invariant manifolds can be
thought of as graphs of smooth time-invariant functions v = s(u) or u= s̃(v), for ex-
ample, segments of orbits, and integral manifolds as graphs of smooth time-variant
functions, for example, v = s∗(t, u).

Section 1.2.1 is dedicated to the reduction via the computation of orbits. For
a simply connected region G ⊂ R

2 and for D = R × G, we investigate two-
dimensional autonomous initial value problems of the form (1.58) under the smooth-
ness hypothesis (1.34) with m≥ 2. We write (1.58) as

u̇= f1(u, v), v̇ = f2(u, v), u(0)= u0, v(0)= v0, (2.1)

with x = (u, v)T, F = (f1, f2)
T, and ξ = (u0, v0)

T for the initial time τ = 0. Solu-
tions of (2.1) will be denoted by

x(t)= ϕ(t, ξ)= (ϕ1(t;u0, v0), ϕ2(t;u0, v0)
)T = (u(t), v(t))T. (2.2)

The discussion of the IVP (2.1) reduces to the successive discussion of two one-
dimensional IVPs in case f1 does not depend on v or in case f2 does not depend
on u. In the second case, the solution v = ϕ2(t, ξ) of v̇ = f2(v), v(0) = v0, in-
duces the nonautonomous IVP u̇ = f1(u,ϕ2(t, ξ)), u(0) = u0. In the general case
of Sect. 1.2.1, where the two equations in (2.1) are not decoupled this way, we seek
a transformation that achieves such a decoupling.

Section 1.2.2 introduces the concept of integral manifolds for two-dimensional
systems and introduces the method of characteristics for their computation via as-
sociated quasi-linear first-order PDEs. It paves the road for the application on chro-
matographic separation problems in Sect. 1.5. Section 1.2.3 presents some of the
standard transformations that are used for systems without hyperbolic linearizations
and thus sets the stage for the bifurcations results in Sect. 1.2.4. The final Sect. 1.2.5
introduces the basic geometric ideas for the construction of the classical invariant
manifolds for n-dimensional nonlinear systems in the simplest setup, namely in case
of a two-dimensional linear system.
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1.2.1 Reduction by Orbit Computations

The desired decoupling of the two differential equations in (2.1) is based on the
computation of the invariant orbits of (2.1) (see Sect. 1.1.2). In case the orbit can
be represented as the graph of a smooth function v = s(u), the dynamical behavior
on this orbit follows the scalar differential equation u̇= f1(u, s(u)). For example, if
f1(u, s(u)) is positive, then the solution component u(t) is strictly increasing along
the orbit. Regarding the desired smoothness of v = s(u), we recall the linear setup
in Remark 1.6, in particular, (1.19).

1.2.1.1 Orbits and Phase Portraits

LetM :G→R be a smooth function and assume the level set

Nμ =
{
x ∈G :M(u,v)= μ} (2.3a)

to contain an orbit γ (ξ) of (2.1) (ξ = (u0, v0)
T with M(u0, v0)= μ). For an M of

the form M(u,v)= v − s(u) with a smooth function u 	→ s(u), the level set N0 is
nothing else but graph(s). Along a solution (2.2) of (2.1), we arrive at the identity
M(u(t), v(t))≡ μ on the maximal existence interval ID(ξ). A differentiation with
respect to t yields

grad
(
M(u,v)

)(u̇
v̇

)
≡ (Mu(u, v),Mv(u, v)

)(f1(u, v)

f2(u, v)

)
≡ 0 (2.3b)

for (u, v) = (u(t), v(t)) on t ∈ ID(ξ). In geometric terms, the right-hand side f
is orthogonal to the normal direction of the level set Nμ. With a smooth positive
function J :G→R, Eq. (2.3b) is equivalent to

Mu(u, v)=−J (u, v)f2(u, v), Mv(u, v)= J (u, v)f1(u, v) (2.3c)

along (u(t), v(t)) withM(u(t), v(t))= 0. By the Schwarz lemma we have

0=Mvu −Muv = grad(J )f + J div(f ). (2.3d)

Therefore,M can be determined from (2.3c) as follows. From (2.3c) we first have

M(u,v) :=
∫ v[

J (u,w)f1(u,w)
]
dw+C(u),

∂

∂u
M(u, v)= ∂

∂u

∫ v[
J (u,w)f1(u,w)

]
dw+ ∂C

∂u
=−J (u, v)f2(u, v),

so that C = C(u) necessarily satisfies the scalar differential equation

∂C

∂u
= c(u) := −J (u, v)f2(u, v)− ∂

∂u

∫ v[
J (u,w)f1(u,w)

]
dw, (2.4)
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where the right-hand side is independent of v because of (2.3d). With an antideriva-
tive C(u) of c(u), we obtain the solution

M(u,v)=
∫ v[

J (u,w)f1(u,w)
]
dw+C(u). (2.5)

The functionM , given by (2.5), does indeed furnish level sets that contain orbits of
(2.1). Given a solution ϕ(t, ξ) = (u(t), v(t))T with initial value ξ = (u0, v0)

T ∈G
and μ :=M(ξ), we have ∂

∂t
M(u(t), v(t)) ≡ 0, and thus M(ϕ(t, ξ)) =M(ξ) = μ

for t ∈ ID(ξ). Therefore, a solution starting in the level set {x ∈ G : M(x) = μ}
remains there on its maximal existence interval. The orbits of (2.1) are contained
in such level sets. The dynamics on the orbits is determined by the reduced scalar
ordinary differential equation

u̇= f1(u, v) or v̇ = f2(u, v) (2.6a)

with the algebraic constraint

M(u,v)= μ. (2.6b)

In summary, we have a reduction method transforming a system of two differential
equations into system (2.4) & (2.6a) of two “decoupled” scalar differential equa-
tions or into system (2.6a) & (2.6b) of one differential equation and one algebraic
equation. A diffeomorphic transformation w =M(x), z = Z(x) leads, on suitable
domains, to a system of the form

ẇ = 0, ż= g(w, z), w(0)=M(ξ), z(0)= Z(ξ),
and thus to ż = g(M(ξ), z) with z(0) = Z(ξ). Here, the function z = Z(x) has to
be chosen suitably in order to obtain a complementation of w =M(x) that entails a
diffeomorphic transformation x 	→ (w, z).

A sketch of the orbits in the (u, v)-plane with arrows, indicating the dynamics on
these orbits, is called a phase portrait of (2.1).

Remark 2.1 (Integrating factor and first integral) For the differential equation ẋ =
f (x) in (2.1), a nonvanishing smooth function J :G→R satisfying Eq. (2.3d) is
called an integrating factor, and a smooth functionM :G→R such that

Ṁ(x)=Mx(x)f (x)= 0 (2.7)

is called a first integral. First integrals are constant along solutions and just represent
conservation laws:M(ϕ(t, ξ))≡M(ξ) on ID(ξ).

In general, the determining equation (2.3d) for J is a partial differential equa-
tion involving Ju and Jv . In favorable setups, the assumption J (u, v) = J1(u) or
J (u, v)= J2(v) reduces this PDE to a solvable scalar ODE. On suitable regions G,
one may consider the four test examples

ẋ = y2, ẏ =−y, or u̇= v2, v̇ =−v3,

ẇ =−w3, ż=−w2z, or ẋ1 = x2, ẋ2 = x2
2 − sinx1.
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1.2.1.2 Invariant Graphs and Hamiltonian Systems

In the already mentioned special caseM(u,v)= v − s(u), Eq. (2.3b) reads

−su(u)f1(u, v)+ f2(u, v)= 0 with v− s(u)= 0. (2.8a)

In the present case of a scalar-valued function f1, this yields, up to the exceptional
points (u, s(u)) with f1(u, s(u))= 0, the scalar nonautonomous IVP

∂s

∂u
(u)= f2(u, s(u))

f1(u, s(u))
, s(u0)= v0. (2.8b)

Its solution will be denoted by s = s(u;u0, v0). The level set N0 := {(u, v) :
v = s(u;u0, v0)} contains the solution ϕ(t, u0, v0) of (2.1) and hence the or-
bit γ (u0, v0). Vice versa, if u = ϕ1(t;u0) solves u̇ = f1(u, s(u;u0, v0)), u(0) =
u0, then ϕ(t;u0, v0) := (ϕ1(t;u0, v0), s(ϕ(t;u0, v0)))

T solves (2.1). The classical
Lotka–Volterra model with positive parameters may serve for an example:

u̇= u(−a + bv), v̇ = v(c− du) (u≥ 0, v ≥ 0).

Remark 2.2 (Time transformation—Warped time) The transition from (2.1) to
(2.8b), thats is, from

u̇= f1(u, v), v̇ = f2(u, v) to
∂s

∂u
(u)= f2(u, s(u))

f1(u, s(u))
, (2.9a)

can be interpreted as a time transformation. Let ϕ(t)= (u(t), v(t))T be a solution of
the IVP (2.1) with u̇(t) > 0 on a suitable interval I around t = 0. We define a new
“time”

w = u(t) on I with ′ = ∂

∂w
, (2.9b)

define its inverse function t = u−1(w), and set

ψ(w) := ϕ(u−1(w)
)= ϕ(t), ψ(w)=:

(
w

z(w)

)
, (2.9c)

implying z(w)= z(u(t))= v(t). Therefore, we arrive at

ψ ′1(w)= 1, ψ1(u0)= u0,

ψ ′2(w)=
f2(ψ(w))

f1(ψ(w))
, ψ2(u0)= v0.

(2.9d)

With ψ1(w)≡w and with the z-notation from (2.9c), this is equivalent to

∂z

∂w
(w)= f2(w, z(w))

f1(w, z(w))
, z(w0)= v0, (2.10)

and hence equivalent to the IVP (2.8b).
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We observe that the introduction of an integrating factor can be thought of as
a time scaling. In more general terms, given a nonvanishing smooth scalar-valued
function μ= μ(u, v), we introduce the new time τ via

t =
∫ τ

0
μ
(
u(σ ), v(σ )

)
dσ (2.11a)

and set x(τ)≡ u(t), y(τ)≡ v(t). The initial value problem in terms of x and y then
reads

dx

dτ
= μ(x, y)f1(x, y),

dy

dτ
= μ(x, y)f2(x, y), x

(
0, y(0)

)= (u0, v0),

(2.11b)
with respect to the new time τ leading, as in (2.9a), to

dy

dx
= f2(x, y)

f1(x, y)
. (2.11c)

In chemical engineering, a new time w is often called warped time (see [22],
Sect. 5.2). It may allow the transformation of a problem, where solutions exist
just on a finite interval ID(ξ) (in time t), into a problem with ĨD(ξ) = [0,∞) (in
time w). A simple academic example is given by

u̇=−c, v̇ = c
u
g(v)

(
u(0), v(0)

)= (u0, v0), (2.12a)

for (u, v) ∈R
2
>0 with a positive constant c and a smooth function g(·), say

g(v)= v− (a + 1)v

1+ av (a ∈R>0)

for simplicity. The first solution component, in forward time, is given by u(t) =
u0 − ct on [0, t+) with t+ = u0/c <∞. The transformation

τ =− ln
u(t)

u0
=−

∫ t

0

u̇(σ )

u(σ )
dσ on

[
0, t+

)
(τ0 = 0) (2.12b)

with x(τ)≡ u(t), y(τ)≡ v(t) leads to

dx

dτ
= ut tτ =−x, dy

dτ
= g(y) (

x(0), y(0)
)= (u0, v0), (2.12c)

for τ ∈ [0,∞).

Remark 2.3 (Hamiltonian systems) In case the vector field f in (2.1) is divergence
free, that is, div(f )= (f1)u+ (f2)v ≡ 0, the integrating factor J ≡ 1 can be chosen
in (2.3d). As has been shown before, the function

H(u,v) :=
∫ v

f1(u,w)dw−
∫ u[

f2(u, v)+ ∂

∂u

∫ v

f1(u,ω)dω

]
dw (2.13)
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Fig. 5 Phase portrait for
(2.16a), (2.16c) in the
(u, v)-plane: The Cartesian
leaf H = 0 (in green),
containing the homoclinic
orbit in the 2nd quadrant, is
the set of initial values with
solutions tending to the origin
as t→+∞ or t→−∞

is a first integral of (2.1). The orbits of (2.1) are thus contained in the level sets
{H = μ} of H . Such divergence-free autonomous systems are called Hamilton sys-
tems or Hamiltonian systems, H is called a Hamilton function for (2.1).

The standard examples for Hamiltonian systems are the second-order differential
equations of the form

ẍ = g(x) or ẋ = y, ẏ = g(x) (2.14a)

with

H(x,y)= 1

2
y2 −G(x), (2.14b)

where G(x) stands for a fixed antiderivative of g(x). Note that g does not depend
on ẋ = y. For example, the pendulum without friction is modeled by

ẍ + sinx = 0 with H(x, ẋ)= 1

2
ẋ2 + cosx (2.15a)

with the Hamilton function (energy) H(x, ẋ). If a positive friction is introduced, we
arrive at ẍ+sinx+cẋ = 0 with c > 0. The functionH acts as a candidate Lyapunov
function (Ḣ =−cy2) and is still helpful in the discussion of the asymptotic behavior
as t→∞.

Three instructive examples of Hamiltonian systems are given by

u̇=Hv(u, v), v̇ =−Hu(u, v) (2.16a)

with H being one of the following functions:

H(u,v) = 1

2

[
v2 − u2]+ 1

4
u4, (2.16b)

H(u,v) = uv(1− u− v), (2.16c)

H(u,v) = 1

6
(u− v)3 − uv. (2.16d)
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The phase portraits in Fig. 4 belong to (2.16b) and (2.16c) once some positive fric-
tion has been introduced (cf. (1.78b) and (1.78c)). The phase portrait of (2.16d) is
shown in Fig. 5.

Exercise 2.4 (Homoclinic orbit in Korteweg–de Vries equations) Discuss numeri-
cally and analytically for real parameters p and c > 0 the planar system

u̇= v, v̇ = p+ cu− 3u2.

For what parameter constellations do there exist steady states E with homoclinic
orbits, that is, orbits γ (ξ) with ωξ)= α(ξ)=E? See also Remark 3.16 below.

1.2.2 Integral Manifolds—Method of Characteristics

We consider a scalar first-order partial differential equation (PDE)

ux(x)f1
(
x,u(x)

)= f2
(
x,u(x)

)
(2.17)

in the n-dimensional x-space R
n under the side condition

x = x0(ξ), u= u0(ξ), ξ ∈Q= [0,1]n−1, (2.18)

where the function

f = (f11, . . . , f1n, f2)
T :Rn+1 →R

n+1, z := (x1, . . . , xn, y)
T 	→ f (z)

is smooth, say in C2, with respect to all n + 1 variables. One might think of x1
playing the role of a time and of x2, . . . , xn referring to space coordinates. For
x0(ξ)= (0, ξ2, . . . , ξn)T, condition (2.18) is an initial condition with the initial val-
ues u0(ξ). The box shape ofQ is taken just for simplicity, the “initial data”x = x0(ξ)

and u= u0(ξ) are to be smooth, say in C2, on a neighborhood of Q. In case a divi-
sion by f11(z) is allowed in (2.17), we can take f11(z)≡ 1 without loss of generality.
We have encountered such first-order partial differential equations in (2.3b), (2.7)
and, before, in (1.45) and (1.46).

The values of u are given on the hypersurface H = graph(x0) of dimension (n−
1) in R

n. Let Ĥ denote the (n− 1)-dimensional surface in R
n+1 given by (2.18).

For an illustration, we consider

ux1 + f1(x1, x2, u)ux2 = f2(x1, x2, u) with x10 = 0, x20 = ξ, u= u0(ξ) (2.19)

for (x1, x2, u) ∈R×R
2×R and ξ ∈ [0,1]. Here, H is the interval {0}×[0,1]×{0},

and Ĥ is the graph {(0, ξ, u0(ξ)) : ξ ∈ [0,1]}.
The PDE (2.17) can be rewritten as

(
ux(x),−1

)
f
(
x,u(x)

)= 0 or as (2.20a)
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vz(z)f (z)|v=0 = 0, v(z) := u(x)− y. (2.20b)

These Eqs. (2.20a) or (2.20b) are exactly the equations that characterize

M = {z : v(z)= 0
}= {(x, y) : y = u(x)} (2.21)

as an invariant surface in the z-space for the vector field f = f (z):
• Given a smooth surface of the form y = u(x) and given a solution z(t) of the

autonomous system

ż= dz
dt
= f (z), z(0)= z0 (2.22)

on its maximal interval Imax of existence, we assume its components x(t) and
y(t) to satisfy y(0)= u(x(0)). Then the following is true:

y(t)= u(x(t)) ⇔ vz
(
z(t)
)
f
(
z(t)
)= (ux

(
x(t)

)
,−1

)
f
(
x(t), y(t)

)= 0.
(2.23)

We now present the method of characteristics, one way of solving the PDE (2.17)
under the side condition (2.18). In a first step, we associate the autonomous (n+ 1)-
dimensional system

ż= dz
dt
= f (z), z|t=0 = z0(ξ)=

(
x0(ξ)

u0(ξ)

)
, (2.24)

for ξ ∈Q. We denote its solution by

z=
(
x

y

)
=
(
ϕ1(t, ξ)

ϕ2(t, ξ)

)
= ϕ(t, ξ) with ϕ(0, ξ)= z0(ξ). (2.25)

The flow of (2.24) carries along the initial values from Ĥ and thus generates at
least a small piece of the solution surface. This surface is parameterized by the n-
dimensional (t, ξ) (instead of the desired n-dimensional x). In the second step, we
ask for the smooth invertibility of the n-dimensional mapping x = ϕ1(t, ξ) near
0 × Q. By the implicit function theorem, a sufficient condition for such a local
inverse (t, ξ)= ϕ−1

1 (x) is satisfied if the vector field f1 at the point z0(ξ) is not in
the tangent space of H at x0(ξ), that is, if

det

(
f1
(
z0(ξ)

)
,
∂x0

∂ξ
(ξ)

)

= 0. (2.26)

In the third step, we define

y = u(x) := ϕ2
(
ϕ−1

1 (x)
)

(2.27)

and v(z) = u(x) − y. This function y = u(x) is indeed a solution of (2.18) and
(2.17), as can be proved by a tedious application of the chain rule.
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The solutions z = ϕ(t, ξ) from (2.25) are called the characteristics of (2.17)
and (2.18). The x-components x = ϕ1(t, ξ) are then the projections of the charac-
teristics. Two different z-curves cannot intersect, but their projections into x-space
can. In general, such an intersection point presents an obstruction for the above in-
vertibility requirement of x = ϕ1(t, ξ). Sometimes in the literature, the x-curves are
also called characteristics.

In the above example (2.19), the associated ODE system (2.22) reads

∂x1

∂t
= 1, x1|t=0 = 0,

∂x2

∂t
= f1(x1, x2, y), x2|t=0 = ξ,

∂y

∂t
= f2(x1, x2, y), y|t=0 = u0(ξ).

(2.28a)

Because of x1 ≡ t , this autonomous IVP (2.28a) can be written as the nonau-
tonomous initial value problem

∂x2

∂t
= f1(t, x2, y), x2|t=0 = ξ,

∂y

∂t
= f2(t, x2, y), y|t=0 = u0(ξ).

(2.28b)

In the latter case, the surface y = u(t, x) is often called an integral manifold of the
nonautonomous ODE (2.28b), in contrast to the time-invariant invariant manifolds
of the previous sections.

Example 2.5 (Integral manifolds for “linear” systems) The simplest example is the
one considered in Example 1.23. Another easy example is given by

ut − axux = bu, u(0, ξ)= u0(ξ), ξ ∈R, (2.29)

where the coefficients f1 = −ax and f2 = bu are linear functions with positive
constants a and b. The solution of (2.29) defines a smooth surface (integral man-
ifold) {(t, x,u) : u = u(t, x) = ebtu0(e

atx)} in the (t, x,u)-space passing through
the initial curve (0, x,u0(x)). Along the projection of the characteristics, given
by x = e−at ξ , the values of u are given by u = ebtu0(ξ), so that they are un-
bounded on the t-interval [0,∞) unless u0(ξ) is zero. The only initial function
leading to a bounded surface u = u(t, x) over the t-range [0,∞) is the trivial one
u0(ξ)≡ 0, which corresponds to the stable eigenspace of the linear ODE ∂x

∂t
=−ax,

∂u
∂t
= bu. If the initial function is given by an orbit of the latter system, for ex-

ample, u0(ξ) = ξ−b/a for ξ > 0, then the integral manifold is independent of t
(u= u(t, x)= x−b/a for x > 0).
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Exercise 2.6 (Migration and traffic flow models)

(a) Migration model: Compute the solution u= u(t, x) of

ut −
(
px(x)u

)
x
= 0, u(0, x)= 1 for x ∈R, (2.30)

with the “potential” p(x) := x(x2 − 3). What role do the local extrema of p
play? Why might (2.30) be called a migration model?

(b) Traffic flow model: Compute the piecewise smooth solution u= u(t, x) of

ut + (1− 2u)ux = 0 (2.31)

for the piecewise linear initial condition u(0, x) given by 1
3 for x ≤ 0, by 5

12x+ 1
3

for 0≤ x ≤ 1, and by 3
4 for x ≥ 1 via the method of characteristics on the largest

possible region in (t, x)-space. Sketch u(t, x) for t = 0, t = 3/5, t = 6/5, and
t = 9/5. Why might (2.31) be called a traffic flow model? What property of
u(t, x) could be interpreted as traffic jam?

The following exercise introduces the simplest setup for the quasilinear first-
order PDE of chromatographic separation. Higher-dimensional chromatographic
separation processes will de discussed in Sect. 1.5.

Exercise 2.7 (Chromatographic separation—Riemann problem) We consider the
first-order scalar PDE problem

∂

∂t

(
u+ q(u))+ ν ∂

∂x
u= 0, u(0, x)= g(x), (2.32a)

for x ∈R and

q(u) := au

1+ bu (2.32b)

with positive parameters ν, a, and b or the equivalent representation

ut + λ(u)ux = 0, u(0, x)= g(x), (2.33a)

λ(u)= ν[1+ qu(u)
]−1 = ν[1+ a(1+ bu)−2]−1

. (2.33b)

A third representation is given by

ut +
(
Λ(u)

)
x
= 0, u(0, x)= g(x), Λ(u)=

∫ u

0
λ(η)dη (2.34)

with a fixed anti-derivative Λ(u) of λ(u). In the Riemann problem, the initial func-
tion g is chosen to be a step function with g(x)= γ− for x < 0 and g(x)= γ+ for
x ≥ 0, given γ− < γ+.

In the method of characteristics, one associates the ODE problem

dx

dt
= λ(u), x|t=0 = ξ, du

dt
= 0, u|t=0 = 0 (2.35)
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first for ξ < 0, then for ξ ≥ 0. The solutions of (2.35) are

x = ϕ(t, ξ) := λ(g(ξ))t + ξ, u= u(t, ξ)= g(ξ)
so that the solution of the PDE problem (2.7) is given by u= u(t, x)= g(ψ(t, x))
for the inverse function ξ =ψ(t, x) of x = ϕ(t, ξ). We arrive at

ξ = x − λ(γ−)t and u= g(x − λ(γ−)t
)= γ−, ξ < 0,

ξ = x − λ(γ+)t and u= g(x − λ(γ+)t
)= γ+, ξ ≥ 0.

Thus, u remains undetermined over the sector

S = {(t, x) : t > 0, λ(γ−)t ≤ x < λ(γ+)t
}
. (2.36)

One way to define an extension of U over S is a continuous one: We set

u(t, x)= σ + γ− for x = λ(σ )t, σ ∈ [0, γ+ − γ−] (2.37)

satisfying u(t, λ(0)t) ≡ γ− and u(t, λ(γ+ − γ−)t) ≡ γ+. In chemical engineering,
this ramp-like extended u= u(t, x) is called a rarefaction wave.

An alternative way is to define a step function, a so-called shock wave, by putting

u≡ γ− for x − λ∗t < 0, u≡ γ+ for x − λ∗t ≥ 0

for a λ∗ ∈ [λ(γ−), λ(γ+)]. In order to have a physically meaningful solution, the
shock line x = λ∗t should satisfy the Rankine–Hugoniot condition

λ∗[γ+ − γ−] =Λ(γ+)−Λ(γ−)=
∫ γ+

γ−
λ(η)dη.

This condition arises from an application of Green’s theorem to (2.34) (cf. [25],
Sect. 3.4.1).

1.2.3 Normal Form and Blow-Up Transformations

1.2.3.1 Normal Form Transformations

We consider the planar time-invariant differential system

ẋ =Ax + f (x)+R(x) (2.38)

where f (x) belongs to the class Pd of homogeneous polynomials of degree d for
d = 2. The remainder term R ∈ C∞ is to be of higher order: R(x)=O(|x|d+1). The
function f can be written as

f (x)=
6∑

i=1

bi(x)βi ≡ B(x)β (2.39)
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with respect to the basis vectors

b1(x)=
(
x2

1
0

)
, b2(x)=

(
x1x2

0

)
, b3(x)=

(
x2

2
0

)
,

b4(x)=
(

0
x2

1

)
, b5(x)=

(
0
x1x2

)
, b6(x)=

(
0
x2

2

)
.

(2.40)

We define B := [b1(.), . . . , b6(.)] and β := (β1, . . . , β6)
T. Any f ∈P2 can be writ-

ten as f (x)= F(x, x) with the symmetric second-order form

F(x, ξ)=
(
f20x1ξ1 + 1

2f11[x1ξ2 + x2ξ1] + f02x2ξ2

f̂20x1ξ1 + 1
2 f̂11[x1ξ2 + x2ξ1] + f̂02x2ξ2

)

. (2.41)

Here, for example, we have f20 = β1, f11 = β2, and f02 = β3. The goal now is to
find a local transformation

y = x +H(x,x), h(x)≡H(x,x) ∈P2, (2.42)

with inverse transformation

x = y −H(y,y)+O
(|y|3), (2.43)

such that the resulting transformed differential equation

ẏ =Ay + q(y) (2.44)

does not contain any quadratic terms: q(y)
!= O(|y|3). Under what conditions on

the eigenvalues and eigenvectors of A is this possible? The answer is given by linear
algebra. The transformed differential equation is given by

ẏ = (I + hx(x)
)(
Ax + f (x))=Ax + f (x)+ hx(x)Ax +O

(|x|3)

=Ay + [f (y)−Ah(y)+ hx(y)Ay
]+O

(|x|3)

with the Jacobian

hx(x)=
(

2h20x1 + h11x2 h11x1 + 2h02x2

2ĥ20x1 + ĥ11x2 ĥ11x1 + 2ĥ02x2

)
=:Dh(x),

and with the operator

LA(h)(y) :=Dh(y)Ay −Ah(y) (2.45)

the transformed equation reads

ẏ =Ay + [LA(h)(y)+ f (y)
]+O

(|y|3). (2.46)
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The operator LA is a linear operator acting on P2, sometimes written with the help
of the Lie (or Poisson) bracket [a,h] =Dha −Dah for a(y) :=Ay.

To derive a coordinate representation, we compute LA(bi) for the basis elements
from (2.40) and thus arrive at a (6× 6)-matrix representation LA for LA with

LAB = BLA. (2.47)

We now investigate the following questions: Under what conditions does the homo-
logical equation

LA(h)(y)+ f (y)= 0 (2.48a)

have, for every f = Bβ ∈P2, a solution h= Bη ∈P2? When does LA have 0 as
an eigenvalue?

In terms of the chosen basis and the associated coordinates, we discuss the linear
inhomogeneous equation BLAη+Bβ = 0 or, equivalently,

LAη+ β = 0. (2.48b)

This equation is solvable for all η ∈ R
6 if and only if the (6× 6)-matrix LA does

not have an eigenvalue equal to 0. So, in case of a regular LA, all quadratic terms in
(2.46) can be eliminated, and (2.44) can be achieved. In case of a singular LA, some
of the six quadratic terms may not be removable.

One has the following characterization for a regular LA:

• The conditions for the solvability of LA(h)(y) + f (y) = 0 for all f ∈Pd are
the nonresonance conditions

(m1λ1 +m2λ2)− λj 
= 0 (2.49)

for m1,m2 ∈N0 with m1 +m2 = d and the eigenvalues λj of A (j = 1,2).

We consider the following three cases for A ∈R
2×2:

(i) A=
(
λ1 0
0 λ2

)
, (ii) A=

(
α −β
β α

)
, (iii) A=

(
λ1 1
0 λ2

)

(2.50)
with λ1/2 = α ± iβ /∈R in (ii) and λ= λ1 = λ2 in (iii).

In the following remark, we illustrate the normal form computations for the case
(ii) in (2.50) and thereby derive the nonresonance conditions (2.49). The first case
(i) is easily discussed and is left to the reader. The third case will be addressed in
Exercise 2.9.

Remark 2.8 (Normal form for case (ii)—Hopf bifurcation) We illustrate the normal
form computations for the second case (ii) and set λ= α+ iβ and z= x1+ ix2. Then
Eqs. (2.38) and (2.42) take the form

ż = λz+ F(z, z)= λz+ F20z
2 + F11zz̄+ F02z̄

2 +O
(|z|3), (2.51a)
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w = z+H(z, z)= z+H20z
2 +H11zz̄+H02z̄

2. (2.51b)

So the transformed equation (2.46) reads

ẇ = λw+ F(w,w)+LA(H)(w,w)+O
(|w|3), (2.52)

LA(H)(w,w) =
(
D1H(w,w),D2H(w,w)

)(λw
λw

)
− λH(w,w) (2.53)

for the derivativesD1H(z, z̄)= 2H20z+H11z̄ andD2H(z, z̄)=H11z+2H02z̄. For
the monomialsM =wm1w̄m2 in P2, we have

LA(M)= (m1λ+m2λ̄− λ)M,
so that 0 is not an eigenvalue of LA in the present case. Thus, the inhomoge-
neous equations corresponding to (2.48a), (2.48b) possess solutions for any given
quadratic F(z, z̄); the homological equation (2.48a) now becomes

(λH20 + F20)w
2 + (λ̄H11 + F11)ww̄+

(
(2λ̄− λ)H02 + F02

)
w̄2 = 0,

so that one can read off the values of the Hjk eliminating the quadratic terms in
(2.52). Consequently, the differential equation (2.52) can be transformed into one of
the form

ż= λz+ F(z, z)= λz+ F30z
3 + F21z

2z̄+ F12zz̄
2 + F03z̄

3 + · · · . (2.54a)

We now proceed with the class P3 of homogeneous cubic polynomials. As above,
we choose a transformation

w = z+H(z, z)= z+H30z
3 +H21z

2z̄+H12zz̄
2 +H03z̄

3 (2.54b)

to simplify the cubic expression of the resulting differential equation for w by elim-
inating as many cubic terms as possible. The operator LA(H) is still of the form
(2.53), but now with D1H(z, z̄) = 3H20z

2 + 2H21zz̄ + H12z̄
2 and D2H(z, z̄) =

H21z
2 + 2H12zz̄+ 3H03z̄

2. For the monomialsM =wm1w̄m2 in P3, we compute

LA(M)= (m1λ+m2λ̄− λ)M.
The monomial w2w̄ is “critical” since 2λ+ λ̄− λ = λ+ λ̄ vanishes for α = 0. In
this case, we cannot solve the homological equation: We put H21 = 0 and compute
the remaining Hm1m2 from

(m1λ+m2λ̄− λ)Hm1m2 + Fm1m2 = 0.

So we pass from (2.54a) to an equation of the form

ẇ = [λ−K|w|2 +O
(|w|3)]w (2.55)
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with a constant K = K1 + iK2 ∈ C that can be given explicitly in terms of the
original coefficients in (2.38).

In summary, a smooth planar system

ẋ =
(
α −β
β α

)
x + f (x)+R(x) (2.56)

of the form (2.38) can be transformed into the following normal forms in Cartesian
and polar coordinates:

ẋ =
(
α −K1r

2 −β +K2r
2

β −K2r
2 α −K1r

2

)
x +O

(|x|3), (2.57)

ṙ = [α −K1r
2 +O

(
r3)]r, θ̇ = β −K2r +O

(
r2). (2.58)

When dropping the O-terms, we have arrived at the normal form for the Hopf bifur-
cation (cf. (1.29b) and Sect. 1.2.4). In Remark 3.14, we will prove that the normal
form (2.57) is such that the dynamics of the truncated system

ẋ =
(
α −K1r

2 −β +K2r
2

β −K2r
2 α −K1r

2

)
x (2.59)

is “equivalent” to the dynamics of the full system (2.57). In particular, we will show
that an exponentially stable limit cycle of (2.59) is persistent in the sense that the
full system (2.57) has an exponentially stable limit cycle nearby.

An alternative way to arrive at the form (2.58) would be the one via averaging
transformations. Here, we would first introduce polar coordinates (r, θ) in (2.56)
and pass to the ∂r

∂θ
-equation. In the second step, we would change the coordinates in

the form r = z+G(z, θ,α) to arrive at the form (2.58) (cf. [29, 30] and [17, 45]).

Exercise 2.9 (Takens–Bogdanov normal form (cf. [2] and [63]))

(a) Consider case (iii) in (2.50) with λ= 0. In this case, LA has a four-dimensional
range in P2, so that there exist two-dimensional subspaces S complementary
to the four-dimensional range. Show that span{b1, b4} and span{b4, b5} are two
possible choices for S (cf. (2.40)). Thus, we can assume w.l.o.g. the smooth
planar system (2.38)

ẋ =A0x + f (x)+R(x), A0 =
(

0 1
0 0

)
, (2.60)

to be in the normal form

(I) ẋ1 = x2 + ax2
1 +O

(|x|3), ẋ2 = bx2
1 +O

(|x|3) or

(II) ẋ1 = x2 +O
(|x|3), ẋ2 = cx2

1 + dx1x2 +O
(|x|3),
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respectively, with only two quadratic terms. Another normal form would be the
Takens–Bogdanov normal form

ẋ1 = x2, ẋ2 = a + bx1 + x2
1 ± x1x2 +O

(|x|3). (2.61)

Given a smooth two-dimensional system ẋ = F(x,p1,p2) depending on two
real parameters with F(0,0,0)= 0 and Fx(0,0,0)=A0, it can be transformed
into (2.61) with two (new) real parameters a and b.

(b) Consider (2.61) in the special form

ẋ1 = x2, ẋ2 = a + bx1 + x2
1 − x1x2 (2.62)

with real parameters a, b. Compute the equilibria E± = E±(a, b) and consider
the linearizations at E±(a, b). Decide for which (a, b) they correspond to sad-
dles, to stable nodes (foci), or to unstable nodes (foci). Run simulations and
generate numerically phase portraits of (2.62) for a = cos(s), b =− sin(s) for
a sequence of s-values running from 0 to 2π .

1.2.3.2 Desingularization via Blow-Ups

Given a problem setting that is singular in some sense, a regular transformation
will preserve the singular character, whereas a singular transformation might turn it
into a regular one (cf. [2]). For instance, given the scalar one-parameter differential
equation

ẋ = f (x,α) := α3x + α2x2 − x5, x ∈R, α ∈R, (2.63)

with f (0,0) = 0 and the singular derivative fx(0,0) = 0, the local equilibria x =
x(α) cannot be derived from a direct application of the implicit function theorem
near (0,0). The singular transformations (x,α)→ (v,α), x = αv, and (x,α)→
(w,β), x = β2w = α2/3w, lead to

v̇ = α3v
(
1+ v− αv4)= α3vg(v,α),

ẇ = β6w
(
β +w−w4)= β6wh(w,β),

respectively. We note that g(v,α) = 0 and h(w,β) = 0 have unique solutions v =
v(α) (with v(0) = −1) and w = w(β) (with w(0) = 1) by the implicit function
theorem. Consequently, we arrive at local equilibria x = x1/2(α) for (2.63) of the
form x1 = α[−1+ · · · ] and x2 = α2/3[1+ · · · ]. The above scaling transformations
can be read off the Newton diagram (cf. [17, 29]).

Example 2.10 (Blow-up transformations in the linear case) We continue the dis-
cussion, started in Remark 1.6, of a linear system

(
ẋ

ẏ

)
=
(
a b

c d

)(
x

y

)
or

dy

dx
= cx + dy
ax + by , (2.64)
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where we assume the system matrix to have two real eigenvalues

λ1/2 = α ± β, α := 1

2
(a + d), β :=

√
1

4
(d − a)2 + bc,

and, for definiteness, we take b > 0. We discuss two transformations R and P in the
right half-plane x > 0:

(x, y)
R−→ (x, v) : y = vx, (2.65)

(x, y)
P−→ (r, θ) : x = (r − 1) cos θ, y = (r − 1) sin θ, (2.66)

with r > 1 and |θ | < π/2. The Jacobians of these transformations become un-
bounded in the limit x→ 0, and their inverses become singular. Note that the sin-
gleton (x, y)= (0,0) corresponds to the v-axis and to the unit circle {r = 1} for R
and P , respectively. Concerning the transformation R, recall the discussion of the
homogeneous equation (1.32).

(i) The transformation R from (2.65), called radial blow-up, leads to the quadratic
cascade system

ẋ = [a + bv]x,
v̇ = c+ (d − a)v− bv2 =−b[(v − v1)(v − v2)

] (2.67a)

for bv1/2 = 1
2 (d − a)± β , where the scalar v-equation is easily analyzed. Of

course, system (2.67a) might be discussed for x ≥ 0. It obviously possesses the
invariant v-axis {x = 0} and the invariant half-lines V1/2 = {(x, v1/2) : x ≥ 0}
with the reduced systems

v̇ =−b[(v− v1)(v − v2)
]

and ẋ = [a + bv1/2]x = λ1/2x (2.67b)

respectively. System (2.67a) possesses the two equilibria E1/2 = (0, v1/2)
T

with linearizations
(
ẋ

v̇

)
=
(
λ1/2 0

0 ±(λ2 − λ1)

)(
x

v

)
. (2.67c)

The half-lines V1/2 in the (x, v)-space are representations of the invariant
half-lines of the original system (2.64) within the eigenspaces spanned by
(1, v1/2)

T.
In case of two different negative eigenvalues λ2 < λ1 < 0, we have β > 0

and v2 < v1. Thus, the equilibrium E1, corresponding to λ1, is a stable node
and the equilibrium E2, corresponding to λ2, is a saddle point. Here, the di-
rection of the stable eigenspace of the saddle E2 corresponds to the strongly
stable eigenspace of the original system (2.64) (cf. Remark 1.6).
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(ii) We would like to point out that this approach to the strongly stable eigenspace
is not confined to planar systems. For instance, given an (n+ 1)-dimensional
system

(
ẇ

ż

)
=
(
A 0
0 λn+1

)(
w

z

)
, (2.68a)

where λn+1 ∈R satisfies λn+1 < Re(λj ) < 0 for all the eigenvalues λ1, . . . , λn
of A ∈R

n×n, the transformation w = zv, z > 0, with an n-dimensional v leads
to

ẇ = Âw, v̇ = λn+1v (2.68b)

with Â = A − λn+1I having all its eigenvalues in the right half-plane C
+.

Hence, the stable eigenspace of (2.68b) corresponds to the strongly stable
eigenspace of (2.68a) where solutions decay like exp(λn+1t) as t→∞.

(iii) The transformation P from (2.66), called polar blow-up, leads to the cascade
system

ρ̇ = [a cos2 θ + (b+ c) cos θ sin θ + d sin2 θ
]
ρ, ρ = r − 1,

θ̇ = [c cos2 θ + (d − a) cos θ sin θ − b sin2 θ
] (2.69a)

or, equivalently, after a time scaling, to

ρ′ = [a + (b+ c) tan θ + d tan2 θ
]
ρ, ρ = r − 1,

θ ′ = [c+ (d − a) tan θ − b tan2 θ
]
.

(2.69b)

This system is now discussed in complete analogy to system (2.67b) (with tan θ
replacing v).

(iv) Of course, this approach is not confined to planar systems. For instance, in the
orthant Rn+, we might employ

x = |x|2 x|x|2 = rv, r := |x|2, v := x

|x|2
(|v|2 = 1

)
, (2.70)

x = |x|1 x|x|1 =Hw, H := |x|1, w := x

|x|1
(|w|1 = 1

)
(2.71)

with v ∈ R
n+ and w ∈ R

n+ satisfying the given constraints. The transformation
(2.70) represents generalized polar coordinates with the “angles” v and the
amplitude r , the transformation (2.71) stands for the passage to relative coor-
dinates w with H taking the role of an amplitude.

Exercise 2.11 (Blow-up transformations in the nonlinear case)

(i) Use the radial blow-up transformation y = vx from (2.65) in

ẋ =−γ x + y, ẏ =−y + δx2, (2.72a)
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with positive parameters γ and δ to derive

ẋ = x[v − γ ], v̇ = (γ − 1)v+ δx − v2. (2.72b)

Discuss the equilibria of (2.72b) and their stability properties and give an in-
terpretation of the results in the original (x, y)-plane.

(ii) Let us consider the planar system

ẋ = x(x − 2y), ẏ = y(y − 2x) (2.73)

possessing the origin E = (0,0) as its only equilibrium. The linearized system
at E is trivial: both eigenvalues are 0. We observe that the axes are invariant
with ẋ = x2 for y = 0 and ẏ = y2 for x = 0. So we confine our considerations
to the invariant right half-plane (with x > 0).

(a) With the radial blow-up from (2.65), that is, u = x, vu = y, the resulting
differential equations for x > 0 are u̇ = u(1− 2v) and v̇ = 3v(v − 1) or,
after a time scaling with u 
= 0,

u̇= u(1− 2v), v̇ = 3v(v− 1). (2.74)

Thus, we have a stable steady state v0 = 0 and an unstable steady state
v1 = 1 leading to y ≡ 0 and y ≡ x, respectively. The “flow” on y ≡ x is
inwards because of ẋ =−x3 on y ≡ x. Derive the phase portraits of (2.74)
for u > 0 and of (2.73) in the whole (x, y)-plane.

(b) With the polar blow-up from (2.66), that is, x = ρ cos(θ), y = ρ sin(θ)
with ρ = r − 1> 0, and a time scaling, the resulting differential equations
are

ρ′ = ρ[cos3+ sin3−2 cos sin(cos+ sin)
]
(θ),

θ ′ = 3
[
cos sin(sin− cos)

]
(θ).

(2.75)

Thus, we have the steady states θ0 = 0 mod π , θ1 = π
2 mod π , and θ2 =

π
4 mod π leading to invariant half-lines. Derive the phase portraits of (2.75)
for u > 0 and of (2.73) in the whole (x, y)-plane.

Note that system (2.73) is a homogeneous system, so solutions can be com-
puted as indicated for Eq. (1.32).

(iii) Let us consider the planar system

ẋ = 2y − x2 − y2, ẏ =−xy (2.76)

possessing the origin E0 = (0,0) and the saddle E2 = (0,2) as equilibria. De-
rive the phase portrait of the above system (2.76) using its symmetry properties
and the blow-up transformation (x, y)→ (u, y) with 2yu− x2 = 0 whenever
it is well defined. Compute explicitly the heteroclinic orbit joining E0 and E2.
Note that the phase portrait of (2.76) can be established easily with the help of
an x-independent integrating factor μ(y)= y−3/2.
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1.2.4 Steady-State and Hopf Bifurcations

We have seen in Remark 1.15 that in smooth scalar systems ẋ = f (x,α), depending
on a real parameter α, there might occur bifurcations from an equilibrium curve
x = q(α). As long as the “Jacobian”fx(q(α0), α0) is regular, there is a unique
branch of equilibria through (q(α0), α0), and there is no change in the number of
equilibria. In case this derivative vanishes, this is not longer guaranteed. Let us con-
sider

ẋ = f (x,α)= f (0, α)+ fx(0, α)x + F2(α)x
2 + F3(α)x

3 + · · ·
= fx(0,0)x + fα(0,0)α + f20x

2 + f11xα + f02α
2 + f30x

3 + · · · (2.77)

near (x,α) = (0,0). The standard forms are presented in (1.28a)–(1.28c). For
fx(0,0) 
= 0, the implicit function theorem guarantees the unique local solvabil-
ity of f (x,α) = 0 in the form of x = q(α). If (2.77) possesses the trivial branch
x = 0, then it can be written as

ẋ = xF(x,α)= x[f11α+ f20x + f30x
2 + · · · ]. (2.78)

For f11 > 0, where fx(0, α) passes at α = 0 in a transversal way from negative to
positive values, the trivial branch is asymptotically stable for negative α and un-
stable for positive α. Moreover, the equation F(x,α) = 0 can be addressed by the
implicit function theorem in case f20 
= 0 and also in case f20 = 0, f30 
= 0. In the
first case, we arrive locally at a unique equilibrium curve x = −f11α/f20 + · · · ,
which is unstable for negative α and asymptotically stable for positive α (transver-
sal bifurcation). In the latter case, we have the unique equilibrium curve α = p(x)=
−f30x

2/f11 + · · · , and thus

x =±
[
−f11α

f30
+O

(
α2)
]1/2

for f11f30α < 0. (2.79)

In this pitchfork bifurcation scenario, we arrive at (i) two asymptotically stable equi-
libria for negative f30 and positive α or at (ii) two unstable equilibria for positive
f30 and negative α. So we have reached the following:

• PRINCIPLE OF EXCHANGE OF STABILITY:
Under the transversality assumption fxα(0,0) 
= 0 on the linearization fx(0, α)

and the nondegeneracy assumption f 2
20+f 2

30 
= 0 on the “unperturbed” right-hand
side f (x,0), the change in the stability of the trivial solution branch x = 0 entails
the transversal or the pitchfork bifurcation to additional equilibrium branches.
The stability properties of these are opposite to those of the trivial branch.

We will see that this kind of principle is also applicable in the case of bifurca-
tions to limit cycles or periodic solutions (see Theorem 2.12 below), given a one-
parameter Ck-system

ẋ = f (x,λ) with equilibria x = p(λ) (2.80)
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for x in some region G⊂ R
2 and λ in an open interval Λ⊂ R. Here we present an

algorithm that produces the essential data, that is, the values for α, β , and K1, in the
truncated normal form (2.59). For an outline of the proof of Theorem 2.12, we refer
to Remark 3.14.

Algorithm for Hopf bifurcation Given (2.80), let

J (λ)= fx
(
p(λ),λ

)
(2.81a)

denote the Jacobian, and let s(λ) and d(λ) denote its trace and determinant, respec-
tively. The eigenvalues of J (λ) are thus given by 1

2 [s(λ)±
√
s2(λ)− 4d(λ)].

(a) Determine a “critical” parameter value λc with s(λc) = 0 and d(λc) > 0 and
define

iβ :=√d(λc). (2.81b)

(b) Determine a right eigenvector U + iV of J (λc) corresponding to the eigenvalue
iβ and substitute

x =
(
x1
x2

)
= p(λc)+ [U,−V ]

(
u

v

)

to obtain
(
u̇

v̇

)
=
(

0 −β
β 0

)(
u

v

)
+
(
g(u, v,λc)

h(u, v,λc)

)
(2.81c)

with

g(u, v,λc) = g20u
2 + g11uv+ g02v

2 + g30u
2 + g21u

2v

+ g12uv
2 + g03v

3 + · · · ,
h(u, v,λc) = h20u

2 + h11uv+ h02v
2 + h30u

2 + h21u
2v

+ h12uv
2 + h03v

3 + · · · .
(c) Define

K1 : = 1

8β

[
2g20h20 − g11(g20 + g02)+ h11(h20 + h02)− 2g02h02

]

− 1

8
[3g30 + g12 + h21 + 3h03]. (2.81d)

(d) Determine a left eigenvector (W + iZ)∗ of J (λc) corresponding to the eigen-
value iβ , that is, (W + iZ)∗J (λc)= (W + iZ)∗iβ , and define (cf. Remark 2.13)

α := Re

(
(W + iZ)∗Jλ(λc)(U + iV )
(W + iZ)∗(U + iV )

)
. (2.81e)
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Theorem 2.12 (Hopf Bifurcation (cf. [17, 29, 63, 67])) For α 
= 0 and K1 
= 0,
there are four cases for sufficiently small |λ− λc|:
(1) α > 0 and K1 > 0: The equilibria p(λ) are exponentially stable for λ≤ λc and

unstable for λ > λc. Moreover, there exists a unique closed orbit Γ (λ) near
p(λ) for λ > λc, and Γ (λ) is an exponentially stable limit cycle.

(2) α < 0 and K1 < 0: The equilibria p(λ) are unstable for λ ≤ λc and exponen-
tially stable for λ > λc. Moreover, there exists a unique closed orbit Γ (λ) near
p(λ) for λ > λc, and Γ (λ) is an exponentially unstable limit cycle.

(3) α > 0 and K1 < 0: The equilibria p(λ) are exponentially stable for λ < λc and
unstable for λ ≥ λc. Moreover, there exists a unique closed orbit Γ (λ) near
p(λ) for λ < λH , and Γ (λ) is an exponentially unstable limit cycle.

(4) α < 0 and K1 > 0: The equilibria p(λ) are unstable for λ < λc and exponen-
tially stable for λ≥ λc . Moreover, there exists a unique closed orbit Γ (λ) near
p(λ) for λ < λc, and Γ (λ) is an exponentially stable limit cycle.

The amplitude of the closed orbit Γ (λ) is in lowest order given by
√
α(λ− λc)/K1,

and the period of the periodic solution on Γ (λ) is 2π/β .

Remark 2.13 (Hopf transversality condition ([63], p. 189, and [79])) Let a(λ) +
ib(λ) denote the eigenvalue of J (λ) reducing to iβ at λ= λc, and let q(λ)=U(λ)+
iV (λ) and �∗(λ)= (W(λ)+ iZ(λ))∗ be corresponding right and left eigenvectors.
Here, J (λ) is allowed to be of dimension n× n, n≥ 2. To derive the transversality
condition ∂

∂λ
a(λc) = 1

2
∂
∂λ
s(λc) 
= 0 at criticality, we first differentiate J (λ)q(λ) =

[a(λ)+ ib(λ)]q(λ) and then multiply by a left-eigenvector �∗(λ). Since �∗(λ)q(λ)
cannot vanish, these steps lead to (2.81e) immediately. For further computational
aspects of Hopf bifurcation, we refer to Sect. 5 of [82]. An interesting application
to nested autoinhibitory feedbacks in biochemical networks can be found in [79].

Exercise 2.14 (Holling model and Brusselator model) Discuss a possible Hopf
bifurcation for suitably chosen parameters for the Holling model (1.40) (cf. [49],
p. 155) and the following Brusselator model from reaction kinetics (cf. [47], p. 102):

u̇= 1− (β + 1)u+ αu2v, v̇ = βu− αu2v.

1.2.5 Exponential Growth Rates and Eigenspaces

Our goal in this section is to characterize the invariant linear manifolds (eigenspaces)
of a two-dimensional linear system with two different real eigenvalues λ1 = a and
λ2 = b in a way that can be carried over to invariant (non)linear manifolds of a
nonlinear system near an equilibrium (see Sect. 1.3.1). We consider the perturbed
diagonal system

ẋ =
(
u̇

v̇

)
= (M +L)x, M =

(
a 0
0 b

)
, L=

(
�11 �12
�21 �22

)
(2.82)
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and assume the existence of ρ such that

b < ρ < a ρ ≥ 0. (2.83)

We have already established the following facts for the unperturbed system
ẋ =Mx:

(1) The v-axis, and hence the eigenspace to b, is characterized as the set V =
{(u, v) : u = 0 · v} of initial values that lead in forward time to solutions de-
caying at least like eρt :

∣∣ϕ(t, ξ)
∣∣e−ρt <∞.

(2) The u-axis, and hence the eigenspace to a, is characterized as the set U =
{(u, v) : v = 0 · u} of initial values that lead in backward time to solutions de-
caying at least like eρt :

∣∣ϕ(t, ξ)
∣∣e−ρt <∞.

(3) For a fixed ξ∗ = (u∗,0)T ∈U , we have

Pξ∗ :=
{
ξ : e−ρt ∣∣ϕ(t, ξ)− ϕ(t, ξ∗)∣∣<∞ on R

+}= ξ∗ + V . (2.84a)

The solutions that start in the fiber Pξ∗ are synchronized as t→∞ with the so-
lution ϕ(t, ξ∗) within the eigenspace U (with respect to the weighted distance).
For initial values ξ = (u0, v0)

T, the singleton

ξ∗ := (ξ + V )∩U = (u0,0)
T

is the uniquely determined element in U with ξ ∈ Pξ∗ . This element ξ∗ is called
the asymptotic phase of the given initial value ξ , and the fiber Pξ∗ is called the
inverse asymptotic phase.

(4) For a fixed ξ∗ = (0, v∗)T ∈ V , we have

Qξ∗ =
{
ξ : e−ρt ∣∣ϕ(t, ξ)− ϕ(t, ξ∗)∣∣<∞ on R

−}= ξ∗ +U . (2.84b)

The solutions that start in the fiber Qξ∗ are synchronized as t → −∞ with
the solution ϕ(t, ξ∗) within the eigenspace V (with respect to the weighted
distance). For initial values ξ = (u0, v0)

T, the singleton

ξ∗ := (ξ +U )∩ V = (0, v0)
T

is the uniquely determined element in U with ξ ∈ Qξ∗ . This element ξ∗ is
called the asymptotic phase of the given initial value ξ in backward time, and
the fiber Qξ∗ is called the inverse asymptotic phase in backward time.
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From now on, we consider the perturbed system ẋ = (M +L)x and seek a class L
of matrices L that preserve this structure so that, for example, the invariant set of
initial values

Ũ (L)= {ξ : ∣∣ϕ(t, ξ)∣∣e−ρt <∞ on R
−} (2.85a)

can be written as a graph over u in the form Ũ (L)= {(u, v) : v = σ(u)}. Similarly,
the invariant set of initial values

Ṽ (L)= {ξ : ∣∣ϕ(t, ξ)∣∣e−ρt <∞ on R
+} (2.85b)

is to be parameterizable over v. In addition, the asymptotic phases, as t →±∞,
should be of the form (2.84a) and (2.84b). We would like to stress the fact that the
sets Ũ (L) and Ṽ (L) are invariant by definition.

We consider (2.82) close to the zero matrix O ∈ R
2×2 and write λ± = λ±(L)

for the eigenvalues of M + L (λ−(O) = b,λ+(O) = a). We seek the connected
component of O with

λ− − ρ < 0< λ+ − ρ. (2.86)

We just treat the case (2.85a). For a shorter notation, we use A := a + �11 and
B := b+ �22 in what follows.

(i) Perturbations L with �21 = 0 or �12 = 0 lead to triangular matricesM +L with
eigenvalues A and B . The desired exponential growth conditions ask for

B = b+ �22 < ρ <A= a + �11. (2.87)

The given invariance of Ũ (L) � 0 implies

�21u+Bσ(u)= v̇ = σu(u)u̇= σu(u)
(
Au+ �12σ(u)

)
, (2.88a)

and hence

σ(u)= S(L)u= �21

A−B u. (2.88b)

Here, in the linear case, it is known a priori that the solution σ is linear in u,
and thus it is easily determined. In the general nonlinear case, the existence
and uniqueness of a (2.88a)-solution σ = σ(u) is proved by the contraction
principle.

(ii) For perturbations L with �12�21 
= 0, the invariance of Ũ � 0 with respect to
(2.82) implies (2.88a) or, equivalently, the quadratic Riccati equation

S�12S +AS − SB − �21 = 0, σ (u)= Su. (2.88c)

We define the L-dependent quantities Δ := (B−A)2
4 + �12�21 and

S± = 1

�21

[
B −A

2
±√Δ

]
, λ± := A+B

2
±√Δ. (2.88d)
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For Δ > 0, the λ± are the eigenvalues of M + L, and E± = (1, S±)T are as-
sociated eigenvectors [with the convention (1,∞)= (0,1)]. In case of Δ ≤ 0,
(2.86) is violated. The function σ(u), sought for in (2.85a), is given by S+u,
and the reduced system on Ũ reads

u̇= [A+ �12S
+]u= λ+u. (2.89)

Now, condition (2.86) asks for

(A− ρ)+ (B − ρ)
2

−
√
((B − ρ)− (A− ρ))2

4
+ �12�21 < 0,

(A− ρ)+ (B − ρ)
2

+
√
((B − ρ)− (A− ρ))2

4
+ �12�21 > 0.

In addition, the �ij need to fulfill (2.87) andΔ> 0. Because of b+ �22−ρ < 0,
all these constraints are equivalent to

�12�21

[a + �11 − ρ][b+ �22 − ρ] < 1. (2.90)

Proposition 2.15 (Weak coupling condition) Given the linear system (2.82) un-
der assumption (2.83), we suppose the perturbation terms �ij to satisfy the weak
coupling conditions

b+ |�22|< ρ < a − |�11|, (2.91a)

κ := |�12‖�21|
[a − |�11| − ρ][ρ − b− |�22|] < 1. (2.91b)

Then the perturbed system (2.82) possesses the invariant sets

Ũ = {ξ : ∣∣ϕ(t, ξ)∣∣e−ρt <∞ on R
−}, Ṽ = {ξ : ∣∣ϕ(t, ξ)∣∣e−ρt <∞ on R

+},
(2.92)

and these sets are given by the unstable linear subspace {(u, v) : v = S+u} and the
stable linear subspace {(u, v) : u= v/S−}, respectively. Concerning the asymptotic
phases and their fibers, in addition, we have:

ξ∗ ∈ Ũ ⇒ P̃ξ∗ = ξ∗ + Ṽ , ξ∗ ∈ Ṽ ⇒ Q̃ξ∗ = ξ∗ + Ũ . (2.93)

We just note that conditions (2.91a) and (2.91b) imply (2.87) and (2.90), respec-
tively. For an illustration of Proposition 2.15, we refer to Fig. 6.

An alternative form of the weak coupling condition (2.91b) is given by

det

(
a − |�11| − ρ −|�12|

|�21| b+ |�22| − ρ
)
< 0, (2.94)
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Fig. 6 Stable eigenspace E+
(in green) and unstable
eigenspace E+ (in red) with
asymptotic phase ξ∗ ∈E+
and associated fiber ξ∗ +E−
(in blue dashes) for
system (2.82)

asking for a positive and a negative eigenvalue of the system matrixM+L−ρI in a
worst-case scenario. In the nonlinear setting ẋ =Mx+g(x) with g(0)= 0, the |�ij |
result from Lipschitz estimates of the components gi with respect to the variables
xj (i, j = 1,2), and the κ in (2.91b) will turn out to be a contraction rate.

1.3 Geometric Theory of Nonlinear Autonomous Systems in R
n

In Sect. 1.3.1, the classical Hartman–Grobman theorem of is first discussed. It deals
with the question when a nonlinear system ẋ = Cx + g(x) is topologically equiva-
lent to the linear system ẋ = Cx. Then we turn to the basic result on global center-
stable manifolds for nonlinear systems. As it turns out, it is the complete geometric
analogue to the two-dimensional linear one of the previous Sect. 1.2.5 (see, in par-
ticular, Fig. 6). Roughly speaking, the only difference is that the linear manifolds
of Sect. 1.2.5 are to be replaced by nonlinear manifolds. In the present nonlinear
setting, the existence part relies on the uniform contraction principle, whereas, in
the previous linear setting, the manifolds could be computed explicitly.

The basic global theorem will be specialized to the standard results on local sta-
ble, unstable, and center manifolds in Sects. 1.3.2 and 1.3.3 (cf. [92]). Numerous
applications will illustrate the role these manifolds can play. Here, we would like
to mention the discussion of strongly stable manifolds (see Remark 3.8) and the
computation of traveling wave PDE solutions (see Exercises 3.7(3) and 3.16).

The fundamental reduction principle is the topic of Sects. 1.3.4 and 1.3.5. In
Sect. 1.3.4, we consider the local setup, for example, near an equilibrium or a
closed orbit, and present the basis for studying steady state and Hopf bifurcations
in higher-dimensional systems (cf. [92]). In Sect. 1.3.5, we address singularly per-
turbed nonlinear systems with two time scales in the standard form ẋ = f (x, y, ε),
εẏ = g(x, y, ε), where the time scale separation is extreme by the appearance of
the times t and τ = t/ε for small ε > 0. We discuss extensively the validity of
quasi-stationary approximations (ε = 0) and of quasi-steady-state approximations
(ε > 0, ẏ = 0).
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Finally, in Sect. 1.3.6, we present a case study in enzyme kinetics to elucidate the
difficulty of finding the proper separation into times t and τ = t/ε. Here, the small
parameter ε and the coordinates, leading to a slow x-variable and a fast y-variable,
are not given a priori; they rather have to be found in terms of the original data of
the system. A similar problem in reaction–separation processes will be studied in
Sect. 1.4.3 of the following section.

1.3.1 Global Center-Stable Manifold

Given a globally defined initial value problem system

ẋ = Cx + g(x), x(0)= ξ, (3.1)

with g satisfying a global Lipschitz condition, we denote its flow by FC+g(t, ξ).
We assume the matrix C ∈R

n×n to be uncritical in the sense that its spectrum σ(C)
does not meet the imaginary axis:

σ(C)∩ iR= ∅. (3.2)

We interpret (3.1) as a perturbation of the linear system ẋ = Cx and introduce a
class XL of “small” perturbations g. To this end, we consider the Banach space

C =
{
f :Rn→R

n : f continuous with ‖f ‖0 := sup
x∈Rn

∣∣f (x)
∣∣<∞

}

and the Banach space

X =
{
f ∈X : ‖f ‖X = ‖f ‖0 + sup

x 
=y
|f (x)− f (y)|
|x − y| <∞

}

of Lipschitz functions. We define the balls XL = {f ∈X : ‖f ‖X ≤ L} in X.

Theorem 3.1 (Hartman–Grobman (global version), cf. [17]) For sufficiently small
L, there exists a homeomorphism H(g) : Rn→ R

n, depending continuously on g,
with

H
(
FC+g(t, ξ)

)=FC

(
t,H(ξ)

)
for all t, ξ (3.3)

and

FC+g(t, ξ)= eCt ξ + eCt
∫ t

0
eC(t−s)g

(
FC+g(s, ξ)

)
ds.

This theorem tells us that the solution of the general problem (3.1) is mapped
homeomorphically onto solution of the linear problem ẋ = Cx and vice versa.
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A homeomorphism incorporates some but not necessarily much information. Con-
sider, for example, the planar system

u̇=−u+ g12v v̇ = g21u− v (3.4)

for sufficiently small |g12| and |g21| so that its solutions are homeomorphically
mapped onto the solutions of the nominal system u̇ = −u, v̇ = −v. The way the
solutions of (3.4) approach the origin depends heavily on the perturbation terms g12

and g21.
The proof of Theorem 3.1 is based exclusively on the variation of constants,

the Gronwall lemma and an intricate application of the uniform contraction princi-
ple. A local version of Theorem 3.1 can be derived too. For a generalization of the
Hartman–Grobman theorem without hyperbolicity condition (3.2), we refer to [58].

We turn to systems of autonomous ordinary differential equations with linear
parts that may have critical eigenvalues on the imaginary axis. First, we investigate
globally defined initial value problems of the form

ẋ =
(
u̇

v̇

)
=
(
Au+ g1(u, v)

Bv+ g2(u, v)

)
= Cx + g(x), x(0)= z=

(
z1
z2

)
. (3.5)

For x = (u, v)T ∈ R
p ⊕ R

q , p + q = n, let there be given norms ‖ · ‖ with |x| =
|u| + |v| together with compatible matrix norms ‖ · ‖. We impose the following
hypotheses:

H1. |gj (x)− gj (x̂)| ≤ Lj1|u− û| + Lj2|v − v̂| (j = 1,2) and |g(x)| ≤G for all
x, x̂ ∈R

n.
H2. There exist constantsM ≥ 1, α,β , and ρ ≥ 0 such that α < ρ < β and

∥∥eAt
∥∥≤Meαt for t ≥ 0,

∥∥eBt
∥∥≤Meβt for t ≤ 0.

H3. g ∈ Cm with the norm ‖g‖m ≡ sup0≤p≤m supRn |Dpg|<∞.

The unique solution of the IVP (3.5) will be denoted by x(t, z)= (u(t, z), v(t, z))T.
Since β is positive in (H2), the variable v is called the unstable variable. If all the
eigenvalues of A possess negative real parts, then u is called the stable variable, and
ρ = 0 can be chosen. If all the eigenvalues of A are on the imaginary axis, then u
is called the critical or center variable, and if A has eigenvalues with negative and
with vanishing real parts, then it is called the center-stable variable. In both cases,
ρ > 0 can be chosen arbitrarily small.

Our goal is the derivation of the substitute of a center-stable eigenspace for linear
system that can be written as a graph of a function v = σ(u) in terms of the center-
stable variable u. We remind the reader of the discussion of the linear case (see
Sect. 1.2.5 in reversed time).

We would like to point out that g(0) may be nonzero. Thus, v may denote an
angular variable. In case of a smooth function g with g(0) = 0, the matrices eAt

and eBt in hypothesis H2 come from the truncated diagonal terms of the variational
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equations:

ẇ1 =
[
A+ (g1)u(0,0)

]
w1, ẇ2 =

[
B + (g2)v(0,0)

]
w2.

For a locally defined g, we may pass to a globally defined extension g̃ with the
help of a truncation function χ from the class C∞(Rn, [0,1]), for example, with
χ(x)= 1 for |x| ≤ ε and χ(x)= 0 for |x| ≥ 2ε.

We present the main result on invariant manifolds in an extensive form, which
already offers an outline for a proof (cf. Remark 3.4(b)). As we have already seen
in Sect. 1.2.5, the Banach space

Y kρ =
{
y(·) ∈ C([0,∞),Rk) : sup

t≥0
e−ρt

∣∣y(t)
∣∣<∞

}
(3.6)

with an exponentially weighted sup-norm is expected to play a central role.

Lemma 3.2 (Weak coupling condition (cf. [92])) Under hypotheses (H1) and (H2),
we have:

(1) The set Z := {z ∈ R
n : v(·, z) ∈ Yq0 } of initial values that lead to solutions with

bounded v-components on [0,∞) is invariant, that is, z ∈Z ⇒ x(t, z) ∈Z for
all t ∈R, and allows the representations Z = {z ∈R

n : x(· , , z) ∈ Ynρ } and

Z = {z ∈R
n : ∀z1 ∈R

p∃y ∈ Ynρ : y(t)= λ(t, z1)+ S
(
y(·))(t)} (3.7a)

for

λ(t, z1)=
(
eAtz1

0

)
, S

(
y(·))(t)=

( ∫ t
0 e
A(t−s)g1(y(s)) ds

−∫∞
t
eB(t−s)g2(y(s)) ds

)

. (3.7b)

(2) Concerning the integral equation y(t)= λ(t, z1)+ S(y(·))(t) in (3.7a), (3.7b):
The map

T (μ,y) := μ+ S(y(·)), μ ∈ Ynρ , (3.8)

is a contraction mapping from Ynρ into Ynρ with contraction rate κρ for

α +ML11 < ρ < β −ML22, (3.9a)

κρ := ML12ML21

(ρ − α −ML11)(β − ρ −ML22)
< 1. (3.9b)

The uniquely determined fixed point f (μ) with f : Ynρ → Ynρ satisfies a global
Lipschitz condition |f (μ)− f (μ̂)|ρ ≤ Lf |μ− μ̂|ρ . Under the weak coupling
condition (3.9a), (3.9b), the fixed point f (μ) defines a bounded Lipschitz map-
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ping σ :Rp→R
q via

f
(
λ(·, z1)

)
(0)=

(
z1
σ(z1)

)
,

σ (z1) := −
∫ ∞

0
e−Bsg2

(
f
(
λ(s, z1)

))
ds, (3.10)

with the three properties

∣∣σ(u)
∣∣≤ MG

β
,
∣∣σ(u)− σ(û)∣∣≤MLf |u− û|,

g(0)= 0⇒ σ(0)= 0.

(3.11)

Theorem 3.3 (Global Invariant Manifold—Notation (cf. [92]))

(1) Under hypotheses (H1) and (H2) and the weak coupling condition (3.9a),
(3.9b), the bounded Lipschitz mapping σ : Rp → R

q from (3.10), satisfying
(3.11), defines the p-dimensional Lipschitz manifold graph(σ ) := {x = (u, v)T :
v = σ(u)}, which is invariant with respect to (3.5) and which coincides with
the set Z of initial values that lead to solutions with bounded v-components on
[0,∞).

The dynamics on Z = graph(σ ) is given by the reduced system

u̇=Au+ g1
(
u,σ (u)

)
, v = σ(u). (3.12)

Moreover, there exist two continuous mappings P and Q defined by

(v, ξ) ∈R
q ×R

n 	→P(v, ξ)= u ∈R
p, ξ ∈R

n 	→Q(ξ) ∈ graph(σ ),

with Q(ξ)= Pξ ∩ graph(σ ) for

Pξ :=
{(

P(v, ξ), v
)T : v ∈R

q
}=

{
x0 ∈R

n : sup
t≤0
e−ρt

∣∣x(t, x0)−x(t, ξ)
∣∣<∞

}
.

The mapping Q is called the asymptotic phase, and the fiber Pξ is called the
inverse asymptotic phase.

(2) Under hypotheses (H1), (H2), and (H3) with m ≥ 1 and for sufficiently small
ρ ≥ 0 and sufficiently small ‖g‖C1 < δm, σ belongs to Cm, and the invariance
of Z = graph(σ ) can be stated via the partial differential equation

Bσ(u)+ g2
(
u,σ (u)

)= σu(u)
[
Au+ g1

(
u,σ (u)

)]
. (3.13)

Equation (3.13) is referred to as the PDE of invariance.

The invariant Lipschitz manifold Z = graph(σ ) is called a center-stable manifold
of (3.5) if A has eigenvalues with vanishing and with negative real parts, and it is
called a stable manifold of (3.5) if each eigenvalue of A has a negative real part.
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Remark 3.4 (Concerning Lemma 3.2 and Theorem 3.3)

(a) The weak coupling condition (3.9a), (3.9b) is completely analogous to that in
the two-dimensional linear case of Sect. 1.2.5, where the choice of M = 1 has
been possible (cf. Sect. 1.2.5, in particular Proposition 2.15 and (2.94)). Condi-
tion (3.9a), (3.9b) can be written in a compact way as

α +ML11 − ρ < 0< β −ML22 − ρ, (3.14a)

det

(
α +ML11 − ρ −ML12

ML21 β −ML22 − ρ
)
< 0. (3.14b)

We would like to stress that (3.14a), (3.14b) requires the product of the off-
diagonal elements to be small with respect to the product of the moduli of the
diagonal elements.

(b) The proof of part (1) of Lemma 3.2 is based on the variation of constants
alone (cf. Theorem 1.24 for (3.7a), (3.7b)). Part (2) of Lemma 3.2 is proven
by straightforward applications of the uniform contraction theorem, first to
the “upper” component T1 of the mapping T and then to the “lower” com-
ponent T2. In the linear setup of Sect. 1.2.5, the representation of the invariant
manifold as a graph was based on the explicit solution (2.88d) of the Riccati
equation (2.88c). Note that the contraction rate κρ for T (μ) does not depend
on μ.

(c) The existence of the asymptotic phase in part (1) of Theorem 3.3 is based,
once more, on the contraction principle. The proof of part (2) of Theo-
rem 3.3 is rather involved. In general, δm will be decreasing for increas-
ing m. Once σ ∈ Cm has been established (by an additional contraction
argument involving m-dependent contraction rates), the PDE (3.13) of in-
variance follows immediately. The requirement of a sufficiently small ρ ≥
0 is made to exclude resonances (cf. Remark 1.5 and Sect. 1.2.3.1, e.g.,
(2.49)).

(d) For systems of the form (3.5) depending on an r-dimensional parameter vec-
tor α, one may apply Theorem 3.3 for each fixed α under consideration to obtain
an invariant graph of v = σ(u,α), or one may introduce α as an additional state
via α̇ = 0. For a discussion of the smoothness of σ with respect to α, the second
approach is advantageous.

The above Theorem 3.3 subsumes the special cases of stable and center man-
ifolds and, allowing time reversal, of center-unstable and unstable manifolds (cf.
[92]). The sixth possibility of a stable–unstable manifold, where the critical variable
would be written as a function of the stable and unstable variables, is not addressed.
In general, the appearance of resonances is an obstruction to such stable–unstable
manifolds (cf. Exercise 3.16).
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1.3.2 Stable and Unstable Manifolds

We now turn to the local investigation of nonlinear autonomous systems

ẋ =
(
u̇

v̇

)
=
(
A+u+ g(u, v)
A−v+ h(u, v)

)
=Ax + f (x) (3.15)

in a neighborhood of the equilibrium x = 0 in R
n. Here x = (u, v)T ∈ R

p × R
q is

confined to a neighborhood N = U × V of the origin, and f ∈ Cm vanishes at 0
(m≥ 1). Moreover, we impose the hypothesis

Reλ
(
A−
)
<−α < 0< α < Reλ

(
A+
)
, f (0)= 0, fx(0)= 0. (3.16)

Hence, we refer to u as the unstable variable and to v as the stable variable. The lin-
earized system ẋ = Ax shows a saddle point structure with the corresponding gen-
eralized eigenspaces as invariant unstable and stable manifolds, respectively. The
following theorem reveals this kind of saddle point structure in a local nonlinear
setting where the respective invariant manifolds are, in general, no longer linear.
We will see that these invariant manifolds of (3.15) will be tangent to the respective
linear invariant manifolds of ẋ =Ax.

Theorem 3.5 (Local stable manifold for an equilibrium, cf. [92]) Under the above
hypotheses on (3.15), there exist positive numbers δ0 > δ1 > δ2 and K and a Cm-
function s : {v : |v|< δ0}→U with the following properties:

(1) s(0)= 0 and sv(0)= 0, that is, u= s(v) is tangent to u≡ 0 at v = 0.
(2) For ξ belonging to the local stable manifold

W s
loc :=

{
(u, v) : u= s(v), |v|< δ0

}

with |ξ | < δ1, the solution x(t, ξ) of (3.15) with x(0, ξ) = ξ exists on R
+ and

satisfies

x(t, ξ) ∈W s
loc and

∣∣x(t, ξ)
∣∣≤K|ξ |e−αt . (3.17)

(3) Locally, u= s(v) is a solution of the PDE (3.13) of invariance, so that the coef-
ficients of the Taylor polynomials of s at v = 0 can be determined recursively.

(4) For ξ /∈ W s
loc with |ξ | < δ2, the distance Δ(t) = |u(t, ξ) − s(v(t, ξ))| grows

exponentially in t as long as Δ(t) and |x(t, ξ)| are sufficiently small.

Remark 3.6 (Global stable, global unstable manifold) By reversing the direction of
time we obtain the local unstable manifold

W u
loc :=

{
(u, v) : v = s̃(u), |u|< δ̃0

}
.

We arrive at the global stable and unstable manifolds by extending the local ones
via the flow of (3.15):

W s
glob =

{
ξ ∈W s

loc : lim
t→∞ϕ(t, ξ)= 0

}
, W u

glob =
{
ξ ∈W u

loc : lim
t→−∞ϕ(t, ξ)= 0

}
.
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The global versions may have a nontrivial intersection as the examples (2.16b) and
(2.16d) show (see Figs. 4 and 5).

Exercise 3.7 (Illustrations—Traveling wave in Fisher equation)

(1) Discuss the equilibria and the associated saddle point structures for the planar
system

ẋ = x
[
(x − 1)(x − 2)+ x

(
x − 1

2

)
y

]
, ẏ =−by, (3.18)

with the b ∈ (0,1]. Show for b = 1 that the stable manifold of (x, y) = (2,0)
can be computed explicitly as y = (2− x)/x, x > 0. Derive the phase portrait
of (3.18) in the nonnegative quadrant for b= 1 and for b close to 0.

(2) Discuss the equilibria and the associated saddle point structures for the Holling
model (1.40)

u̇= u(1− u)− uv

α+ u, v̇ = v
(
−δ + γ u

α+ u
)

with positive parameters in the nonnegative quadrant. In particular, investigate
of “fate” the local unstable manifold W u

loc of (u, v)= (1,0): What can be said
about solutions starting in W u

loc? Can stable manifolds be seen as thresholds for
switching phenomena?

(3) Discuss the equilibria and the associated saddle point structures for

u̇= v, v̇ = cv− u(1− u)(1+ pu) (3.19a)

in the special case p = 0 (cf. [12, 28, 41]). Determine a c0 such that for c > c0

(or even for c ≥ c0), (3.19a) allows solutions (u(t), v(t)) with u(−∞) = 0,
u(+∞) = 1, and 0 ≤ u(t) ≤ 1. The corresponding orbit, joining two different
equilibria, is called a heteroclinic orbit. Observe that the function w(t, x) :=
u(x + ct) is a traveling wave solution of the Fisher equation

wt =wxx +w(1−w) (3.19b)

and give a sketch of w(t, x) in the (t, x,w)-space.

Example 3.8 (Application to strongly stable manifolds (cf. [34])) We consider the
planar autonomous system

ẋ =−αx + γy + f2(x, y), ẏ =−βy + g2(x, y)=−βy + δx2 (3.20a)

with a smooth nonlinearity f2(x, y) = O(x2 + y2) and real parameters α,β, γ, δ,
where we assume that α > β > 0. The linearization ẋ = Lx at the origin possesses
the eigenvalues (−α) and (−β) with associated eigenvectors vss = (1,0)T and vs =
(1, ν∗)T, ν∗ := (α− β)/γ . To elucidate the role of the strongly stable direction vss ,
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we employ the blow-up transformation y = vx in the right half-plane x > 0 leading
to the equivalent system

ẋ =−αx + F2(x, v), v̇ = [α − β]v+ δx +G2(x, v) (3.20b)

with F2,G2 = O(x2 + v2) and G2(0, v) = −γ v2. From now on, we confine our-
selves to x ≥ 0 in the discussion of (3.20b). At the origin, the Jacobian

J =
(−α 0
δ α − β

)

of (3.20b) has the negative eigenvalue (−α) with eigenspace spanned by (1, δ/β)T

and the positive eigenvalue (α−β) with the eigenspace spanned by (0,1)T. The lin-
earization of system (3.20b) at the equilibrium (x, v)= (0,0) thus offers the saddle
point structure that is, by Theorem 3.5, preserved under small nonlinear perturba-
tions. Near the origin, the local stable manifold of (3.20b) is of the form

v = σ(x)= δx/β + σ2(x), σ2(x)=O
(
x2).

In terms of the original coordinates, we obtain y = s(x) := x[δx/β + σ2(x)], where
graph(s) is tangential to the strongly stable direction vss . System (3.20b) has a sec-
ond equilibrium, namely (0, v∗). It is exponentially stable since its Jacobian is

J ∗ =
(−β 0
δ β − α

)
.

In terms of the original coordinates, we obtain y = v∗x + · · · and hence orbits that
are tangential to the “slower” direction vs .

It is instructive to work out this procedure in the special case f2(x, y)= 0 and to
derive the complete phase portrait of (3.20b) in the first quadrant.

An interesting application of the above procedure to Lane–Emden boundary
value problems can be found in [34].

1.3.3 Center Manifolds and Asymptotic Phases

We now turn to systems with a stable variable u ∈R
p and a critical variable v ∈R

q

given in the form

ẋ =
(
u̇

v̇

)
=
(
A−u+ g(u, v)
A0v+ h(u, v)

)
=Ax + f (x). (3.21)

One may think of (3.21) as a reduced system (3.12) on a center-stable manifold of
a higher-dimensional system. Here, x = (u, v)T ∈ R

p ⊕R
q is confined to a neigh-

borhood N =U ×V of the origin in R
n, and f is taken from the class Cm, m≥ 1.

For a positive α, we impose the conditions

Reλ
(
A−
)
<−α < 0= Reλ

(
A0) and f (0)= 0, fx(0)= 0, (3.22)
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so that (3.21) possesses the origin as equilibrium. The solution of (3.21) with initial
value ξ and its orbit are denoted as usual by x(t, ξ) and γ (ξ). As prototypes, we
may think of

u̇=−u with (i) v̇ =−v3 or (ii) v̇ =+v3 or (iii) v̇ =+v2, (3.23)

which possess the axis u = 0 as an invariant manifold passing through the equi-
librium (0,0). The solutions and the orbits of all these systems in (3.23) can be
computed easily by separation of variables.

Theorem 3.9 (Locally Invariant Manifold—Cm Center Manifold, cf. [92]) Under
(3.22), there exist a Cm-function s : V → U and an open ball Ω =Ω(m) around
(0,0) in U × V with the following properties:

(1) s(0)= 0 and sv(0)= 0 (tangency to u≡ 0).
(2) W c ≡ {(u, v) : u= s(v), v ∈ V } is locally invariant for system (3.21), that is,

ξ ∈W c
loc :=W c ∩Ω and t ∈ Imax

Ω ⇒ x(t, ξ) ∈W c,

so that the associated PDE of invariance

A−s(v)+ g(s(v), v)= sv(v)
[
A0v+ h(s(v), v)] (3.24)

allows the recursive computations of the Taylor polynomials of s near 0.
(3) If, for a ξ ∈Ω , the solution x(t, ξ) remains inΩ for all t ∈R, then ξ is in W c

loc.

Given any Cm-function σ : V → U satisfying part (1) and part (2), the manifold
graph(σ ) := {(u, v) : u= σ(v)} is called a Cm center manifold for (3.21).

Remark 3.10 (Questions of uniqueness (m≥ 2))

(1) Center manifolds need not be unique as the examples in (3.23) reveal. In
case (iii), for instance, the functions u= s(v,p) with (v,p)= 0 for v ≥ 0 and
s(v,p) = pe1/v for v < 0 are local center manifolds for all p ∈ R. We note
that all these s(v,p) are in C∞ and that the Taylor polynomials of all orders
are identical 0. In particular, the Taylor series of s(v,p) at v = 0 converges to
s(v,p) just for p = 0. Similarly, case (i) shows infinitely many center mani-
folds. In contrast, there is the unique center manifold u= 0 in case (ii).

(2) There is an important result on the partial uniqueness of a center manifold for
(3.21), which turns out to be a crucial tool in most applications:

If, for all t ≤ 0, a solution x(t, ξ) of (3.21) has a sufficiently small norm∣∣x(t, ξ)
∣∣, then its initial value ξ belongs to any local center manifold.

(3.25)
Case (iii) of (3.23) illustrates this kind of partial uniqueness: Any local center
manifold is identically 0 for positive v. An interesting example is given by

u̇=−u, v̇ = v2(p− v)3 (p > 0). (3.26)
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In the general case, where the Jacobian at the trivial equilibrium possesses ad-
ditional eigenvalues with positive real parts, condition (3.25) is required on the
whole R, not just for all t ≤ 0.

(3) The Taylor polynomials of all center manifolds are the same: If graph(s) and
graph(σ ) with s, σ ∈ Ck+1≥2 represent two local center manifolds, then their
Taylor polynomials of order k coincide.

The main purpose for introducing such (nonunique) center manifolds is the fol-
lowing reduction principle. It implies that the reduced q-dimensional system

v̇ =A0v+ h(s(v), v), (3.27)

in terms of the critical variable v alone, provides all the information that is needed
for discussing stability issues of the original (p+ q)-dimensional system (3.21) (cf.
the basic question (1.3) in Sect. 1.1). We illustrate such reductions in the following
Sect. 1.3.4, where we address local bifurcation problems.

Theorem 3.11 (Asymptotic phase and reduction principle) Given a Cm center
manifold W c = {u= s(v)} for (3.21), there exist a neighborhood N in N =U ×V
of the origin and an η ∈ (0, α) with the following properties:

(1) Asymptotic Phase Property:
In case of γ+(ξ)⊂ N , there exist a ξc ∈W c ∩N and a time instant t0 ≥ 0

such that

sup
t≥t0
eηt
∣∣x(t, ξ)− x(t − t0, ξ c

)∣∣<∞.

(2) Reduction Principle:
For an initial value ξ = (s(v0), v0)

T ∈W c∩N with γ+(ξ)⊂N , the solution
v(t, v0) of the reduced initial value problem

v̇ =A0v+ h(s(v), v), v(0)= v0, (3.28)

defines the solution x(t, ξ)= (s(v(t, v0)), v(t, v0))
T of (3.21) with initial value

x(0, ξ)= ξ . Moreover, concerning the stability properties, we have:
If the orbit γ (v0) is stable (asymptotically stable/unstable) for the reduced

system (3.28), then, accordingly, the orbit γ (ξ) is stable (asymptotically sta-
ble/unstable) for the original system (3.21).

For an application, we recall the model (2.16a) & (2.16d), where the asymptotic
phase property may be employed to derive the phase portrait in Fig. 4. Note that the
edges of the triangle represent center manifolds of the corner steady states.

Example 3.12 (Center manifold in C∞)

(1) We would like to point out that the neighborhood Ω in Theorem 3.11 depends
on the order m of smoothness. In general, Ω(m) is shrinking for increasing m.
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For a polynomial example, we take

u̇=−u+ v2, v̇ = v2 −wv, ẇ = 0.

Recursively computing Taylor polynomials of u = s2(w)v2 + s3(w)v3 + · · · ,
we arrive at

s2 = 1

1− 2w
, · · · , sn = (1− n)sn−1

1−wn .

Therefore, a necessary condition for s to belong to Cm on a neighborhood of
the origin is given by w < 1/m.

(2) The system u̇=−u+ v2, v̇ = v2 provides an example where the Taylor poly-
nomials Sm(v) of a center manifold u = s(v) converge just for v = 0. For a
detailed discussion of this example, one might take advantage of the integrating
factor μ(v)= v−2e−1/v .

These polynomial examples show that center manifolds are, in general, not in C∞.

1.3.4 Reduction Principle and Bifurcations

First, we illustrate the reduction principle with the planar system

u̇=−u+ p20u
2 + p11uv+ p02v

2 + · · · ,
v̇ = q20u

2 + q11uv+ q02v
2 + q03v

3 + · · · .
(3.29a)

Its linear part is in block-diagonal form. By Theorem 3.9, any center manifold starts
out with quadratic terms in v and can be written as u= s(v)= p02v

2 +O(3) with
reduced system

v̇ = q02v
2 + κv3 + · · · , κ := q11p02 + q03. (3.29b)

A necessary condition for the asymptotic stability of v = 0 is q02 = 0. Conversely,
q02 = 0 and κ < 0 imply the asymptotic stability for v = 0 and, by the above the-
orem, of (u, v) = (0,0). A straightforward application in nonlinear control theory
would be the choice of a “stabilizing feedback”f (u, v)= p02v

2 in

u̇=−u+ f (u, v), v̇ = q11uv+ q02v
2 + q03v

3 + · · · ,
ensuring κ = q11p02 + q03 < 0.

The next example serves as a caveat. We discuss the reduction principle for the
planar system

u̇=−u+ v2 + v2u, v̇ = v3 − uv+ 2v5 − u2v+ pv7 (3.30)

with a parameter p ∈ (2,3). Its linear part is in block-diagonal form. By Theo-
rem 3.9, any center manifold starts out with quadratic terms in v and can be written
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as u= s(v)= v2+ v4+ v6+ · · · . Using the truncation u= v2 and u= v2+ v4, we
arrive at reduced systems of the form

v̇ = v5 + · · · and v̇ = (p− 2)v7 + · · · ,
respectively. These systems suggest the instability of v = 0. When inserting the
approximation u= v2 + v4 + v6 or any u= v2 + v4 + v6 +O(|v|7), we obtain

v̇ = (p− 3)v7 + · · ·
with an asymptotically stable v = 0. So, when using approximations for a cen-
ter manifold u = s(v), we have to take care that the higher-order terms that are
dropped lead indeed to “irrelevant” higher-order terms in the reduced system (3.28).
Of course, it depends on the dynamical property we are looking for whether higher-
order terms are relevant or not. Concerning the stability property of the origin in the
present example, the reduced v-equation can be truncated after seventh order so that
the center manifold approximation u= v2 + v4 + v6 suffices.

Remark 3.13 (Reduction principle for scalar bifurcations) Here, we present the re-
duction principle for scalar bifurcations for parameter-dependent autonomous sys-
tems in R

n+1 where the Jacobian at the trivial equilibrium has 0 as a simple critical
eigenvalue. Let there be given

u̇=Au+ pv2 + p1vλ+ p2vμ+ p3λμ+ p4λ
2 + p5μ

2 + · · · , u ∈R
n,

v̇ = μ+ λv+ β2v
2 + β3v

3 + γ Tuv+ uTΓ u+ · · · , v ∈R,
(3.31a)

with scalar parameters μ,λ. The matrix A is assumed to have its spectrum in C
−.

We add the differential equations λ̇= 0 and μ̇= 0 for the parameters and search for
a center manifold in the form

u= s(v,λ,μ)= Bv2 +B1vλ+B2vμ+B3λμ+B4λ
2 +B5μ

2 + h.o.t.

The quadratic terms in the PDE of invariance lead to the algebraic system

AB + p = 0, AB1 + p1 = 0, AB2 + p2 = 2B,

AB3 + p3 = B1, AB4 + p4 = 0, AB5 + p5 = B2.

Since A is invertible, B and Bj are uniquely determined, for example, B =−A−1p.
The reduced system (3.28) takes the form

v̇ = [μ+ λv+ β2v
2 + κv3][1+O(1)] with κ := β3 + γ TB. (3.31b)

We thus have arrived at the standard bifurcation for scalar equations:

• Saddle node bifurcation in case of λ= 0, β2 
= 0, and varying μ.
• Transcritical bifurcation in case of μ= 0, β2 
= 0, and varying λ.
• Pitchfork bifurcation in case of μ= 0, β2 = 0, κ 
= 0, and varying λ.
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By Theorem 3.11 on asymptotic phases and reductions, it suffices to discuss the
one-dimensional equation (3.31b) to draw conclusions for the (n+ 1)-dimensional
system (3.31a). Here, we would like to recall Remark 1.15 and Fig. 1.

Remark 3.14 (Hopf bifurcation (cf. Sect. 1.2.4)) We return to the Hopf bifurca-
tion theorem (Theorem 2.12) and indicate how center manifolds may be used for
a proof. For two specific examples, we refer to Exercise 2.14. Let a one-parameter
smooth autonomous system in R

n+2 be given that possesses the trivial solution so
that the linearization has two critical eigenvalues λ(α)± iω(α) crossing the imag-
inary axis iR transversally from left to right at the critical parameter value α = 0.
The remaining n eigenvalues are supposed to have negative real parts at the critical
value α = 0:

λ(α)= λ1α +O
(
α2), ω(α)= ω0 +O

(|α|), λ1 > 0, ω0 > 0. (3.32)

The reduction principle allows the consideration of the two-dimensional reduced
system on a local center manifold. We suppose it to be in normal form (2.57) or
(2.58), that is,

ṙ = [λ(α)−K(α)r2 +O
(
r3)]r, θ̇ = ω(α)+L(α)r +O

(
r2) (3.33)

with K0 = K(0) > 0 and L0 = L(0). The scalings α = ε2 and r 	→ εr with ε > 0
lead to

ṙ = ε2(λ1 −K0r
2)r + ε3O

(
r2), θ̇ = ω0 + ε2L0r

2 + ε3O(r). (3.34)

Without the O-terms, we have the exponentially stable orbit r = r∗ := √λ1/K0.
The translation r = r∗ + z implies

ż= ε2[−2λ1z+ z2 +O(ε)
]
, θ̇ = ω0 + ε2[2L0

(
r∗ + z)+O(ε)

]
. (3.35)

The local center manifold theorem (Theorem 3.9), based on the global Theo-
rem 3.3, has been stated for neighborhoods of the trivial solution. We recall that the
global theorem does not ask for such an equilibrium. So we verify the weak cou-
pling condition (3.9a), (3.9b) directly (see also Remark 3.4). The present situation
asks for an application of Theorem 3.3 in reversed time direction. The separate ex-
ponential growth rates are in lowest order approximation ∂ż/∂z∼−2λ1ε

2 for z and
∂θ̇/∂θ ∼O(ε3) for θ . Because of

∂ż

∂θ

∂θ̇

∂z
∼O(ε3 · ε2)=O(ε5),

we may choose the spectral separation −ρ =−ε9/4, for example, in order to have
the weak coupling condition (3.9a), (3.9b) satisfied for sufficiently small ε > 0.
In the end, Theorem 3.3 leads to an invariant manifold z = z∗(θ, ε) = O(ε), θ ∈
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[0,2π), corresponding to a smooth closed orbit, in fact, to an exponentially stable
limit cycle

r = r(θ, ε)= r∗ + z∗(θ, ε)= r∗ +O(ε)

of (3.34) for sufficiently small ε > 0. The reduced system on it is given by

θ̇ = ω0 + ε2L0r
2(θ, ε)+ ε3O

(
r(θ, ε)

)
,

leading, for small positive α, to periodic solutions of the two-dimensional reduced
system and hence of the full (n + 2)-dimensional original system with amplitude
O(
√
α) and with period close to 2π/ω0. See [29, 30] for the bifurcation of periodic

solutions and [31, 32] for the bifurcation of higher-dimensional tori.

Exercise 3.15 (Curves of equilibria) The simple SIR model from epidemiology
u̇ = −λuv, v̇ = λuv − rv, ẇ = rv and the planar model ẋ = x(1 − xy), ẏ =
−y(1− xy) both possess an invariant curve of equilibria. Discuss, numerically and
analytically, their phase portraits and provide interpretations concerning center man-
ifolds and asymptotic phases.

Exercise 3.16 (Stable–unstable manifold—Soliton for the Korteweg–de Vries equa-
tion)

(a) Show that there does not exist a C2-function v = s(u,w) passing through the
origin (u, v,w)= (0,0,0) that is locally invariant for

u̇=−u, v̇ = uw, ẇ =w.
Verify that the functions v = σ(u,w, c) = −wu[ln(u) − c], u > 0, and their
continuous extensions to u≥ 0 are invariant.

(b) Consider the three-dimensional system

u′ = v, v′ =w, w′ = (c2 − 6u
)
v (c > 0) (3.36)

with the equilibrium (u, v,w)= (0,0,0). The linearized system has the eigen-
values 0 and ±c corresponding to one center variable and two uncritical vari-
ables. We search for a solution with a positive u-component satisfying u(t)→ 0
as t →±∞. By considering the ODE for ∂w/∂u we are led to the first in-
tegral H = w − (c2u − 3u2), where the invariant level set H = 0 contains
the origin (u, v,w) = (0,0,0). Near the origin, the solution u = s(v,w) =
[c2 −√c4 − 12w]/6 of H = 0 represents a stable–unstable invariant manifold
of (3.36) passing through the origin. The system for (u, v,H) reads

u′ = v, v′ =H + c2u− 3u2, Ḣ = 0,

and the reduced system for (u, v) on {H = 0} is the one of Exercise 2.4 with a
saddle point structure at the origin (u, v) = (0,0). System (3.36) arises in the
search of solitons U(t, x)= u(x − c2t) in the Korteweg–de Vries PDE

Ut + 6UUx +Uxxx = 0,
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that is, in the search of positive pulse-like traveling waves starting with 0 at−∞
and returning to 0 at +∞.

Remark 3.17 (Multistationarity and bistability) Many biochemical processes can
successfully be described by large reaction networks ẋ =NR(x) with stoichiomet-
ric matrix N and reaction rate vector R (cf. [60]), allowing some form of switching
when, depending on their initial conditions, solutions of the dynamical system end
up in different regions of state space (associated with different biochemical func-
tions). Switching is often realized by a bistable system (i.e., a dynamical system
allowing two stable steady-state solutions) and, in the majority of cases, bistability
is established numerically. Switching already arises with the occurrence of a saddle
type steady state, characterized by a Jacobian where exactly one eigenvalue is posi-
tive and the remaining eigenvalues have a negative real part. The switching surfaces
(thresholds) are often introduced by the stable manifolds W s

glo of unstable equilibria
(saddles).

For the models of the G1/S transition for budding yeast in [19], we have de-
rived conditions based on linear inequalities that allow the analytic computation of
states and parameters where the Jacobian derived from a mass action network has a
defective zero eigenvalue so that, under certain genericity conditions, a saddle-node
bifurcation occurs. Such Jacobians possess a special structure due to the topology of
the underlying network. The sufficient conditions in [19] are applicable to general
mass action networks involving at least one conservation relation. Our alternative
approaches to multistationarity can be found in [18, 20, 21, 33] and [37, 50]. An
extensive study of multistationarity and switching in a model for the repression of
photosynthesis genes in Rhodobacter sphaeroides is presented in [72] and [73].

1.3.5 Quasi-stationarity and Singular Perturbations

We turn to Cm-smooth autonomous differential systems that involve two drastically
different time scales, a slow one and a fast one. The slow variables will play the role
of the center or critical variables when we assume an “exponential decay” for the
fast variables as t→∞ (or t→−∞). So we consider Cm-systems of the form

ẋ = f (x, y, ε), εẏ = g(x, y, ε) (3.37)

for some region U × V × (0, ε∗) with U ⊂ R
p , V ⊂ R

q and for small positive
ε∗, where the y-variable is much faster than the x-variable away from the zero-
set {g(x, y,0) = 0}. For systems of the form (3.37), the global Theorem 3.3 of
Sect. 1.3.1 implies a semiglobal result in contrast to the local ones of the Sects. 1.3.2
and 1.3.3. Here, “semiglobal” refers to the fact that the region for the slow variable
x need not be small, in most applications it can be any region with compact closure.

We consider system (3.37) under the following hypotheses H1 and H2:

H1. There is a unique Cm solution y = Φ0(x) ∈ V of g(x, y,0) = 0 for x out of
the compact closure K of a region G in the x-space R

n. Just for simplicity, we
choose K = {x ∈R

p : |x| ≤R} ⊂U .
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We define the deviation

Δ= y −Φ0(x) (3.38a)

and the fast time τ = t/ε with ′ = ∂/∂τ to arrive at

ε′ = 0,

x′ = εF (x,Δ, ε) := εf (x,Φ0(x)+Δ,ε
)
,

Δ′ = B(x)Δ+G(x,Δ, ε)
(3.38b)

B(x) := gy
(
x,Φ0(x),0

)
,

G(x,Δ, ε)=O
(|Δ|2)+O(ε), G(x,0,0)≡ 0.

(3.38c)

The originally given time is called slow time t , and the graph

M0 =
{
(x, y) : y =Φ0(x), |x| ≤R

}
(3.39)

ofΦ0 is called a quasi-stationary manifold. It corresponds to the algebraic constraint
that system (3.37) entails for ε = 0. For y to refer to the stable fast variable in (3.37),
we impose the following hypothesis:

H2. There exist constants M ≥ 1 and β > 0 such that the x-dependent (m × m)-
matrix B(x) allows on |x| ≤R an exponential estimate

∥∥exp
(
B(x)τ

)∥∥≤Me−βτ for τ ≥ 0. (3.40)

Theorem 3.18 (Slow Invariant Manifolds) Under hypotheses (H1) und (H2) and
for any R′ ∈ (0,R), system (3.38b) possesses, for sufficiently small ε ∈ (0, ε0), a
locally invariant center manifold, also called a slow invariant manifold,

Δ= s(x, ε)= εs1(x)+O
(
ε2), |x| ≤R′, (3.41)

with the additional properties as described in Theorem 3.9, in particular, with the
PDE of invariance, the asymptotic phase property, and the associated reduction
principle. The reduced system on the slow invariant manifold

Mε =
{
(x, y) : |x| ≤R′, y =Φ(x, ε) :=Φ0(x)+ s(x, ε)=Φ0(x)+O(ε)

}
(3.42)

is given by

ẋ = f (x,Φ(x, ε), ε)= f (x,Φ0(x),0
)+O(ε). (3.43)

The leading terms of an expansion s(x, ε) = εs1(x)+ ε2s2(x)+ · · · in (3.41) can
be computed recursively from the PDE of invariance, the first term s1 from

B(x)s1(x)=Gε(x,0,0)= gε
(
x,Φ0(x),0

)− [Φ0(x)
]
x
f
(
x,Φ0(x),0

)
. (3.44)
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With s1 from (3.44), system (3.43) can be written as

ẋ = f (x,Φ0(x),0
)+ ε[fy

(
x,Φ0(x),0

)
s1(x)+ fε

(
x,Φ0(x),0

)]+O
(
ε2). (3.45)

We note that the quasi-stationary manifold y = Φ0(x) is, in general, not an in-
variant manifold for (3.37). It is just the zeroth-order approximation of an existing
slow invariant manifold y =Φ(x, ε)=Φ0(x)+O(ε). In many applications of the
form (3.37), one looks for special orbits like equilibria, limit cycles, hetero- or ho-
moclinic orbits and their stability properties. Just in case, the dynamical property
under consideration, for example, the stability property of an equilibrium, is not
influenced by the O(ε)-term in the reduced equation (3.43) (for small ε), one is
allowed to work with the quasi-stationary approximation alone, that is, with the
differential–algebraic system

ẋ = f (x, y,0), g(x, y,0)= 0, (3.46)

or, equivalently, with ẋ = f (x,Φ0(x),0). We present a first illustration in terms of
the linear system

ẋ = εpx − y, εẏ = 2εx − y (3.47)

for a fixed parameter p 
= 0 and sufficiently small ε > 0. The quasi-stationary man-
ifold is given by y = 0 with the reduced system ẋ = εpx. The often applied pro-
cedure of setting ẏ = 0 in (3.47), often called the quasi-steady-state assumption
(QSSA), yields the QSSA-manifold y = 2εx and ẋ = ε(p− 2)x. The coefficients sj
of the slow invariant linear subspace y = s(x, ε) = [εs1 + ε2s2 + O(ε3)]x can be
computed from the PDE of invariance: s1 = 2, s2 = 0. Thus, we arrive at the reduced
equation

ẋ = [ε(p− 2)+O
(
ε3)]x.

Hence, for small ε > 0 and p ∈ (0,2), the quasi-stationary approximation indicates
erroneously the instability of the origin, whereas the QSSA procedure and the reduc-
tion by Theorem 3.18 yield the asymptotic stability. In the present case, the QSSA
procedure provides an approximation of the slow invariant linear subspace that is
sufficient for determining the stability property of the origin.

The following remark proves this to be false in general. No matter how “fast”
the fast variable y is, the quasi-stationary approximation by requiring ε = 0 and the
approximation by the quasi-steady state assumption ẏ = 0 do not lead to reliable
approximations of the slow reduced equation for x.

Remark 3.19 (Reduction by QSSA and its constraints) Let us consider the linear
system

(
ẋ

ẏ

)
=
(
Ω b

cT −d
)(
x

y

)
, Ω :=

(
0 −ω
ω 0

)
, (3.48a)
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with bT = (1, β/d), cT = (0,1), and positive ω, d . The diagonal blocks possess the
eigenvalues ±iω and −d , where we suppose d to be very large. With ε = 1/d and
B(ε)= (1, εβ)T, we discuss the linear system (3.48a) in slow and in fast time,

(
ẋ

εẏ

)
=
(
Ω B(ε)

εcT −1

)(
x

y

)
and

(
x′
y′
)
=
(
εΩ εB(ε)

εcT −1

)(
x

y

)
, (3.48b)

respectively. From 0 · ẏ = 0 · x − y, the quasi-stationary manifold is given by y = 0

with reduced system ẋ =Ωx. The QSSA procedure ẏ
!= 0, restricting the right-hand

side on the nullcline entails y = εcTx with the reduced system

ẋ = (Ω +B(ε)εcT)x =
(

0 −ω+ ε
ω ε2β

)
x. (3.48c)

The slow invariant linear subspace of (3.48b) and the slow invariant manifolds can
be represented by y = s(x, ε)= [εST

1 + ε2ST
2 +O(ε3)]x, where the coefficients can

be computed from the PDE of invariance: ST
1 = cT and ST

2 =−ST
1Ω = (−ω,0). The

associated reduced system takes the form

ẋ = (Ω +B(ε)s(x, ε))x =
(−ωε2 +O(ε3) −ω+ ε+O(ε3)

ω+O(ε3) ε2β +O(ε3)

)
x. (3.48d)

So we observe that, for β < ω and for sufficiently small ε > 0 (i.e., large d), neither
the quasi-stationary approximation with y = 0 nor the quasi-steady state assump-
tion with y = εcTx provides sufficiently good approximations of the slow invariant
manifolds

y = s(x, ε)= [εcT − ε2cTΩ +O
(
ε3)]x (3.48e)

in order to predict the correct stability property of the origin on the basis of the
respective reduced equations ẋ =Ωx and (3.48c). We just note that the trace of the
system matrix in (3.48d) is negative, implying the asymptotic stability of the origin
for (3.48b), whereas the trace is 0 for ẋ =Ωx and positive for (3.48c).

Remark 3.20 (Formal quasi-stationary reduction) Given system (3.37) in slow and
in fast time, hence given

ẋ = dx
dt
= f (x, y, ε), εẏ = dy

dt
= g(x, y, ε) and (3.49)

x′ = dx
dτ
= εf (x, y, ε), y′ = dy

dτ
= g(x, y, ε) (τ = t/ε). (3.50)

(1) The formal reduction ε = 0 in (3.50) introduces

x′ = 0, y′ = g(x, y,0) (3.51)

with the quasi-stationary manifold M0 = {(x, y) : y = Φ0(x), x ∈ K} of equi-
libria of (3.51). The exponential stability of these equilibria is guaranteed in case
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the eigenvalues of B(x) = gy(x,Φ0(x),0), x ∈ K , are in C
−. Here, solutions

y(t), starting near Φ0(x), approach Φ0(x) as t→∞.
(2) The formal reduction ε = 0 in (3.49) introduces

ẋ = f (x, y,0), 0= g(x, y,0) with ẋ = f (x,Φ0(x),0
)

(3.52)

on M0. In case, the dynamical properties, for example, the stability proper-
ties, of the reduced system (3.43) can be determined already by (3.52), and
the quasi-stationary approximation y = Φ0(x) of any slow invariant manifold
y =Φ0(x)+ εs(x, ε) suffices.

Exercise 3.21 (Illustrations)

(A) For the planar cascade system

ẋ = εx, ẏ =−y + x2 (|ε| ≤ 1/3
)
,

a global center manifold y = Φ(x, ε) through the origin can be computed
directly by variation of constants. Just determine the initial values (x0, y0)

T

such that e−ρt |(x(t, ε, x0), y(t, ε, y0))
T| is bounded as t → −∞ for ρ ∈

(−1,−1/3). Alternatively, we may use the PDE of invariance to derive y =
Φ(x, ε). For small ε, y = Φ(x, ε) represents a slow invariant manifold in the
sense of Theorem 3.18. Prove its uniqueness for ε ∈ [0,1/3] and its nonunique-
ness for ε ∈ [−1/3,0). Show that the asymptotic phases are given by the verti-
cal projections (x0, y0)

T 	→ (x0,Φ(x0, ε))
T.

(B) Discuss the systems

ẋ = ε− xy, εẏ = x − y and u̇= εu− uv, εv̇ = u2 − v
and decide whether the quasi-stationary approximations y = x and v = u2 with
their reduced systems ẋ = −x2 and u̇ = −u3 reflect the dynamical properties
of the original systems truthfully.

(C) The system

ẋ =−y − x(x2 + y2 − ε2), εẏ = εx − y(x2 + y2 − ε2)

does not satisfy hypothesis (H2) at x = 0 along the quasi-stationary manifold
y = 0 where Eq. (3.51) reads y′ = −y3. The origin y = 0 is asymptotically, but
not exponentially, stable for y′ = −y3. Show that the system has the limit cycle
x2+ y2 = ε2, so that a slow invariant manifold passing through (0,0) does not
exist.

(D) Discuss, numerically and analytically, the planar system

ẋ = [y − x(1− x)](x + 2), εẏ =−y (3.53)

for ε ∈ (0,1]. Derive the phase portraits for the associated reduced systems
(3.51) and (3.52) and also for system (3.53). Compare the regions of attraction
of the origin.
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(E) Consider, for small ε > 0, the three-dimensional system

ẋ =−x, εθ̇ = 1, εẏ = y[1− (x − 2)2 − y2] (3.54)

with x ≥ 0 and interpret (y, θ) as polar coordinates. What are the (branches of)
quasi-stationary manifolds here? What branches correspond to exponentially
attractive slow invariant manifolds? Show, numerically and analytically, that
(3.54) offers transient oscillations for initial values (x, y, θ) = (ξ, η,0) with
ξ > 3 and η > 0.

(F) Reconsider Example 1.38 with a = 1/ε.

Exercise 3.22 (Relaxation oscillations—an outlook) Given a planar system of the
form (3.37), we have assumed in hypothesis (H1) that g(x, y,0) = 0 is uniquely
solvable in terms of x ∈K : y =Φ0(x). Let us consider Zeeman’s heartbeat model

ẋ = y −√1+ γ , εẏ = y − y3/3− x (γ ≥−1). (3.55)

For ε = 0, we have the S-shaped cubic x = y − y3/3 with the branches y =Φj0 (x)
for its inverse (j = ±1 for ±y > 1, j = 0 for y ∈ (−1,1)). On compact subinter-
vals, the quasi-stationary curves y =Φ±0 (x) correspond to slow invariant manifolds
y = s±(x, ε) that are exponentially attractive in forward time, whereas y = s0(x, ε)

is exponentially attractive in backward time. Discuss, numerically and analytically,
system (3.55) for γ > 1. Show that the formal reduction method of Remark 3.20
suggests a closed orbit and a periodic solution for γ ∈ (−1,0). Do numerical simu-
lations support this conjecture?

The discussion of relaxation oscillations is wide spread in the applied sciences
(cf. the van der Pol oscillator and the FitzHugh–Nagumo artefact for the Hodgkin–
Huxley nerve conduction equations [47, 53, 68]).

Remark 3.23 (Comments on Theorem 3.18 and extensions)

(A) Comment on the proof of Theorem 3.18: The variational equation of (3.38b)
along a solution (x, y)= (x(τ, ε), y(τ, ε)) is of the form

⎛

⎝
ε′
w′
z′

⎞

⎠=
⎛

⎝
0 0 0

F(. . . )+O(ε) O(ε) O(ε)

� � B(x)+GΔ(. . . )

⎞

⎠

⎛

⎝
ε

w

z

⎞

⎠ . (3.56)

Therefore, the weak coupling condition is easily verified for small ε > 0,
provided that the exponential estimate (3.40) in hypothesis (H2) with the
“frozen” fundamental matrix exp(B(x)τ) of ẏ = B(x)y, x ∈K , implies a sim-
ilar exponential estimate for the fundamental matrix of time-varying system
ẏ = B(x(τ, ε))y. Because of x′ =O(ε), the system matrix B(x(τ, ε)) is slowly
time-varying so that for sufficiently small ε > 0, the exponential estimate for
the frozen systems entails such an exponential estimate for the slowly time-
varying system (cf. [31, 70]). We have already addressed this difficulty in Ex-
ercise 3.21: If x′(τ ) is not sufficiently small, the frozen and the time-varying
systems may show different stability properties.
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(B) Comment on the size of ε0: The admissible size ε0 for the parameter ε is diffi-
cult to determine. We mention some aspects influencing this size:

1. Frozen eigenvalues λ(x) of B(x) in C
− provide an exponential estimate

(3.40). The variation of x′ = O(ε) is to be so small that (3.40) implies an
exponential decay for the time-varying system ẏ = B(x(τ, ε))y.

2. The weak coupling condition is ε-dependent. So ε is to be sufficiently small
to allow the application of the contraction principle.

3. The dynamics of a truncation of the reduced equation (3.43), for example,
of (3.43) without the O(ε)-terms or of (3.45) without the O(ε2)-terms, is to
be robust in respect to the dynamical property under consideration.

4. In general, the admissible ε-range is shrinking for R′ →R.
5. If the region of attraction of the slow invariant manifold (3.42) for (3.37) is

to be close to the region of attraction of the quasi-stationary manifold M0
with respect to system (3.51), then ε is to be chosen small.

(C) Fenichel normal form: Given a smooth singularly perturbedCr+2 system (3.37)
with x ∈ R

p, y ∈ R
q, ε ∈ R

1. Let M0 be a relatively open connected subset
of {(x, y) : g(x, y,0) = 0}, such that the eigenvalues of gy(x, y,0) are not on

iR for (x, y) ∈M0. Fenichel’s geometric theory for such singularly perturbed
systems proves the existence of a locally invariant Cr+1 manifoldMε and of a
Cr coordinate system producing the Cr normal form

ẋ = ε[X(x, ε)+C(x, a, b, ε)ab],
ȧ =A(x,a, b, ε)a,
ḃ= B(x, a, b, ε)b,

(3.57)

with a k-dimensional unstable variable a and l-dimensional stable variable b,
k + l = q such that Mε is given by {a = 0, b = 0} with {a = 0} and {b = 0}
presenting the stable manifold W s(Mε) and the unstable manifold W u(Mε),
respectively. Cf. [27, 54, 55] and [13, 14].

(D) Lee–Othmer normal form for complex reaction networks (cf. [65]): The above
singular perturbation technique has started with a classification of slow and fast
variables. In complex reaction networks, the reactions are classified as either
slow or fast, and species can participate in both slow and fast processes. Lee and
Othmer reduce the underlying graph of a complex reaction network to develop
methods for identifying slow and fast variables and their (reduced) evolution
equations. Moreover, their approach leads to a coordinate system tailored to
complex reaction networks and thereby to a certain normal form.

Remark 3.24 (Quasi-integrals (cf. [86])) In [86], we have developed the method
of quasi-integrals for finding parameter constellations that can play the role of a
small parameter ε in chemical reaction networks. Inspired by singular perturba-
tion theory, we have examined the ratios of certain components of the reaction rate
vectors. Those ratios that rapidly approach a nearly constant value define a slow
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manifold for the original flow in terms of quasi-integrals, that is, in terms of func-
tions that are nearly constant along trajectories. We followed this approach success-
fully in the discussion of oscillations in various chemical reaction networks (see
[87, 88]) and of oscillations in a model of a polymer electrolyte membrane fuel cell
(see[59]).

1.3.6 Michaelis–Menten Kinetics (Case Study)

We consider the differential equation

ȧ =−k1ab+ k−1c, ḃ=−k1ab+ (k−1 + k2)c,

ċ= k1ab− (k−1 + k2)c, ḋ = k2c
(3.58)

in R
4≥0 with initial values (α,β,0,0) at time t = 0 (0 < α ≤ α0). It is a model for

enzyme kinetics with a substrate A, free receptors B , and with occupied receptors
C producing an output D:

A+B k1−−⇀↽−−
k−1

C, C
k2
⇀ B +D.

We look for parameter constellations that are biologically significant and that in-
troduce a splitting in slow and fast variables or processes. So we search for a new
positive parameter, taking the role of ε, and associated variables x and y that gener-
ate the standard form (3.37).

Since the sum I = b + c of the concentrations b and c is a first integral (İ =
ḃ + ċ ≡ 0 and I ≡ β) and since the output equation for d is decoupled, system
(3.58) is essentially the two-dimensional one

ȧ =−k1a(β − c)+ k−1c, ċ= k1a(β − c)− (k−1 + k2)c (3.59)

with initial value (α,0). Obviously, the half-strip R≥0 × [0, β] is positive invariant.
The scaling

u= a, v = c/β, s = k1t (3.60)

is thus legitimate and leads with the new parameters

κ := k1/k2, KM := (k−1 + k2)/k1, (3.61)

satisfying KM − κ−1 = k−1/k1 =: μ, to the standard form

du

ds
≡ u′ = βF(u, v)= β[(−1+ v)u+μv],

dv

ds
≡ v′ =G(u,v)= u− [u+KM ]v = u−

[
κ−1 + (μ+ u)]v

(3.62)



88 D. Flockerzi

with initial value (α,0). With a fixed κ and with the initial value β of the free
receptors B taking the role of ε (β→ 0), the approximation for β = 0 is given by

u′ = 0, v′ =G(u,v)

with the family of equilibria

v0 =Q(u0)≡ u0

u0 +KM , u0 ∈ [0, α0]. (3.63)

The quantity KM is referred to as the Michaelis–Menten constant, the function v =
Q(u) is called the Michaelis–Menten response and represents the quasi-stationary
manifold of (3.62) for fixed κ . It is invariant for β = 0, and the evolution on the
vertical lines u= u0 follows

v̇ =G(u0, v)=−
[
1+ κ(μ+ u0)

]
v+ κu0,

so that the equilibrium v0 = Q(u0) is globally exponentially stable. The reduced
slow Michaelis–Menten system

du

ds
= βF0(u) := −β u

u+KM (3.64)

on the quasi-stationary approximation presents a sufficiently good approximation
of the reduced system du

ds
= β[F0(u) + O(|βu|)] of (3.62) for β ∈ (0, β0) with a

sufficiently small positive β0: The solution of the initial value problem (3.62) with
initial value (α,0) tends exponentially to a slow invariant manifold v = s(u,β) =
Q(u) + O(β), 0 = s(0, β) near the quasi-stationary manifold v = Q(u) and then
slides along slowly, tending to the origin as s→∞.

In case the parameter κ is not bounded away from 0, we perform a further time
scaling σ = κ−1s = k2t , resulting in

du

dσ
= βκF(u, v)= βκ[(−1+ v)u+μv],

dv

dσ
= κG(u, v)= κ[u− [u+KM ]v

]= κu− [1+ κ(μ+ u)]v
(3.65)

with initial value (α,0). With a fixed β and with the quotient κ of the rate constants
k1 and k2 taking the role of ε in the previous section (κ→ 0), the quasi-stationary
manifold is given by v ≡ 0 with the reduced system du

dσ
=−βκu.

The chosen variables a and c in (3.59) and the scaling (3.60) are legitimate, but
one might argue (cf. [9] and [62]) that the sum H = a + c of the concentrations
a and c, the total concentration of (3.59), is, from a biological point of view, most
important in (3.58). We follow [9] and [62] and choose

Ḣ =−k2c, ċ= k1
[
(H − c)(β− c)−KMc

]
, KM := (k−1+ k2)/k1, (3.66)
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as a starting point instead of (3.59). We will derive a scaled version of (3.66) in the
form

x′ = −εy =−ε1ε
2
2ε3ε4y, x(0)= α,

y′ = x − [ε2 + (1− ε2)x
]
y + ε2(1− ε2)ε3y

2, y(0)= 0,
(3.67)

where each of the four factors εj is in [0,1], and where ε belongs to [0,1/4]. The
preliminary scaling

x =H, y = c/γ (3.68)

with free positive γ leads to

dx

dt
=−k2γy,

dy

dt
= k1β

γ

[
x −

(
β +KM
β

+ x
β

)
γy + (γy)

2

β

]
.

By the time scaling s = k1β
γ
t this can be rewritten as

dx

ds
≡ x′ = −k2γ

2

k1β
y =−k2γ

2

k1β
y,

dy

ds
≡ y′ = x−

[
β +KM
β

+ x
β

]
γy+ (γy)

2

β
.

With the choice γ = β/[1+ β +KM ] ∈min(1, β) we arrive at

x′ = − k2β

k1(1+ β +KM)2 y,

y′ = x −
[
β +KM

1+ β +KM +
x

1+ β +KM
]
y + β

(1+ β +KM)2 y
2.

We define

ε := k2β

k1(1+ β +KM)2 =
1

κKM︸ ︷︷ ︸
=ε1

[
β +KM

1+ β +KM︸ ︷︷ ︸
=ε2

]2
β

β +KM︸ ︷︷ ︸
=ε3

KM

β +KM︸ ︷︷ ︸
=ε4

(3.69)

and end up with (3.67), where we have used the fact κKM = 1+ k−1
k2
≥ 1.

We note that the case ε2 → 0 is biologically unrealistic, so we assume that ε2 ≥
ε∗2 > 0 (β + KM � 0) and encounter a singular perturbation problem in standard
form over the x-interval [0, α], where the product

ε1ε3ε4 = β(KM −μ)
(β +KM)2 =

β/κ

(β +μ+ κ−1)2
≤ βκ (3.70)

is to play the role of the small parameter in (3.67). The QSSA manifold, obtained
by setting y′ in (3.67) equal to 0 (cf. Remark 3.19), is given by

y =Q∗(x, ε2, ε3)= ε2 + (1− ε2)x

ε2(1− ε2)ε3

[
1−

√

1− 4ε2(1− ε2)ε3x

(ε2 + (1− ε2)x)2

]
(3.71)
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for all x ∈ [0, α] because of ε2 ≤ 1 and ε3 ≤ 1. Provided that ε3 is bounded away
from 0 and ε is tending to 0 because ε1ε4 is tending to 0, the quasi-stationary man-
ifold of (3.67) is given by (3.71) too.

The most interesting case is that where

ε3 = β

β +KM =
β

β +μ+ κ−1
≤ βκ (3.72)

tends to 0 and the quasi-stationary manifold

y = x

ε2 + (1− ε2)x
=Q∗(x, ε2,0+)

is exponentially attractive because of −[ε2 + (1− ε2)x] ≤ −ε2 ≤ −ε∗2 < 0 for all
x ∈ [0, α]. So, Theorem 3.18 guarantees the existence of ε0 > 0 such that for ε3 ∈
(0, ε0), the solution of the initial value problem (3.67) with initial value (α,0) tends
exponentially to a slow invariant manifold y = S(x, ε3)=Q∗(x, ε2,0+)+O(ε3),
0= S(0, ε3), near the quasi-stationary manifold (3.67) and then slides along slowly,
tending to the origin as s→∞.

At the beginning of this case study, we have considered the case “β fixed, κ→ 0”
and the case “β→ 0, κ fixed.” Both imply ε3 → 0 in (3.72). In the first case, ε1, ε2,
and ε4 are bounded away from 0. In the latter case, we have KM→∞ and κKM =
1+ k−1

k2
= ε−1

1 , so that ε1 may tend to 0, whereas ε2 and ε4 are bounded away from 0.
Even if the present small parameter ε1ε3ε4 from (3.70) (or ε3 from (3.72)) hap-

pens to be smaller than the corresponding small parameter β in (3.62) (or βκ in
(3.65)), it is not guaranteed that the admissible parameter range for (3.66) is in-
deed larger than that for (3.62) (or (3.65)): These ranges are given by the above-
mentioned β0 and ε0, which arise from various constraints, for example, the weak
coupling conditions for (3.66) and (3.62) (cf. Remark 3.23(B)).

Moreover, this case study shows that “new” parameters are to be handled with
due care, their interdependencies should always be kept in mind. For an extensive
discussion of this kind of total QSSA, we refer to [9] and [62] and to the classical
papers [80] and [81].

1.4 Reactive Separation

Section 1.4.1 offers a case study of a simple continuous stirred tank reactor and of
the associated hysteresis phenomenon. Section 1.4.2 presents a first step to reaction
invariants in case of reactive systems, whereas Sect. 1.4.3 resumes the discussion
of reaction networks in Sect. 1.1.4.3 and addresses the role of reaction invariants for
reaction–separation processes. We prove the existence of an adapted set of reference
components, so that there is a global, homogeneous coordinate transformation to
reaction invariants that induces the standard form of singularly perturbed systems
(generalized Doherty transformation). A more detailed outline of this new approach
can be found at the beginning of Sect. 1.4.3.
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1.4.1 Continuous Stirred Tank Reactors (Case Study)

We present a case study of a reactionA1→A2 taking place in an idealized isothermal
continuous stirred tank reactor (CSTR) (cf. [24]). Let Cj be the time-dependent
concentrations in a constant active reactor volume V > 0 with constant volumetric
flow rate q > 0, let nj = qCj be the molar flow rates, njf = qCjf the constant
molar feed flow rates, and nj = VCj the molar hold ups per unit volume (j = 1,2).
We assume the reaction rate r to be of the form

r = �C1

(1+ kC1)2
(4.1)

with positive constants � and k. Unsteady state material balance on A1 and A2 gives

d

dt
n1 = n1f − n1 − V r, d

dt
n2 = n2f − n2 + V r,

and thus

V
d

dt
C1 = q(C1f −C1)− V �C1/(1+ kC1)

2, (4.2a)

V
d

dt
C2 = q(C2f −C2)+ V �C1/(1+ kC1)

2. (4.2b)

The functions C1(·),C2(·) and time t can be scaled with positive parameters α,β ,
and τ via u= αC1, v = βC2, s = τ t , so that (4.2a), (4.2b) turns into

u′ = 1

a
(b− u)− u/(1+ u)2 =: F(u) , (4.3a)

v′ = 1

a
(c− v)+ u/(1+ u)2 =:G(u,v) (4.3b)

for suitable positive parameters a, b, and c. We note that system (4.3a), (4.3b) is in
cascade form, so that Eq. (4.3a) can be studied separately. We suggest the following
steps to the reader.

Step 1: Determine the steady states u∗ = u∗(a, b) of (4.3a) and the correspond-
ing linearizations of (4.3a). Compute the critical parameter values (in the sense
Fu(u

∗(a, b)) = 0) and sketch the critical set of parameters in the (a, b)-plane.
What bifurcations can occur in (4.3a)?

Step 2: Determine the steady states u∗ = u∗(a, b), v∗ = v∗(a, b) of (4.3a), (4.3b)
and discuss the corresponding linearizations

J ∗ =
(
Fu(u

∗) 0
Gu(u

∗, v∗) Gv(u
∗, v∗)

)
=
(
Fu(u

∗) 0
Gu(u

∗, v∗) − 1
a

)
(4.4)

with the eigenvalues λ1 = Fu(u∗) and λ2 =− 1
a
< 0. Compute the corresponding

eigenvectors. For u∗ with negative λ1, the equilibrium (u∗, v∗) is exponentially
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Fig. 7 Left: Phase portrait of (4.3a), (4.3b) with the (red) unstable and the (green) stable manifold
of the saddle point S = (4,18) in the (u, v)-plane for a = 100, b = 20. The latter manifold acts
as a threshold since solutions starting to its right tend to the right, whereas solutions starting to its
left move to the left. The dashed line refers to the nullcline u̇ = 0 in (4.3a), (4.3b). To the right:
Hysteresis manifold with cusp in the (a, b, x)-space from (4.5a) (cf. Remark 4.1 and Fig. 3)

stable, whereas for u∗ with positive λ1, the equilibrium (u∗, v∗) is a saddle point.
Show that saddle-node bifurcations take place at equilibria u∗ with critical eigen-
value λ1 = 0.

Step 3: Derive, numerically and analytically, the phase portraits and the bifurca-
tion diagrams of (4.3a), (4.3b) for parameter settings (a, b) so that (4.3a), (4.3b)
possesses one, two, or three equilibria.

In case of the existence of two stable nodes and one saddle point, the global stable
manifold of the saddle acts as a threshold, as a switching curve for (4.3a), (4.3b),
and the global unstable manifold of the saddle consists of two heteroclinic orbits
joining the saddle with the stable nodes. These invariant manifolds of the saddle
point code the most essential information about system (4.3a), (4.3b). For the phase
portrait, we refer to Fig. 7.

We briefly indicate how to compute the region C in the (a, b)-parameter plane
where (4.3a) possesses three steady states x satisfying

1

a
(b− x)= x/(1+ x)2 ⇔ (b− x)(1+ x)2 − ax = 0. (4.5a)

At critical parameter values, one has double zeros, and hence

−(1+ x)2 + 2(b− x)(1+ x)− a = (1+ x)(2b− 1− 3x)− a = 0. (4.5b)

Now, we solve the last two equations for b and a and arrive at

b= b(x)= 2x2

x − 1
, a = a(x)= (1+ x)

3

x − 1
for x > 1. (4.5c)
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Both expressions are minimal for x = 2 with (a(2), b(2))= (27,8). With the trans-
lations x = 2+ ξ , α = a − 27, and β = b− 8, (4.5c) can be solved explicitly:

α = α±(β) := 1

2
β

[
9+ β

4
± 1

4

√
β2 + 8β

]
. (4.5d)

The functions α±(β) describe the boundary of a cusp-like region in the parameter
space. The width of the cusp is given by β

4

√
β2 + 8β and is thus of order β3/2. In

particular, it is extremely thin near the tip at (α,β)= (0,0).
Remark 4.1 (Hysteresis—hard excitation (cf. Fig. 7)) Imagine that system (4.3a)
evolves, for a certain time span T , at a parameter value (a, b) corresponding to the
lower (green) stable branch of equilibria of the folded cubic curve that is shown in
right panel of Fig. 7. Then the solution will be near the corresponding stable node
u = u∗(a, b) at time T . Suppose now that the parameter is moved to (a′, b′) by
a small step to the right in Fig. 7 and is then kept constant for the time span T .
The solution of (4.3a) starting near u= u∗(a, b) will be close to the stable equilib-
rium u∗(a′, b′) on the lower branch (in green). If this procedure is repeated n-times,
then we will reach a parameter value (a(n), b(n)) where the lower branch is not
existing anymore, so that solutions, after time T , will be close to an equilibrium
u∗(a(n), b(n)) on the upper stable branch (in blue). This kind of sudden jump in the
amplitude is referred to as hard excitation (cf. mark A©) in contrast to the soft exci-
tations before, where small changes in the parameters result in small changes in the
systems response after time T . If the parameters keep on moving to the right, then
solutions will approach equilibria on the higher blue level. In contrast, if parameters
are moved stepwise to the left, then there will be a downward sudden jump in the
amplitude at a different region of the parameter space (cf. mark B©). So, in some
sense, such a system shows some memory: It depends on the past whether small
changes in the parameter have a drastic effect or not.

1.4.2 Model Reduction by Key Components

It is our goal to use the conservation laws of a reaction network to derive key com-
ponents and key reactions in order to reduce the model to a lower dimension. A stan-
dard example of a reaction network in chemical engineering is that of synthesis gas
reactions.

Example 4.2 (Synthesis gas) With seven species and six reversible reactions

R1: CH4 +H2O
k1−⇀↽−
k2

CO+ 3H2, R4: 2CH4
k7−⇀↽−
k8

C2H6 +H2,

R2: CO+H2O
k3−⇀↽−
k4

CO2 +H2, R5: C+H2O
k9−−⇀↽−
k10

CO+H2,

R3: CH4
k5−⇀↽−
k6

C+ 2H2, R6: 2CO
k11−−⇀↽−
k12

C+CO2,
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we set x := (C,CH4,H2O,H2,CO,CO2,C2H6)
T ∈R

7, define the reaction rate vec-
tor RT := (R1, . . . ,R6), for example, R3 = k5x2− k6x1x

2
4 , and the (7× 6) stoichio-

metric matrix N by the usual scheme:

R1 R2 R3 R4 R5 R6
C 0 0 1 0 −1 1
CH4 −1 0 −1 −2 0 0
H2O −1 −1 0 0 −1 0
H2 3 1 2 1 1 0
CO 1 −1 0 0 1 −2
CO2 0 1 0 0 0 1
C2H6 0 0 0 1 0 0

⇒ N :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 1 0 −1 1
−1 0 −1 −2 0 0
−1 −1 0 0 −1 0
3 1 2 1 1 0
1 −1 0 0 1 −2
0 1 0 0 0 1
0 0 0 1 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (4.6)

The corresponding ODE model is given by ẋ =NR(x). Since the rank of the stoi-
chiometricN is 4, there is a three-dimensional left nullspace. As a generating matrix
for the left nullspace of N , we may take the conservation laws of all atoms xj , the
C-atoms and the O-atoms, to arrive at

KT =
⎛

⎝
1 5 3 2 2 3 8
1 1 0 0 1 1 2
0 0 1 0 1 2 0

⎞

⎠ with KTN = 0. (4.7a)

We note, as a preparation of Lemma 4.3 in Sect. 1.4.3.1, that there exists a special
left nullvector

rT = (1,3,1,1,1,1,5)≥ (1,1,1,1,1,1,1)≡ eT, (4.7b)

where the number of entries equal to 1 is not less than the dimension 3 of the left
nullspace of N .

We now employ the conservation laws of a reaction network to derive a reduced-
order model. In the first orthant Q of Rp , we consider the reaction network model

dn

dτ
=HNR(x), n(0)= n0

(
H = eTn≡

∑
nj , x = n/H

)
, (4.8)

with a stoichiometric matrix N ∈ Z
p×q of rank ρ. By a time scaling

τ =
∫ t

0

1

H(σ)
dσ
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as in Remark 2.2, we eliminate the positive factor H . So, we may start w.l.o.g. with
a system of the form

ṅ := dn

dt
=NR(x), H = eTn≡

∑
nj , x = n/H. (4.9)

Let the full-rank factorization of N be given by

N =
(
A B

C D

)
=
(
X

I

)
D(Y, I) with X = BD−1, Y =D−1C (4.10)

for regular D ∈ R
ρ×ρ , so that the left nullspace of N is spanned by the rows of

(I,−X). The vectors n= (nT
1 , n

T
2 )

T and R = (RT
1 ,R

T
2 )

T are partitioned accordingly.
The ρ combinations

r(x)= YR1(x)+R2(x) ∈R
ρ (4.11)

are called key reactions. In the new variables ξ ∈R
p−ρ and ν ∈R

ρ , given by

n=Φ(ξ, ν)≡
(
I −B
0 −D

)(
ξ

ν

)
with

(
ξ

ν

)
=
(
I −X
0 −D−1

)
n, (4.12)

we arrive at the decoupled system

ξ̇ = (I,−X)ṅ= 0, ν̇ =−D−1 ṅ2 =−r̃(ξ, ν), (4.13)

with r̃(ξ, ν) := r( n
eTn
) for n=Φ(ξ, ν). The (p − ρ) conserved components ξ with

ξ̇ = 0, describing conservation laws/first integrals, entail

ξ(t)≡ ξ0 = (I,−X)n0, i.e., n1(t, n0)− n01 = BD−1[n2(t, n0)− n02
]
.

The ρ equations of the key components ν are then to be solved for constants ξ = ξ0.
For the solution v ≡ v(t, ξ0, ν0), v(0, ξ0, ν0)= ν0 =−D−1n2(0), of the ν-equation
in (4.13) and for (Δv)(t) := v(t, ξ0, ν0)− ν0, we obtain

n(t, n0)= n0 −
(
B

D

)
(Δv)(t, ξ0, ν0) ∈ n0 + range(N). (4.14)

The transformation (4.12) is based exclusively on the properties of the fundamental
subspaces of the stoichiometric matrix N . The reaction rate vector R(x) and the
constraint eTx = 1 do not enter, and the components ξj need not satisfy ξj ≥ 0,
eTξ = 1.

1.4.3 Model Reduction in Reaction–Separation Processes

In the last 25 years, large effort was made in the mathematical theory for model
reduction of reactive distillation processes with simultaneous phase and reaction
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equilibrium. When reactions are fast compared to the separation process, Doherty
et al. [4, 5, 89–91] have developed the technique of model reduction by reac-
tion invariants. Applications to chromatographic and membrane reactors have been
demonstrated by Kienle et al. [42, 43, 93], applications to reactive pervaporation
by Sundmacher et al. [51, 52]. Still, some mathematical subtleties are unsolved
in the general case. The computation of the mapping from molar fractions to the
lower-dimensional, reaction-invariant composition variables, as defined by Doherty
et al., requires a choice of reference components among the participating compo-
nents. Whether a given choice of reference components lead to a well-defined and
bounded mapping just depends on the stoichiometry of the reaction network. Based
on the algorithm in [35] (see also [8]), we prove the existence of an adapted set of
reference components, so that there is a global coordinate transformation to reac-
tion invariants that induces the standard form of singularly perturbed systems with
preservation of the homogeneity properties induced by Gibbs’ free energy.

1.4.3.1 Reactive Distillation and Separation: The Setup

We consider the following model for a reactive mixture with m components and k
reactions in a still (for constant pressure p and temperature T ):

dn

dτ
= Fε(n)=HN0R(x)− εVy(x), n(0)= n0, (4.15)

with n ∈ R
m
≥0 being the vector of molar amount, H = eTn =∑nj the total molar

holdup (eT := (1, . . . ,1)), x = n/H the vector of mole fractions in the still, y the
vector of mole fractions in the removed phase, and εV the constant removed mo-
lar flow rate for small ε > 0. See Fig. 8. We assume the mass action reaction rate
R(x)= (R1(x), . . . ,Rk(x))

T to be

Rj(x)=
∏

νh,j<0

x
−νh,j
h − [keqj

]−1 ∏

νh,j>0

x
νh,j
h (4.16)

for the stoichiometric matrix

N0 = (νi,j )i=1,...,m
j=1,...,k ∈R

m×k of full column rank. (4.17)

Here, we recall the discussion of reversible reaction networks in Sect. 1.1.4.3. The
volatilities and membrane data are subsumed in the assumption

y(x)= z(x)

eTz(x)
≥ 0,

where the smooth vector function z(x) is to preserve the positive invariance of Rm≥0
for (4.15): We ask for yj (x)= 0 for xj = 0. One may think of z(x)= ΓKΓAx for a
positive diagonal matrix ΓA and an appropriate mass transfer matrix ΓK like

ΓK = ΓKD + diag(x)ΓKO



1 Geometric Theory of ODEs 97

Fig. 8 Scheme of the still for
model (4.15) with constant
flow rate εV and mole
fractions y in the removed
phase

with a constant diagonal matrix ΓKD with positive diagonal entries and a constant
off-diagonal matrix ΓKO .

By mass conservation, there is a row vector ρT > 0 with ρTN0 = 0. For the
transformations we have in mind, we search for a left nullvector of N0 with some
additional property (cf. Sect. 1.4.2, in particular (4.7b)). The following lemma from
[35] guarantees the existence of such a left nullvector; its proof is an algorithmic
one.

Lemma 4.3 (Choice of reference components (cf. [35])) For any matrixN ∈R
m×k

with a positive left nullvector qT ∈R
1×m+ (qTN = 0), there exist a permutation ma-

trix Π ∈ R
m×m and a positive left nullvector wT ∈ R

1×m+ (wTN = 0) such that
Ñ2 ∈R

k×k in

ΠTN =: Ñ =
(
Ñ1

Ñ2

)
, Ñ1 ∈R

(m−k)×k,

is regular and such that wTΠ is given by wTΠ = (eT
m−k,pT) with pT ∈ R

1×k that
satisfies

eT
m ≤

(
eT
m−k,pT)= eT

k N
⊥ for N⊥ := (I,−N1N

−1
2

) ∈R
k×m. (4.18)

Here, eT
� denotes (1, . . . ,1)T ∈R

1×�.

From now on we suppose that the stoichiometric matrixN0 from (4.17) is already
in the above block form with a regular k × k-block N02 and take advantage of the
existence of a positive rT in the left kernel of N0 with

rT = (rT
1 |rT

2

)= (1, . . . ,1|rT
2

)≥ (1, . . . ,1|1, . . . ,1), 0= rTN0

= (rT
1 |rT

2

)(N01
N02

)
(4.19)

and thus with

eT ≤ rT = (rT
1 , r

T
2

)= eTN⊥0 , N⊥0 :=
(
I,−N01N

−1
02

)
. (4.20)
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To give an impression how “hard” it is to find such a special left nullvec-
tor, we would like to mention that for a (12 × 6)-matrix N0 with entries from
{0,±1, . . . ,±5} there are, on average, three admissible choices for r out of 924
possibilities (cf. [35]).

We pass to the relative coordinates x = n/H with H := eTn > 0 in the simplex
Sm := {x ∈R

m
≥0 : eTx = 1}. System (4.15) is then equivalent to the system

Ḣ =HeTN0R(x)− εV,

ẋ = [I − xeT]N0R(x)+ εV
H

[
x − y(x)].

(4.21)

For later convenience, we introduce the notation

N(x)= [I − xeT]N0 (4.22)

and note that [I − xeT]x = 0 and [I − xeT]z= 0 for z ∈ [e]⊥.
We first consider the case ε = 0, where the x-equation is decoupled, and where

Gibbs’ free energy acts as a Lyapunov function (cf. Sect. 1.1.4.3). There is the ki-
netic equilibrium manifold

M0 =
{
x ∈ Sm :R(x)= 0

}

corresponding to steady states of the ODE systems (4.15) and (4.21). Gibbs’ free
energy

G(n)= nTμ(x)≡ nT[μ0 +Ln(x)
]
(μ0 > 0) (4.23)

is associated to the mass action rate R(x), and vice versa. G is a first-order homo-
geneous function, G(sn)= sG(n) for all real s, with

grad
(
G(n)

)= μT(x) and Hessian Gnn(n)= 1

H

[
diag

(
x−1
j

)− eeT]. (4.24)

We note that Gnn(n) is only positive semidefinite because of the trivial one-
dimensional nullspace spanned by x. For n > 0, we arrive at

Ġ= gradn(G)ṅ=HμT(x)N0R(x)≤ 0

along (4.15) since the equation

μT(x)N0 =
(
μ0 +Ln(x)

)T
N0 = 0 (4.25)

is equivalent to

∏

h

x
νh,j
h = exp

(
−
∑

h

νh,jμ0h

)
≡ keqj (4.26)
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and thus to zj (x)= 1, j = 1, . . . ,m, in

Rj(x)=
∏

νh,j<0

x
−νh,j
h − [keqj

]−1 ∏

νh,j>0

x
νh,j
h =Rrj {zj − 1} = 0

with Rrj (x) :=
[
k
eq
j

]−1 ∏

νh,j>0

x
νh,j
h and zj (x) := keqj

[∏

νh,j

x
νh,j
h

]−1

(4.27)

(cf. Sect. 1.1.4.3). Thus, G acts as a Lyapunov function. Since the nonnegative or-
thant is positive invariant and since mass is conserved ((ρTn)· = 0 for a positive
vector ρ), LaSalle’s invariance principle (Theorem 1.35) tells us that all nontrivial
solutions of (4.15) approach, as t→∞, the maximal invariant setMinv in

{
n ∈R

m
≥0 \ {0} : Ġ(n)= 0

}= {n=Hx :H > 0,R(x)= 0, eTx = 1
}
. (4.28)

We refer to [71] for a general discussion of the connection between Gibbs’ free
energy and mass action reaction rate vectors.

1.4.3.2 Homogeneous Reaction Invariants and Model Reduction

For ε = 0, we perform a homogeneous change n 	→ Z(n) of coordinates by

h := eTN⊥0 n≡ Z11(n), (4.29a)

ξ := 1

h
N⊥0 n≡ Z12(n), (4.29b)

β :=N−1
02 n2/e

Tn≡ Z2(n) (4.29c)

with eTξ = 1 possessing the inverse

n=Hx for H = h/{1− eTN0β
}
, (4.30a)

x =W(ξ,β)= (1− eTN0β
)(ξ

0

)
+N0β (4.30b)

on eTξ = 1 with the homogeneity relation

n=Hx =HW(ξ,β)=W(Hξ,Hβ). (4.30c)

We note that 1 − eTN0β = eTN⊥0 x = rTx ≥ eTx = 1 implies h ≥ H , so that the
denominators in (4.29a) and (4.30a) are positive for H > 0. We note that x might
also be written as

x =W(ξ,β)=
(
ξ

0

)
−
[
I −

(
ξ

0

)
eT
]
N0β (4.30d)
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Fig. 9 Foliation with base
points b= (ξT,0) and the
reaction simplices, that is, the
column spaces of N(b), as
fibers

with “base point” b= (ξT,0), eTb= 1, and an element of the column space ofN(b)
(cf. (4.22)). This homogeneous transformation n 	→ (h, ξT, βT)T = Z(n) extends
that of [39]. For variable β ∈R

k , x =W(ξ,β) provides a foliation by k-dimensional
affine spaces, and ϕ ≡ Z12 is embedded as a projection; see Fig. 9.

For ε = 0 and also for ε > 0, systems (4.15) and (4.21) take the form

ḣ=−εVZ11
(
y(x)

)
, (4.31a)

ξ̇ = εV Z11(y(x))

Z11(n)

[
Z12(x)−Z12

(
y(x)

)]
, (4.31b)

β̇ = [I − βeTN0
]
R(x)+ ε V

H

[
Z2(x)−Z2

(
y(x)

)]
(4.31c)

in these new coordinates on eTξ = 1 with H and x defined in (4.30a). For ε = 0,
the h and the components of ξ are first integrals or reaction invariants. The quasi-
stationary manifold of (4.31a)–(4.31c) is the solution set of the k equations in
R(W(ξ,β)) = 0 since [I − βeTN0]β = (1 − eTN0β)β and (1 − eTN0β) ≥ 1 im-
ply the regularity of the (k × k)-matrix [I − βeTN0]. For an application of sin-
gular perturbation theory as presented in Sect. 1.3.5, this equation R(W(ξ,β))= 0
should be uniquely solvable in the form β =Φ0(ξ) together with the exponential es-
timate (3.40). After a time scaling, we arrive at the following reduced model where
Eq. (4.32b) is in the form of a simple distillation equation (cf. [22], Sect. 5.2).

Proposition 4.4 (Reduced quasi-stationary approximation) In the relative interior
of the simplex Sm, system (4.15) allows a set of global coordinates such that the
quasi-stationary approximation of the reduced system on the kinetic equilibrium
manifold is given by

h′ = −Z11(n)=−h, (4.32a)

ξ ′ = Z12(x)−Z12
(
y(x)

)= ξ − η(ξ) (4.32b)
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for eTξ = 1, x = W(ξ,Φ0(ξ)), and η(ξ) = Z12(y(Φ0(ξ))), provided that β =
Φ0(ξ) is a global parameterization of the solution of R(W(ξ,β)) = 0, that is, of
the kinetic equilibrium manifoldM0.

1.4.3.3 Exponential Stability of the Quasi-stationary Manifold

We consider the x-equation in (4.21) for ε = 0, that is,

ẋ =
(
u

v

)
=
(
N1(x)

N2(x)

)
R(x)=N(x)R(x) with N(x) := [I − xeT]N0, (4.33)

and assume the kinetic equilibria p = (uT, vT)T ∈ Sm ∩ Rm+ to be parameterized
smoothly by v = q(u) with Jacobian Q(u). The Jacobian J (p) = Dx[N(p)R(p)]
is given by

J (p)=Dx
[(
I − xeT)N0R(x)

]∣∣
x=p =

(
I − peT)N0Rx(p)=N(p)Rx(p). (4.34)

The tangent space to the kinetic equilibrium manifold is in the nullspace of Rx and
hence in the nullspace of J (p). Moreover, we obviously have

J (p)N(p)=N(p)[Rx(p)N(p)
]
, (4.35)

so that the column space of N(p) is an invariant subspace of J (p) on which J (p)
is given by Rx(p)N(p). By the mass action form (4.16) of R and by (4.27) we have

Rx(p)=−diag
(
Rrj (p)

)
NT

0 P
−1 =−diag

(
Rrj (p)

)
G (p)

with G (p) :=NT
0

[
P−1 − eeT]N0 (4.36)

and with P = diag(pj ) = diag(P1,P2) possessing diagonal blocks P1 ∈
R
(m−k)×(m−k) and P2 ∈ R

k×k . The matrix G is symmetric, and the eigenvalues
of [P−1 − eeT] are 1 with geometric multiplicity m− 1 and eigenspace [e]⊥ and 0
with eigenspace [p] (because of eTp = 1).

We show first that G (p), the reduced Hessian of Gibbs’ energy, is positive def-
inite. If N0z = p ∈ Sm for some z, then wTN0 = 0 implies wTp = 0. Since left
nullvectors of N0 are of the form wT = ωTN⊥0 , implying wTp = ωTN⊥0 p, we
choose ω = N⊥0 p, so that wTp equals |N⊥0 p|2. Now, N⊥0 p is nonzero because
of eTN⊥0 p = rTp ≥ eTp = 1 (cf. (4.19)). Hence, p cannot be in the range of N0
implying the positive definiteness of G (p).

In a second step, we note that the relation

[
G (p)

]1/2
Rx(p)N(p)

[
G (p)

]−1/2 = [G (p)]1/2[−diag
(
Rrj (p)

)][
G (p)

]1/2

implies, by Sylvester’s law of inertia, that Rx(p)N(p) has only real negative eigen-
values.



102 D. Flockerzi

Finally, we give a geometric interpretation. From R(u,q(u)) = 0 and eTu +
eTq(u)= 1 we deduce

Ru
(
u,q(u)

)+Rv
(
u,q(u)

)
Q(u)= 0 and eT + eTQ(u)= 0,

Rx(p)N(p)=Rv(p)D(p) for D(p) := (−Q(p), I)N(p),
(4.37)

and hence J (p)N(p) = N(p)[Rx(p)N(p)] = N(p)[Rv(p)D(p)]. Since Rx(p) ·
N(p) and Rv(p)=−diag(Rrj (p))N

T
02P

−1
2 are regular (see (4.36)), D(p) is regular

too. Thus, in geometric terms, the tangent space to the kinetic equilibrium manifold
is a direct complement of the column space of N(p) (see Fig. 9).

Proposition 4.5 (Block-diagonalization of the Jacobian) In the above setup, we
have the block-diagonalization of the Jacobian

J (p)=N(p)Rx(p)=N(p)Rv(p)
(−Q(p), I)

at kinetic equilibria p in the relative interior of Sm via the regular (m×m)-matrix

T (p)=
(
I N1(p)

Q(p) N2(p)

)
with J (p)T (p)= T (p)

(
0 0
0 Rv(p)D(p)

)
. (4.38)

Moreover, the reduced (k × k)-matrix Rv(p)D(p) has only real negative eigenval-
ues.

So, in contrast to the change of coordinates in (4.12), the present transformation
T (p) is based on the stoichiometry and on the equilibrium manifold M0 of the
reaction rate vector R(x). Moreover, it induces the nonlinear change of variables
presented in (4.29a)–(4.29c) and (4.30a), (4.30b).

We summarize the results of this Sect. 1.4.3 informally:

Remark 4.6 (Main reduction result by reaction invariants and its constraints) The
reduced equations (4.32a), (4.32b) represents the lowest-order approximation with
respect to ε→ 0 for (4.31a)–(4.31c) generating a slow invariant manifold

M(ε)= {(h, ξ,β) : β = sinv(h, ξ, ε)=Φ0(ξ)+O(ε)
}

near the kinetic equilibrium manifold M = {(h, ξ,β) : β =Φ0(ξ)} within compact
sets bounded away from the faces of the underlying simplex Z(Sm). In addition,
M(0) is globally exponentially stable for the quasi-stationary approximation.

We stress the following fact. Because of the factor V/H in (4.31a)–(4.31c) and
because of Ḣ =HeTN0R(x)−εV in (4.21), the perturbation of the quasi-stationary
approximation can be sufficiently small for small ε > 0 only as long asH is bounded
away from 0, say H ≥H� for a prefixed H� > 0. When solutions of (4.31a)–(4.31c)
have approachedM(ε) orM(0), H is decreasing and tending to 0 in finite time for
constant V (because of Ḣ ∼ −εV ). Thus, the model (4.15) is to be modified, for
example, by asking for V = V (n) > 0 such that V → 0 as H = eTn→ 0. We note
that in the purely reactive case of Sect. 1.4.2, the time scaling by H has not caused
any constraint on H .
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Fig. 10 Figure 10 illustrates the typical dynamics of a three-dimensional system (4.15) for various
values of the small parameter ε. Trajectories for three initial values on the edges and for five
increasing values ε1, . . . , ε5: One observes an exponentially fast approach of a neighborhood of
the reaction equilibrium curve (in blue) followed by a slow approach of the respective steady state

1.5 Chromatographic Separation

This section resumes the discussion of the scalar Riemann problem in Sect. 1.2.2
(see Exercise 2.7). The introductory Sect. 1.5.1 addresses systems of first-order
quasilinear partial differential equations with constant coefficients. Then, Sect. 1.5.2
provides innovative spectral results for adsorption equilibria described by the bi-
Langmuir isotherm. The standard Langmuir isotherm and the so-called modified
Langmuir isotherm are included as special cases. These eigenvalue results are of
fundamental importance for the theoretical analysis of chromatographic separation
processes using equilibrium theory. Some of the results of Sect. 1.5.2 have been
published in the short communication [36].

1.5.1 Characteristics for Quasilinear PDE Systems

We first consider the n-dimensional Cauchy problem

ut +Aux = 0, u(0, x)= f (x), (5.1)

for x ∈ R and t ≥ 0 with initial profile f : R→ R
n and constant matrix A ∈ R

n×n.
We assumeA to have n distinct real eigenvalues λj with λ1 < · · ·< λn and real right
eigenvectors rj and real left eigenvectors �T

j that are normalized by �T
j rk = δjk . Let

Λ= diag(λj ),R = (r1, . . . , rn), andL= (�1, . . . , �n) be the corresponding matrices
satisfying

AR =RΛ, LTA=ΛLT, LTR = I. (5.2)

The change of variables

v = LTu with inverse u=Rv (5.3)
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reduces the PDE problem (5.1) to n decoupled initial value problems in

vt +Λvx = 0, v(0, x)= g(x) := LTf (x). (5.4)

Its solution components are easily computed by the methods of characteristics.
The PDE (vj )t + λj (vj )x = 0 with vj (0, x)= gj (x)= �T

j f (x) is transformed into
ODE problem t ′ = 1, x′ = λj , v′ = 0 with t (0, ξ)= 0, x(0, ξ)= ξ, v(0, ξ)= gj (ξ),
where the solutions vj (t, x) = gj (x − λj t) = �T

j f (x − λj t) can be read off. The
u-solution is then given by u(t, x)=Rv(t, x), that is, by the superposition

u(t, x)=R
⎛

⎜
⎝

�T
1f (x − λ1t)

...

�T
nf (x − λnt)

⎞

⎟
⎠=

n∑

j=1

rj �
T
j f (x − λj t), (5.5)

showing a decomposition of the initial profile into a sum of n waves (each with
characteristic speed λj ). We note that we can think of the components uj of u as
solutions u(σ ) of the eigenvector equation ∂u/∂σ = rj , u(0)= 0 with σ being re-
placed by vj (t, x)

In the case of a piecewise constant initial profile

f (x)= u− for x < 0, f (x)= u+ for x > 0, (5.6a)

one speaks of the Riemann problem (see Exercise 2.7). We write u± as u± = Rv±,
the jump [u+ − u−] with respect to the right eigenvector rj as

[
u+ − u−]=Rc (

i.e., c= LT[u+ − u−]), (5.6b)

and define the intermediates

ωk = u− +
k∑

j=1

cj rj , ω0 = u−,ωn = u+. (5.6c)

In terms of ∂u1/∂σ = r1, u1(0) = ω0 = u−, we have u1(σ ) = r1σ + ω0 reaching
ω1 = u− + c1r1 for σ = c1, and so on.

For x < λ1t , we have f (x − λj t)= u− for j ≥ 1. Hence, (5.5) implies

u(t, x)= �T
1u
−r1 + · · · + �T

nu
−rn = u− = ω0 (5.7a)

For λ1t < x < λ2t , we have f (x − λ1t) = u+ and f (x − λj t) = u− for j ≥ 2, so
that (5.5) leads to

u(t, x)= �T
1u
+r1 + �T

2u
−r2 + · · · + �T

nu
−rn

= �T
1

[
u+ − u−]r1 + �T

1u
−r1 + �T

2u
−r2 + · · · + �T

nu
−rn

= c1r1 + u− = ω1, (5.7b)

and so on up to u(t, x) = u+ for x > λnt . We thus have a piecewise constant so-
lution with jumps ωj − ωj−1 = cj rj in the eigenvector directions rj in the n-
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dimensional u-space, where the discontinuities occur along lines x = λj t corre-
sponding to the characteristics in the two-dimensional (t, x)-space determined by
the eigenvalues λj .

Exercise 5.1 Consider first the n-dimensional Cauchy problem

ut +Aux = 0, A=
(−1 3/2

3/2 3

)
, u(0, x)= f (x), (5.8a)

for x ∈R and t ≥ 0 with a piecewise constant initial profile

f (x)= u− =
(−1

1

)
for x < 0, f (x)= u+ =

(
2
3

)
for x > 0, (5.8b)

and derive ωT
1 = (1.1,0.3) and

u(t, x)=

⎧
⎪⎨

⎪⎩

ω0 = u− for x <−3t/2,

ω1 for x ∈ (−3t/2,7t/2),

ω2 = u+ for x > 7t/2.

(5.9)

Conversely, if we assume that a jump line x = λt and the corresponding positive
jump δu are constrained by

Aδu= λδu, (5.10)

then the pair (λ, δu) is necessarily an eigenvalue–eigenvector pair of A. Show that,
for the above Riemann problem (5.8a), (5.8b), two jump lines with jumps ω − u−
and u+−ω necessarily lead to ω= ω1 as in (5.9). The constraint (5.10) is the special
case of the so-called Rankine–Hugoniot condition for “weak” PDE solutions (see
[25], Sect. 3.4.1).

We turn to nonlinear systems of first-order quasilinear partial differential equa-
tions of the form (see [25])

ut +A(u)ux = 0, (5.11)

which are called quasilinear since they are linear in the partial derivatives of the
unknown n-dimensional vector u. The (n×n)- matrixA(u) is assumed to be smooth
in u. System (5.11) may come from ut + (a(u))x = 0 for a smooth function a(u)
with values in R

n. The ideal case is where A(u) has n distinct real eigenvalues
λj (u) with corresponding eigenvectors rj (u), the so-called strictly hyperbolic case.
If A(u) possesses a smooth eigenvector rk(u) to a smooth real eigenvalue λk(u), we
seek solutions in the form of simple waves

u(t, x)= v(w(t, x)) (5.12)
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with a smooth scalar function w(t, x) and a smooth vector-valued function v(w),
leading to the equivalent equation

0= ut +A(u)ux =
[
wt +A

(
v(w)

)
wx
]
v′(w). (5.13)

Now, if v solves the ODE

v′(s)= rk
(
v(s)

)
(5.14)

and if w solves the scalar PDE

wt + λk
(
v(w)

)
wx = 0, (5.15)

then (5.13) holds. We then call the solution u from (5.12) a k-simple wave. We first
solve (5.14) for the k-rarefaction curve v(s) and then the scalar problem (5.15),

wt + λk
(
v(w)

)
wx = 0. (5.16)

The associated ODE for the characteristics is therefore

ẋ = λk
(
v(w)

)
, ẇ = 0. (5.17)

The general solution (x(t),w(t)) has a constant w(t)≡w and x(t,w)= λk(v(w))t
+ ξ(w). For the initial ξ(w)= 0 and under the genuine nonlinearity condition

∂

∂w
λ
(
v(w)

)= gradλk(w)rk(w) > 0, (5.18)

for example, we can invert x(t,w) = λk(v(w)) to arrive at a solution w = w(t, x)
of (5.15) and hence at a rarefaction wave solution u(t, x)= v(w(t, x)) of (5.11).

We now consider the Riemann problem for (5.11) with a piecewise constant ini-
tial profile

f (x)= u− for x < 0, f (x)= u+ for x > 0, (5.19)

cf. Exercise 2.7 and Bressan [11]. In case A(u) ∈ R
n×n is strictly hyperbolic, that

is, in case A(u) has n distinct real eigenvalues λ1(u) < · · ·< λn(u) with normalized
right and left eigenvectors rj (u) and �T

j (u) satisfying �j (u)Trk(u)= δjk , we arrive
at n decoupled scalar PDEs as in (5.4).

Consider the kth characteristic vector field rk(u) together with the IVP

dU

dσ
= rk(U), U(0)= u− (5.20)

and denote its solution by U(σ). Let us assume that the solution U(σ) reaches u+
for σ = σ+, that is,

u+ =U(σ+), σ+ ≥ 0, (5.21)



1 Geometric Theory of ODEs 107

and let us assume that

d

dσ
λk
(
U(σ)

)= gradλk
(
U(σ)

)
ri
(
U(σ)

)
> 0 (5.22)

on [0, σ+]. Then the map

σ : [0, σ+] � σ 	→Λk(σ) := λk
(
U(σ)

) ∈ [Λk(0),Λk
(
σ+
)]

(5.23)

is a strictly increasing bijection, which can be inverted. We define the kth rarefaction
wave

u(t, x)=

⎧
⎪⎨

⎪⎩

U(0)= u−, x ≤Λk(0)t,
U(σ ), x =Λk(σ)t = λi(U(σ )) ∈ [Λi(0)t,Λk(σ+)t],
U(σ+)= u+, x ≥Λk(σ+)t.

(5.24)
This u is clearly a solution for x < Λk(0)t and for x > Λk(σ+)t . For the region in
between, we have

u
(
t,Λi(σ )t

)≡U(σ) (5.25)

and hence

ut
(
t,Λk(σ )t

)+ ux
(
t,Λk(σ )t

)
Λk(σ)= ut + ux x

t
= 0,

ux
(
t,Λk(σ )t

)
grad

(
λk
(
U(σ)

))
Uσ (σ)t =Uσ (σ)= rk

(
U(σ)

)
.

This shows, by (5.22), that ux(t,Λi(σ )t) is a nontrivial element of the eigenspace
[rk(U(σ ))], so that we have

Λk(σ)ux
(
t,Λi(σ )t

)=A(U(σ))ux
(
t,Λi(σ )t

)=A(u(t, x))ux
(
t,Λk(σ )t

)
.

(5.26)
By (5.25) and (5.26) the function u of (5.24) is indeed a solution of the PDE system.

1.5.2 Spectral Properties for Bi-Langmuir Isotherms

Equilibrium theory is a powerful tool to design chromatographic processes and pre-
dict their performance (see, e.g., [57, 76, 85]). The approach is based on an idealized
description of a chromatographic column assuming thermodynamic equilibrium be-
tween the solid and fluid phases, isothermal operation, constant flow rates, and neg-
ligible axial dispersion (see, e.g., [76], p. 230):

∂

∂t

(
c+ νq(c))+ V ∂c

∂z
= 0, q, c ∈R

n. (5.27)

Therein, ν is the volumetric ratio of the solid and the fluid phase, and V is the
interstitial velocity of the fluid phase. The quantity q(c) represents the adsorption
isotherm, that is, the equilibrium concentrations in the solid phase as functions of
the fluid phase concentrations c. After the time scaling t 	→ t/V , system (5.27) can
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be rewritten as

∂

∂t
c+A(c) ∂

∂z
c= 0, A(c)= [I + νqc(c)

]−1
, (5.28)

provided that the inverse of [I + νqc(c)] exists. The system of quasilinear partial
differential equations (5.27) is said to be strictly hyperbolic if the Jacobian A(c)
has n different real eigenvalues and, hence, n independent eigenvectors. In case of
multiple semisimple real eigenvalues, it is just called hyperbolic (or often weakly
hyperbolic). We will discuss the spectral properties of the Jacobian of q(c) with
respect to c and thereby those of A(c). Classical equilibrium theory is for strictly
hyperbolic systems [76]. Moreover, Kvaalen et al. [64] have shown that the Jacobian
of any thermodynamic consistent adsorption equilibrium is diagonalizable over R,
which is equivalent to hyperbolicity, although not necessarily in the strict sense.

A popular isotherm model is the bi-Langmuir isotherm, which represents an ad-
ditive superposition of two Langmuir isotherms according to

qi = aI
i ci

1+∑n
k=1 b

I
kck

+ aII
i ci

1+∑n
k=1 b

II
k ck

(5.29)

for nonnegative aki and bki (k = I, II). Equation (5.29) is frequently used to describe
the adsorption behavior of enantiomers; see [44]. We present a systematic inves-
tigation of the spectral properties of A(c) for the bi-Langmuir isotherm. A short
communication on the following main results of this section can be found in [36]:

A. For an arbitrary number n of adsorbing components, hyperbolicity in the posi-
tive orthant is proven in Theorem 5.4 for aI

i = qI
Sb

I
i and aII

i = qII
S b

II
i with positive

scalars qI
S, q

II
S (equal saturation capacities). Example 5.12 from chiral prepara-

tive chromatography shows that hyperbolicity cannot be guaranteed for general
bi-Langmuir isotherms.

B. Important special cases included in Eq. (5.29) are the standard Langmuir
isotherm (for aII

i = 0) or the bi-Langmuir isotherm in case of bII = κ0b
I with

κ0 ≥ 0. The latter includes the modified Langmuir isotherm (for κ0 = 0), which
represents an additive superposition of a Langmuir with a linear isotherm (also
called a linear Langmuir isotherm). In all these cases, strict hyperbolicity of
such n-component systems can be shown (see, e.g., Corollary 5.7). Suitable
Laurent expansions specify intervals in which the eigenvalues will be located.
For the general bi-Langmuir isotherm (5.29), this is only possible under further
restrictions.

C. In the binary case (n = 2), strict hyperbolicity in the positive orthant can be
proven for the bi-Langmuir isotherm for arbitrary aI

i and aII
i with aI

i + aII
i > 0.

See Theorem 5.8 and Remark 5.9.
D. For systems with more than two components (n > 2) and arbitrary aI

i , a
II
i > 0,

hyperbolicity in the positive orthant may fail, leading to thermodynamic incon-
sistent results in the sense of [64] (see Example 5.12). Strict hyperbolicity in the
positive orthant ci > 0 may fail even in case of equal saturation capacities (see
Example 5.13).
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In Sect. 1.5.2.1, we introduce the necessary notation, elucidate the structural
properties of the Jacobian, and derive our main result Theorem 5.4 for systems of n
components. In Sect. 1.5.2.2, we remark on computational aspects concerning the
localization of eigenvalues (root loci), establish the connections to the determining
equation of Rhee et al. [76, p. 257], and present our main result concerning modified
Langmuir isotherms (Corollary 5.7). The following Sect. 1.5.3 is dedicated to binary
mixtures (see Theorem 5.8 for n= 2) and ternary mixtures (see Corollary 5.11 for
n= 3). For a deeper discussion of chromatographic separation processes, we refer
to the classical work of [75, 76]; see also [56].

1.5.2.1 Spectral Results for n-Component Systems

Given the standard Langmuir isotherm q : Rn≥0 → R
n
≥0 on the nonnegative orthant

R
n
≥0 with components

qi(c)= aici

1+∑k ckbk
(5.30a)

with nonnegative parameters ai , bk and nonnegative variables ci as for the first sum-
mand in (5.29). Let

a = (a1, . . . , an)
T, b := (b1, . . . , bn)

T, and c= (c1, . . . , cn)
T

be the corresponding column vectors, and let A= diag(ai) and C = diag(ci) be the
corresponding nonnegative n× n diagonal matrices. In vector notation, Eq. (5.30a)
can thus be written as

q(c)= 1

1+ cTb
Ac= 1

1+ cTb
Ca (5.30b)

with the Jacobian J given by

J (c)= 1

1+ cTb

[
A−C

[
1

1+ cTb
a

]
[b]T

]
, (5.31a)

satisfying

J (c)c= 1

(1+ cTb)2
Ac. (5.31b)

For the general bi-Langmuir isotherm, that is, the additive superposition of two such
standard Langmuir isotherms qI and qII according to (5.29), we adopt the notation
of (5.30b) and (5.31a) for qI and qII.

Lemma 5.2 (Structure of the Jacobian) In the n-dimensional bi-Langmuir case
(5.29), the Jacobian J of q is given by

J =D −CVWT (5.32)
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with the diagonal matrix

D ≡D(c)= [1+ cTbI]−1
AI + [1+ cTbII]−1

AII (5.33a)

and the (n× 2)-matrices CV and WT for

V ≡ V (c)= ([1+ cTbI]−2
aI,
[
1+ cTbII]−2

aII), W := (bI, bII). (5.33b)

1. The diagonal elements of J (c) in (5.32) are nonnegative, and the off-diagonal
elements are nonpositive.

2. In general, J (c) is a (rank≤ 2)-perturbation of the diagonal matrixD(c), where
W = (bI, bII) does not depend on c.

3. In case aII = κ0aI for some scalar κ0 ≥ 0 and in case bII = κ0b
I for some

scalar κ0 ≥ 0, the Jacobian J (c) is a (rank ≤ 1)-perturbation of the diagonal
matrix D(c).

We rearrange the diagonal terms of J in various ways. To this end, we introduce

L= (Lkj )kj = V (c)WT, L= Ldiag +Loff, (5.34a)

Γ ≡ Γ (c)= diag
(
γk(c)

)
, R ≡R(c)= diag

(
Rk(c)

)
(5.34b)

with Ldiag = diag(Lkk) for

γk(c)=
(
1+ cTbI)−2

aI
k +
(
1+ cTbII)−2

aII
k ≥ 0,

Lkj (c)= γ I
k (c)b

I
j + γ II

k (c)b
II
j ≥ 0,

Rk(c)= γ I
k (c)

∑

i 
=k
bI
ici + γ II

k (c)
∑

i 
=k
bII
i ci ≥ 0, (5.34c)

Jkk(c)= γk(c)+Rk(c)≥ 0,

dk(c)= Jkk(c)+Lkk(c)ck =
(
1+ cTbI)−1

aI
k +
(
1+ cTbII)−1

aII
k ≥ 0.

We will employ the obvious notation γ jk (c)= (1+ cTbj )−2a
j
k for j ∈ {I, II}, so that

γk(c) is given by γ I
k (c)+ γ II

k (c), and so on. We are thus led to the three representa-
tions

J =D−CL= Γ + [R −CLoff] = [Γ +R] −CLoff (5.35)

of J with the diagonal part Jdiag = Γ + R and the off-diagonal part −CLoff. By
(5.31b) we have the trivial, but crucial, relation

J (c)c= Γ (c)c. (5.36)
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For later reference, we note that J − λI takes the form

J − λIn =

⎛

⎜⎜
⎝

γ1 +R1 − λ −L12c1 −L13c1 . . .

−L21c2 γ2 +R2 − λ −L23c2 . . .

−L31c3 −L32c3 γ3 +R3 − λ . . .

. . . . . . . . . . . .

⎞

⎟⎟
⎠ . (5.37)

The more involved c-dependence of D = D(c) establishes a crucial difference to
the previous standard Langmuir case (5.31a). Note that the two columns of V are
just c-dependent scalar multiples of aI and aII, respectively, whereas the columns
of W are just the original constant vectors bI and bII. In part (c) of Lemma 5.2,
aII = 0 corresponds to the standard Langmuir case, whereas κ0 = 0 describes the so-
called modified Langmuir isotherm (bII = 0). Part (c) is implied by V or W having
rank ≤ 1. For a complete discussion, we allow cases where some of aki or some
of bki (k ∈ {I, II}) vanish. Such limiting cases shed some light on the hyperbolicity
properties and may explain computational difficulties.

Lemma 5.3 (Positive stability) Under the assumption aI + aII > 0, we have

J (c)c= Γ (c)c > 0 for all c > 0.

Thus, J (c) is positively stable, that is, the real part of each eigenvalue of J (c) is
positive, and all principal minors of J (c) are positive. In particular, det(J (c)) > 0.

Proof For J (c)c = Γ c, we refer to (5.36). Since the off-diagonal elements of J (c)
are nonpositive, J (c) is a Zn×n-matrix (see [6], p. 132). The claims thus follow
from [6], pp. 132–138, in particular, (I27)⇔ (G20)⇔ (A1) therein. �

Theorem 5.4 (Systems with n components) For symmetric L, the eigenvalues of
J (c) are real for c > 0. Moreover, we always have n linearly independent eigenvec-
tors. For aI + aII > 0, these eigenvalues are positive. The matrix L is symmetric in
the particular case

aI = qI
Sb

I and aII = qII
S b

II (5.38)

with equal saturation capacities qI
S > 0 for the qI

i and equal saturation capacities
qII
S > 0 for the qII

k .

Proof For (5.38), the off-diagonal matrix Loff in (5.35) is symmetric. For any sym-
metric Loff, the Jacobian J = Γ +R−CLoff from (5.35) is similar, over Rn+, to the
symmetric matrix

Jsym ≡ C−1/2JC1/2 = Γ +R −C1/2LoffC
1/2

and thus diagonalizable. Hence, Theorem 5.4 follows by Lemma 5.3. �

For a related problem in the modeling of fixed-bed adsorbers using ideal adsorp-
tion solution theory, we refer to [78], where rather general isotherms are considered.
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1.5.2.2 Computational Aspects for Bi-Langmuir Isotherms

We first investigate the spectrum of the Jacobian in the previous standard Langmuir
case (aII = 0). We assume the solutes to be arranged according to aI

0 := 0 < aI
1 <

· · ·< aI
n and take all bI

i > 0. By (5.31a) the computation of the spectrum of J I can
be based, in the present standard Langmuir case, on the scaled matrix

J̃ I :=AI − 1

1+ cTbICa
I(bI)T

with a first summand AI that does not depend on c. For λ̃s that are not eigenvalues
of AI, that is, λ̃ 
= aI

i (see Exercise 5.5), the characteristic polynomial det(J̃ I − λ̃I )
is given by

det

((
AI − λ̃I)

(
I − [AI − λ̃I ]−1 1

1+ cTbI Ca
I(bI)T

))
,

leading to

det
(
J̃ I − λ̃I)=

(
n∏

i=1

(
aI
i − λ̃

)
)(

1− 1

1+ cTbI

n∑

i=1

aI
i b

I
ici

aI
i − λ̃

)

, (5.39a)

so that the solutions λ̃= λ̃(c) of

1= ϕ̃(λ̃) :=
n∑

i=1

bI
iq

I
i (c)

aI
i − λ̃

(5.39b)

give rise to the eigenvalues of J̃ I and hence to the eigenvalues

λ(c)= λ̃(c)

1+ cTbI of J I.

Equation (5.39b) is the determining equation of [76], which is equivalent to the
h-transformation of Helfferich and Klein [48]. The function ϕ̃ is a rational func-
tion in λ̃ having its poles at the aI

i and strictly increasing in between. Because of

ϕ̃(0)= cTbI

1+cTbI , the poles furnish n intervals of the form (aI
k−1, a

I
k), k = 1, . . . , n, so

that there is exactly one eigenvalue of J̃ I in each of these intervals. Thereby strict
hyperbolicity is proven in the standard Langmuir case whereby the eigenvalues of
J I are confined to n intervals of the form (d I

k−1, d
I
k). For a graphical sketch we refer

to Fig. 11, cf. also [15, 76, 84].

Exercise 5.5 (Cf. [84]) Concerning the invertibility of D− λIn for λ ∈ σ(J ), con-
sider the (rank-1)-perturbation J =D − ζηT of the diagonal matrix D =DI given
by ζ := CN IaI and η := bI. Verify the following claims:
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Fig. 11 Graphical
representation for 1= ϕ̃(λ̃)
from (5.39b), cf. [76], p. 257

A. If the all di are pairwise different and if all ζiηi are positive, then D − αI is
regular for all eigenvalues α of J .

B. If d1 = d2, if all di are pairwise different for i ≥ 2, and if all ζiηi are positive,
then D − d1I is singular with eigenvector z = (η2,−η1,0, . . . ,0)T, that is, D
and J =D− ζηT have a common eigenvalue.

Outline of a proof for A. From Jz = αz for a nonzero z and α = d1 (with
De1 = d1e1), we deduce 0 = Jz − d1z = (D − d1)z − ζηTz. For the first com-
ponent, we encounter 0= [ηTz]ζ1. Because of ζ1 
= 0, we have ηTz= 0, and hence
(di − d1)zi = 0, implying z2 = · · · = zn = 0 and 0= ηTz= η1z1, which is excluded
by our assumptions z 
= 0 and η1 
= 0.

Remark 5.6 (Computational aspects for general bi-Langmuir isotherms) Based on
the three representations in (5.35), we can factorize J − λIn by introducing various
diagonal left factors. So we may consider

J − λIn = (D − λIn)
[
In − (D − λIn)−1CL

]
, (5.40a)

J − λIn = (Γ +R − λIn)
[
In − (Γ +R − λIn)−1Joff

]
, (5.40b)

J − λIn = (Γ − λIn)
[
In − (Γ − λIn)−1[Joff −R]

]
, (5.40c)

as long as λ is not an eigenvalue of D, Γ +R or Γ , respectively (cf. the discussion
of (5.39a) and Exercise 5.5). Throughout this remark, we assume that aI

i + aII
i > 0,

and thus have di > 0.

(i) Concerning the factorization in (5.40a), the computation of the characteristic
polynomial for the (rank ≤ 2)-perturbation J = D − CVWT of the diagonal
matrix D can be reduced to the computation of the determinant of the (2× 2)-
matrix Φ(λ) given by

det[J − λIn] = det[D − λIn]det
[
I2 −WT(D − λIn)−1CV︸ ︷︷ ︸

Φ(λ)

]
. (5.41a)
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This is due to the well-known fact det(In−XYT)= det(I2−YTX) from Schur
complements (X,Y ∈R

n×2). Consequently, we have

det[J − λIn] =
[
n∏

i=1

(di − λ)
]
[
1− [tr(Φ(λ))− det

(
Φ(λ)

)

︸ ︷︷ ︸
ϕ(λ)

]]
(5.41b)

with ϕ(0) < 1 (because of det(J ) > 0). Thus, for eigenvalues λ of J that are
not eigenvalues of D, we have the determining equation

0
!= ϕ(λ)− 1=

n∑

i=1

1

di − λϕi − 1 (5.41c)

with the Laurent coefficients ϕi in case of pairwise different di = di(c). These
ϕi can be computed in the following way: If we denote the ith row of CV and
W in (5.33b) by

ζT
i =

(
ciγ

I
i , ciγ

II
i

)
and ωT

i =
(
bI
i , b

II
i

)
(5.41d)

and if the positive di are pairwise different, then the ϕi are given by

ϕi = τi +
∑

k

ψik with τi = ωT
i ζi ≥ 0 and

ψik = 1

dk − di det(ζi, ζk)det(ωi,ωk) (ψkk ≡ 0,ψik =−ψki).
(5.41e)

We would like to point out that these expressions, except for the ωi , depend
on the concentration c ≥ 0. Moreover, we note that the solution set of dj (c)=
dk(c) is given by the linear equation

(
aI
j − aI

k

)(
1+ cTbII)+ (aII

j − aII
k

)(
1+ cTbI)= 0 (5.41f)

in the nonnegative orthant. So it will be empty in case of (aI
j −aI

k)(a
II
j −aII

k ) > 0

and also in case of aII = 0 and aI
j 
= aI

k .
(ii) Concerning (5.40b) and (5.40c), we may consider Laurent expansions with re-

spect to other fractions like

1

γk +Rk − λ =
1

Jkk − λ or
1

γk − λ
instead of 1

dk−λ .
In the binary case, we discuss these three types and find the expansion with

respect to 1
γk−λ best suited for the determination of the location of the eigen-

values (root loci, see Remark 5.10). We have noticed that for more than two
components, none of the mentioned Laurent expansions is particularly suited to
determine the root loci.
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We turn to the case bII = κ0b
I for some κ0 ≥ 0, in particular, to the modified

Langmuir isotherm (κ0 = 0).

Corollary 5.7 (Modified bi-Langmuir case) In case of bII = κ0b
I with κ0 ≥ 0 and

positive aI and bI, pairwise different dk = dk(c) with the ordering

0< d1 < d2 < · · ·< dn (5.42)

provide a partitioning into the intervals

(0, d1), (d1, d2), . . . , (dn−1, dn), (5.43)

so that there is exactly one eigenvalue of J in each of these intervals. In particular,
the eigenvalues of J (c) are real, positive, and simple, so that strict hyperbolicity
prevails.

Proof Under the present hypotheses, none of the eigenvalues of J is an eigenvalue
of D (see Exercise 5.5). For given concentrations c, we suppose that the di = di(c)
are ordered as in (5.42). By (5.41e) all the ψik vanish in case of bII = κ0b

I, so that
the ϕi are given by

ϕi = bI
iq

I
i (c)

1+ cTbI +
bII
i q

II
i (c)

1+ cTbII

(compare (5.39b)). These ϕi will be positive for internal cs. We note that the deriva-
tive ϕ′(λ) is of one sign if all the ϕk are of one sign. Because all ϕk are positive and
because ϕ(0) < 1 (cf. (5.41b)), there is exactly one eigenvalue of J in each of the
intervals from (5.42). �

1.5.3 Hyberbolicity for Binary and Ternary Systems

We start with the decomposition J − λI2 = Γ − [CLoff −R] − λI2 for binary sys-
tems (n= 2), given by (5.37) as
(
γ1 +R1 − λ −L12c1
−L21c2 γ2 +R2 − λ

)
=
(
γ1 − λ+L12c2 −L12c1
−L21c2 γ2 − λ+L21c1

)
, (5.44)

and assume w.l.o.g. the cs to satisfy γ1(c)≤ γ2(c). In the binary case, the Jacobian
trivially is a (rank ≤ 2)-perturbation of the diagonal matrix Γ . We note that the
solution set of γ1(c)= γ2(c) is given by the equation

(
aI

1 − aI
2

)(
1+ cTbII)2 + (aII

1 − aII
2

)(
1+ cTbI)2 = 0

in the nonnegative orthant. So, it is empty, for example, in case of (aI
1 − aI

2)(a
II
1 −

aII
2 ) > 0.
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By (5.34c) we have

R1 = L12c2 for L12 =
[
γ I

1b
I
2 + γ II

1 b
II
2

]
,

R2 = L21c1 for L21 =
[
γ I

2b
I
1 + γ II

2 b
II
1

]
,

(5.45)

and thus

tr(J )= γ1 +R1 + γ2 +R2 ≥ 0, (5.46a)

det(J )= [γ1 +R1][γ2 +R2] −L12L21c1c2

= γ1γ2 + γ1R2 + γ2R1 + [L12L21 −L12L21]c1c2

= γ1γ2 + γ1R2 + γ2R1 ≥ 0 (5.46b)

and

[
tr(J )

]2 − 4 det(J )= [(γ1 +R1)− (γ2 +R2)
]2 + 4L12L21c1c2 ≥ 0 (5.46c)

with L12L21c1c2 =R1R2. Since the characteristic equation is given by

χ(λ)= (γ1 − λ)(γ2 − λ)+ (γ1 − λ)R2 + (γ2 − λ)R1 = 0, (5.47)

we arrive at the following theorem for γ1 ≤ γ2. In case γ1 > γ2, we may proceed in
a completely analogous way. For graphical representations, we may rewrite (5.47)
as 1 + R1

γ1−λ + R2
γ2−λ = 0 in terms of a Laurent expansion with respect to 1

γk−λ
(cf. (5.41c)).

Theorem 5.8 (Binary Case) If

tr(J )= γ1 +R1 + γ2 +R2 > 0,

det(J )= γ1γ2 + γ1R2 + γ2R1 > 0,
(5.48)

then the Jacobian has positive eigenvalues ω1/2(c) given by

ω1/2 = 1

2

[
tr(J )∓

√
tr(J )2 − 4 det(J )

]
, (5.49)

where the hypotheses in (5.48) are satisfied in case of aI + aII > 0.

1. For cs with γ1 < γ2, the ω1/2(c) belong to the intervals [γ1, γ2] and [γ2,∞),
more precisely, to the intervals

[γ1, γ2]∩[γ1, γ1+R1] and [γ2+R2, γ2+R1+R2]∩[γ1+R1, γ2+R1+R2],
respectively. In case of R1 > 0 and R2 > 0, we have the intersections of the
respective open intervals.
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2. In case of a double eigenvalue for γ1 < γ2, that is, in case of

ω1/2 = γ2 = γ1 +R1 > γ1 and R2 = 0,

the eigenspace to ω1 = ω2 is one-dimensional if and only if exactly one of the
expressions L12c1 and L21c2 is positive.

3. In case γ1 = γ2 =: γ , the eigenvalues ω1/2(c) satisfy 0 < ω1 = γ < ω2 = γ1 +
R1 +R2 in case R1 +R2 > 0 and 0<ω1 = γ = ω2 in case R1 +R2 = 0. In the
latter case, one-dimensional eigenspaces can only occur on the positive half-axes
bounding the positive orthant.

Remark 5.9 (Strict hyperbolicity and internal watershed points)

(i) If all aki and bki are positive, then γ ki are positive, and Ri , L12, L21 are positive
for internal cs. Thus, the points c with double eigenvalue but one-dimensional
eigenspace, called watershed points in chemical engineering, are restricted to
the positive half-axis c2 > 0 in Theorem 5.8. So we have strict hyperbolicity
for all internal cs if all the parameters aki and bki are positive.

(ii) We would like to add to part (b) of Theorem 5.8 that the conditions L21 = 0,
L12 > 0 in (5.45) lead to internal watersheds. These conditions are equivalent
to

aI
2b

I
1 + aII

2 b
II
1 = 0, aI

1b
I
2 + aII

1 b
II
2 > 0.

This observation may be the reason that numerical schemes run into problems.
If L21c2 is very small compared to L12c1, then the angle between two linearly
independent eigenspaces is very small, too. In general, this phenomenon entails
numerics to become stiff.

(iii) A numerical example of internal watershed points is given by

aI = (1,6.5)T, aII = (18,15)T, bI = (0,0.16)T, bII = (0,2)T.
Here, there are three different values c̄2,j > 0 such that we encounter double
eigenvalues ω1(c)= ω2(c) with one-dimensional eigenspaces on the half-lines
{c = (c1, c2)

T : c1 > 0, c2 = c̄2,j }. Note that, in the present example, J and D
possess the common eigenvalue γ2 = d2, so the comments in Remark 5.6 do
not apply.

Proof of Theorem 5.8 In the binary case, the characteristic polynomial is a quadratic
one and thus easily discussed. For part (a), we just note that

χ(0)= det(J ) > 0,

χ(γ1)= (γ2 − γ1)R1 = χ(R1 + γ2 +R2)≥ 0,

χ(γ2)= (γ1 − γ2)R2 = χ(γ1 +R1 +R2)≤ 0,

χ(γ1 +R1)= χ(γ2 +R2)=−R1R2 ≤ 0

(5.50)
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with γ1+R1 = J11 and γ2+R2 = J22. For part (b), we employ (5.46c), (5.47), and
(5.48) to obtain γ2 = γ1 +R1 > γ1 and R2 = L21c1 = 0, and hence

J − γ2I =
(

0 −L12c1
−L21c2 0

)
.

Part (c) is an easy consequence of det(J ) > 0, implying γ1 > 0. �

Remark 5.10 (Root loci) This remark is the basis of the graphical interpretation for
determining the root loci for the ω1/2 of (5.49). It shows that just the γk are suited
in the general binary case. By the representation (5.47) of χ(λ) we have (5.50) and

χ(d1)= c1
[
L11(d1 − γ2)−L21(d1 − γ1)

]
,

χ(d2)= c2
[
L22(d2 − γ1)−L12(d2 − γ2)

]
,

(5.51)

where the expressions d1 − γ1, d2 − γ1 and d2 − γ2 are nonnegative, and where the
sign of d1−γ2 is open. Relations (5.50) and (5.51) show that, in general, neither the
Jkk nor the dk determine the root loci. For a numerical example, we refer to

aI
1 = 3, aI

2 = 5, aII
1 = 3, aII

2 = 2,

bI
1 = 1, bI

2 = 3, bII
1 = 3, bII

2 = 1

with d2 > d1 ≥ R1 + γ2 + R2 at c = (1,1)T, where both eigenvalues of J lie in
(0, d1).

Finally, we would like to add for the special case bII = κ0b
I that one arrives at

χ(d1) < 0 < χ(d2) in (5.51). Because of χ(0) = det(J ) > 0, this shows that there
is one eigenvalue in (0, d1) and one in (d1, d2).

We now turn to the decomposition J − λI3 = Γ −[CLoff−R] − λI3 for ternary
systems (n= 3) given by (5.37) as

J − λI3 =
⎛

⎝
γ1 +R1 − λ −L12c1 −L13c1
−L21c2 γ2 +R2 − λ −L23c2
−L31c3 −L32c3 γ3 +R3 − λ

⎞

⎠ ,

R1 = L12c2 +L13c3, R2 = L21c1 +L23c3, R3 = L31c1 +L32c2

with characteristic polynomial χ(λ). We recapitulate the symmetric case (e.g., for
equal saturation capacities) from Theorem 5.4:

Corollary 5.11 (Hyperbolicity in the ternary case) In the symmetric caseLjk = Lkj
and under the condition aI + aII > 0, the Jacobian J (c) of the ternary system pos-
sesses three positive real eigenvalues for c > 0. Moreover, there exist three linearly
independent eigenvectors in this case, so that nonstrict hyperbolicity is warranted.
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We would like to stress three points:

1. In the general nonsymmetric case, hyperbolicity may depend on c as the follow-
ing Example 5.12 with different saturation capacities shows.

2. Two eigenvalues may coincide. Even in the binary case, this is not excluded when
some bki are not present. In Example 5.13, we will present ternary examples with
and without bII = κ0b

I.
3. The γi do not help to locate the eigenvalues of J as it has been the case for binary

systems (see Remark 5.10). For internal c and positive aki , b
k
i , we observe

γ2 → γ1 ⇒ χ(γ2)→ (γ3−γ2)[L21L13kc1+L23L12c2+L23L13c3]c3 > 0.

Because of χ(γ1) > 0, the interval (γ1, γ2) will contain for small (γ2 − γ1) an
even number of zeros of χ , if any. Therefore, in general, the eigenvalues cannot
be partitioned according to γ1 < γ2 < γ3.

Example 5.12 (Nonhyperbolicity in the ternary case) The bi-Langmuir isotherm
with parameters

aI = (10.7,10.7,22.2)T, aII = (17,20.5,7.88)T,

bI = (47.6,47.6,156)T, bII = (120,230,139)T,

taken from a model in chiral preparative chromatography (see [38]), leads to a Jaco-
bian J (c) possessing three real positive eigenvalues for c= (1,0.5,1)T and just one
real positive eigenvalue and two nonreal eigenvalues in C+ for c= (1,0.75,1)T.

Example 5.13 (Internal watershed points)

(i) We choose aI = 1
2 (3,1,1)

T, aII = 1
9 (5,9,9)

T, bI = 1
3 (4,1,1)

T, bII =
1
3 (1,1,1)

T and obtain for J (c), at c = ĉ := (1,1,1)T, the double eigenvalue
2/3 with two-dimensional eigenspace and the simple eigenvalue 11/36. This
example is one without equal saturation capacities and with linearly indepen-
dent bI, bII.

(ii) For aI = 1
2 (2,1,1)

T, aII = 1
2 (1,2,2)

T, and bI = bII = 1
3 (1,1,1)

T, we ob-
tain for J (c), at c = ĉ := (1,1,1)T, the double eigenvalue 3/4 with two-
dimensional eigenspace, and the simple eigenvalue 3/8 with linearly depen-
dent bI, bII (rank-1 case).

(iii) Finally, the numerical example in Remark 5.9(iii) can be easily extended to
three-component systems when choosing bI

3 = bII
3 = 0. This choice leads to

planes of internal watershed points in the positive orthant.
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Chapter 2
Mathematical Modeling and Analysis
of Nonlinear Time-Invariant RLC Circuits

Timo Reis

Abstract We give a basic and self-contained introduction to the mathematical de-
scription of electrical circuits that contain resistances, capacitances, inductances,
voltage, and current sources. Methods for the modeling of circuits by differential–
algebraic equations are presented. The second part of this paper is devoted to
an analysis of these equations.

Keywords Electrical circuits ·Modelling · Differential–algebraic equations ·
Modified nodal analysis ·Modified loop analysis · Graph theory ·Maxwell’s
equations

2.1 Introduction

It is in fact not difficult to convince scientists and nonscientists of the importance
of electrical circuits; they are nearly everywhere! To mention only a few, electrical
circuits are essential components of power supply networks, automobiles, television
sets, cell phones, coffee machines, and laptop computers (the latter two items have
been heavily involved in the writing process of this article). This gives a hint to their
large economical and social impact to the today’s society.

When electrical circuits are designed for specific purposes, there are, in prin-
ciple, two ways to verify their serviceability, namely the “construct-trial-and-error
approach” and the “simulation approach.” Whereas the first method is typically cost-
intensive and may be harmful to the environment, simulation can be done a priori
on a computer and gives reliable impressions on the dynamic circuit behavior even
before it is physically constructed. The fundament of simulation is the mathemat-
ical model. That is, a set of equations containing the involved physical quantities
(these are typically voltages and currents along the components) is formulated,
which is later on solved numerically. The purpose of this article is a detailed and
self-contained introduction to mathematical modeling of the rather simple but nev-
ertheless important class of time-invariant nonlinear RLC circuits. These are analog
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circuits containing voltage and current sources as well as resistances, capacitances,
and inductances. The physical properties of the latter three components will be as-
sumed to be independent of time, but they will be allowed to be nonlinear. Under
some additional, physically meaningful, assumptions on the components, we will
further depict and discuss several interesting mathematical features of circuit mod-
els and give back-interpretation to physics.

Apart from the high practical relevance, the mathematical treatment of electrical
circuits is interesting and challenging especially due to the fact that various different
mathematical disciplines are involved and combined, such as graph theory, ordinary
and partial differential equations, differential–algebraic equations, vector analysis,
and numerical analysis.

This article is organized as follows: In Sect. 2.3, we introduce the physical quan-
tities that are involved in circuit theory. Based on the fact that every electrical phe-
nomenon is ultimately caused by electromagnetic field effects, we present their
mathematical model (namely Maxwell’s equations) and define the physical vari-
ables voltage, current, and energy by means of electric and magnetic field and their
interaction. We particularly highlight model simplifications that are typically made
for RLC circuits. Section 2.4 is then devoted to the famous Kirchhoff laws, which
can be mathematically inferred from the findings of the preceding section. It will
be shown that graph theory is a powerful tool to formulate these equations and ana-
lyze their properties. Thereafter, in Sect. 2.5, we successively focus on mathematical
description of sources, resistances, inductances, and capacitances. The relation be-
tween voltage and current along these components and their energetic behavior is
discussed. Kirchhoff and component relations are combined in Sect. 2.6 to formulate
the overall circuit model. This leads to the modeling techniques of modified nodal
analysis and modified loop analysis. Both methods lead to differential–algebraic
equations (DAEs), whose fundamentals are briefly presented as well. Special em-
phasis is placed on mathematical properties of DAE models of RLC circuits.

2.2 Nomenclature

Throughout this article we use the following notation.

N set of natural numbers
R set of real numbers
R
n,m the set of real n×m
In identity matrix of size n× n
MT ∈R

m,n, xT ∈R
1,n transpose of the matrixM ∈R

n,m and the vector x ∈R
n

imM , kerM image and kernel of a matrixM , resp.
M > (≥)0, the square real matrixM is symmetric positive

(semi)definite
‖x‖ =√xTx, the Euclidean norm of x ∈R

n

V⊥ orthogonal space of V ⊂R
n
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sign(·) sign function, i.e., sign :R→R with sign(x)= 1 if x > 0,
sign(0)= 0, and sign(x)=−1 if x < 0

t time variable (∈R)

ξ space variable (∈R
3)

ξx , ξy , ξz components of the space variable ξ ∈R
3

ex , ey , ez canonical unit vectors in R
3

ν(ξ) positively oriented tangential unit vector of a curve
S ⊂R

3 in ξ ∈ S
n(ξ) positively oriented normal unit vector of an

oriented surface A⊂R
3 in ξ ∈A

u× v vector product of u,v ∈R
3

gradf (t, ξ) gradient of the scalar-valued function f with respect to
the spatial variable

divf (t, ξ), curlf (t, ξ) divergence and, respectively, curl of an R
3-valued

function f with respect to the spatial variable
∂Ω (∂A) boundary of a set Ω ⊂R

3 (surface A⊂R
3)´

S f (ξ) ds(ξ)

(
¸
S f (ξ) ds(ξ))

integral of a scalar-valued function f over a (closed)
curve A⊂R

3

˜
A f (ξ) dS(ξ)

(
‚

A f (ξ) dS(ξ))

integral of a scalar-valued function f over a (closed)
surface A⊂R

3

˝
Ω
f (ξ) dV (ξ) integral of a scalar-valued function f over a domain

Ω ⊂R
3

The following abbreviations will be furthermore used:

DAE differential–algebraic equation (see Sect. 2.6)
KCL Kirchhoff’s current law (see Sects. 2.4 and 2.3)
KVL Kirchhoff’s voltage law (see Sects. 2.4 and 2.3)
MLA Modified loop analysis (see Sect. 2.6)
MNA Modified nodal analysis (see Sect. 2.6)
ODE ordinary differential equation (see Sect. 2.6)

2.3 Fundamentals of Electrodynamics

We present some basics of classical electrodynamics. A fundamental role is played
by Maxwell’s equations. The concepts of voltage and current will be derived from
these fundamental concepts and laws. The derivations will be done by using tools
from vector calculus, such as the Gauss and Stokes theorems. Note that, in this
section (as well as in Sect. 2.5, where the component relations will be derived),
we will not present all derivations with full mathematical precision. For an exact
presentation of smoothness properties on the involved surfaces, boundaries, curves,
and functions to guarantee the applicability of the Gauss theorem and the Stokes
theorem and interchanging the order of integration (and differentiation), we refer to
textbooks on vector calculus, such as [1, 31, 37].
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2.3.1 The Electromagnetic Field

The following physical quantities are involved in an electromagnetic field.

D: electric displacement, B: magnetic flux intensity,
E: electric field intensity, H : magnetic field intensity,
j : electric current density, ρ: electric charge density.

The current density and flux and field intensities are R
3-valued functions depend-

ing on time t ∈ I ⊂ R and spatial coordinate ξ ∈ Ω , whereas the electric charge
density ρ : I ×Ω→ R is scalar-valued. The interval I expresses the time period,
and Ω ⊂ R

3 is the spatial domain in which the electromagnetic field evolves. The
dependencies of the above physical variables are expressed by Maxwell’s equations
[40, 57], which read

divD(t, ξ)= ρ(t, ξ), charge induces electrical fields, (1a)

divB(t, ξ)= 0, field lines of a magnetic flux are closed,
(1b)

curlE(t, ξ)=− ∂
∂t
B(t, ξ), law of induction, (1c)

curlH(t, ξ)= j (t, ξ)+ ∂

∂t
D(t, ξ), magnetic flux law. (1d)

Further algebraic relations between electromagnetic variables are involved. These
are called constitutive relations and are material-dependent. That is, they express
the properties of the medium in which electromagnetic waves evolve. Typical con-
stitutive relations are

E(t, ξ)= fe
(
D(t, ξ), ξ

)
, H(t, ξ)= fm

(
B(t, ξ), ξ

)
, (2a)

j (t, ξ)= g(E(t, ξ), ξ) (2b)

for some functions fe, fm,g : R3 × Ω → R
3. In the following, we collect some

assumptions on fe , fm, and g made in this article. Their practical interpretation is
subject of subsequent parts of this article.

Assumption 3.1 (Constitutive relations)

(a) There exists some function Ve : R3 × Ω → R (electric energy density) with
Ve(D, ξ) > 0 and Ve(0, ξ) = 0 for all ξ ∈ Ω , D ∈ R

3, which is differentiable
with respect to D and satisfies

∂

∂D
V T
e (D, ξ)= fe(D, ξ) for all D ∈R

3, ξ ∈Ω. (3)
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(b) There exists some function Vm : R3 ×Ω→ R (magnetic energy density) with
Vm(B, ξ) > 0 and Vm(0, ξ) = 0 for all ξ ∈Ω , B ∈ R

3, which is differentiable
with respect to B and satisfies

∂

∂B
V T
m(B, ξ)= fm(B, ξ) for all B ∈R

3, ξ ∈Ω. (4)

(c) ETg(E, ξ)≥ 0 for all E ∈R
3, ξ ∈Ω .

If fe and fm are linear, assumptions (a) and (b) reduce to

Ve(D, ξ)=DTMe(ξ)
−1D, Vm(B, ξ)= BTMm(ξ)

−1B

for some symmetric and matrix-valued functions Me,Mm : Ω → R
3,3 such that

Me(ξ) > 0 and Mm(ξ) > 0 for all ξ ∈ Ω . The functional relations between field
intensities, displacement, and flux intensity then read

D(t, ξ)=Me(ξ)E(t, ξ) and B(t, ξ)=Mm(ξ)H(t, ξ).
A remarkable special case is isotropy. That is, Me and Mm are pointwise scalar
multiples of the unit matrix, that is,

Me = ε(ξ)I3, Mm = μ(ξ)I3
for positive functions ε,μ :Ω→ R. In this case, electromagnetic waves propagate
with velocity c(ξ)= (ε(ξ) ·μ(ξ))−1/2 through ξ ∈Ω . In vacuum, we have

ε ≡ ε0 ≈ 8.85 · 10−12 A · s ·V−1 ·m−1,

μ≡ μ0 ≈ 1.26 · 10−6 m · kg · s−2 ·A−2.

Consequently, the quantity

c0 = (ε0 ·μ0)
−1/2 ≈ 3.00 m · s−1

is the speed of light [30, 34].
As we will see soon, the function g has the physical interpretation of an energy

dissipation rate. That is, it expresses energy transfer to thermodynamic domain. In
the linear case, this function reads

g(E, ξ)=G(ξ) ·E,
where G : Ω → R

3,3 is a matrix-valued function with the property that G(ξ) +
GT(ξ) ≥ 0 for all ξ ∈ Ω . In perfectly isolating media (such as the vacuum), the
electric current density vanishes; the dissipation rate consequently vanishes there.

Assuming that fe, fm, and g fulfill Assumptions 3.1, we define the electric en-
ergy at time t ∈ I as the spatial integral of the electric energy density over Ω at
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time t . Consequently, the magnetic energy is the spatial integral of the magnetic en-
ergy density over Ω at time t , and the electromagnetic energy at time t is the sum
over these two quantities, that is,

W(t)=
˚

Ω

(
Ve
(
D(t, ξ), ξ

)+ Vm
(
B(t, ξ), ξ

))
dV (ξ).

We are now going to derive an energy balance for the electromagnetic field: First,
we see, by using elementary vector calculus, that the temporal derivative of the total
energy density fulfills

∂

∂t

(
Ve
(
D(t, ξ), ξ

)+ Vm
(
B(t, ξ), ξ

))

= ∂

∂D
Ve
(
D(t, ξ), ξ

) · ∂
∂t
D(t, ξ)+ ∂

∂B
Vm
(
B(t, ξ), ξ

) · ∂
∂t
B(t, ξ)

=ET(t, ξ) · ∂
∂t
D(t, ξ)+HT(t, ξ) · ∂

∂t
B(t, ξ)

=ET(t, ξ) · curlH(t, ξ)−ET(t, ξ) · g(E(t, ξ))−HT(t, ξ) · curlE(t, ξ)

= div
(
E(t, ξ)×H(t, ξ))−ET(t, ξ) · g(E(t, ξ)). (5a)

The fundamental theorem of calculus and the Gauss theorem then implies the energy
balance

W(t2)−W(t1)=
ˆ t2

t1

˚

Ω

∂

∂t

(
Ve
(
D(t, ξ), ξ

)+ Vm
(
B(t, ξ), ξ

))
dV (ξ) dt

=
ˆ t2

t1

˚

Ω

div
(
E(t, ξ)×H(t, ξ))dV (ξ) dt

−
ˆ t2

t1

˚

Ω

ET(t, ξ) · g(E(t, ξ))dV (ξ) dt

=
ˆ t2

t1

‹

∂Ω

nT(ξ) · (E(t, ξ)×H(t, ξ))dS(ξ)

−
ˆ t2

t1

˚

Ω

ET(t, ξ) · g(E(t, ξ))dV (ξ) dt

≤
ˆ t2

t1

‹

∂Ω

nT(ξ)
(
E(t, ξ)×H(t, ξ))dS(ξ). (5b)

A consequence of the above finding is that energy transfer is done by dissipation
and via the outflow of the Poynting vector field E ×H : I ×Ω→R

3.
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The electromagnetic field is not uniquely determined by Maxwell’s equations.
Besides imposing suitable initial conditions on electric displacement and magnetic
flux, that is,

D(0, ξ)=D0(ξ), B(0, ξ)= B0(ξ), ξ ∈Ω. (6)

To fully describe the electromagnetic field, we further have to impose physically
(and mathematically) reasonable boundary conditions [40]. These are typically zero
conditions if Ω = R

3 (that is, lim‖ξ‖→∞E(t, ξ) = lim‖ξ‖→∞H(t, ξ) = 0) or, in
case of bounded domain Ω with smooth boundary, tangential or normal conditions
on electrical or magnetic field, such as, for instance,

n(ξ)× (E(t, ξ)−Eb(t, ξ)
)= 0, n(ξ)× (H(t, ξ)−Hb(t, ξ)

)= 0,

nT(ξ)
(
E(t, ξ)−Eb(t, ξ)

)= 0, nT(ξ)
(
H(t, ξ)−Hb(t, ξ)

)= 0, ξ ∈ ∂Ω.
(7)

2.3.2 Currents and Voltages

Here we introduce the physical quantities that are crucial for circuit analysis.

Definition 3.2 (Electrical current) LetΩ ⊂R
3 describe a medium in which an elec-

tromagnetic field evolves. Let As ⊂ Ω be an oriented surface. Then the current
through A is defined by the surface integral of the current density, that is,

i(t)=
¨

A
nT(ξ) · j (t, ξ) dS(ξ). (8)

Remark 3.3 (Orientation of the surface) Reversing the orientation of the surface
means changing the sign of the current. The indication of the direction of a current
is therefore a matter of the orientation of the surface.

Remark 3.4 (Electrical current in the case of absent charges/stationary case) Let
Ω ⊂ R

3 be a domain, and A ⊂ Ω be a surface. If the medium does not contain
any electric charges (i.e., ρ ≡ 0), then we obtain from Maxwell’s equations that the
current through A is

i(t)=
¨

A
nT(ξ) · j (t, ξ) dS(ξ)

=
¨

A
nT(ξ) · curlH(t, ξ) dS(ξ)−

¨

A
nT(ξ) · ∂

∂t
D(t, ξ) dS(ξ)

=
¨

A
nT(ξ) · curlH(t, ξ) dS(ξ)− d

dt

¨

A
nT(ξ) ·D(t, ξ) dS(ξ).
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Elementary calculus implies that curlH is divergence free, that is,

div curlH(t, ξ)= 0.

The absence of electric charges moreover gives rise to

divD(t, ξ)= 0.

We consider two case scenarios:

(a) Ω ∈ R
3 is star-shaped. Poincaré’s lemma [1] and the divergence-freeness of

the electric displacement implies the existence of an electric vector potential
F : I ×Ω→R

3 such that

D(t, ξ)= curlF(t, ξ).

The Stokes theorem then implies that the current through A reads

i(t)=
¨

A
nT(ξ) · curlH(t, ξ) dS(ξ)− d

dt

¨

A
nT(ξ) · curlF(t, ξ) dS(ξ)

=
˛

∂A
νT(ξ) ·H(t, ξ) ds(ξ)− d

dt

˛

∂A
νT(ξ) · F(t, ξ) ds(ξ).

Consequently, the current through the surface A is solely depending on the
behavior of the electromagnetic field on the boundary ∂A. In other words, if
∂A1 = ∂A2 for A1,A2 ⊂ Ω , then the current through A1 equals the current
through A2.

Note that the condition that Ω ⊂R
3 is star-shaped can be relaxed to the sec-

ond de Rham cohomology of Ω being trivial, that is, H 2
dR(Ω)=̃{0} [1]. This is

again a purely topological condition on Ω , that is, a continuous and continu-
ously invertible deformation ofΩ does not influence the de Rham cohomology.

It can be furthermore seen that the above findings are true as well if the topo-
logical condition onΩ , together with the absence of electric charges, is replaced
with the physical assumption that the electric displacement is stationary, that is,
∂
∂t
D ≡ 0. This follows by

i(t)=
¨

A
nT(ξ) · j (t, ξ) dS(ξ)

=
¨

A
nT(ξ) · curlH(t, ξ) dS(ξ)−

¨

∂A
nT(ξ) · ∂

∂t
D(t, ξ)

︸ ︷︷ ︸
=0

dS(ξ)

=
¨

∂A
νT(ξ) ·H(t, ξ) dS(ξ). (9)

Now consider a wire as presented in Fig. 1, which is assumed to be surrounded
by a perfect isolator (that is, the nT(ξ)j (ξ) = 0 at the boundary of the wire).
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Fig. 1 Electrical current
through surface A

Let A be a cross-sectional area across the wire. If the wire does not contain
any charges or the electric field inside the wire is stationary, an application of
the above argumentation implies that the current of a wire is well-defined in the
sense that it does not depend on the particular choice of a cross-sectional area.
This enables to speak about the current through a wire.

(b) Now assume that V ⊂ Ω is a domain with sufficiently smooth boundary and
consider the current though ∂V . Applying the Gauss theorem, we obtain that,
under the assumption ρ ≡ 0, the integral of the outward component of the cur-
rent density vanishes for any closed surface, that is,

‹

∂V
nT(ξ) · j (t, ξ) dS(ξ)

=
‹

∂V
nT(ξ) · curlH(t, ξ) dS(ξ)− d

dt

‹

∂V
nT(ξ) ·D(t, ξ) dS(ξ)

=
˚

V
div curlH(t, ξ)︸ ︷︷ ︸

=0

dV (ξ)− d

dt

˚

V
divD(t, ξ)︸ ︷︷ ︸

=0

dV (ξ)= 0.

Further note that, again, under the alternative assumption that the field of electric
displacement is stationary, the surface integral of the current density over ∂Ω
vanishes as well (compare (9)).

In each of the above two cases, we have
‹

∂Ω

nT(ξ) · j (t, ξ) dS(ξ)= 0.

Now we focus on a conductor node as presented in Fig. 2 and assume that no
charges are present or that the electric field inside the conductor node is stationary.
Again assuming that all wires are surrounded by perfect isolators, we can choose
a domain Ω ⊂ R

3 such that, for k = 1, . . . ,N , the boundary ∂Ω intersects with
the kth wire to the cross-sectional area Ak . Define the number sk ∈ {1,−1} to be
positive if Ak has the same orientation of ∂Ω (that is, ik(t) is an outflowing current)
and sk =−1 otherwise (that is, ik(t) is an inflowing current). Then, by making use

Fig. 2 Conductor node
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of the assumption that the current density is trivial outside the wires we obtain

0=
¨

∂Ω

nT(ξ) · curlH(t, ξ) dS(ξ)=
N∑

k=1

sk

¨

Ak
nT(ξ) · curlH(t, ξ) dS(ξ)

=
N∑

k=1

sk

¨

Ak
nT(ξ) · j (t, ξ) dS(ξ)=

N∑

k=1

skik(t),

where ik is the current of the kth wire. This is known as Kirchhoff’s current law.

Theorem 3.5 (Kirchhoff’s current law (KCL)) Assume that a conductor node is
given that is surrounded by a perfect isolator. Further assume that the electric field
is stationary or the node does not contain any charges. Then the sum of inflowing
currents equals to the sum of inflowing currents.

Next, we introduce the concept of electric voltage.

Definition 3.6 (Electrical voltage) Let Ω ⊂ R
3 describe a medium in which

an electromagnetic field evolves. Let S ⊂Ω be a path (see Fig. 3). Then the voltage
along S is defined by the path integral

u(t)=
ˆ

S
νT(ξ)E(t, ξ) ds(ξ). (10)

Remark 3.7 (Orientation of the path) The sign of the voltage is again a matter of the
orientation of the path. That is, a change of the orientation of S results in replacing
u(t) be −u(t) (compare Remark 3.3).

Remark 3.8 (Electrical current in the stationary case) If the field of magnetic flux
intensity is stationary ( ∂

∂t
B ≡ 0), then the Maxwell equations give rise to curlE ≡ 0.

Moreover, assuming that the spatial domain in which the stationary electromagnetic
field evolves is simply connected [31], the electric field intensity is a gradient field,
that is,

E(t, ξ)= gradΦ(t, ξ)

for some differentiable scalar-valued function Φ , which we call an electric poten-
tial. For a path Ss ⊂Ω from ξ0 to ξ1, we have

ˆ

Ss

νT(ξ) ·E(t, ξ) ds(ξ)=Φ(t, ξ1)−Φ(t, ξ0). (11)

In particular, the voltage along Ss is solely depending on the initial and end point
of Ss . This enables to speak about the voltage between the points ξ0 and ξ1.

Note that the electric potential is unique up to addition of a function indepen-
dent on the spatial coordinate ξ . It can therefore be made unique by imposing the
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Fig. 3 Voltage along S

Fig. 4 Grounding of ξg

Fig. 5 Conductor loop

additional relation Φ(t, ξg) = 0 for some prescribed position ξg ∈Ω . In electrical
engineering, this is called grounding of ξg (see Fig. 4).

Now we take a closer look at a loop of conductors (see Fig. 5) in which the field
of magnetic flux is assumed to be stationary:

For k = 1, . . . ,N , assume that Sk is a path in the kth conductor connecting its
nodes. Assume that the field of magnetic flux intensity is stationary and let uk(t)
be the voltage between the initial and terminal point of Sk . Define the number sk ∈
{1,−1} to be positive if Sk is in the direction of the loop and sk = −1 otherwise.
Taking a surface A⊂Ω that is surrounded by the path

S1∪̇ · · · ∪̇SN = ∂A,
we can apply the Stokes theorem to see that

N∑

k=0

sk · uk(t)=
N∑

k=0

sk ·
ˆ

Sk
νT(ξ) ·E(t, ξ) ds(ξ)

=
˛

∂A

νT(ξ) ·E(t, ξ) ds(ξ)

=
¨

A
nT(ξ) · curlE(t, ξ) dS(ξ)= 0.

Theorem 3.9 (Kirchhoff’s voltage law (KVL)) In an electromagnetic field in which
the magnetic flux is stationary, each conductor loop fulfills that the sum of voltages
in direction of the loop equals the sum of voltages in the opposite direction to the
loop.
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In the following, we will make some further considerations concerning energy
and power transfer in stationary electromagnetic fields ( ∂

∂t
D ≡ ∂

∂t
B ≡ 0) evolving

in simply connected domains. Assuming that we have some electrical device in the
domain Ω ⊂ R

3 that is physically closed in the sense that no current leaves the
device (i.e., nT(ξ)j (t, ξ) = 0 for all ξ ∈ ∂Ω), an application of the multiplication
rule

div
(
j (t, ξ)Φ(t, ξ)

)= div j (t, ξ) ·Φ(t, ξ)+ jT(t, ξ) · gradΦ(t, ξ)

and the Gauss theorem lead to
˚

Ω

jT(t1, ξ) ·E(t2, ξ) dV (ξ)

=
˚

Ω

jT(t1, ξ) · gradΦ(t2, ξ) dV (ξ)

=−
˚

Ω

div j (t1, ξ) ·Φ(t2, ξ) dV (ξ)+
˚

Ω

div
(
j (t1, ξ) ·Φ(t2, ξ)

)
dV (ξ)

=−
˚

Ω

div j (t1, ξ)︸ ︷︷ ︸
=0

·Φ(t2, ξ) dV (ξ)

+
‹

∂Ω

nT(ξ)j (t1, ξ)︸ ︷︷ ︸
=0

·Φ(t2, ξ) dV (ξ)= 0. (12)

In other words, the spatial L2-inner product [17] between j (t1, ·) and the field
E(t1, ·) vanishes for all times t1, t2 in which the stationary electrical field evolves.

Theorem 3.10 (Tellegen’s law for stationary electromagnetic fields) Let a station-
ary electromagnetic field inside the simply connected domainΩ ⊂R

3 be given, and
assume that no electrical current leavesΩ . Then for all times t1, t2 in which the field
evolves, the current density field j (t1, ·) and the electrical field density field E(t, ·)
are orthogonal in the L2-sense.

The concluding considerations in this section are concerned with energy inside
conductors in which stationary electromagnetic fields evolve. Consider an electrical
wire as displayed in Fig. 3. Assume that S is a path connecting the incidence nodes
ξ0, ξ1. Furthermore, for each ξ ∈ S, let Aξ be a cross-sectional area containing ξ and
assume the additional property that the spatial domain of the wire Ω is the disjoint
union of the surfaces Aξ , that is,

Ω =
•⋃

ξ∈S
Aξ .

The KCL implies that the current through Aξ does not depend on ξ ∈ S . Now mak-
ing the (physically reasonable) assumptions that the voltage is spatially constant in
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each cross-sectional area Aξ and using the Gauss theorem and the multiplication
rule, we obtain

(curlE)T(t, ξ) ·H(t, ξ)−ET(t, ξ) · curlH(t, ξ)= div
(
E(t, ξ)×H(t, ξ)).

From this we see that the following holds for the product between the voltage along
and the current through the wire:

u(t)i(t)=
ˆ

S
νT(ξ) ·E(t, ξ) ds(ξ) ·

¨

Aξ1
nT(ξ) · j (t, ζ ) dS(ζ )

=
ˆ

S
νT(ξ) ·E(t, ξ) ·

¨

Aξ
nT(ξ) · j (t, ζ ) dS(ζ ) ds(ξ)

=
˚

Ω

ET(t, ξ) · j (t, ξ) dV (ξ)

=
˚

Ω

ET(t, ξ) · curlH(t, ξ) dV (ξ)

=
˚

Ω

(curlE)T(t, ξ) ·H(t, ξ)−ET(t, ξ) · curlH(t, ξ) dV (ξ)

=
˚

Ω

div
(
E(t, ξ)×H(t, ξ))dV (ξ)

=
‹

∂Ω

nT(ξ)
(
E(t, ξ)×H(t, ξ))dV (ξ).

In other words, the product between u(t) and i(t) therefore coincides with the out-
flow of the Poynting vector field of the wire, whence the integral

W =
ˆ

I

u(t) · i(t) dt

is the energy consumed by the wire.

2.3.3 Notes and References

(i) The constitutive relations with properties as in Assumptions 3.1 directly consti-
tute an energy balance via (5a), (5b). Further types of constitutive relations can
be found in [30].

(ii) The existence of global (weak, classical) solutions of Maxwell’s equations in
the general nonlinear case seems to be not fully worked out so far. A functional
analytic approach to the linear case is, with boundary conditions sightly differ-
ent from (7), in [66].
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Fig. 6 Circuit as a graph

2.4 Kirchhoff’s Laws and Graph Theory

In this part, we will approach the systematic description of Kirchhoff’s laws inside
a conductor network. To achieve this aim, we will regard an electrical circuit as
a graph. Each branch of the circuit connects two nodes. To each branch of the cir-
cuit we assign a direction, which is not a physical restriction but rather a definition
of the positive direction of the corresponding voltage and current. This definition is
arbitrary, but it has to be however done in advance (compare Remarks 3.3 and 3.7).
We assume that the voltage and current of each branch are equally directed. This is
known as a load reference-arrow system [34]. This allows us to speak about an ini-
tial node and a terminal node of a branch.

Such a collection of branches can, in an abstract way, be formulated as a directed
graph (see Fig. 6).

2.4.1 Graphs and Matrices

We present some mathematical fundamentals of directed graphs.

Definition 4.1 (Graph concepts) A directed graph (or graph for short) is a triple
G = (V ,E,ϕ) consisting of a node set V and a branch set E together with an inci-
dence map

ϕ :E→ V × V, e 	→ ϕ(e)= (ϕ1(e), ϕ2(e)
)
.

If ϕ(e)= (v1, v2), we call e to be directed from v1 to v2; v1 is called the initial node,
and v2 the terminal node of e. Two graphs Ga = (Va,Ea,ϕa) and Gb = (Vb,Eb,ϕb)
are called isomorphic if there exist bijective mappings ιE :Ea→Eb and ιV : Va→
Vb , such that ϕa,1 = ι−1

V ◦ ϕb,1 ◦ ιE and ϕa,2 = ι−1
V ◦ ϕb,2 ◦ ιE .

Let V ′ ⊂ V , and let E′ be a set of branches fulfilling

E′ ⊂E|V ′ :=
{
e ∈E : ϕ(e) ∈ V ′ × V ′}.
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Further, let ϕ|E′ be the restriction of ϕ to E′. Then the triple K := (V ′,E′, ϕ|E′) is
called a subgraph of G. In the case where E′ = E|V ′ , we call K the induced sub-
graph on V ′. If V ′ = V , then K is called a spanning subgraph. A proper subgraph
is that with E 
=E′.

G is called finite if both the node and the branch set are finite.
For each branch e, define an additional branch −e, which is directed from the

terminal to the initial node of e, that is, ϕ(−e) = (ϕ2(e), ϕ1(e)) for e ∈ E. Now
define the set Ẽ = {e,−e : e ∈E}. A tuple w = (w1, . . . ,wr) ∈ Ẽr where

vki := ϕ2(wi)= ϕ1(wi+1) for i = 1, . . . , r − 1

is called a path from vk0 to vkr ; w is called an elementary path if vk1, . . . , vkr are
distinct. A loop is an elementary path with vk0 = vkr . A self-loop is a loop consist-
ing of only one branch. Two nodes v, v′ are called connected if there exists a path
from v to v′. The graph itself is called connected if any two nodes are connected.
A subgraph K := (V ′,E′, ϕ|E′) is called connected component if it is connected and
Kc := (V \ V ′,E \E′, ϕ|E\E′) is a subgraph.

A tree is a minimally connected (spanning sub)graph, that is, it is connected
without having any connected proper spanning subgraph.

For a spanning subgraph K= (V ,E′, ϕ|E′), we define the complementary span-
ning subgraph by G−K := (V ,E \E′, ϕ|E\E′). The complementary spanning sub-
graph of a tree is called a cotree. A spanning subgraph K is called a cutset if its
branch set is nonempty, G −K is a disconnected graph, and additionally, G −K′ is
connected for any proper spanning subgraph K′ of K.

We can set up special matrices associated to a finite graph. These will be useful
to describe Kirchoff’s laws.

Definition 4.2 Let a finite graph G = (V ,E,ϕ) with n branches E = {e1, . . . , en}
and m nodes V = {v1, . . . , vm} be given. Assume that the graph does not contain
any self-loops. The all-node incidence matrix of G is defined by A0 = (ajk) ∈R

m,n,
where

ajk =

⎧
⎪⎨

⎪⎩

1 if branch k leaves node j,

−1 if branch k enters node j,

0 otherwise.

Let L= {l1, . . . , lb} be the set of loops of G. Then the all-loop matrix B0 = (bjk) ∈
R
l,n is defined by

bjk =

⎧
⎪⎨

⎪⎩

1 if branch k belongs to loop j and has the same orientation,

−1 if branch k belongs to loop j and has the contrary orientation,

0 otherwise.
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2.4.2 Kirchhoff’s Laws: A Systematic Description

Let A0 ∈ R
m,n be the all-node incidence matrix of a graph G = (V ,E,ϕ) with n

branches E = {e1, . . . , en} and m nodes V = {v1, . . . , vm} and no self-loops. The
j th row of A0 is, by definition, at the kth position, equal to 1 if the kth branch leaves
the j th node. On the other hand, this entry equals to −1 if the kth branch enters the
j th node. If the kth node is involved in the j th node, then this entry vanishes. Hence,
defining ik(t) to be the current through the kth branch in the direction to its terminal
node and defining the vector

i(t)=
⎛

⎜
⎝

i1(t)
...

in(t)

⎞

⎟
⎠ , (13)

the kth row vector ak ∈ R
1,n gives rise to Kirchhoff’s current law of the kth node

via aki(t)= 0. Consequently, the collection of all Kirchhoff laws reads, in compact
form,

A0i(t)= 0. (14)

For k ∈ {1, . . . , n}, let uk(t) be the voltage between the initial and terminal nodes of
the kth branch, and define the vector

u(t)=
⎛

⎜
⎝

u1(t)
...

un(t)

⎞

⎟
⎠ . (15)

By the same argumentation as before, the construction of the all-loop matrix gives
rise to

B0u(t)= 0. (16)

Since any column of A0 contains exactly two nonzero entries, namely 1 and −1, we
have

AT
0 ·
⎛

⎜
⎝

1
...

1

⎞

⎟
⎠

︸︷︷ ︸
∈Rm

= 0. (17)

This give rise to the fact that the KCL system A0i(t)= 0 contains redundant equa-
tions. Such redundancies occur more than ever in the KVL B0u= 0.

Remark 4.3 (Self-loops in electrical circuits) Kirchhoff’s voltage law immediately
yields that the voltage along a branch with equal incidence nodes vanishes. Kirch-
hoff’s current law further implies that the current from a self-loop flows into the
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corresponding node and also flows out of this node. A consequence is that self-
loops are physically neutral: Their removal does not influence the behavior of the
remaining circuit. The assumption of their absence is therefore no loss of generality.

The next aim is to determine a set of (linearly) independent equations out of
the so far constructed equations. To achieve this, we present several connections
between some properties of the graph and its matrices A0, B0. We generalize the
results in [7] to directed graphs. As a first observation, we may reorder the branches
and nodes of G = (V ,E,ϕ) into according to connected components such that we
end up with

A0 =
⎡

⎢
⎣

A0,1
. . .

A0,k

⎤

⎥
⎦ , B0 =

⎡

⎢
⎣

B0,1
. . .

B0,k

⎤

⎥
⎦ , (18)

where A0,i and B0,i are, respectively, the all-node incidence matrix and all-loop
matrix of the ith connected component.

A spanning subgraph K of the finite graph G has an all-node incidence matrix
AK, which is constructed by deleting rows of A0 corresponding to the branches
of the complementary spanning subgraph G − K. By a suitable reordering of the
branches, the incidence matrix has a partition

A0 =
[
A0,K A0,G−K

]
. (19)

Theorem 4.4 Let a finite graph G = (V ,E,ϕ) with n branches E = {e1, . . . , en}
and m nodes V = {v1, . . . , vm} and no self-loops. Let A0 ∈ R

m,n be the all-node
incidence matrix of G. Then

(a) rankA0 =m− k.
(b) G contains a cutset if and only if rankA0 =m− 1.
(c) G is a tree if and only if A0 ∈R

m,m−1 and kerA0 = {0}.
(d) G contains loops if and only if kerA0 = {0}.

Proof

(a) Since all-loop incidence matrices of nonconnected graphs allow a representa-
tion (18), the general result can be directly inferred if we prove the statement
for the case where G is connected. Assume that A0 is the incidence matrix of
a connected graph, and assume that AT

0x = 0 for some x ∈ R
m. Utilizing (17),

we need to show that all entries of x are equal for showing that rankA0 =m−1.
By a suitable reordering of the rows of A0 we may assume that the first k entries
of x are nonzero, whereas the last m− k entries are zero, that is, x = [xT

1 0]T,
where all entries of x1 are nonzero. By a further reordering of the columns we
may assume that A0 is of the form

A0 =
[
A11 0
A21 A22

]
,
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where each column vector of A11 is not the zero vector. This gives AT
11x1 = 0.

Now take an arbitrary column vector a21,i of A21. Since each column vector
of A0 has exactly two nonzero entries, a21,i either has no, one, or two nonzero
entries. The latter case implies that the ith column vector of A11 is the zero vec-
tor, which contradicts the construction of A21. If a21,i has exactly one nonzero
entry at the j th position, the relation x1A11 = 0 gives rise to the fact that the j th
entry of x1 vanishes. Since this is a contradiction, the whole matrix A21 van-
ishes. Therefore, the all-node incidence matrix is block-diagonal. This however
implies that none of the lastm− k nodes is connected to the first k nodes, which
is a contradiction to G being connected.

(b) This result follows from (a) by using the fact that a graph contains cutsets if and
only if it is connected.

(c) By definition, G is a tree if and only if it is connected and the deletion of an arbi-
trary branch results in a disconnected graph. By (a) this means that the deletion
of an arbitrary column A0 results in a matrix with rank smaller than m− 1. This
is equivalent to the columns of A0 being linearly independent and spanning an
(n− 1)-dimensional space, in other words, rankA0 =m− 1 and kerA0 = {0}.

(d) Assume that the kernel of A0 is trivial. Seeking for a contradiction, assume that
G contains a loop l. Define the vector bl = [bl1, . . . , bln] ∈R

1,n \ {0} with

blk =

⎧
⎪⎨

⎪⎩

1 if branch k belongs to l and has the same orientation,

−1 if branch k belongs to l and has the contrary orientation,

0 otherwise.

Let a1 . . . , an be the column vectors of A0. Then, by construction of bl , each
row of the matrix

[
bl1a1 . . . blnan

]

contains exactly one entry 1 and one entry−1 and zeros elsewhere. This implies
A0b

T
l = 0.

Conversely, assume that G contains no loops. By separately considering the
connected components and the consequent structure (18) of A0, it is again no
loss of generality to assume that G is connected. Let e be a branch of G, and
let K be the spanning subgraph whose only branch is e. Then G − K results
in a disconnected graph (otherwise, (e, el1, . . . , elv) would be a loop, where
(el1, . . . , elv) is an elementary path in G − K from the terminal node to the
initial node of e). This however implies that the deletion of an arbitrary column
of A0 results in a matrix with rank smaller than n − 1, which means that the
columns of A0 are linearly independent, that is, kerA0 = {0}. �
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Since, by the dimension formula, dim kerAT
0 = k, we can infer from (14) and

(17) that kerAT
0 = span{c1, . . . , ck}, where

ci =
⎛

⎜
⎝

c1i
...

cmi

⎞

⎟
⎠ with cji =

⎧
⎪⎨

⎪⎩

1 if branch j belongs to the i-th connected
component,

0 else.
(20)

Furthermore, using the argumentation of the first part in the proof of (d), we obtain
that

A0B
T
0 = 0. (21)

We will show that the row vectors of B0 even generate the kernel of A0.
Based on a spanning subgraph K of G, we may, by a suitable reordering of

columns, perform a partition of the loop matrix according to the branches of K
and G −K, that is,

B0 =
[
B0K B0G−K

]
. (22)

If a subgraph T is a tree, then any branch e in G − T defines a loop in G via
(e, el1, . . . , elv), where (el1, . . . , elv) is an elementary path in T from the terminal
node to the initial node of e. Consequently, we may reorder the rows of BT and
BG−T to obtain the form

B0T =
[
B11
B21

]
, B0G−T =

[
In−m+1
B22

]
. (23)

Such a representation will be crucial for the proof of the following result.

Theorem 4.5 Let G = (V ,E,ϕ) be a finite graph with no self-loops, n branches
E = {e1, . . . , en}, andm nodes V = {v1, . . . , vm}, and let the all-node incidence ma-
trix A0 ∈ R

m,n and b loops {l1, . . . , lb} be given. Furthermore, let k be the number
of connected components of G. Then

(a) imBT
0 = kerA0;

(b) rankB0 = n−m+ k.

Proof The relation imBT
0 ⊂ kerA0 follows from (21). Therefore, the overall result

follows if we prove that rankB0 ≥ n − m + k. Again, by separately considering
the connected components and using the block-diagonal representations (18), the
overall result immediately follows if we prove the case k = 1. Assuming that G is
connected, we consider a tree T in G. Then we may assume that the all-loop matrix
is of the form B0 = [B0T B0G−T ] with submatrices as is (23). However, since the
latter submatrix has full column rank and n−m+ 1 columns, we have

rankB0 ≥ rankB0G−T = n−m+ 1,

which proves the desired result. �
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Statement (a) implies that the orthogonal spaces of imBT
0 and kerA0 coincide as

well. Therefore,

imAT
0 = kerB0.

To simplify verbalization, we arrange that, by referring to connectedness, the inci-
dence matrix, loop matrix, etc. of an electrical circuit, we mean the corresponding
notions and concepts for the graph describing the electrical circuit.

It is a reasonable assumption that an electrical circuit is connected; otherwise,
since the connected components do not physically interact, they can be considered
separately.

Since the rows of A0 sum up to the zero row vector, one might delete an arbitrary
row of A0 to obtain a matrix A having the same rank as A0. We call A the incidence
matrix of G. The property rankA0 = rankA implies imAT

0 = imAT. Consequently,
the following holds.

Theorem 4.6 (Kirchhoff’s current law for electrical circuits) Let a connected elec-
trical circuit with n branches and m nodes and no self-loops be given. Let A ∈
R
m−1,n, and let, for j = 1, . . . , n, ij (t) be the current in branch ej in the direction

of initial to terminal node of ej . Let i(t) ∈ R
n be defined as in (13). Then for all

times t ,

Ai(t)= 0. (24)

We can furthermore construct the loop matrix B ∈ R
n−m+1,n by picking n −

m+ 1 linearly independent rows of B0. This implies imBT
0 = imBT, and we can

formulate Kirchhoff’s voltage law as follows.

Theorem 4.7 (Kirchhoff’s voltage law for electrical circuits) Let a connected elec-
trical circuit with n branches and m nodes be given. Let B ∈ R

n−m+1,n, and let,
for j = 1, . . . , n, uj (t) be the voltage in branch ej between the initial and terminal
node of ej . Let u(t) ∈R

n be defined as in (15). Then for all times t ,

Bu(t)= 0. (25)

A constructive procedure for determining the loop matrix B can be obtained from
the findings in front of Theorem 4.5: Having a tree T in the graph G describing an
electrical circuit, the loop matrix can be determined by

B = [BT In−m+1
]
,

where the j th row of BT contains the information on the path in T between the
initial and terminal nodes of the (m− 1+ j)th branch of G.

The formulations (24) and (25) of Kirchhoff’s laws give rise to the fact that a con-
nected circuit includes n= (m− 1)+ (n−m+ 1) linearly independent Kirchhoff
equations. Using Theorem 4.5 and imAT

0 = imAT, imBT
0 = imBT, we further have

imBT = kerA.
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Kirchhoff’s voltage law may therefore be rewritten as u(t) ∈ imAT. Equivalently,
there exists some φ(t) ∈R

m−1 such that

u(t)=ATφ(t). (26)

The vector φ(t) is called the node potential. Its ith component expresses the voltage
between the ith node and the node corresponding to the deleted row of A0. This
relation can therefore be interpreted as a lumped version of (11). The node potential
of the deleted row is set to zero, whence the deletion of a row of A0 can therefore
be interpreted as grounding (compare Sect. 2.3).

Equivalently, Kirchhoff’s current law may be reformulated in the way that there
exists a loop current ι(t) ∈R

n−m+1 such that

i(t)= BTι(t). (27)

The so far developed graph theoretical results give rise to a lumped version of The-
orem 3.10.

Theorem 4.8 (Tellegen’s law for electrical circuits) With the assumption and no-
tation of Theorems 4.6 and 4.7, for all times t1, t2, the vectors i(t1) and u(t2) are
orthogonal in the Euclidean sense, that is,

iT(t1)u(t2)= 0.

Proof For the incidence matrix A of the graph describing the electrical circuit, let
Φ(t2) ∈R

m−1 be the corresponding vector of node potentials at time t2. Then

iT(t1)u(t2)= iT(t1)ATφ(t2)=
(
Ai(t1)

)T
φ(t2)= 0 · φ(t2)= 0. (28)

�

2.4.3 Auxiliary Results on Graph Matrices

This section closes with some further results on the connection between properties
of subgraphs and linear algebraic properties of the corresponding submatrices of
incidence and loop matrices. Corresponding for undirected graphs can be found
in [7]. First, we declare some manners of speaking.

Definition 4.9 Let G be a graph, and let K be a spanning subgraph.

(i) L is called a K-cutset if L is a cutset of G and a spanning subgraph of K.
(ii) l is called a K-loop if l is a loop and all branches of l are contained in K.
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Lemma 4.10 Let G be a connected graph with n branches and m nodes, no self-
loops, an incidence matrix A ∈R

m−1,n, and a loop matrix B ∈R
n−m+1,n. Further,

let K be a spanning subgraph. Assume that the branches of G are sorted so that

A= [AK AG−K
]
, B = [BK BG−K

]
.

(a) The following three assertions are equivalent:

(i) G does not contain K-cutsets;
(ii) kerAT

G−K = {0};
(iii) kerBK = {0}.

(b) The following three assertions are equivalent:

(i) G does not contain K-loops;
(ii) kerAK = {0};

(iii) kerBT
G−K = {0}.

Proof

(a) The equivalence of (i) and (ii) follows from Theorem 4.4 (b). To show that (ii)
implies (iii), assume that BKx = 0. Then

(
x

0

)
∈ ker

[
BK BG−K

]= im

[
AT
K

AT
G−K

]

,

that is, there exists y ∈R
m−1 such that

(
x

0

)
=
[
AT
K

AT
G−K

]

y.

In particular, we have AT
G−Ky = 0, whence, by assumption (ii), y = 0. Thus,

x =AT
Ky = 0.

To prove that (iii) is sufficient for (ii), we can perform the same argumenta-
tion by interchanging the roles of AT

G−K and BK.
(b) The equivalence of (i) and (ii) follows from Theorem 4.4 (d). The equivalence

of (ii) and (iii) can be proven analogously to part (a) (by interchanging the roles
of K and G −K and of the loop and incidence matrices). �

The subsequent two auxiliary results are concerned with properties of subgraphs
of subgraphs and gives some equivalent characterizations in terms of properties of
their incidence and loop matrices.

Lemma 4.11 Let G be a connected graph with n branches and m nodes, no self-
loops, an incidence matrix A ∈R

n−1,m, and a loop matrix B ∈R
n−m+1,n. Further,
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let K be a spanning subgraph of G, and let L be a spanning subgraph of K. Assume
that the branches of G are sorted so that

A= [AL AK−L AG−K
]
, B = [BL BK−L BG−K

]
,

and define

AK =
[
AL AK−L

]
, BK =

[
BL BK−L

]
,

AG−L =
[
AK−L AG−K

]
, BG−L =

[
BK−L BG−K

]
.

Then the following four assertions are equivalent:

(i) G does not contain K-loops except for L-loops;
(ii)

kerAK = kerAL × {0}.
(iii) For a matrix ZL with imZL = kerAT

L,

kerZT
LAK−L = {0}.

(iv)

kerBT
G−L = kerBT

K−L.

(v) For a matrix YG−K with imYG−K = kerBT
G−K,

YT
K−LBG−K = 0.

Proof To show that (i) implies (ii), let B̃K be a loop matrix of the graph K (note
that, in general, B̃K and BK do not coincide). The assumption that all K-loops are
actually L-loops implies that B̃K is structured as

B̃K =
[
B̃L 0

]
.

Since im B̃K = kerAK, we have kerAK = im B̃T
L × {0}. This further implies that

im B̃T
L = kerAL or, in other words, (b) holds.

Now we show that (ii) is sufficient for (i). Let l be a loop in K. Assume that K
has nK branches and L has nL branches. Define the vector bl = [bl1, . . . , blnK ] ∈
R

1,m \ {0} with

blk =

⎧
⎪⎨

⎪⎩

1 if branch k belongs to l and has the same orientation,

−1 if branch k belongs to l and has the contrary orientation,

0 otherwise.

Then (ii) gives rise to blnL+1 = · · · = bnK = 0, whence the branches of K − L are
not involved in l, that is, l is actually an L-loop.
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Aiming to show that (iii) holds, assume (ii). Let x ∈ kerZT
LAK−L. Then

AK−Lx ∈ kerZT
L = (imZL)⊥ =

(
kerAT

L
)⊥ = imAL.

Thus, there exists a real vector y such that

AK−Lx =ALy.

This gives rise to
(−y
x

)
∈ ker

[
AL
AK−L

]
= kerAK = kerAL × {0},

and, consequently, x vanishes.
For the converse implication, it suffices to show that (c) implies kerAK ⊂

kerAL × {0} (the reverse inclusion holds in any case). Assume that
(
y

x

)
∈ kerAK,

that is,ALy+AK−Lx = 0. Multiplying this equation from the left by ZT
L, we obtain

x ∈ kerZT
LAK−L = {0}, that is, x = 0 and ALy = 0. Hence,

(
y

x

)
∈ kerAL × {0}.

The following proof concerns the sufficiency of (ii) for (iv): It suffices to show that
(ii) implies

kerBT
G−L ⊂ BT

K−L
since the converse inclusion holds in any case. Assume that BT

G−Lx = 0. Then

BTx =
⎛

⎜
⎝

BT
Lx

BT
K−Lx

0

⎞

⎟
⎠ ∈ kerAK = kerAL × {0},

whence BT
K−Lx.

Conversely, assume that (iv) holds and let
(
y

x

)
∈ kerAK.

Then
⎛

⎝
y

x

0

⎞

⎠ ∈ kerA= imBT = im

⎡

⎢
⎣

BT
L

BT
K−L
BT
G−K

⎤

⎥
⎦ ,
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that is, there exists a real vector z such that y = BT
Lz, x = BT

K−Lz and BT
G−Kz= 0.

The latter implies that x = BT
K−Lz= 0, that is, (b) holds.

It remains to show that (iv) and (v) are equivalent. Assume that (iv) holds. Then

kerBT
G−K ⊂ kerBT

K−L = imYK−L,

whence

YT
K−LBG−K =

(
BT
G−KYK−L

)T = 0.

Finally, assume that YT
K−LBG−K = 0 and let BT

G−Kx = 0. Then x ∈ imYK−L, that
is, there exists a real vector y such that x = YK−Ly. This implies

BT
G−Lx =

(
BT
Lx

BT
G−Kx

)

=
(
BT
K−LYK−Ly
BT
G−KYK−Ly

)

=
(

0
0

)
.

So far, we have shown that YT
K−LBG−K = 0 implies kerBT

G−K ⊂ kerBT
G−L. Since

the other inclusion holds in any case (BT
G−K is a submatrix of BT

G−L), the overall
result has been proven. �

Lemma 4.12 Let G be a connected graph with n branches and m nodes, no self-
loops, an incidence matrix A ∈R

m−1,n, and a loop matrix B ∈R
n−m+1,n. Further,

let K be a spanning subgraph of G, and let L be a spanning subgraph of L. Assume
that the branches of G are sorted so that

A= [AL AK−L AG−K
]
, B = [BL BK−L BG−K

]
.

Then the following four assertions are equivalent:

(i) G does not contain K-cutsets except for L-cutsets;
(ii) The initial and terminal nodes of each branch of K−L are connected by a path

in G −K.
(iii)

kerAT
G−K = kerAT

G−L.

(iv) For a matrix ZG−K with imZG−K = kerAT
G−K,

ZT
K−LAG−K = 0.

(v)

kerBK = kerBL × {0}.
(vi) For a matrix YL with imYL = kerBT

L,

kerYT
LBK−L = {0}.
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Proof By interchanging the roles of loop and incidence matrices, the proof of equiv-
alence of the assertions (c)–(f) is totally analogous to the proof of equivalence of
(ii)–(v) in Lemma 4.11. Hence, it suffices to show that (i), (ii), and (iii) are equiva-
lent:

First, we show that (i) implies (iii): As a first observation, note that since AK−L
is a submatrix of AK, (iii) is equivalent to imAK−L ⊂ imAG−K. Now seeking for
a contradiction, assume that (iii) is not fulfilled. Then, by the preliminary consider-
ation, there exists a column vector a1 of AK−L with a1 /∈ imAG−K. Now, for k as
large as possible, successively construct column vectors ã1, . . . , ãk of AK with the
property that

a1 /∈ imAG−K + span{ã1, . . . , ãi} for all i ∈ {1, . . . , k}. (29)

Let a2, . . . , aj be the set of column vectors of AK that have not been chosen by
the previous procedure. Since the overall incidence matrix A has full row rank, the
construction of ã1, . . . , ãk leads to

AG−K + span{ã1, . . . , ãk, ai} =R
n−1 for all i ∈ {1, . . . , j}. (30)

Now construct the spanning graph C by taking the branches a1, . . . , aj . Due to (29),
G − C is disconnected. Furthermore, C contains a branch of K − L, namely the
one corresponding to the column vector a1. Since, furthermore, (30) implies that
the addition of any branch of C to G − C results is a connected graph, we have
constructed a cutset in K that contains branches of K−L.

The next step is to show that (iii) is sufficient for (ii): Assume that the nodes are
sorted by connected components in G −K, that is,

AG−K = diag(AG−K,1, . . . ,AG−K,n). (31)

Then the matrices AG−K,i i = 1, . . . , n, are all-node incidence matrices of the con-
nected components (except for the component ig connected to the grounding node;
then AG−K,ig is an incidence matrix). Seeking for a contradiction, assume that e is
a branch in K − L whose incidence nodes are not connected by a path in G − K.
Then ak has not more than two nonzero entries, and one of the following two cases
holds:

(a) If e is connected to the grounding node, then ak is the multiple of a unit vector
corresponding to a position not belonging to the grounded component, whence
ak /∈AG−K.

(b) If e connects two nongrounded nodes, then ak has two nonzero entries, which
are located at rows corresponding to two different matrices AG−K,i andAG−K,j
in AG−K. This again implies ak /∈AG−K. This is again a contradiction to (iii).

For the overall statement, it suffices to prove that (ii) implies (i). Let C be
a cutset of G that is contained in K and assume that e is a branch of C that
is contained in K − L. Since there exists some path in G − K that connects
the incidence nodes of e, the addition of e to G − C (which is a supergraph of
G − K) does not connect two different connected components. The resulting
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graph is therefore still disconnected, which is a contradiction to C being a cutset
of G. �

2.4.4 Notes and References

(i) The representation of the Kirchhoff laws by means of incidence and loop ma-
trices is also called nodal analysis and mesh analysis, respectively [16, 19, 32].

(ii) The part in Proposition 4.10 about incidence matrices and subgraphs has also
been shown in [22]; the parts in Lemmas 4.11 and 4.12 about incidence matri-
ces and subgraphs have also been shown in [22]. The parts on loop matrices is
novel.

(iii) The correspondence between subgraph properties and linear algebraic proper-
ties of the corresponding incidence and loop matrices is an interesting feature.
It can be seen from (20) that the kernel of a transposed incidence matrix can
be computed by a determination of the connected components of a graph. As
well, we can infer from (23) and the preceding argumentation that loop ma-
trices can be determined by a simple determination of a tree. Conversely, the
computation of the kernel of an incidence matrix leads to the determination of
the loops in a (sub)graph. It is further shown in [9, 28] that a matrix ZT

LAK−L
(see Lemma 4.11) has an interpretation as an incidence matrix of the graph,
which is constructed from K − L by merging those nodes that are connected
by a path in L. The determination of its nullspace thus again leads a graph
theoretical problem.

Note that to determine nullspaces, graph computations are by far prefer-
able to linear algebraic method. Efficient algorithms for the aforementioned
problems can be found in [18]. Note that the aforementioned graph theoreti-
cal features have been used in [20, 21] to analyze special properties of circuit
models.

2.5 Circuit Components: Sources, Resistances, Capacitances,
Inductances

We have seen in the previous section that, for a connected electrical circuit with
n branches and m nodes, the Kirchhoff laws lead to n = (m − 1) + (n − m + 1)
linearly independent algebraic equations for the voltages and currents. Since, al-
together, voltages and currents are 2n variables, mathematical intuition gives rise
to the fact that n further relations are missing to completely describe the circuit.
The behavior of a circuit does, indeed, not only depend of interconnectivity, the
so-called network topology, but also on the type of electrical components located
on the branches. These can, for instance, be sources, resistances, capacitances, and
inductances. These will either (such as in case of a source) prescribe the voltage or
the current, or they form a relation between voltage and current of a certain branch.
In this section, we will collect these relations for the aforementioned components.



152 T. Reis

Fig. 7 Symbol of a voltage
source

Fig. 8 Symbol of a current
source

Fig. 9 Model of a resistance

2.5.1 Sources

Sources describe physical interaction of an electrical circuit with the environment.
Voltage sources are elements where the voltage uV (·) : I→R is prescribed. In cur-
rent sources, the current iI(·) : I →R is given beforehand. The symbols of voltage
and current sources are presented in Figs. 7 and 8.

We will see in Sect. 2.6 that the physical variables iV (·), uI(·) : I → R (and
therefore also energy flow through sources) are determined by the overall electrical
circuit. Some further assumptions on the prescribed functions uV (·), iI(·) : I → R

(such as, e.g., smoothness) will also depend on the connectivity of the overall circuit;
this will as well be a subject of Sect. 2.6.

2.5.2 Resistances

We make the following ansatz for a resistance: Consider a conductor material in the
cylindric spatial domain (see Fig. 9)

Ω = [0, �] × {(ξy, ξz) : ξ2
y + ξ2

z ≤ r2}⊂R
3 (32)

with length � and radius r .
For ξx ∈ [0, �], we define the cross-sectional area by

Aξx = {ξx} ×
{
(ξy, ξz) : ξ2

y + ξ2
z ≤ r2}. (33)
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To deduce the relation between the resistive voltage and current from Maxwell’s
equations, we make the following assumptions.

Assumption 5.1 (The electromagnetic field inside resistances)

(a) The electromagnetic field inside the conductor material is stationary, that is,

∂

∂t
D ≡ ∂

∂t
B ≡ 0.

(b) Ω does not contain any electric charges.
(c) For all ξx ∈ [0, �], the voltage between two arbitrary points of Aξx vanishes.
(d) The conductance function g :R3 ×Ω→R

3 has the following properties:

(i) g is continuously differentiable.
(ii) g is homogeneous, that is, g(E, ξ1)= g(E, ξ2) for all E ∈R

3 and ξ1, ξ2 ∈
Ω .

(iii) g is strictly incremental, that is, (E1 −E2)
Tg(E1 −E2, ξ) > 0 for all dis-

tinct E1,E2 ∈R
3 and ξ ∈Ω .

(iv) g is isotropic, that is, g(E, ξ) and E are linearly dependent for all E ∈R
3

and ξ ∈Ω .

Using the definition of the voltage (10), property (c) implies that the electric field
intensity is directed according to the conductor, that is, E(t, ξ)= e(t, ξ) · ex , where
ex is the canonical unit vector in the x-direction, and e(·, ·) is some scalar-valued
function. Homogeneity and isotropy, smoothness, and the incrementation property
of the conductance function then imply that

j (t, ξ)= g(E(t, ξ), ξ)= gx
(
e(t, ξ)

) · ex
for some strictly increasing and differentiable function gx :R→R with gx(0)= 0.
Further, by using (9) we can infer from the stationarity of the electromagnetic field
that the field of electric current density is divergence-free, that is, div j (·, ·) ≡ 0.
Consequently, gx(e(t, ξ)) is spatially constant. The strict monotonicity of gx then
implies that e(t, ξ) is spatially constant, whence we can set up

E(t, ξ)= e(t) · ex
for some scalar-valued function e only depending on time t (see Fig. 12).

Consider now the straight path S between (0,0,0) and (�,0,0). The normal of
this path fulfills n(ξ)= ex for all ξ ∈ S . As a consequence, the voltage reads

u(t)=
ˆ

S
νT(ξ) ·E(t, ξ) ds(ξ)

=
ˆ

S
eT
x · e(t) · ex ds(ξ)
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=
ˆ

S
e(t) ds(ξ)

=
ˆ �

0
e(t) dξ = �e(t). (34)

Consider the cross-sectional area A0 (compare (33)). The normal of A0 fulfills
n(ξ) = ex for all ξ ∈ A0. Then obtain for the voltage u(t) between the ends of
the conductor and the current i(t) through the conductor that

i(t)=
¨

A0

nT(ξ)j (t, ξ) dS(ξ)

=
¨

A0

nT(ξ)gx
(
e(t)
) · ex dS(ξ)

=
¨

A0

eT
x gx
(
e(t)
) · ex dS(ξ)

=
¨

A0

gx
(
e(t)
)
dS(ξ)

= (πr2) · gx
(
e(t)
)= (πr2) · gx

(
u(t)

�

)

︸ ︷︷ ︸
=:g(u(t))

.

As a consequence, we obtain the algebraic relation

i(t)= g(u(t)), (35)

where g : R→ R is a strictly increasing and differentiable function with g(0)= 0.
The symbol of a resistance is presented in Fig. 10.

Remark 5.2 (Linear resistance) Note that in the case where the friction function
is furthermore linear (i.e., g(E(t, ξ), ξ)= cg · E(t, ξ)), the resistance relation (35)
becomes

i(t)= G · u(t), (36)

where

G = πr
2 · cg
�

> 0

is the so-called conductance value of the linear resistance.
Equivalently, we can write

u(t)= R · i(t), (37)
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Fig. 10 Symbol of
a resistance

where

R = �

πr2 · cg > 0.

Remark 5.3 (Resistance, energy balance) The energy balance of a general resistance
that is operated in the time interval [t0, tf ]

Wr =
ˆ tf

t0

u(τ)i(τ ) dτ =
ˆ tf

t0

u(τ)g
(
u(τ)

)
dτ ≥ 0,

where the latter inequality holds since the integrand is positive. A resistance is there-
fore an energy-dissipating element, that is, it consumes energy.

Note that, in the linear case, the energy balance simplifies to

Wr = G ·
ˆ tf

t0

u2(τ ) dτ ≥ 0.

2.5.3 Capacitances

We make the following ansatz for a capacitance: Consider again an electromagnetic
medium in a cylindric spatial domain Ω ⊂R

3 as in (32) with length � and radius r
(see also Fig. 9). To deduce the relation between capacitive voltage and current from
Maxwell’s equations, we make the following assumptions.

Assumption 5.4 (The electromagnetic field inside capacitances)

(a) The magnetic flux intensity inside the medium is stationary, that is,

∂

∂t
B ≡ 0.

(b) The medium is a perfect isolator, that is, j (·, ξ)≡ 0 for all ξ ∈Ω .
(c) In the lateral area

Alat = [0, �] ×
{
(ξy, ξz) : ξ2

y + ξ2
z = r2}⊂ ∂Ω

of the cylindric domain Ω , the magnetic field intensity is directed orthogonally
to Alat. In other words, for all ξ ∈ Alat and all times t , the positively oriented
normal n(ξ) and H(t, ξ) are linearly dependent.
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(d) There is no explicit algebraic relation between the electric current density and
the electric field intensity.

(e) Ω does not contain any electric charges.
(f) For all ξx ∈ [0, �], the voltage between two arbitrary points of Aξx (com-

pare (33)) vanishes.
(g) The function fe :R3 ×Ω→R

3 has the following properties:

(i) fe is continuously differentiable.
(ii) fe is homogeneous, that is, fe(D, ξ1) = fe(D, ξ2) for all D ∈ R

3 and
ξ1, ξ2 ∈Ω .

(iii) The function fe(·, ξ) : R3 → R
3 is invertible for some (and hence any)

ξ ∈Ω .
(iv) fe is isotropic, that is, fe(D, ξ) and D are linearly dependent for all D ∈

R
3 and ξ ∈Ω .

Using the definition of the voltage (10), property (c) implies that the electric field
intensity is directed according to the conductor, that is, E(t, ξ) = e(t, ξ) · ex for
some scalar-valued function e(· , ·). Isotropy, homogeneity, and the invertibility of
fe then implies that the electrical displacement is as well directed along the conduc-
tor, whence

D(t, ξ)= f−1
e

(
E(t, ξ), ξ

)= qx
(
e(t, ξ)

) · ex
for some differentiable and invertible function qx :R→R. Further, by using that, by
the absence of electric charges, the field of electric displacement is divergence-free,
we obtain that it is even spatially constant. Consequently, the electric field intensity
is as well spatially constant, and we can set up

E(t, ξ)= e(t) · ex
for some scalar-valued function e(·) only depending on time.

Using that the magnetic field is stationary, we can, as for resistances, infer that
the electrical field is spatially constant, that is,

E(t, ξ)= e(t) · ex
for some scalar-valued function e(·) only depending on time, and we can use the
argumentation in as in (34) to see that the voltage reads

u(t)= �e(t).
Assume that the current i(·) is applied to the capacitor. The current density inside

Ω is additively composed of the current density induced by the applied current
jappl(·, ·) and the current density jind(·, ·) induced by the electric field. Since the
medium in Ω is an isolator, the current density inside Ω vanishes. Consequently,
for all times t and all ξ ∈Ω ,

0= jappl(t, ξ)+ jind(t, ξ).
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The definition of the current yields

i(t)=
¨

A0

nT(ξ)jappl(t, ξ) dS(ξ).

The definition of the cross-sectional area A0 and the lateral surface Alat yields
∂A0 ⊂Alat. By Maxwell’s equations, Stokes theorem, stationarity of the magnetic
flux intensity, and the assumption that the tangential component magnetic field in-
tensity vanishes in the lateral surface, we obtain

i(t)=
¨

A0

nT(ξ) · jappl(t, ξ) dS(ξ)

=−
¨

A0

nT(ξ)︸ ︷︷ ︸
=eT
x

·jind(t, ξ) dS(ξ)

=
¨

A0

eT
x ·
∂

∂t
D(t, ξ)− eT

x · curlH(t, ξ) dS(ξ)

= d

dt

¨

A0

eT
x ·D(t, ξ) dS(ξ)−

˛

∂A
νT(ξ) ·H(t, ξ)︸ ︷︷ ︸

=0

ds(ξ)

= d

dt

¨

A0

eT
x · f−1

e

(
E(t, ξ), ξ

)
dS(ξ)

= d

dt

¨

A0

eT
x · qx

(
e(t)
) · ex dS(ξ)

= d

dt
πr2 · qx

(
e(t)
)

= d

dt
πr2 · qx

(
u(t)

�

)

︸ ︷︷ ︸
=:q(u(t))

.

That is, we obtain the dynamic relation

i(t)= d

dt
q
(
u(t)

)
(38)

for some function q :R→R. Note that the quantity q(u) has the physical dimension
of electric charge, whence q(·) is called a charge function. It is sometimes spoken
about the charge q(u(t)) of the capacitance. Note that q(u(t)) is a virtual quantity.
Especially, there is no direct relation between the charge of a capacitance and the
electric charge (density) as introduced in Sect. 2.3. The symbol of a capacitance is
presented in Fig. 11.

Remark 5.5 (Linear capacitance) Note that, in the case where the constitutive rela-
tion is furthermore linear (i.e., fe(D(t, ξ), ξ)= cc ·D(t, ξ)), the capacitance relation
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Fig. 11 Symbol of
a capacitance

(35) becomes

i(t)= C · u̇(t), (39)

where

C = πr
2

�cc
> 0

is the so-called capacitance value of the linear capacitance.

Remark 5.6 (Capacitance, energy balance) Isotropy and homogeneity of fe and the
construction of the function qx further implies that the electric energy density fulfills

∂

∂D
V T
e

(
qx(e) · ex, ξ

)= fe
(
qx(e) · ex, ξ

)= e · ex.

Hence, the function qx :R→R is invertible with

q−1
x (q)= eT

x

∂

∂D
V T
e (q · ex)=

d

dq
Ve,x(q),

where

Ve,x : R→R,

q 	→ Ve(q · ex).
In particular, this function fulfills Ve,x(0)= 0 and Ve,x(q) > 0 for all q ∈R \ {0}.

The construction of the capacitance function and assumption (3) on fe implies
that q :R→R is invertible with

q−1(·)= � · q−1
x

( ·
πr2

)
= d

dq
lπr2Ve,x

( ·
πr2

)

︸ ︷︷ ︸
=:VC (·)

.

Moreover, VC (0)= 0 and VC (qC ) > 0 for all qC ∈R \ {0}.
Now we consider the energy balance of a capacitance that is operated in the time

interval [t0, tf ]

WC =
ˆ tf

t0

u(τ)i(τ ) dτ

=
ˆ tf

t0

q−1(q
(
u(τ)

)) · d
dτ
q
(
u(τ)

)
dτ
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=
ˆ tf

t0

d

dq
VC
(
q
(
u(τ)

) · d
dτ
q
(
u(τ)

))
dτ

=
ˆ tf

t0

d

dτ
VC
(
q
(
u(τ)

))
dτ

= VC
(
q
(
u(τ)

))∣∣τ=tf
τ=t0 . (40)

Consequently, the function VC has the physical interpretation of an energy storage
function. A capacitance is therefore a reactive element, that is, it stores energy.

Note that, in the linear case, the storage function simplifies to

VC
(
q(u)

)= 1

2
· C−1 · q2(u)= 1

2
· C−1 · (C(u))2 = 1

2
· C · u2,

whence the energy balance then reads

WC = 1

2
· C · u2(τ )|τ=tfτ=t0 .

Remark 5.7 (Capacitances and differentiation rules) The previous assumptions im-
ply that the function q : R→ R is differentiable. By the chain rule, (38) can be
rewritten as

i(t)= C
(
u(t)

) · u̇(t), (41)

where

C(uC )= d

duC
q(uC ).

Monotonicity of q further implies that C(·) is a pointwise positive function.
By the differentiation rule for inverse functions, we obtain

C(uC )= d

duC
q(uC )=

(
d

dq
VC
(
q(uC )

))−1

.

2.5.4 Inductances

It will turn out in this part that inductances are components that store magnetic en-
ergy. We will see that there are certain analogies to capacitances if one replaces
electric by accordant magnetic physical quantities. The mode of action of an in-
ductance can be explained by a conductor loop. We further make the (simplifying)
assumption that the conductor with domain Ω forms a circle that is interrupted by
an isolator of width zero (see Fig. 12). Assume that the circle radius is given by r ,
where the radius is here defined to be the distance from the circle midpoint to any
conductor midpoint. Further, let lh be the conductor width.
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Fig. 12 Model of an inductance

To deduce the relation between inductive voltage and current from Maxwell’s
equations, we make the following assumptions.

Assumption 5.8 (The electromagnetic field inside capacitances)

(a) The electric displacement inside the medium Ω is stationary, that is,

∂

∂t
D ≡ 0.

(b) The medium is a perfect conductor, that is, E(·, ξ)≡ 0 for all ξ ∈Ω .
(c) There is no explicit algebraic relation between the electric current density and

the electric field intensity.
(d) Ω does not contain any electric charges.
(e) The function fm :R3 ×Ω→R

3 has the following properties:

(i) fm is continuously differentiable.
(ii) fm is homogeneous, that is, fm(B, ξ1) = fm(B, ξ2) for all B ∈ R

3 and
ξ1, ξ2 ∈Ω .

(iii) The function fm(·, ξ) : R3 → R
3 is invertible for some (and hence any)

ξ ∈Ω .
(iv) fm is isotropic, that is, fm(B, ξ) and B are linearly dependent for all B ∈

R
3 and ξ ∈Ω .

Let ξ = ξxex + ξyey + ξzez, and let hs :R→R be a differentiable function such
that

hs(x)= 0 for all x ∈ [0, r − lh/2] ∪ [r + lh/2,∞),
and

hs(x) > 0 for all x ∈ (r − lh/2, r + lh/2).
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We make the following ansatz for the magnetic flux intensity:

H(t, ξ)= hs
(
ξ2
y + ξ2

z

) · h(t) · ex,
where h(·) is a scalar-valued function defined on a temporal domain in which the
process evolves (see Fig. 12).

Using the definition of the current (8), Maxwell’s equations, property (c), and the
stationarity of the electric field yields

i(t)=
¨

{0}×[r−lh/2,r+lh/2]×[0,ld ]
νT(ξ) · j (t, ξ) dS(ξ)

=
¨

{0}×[r−lh/2,r+lh/2]×[0,ld ]
νT(ξ) · curlH(t, ξ) dS(ξ)

=
¨

{0}×[r−lh/2,r+lh/2]×[0,ld ]
eT
x · 2b′s

(
ξ2
y + ξ2

z

) · ex · h(t) dS(ξ)

= 2
¨

{0}×[r−lh/2,r+lh/2]×[0,ld ]
b′s
(
ξ2
y + ξ2

z

)
dS(ξ)

︸ ︷︷ ︸
=:cm

·h(t).

Assume that the voltage u(·) is applied to the inductor. The electric field intensity
inside the conductor is additively composed of the field intensity induced by the
applied voltage Eappl(· , ·) and the electric field intensity Eind(· , ·) induced by the
magnetic field. Since the wire is a perfect conductor, the electric field intensity van-
ishes inside the wire. Consequently, for all times t and all ξ ∈R

3 with

0≤ ξx ≤ ld and (r − lh)2 ≤ ξ2
y + ξ2

z ≤ (r + lh)2,
we have

0=Eappl(t, ξ)+Eind(t, ξ).

Let A⊂R
3 be a circular area that is surrounded by the midline of the wire, that is,

A= {(ξx, ξy, ξz) ∈R
3 : ξx = ld/2 and ξ2

y + ξ2
z ≤ r2}.

Isotropy, homogeneity, and the invertibility of fm then implies that the magnetic
flux is as well directed orthogonally to A, that is,

B(t, ξ)= f−1
m

(
H(t, ξ), ξ

)

=ψx
(
hs
(
ξ2
y + ξ2

z

) · h(t)) · ex

=ψx
(
hs(ξ

2
y + ξ2

z )

cm
· i(t)

)
· ex

for some differentiable function ψx :R→R.
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Fig. 13 Symbol of
an inductance

By Maxwell’s equations, Stokes theorem, the definition of the voltage, and
a transformation to polar coordinates we obtain

u(t)=
˛

∂A

νT(ξ) ·Eappl(t, ξ) ds(ξ)

=−
˛

∂A

νT(ξ) ·Eind(t, ξ) ds(ξ)

=−
¨

A

nT(ξ)︸ ︷︷ ︸
=eT
x

· curlEind(t, ξ)︸ ︷︷ ︸
=− ∂

∂t
B(t,ξ)

dS(ξ)

=− d
dt

¨

A

eT
x · B(t, ξ)︸ ︷︷ ︸

=ψx( hs (ξ
2
y+ξ2

z )

cm
·i(t))·ex

dS(ξ)

= d

dt

¨

A

ψx

(
hs(ξ

2
y + ξ2

z )

cm
· i(t)

)
dS(ξ)

= d

dt
2π

ˆ r+lh/2

r−lh/2
yψx

(
hs(y

2)

cm
· i(t)

)
dy

︸ ︷︷ ︸
=:ψ(i(t))

.

That is, we obtain the dynamic relation

u(t)= d

dt
ψ
(
i(t)
)

(42)

for some function ψ :R→R, which is called a magnetic flux function. The symbol
of an inductance is presented in Fig. 13.

Remark 5.9 (Linear inductance) Note that, in the case where the constitutive rela-
tion is furthermore linear (i.e., fm(B(t, ξ), ξ)= ci ·H(t, ξ)), the inductance relation
(35) becomes

u(t)= L · i̇(t), (43)

where

L = 2πci
cm

ˆ r+lh/2

r−lh/2
s · hs

(
s2)dξ > 0

is the so-called inductance value of the linear inductance.



2 Mathematical Modeling and Analysis of Nonlinear Time-Invariant RLC Circuits 163

Remark 5.10 (Inductance, energy balance) Isotropy and homogeneity of fm and
the construction of the function ψx further implies that the magnetic energy density
fulfills

∂

∂B
V T
m

(
ψx
(
hs
(
ξ2
y + ξ2

z

)
h(t)

) · ex, ξ
)

= fm
(
ψx
(
hs
(
ξ2
y + ξ2

z

) · h(t)) · ex, ξ
)=H(t, ξ)

= hs
(
ξ2
y + ξ2

z

) · h(t) · ex.
Hence, the function ψx :R→R is invertible with

ψ−1
x (h)= eT

x

∂

∂D
V T
e

(
(h) · ex

)= d

dq
Vm,x(h),

where

Vm,x : R→R,

h 	→ Vm(h · ex).
In particular, this function fulfills Vm,x(0)= 0 and Vm,x(h) > 0 for all h ∈ R \ {0}.
The latter, together with the continuous differentiability of fm(·, ξ) and f−1

m (·, ξ),
implies that the derivatives of both the function ψ−1

x and ψx are positive and, fur-
thermore, ψx(0)= 0. Thus, the function ψ :R→R is differentiable with

ψ ′(i)= 2π
ˆ r+lh/2

r−lh/2
yψ ′x

(
hs(y

2)

cm
· i
)
hs(y

2)

cm
dy > 0.

Consequently, ψ possesses a continuously differentiable and strictly increasing in-
verse function ψ−1 : R→ R with signψ−1(p)= sign(p) for all p ∈ R. Now con-
sider the function

VL : R→R,

ψL 	→
ˆ ψL

0
ψ−1(p)dp.

The construction of VL implies that VL(0)= 0 and VL(ψL) > 0 for all ψL ∈R \ {0}
and, furthermore,

ψ−1(ψL)= d

dψL
VL(ψL) for allψL ∈R.

Now we consider the energy balance of an inductance that is operated in the time
interval [t0, tf ]

WL =
ˆ tf

t0

u(τ)i(τ ) dτ

=
ˆ tf

t0

d

dτ
ψ
(
i(τ )

)
ψ−1(ψ

(
i(τ )

))
dτ
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=
ˆ tf

t0

d

dτ
ψ
(
i(τ )

) d
dψ
VL
(
ψ
(
i(τ )

))
dτ

=
ˆ tf

t0

d

dτ
VL
(
ψ
(
i(τ )

))
dτ

= VL
(
ψ
(
i(τ )

))∣∣τ=tf
τ=t0 . (44)

Consequently, the function VL has the physical interpretation of an energy storage
function. An inductance is therefore again a reactive element.

In the linear case, the storage function simplifies to

VL
(
ψ(u)

)= 1

2
· L−1 ·ψ2(i)= 1

2
· L−1 · (L(i))2 = 1

2
· L · i2,

whence the energy balance then reads

WL = 1

2
· L · i2(τ )|τ=tfτ=t0 .

Remark 5.11 (Inductances and differentiation rules) The previous assumptions im-
ply that the function ψ : R→ R is differentiable. By the chain rule, (42) can be
rewritten as

u(t)= L
(
i(t)
) · i̇(t), (45)

where

L(uL)= d

diL
ψ(iL).

The monotonicity of ψ further implies that the function L(·) is pointwise positive.
By the differentiation rule for inverse functions we obtain

L(iL)= d

diL
ψ(iL)=

(
d

dψ
VL
(
ψ(iL)

))−1

.

2.5.5 Some Notes on Diodes

Resistances, capacitances, and inductances are typical components of analogue elec-
trical circuits. The fundamental role in electronic engineering is however taken by
semiconductor devices, such as diodes and transistors (see also Notes and Refer-
ences). A fine modeling of such components has to be done by partial differential
equations (see, e.g., [36]).

In contrast to the previous sections, we are not going to model these components
on the basis of the fundamental laws of the electromagnetic field. We are rather pre-
senting a less accurate but often reliable ansatz to the description of their behavior



2 Mathematical Modeling and Analysis of Nonlinear Time-Invariant RLC Circuits 165

Fig. 14 Symbol of a diode

by equivalent RCL circuits. As a showcase, we are considering diodes. The symbol
of a diode is presented in Fig. 14.

An ideal diode is a component that allows the current to flow in one specified di-
rection while blocking currents with opposite sign. A mathematical lax formulation
of this property is

iD(t)= gD
(
uD(t)

) · uD(t),

where gD(u)=
{
∞ if u > 0,

0 if u≤ 0.

A mathematically more precise description is given the specification of the behavior

(
iD(t), uD(t)

) ∈ {0} ×R≤0 ∪R≥0 × {0}.
Since the product of voltage and current of an ideal diode always vanishes, this
component behaves energetically neutral.

It is clear that such a behavior is not technically realizable. It can be neverthe-
less be approximated by a component consisting of a semiconductor crystal with
two regions, each with a different doping. Such a configuration is called an np-
junction [55].

The most simple ansatz for the modeling of a nonideal diode is by replacing it by
a resistance with highly nonsymmetric conductance behavior, such as, for instance,
the Shockley diode equation [55]

iD(t)= iS ·
(
e
uD (t)
up − 1

)
,

where iS > 0 and up > 0 are material-dependent quantities. Note that the behavior
of an ideal diode is the more approached, the bigger is up .

A refinement of this model also includes capacitive effects. This can be done by
adding some (small) capacitance in parallel to the resistance model of the diode [61].

2.5.6 Notes and References

(i) In [16, 19, 32, 34, 60], component relations have also been derived. These how-
ever go with an a priori definition of capacitive charge and magnetic flux as
physical quantities. In contrast to this, our approach is based on Maxwell’s
equations with additional assumptions.
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(ii) Note that, apart from sources, resistances, and capacitances, there are various
further components that occur in electrical circuits. Such components could, for
instance, be controlled sources [22] (i.e., sources with voltage or current explic-
itly depending on some other physical quantity), semi-conductors [12, 36] (such
as diodes and transistors), MEM devices [48, 53, 54], or transmission lines [42].

2.6 Circuit Models and Differential–Algebraic Equations

2.6.1 Circuit Equations in Compact Form

Having collected all relevant equations describing an electrical circuit, we are now
ready to set up and analyze the overall model. Let a connected electrical circuit
with n branches be given; let the vectors i(t), u(t) ∈ R

n be defined as in (13) and
(15), that is, their components are containing voltages and current of the respective
branches. We further assume that the branches are ordered by the type of component,
that is,

i(t)=

⎛

⎜⎜⎜⎜
⎝

iR (t)

iC (t)

iL(t)

iV (t)

iI(t)

⎞

⎟⎟⎟⎟
⎠
, u(t)=

⎛

⎜⎜⎜⎜
⎝

uR (t)

uC (t)

uL(t)

uV (t)

uI(t)

⎞

⎟⎟⎟⎟
⎠
, (46)

where

iR (t), uR (t) ∈R
nR , iC (t), uC (t) ∈R

nC , iL(t), uL(t) ∈R
nL ,

iV (t), uV (t) ∈R
nV , iI(t), uI(t) ∈R

nI .

The component relations then read, in compact form,

iR (t)= g
(
uR (t)

)
, iC (t)= d

dt
q
(
uC (t)

)
, uL(t)= d

dt
ψ
(
iL(t)

)

for

g: R
nR →R

nR ,

⎛

⎜
⎝

u1
...

unR

⎞

⎟
⎠ 	→

⎛

⎜
⎝

g1(u1)
...

gnR (unR )

⎞

⎟
⎠ ,

q: R
nC →R

nC ,

⎛

⎜
⎝

u1
...

unC

⎞

⎟
⎠ 	→

⎛

⎜
⎝

q1(u1)
...

qmC (unC )

⎞

⎟
⎠ ,

ψ : R
mL →R

nL ,

⎛

⎜
⎝

i1
...

inL

⎞

⎟
⎠ 	→

⎛

⎜
⎝

ψ1(u1)
...

ψnC (inC )

⎞

⎟
⎠ ,
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where the scalar functions gi, qi,ψi : R → R are respectively representing the
behavior of the ith resistance, capacitance, and inductance. The assumptions of
Sect. 2.5 imply that g(0)= 0, and for all u ∈R

mC \ {0},

uTg(u) > 0. (47)

Further, since q−1
k (qCk)= d

dqCk
VCk(qCk) and ψ−1

k (ψLk)= d
dψLk

VLk(ψLk), the func-

tions q :RnC →R
nC and ψ :RnL →R

nL possess inverses fulfilling

q−1(qC )= d

dqC
VC (qC ), ψ−1(ψL)= d

dψL
VL(ψL), (48a)

where

VC (qC )=
nC∑

k=1

VCk(qCk), VL(ψL)=
nL∑

k=1

VLk(ψLk). (48b)

In particular, VC (0)= 0, VL(0)= 0, and

VC (qC ) > 0, VL(ψL) > 0 for all qC ∈R
nC ,ψL ∈R

nL .

Using the chain rule, the component relations of the reactive elements read (see
Remarks 5.7 and 5.11)

iC (t)= C
(
uC (t)

) · u̇C (t), uL(t)= L
(
iL(t)

) · i̇C (t), (49a)

where

C(uC )= d

duC
q(uC ), L(iL)= d

diL
ψ(iL). (49b)

In particular, the monotonicity of the scalar charge and flux functions implies that
the ranges of the functions C : RnC → R

nC ,nC and L : RnL → R
nL ,nL are contained

in the set of diagonal and positive definite matrices.
The incidence and loop matrices can, as well, be partitioned according to the

subdivision of i(t) and u(t) in (46), that is,

A= [AR AC AL AV AI
]
, B = [BR BC BL BV BI

]
.

Kirchhoff’s laws can now be represented in two alternative ways, namely the
incidence-based formulation (see (24) and (26))

AR iR (t)+AC iC (t)+AL iL(t)+AV iV (t)+AI iI(t)= 0,

uR (t)=AT
R φ(t), uC (t)=AT

Cφ(t), uL(t)=AT
Lφ(t),

uL(t)=AT
Lφ(t), uV (t)=AT

V φ(t), uI(t)=AT
Iφ(t)

(50)
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or the loop-based formulation (see (25) and (27))

BR uR (t)+BCuC (t)+BLuL(t)+BV uV (t)+BIuI(t)= 0,

iR (t)= BT
R ι(t), iC (t)= BT

C ι(t), iL(t)= BT
L ι(t),

iL(t)= BT
L ι(t), iV (t)= BT

V ι(t), iI(t)= BT
I ι(t).

(51)

Having in mind that the functions uV (·) and iI(·) are prescribed, the overall circuit
is described by the resistance law iR (t)= g(uR (t)), the differential equations (49a)
for the reactive elements, and the Kirchhoff laws either in the form (50) or (51). This
altogether leads to a coupled system of equations of pure algebraic nature (such as
the Kirchhoff laws and the component relations for resistances) together with a set
of differential equations (such as the component relations for reactive elements).
This type of systems is, in general, referred to as differential–algebraic equations.
A more rigorous definition and some general facts on type is presented in Sect. 2.6.2.
Since many of the above-formulated equations are explicit in one variable, several
relations can be inserted into one another to obtain a system of smaller size. In the
following, we discuss two possibilities:

(a) Modified nodal analysis (MNA)
We are now using the component relations together with the incidence-based

formulation of the Kirchhoff laws: Based on the KCL, we eliminate the resistive
and capacitive currents and voltages. Then we obtain

AC C
(
AT

Cφ(t)
)
AT

C
d

dt
φ(t)+AR g

(
AT

R φ(t)
)+AL iL(t)+AV iV (t)+AI iI(t)= 0.

Plugging the KVL for the inductive voltages into the component relation for
inductances, we are led to

−AT
Lφ(t)+ L

(
iL(t)

) · d
dt
iL(t)= 0.

Together with the KVL for the voltage sources, this gives the so-called modified
nodal analysis

AC C
(
AT

Cφ(t)
)
AT

C
d

dt
φ(t)+AR g

(
AT

R φ(t)
)+AL iL(t)+AV iV (t)

+AI iI(t)= 0,

−AT
Lφ(t)+ L

(
iL(t)

) d
dt
iL(t)= 0,

−AT
V φ(t)+ uV (t)= 0.

(52)

The unknown variables of this system are the functions for node potentials, in-
ductive currents, and currents of voltage sources. The remaining physical vari-
ables (such as the voltages and the resistive and capacitive currents) can be
algebraically reconstructed from the solutions of the above system.
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(b) Modified loop analysis (MLA)
Additionally assuming that the characteristic functions gk of all resistances

are strictly monotonic and surjective, the conductance function possesses some
continuous and strictly monotonic inverse function r : RnR → R

nR . This func-
tion as well fulfills r(0)= 0 and

iR · r(iR ) > 0 for all iR ∈R
nR \ {0}.

Now using the component relations together with the loop-based formulation
of the Kirchhoff laws, we obtain from the KVL, the component relations for
resistances and inductances, and the KCL for resistive and inductive currents
that

BL L
(
BT

L ι(t)
)
BT

L
d

dt
ι(t)+BR r

(
BT

R ι(t)
)+BCuC (t)+BIuI(t)+BV uV (t)= 0.

Moreover, the KCL, together with the component relation for capacitances,
reads

−BT
C ι(t)+ C

(
uC (t)

) · d
dt
uC (t)= 0.

Using these two relations together with the KVL for the voltage sources, we are
led to the modified loop analysis

BL L
(
BT

L ι(t)
)
BT

L
d

dt
ι(t)+BR r

(
BT

R ι(t)
)+BCuC (t)+BIuI(t)

+BV uV (t)= 0,

−BT
C ι(t)+ C

(
uC (t)

) d
dt
uC (t)= 0,

−BT
I ι(t)+ iI(t)= 0.

(53)

The unknown variables of this system are the functions for loop currents, ca-
pacitive voltages, and voltages of current sources.

2.6.2 Differential–Algebraic Equations, General Facts

Modified nodal analysis and modified loop analysis are systems of equations with
a vector-valued function in one indeterminate as unknown. Some of these equations
contain the derivative of certain components of the to-be-solved function, whereas
other equations are of purely algebraic nature. Such systems are called differential–
algebraic equations. A rigorous definition and some basics of this type are presented
in the following.

Definition 6.1 (Differential–algebraic equation, solution) Let U,V ⊂ R
n be open

sets, let I = [t0, tf ) be an interval for some tf ∈ (t0,∞]. Let F : U × V × I → R
k

be a function. Then an equation of the form
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F
(
ẋ(t), x(t), t

)= 0 (54)

is called a differential–algebraic equation (DAE). A function x(·) : [t0,ω)→ V is
said to be a solution of the DAE (54) if it is differentiable with ẋ(t) for all t ∈ [t0,ω)
and (54) is pointwise fulfilled for all t ∈ [t0,ω).

A vector x0 ∈ V is called a consistent initial value if (54) has a solution with
x(t0)= x0.

Remark 6.2

(i) If F : U × V × I → R
k is of the form F(ẋ, x, t) = ẋ − f (x, t), then (54)

reduces to an ordinary differential equation (ODE). In this case, the assumption
of continuity of f : V × I gives rise to the consistency of any initial value. If,
moreover, f is locally Lipschitz continuous with respect to x (that is, for all
(x, t) ∈ V × I , there exist a neighborhood U and L > 0 such that ‖f (x1, τ )−
f (x2, τ )‖ ≤ ‖x1 − x2‖ for all (x1, τ ), (x2, τ ) ∈ U ), then any initial condition
determines the local solution uniquely [8, §7.3]. The local Lipschitz continuity
is, for instance, fulfilled if f is continuously differentiable.

(ii) If F(·, ·, ·) is differentiable and d
dẋ
F(ẋ0, x0, t0) is an invertible matrix at some

(ẋ0, x0, t0) ∈ U × V × I , then the implicit function theorem [59, Sect. 17.8]
implies that the differential–algebraic equation (54) is locally equivalent to an
ODE.

Since theory of ODEs is well understood, it is—at least from a theoretical point
of view—desirable to lead back a differential–algebraic equation to an ODE in a cer-
tain way. This is done in what follows.

Definition 6.3 (Derivative array, differentiation index) Let U,V ⊂R
n be open sets,

let I = [t0, tf ) be an interval for some tf ∈ (t0,∞]. Let l ∈N, F :U ×V × I→R
k ,

and let a differential–algebraic equation (54) be given. Then the μth derivative array
of (54) is given by the first μ formal derivatives of (54) with respect to time, that is,

Fμ
(
x(μ+1)(t), x(μ)(t), . . . , ẋ(t), x(t), t

)=

⎛

⎜⎜⎜⎜⎜
⎝

F(ẋ(t), x(t), t)
d
dt
F(ẋ(t), x(t), t)

...

dμ

dtμ
F(ẋ(t), x(t), t)

⎞

⎟⎟⎟⎟⎟
⎠
= 0. (55)

The differential–algebraic equation (54) is said to have a differentiation index
μ ∈ N if for all (x, t) ∈ V × I , there exists a unique ẋ ∈ V such that there exist
ẍ, . . . , x(μ+1) ∈ U such that Fμ(x(μ+1), x(μ), . . . , ẋ, x(t), t)= 0. In this case, there
exists a function f : V × I → V with (x, t) 	→ ẋ for t , x, and ẋ with the above
properties. The ODE

ẋ(t)= f (x(t), t) (56)

is said to be an inherent ordinary differential equation of (54).
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Remark 6.4

(i) By the chain rule, we have

0= d

dt
F
(
ẋ(t), x(t), t

)

= ∂

∂ẋ
F
(
ẋ(t), x(t), t

) · ẍ(t)+ ∂

∂x
F
(
ẋ(t), x(t), t

) · ẋ(t)

+ ∂

∂t
F
(
ẋ(t), x(t), t

)
.

A further successive application of the chain and product rules leads to a deriva-
tive array of higher order.

(ii) Since the inherent ODE is obtained by differentiation of the differential–
algebraic equation, any solution of (54) solves (56) as well.

(iii) The inherent ODE is obtained by picking equations of the μth derivative ar-
ray that are explicit for the components of ẋ. In particular, the equations in
Fμ(x(μ+1)(t), x(μ)(t), . . . , ẋ(t), x(t), t)= 0 that contain higher derivatives of
x can be abolished. For instance, a so-called semiexplicit differential–algebraic
equation, that is, a DAE of the form

0=
(
ẋ1(t)− f1(x1(t), x2(t), t)

f2(x1(t), x2(t), t)

)
(57)

may be transformed to its inherent ODE by only differentiating the equation
f2(x1(t), x2(t), t)= 0. This yields

0= ∂

∂x1
f2
(
x1(t), x2(t), t

)
ẋ1(t)+ ∂

∂x2
f2
(
x1(t), x2(t), t

)
ẋ2(t)

= ∂

∂x1
f2
(
x1(t), x2(t), t

)
f1
(
x1(t), x2(t), t

)+ ∂

∂x2
f2
(
x1(t), x2(t), t

)
ẋ2(t).

(58)

If ∂
∂x2
f2(x1(t), x2(t), t) is invertible, then the system is of differentiation index

μ= 1, and the inherent ODE reads
(
ẋ1(t)

ẋ2(t)

)

=
(

f1(x1(t), x2(t), t)

−( ∂
∂x2
f2(x1(t), x2(t), t))

−1 ∂
∂x1
f2(x1(t), x2(t), t)f1(x1(t), x2(t), t)

)

.

(59)

In this case, (x1(·), x2(·)) solves the differential–algebraic equation (57) if and
only if it solves the inherent ODE (59) and the initial value (x10, x20) fulfills
the algebraic constraint f2(x10, x20, t0)= 0.
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In case of singular ∂
∂x2
f2(x1(t), x2(t), t), some further differentiations are

necessary to obtain the inherent ODE. A semiexplicit form may then be ob-
tained by applying a state space transformation x̄(t)= T (x(t), t) for some dif-
ferentiable mapping T : V × I → V̄ with the property that T (·, t) : V × V̄ is
bijective for all t ∈ I and, additionally, by applying some suitable mapping
W : Rk × I × I → R

k to the differential–algebraic equation that consists of
ẋ1(t) − f1(x1(t), x2(t), t) and the differentiated algebraic constraint. The al-
gebraic constraint obtained in this way is referred to as a hidden algebraic
constraint. This procedure is repeated until no hidden algebraic constraint is
obtained anymore. In this case, the solution set of the differential–algebraic
equation (57) equals the solution set of its inherent ODE with the additional
property that the initial value fulfills all algebraic and hidden algebraic con-
straints.

The remaining part of this subsection is devoted to a differential–algebraic equa-
tion of special structure comprising both MNA and MLA, namely

0 =Eα(ETx1(t)
)
ETẋ1(t) +Aρ

(
ATx1(t)

)+B2x2(t)+B3x3(t) +f1(t),

0 = β(x2(t)
)
ẋ2(t) −BT

2 x1(t),

0 = −BT
3 x1(t) +f3(t),

(60)

with the following properties.

Assumption 6.5 (Matrices and functions in the DAE (60)) Given are matrices
E ∈ R

n1,m1 , A ∈ R
n1,m2 , B2 ∈ R

n1,n2 , B3 ∈ R
n1,n3 and continuously differentiable

functions α :Rm1 →R
m1,m1 , β :Rn2 →R

n2,n2 , and ρ :Rm2 →R
m2 such that

(a) rank[E , A, B2 , B3 ] = n1;
(b) rankB3 = n3;
(c) α(z1) > 0, β(z2) > 0 for all z1 ∈R

m1 , z2 ∈R
m2 ;

(d) ρ′(z)+ (ρ′)T(z) > 0 for all z ∈R
n2 .

Next we analyze the differentiation index of differential–algebraic equations of
type (60).

Theorem 6.6 Let a differential–algebraic equation (60) be given and assume
that matrices E ∈ R

n1,m1 , A ∈ R
n1,m2 , B2 ∈ R

n1,n2 , B3 ∈ R
n1,n3 and functions

α : Rm1 → R
m1,m1 , ρ : Rm2 → R

m2,m2 , β : Rn2 → R
n2,n2 have the properties as

in Assumptions 6.5. Then, for the differentiation index μ of (60), we have

(a) μ= 0 if and only if n3 = 0 and rankE = n1.
(b) μ= 1 if and only if it is not zero and

rank[E,A,B3] = n1 and ker
[
ET,B3

]= kerET × {0}. (61)

(c) μ= 2 if and only if μ /∈ {0,1}.
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We need the following auxiliary results for the proof of the above statement.

Lemma 6.7 Let A ∈R
n1,m, B ∈R

n1,n2 , C ∈R
m,m with C +CT > 0. Then for

M =
[
ACAT B

−BT 0

]
,

we have

kerM = ker[A, B]T × kerB. (62)

In particular,M is invertible if and only if kerA∩ kerBT = {0} and kerB = {0}.

Proof The inclusion “⊂” in (62) is trivial. To show that the converse subset relation
holds as well, assume that x ∈ kerM and partition

x =
(
x1
x2

)

according to the block structure ofM . Then we obtain

0= xTMx = 1

2
xT

1A
(
C +CT)ATx1 = 0,

whence, by

C +CT > 0

we have ATx1 = 0. The equation Mx = 0 then implies that Bx2 = 0 and
BTx1 = 0. �

Note that, by setting n2 = 0 in Lemma 6.7, we obtain kerACAT = kerAT.

Lemma 6.8 Let matrices E ∈ R
n1,m1 , A ∈ R

n1,m2 , B2 ∈ R
n1,n2 , B3 ∈ R

n1,n3 and
functions α : Rm1 → R

m1,m1 , ρ : Rm2 → R
m2,m2 , β : Rn2 → R

n2,n2 with the prop-
erties as in Assumptions 6.5 be given. Further, let

W ∈R
n1,p, W ∈R

n1,p̃,

W1 ∈R
p,p1, W ∈R

p,p̃1,

W2 ∈R
n3,p2 , W2 ∈R

n3,p̃2

(63a)

be matrices with full column rank and

imW = kerET, imW = imE,

imW1 = ker[A,B3 ]TW, imW1 = imWT[A,B3],
imW2 = kerWTB3, imW2 = imBT

3W.

(63b)

Then we have:
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(a) The matrices [W, W], [W1, W1], and [W2,W2] are invertible;
(b) kerETW = {0};
(c) kerWTB3 = {0} if and only if ker[ET,B3] = kerET × {0};
(d) WW1 has full column rank, and imWW1 = ker[E,A,B3]T;
(e) kerWT

1 Z
TB3W2 = {0};

(f) ker[A,B3W2]TWW1 = {0};
(g) kerBT

2WW1 = {0};
(h) kerWTB3W2 = {0}.
Proof

(a) The statement for [W ,W ] follows by the fact that both W and W have full
column rank together with

imW = kerET = (imE)⊥ = (imW)⊥.

The invertibility of the matrices [W1, W1] and [W2, W2] follows by the same
arguments.

(b) Let x ∈ kerETW . Then, by the definition ofW and W , Wx ∈ kerET and Wx ∈
imW = imE = (kerET)⊥, and thus Wx = 0. Since W has full column rank,
we have x = 0.

(c) Assume that kerWTB3 = {0}, and let x1 ∈R
n1 , x3 ∈R

n3 with

[
ET B3

](x1
x3

)
= 0.

Multiplication of this equation from the left by WT leads to WTB3x3 = 0, and
thus x3 = 0.

To prove the converse direction, assume thatWTB3x3 = 0. Then

B3x3 ∈ kerWT = (imW)⊥ = (kerET)⊥ = imE.

Hence, there exists x1 ∈R
m1 such that Ex1 = B3x3, that is,

(−x1
x3

)
∈ ker

[
E B3

]= kerE × {0},

whence x3 = 0.
(d) The matrixWW1 has full column rank as a product of matrices with full column

rank.
The inclusion imWW1 ⊂ ker[E,A,B3]T follows from

⎡

⎢
⎣

ET

AT

BT
3

⎤

⎥
⎦WW1 =

⎡

⎣
(ETW)W1
([AT

BT
3

]
W
)
W1

⎤

⎦= 0.

To prove imWW1 ⊃ ker[E, A, B3]T, assume that x ∈ ker[E, A, B3]T. Since,
in particular, x ∈ kerET, there exists y ∈R

p with x =Wy, and thus
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[
AT

BT
3

]
Wy = 0.

By the definition of W2, there exists y ∈R
p2 with y =W2z, and thus

x =WW2z ∈ imWW2.

(c) Assume that z ∈R
p2 with WT

1W
TB3W2z= 0. Then

WTB3W2z ∈ kerWT
1 = (imW1)

⊥

= (imWT[A, B3]
)⊥

= ker[A, B3]TW ⊂ kerBT
3W = (imWTB3

)⊥
,

whence

WTB3W2z ∈
(
imWTB3

)⊥ ∩ imWTB3 = {0}.
This impliesWTB3W2z= 0, and thus

W2z ∈ kerWTB3 = imW2 = (imW2)
⊥.

Therefore, we have W2z ∈ imW2 ∩ imW2 = {0}. The property of W2 having
full column rank then implies z= 0.

(f) Let z ∈ ker(ATW) ∩ kerBT
3W . Since Wz ∈ kerE by the definition of W , we

have

Wz ∈ ker

⎡

⎣
ET

AT

BT
3

⎤

⎦= {0},

whence z= 0.
(g) Let z ∈ kerBT

2WW1. Then WW1 ∈ kerBT
2 , and, by assertion d),

WW1z ∈ ker[E,A,B2]T.
By the assumption that [E, A, B2, B3] has full row rank we now obtain that
WW1z= 0. By the property ofWW1 having full column rank (see (d)) we may
infer that z= 0.

(h) Assume that zkerWTB3W2. Then W2z ∈ kerWTB3, and W2z ∈ kerWTB3 by
the definition of W2. Thus, we have

W2z ∈ ker[W,W]TB3,

and, by the invertibility of [W, W] (see (a)), we can conclude that

W2z ∈ kerB3 = {0}.
The property of Z2 having full column rank then gives rise to z= 0. �
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Now we prove Theorem 6.6.

Proof of Theorem 6.6

(a) First assume that E has full row rank and n3 = 0. Then by Lemma 6.7 we see
that the matrix Eα(ETx1)E

T is invertible for all x1 ∈ R
n1 . Since, furthermore,

the last equation in (60) is trivial, the differential–algebraic equation (60) is
already equivalent to the ordinary differential equation

ẋ1(t)=−
(
Eα
(
ETx1(t)

)
ET)−1(

Aρ
(
ATx1(t)

)+B2x2(t)

+B3x3(t)+ f1(t)
)
,

ẋ2(t)= β
(
x2(t)

)−1
BT

2 x1(t).

(64)

Consequently, the differentiation index of (60) is zero in this case.
To prove the converse statement, assume that kerET 
= {0} or n3 > 0. The

first statement implies that no derivatives of the components of x1(t) that are
in the kernel of ET occur, whereas the latter assumption implies that (60) does
not contain any derivatives of x3 (which is now a vector with at least one com-
ponent). Hence, some differentiations of the equations in (60) are needed to
obtain an ordinary differential equation, and the differentiation index of (60) is
consequently larger than zero.

(b) Here (and in part (c)) we will make use of the (trivial) fact that, for invert-
ible matrices W and T of suitable size, the differentiation indices of the DAEs
F(ẋ(t), x(t), t)= 0 and WF(T ż(t), T z(t), t)= 0 coincide.

Let W ∈ R
n1,p and W ∈ R

n1,p̃ be matrices of full column rank with the
properties as in (63a), (63b). Using Lemma 6.8, we see that there exists a unique
decomposition

x1(t)=Wx11(t)+Wx12(t).

By a multiplication of the first equation in (60) respectively from the left byWT

and WT, we can make use of the initial statement to see that the index of (60)
coincides with the index of the differential–algebraic equation

0=WTEα
(
ETWTx12(t)

)
ETW ẋ12(t)+WTAρ

(
ATWx11(t)+ATWx12(t)

)

+WTB2x2(t)+WTB3x3(t)+WTf1(t), (65a)

0= β(x2(t)
)
ẋ2(t)−BT

2Wx11(t)−BT
2 Wx12(t), (65b)

0=WTAρ
(
ATWx11(t)+ATWx12(t)

)

+WTB2x2(t)+WTB3x3(t)+WTf1(t), (65c)

0=−BT
3Wx11(t)+BT

3 Wx12(t)+ f3(t). (65d)

Now we show that, under the assumptions that the index of the differential–
algebraic equation (65a)–(65d) is nonzero and the rank conditions in (61) hold,
the index of the DAE (65a)–(65d) equals one:
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Using Lemma 6.7, we see that Eqs. (65a) and (65b) can be solved for ẋ12(t)

and ẋ2(t), that is,

ẋ12(t)=−
(
WTEα

(
ETWTx12(t)

)
ETW

)−1WT(Aρ
(
ATWx11(t)

+ATWx12(t)
)+B2x2(t)+B3x3(t)+ f1(t)

)
, (66a)

ẋ2(t)= β
(
x2(t)

)−1
BT

2

(
Wx11(t)+Wx12(t)

)
. (66b)

For convenience and better overview, we will further use the following abbrevi-
ations:

ρ
(
ATWx11(t)+ATWx12(t)

)
� ρ,

ρ′
(
ATWx11(t)+ATWx12(t)

)
� ρ′,

α
(
ETWTx12(t)

)
� α,

β
(
x2(t)

)
� β.

The first-order derivative array F1(x
(2)(t), ẋ(t), x(t), t) of the DAE (60) further

contains the time derivatives of (65c) and (65d), which can, in compact form
and by making further use of (66a), (66b), be written as

[
WTAρ′ATW WTB3

−BT
3W 0

]

︸ ︷︷ ︸
=:M

(
ẋ11(t)

ẋ3(t)

)

=−
(
WTAρ′ATW ẋ12(t)+WTB2ẋ2(t)+WTḟ2(t)

BT
3 W ẋ12(t)+ ḟ3(t)

)

=
(
WTAρ′ATW(WTEαETW)−1WT(Aρ +B2x2(t)+B3x3(t)+ f1(t)),

BT
3 W(WTEαETW)−1WT(Aρ +B2x2(t)+B3x3(t)+ f1(t))+ ḟ3(t)

)

−
(
WTB2β

−1BT
2 (Wx11(t)+Wx12(t))+WTḟ2(t)

0

)
. (67)

Since, by assumption, there holds (61), we obtain from Lemma 6.8 (c) and (d)
that

kerWTB3 = {0} and ker[A,B3]TW = {0}.
Then by using of ρ′ + ρ′T > 0 we may infer from Lemma 6.7 that M is invert-
ible. As a consequence, ẋ11(t) and ẋ3(t) can be expressed by suitable functions
depending on x12(t), x2(t), and t . This implies that the index of the differential–
algebraic equation equals one.

Now we show that conditions (61) are also necessary for the index of the
differential–algebraic equation (60) not to exceed one:
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Consider the first-order derivative array F1(x
(2)(t), ẋ(t), x(t), t) of the

DAE (60). Aiming to construct an ordinary differential equation (56) for

x(t)=
⎛

⎝
x1(t)

x2(t)

x3(t)

⎞

⎠

from F1(x
(2)(t), ẋ(t), x(t), t), it can be seen that the derivatives of Eqs. (66a)

and (66b) cannot be used to form the inherent ODE (the derivatives of these
equations explicitly contain the second derivatives of x12(t) and x2(t)). As
a consequence, the inherent ODE is formed by Eqs. (66a), (66b) and (67). Aim-
ing to seek for a contradiction, assume that one of the conditions in (61) is
violated:

In case of rank[E,A,B3]< n1, Lemma 6.8 (d) implies that

ker[E,B3]TW 
= {0}.
Now consider matrices W1, W1 of full column rank with the properties as in
(63a), (63b). By Lemma 6.8 (a) there exists a unique decomposition

x11(t)=W1x111(t)+W1x112(t).

Then the right-hand side of Eq. (67) reads

[
WTAρ′ATWW1 0 WTB3

−BT
3WW1 0 0

]⎛

⎝
ẋ111(t)

ẋ112(t)

ẋ3(t)

⎞

⎠ .

Consequently, it is not possible to use the first-order derivative array to ex-
press ẋ112(t) as a function of x(t). This is a contradiction to the index of the
differential–algebraic equation (60) being at most one.

In case of ker[ET,B3] 
= kerET×{0}, by Lemma 6.8 (c) we have ker(WTB3) 
=
{0}. Consider matrices W2, W2 of full column rank with the properties as in
(63a), (63b). By Lemma 6.8 a) there exists a unique decomposition

x3(t)=W2x31(t)+W2x32(t).

Then the right-hand side of Eq. (67) reads

[
WTAρ′ATW WTB3W2 0
−BT

3W 0 0

]
⎛

⎜
⎝

ẋ11(t)

ẋ31(t)

ẋ32(t)

⎞

⎟
⎠ .

Consequently, it is not possible to use the first-order derivative array to ex-
press ẋ32(t) as a function of x(t). This is a contradiction to the index of the
differential–algebraic equation (60) being at most one.
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(c) To complete the proof, we have to show that the inherent ODE can be con-
structed from the second-order derivative array F2(x

(3)(t), x(2)(t), ẋ(t), x(t), t)

of the DAE (60). With the matrices W , W , W1, W1, W2, W2 and the corre-
sponding decompositions, a multiplication of (67) from the left with

[
WT

1 0
0 WT

2

]

leads to
[
WT

1W
TAρ′ATWW1 WT

1W
TB3W2

−WT
2 B

T
3WW1 0

]

︸ ︷︷ ︸
=:M1

(
ẋ112(t)

ẋ32(t)

)

=
(

WT
1W

TAρ′ATW(WTEαETW)−1WT(Aρ +B2x2(t)+B3x3(t)+ f1(t))

WT
2 B

T
3 W(WTEαETW)−1WT(Aρ +B2x2(t)+B3x3(t)+ f1(t))+WT

2 ḟ3(t)

)

−
(
WT

1 WTB2β
−1BT

2 (Wx11(t)+Wx12(t))+WT
1 WTḟ2(t)

0

)
. (68)

By Lemma 6.8 (e) and (f) we have

kerWT
1W

TB3W2 = {0} and ker[A,B3W2]T = {0}.

Lemma 6.7 then implies that M1 is invertible, and, consequently, the vectors
ẋ112(t) and ẋ32(t) are expressible by suitable functions of x111(t), x112(t), x2(t),
x31(t), x32(t), and t . It remains to show that the second-order derivative array
might also be used to express ẋ111(t) and ẋ31(t) as functions of x111(t), x112(t),
x2(t), x31(t), x32(t), and t : A multiplication of (67) from the left by

[
WT

1 0
0 WT

2

]

yields, by making use of WT
1 W

TA= 0, that

0=WT
1 W

TB2β
−1BT

2

(
WW1x111(t)+WW1x112(t)+Wx12(t)

)

+WT
1 W

Tḟ2(t), (69a)

0=WT
2 B

T
3 W
(
WTEαETW

)−1WT

· (Aρ +B2x2(t)+B3W2x31(t)+B3W2x32(t)+ f1(t)
)+WT

2 ḟ3(t).

(69b)

The second-order derivative array of (60) contains the derivative of these equa-
tions. Differentiating (69a) with respect to time, we obtain
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WT
1 W

TB2β
−1BT

2W1Wẋ111(t)

=−WT
1 W

TB2β
−1BT

2

(
WW1ẋ112(t)+W ẋ12(t)

)

−WT
1 W

TB2
d

dt

(
β−1)BT

2

(
WW1x112(t)+Wx12(t)

)−WT
1 WTf̈2(t).

(70)

Using Lemma 6.8 (g) and Lemma 6.7, we see that the matrix

WT
1 W

TB2β
−1BT

2WW1 ∈R
p1,p1

is invertible. By using the quotient and chain rule it can be inferred that d
dt
(β−1)

is expressible by a suitable function depending on x2(t) and ẋ2(t). Conse-
quently, the derivative of x111(t) can be expressed as a function depending
on x112(t), x12(t), x2(t), their derivatives, and t . Since, on the other hand,
ẋ112(t), ẋ12(t), and ẋ2(t) already have representations as functions depending
on x111(t), x112(t), x12(t), x2(t), x31(t), x32(t), and t , this is true for ẋ112(t) as
well.

Differentiating (69b) with respect to t , we obtain

WT
2 B

T
3 W
(
WTEαETW

)−1WTB3W2ẋ31

=WT
2 B

T
3 W
(
WTEαETW

)−1WT

· (Aρ′AWW1ẋ111(t)+Aρ′AWW1ẋ112(t)+Aρ′AW ẋ12(t)

+B2ẋ2(t)+B3W2ẋ31(t)+ ḟ1(t)
)

+WT
2 B

T
3 W

d

dt

(
WTEαETW

)−1WT

· (Aρ +B2x2(t)+B3W2x31(t)+B3W2x32(t)+ f1(t)
)+WT

2 ḟ3(t).

Lemma 6.8 h) and Lemma 6.7 give rise to the invertibility of the matrix

WT
2 B

T
3 W
(
WTEαETW

)−1WTB3W2 ∈R
p2,p2 .

Then arguing as for the derivative of Eq. (69a), we can see that ẋ31 is express-
ible by a suitable function depending on x111(t), x112(t), x12(t), x2(t), x31(t),
x32(t), and t .

This completes the proof. �

Remark 6.9 (Differentiation index of differential–algebraic equations)

(i) The algebraic constraints of (60) are formed by (69a), (69b). Note that (69a)
is trivial (i.e., it is an empty set of equations) if rankE = n1. Accordingly, the
hidden constraint (69a) is trivial in the case where n3 = 0.
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(ii) The hidden algebraic constraints of (60) are formed by (69a), (69b). Note
that (69a) is trivial if rank[E, A, B3] = n1, whereas, in the case where
ker[ET, B3] = kerET × {0}, the hidden constraint (69a) becomes trivial.

(iii) From the computations in the proof of Theorem 6.6 we see that derivatives of
the “right-hand side” f1(·), f3(·) enter the solution of the differential–algebraic
equation. The order of these derivatives equals μ− 1.

We close the analysis of differential–algebraic equations of type (60) by formu-
lating the following result on consistency of initial values.

Theorem 6.10 Let a differential–algebraic equation (60) be given and assume that
the matrices E ∈ R

n1,m1 , A ∈ R
n1,m2 , B2 ∈ R

n1,n2 , B3 ∈ R
n1,n3 and functions α :

R
m1 → R

m1,m1 , ρ : Rm2 → R
m2,m2 , β : Rn2 → R

n2,n2 have the properties as in
Assumptions 6.5. Let W , W , W1, W1, W2, and W2 be matrices of full column rank
with the properties as in (63a), (63b). Let a continuous function f1 : [t0,∞)→R

n1

be such that

WTf : [t0,∞)→R
p

is continuously differentiable and

WT
1 W

Tf : [t0,∞)→R
p2

is twice continuously differentiable. Further, assume that f3 : [t0,∞)→R
n3 is con-

tinuously differentiable and such that

WT
2 f : [t0,∞)→R

p2

is twice continuously differentiable. Then the initial value

⎛

⎝
x1(t0)

x2(t0)

x3(t0)

⎞

⎠=
⎛

⎝
x10
x20
x30

⎞

⎠ (71)

is consistent if and only if

0=WT(Aρ
(
ATx10

)+B2x20 +B3x30 + f1(t0)
)
, (72a)

0=−BT
3 x10 + f3(t0), (72b)

0=WT
1 W

TB2β(x20)
−1BT

2 x10 +WT
1 W

Tḟ1(t0), (72c)

0=WT
2 B

T
3 W
(
WTEα

(
ETx10

)
ETW

)−1WT

· (Aρ(ATx10
)+B2x20 +B3x30 + f1(t0)

)+WT
2 ḟ3(t0). (72d)

Proof First, assume that a solution of (60) evolves in the time interval [t0,ω). The
necessity of the consistency conditions (72a)–(72d) follows by the fact that, by
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(65c), (65c), (69a), (69a) and the definitions of x111(t), x112(t), x12(t), x31(t), and
x32(t), the relations

0=WT(Aρ
(
ATx1(t)

)+B2x2(t)+B3x3(t)+ f1(t)
)
,

0=−BT
3 x1(t)+ f3(t),

0=WT
1 W

TB2β
(
x2(t)

)−1
BT

2 x1(t)+WT
1 WTḟ1(t),

0=WT
2 B

T
3 W
(
WTEα

(
ETx1(t)

)
ETW

)−1WT

· (Aρ(ATx1(t)
)+B2x2(t)+B3x3(t)+ f1(t)

)+WT
2 ḟ3(t)

hold for all t ∈ [t0,ω). The special case t = t0 gives rise to (72a)–(72d).
To show that (72a)–(72d) is sufficient for consistency of the initialization, we

prove that the inherent ODE of (72a)–(72d), together with the initial value (71)
fulfilling (72a)–(72d), possesses a solution that is also a solution of the differential–
algebraic equation (60):

By the construction of the inherent ODE in the proof of Theorem 6.6 we see that
the right-hand side is continuously differentiable. The existence of a unique solution

x(·)=
⎛

⎝
x1(·)
x2(·)
x3(·)

⎞

⎠ : [t0,ω)→R
n1 ×R

n2 ×R
n3

is therefore guaranteed by standard results on the existence and uniqueness of solu-
tions of ordinary differential equations.

The inherent ODE further contains the derivative of the equations in (70) with
respect to time. In other words,

0= d

dt

(
WT

1 W
TB2β

(
x2(t)

)−1
BT

2 x1(t)+WT
1 WTḟ1(t)

)
,

0= d

dt

(
WT

2 B
T
3 W
(
WTEα

(
ETx1(t)

)
ETW

)−1WT

· (Aρ(ATx1(t)
)+B2x2(t)+B3x3(t)+ f1(t)

)+WT
2 ḟ3(t)

)

for all t ∈ [t0,ω). Then we can infer from (72c) and (72d) together with (71) that

0=WT
1 W

TB2β
(
x2(t)

)−1
BT

2 x1(t)+WT
1 WTḟ1(t),

0=WT
2 B

T
3 W
(
WTEα

(
ETx1(t)

)
ETW

)−1WT

· (Aρ(ATx1(t)
)+B2x2(t)+B3x3(t)+ f1(t)

)+WT
2 ḟ3(t)

for all t ∈ [t0,ω). Since, furthermore, Eq. (68) is a part of the inherent ODE, we can
conclude that the solution pointwise fulfills Eq. (67). However, the latter equation is
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by construction equivalent to

0= d

dt

(
WT(Aρ

(
ATx1(t)

)+B2x2(t)+B3x3(t)+ f1(t)
))
,

0= d

dt

(−BT
3 x1(t)+ f3(t)

)
.

Analogously to the above arguments, we can infer from (72a) and (72b) together
with (71) that

0=WT(Aρ
(
ATx1(t)

)+B2x2(t)+B3x3(t)+ f1(t)
)
,

0=−BT
3 x1(t)+ f3(t)

for all t ∈ [t0,ω). Since these equations, together with

0=WT(Eα
(
ETx1(t)

)
ETẋ1(t)+Aρ

(
ATx1(t)

)+B2x2(t)+B3x3(t)+ f1(t)
)
,

0= β(x2(t)
)
ẋ2(t)−BT

2 x1(t),

form the differential–algebraic equation (60), the desired result is proven. �

Remark 6.11 (Relaxing Assumptions 6.5) The solution theory for differential–
algebraic equations of type (60) can be extended to the case where conditions (a)
and (b) in Assumptions 6.5 are not necessarily fulfilled: Consider matrices

V1 ∈R
n1,q1 , V1 ∈R

n1 ,̃q1 ,

V3 ∈R
n3,q3 , V3 ∈R

n3 ,̃q3

of full column rank such that

imV1 = ker[E,A,B2,B3]T, imV1 = im[E,A,B2,B3],
imV3 = kerB3, imV3 = imBT

3 .

Then, multiplying the first equation in (60) from the left by V1 and the third equation
in (60) from the left by V3, and setting

x1(t)= V1x̄1(t)+ V1x̃1(t), x3(t)= V3x̄3(t)+ V3x̃3(t),

we obtain

0= VT
1 Eα

(
ETV1x̃1(t)

)
ETV1 ˙̃x1(t)+ VT

1Aρ
(
ATṼ1x̃1(t)

)+ VT
1 B2x2(t)

+ VT
1 B3Ṽ

T
3 x̃3(t)+ VT

1 f1(t),

0= β(x2(t)
)
ẋ2(t)−BT

2 Ṽ1x̃1(t),

0=−VT
3 B

T
3 V1x̃1(t)+ VT

3 f3(t).

(73)
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Note that, by techniques similar as in the proof of Lemma 6.8, it can be shown
that (73) is a differential–algebraic equation that fulfills the presumptions of Theo-
rem 6.6 and Theorem 6.10.

On the other hand, multiplying the first equation from the left by V1 and the third
equation from the left by V3, on the right-hand side, we obtain the constraints

V T
1 f1(t)= 0, V T

3 f3(t)= 0, (74)

or, equivalently,

f1(t) ∈ im[E,A,B2,B3], f3(t) ∈ imBT
3 for all t ∈ [t0,∞). (75)

Solvability of (60) therefore becomes dependent on the property of f1(·) and f3(·)
evolving in certain subspaces. Note that the components x̄1(t) and x̄3(t) do not
occur in any of the above equations. In case of existence of solutions, this part can
be chosen arbitrarily. Consequently, a violation of (a) or (b) in Assumptions 6.5
causes the nonuniqueness of solutions.

2.6.3 Circuit Equations—Structural Considerations

Here we will apply our findings on differential–algebraic equations of type (60) to
MNA and MLA equations. It will turn out that the index structural property of the
circuit can be characterized by means of the circuit topology. The concrete behavior
of the capacitance, inductance, and conductance functions does not influence the
differentiation index.

In the following, we will use expressions like an “LI-loop” for a loop in the
circuit graph whose branch set consists only of branches corresponding to voltage
sources and/or inductances. Likewise, by a CV -cutset, we mean a cutset in the circuit
graph whose branch set consists only of branches corresponding to current sources
and/or capacitances.

The general assumptions on the electric circuits are formulated as follows.

Assumption 6.12 (Electrical circuits) Given is an electrical circuit with nV volt-
age sources, nI current sources, nC capacitances, nL inductances, nR resistances,
n nodes, and the following properties:

(a) there are no I-cutsets;
(b) there are no V -loops;
(c) the charge functions q1, . . . , qnC : R→ R are continuously differentiable with
q ′1(u), . . . , q ′nC

(u) > 0 for all u ∈R;
(d) the flux functions ψ1, . . . ,ψnL : R→ R are continuously differentiable with
ψ ′1(i), . . . ,ψ ′nL

(i) > 0 for all i ∈R;
(e) the conductance functions g1, . . . , gnR : R→ R are continuously differentiable

with g′1(u), . . . , g′nR
(u) > 0 for all u ∈R;
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Remark 6.13 (The assumptions on circuits) The absence of V -loops means, in
a nonmathematical manner of speaking, that there are no short circuits. Indeed, a V -
loop would cause that certain voltages of the sources cannot be chosen freely (see
below).

Likewise, an I-cutset consequences induces further algebraic constraints on the
currents of the current sources.

Note that by Lemma 4.10 (b) the absence of V -loops is equivalent to

kerAV = {0}, (76)

whereas by Lemma 4.10 (a) the absence of I-cutsets is equivalent to

ker
[
AC AR AL AV

]T = {0}. (77)

Consequently, the MNA equations are differential–algebraic equations of type (60)
with the properties described in Assumptions 6.5.

Further, we can use Lemma 4.10 (b) to see that the circuit does not contain any
V -loops if and only if

ker
[
BL BR BC BI

]T = {0}. (78)

A further use of Lemma 4.10 (a) implies that the absence of I-cutsets is equivalent
to

kerBI = {0}. (79)

If, moreover, we assume that the functions g1, . . . , gnR : R→ R possess global
inverses, which are, respectively, denoted by r1, . . . , rnR : R → R, then the
MLA equations are as well differential–algebraic equations of type (60) with the
properties as described in Assumptions 6.5.

Theorem 6.14 (Index of MNA equations) Let an electrical circuit with the proper-
ties as in Assumptions 6.12 be given. Then the differentiation index μ of the MNA
equations (52) exists. In particular, we have:

(a) The following statements are equivalent:

(i) μ= 0;
(ii) rankAC = n− 1 and nV = 0;

(iii) the circuit neither contains RLI-cutsets nor voltage sources.

(b) The following statements are equivalent:

(i) μ= 1;
(ii) rank[AC ,AR ,AV ] = n− 1 and ker[AC ,AV ] = kerAC × {0};

(iii) the circuit neither contains LI-cutsets nor CV -loops except for C -loops.

(c) The following statements are equivalent:
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(i) μ= 2;
(ii) rank[AC ,AR ,AV ]< n− 1 or ker[AC ,AV ] 
= kerAC × {0};

(iii) the circuit contains LI-cutsets or CV -loops which are no pure C -loops.

Proof Since the MNA equations (52) form a differential–algebraic equation of
type (60) with the properties as in Assumptions 6.5, the equivalences between (i)
and (ii) in (a), (b), and (c) are immediate consequences of Theorem 6.6.

The equivalence of (a) (ii) and (a) (iii) follows from the definition of nV and the
fact that, by Lemma 4.10 (a), the absence of RLI-cutsets (which is the same as the
absence of RLIV -cutsets since the circuit does not contain any voltage sources) is
equivalent to kerAT

C = {0}.
Since, by Lemma 4.10 (a),

ker[AC ,AR ,AV ]T = {0}
⇔ the circuit does not contain any LI-cutsets,

and, by Lemma 4.11,

ker[AC ,AV ] = kerAC × {0}
⇔ the circuit does not contain any CV -cutsets except for C -cutsets,

assertions (b) (ii) and (b) (iii) are equivalent. By the same arguments we see that
(c) (ii) and (c) (iii) are equivalent as well. �

Theorem 6.15 (Index of MLA equations) Let an electrical circuit with the proper-
ties as in Assumptions 6.12 be given. Moreover, assume that the functions

g1, . . . , gnR :R→R

possess global inverses, which are, respectively, denoted by

r1, . . . , rnR :R→R.

Then the differentiation index μ of the MLA equations (53) exists. In particular, we
have:

(a) The following statements are equivalent:

(i) μ= 0;
(ii) rankBL = n−m+ 1 and nI = 0;

(iii) the circuit contains neither CRV -loops nor current sources.

(b) The following statements are equivalent:

(i) μ= 1;
(ii) rank[BL ,BR ,BI ] = n−m+ 1 and ker[BL ,BI ] = kerBL × {0};
(iv) the circuit contains neither CV -loops nor LI-cutsets except for L-cutsets.
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(c) The following statements are equivalent:

(i) μ= 2;
(ii) rank[BL ,BR ,BI ]< n−m+ 1 or ker[BL ,BI ] 
= kerBL × {0};

(iii) the circuit contains CV -loops or LI-cutsets that are not pure L-loops.

Proof The MLA equations (52) form a differential–algebraic equation of type (60)
with the properties as formulated in Assumptions 6.5. Hence, the equivalences of (i)
and (ii) in (a), (b), and (c) are immediate consequences of Theorem 6.6.

The equivalence of (a) (ii) and (a) (iii) follows from the definition of nI and the
fact that, by Lemma 4.10 (b), the absence of CRV -loops (which is the same as the
absence of RLIV -cutsets since the circuit does not contain any current sources), is
equivalent to kerBT

L = {0}.
By Lemma 4.12 we have

ker[BL ,BI ] = kerBL × {0}
⇔ the circuit does not contain any LI-cutsets except for L-cutsets,

and by Lemma 4.11 we have

ker[BL ,BR ,BI ]T = {0}
⇔ the circuit does not contain any CV -loops.

As a consequence, assertions (b) (ii) and (b) (iii) are equivalent. By the same argu-
ments, we see that (c) (ii) and (c) (iii) are equivalent as well. �

Next, we aim to apply Theorem 6.10 to explicitly characterize consistency of
the initial values of the MNA and MLA equations. For the result about consistent
initialization of the MNA equations, we introduce the matrices of full column rank

ZC ∈R
n−1,pC , ZC ∈R

n−1,p̃C ,

ZRV−C ∈R
pC ,pRVC , ZRV−C ∈R

pC ,p̃RVC ,

ZV−C ∈R
nV ,pV−C , ZV−C ∈R

nV ,p̃V−C

(80a)

such that

imZC = kerAT
C , imZC = imAC ,

imZRV−C = ker[AR ,AV ]TZC , imZRV−C = imZT
C [AR , AV ],

imZV−C = kerZT
CAV , imZV−C = imAT

VZC .

(80b)

The following result (as the corresponding result on MLA equations) is an immedi-
ate consequence of Theorem 6.10.
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Theorem 6.16 Let an electrical circuit with the properties as in Assumptions 6.12
be given. Let ZC , ZC , ZRV−C , ZRV−C , ZV−C , and ZV−C be matrices of full column
rank with the properties as in (80a), (80b). Let iI [t0,∞)→R

nI be continuous and
such that

ZT
CAI iI : [t0,∞)→R

pC

is continuously differentiable and

ZT
RV−CZ

T
CAI iI : [t0,∞)→R

pRVC

is twice continuously differentiable.
Further, assume that uV : [t0,∞)→R

nV is continuously differentiable and such
that

Z
T
V−CuV : [t0,∞)→R

pV−C

is twice continuously differentiable.
Then the initial value

⎛

⎝
φ(t0)

iL(t0)

iV (t0)

⎞

⎠=
⎛

⎝
φ0
iL0
iV 0

⎞

⎠ (81)

is consistent if and only if

0= ZT
C
(
AR g

(
AT

R φ0
)+AL iL0 +AV iV 0 +AI iI0

)
, (82a)

0=−AT
V φ0 + uV 0, (82b)

0= ZT
RV−CZ

T
CAL L(iL0)

−1AT
Lφ0 +ZT

RV−CZ
T
CAI i̇I(t0), (82c)

0=ZT
V−CA

T
V ZC

(
ZT

CAR g
(
AT

R φ0
)
AT

R ZC
)−1ZT

C

· (AR g
(
AT

R φ0
)+AL iL0 +AV iV 0 +AI iI(t0)

)+ZT
V−C u̇V (t0). (82d)

To formulate a corresponding result for the MLA, consider the matrices of full
column rank

YL ∈R
m−n+1,qL , YL ∈R

m−n+1,̃qL ,

YR I−L ∈R
qL ,qR I−L , YR I−L ∈R

qL ,̃qR I−L ,

Y I−L ∈R
nI ,pI−L , ZI−L ∈R

nI ,̃qI−L

(83a)

such that

imYL = kerBT
L , imYL = imBL ,

imYRV−C = ker[BR ,BI ]TYL , imYR I−L = imYT
L [BR ,BI ],

imYI−L = kerYT
L BI , imYI−L = imBT

IYL .

(83b)
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These matrices will be used to characterize consistency of the initial values of
the MLA system.

Theorem 6.17 Let an electrical circuit with the properties as in Assumptions 6.12
be given. Moreover, assume that the functions g1, . . . , gnR : R→ R possess global
inverses, which are, respectively, denoted by r1, . . . , rnR : R→ R. Let YL , YL ,
YR I−L , YR I−L , ZI−L , and ZI−L be matrices of full column rank with the prop-
erties as in (80a), (80b). Let iI : [t0,∞)→ R

nI be continuously differentiable and
such that

Y
T
I−L iI : [t0,∞)→R

qI−L

is twice continuously differentiable.
Further, assume that uV [t0,∞)→R

nV is continuous and such that

ZT
LBV uV : [t0,∞)→R

qL

is continuously differentiable and

YT
R I−LY

T
L BV uV : [t0,∞)→R

qR IL

is twice continuously differentiable.
Then the initial value

⎛

⎜
⎝

ι(t0)

uC (t0)

uI(t0)

⎞

⎟
⎠=

⎛

⎝
ι0
uC0
uI0

⎞

⎠ (84)

is consistent if and only if

0= YT
L
(
BR r

(
BT

R ι0
)+BCuC0 +BIuI0 +BV uV 0

)
, (85a)

0=−BT
I ι0 + iI0, (85b)

0= YT
R I−LY

T
L BC C(uC0)

−1BT
C ι0 + YT

R I−LY
T
L BV u̇V (t0), (85c)

0= Y T
I−LB

T
IYL

(
YT

LBR r
(
BT

R ι0
)
BT

R YC
)−1YT

C

· (BR r
(
BT

R ι0
)+BCuC0 +BIuI0 +BV uV (t0)

)+ Y T
I−L i̇I(t0). (85d)

Remark 6.18 (V -loops and I-cutsets) If a circuit contains V -loops and I-cutsets
(compare Remark 6.13), we may apply the findings in Remark 6.11 to extract
a differential–algebraic equation of type (60) that satisfies Assumptions 6.5. More
precisely, we consider matrices of full column rank

ZCRLV ∈R
n−1,pCRLV , ZCRLV ∈R

n−1,p̃CRLV ,

ZV ∈R
nV ,pV , ZV ∈R

nV ,p̃V
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such that

imZCRLV = ker[AC ,AR ,AL ,AV ]T, imZCRLV = im[AC ,AR ,AL ,AV ],
imZV = kerAV , imZV = imAT

V .

Then, by making the ansatz

φ(t)= ZCRLVI φ̄(t)+ZCRLVI φ̃(t),

iV (t)= ZV īV (t)+ZV ĩV (t),

we see that the functions φ̄(·) and ūV (·) can be chosen arbitrarily, whereas the solv-
ability of the MNA equations (52) is equivalent to

ZCRLVAI iI(·)≡ 0, ZV uV (·)≡ 0.

The other components then satisfy

0=ZT
CRLVIAC C

(
AT

CZCRLVI φ̃(t)
)
AT

CZCRLVI
d

dt
φ̃(t)

+ZT
CRLVIAR g

(
AT

R ZCRLVI φ̃(t)
)+ZT

CRLVIAL iL(t)

+ZT
CRLVIAV ZV ĩV (t)+ZT

CRLVIAI iI(t), (86)

0=−AT
LZCRLVI φ̃(t)+ L

(
iL(t)

) d
dt
iL(t),

0=−ZT
VA

T
V ZCRLVI φ̃(t)+ZT

V uV (t).

To perform analogous manipulations to the MLA equations, consider matrices
full column rank

YLRCI ∈R
m−n+1,qLRCI , YLRCI ∈R

m−n+1,p̃CRLV ,

YI ∈R
nI ,qI , YI ∈R

m−n+1,̃qI

such that

imYLRCI = ker[BL ,BR ,BC ,BI ]T, imZLRCI = im[BL ,BR ,BC ,BI ],
imYI = kerBI , imYI = imBT

I .

Then, by making the ansatz

ι(t)= YLRCI ῑ(t)+YLRC Ĩ ι(t),

uI(t)= YI ūI(t)+YI ũI(t),
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Fig. 15 Serial
interconnection of current
sources

Fig. 16 Parallel
interconnection of voltage
sources

we see that the functions ῑ(·) and īI(·) can be chosen arbitrarily, whereas the solv-
ability of the MLA equations (53) is equivalent to

YLRCIBV uV (·)≡ 0, YI iI(·)≡ 0.

The other components then satisfy

0= YT
LRCIBL L

(
BT

LYLRC Ĩ ι(t)
)
BT

LYLRCI
d

dt
ι̃(t)

+YT
LRCIBR r

(
BT

R YLRC Ĩ ι(t)
)+YT

LRCIBCuC (t)

+YT
LRCIBIY

T
I ũI(t)+YT

LRCIBV uV (t),

0=−BT
C YLRC Ĩ ι(t)+ C

(
uC (t)

) d
dt
uC (t),

0=−YT
IB

T
IYLRC Ĩ ι(t)+YT

I iI(t).

(87)

Note that both ansatzes have the practical interpretation that for each V -loop, one
voltage is constrained (for instance, by the equation ZV uV (·) ≡ 0 or equivalently
by YLRCIBV uV (·)≡ 0), and one current can be chosen arbitrarily.

An according interpretation can be made for I-cutsets: In each I-cutset, one cur-
rent is constrained (for instance, by the equation ZCRLVAI iI(·)≡ 0 or equivalently
by YI iI(·)≡ 0), and one voltage can be chosen arbitrarily.

To illustrate this by means of an example, the configuration in Fig. 15 causes
iI1(·) = iI2(·), whereas the reduced MLA equations (87) contain uI1(·)+ uI2(·)
as a component of ũI(·). Likewise, the configuration in Fig. 16 causes uV 1(·) =
uV 2(·), whereas the reduced MNA equations (86) contain iV 1(·)+ iV 2(·) as a com-
ponent of ĩV (·).

Remark 6.19 (Index one conditions in MNA and MLA)

(i) The property that LV -loops and LI-loops cause higher index is quite intuitive
from a physical perspective: In a CV -loop, the capacitive currents are prescribed
by the derivatives of the voltages of the voltage sources (see Fig. 17). In an LI-
cutset, the inductive voltages are prescribed by the derivatives of the currents of
the current sources (see Fig. 18).
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Fig. 17 Parallel
interconnection of a voltage
source and a capacitance

Fig. 18 Serial
interconnection of a current
source and an inductance

Fig. 19 L-cutset

Fig. 20 C -loop

(ii) An interesting feature is that LI-cutsets (including pure L-cutsets, see Fig. 19)
cause that the MNA system has differentiation index two, whereas the cor-
responding index two condition for the MLA system is the existence of LI-
cutsets without pure L-cutsets.

For CV -loops, situation becomes, roughly speaking, vice versa: CV -loops
(including pure C -loops, see Fig. 20) cause that the MLA system has differen-
tiation index two, whereas the corresponding index two condition for the MNA
system is the existence of CV -loops without pure C -loops.

Remark 6.20 (Consistency conditions for MNA and MLA equations) Note that, for
an electrical circuit that contains neither V -loops nor L-cutsets, the following holds
for the consistency conditions (82a)–(82d) and (85a)–(85d):

(i) Equation (82a) becomes trivial (that is, it contains no equations) if and only
if the circuit does not contain any RLIV -cutsets.

(ii) Equation (82b) becomes trivial if and only if the circuit does not contain any
voltage sources.

(iii) Equation (82c) becomes trivial if and only if the circuit does not contain any
LI-cutsets.
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(iv) Equation (82d) becomes trivial if and only if the circuit does not contain any
CV -loops except for pure C -loops.

(v) Equation (85a) becomes trivial if and only if the circuit does not contain any
RCIV -loops.

(vi) Equation (85b) becomes trivial if and only if the circuit does not contain any
current sources.

(vii) Equation (85c) becomes trivial if and only if the circuit does not contain any
CV -loops.

(viii) Equation (85d) becomes trivial if and only if the circuit does not contain any
LI-cutsets except for pure L-cutsets.

We finally glance at the energy exchange of electrical circuits: Consider again
the MNA equations

AC
d

dt
q
(
AT

Cφ(t)
)+AR g

(
AT

R φ(t)
)+AL iL(t)+AV iV (t)+AI iI(t)= 0,

−AT
Lφ(t)+

d

dt
ψ
(
iL(t)

)= 0, (88)

−AT
V φ(t)+ uV (t)= 0.

A multiplication of the first equation from the left by φT(t), of the second equation
from the left by iTL (t), and of the third equation from the left by iTI(t) and then
a summation and according integration of these equations yields

0=
ˆ tf

t0

φT(t)

(
AC
d

dt
q
(
AT

Cφ(t)
)+AR g

(
AT

R φ(t)
)

+AL iL(t)+AV iV (t)+AI iI(t)
)
dt

+
ˆ tf

t0

iTL (t)

(
−AT

Lφ(t)+
d

dt
ψ(iL)(t)

)
dt

+
ˆ tf

t0

iTV (t)
(−AT

V φ(t)+ uV (t)
)
dt.

Due to φT(t)AL iL(t)= iL(t)AT
Lφ(t), φ

T(t)AV iV (t)= iV (t)AT
V φ(t), this equation

simplifies to

0=
ˆ tf

t0

φT(t)AC︸ ︷︷ ︸
=uT

C (t)

d

dt
q
(
AT

Cφ(t)︸ ︷︷ ︸
=uC (t)

)+ φT(t)AR︸ ︷︷ ︸
=uT

R (t)

g
(
AT

R φ(t)︸ ︷︷ ︸
=uR (t)

)+ φT(t)AI︸ ︷︷ ︸
=uT

I (t)

iI(t) dt

+
ˆ tf

t0

iTL (t)
d

dt
ψ(iL)(t) dt +

ˆ tf

t0

iTV (t)uV (t) dt
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=
ˆ tf

t0

uT
C (t)

d

dt
q
(
uC (t)

)
dt +

ˆ tf

t0

iTL (t)
d

dt
ψ(iL)(t) dt +

ˆ tf

t0

uT
R (t)g

(
uR (t)

)
dt

+
ˆ tf

t0

uT
I(t)iI(t) dt +

ˆ tf

t0

iTV (t)uV (t) dt.

Using the nonnegativity of uT
R (t)g(uR (t)) (see (47)) and, furthermore, the represen-

tations (40), (44), and (48a) for capacitive and inductive energy, we obtain

VC
(
q
(
uC (t)

))∣∣t=tf
t=t0 + VL

(
ψ
(
iL(t)

))∣∣t=tf
t=t0

≤ VC
(
q
(
uC (t)

))∣∣t=tf
t=t0 + VL

(
ψ
(
iL(t)

))∣∣t=tf
t=t0 +

ˆ tf

t0

uT
R (t)g

(
uR (t)

)
dt

=−
ˆ tf

t0

uT
I(t)iI(t) dt −

ˆ tf

t0

iTV (t)uV (t) dt, (89)

where VC : RnC → R and VL : RnL → R are the storage functions for capacitive
and, respectively, inductive energy. Since, the integral of the product between volt-
age and current represents the energy consumptions of a specific element, relation
(89) represents an energy balance of a circuit: The energy gain at capacitances and
inductances is less than or equal to the energy provided by the voltage and current
sources. Note that the above deviations can alternatively done on the basis of the
modified loop analysis.

The difference between consumed and stored energy is given by
ˆ tf

t0

uT
R (t)g

(
uR (t)

)
dt,

which is nothing but the energy lost at the resistances. Note that, for circuits without
resistances (the so-called LC resonators), the balance (89) becomes an equation.
In particular, the sum of capacitive and inductive energies remains constant if the
sources are turned off.

Remark 6.21 (Analogies between Maxwell’s and circuit equations) The energy bal-
ance (89) can be regarded as a lumped version of the corresponding property of
Maxwell’s equations; see (5a), (5b). Note that this is not the only parallelism be-
tween circuits and electromagnetic fields: For instance, Tellegen’s law has a field
version and a circuit version; see (12) and (28).

It seems to be an interesting task to work out these and further analogies between
electromagnetic fields and electric circuits. This would, for instance, enable to in-
terpret spatial discretizations of Maxwell’s equations as electrical circuits to gain
more insight.

2.6.4 Notes and References

(i) The applicability of differential–algebraic equations is not limited to electrical
circuit theory: The probably most important application field outside circuit



2 Mathematical Modeling and Analysis of Nonlinear Time-Invariant RLC Circuits 195

theory is in mechanical engineering [56]. The power of DAEs in (extramath-
ematical) application has led to differential–algebraic equations becoming an
own research field inside applied and pure mathematics and is the subject of
several textbooks and monographs [13, 27, 33, 35, 47].

By understanding the notion index as a measure for the “deviation of a DAE
from an ODE,” various index concepts have been developed that modify and
generalize the differentiation index. To mention only a few, there is, in al-
phabetical order, the geometric index [41], the perturbation index [25], the
strangeness index [33] and the tractability index [35].

(ii) The seminal work on circuit modeling by modified nodal analysis has been
done by Brennan, Ho, and Ruehli in [26], see also [16, 65]. Graph modeling of
circuits has however been done earlier in [19]. Modified loop analysis has been
introduced for the purpose of model order reduction in [45] and can be seen as
an advancement of mesh analysis [19, 32]. Further circuit modeling techniques
can be found in [46, 49, 50].

There exist various generalizations and modifications of the aforementioned
methods for circuit modeling. For instance, models for circuits including so-
called MEM devices has been considered in [48, 53]. The incorporation of
spatially distributed components (i.e., devices that are modeled by partial dif-
ferential equations) leads to so-called partial differential–algebraic equations
(PDAEs). Such PDAE models of circuits with transmission lines (these are
modeled be the Telegraph equations) have been considered and analyzed in
[42]. Incorporation of semiconductor models (by drift diffusion equations) has
been done in [12].

(iii) The characterization of index properties by means of the circuit topology is not
new: Index determination by means of the circuit topology has been done in
[22–24, 29, 38, 39, 58]. The first rigorous proof for the MNA system has been
presented by Estévez Schwarz and Tischendorf in [22]. In this work, the result
is even shown for circuits that contain, under some additional assumption on
their connectivity, controlled sources.

Not only the index but also stability properties can be characterized by
means of the circuit topology. By energy considerations (such as in Sec. 2.6.3)
it can be shown that RLC circuits are stable. However, they are not necessarily
asymptotically stable. Sufficient criteria for asymptotical stability by means of
the circuit topology are presented by Riaza and Tischendorf in [51, 52]. These
conditions are generalized to circuits containing MEM devices in [54] and to
circuits containing transmission lines in [42].

The general ideas of the topological characterizations of asymptotic stability
have been used in [10, 11] to analyze the asymptotic stability of the so-called
zero dynamics for linear circuits. This allows the application of the funnel con-
troller, a closed-loop control method of striking simplicity.

(iv) A further area in circuit theory is the so-called network synthesis. That is, from
a desired input-output behavior, it is sought for a circuit whose impedance be-
havior matches the desired one. Network synthesis is a quite traditional area
and is originated by Cauer [14], who discovered that, in the linear and time-
invariant case, exactly those behaviors are realizable that are representable by
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a positive real transfer function [15]. After the discovery of the positive real
lemma by Anderson, some further synthesis methods have been developed
[2–6, 67], which are based on the positive real lemma and argumentations
in the time domain. A numerical approach to network synthesis is presented
in [43].

(v) An interesting physical and mathematical feature of RLC circuits is that they
do not produce energy by themselves. ODE systems that provide energy bal-
ances such as (89) are called port-Hamiltonian (also passive) and are treated
from a systems theoretic perspective by van der Schaft [62]. Port-Hamiltonian
systems on graphs have recently be analyzed in [64], and DAE system with
energy balances in [63]. Note that energy considerations play a fundamental
role in model order reduction by passivity-preserving balanced truncation of
electrical circuits [44].
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Chapter 3
Interacting with Networks of Mobile Agents

Magnus Egerstedt, Jean-Pierre de la Croix, Hiroaki Kawashima,
and Peter Kingston

Abstract How should human operators interact with teams of mobile agents, whose
movements are dictated by decentralized and localized interaction laws? This chap-
ter connects the structure of the underlying information exchange network to how
easy or hard it is for human operators to influence the behavior of the team. “In-
fluence” is understood both in terms of controllability, which is a point-to-point
property, and manipulability, which is an instantaneous influence notion. These two
notions both rely on the assumption that the user can exert control over select leader
agents, and we contrast this with another approach whereby the agents are modeled
as particles suspended in a fluid, which can be “stirred” by the operator. The theoret-
ical developments are coupled with multirobot experiments and human user-studies
to support the practical viability and feasibility of the proposed methods.

Keywords Multi-agent robotics · Networked control · Human–robot interactions

3.1 Introduction

As networked dynamical systems appear around us at an increasing rate, questions
concerning how to manage and control such systems are becoming increasingly
important (e.g., [6]). Examples include multiagent robotics, distributed sensor net-
works, interconnected manufacturing chains, and data networks. In this chapter, we
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investigate how to interact with teams of distributed, mobile agents, and we pro-
pose two different ways of making the team amenable to human control. These two
different approaches can be though of as representing the Lagrangian and Eulerian
paradigms. The Lagrangian approach corresponds to a focus on the movements of
the individual agents, and control is exerted over select leader-nodes in the network.
In contrast to this, the Eulerian vantage-point corresponds to viewing the agents as
particles suspended in a fluid, and the description is given in terms of particle flows.
The human operator can influence such systems by manipulating the flows directly,
rather than the movements of individual agents.

The outline is as follows: In Sect. 3.2, the interaction models are defined
through information exchange graphs (networks), and we discuss how to design con-
trollers for achieving geometric objectives, such as rendezvous or formation control.
Leader-based interactions are the main topic of Sect. 3.3, and we show how human
control can be achieved through a direct interaction with leader agents. Notions such
as controllability and manipulability are used to evaluate the effectiveness of these
human–swarm interactions. These notions are further pursued in Sect. 3.4, where
user studies are conducted that connect the theoretical developments with how easy
or hard it is for human operators to actually control the multiagent team. In Sect. 3.5,
a fluid-based approach to human–swarm interactions is introduced, and its inter-
pretation within the Eulerian context is discussed and evaluated experimentally in
Sect. 3.6.

3.2 Multiagent Networks

The main objective when designing control, communication, and coordination
strategies for multiagent networks is to have a collection of agents achieve some
global objective using only local rules [3, 17]. If we associate a state xi ∈ R

d, i =
1, . . . ,N , with each of the N agents in the team, the global objectives can typically
be encoded in terms of costs or constraints on the states. Here d is the dimension
of the state, and if the agents are planar, mobile robots, xi could be the position of
agent i, in which case d = 2.

Central to the notion of a distributed strategy is the fact that each agent only has
access to a limited set of neighboring agent states, and the control decisions must be
made solely based on this limited information. If we let Ni denote the set of agents
that are available to agent i (this set may be time varying as the team evolves), and
we assume that the evolution of the agent’s state is directly under control in the
sense that ẋi = ui , then the design choice involves selecting appropriate interaction
laws fij (xi, xj ) with

ẋi =
∑

j∈Ni
fij (xi, xj ).

Note that more involved dynamics could be imagined, but they would inevitably
make the analysis more involved.
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3.2.1 The Graph Abstraction

As the set of neighboring agents is crucial when defining the interaction laws,
it is natural to view the system as one defined over a graph G = (V ,E). Here
V = {1, . . . ,N} is the set of agents, and the edge set E ⊂ V × V encodes neigh-
borhood information in the sense that j ∈ Ni ⇔ (j, i) ∈ E, that is, an edge points
from agent j to agent i if information is flowing from agent j to agent i. We will
assume that the edges are undirected, that is, j ∈Ni ⇔ i ∈Nj , which corresponds
to agent i having access to agent j ’s state if and only if agent j has access to agent
i’s state.

This graph abstraction is useful in that one can ask questions pertaining to
what information is needed to support various multiagent tasks, which translates
into finding the appropriate, underlying network graphs. As an example, if the
graph is disconnected, that is, there are nodes in-between which no paths exists
(possibly over multiple nodes), then there is no way information can be made
available that correlates the states of these two nodes. Disconnectedness is thus
a topological obstruction to achieving certain multiagent objectives. Similarly, if
the graph is complete, that is, all agents have immediate access to all other agents
(Ni ∪ {i} = V ∀i = 1, . . . ,N ), then what we in essence have is a centralized rather
than decentralized situation. As we will see in subsequent sections, there are tight
couplings between the network topology and how easy it is to interact with the net-
works. However, these couplings only become meaningful in the context of partic-
ular interaction protocols and global task objectives. We will start with a canonical
such objective, namely the consensus problem, whereby all agents should agree on
a common state value.

3.2.2 Consensus

The consensus problem is arguably the most fundamental of the coordinated con-
trols problems in that it asks the agents to agree, that is, make their state values
converge to a common value. One way of achieving this is to let each agent move
towards the centroid of its neighboring agents, that is, to let

ẋi =−
∑

j∈Ni
(xi − xj ),

which is known as the consensus equation [12, 17, 20, 25]. As long as the underlying
graph remains connected (there is a path between any two agents in the network),
this will indeed achieve consensus in the sense that ‖xi − xj‖ → 0 for all i, j as
t→∞. An example of this is shown in Fig. 1.

Now, if we assume that the agents’ states are all scalars (without loss of gener-
ality), we can gather them together in the ensemble vector x = [x1, . . . , xN ]T and
write the ensemble-level dynamics associated with the consensus equation as

ẋ =−Lx.
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Fig. 1 Ten agents are
executing the consensus
equation. As a result, their
state values converge to a
common value

Here L is the graph Laplacian associated with the underlying network graph (e.g.,
[10]), and it is given by the difference between two other matrices associated with
the graph,

L=D −A.
The matrix D is the degree matrix, which is a diagonal matrix

D = diag
(
deg(1), . . . ,deg(N)

)
,

where the degree of node i (deg(i)) is the cardinality of its neighborhood setNi , that
is, it captures how many neighbors that node has. The matrix A is the adjacency
matrix, and it encodes the adjacency relationships in the graph in that A = [aij ],
where

aij =
{

1 if j ∈Ni,
0 otherwise.

The ensemble-level description of the node dynamics will prove instrumental for
understanding how easy or hard it is to interact with such networks. However, before
we can discuss this issue, some more should be said about how one can augment
the consensus equation to solve more general problems, such as formation control
problems.

3.2.3 Formations

The reason for the consensus equation’s prominence is not necessarily in that it
solves the consensus problem, but rather that it can be augmented to solve other
types of problems. In fact, if we assume that agents i and j should end up at



3 Interacting with Networks of Mobile Agents 203

a distance dij apart from each other, we can associate an edge tension energy
Ei,j (‖xi − xj‖, dij ) to the edge between these two nodes, where this energy has
been designed in such a way that Ei,j > 0 as long as ‖xi − xj‖ 
= dij . If we do
this for all edges in the network, we can then use the total energy E as a Lyapunov
function to solve the “formation control problem” [13].

In fact, if we let

ẋi =−
∑

j∈Ni

∂Ei,j
∂xi

,

then this simplifies to a weighted consensus equation

ẋi =−
∑

j∈Ni
wi,j

(‖xi − xj‖
)
(xi − xj ),

where wi,j is a scalar weight function. Following this construction for all agents
results in a gradient descent with regards to the total energy in the network,

dE

dt
=−

∥∥∥∥
∂E

∂x

∥∥∥∥

2

,

that is, the energy is nonincreasing in the network, and, using LaSalle’s invariance
principle, this fact can be used to show convergence to the desired shape (under
reasonable choices of edge tension energies); see, for example, [13, 17–19]. An
example of this is shown in Fig. 2.

This way of adding weights to the consensus equation has been used not only
to solve formation control problems, but other geometric problems involving cover-
age control in sensor networks, boundary protection, and self-assembly problems in
multirobot networks. Is has also been used extensively in biologically defined prob-
lems, such as swarming (How make the agents form a tight spatial shape?), flocking
(How make the agents move in such a way that their headings align?), and schooling
(How make the agents move as a general shape without colliding with each other?).
For a representative sample, see [8, 12, 22, 23].

3.3 Leader-Based Interactions

Now that we have ways of describing the interagent interactions, we would like
to insert human inputs into the network. In fact, we assume that a subset of the
nodes Vf ⊂ V (the so-called follower nodes) in the network evolve according to
the consensus equation, whereas we inject control signals at the remaining nodes in
V� ⊂ V (the leader nodes) through

ẋi = ui, i ∈ V�,
or (which is equivalent from a controllability point of view)

xi = ui, i ∈ V�.
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Fig. 2 15 mobile robots are forming the letter “G” by executing a weighted version of the consen-
sus equation

If we index the nodes in such a way that the last M nodes are the leader nodes
and the first N −M nodes are the followers, we can decompose L as

L=−
[
A B

BT λ

]
,

where A=AT is (N −M)× (N −M), B is (N −M)×M , and λ= λT isM ×M .
The point behind this decomposition is that if we assume that the state values are
scalars, that is, xi ∈ R, i = 1, . . . ,N , and gather the states from all follower nodes
as x = [x1, . . . , xN−M ]T and the leader nodes as u= [xN−M+1, . . . , xN ]T, then the
dynamics of the controlled network can be written as

ẋ =Ax +Bu,
as was done in [21]. This is a linear-time invariant control system,1 and the reason
for this formulation is that we can now apply standard tools and techniques when
trying to understand how easy or hard it is to interact with such systems.

3.3.1 Controllability

One interesting fact about this construction is that the followers tend to cluster to-
gether due to the cohesion provided by the consensus equation. This clustering effect
can actually be exploited when analyzing the network’s controllability properties.
We thus start with a discussion of how such clusters emerge.

By a partition of the graph G= (V ,E) we understand a grouping of nodes into
cells, that is, a map π : V →{C1, . . . ,CK }, where we say that π(i) denotes the cell

1Note that if the states were nonscalar, the analysis still holds even though one has to decompose
the system dynamics along the different dimensions of the states.
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Fig. 3 A graph with four
possible EEPs. The
leader-node (black node) is in
a singleton cell in the two
left-most figures, and, as such,
they correspond to
leader-invariant EEPs. Of
these two leader-invariant
EEPs, the top-left partition
has the fewest number of
cells, and that partition is thus
maximal. We note that this
maximal partition is not
trivial since one cell contains
two nodes

that node i is mapped to, and we use range(π) to denote the codomain to which π
maps, that is, range(π) = {C1, . . . ,CK }. Similarly, the operation π−1(Ci) = {j ∈
V | π(j)= Ci} returns the set of nodes that are mapped to cell Ci .

But, we are not interested in arbitrary groupings. Instead, we partition the nodes
into cells in such a way that all nodes inside a cell have the same number of neigh-
bors in adjacent cells. To this end, the node-to-cell degree degπ (i,Cj ) characterizes
the number of neighbors that node i has in cell Cj under the partition π ,

degπ (i,Cj )=
∣∣{k ∈ V ∣∣ π(k)= Cj and (i, k) ∈E}∣∣.

A partition π is said to be equitable if all nodes in a cell have the same node-to-cell
degree to all cells, that is, if, for all Ci,Cj ∈ range(π),

degπ (k,Cj )= degπ (�,Cj ), for all k, � ∈ π−1(Ci).

This is almost the construction one needs in order to obtain a characterization
of the controllability properties of the network. However, what we need to do is
produce partitions that are equitable between cells in the sense that all agents in a
given cell have the same number of neighbors in adjacent cells, but where we do not
care about the structure inside the cells themselves. This leads to the notion of an
external equitable partition (EEP) [6, 16], and we say that a partition π is an EEP
if, for all Ci,Cj ∈ range(π), where i 
= j ,

degπ (k,Cj )= degπ (�,Cj ), for all k, � ∈ π−1(Ci).

An example of this is given in Fig. 3.

3.3.1.1 A Necessary Controllability Condition for Single-Leader Networks

Assume that there is a single leader acting as the leader node, and we are
particularly interested in EEPs that place this leader node in a singleton cell,
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Fig. 4 Clockwise from the top-left: The first two networks are not completely controllable since
their partitions π∗ are not trivial. The partitions π∗ associated with the remaining three networks
are indeed trivial, but we cannot directly conclude anything definitive about their controllability
properties since the topological condition is only necessary. Indeed, the third network is completely
controllable, whereas the last two are not completely controllable

that is, in partitions where π−1(π(N)) = {N}, and we refer to such EEPs as
leader-invariant. Moreover, we say that a leader-invariant EEP is maximal if its
codomain has the smallest cardinality, that is, if it contains the fewest possible
cells, and we let π� denote this maximal, leader-invariant EEP. Examples of the
construction of π� are shown in Fig. 3, and in [16] it was shown that the net-
work is completely controllable only if G is connected and π� is trivial, that is,
π�−1(π�(i)) = {i} for all i ∈ V , and examples of this topological condition for
controllability are given in Fig. 4. What complete controllability means is that
it is possible to drive the system from any configuration to any other configura-
tion.

But, we can do even better than this in that we can characterize an upper bound
on what the dimension of the controllable subspace is, as shown in [5]. In fact, let
Γ be the controllability matrix associated with the controlled consensus equation.
Then

rank(Γ )≤ ∣∣range
(
π�
)∣∣− 1.

We note that since this result is given in terms of an inequality instead of an equality,
we have only necessary conditions for controllability rather than a, as of yet elusive,
necessary and sufficient condition. One instantiation where this inequality is indeed
an equality is when π� is also a distance partition, as shown in [27]. What this means
is that when all nodes that are at the same distance from the leader (counting hops
through the graph) also occupy the same cell under π�, rank(Γ )= | range(π�)|− 1.
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3.3.2 Manipulability

Controllability is ultimately a point-to-point property in that it dictates in-between
what states it is possible to move the system. This is a rather strong condition, and
one can also investigate a more localized notion of interactions, that is, one that
describes what instantaneous changes to the system the control signal can achieve.
To address the instantaneous effects that the inputs have on the team, we here discuss
the notion of manipulability of leader-follower networks.

3.3.2.1 Manipulability of Leader–Follower Networks

In robotics, manipulability indices have been proposed as means for analyzing the
singularity and efficiency of particular configurations and controls of robot-arm ma-
nipulators [1, 2, 26]. Let θ be the joint angles, and r = f (θ) be the state of the
end-effector, where the function f represents the kinematic relation of the robot-
arm manipulator. Then, a typical index of manipulability is defined in terms of the
ratio of a measure of performance (end-effector response) ṙ and a measure of effort
(joint-angular velocity) θ̇ as

mr = ṙ
TWrṙ

θ̇TWθ θ̇
,

where Wr =WT
r and Wθ =WT

θ $ 0 are positive definite weight matrices. If f is
differentiable, then we have the relation ṙ = Jr(θ)θ̇ with Jr(θ) being the Jacobian
matrix of the manipulator. Hence, the manipulability is given by the form of the
Rayleigh performance-to-effort quotient [2, 26],

mr = θ̇
TJr(θ)

TWrJr(θ)θ̇

θ̇TWθ θ̇
.

To establish a similar notion for leader-follower networks consisting of N� lead-
ers and Nf followers with states x� = [xT

Nf+1, . . . , x
T
N ]T and xf = [xT

1 , . . . , x
T
Nf
]T,

respectively (where we have assumed that the indexing is done such that the leader
indices are last), one can simply define the manipulability index based on the ratio
between the norm of the follower velocities and those of the leader velocities:

m(x,E, ẋ�)=
ẋT
fQf ẋf

ẋT
� Qeẋ�

,

where Qf =QT
f $ 0 and Q� =QT

� $ 0 are positive definite weight matrices. Once
this kind of indices is successfully defined under given agent configurations x and
network topologies E, it can be used for estimating the most effective inputs to the
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network by maximizing the manipulability m with respect to the input ẋ�:

ẋ�,max(x,E)= argmax
ẋ�

m(x,E, ẋ�),

mmax(x,E)=max
ẋ�
m(x,E, ẋ�).

Another possible application is to use the manipulability index to find effective net-
work topologies, given agent configuration x and leader inputs, ẋ�, as

Emax(x, ẋ�)= argmax
E

m(x,E, ẋ�),

possibly under constraints on E (e.g., on the number of edges |E|).
For manipulability to be useful as a design tool, it needs to be connected to the un-

derlying agent dynamics in a meaningful way, which presents some difficulty. Let us
here, for example, consider the previously discussed agent dynamics for formation
control. Specifically, the followers are trying to maintain given desired distances,
whereas the leader agents are driven by exogenous inputs. As before, using the en-
ergy function E , we let the control law of the followers be given by the weighted
consensus equation

ẋf (t)=− ∂E
∂xf

T

.

Under this dynamics, the followers try to “locally” decrease the total energy E
through

Ė = ∂E

∂xf
ẋf + ∂E

∂x�
ẋ� =−

∥∥∥∥
∂E

∂xf

∥∥∥∥

2

+ ∂E
∂x�
ẋ�,

which ensures the desired behavior of the follower agents. (Note that E itself may
increase because of the leaders’ movement.)

In contrast to the manipulability of robot-arm manipulators, which can be ana-
lyzed through the kinematic relation, leader-follower network “links” are not rigid
in the same way, and indeed we need to introduce an integral action to see the
influence of ẋ�. However, the input velocity ẋ� can vary over the time interval of
integration. Thus, it is not possible to calculate an instantaneous performance-to-
effort measure given by the definition of the manipulability m. For this reason, an
approximate version of manipulability was introduced in [15] as a practically rele-
vant manipulability proxy.

3.3.2.2 Approximate Manipulability

Let us consider the rigid-link approximation of the agent dynamics as an ideal sit-
uation, where all the given desired distances {dij }(i,j)∈E are perfectly maintained.
Note that this approximation is reasonable if the scale of the edge-tension energy
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E is large enough compared to that of the leader velocities ẋ�(t). Note also that,
in real situations, E (t) needs to be greater than zero in order for the followers to
move, whereas this approximation implies that E (t)= 0 for all t ≥ 0. Nevertheless,
this approximation gives us a good estimate of the actual response of the network to
inputs injected through the leader agents, unless the leaders move much faster than
the followers.

To analyze the approximated dynamics, we need the notion of a rigidity ma-
trix [7, 24]. If the connections between agent pairs associated with the edges can be
viewed as rigid links, the distances between connected agents do not change over
time. Assume that the trajectories of xi(t) are smooth and differentiable. Then

d

dt
‖xi − xj‖2 = 0 ∀(i, j) ∈E,

and therefore

(xi − xj )T(ẋi − ẋj )= 0 ∀(i, j) ∈E.
This set of constraints can be written in matrix form as

R(x)

[
ẋf
ẋ�

]
= [Rf (x)

∣
∣R�(x)

][ẋf
ẋ�

]
= 0,

where R(x) ∈R
|E|×Nd , Rf (x) ∈R

|E|×Nf d , R�(x) ∈R
|E|×N�d , and |E| is the num-

ber of edges. The matrix R(x) is known as the rigidity matrix. Specifically, con-
sidering that R consists of |E| × N blocks of 1 × d row vectors, its (k, ik) and
(k, jk) blocks are (xik − xjk )T and −(xik − xjk )T, respectively (the signs can be
swapped), and other blocks are zeros, where ik and jk are the agents connected by
edge k ∈ {1, . . . , |E|}.

Assume that the leaders move in a feasible manner so that the rigid-link approx-
imation stays valid. Solving the constraint equation, the possible set of follower
velocities ẋf associated with ẋ� can be obtained as the following general solution:

ẋf =−R†
f R�ẋ� +

[
null(Rf )

]
q,

where R†
f is the Moore–Penrose pseudo inverse of Rf , q is an arbitrary vector

whose dimensionality is nullity(Rf ), and [null(Rf )] is a matrix whose columns
span null(Rf ). This means that there may exist infinite possibilities of ẋf (i.e., ro-
tational freedom and/or formation flexibility) for a given input ẋ�. For instance, the
rotational freedom around the leader always remains in a single-leader case. In such
indeterminate cases, the manipulability index cannot be determined uniquely. And,
one option is to modify the definition of manipulability, for example, by using the
“worst-case approach” [1], namely, to analyze the impact of given inputs based on
the least response (i.e., the smallest norm of the generated follower velocities, in our
case). However, in [15] it was shown that ẋf is uniquely determined as

ẋf =−R†
f R�ẋ�,
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that is, q = 0 even in the indeterminate cases, once one considers the original agent

dynamics ẋf = ∂E
∂xf

T
and then applies the rigid-link approximation. This is the key

to the notion of approximate manipulability of formation-controlled leader-follower
networks.

Using the fact that, under the rigid-link approximation, the followers’ response is
given by ẋf = J ẋ�, where J (x,E)=−R†

f R�, the approximate manipulability can
be defined as the Rayleigh quotient

m(x,E, ẋ�)= ẋ
T
� J

TQf J ẋ�

ẋT
� Q�ẋ�

,

which is similar to the robot-arm manipulability mr . One can moreover see that J
is analogous to the Jacobian matrix for robot-arm manipulators. Hence, in a manner
similar to the robot-arm manipulability mr , the maximum and minimum values of
the manipulability index are determined by a spectral analysis. In other words,mmax
is dictated by the maximum eigenvalue λmax of the generalized eigenvalue problem
J TQf Jv = λQ�v, and ẋ�,max is obtained from its corresponding eigenvector vmax
as ẋ�,max = αvmax (α 
= 0). Similarly, the minimum value of the manipulability m
and its corresponding inputs can be obtained from the minimum eigenvalue and its
corresponding eigenvector, respectively.

As a final exercise, we use the notion of approximate manipulability of multia-
gent networks to describe effective input directions, in the case whereQ� is the iden-
tity matrix. In fact, for the robot-arm manipulability with the identity weight matri-
ces, that is, ṙTṙ/(θ̇Tθ̇ ), the manipulability ellipsoid is defined as ṙT(JrJ

T
r )

†ṙ = 1;
this ellipsoid depicts which direction the end-effector can be effectively moved by
given inputs (joint-angular velocities) θ̇ with the same norm ‖θ̇‖ = 1. In contrast,
since what we are interested in is the effective direction (axis) of inputs, the follow-
ing leader-side manipulability ellipsoid can be used to characterize the effectiveness
of injected inputs in the space of leader velocities:

ẋT
�

(
J TQf J

)†
ẋ� = const.

As such, the longest axis of the ellipsoid corresponds to the eigenvector that gives
the maximum eigenvalue of J TQf J and hence the most effective, instantaneous
direction in which to interact with the network.

3.4 Leader–Follower User Studies

The discussions in the previous sections tell us what is possible in terms of network
interactions. And, if the inputs are computationally generated, controllability and
manipulability tell a rather comprehensive story. However, just because something
is theoretically possible, it does not follow that it is easy to do. As such, user studies
are needed to see if the developed human–swarm interaction theories line up with
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Table 1 Network
configuration, leader location,
and target configuration for
each task

Tasks Network Leader Notation Targets

1, 8 L7 Head L7,h Ellipse, Wedge

2, 9 L7 Offset L7,o Ellipse, Wedge

3, 10 L7 Center L7,c Ellipse, Wedge

4, 11 C7 Any C7 Ellipse, Wedge

5, 12 K7 Any K7 Ellipse, Wedge

6, 13 S7 Center S7,c Ellipse, Wedge

7, 14 S7 Periphery S7,p Ellipse, Wedge

user experiences when interacting with networks of mobile agents. In particular, we
wish to understand what properties of a network make it easy or hard for a human
to reasonably interact with it. To answer this question, participants were tasked with
controlling different networks and to rate the difficulty of interacting with these
networks (see [4]).

3.4.1 Experimental Results

The experiments were organized in such a way that 18 participants rated the diffi-
culty of forming two different geometries with a network of seven agents organized
according to one of four topologies. Table 1 provides a list of the 14 tasks performed
in random order by each participant.

The leader-based interaction topology is defined by the second and third
columns. We selected a representative set of canonical topologies: the line graph
LN , the cycle graph CN , the complete graph KN , and the star graph SN . The agents
in an LN graph are organized like points on a line, where each agent is connected to
two immediate neighboring agents. We appoint three different agents as a possible
leader of an LN graph: an agent at the head of line, an agent behind the head of the
line, and an agent in the center of the line. The CN graph can be formed from an LN
graph by forming an edge between the head and tail agents of the line. If all agents
in the network share an edge with all other agents, then this topology is referred to
as the KN graph. If all agents in the network share a single edge with a common
agent, then this topology is referred to as the SN graph. We appoint two agents as a
possible leader of an SN graph: the central agent and a peripheral agent. The fourth
table column defines the notation that we used to define a particular single-leader
network topology.

Each of the 14 tasks requires the participants to move the network from an initial
geometry (sufficiently different from the geometry of the target formation) to one of
two target geometries listed in the fifth table column. A participant is briefly shown
the interaction topology of the network before starting the task. Once the task is
started, the interaction topology, like wireless links, is not visually observable by
the participant, and the participant has to infer the interactions over the network
from the motion of the agents. The participant is able to directly control the motion
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of the leader agent using a joystick to achieve the target geometry with the network.
A translation, rotation, and assignment invariant least squares fit (see [14]) is used
to measure a participant’s performance. This score is not shown at any time to the
participant to ensure that the participant is simply focused on completing the task
and rating its difficult. The participant rates the difficulty of each task on a contin-
uous numeric scale from 0.0 (very easy) to 20.0 (very hard). In addition, we asked
each participant to complete the NASA Task Load Index (TLX) workload survey
(see [11]), which consists of six questions that cover physical, mental, and temporal
demands, as well as a self-evaluation of performance, effort, and frustration.

The ratings provided by participants, the LSQ fit errors, and the total raw TLX
scores for each tasks were analyzed and visualized as histograms in Fig. 5. The
mean is denoted by the height of the bar, and the standard error is denoted by the
error bars.

However, to make any sort of comparisons between tasks from this data, we apply
a series of one-way ANOVA statistical tests (see [9]). These tests reveal that the LSQ
fit error (p < 0.0000001), ratings (p = 0.00138), and workload scores (p = 0.0256)
are all statistically significant at a 95 % confidence level, meaning that one can dis-
tinguish between the different tasks given the three measures. Second, we use the
one-way ANOVA statistical test again to compare tasks within the three measures.
If, for example, this test revealed that there is a statistically significant difference be-
tween tasks 1 and 2 with respect to the rating score, then we are justified in claiming
that the topology in task 1 is rated as easier or harder than the topology in task 2.

Each of the three measures—LSQ fit error, rating, and workload scores—demon-
strates a similar trend. First, the task of forming an ellipse is generally easier than
forming a wedge independent of network topology. Second, line graphs are mostly
the easiest to control regardless of the target geometry. We have to be careful and
use the modifier mostly here because not all pairwise comparisons yield statistically
significant differences. Specifically, for those measures with a higher p-value, the
difference between any two tasks is going to be less significant. However, almost
without exception L7 networks have a statistically significant lower (better) score
than C7, K7, and S7 topologies regardless of target formation. Similarly, S7 topolo-
gies have in almost all cases a statistically significant higher (worse) score than all
other topologies. It is not surprising that some network topologies were significantly
more difficult to control than others. However, to make these types of observations
stand on a more firm mathematical footing, we need to tie the results of the user
study to controllability and other system and graph theoretic properties of networks
with multiple agents.

3.4.2 Connecting Back to the Network

After the results of the user study are gathered, it is interesting to connect these back
to interaction notions previously defined, such as network controllability. The reason
for this is that we would like to know whether or not these theoretical properties
also correspond to practically useful notions human operators are to interact with
networks of mobile agents.



3 Interacting with Networks of Mobile Agents 213

Fig. 5 Mean (a) LSQ, (b)
rating, and (c) workload
scores for each task
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3.4.2.1 Controllability

A rank-deficient controllability matrix associated with the controlled consensus
equation implies that there are certain things that the human operator simply cannot
do. Therefore, the rank of the controllability matrix ought to be a good indicator of
whether a network is easy or hard to control.

Since we are not only interested in whether a network is controllable or not, but
also how controllable it is, we need to look at properties of the network beyond the
rank of the controllability matrix. Therefore, we will use degree centrality, close-
ness, betweenness, and eigenvector centrality to try to quantify the importance of
the leader v�. Degree centrality is defined by

CD(v�)= deg(v�), where v� ∈ V,
which only measures the importance of the leader by the size of its neighborhood
set. Closeness on the other hand is defined by the length of the shortest paths from
the leader to all other nodes on the network:

CC(v�)=
∑

v∈V \v�
2−dist(v�,v), where v, v� ∈ V.

Betweenness measures the ratio of the number of shortest paths between any two
agents that passes through the leader agent:

CB(v�)=
∑

v 
=w∈V \v�

σv,w(v�)

σv,w
,

where σv,w(v�) is the total number of shortest paths between v and w that intersect
the leader, and σv,w is the total number of shortest paths between v and w. Last,
eigenvector centrality measures the influence of a node on the network, which can be
computed by solving the eigenvalue problem Ay= λmaxy, where A is the adjacency
matrix, and λmax is its largest eigenvalue. Assuming that the leader is node N , the
N th entry of the vector y is the centrality score given to the leader:

CE(v�)= yN, where yN is the N th entry of y.

Since the leader agent is the point of interaction for the human operator in these
leader-based networks, we expect that the node centrality of the leader is an indicator
of how easy or hard a network is to control.

3.4.3 Correlation to the User Study

Table 2 summarizes the results of connecting the candidate measure to the results of
the user study.

What we want to know is how the rank of the controllability matrix and the
node centrality measures correlate to the LSQ error fit, ratings, and workload scores
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Table 2 Mean LSQ, rating, and workload scores with controllability matrix rank, ρ, and node
centrality measures for each task

Task Network Target ρ CD CC CB CE LSQ Rating Workload

1 L7,h Ellipse 6 1 0.984 0 0.191 0.035 5.83 27.33

2 L7,o Ellipse 6 2 1.469 10 0.354 0.061 9.65 43.37

3 L7,c Ellipse 3 2 1.750 18 0.500 0.137 12.82 57.40

4 C7 Ellipse 3 2 1.750 6 0.378 0.090 8.72 38.46

5 K7 Ellipse 1 6 3.000 0 0.378 0.157 10.11 39.14

6 S7,c Ellipse 1 6 3.000 30 0.707 0.273 16.47 63.42

7 S7,p Ellipse 2 1 1.750 0 0.289 0.276 14.46 63.98

8 L7,h Wedge 6 1 0.984 0 0.191 0.141 9.93 45.14

9 L7,o Wedge 6 2 1.469 10 0.354 0.229 10.54 50.88

10 L7,c Wedge 3 2 1.750 18 0.500 0.415 12.57 56.94

11 C7 Wedge 3 2 1.750 6 0.378 0.486 13.26 55.59

12 K7 Wedge 1 6 3.000 0 0.378 0.606 15.16 52.32

13 S7,c Wedge 1 6 3.000 30 0.707 0.627 14.64 59.90

14 S7,p Wedge 2 1 1.750 0 0.289 0.602 14.81 60.86

collected from the user study. First, we observe that the rank of the controllability
matrix is negatively correlated (r2

LSQ =−0.60, r2
Rating =−0.73, r2

Workload =−0.54)
to the scores. This correlation implies that a configuration with a higher rank was
almost without exceptions given a better score than a configuration with a lower
rank. We conclude that the rank of the controllability matrix is a strong predictor
of how easy it is to control a network of multiple agents. As a corollary, it is not
surprising that networks with a rank-deficient controllability matrix are more dif-
ficult to control because the human operator is likely to move the network into an
uncontrollable subspace from which the task cannot be completed.

Second, the node centrality measures of the leader are positively correlated (e.g.,
for CE , r2

Rating = 0.58, r2
Workload = 0.54) to the scores. This correlation implies that

given two configurations with the same ranks, CD , CB , CC , and CE all serve as
reasonable tie breakers for which network is easiest to control. In other words, given
two networks with equally ranked controllability matrices, the network with the
least central leader is likely to be the easiest to control by a human operator. It is
important to note, however, that rank and node centrality are by no means absolute
measures of the difficulty of controlling a given network, but good predictors of the
difficulty for human operators to control these networks of multiple agents.

3.5 A Fluid-Based Approach

If the interactions are not based on influencing the behaviors of select agents, then
one first has to understand by which means the interactions are physically supported.
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For instance, one can envision scenarios where boundary control is exerted at some
part of the swarm or where general flows (or other types of behavioral modifica-
tions) are imposed on the swarm as a whole. But, both of these types of interactions
either require a broadcast to the entire swarm, which is not scalable as the swarm
size scales up, or the information is injected at select nodes and then propagated
through the network, which is inherently just a small variation to the leader-based
interaction paradigm.

So what can one do about this? It is clear that the interactions have to have a
physical manifestation, and one possible way forward is to take advantage of the
fact that many mobile multiagent systems are in fact interacting over a fixed com-
munications infrastructure. Examples include wireless LAN (802.11) routers, cel-
lular networks (e.g., GSM), or air traffic control mechanisms (ATCT, TRACON,
ARTCC). Common to these physical infrastructure networks is that they themselves
are static, whereas the mobile agents are routed around in-between “cells.” So one
possible way of injecting information might be to interface directly with the nodes
in the infrastructure network and have those nodes then interact with the agents that
they are currently influencing.

3.5.1 The Infrastructure Network

Without committing to any particular interpretation of the state of an infrastructure
node, assume that the state pi ∈ R is associated with node i, i = 1, . . . ,N . These
nodes will be interacting with the mobile agents. But they will also be interacting
among themselves. Following the developments in previous sections, assume that
the nodes are interacting through a controlled linear consensus equation

ṗi =−
∑

j∈Ni
(pi − pj )+ ui,

where Ni is the set of nodes adjacent to node i. This can, as before, be written on
ensemble form as

ṗ =−Lp+ u,
where p = (p1, . . . , pN)

T and u= (u1, . . . , uN)
T, and where L is the graph Lapla-

cian associated with the infrastructure network. What we will do in subsequent sec-
tions is understand just what the correct interpretation of the node state p is as well
as the corresponding interpretation of the control input u.

3.5.2 A Least-Squares Problem

If we associate an arbitrary orientation to the edges in the infrastructure network,
we can factor the Laplacian as

L=DDT,
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where D is the incidence matrix, with dij = 1 if node i is the head to edge j ,
dij =−1 if it is the tail, and dij = 0 if node i is not incident to edge j . The impor-
tant aspect of this factoring is that L is a Gramian. And Gramians have interpreta-
tions.

Consider for a moment the standard problem of finding a solution x to the prob-
lem Ax = b. If there is no such solution, the next best thing is the least-squares
problem

min
x
‖Ax − b‖2,

and the derivative of this cost is 1/2(ATAx −ATb). Setting the derivative equal to
zero yields the normal equation

AATx =ATb,

where we have the Gramian AAT play a central role.
In light of this discussion, we can reverse engineer a least-squares problem where

the graph Laplacian takes on the role of AAT. In other words, the corresponding
least-squares problem is

min
p

∥∥DTp− f ∥∥2
,

which in turn tries to find a solution p to DTp = f .
If we iteratively try to solve this problem, using a gradient descent strategy, we

get

ṗ =−DDTp+Df
or, put another way,

ṗ =−Lp+Df.
This dynamical system is both decentralized and converges asymptotically to a so-
lution to the normal equation Lp =Df .

But, the real benefit behind this detour to a least-square problem is that we now
see what u really “is” in the controlled consensus equation, that is, we now know
that

u=Df.
It remains to interpret this in a way that makes sense and use this interpretation as a
basis for human–swarm interactions.

3.5.3 A Fluid-Based Interpretation

We directly note from the equation DTp = f that p is simply assigning a number
to each node in the network. Similarly, f assigns a number to each edge, whereas
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DT computes differences between nodes across edges. Using a continuous analog,
p acts like a scalar field, f acts like a vector field, and DT acts like a gradient.
With this interpretation in mind, we see that the choice of letters p and f was not
arbitrary. Instead, we can think of p as pressure and f as flow.

This interpretation gives us the means to interact with the infrastructure network
directly. By specifying what we would like the flow to be in a particular cell around
a given node, we in essence specify f . As we will see in subsequent sections, this
specification will be done by moving a physical wand through cell boundaries, and
the direction and magnitude of that movement will dictate the corresponding desired
flow.

Once a flow vector has been established, the nodes update their individual pres-
sure values using the decentralized controlled consensus equation, which on node-
level form becomes

ṗi =
∑

j∈Ni

(−(pi − pj )+ σijfij
)
,

where σij is the orientation of the edge between nodes i and j , and fij is the speci-
fied flow in-between those nodes.

3.6 Eulerian Swarms

In order to use the fluid-based interpretation of how one can interact with swarms
of mobile agents, we first have to change the way we view said swarms. Since the
leader-based interaction model is based on controlling individual agents, and the
control design is done by focusing on the individual agents directly, we can call
this the Lagrangian approach to swarm-interactions. The reason for this terminol-
ogy is that Lagrangian fluid mechanics takes the point of view that the motions of
individual particles in the fluid should be characterized. The alternative view, the
Eulerian approach to fluid mechanics, instead focuses on particular spatial loca-
tions and models how the fluid passes through those locations. And, using the idea
of a fixed infrastructure network, with spatial cells associated with the nodes in the
infrastructure network through which the agents pass, we thus arrive at an Eulerian
approach to multiagent swarms rather than the standard, Lagrangian approach.

3.6.1 From Lagrange to Euler

Given a static infrastructure network GI = (VI ,EI ), one way of thinking about
the nodes is as zero-dimensional objects, or 0-simplexes. Similarly, an edge is a 1-
simplex. This notion can of course be extended to surfaces, and we let a 2-simplex
be given by “triangles” in the network (i, j, k) ∈ VI × VI × VI in the sense that
(i, j) ∈ EI , (j, k) ∈ EI , and (k, i) ∈ EI . These triangles (or rather, their spatial



3 Interacting with Networks of Mobile Agents 219

footprint) constitute the spatial locations needed for the Eulerian view of multiagent
swarms.

At any given time, inside each such triangle, we have a certain amount of agents.
And, through the fluid-based equation ṗ =−Lp+Df , we also have a pressure as-
sociated with the triangles. By computing differences in pressure across boundaries
in the triangles (through DTp), we thus get the desired flow of agents across those
boundaries. So, if we somehow could turn those desired flows into control laws for
the individual agents (back to a Lagrangian view again), then we would have come
full circle and would be able to specify desired flows in the infrastructure network
and then translate those flows into control laws for the individual agents, which is
the topic of the next section.

3.6.2 Local Stream Functions

Stream functions are used in fluid dynamics to define two-dimensional flows, which
is exactly what we have in this situation. In particular, the difference between the
stream function at different points gives the flow through a line connecting those
points. As the infrastructure agents are really regions, we will endow these regions
with a dynamics in the sense that the mobile agents in that region will move ac-
cording to that dynamics. Assuming that the regions are triangular, on an individual
triangle (or 2-simplex), we can let the nodes that define the vertices of the triangle be
given by x1, x2, x3. The local, so-called stream function on this 2-simplex is given
by

φ(x)= cT(B1x +B2),

where c ∈ R
3 for some choice of c (to be specified later), and B1 ∈ R

3×2 and B2 ∈
R

3×1 satisfy
[
X

1T

]−1

= [B1,B2],

where X = [x1, x2, x3]. The corresponding Hamiltonian, divergence-free dynamics,
that is, the dynamics that an agent located at point x on the triangle should execute,
is given by

ẋ = J gradφ(x)= JBT
1 c,

with J being the π/2 rotation matrix

J =
[

0 1
−1 0

]
.

What this means is that the flow inside a given triangle is constant, that is, it does
not matter where inside the triangle an agent is. Moreover, all the agent needs to do
is contact the infrastructure node inside the region to access that region’s flow.
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Fig. 6 An infrastructure network K (a), its triangular footprint (b), and the corresponding new
network K

Philosophically speaking, the stream functions will be derived from the applied,
user-specified flows, and they will be stitched together across the different triangles
in order to obtain a global, piecewise linear stream function that will be used to
dictate the motion of the individual agents. Since, for an individual region, c ∈ R

3

is associated with the vertices in the region, we just need to map the input flow
f associated with flows in-between regions to the nodes that make up the region.
If we let G denote the infrastructure graph, then the new graph that we obtain by
identifying edges in the triangles with edges in the new graph, and vertices with
its vertices, we get a new graph K that has more edges than the original graph G
since boundary edges are included as well. Letting LK and DK be the Laplacian
and incidence matrices associated with the new graph, we (again) have to solve the
least-squares problem

ċ=−LKc+DKf̂ ,
where the old input flow f has been augmented to f̂ to incorporate the new bound-
ary edges that are present in K . For those edges, we set the flow equal to zero in
order to not have agents leave the region.

As an example of this, consider the infrastructure network given in Fig. 6(a),
with vertex set {v1, . . . , v5} and edge set {e1, . . . , e4}. Given an arbitrary orientation
of the edges, the corresponding matrices are

D =

⎡

⎢⎢⎢⎢
⎣

−1 0 0 0
1 −1 0 0
0 1 −1 −1
0 0 1 0
0 0 0 1

⎤

⎥⎥⎥⎥
⎦
, L=

⎡

⎢⎢⎢⎢
⎣

1 −1 0 0 0
−1 2 −1 0 0
0 −1 3 −1 −1
0 0 −1 1 0
0 0 −1 0 1

⎤

⎥⎥⎥⎥
⎦
.

The association of triangular regions to the different infrastructure nodes are
shown in Fig. 6(b), and the new graph K with vertex set {ν1, . . . , ν7} and edge set
{ε1, . . . , ε11}. We see that some of the edges inK are indeed corresponding to edges
in G. In particular, we have the following correspondences: e1 ∼ ε2, e2 ∼ ε5, e3 ∼
ε6, e4 ∼ ε9. If the original input flow is specified through f = [f1, . . . , f4]T, then
we have the corresponding input flow f̂ for the K graph given by f1 = f̂2, f2 =
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Fig. 7 Computational results are shown. Given a force field as input (left; arrow sizes indicate
force magnitudes), a flow on the infrastructure graph, and a stream function over the environment
are produced (center). The “pressure” computed as an intermediate step is also shown (right)

f̂5, f3 = f̂6, f4 = f̂9. The remaining edges in K (ε1, ε3, ε4, ε7, ε8, ε10, ε11) are the
boundary edges, and the corresponding f̂ -values are all 0, that is, f̂1 = f̂3 = f̂4 =
f̂7 = f̂8 = f̂10 = f̂11 = 0.

Examples are helpful to demonstrate the qualitative characteristics of the flows
obtained using the proposed interaction method. Figure 7 shows a typical solution.
In that figure, a large force (desired flow) is exerted across a single face at the upper
right of the complex, and this is propagated through the “jughandle” at the upper
right. By contrast, the forces exerted lower in the complex, in less confined areas,
result in pairs of vortices that have mostly local effects. Nevertheless, even in this
case, small flows are produced throughout the complex. These qualitative character-
istics are typical of the kinds of flows obtained; where necessary, flows propagate
globally, but otherwise most effects are manifested locally.

It is the pressure field that propagates this information. Essentially, “shocks” are
created across the faces where large forces are exerted, and elsewhere the pressure
is smoothed throughout the environment by diffusion. The force exerted at the up-
per right demonstrates this well; it creates a “shock” in the pressure field (black
triangle next to white triangle), which is spread by diffusion into linearly decreas-
ing pressure around the upper right “jughandle.” Where vortices are produced, the
stream function exhibits a pair of local extrema, a maximum for a clockwise vor-
tex and a minimum for a counterclockwise one, as can be observed in the left part
of the complex. Vehicles then follow level sets of the stream function around the
environment.

3.6.3 Conducting Swarms

A key goal of human–swarm interaction methods is to present human operators
with high-level aggregate properties of swarms that they can manipulate, rather than
requiring that they take on the cognitive workload of managing large numbers of
agents individually. The fluid-based approach described in the previous sections
gives an attractive way to do this by using “flows” of the agents as the aggregate
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Fig. 8 Whenever the projection of the motion capture wand’s center onto the floor plane crosses
an edge between two triangles, a force in the direction of motion is superimposed across that edge.
If the center of the motion-capture wand is q and its projection onto the ground plane is p, then a
signed flow is superimposed across that edge of value f̃ = ṗTJ (v − u)/(‖v − u‖). Here, J is the
π/2 rotation matrix used to define the stream function. Geometrically, f̃ is the component of the
wand’s projected velocity that is orthogonal to the edge

properties and by presenting humans with a physically inspired means of “pushing”
and “pulling” on those flows.

In the context of the Eulerian approach to multiagent networks, what we are now
concerned with is how to produce the vector f of “external forces” from human
input that describes the “pushing” and “pulling.” Our goal is to provide the human
with a simple, intuitive interface that she can use to manipulate the swarm.

The implementation demonstrates how this can work, using motion capture as
the user interface. The human makes physical motions that are tracked, and forces
are generated on the fluid as she moves through it. Specifically, the human moves a
wand with reflective markers that are tracked by cameras, and, as the wand crosses
over edges between triangles, flows are created over them, as illustrated by Fig. 8.

There are a variety of options for how precisely to evolve the force vector f . In
the implementation shown in Fig. 9, the force vector f is evolved by adding flows
according to Fig. 8, and otherwise letting the forces decay according to first-order,
linear dynamics. This means that if at times t1, t2, . . . , edges indexed i1, i2, . . . are
crossed, and flow increments f̃1, f̃2, . . . are calculated according to Fig. 8, then f
is evolved as

ḟ =−γf +
∞∑

k=1

f̃kδ(t − tk)eik ,

where γ ≥ 0 is a choice of decay rate; if there are m edges, ei is the ith element
of the m×m identity matrix; and δ is the Dirac delta distribution. This is one rep-
resentative example of how motions can be mapped to (time-varying) force vectors
and happens to be the one used in the implementation shown in Fig. 9.
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Fig. 9 Khepera III mobile robots in a simplicial complex (left) (internal edges are shown in pur-
ple and boundary edges in blue) and robots moving in the same complex according to a stream
function, overlaid (right)

3.7 Conclusions

This chapter discusses a number of different ways in which human users can in-
teract with networks of mobile agents. In particular, a Lagrangian approach is pre-
sented, where the user takes active control of a select number of leader nodes. Within
this context, controllability and the instantaneous notion of manipulability are intro-
duced. User studies where furthermore conducted that connected controllability and
centrality notions to the ease by which human operators could interact with the net-
work.

The other approach presented in this chapter is an Eulerian approach. This is
characterized by the fact that the user no longer controls individual agents. Instead,
the agents are assumed to be suspended in a fluid, and the user “stirs” this fluid by
injecting desired flows across edges in the underlying infrastructure network. This
second approach was experimentally tested, and a human operator could success-
fully move 10 mobile agents over the infrastructure network.

Despite the recent advances described in this chapter, the study of human–swarm
interactions is still in its infancy. We still do not understand what the correct abstrac-
tions should be when interacting with complex networks, nor what the appropriate
performance measures might be that ultimately determine the viability of the ab-
stractions. As such, much work yet remains to be done in this increasingly relevant
area of research.
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Chapter 4
Combinatorial Optimization: The Interplay
of Graph Theory, Linear and Integer
Programming Illustrated on Network Flow

Annegret K. Wagler

Abstract Combinatorial optimization is one of the fields in mathematics with an
impressive development in recent years, driven by demands from applications where
discrete models play a role. Here, we intend to give a comprehensive overview of
basic methods and paradigms, in particular the beautiful interplay of methods from
graph theory, geometry, and linear and integer programming related to combinato-
rial optimization problems. To understand the underlying framework and the inter-
relationships more clearly, we illustrate the theoretical results and methods with the
help of flows in networks as running example. This includes, on the one hand, a
combinatorial algorithm for finding a maximum flow in a network, combinatorial
duality and the max-flow min-cut theorem as one of the fundamental combinatorial
min–max relations. On the other hand, we discuss solving the network flow problem
as a linear program with the help of the simplex method, linear programming duality
and the dual program for network flow. Finally, we address the problem of integer
network flows, ideal formulations for integer linear programs and consequences for
the network flow problem.

Keywords Network flow ·Max-flow min-cut theorem · Linear programming ·
Duality · Integer linear programming · Unimodularity

4.1 Introductory Remarks on Combinatorial Optimization

Combinatorial optimization problems occur in a great variety of contexts in science,
engineering and management. All such problems have the goal to find the best of
something. In mathematical terms, this is expressed with the help of an objective
function:

max or min c(x), x ∈Rn.
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In practical settings, finding the best of something typically includes some side con-
straints. In mathematical terms, this can be expressed with the help of some func-
tion(s) f : Rn→ R. The functions involve certain variables x ∈ Rn. This leads to
the following classical optimization problem:

max or min c(x)
subject to f1(x)≤ b1

...

fk(x)≤ bk
x ∈Rn

The points x ∈ Rn satisfying all side constraints f (x) ≤ b are called feasible. The
set of all feasible points is called the feasible region of the optimization problem. If
all side constraints are linear functions, the above optimization problem is a linear
program, and the feasible region is a convex set, which allows one to solve the
problem in polynomial time.

If the studied objects are entities as workers, planes, etc., which cannot be di-
vided, then it is necessary to use integral variables x ∈ Zn or decision variables
x ∈ {0,1}n, which makes the corresponding integer linear programs computation-
ally more demanding.

This is typically the case for combinatorial optimization problems, where the
goal is to search for an optimum object in a finite collection of certain objects.
Hereby, the objects have a concise representation within a discrete structure (like a
graph or a network), but their number is huge such that scanning all objects to select
the best one among them is not an option. The aim of combinatorial optimization is
to find more efficient solution methods.

The first step towards solving a problem is always to build a mathematical model:
it helps to correctly formalize the problem, that is, to decide which conditions are
crucial to describe the problem, and how to formalize them appropriately. This can
reveal relationships by gaining structural insight of the problem, for instance in
terms of bounds for the objective function value arising from dual combinatorial
objects. The second step is to develop methods for finding a feasible solution and
to certify optimality (without knowing the optimal solution before). In addition, it
is important to study the complexity of the problem, that is, to answer the question
how hard or easy the studied problem is.

In this chapter, we shall discuss how to model and solve combinatorial optimiza-
tion problems, illustrated with the help of the well-studied network flow problem as
running example.

Problem 1 (Network flow problem) Find a maximal flow, that is, transport the max-
imal amount of certain goods (or water, electricity, cars, etc.), through a given trans-
portation network (consisting of pipelines, streets, etc.).

In Sect. 4.2, we first address the network flow problem from a combinatorial
point of view. This includes to model the problem with the help of an appropriate
discrete structure (a network) and the studied combinatorial object therein (a flow).
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Fig. 1 A digraph with a
directed path (induced by the
black nodes and the dashed
arcs)

We discuss combinatorial duality and the max-flow min-cut theorem as one of
the fundamental combinatorial min–max relations. Moreover, we present Ford–
Fulkerson’s combinatorial algorithm for finding a maximum flow in a network.

In Sect. 4.3, we introduce linear programs and show how to formulate the net-
work flow problem in this context. Next, we discuss the geometry of the feasible
region of linear programs and its impact on solving linear programs with the help
of the simplex method. Furthermore, we address linear programming duality and
consider the dual program for network flow.

Finally, in Sect. 4.4, we introduce integer linear programs, linear programming
relaxations for integer linear programs, and ways to strengthen them. We conclude
with the problem of integer network flows, discuss ideal formulations for integer
linear programs related to totally unimodular matrices, and consequences for the
network flow problem.

4.2 A Combinatorial Algorithm for Network Flow

The combinatorial formulation of the network flow problem involves both an ap-
propriate discrete structure to model the input of that problem and a combinatorial
object therein to describe the desired output:

• Model: construct a directed graph with transportation ways (pipes, streets, etc.)
as directed arcs, their crossing points (connections, swivel valves, etc.) as nodes,
and arc weights as capacities.

• Task: find a maximal flow through the network (respecting the arc capacities).

We first introduce the underlying discrete structures. For that, consider a digraph
D = (V ,A) with node set V and arc set A where each arc a = (u, v) ∈ V × V is an
ordered pair. We say that a = (u, v) is the arc outgoing from u and ingoing to v and
denote by

δ−(v)= {a ∈A : a = (u, v)}

the set of arcs ingoing to v and by

δ+(v)= {a ∈A : a = (v,u)}

the set of arcs outgoing from v. A directed path is a subgraph of D with (distinct)
nodes v1, . . . , vk ∈ V and (exactly) the arcs (vi, vi+1) ∈A for 1≤ i < k; it is called
(v1, vk)-path if it links v1 with vk . Figure 1 shows a digraph with a directed path.

A digraph together with a source/sink pair and arc capacities becomes a network
(see Fig. 2). More formally:
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Fig. 2 A network consisting
of a digraph with source s,
sink t and arc capacities

Fig. 3 A network with
(s, t)-flow f of value
val(f )= 8 (on each arc
a ∈A, its flow value and
capacity are indicated by
f (a)/ca )

Definition 1 We callN = (D; s, t; c) a network ifD = (V ,A) is a digraph with two
specified nodes, a source s ∈ V with δ−(s) = ∅ and a sink t ∈ V with δ+(t) = ∅,
and arc capacities ca for all a ∈A.

Networks are the studied combinatorial structures to model flows therein:

Definition 2 For a networkN = (D; s, t; c)with digraphD = (V ,A), an (s, t)-flow
is a function f :A→N0 satisfying

• capacity constraints 0≤ f (a)≤ ca for all arcs a ∈A, and
• flow conservation constraints (δf )(v)=∑a∈δ−(v) f (a)−

∑
a∈δ+(v) f (a)= 0 for

all nodes v ∈ V \ {s, t}.

We denote by

val(f ) :=
∑

a∈δ−(t)
f (a)=

∑

a∈δ+(s)
f (a)

the value of an (s, t)-flow f . For illustration, Fig. 3 shows a network with an (s, t)-
flow f and its value val(f ).

This enables us to combinatorially formulate the network flow problem:

Problem 2 (Maximum network flow problem (combinatorial formulation)) Given
a network N = (D; s, t; c) with digraphD = (V ,A), find an (s, t)-flow f :A→N0

with maximal value val(f ).

The existence of an (s, t)-flow in a given network N = (D; s, t; c) is ensured
as soon as there exists an (s, t)-path in the underlying digraph D (which can be
easily checked with the help of breadth-first search techniques starting in s). We
will next address the question whether and how we can find an upper bound for
its possible value (without knowing the optimum before). For that, we look for the
combinatorial structure in a digraph being dual to flows.
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Fig. 4 A network with an
(s, t)-cut Vs = {s, x, y},
Vt = {t,w, z} and capacity
c(Vs,Vt )= 24 (as the sum of
the capacities of all forward
arcs crossing the dashed line)

Definition 3 Let N = (D; s, t; c) be a network with digraphD = (V ,A). An (s, t)-
cut (Vs,Vt ) is a partition V = Vs ∪ Vt of V into subsets Vs and Vt = V \ Vs with
s ∈ Vs and t ∈ Vt .

The capacity of an (s, t)-cut (Vs,Vt ) is

c(Vs,Vt )=
∑

u∈Vs,v∈Vt
c(u,v);

see Fig. 4 for illustration.
Let N = (D; s, t; c) be a network with digraph D = (V ,A) and consider an

(s, t)-flow f and an (s, t)-cut (Vs,Vt ) in N . The flow across the (s, t)-cut (Vs,Vt )
is

f (Vs,Vt )=
∑

u∈Vs,v∈Vt
f
(
(u, v)

)−
∑

u∈Vs,v∈Vt
f
(
(v,u)

)
.

Obviously, val(f )≤ c(Vs,Vt ) for any (s, t)-cut in a network. We even have:

Theorem 1 (Max-flow min-cut theorem (Ford and Fulkerson [16])) For any net-
work N = (D; s, t; c) with digraph D = (V ,A) and s 
= t ∈ V , we have

max
{
val(f ) : f (s, t)-flow in N

}=min
{
c(Vs,Vt ) : (Vs,Vt )(s, t)-cut in N

}
.

The max-flow min-cut theorem is one of the fundamental theorems in combi-
natorial optimization. It ensures that the minimum capacity of all (s, t)-cuts in a
network always equals the maximum value of an (s, t)-flow. The next question is
how to construct such a maximum flow in a network. To state the corresponding
combinatorial algorithm, we first have to introduce the following notions.

Definition 4 Let N = (D; s, t; c) be a network with digraph D = (V ,A), f an
(s, t)-flow, and P = {s = v0, v1, . . . , vk = t} an (undirected) (s, t)-path.

• The residual capacity of an arc a of P is

Δf (a)= ca − f (a) if a = (vi, vi+1) is a forward arc,

Δf (a)= f (a) if a = (vi+1, vi) is a backward arc.

• The residual capacity of the path P is

Δf (P )=min
{
Δf (a) : a arc of P

}
,

and P is called f -augmenting path if Δf (P ) > 0.
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Fig. 5 A network with (s, t)-flow f and augmenting (s, t)-path P with residual capacity
Δf (P )= 1 (resulting as the minimum value of the residual capacities of its arcs)

Fig. 6 A network with a (s, t)-flow f and the flow f ′ obtained by augmentation

Finding f -augmenting paths can be done with breadth-first search techniques
starting in s, where a node u is considered as a “neighbor” of the active node v if
there is an arc a with Δf (a) > 0 linking v and u (or u and v); see Fig. 5.

With the help of an f -augmenting path, we can increase the value of f as fol-
lows.

Lemma 1 Let P be an f -augmenting (s, t)-path in a network N with (s, t)-flow f .
There exists an (s, t)-flow f ′ in N with val(f ′)= val(f )+Δf (P ). We obtain f ′ by
modifying f on the arcs of P as follows:

f ′(a)= f (a)+Δf (a) for any forward arc a of P,

f ′(a)= f (a)−Δf (a) for any backward arc a of P.

For illustration, Fig. 6 shows f and the resulting flow f ′ after augmentation
using the f -augmenting path from Fig. 5.

This augmentation can be repeated until no further augmenting path for the cur-
rent flow can be found. An optimality criterion from [16] guarantees that this leads
indeed to the studied maximum flow:

Theorem 2 (Ford and Fulkerson [16]) An (s, t)-flow f in a network N =
(D; s, t; c) has maximal value if and only if there is no f -augmenting (s, t)-path
in N .

Therefore, we arrived at the following combinatorial algorithm for computing
maximum flows due to Ford and Fulkerson [16].
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Max-Flow Algorithm (Ford and Fulkerson [16])

Input: Digraph D = (V ,A) with arc weights c ∈ Z|A|+ , source s ∈ V , sink t ∈ V .
Output: Maximum (s, t)-flow f .
STEP 1: Initialize f with f (a) := 0 for all arcs a ∈A.
STEP 2: Find an f -augmenting path P .

IF such a path P exists:
Augment f by
f (a) := f (a)+Δf (a) if a is a forward arc of P ,
f (a) := f (a)−Δf (a) if a is a backward arc of P .

Iterate STEP 2.
ELSE STOP.

Remark

• The max-flow algorithm by Ford and Fulkerson [16] terminates correctly due to
the characterization of maximum flows by augmenting paths (Theorem 2). Note
that at this final step, the algorithm finds the shore Vs of an (s, t)-cut (Vs,Vt ) such
that all arcs outgoing from Vs are saturated as the capacity of this cut equals the
value of the current flow, which, therefore, cannot be improved further. Hence,
the capacity of this (s, t)-cut gives a certificate for the maximality of the obtained
flow.

• In the worst case, the algorithm performs val(f ∗) augmentation steps using
each time an f -augmenting path P with Δf (P ) = 1, where f ∗ is a maximum
flow. Finding an augmenting path and augmenting the flow in STEP 2 takes
O(|V | + |A|) time. The overall running time of the max-flow algorithm is there-
fore O(val(f ∗) · (|V | + |A|)).

• A variant of the max-flow algorithm by Edmonds and Karp [13] determines in
STEP 2 an augmenting path of minimal combinatorial length by breadth-first
search techniques. It terminates after |V | · (|A| + 1) augmentations and has poly-
nomial running time O(|V | · |A|2).
An example how to perform the max-flow algorithm is presented in Fig. 7. More

information on network flows can be found in [17, 26].

4.3 Solving Network Flow by Linear Programming Techniques

“From an economic point of view, Linear Programming has been the most important math-
ematical development in the 20th century.” Martin Grötschel

In this section, we discuss the following questions about linear programming:

• What is a linear program and how it is possible to model a real problem (for
instance network flow) as linear program?

• How does the feasible region of a linear program look from a geometric point of
view?

• What are the consequences for solution techniques for linear programming?
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Fig. 7 The max-flow algorithm starts with a flow f with f (a) := 0 for all a ∈A. For each current
flow f , a breadth-first search is performed that, starting in s, adds a node u as neighbor of the
active node v if there is an arc a with Δf (a) > 0 linking v and u (or u and v), until t is reached.
This results in a unique f -augmenting path P , and f is augmented along P to f ′. The procedure is
repeated until no augmenting path can be found anymore since the breadth-first search tree consists
in one shore Vs of an (s, t)-cut (Vs,Vt ) where all arcs outgoing from Vs are saturated

4.3.1 Modeling a Problem as a Linear Program

We first address the question what a linear program is.
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Fig. 8 The graphical
interpretation of the
constraints and the feasible
region (the shaded region) of
the linear program given in
Example 1

Definition 5 A linear program (LP) is as follows:

Maximize/minimize the value of cTx
among all vectors x ∈Rn satisfying Ax ≤ b

x ≥ 0 (optional)

whereA ∈Rm×n is a given constraint matrix, b ∈Rm a given right-hand side vector,
and c ∈Rn a given objective function vector.

We illustrate this formal definition with the help of a small example.

Example 1 This example shows a linear program given explicitly and in matrix
formulation:

max x1+x2 is the linear objective function cTx
s.t. −x1+x2 ≤ 1

x1 ≤ 3 form the linear constraints Ax≤ b
x2 ≤ 2

x1, x2 ≥ 0 are the nonnegativity constraints x≥ 0

Figure 8 gives the graphical interpretation of the constraints and the feasible region,
that is, the set of all feasible solutions x ∈Rn+ satisfying Ax≤ b.

We next discuss the reformulation of the network flow problem as a linear pro-
gram. Given a network N = (D; s, t; c) with D = (V ,A), the problem of finding an
(s, t)-flow f :A→R maximizing the value val(f ) can be encoded as follows:

• the required variables are xa to express the flow f (a) on each arc a ∈A;
• the objective function is max

∑
a∈δ+(s) xa to maximize the flow leaving the

source s (or, equivalently, max
∑
a∈δ−(t) xa as a flow entering the sink t);

• the flow conservation constraints read as
∑
a∈δ−(v) xa =

∑
a∈δ+(v) xa ∀v ∈ V \

{s, t};
• the capacity constraints lead to xa ≤ ca ∀a ∈A;
• in addition, nonnegativity xa ≥ 0 ∀a ∈A is required for all variables.

Thus, the maximum network flow problem of finding an (s, t)-flow f : A→ R
maximizing the value val(f ) reads as a linear program:
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Problem 3 (Maximum network flow problem (LP formulation)) Given a network
N = (D; s, t; c) with digraph D = (V ,A), solve the following linear program:

max
∑

a∈δ+(s)
xa

s.t.
∑

a∈δ−(v)
xa =

∑

a∈δ+(v)
xa ∀v ∈ V \ {s, t}

xa ≤ ca ∀a ∈A
xa ≥ 0 ∀a ∈A

Indeed, every vector x ∈RA satisfying all the above constraints corresponds to a
valid (s, t)-flow f , and an optimal solution of this linear program corresponds to a
maximum flow.

Example 2 The maximum network flow problem with the network from Fig. 2 reads
as an explicit linear program:

max xsw +xsx +xsy
s.t. xsw −xwt −xwy = 0

xsx −xxy −xxz = 0
xsy +xwy +xxy −xyt −xyz = 0

xxz +xyz −xzt = 0
xsw ≤ 6

xsx ≤ 5
xsy ≤ 3

xwt ≤ 3
xwy ≤ 1

xxy ≤ 1
xxz ≤ 2

xyt ≤ 7
xyz ≤ 9

xzt ≤ 5
xsw, xsx, xsy, xwt , xwy, xxy, xxz, xyt , xyz, xzt , ≥ 0

4.3.2 Geometry of the Feasible Region

For a given linear program

max cTx s.t. Ax≤ b, x≥ 0,

the task is to find one vector x maximizing the objective function value within the
feasible region described by the constraint system Ax≤ b, x≥ 0. In general, a lin-
ear program can have the following sets of optimal solutions: a unique optimum,
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Fig. 9 The different situations for sets of optimal solutions of a feasible linear program: a unique
optimum, infinitely many optima, or no optimal solution due to unboundedness (in all cases, the
feasible region of the linear program is shaded, and the arrows indicate the direction of the objec-
tive function vector)

Fig. 10 Extremal sets of
convex sets

infinitely many optima, or no optimal solutions at all due to infeasibility or un-
boundedness; see Fig. 9.

In particular, whenever an optimal solution exists for a linear program, it is at-
tained at the boundary of its feasible region. This is a central issue for linear pro-
gramming (see, e.g., [25] for a proof):

Theorem 3 (Linear Programming Theorem) If a linear program has a (bounded)
optimal solution, then there exists an “extremal” point on the boundary of the fea-
sible region that is optimal.

Hence, as a first step toward finding an optimal solution, we shall describe the
feasible region of a linear program more formally and study its boundary (in partic-
ular, the extremal points). For that, we need to introduce the following notation.

Let x1, . . . ,xk ∈Rn be points, and λ1, . . . , λk ∈R+ with
∑
i≤k λi = 1. The point

x=∑i≤k λixi ∈Rn is a convex combination of x1, . . . ,xk . A set C ⊆Rn is convex
if for any two points x,x′ ∈ C, also any of their convex combinations

λx+ (1− λ)x′, λ ∈ (0,1)
belongs to C. For a subset D ⊆Rn, its convex hull conv(D) consists of all points in
Rn being a convex combination of points in D.

A subset C0 ⊆ C of a convex set C ⊆ Rn is an extremal set if C0 is convex: for
all x,x′ ∈ C and λ ∈ (0,1) with λx+ (1− λ)x′ ∈ C0, we have x,x′ ∈ C0. Note that
the empty set and C itself are trivial extremal sets of C. Special extremal sets are
extreme points in C, which cannot be obtained as proper convex combinations of
some other points in C; see Fig. 10 for examples.

It turns out that the feasible regions of linear programs are special convex sets:
For a ∈Rn and b ∈R, the set



236 A.K. Wagler

Fig. 11 A polytope and
different extremal sets (of
dimension 0, 1 and 2)

• {x ∈Rn : aTx= b} is a hyperplane of Rn, and
• {x ∈Rn : aTx≤ b} is a closed half-space of Rn.

A polyhedron P ⊆Rn is the intersection of finitely many closed half-spaces and/or
hyperplanes in Rn. A bounded polyhedron is called a polytope.

Every polyhedron is a convex set since hyperplanes and half-spaces are convex,
and the intersection of convex sets yields a convex set again.

The dimension dim(P ) of a polyhedron P ⊆ Rn is the smallest dimension of
an affine subspace containing P , or the largest d for which P contains points
x0,x1, . . . ,xd such that the vectors x0 − x1, . . . ,x0 − xd are linearly independent.

The extremal sets of a polyhedron P are called faces, and, in particular, faces of
dimension

• 0 are extreme points,
• 1 are edges,
• dim(P )− 1 are facets.

Figure 11 illustrates different faces of a polytope.
A bounded polyhedron, that is, a polytope has, besides its description as intersec-

tion of finitely many closed half-spaces and/or hyperplanes, a second representation
[23, 27]:

Theorem 4 (Weyl–Minkowski theorem) A bounded polyhedron is the convex hull
of its extreme points.

For a constraint matrix A ∈Rm×n and a right-hand side vector b ∈Rm, let

P(A,b)= {x ∈Rn :Ax≤ b
}

denote the polyhedron defined by the corresponding half-spaces Ai· ≤ bi or hyper-
planes Aj · = bj . We can characterize its extreme points as follows (see, e.g., [25]
for a proof).

Theorem 5 For a polyhedron P = P(A,b)⊆Rn and x� ∈ P , the following asser-
tions are equivalent:

• x� is an extreme point of P ;
• {x�} is a 0-dimensional face of P ;
• x� is not a convex combination of other points in P ;
• P \ {x�} is still convex;
• ∃c ∈Rn \ {0} s.t. x� is the unique optimum of max cTx,x ∈ P .
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The drawback of the above characterization is that none of the conditions char-
acterizing x� as an extreme point is easy to check. This changes in the special case
where the studied polyhedron is given by hyperplanes only. For A ∈ Rm×n and
b ∈Rm, let

P=(A,b)= {x ∈Rn :Ax= b
}
.

Moreover, for any x ∈Rn, let supp(x)= {i ∈ {1, . . . , n} : xi 
= 0}. Then we have the
following (see, e.g., [25] for a proof):

Theorem 6 For a polyhedron P = P=(A,b) ⊆ Rn and x� ∈ P , x� is an extreme
point of P if and only if the columns A·j of A with j ∈ supp(x�) are linearly inde-
pendent.

Since extreme points of the feasible region P of a linear program are crucial
and can be easily detected if P is of the special form P=(A,b), we consider linear
programs given in the so-called equational form:

max cTx s.t. Ax = b
x ≥ 0

Remark

• Linear programs in equational form are also called linear programs given in stan-
dard form.

• Note that any linear program can be transformed into equational form, namely,
by introducing so-called slack variables y ∈Rm:

max cTx s.t. Ax ≤ b ⇒ max cTx s.t. Ax+ y = b
x ≥ 0 x,y ≥ 0

• For linear programs in equational form, we assume that the equation system
Ax= b has at least one solution (i.e., that P=(A,b) 
= ∅) and that the rows of
the matrix A are linearly independent (i.e., no redundant constraints occur).

We are interested in special feasible solutions of a linear program:

Definition 6 A basic feasible solution of the linear program in equational form

max cTx s.t. Ax = b
x ≥ 0

with A ∈ Rm×n,b ∈ Rm is a feasible solution x� ∈ Rn for which there exists an m-
element subset B ⊆ {1, . . . , n} such that the (square) matrix AB is nonsingular (i.e.,
the columns of A indexed by B are linearly independent), and x�j = 0 for all j /∈ B .
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Example 3 The vector x� = (0,2,0,1,0) is a basic feasible solution of the equation
system

x1 + 5x2 + 3x3 + 4x4 + 6x5 = 14
x2 + 3x3 + 5x4 + 6x5 = 7

with B = {2,4}.

In fact, basic feasible solutions are crucial for linear programming due to the
following reason.

Theorem 7 Consider a linear program in equational form:

max cTx s.t. Ax= b, x≥ 0.

• If there is at least one feasible solution and the objective function is bounded from
above on P=(A,b)∩Rn+, then there always exists an optimal solution.

• If an optimal solution exists, then there is also a basic feasible solution that is
optimal.

In addition, basic feasible solutions are easy to detect:

Theorem 8 A feasible solution x of a linear program max cTx s.t. Ax= b, x≥ 0 is
basic if and only if the columns of the matrix AK are linearly independent, where

K = {j ∈ {1, . . . , n} : xj > 0
}
.

This opens the possibility to solve linear programs with the help of basic feasible
solutions.

A rather naive approach to solve linear programs would be: For a given linear
program max cTx s.t. Ax= b, x≥ 0,

• Find all extreme points of P=(A,b), that is, all basic feasible solutions (there are
at most

(
n
m

)
if A ∈Rm×n).

• Select the best one among them (i.e., this x with cTx maximal).

Is there a more clever idea to solve linear programs?

4.3.3 The Simplex Method for Solving Linear Programs

Given a matrix A ∈Rm×n and vectors b ∈Rm, c ∈Rn, consider the linear program

max cTx s.t. Ax ≤ b
x ≥ 0.

To solve the linear program with the help of the simplex method, one takes advan-
tage of the following previously stated results: If a linear program has a bounded
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optimal solution, then there exists an extreme point on the boundary of the feasible
region which is optimal (linear programming theorem). For a linear program given
in equational form

max cTx s.t. Ax= b, x≥ 0

we have even more:

• If P=(A,b) is nonempty and bounded, then there always exists an optimal solu-
tion.

• Among all optimal solutions, there always is a basic feasible solution.
• Basic feasible solutions are easy to detect: A feasible solution x is basic if and

only if the columns of the matrix AB are linearly independent, where

B = {j ∈ {1, . . . , n} : xj > 0
}
.

The idea of the simplex method is to start with an arbitrary basic feasible solution
and, as long as the current solution is not optimal, to move to a “neighbored” basic
feasible solution with a better objective function value.

We first shall illustrate this method with the help of an introductory example (the
linear program from Example 1) before stating it formally.

Example 4 Given the following linear program:

max x1 + x2
s.t. −x1 + x2 ≤ 1

x1 ≤ 3
x2 ≤ 2

x1, x2 ≥ 0

As the linear program is not in equational form, we have to transform it by intro-
ducing slack variables in order to turn the inequalities into equations. The resulting
equational form of the above linear program (with slack variables in bold) is:

max x1 + x2
s.t. −x1 + x2 + x3 = 1

x1 + x4 = 3
x2 + x5 = 2

x1, x2, x3, x4, x5 ≥ 0

From the linear program in equational form we easily get x0 = (0,0,1,3,2)T as
initial basic feasible solution by taking the slack variables as basis B0 = {3,4,5}
and the original variables as nonbasis N0 = {1,2}.

We next rewrite the linear program as a so-called simplex tableau, having the
basic variables as left-hand side (in bold) and an additional row for the objective
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function value z= cTx:

x3 = 1 + x1 − x2
x4 = 3 − x1
x5 = 2 − x2
z = x1 + x2

Considering the simplex tableau associated with x0 = (0,0,1,3,2)T, we obviously
have z= 0 as an objective function value.

In order to improve z, we can increase the value of x1 or x2, w.l.o.g. say x2 (keep-
ing x1 = 0). How much depends on the tableau and the nonnegativity constraints:
from x3 = 1+ x1 − x2, x1, x2, x3 ≥ 0 we infer x2 ≤ 1, and from x5 = 2− x2 and
x2, x5 ≥ 0 we infer x2 ≤ 2. Together, we conclude that x2 = 1 is possible.

We update the tableau accordingly by rewriting the first row (to have x2 as the
left-hand side) and substituting this expression for x2 into the other rows. The re-
sulting tableau (with changes in bold) is

x2 = 1 + x1 − x3
x4 = 3 − x1
x5 = 1 − x1 + x3
z = 1 + 2x1 − x3

associated with the basic feasible solution x1 = (0,1,0,3,1)T, B1 = {2,4,5}, and
with objective function value z= 1.

Improving z further is possible by increasing the value of x1 only (as increasing
x3 would decrease z).

From the tableau and nonnegativity constraints we see that no restriction comes
from x2 = 1+ x1− x3, the second row x4 = 3− x1 and x1, x4 ≥ 0 show x1 ≤ 3, but
x5 = 1− x1 + x3 and x1, x3, x5 ≥ 0 result in x1 ≤ 1. Hence, x1 = 1 is possible.

We update the tableau accordingly by rewriting the third row (to have x1 as the
left-hand side) and substituting this expression for x1 in the other rows. We get the
new tableau (with changes in bold)

x2 = 2 − x5
x4 = 2 + x5 − x3
x1 = 1 − x5 + x3
z = 3 − 2x5 + x3

associated with x2 = (1,2,0,2,0)T, B2 = {1,2,4}, and z= 3.
Now, improving z is possible only by increasing the value of x3 (as increasing x5

would decrease z).
From the tableau and nonnegativity we see that x4 = 2+x5−x3 and x3, x4, x5 ≥

0 result in x3 ≤ 2, whereas the row x1 = 1− x5 + x3 does not restrict the value of
x3. Hence, x3 = 2 is possible.

We update the tableau accordingly by rewriting the second row (to have x3 as
the left-hand side) and substituting this expression for x3 into the other rows. The
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Fig. 12 The geometric
interpretation of the basis
exchanges performed in
Example 4

resulting tableau (again with changes in bold) is

x2 = 2 − x5
x3 = 2 + x5 − x4
x1 = 3 + 0 − x4
z = 5 − x5 − x4

associated with x3 = (3,2,2,0,0)T, B3 = {1,2,3}, and z = 5. In this situation,
we cannot increase a nonbasic variable further without decreasing z (as x5 and x4
appear with negative signs).

So, we are stuck. But x3 is the optimal solution: Any feasible solution x̃ with
cTx̃= z̃ has to satisfy

z̃= 5− x̃5 − x̃4,

which implies z̃≤ 5 (together with nonnegativity). Hence, x3 is optimal!
In fact, x3 is the unique optimal solution (since z = 5 requires x4 = x5 = 0 and

the equations uniquely determine the values of x1, x2, and x3).
The geometric interpretation is as follows (see Fig. 12): Starting with the ini-

tial basic feasible solution x0 = (0,0) (in the original variables only), the simplex
method moves along the edges of the feasible region from one basic feasible so-
lution to another, whereas the objective function value grows until it reaches the
optimum.

The previous example illustrated the solution method for linear programs found
by Dantzig [7] (see also [8, 9]); now we state it formally:

The Simplex Method (Dantzig [7])

Input: a matrix A ∈ Rm×n and vectors b ∈ Rm, c ∈ Rn, defining a linear program
max cTx s.t. Ax≤ b,x≥ 0

Output: a vector x∗ maximizing the objective function

1. Transform the program into the equational form (if necessary).
2. Find an initial basic feasible solution x0 ∈Rn and the corresponding basis B0 ⊆
{1, . . . , n} s.t. AB0 is nonsingular and x0

j = 0 ∀j /∈ B0.

Generate the corresponding simplex tableau T (B0).
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3. Move from one basic feasible solution xi with basis Bi to a basic feasible
solution xi+1 with basis Bi+1 and higher objective function value by select-
ing j ∈ Bi and � ∈ {1, . . . , n} \ Bi and setting Bi+1 := Bi \ {j} ∪ {�} s.t.
c(xi+1)≥ c(xi).

4. Stop if no further improvement is possible.

We will next discuss all the necessary steps of the simplex method in detail.

STEP 1 (Transformation) Since we need linear programs given in the equational
form

max cTx s.t. Ax= b, x≥ 0,

inequalities and variables without sign restrictions are disturbing, and the following
transformation becomes necessary: If the given (in)equality system has a

• row Ai·x≤ bi , then introduce a slack variable xn+i ≥ 0 and replace the row by

Ai·x+ xn+i = bi
• row Aj ·x≥ bj , then introduce a slack variable xn+j ≥ 0 and replace the row by

−Aj ·x+ xn+j =−bj
• variable x� without sign restriction, then introduce two new variables y� ≥ 0 and
z� ≥ 0 and substitute x� everywhere by y� − z�.

After applying an according transformation, the original linear program is in the
equational form, as required for the next step.

STEP 2 (Initial basic feasible solution) Consider a linear program in equational
form. We distinguish the following two cases.

If the original linear program was given in inequality form max cTx s.t. Ax ≤
b,x ≥ 0, then the transformation in STEP 1 into the equational form with the help
of slack variables xn+1, . . . , xn+m yields

max cTx s.t. Ax= b, x≥ 0

with A= (A, I) and x= (x1, . . . , xn, xn+1, . . . , xn+m).
By the structure of A, an obvious basic feasible solution of the transformed linear

program is x0 = (0,b)T with all slack variables as basis B0 = {xn+1, . . . , xn+m}.
If the linear program is already given in the equational form max cTx s.t. Ax =

b, x≥ 0, there is no obvious initial basic feasible solution (since x= 0 is infeasible
if b 
= 0).

For each row of Ax = b, we introduce an auxiliary variable xn+i = bi − AT
i·x

and find values for x1, . . . , xn such that xn+i = 0 for all 1 ≤ i ≤ m by solving the
auxiliary linear program ALP

max −
∑

i≤m
xn+i s.t. Ax= b, x≥ 0
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with A= (A, I) and x= (x1, . . . , xn, . . . , xn+1, . . . , xn+m) if b ≥ 0 (otherwise, we
multiply the equations with bi < 0 by −1).

This works since we have:

Lemma 2 The original linear program is feasible if and only if every optimal so-
lution x of ALP satisfies xn+1 = · · · = xn+m = 0. For any such optimal solution,
its basic vector xB = (x1 . . . , xn) is a basic feasible solution of the original linear
program.

The simplex tableau T (B0) determined by B0 is a system of m+ 1 linear equa-
tions in variables x1, . . . , xn and z that has the same set of solutions as the original
system Ax= b, z= cTx.

In matrix notation, T (B0) reads as

xB0 = b−AxN

z= z0 + cTxN

where xB0 is the vector of basic variables, xN the vector of nonbasic variables,
N = {1, . . . , n} \B0, and b ∈Rm, c ∈Rn−m, A ∈Rm×(n−m), z0 ∈R.

This always works, since we have in general:

Lemma 3 For each feasible basis B , there exists exactly one simplex tableau T (B)

xB = b−AxN

z= z0 − cTxN

with A=A−1
B AN , b=A−1

B b, c= cN − (cT
BA

−1
B AB)

T, and z0 = cT
BA

−1
B b.

For the initial basic feasible solution x0, we often haveAB0 = I , which simplifies
the construction of the first tableau by

A=AN, b= b, c= cN −
(
cT
BAN

)T
, and z0 = cT

Bb.

Note that from any tableau T (B) we can read off immediately the basic feasible
solution x0 by

x0
i = bi ∀i ∈ B and x0

i = 0 ∀i ∈N,
and the objective function value cTx0 = z0 = z0 + cT0.

STEP 3 (Basis exchanges) In each basis exchange (called pivot step) of the sim-
plex method, we go from the current basis B and its tableau T (B) to a new basis B ′
and its tableau T (B ′). Thereby, a nonbasic variable x� with � ∈N = {1, . . . , n} \B
has to be exchanged by a basic variable xk with k ∈ B in order to obtain the new
basis

B ′ = (B \ {k})∪ {�}.
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We say that xk leaves the basis and x� enters the basis. This leads to the following
questions:

• Which conditions have xk and x� to satisfy?
• How to select them if there is no unique choice?
• How to obtain the new tableau T (B ′)?

We first discuss the conditions for entering and leaving variables. A nonbasic vari-
able x� with � ∈N may enter the basis if and only if its coefficient c� in the last row
of the tableau T (B)

xB = b−AxN

z= z0 + cTxN

is positive, that is, if cT
� > 0 (as only incrementing such nonbasic variables can

increase the value z of the objective function). For chosen x� with � ∈N , the leaving
basic variable must correspond to a row of the tableau that limits the increment of
x� most strictly:

• All nonbasic variables xi with i ∈N \ {�} should remain zero, hence the j th row
of the tableau together with nonnegativity yields

xj = bj − aj�x� ≥ 0.

• If aj� ≤ 0, this inequality does not restrict the increase of x� in any way.

• For any aj� > 0, we have x� ≤ bj
aj�

.

Thus, we can choose xk with ak� > 0 and bk
ak�

minimal.
This leads to the following fundamental theorem, which in addition shows how to

detect two exceptional cases: unboundedness (i.e., the case where the linear program
does not have a finite optimal solution) and degeneracy (i.e., the case where several
bases correspond to a single basic feasible solution). In degenerate basic feasible
solutions, some basic variables are zero: for example, for the basic feasible solution
x0 = (0,0,0,2)T, the bases

B = {1,4} or B ′ = {2,4} or B ′′ = {3,4}
are possible.

Theorem 9 (Basis exchange theorem) Let x be a basic feasible solution with basis
B and simplex tableau T (B)

xB = b−AxN

z= z0 + cTxN

and let � ∈N with c� > 0. Then we have the following:
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Fig. 13 Basis exchanges in
the non-degenerate and in the
degenerate case

• If A·� ≤ 0, then the linear program is unbounded.
• If A·� 
≤ 0, we get a new basis B ′ = (B \ {k})∪ {�} where k ∈ B with ak� > 0 and

bk

ak�
=min

{
bj

aj�
: j ∈ B, aj� > 0

}
.

• If B is nondegenerate (xB = b> 0), then cTx′ > cTx where x′ is the basic feasible
solution associated with the new basis B ′.

Remark The geometric view may illustrate the basis exchanges. Basic feasible so-
lutions correspond to extreme points of the polyhedron P=(A,b). Pivot steps (i.e.,
basis exchanges) of the simplex method move from one extreme point to another
along an edge (i.e., a one-dimensional face) of the polyhedron, see Fig. 13.

Exceptions are degenerate pivot-steps, where we stay at the same extreme point
x0 as only the feasible basis changes. Possible reasons are superfluous variables or
redundant inequalities (whose removal resolves degeneracy) or geometric reasons
(e.g., that more than dim(P=(A,b)) hyperplanes meet in x0). The resulting diffi-
culty is so-called cycling:

• If degeneracy occurs, longer runs of degenerate bases exchanges (without im-
provement in the objective function value) may be necessary.

• It may even happen that some tableau is repeated in a sequence of degenerate
exchange steps (called cycling) such that the algorithm passes through an infinite
sequence of tableaux and, thus, fails.

To finish a basis exchange, updating the simplex tableau according to the new
basis is required. For the new basis B ′ we can calculate the new tableau T (B ′)

xB ′ = b−AxN ′

z= z0 + cTxN ′

by A = A−1
B ′ AN ′ , b = A−1

B ′ b, c = cN ′ − (cT
B ′A

−1
B ′ AN ′)

T, z0 = cT
B ′A

−1
B ′ b from the

original matrix A and the vectors b and c.
In computer implementations of the simplex method, however, this is never done

(as it is inefficient). Note that for the next basis exchange, we only need the vector c
(to select the next entering variable � ∈N ′ with c� > 0), and for the chosen � ∈N ′,
the column A·� and the vector b (to find the next leaving variable k ∈ B ′). For that,
the matrix A−1

B ′ is computed (which is required to calculate all needed entries). This
procedure is known as the revised simplex algorithm; see, e.g., [10].
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Fig. 14 Different basis
exchanges toward the optimal
solution

Step 4 (Testing for optimality) The simplex method stops if an optimal solution
is found. To detect this situation, we have the following optimality criterion of a
simplex tableau.

Lemma 4 Consider a feasible basis B and its simplex tableau T (B)

xB = b−AxN

z= z0 + cTxN

If the basic feasible solution x0 corresponding to B is nondegenerate (i.e., if b> 0),
then we have: x0 is the optimal solution if and only if c≤ 0.

Indeed, x0 = (b0
)

has the objective function value equal to z0, whereas for any
other feasible solution x̃, we have x̃N ≥ 0 and cTx̃= z0 + cTx̃N ≤ z0 (by c≤ 0).

It is left to discuss the efficiency of the simplex method and pivoting. The num-
ber of pivot steps (i.e., basis exchanges) for solving a linear program by the simplex
method strongly depends on the choices which variables should leave or enter the
basis: Fig. 14 shows an example where, starting from an initial basic feasible solu-
tion, the optimal solution could be reached in three or two steps.

We do not know in advance which choices will be good if there are several possi-
bilities of improving variables (i.e., nonbasic variables xj with j ∈N from the cur-
rent tableau with cj > 0). We denote the index set of the improving variables byN+.

A pivot rule is a rule how to select the entering variable among the improving
ones (some rules also specify the choice of the leaving variable, if necessary).

Some well-known pivot rules are:

• Largest Coefficient Rule: choose an improving variable x� such that c� =
max{cj : j ∈N+} (to maximize the improvement of z per unit increase of x�)

• Largest Increase Rule: choose an improving variable that yields the maximal
improvement in z (this rule is computationally more expensive but locally maxi-
mizes the progress)

• Steepest Edge Rule: choose an improving variable maximizing the value

cT(xnew − xold)

‖xnew − xold‖
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(to move the current basic feasible solution into a direction closest to the one of
the objective function c)

• Bland’s Rule: choose the improving variable x� with the smallest index � ∈N+;
if there are several possibilities for the leaving variable, then also take the one
with the smallest index.

The largest coefficient rule is the original rule by Dantzig [8], whereas the steepest
edge rule is the champion in practice. Bland’s rule is particularly important since we
have:

Theorem 10 (Bland [4]) The simplex method with Bland’s rule is always finite
since cycling is impossible.

Using other pivot rules than Bland’s rule, the simplex method may cycle (and
theoretically, this is the only possibility how it may fail). In fact, for (almost) all
pivot rules, there are worst-case examples known that require an exponential number
of pivot steps (e.g., for Dantzig’s rule, one in n variables and inequalities requiring
2n − 1 pivot steps by Klee and Minty [22]).

Note that in practice, most implementations of the simplex method try to circum-
vent cycling via different perturbation techniques.

In theory, the best known worst-case bound for the running time of the simplex
method is, therefore, ec

√
n lnn for linear programs with n variables and constraints,

using a simple randomized pivot rule (randomly permute the indices of the variables,
then apply Bland’s rule).

In practice, however, the simplex method performs very satisfactory even for
large linear programs.

Computational experiments indicate that it reaches, for linear programs with m
equations, an optimal solution in something between 2m and 3m pivot steps, with
about O(m2) arithmetic operations per pivot step, such that the expected running
time is about O(m3).

4.3.4 Linear Programming Duality

In this subsection, we address the problem to obtain bounds for the objective func-
tion value of a linear program, for example, an upper bound for the value of an
optimal solution of a maximization problem, without knowing the optimum before.
To this end, we shall start with an introductory example.

Example Consider the following linear program:

max 2x1+3x2
s.t. 4x1+8x2 ≤ 12

2x1+ x2 ≤ 3
x1, x2 ≥ 0
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Without computing the optimum z∗, we can infer from the first inequality and non-
negativity that z∗ ≤ 12 since

2x1 + 3x2 ≤ 4x1 + 8x2 ≤ 12.

We obtain a better bound by scaling the inequality by a factor 2:

2x1 + 3x2 ≤ 2x1 + 4x2 ≤ 6.

Adding the two original inequalities and scaling by a factor 3 even yields

2x1 + 3x2 ≤ 2x1 + 3x2 ≤ 5.

How good can a so-obtained upper bound u≥ cTx for all feasible solutions x of the
studied linear program be? To answer this question, we shall derive an inequality
of the form d1x1 + d2x2 ≤ u, where d1 ≥ 2, d2 ≥ 3, and u is as small as possible.
Then, for all x1, x2 ≥ 0, we indeed have

2x1 + 3x2 ≤ d1x1 + d2x2 ≤ u.
For that, we combine the two inequalities of the linear program with some nonneg-
ative coefficients y1 and y2, obtain

(4y1 + 2y2)x1 + (8y1 + y2)x2 ≤ 12y1 + 3y2,

and infer that d1 = 4y1 + 2y2, d2 = 8y1 + y2, and u = 12y1 + 3y2. For choosing
the best coefficients d1 and d2, we must ensure d1 ≥ 2, d2 ≥ 3 and u being minimal
under these constraints. This leads to

min 12y1+3y2
s.t. 4y1+2y2 ≥ 2

8y1+ y2 ≥ 3
y1, y2 ≥ 0

the linear program being dual to the original linear program we started with. Every
of its feasible solutions yields an upper bound for the objective function value of the
original (primal) linear program.

We now shall formalize this process. Given a matrix A ∈ Rm×n and vectors b ∈
Rm, c ∈Rn, consider the primal linear program (P)

max cTx
s.t. Ax ≤ b

x ≥ 0

To determine an upper bound u≥ cTx for all x ∈ P(A,b), combine the m inequal-
ities of Ax ≤ b with nonnegative coefficients y1, . . . , ym such that the resulting in-
equality has the j th coefficient at least cj for 1 ≤ j ≤m and the right-hand side is
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as small as possible. This leads to the dual linear program (D)

min bTy
s.t. ATy ≥ c

y ≥ 0

The primal and the dual linear program are related as follows.

Theorem 11 (Weak duality theorem) Consider the dual linear programs

max cTx s.t. Ax≤ b, x ≥ 0 (P )

min bTy s.t. ATy≥ c, y ≥ 0 (D)

• For each feasible solution y of (D), the value bTy provides an upper bound for
the maximum objective function value of (P), that is, we have cTx≤ bTy for each
feasible solution x of (P).

• If (P) is unbounded, then (D) is infeasible.
• If (D) is unbounded (from below), then (P) is infeasible.

Theorem 12 (Strong duality theorem) For the dual linear programs

max cTx s.t. Ax≤ b, x ≥ 0 (P )

min bTy s.t. ATy≥ c, y ≥ 0 (D)

exactly one of the following possibilities occurs:

• Neither (P) nor (D) has a feasible solution.
• (P) is unbounded, and (D) has no feasible solution.
• (P) has no feasible solution, and (D) is unbounded.
• Both (P) and (D) have a feasible solution. Then both linear programs have an

optimal solution, say x∗ of (P) and y∗ of (D), and cTx∗ = bTy∗.

Proofs of the two duality theorems can be found, for instance, in [25].
The two duality theorems are valid for all kinds of linear programs; we only have

to construct the dual program properly: For a maximization problem with constraint
matrix A ∈ Rm×n, right-hand side vector b ∈ Rm, and objective vector c ∈ Rn, the
dual program has

• variables y1, . . . , ym where yi corresponds to the ith constraint and satisfies

yi

⎧
⎨

⎩

≥ 0
≤ 0
∈R

⎫
⎬

⎭
if Ai·x

⎧
⎨

⎩

≤
≥
=

⎫
⎬

⎭
bi;
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• n constraints, where the j th constraint corresponds to xj and reads

A·jy

⎧
⎨

⎩

≥
≤
=

⎫
⎬

⎭
cj if xj

⎧
⎨

⎩

≥ 0
≤ 0
∈R

⎫
⎬

⎭
;

• the objective function bTy that is to be minimized.

We can summarize these conditions as the following “dualization recipe”:

Primal linear program Dual linear program

Variables x1, x2, . . . , xn y1, y2, . . . , ym

Matrix A ∈Rm×n AT ∈Rn×m

Right-hand side b ∈Rm c ∈Rn

Objective function max cTx min bTy

Constraints ith constraint has ≤ yi ≥ 0

≥ yi ≤ 0

= yi ∈R

xj ≥ 0 j th constraint has ≥
xj ≤ 0 ≤
xj ∈R =

The implications for the solvability of two dual linear programs are due to the
Farkas lemma [14, 15] (see also [25] for a proof):

Theorem 13 (Farkas lemma) For A ∈Rm×n and b ∈Rm, exactly one of the follow-
ing two possibilities occurs:

1. There is a vector x ∈Rn satisfying Ax= b and x≥ 0.
2. There is a vector y ∈Rm such that yTA≥ 0T and yTb< 0.

Remark The Farkas lemma has several variants for the different types of linear pro-
grams, which can be summarized as follows:

The system Ax≤ b The system Ax= b

has a solution
x≥ 0 if and only if

y≥ 0 and yTA≥ 0
imply yTb≥ 0

yTA≥ 0T implies
that yTb≥ 0

has a solution
x ∈R if and only if

y≥ 0 and yTA= 0
imply yTb≥ 0

yTA= 0T

implies that yTb= 0

That is, if the primal and dual linear programs are neither infeasible nor un-
bounded, then the maximum of the primal program (P) equals the minimum of the
dual program (D).
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This leads to duality-based simplex methods to solve a linear program: the dual
simplex method and so-called primal–dual methods:

• To solve a linear program, we can apply the simplex method either to the pri-
mal linear program or to its dual linear program. The dual simplex method solves
the dual linear program by starting with a dual feasible basis and trying to at-
tain primal feasibility while maintaining dual feasibility throughout. This can be
substantially faster if

– the dual linear program has less constraints than the primal linear program, or
– an initial (dual) basic feasible solution is easy to obtain, or
– the dual linear program is less degenerate.

• Primal–dual methods solve a linear program by iteratively improving a feasible
solution of the dual linear program:

– Consider a primal linear program given by max cTx s.t. Ax= b, x≥ 0.
– For a feasible dual solution y, define J = {j ∈ {1, . . . , n} :A·jy= cj }.
– A dual solution y is optimal if and only if there is a feasible primal solution x

with

xj = 0 ∀j ∈ {1, . . . , n} \ J.
In addition to the aforementioned relations between primal and dual linear pro-

grams, we have even more: If a primal linear program is a formulation for a combi-
natorial optimization problem, then its dual linear program has also an interpretation
as a combinatorial optimization problem, related to the combinatorial object being
dual to the originally studied one.

We shall illustrate this relation with the help of our running example, the network
flow problem.

Example 5 (Dualization of maximum network flow) Given a network N = (D; s,
t; c) with digraph D = (V ,A) and capacities c ∈ ZA. Recall from Problem 3 that
the linear programming formulation of the maximum network flow problem is

max
∑

a∈δ+(s)
xa

s.t.
∑

a∈δ−(v)
xa =

∑

a∈δ+(v)
xa ∀v ∈ V \ {s, t}

xa ≤ ca ∀a ∈A
xa ≥ 0 ∀a ∈A

With V ′ = V \ {s, t} denoting the set of internal nodes of the digraph, let

• F ∈ ZA×V ′ be the matrix of the flow conservation constraints,
• d ∈ ZA with da = 1 if a ∈ δ+(s), da = 0 otherwise be the objective vector.
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Then the primal linear program (P) encoding the maximum flow problem reads in
matrix notation:

max dTx
s.t. Fx = 0

Ix ≤ c
x ≥ 0

For the dualization, we use one variable

• zv for the flow conservation constraint of v ∈ V ′,
• ya for the capacity constraint of a ∈A.

This leads to the following dual linear program (D):

min cTy
s.t. F Tz+ ITy ≥ d

y ≥ 0

A closer look to the dual program shows that the dual program has

• one variable zv ∈R corresponding to the flow conservation for each v ∈ V ′:
x
(
δ−(v)

)− x(δ+(v))= 0;
• one variable ya ≥ 0 corresponding to the capacity constraint for each a ∈A;
• for each primal variable xa, a ∈A, one constraint F·a z+ I·a y≥ da , which reads,

for a = (u, v) ∈A,

zv − zu +ya ≥ 0 if u 
= s, v 
= t
zv +ya ≥ 1 if u= s, v 
= t
−zu +ya ≥ 0 if u 
= s, v = t

• the objective function cTy that is to be minimized.

What is the combinatorial interpretation of the dual program? For a network
N = (D; s, t; c) with D = (V ,A), consider the dual program

min cTy
s.t. zv − zu+ ya ≥ 0 ∀a = (u, v) ∈A

zs = 1
zt = 0

ya ≥ 0 ∀ a = (u, v) ∈A
Recall that for a partition of V = Vs ∪ Vt with s ∈ Vs and t ∈ Vt , the subset of arcs
δ+(Vs)= {(u, v) ∈A : u ∈ Vs, v ∈ Vt } is an (s, t)-cut. Hence, each (s, t)-cut δ+(Vs)
of a network N = (D; s, t; c) with D = (V ,A) corresponds to a feasible solution
(z,y)T ∈RV

′ ×RA+ of the dual program with

zv = 1 if v ∈ Vs, zu = 0 if u ∈ Vt
ya = 1 if a ∈ δ+(Vs), ya = 0 if a /∈ δ+(Vs).



4 Combinatorial Optimization Illustrated on Network Flow 253

Recall further that the flow across the (s, t)-cut (Vs,Vt ) is

f (Vs,Vt )=
∑

u∈Vs,v∈Vt
f (uv)−

∑

u∈Vs,v∈Vt
f (vu)

and its capacity is

c(Vs,Vt )=
∑

u∈Vs,v∈Vt
c(uv).

Obviously, val(f ) ≤ c(Vs,Vt ) for any (s, t)-cut. We have even more: Since every
(s, t)-flow f satisfies the capacity constraints, we have that f (Vs,Vt ) ≤ c(Vs,Vt )
and thus

val(f )≤ c(Vs,Vt )
for any (s, t)-cut. This upper bound for the maximum flow in a network also follows
from the weak duality theorem (Theorem 11), and the max-flow min-cut theorem
(Theorem 1) is a famous special case of the strong duality theorem (Theorem 12),
which implies:

max dTx = min cTy
s.t. Fx = 0 s.t. F Tz+ ITy ≥ d

Ix ≤ c y ≥ 0
x ≥ 0

In particular, the linear programming formulation for maximum network flow
from Problem 3 is the “right” formulation since it does not only properly encode the
primal problem, but also its dual linear program has an interpretation as a minimum
cut problem, the combinatorial problem being dual to the originally studied network
flow problem.

4.4 Integer Programming and the Network Flow Problem

In the previous section, we considered a linear program, that is, the problem to

maximize/minimize the value of cTx
among all vectors x ∈Rn satisfying Ax ≤ b

x ≥ 0

where A ∈Rm×n is a given matrix, and b ∈Rm, c ∈Rn are given vectors.
If in some practical settings, the studied objects are entities as workers, goods, or

planes that cannot be divided, we do not consider variables x ∈Rn but rather x ∈ Zn.
This leads to an integer linear optimization problem.

In this section we discuss

• how linear programs and integer linear programs are related,
• why integer linear programs are hard to solve in general, and
• what is special for solving integer network flow problems.
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Fig. 15 The graphical
interpretation of the
constraints and the
polyhedron P (A,b) (the
shaded region) containing the
feasible solutions x ∈ Z2 of
the integer linear program
given in Example 6

4.4.1 Integer Linear Programs and Their Linear Relaxations

We first address the question what an integer linear program is.

Definition 7 An integer linear program (ILP) is as follows:

maximize/minimize the value of cTx
among all vectors x ∈ Zn satisfying Ax ≤ b

x ≥ 0

where A ∈Rm×n is a given constraint matrix, b ∈Rm a given right hand side vector,
and c ∈Rn a given objective function vector (typically, also the entries of A,b, c are
integral in this case).

We illustrate this formal definition with the help of a small example:

Example 6 This example shows an integer linear program given explicitly and in
matrix formulation:

max x1 + x2 is the linear objective function cTx
s.t. −x1 + x2 ≤ 1

x1 ≤ 3 form the linear constraints Ax≤ b
x2 ≤ 2

x1, x2 ≥ 0 are the nonnegativity constraints x≥ 0
x1, x2 ∈ Z are the integrality constraints x ∈ Z2

Figure 15 gives the graphical interpretation of the constraints and the resulting poly-
hedron P(A,b).

In an integer linear program

max cTx, Ax≤ b, x ∈ Zn

we still have a linear objective function, and the side constraints ATx≤ b are linear
and describe a polyhedron P(A,b), but the feasible points are just the lattice points
x ∈ P(A,b)∩Zn.
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Fig. 16 The feasible points
of an integer linear program
(a) and a linear constraint
system for the convex hull of
all its integral solutions (b)

In particular and in contrast to the case of linear programming, an optimal so-
lution of an integer linear program is not necessarily attained on the boundary of
P(A,b), but may be situated in its interior. Figure 16(a) illustrates the case where
none of the extreme points of P(A,b) is integral.

This makes the problem hard in general (see, for instance, [21] for a proof and
[3, 19, 24–26] for further information):

Theorem 14 It is NP-hard to decide whether an integer linear program has a solu-
tion above/below a certain threshold.

In contrary, the corresponding linear program, obtained by dropping the integral-
ity requirement, can be solved in polynomial time. How are linear and integer linear
programs related to each other?

Definition 8 For an integer linear program

max cTx, Ax≤ b, x ∈ Zn

the linear program

max cTx, Ax≤ b, x ∈Rn

obtained by dropping the integrality requirements is called a linear relaxation since
its feasible region P(A,b) contains all integral feasible points x ∈ P(A,b)∩Zn of
the corresponding integer linear program.

The linear relaxation can be solved in polynomial time, but its optimal solution
may be fractional, and, thus, may not be a solution of the corresponding integer
linear program.

However, the convex hull of all integral solutions of an integer linear program
is a polyhedron and, thus, can be described by means of linear inequalities; see
Fig. 16(b). Thus, in principle there exists a constraint system for each integer linear
program, called ideal formulation, such that the feasible region has integral extreme
points only:
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Definition 9 For an integer linear program

max cTx, Ax≤ b, x ∈ Zn

a linear program

max cTx, Ax≤ b, x ∈Rn

is an ideal formulation if

P(A,b)= {x ∈Rn+ :Ax≤ b
}= conv

{
x ∈ Zn+ :Ax≤ b

}
.

As the optimum of a linear program is always attained at an extreme point of its
feasible region, linear programming techniques can be applied to solve integer linear
programs given as ideal formulations! This leads to polynomial-time solvability,
provided that the required inequalities can be separated in polynomial time (i.e.,
that it can be checked efficiently whether a given point satisfies all inequalities or
violates some of them; for instance, this is the case if the ideal formulation contains
only a polynomial number of constraints).

In general, finding an ideal formulation for an integer linear program is as hard
as solving the problem itself. In some special cases, however, certain properties
related to the underlying combinatorial problem can lead to the desired situation,
for example, if the constraint matrix A of the integer linear program has a special
structure. We will next define such a type of matrices.

Definition 10

• A matrix A ∈ Zm×n of full row rank is unimodular if the determinant of each
basis of A is in {−1,1}.

• A matrix A ∈ Zm×n is totally unimodular if the determinant of each square sub-
matrix of A is in {−1,0,1}.

Remark Unimodular and totally unimodular matrices must have entries in {−1,0,1}
only. A matrix A ∈ Zm×n is totally unimodular if and only if

• (A, I) is totally unimodular;
• AT is totally unimodular.

The following matricesA,AT, (AT, I ) are examples of totally unimodular matrices:

(
1 1 0
1 0 1

)
,

⎛

⎝
1 1
1 0
0 1

⎞

⎠ ,

⎛

⎝
1 1 1 0 0
1 0 0 1 0
0 1 0 0 1

⎞

⎠ .

Recall that a polyhedron is integral if all its extreme points are integral. The
relation of unimodularity and the integrality of polyhedra coming from integer pro-
gramming formulations is as follows (see [20] for the proof and [3, 19, 24–26] for
further information):
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Theorem 15 Consider a matrix A ∈ Zm×n.

• P=(A,b)= {x ∈Rn+ :Ax= b} is integral for all right-hand side vectors b ∈ Zm

with P=(A,b) 
= ∅ if and only if A has full row rank and is unimodular.
• P(A,b) = {x ∈ Rn+ : Ax ≤ b} is integral for all right-hand side vectors b ∈ Zm

with P(A,b) 
= ∅ if and only if A is totally unimodular.

Remark The proof of the latter theorem is based on Cramer’s rule: For a nonsingu-
lar matrix A ∈Rn×n and b ∈ Zn, we have

Ax= b ⇐⇒ x=A−1b ⇐⇒ xi = det(Ai)

det(A)

where Ai is obtained from A by replacing the ith column by b. From det(A) ∈
{−1,1} for totally unimodular matrices, it follows xi ∈ Z.

Thus, all integer linear programs with (totally) unimodular constraint matrices
have an integral polyhedron as the convex hull of its feasible solutions and can be
solved with the help of linear programming techniques.

However, as the hardness of solving integer linear programs implies, we do not
always have totally unimodular constraint matrices. A more general setting involves
linear programming duality:

Definition 11 A system Ax≤ b of linear inequalities is totally dual integral (TDI)
if the linear program

min bTy s.t. ATy= c, y≥ 0

has an integral optimal solution for every integral vector c such that max cTx,Ax≤
b is bounded.

Note that A is totally unimodular if and only if the system Ax ≤ b, x ≥ 0 is
totally dual integral for all integral vectors b.

Also, the concept of totally dual integrality, introduced by Edmonds and Giles
[12], is related to the integrality of polyhedra:

Theorem 16 If the system Ax≤ b is totally dual integral, A ∈Rm×n, and b ∈Rm,
then we have:

• The primal problem

max cTx s.t. Ax≤ b

has an integral optimal solution for all c ∈ Zn;
• The polytope

P(A,b)= {x ∈Rn :Ax≤ b
}

is integral.
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Fig. 17 The feasible points of an integer linear program and additional linear constraints (cutting
planes) approximating the convex hull of all its integral solutions

To summarize, ideal formulations follow the idea to go back to linear programs
in order to solve integer linear programs.

In fact, we can apply linear programming techniques and solve an integer linear
program in polynomial time in one of the following situations: the canonical integer
linear programming formulation Ax≤ b, x≥ 0 is

• ideal as P(A,b) is integral;
• not ideal, but the constraint system Ax≤ b,x≥ 0 with P(A,b)= conv{x ∈ Zn+ :
Ax≤ b} is easy to find by adding (polynomially many) further constraints;

• not ideal in general, but is ideal for some special cases where additional combi-
natorial properties are satisfied.

Note that ideal formulations for integer linear programs typically involve a much
larger number of constraints than compact formulations using integrality require-
ments (which makes the separation problem harder).

For most integer optimization problems, no ideal formulation is known at all.
In this general situation, one might start from a canonical integer linear program
Ax≤ b, x≥ 0 and try to find hyperplanes approximating conv{x ∈ Zn+ :Ax≤ b} at
the “right place” (i.e., near the optimal solution as illustrated in Fig. 17).

Such approaches to enhance the original formulation are called cutting plane
methods and work as follows.

Generic Cutting Plane Method

Input: an integer linear program (ILP) max cTx,Ax≤ b,x ∈ Zn

Output: an optimal integer solution x∗

1. Solve the linear relaxation (LP) max cTx,Ax≤ b,x ∈Rn.
If P(A,b) is empty, then the ILP is also infeasible, and STOP.
Else, let x∗ be an optimal (extreme point) solution of the LP.

2. If x∗ is integral, then STOP because x∗ is also optimal for the ILP.
3. If x∗ is not integral, then find an inequality that is satisfied by all feasible solu-

tions of the ILP, but is violated by x∗.
4. Append this inequality (the cutting plane) to the LP, and proceed with Step 1.
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A classical way to generate new valid inequalities from the known constraints
in Ax≤ b makes use of so-called Chvátal–Gomory cuts, introduced by Chvátal [5]
and implicitly by Gomory [18].

For any polyhedron P(A,b), let PI (A,b) denote the convex hull of all integer
points in P(A,b). If

∑
aixi ≤ b is a valid inequality for P(A,b) and has integer

coefficients ai only, then
∑
aixi ≤ 'b( is a Chvátal–Gomory cut for P(A,b) and

valid for PI (A,b). In fact, every valid inequality for the convex hull of all integral
solutions can be generated by applying the Chvátal–Gomory procedure (i.e., adding
all Chvátal–Gomory cuts) to P(A,b) a finite number of times. This guarantees that
cutting plane methods indeed terminate.

It is a currently active field of research to find more efficient cutting planes than
the classical ones, such as, for example, split cuts, intersection cuts, and others
[1, 2, 6, 11].

For more information on integer programming, see, foe example, [3, 19, 24–26].

4.4.2 Computing Integer Network Flows

We finally discuss the integer network flow problem: given a network N =
(D; s, t; c) with D = (V ,A), find an integral (s, t)-flow f : A→ Z maximizing
the value val(f ).

In order to formulate this problem as integer linear program, we again need

• the variables xa to express the flow f (a) on each arc a ∈A,
• the linear objective function max

∑
a∈δ+(s) xa of maximizing the flow leaving the

source s,
• the linear flow conservation constraints

∑
a∈δ−(v) xa =

∑
a∈δ+(v) xa ∀v ∈ V \{s, t},

• the linear capacity constraints xa ≤ ca ∀a ∈A,

and in addition, integrality is required for all variables: xa ∈ Z ∀a ∈A.
Thus, the problem of finding an integral (s, t)-flow f :A→ Z of maximal value

val(f ) leads to the following:

Problem 4 (Integer maximum network flow problem) Given a network N =
(D; s, t; c) with digraph D = (V ,A), find an (s, t)-flow f : A→ Z maximizing
the value val(f ) by solving the following integer linear program:

max
∑

a∈δ+(s)
xa

s.t.
∑

a∈δ−(v)
xa =

∑

a∈δ+(v)
xa ∀v ∈ V \ {s, t}

xa ≤ ca ∀a ∈A
xa ≥ 0 ∀a ∈A
xa ∈ Z ∀a ∈A
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With V ′ = V \ {s, t} denoting the set of internal nodes of the digraph, let again

• F ∈ ZA×V ′ be the matrix of the flow conservation constraints,
• d ∈ ZA with da = 1 if a ∈ δ+(s) and da = 0 otherwise be the objective vector.

Then the program encoding the integer maximum network flow problem reads in
matrix notation:

max dTx
s.t. Fx = 0

Ix ≤ c
x ∈ ZA+

Indeed, every vector x ∈ ZA satisfying all the above constraints corresponds to
an integral (s, t)-flow f , an optimal solution to a maximum flow. How hard or easy
is it to compute a maximum flow as optimal solution of the above integer linear
program?

Since integer linear programs are hard to solve in general, this leads to the ques-
tion whether we can find an ideal formulation by taking advantage of special com-
binatorial properties of the underlying network flow problem.

Recalling that all integer linear programs with (totally) unimodular constraint
matrices have an integral polyhedron as the convex hull of its feasible solutions, we
wonder whether the constraint matrices for the network flow problem satisfy this
property.

Indeed, one example for unimodularity are node/arc incidence matrices of di-
graphs, the underlying discrete structure for the networks of our flow problem:

Theorem 17 The node/arc incidence matrix of any digraph D = (V ,A) is totally
unimodular.

The proof of the latter theorem is based on the following characterization of
totally unimodular matrices.

Theorem 18 A matrix M ∈ Zm×n is totally unimodular if and only if each subset
I ⊆ {1, . . . , n} of columns has a bipartition I = IA ∪ IB such that for all rows j ∈
{1, . . . ,m}, we have

∑
i∈IA mji −

∑
i∈IB mji ∈ {−1,0,1}.

Thus, we shall study how our constraint matrix is related to this property.
In fact, for a network N = (D; s, t; c) with digraph D = (V ,A), the flow conser-

vation matrix F ∈ ZV
′×A has one row for each of the constraints

∑

a∈δ−(v)
xa −

∑

a∈δ+(v)
xa = 0 ∀v ∈ V ′ = V \ {s, t}.
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The column of F for arc a = (u, v) ∈A reads as follows:

F=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a
...

· · · · · · 1 · · · · · ·
...

· · · · · · −1 · · · · · ·
...

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

u

v

Hence, F is the node/arc incidence matrix of a digraph and thus indeed totally uni-
modular. Since adding the identity matrix I to a totally unimodular matrix yields
again a totally unimodular matrix, this implies the following:

Corollary 1 The maximum network flow problem

max dTx
s.t. Fx = 0

Ix ≤ c, x≥ 0

has for all integral capacities c ∈ ZA+ an integral optimum.

Since a matrix is totally unimodular if and only if its transposed matrix is totally
unimodular, it follows for the dual linear program:

Corollary 2 The minimum cut problem

min cTy
s.t. F Tz+ ITy ≥ d

y ≥ 0

has for all integral vectors d ∈ ZA+ an integral optimum.

To conclude, the latter results from an example par excellence in the field of so-
called polyhedral combinatorics, a powerful, coherent and unifying tool for combi-
natorial optimization, involving algorithms, the geometry of solution sets and min-
max relations with dual problems. The studied network flow problem demonstrates
that these aspects are closely related in general:

“Often a polynomial-time algorithm yields, as a by-product, a description (in terms of in-
equalities) of an associated polyhedron. Conversely, an appropriate description of the poly-
hedron often implies the polynomial-time solvability of the associated optimization problem,
by applying linear programming techniques. With the duality theorem of linear program-
ming, polyhedral characterizations yield min–max relations, and vice versa.”

Alexander Schrijver
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Chapter 5
Stoichiometric and Constraint-Based Analysis
of Biochemical Reaction Networks

Steffen Klamt, Oliver Hädicke, and Axel von Kamp

Abstract Metabolic network analysis based on stoichiometric and constraint-based
methods has become one of the most popular and successful modeling approaches
in network and systems biology. Although these methods rely solely on the struc-
ture (stoichiometry) of metabolic networks and do not require extensive knowledge
on mechanistic details of the involved reactions, they enable the extraction of im-
portant functional properties of biochemical reaction networks and deliver various
testable predictions. This chapter gives an introduction on basic concepts and meth-
ods of stoichiometric and constraint-based modeling techniques. The mathematical
foundations of the most important approaches—including graph-theoretical analy-
sis, conservation relations, metabolic flux analysis, flux balance analysis, elemen-
tary modes, and minimal cut sets—will be presented, and applications in biology
and biotechnology will be discussed. It will be shown that network problems aris-
ing in the context of metabolic network modeling are related to different fields of
applied mathematics such as graph and hypergraph theory, linear algebra, linear
programming, and combinatorial optimization. The methods presented herein are
discussed in light of biological applications; however, most of them are generally
applicable and useful to analyze any chemical or stoichiometric reaction network.
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5.1 Introduction

Systems biology is a relatively young and interdisciplinary research area that
emerged as a logical consequence of the accumulating factual biological knowl-
edge and the huge amounts of experimental biological data generated through novel
measurement technologies. There are many different definitions of systems biology,
but two important key features of almost all definitions are (i) a shift from reduction-
ism to a systemic (holistic) perspective on biological systems and (ii) the synergistic
combination and iterative use of experimental work (“wet lab”) and mathematical
modeling (“dry lab”) to achieve this goal.

Biological systems—here we will focus on the cellular scale—show an inherent
complexity both in the number and structure of its components (DNA, RNA, pro-
teins, metabolites, etc.) and in the way these compounds interact with each other.
Moreover, even in simple organisms like bacteria many interwoven processes take
place concurrently in the cell including metabolism, signal transduction, gene regu-
lation, DNA replication, and growth. It is therefore not surprising that a great variety
of mathematical approaches has been employed to model the diversity of biologi-
cal (sub)systems and phenomena. Many of those methods are well known from and
frequently used in other fields, for example, differential equations for mechanistic
and dynamic modeling of networks of interacting compounds. However, particular
features of biological systems and of experimental biological data often require and
enforce the development of novel, more tailored modeling approaches. For example,
biological systems modeling is typically hampered by a great level of uncertainty:
the data are notoriously noisy, and mechanistic details and kinetic parameters of bio-
chemical reactions are often not known. In fact, what is often available to the mod-
eler is qualitative biological knowledge (e.g., the network topology of interactions)
and qualitative or semiquantitative trends from experimental data (e.g., increased
concentration of a metabolite after deletion of a gene). Accordingly, qualitative or
semiquantitative methods that provide meaningful biological insights and allow rea-
soning and predictions under such a knowledge base have attracted increased atten-
tion [11].

Systems analysis naturally implies the analysis of networks; sometimes, the
terms networks and systems are even used as synonyms. However, there is a ten-
dency to employ the term network when emphasizing the invariant structure of re-
lationships between the components of a system. Based on their function, cellular
networks can be divided into three major classes: (i) metabolic networks; (ii) sig-
nal transduction networks; and (iii) gene regulatory networks. Metabolic networks
are responsible for uptake and degradation of substrates and nutrients and for syn-
thesis of building blocks and energy needed for assembling all constituents of the
cell. Signaling networks sense environmental signals and the internal state of the
cell and induce appropriate responses, for example, by up- and down-regulating the
expression of certain genes. Finally, gene regulatory networks can be seen as an
abstraction of signaling networks; they capture causal links between genes. For ex-
ample, the protein PA encoded in a gene GA may serve as a regulator for gene GB ,
that is, the expression of gene GB (and thus the abundance of protein PB ) depends
on the activity of gene GA.
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Obviously, the three networks do not operate in isolation, and there are many
links between them. For example, the concentrations of certain metabolites serve
as trigger for signaling pathways. However, signaling and gene regulatory networks
mainly consist of proteins or/and genes that mutually activate or deactivate each
other thereby generating signal or information flows. In contrast, metabolic net-
works are composed of metabolites and the metabolic reactions between them.
A metabolic reaction is normally catalyzed by an enzyme and converts a set of
reactants into a set of products. Accordingly, metabolic networks generate mass (or
material) flows. Clearly, at the lowest level, almost all interactions in metabolic and
signaling or regulatory networks take place by the action of biochemical reactions.
The dynamic behavior of (bio)chemical reaction networks and their mass flows can
be described by a class of ordinary differential equations (ODEs) having a particular
structure (see Eq. (1) in Sect. 5.2). In this representation, one would not formally
distinguish between the three types of networks. However, signaling or regulatory
processes are often represented in a different way (not as reactions), especially if
one analyzes the static network structure [69]. Therefore, signal and mass flows of-
ten imply different network representations and thus different techniques for their
analysis.

This chapter is devoted to methods for stoichiometric modeling of metabolic
reaction networks. Such methods rely solely on the structure (stoichiometry) of
metabolic networks and do not require extensive knowledge on mechanistic and
kinetic details of the involved reactions. As we will see, although purely based on
network topology, stoichiometric modeling allows one to study important functional
properties of metabolic networks and to derive various testable predictions. For this
reason, stoichiometric modeling, in particular the large subclass of constraint-based
modeling approaches [29, 34, 82, 92], has become one of the most popular and
successful modeling frameworks in systems biology.

The main goal of this chapter (which largely extends an earlier contribution [72])
is to give an introduction on basic concepts and methods of stoichiometric modeling
techniques for the computer-aided analysis of metabolic networks. We will discuss
the mathematical foundations of the most important approaches and outline their
applications in biology and biotechnology. From the mathematical point of view,
stoichiometric network analysis uses methods from different fields of applied math-
ematics such as linear algebra, linear programming, combinatorial optimization, or
graph and hypergraph theory. Whereas we will illustrate how biological questions
in metabolic networks can be formalized mathematically (e.g., as a linear program-
ming problem), we will not thoroughly describe how they are solved computation-
ally (e.g., by the simplex algorithm) and assume that appropriate tools are available.
Some algorithms and mathematical theory relevant to problems discussed herein
are described in more detail in chapter Combinatorial Optimization: The Interplay
of Graph Theory, Linear and Integer Programming Illustrated on Network Flow in
this book. It should also be noted that although the methods presented herein are dis-
cussed in light of biological applications, most of them are generally applicable and
useful to analyze any chemical or stoichiometric reaction network: Metabolites can
be exchanged by arbitrary chemical substances and biochemical reactions by any
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chemical conversion. Hence, whenever we speak in the following about metabolic
(reaction) networks, we may substitute “chemical” for “metabolic.”

Due to the large number of methods that have been developed and deployed for
metabolic network analysis over the last 10–15 years, it is impossible to provide a
complete review on all relevant methods. The given references, in particular reviews
such as [29, 82, 92], should provide suitable links for further reading. A branch
of theory that cannot be touched herein since it would easily fill another chapter
is chemical reaction network theory (CRNT) and related approaches [17, 24, 32].
These methods aim at predicting qualitative dynamic properties (e.g., the existence
of multiple steady states) from reaction network structure alone, and applications
thereof can also be found in biology as described elsewhere [18, 24, 124].

5.2 Stoichiometric Models of Metabolic Networks

Metabolic reaction networks consist of metabolites and metabolic reactions con-
necting them by interconversions. Biochemical reactions are characterized by the
following properties:

• Stoichiometry: The stoichiometry of a reaction is captured in the reaction equa-
tion and specifies the participating species (reactants and products) and the molar
ratios (stoichiometric coefficients) in which they are consumed or produced.

• Reversibility: In principle, all chemical reactions are thermodynamically re-
versible. However, some metabolic reactions can be considered to be practically
irreversible because they (nearly) exclusively proceed in one direction under bio-
logical conditions. Irreversible reactions reduce the potential behaviors a network
can exhibit.

• Gene–enzyme-reaction associations: Almost all biochemical reactions are cat-
alyzed by enzymes. The connections between reactions and enzymes do not have
to be unique because several enzymes (isoenzymes) may catalyze the same re-
action, whereas multifunctional enzymes have the ability to catalyze several dis-
tinct reactions. Furthermore, each enzyme has one or several associated genes
by which it is encoded (enzyme complexes are composed by several subunits,
which may be encoded in separate genes). The resulting gene-enzyme-reaction
associations [34, 135] thus allow one to relate properties of the reaction network
to genomic information. Conversely, knowing the genes of an organism can be
of great help and is often the main information source to build organism-specific
metabolic network models (see below).

• Reaction kinetics: Reaction kinetics describes the dynamics of the reaction based
on the reaction mechanism and enzyme properties (including allosteric effectors).
In many cases, these characteristics of a reaction are, at least in parts, unknown.

Stoichiometric analysis of metabolic networks is mainly based on the first three
(static) properties, whereas reaction kinetics is usually not considered. One excep-
tion are certain thermodynamic data that are readily available and can be taken into
account for some analyses (e.g., change of Gibbs free energy under standard condi-
tions or upper/lower boundaries of selected reaction rates).
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5.2.1 Tools and Databases for Reconstructing Metabolic Networks

Several resources, in addition to primary literature and review papers, have been
made available during the last two decades to support the process of building sto-
ichiometric models of metabolic networks. First, databases have been established
to collect information about metabolic parts and capabilities of different organisms.
Shortly after, computational tools have been developed to automate and standardize
the procedure of reconstruction metabolic networks from this information. These
tools typically use a whole genome sequence as input and search for genes that en-
code enzymes. Based on the findings and with the help of pathway reference maps,
whole metabolic pathways are then compiled.

There are two prominent databases each of which covers metabolic networks of
many different species: the BioCyc collection [15] and KEGG (Kyoto Encyclopedia
of Genes and Genomes [63]). These databases have been developed to compile and
store genome-wide networks of metabolic reactions and, to different extents, also
regulatory and signaling processes. KEGG is an integrated database resource com-
prising genome, chemical, and network information. One of its most useful features
is the collection of manually constructed reference pathway maps. KEGG derives
orthologous groups of reactions through sequence comparison in the genomes of
currently over 1300 organisms and thus makes it possible to easily compare their
metabolic capabilities.

The BioCyc collection comprises more than 1900 organism-specific pathways
and genomes. It started in 1996 with EcoCyc, which is now the BioCyc instance
of Escherichia coli (E. coli). In 2000, the MetaCyc database [65] was established,
which serves as a pathway reference database, and by now contains more than 1790
experimentally elucidated metabolic pathways from different organisms. In con-
junction with the Pathway Tools [66], MetaCyc can be used to derive a new BioCyc
instance from the annotated genome of an organism. A recent feature of the Pathway
Tools is the generation of flux-balance analysis models ([79]; cf. Sect. 5.5) from a
BioCyc database. This allows for a convenient conversion of the database content
into a mathematical form that can then be used to support the reconstruction process
(e.g., through the identification of blocked reactions; Sect. 5.5).

Two additional important resources for network reconstruction(s) are BiGG (Bio-
chemically, Genetically, and Genomically structured genome-scale metabolic net-
work reconstructions [111]) and Model SEED [51]. The BiGG database contains
stoichiometric models derived from metabolic network reconstructions that have
been extensively validated and curated. All models in BiGG are available in SBML
format (see Sect. 5.6) for academic use. In contrast to BiGG, which relies on man-
ual curation, Model SEED uses a largely automated pipeline for generating draft
metabolic models of an organism starting from an assembled genome sequence.
Several hundred network reconstructions have been generated through this pipeline.

Reconstructed genome-scale networks typically comprise between several hun-
dred up to several thousand reactions and metabolites [34, 92]. For eukaryotic
organisms, compartments within the cell (mitochondria, chloroplasts, etc.) need
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often to be considered, which increases network size. A list of available recon-
structed metabolic models that can directly be used for stoichiometric network
analysis can be found at http://gcrg.ucsd.edu/InSilicoOrganisms/OtherOrganisms.
A more detailed survey and comparison of metabolic databases can be found in [64].
Additional information about (automatic) metabolic network reconstruction and
constraint-based modeling is presented in [47].

Many of the resources described above focus on genome-scale reconstructions
of metabolic networks. Nevertheless, depending on the question at hand, it can be
sufficient to study medium-scale core models, which typically concentrate on the
central metabolism. Pathways, whose evidence or function is unclear or which are
less important for certain aspects, are then excluded. For example, models of the
often studied central metabolism typically contain 80–150 reactions.

5.2.2 Formal Description of Metabolic Networks

Having compiled all components of a metabolic reaction network, the network
structure can be formally described as follows:

• m: number of species (metabolites).
• q: number of reactions (if available, gene-enzyme-reaction-associations can be

stored as Boolean relationships for each reaction [135]).
• N: m× q stoichiometric matrix: each row corresponds to one species, and each

column to one of the reactions. The matrix element nij stores the stoichiometric
coefficient of species i in reaction j ; it is negative if the metabolite i is consumed,
positive if it is produced, and zero if it is neither consumed nor produced in the
reaction. If a reaction is reversible (see below), then it is necessary to specify
forward and backward directions and to assign the stoichiometric coefficients.
with respect to the forward direction.

• Rev: the set of reversible reactions
• Irrev: the set of irreversible reactions (Rev∩ Irrev= ∅)

It is convenient to directly include processes such as transport (e.g., substrate up-
take or exchange of metabolites between different compartments) and biomass syn-
thesis in this formalism by treating them as pseudo reactions. The biomass synthesis
reaction is often contained in the stoichiometric matrix and describes the (cumula-
tive) molar requirements of energy (ATP) and building blocks such as amino acids,
fatty acids, nucleotides, etc. needed to build the major constituents (macromolecules
such as proteins, DNA, RNA, lipids, etc.) of one gram biomass dry weight.

Important characteristics of network models are the boundaries and the connec-
tions to the environment. Related to this issue is the notion of internal and exter-
nal metabolites (or species). Internal species are explicitly balanced in the network
model, and, hence, they are included in N. In contrast, external species are thought
to be sinks or sources, which in most cases lie physically outside the system (for
example, substrates or products) but could also be located inside the cell (a typical

http://gcrg.ucsd.edu/InSilicoOrganisms/OtherOrganisms
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Fig. 1 Example network N1: graphical representation and stoichiometric matrix

example would be water). For completeness, external species can be included in the
stoichiometric matrix; however, for most analyses (in particular, for those that rely
on steady state; see Sect. 5.5), their corresponding rows in N will be removed.

Figure 1 depicts a simple example network, which we call N1 throughout
this chapter, and its corresponding variables. This network comprises six internal
metabolites, four external species (external “substrate” A(ext) and external prod-
ucts P(ext), D(ext) and E(ext)), and ten reactions (of which R7 is considered to be
reversible). As described above, only the internal species were included in N. No-
tably, when excluding external metabolites it may happen that a reaction (column)
in N contains no positive (e.g., R2, R3, R10) or no negative (R1) stoichiometric
coefficients.

5.2.3 Reaction Networks Are Hypergraphs

Most reactions in metabolic networks are bi- or even trimolecular, that is, in gen-
eral, a reaction connects a set of reactants with a set of products. For this reason,
metabolic networks are a special class of directed hypergraphs [77] and can there-
fore not per se be treated as graphs (see also Sect. 5.3). A directed hypergraph H
is a tuple H = (V ,E) with a set V of vertices and a set E of directed hyperedges.
Directed hyperedges are also called hyperarcs, and each hyperarc h consists in turn
of a set of start nodes (the tail X) and a set of end nodes (the head Y ): h= (X,Y )
with X,Y ⊂ V . Directed graphs are special cases of directed hypergraphs where X
and Y contain exactly one node for each arc limiting the scope to 1:1-relationships,
whereas directed hypergraphs can represent arbitrary n:m-relationships. For exam-
ple, for a stoichiometric reaction 2A+ B→ C+ 3D+ E, we have X = {A,B} and
Y = {C,D,E}. This formalism describes correctly the sets of reactants and prod-
ucts; however, it would not account for the stoichiometric coefficients. One can
extend this representation by adding to each hyperarc two functions assigning the
stoichiometric coefficients for the nodes in X and Y , respectively [77]. However, in
practice it is more convenient to use the stoichiometric matrix as introduced above,
which in fact represents the incidence matrix of the spanned hypergraph.
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5.2.4 Linking Network Structure and Dynamics

The stoichiometric matrix N is fundamental not only for stoichiometric but also for
dynamic modeling of metabolic networks. Generally, the changes of the species’
concentrations over time can be described by the following system of differential
equations:

dc(t)
dt

=N · r(t). (1)

The m × 1 vector c(t) contains the metabolite concentrations, typically in mmol
per gram cell dry weight, mmol/gDW. The q × 1 vector r(t) comprises the (net)
reaction rates at time t , normally in units of mmol/(gDW·h). The vector r(t) is also
called a flux vector or flux distribution and is usually a function of the metabolite
concentrations and a parameter vector p:

r(t)= f
(
c(t),p

)
. (2)

As mentioned above, the uncertainties in describing a metabolic system dy-
namically are concentrated within the kinetic description f of the reaction rates,
whereas N, the structural invariant of system (1), is usually known. As long as the
available data and knowledge base allow kinetic modeling of a metabolic system,
the modeling approach having potentially the highest predictive and explanatory
power will be the preferred. However, due to limited knowledge, predictive kinetic
models of metabolic networks comprise rarely more than 20 state variables. In larger
systems, one therefore has to restrict the analysis on static network properties. How-
ever, structural relationships captured in N are clearly of fundamental importance
and impose constraints for the dynamic behavior. A typical example is conservation
relations limiting the feasible space of the trajectories; see Sect. 5.4. Furthermore,
chemical reaction network theory and related approaches [17, 18, 24, 32] demon-
strate that important dynamic properties of reaction networks (such as the ability to
exhibit bistable behavior) can sometimes be excluded by network structure alone.

5.3 Graph-Theoretical Analysis of Metabolic Networks

Statistical network theory approaches seek to identify emergent topological proper-
ties and dynamical regularities of large-scale networks and have frequently been ap-
plied to networks from diverse fields such as the Internet, social networks, or traffic
networks [1, 91, 131]. For example, one key result found was that many real-world
networks exhibit a small-world or/and scale-free topology [1, 3, 131, 147] These
studies on global network architectures are usually based on graph-theoretical mea-
sures of the network topology. Three general key measures are the following:

(i) Connectivity and degree distribution: The connectivity (or degree) k of a node
is the number of links it is attached to, and P(k) is the degree distribution of
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the graph. For example, in statistically homogeneous networks (Erdős–Réyni
random graphs), the connectivity follows a Poisson distribution, implying that
nodes with many more edges than the average degree are extremely rare [131].
In contrast, scale-free networks have a higher probability to contain (few) dom-
inating hubs with very high degrees resulting in a power-law distribution of
connectivities with parameter γ : P(k)∼ k−γ [1].

(ii) (Shortest) Path length: A path is a sequence of nonrepeating edges connecting a
start node with an end node, and its length is the number of involved edges. Two
particular network measures are the maximum and the average shortest path
length between all pairs of nodes. Both measures are relatively small in small-
world and scale-free networks when compared to standard random networks
of the same size.

(iii) Clustering: In clustered networks there is a high probability that two neighbors
of a given node are also connected by an edge.

Biological networks have also been analyzed based on these graph-theoretical
measures, and it has been shown that many of them show a scale-free structure,
including metabolic networks [4, 59]. However, in the case of metabolic networks,
the question arises how their structure can be treated as graphs at all. As already
discussed in the previous section, metabolic networks are hypergraphs where the
reactions are hyperedges connecting sets of start (reactant) nodes with sets of end
(product) nodes. In a graph this is not allowed, an edge connects exactly one start
with one end node. For example, reaction R9 in Fig. 1 is not compatible with a
graph. Thus, before applying graph-theoretical tools, a transformation of metabolic
reaction networks from their hypergraph into a graph representation is necessary.
Different transformations are possible; the most frequently used ones are the fol-
lowing two:

(1) Substrate (compound) graph: Each metabolite becomes a node. A directed edge
is introduced between two metabolites A and B if A is a reactant in a reaction
where B is a product (sometimes, alternatively, an edge between A and B is
introduced if both metabolites participate in the same reaction).

(2) Bipartite graph: Both metabolites and reactions are nodes and each directed
edge connects either a metabolite with a reaction (if the metabolite is a reactant
of this reaction) or a reaction with a metabolite (if the latter is a product in this
reaction).

Figure 2(a) shows a simple reaction network with its associated representations
as substrate graph and bipartite graph. A disadvantage of the substrate graph is that
different reaction hypergraphs can have the same substrate graph representation,
whereas bipartite graphs can be uniquely reconverted to the original hypergraph.

Analysis of graph representations of genome-scale metabolic networks revealed
that these topologies have scale-free character and possess the small-world property
[4, 59]. This is rather intuitive since most metabolites are only weakly connected,
whereas a few dominating hubs such as the metabolic cofactors ADP, ATP, NAD(P),
NAD(P)H or very central carbon metabolites (like pyruvate) exist. The overall topol-
ogy and the major hubs of these networks are well conserved among species [4, 59].
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Fig. 2 (a) Example network in hypergraph, substrate graph, and bipartite graph representations
and (b) after removal of reaction R2

In addition, it was found that the average (shortest) path length is quite low (and
almost identical in all considered organisms) proving the small-world property. As
one consequence of all these findings, the network topology of metabolic networks
has been shown to be robust against random removal of nodes; only when central
hubs are deleted, network fragmentation occurs. Scale-free networks, whose topol-
ogy emerges by the preferential attachment of edges to nodes with higher connec-
tivity, give also an intuitive explanation how metabolic networks could have been
evolved to large-scale networks.

A somewhat different perspective on the global architecture of metabolic net-
works was presented in [25]. This study highlights the bow-tie structure of the
metabolism: a core (central metabolism) of relatively few intermediate common
currencies (ATP as energy and NAD(P)H as reduction equivalents; 12 precursor
metabolites serving as building blocks) allows the cell to take up a wide range of
nutrients and to produce a large variety of products and complex macromolecules.
The authors also argue that metabolic networks are rather scale-rich than scale-free.

The results obtained from a graph-theoretical perspective are helpful for under-
standing the global organization of metabolic networks. However, simplifying the
hypergraphical structure of metabolic networks to graphs may strongly limit the in-
terpretability of the results, in particular when studying functional properties [8, 77].
Look again at Fig. 2(a). In the hypergraph, we can easily see that four reactions are
required to produce E from A. However, in the two graph representations, we find
a connection (path) via three edges or three reactions, respectively. Furthermore,
in Fig. 2(b), we deleted reaction R2 mimicking a knock-out of the gene encoding
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the catalyzing enzyme of R2. Clearly, from the hypergraph representation we can
conclude that synthesis of E from A is then not possible anymore. However, if we
searched for paths in the graph representations, then both in the substrate and in
the bipartite graph, we would find a (shortest) path connecting A with E wrongly
indicating that E could still be produced from A. Here, the AND relationship for
reaction R2 needs to be accounted for (species B AND C are needed). Generally,
short path lengths in the graph prove neither that synthesis pathways between sub-
strates and products exist nor that they are short. Instead, shortest paths in the graph
representation rather indicate shortest “influence paths” between nodes along which
a perturbation of a metabolite’s concentration could spread over the network and
affect the concentration of another metabolite [77]. In fact, a concentration change
of one of the two reactants in bimolecular reaction will affect the reaction rate even
if the other reactant remains constant.

Graph analysis of metabolic networks can thus be useful to get a quick overview
on the global network topology; however, the hypergraphical structure must explic-
itly be taken into account when studying network function. All techniques described
in the following sections fulfill this requirement.

5.4 Stoichiometric Conservation Relations

Conservation relations (CRs) are weighted sums of metabolite concentrations that
remain constant in (an ODE model of) a reaction network, irrespective of the cho-
sen reaction kinetics in Eq. (2). A typical example for metabolic network models is
[NADH] + [NAD+] = CONST (brackets indicate species concentrations). NADH
is known to serve as an electron carrier in the cell. In many redox-coupled reac-
tions, two electrons from a donor are taken up by the oxidized form NAD+ yielding
NADH: NAD+ + H+ + 2e− → NADH. In other reactions, NADH in turn serves
as donor of electrons thereby getting back to the NAD+ state (the reverse equation
above). Thus, whenever NAD+ is consumed, NADH is produced, and vice versa.
Accordingly, the sum of both concentrations remains constant whatever the dynamic
concentration changes are. If one of the two metabolites participates in a reaction,
then the other does so as well but on the opposite side of the reaction equation.
Therefore, the corresponding row of NAD+ in the stoichiometric matrix N is ex-
actly the same as for NADH, except that it is multiplied by −1. This implies that
these two rows are linearly dependent. In fact, linear dependencies between rows
(species) in N uniquely characterize CRs [49]. To show this, we identify a CR by an
m× 1 vector y and observe that, by definition of CRs, y fulfills, at all time points t ,

yTc(t)= S = CONST (3)

with fixed constant S. Differentiation of both sides of the equation with respect to t
and substituting the right-hand side of Eq. (1) for ċ(t) yields

yTċ(t)= yTNr(t)= 0. (4)
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Since we demand that the last equation must hold for any t and for any chosen
kinetic rate law, it follows that

yTN= 0T (5)

or, equivalently, after transposing the system,

NTy= 0 (6)

with 0 being the q×1 zero vector. Hence, each CR y corresponds to a set of linearly
dependent rows (species) in the stoichiometric matrix, and the coefficients of y are
determined in such a way that the resulting linear combination of the species rows
yields 0. In other words, a CR y lies in the left null space of N or, equivalently, in
the right null space (or kernel) of the transpose of N. According to basic rules of
linear algebra [130], the dimension of the left null space of N is m− rank(N), that
is, conservation relations only exist if rank(N) < m. Then, m − rank(N) linearly
independent CRs—forming a basis of the left null space—can be found completely
characterizing the space of CRs.

Network N1 (Fig. 1) does not contain any CR since rank(N) = m = 6. This is
a consequence of not explicitly considering external metabolites; would we include
the four external metabolites in N (yielding then a system with 10 reactions and
10 metabolites), matrix N would have rank 9, resulting in one CR simply stating
that the sum of all species concentrations remains constant. Such an “overall” CR is
typical for systems with proper mass balances.

For further illustration, we consider now an even simpler example network with
four metabolites A,B,C,D and just one reaction: A+ B→ C+ 2D. In this case,
we have

N=

⎛

⎜⎜
⎝

−1
−1
1
2

⎞

⎟⎟
⎠ , (7)

and, hence, three linearly independent CRs exist because m− rank(N)= 4− 1= 3.
They can be found by searching for linearly independent solutions y that solve

NTy= (−1 −1 1 2)y= 0, (8)

yielding a basis for the space of CRs, which we arrange as columns in a matrix Y.
One possible instance could be

Y=

⎛

⎜⎜
⎝

1 1 0
−1 0 2
0 1 0
0 0 1

⎞

⎟⎟
⎠ . (9)

The three columns express the following CRs: (1) [A] − [B] = S1 = CONST;
(2) [A] + [C] = S2 = CONST; (3) 2[B] + [D] = S3 = CONST. Furthermore,
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each linear combination of these CRs forms another CR, for example, (1)+ (2)=
2[A] − [B] + [C] = S1+ S2= S4= CONST. The space of CRs is completely de-
scribed by span(Y), that is, all linear combinations of columns in Y yield valid CRs,
and each CR corresponds to a unique combination of the basis vectors in Y. This
property is independent of the chosen basis Y. However, sometimes one is inter-
ested in support-minimal CRs, that is, in CRs with a minimal number of involved
species [49]. For the example above, [A]−[B] = CONST is such a support-minimal
CR, whereas 2[A] − [B] + [C] = CONST is not since a subset of the three involved
species A, B, C already spans a CR. Furthermore, nonnegative CRs (where all
nonzero coefficients are positive) are also of special importance since they indicate
so-called conserved moieties. The case of NADH and NAD+ is such an example
where the NAD+ molecule is the conserved moiety (NADH consists of the scaffold
of NAD+ plus one proton and two electrons). Enumerating support-minimal or/and
signed CRs is mathematically the same problem as computing elementary modes
lying in the right null space of N (see Sect. 5.5), and the algorithm outlined there
can be applied here as well.

Identifying the CR subspace is a simple task but brings important benefits also
beyond detecting conserved moieties [20, 49, 105]. CRs provide a nice example how
stoichiometric relations affect systems dynamics: CRs confine the possible dynamic
behavior of the species in a given reaction network (Eq. (1)) to a subspace with m−
rank(N) dimensions. The value of any CR cannot change, irrespective of the chosen
kinetics. In our small example above, if we had [A]− [B] = 6 at the beginning, then
the system could never reach a state where the difference of [A] and [B] is unequal
to 6. For this reason, CRs express systems redundancies that can be exploited for
model reduction. Generally, one can remove m− rank(N) state variables from the
ODE system (1) without losing any relevant information: the removed species can,
at any time point, be calculated from the remaining state variables by using the
algebraic relationships captured by the CRs (see also chapter Introduction to the
Geometric Theory of ODEs with Applications to Chemical Processes of this book).
In our example above, we could thus remove three species, for example, B, C, D
and model only A explicitly as a state variable. With the initial concentrations of
all species (by which we can compute the constants for all CRs) we can replace the
differential equations for B, C, and D and derive their concentrations from A at any
time point by using the algebraic relationships of the CR [105]. This type of model
reduction is often routinely done for ODE models of reaction networks; for some
analyses, it is even necessary to avoid a singular Jacobian of system (1).

5.5 Steady-State and Constraint-Based Modeling

5.5.1 Steady-State Flux Distributions and the Null Space of N

The cellular metabolism usually involves fast reactions and a high turnover (i.e.,
small turnover times) of metabolites when compared to regulatory events. There-
fore, analysis of metabolic networks is often based on the approximation that, on
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longer time-scales and under constant external conditions, metabolite concentra-
tions and reaction rates do not change. Applying this steady-state assumption to
Eq. (1) leads to the central steady-state or (metabolite) balancing equation

Nr= 0. (10)

This homogeneous system of linear equations expresses the algebraic conse-
quence of steady-state, namely that, for each metabolite, the sum of reaction rates
weighted with the metabolite’s stoichiometric coefficients must sum up to zero. In
other words, production and consumption of each metabolite are equal. This equa-
tion is very similar to Kirchhoff’s first law for electric circuits, see chapter Math-
ematical Modeling and Analysis of Nonlinear Time-Invariant RLC Circuits of this
book. The latter is based on the incidence matrix of the underlying graph spanned
by the circuit. Here, N fulfills the same role as the incidence matrix of the reaction
network.

Apart from setting the derivatives of the concentrations to zero in Eq. (1), there
is an important change how we treat the reaction rates: the latter depend normally
on metabolite concentrations and kinetic parameters (Eq. (2)) but are now consid-
ered as an independent variable r. In this way, we “get rid” of the unknown kinetic
relationships and consider all flux vectors that solve Eq. (10) as potential solutions.
Clearly, in the real (dynamic) system, only a small subset of those rate vectors might
be attainable, but it is nevertheless convenient and useful to consider the complete
space of potential solutions of Eq. (10). It worth noting that Eq. (10) is fulfilled also
in oscillating systems (see, e.g., [150]) for the averaged reaction rates.

The trivial solution r= 0 always fulfills Eq. (10). However, since this would rep-
resent thermodynamic equilibrium, we are obviously interested in other solutions.
Here it becomes clear why we distinguish between external and internal metabolites
(Sect. 5.2): would we include external substrates and products in N, then flux dis-
tributions where the cell converts substrates into products would not be part of the
null space. It is therefore reasonable to demand the steady-state condition only for
the internal metabolites.

Since the number of reactions q in real networks is usually much larger than the
number m of internal metabolites, an infinite number of flux distributions r usually
solves the system of equations (10). From linear algebra it is known that all solutions
are contained in a linear subspace called the (right) null space (or kernel) of N
(in contrast to the left null space studied in the context of conservation relations;
Sect. 5.4). The dimension of the null space, the nullity, is q− rank(N), which equals
the number of linearly independent solutions that can be found for Eq. (10) [130].
Similar as for conservation relations, we can thus easily compute q − rank(N) basis
vectors of the null space and arrange them in a kernel matrix K. Each column in K
represents a steady-state flux distribution, and all other steady-state rate vectors r
can then be constructed by a unique linear combination a of the columns in K:

r=Ka. (11)

Notably, whereas infinite many kernel matrices K exist if the null space dimension
is larger than zero, the solution a in Eq. (11) is unique for given K and r.
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Fig. 3 Example network 2 (N2) with its stoichiometric matrix

Fig. 4 Examples of blocked and coupled reactions. (a) Reactions R2 and R3 are blocked because
of dead-end metabolite D. (b) Reaction R1 is blocked. (c) Reactions R1, R2, and R3 are coupled

For illustration, Fig. 3 shows a simple reaction network (called N2) together with
its formal representation. The null space has dimension q − rank(N) = 4− 2 = 2.
Accordingly, the kernel matrix must have two columns, and one possible instance
reads:

K=

⎛

⎜⎜
⎝

1 0
0 −1
1 1
1 0

⎞

⎟⎟
⎠ . (12)

One particular steady-state flux vector in this network would be r = (2,1,1,2)T,
which can be constructed from K by using a= (2,−1)T.

Although the kernel matrix is not unique, some important general network prop-
erties can be derived from a null space basis as discussed next.

5.5.2 Uncovering Basic Network Properties from the Kernel
Matrix

It may happen that a reaction must have a zero flux if a network is in steady state;
we call such reactions blocked reactions. A simple example is a reaction in which
a “dead-end” metabolite participates, that is, if the stoichiometric coefficient of this
metabolite is zero in all other reactions. It follows immediately that the flux through
this reaction must be zero since otherwise the metabolite cannot reach a steady state
(see Fig. 4(a)).

Other reactions may become blocked because they are in a pathway leading to
a dead-end metabolite (as R2 in Fig. 4(a)). There can also be more complicated
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cases as shown in Fig. 4(b): reaction R1 would produce a metabolite B from A.
However, there is only one pathway consuming B in which it will in turn be recycled.
For this reason, reaction R1 is blocked in steady state since otherwise B would
accumulate.

With Eq. (11) we can derive a criterion for identifying blocked reactions since
the latter must have a corresponding zero row in the kernel matrix. Then, any lin-
ear combination of the columns in K will yield a zero for the rate of this reaction.
Blocked reactions often indicate reconstruction errors (which are sometimes not
easy to find in networks with thousands of reactions), for example, due to miss-
ing elements. One can then search for appropriate corrections or remove blocked
reactions when further analyzing the network with steady-state methods.

Another network feature that can be uncovered by the kernel matrix is coupled
reactions (also called enzyme subsets or correlated reaction sets). For any steady-
state flux vector, coupled reactions operate with a fixed ratio in their rates [13, 97],
that is, there is a strong dependency between the fluxes. Typical examples are reac-
tions in a linear pathway as R1, R2, and R3 in Fig. 4(c), which must have identical
rates in steady state. The same holds for R3 and R9 in network N1 (Fig. 1), which are
also coupled with a rate ratio of 1. In N2 (Fig. 3), reactions R1 and R4 are coupled,
again with a ratio of 1, demonstrating that coupled reactions are not necessarily a
sequence of conversion steps. Coupled reactions can again be found by the kernel
matrix: their corresponding rows in K differ only by a (scalar) factor (indicating the
constant ratio of their rates). Often, one can find sets of coupled reactions (if a reac-
tion R1 is coupled with reaction R2 and reaction R2 with another reaction R3, then
also R1 with R3). In fact, each reaction belongs to one equivalence class of coupled
reactions (many reactions are the only member of their own class). Finding coupled
reactions has some benefit: it is expected and has been observed that those reactions
are commonly regulated [94, 119]. Moreover, a reaction will become blocked if one
of its coupled partner reactions is removed from the network.

Other important conclusions can be drawn if K is block-diagonalizable. Then,
certain subnetworks can be identified in the system that are either completely dis-
connected or whose steady-state fluxes are completely independent from the fluxes
in the rest of the network [49].

The kernel matrix thus enables one to quickly analyze some basic properties of
the network. However, apart from the nonuniqueness of K, a major disadvantage of
the kernel matrix is that the reversibilities of the reactions (i.e., sign restrictions on
some reaction rates) are not taken into account. For example, since reaction R2 in
N2 is irreversible, the second column of K in (12) is not a valid flux distribution in
this network because of the negative sign for R2. Furthermore, unblocked reactions
may become blocked and uncoupled reactions coupled (or hierarchically coupled,
see [13, 26]) under the reversibility constraints. It can even happen that the null
space has a large dimension although nothing than the trivial (zero) flux distribution
is feasible in the network. Hence, the “real” degrees of freedom can only roughly be
estimated from the dimension of K. As we will see later in this section, these short-
comings will be overcome by constraint-based approaches and methods of pathway
analysis.
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5.5.3 Metabolic Flux Analysis

The aim of metabolic flux analysis (MFA) is to determine a specific steady-state
flux distribution of a metabolic network, for example, from an experiment. Since
Eq. (10) is underdetermined (the dimension of the null space quantifies the de-
grees of freedom), one needs measurements of at least some reaction rates to cal-
culate some or even all unknown rates. Whereas internal fluxes can usually not
directly be measured experimentally, it is often possible to quantify several up-
take rates (of substrates and oxygen) and excretion rates (of products such as car-
bon dioxid, fermentative products, etc.). For this purpose, microorganisms or cell
cultures are cultivated under controlled steady-state or pseudo-steady-state condi-
tions, for example, in a bioreactor. Moreover, the growth rate μ (normally given
in [h−1]) of the biomass can often be determined experimentally. One can there-
fore divide the steady-state equation (10) into the known/measured (index k) and
unknown (index u) part, possibly after rearranging the columns in N and elements
in r:

Nr=Nuru +Nkrk = 0. (13)

This leads to the central equation for MFA:

Nuru =−Nkrk. (14)

With l measured rates (in rk), the number of unknown rates in ru is s = q − l.
Since Nk and rk are known, their product becomes a vector, and, hence, Eq. (14)
forms a standard inhomogeneous system of linear equations. The general solution
for ru is given by [74]

ru =−N#
uNkrk +Kua. (15)

N#
u is the Penrose pseudo inverse of Nu. It has dimension l×m and exists for any

matrix and gives a (particular) least-squares-solution for Eq. (14). Ku denotes the
kernel matrix of Nu. Ku solves the homogeneous variant of Eq. (14), and linear com-
binations of the columns of Ku (expressed by a) therefore characterize the degrees
of freedom for ru. In the simplest case, Nu is anm×m square matrix with full rank,
where N#

u coincides with the standard inverse N−1
u , and where Ku is the zero vector.

One can then compute a unique and exact solution for all unknown rates. In general,
however, based on the rank of Nu, the scenario equation (14) has to be classified
with respect to two characteristics [74, 143]: (i) determinacy: a scenario is either
determined (rank(Nu) = s) or underdetermined (rank(Nu) < s); (ii) redundancy:
a scenario is either redundant (rank(Nu) < m) or nonredundant (rank(Nu) = m).
Since these two properties are independent, four possible cases can be distinguished.
The case where pseudo-inverse and standard inverse coincide (m= s = rank(Nu) is
a determined and nonredundant system. If a scenario is underdetermined, not all
unknown rates can be determined uniquely, but some could be calculable, namely
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Fig. 5 Example for
metabolic flux analysis:
stationary rates of R1, R2,
and R3 were measured (blue
bold arrows). Using this
information, one can
determine the fluxes of R6,
R8, R9, and R10 (green
dashed arrows). The other
rates remain unknown (thin
arrows)

those rates that have a corresponding zero row in Ku [74]. If a system is redun-
dant (which is possible for the determined and undetermined case), then it usually
contains inconsistencies with respect to the measured rates, which can be balanced
by statistical approaches before computing the uniquely calculable rates [129, 143].
In this context, large inconsistencies will point to gross measurement or modeling
errors.

We discuss an example of an MFA scenario for network N1 (Fig. 5). Suppose
that the rates R1= 5, R2= 2, and R3= 1 were measured. This results in a nonre-
dundant and underdetermined system where the rates R6= 3, R8= 1, R9= 1, and
R10= 2 would be uniquely calculable. In contrast, R4, R5, and R7 cannot be deter-
mined since they make up two parallel pathways whose fluxes cannot be resolved
from the measurements. If we measured in addition R10= 0, we would have an un-
derdetermined redundant scenario, and the given rates would indicate some degree
of inconsistency.

MFA has become a standard method in microbiology and bioprocess engineer-
ing [129]. It is routinely used to characterize and quantify flux distributions in the
central metabolism of microbes and also higher eukaryotic cells grown under con-
trolled conditions. A general problem of MFA is that, even if all exchange rates
are measured, not all internal rates can be determined uniquely. This problem is in-
duced by parallel pathways or internal cycles in metabolic networks leading to de-
pendencies in Nu that cannot be resolved by measuring exchange fluxes only [74].
Then, further assumptions must be made, or isotopic (13C) tracer experiments could
be employed to deliver further constraints, whose experimental and mathematical
treatment is, however, much more complicated [149]. In genome-scale networks,
neither MFA nor 13C-MFA can be used due to the large number of degrees of free-
dom (often several hundreds).

Again, we note that MFA as described above does not account for the sign re-
strictions of irreversible reactions. An alternative approach for MFA that includes
these constraint is flux variability analysis introduced in a later subsection.
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5.5.4 Constraint-Based Modeling and Flux Balance Analysis

5.5.4.1 Principles of Constraint-Based Modeling

As we have seen in a previous section, the assumption of steady state reduces the
space of relevant flux distributions in a reaction network from “everything is possi-
ble” to the null space of N. The basic idea of the constraint-based modeling approach
is to incorporate additional well-defined physicochemical and biological constraints
that further limit the space of feasible stationary flux vectors [82, 102, 103]. The
most important standard constraints considered can be expressed by linear equa-
tions or/and inequalities:

Definition 1 (Standard constraint-based problem for metabolic reaction networks)
Standard constraint-based problems for metabolic reaction networks are imposed

by the following linear constraints (or subsets thereof):

(C1) Steady state: Nr= 0
(C2) Capacity/Reversibility: αi ≤ ri ≤ βi

Generally, upper or lower boundaries for fluxes are often known for ex-
change (uptake/excretion) reactions; for internal reactions, the vmax value
might be available from biochemical studies, which can be helpful to spec-
ify flux boundaries. For irreversible reactions, one usually sets αi = 0. If the
boundaries are unknown, then one may set them to large absolute values or
even infinity (±∞). Notably, for some reactions, one may have positive lower
boundaries, for instance, for the nongrowth associated ATP demand for main-
tenance processes in the cell (often included as a pseudo reaction in metabolic
network models). C2 can be simplified to the following pure reversibility con-
straint when capacity values are not known or not of interest:

(C2′) Reversibility: ri ≥ 0 (∀i ∈ Irrev)
(C3) Measurements: ri =mi (for measured/known rates i)
(C4) Optimality: maximizer wTr=w1r1 +w2r2 + · · · +wqrq

The linear objective function is defined by a q-dimensional vector w specify-
ing the linear combination of reaction rates to be maximized.

By this definition, null space and metabolic flux analysis can be seen as special
constraint-based methods operating on the constraints C1 and C1+C3, respectively.
We also note that the constraint-based problem as stated above can be seen as a gen-
eralization of the LP formulation of the maximum network flow problem presented
in chapter Combinatorial Optimization: The Interplay of Graph Theory, Linear and
Integer Programming Illustrated on Network Flow of this book. Basically, in the
latter, the graph incidence matrix replaces the stoichiometric matrix of the hyper-
graphical metabolic network, and the source (s) and target (t) nodes are treated as
external “metabolites.”

Constraints C1 and C2′ are solely defined by network structure and are the basic
constraints taken into account by virtually all constraint-based methods. The set F
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Fig. 6 Example of a convex polyhedral cone for a minimalistic network with one metabolite and
three reactions. The cone is spanned by convex combinations of E1 and E3 (the extreme rays) and
is unbounded in this (open) direction. E1, E2, and E3 correspond to the elementary modes of the
system (see Sect. 5.5.5)

of all flux vectors r obeying the two constraints

F = {r ∈Rq |Nr= 0, ri ≥ 0 ∀i ∈ Irrev
}

(16)

form a convex polyhedral cone [9, 109], which is, in stoichiometric studies, often
referred to as a flux cone. As it arises from C1 and C2′, this cone is an intersection of
the null space with the positive half-spaces of the irreversible reactions. An example
of a two-dimensional polyhedral cone in a three-dimensional space (network with
three reactions) is shown in Fig. 6. As suggested by this picture, the edges of such a
cone are of eminent importance; they are subject to pathway analysis (Sect. 5.5.5).
The constraints C2, C3, and C4 further restrict the flux cone to a smaller subset
of flux vectors yielding, in general, a polyhedron, which can be bounded (then also
called a polytope) or unbounded. Note that the optimality condition C4 is not always
considered as a constraint. However, one may treat it as such since the optimality
criterion reduces the space of relevant flux vectors similar to the other constraints.
The optimality condition C4 is central to the approach of flux balance analysis,
which is introduced next.

5.5.4.2 Flux Balance Analysis

Flux balance analysis (FBA) seeks to identify particular flux distributions that keep
the network in steady state (constraint C1), are feasible with respect to reversibility
and capacity (C2), and maximize a linear objective function (C4), optionally in the
context of some known or measured rates (constraint C3). The characteristic and
necessary assumption of FBA is optimality (constraint C4). Together with the other
constraints, it gives rise to a standard linear optimization (or linear programming)
problem (see [9] and chapter Combinatorial Optimization: The Interplay of Graph
Theory, Linear and Integer Programming Illustrated on Network Flow of this book).
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Fig. 7 Optimal flux
distribution for producing
maximal amount of P from A
in N1 (see FBA problem (17))

The most frequently used objective function is maximization of biomass synthesis
(growth), which seems to be a physiologically realistic cellular objective, at least
for some micro- and unicellular organisms growing under certain (e.g., substrate-
limiting) conditions [31, 34, 55]. Importantly, since the substrate uptake rate or its
upper boundary must be set to a finite value (as the problem would otherwise be
unbounded), the optimal flux distribution with respect to growth rate delivers the
largest amount of biomass that can be produced by it, that is, what is then effectively
optimized is the biomass yield. Another meaningful objective function mimicking
“natural objectives” is maximization of ATP (cf. [115], where different objective
functions where tested and validated). For biotechnological applications, one is typ-
ically interested in the maximal yield of a certain product that can be produced from
a given substrate [145]. The vector w in the linear objective function used in C4 en-
codes the optimization criterion and weights the reaction rates. For maximizing the
biomass yield, for example, only the coefficient corresponding to the growth rate is
set to one, and all others to zero.

As an example for an FBA problem, suppose that we want to maximize the
amount of P synthesized from substrate A in network N1 (Fig. 1), that is, we max-
imize the rate of reaction R2. Assuming that the network can maximally “metabo-
lize” two units of A per unit of time, the variables and constraints for the resulting
FBA problem (cf. Definition 1) read:

• C1 (steady state): Nr= 0; (N as given in Fig. 1)
• C2 (flux boundaries): (α1, . . . , α10)= (0,0,0,0,0,0,−∞,0,0,0);
(β1, . . . , β10)= (2,∞,∞,∞,∞,∞,∞,∞,∞,∞)

• C4 (linear objective function): w= (0,1,0,0,0,0,0,0,0,0)T.
(17)

We see that all αi = 0 except α7 = −∞ because R7 is the only reversible re-
action. β1 was set to the maximal uptake rate of A, and only w2 is nonzero since
we want to maximize R2. Using standard computer routines like the simplex al-
gorithm or more sophisticated computational methods ([9], chapter Combinatorial
Optimization: The Interplay of Graph Theory, Linear and Integer Programming Il-
lustrated on Network Flow of this book), one can easily solve such a linear opti-
mization problem. In our example, one could get a solution as displayed in Fig. 7,
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showing that the maximal rate of R2 (synthesis of P) is two, that is, the maximum
yield P(ext)/A(ext)= rR2/rR1 is unity.

5.5.4.3 Applications of Flux Balance Analysis

FBA has become the most popular method of the constraint-based approach, and
sometimes both terms are used as synonyms. In the following, we outline major
application areas of the standard FBA formulation, whereas advanced variants of
FBA for more specific questions are discussed later on.

Predicting Optimal Behavior and Reaction Essentialities As already men-
tioned above, some microorganisms such as E. coli have been shown to behave
stoichiometrically optimal with respect to biomass yield, at least under substrate-
limiting conditions [31, 33, 34, 55]. In the case of genetically modified organisms
or after changing the environmental conditions, the optimal state is often reached
after adaptive evolution, where many consecutive generations are cultivated under
selective pressure [37, 55]. In both cases, it is straightforward to use FBA to calcu-
late the optimal (maximal) biomass yield and thus the expected optimal behavior.

The effect of genetic modifications on the optimal behavior can also be assessed
with FBA. For example, the deletion of certain reaction(s) in the network by cor-
responding gene knock-out(s) can be incorporated as constraint C3 (the respective
reaction rate is set to zero). After reoptimization one can check whether the maximal
growth rate is reduced; it can never increase since the FBA problem of the mutant
has more constraints than the wild type. Moreover, FBA can also identify reaction
deletions that completely block growth, that is, where the maximal growth rate be-
comes zero. In this way, one can predict which reactions/genes are essential and
which are (potentially) dispensable for growth or for any other network function.
In many studies, it was shown that FBA predictions of mutant viability correlate
well with the observed phenotypes of microorganisms (see, e.g., [30, 36]). A false
negative prediction (a cell can perform a certain function (such as growth) in an ex-
periment although FBA predicted the opposite) implies a falsification of the network
structure since some alternative pathway(s) must be missing. Conversely, for a false
positive prediction (a network predicted to be functional by FBA is nonfunctional
in an experiment), one cannot exclude that this mismatch was caused by unknown
capacity or regulatory constraints. Thus, FBA predicts the potential capability of
the reaction network to tolerate a knock-out.

Flux Coupling Analysis and Blocked Reactions FBA can be used to detect cou-
pled and blocked reactions [13, 26]. For example, to identify all blocked reactions,
one maximizes and minimizes each reaction rate separately with the constraints C1
and C2. A blocked reaction fulfills that both its minimum and maximum rate is
zero. In contrast to the analysis of the kernel matrix described in an earlier sec-
tion, reversibility constraints are explicitly considered, which may result in more
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Fig. 8 Two further optimal flux distributions for producing P from A in N1. (Note: the arrow of
the reversible reaction R7 switched its direction due to the negative rate of R7)

blocked/coupled reactions as found by the kernel matrix alone. Moreover, hierar-
chical couplings can be detected where one reaction is used when another reaction
is active, but not necessarily vice versa [13, 26]. Such a relationship holds, for in-
stance, in N1: a nonzero flux through reaction R9 needs a nonzero flux through
R6, but not vice versa. Such investigations help to identify implicit structural con-
straints, which may also impose constraints for the regulation of coupled reactions
or pathways.

Determining Optimal Product Yields and Searching for Intervention Strategies
FBA enables one to predict potential production capabilities of a metabolic network.
In principle, given a substrate, FBA can compute the maximally achievable yield
for any metabolite in the network. Such predictions are useful for biotechnological
applications and metabolic engineering [129, 145]. Moreover, as explained in detail
in Sect. 5.5.6, certain FBA approaches can serve as a tool to search for suitable
intervention strategies for targeted (re)design of metabolic networks.

The usefulness of FBA has been proven in many applications, in particular for
microbial model organisms [82, 103]. However, the standard form of FBA has also
some limitations with respect to its predictive power. First, FBA critically depends
on the optimality criterion applied. This is rather unproblematic as long as we ex-
plore the potential capabilities of a metabolic network. But it can become critical if
we want to predict the actual cellular behavior with the often assumed objective of
optimal growth: not all cells, and bacterial cells not under all circumstances, behave
stoichiometrically optimal [120]. A second issue is related to uniqueness. Whereas
the optimal value of the objective function is unique and an optimal solution will
normally be found quickly also in larger networks, the calculated optimal flux dis-
tribution (maximizing the objective function) may not be unique resulting in a set
of optimal solutions [67]. For illustration, look again at our FBA example in Fig. 7,
where we found an optimal solution that produces the maximally possible amount
of P from A (with a maximal yield of one unit P per unit A). However, we can
easily find another optimal flux distribution that also realizes this optimal yield, for
example, the one depicted in Fig. 8(a). Furthermore, any convex linear combination
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(a linear combination λ1v1 + λ2v2 + · · · + λnvn is convex if λi ≥ 0 and
∑
λi = 1)

of this solution with the one in Fig. 7—here with a factor of 0.5 for both—results in
another optimal flux distribution shown in Fig. 8(b). Hence, infinitely many optimal
flux distributions exist in this small network. This is true for any FBA problem as
soon as at least two optimal solutions have been found. Therefore, in most cases,
albeit the FBA constraints C2 and especially C4 reduce the solution space consid-
erably, infinite many alternate solutions can remain, and FBA in its standard form
delivers always one particular optimal solution. Thus, even if optimality is assumed,
it may happen that only little can be said about the internal behavior, that is, how
the fluxes are distributed inside the cell [85].

One may try to enumerate all qualitatively distinct optimal solutions (as the two
in Figs. 7 and 8(a)) for a given FBA problem. This can be done by mixed-integer
linear programming [107], vertex enumeration methods [67], or, in smaller networks
(as described in Sect. 5.5.5), by metabolic pathway analysis.

A simpler approach is to identify at least those reaction rates that are fixed for
all optimal solutions. For the optimization problem (17) we defined for N1, just by
inspection of Figs. 7 and 8(a) we can conclude that R3, R6, R9, and R10 must be
zero for optimal behavior since they are involved in side-production of E and D.
Furthermore, R1, R2, and R8 must carry a fixed flux of two. Thus, only R4, R5, and
R7 remain variable. Fixed and variable rates in an FBA problem can be identified
by flux variability analysis as described in the following section.

5.5.4.4 Flux Variability Analysis

Given an FBA problem, the goal of flux variability analysis (FVA, [85]) is to quan-
tify the variability (the feasible range) of each reaction rate. This characterization
of variability is less precise than enumerating all qualitatively distinct solutions but
is often sufficient in many applications, and it can easily be computed in very large
networks.

We consider an FBA scenario as in Definition 1, initially without objective func-
tion (constraint C4), that is, only with steady-state (C1) and capacity or reversibility
constraints (C2), possibly in combination with measurements (C3). The solution
space of C1–C3 gives rise to a polyhedron, and as long as this polyhedron is not
a single point, multiple solutions r exist, implying that at least some fluxes must be
variable. To identify the range for a rate ri , we now use “constraint” C4 of the FBA
problem to first minimize and then to maximize rate ri . If we repeat this procedure
for all other (free) reaction rates, we get the feasible ranges of all unknown reaction
rates. Importantly, if the minimum and maximum rates of a reaction coincide, then
a unique rate value can be concluded for this reaction.

FVA is a simple yet very useful technique for constraint-based analysis. In prin-
ciple, FVA can be seen as a variant of metabolic flux analysis “featured” by FBA
methods. In contrast and as an advantage to “classcial” MFA, reversibility (and ca-
pacity) constraints can directly be included (in addition to measurements), which
may drastically reduce the solution space and possibly lead to uniquely resolvable



5 Stoichiometric and Constraint-Based Analysis 287

reaction rate values not detectable by MFA. Therefore, FVA has been widely em-
ployed as a network and flux analysis tool for underdetermined systems, and ex-
amples can be found in [14, 46, 107]. FVA may only get problems (and requires
methods from classical MFA) if the defined scenario is redundant (see Sect. 5.5.3),
which is, however, unlikely in larger networks.

We now come back to the problem of multiple optimal solutions in FBA prob-
lems. FVA facilitates the identification of fixed and variable reaction rates in optimal
flux distributions by a two-step procedure [85]: We first determine the optimal value
vopt of the objective function wTr. In a second step, we incorporate wTr = vopt
as an additional constraint of type C3. In the case of growth (yield) optimization,
this means to fix the growth rate to its optimal value. In a second step, we now
apply FVA, that is, we determine the feasible range of all reaction rates for the op-
timal behavior. Applying this procedure to the example scenario in (17) and Figs. 7
and 8, we would identify the uniquely resolvable rates R3 = R6 = R9 = R10 = 0
and R1= R2= R8= 2, whereas R4 and R5 are variable in a range of [0,2], and R7
in [−2,2].

5.5.4.5 Extensions and Variants of FBA

As pointed out several times, FBA proved to be a very suitable and flexible model-
ing approach since it allows one to study various important functional properties of
medium- and genome-scale metabolic networks from network structure. It is there-
fore not surprising that basic principles of FBA have been utilized also in specialized
or generalized variants of FBA, resulting in a variety of methods (for a comprehen-
sive review, see [82]). The main drivers for extending classical FBA were (i) the in-
tegration of data, in particular of gene expression and metabolite concentration data
[10, 106], (ii) the integration of regulatory events, (iii) an improved prediction of
the effects of gene perturbations, (iv) the description of dynamic (transient) changes
of metabolic fluxes, and (v) the use of FBA for metabolic engineering. Some of
these methods also require an extension of the formalism since they transform a lin-
ear programming (LP) into a mixed integer linear programming (MILP) problem.
We give here a brief overview on selected methods for (i)–(iv), FBA for metabolic
engineering will be discussed in detail in Sect. 5.5.6.

FBA with Regulation An approach to combine (transcriptional) regulatory net-
works with FBA models was presented in [21]. The idea is to put a Boolean net-
work of gene regulatory events on top of the metabolic FBA model. This so-called
rFBA model is used to predict the on/off effect of environmental signals (e.g.,
Gene/Reaction A is active IF substrate S is available AND oxygen NOT) on the
expression of certain metabolic genes and thus on the availability of certain path-
ways. Although rFBA considers only Boolean logic and can get problems if the
latter contains causal cycles (feedback loops), it can improve the predictive power
of FBA models [22, 126]. A more sophisticated and data-driven approach was pro-
posed by the PROM (probabilistic regulation of metabolism) framework, where data
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and prior knowledge on (candidate) regulators are used to generate a probabilistic
representation of transcriptional regulatory networks, which is eventually combined
with the FBA model [16].

FBA with Metabolite Concentration Data and Advanced Thermodynamic
Constraints The assumption of steady state is central to FBA. The advantage is
that the metabolite concentrations and their dynamic behavior need not to be taken
into account. However, this advantage turns into a disadvantage when experimen-
tal metabolite concentration data are available since their inclusion in FBA is not
straightforward. One suitable approach to include metabolite concentration data is
based on the thermodynamic constraint that the Gibb’s free energy change must be
negative for any reaction to proceed in forward direction (or positive for the back-
ward direction). The Gibb’s free energy change ΔG of the ith reaction is described
by

ΔGi =ΔG0
i +RT

(∑

M∈Pi

ln
(
cM
nM
)−

∑

M∈Si

ln
(
cM
nM
))
, (18)

where cM denotes the concentration of metabolite M, and nM its stoichiometric
coefficient in reaction i; Si and Pi are the sets of substrates (reactants) and products
of the ith reaction, R is the universal gas constant, and T the absolute temperature;
ΔG0

i is the Gibb’s energy change of reaction i under standard conditions (where
each reactant has a concentration of 1 M), which can be determined from estimated
Gibb’s energy of formation of participating reactants and is listed for a large number
of metabolic reactions [50, 57]. Measured (or estimated) metabolite concentrations
(or concentration ranges) then allow one to predict the sign of ΔGi of reaction i
and thus the direction (reversibility) of the reaction flux ri since it must hold by
thermodynamic laws that sgn(ΔGi)=− sgn(ri). Even if the direction of a reaction
cannot uniquely be resolved, certain sign patterns in the flux vectors can often be
excluded since no realistic metabolite concentration vector would exist supporting
this pattern. Hence, integrating thermodynamic constraint in the FBA formulation
reduces the solution space [52]. However, the solution space is not convex anymore,
and searching for valid flux vectors becomes technically more complicated.

Related to these considerations are efforts to incorporate constraints that exclude
thermodynamically infeasible cycles (without explicit consideration of Gibb’s free
energy changes). Infeasible cycles would produce a steady-state net flux in a closed
network without consumption of external sources or energy. Since the thermody-
namic driving forces around such a metabolic loop must add up to zero, no feasible
flux distribution should produce a net flux in such a cycle. This is equivalent to
Kirchhoff’s second law for electric circuits. For example, a thermodynamically fea-
sible flux vector in network N2 (Fig. 3) will exclude a net flux in the cycle spanned
by R3 (backward) and R2, that is, a negative flux for R3 and positive flux for R2
cannot take place at the same time in steady state. Again, MILP formulations are
appropriate to include such constraints in FBA problems [112].

FBA with Gene Expression Data Gene expression data are nowadays also fre-
quently available due to the advances of transcriptomic measurement technologies.
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Although it has been shown that there is no simple relationship between a reac-
tion flux and the expression level of a gene encoding the catalyzing enzyme, in
a simplified approach, one can assume that low expression implies that there is a
close-to-zero flux, whereas high expression values suggest high fluxes. In this way,
gene expression data can be used to shrink the solution space eventually enabling
one to predict tissue- or context-specific fluxes on the basis of gene expression val-
ues as in the iMAT approach [127]. A more advanced variant of this approach was
presented in [142], and reviews on related methods for integrating expression data
in FBA studies can be found in [10, 106].

FBA for Predicting Effects of Genetic Modifications Predicting the flux
changes as a consequence of gene/reaction deletions is one important application
of FBA. Even if the wild type grows optimally, mutants may not necessarily behave
optimally with respect to their retained resources. Instead, one could postulate that
they adjust their metabolism with minimal effort [123]. This assumption suggests
that the cell searches for the “nearest” solution in the new (reduced) feasible space
of steady-state flux distributions, which is part of the wild-type solution space. The
approach of minimization of metabolic adjustment (MoMA, [123]) formalizes this
assumption resulting in the following optimization problem, where ropt represents
the optimal flux vector of the wild type, and d the index of the deleted reaction
whose rate is set to zero:

Nr= 0 (19)

αi ≤ ri ≤ βi
rd = 0

minimize
r

(r− ropt)
T(r− ropt) (20)

The first three lines correspond to C1–C3 in the usual FBA, whereas the fourth term
leads to a quadratic programming problem whose handling, however, is mathemati-
cally straightforward. For mutants of the bacterium Escherichia coli, this approach
led to better predictions than FBA [123] (see also [125] presenting another variant of
this approach). However, MoMA and related methods need at first the flux distribu-
tion from the wild type, which is also assumed to be optimal and, hence, determined
by FBA. Therefore, MoMA faces the problem of nonunique optimal flux distribu-
tions in the wild type, which can result in nonunique solutions for the mutant [85].
Hence, for MoMA, it is essential to identify the real flux distribution in the wild
type under a given environment.

Analyzing a large set of metabolic flux data by multiobjective optimization the-
ory, a recent paper [116] suggests that the metabolism operates under different ob-
jectives. Moreover, the authors argue that bacteria might evolve under a trade-off of
two principles, namely (i) FBA-like optimality for the current condition and (ii) a
MoMA-like principle by which the cells can quickly adjust their metabolism under
changing conditions.
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FBA and Dynamic Fluxes Several efforts have been undertaken to simulate also
dynamic profiles of (selected) metabolite concentrations and metabolic fluxes in
FBA models. Regarding the concentration of biomass and external metabolites (sub-
strates, byproducts), this is straightforward and has been used by several related ap-
proaches [21, 86, 144]: FBA with steady-state assumption for the internal metabo-
lites is used to predict exchange fluxes (sometimes, selected exchange fluxes are also
explicitly modeled by kinetic rate equations) by which the time course of biomass
and external species can be computed through integration over discrete time in-
tervals (similar to Euler method). Such an approach was suitable, for example, to
describe the sequential utilization of substrates during diauxic growth of E. coli on
different substrates [21, 86].

An advanced approach (integrated FBA, iFBA) was presented in [23], where
FBA with Boolean regulatory constraints (rFBA) was coupled with differential
equations for selected internal and external metabolite concentrations. This work
demonstrated a strategy how existing modules of ODE/Boolean representations of
metabolic/regulatory processes can be integrated with FBA models.

5.5.5 Metabolic Pathway Analysis

Metabolic pathway analysis deals with the discovery and analysis of reaction se-
quences (pathways) in metabolic networks that have some meaningful functional
interpretation. There were some early efforts to define chemical and metabolic reac-
tion pathways in a mathematically rigorous way (e.g., [81, 88]; see also [139]). This
preliminary work resulted in the development of two related concepts for metabolic
pathways—elementary flux modes [117, 118] and extreme pathways [114]—which
have become the most accepted and most successful approaches. Since the two con-
cepts are very similar (in many cases even identical; for comparison, see [71, 95]),
we will focus here on elementary flux modes (or, shortly, elementary modes). As we
will see, elementary modes fit well into the constraint-based modeling framework
and provide a suitable concept to study a number of functional and combinatorial
properties of (metabolic) reaction networks. Since elementary modes are strongly
related to extreme rays of convex cones, they build a bridge from metabolic net-
work analysis to discrete and combinatorial geometry.

5.5.5.1 Definition and Properties of Elementary Modes

Elementary modes (EMs) have been defined as feasible steady-state flux vectors
that use a support-minimal (irreducible) set of reactions [117, 118]. The notion of
support is a key for the concept of EMs. The support supp(v) of a vector v is the set
of indices of nonzero entries: supp(v)= {i|vi 
= 0}.

Definition 2 (Elementary modes) An elementary mode (EM) is a flux vector e
fulfilling the following three conditions [117, 118]:
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(i) Steady state: Ne= 0
(ii) Reaction reversibility: ei ≥ 0 (∀i ∈ Irrev)

(iii) Support-minimality (Elementarity, Nondecomposability): there is no vector ẽ
that fulfills (i) and (ii) and supp(ẽ)� supp(e).

An EM e is called reversible if supp(e)∩ Irrev= ∅ and irreversible otherwise.

Note that conditions (i) and (ii) are identical to constraints C1 and C2′ in the
general constraint-based problem formulation (Definition 1). Recall also that these
two constraints form the flux cone (16) containing all feasible steady-state flux dis-
tributions. The third condition (iii), which is sometimes also called genetic indepen-
dence, ensures that an EM uses a minimal number of reactions, that is, no proper
subset of EM’s reactions can constitute a nontrivial feasible flux distribution. It is
this property by which EMs form pathway- or cycle-like structures (see below).

Conditions (i)–(iii) completely define the set of EMs of a network up to a scaling
factor for each EM. If e is an EM, then, obviously, e′ = λe (λ > 0) also defines an
EM (in case of reversible EMs, one can also choose a negative scaling factor λ). We
consider e and e′ as equivalent representations of one and the same EM since they
have the same support. Would we normalize each EM with respect to an appropriate
norm, only one representative per EM equivalence class would remain.

Figure 9 displays the five EMs of network N1. The involved reactions (the sup-
port) of each EM are indicated by thick blue arrows together with their relative
fluxes (uninvolved reactions have zero flux). The EMs were normalized so that the
smallest flux through a reaction is unity. One can easily verify that the three EM
properties in definition (2) are fulfilled for each EM. One can also recognize the
pathway-like structure of EMs; they represent minimal connected subnetworks that
convert a set of external substrates (here A(ext)) into external products (here D(ext),
P(ext), and E(ext)) while keeping the internal metabolites in a balanced state—a
key difference to paths computed in graph representations of reaction networks (cf.
Sect. 5.3). As already mentioned above, EMs may also constitute internal cycles. For
example, R2 and R3 (in backward direction) make up such a cyclic EM in network
N2 (Fig. 3).

Elementary modes possess a number of important theoretical properties, which
turned out to be very useful for metabolic network analysis.

Property 1: EMs as Vectors or Sets An EM can be represented as a vector e as
in Definition 2. However, an EM is uniquely defined already by its support; hence,
an EM can be represented by the set E of its involved reactions E = supp(e). In
the following, when listing the support of an EM, we will write Ri (instead of i)
for indicating that the ith reaction is part of an EM. We thus have, for example,
EM3= {R1,R6,R10} in Fig. 9. The representation as a set is preferred when dealing
with combinatorial properties of EMs. Note that the relative fluxes ei of an EM
represented as a vector e (important for certain applications) can be easily computed
from the set representation and the stoichiometric matrix [42].

Property 2: “Surviving” EMs After Reaction Deletions When a reaction in a
network is deleted, the new set of EMs in the remaining network is immediately
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Fig. 9 The elementary modes of network N1. The participating reactions of each mode are indi-
cated by thick blue edges. The numbers show the relative flux through the involved reactions

given by all those (surviving) original EMs that do not involve the deleted reaction.
Thus, would we delete reaction R8 in N1 (Fig. 9), then EM3, EM4, and EM5 would
constitute the complete set of EMs in the reduced network.

Property 3: EMs Generate the Flux Cone Linear combinations of elementary
modes (with nonnegative coefficients for irreversible EMs and arbitrary coefficients
for reversible EMs) generate the flux cone F , providing thus an alternative descrip-
tion to Eq. (16):

F =
{

r ∈Rq |r=
∑
αj ej , αj ≥ 0 if ej irreversible

}
. (21)

Property 3 emphasizes the relationship between EMs and the extreme rays of the
flux cone F . An extreme ray of a cone is a one-dimensional face of the cone; its
direction is represented by a vector v [9, 40, 67]; see also chapter Combinatorial
Optimization: The Interplay of Graph Theory, Linear and Integer Programming Il-
lustrated on Network Flow of this book. An extreme ray cannot be constructed by
a conic (nonnegative) linear combination of other vectors of the cone, and each ray
corresponds to an edge of the cone (see Fig. 6). From (21) it follows that the extreme
rays must be contained in the set of EMs (otherwise they could not be generated by
the EMs). The set of EMs may, however, also contain vectors that can be constructed
by other EMs. This may happen due to negative rates of reversible reactions. Hence,
for generating all vectors of F , a subset of EMs might be sufficient, which is called
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a generating set. The simple example network in Fig. 6 has three irreversible EMs:
E1= (0,−1,1)T, E2= (1,0,1)T, and E3= (1,1,0)T, which are also shown in the
cone representation. Whereas E1 and E3 are extreme rays, E2 is not since it can be
constructed by a nonnegative (conic) linear combination of E1 and E3. However,
for most applications of EMs, it is important to consider all nondecomposable flux
vectors and, hence, all EMs [71]. For example, Property 2 would not hold if we
would consider only the generating vectors E1 and E3. Furthermore, by splitting all
reversible reactions into two irreversible ones (one in forward and one in backward
direction) one can transform the original network into a fully irreversible network.
The linear constraints are then in standard form (all free variables are nonnegative),
which is often used in combinatorial and computational geometry:

F̃ = {r̃ ∈Rq+|Rev| : Ñr̃= 0, r̃≥ 0
}
. (22)

Importantly, up to the trivial cycles composed by a forward and backward reac-
tion of a formerly reversible reaction, the extreme rays of this cone can uniquely be
mapped to the EMs of the original cone (21); see [42]. In fact, this relationship can
be used to compute EMs by the double description method, which is well known
from computational geometry [40]. This procedure uses a tableau and applies itera-
tively Gaussian combinations to generate new candidate vectors, which, as the hard
step, need to be checked for elementarity (property (iii) in Definition 2). The enu-
meration of EMs (rays) is a combinatorial problem and can become challenging as
millions of EMs can easily arise in networks of larger size (>100 reactions). There
are some particular algorithmic improvements that have been achieved in the con-
text of metabolic pathway analysis by which now up to several hundreds of millions
of EMs may become computable [42, 75, 134, 141]. However, it is often still not
possible to enumerate EMs in genome-scale networks. In those cases, shortest EMs
might be computed [27], or projection methods applied [61, 87].

As a refined definition a cone is pointed if it does not contain a line. A line arises
if a vector v and its negative −v are both contained in the cone. The set of all lines
gives rise to the lineality space. If the lineality space is empty, the cone is pointed
since the zero point is then an extreme point of the cone (similarly as for extreme
rays, an extreme point cannot be generated by conic combinations of points of the
cone). Hence, a flux cone is pointed if it does not contain any reversible EM, that is,
if all αj in Eq. (21) are nonnegative. This is fulfilled in most realistic biochemical
networks. We note that in case of a pointed cone, the set of generating vectors is
unique. We will not further consider generating vectors, but some alternative de-
scriptions of flux cones are based on them [114].

It is also worth noting that all feasible steady state flux vectors r can be generated
by the set of EMs (Eq. (21)); however, for a given vector r, the decomposition in
EMs is, in general, not unique. This is a major difference to the basis of the null
space. For some applications of EMs, it would be useful to have a unique decompo-
sition, and some heuristics have been proposed for this purpose [56, 148].

We finally want to mention the relationship of EMs to another field of combina-
torics. Property (iii) of EMs in Definition 2 implies that EMs form a set of mini-
mally linearly dependent columns (reactions) in N. Dependent and independent sets
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are objects studied in the theory of matroids [93]. In fact, EMs correspond to the so-
called circuits representing minimally dependent sets of a matroid. This relationship
has not been intensively studied yet in the context of metabolic network analysis and
could provide an interesting topic for future research.

5.5.5.2 Applications of Elementary Modes and Metabolic Pathway Analysis

EMs represent minimal functional units of a reaction network and proved to be
a very useful and practical concept to analyze numerous functional and structural
properties of metabolic networks. Whereas FBA usually concentrates on particular
(optimal) steady-state flux vectors, EM analysis seeks to exhaustively explore the
solution space (flux cone) based on a finite set of distinct vectors effectively de-
scribing the stoichiometric capabilities of a (bio)chemical reaction network. Many
aspects that can be studied by FBA, as discussed above, can therefore often be tack-
led more exhaustively and more systematically by EMs. On the other hand, appli-
cations of EMs are limited to networks of moderate size since their computation is
normally intractable in genome-scale networks. Furthermore, FBA is often better
suited if several inhomogeneous constraints (C2 and C3 in Definition 1) have to be
taken into account.

We give here an overview on applications of EMs; a more detailed review on this
topic can be found in [139].

Identification of Functional Pathways and Cycles Since EMs correspond to
pathways or cycles, they can be used to identify—in an unbiased way—functional
metabolic reaction routes. In this way, hitherto unknown mechanisms might be iden-
tified in metabolic models [62, 122]. As long as all relevant cellular metabolites are
included as (internal) species in the metabolic model, almost all EMs convert exter-
nal substrates to external products. As discussed in Sect. 5.5.4.3, cyclic EMs with-
out consumption of external sources represent thermodynamically infeasible loops
[101] and could thus be used to correct, for example, reaction reversibilities.

Overall Stoichiometry and Yields Each EM has its specific stoichiometry with
respect to external metabolites, though different EMs may have identical overall
conversions. For this reason, EMs can be grouped into (equivalence) classes with
respect to their net stoichiometry. In N1, for example, the overall stoichiometry of
EM1 and EM2 is 1A(ext)→ 1P(ext), for EM3, we get 1A(ext)→ 1D(ext), and for
EM4 and EM5, 2A(ext)→ 1P(ext)+ 1E(ext) (see Fig. 9). In this way, EMs allow
the determination of the complete conversion capabilities of a metabolic network.
This is helpful to understand how the cell may synthesize its own components. It
becomes also very useful for biotechnological applications since we can immedi-
ately derive what are the optimal (or close-to-optimal) yields of certain products of
interest and what are the pathways that generate these yields. Recall the example of
finding optimal flux vectors for maximal synthesis of product P(ext) from substrate
A(ext) (Eq. (17)). We have seen that the optimal yield is one and that infinitely many
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optimal flux distributions with this yield exist. This can immediately be seen by the
overall stoichiometry of EMs: EM1 and EM2 are the two qualitatively distinct so-
lutions with the optimal yield of one, and the complete space (subcone) of optimal
solution is therefore spanned by nonnegative linear combinations of these two EMs
(compare EM1 and EM2 in Fig. 9 with Figs. 7 and 8(a)).

Reaction Importance, Phenotype Predictions and Coupled Reactions Since
pathway analysis yields all possible routes from which all other flux vectors can be
generated, the importance of single reactions for certain network behaviors can be
analyzed. For instance, we can conclude that reactions R1, R3, R6, and R9 in N1 are
essential (indispensable) for production of E since they are required in all EMs syn-
thesizing E (EM4 and EM5). Hence, removing any of these reactions would delete
these EMs, and only EM1–EM3 could survive at all (whether they remain opera-
tional or do not depend on the deleted reaction). Furthermore, not surprisingly, we
see that reaction R1 (substrate uptake) is essential for all flux vectors since it is uti-
lized in all EMs. We could thus “predict” a nonfunctional network in the absence of
A(ext) or after deletion of R1. Such predictions can conveniently be made by EM
analysis, e.g., for the viability of mutants [128] (they will be identical to the predic-
tions made by FBA). The (relative) number of EMs, in which a reaction is involved,
can thus generally be seen as an importance measure of this reaction for performing
a certain function. In [128], it was shown that reaction participations correlate well
with relative expression values of genes encoding the respective metabolic enzymes.

Reaction couplings can also be identified conveniently by EMs by simply search-
ing for strict or hierarchical cooccurrences of certain reactions in the EMs. Finally,
blocked reactions are identifiable as those that do not occur in any EM.

Network Flexibility Generally, the number of EMs available for a given function
quantifies the flexibility (and, to a certain degree, robustness) of the network with
respect to this function. The more EMs are available the more combinations of re-
actions form functional pathways. This in turn means that a failure or removal of
one or several reactions can be easier compensated if a large set of EMs is available
[6, 128].

Another application of EMs is the computation and subsequent analysis of mini-
mal cut sets as detailed in the following section.

5.5.5.3 Minimal Cut Sets

We have seen that the effects of reaction removals can be easily and immediately
predicted when having the EMs at hand. With this property, one can even systemati-
cally search for combinations of interventions (reaction deletions) that block certain
network functions. This leads to the notion of minimal cut sets, which, as we will
see, does not only provide a suitable approach for assessing network robustness and
targeted network redesign but also establishes a fundamental dual relationship be-
tween function and dysfunction in metabolic networks. In the following, we denote
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by E the complete set of EMs of a network. We assume that each EM E ∈ E is
represented as a set and, hence, by the support E = supp(e) of its vector represen-
tation e.

The basic idea of minimal cut sets is to block (undesired) capabilities of a net-
work by removing an appropriate set of reactions (which can then be mapped to a
set of gene knock-outs). We first need a suitable formalism to specify our interven-
tion goal, that is, the function(s) or flux vector(s) to be disabled. In the original work
[70], an undesired function was identified by one (or several) objective reaction(s),
and a cut set had to block all steady-state flux vectors in the set

{
r ∈Rq |Nr= 0, ri ≥ 0 ∀i ∈ Irrev, robjreac > 0

}
. (23)

However, a more general and convenient approach to specify an intervention goal
(or a set of target flux vectors) is to define a set T of target modes, T ⊂ E , sub-
suming all the undesired behaviors to be repressed. In network N1, for example,
our intention could be to block the synthesis of D and E, and we therefore select
all those EMs in T that export these metabolites; hence, T = {EM3,EM4,EM5}
(Fig. 9). In principle, we can imagine that T spans an undesired region (a subcone)
of the flux cone F whose flux vectors we want to disable. We can now define the
property of a cut set.

Definition 3 (Cut set) A cut set C is a set of reactions “hitting” all target modes,
that is,

∀T ∈T : C ∩ T 
= ∅. (24)

With this definition, removing or blocking the reactions contained in a cut set
from the network will disable the operation of all target modes since, by the defini-
tion of an EM, no subset of the reactions of an EM can realize a nonzero steady-state
flux distribution. Similarly as for EMs, we demand a cut set to be minimal.

Definition 4 (Minimal cut set) A minimal cut set (MCS) is a cut set C where no
proper subset of C is a cut set, that is, no subset of C hits all target modes.

From this definition it follows that MCSs are the so-called minimal hitting sets
of the target modes (the attribute “hitting” reflecting property (24); [69]). Minimal
hitting sets are well-known objects from the theory of undirected hypergraphs [7].
Undirected hypergraphs can be seen as a family of subsets from a ground set (each
subset forms a hyperedge). The set of target modes gives rise to an undirected hyper-
graph: its ground set corresponds to the set of reactions, and the EMs in T represent
the hyperedges. Several algorithms have been proposed to enumerate minimal hit-
ting sets (here, MCSs) for a given hypergraph (here, a given set of target modes) and
it turned out that, for computing MCSs in metabolic networks, the Berge algorithm
[7] performed best [48]. An alternative algorithm was recently presented in [60].

Coming back to our example, the seven MCSs blocking synthesis of E and D
(i.e., the minimal hitting sets of T = {EM3,EM4,EM5}) are depicted in Fig. 10.
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Fig. 10 Minimal cut sets blocking all flux vectors synthesizing D or E in N1. They are the minimal
hitting sets of EM3, EM4, and EM5 in Fig. 9

One can easily verify the required property of an MCS: each of the seven MCSs hits
all target modes, whereas no subset of any MCS would do so.

As a natural application, MCSs offer a systematic framework for computing in-
tervention strategies, for example, to combat the metabolism of pathological organ-
isms or to genetically design production strains for biotechnological applications as
detailed in Sect. 5.5.6 (see also constrained MCSs introduced in Definition 5).

Interpreting MCSs as minimal failure modes of a network (function), they are
useful to assess the robustness or fragility of a network (function) [6, 69, 70]:
fragility would be indicated by MCSs with low cardinality. Interestingly, computing
MCSs blocking growth of the bacterium E. coli, one finds very different spectra of
MCSs, depending on the chosen substrate. Hence, network robustness or fragility
strongly depends on environmental conditions. Similarly to EMs—but here from
another perspective—we can evaluate the importance of single reactions for certain
network functions. For example, essential reactions are MCSs of size 1.

MCSs are potentially also useful as a diagnosis tool. Suppose that an organism’s
metabolism is in a pathological state (e.g., due to gene mutations) and that it can
therefore not produce a certain metabolite. The set of MCSs gives us a complete set
of minimal failure modes that may have caused this observed behavior.

Finally, MCSs can also be used to identify all sets of measurements (of reaction
rates) through which other reaction rates become uniquely calculable in metabolic
flux analysis [69].

5.5.5.4 Duality Between EMs and MCSs

We have seen that the MCSs blocking a certain functionality can be computed as the
minimal hitting sets of those (target) modes that realize this function. This already
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Fig. 11 Duality principles
for elementary modes and
minimal cut sets

indicates a strong relationship between the minimal functional units (EMs) enabling
a certain function and the minimal set of interventions (MCSs) blocking it. In fact,
as summarized in Fig. 11, there are even more relationships between MCSs and
EMs, which originate from an inherent duality between both concepts. We can first
observe that the minimal hitting set property of MCSs with respect to the EMs holds
also in the reverse direction: the EMs are the minimal hitting sets of the MCSs (as
a lesson, one may verify this property for the MCSs in Fig. 10). Thus, if we could
calculate the MCSs independently of the EMs, then we could, in a second step, com-
pute the EMs as minimal hitting sets of the MCSs. In fact, a brute-force approach
to directly determine the MCSs without the bypass via the (target) EMs is to use
FBA to test consecutively all single, double, triple, etc. reaction knock-out combi-
nations whether they block a given target functionality or not. Alternatively, mixed
integer linear programming techniques can be used for a targeted search of minimal
knock-out sets [132]. In principle, all MCSs could be identified in this way, however,
even in medium-sized networks, enumerating MCSs by such approaches becomes
computationally quickly prohibitive. However, this relationship demonstrates that
MCSs can be characterized and computed without knowing the corresponding tar-
get modes. EMs and MCSs are equivalent descriptions of a network’s function but
from two different perspectives.

As shown in [2], there is another type of dualities between EMs and MCSs
(Fig. 11): for a network with a given functionality, one can construct a dual net-
work in which EMs (MCSs) correspond to the MCSs (EMs) of the original (primal)
network. To derive a representation of the dual network, we need another way to
describe the target functionality of the primal network:

Nr= 0

rj ≥ 0, j ∈ Irrev

tTr≥ 1

(25)



5 Stoichiometric and Constraint-Based Analysis 299

The nonzero elements of t characterize the target function. For example, if “growth”
is the target function of interest, then t will be a vector containing zeros except
a nonzero value for the growth rate (this representation requires that all reactions
with a nonzero value in t are irreversible, possibly by splitting reversible ones into
two irreversible ones). To characterize more complex target functions, one may re-
place tTr≥ 1 by the more general expression

Tr≤ b (26)

with T being a matrix [2]. For simplicity, we focus here on the simpler case. Using
the famous Farkas lemma ([9]; see also chapter Combinatorial Optimization: The
Interplay of Graph Theory, Linear and Integer Programming Illustrated on Network
Flow of this book and the theory of irreducible inconsistent subsystems [43], one can
show that the MCSs of system (25) can be identified as a particular set of extreme
rays of the (dual) cone spanned by

Ndualrdual :=
(
I− ĪIrrev − tNT)

⎛

⎜
⎜
⎝

v
z
w

u

⎞

⎟
⎟
⎠= 0

v ∈Rq, z ∈R|Irrev|, w ∈R, u ∈Rm

z≥ 0, w ≥ 0 (27)

The (primal) MCSs correspond to those extreme rays (EMs) of this cone where
w > 0 and which have minimal support in v. The matrix I ∈ Rq×q is the identity
matrix, and ĪIrrev ∈ Rq×|Irrev| is the identity matrix for irreversible reactions filled
with zero rows for the reversible reactions. Ndual is the stoichiometric matrix of
the dual network that contains basically the transposed constraints of the primal
description (25) (inequalities multiplied by −1) plus the (q × q) identity matrix I
from which the MCSs will be identified via the v part. Since the stoichiometric ma-
trix of the primal system is transposed in the dual, reactions of the primal system
become metabolites in the dual, and, likewise, metabolites become reactions. A sim-
ple example for finding MCSs in the primal as EMs in the dual network is shown
in Fig. 12. The two MCSs (blocking synthesis of P) in the primal network can be
identified by the two EMs in the dual network where w participates and which have
minimal support in the v part (the ith element of elements v corresponds to the ith
primal reaction). Conversely, the MCSs in the dual network (blocking the w part by
cutting exclusively the v reactions) correspond to the primal EMs.

The duality principles of (bio)chemical networks have important implications for
functional analysis of reaction networks. They tell us that the sets of EMs and MCSs
are two dual but equivalent representations of stoichiometric capabilities of the net-
work and their roles are interchanged in a dual network. Furthermore, the duality
framework offers novel algorithmic approaches to compute EMs or MCSs, or even
both (a concurrent calculation procedure for EMs and MCSs was presented in [48],
which is based on the joint-generation algorithm of Fredman and Khachiyan [39]). It
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Fig. 12 Example for computing MCSs in the primal and in the dual network

will depend on the application which path of calculation turns out to be most effec-
tive. As shown in [2], the dual network representation (27) simplifies the integration
of inhomogeneous constraints when specifying (target) flux vectors. In this way,
MCSs become directly computable also for (possibly, bounded) flux polyhedra.

5.5.5.5 Constrained Minimal Cut Sets

For some applications, especially those related to intervention strategies, one is in-
terested in MCSs that not only disable certain functionalities but also keep other
network functions operable. It is then useful to generalize the approach of MCS to
constrained MCSs [45]. To motivate this extension, suppose that we want to syn-
thesize product P in network N1 with optimal yield (via EM1 or/and EM2, Fig. 9).
It would hence be reasonable to block all other pathways (EM3, EM4, EM5) thus
leading to the MCSs as given in Fig. 10. One of the identified MCSs for this prob-
lem is MCS1 (removing substrate uptake reaction). Clearly, this MCS cannot be a
suitable knockout candidate for the enhanced production of P since is destroys not
only the target modes but also, as a side effect, all EMs synthesizing P.

We therefore demand not only that the MCSs hit all target modes in T but that
they additionally preserve a minimum number n of EMs with desired functions.
Desired EMs can be specified by a set D ⊂ E . In realistic applications, there is
usually no MCS that hits all target modes and not any of the desired modes; hence,
we allow that only a subset of the desired modes “survives” an MCS: n≤ |D | (often
one uses n= 1). For a given MCS C, we collect in DC all desired EMs that are not
hit by C:

DC = {D ∈D : C ∩D = ∅}. (28)

With this notation, we can now give a definition of constrained MCSs.
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Definition 5 (Constrained minimal cut set) An MCS C is a constrained MCS
(cMCS) if it satisfies the constraint

∣∣DC
∣∣≥ n. (29)

The set of cMCSs is uniquely defined by D , T , and n, and arbitrary combina-
tions are possible. Clearly, well-posed intervention problems fulfill D ∩T = ∅. It
is allowed that some EMs are neither in D nor in T , that is, the union of D and T
does not necessarily cover E . We do not care about those “neutral” EMs; they may
survive or not when removing the reactions of a cMCS.

Since they form a subset of the complete set of MCSs, constrained MCSs can
be identified after calculation of the (unconstrained) MCSs in a postprocessing step
by discarding all MCSs violating constraint (29). In many cases, however, it is ad-
vantageous to drop candidate MCSs violating the side constraints already during the
computation of cMCSs. An adapted Berge algorithm implementing this strategy has
been proposed in [45]. An alternative strategy for computing cMCSs was presented
in [60].

With this generalized definition of MCSs, we now come back to the example
with network N1, where the goal was to identify intervention strategies that would
disrupt all EMs except those that produce P with optimal yield from A(ext) (Fig. 1).
Accordingly, the set of target modes reads T = {EM3,EM4,EM5}, and the set of
desired modes reads D = {EM1,EM2}. If we demand to keep at least one desired
EM (n= 1), then only four of the MCSs in Fig. 10 would be retained as constrained
MCSs, namely MCS2, MCS4, MCS5, and MCS7. If we demand that all desired EMs
must survive (n= 2), then the set of cMCSs would further reduce to MCS2, MCS4,
and MCS5.

The use of cMCSs in designing realistic and complex intervention strategies for
targeted optimization of production strains is described in the following section.

5.5.6 Metabolic Engineering and Computation of Rational Design
Strategies

The production of industrially relevant compounds from renewable resources us-
ing biological systems becomes more and more attractive, not only for economical
but also for sustainability reasons. Metabolic engineering as an enabling technology
for this process aims at developing new experimental and theoretical methodologies
for the targeted improvement of metabolic pathways in suitable production hosts.
A large variety of theoretical approaches for strain and process optimization has
been developed [84]. Many of them rely on constraint-based modeling approaches
[139, 152] on which we will focus in the following. Constraint-based models can-
not only be used to compute the (potential) maximum yield of a product but also
to search for suitable interventions that redirect the fluxes toward the product to
eventually achieve a yield that is close to the optimum. As shown below, clever
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design strategies aim to couple biological (growth) and economical (product) objec-
tives. Several successfully engineered production strains demonstrate the potential
of model-driven metabolic design [31, 38, 55, 58, 136, 137, 140, 151].

5.5.6.1 Principles of Model-Based Strain Design

The targeted optimization of metabolic networks intends to redirect steady-state
fluxes of production hosts (which are typically microbial organisms but sometimes
also, for instance, mammalian cell lines) in a way that synthesis of a desired com-
pound is increased. Desired qualities of the constructed producer strains are: (i) high
product yield, (ii) high productivity, and (iii) strain stability. Most stoichiometric
optimization techniques address (i), a few also (ii). The majority of stoichiometric
methods delivers reaction (or gene) targets to be knocked out to increase product
yield. Some methods suggest also enhancement of certain reaction fluxes, which
can then be implemented by targeted overexpression of the respective metabolic
enzymes. Some optimization approaches propose also indirect interventions to re-
distribute flux changes by knocking out/overexpressing certain regulators. Such ap-
proaches usually require stoichiometric models that are coupled with Boolean rules
describing regulatory events (see rFBA introduced above and [68]).

The general objectives of metabolic engineering strategies are visualized in
Fig. 13. The left-hand side shows a phenotypic phase plane, which is basically a pro-
jection of the flux cone (or flux polyhedron when inhomogeneous flux boundaries
are considered) onto two characteristic key quantities: the biomass yield (x-axis)
and the product yield (y-axis). The yellow region shows all attainable combinations
of these yields in steady-state flux vectors of the network. There are two extreme
points: one with optimal biomass yield (which often corresponds to the behavior of
the wild type; this is the basic assumption of FBA) and one with maximal product
yield, where the substrate would be completely converted to the product, and no
biomass would be produced. The desired phenotype is indicated by the blue area:
flux vectors that exhibit a relatively high product yield while still allowing a reason-
able biomass yield. Accordingly, intervention strategies seek either to redistribute
fluxes into the desired space or, typically realized by knockouts, to cut away unde-
sired regions (right-hand side of Fig. 13). The red dot indicates a flux vector, where
the optimal biomass yield in the remaining space of feasible flux vectors is coupled
to high product yield.

To obtain a desired phenotypic space as shown in Fig. 13, one may follow two
basic strategies as illustrated in Fig. 14 (in reality, one often uses combinations of
both). A simple and straightforward approach could be to delete reactions that are on
pathways with low yields or leading to undesired products, possibly in combination
with the overexpression of reactions that are on pathways connecting substrate(s)
with product(s). Obviously, reactions/genes that are required for building biomass
components cannot be removed. In the extreme case, only pathways to the desired
product and biomass precursors would be retained. However, with such a strategy,
it is not ensured that the cell will really use the pathway leading to the product
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Fig. 13 Objectives of metabolic engineering. Left: the phenotypic space of a metabolic network
showing all achievable product/biomass yield combinations in steady-state flux vectors. From an
engineering point of view, the blue area shows the desired phenotype, whereas the cell will often be
close to the growth-yield optimal state. One possible engineering strategy is to search for knockouts
that cut away undesired regions while retaining a space similar to the one shown on the right-hand
side

Fig. 14 Coupling of product and biomass synthesis. (a) The wild-type network is given on top.
(b) A knockout strategy deleting of reactions R2, R4, and R11 leads to yield-optimal but decoupled
pathways for synthesis of metabolite P and biomass. (c) Deletion of R3, R7, and R11 leads to
obligatory excretion of metabolite P when biomass is synthesized

since it may not be its primary objective. For example, in the network in Fig. 14(a),
we might be interested in overproducing metabolite P. With the strategy described
above we could delete reactions R2, R4, and R11 to avoid suboptimal product yield
and synthesis of an undesired metabolite (Fig. 14(b)). The remaining pathways in
the network synthesize biomass and P via optimal but separated routes. It may thus
happen (and is likely) that the mutant will adjust its metabolism so that only the
pathway for biomass synthesis is activated and no product is excreted at all.
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A more complex concept that overcomes these problems is the coupling of prod-
uct synthesis and cell growth as illustrated in Fig. 14(c). In this scenario, one deletes
reactions R3, R7, and R11. With the remaining set of reactions, it is obligatory that,
whenever the organism synthesizes biomass, it has to produce and excrete metabo-
lite P since the precursor E required for biomass can only be synthesized via this
route. In that way, the product excretion is coupled to biomass formation.

A typical (indirect) example of coupling product and biomass synthesis is the
fermentative production of organic acids under anaerobic heterotrophic growth con-
ditions: the excretion of the latter becomes essential for growth since only in this
way reducing equivalents (NAD(P)H) can be balanced (as oxygen is not available
as terminal electron acceptor under anaerobic conditions).

Coupling of product synthesis and growth has two main advantages. The first is
that a certain minimal yield can be guaranteed whenever the cells grow. The second
advantage is that, in microbial organisms, the productivity can be increased by adap-
tive evolution [100]: when mutations have been implemented, the first generations
of the cells may perform suboptimal with respect to growth as their regulatory sys-
tem is disturbed. Over time they will adaptively evolve toward higher growth rates
again. As they are thereby forced to excrete the desired product, they will increase
also the product yield.

Constraint-based metabolic design algorithms have been developed based on
FBA, elementary modes, and minimal cut sets, and, as we will see in the follow-
ing, many of them seek to derive network redesign strategies that lead to coupled
product and biomass synthesis.

5.5.6.2 FBA-Based Approaches for Metabolic Engineering

FBA is naturally well suited for metabolic network optimization since it relies on
an objective function to be optimized. FBA is frequently used to explore potential
production capabilities of metabolic networks. OptKnock [12] was the first FBA-
based optimization method proposed for a directed search of targets in metabolic
networks. The basic idea is to consider the two competing objectives of chemical
overproduction and biomass maximization with the help of a bilevel optimization
problem (Table 1). The inner problem is similar to classical FBA formulation and
describes the biological objective (typically, biomass-yield maximization) together
with other constraints (steady-state, maximal substrate uptake rate, ATP mainte-
nance demand, etc.). In contrast, the outer optimization searches for suitable reac-
tion knockouts that, under the given inner biological objective, maximize product
synthesis. This approach thus directly aims at a coupling approach. Solving this bi-
level optimization problem is more complicated than standard FBA since it requires
mixed integer linear optimization (MILP) techniques [12].

The OptKnock approach was successfully applied to realistic problems [38, 151]
and initiated the development of extended or modified versions (for an overview,
see [152]) that allow, for example, the inclusion of regulatory constraints or the con-
sideration of heterologous reactions (genes). These methods include OptStrain [99],
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Table 1 Inner and outer problem of the OptKnock engineering approach

maximize
(through gene knockouts)

(bio)engineering objective

subject to maximize natural (biological) objective
s.t. N · r= 0

desired minimal biomass
fixed substrate uptake
knockout constraints

number of knockouts ≤ limit

Fig. 15 Example of the
remaining phenotypic
solution space after applying
the OptKnock (blue dashed
line) and RobustKnock (red
dashed line) knock-out
strategies

OptReg [98], OptOrf [68], OptForce [104], and RobustKnock [133]. In the latter, the
outer objective was adapted to maximize the minimal production of the chemical of
interest. Only by this reformulation, product excretion becomes really obligatorily
coupled to cell growth, which is not the case for the original OptKnock formula-
tion. The key characteristics of OptKnock and RobustKnock are depicted in Fig. 15.
A knockout strategy computed with the RobustKnock approach could lead to the
phenotypic phase plane that is surrounded by the dashed red line (mutant B). Here,
at biomass-yield optimal conditions (the red point), the minimal product yield is
relatively high, though smaller as the maximally achievable product yield in a mu-
tant delivered by OptKnock. However, in the OptKnock strategy (blue dashed line;
mutant A), the minimally possible product yield of the mutant at growth-optimal
state can be much lower than the (guaranteed) product yield resulting from the Ro-
bustKnock approach. A drawback of both strategies is that the coupling can be quite
sensitive to the assumption of biomass-yield optimality. If the organism behaves
suboptimally with respect to growth yield, the minimal guaranteed product yield can
quickly drop to small values or even down to zero. As the assumption of growth-
optimal behavior is not always fulfilled [120], it would therefore be desirable to
achieve coupling of product and biomass synthesis also when this biological objec-
tive is not maximized. Furthermore, all the algorithms mentioned above deliver in
each run exactly one solution; multiple solutions have to be computed iteratively
by including the found solutions as constraints such that they will not be detected
again.

Solving MILPs imposed by OptKnock and similar methods may become chal-
lenging for multiple (more than three) knockouts in genome-scale networks. To
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speed up the calculation, OptGene [96] and GDLS [83] apply evolutionary opti-
mization or a heuristic local search algorithm, respectively. Although they cannot
guarantee that the global optimum will be identified, their application may become
favorable compared to global search methods.

5.5.6.3 Computing Intervention Strategies Based on EMs

Elementary-modes analysis is a suitable tool for metabolic engineering strategies
[139], especially because the effects of deletions can be easily predicted (see Prop-
erty 2 of EMs, Sect. 5.5.5). A particular EM-based metabolic engineering method
that has been successfully applied in a number of case studies is the approach of
minimal metabolic functionality (MMF) [137]. It starts with selecting (few) optimal
EMs reflecting a desired behavior. Then, in each loop of the heuristic algorithm,
a reaction is selected as a suitable knockout candidate whose deletion will elim-
inate as many EMs as possible while retaining all (or at least some) EMs of the
desired behavior (high product yield). By sequential application of this procedure
all EMs except those with desired functionalities are deleted. In principle, obliga-
tory coupling of product and biomass synthesis can be enforced within this concept
by keeping appropriate remaining functionalities. MMF shares some properties with
cMCSs (see below), but the algorithm delivers only one solution (i.e., one cMCS),
which is not necessarily the one with the lowest number of interventions.

The first application of MMF was to identify and implement six knockout targets
that led to an E. coli mutant exhibiting an increased biomass yield [137]. The ap-
proach was also used to design mutants that overproduce different products of the
central metabolism (e.g., ethanol [136, 138]) or, as a representative of a secondary
metabolite, carotenoids [140].

A second example of an EM-based engineering approach is a simple correlation
analysis [89]. This approach analyzes correlations in normalized EMs between re-
action fluxes and product synthesis. Positively correlated reactions are suggested as
overexpression candidates and negatively correlated reactions as knockout candi-
dates.

CASOP (Computational Approach for Strain Optimization aiming at high Pro-
ductivity, [44]) provides an alternative heuristic approach, which also identifies both
knockout and overexpression targets. A difference to most other methods is that it
directly aims at increasing the productivity of a producer strain. CASOP evaluates
the spectrum of conversion routes (EMs) to assess the importance of each reaction
(for product yield and network capacity) when the fluxes are redirected to the prod-
uct (while keeping lowered biomass synthesis feasible). As a result, CASOP delivers
a reaction ranking suggesting gene knockout and overexpression candidates.

5.5.6.4 Design Strategies Based on Constrained Minimal Cut Sets

As introduced in a subsection above, constrained MCSs provide a particular EM-
based approach to enumerate intervention strategies that block undesired and keep
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Fig. 16 Example of using constrained minimal cut sets for designing knockout strategies for
ethanol overproduction by E. coli grown under anaerobic condition on glucose. Left: phenotypic
phase plane with all EMs of the wild type (blue dots: desired EMs; red dots: target EMs; black
dots: EMs neither desired nor target EM). Right: Remaining phenotypic space of a designed mu-
tant corresponding to an exemplary cMCS with five knockouts. Growth yield is given in [g biomass
per mmol substrate] and ethanol yield in [mmol ethanol per mmol substrate]

desired functionalities. By a concrete example we will briefly illustrate the use of
cMCSs for metabolic design problems and demonstrate how this concept enables
the enumeration of all knockout solutions that robustly couple biomass and product
synthesis (cf. [45]). The case study is on anaerobic ethanol production by E. coli
for growth on glucose as carbon source. The first step is to compute the EMs,
which, in this case, was done in the network presented by Trinh et al. [138]. It is
very useful to plot the (5010) EMs in the phenotypic phase plane showing for each
EM (= one dot) its specific growth and ethanol yield (Fig. 16). One can see that
there is already a coupling of product and biomass synthesis established for growth-
optimal behavior—a peculiarity of anaerobic conditions where ethanol is naturally
produced by E. coli as a fermentative product. However, assume that we are inter-
ested in higher yields than the one already reached by the wild type. As described in
Sect. 5.5.5.5, the next step is therefore to specify the set of target modes T and de-
sired modes D . Figure 16 (left) shows that we marked all EMs with an ethanol yield
below 1.4 (mol ethanol per mol glucose) as target modes (red dots). Desired modes
(blue dots) must lie above this threshold, and, in addition, we demand that they have
a minimal biomass yield of 0.02 to enable reasonable growth in the strain to be con-
structed. There are some EMs (black dots in the upper left corner) that are neither
target nor desired modes; there would be no problem if they were deleted; “survival”
of some of them can be accepted because (i) they have a high product yield and
(ii) a larger biomass yield is guaranteed to be feasible since we demand that at least
one desired mode must remain intact (n = 1). Computing now the cMCSs results
in 1988 different knockout solutions that solve this engineering task. The minimum
number of knockouts required is five. The remaining phenotype of an exemplary
quintuple mutant is shown in Fig. 16 (right), which reflects all desired properties:
whenever the cell metabolizes glucose, it must produce ethanol with high yield.
This holds, in particular, when the cell grows with optimal biomass yield, but also
if it does not. Hence, the minimal product yield is independent of the assumption
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of growth-yield optimality (Fig. 16(b)). However, one can also construct cMCSs
where one assumes that the cell evolves toward the optimal growth state (coupled
with product synthesis). This will reduce the number of knockouts to be invested
but becomes problematic if the cell behaves not as optimal as initially assumed.

Two major advantages of the cMCSs approach are (i) the extremely convenient
and flexible approach to define and solve an intervention problem via target and de-
sired EMs and (ii) the full enumeration of all equivalent knockout strategies enables
the selection of the best (most practical) strategy from the complete set of solutions.
With the full enumeration of cMCSs, one may also identify important properties,
such as knockouts being essential to achieve a given intervention goal. The high
flexibility of the approach is also proved by the fact that several MILP-based proce-
dures (including OptKnock and RobustKnock) and the MMF approach mentioned
above can be reformulated as special cMCSs problem delivering then all solutions.
Certainly, the flexibility and completeness have their price as the computation and,
therefore, application of cMCSs (and EMs) are currently still restricted to medium-
scale networks.

5.6 Software Tools

Here we give a brief overview of software packages that provide tools and computa-
tional methods facilitating metabolic network analysis as described in this chapter.
Note that tools and databases for metabolic network reconstruction were already
described in Sect. 5.2. In the following, we will focus on software for network visu-
alization and, in particular, for metabolic network analysis.

Generally, metabolic network models can be represented in the Systems Biology
Markup Language (SBML; [54]), a common model format used to store and ex-
change models of biological systems. Most software tools dealing with metabolic
networks provide an SBML importer/exporter, although certain features relevant for
some methods (e.g., objective function for FBA) cannot be conveyed yet in this for-
mat. Furthermore, as a standard for describing biochemical network diagrams, the
Systems Biology Graphical Notation (SBGN; [80]) was established.

Different software packages for visualization of metabolic (and other biological)
networks are available, including, JDesigner [110], CellDesigner [41], Cell Illustra-
tor [90], GLAMM [5], or Vanted [78]. Some of them do not only allow direct model
construction and graph drawing but also facilitate visualization of experimental data
in the context of a given network. One particular tool tailored for metabolic network
visualization is Omix [28], which has its strengths in visualizing metabolic fluxes
and data from isotopic tracer experiments. Further, it can visualize metabolome data
and display networks at different abstraction levels.

Apart from visualization tools, there is a large collection of software packages
facilitating computational analysis of stoichiometric and metabolic networks (see
also Copeland et al. [19]). The majority of them focuses on constraint-based tech-
niques, in particular, flux analysis, FBA, flux variability analysis, and pathway anal-
ysis based on elementary modes. Most software packages provide a graphical user
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Table 2 Software tools providing algorithms and tools for metabolic network analysis

Name FBA and
related

Integrated
data
analysis

FBA-
based
strain
design

Analysis
of EMs

Analysis of
(c)MCSs

License Depen-
dencies

CellNetAnalyzer
√ √

X
√ √

Free
academic

Matlab

COBRA
√ √ √

X X GNU
GPLv3

Matlab

EFMtool X X X
√

X BSD none

FASIMU
√ √ √

X X GNU
GPL

none

Metatool X X X
√

X Free
academic

none

MicrobesFlux
√

X X X X Free none

OptFlux
√ √ √ √

X GNU
GPLv3

none

YANA X
√

X
√

X Free
academic

none

interface (GUI) and/or command line functions, some are web-based. The tools may
also differ in their functionality regarding available LP/MILP solvers, dependencies
on other programs/environments (especially, MATLAB), and licensing issues. An
overview of some main characteristics of selected popular tools for metabolic net-
work analysis (excluding visualization tools) is given in Table 2. The command-line
oriented COBRA toolbox for MATLAB [113] provides arguably the largest col-
lection of functions for FBA-related studies; it also comprises implementations of
FBA-based metabolic engineering algorithms. The application of metabolic engi-
neering algorithms is the particular focus of OptFlux [108], a GUI-based stand-
alone software package. YANA [121] focuses on computing and analyzing elemen-
tary modes. Metatool [146] and EFMtool [134] are almost exclusively devoted to
calculate elementary modes with EFMtool being currently the fastest implementa-
tion available for this purpose. CellNetAnalyzer [73, 76] is a MATLAB package for
biological (metabolic and signaling) network analysis that can either be used within
a GUI or from command line. It provides several functions for FBA-related studies
and offers a comprehensive set of tools and algorithms for EM-based network anal-
ysis, including also calculation and exploration of (constrained) minimal cut sets.
FASIMU [53] provides another toolbox with functions for FBA studies, also al-
lowing the consideration of thermodynamic constraints. Finally, MicrobesFlux [35]
is a web-based platform that allows reconstruction of metabolic networks directly
from the KEGG database and subsequent FBA-related analysis.
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Chapter 6
A Petri-Net-Based Framework for Biomodel
Engineering

Mary Ann Blätke, Christian Rohr, Monika Heiner, and Wolfgang Marwan

Abstract Petri nets provide a unifying and versatile framework for the synthesis
and engineering of computational models of biochemical reaction networks and of
gene regulatory networks. Starting with the basic definitions, we provide an intro-
duction into the different classes of Petri nets that reinterpret a Petri net graph as
a qualitative, stochastic, continuous, or hybrid model. Static and dynamic analysis
in addition to simulative model checking provide a rich choice of methods for the
analysis of the structure and dynamic behavior of Petri net models. Coloring of Petri
nets of all classes is powerful for multiscale modeling and for the representation of
location and space in reaction networks since it combines the concept of Petri nets
with the computational mightiness of a programming language. In the context of
the Petri net framework, we provide two most recently developed approaches to
biomodel engineering, the database-assisted automatic composition and modifica-
tion of Petri nets with the help of reusable, metadata-containing modules, and the
automatic reconstruction of networks based on time series data sets. With all these
features the framework provides multiple options for biomodel engineering in the
context of systems and synthetic biology.

Keywords Automatic network reconstruction · Biomodel engineering · Dynamic
systems modelling ·Modular modelling · Petri nets ·Molecular regulatory
networks · Reverse engineering
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6.1 Introduction

Petri nets are mathematical structures that form the core of a versatile framework for
the modeling, analysis, and simulation of (bio-)chemical networks and for the engi-
neering of biomodels. In this chapter, we will provide a comprehensive overview of
the different classes of Petri nets and review techniques for their static and dynamic
analysis. We will then explain some advanced Petri-net-based techniques for mod-
eling and engineering of biomodels: colored Petri net modeling, modular modeling,
and automatic network reconstruction. As an introduction to this chapter, we will
now provide a brief contextual overview on these topics and show how the different
components contribute to an integrative framework for biomodel engineering. At
the end of this chapter, we briefly introduce the widely used Petri net tools Snoopy,
Charlie, and MARCIE, which were used for all applications mentioned in this chap-
ter.

The basic idea of Petri nets has been introduced in the 1960s by Carl Adam
Petri [68]. They are directed bipartite multigraphs that have been widely studied.
Directed bipartite graphs consist of two disjoint sets of nodes U and V , where a
directed edge connects a node in U to one in V , or vice versa. Directed bipar-
tite multigraphs like Petri nets allow two nodes to be connected by multiple arcs.
Upon appropriate interpretation of the two types of nodes, places, and transitions,
Petri nets work as a formal modeling language for causally coupled processes that
may proceed concurrently as it is typically the case in (bio-)chemical reaction net-
works.

The first application of Petri nets to biological processes was published 1993 by
Reddy and coworkers [71]. Up to now there are numerous publications illustrat-
ing the versatility of Petri nets and their use for metabolic networks [52, 53, 83],
gene regulatory networks [14, 15], and signaling networks [11, 16, 37, 73], as
well as for the integration of different types of biological networks [76]. In addi-
tion, there are some review papers about the use of Petri nets in systems biology
like [69].

The semantics of Petri nets supports the direct and natural representation of
the kinetics of chemical reactions and even of complex mechanisms of molec-
ular interactions as they occur within a living cell. In quantitative Petri nets,
the kinetics are implemented via the firing rate equations of each transition.
They can be defined as the mass action law of chemical reactions or may fol-
low more complex kinetic laws like, for example, the Michaelis–Menten kinet-
ics for enzymatic reactions [64] or the Hill kinetics to represent cooperativity
[48] in continuous, stochastic, or hybrid scenarios. In describing complex molec-
ular mechanisms, the operational semantics of Petri nets is particularly useful
and easy to be used for obtaining realistic models and accordingly realistic sim-
ulations. Operational semantics means that the Petri net, here describing molec-
ular mechanisms, is equivalent to a protocol, which is immediately executable
on an abstract machine or on a real computer [27]. In this sense, molecular
mechanisms encoded as a Petri net can be directly executed on a computer, and
all possibly emerging combinatoric or nonlinear effects will be revealed accord-
ingly.
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Structural analysis of a Petri allows one to explore the behavior of the model by
employing appropriate tools. Structural analysis provides important options in addi-
tion to model checking. It is also a basis of certain advanced biomodel engineering
techniques like algorithmic mutation of models [10].

The graphical display of Petri nets is intuitive and similar to the way biochemists
usually draw their molecular reaction schemes. By using an appropriate tool like
Snoopy [44, 63], a given Petri net graph can be interpreted automatically as qual-
itative, continuous, stochastic, or hybrid model and directly run by one of the
built-in simulators. Accordingly, a Petri net is an executable graphical represen-
tation of a computational model. The WYSIWYG representation is of considerable
benefit since it enables mathematically less trained experimentalists to assess the
correctness and validity of a model. The Petri net editor Snoopy supports more-
over hierarchy and logical nodes, technical add-ons to the core concept of Petri
nets that facilitate the modeling and visualization of large networks, as we will
show.

The colored extension of low-level Petri nets, also supported by Snoopy [54],
combines the strengths of Petri nets with the expressive power and mightiness of
programming languages. Colored Petri nets are especially useful for the genera-
tion of multiscale models, but also for other scenarios where large populations of
molecules or populations of cells are considered in time and space. Unfolding algo-
rithms translate colored Petri nets into low-level Petri nets. Thus, colored Petri nets
can enjoy the low-level Petri net analysis techniques as well.

Petri nets provide an ideal framework for the engineering of biomodels; see
Fig. 1. There are two fundamental concepts of creating a biomodel: the forward
and the reverse engineering approach. Forward engineering, also called bottom-up
modeling, starts with biological knowledge about molecules and molecular inter-
action mechanisms, which is translated into a biomodel [51], a Petri net in our
case. Most common are coherent, monolithic models. Alternatively, forward en-
gineering may be performed by designing small Petri nets in the form of mod-
ules that allow the automatic composition for obtaining functional, executable Petri
nets [9]. These modules are more than just Petri nets. They may contain meta-
data documenting knowledge and encoding functionally relevant biological infor-
mation of the Petri net nodes [9]. Based on the modular organization and on the
metadata, these modules can be mutated through appropriate algorithms to mimic
genetic mutational analysis [10], which is quite common in wet biological re-
search.

The alternative way is reverse engineering, also called top-down modeling [51].
Here, experimental data sets are used to directly infer structure and dynamic be-
havior of a biomodel. Reverse engineered models may contain nodes that represent
experimentally evident comprehensive states of the system without necessarily re-
solving the molecular details as it is usually the case in forward engineered models.
One reverse engineering approach to be highlighted in this chapter is automatic net-
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Fig. 1 Integrative framework for biomodel engineering based on Petri nets. Petri net models can
be generated in various ways, manually or automatically, based on known molecular mechanisms
(forward engineering; bottom-up) or solely on data sets (reverse engineering; top-down) to reflect
the true or the desired behavior of a system of interest. Typically modeling is an iterative process
that includes the validation of the network against a given or pre-defined behavior and its modifi-
cation to meet the requirements. Petri net modules may be used as building blocks with validated
properties. Automatic network reconstruction is the name of a method for the reverse engineering
of Petri nets based on discrete optimization [62], which is described in this chapter. Note that there
are numerous other methods for the reverse engineering of molecular or gene regulatory networks
(for reviews, see [38, 60, 67, 78, 81, 82])

work reconstruction. This method converts a time series data set into a complete
set of Petri nets that all are able to reproduce this data set, eliminating any bias
introduced by the user. Experimental data sets can be enriched or replaced by the
description of how the system is wanted to behave. Networks modified or reengi-
neered to meet certain demands can be obtained through reverse engineering or
mutation algorithms [10]; see Fig. 1.

No matter how a biomodel was generated (forward or reverse) or modified, its
behavior should be explored or validated by simulation or model checking. Accord-
ingly, biomodel engineering typically is an iterative approach, see Fig. 1.

Before explaining in detail how Petri nets support the various options of creating
and simulating biomodels, we will give a brief overview of the different ways of how
biomodels in terms of (bio-)chemical reaction networks are usually represented.
As a simple, yet non-trivial small network, let us consider a simplified version of
the repressilator, here called simplified repressilator, which will be used as running
example throughout the chapter; see Fig. 2.

Simplified Repressilator In general, the repressilator is a cyclic negative feed-
back loop composed of three repressor genes and of their corresponding promo-
tors [25]. Each of the three interconnected transcriptional repressor systems (TRSs)
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Fig. 2 Schematic plot of the simplified repressilator. The repressilator is a cyclic negative-feed-
back loop composed of three repressor proteins and their corresponding genes. Each repressor
protein inhibits the transcription of its target gene [25] by reversibly binding to its specific binding
site on the DNA. The simplified repressilator shown in this figure is not more than a toy model
inspired by the repressilator originally implemented in E. coli as a synthetic circuit [25]. The sim-
plified repressilator neglects the formation of the mRNA and allows the degradation of a repressor
protein while it is bound to its DNA target to inhibit the transcription of the downstream gene. The
model is used as a running example throughout this chapter. Abbreviation: TRS—transcriptional
repressor system

consists of the gene encoding the mRNA from which the respective repressor pro-
tein is translated (synthesized). Each repressor protein reversibly binds to its spe-
cific repressor binding site. The bound repressor protein prevents the transcription
of the gene it controls. For the simplified repressilator, we assume that each gene di-
rectly catalyzes the synthesis of the repressor protein it encodes. We neglect the
mRNA intermediates and the explicit processes of transcription and translation;
see Fig. 2. However, we explicitly consider the binding and unbinding of the re-
pressor proteins to their target promotor sites and the degradation of the repres-
sor proteins in the free and bound forms [59]. Note that the simplified repressila-
tor is just a toy network to be used for demonstration purposes and not meant as
a computational model of the original repressilator that has been implemented in
E. coli [25].

There are different standard ways of representing reaction or signaling networks
like the simplified repressilator shown in Fig. 2:

• List (set of stoichiometric reactions in a reaction/species centric form).
• Hypergraph (graph where arcs connect to any number of nodes).
• Bipartite graph (graph consisting of arcs and two types of nodes, where nodes of

the same type cannot be connected, e.g. Petri nets).
• Incidence matrix (equivalent to stoichiometric matrix).
• ODE (ordinary differential equation).

In Fig. 3, we illustrate these representation styles by taking one TRS of the simpli-
fied repressilator as example.
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Box 1: Petri nets in the context of major alternative formalisms used in bi-
ological modeling and simulation

Determinism of modeling languages
Model type BN (col)PN ODE SDE

Deterministic 0/1 + + − −
N0 (+) + − −
R
+
0 − + + −

Stochastic 0/1 + + − −
N0 (+) + − −
R
+
0 − − − +

Hybrid 0/1 − + − −
N0 − + − −
R
+
0 − + − −

Areas of application
BN PN ODE SDE

Metabolism − + + −
Signaling + + + +
Gene Regulation + + + +
Populations − + + (+)

To compare common frameworks for modeling and simulation of molecular
regulatory networks, one may distinguish between computational and math-
ematical models [27]. Starting from a network defined by the causal (molec-
ular) interactions of its components, computational and mathematical models
are obtained in alternative ways. Mathematical models describe with the help
of equations how the network and its components are expected to quantita-
tively behave, usually as functions of time. The mechanisms per se are not
necessarily captured by the mathematical semantics, and the mathematical
model of the molecular mechanisms is in praxi often based on certain as-
sumptions or simplifications as the result of a considerable degree of abstrac-



6 A Petri-Net-Based Framework for Biomodel Engineering 323

tion. Simulation results are then usually obtained by numerically solving the
system of ordinary or stochastic differential equations (ODEs, SDEs). In con-
trast, computational models like Boolean networks (BN), cellular automata
(CA), Petri nets (PN), or process algebras (PA) are obtained by translating
the interaction mechanisms with the help of an operational semantics. Com-
putational models can then be directly executed on an abstract machine or
on a real computer in order to perform a simulation. Alternatively, compu-
tational models may be translated into differential equations which are then
solved numerically. In other words, mathematical models are primarily ob-
tained by interpretation and computational models primarily by translation of
the mechanisms of causal interaction of the physical (molecular) components
of the network. It depends on the class of computational model how direct this
translation can be. Petri nets and process algebras allow the most direct repre-
sentation of simple and complex molecular mechanisms, whereas translation
into Boolean networks or cellular automata involves simplifications and ab-
stractions. The way of how to obtain a model matters when nonlinear effects
determine the dynamic behavior of a network. Nonlinear effects are caused
by complex kinetic interactions of network components, which are prevalent
in molecular biology. In this case, translation of the molecular mechanisms
is straightforward in predicting the dynamic behavior and in implicitly rep-
resenting functionally relevant combinatoric effects that may occur e.g. in
clusters of interacting molecules. For obtaining deterministic, stochastic, and
hybrid models, Petri nets are the most versatile framework in terms of allow-
ing discrete and continuous approaches. In contrast to the other frameworks,
Petri nets allow one to avoid abstractions as much as possible. The graphical
representation of a Petri net representing a mechanism of interest remains the
same no matter whether the Petri net is executed as deterministic, stochastic,
hybrid, discrete, or continuous model.

6.2 Petri Net Framework

The Petri net framework consists of four Petri net classes according to the four mod-
eling paradigms (qualitative, continuous, stochastic, and hybrid; see Fig. 4), which
we will now explain in more detail. For formal definitions of the different classes of
Petri nets and standard Petri net notation, see [4, 41] and references therein.

6.2.1 Qualitative Paradigm

Qualitative Petri nets QPN provide the basis for the definition of all other classes of
Petri nets. With QPN describing the qualitative structure of a reaction network or
gene regulatory network, one can apply different modeling paradigms (continuous,
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Fig. 3 Different representation styles of the simplified repressilator. Here, we show one TRS of
the simplified repressilator with (i, j)= {(1,3), (2,1), (3,2)}. The simplified repressilator is rep-
resented as (a) list of reactions, (b) incidence matrix, (c) ODEs, (d) hypergraph, and (f) bipartite
graph (e.g. Petri net). As in [59], we apply mass action and assume that the kinetic constants
are the same for each TRS. For simulation purposes, we set the parameters to g = 0.05 s−1,
d = dr = 0.003 s−1, α0 = 0.5 s−1 and α1 = 0.01 s−1 [59]. Abbreviations: ei—free repressor bind-
ing site, ri—bound repressor binding site, Xi – free repressor protein

stochastic, hybrid) by switching the Petri net class. QPN are referred to as “Petri
nets” throughout this section.

Definition 1 (Petri net) A Petri net is a quadruple N = (P,T ,f,m0), where:

• P,T are finite, non-empty, disjoint sets. P is the set of places, and T is the set of
transitions.

• f : (P × T ) ∪ (T × P)→ N0 defines the set of directed arcs, weighted by non-
negative integer values.

• m0 : P →N0 gives the initial marking.

6.2.1.1 Elements

A Petri net is a finite bipartite directed multigraph consisting of two types of nodes,
places (drawn as circles) and transitions (drawn as rectangles), that are intercon-
nected by weighted directed arcs. Places are exclusively connected to transitions
and vice versa. Depending on the definable properties of a Petri net, a place can be
empty or marked by one or more tokens. Upon firing, tokens move from transition’s
pre-places to its post-places [66]; see Fig. 5.

Places (= circles) refer to conditions or entities. In a biological context, places
may represent populations, species, organisms, multicellular complexes, single
cells, proteins (enzymes, receptors, transporters, etc.), other molecules, or ions. But
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Fig. 4 Conceptual framework. The standard low-level Petri net formalism offers four classes,
qualitative Petri nets (QPN ), stochastic Petri nets (SPN ), continuous Petri nets (CPN ), and
generalized hybrid Petri nets (GHPN ) that differ in their type of state space and their relation
with respect to time. Each Petri net class can be derived from one of the others by abstraction,
extension, or approximation. All Petri net classes can be projected to the high-level colored Petri
net framework. Colored Petri nets can be obtained by folding of the corresponding low-level Petri
net, and low-level Petri nets can be obtained through unfolding colored Petri nets. Taken from [58]

places can also represent physical variables like temperature, pH-value, or mem-
brane potential. Only places carry tokens; see Fig. 5(a), (b).

Transitions (= squares) describe state shifts, system events, or activities in a net-
work. In a biological context, transitions refer to (bio-)chemical reactions, molec-
ular interactions, or conformational changes. Places giving input to (getting output
from) a transition are called pre-places •t (post-places t•). Pre-transitions •p and
post-transitions p• of a place are accordingly defined. Transitions consume tokens
from their pre-places and produce tokens on their post-places according to the arc
weights; see Fig. 5(a), (d).

Directed arcs (= arrows) specify the causal relationships between transitions
and places. Thus, they indicate the effect of firing a transitions on the local token
distribution. Arcs define the direction in which (bio-)chemical reactions take place.
Arcs connect only nodes of different types; see Fig. 5(c). Each arc has an integer
arc weight greater than zero. The arc weight sets the number of tokens that are
consumed or produced upon firing of a transition and represents the stoichiometry
of a (bio-)chemical reaction.

Tokens (= dots or numbers within a place) are variable elements of a Petri net
and represent the discrete value of a condition or an entity. Tokens are consumed



326 M.A. Blätke et al.

Fig. 5 Petri net formalism. (a) Petri nets consist of places, transitions, arcs, and tokens. (b) Just
places are allowed to carry tokens. (c) Two nodes of the same type cannot be connected with each
other. (d) The Petri net shown here represents the chemical reaction of the formation of water.
Oxygen atoms (molecules) are shown in red and hydrogen atoms (molecules) are shown in grey.
The arc weights indicate the stoichiometry of the reaction. A transition is enabled and may fire if
its pre-places are sufficiently marked by tokens

and produced by firing transitions; see Fig. 5(a), (d). In (bio-)chemical reaction net-
works, tokens may refer to a concentration level or to a discrete number of individ-
uals of a species, for example, proteins, ions, organic, and inorganic molecules. To-
kens may also represent the value of physical variables like temperature, pH value,
or membrane voltage according to the definition of places they mark. A particular
arrangement of tokens over a net is called the marking m. For a given marking m of
the Petri net, m(p) refers to the number of tokens in a given place p.

6.2.1.2 Semantics

The Petri net semantics describes the behavior of the net, which is defined by the
firing rule consisting of a precondition and the firing itself; see also Definition 2
for a formal description. The firing of a transition depends on the marking of its
pre-places. A transition is enabled and may fire if all pre-places are sufficiently
marked; see also Fig. 5(b). If a transition has no pre-places, it is always enabled
to fire. The firing of a transition moves tokens from its pre-places to post-places
and accordingly changes the number of tokens in these places. As a result, some
transitions may not be enabled any more, whereas others get enabled. In the case
that more than one transition is enabled in a given marking, only one of the enabled
transitions is allowed to fire. Compared to boolean networks, transitions in Petri net
fire asynchronously.

Definition 2 (Firing rule) Let N = (P,T ,f,m0) be a Petri net:

• A transition is enabled in markingm, written asm[t〉, if ∀p ∈ •t :m(p)≥ f (p, t),
else disabled.
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• A transition t , which is enabled in m, may fire.
• When t inm fires, a new markingm′ is reached, written asm[t〉m′, with ∀p ∈ P :
m′(p)=m(p)− f (p, t)+ f (t,p).

• The firing happens atomically and does not consume any time.

6.2.1.3 State Space

The behavior of a net emerges from the repeated firing of transitions. All ordered
firing sequences define the behavior of the Petri net model. The set of all mark-
ings of the Petri net reachable from the initial marking m0 defines the state space;
see Fig. 4. The sequential individual firing of enabled transitions generates a possi-
ble path through the discrete state space. The two most common representations of
the discrete state space and its transition relation are the labeled transitions system
(LTS), also known as reachability graph, and the finite prefix of maximal branch-
ing process (PO prefix for short). The LTS describes the behavior of the Petri net
by all (totally ordered) interleaving sequences, whereas the PO prefix describes the
network behavior through all partially ordered sequences of transition firing events.
Both kinds of representations of the discrete state space can be used for analysis
purposes, for example, model checking, see Sect. 6.3.2.

Figure 4 shows that QPN are characterized to be time-free, meaning there is
no time associated with transitions or sojourn time of tokens. Thus, the discrete
state space represents all possible markings of a net that can sequentially occur
independently of the time.

Simplified Repressilator The complete model of the simplified repressilator with
degradation of the bound repressor protein (the repressor protein bound to its spe-
cific regulatory binding site on the DNA), which we are using throughout this chap-
ter, is given in Fig. 6(a), as well as the kinetic rate functions and constants that we
use further to obtain the quantitative behavior through simulations.

Every QPN model, for example, the model of the simplified repressilator in
Fig. 6(a), can be extended to a quantitative model, stochastic, continuous, or hybrid
by adding kinetic rates to the transitions. Adding kinetic rates does not induce any
changes in the qualitative network structure. Since the qualitative network structure
is maintained in all modeling paradigms, the same powerful analysis techniques can
be applied to all Petri net classes; see Sect. 6.3. In the following sections, we explain
the realization of the quantitative modeling paradigms in Petri nets.

6.2.2 Continuous Paradigm

A widely used approach in the modeling and simulation of (bio-)chemical reaction
networks is to represent a system and its behavior as a continuous model in the form
of a set of ODEs. Figure 4 shows that a time-dependent continuous Petri net (CPN )
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Fig. 6 Petri net of the simplified repressilator. (a) depicts the complete Petri net model of the
simplified repressilator consisting of three TRSs (compare also Figs. 2 and 3) with rate functions
and parameters given in (b)

Fig. 7 Continuous simulation of the simplified repressilator. The diagram illustrates the results of
the continuous simulation and shows copy numbers of the free repressor proteins Xi (repressor
protein molecules currently not bound to the DNA) over time. The continuous simulation was
performed with one copy of each of the three genes

can be derived from the time-free QPN by adding deterministic firing rates; see
[41] for a formal definition. The marking of a place is now represented by continu-
ous values, rather than by the integer number of tokens as in the case of QPN . The
semantics of CPN is described through the corresponding set of ODEs, which is
encoded by the network structure and the added deterministic firing rates. Thus, the
firing of the transitions is continuous itself.

Since a CPN is a continuous and deterministic model, each simulation run gives
the same result for a given CPN .

Simplified Repressilator The continuous behavior of the simplified repressilator
given in Fig. 6 yields a sustained oscillation of the three repressor proteins with
alternating peaks; see Fig. 7.
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Further Reading CPN directly represent the molecular kinetic mechanisms
within a biochemical reaction network in the form of an operational semantics and
at the same time uniquely specify an ODE system that mathematically describes
the dynamic behavior of the system [77]. Vice versa, the extraction of the reaction
network underlying a given ODE system is unique only under certain conditions,
see [77].

6.2.3 Stochastic Paradigm

Since (bio-)chemical reactions are inherently stochastic at the molecular level, the
application of the stochastic paradigm is most natural. The network structure and the
discrete marking of QPN and thus the discrete state space are maintained in a quan-
titative time-depended stochastic Petri net (SPN ); see Fig. 4 and [41] for a formal
definition. In SPN , transitions become enabled if their pre-places are sufficiently
marked. The time dependency is added by assigning exponentially distributed firing
rates (resulting in waiting times) to the transitions. An enabled transition will only
fire if its current specific waiting time has elapsed. The firing event as such does
not consume any time. Thus, all reactions defined in the network structure of an
SPN occur with a likelihood, depending on the probability distribution for each
given transition. Continuous-time Markov chains (CTMCs) describe the semantics
of an SPN . Each simulation run yields one out of many possible traces through
the CTMC. The stochastic simulation of the token flow can be computed by, for
example, Gillespie’s direct method [33].

Simplified Repressilator In Fig. 8, we show the results of the stochastic sim-
ulation of the simplified repressilator given in Fig. 6 for different initial settings
concerning the simulation runs and number of copies per gene. The continuous sim-
ulation in Fig. 7 can be approximated by using a high number of copies per gene
in the SPN . (Many copies of a gene within a bacterial cell can be obtained by
transforming the cell with a multi-copy plasmid [35].) Performing the simulation
with only a single copy of each gene still results in an oscillation superimposed by
random fluctuations. Averaging the results over several simulation runs reduces the
amplitude of the oscillation as random fluctuations superimpose.

Further Reading The modeling of (bio-)chemical networks by SPN was first
proposed in [34], where the authors applied SPN to a gene regulatory network. In
the following years, SPN have been applied to several biological case studies; see,
for example, [18, 61, 74, 75, 80].

6.2.4 Hybrid Paradigm

In (bio-)chemical reaction networks, especially in signaling or genetic networks,
reacting molecules may be of highly different copy numbers and react on highly
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Fig. 8 Stochastic simulation of the simplified repressilator. The diagrams illustrate the results of
stochastic simulations and show copy numbers of the free repressor proteins Xi over time. The
number of gene copies and the number of simulation runs were varied. In (a) and (b), we used
1000 copies of each gene to approximate the continuous behavior. The stochastic simulation in
(c) and (d) is performed with only one token according to situations where a single cell would
carry only one copy of the gene. In (b) and (d), we averaged the stochastic simulation results over
1000 runs

different time scales, which ultimately results in a stiff system [50]. Simulating these
networks stochastically would provide exact results, but the high copy number of
components makes the simulation computationally expensive.

SPN are well suited to capture the naturally occurring fluctuations and the dis-
creteness of molecular event, when only a few number of molecules are turned over
per time interval. CPN are poor in modeling fluctuations and discreteness, but de-
terministic ODE solvers are computationally efficient in simulating reactions that
involve a high number of molecules with molecule numbers encoded in the form of
continuous concentration values. Whereas stochastic simulation is more accurate,
continuous simulation is much faster. Certainly, both modeling paradigms comple-
ment each other.

Generalized hybrid Petri nets (GHPN ) integrate the formalism and semantics
of SPN and CPN . Thus, GHPN are tailored to model and simulate systems,
where species of highly different copy numbers react with each other. A GHPN
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Fig. 9 Hybrid simulation of
the simplified repressilator.
The diagram illustrates the
results of the hybrid
simulation with dynamic
partitioning and shows the
copy numbers of the free
repressor protein Xi versus
time. The hybrid simulation
was performed with one copy
of each gene

may contain stochastic and continuous places, as well as stochastic and continu-
ous transitions. Stochastic places contain a discrete number of tokens, whereas the
marking of continuous places is given by a real number. Arcs indicating mass flow
link stochastic transitions to stochastic or continuous places. However, continuous
transitions are exclusively linked to continuous places by standard arcs. Continu-
ous transitions can also depend on discrete places by special arcs, which however
are introduced later in this chapter. The state space of a GHPN is the combination
of both the discrete and continuous state spaces; see Fig. 4. A formal definition of
GHPN and their semantics can be found in references [46, 47].

In GHPN , the so-called partitioning of the net in stochastic and continuous parts
may be static as set by user. Since the numerical values of the marking of places
may drastically change during the simulation, static partitioning may not be always
appropriate and efficient. Dynamic partitioning accounts for the drastic variation
in marking and firing rates during a GHPN simulation. Here, an algorithm deter-
mines after certain time periods if a transition has to be considered as continuous or
stochastic depending on a lower and upper threshold for the firing rate. If one tran-
sition violates the partitioning criteria, repartitioning of the net takes place. With the
help of dynamic partitioning, it is possible to increase the accuracy and speed of a
hybrid simulation [46].

Simplified Repressilator For completeness, we show in Fig. 9 the hybrid simu-
lation of the simplified repressilator given in Fig. 6 with dynamic partitioning. The
oscillation can still be obtained with dynamic partitioning.

Further Reading Case studies exemplifying the application of GHPN to bio-
logical system, for example, T7-phage, eukaryotic cell cycle, and circadian clock,
as well as further references on hybrid modeling can be found in [46].

6.2.5 Extensions and Useful Modeling Features

For the clear graphical structuring and neat arrangement of a Petri net, logical nodes
and coarse nodes are especially useful for the modeling of larger networks. Both
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Fig. 10 Logical nodes. The figure shows the enzymatic reaction A+E↔AE→ E + B , where
E is the enzyme, and A and B are substrate and product, respectively. With the help of logical
nodes, the coherent Petri net model of this enzymatic reaction is displayed to show the individual
reactions that link the components (a) or the individual components that link the reactions (b). Due
to the declarations of the nodes shaded in grey as logical nodes, (a) and (b) show the same coherent
Petri net model of the reaction sequence A+E↔ AE→ E + B . Execution in Snoopy gives the
same results for (a) and (b). The figure was redrawn from [63]

types of nodes do not change the expressiveness of a Petri net. Although the graph-
ical appearance of a model will be different when logical or coarse nodes are used,
the network topology in the different representations is the same.

• Logical nodes (= grey-shaded nodes) can be used to replace a single node with a
large number of connections to other nodes by multiple graphical copies. Logical
nodes are useful when the model structure due to a high number of crossing arcs
becomes confusing. This can occur, when a component, for example, ATP, is
involved in many different reactions. The ordinary process centered view of a
Petri net graph can be changed to a reaction centered view using logical places or
a component centered view using logical transitions; see Fig. 10.

• Coarse nodes (= boxed nodes) allow one to hierarchically structure a network.
Each coarse node in a network induces a new panel containing a subnet. Coarse
nodes can be arbitrarily nested. Composing a Petri net by using coarse places
and coarse transitions helps to structure the network into subnets according to
its functional subsystems or to represent natural hierarchical organization of a
biological system. Coarse places are bordered by places and coarse transitions
are bordered by transitions, see Fig. 11. Coarse nodes may also exist in isolation,
but two coarse nodes cannot be directly linked by arcs.

Furthermore, advanced arc types have been introduced. Read arcs and inhibitory
arcs, for example, can be used to connect places with transitions, but not vice versa.

• Read arc (= edge with filled dot). If a place p is connected with a transition t
via a read arc, the transition t is enabled if place p and all other pre-places of
transition t are sufficiently marked. By firing transition t , the amount of tokens
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Fig. 11 Coarse nodes. Coarse nodes allow the refinement of (a) transitions or (b) places by a
detailed subnets on a deeper hierarchical level. The introduced subnets may be of arbitrary com-
plexity

Fig. 12 Read arc and inhibitory arc. (a) Read arc: Transition t1 is enabled if places A and B are
sufficiently marked. After firing, tokens are deleted from place B, but not from place A, which is
connected with transition t1 by a read arc. (b) Inhibitory arc: Transition t1 is enabled if place B is
sufficiently marked and place A, which is connected with transition t1 by an inhibitory arc, is not
sufficiently marked. After firing tokens are deleted from place B, but not from A

on place p is not changed; see Fig. 12(a). Read arcs are equivalent to two opposed
standard arcs.

• Inhibitory arc (= edge with empty dot). If a place p is connected with a transi-
tion by an inhibitory arc, the transition t is enabled if place p is not sufficiently
marked, meaning that the amount of tokens must be less than the respective arc
weight, and if all other pre-places of transition t are sufficiently marked; see
Fig. 12(b). Tokens are not deleted from the place p if the transition t fires. In-
hibitory arcs enhance the expressiveness of a Petri net and turn Petri nets into a
Turing complete (computationally universal) language.

More extensions of Petri nets can be found in references [6] and [63].
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Fig. 13 Alternative representations of the simplified repressilator. In (a) logical places and in
(b) logical transitions are used to split the Petri net model of the simplified repressilator as shown
in Fig. 6 into subnets. Each subnet corresponds to one of three TRS (TRS1 to TRS3, see Fig. 2).
While the subnets are graphically separated, they are still connected through logical nodes shown
in grey. (c) shows how to encapsulate the two states of each repressor binding site of the genes into
a coarse place. In (d) all reactions that are responsible for the regulation of each gene are given
encapsulated by a coarse transition

Simplified Repressilator By using logical nodes and coarse nodes, the visual-
ization of the simplified repressilator model can be changed without changing the
structure of the underlying Petri net; see Fig. 13. The double arcs in Fig. 6 can be
replaced by a read arc. Inhibitory arcs are not specifically useful for the simplified
repressilator model, without drastically changing its structure.
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Table 1 Analysis techniques

Static analysis
(no state space construction)

Dynamic analysis
(state space construction)

Methods

• graph theory
• linear algebra
• linear programming
• combinatorics
• etc.

• analytical state space generation
• simulative state space generation
• model checking (temporal logics)
• search algorithms
• etc.

Properties

• graph properties
• structural features (T -/P -invariants, traps,
siphons)
• general behavioral properties

• general behavioral properties
• user-defined behavioral properties
• paths

︸ ︷︷ ︸ ︸ ︷︷ ︸

primary consistency checks customized in-depth analysis

6.3 Analysis Techniques

The Petri net community offers a rich body of powerful techniques and tools for
analysis purposes, which apply standard and well-established mathematical ap-
proaches like graph theory, linear algebra, combinatorics, state space construction,
model checking based on temporal logic, etc. (see Table 1). Some of those anal-
ysis techniques, so-called static analysis techniques consider the qualitative graph
structure. Since the structure of a Petri net is maintained in all Petri net classes, the
analysis results are valid for QPN , as well as for SPN , CPN , and HPN . The
dynamic analysis techniques are based on the discrete state space, which can be con-
structed analytically. Results of the dynamic analysis are only valid for QPN and
SPN , but not for CPN and HPN , because CPN and HPN do not have a dis-
crete state space; see Fig. 4. Model checking can be applied to all Petri net classes;
the temporal logic used for the respective Petri net class depends on the approach
used to construct the state space, either analytically or by simulation, and on the
chosen modeling paradigm. Please note that the static analysis techniques do only
consider standard arcs and read arcs, they are not defined for the use of inhibitory
arcs.

The techniques listed in Table 1 can be used for (adapted from [12]):

• Model analysis to examine general properties and the behavior of a model.
• Model verification to check if a model has been correctly implemented.
• Model validation to check if a model exhibits the expected behavior.
• Model characterization to assign specified properties to a model, for example,

in a database of alternative models.
• Model comparison to determine similarities among models.
• Model modification to alter the model (kinetic parameters, initial conditions,

structure) in order to obtain a desired behavior.
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We will now briefly motivate the potential of static and dynamic analysis tech-
niques applied to Petri net models.

6.3.1 Static Analysis

Static analysis techniques pay no attention to the state space and thus neglect any
aspects of time. Even if kinetic data are missing, static analysis sheds light on fun-
damental structural and behavioral properties of a Petri net model. This information
can be used for some basic characterization, consistency checks, and to verify the
model structure in order to exclude implementation errors. The static analysis al-
lows one to compute (i) graph properties and (ii) structural features of the Petri net
model and also to decide on (iii) general behavioral properties.

(i) Graph Properties

Graph properties are elementary properties of the Petri net topology and are thus
independent of the marking. Some of those properties are listed below; see reference
[41] for formal definitions.

• Pure, there exists no pair of nodes connected in both directions.
• Ordinary, all arc weights are equal to 1.
• Homogeneous, all outgoing arcs of a place have the same arc weight.
• Connected (Strongly Connected), there exists an undirected (directed) path be-

tween each pair of nodes.
• Non-blocking Multiplicities, the minimal arc weight of all ingoing arcs of a place

is not less than the arc weight of its outgoing arcs.
• Conservative, each transition adds exactly as many tokens to its post-places as it

subtracts from its pre-places.
• Static Conflict Free, there exists no pair of transitions sharing the same pre-place.
• Boundary Nodes, there exist places (transitions) with either no pre-transitions

(pre-places) or no post-transitions (post-places).

Simplified Repressilator The model of the simplified repressilator given in Fig. 6
is strongly connected and has no boundary nodes. Since the arc weights of all arcs
are equal to 1, the net is ordinary, homogeneous, and has no blocking multiplicities.
The double arc in the synthesis step of repressor proteins Xi by transitions ti,1 is in
contrast to the pureness of the net. Static conflicts are given by {ti,1, ti,3}, {ti,2, ti,3},
and {ti,4, ti,5}, and the transitions of each set share pre-places. Only transitions ti,5
are conservative since all other transitions differ from this rule by adding more to-
kens to their post-places than subtracting from their pre-places, or vice versa.

(ii) Structural Features

Structural features refer to sets of nodes forming subnets of a Petri net, which have
special properties. Those structural features constrain the general behavior of the
net. The four most important structural features in the Petri net context are defined
as follows:



6 A Petri-Net-Based Framework for Biomodel Engineering 337

• A P -invariant is a set of places over which the weighted sum of tokens is constant
and independent of the firing of any transition in the net; see Fig. 14(a). In the
biological context, P -invariants ensure mass conservation and/or describe sets
of molecular states that are interconverted. A minimal P -invariant is basically a
P -invariant which does not contain another P -invariant.

• A T -invariant is a multiset of transitions, which reproduce, by their partially or-
dered (sequential) firing, a given marking of the induced subnet; see Fig. 14(b).
In the biological context, T -invariants correspond to subnets that are capable of
reinitialization. Another interpretation leads to the steady-state behavior: the rela-
tive transition rates follow the multiplicities prescribed by the transition multiset.
A minimal T -invariant is basically a T -invariant that does not contain another
T -invariant.

• A trap is a set of places inducing a subnet that always contains at least one token
as soon as it becomes marked by a token, irrespective of whether or not the subnet
is alive; see below and Fig. 14(c). In the biological context, traps are subsystems
where at least one component of the subsystem always remains available after
being introduced. A minimal trap is a trap that does not contain another trap.

• A siphon is a set of places inducing a subnet that may release all of its tokens and
then can never be marked again; see Fig. 14(c). In the biological context, places
of a siphon may represent finite sources of molecules or energy that become ex-
hausted. A minimal siphon is a siphon that does not contain another siphon.

Formal definitions of those structural features can be found in [41].
In the context of metabolic networks, a P -invariant is also known as a conserva-

tion law, and a T -invariant as an elementary mode or stationary flux distribution. All
analysis methods that are based on those terms can be adapted to Petri nets as well.

The existence of P -invariants, T -invariants, siphons, and traps in a Petri net de-
cides on four more properties (formal definitions are given in reference [41]):

• Siphon-trap property, every siphon (a set of places that cannot switch from un-
marked to marked) includes an initially marked trap (a subnet that cannot switch
from marked to unmarked). The property can be used to decide about dead state
freedom and liveness for specific graph structures of Petri nets [19, 36].

• Covered with P-invariants, every place is part of a P -invariant.
• Covered with T-invariants, every transition is part of a T -invariant.
• Strongly covered with T-invariants, the net is covered with T -invariants, where

each T -invariant consists of more than two transitions.

Simplified Repressilator Each TRS of the simplified repressilator consists of one
minimal P -invariant:

• PINV1= {ei, ri}—the repressor binding site of the gene is free or occupied by its
repressor protein.

There are three minimal T -invariants

• TINV1= {ti,1, ti,2}—synthesis and degradation of the free protein Xi ,
• TINV2= {ti,3, ti,5, ti−1,1}—synthesis, binding, and degradation of the bound re-

pressor protein Xi ,
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Fig. 14 Structural features of the simplified repressilator. (a) The free and the repressed binding
site of each gene form a minimal P -invariant PINV1 = {ei , ri}. (b) Each component of the sim-
plified repressilator consists of three minimal T -invariants: synthesis and degradation of the free
repressor proteinXi , TINV1= {ti,1, ti,2}, synthesis, binding and degradation of the bound repressor
protein Xi , TINV2 = {ti,3, ti,5, ti−1,1}, binding and dissociation of the repressor protein Xi from
the repressor binding site of the corresponding gene, TINV3= {ti,3, ti,4}. (c) The P -invariant sub-
net PINV1= {ei , ri} with transitions {ti,1, ti,3, ti,4, ti,5} constitutes a minimal siphon and a minimal
trap
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• TINV3 = {ti,3, ti,4}—binding and dissociation of the repressor protein Xi from
the repressor binding site of the corresponding gene binding site ej .

Figure 14 illustrates those invariants. The places of the repressor proteins Xi are
not part of any P -invariant, whereas all transitions are part of T -invariants. There-
fore, the net is not covered with P -invariants, but with T -invariants. Since TINV1
and TINV3 comprise only two transitions, the net is not strongly covered with T -
invariants. The minimal P -invariant PINV1 = {ei, ri} is a minimal siphon and a
minimal trap as well. The token marking the place of the repressor binding site is
always contained in the P -invariant PINV1 = {ei, ri}. Thus, the siphon includes
an initially marked trap. The production of protein Xi through transition ti,1 will
always continue. Nevertheless, place Xi can be emptied through ti,2.

(iii) General Behavioral Properties

Based on the structure of a Petri net and previously explained properties, it is pos-
sible to decide on some so-called general behavioral properties as well: bounded-
ness, liveness, and reversibility. These properties might be independent of the spe-
cial functionality of the network; see reference [41] for formal definitions:

• Boundedness—For every place it holds that: Whatever happens, the maximum
number of tokens on this place is bounded by a constant. Overflow by unlimited
increase of tokens does not occur.

• Liveness—For every transition, it holds that: Whatever happens, it is always pos-
sible to reach a state where this transition gets enabled. In a live net all transitions
are able to contribute to the net behavior forever. Dead states, that is, states where
none of the transitions is enabled do not occur.

• Reversibility—For every state, it holds that: Whatever happens, the net is always
able to reach this state again. Thus—since this includes the initial state—the net
has the capability of self-reinitialization.

Simplified Repressilator Due to the unlimited synthesis of each repressor protein
Xi by ti,1, which is permitted by the network structure, the number of proteins can
infinitely increase, and thus, the model of the simplified repressilator is not bounded.
However, the repressor proteins are degraded independently of whether they are
bound to the repressor binding site of the gene or free. Furthermore, the repressor
binding site of the gene permanently switches between free and occupied rendering
the gene active or inactive, respectively. Obviously, there is the chance that each
state can be reached again, that is, there is no transition in the model of the simplified
repressilator that will become finally inactive. Thus, the net is also alive.

Further Reading Reference [41] gives a more comprehensive overview about
analysis techniques of the Petri net theory. Case studies demonstrating the strength
of the static analysis techniques can be found in [41] (signaling cascades), [31]
(biosensor gene regulation), and [43] (signal transduction network). More specific
examples of applications of static analysis techniques and their usefulness are listed
in [39].
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Fig. 15 Bounded Petri net model of the simplified repressilator. To limit the synthesis of the
repressor proteins Xi , we introduce a precursor place Pi with the marking k. The constant k deter-
mines the upper bound for each repressor protein on place Pi

6.3.2 Dynamic Analysis

As it has been mentioned before, dynamic analysis techniques require the construc-
tion of the (partial) state space. The state space can either be constructed analytically
(see Sect. 6.2.1) or by simulation (see Sects. 6.2.2–6.2.4).

The analytical exhaustive state space construction is limited to bounded Petri
nets and gets computationally expensive with increasing complexity of the model.
The state space explosion in complex models occurs for two main reasons: (a) con-
currency is resolved by all interleaving sequences, and (b) many tokens contained
in a P -invariant can redistribute themselves in multiple ways. When analytical ap-
proaches fail, the state space can be approximated by simulation. Simulative state
space construction can be applied to either bounded or unbounded nets. But simu-
lative approaches can only be used to partially construct the state space.

6.3.2.1 Behavioral Properties

The general behavioral properties, which sometimes can be determined by static
analysis (see Sect. 6.3.1), can also be computed by dynamic analysis. Determining
the general behavioral properties by dynamic analysis is only possible if the net is
bounded and if the state space can be constructed completely. Constructing the state
space by simulation is not sufficient. Based on the complete state space of bounded
nets, there are additional behavioral properties that can be checked; see reference
[41] for formal definitions:

• Dynamically Conflict Free, there exists no state, in which more than one transition
is enabled and where firing of one of those transitions creates a new state in which
the other transitions are not enabled any more.

• Dead States, no transition can fire any more.
• Dead Transitions, a transition that is enabled in none of the states that are reach-

able from the initial marking.

Simplified Repressilator Since the model of the simplified repressilator is not
bounded and thus the state space is infinite, we cannot decide on the above men-
tioned properties. Restricting the number of protein copies for the repressor protein
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Fig. 16 Reachability graph of the bounded simplified repressilator. The structure of the simplified
repressilator allows in principle an infinite increase for each repressor protein resulting into an
unbounded net. For simplicity reasons, we convert the model of the simplified repressilator into
a bounded model by restricting the number of proteins for each gene to one (Fig. 15). Each node
in the reachability graph refers to a specific marking mi , arcs connecting two nodes represent the
firing of a specific transition. The markings are given on the right by the sets of marked places

Table 2 State space of the
simplified Repressilator
model for different values of
k computed with
MARCIE [45]

k States

1 27

10 9261

20 68,921

50 1,030,301

100 8,120,601

1000 8,012,006,001

Xi to k results in a bounded model. A bounded Petri net could be obtained by
adding place Pi representing a virtual precursor of the repressor protein Xi . The
sum of tokens in Pi and Xi is equal to k (Fig. 15). Now, transition ti,1 transforms
the precursor of Xi into the actual repressor protein Xi . The degradation of Xi by
ti,2 and ti,5 restores the precursor. The complete state space for k = 1 in the form of
a reachability graph is given in Fig. 16. The reachability graph has no dead transi-
tions, no dead states, and is free of dynamic conflicts. Table 2 gives the size of the
reachability graph for different values of k to illustrate the state space explosion.
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Table 3 State space construction and corresponding temporal logics

State space
construction

Temporal logic QPN SPN CPN HPN

Analytical Computational Tree Logic (CTL) + +
Linear-time Temporal Logic (LTL) + +

Analytical/
simulative

Continuous Stochastic Logic (CSL) +

Simulative Probabilistic Linear-time Temporal Logic
with Constraints (PLTLc)

+

Linear-time Temporal Logic with Constraints
(LTLc)

+ +

6.3.3 Model Checking

Powerful model checking approaches that are well established in computer science
are also useful for systems and synthetic biology applications. In general, model
checking is an automatic, model-based approach for the verification of properties
defined by the user and revealed by applying the unambiguous expressiveness of
temporal logics. In the biological context, model checking can be specifically ap-
plied to verify properties in terms of transient behavior, which reflects the intended
functionality of the modeled system.

Model checking is possible in all modeling paradigms. Thus, it can be applied to
the analytically constructed state space (analytical model checking) and to the state
space constructed by simulation (simulative model checking). The type of temporal
logic used for each Petri net class depends on the approach used to construct the
state space and the modeling paradigm; see Table 3.

The general elements of temporal logics are:

• Atomic propositions:
Atomic propositions consist of statements describing the current token sit-

uation in a given place. Discrete places are read as Boolean variables (inte-
ger variables) for 1-bounded (k-bounded or unbounded) Petri nets, and con-
tinuous places as (non-negative) real-valued variables. Each atomic proposition
φ1, φ2, . . . , φn ∈Φ is a temporal logics formula.

• Standard logical operators:
Atomic propositions can be combined by logical operators to build more com-

plex propositions. ¬φ1 (negation), φ1 ∧ φ2 (conjunction), φ1 ∨ φ2 (disjunction),
φ1 → φ2 (implication) are temporal logics formulas.

• Temporal operators:

Xφ (NeXt): The proposition φ is valid in the next, directly following state.
Fφ (Finally): The proposition φ is eventually valid at some time in the future.
Gφ (Globally): The proposition φ is always globally valid forever.
φ1 Uφ2 (Until): The proposition φ1 continually holds until φ2 becomes valid. At
this position, φ1 does not have to be valid any more.
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Fig. 17 Linear-time and branching-time logics. Temporal logics are used to specify properties of
a model. They can be categorized into linear-time logics (left) and branching-time logics (right)
with distinct properties

Analytical model checking of bounded models, can be performed with either the
computational tree logic (CTL) [17], the linear-time temporal logic (LTL) [70], or
the continuous stochastic logic (CSL) [1, 2], which is the stochastic counterpart of
CTL. Since only QPN and SPN allow for the analytical construction of the state
space, CTL and LTL can be applied to both net classes, whereas CSL can only be
applied to SPN .

Both, CTL and CSL are branching-time logics; see Fig. 17(a). In addition to the
standard elements of temporal logics, CTL uses two path quantifiers:

• Eφ (Existence): The proposition φ is valid for at least one path.
• Aφ (All): The proposition φ is valid for all computed paths.

The combination of temporal operators and path quantifiers creates eight operators,
which can be used to specify temporal properties of a model. Let φ[1,2] be an arbi-
trary temporal-logic formula. Then, the following formulas are valid in state m:

• E Xφ: if there is a state reachable by one step where φ holds.
• E Fφ: if there is a path where φ holds finally, that is, in some state of this path.
• E Gφ: if there is a path where φ holds globally, that is, in all states of this path.
• E(φ1 Uφ2): if there is a path where φ1 holds until φ2 holds.

The other operators can be obtained by replacing the Existence operator by the All
operator. In this case, the explanations start with “for all paths” instead of “there is
a path”.

CSL replaces the path quantifiers (E, A) in CTL by the probability operators
P./p (transient analysis) and S./p (steady-state analysis) whereby ./p specifies
the probability of the given formula (the comparison operator ./ can be replaced by
<,≤,=, 
=,>,≥). The operator P=? is used to return the probability (rather than
compare probabilities).
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As the name suggests, LTL is a linear-time logic; see Fig. 17(b). Linear-time
logics do not require path quantifiers, because they operate implicitly over all paths.
CTL and LTL are both subsets of CTL∗ [26], but are not equivalent to each other.
The CTL formula E Fφ can not be expressed in LTL, neither can the LTL formula
F Gφ be written as CTL.

In addition, LTL with constraints (LTLc) [13] can be applied to the continuous
state space; thus, it is used for CPN and HPN . A probabilistic extension of LTLc
is called PLTLc [20]. PLTLc can be used for model checking with SPN .

It adds the probability operators P (transient analysis) [20] and S (steady-state
analysis) [72]. Both operators appear only once in a formula at the top level and
may not be nested as in CSL.

Since the paths generated with linear-time logics refer to sequences of states,
Linear-time logics might be more convenient for reasoning about time-series be-
havior in biology [39].

Simplified Repressilator For the analytical model checking, we rely again on
the bounded model of the simplified repressilator with a restricted copy number
k of each repressor proteins Xi ; see Fig. 15. Furthermore, we assume that each
TRS consists of only gene, ei + ri = 1. We applied CTL to formalize some basic
properties of the simplified repressilator.

• The repressor binding site of each TRS in the simplified repressilator model is
either free ei or repressed ri :

A G
[
(ei = 1∧ ri = 0)∨ (ei = 0∧ ri = 1)

]

• Each proteinXi is intended to oscillate, that is, it fluctuates around a valueXi = c.
Furthermore, we have to take some noise n into account because of the stochastic
nature of the model. A noise filtered oscillation [3] of protein Xi can be charac-
terized in CTL by the formula

A G
[(
(Xi = c)→ E F

[
(Xi > c+ n)∨ (Xi < c+ n)

])

∧ (((Xi > c+ n)∨ (Xi < c+ n)
)→ E F[Xi = c]

)]

The domain of c is (0, k), and a typical value for checking the oscillation is k/2.
The noise n is a fraction of c, so the domain of n is (0, c), for example, c/10 or
c/20. The above CTL formula is read as follows: at any time point in the future,
if the number of copies of the repressor protein gets Xi = c (c ≤ k), then it has to
be possible to reach a state where Xi < c+ n or Xi > c+ n, and vice versa.

• Sequential oscillation [3] of proteins X1, X2, and X3:

A G
[((
(X1 = c)∧ (X2 
= c)∧ (X3 
= c)

)

→ E F
[(
(X1 
= c)∧ (X2 = c)∧ (X3 
= c)

)])

∧ (((X1 
= c)∧ (X2 = c)∧ (X3 
= c)
)
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→ E F
[(
(X1 
= c)∧ (X2 
= c)∧ (X3 = c)

)])

∧ (((X1 
= c)∧ (X2 
= c)∧ (X3 = c)
)

→ E F
[(
(X1 = c)∧ (X2 
= c)∧ (X3 
= c)

)])]

At any time point in the future, if the number of copies of the repressor protein
Xi = c and Xi+1, Xi+2 are unequal to c, it has to be possible to reach a state
where Xi+1 = c and Xi , Xi+2 are unequal to c.

The given CTL formulas can be translated to CSL, by replacing the path quanti-
fiers with the probability operator P, and thus compute how likely the oscillation is.
A transformation into LTL is not possible because of the path quantifier E. But this
formula can be transformed into a PLTLc formula by removing the path quantifier E
and enclosing the whole formula with the probability operator P. Now we can com-
pute how unlikely (or likely) the oscillation is, even for the unbounded simplified
repressilator model via simulative model checking.

Using model checking of quantitative models, properties can be expressed
by distinct descriptive approaches, with increasing specificity: qualitative, semi-
qualitative, semi-quantitative, and quantitative [20].

The basic qualitative formula consists of derivatives of biochemical species con-
centrations or mass, given by the function d(·). Together with the temporal opera-
tors, we can now express the general trend of the behavior. The semi-qualitative ex-
tension adds to the qualitative formula the relative concentration by applying func-
tions like, for example, max(·), min(·), average(·) to the formulae. Semi-quantitative
approaches consider in addition to semi-qualitative formulas absolute time values by
referring to the predefined systems variable time. Moreover, a quantitative descrip-
tion extends the semi-quantitative formula by expressing absolute concentration val-
ues as well.

Simplified Repressilator We exemplify the four distinct descriptive approaches
mentioned above by applying them to the repressor protein Xi of the simplified
repressilator model (formulas adapted from [20]):

• Qualitative. The repressor protein Xi raises, then falls:

P=?
[
d(Xi) > 0 U

(
G
(
d(Xi) < 0

))]

• Semi-qualitative. The repressor protein Xi raises, then falls to less than 50 % of
its peak concentration:

P=?
[
d(Xi) > 0 U

(
G
(
d(Xi) < 0

)

∧ F (Xi < 0.5 ·max(Xi)
))]
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• Semi-quantitative. The repressor protein Xi raises then falls to less than 50 % of
its peak concentration at 5000 s:

P=?
[
d(Xi) > 0 U

(
G
(
d(Xi) < 0

)

∧ F (time= 5000∧ Protein< 0.5 ·max(Xi)
))]

• Quantitative. The repressor protein Xi raises then falls to less than 10 Molecules
at 5000 s:

P=?
[
d(Xi) > 0 U

(
G
(
d(Xi) < 0

)

∧ F(time= 5000∧Xi < 10)
)]

Compare properties with Fig. 8(c).

Further Reading We recommend reference [6] for a general gentle introduction
into model checking and the different temporal logics. In [41–43], model checking
has been applied in several advanced case studies for all three modeling paradigms.
In [57], another repressilator version serves as a running case study demonstrat-
ing various analysis techniques and, among them, model checking in the different
paradigms.

6.4 Multiscale Modeling with Colored Petri Nets

Computational modeling of multicellular systems at different levels of molecu-
lar and cellular organization requires powerful computational multiscale modeling
frameworks. In general, biological systems consist of similar components and struc-
tures, which are hierarchically organized into subsystems. Modeling of such subsys-
tems introduces various challenges [40]:

• Repetition of components; multiple components with the same definition, for ex-
ample, cells of the same type.

• Variation of components; multiple components with defined variability in their
definition, for example, wild-type cells versus mutated cells.

• Organization of components; one-, two-, or three-dimensional organization of
components of a specific shape, for example, organization of cells of a certain
shape in a tissue.

• Hierarchical organization of components; components containing sub-compo-
nents, for example, cells consisting of defined compartments.

• Pattern formation by components; (self-)organization of components within ap-
propriate one-, two-, or three-dimensional structures in time and space, for exam-
ple, chemotaxis involved in developmental phenomena.

• Irregular/semi irregular organization of components; deviating organization or
interrupted patterns of components, for example, mutated epidermal cells.
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• Communication between components; defined exchange of information between
components restricted by their spatial relation and position in a spatial network,
for example, signal transduction between neurons.

• Mobility/Motility of components; active or passive transport of components within
a spatial network, for example, motile cells in a tissue or transport of molecules
via microtubules.

• Replication of components; formation of new components in a system, for exam-
ple, cell division.

• Deletion of components; removing components form a system, for example, cell
death.

• Differentiation of components; components gaining (or losing) functionality, for
example, stem cells differentiate into immune cells.

• Dynamic grid size; variable dimension and composition of components/systems,
for example, grid changing in size and/or structure (required to remove and insert
items).

In multiscale modeling of biological systems, components can be either molecules,
organelles, cells, tissues, organs, organisms, populations, or eco-systems.

Multiscale systems can certainly be modeled using the standard approaches, but
the models become unhandy and impractical with increasing complexity. Reflecting
on the structure and organization of complex components in a conceptual way is
difficult, if not impossible, with the standard approaches, but it might be necessary
to understand a system based on the interaction of its components.

6.4.1 Colored Petri Nets

Colored Petri nets turn low-level Petri nets (which we considered so far, see
Sect. 6.2) into a high-level modeling framework, see also Fig. 4. Each modeling
paradigm in low-level Petri nets (qualitative, continuous, stochastic, hybrid) has its
colored counterpart. In colored Petri nets, the formalism and semantics of low-level
Petri nets are combined with the capability and flexibility of a programming lan-
guage to express various data types and operations. With the defined data types,
groups of similar subnets can be implemented as one subnet and distinguished by
the color of the tokens that move through the net. Colored Petri nets can be con-
structed from low-level Petri nets for a given partitioning of places and transitions.
Vice versa, colored Petri nets can be unfolded to low-level Petri nets. Thus, colored
Petri nets provide a parameterized and compact representation of complex low-level
Petri nets while sustaining the analysis capabilities of low-level Petri nets (Sect. 6.3).
A formal definition of colored Petri nets can be found in [54].

A convenient way to construct a colored Petri net is to first start with the low-level
representation of a single subnet; see Fig. 18; for application examples, see below.
The next step is to define a suitable color set by setting its data type, for example,
integer, boolean, enumeration, string, etc., and its values (colors). The number of
values in a color set may be defined by suitable constants. Subsequently, the defined
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Fig. 18 Colored Petri net example. The color set species of the places A, B , and C is of the type
enumerate (enum) with the colors black, grey, white. Thus, the places can carry black, grey, or white
tokens. Transition t can only fire if there are tokens of the same color at place A and B , except for
grey according to the guard x <> grey of transition t . The variable x of the arc expressions must
be bound to either black or white. Since a white token is missing at place B , transition t is only
enabled and can fire if x is bound to black. After firing of transition t , the black tokens are deleted
at place A and B as usual, and a new token of the successor color is produced at place C, which is
defined by the arc expression (+x). Here, a grey token is produced at place C

color set is assigned to the places of the subnet. Each color set needs at least one
variable. The variable is used in the arc expressions to carry the token of a specific
color to the transition, or vice versa.

Boolean expressions can be used along with places, transitions, and arcs to ex-
press the variability between subnets or their interactions. Using boolean expres-
sions to define the marking of places allows one to set how many tokens of a color
are initially available, for example, resources of a component. Arc expressions might
use boolean expressions to define which tokens of a color of a color set can move
via an arc. Boolean expressions can also be used to distinguish varying firing rates
for different colors of a transition, for example, a reaction might be slower or faster
depending on the component. In addition, it is also possible to set guards for a tran-
sition with the help of boolean expressions to define constraints on the token colors
that eventually can enable the respective transition.

Not all places have to be of the same color set and places with different color
sets can interact via common transitions. An example are subnets of a Petri net that
represent components of the system of different copy number, for example, three
cells of type A communicating with five cells of type B within the tissue of an or-
ganism. Even more, color sets can be combined in a compound color set via their
union or product. By combing color sets one-, two-, and three-dimensional grids
can be easily implemented to consider spatial aspects, for example, spatial organi-
zation of molecules, specific shapes of cells, pattern formation, mobility/motility,
etc. [40]. The hierarchical design of color sets can reflect the inherent hierarchy in
a system and thus allows the abstraction over network motifs and the hierarchical
representation of locality.

The flexibility of compactly representing a Petri net in the form of a colored
Petri net allows one to arbitrarily scale a model by creating multiple copies of its
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Fig. 19 Colored version of the simplified repressilator. It is obvious from the graph structure that
the model of the simplified repressilator consists of three similar subnets marked by red, green,
and blue outlines. These subnets can be folded into a single one using color. Therefore, we take the
structure of one TRS and define a color set component of the type integer with the colors 1,2,3
(equivalent to red, green, blue). Variable x is used for the color set TRS. The color set component
is assigned to the places X, e, r . The arc expression −x denotes always the (modulo) predecessor
of the current color bound to x

subsystems. Colored Petri nets preserve the advantages of low-level Petri nets and
thus enjoy the rich choice of analysis approaches.

Simplified Repressilator Since the model of the simplified repressilator consists
of three similar subnets, it is an ideal example for folding a low-level Petri net into a
colored Petri net; see Fig. 19. In the colored version, only the structure of one TRS
is needed, whereas the number of TRS is defined through the color set. Therefore,
we use the color set TRS of type integer with colors 1,2,3. The variable x is of
type TRS, and −x refers to the (modulo) predecessor in TRS. It is easy to increase
the number of TRS in the colored model of the simplified repressilator model by
changing the number of colors in the color set TRS, for example, to 20; see Fig. 20.

A complex biological phenomenon that could also be implemented as part of the
simplified repressilator model is protein biosynthesis through explicitly consider-
ing transcription and translation. In bacterial cells, the two processes are coupled
in the sense that the translation of nascent transcripts starts before transcription of
the gene is finished; see Fig. 21. The polymerase slides along the DNA and multi-
ple ribosomes are engaged with each nascent mRNA molecule, forming a polysome
(polyribosomes). Both processes, transcription and translation, are one-dimensional,
directed walks. Before the polymerase can slide along the DNA, it has to bind to the
promotor region of the gene to initialize transcription. Translation starts when the
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Fig. 20 Stochastic simulation of the simplified multi-gene-repressilator. (a) We implement
20 TRS (see Fig. 2) arranged in a negative-feedback loop of the colored simplified repressilator
model shown in Fig. 19 by accordingly increasing the number of colors in a color set TRS to 20.
(b) For stochastic simulation, we used 1000 copies of each gene and performed one simulation
run. The diagram shows the copy numbers of free repressor proteins versus time

Fig. 21 Simultaneous transcription of a gene and translation of the nascent mRNAs in a bacterial
cell. The cartoon was redrawn from [65]

assembled ribosome has reached the start codon of the mRNA. Colored Petri nets
can easily express the processes of transcription and translation as polymerization
reactions; see Fig. 22. The polymerization and depolymerization of cytoskeletal pro-
teins could be modeled in a similar way.
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Fig. 22 Colored Petri net model of simultaneous transcription and translation. The compound
color set biosynthesis is the product of two simple color sets sequence and init, which are both
of type int. The number of entities in the color set sequence is defined by the sequence length N
of the polypeptide chain {1, . . . ,3 ·N} with the variable x. The color set init has only two values
{0,1} and is used for the variable i. If i = 0, then initialization is needed to start transcription by
the polymerase at the first DNA base of the start codon or to start translation by the ribosome at
the first three RNA bases (corresponding to the start codon of the coding sequence). There are two
other color sets used here, polymerase and ribosome, both are again of type int and have only one
color. The variables used are p for polymerase and r for ribosome. The color set polymerase is
assigned to the respective place polymerase and ribosome to the place ribosome. All other places
use the compound color set biosynthesis. To start the transcription, the polymerase needs to bind to
the first base (the initialization step), which is notated by (x = 1, i = 0). The polymerase then can
move to the next DNA base (+x, i = 1) while transcribing the first one and so on. Moving to the
next base means to increment the color value by+x. The process ends when the last base is reached
(x = 3 ·N, i = 1). As soon as the first base is no longer occupied by the recent polymerase, a new
one can bind. Once the first three mRNA bases (start codon) have been produced, a ribosome can
bind to the nascent mRNA molecule and translate the mRNA into a polypeptide while transcription
is still proceeding. The process of translation is represented by a similar model of polymerization
as transcription; the only difference is that three sequential mRNA bases yield one amino acid of
the polypeptide chain. Thus, the color is now incremented by 3, which makes the arc expressions
more complex. If the start codon is free, then a new ribosome can bind to the mRNA. After the
translation is finished, the ribosome is available for the next round. Please note that this example
just illustrates how colored Petri nets can be used to implement highly complex processes such as
coupled polymerization reactions in the form of a very simple Petri net. To understand the meaning
of the blue arc expressions, one needs to be familiar with the standard formalism of colored Petri
nets as it is used in Snoopy [54]
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In our model, transcription starts when the DNA-polymerase binds to the first
nucleotide of the coding sequence of the DNA strand and proceeds until the third
base of the stop codon has been incorporated. The next DNA-polymerase molecule
can start transcription as soon as the preceding polymerase has released the first
base of the start codon (note that this is a simplification as the initiation and the
termination of transcription are complex processes). While a polymerase molecule
synthesizes an mRNA molecule, it slides along the coding sequence of the gene. The
progressing polymerization of the mRNA molecule is modeled by delivering tokens
of incremental color into the mRNA place. If, for example, the first 25 bases of
an mRNA molecule have been synthesized, the mRNA place contains 25 tokens of
sequential colors. The total number of colors in the color set represents the number
of bases in the coding sequence. Once the mRNA is synthesized, the mRNA place
contains a token of each color of the color set. Multiple mRNA molecules give
multiple tokens of the same color. The same principle is used for polymerization
of the proteins, only that three tokens of successive colors are consumed from and
restored to the mRNA place for each incorporated amino acid. For further details,
see Fig. 22. Note that the amino acid sequence of a synthesized protein could be
easily encoded by tokens by creating a two-dimensional color set (P × I ), where
the color set P defines the position of the amino acid with respect to the N-terminus
of the protein, and colorset I encodes the chemical identity of the incorporated
amino acid in terms of an ordinal number.

Further Readings A more comprehensive review on biomodel engineering for
multiscale modeling in systems biology is given in [40]. In [32], it is shown how
spatial attributes of dynamic systems can be encoded by the use of colored Petri
nets. Some examples of case studies demonstrating the power of colored Petri nets
for multiscale modeling are: (1) phase variation in bacterial colony growth [30],
(2) planar cell polarity in Drosophila wing [29], (3) membrane systems [55], and
(4) coupled calcium channels [56].

6.5 Composing Models from Molecule-Centered Modules

In biomodel engineering, molecular networks of biological processes are most fre-
quently designed as monolithic models in the form of ODEs. Since the amount
of data produced by technically advanced high-throughput (omics) approaches is
increasing, the integration of those data into coherent models is a considerable
challenge. In this context, we propose an approach, which is successfully used in
engineering, namely the modular construction of a system. In its general form,
modules—as we use them—are molecule-centered Petri nets with a standardized in-
terface [5, 7–9]. The advantage of producing one module for each type of molecule
is that one can arbitrarily compose these Petri nets into complex models without re-
building the models from scratch. Specifically, recombining modules allows one to
easily, quickly, and safely generate different versions of a model. This may include
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Fig. 23 Alternative models.
Modules can be reused and
recombined in various
combinations. The obtained
models can be used to test for
the effect of alternative or
modified reaction
mechanisms

the exchange of different versions of a module within a model for comparative sim-
ulation; see Fig. 23. The management and composition of modules are supported by
the BioModelKit database (see below). The database helps to:

• maintain and update modules easily,
• compose models arbitrarily from modules to generate alternative models,
• handle arbitrary levels of abstraction, and
• integrate top-down and bottom-up models.

Using molecule-centered modules provides a variety of options for the advanced
engineering of biomodels with the help of appropriate algorithms. Algorithms for
modification of modules and the composition of models from modules also in com-
bination with the database allows one to [8, 10]:

• modify, mutate, or redesign modules and thus models,
• automatically compose large-scale models to simulate omics data sets, and
• reverse engineer models from omics data sets.

Proteins as compared to nucleic acids (RNAs, DNAs) display a high variety in
their (bio-)chemical and kinetic reaction mechanisms. Although the reaction mech-
anisms for members of a given class of proteins (e.g. heterotrimeric G-proteins) are
similar and will show up in the modules representing these proteins, the modules
for each individual protein have to be designed at the very end by hand accord-
ing to the specific knowledge that is available for this protein. In contrast, biosyn-
thesis and degradation processes, which may be very similar for nucleic acids or
proteins from the kinetic point of view, can be simply modeled by cloning appro-
priate modules in the form of module prototypes. For this reason, it is advisable
to implement special module types for proteins, mRNAs, and genes and for the
(controlled) degradation of proteins [8]; see Table 4. For maximal flexibility in the
context of reverse engineering approaches, causal interaction modules and allelic in-
fluence modules were introduced. Causal interaction modules are used to represent
cellular processes of ill-defined or unclear molecular mechanisms. Allelic influence
modules account for differences in the network behavior, which is due to the ef-
fect of gene mutations (Table 4) [8]. These two module types are obviously not
molecule-centered.
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Table 4 Module types

Molecular interaction Causal dependency

Protein module Protein degradation module Causal interaction modules

• binding and unbinding
reactions
• formation and cleavage of
covalent bonds
• conformational changes

• inactivation and degradation • causal influence on
molecular and cellular
processes

Gene module RNA module Allelic influence modules

• transcriptional activity
• binding and unbinding
reactions
• covalent modification

• transcription
• processing (alternative
splicing)
• binding and unbinding
reactions
• translation
• degradation

• allelic influence of genes
on molecular and cellular
processes

The Biomodelkit database (BMKdb, www.biomodelkit.org) is a tool with pub-
lic access to organize modules. The modules are organized in BMKdb in such a
way that each node (transitions, places) and their directed connections (arcs) are
stored, as well as their appearance in the respective modules. This allows one to
tag modules, in particular, each node or arc with specific metadata, for example,
general documentation, functional descriptions, literature references, or suitable
identifiers of other molecular databases. The metadata can be used to formulate
queries in order to find modules of interest and connections between modules. In
addition, BMKdb supports the module versioning. Thus, related modules, for ex-
ample, modules with different resolution in mechanistic details or with reaction
mechanisms according to competing hypotheses on molecular mechanism, can be
stored and organized in BMKdb. Furthermore, purposefully designed features fa-
cilitate the automatic composition of models from an ad hoc chosen set of mod-
ules and the algorithmic generation of biological relevant mutations of those mod-
ules [10].

We successfully demonstrated the applicability of our approach using two case
studies (1) JAK/STAT signaling [9] and (2) pain signaling [5], which both involve
complex networks with massive crosstalk. The JAK/STAT pathway is one of the
major signaling pathways in multicellular organisms controlling cell development,
growth, and homeostasis by regulating the gene expression. The modular network
of the JAK/STAT pathway in IL-6 signaling comprises seven protein modules (IL6,
IL6-R, gp130, JAK1, STAT3, SOCS3, and SHP2). Overall, the model consists of 92
places, 102 transitions spread over 58 panels with a nesting depth of 4. The nocicep-
tive network in pain signaling consists of several crucial signaling pathways, which
are hitherto not completely revealed and understood. The latest version of the noci-
ceptive network consists of 38 modules; among them, there are several membrane
receptors, kinases, phosphatases, and ion-channels. So far, the model is made up of

http://www.biomodelkit.org
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713 places and 775 transitions spread over 325 panels, again with a nesting depth
of 4.

In [10], we formalize our modular modeling framework for biomodel engineer-
ing and explain in detail the principles of constructing a module and how the com-
position of modules is performed. Composing Petri nets from modules can be easily
and quickly done and is safe in obtaining the correct structure. In the case that kinetic
parameters for the interaction of molecules represented by the modules have been
estimated, they automatically apply to the composed model as well. Afterwards,
the dynamic behavior of the composed model has to be checked for consistency. In
addition, we explain the algorithmic structural modification of modules supported
by BMKdb in order to generate in silico biological meaningful mutations. We sug-
gested three algorithms to systematically (1) knockout genes by deleting modules,
(2) mutate structural protein units by altering the module structure, or (3) affect-
ing nodes that are specifically tagged according to their (bio-)chemically defined
function.

With all these possibilities of biomodel engineering at hand, it seems straight-
forward to devise bioinformatic pipelines for the generation of models optimized to
obey a pre-defined behavior.

Modules of the types described above can be combined with a completely differ-
ent type of module that represents space in general and compartments in particular.
Combination of such space modules with models composed of molecule-oriented
modules allows one to model the positioning of molecular species and their dif-
fusion or movement through space. This is important when compartmentalization
of biomolecules is of functional relevance (e.g. the translocation of a transcription
factor into the nucleus, which induces the transcription of a target gene). Spatial
organization of molecules or even cells is also highly relevant in many developmen-
tal processes ranging from embryonic development to the generation of functional
structures in populations of entire organisms. For details, see reference [9].

Simplified Repressilator Each TRS of the simplified repressilator can be decom-
posed into a set of modules (Fig. 24): (1) protein modules describing the bind-
ing/unbinding process of the repressor proteins to the respective genes, (2) gene
modules switching on and off the genes by binding the respective repressor protein,
(3) mRNA modules illustrating the biosynthesis of the repressor proteins, and (4) the
protein degradation modules. Indeed, in this trivial case, protein modules and gene
modules are identical since both model the same interaction. The modules when
composed as shown Fig. 24 give a functional model of the simplified repressilator,
which is directly executable in Snoopy, meaning that the token flow can either be
animated or simulated in all Petri net classes. Our modular modeling concept might
seem unnecessary complicated for the small network of the simplified repressilator,
but it becomes of tremendous advantage as soon as the complexity of the involved
modules increases [9].
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Fig. 24 Modular composition of the simplified repressilator. The model of the simplified repres-
silator can be composed through a gene, protein, mRNA, and protein degradation module for each
of the three components. The connection is established through identical subnets (places and tran-
sitions), called interface subnetworks (logical nodes indicated in grey). In this trivial example, the
modules in each row seem at the very first glance to look like instances of one and the same
module, but each repressor protein has its own individual protein, mRNA, gene, and degradation
module. One could easily extend the modules individually to represent the original repressor pro-
teins (lacI, tetR, cI) [25], their interactions, biosynthesis, and degradation in more detail. Note that
the model as depicted here is directly executable in Snoopy, meaning that the token flow can either
be animated or simulated in all Petri net classes

6.6 Automatic Network Reconstruction

By simulation one can determine the time-dependent dynamic behavior of a Petri
net. However, it remains unclear whether or not Petri nets of alternative structure
would display a similar or even almost identical behavior.

When simulation results cannot be fitted to experimental data no matter which
parameter sets are used, it can be concluded that the model is invalid in a sense that
the model does not provide a sufficiently good abstraction of the reality. With other
words, simulations can demonstrate that the underlying assumptions were wrong.

On the other hand, when simulation results obtained with a Petri net model fit a
set of experimental data, this unfortunately does not mean that the model correctly
reflects the real mechanisms. It only means that the given model is able to reproduce
the experimental data. This is true in systems biology, but it is also a basic fact in
chemical kinetics. Potentially, there might be thousands of models that could behave
in a very similar way. From the scientific point of view, the first case, disagreement,
is more helpful for the experimental researcher. Disproving a model definitely jus-
tifies further research while being in agreement may motivate to not design new
experiments, although this would in principle be necessary. In this respect, mod-
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Fig. 25 Steps on the way from time series data to a proof-based dynamic Petri net model. The
alternative network structures as determined by the ANR algorithm can be summarized in the
form of an implicit representation telling which structural features all models have in common
(nodes shown in red) and which nodes of the network might be wired up alternatively as dis-
played. By considering the nodes with alternative connections one can design new experiments
that specifically discriminate between the alternatives to finally obtain a model structure based on
mathematical proof

eling and simulation can even lead to very counter-productive results in retarding
research.

Based on these thoughts, we wanted to go the alternative way by developing
a reverse engineering approach to reconstruct Petri nets from experimental time
series data sets. The approach should work in a fully automatic manner, that is,
without heuristic input, as this might introduce a bias by the operator and hence
give different results for different persons working on the same data set. The idea
behind automatic network reconstruction therefore was to have an algorithm that
automatically gives all possible Petri nets that comply with a set of experimental
results or observations. To be trustworthy, the completeness of this list should be
proven mathematically.

Since Petri nets in their plain form model discrete events, the developed method
relies on discrete optimization [62]. Before we explain the basic principle, let us first
consider what input data are required and what kinds of results the method delivers.

Input data used for network reconstruction are usually time series data reflecting
the response of the system to perturbation. Often, experimental data obtained in the
bio-lab are innately discrete, for example, like the occurrence of a certain phenotype
in response to stimulation of a cell. In other cases the response to perturbation will
be measured through the change in the cellular concentration of biomolecules. Such
data then have to be discretized to be used for automatic network reconstruction.
In doing so, one will not count the number of molecules or focus on small changes
in concentrations even if they should be statistically significant. Instead, perturba-
tions are chosen that cause a considerable, extensive response of the system. In
other words, experiments are designed in a way that discretization of quantitative
(continuous) time series data is uncritical for the performance of the reconstruction
algorithm as long as the qualitative behavior of the system is concerned.

Starting from discrete time series data sets, the method gives a complete list of
all Petri nets that are able to quantitatively reproduce the input data; see Fig. 25.
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Since this list may contain many thousands of nets, the alternative network struc-
tures found may be displayed in the form of implicit representations. The implicit
representations tell which structural features all models have in common and which
nodes of the network might be wired up alternatively. By considering the nodes that
may have alternative connections one can design new experiments that specifically
discriminate between these alternatives. In the best case, a model structure can be
obtained, which is finally proven mathematically through exclusion of all possible
alternatives; see Fig. 25. Certainly, this is an iterative process that requires high-
quality data at high density. Continuous data have to be discretized to fit the algo-
rithm. In the simplest form, the result of discretization is boolean (0/1), but discrete
numbers would be possible as well. Using discrete values is entirely in agreement
with the format, in which experimental results are obtained in the bio-wetlab. Often,
entities are measured quantitatively, but the findings are stated in a discrete man-
ner anyway. “If the gene XYZ is deleted, cells lose the ability to use mannitol as
a food source” is be a typical way of how experimental findings are stated in the
literature. Mechanistic models are widely based on such kind of statements. Often,
perturbation and response both appear in discrete format as an experimental result.
Of course, once a Petri net is established through reverse engineering, stochastic
or continuous simulations can be run, and quantitative experimental data, as far as
available, can be used accordingly to fit kinetic parameters.

The basic concept of automatic network reconstruction (ANR) is simple. Con-
sider a time series where three components (or states of components) A, B, and C
are measured as functions of time; see Fig. 26. Each component corresponds to a
place. At time t1, places A and B are both marked by a token, whereas C is not
marked. At time t2, the tokens in A and B have disappeared, but C is marked. The
difference between the two time points t1 and t2 in the time series data set defines
the difference vector d= (−1,−1,1)T. This difference vector can be realized by the
corresponding reaction vector r= (−1,−1,1)T (a column in the incidence matrix),
which means that one token is removed from A and B, whereas one token appears
in place C upon firing of the transition T1; see Fig. 26. For this trivial example, the
principle of ANR is easy to illustrate. The mathematical challenge of ANR arises
from the fact that a given difference vector d can be the sum of different reaction
vectors d=∑n

i=1 ri . This results in Petri nets of different structure since the mark-
ing of a Petri net may have changed n − 1 times in between two experimentally
measured states; see Fig. 26. These changes of the marking may escape from be-
ing measured because they are simply missed by the measurement or because they
involve components (places) that are not measured at all or not even known to be
involved in the overall process [62]. In other words, more than one transition may
fire in between two measurements. The task of the algorithm is to find the minimal
set of places P connected with a minimal set of transitions such that all observed
difference vectors dj can be reached in the sequential order as given by the data
set [21, 62]. In order to exactly reproduce the experimental observations, we addi-
tionally use priorities among transitions to enforce an order in which the competing
transitions fire [21]. These priorities reflect relative kinetic rate constants. A pre-
requisite for the algorithm to give correct results is that the number of time points



6 A Petri-Net-Based Framework for Biomodel Engineering 359

Fig. 26 Illustration of the basic principle of automatic network reconstruction. (a) The input for
the reconstruction algorithm is a time series data set describing the time course of the components
of interest (A, B, C) in the form of discrete values. At a given time point, the value for each compo-
nent corresponds to the marking of the places representing each of the respective components. The
difference in marking of the places between two successive time points in the time series defines
a difference vector. (b) Relationship between difference vectors d, reaction vectors r, incidence
matrix, and the corresponding graphical representations of the Petri net. In the example given, the
same difference vector can be decomposed into sums of different reaction vectors. For the recon-
struction of plain Petri nets, the reaction vectors of each difference vector directly correspond to
columns in the incidence matrix that defines the structure of the Petri net. Note however that for
extended Petri nets, this is not necessarily the case since a given reaction vector can result from dif-
ferent transitions, which are controlled by different places, as seen in Fig. 27. The figure is redrawn
from [23] and [21]

taken for a series needs to be sufficiently high to correctly capture the time-discrete
characteristics of the components that change in time.

It makes sense that the described reconstruction algorithm [21] considers only
macroscopic changes, which can be observed at the time scale at which the mea-
surements are performed. The algorithm does not consider periodically changing
components if their cyclic formation and decay are so fast that these reactions can-
not even be observed at the time scale of interest. This restriction prevents an ex-
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plosion of solutions [21]. However, fast periodic processes like formation and decay
of enzyme-substrate-complexes during enzymatic (catalytic) reactions, which are
of fundamental importance in biochemical networks, are systematically excluded
if the reconstructed networks are restricted to plain (simple) Petri nets [21]. This
limitation is even more severe as genes in general catalyze the biosynthesis of the
proteins they encode. A way to overcome this limitation is to model a catalyst (e.g.
an enzyme or a gene) as place coupled by a read arc to the transition mediating the
catalyzed reaction [23]. Inhibition, an essential phenomenon in regulatory networks,
is represented accordingly using an inhibitory arc instead of a read arc. Hence, we
are left with the task of reconstructing extended Petri nets. Extended Petri nets are
Petri nets that contain read and/or inhibitory arcs [66].

An extended Petri net can be viewed as consisting of two parts. One part is com-
posed of the places and transitions that are linked with each other by standard arcs.
The complementing part is composed of places and transitions that are connected
to each other with read arcs or inhibitory arcs. Accordingly, the problem of recon-
structing extended Petri nets is split into two tasks: (1) reconstruct how places and
transitions are linked through standard arcs, as described above, and (2) reconstruct
how places do control transitions by read arcs or inhibitory arcs. Accordingly, each
set of transitions that connect the same places in the same direction is encoded by
a controlled reaction Rc = (r, fr). The reaction vector r indicates the change in the
marking of places caused by firing of any of the transitions of the set. The control
function fr encodes the read arcs and inhibitory arcs connected to the transitions;
see Fig. 27 [23]. For the control function fr = 1, the transition with the correspond-
ing reaction vector is controlled neither by a read arc nor by an inhibitory arc. Tran-
sitions that are controlled can only fire if the marking of the controlling places is
according to the boolean expression of the control function; see Fig. 27. Any tran-
sition could be under the control of multiple places. Finally, a set of possible con-
trolled reactions (r, fr ) is obtained for each difference vector of a given sequence
of difference vectors as defined by the time series data set, which has been used for
network reconstruction. A table displaying these controlled reactions is an implicit
representation of all Petri nets that can simulate the data set. Any arbitrary sequence
of controlled reactions composed by taking one set of controlled reactions (r, fr )
from each of the columns of the table displaying subsequently occurring difference
vectors (see Fig. 28) gives one functional extended Petri net. The obtained extended
Petri net is fully compatible with the time series data set that originally served as
input [23]. Again, it is guaranteed that a complete set of Petri nets all of which
comply with the input data is obtained [24]. A unique solution in terms of a single
Petri net is obtained if the algorithm finds only one entry of controlled reactions
for each difference vector. Recently, both answer set programming [22] and integer
logic programming [79] have been employed to solve the network reconstruction
problem.

Simplified Repressilator In Fig. 28(b), the model of the simplified repressilator
is displayed by a set of controlled reactions. An extended Petri net is obtained by
interpreting places with identical names as logical places.
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Fig. 27 Implicit representation of extended Petri nets by controlled reactions. A controlled reac-
tion is a pair (ri , fi) composed of the reaction vector ri and the associated control function fi .
The arcs of an extended Petri net can be thought as consisting of two sets. (1) The standard arcs
and (2) the control arcs (read arcs/bidirected arcs and inhibitory arcs). A reaction vector describes
how the marking of the connected places changes upon firing of a transition. The control function
defines the conditions under which the firing of at least one among all transitions with the same
reaction vector may occur. The marking of the places of all four Petri nets shown in panels (a) to
(d) has been chosen such that all transitions can fire. In panel (d), the reaction vector r4 of the
controlled reaction (ri , fi) represents the set of two transitions, each of which connects the places
A and B in the same direction through standard arcs while the transitions are connected to differ-
ent control arcs. The figure and legend are taken from [23] with slight modifications. Symbols: ∧,
logic AND; ∨, logic OR; ¬, logic NOT

6.7 Petri Net Tools

We used the sophisticated toolkit consisting of Snoopy, Charlie, and MARCIE, pro-
vided and publicly available at http://www-dssz.informatik.tu-cottbus.de.

Snoopy [44, 63] is a tool to model and animate/simulate hierarchically structured
graphs, among them, QPN , SPN , CPN , and HPN . Furthermore, it comprises
the colored counterparts of those net classes. Petri nets can be exported in systems
biology markup language (SBML) code to be coherent with the systems biology
community [49]. Models given in SBML can also be imported in Snoopy and
represented as a Petri net.

http://www-dssz.informatik.tu-cottbus.de
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Fig. 28 A composition of Petri nets from controlled reactions. (a) The algorithm for reconstructing
extended Petri nets provides for each difference vector di the complete set of possible controlled
reactions (ri , fi), as schematically arranged in a table where all possible controlled reactions of
subsequent difference vectors are listed in subsequent columns. Any arbitrary sequence of con-
trolled reactions obtained by taking one difference vector from each of the subsequent columns
gives one extended Petri net that behaves according to the time series data set that originally served
as input. Red boxes indicate one possible trajectory for the assembly of a valid Petri net. Panel (b)
shows the Petri net structures corresponding to six controlled reactions as part of the simplified
repressilator. If the places with the same name are interpreted as logic places, then the six net-
works corresponding to the controlled reactions give a functional extended Petri net. (a) is redrawn
from [23]

Charlie [28] is a multi-thread analysis tool for basic Petri net properties and
techniques like structural boundedness check, invariant computation, siphon-trap
property, etc. Moreover, Charlie supports the basic vocabulary of explicit CTL
and LTL model checking.
MARCIE [45] is a symbolic CTL model checker for QPN and a multi-thread
symbolic CSL model checker for generalized SPN . Additionally, MARCIE sup-
ports simulative PLTLc model checking of extended stochastic Petri nets.
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Chapter 7
Hybrid Modeling for Systems Biology:
Theory and Practice

Moritz von Stosch, Nuno Carinhas, and Rui Oliveira

Abstract Whereas bottom-up systems biology relies primarily on parametric math-
ematical models, which try to infer the system behavior from a priori specified
mechanisms, top-down systems biology typically applies nonparametric techniques
for system identification based on extensive “omics” data sets. Merging bottom-up
and top-down into middle-out strategies is confronted with the challenge of handling
and integrating the two types of models efficiently. Hybrid semiparametric models
are natural candidates since they combine parametric and nonparametric structures
in the same model structure. They enable to blend mechanistic knowledge and data-
based identification methods into models with improved performance and broader
scope. This chapter aims at giving an overview on theoretical fundaments of hy-
brid modeling for middle-out systems biology and to provide practical examples of
applications, which include hybrid metabolic flux analysis on ill-defined metabolic
networks, hybrid dynamic models with unknown reaction kinetics, and hybrid dy-
namic models of biochemical systems with intrinsic time delays.
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7.1 Introduction

The novelty introduced by systems biology is the holistic system-level approach
that considers all the biological components simultaneously, be it of a cell, organ, or
organism. Computational models are essential to link the properties and the interac-
tions of the individual biological components with the functions performed by the
overall system. At the cellular level, systems biology models attempt to integrate ge-
netic networks, signal transduction networks, and metabolic networks into a global
quantitative model. This holistic system-level approach will in principle enable one
to efficiently analyze, simulate, predict, and optimize procedures, experiments, and
therapies [15].

There are two fundamental approaches for model building in systems biology.
The bottom-up approach has been the traditional approach, in which the mech-
anisms of interaction between different components are first hypothesized. Such
mechanisms are translated into a mathematical model, which is then used to predict
the overall system behavior [6]. In the vast majority of cases, bottom-up models
combine the knowledge of a reaction network with in vitro enzyme kinetic data
to produce a dynamic model (differential equation formalism) of the overall sys-
tem [23]. Bottom-up modeling is, however, not possible to apply when the under-
lying networks are not well known, as in the case of many signaling pathways. An-
other important limitation is the unavailability of in vitro kinetics when the respec-
tive substrates cannot be obtained in pure form. Moreover, in vitro kinetics might
not be representative for the in vivo situation.

Opposed to the bottom-up approach, the top-down starts from a large “-omics”
data set, and the goal is to infer the mechanisms underlying the observed behavior.
It essentially consists of a system identification problem, also known as reverse
engineering. From the measured behavior of a system one attempts to infer which
molecules are involved in interactions (network structure), how these interactions
proceed (kinetic laws), and by how much (kinetic parameter values) [41]. In a way,
it could be argued that top-down modeling is closer to the spirit of systems biology
because it makes use of system-level “-omics” data, rather than having originated
from a more reductionist approach of molecular purification [23].

The development of large kinetic models requires significant resources, where-
fore the development effort of several entities should be bundled. This implies that
the bottom-up and top-down approaches should be linked and integrated into one
holistic approach [22, 32]. This integrated approach is known as the middle-out
approach. It is foreseen that in future the bottom-up and the top-down merge into
the middle-out approach [22], which will have to link different types of knowledge
sources and comply with various kinds of variables [26, 40].

From a systems theory perspective, mathematical models can be classified as
parametric, nonparametric, or semiparametric, depending on the type of parame-
terization they embed. Parametric models are determined a priori on the basis of
knowledge about the system [36]. They have a fixed mathematical structure and
a fixed number of parameters, which have physical or empirical meaning depend-
ing on the level of knowledge that supported the derivation of the model. They
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are typically derived from first principles, mechanisms, or from observations of the
underlying phenomena. Parametric models are of high importance in science and
engineering, but their applicability is limited in those cases of very complex phe-
nomena that often lead to intractable mathematical models or when fundamental
knowledge is lacking. Parametric models are those typically found in bottom-up
systems biology.

On the contrary, nonparametric models are flexible mathematical structures de-
termined exclusively from data [11]. The term nonparametric is not meant to imply
that such models completely lack parameters but that the number and nature of such
parameters are flexible and not fixed in advance by knowledge. Nonparametric mod-
els are typically applied for regression analysis without assuming any functional
relationship between the target and explanatory variables [11]. They can thus be
applied to very complex phenomena lacking knowledge, provided that observation
data is available. However, a very high number of explanatory variables significantly
decrease the statistical precision of the model, a problem known as the “curse of di-
mensionality.” Data-based nonparametric modeling methods are typically applied
for top-down systems biology.

In between the parametric and nonparametric extremes there lies hybrid semi-
parametric modeling, the focus of the present chapter. Hybrid semiparametric
models combine parametric structures with nonparametric structures in the same
model [30]. Hybrid semiparametric models are thus more flexible than para-
metric models, and at the same time they mitigate the curse of dimensionality
problem that usually affects nonparametric modeling. The application of semi-
parametric models to process systems engineering has evolved from the field of
neural networks, first reported in 1992 by Psichogios and Ungar [20], Kramer
et al. [16], Johansen and Foss [13], and Su et al. [27]. The central idea was to
bridge the knowledge gap in first-principles models that stems from not precisely
or not at all known kinetic information, by incorporating nonparametric techniques,
namely neural networks. Trained with the same amount of process data, the hy-
brid semiparametric model was capable to predict the process states better and was
mostly able to interpolate and extrapolate more accurately than the neural network
alone.

Hybrid semiparametric models are natural candidates for middle-out systems bi-
ology. It is not likely that a complex biological system can be completely described
using bottom-up parametric models to sufficient predictive power. However, data
analysis by a reverse-engineering approach (top-down) can be made more efficient
if the inference schema is constrained by an existing and reliable parametric model.
In such cases, hybrid structures can be applied for system identification of unknown
parts from data (nonparametric component of the hybrid model) under the constraint
of known mechanisms (parametric component of the hybrid model). In line with this
general principle, in this chapter, we first review the fundamentals of hybrid semi-
parametric modeling. Afterwards, we explore applications of hybrid modeling to
systems biology, namely for constraint-based modeling and for dynamic modeling
of biological systems.
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Fig. 1 Schematic
representation of
nonparametric models and
their typical modularized
structure

7.2 Hybrid Modeling Fundamentals

7.2.1 Nonparametric Modeling

Nonparametric models have a flexible structure that is not specified by the mech-
anisms of the system under study. They do have parameters, but the number and
nature of such parameters are flexible and not fixed in advance by knowledge. Non-
parametric models are capable to approximate almost any arbitrarily complex func-
tional relationship. The approximation is learned from observations, that is, data,
which reflect directly or indirectly the underlying functional relationships. Non-
parametric models are thus useful for top-down systems identification, namely (i)
to determine whether certain variables are correlated and (ii) to approximate the
behavior of the system under given experimental conditions. A distinction is made
between outputs (Y ), which are the variables to be approximated, and inputs (X),
which are the effectors of Y . Nonparametric models can be generically stated as

Y = g(X,ω) (1)

with the model parameters ω and the approximating mathematical function g(·).
The approximating mathematical function is usually a construct of several intercon-
nected modules (e.g., called transformation function or nodes for artificial neural
networks (ANNs) or latent variables for projection to latent structure/partial least
squares (PLS) models), where the connections are weighted according to the pa-
rameters ω; see Fig. 1. The approximating functions represent both, the functions
of each module and the combination of the modules. Whereas the functions of the
modules can be chosen from a limited set of possibilities, mostly linear, sigmoidal,
exponential, or hyperbolic tangential functions, the topology must be determined
de novo for each system from the experimental data. In practice, several possible
topologies are assessed. The parameters of each topology are fitted so that the esti-
mates of each model match the experimental data (parameter estimation). The per-
formance of each topology is evaluated, and the one that performs best is adopted
subsequently in the final model (model discrimination).

7.2.2 Model Discrimination and Parameter Identification

The advantage of nonparametric models in terms of flexibility and easiness of sys-
tem approximation is counterbalanced with complex model discrimination and pa-
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rameter identification procedures because from a certain threshold on, they tend to
capture the noise contained in the data. Modeling the data noise has normally a neg-
ative impact on the generalization capability, meaning that when confronting the
model with new, but in principle similar experimental data, the model might fail
to approximate these new data well. Thus, the objectives of model discrimination
and parameter identification are to determine which nonparametric model approxi-
mates the experimental data best and at the same time exhibits acceptable general-
ization properties. The strategy to meet these two objectives is the following. First,
the experimental data are split into training and validation data sets containing ap-
proximately 3/4 and 1/4 of the data, respectively. The training set is then used for
identification of the parameter values of each topology in such a way as to maximize
the model’s approximation to this data set. The validation set is applied to test the
generalization capabilities of each topology using the identified parameters.

7.2.2.1 Parameter Identification

The nonparametric model learns the approximation of the functional relationship
from the training data, also referred to as model training or parameter identification.
In fact, the nonparametric model parameters are estimated in such a way as to min-
imize the distance between the model estimate Y and the respective experimental
value Ymes. This is normally accomplished through a weighted least squares error
criterion

min
ω

{
WLS=

∑

ND

1

2
· (Ymes − Y(X,ω))2

σ 2
Y

}
(2)

with the variance σ 2
Y of the experimental data for each output Y and the number ND

of data points.
Whereas in the case of linear nonparametric models the error (Ymes − Y ) con-

verges during the training to some minimum value, nonlinear nonparametric mod-
els are prone to overfitting since they tend to capture the data inherent noise pattern,
that is, the value of (Ymes − Y ) continuously decreases with increasing number of
iterations [3, 12]. Overfitting is to be avoided since the identified model will have
limited descriptive capabilities when applied to similar data tantamount to degraded
generalization capabilities. Frequently applied strategies to avoid overfitting dur-
ing parameter identification include early stopping, cross-validation, and regular-
ization [3, 12]. The idea behind these strategies is illustrated in Fig. 2. The training
set error continuously decreases with increasing number of iterations, and the val-
idation error shows a minimum that indicates the beginning of model overfitting.
Thus, the validation set is used to determine when to stop the training.

In case of nonlinear nonparametric models, another problem is encountered dur-
ing parameter identification, namely that the parameter identification gets entangled
in local minima of the error surface. This problem can be mitigated by adopting a
global optimization algorithm, which is computationally expensive, and/or by ini-
tializing the parameter identification several times from random parameter values.
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Fig. 2 Sum of square errors
obtained for the training data
set (black dashed line) and
the validation data (gray
continuous line) set over
number of iterations

In the latter case, the consistency of the set of optima received after several initial-
izations should be used as a measure to judge about the quality of the best identified
parameters. In case that the obtained optima vary strongly, more random initializa-
tions should be carried out until a consistent solution is obtained. Typically, about
10–20 initializations are sufficient to obtain a consistent solution.

7.2.2.2 Model Discrimination Criteria

In order to identify the best model topology, different topologies are systematically
evaluated. In nonparametric modeling, the different topologies vary mainly in the set
of input variables and in its complexity, that is, the number of modules and param-
eters used. The type of transfer function (linear, sigmoidal, exponential, or hyper-
bolic tangential) is usually a priori chosen, based on the type of problem. Typically,
a small set of inputs is considered in the beginning while sequentially increasing the
number of modules. Other input sets can be tested thereupon and the performance
compared to the original input set. The model performance in the approximation
of the training set tends to improve with increasing complexity of the structure. In
contrast, the generalization capability tends to deteriorate the more parameters are
involved since the model structure will rather represent a particular case than the un-
derlying functional relationship. In order to determine the best performing topology,
the Akaike information criterion (AIC) can be calculated,

AIC=N
D
· ln
(∑

(Ymes − Y)2
ND

)
+ 2 ·Nω + 2 ·Nω · (Nω + 1)

ND −Nω − 1
, (3)

or, alternatively, the Bayesian information criterion (BIC),

BIC=−ND
2
· ln
(
Nω

2 · π
)
− Nω

2
· ln
(∑

(Ymes − Y)2
)
. (4)

Both the AIC and BIC balance the fit of the model to the data against the number
of model parameters. BIC is to be preferred over AIC when the number of param-
eters (Nω) is greater than 46 [7]. In the case of the AIC, the model that produces
the lowest AIC value for the validation set is the best model, whereas in the case of
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the BIC, the best model is the one with the highest BIC value for the validation set.
Additionally, a criterion that gives a direct impression of the model quality can be
used, such as the weighted squares error (WSE),

WSE= 1

ND
·
(∑ (Ymes − Y)2

σ 2
Y

)
. (5)

Finally, the performance of the model should always be visually analyzed since
the model estimates might not obey to physical constraints. It should be noted that
the number of model parameters may not exceed the number of data points. It should
rather be much smaller, that is, Nω 0 ND , in order to ensure an overdetermined
parameter estimation problem. The introduction of an additional objective criterion
can turn an underdetermined system into an overdetermined one, as, for example, in
case of PLS [34].

Note that the descriptive quality of nonparametric models tends to degrade when
the input variables are far away from the training input space. As mentioned above,
nonparametric models provide approximations and not descriptions of the underly-
ing mechanisms. The level of knowledge abstraction is very low in comparison to
mechanistic models. It is this lack of abstraction that limits the descriptive quality
when extrapolating, that is, reaching out to combinations of input values that the
model has not been trained on. This implies that the quality of approximation is
directly determined by (i) the experimental conditions under which the data were
recorded and (ii) the quality of the data. In order to build in quality, the experiments
need to be carefully designed and measurement samples taken at optimized time
instances.

7.2.3 Static Hybrid Semiparametric Models

Static hybrid semiparametric models combine nonparametric and parametric mod-
els, the latter incorporating a priori knowledge about the system. Mathematically,
this can be generically expressed as

Y = h(f (X,Ω),g(X,ω), θ), (6)

with f (X,Ω) representing the parametric model, g(X,ω) the nonparametric model,
and h(·) the functions that combine the nonparametric and parametric models. This
function specifies the contribution of the parametric and nonparametric components
to describe the system output Y . The function h(·) can take different forms as il-
lustrated in Fig. 3 and explained in more detail in [35]. In the general case, h(·)
is a parameterized function with parameters θ , which also need to be estimated.
The knowledge captured in f (X,Ω) is usually based on known relations, mecha-
nisms, or assumptions, and these functions are parameterized by Ω . Even though
the structure of hybrid semiparametric models is more complex and its develop-
ment might take more time, the benefits normally compensate the expenses. The
potential benefits comprise a better fit of the model to the data, the adherence to
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Fig. 3 Three different forms (functions) to combine parametric and nonparametric models.
(A) Parallel combination by some function or operator, for example, multiplication or summation;
(B) serial combination where the outputs of the parametric model are inputs to the nonparamet-
ric model; and (C) serial combination where the outputs of the nonparametric model enter the
parametric model

physical limits, better generalization properties, and better interpretability in com-
parison to strictly nonparametric models. It has been shown that the performance of
hybrid models depends strongly on the incorporated knowledge via the parametric
model [5]. It can be generally stated that the more knowledge is incorporated, the
higher are the expenses, but the greater are the potential benefits. However, a factor
that also determines the performance is the degree to which the incorporated knowl-
edge can describe the system. If the incorporated knowledge describes the system
poorly, the hybrid semiparametric model will also describe the system poorly, that
is, the incorporated knowledge poses an inductive bias on the model [20, 35]. On
the other hand, this property can also be utilized to evaluate whether certain knowl-
edge or assumptions can represent the real system. In any case, the nonparametric
model must be identified according to the model discrimination and parameter es-
timation criteria described in the previous section. This can be achieved with the
techniques described above for some combination functions h(·). For other com-
bination functions, specific parameter identification methods are needed because
no direct experimental data representation is available for g(X,ω). For the latter
case, there are two fundamental strategies, the direct and the indirect approach. In
the direct approach, an inverse function is first constructed, which is used to cal-
culate pseudo-experimental values of g(X,ω). Thereupon standard methodologies
described in the previous section can be applied to identify g(X,ω). In the indirect
approach, g(X,ω) serves to calculate the system output Y , and then algorithms are
employed that minimize the distance (Ymes−Y ). In the latter case, the same precau-
tions described in the section on parameter identification should be taken. Note that
the gradients that might be required for parameter identification can be computed
using the chain rule, that is,

dY

dω
= dY
dg
· dg
dω
, (7)

where the last term on the right side is equivalent to the nonparametric model gra-
dient with respect to ω.
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7.2.4 Dynamic Hybrid Semiparametric Models

A dynamic model describes how the system behaves along time. Continuous-time
dynamic models are normally expressed in the form of ordinary differential equa-
tions (ODE), which typically arise when applying material and/or energy balances
to well-mixed (bio)chemical systems. They take the following general form:

dY

dt
= f (X(Y),Ω) (8)

with d/dt the time derivative of state variables, and f (X,Ω) a parametric function.
Equation (8) can be extended to the hybrid semiparametric case by considering that
the right side of the equation is composed by known (parametric) and unknown
(nonparametric) models:

dY

dt
= h(f (X(Y),Ω), g(X(Y),ω), θ). (9)

Note that the calculated state Y is fed back to the model, wherefore self-imposed
dynamic behavior can at all evolve. The knowledge segmentation into known and
unknown parts can offer a number of advantages. The most interesting aspect from
the perspective of system biology is perhaps that different model hypotheses can
be tested for the whole biological system without knowing precisely all the de-
tails about the system at hand. Thus, by incorporating all available knowledge while
bridging missing parts with nonparametric techniques, model development becomes
much more efficient. Besides that, all the benefits previously listed for static models
(i.e., better approximation, better generalization, adherence to physical limits) also
hold for dynamic hybrid semiparametric models. On the downside, the model build-
ing is more laborious in comparison to strictly parametric or nonparametric models.
As in static models, the incorporated knowledge through function f (X,Ω) can in-
crease model performance but also pose and inductive bias to the model estimations.

As in static hybrid models, model discrimination and parameter identification
becomes necessary for the identification of the nonparametric model. Again, either
pseudo-experimental values can be estimated for g(X,ω), followed by the applica-
tion of standard algorithms (direct approach), or the difference between the model
estimate and the experimental value can be minimized (indirect approach). Note that
the analytic gradients can be obtained employing the total differential, which gives

d

dt
· dY
dω

= ∂h
∂f
· ∂f
∂Y
· dY
dω

+ ∂h
∂g
· ∂g
∂Y
· dY
dω

+ ∂h
∂g
· dg
dω
. (10)

This equation, known as the sensitivity equation, needs to be integrated along
with Eq. (9), potentially leading to a computationally intensive large-scale sys-
tem [19, 24, 34].
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7.3 Hybrid Systems Biology

Currently, there are several mathematical modeling formalisms in use among the
systems biology community [17]. Constraints-based models comprise a set of well-
known computation methods of intracellular fluxes assuming that the cells are in
steady state. Examples of such methods are metabolic flux analysis (MFA), flux bal-
ance analysis (FBA), extreme pathways (EP), or elementary modes (EM). MFA and
FBA aim at flux quantification, whereas methods such as EP or EM are employed
to infer flux properties. Even though all of these approaches find application under
different scenarios, they all rely on a stoichiometric model of reactions, namely a
metabolic network. A mathematical representation of the metabolic network can be
obtained by formulating the material balances of intracellular metabolites and as-
suming that the metabolite pools are constant along time, that is, quasi-steady state,
resulting in

0=N · v (11)

where N represents the matrix of stoichiometric coefficients, and v a vector of reac-
tion fluxes. The reactions that link the metabolites are either derived using genome
information (if available), resulting in large genome-scale metabolic networks, or
constructed as a smaller network of reactions using biochemistry knowledge. In
the latter case, MFA is typically applied to determine the network consistency and
to quantify the fluxes. This implies that the system is determined or even overde-
termined, meaning that the number of degrees of freedom needs to be lower than
or at least equal to the number of independent steady-state material balances. For
genome scale metabolic networks, the system is usually underdetermined, and FBA
finds application.

Another class of models that are very popular in bottom-up systems biology is
the dynamic models expressed by differential equations [17]. The extension of the
steady-state Eq. (11) to the dynamic case is obtained by formulating the material
balances of intracellular compounds assuming that they are not balanced:

dc

dt
=N · v −μ · c (12)

with c the vector of concentrations of intracellular compounds and μ the specific
growth rate. The differential equation formalism is quantitative, permitting to com-
pute the time evolution of the intracellular components. For that, it requires the
kinetic laws for the computation of v to be known a priori.

Both formalisms have a limited applicability when the knowledge base is insuffi-
cient. One example is the modeling of the formation of complex biomolecules, such
as recombinant proteins, which are usually synthesized by several different path-
ways regulated by a high number of genes. Some of the pathways contributing to
product synthesis are not known. Moreover, by-passing the regulatory level for flux
manipulation might be successful for small molecules [14], but this is rather not the
case for complex products. Even detailed knowledge about a lumped product syn-
thesis reaction from precursors would not help because the product fluxes are much
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Fig. 4 Schematic
representation of the hybrid
metabolic flux analysis

lower than those of biomass synthesis, which in light of the experimental measure-
ment errors renders their determination into a mathematically ill-conditioned prob-
lem [9]. Hence, modeling product synthesis is hindered either by the lack of detailed
knowledge or by the ill-conditioned nature of the lumped product synthesis reaction.
However, the problem can be segmented into two parts, a well-defined part and an
ill-defined/unknown part. This segmentation is equivalent to the general structure
of hybrid semiparametric models, and thus the strategy for overcoming this type of
problems is precisely the application of hybrid models as illustrated in the following.

7.3.1 Hybrid Metabolic Flux Analysis

Here we show how hybrid static systems can be used to improve existing MFA
methods when the underlying metabolic network is ill-defined. We study in partic-
ular the modeling of the rate of production of baculoviruses by infected Spodoptera
frugiperda (Sf9) cells. The main motivation is to investigate whether the rate of pro-
duction of baculoviruses can be increased through the manipulation of other fluxes.

A small-scale metabolic network of Sf9 cells comprising a well-defined central
carbon and nitrogen metabolism [2, 8] was augmented with a set of biosynthesis
reactions for baculovirus synthesis [1, 39]. The main objective of the model is to
predict the flux of baculovirus synthesis vBac. The metabolic network has 51 bal-
anced metabolites and 77 fluxes, of which 30 are measured exchange rates (see [9]
for details), which results in a overdetermined MFA problem expressed as follows:

0= [Nest,Nmes] · [vest, vmes]T
⇔ −Nest · vest =Nmes · vmes

⇔ vest =−N#
est ·Nmes · vmes, (13)

where vest and vmes represent the estimated and measured fluxes, respectively, and
Nest and Nmes the corresponding stoichiometric matrices. The superscript symbol #
represents the pseudo-inverse operation. The flux of baculovirus synthesis reaction
vBac belongs to the vector vest. Carinhas et al. [9] have shown that when solving
Eq. (13), the measurement errors of the measured fluxes are amplified when vBac
is included in the estimated fluxes partition, indicating that the estimation of vBac
is ill-conditioned. Moreover, a sensitivity analysis reveals much higher sensitivity
values of vBac with respect to vmes as compared to those of biomass formation μ.
In order to overcome these MFA limitations, we propose the hybrid static structure
represented in Fig. 4. The basic principle is that the ill-defined part of the metabolic
network is omitted from the MFA model (the parametric component of the hybrid
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Fig. 5 vBac over number of experiments and predicted vBac against measured vBac.
Squares—measured vBac values; crosses—predicted vBac values for training set of first validation
strategy; X-es—predicted vBac values for validation set of first validation strategy; upper trian-
gle—predicted vBac values for training set of second validation strategy; lower triangle—predicted
vBac values for validation set of second validation strategy. Validation strategies described in [9]

model) and is instead represented by a nonparametric model. More specifically, vBac
is removed from the vector of estimated fluxes of the MFA model and included as
output of a nonparametric model, namely a PLS model, in tandem with the MFA
model. The PLS inputs are the estimated fluxes ve of the MFA model. Mathemati-
cally, the hybrid model is stated as follows:

vest =−N#
est ·Nmes · vmes,

vBac = g(vest),
(14)

where g(·) represents the transfer function of the PLS model. The PLS model was
identified according to the previously described methods. The optimal topology for
a final parsimonious model includes only three latent variables. The estimations of
the hybrid model are shown in Fig. 5, where it can be seen that the estimations fit the
measured values well. The good quality of the estimations in turn renders the anal-
ysis of the contribution of each estimated flux comprised by ve, namely ve,i , in the
product synthesis vBac meaningful. The contribution of each ve,i can be determined
by analyzing the PLS regression coefficients. For judging whether the correlation of
ve,i to vBac is also statistically meaningful, a method based on Monte Carlo sam-
pling was implemented, enabling the calculation of confidence intervals for the PLS
regression coefficients (for details, see [9]). Based thereon, the strength of associ-
ation was defined as the confidence interval to regression coefficient ratio. Similar
strengths of association point at a similar involvement in product synthesis. The
strength of association values were calculated for those correlations that were sta-
tistically meaningful, and a clustering method was utilized to identify associations
with similar strength [9]. Two clusters were identified that indicate the involvement
of the TCA cycle, respiration and the amino acid catabolism in the product synthe-
sis.
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7.3.2 Hybrid Dynamic ODE Model

In this section, we develop a dynamic model of a mammalian cell culture applying
the hybrid ODEs structure described in the previous section. We address in par-
ticular a fed-batch culture of a recombinant baby hamster kidney (BHK) cell line
expressing IgG1-IL2. The backbone of the model is the set of ODEs derived from
the material balances of the key extracellular compounds assuming that the reactor
content is perfectly mixed:

d

dt

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

X

Glc
Gln
Lac

Amm
Ala

IgG1-IL2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

= r −D ·

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

X

Glc
Gln
Lac

Amm
Ala

IgG1-IL2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

+

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0
FGlc
FGln

0
0
0
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, (15)

where the entries in the vector correspond to the concentrations of biomass, glucose,
glutamine, lactate, ammonia, alanine, and product, respectively, r is the volumetric
reaction kinetics, D is the dilution rate (D = (FGlc + FGln)/Vwith V the culture
volume), and FGlc and FGln are the volumetric feeding rates of glucose and glu-
tamine, which are the fed-batch control inputs. The term r defines the interface to
the BHK intracellular processes, whereas the other terms in this equation arise from
reactor transport phenomena.

In bottom-up systems biology, parametric models require the formulation of
mechanistic reaction kinetics r such as the Michaelis–Menten kinetics. This is only
feasible when reliable mechanistic knowledge and respective kinetic data are avail-
able. Here we explore a hybrid semiparametric approach, where the structure of
reaction kinetics is defined by the elementary modes of the metabolic network (thus
based on knowledge), whereas the weighting factors of the EMs are modeled non-
parametrically:

r = λ1e1 + · · · + λNEMeNEM,

Λ= [λ1, . . . , λNEM]T = g(ω, c),
(16)

where ei are the vectors, and λi are the weighting factors of EMs. Five EMs of the
central carbon metabolism are considered, which have the following extracellular
stoichiometry (for details how to obtain these EMs, see [28]):

e1: Glucose→ 2 Lactate,

e2: Glucose→ 6 CO2,

e3: Glutamine→ 5 CO2 + 2 Ammonia,

e4: Glutamine→ 2 CO2 +Ammonia+Alanine, and

e5: Glutamine→ Lactate+ 2 CO2 + 2 Ammonia.
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In addition, two lumped reactions are considered that describe biomass and product
synthesis:

eBiomass: 0.0208Glc+ 0.0377Gln+ 0.0133Ala+ 0.0165Gly

+ 0.0096Val+ 0.0133Leu+ 0.0084Ile+ 0.0033Met+ 0.0081Pro

+ 0.0055Phe+ 0.004Try+ 0.0099Ser+ 0.008Thr+ 0.0Asn

+ 0.0077Tyr+ 0.0004Cys+ 0.0101Lys+ 0.007Arg+ 0.0033His

+ 0.026Asp+ 0.0006Glu→ Biomass

and

eIgG1-IL2: 0.0104Gln+ 0.0182Leu+ 0.0072Phe+ 0.0088Asn+ 0.0061Arg

+ 0.0112Ala+ 0.0139Gly+ 0.0163Val+ 0.0061Ile+ 0.0029Met

+ 0.0147Pro+ 0.0037Try+ 0.0243Ser+ 0.0163Thr+ 0.0077Tyr

+ 0.053Cys+ 0.0136Lys+ 0.0043His+ 0.0083Asp

+ 0.0096Glu→ IgG1-IL2.

Overall, these reactions can be joined into the matrix form:

r =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 0 0 0 1 0
−1 −1 0 0 −0.0208 0
0 0 −1 −1 −0.0377 −0.0104
2 0 0 0 0 0
0 0 2 1 0 0
0 0 0 1 −0.0133 −0.0112
0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

·

⎡

⎢⎢⎢⎢⎢⎢
⎣

λ1
λ2
λ3
λ4

λBiomass
λIgG-IL2

⎤

⎥⎥⎥⎥⎥⎥
⎦

. (17)

The advantage of the EMs approach is that it structures the interactions between
compounds, wherefore the number of possible interactions is a priori constrained
by the metabolic network connectivity and stoichiometry. This facilitates model
discrimination and parameter identification since the nonparametric model can be
simpler and the number of parameters reduced. On the other hand, this approach is
not as mechanistic knowledge intensive as the parametric modeling approach since
no function is specified a priori for the reaction rates laws.

Assuming that biomass “catalyzes” the reactions and considering that the educts
need to be present for a reaction to run off, the reaction rates can be written out as

Λ=

⎡

⎢⎢⎢
⎢⎢⎢
⎣

λ1
λ2
λ3
λ4

λBiomass
λIgG1-IL2

⎤

⎥⎥⎥
⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎢⎢⎢
⎣

X ·Glc · g1(c,ω1)

X ·Glc · g2(c,ω2)

X ·Gln · g3(c,ω3)

X ·Gln · g4(c,ω4)

X · g5(c,ω5)

X ·Gln · g6(c,ω6)

⎤

⎥⎥⎥
⎥⎥⎥
⎦

, (18)
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Fig. 6 Representation of the
strategy and the dynamic
hybrid model for the BHK
cultivations

where the functions gi(c,ωi) are defined nonparametrically. The incorporation of
this additional structure avoids the computation of negative concentrations of educts,
which is a frequently encountered problem in nonparametric modeling. The non-
parametric transfer function was chosen to be an ANN with one hidden layer and
three input variables, namely the predicted concentrations of glucose, glutamine,
and ammonia, that is, g1..6 = g1..6(Glc,Gln,Amm,w). Thus, the hybrid model state
predictions are fed back to the model (Fig. 6).

The ANN discrimination and identification of the parameters w was performed
as described in the previous section. The best performing ANN had five sigmoidal
nodes in the hidden layer, sigmoidal output, and linear input nodes. The fit of this
hybrid model is illustrated in Fig. 7 for one fed-batch cultivation used for valida-
tion along with the time profiles of the nonparametric model outputs (g1..6). It can
be observed that the output values are almost constant along the entire duration
of the fed-batch, only varying significantly during the last fifty minutes. This is a
particularity of fed-batch cultivations, as for batch cultivations, these values var-
ied over the entire cultivation time [28]. In addition, the specific product forma-
tion was found to be more stable in fed-batch cultures than in the batch culture.
Glutamine is consumed for product and biomass synthesis and metabolized by ele-
mentary modes EM3 and EM4. Therefore, by using this hybrid modeling approach
the relative importance of certain pathways at given stages of the process can be
inferred.

7.3.3 Hybrid Dynamic ODE/DDE Model

In biochemical reaction networks, certain reactions take a longer time to run off than
others. The reason therefore may be either that the reaction itself lasts an intrinsic
time because its synthesis and transport takes a considerable amount of time (e.g.,
translation or transcription reactions) or that a series of reactions are lumped, which
all together require a considerable amount of time [18]. In either case, the model-
ing framework must account for longer duration. The formulation of the material
balances for homogeneous systems naturally provides a set of ODEs describing the
system as in the previous case study. A common approach in biochemical engineer-
ing is to segregate the reactions comprised in this framework according to their dura-
tion. The reactions that are much faster than others are assumed to be in quasi-steady
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Fig. 7 Temporal profiles (i) of the measured and estimated concentrations of biomass (squares
and dashed line), IgG-IL2 (circles and continuous line), glucose (crosses and dashed line), lactate
(triangles and continuous line), alanine (diamonds and continuous line), ammonia (x-es and dashed
line), glutamine (triangles and dotted line); and (ii) of the rate expressions g5 (dashed line), g6
(continuous line), g1 (continuous line), g2 (dashed line), g3 (dashed line), g4 (continuous line)

state, implying that their time derivatives equal zero. For reactions that take much
longer, retarded functional dynamic equations (RFDE) provide a suitable mathe-
matical framework [4]. By applying certain simplifications the two most frequently
applied approaches, that is, the discrete-time delay approach [25, 31, 42] and the
distributed time delay approach [10, 21, 43], can be derived. Although with varying
performance, these time delay approaches are shown to be capable of describing the
dynamics of biochemical networks [10, 21, 43]. However, the application of these
approaches generally suffers from two drawbacks: (i) the complex nature of bio-
chemical networks and the lack of fundamental knowledge makes the development
of dynamic network models laborious [29, 37, 38]; and (ii) the underlying dynamics,
such as time delays, and the fundamental mechanisms that cause such delays are not
likely to be known in advance. In addition, the estimation of delays together with
other parameters (e.g., yield, Michaelis–Menten constants, etc.) of dynamic models
is usually difficult using standard functions implemented in mathematics software
packages.

In this section, we show how hybrid semiparametric models can be used to model
biochemical networks with intrinsic time delays. The idea is to overcome the draw-
backs above by first decomposing the model into known and unknown parts. The
unknown parts are represented by nonparametric models, which are identified from
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Fig. 8 Experimental data
(black X-es) and the best
performing hybrid models
with no delay (light gray
dashed line) and a 120-min
delayed feedback (dark gray
continuous line)

data. Then the time delays can be inferred by probing from the outside, that is,
testing systematically different numbers and values of time delays in those state es-
timates that are inputs to the nonparametric model. The obtained set of equations
classifies as delayed Differential equations (DDEs).

7.3.3.1 Concentration Dynamics of the Transcription Factor A

In gene regulatory systems, signal transduction pathways trigger the phosphoryla-
tion of specific transcription factors (TF). The phosphorylated TFs can then bind to
responsive DNA sequences, regulating the transcription of nearby genes. The ex-
ample of the transcription factor A (TFA) model reported by [25, 31] is utilized to
generate experimental data, which are then employed to demonstrate that the DDE
hybrid semi-parametric models can describe rich dynamics and allow the identifi-
cation of the underlying delay. The TFA model describes the dynamics of the TFA
monomeric concentration in the nucleus by a single DDE, considering a discrete
delay for the translocation of TFA:

dTFA

dt
= kf · TFA(t − τ)2

TFA(t − τ)2 +Kd − TFA(t) · kd +Rbas, (19)

where the first term corresponds to the rate of TFA transcription in the cytosol that
translocates to the nucleus with delay τ = 120 min (Kd = 10 µM2). The second
term refers to TFA dissociation in the nucleus (kd = 0.1 1/min), and the third term
to a basal transcription rate, Rbas = 0.01 µM/min, observed at very low TFA con-
centrations. The TFA dynamics are induced by the increase of the cytosol synthesis
rate kf from 0.1 to 20 µM/min at time t = 200 min, forcing the system to jump to
another state. The main effect of the delay is that the TFA concentration exhibits a
“staircase” transition between the steady states, as can be seen in Fig. 8.
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Fig. 9 The standard dynamic
ODE hybrid model
(continuous lines) and the
additions for the DDE hybrid
model (dashed lines)

Table 1 BIC and MSE
values obtained for the test
dataset by hybrid models in
which the neural network has
five hidden nodes and a
varying time-delayed TFA
feedback as input

τ (min) BIC MSE

0 −5997 0.0210

100 −5733 0.0120

110 −6088 0.0210

120 −5489 0.0071

130 −5676 0.0107

140 −6039 0.0223

160 −5909 0.0171

7.3.3.2 The Hybrid Semi-parametric Model

The objective here is to show that the DDE hybrid model can represent the rich time-
delay dynamics as opposed to the standard dynamic ODE hybrid model. The overall
structures of both models are equivalent except for the feedback of the estimates,
which in case of the DDE hybrid model additionally comprises the time-delayed
TFA estimates; see Fig. 9. The nonparametric models are discriminated for both
cases, and their parameters are estimated according to the procedure described in
the previous section.

The effect of the incorporation of the delay can be seen Fig. 8, where the “stair-
case” transition is observed to be mimicked only by the DDE hybrid model, whose
inputs comprise a time-delayed TFA feedback. This underpins that the dynamics
of the system is very sensitive to the delay, which renders the identification of the
underlying time delay possible, namely by studying the model performances while
systematically varying the time delay. For instance, it can be seen in Table 1 that the
performance of the model tends to increase the closer the time delay is to the “true
120 min” delay.

It should be noted that the DDE hybrid used here is not limited to cases in which
the dynamics is governed by one discrete delay but can also be applied for vari-
ous discrete delays, even describing dynamics posed by distributed time delays (for
more details, see [33]).

7.4 Concluding Remarks

Systems biology is an umbrella concept that includes a range of efforts to take living
organisms to a level of quantitative comprehension, wherein mathematical model-
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ing is a fundamental tool. Both mathematical modeling based on mechanisms and
statistical modeling approaches have been widely used in systems biology. In this
chapter, we have given an overview on the theoretical fundamentals of hybrid semi-
parametric modeling and demonstrated its application to systems biology by several
examples. Hybrid semiparametric models blend together mechanistic and statistical
modeling and are naturally suited for middle-out modeling problems. The potential
benefits are manifold. There are many studies in the literature comparing the hybrid
semiparametric with nonparametric or with mechanistic models, showing that hy-
brid semiparametric models outperform either of the other. Indeed, the interlinking
of different knowledge sources into a hybrid semiparametric modeling approach
can result in better system descriptions. However, the application of hybrid semi-
parametric approaches does not automatically result into improved models. Rather,
a problem-specific perspective has to be pursued, and an analysis of the reasons for
eventual models shortcomings must be applied. Finally, it should be stressed that
the application of hybrid semiparametric systems to process systems engineering
has witnessed a notable progress in the last 20 years as opposed to systems biology,
where the number of applications are still very scarce.
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